

Lecture Notes in Computer Science 6501
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Marian Gheorghe Thomas Hinze
Gheorghe Păun Grzegorz Rozenberg
Arto Salomaa (Eds.)

Membrane
Computing

11th International Conference, CMC 2010
Jena, Germany, August 24-27, 2010
Revised Selected Papers

13

Volume Editors

Marian Gheorghe
University of Sheffield, Department of Computer Science
Regent Court, Portobello Street, Sheffield S1 4DP, UK
E-mail: m.gheorghe@dcs.shef.ac.uk

Thomas Hinze
Friedrich Schiller University, Department of Bioinformatics
School of Biology and Pharmacy
Ernst-Abbe-Platz 1–4, 07743, Jena, Germany
E-mail: thomas.hinze@uni-jena.de

Gheorghe Păun
Institute of Mathematics of the Romanian Academy
P.O. Box 1-764, 014700 Bucharest, Romania
E-mail: george.paun@imar.ro; gpaun@us.es

Grzegorz Rozenberg
Leiden University, Leiden Center of Advanced Computer Science (LIACS)
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
E-mail: rozenber@liacs.nl

Arto Salomaa
Turku Centre for Computer Science (TUCS)
Leminkäisenkatu 14, 20520 Turku, Finland
E-mail: asalomaa@cs.utu.fi

Library of Congress Control Number: 2010941767

CR Subject Classification (1998): F.1, F.4, I.6, J.3, C.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-18122-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-18122-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This volume contains a selection of papers presented at the 11th International
Conference on Membrane Computing (CMC11, http://cmc11.uni-jena.de)
which took place in Jena, Germany, during August 24–27, 2010.

The first three workshops on membrane computing were organized in Curtea
de Argeş, Romania – they took place in August 2000 (with the proceedings
published in Lecture Notes in Computer Science, volume 2235), in August 2001
(with a selection of papers published as a special issue of Fundamenta Infor-
maticae, volume 49, numbers 1–3, 2002), and in August 2002 (with the proceed-
ings published in Lecture Notes in Computer Science, volume 2597). The next
six workshops were organized in Tarragona, Spain (in July 2003), Milan, Italy
(in June 2004), Vienna, Austria (in July 2005), Leiden, The Netherlands (in
July 2006), Thessaloniki, Greece (in June 2007), and Edinburgh, UK (in July
2008), with the proceedings published in Lecture Notes in Computer Science,
by Springer, as volumes 2933, 3365, 3850, 4361, 4860, and 5391, respectively.
The 10th workshop returned to Curtea de Argeş in August 2009 (LNCS volume
5957).

From then on, the workshop became a conference and the series of meetings
on membrane computing continues as the Conference on Membrane Computing,
with the 2010 edition, CMC11, held in Jena, Germany.

The invited speakers for CMC11 were: Gabriel Ciobanu (Iasi, Romania),
Peter Dittrich (Jena, Germany), Marian Gheorghe (Sheffield, UK), Martin Kutrib
(Gießen, Germany), Maurice Margenstern (Metz, France), and Gheorghe Păun
(Bucharest, Romania, and Seville, Spain). Extended abstracts of these talks are
included in this volume. Moreover, the CMC11 and Jena Life Science Forum 2010
(JLSF2010) audiences enjoyed the opportunity to listen to two joint keynote pre-
sentations delivered by Gheorghe Păun (Bucharest, Romania and Seville, Spain),
from CMC11, and Peter Stadler (Leipzig, Germany), from JLSF2010.

This volume also incorporates a selection of 23 accepted papers. Each of
them was subject of at least three referee reports. The Program Committee con-
sisted of 21 members: Artiom Alhazov (Hiroshima, Japan), Gabriel Ciobanu
(Iasi, Romania), Erzsebet Csuhaj-Varju (Budapest, Hungary), Gabi Escuela
(Jena, Germany), Rudolf Freund (Vienna, Austria), Pierluigi Frisco (Edinburgh,
UK), Marian Gheorghe (Sheffield, UK) – Chair, Thomas Hinze (Jena, Ger-
many) – Co-chair, Oscar H. Ibarra (Santa Barbara, USA), Vincenzo Manca
(Verona, Italy), Maurice Margenstern (Metz, France), Giancarlo Mauri (Mi-
lan, Italy), Van Nguyen (Adelaide, Australia), Marion Oswald (Budapest, Hun-
gary), Linqiang Pan (Wuhan, China), Gheorghe Păun (Bucharest, Romania and
Seville, Spain), Mario J. Perez-Jimenez (Seville, Spain), Dario Pescini (Milan,
Italy), Francisco J. Romero-Campero (Nottingham, UK), Monika Sturm (Dres-
den, Germany), and Sergey Verlan (Paris, France). It was assisted in the selection

VI Preface

process by seven additional reviewers: Oana Agrigoroaiei (Iasi, Romania),
Christian Bodenstein (Jena, Germany), Paolo Cazzaniga (Milan, Italy), Alberto
Leporati (Milan, Italy), Antonio E. Porreca (Milan, Italy), Sara Woodworth
(Amgen in Thousand Oaks, USA), and Claudio Zandron (Milan, Italy).

The Organizing Committee was constituted by Jörn Behre, Gabi Escuela,
Thomas Hinze – Chair, Thorsten Lenser, and Kathrin Schowtka (Secretary).

Since the meeting became a conference, its structure was modified quite con-
siderably. First, three international satellite workshops were organized: The 4th
Workshop on Membrane Computing and Biologically Inspired Process Calculi
(MeCBIC), the Second Workshop on Non-Classical Models of Automata and
Applications (NCMA), and the new Workshop on Applications of Membrane
Computing, Concurrency and Agent-Based Modeling in Population Biology
(AMCA-POP). Second, a software demo session was included in the program,
with the intention of becoming a platform allowing participants to share com-
puter programs and tools applicable and useful in the field of membrane comput-
ing. Third, a poster session took place, providing an opportunity of attracting
presentations of late-breaking results from young researchers and students new
in the field. Finally, the Best Contribution Award, consisting of a travel grant,
was given for the first time. Its recipient, identified by the vote of all CMC11
participants, was Pierluigi Frisco (Edinburgh, UK).

We gratefully acknowledge funding for CMC11 from the German Research
Foundation (grant HI801/3-1), and additional financial support provided by the
Jena Centre for Bioinformatics (JCB). Furthermore, we thank the administra-
tion of the Friedrich Schiller University Jena for the perfect infrastructure made
available to CMC11, and for the extensive assistance in many issues related
to CMC11. Finally, we express our gratitude to the “UniverCity” of Jena for
providing special rates for accomodation to CMC11 participants.

The work of G. Păun in editing this volume was supported by Proyecto de
Excelencia con Investigador de Reconocida Vaĺıa, de la Junta de Andalućıa,
grant P08 – TIC 04200.

The editors warmly thank the Program Committee, the invited speakers, the
authors of the submitted papers, the reviewers, and all the participants. Special
thanks are due to Springer for the pleasant cooperation in the timely production
of this volume.

October 2010 Marian Gheorghe
Thomas Hinze

Gheorghe Păun
Grzegorz Rozenberg

Arto Salomaa

Table of Contents

Keynote Presentations

Membrane Computing at Twelve Years . 1
Gheorghe Păun

Testing Based on P Systems – An Overview . 3
Marian Gheorghe and Florentin Ipate

Invited Presentations

Mobility in Computer Science and in Membrane Systems 7
Gabriel Ciobanu

Organization Oriented Chemical Computing . 18
Peter Dittrich

Cellular Automata and the Quest for Nontrivial Artificial
Self-Reproduction . 19

Markus Holzer and Martin Kutrib

An Algorithmic Approach to Tilings of Hyperbolic Spaces: 10 Years
Later . 37

Maurice Margenstern

Regular Presentations

Flattening the Transition P Systems with Dissolution 53
Oana Agrigoroaiei and Gabriel Ciobanu

The Family of Languages Generated by Non-cooperative Membrane
Systems . 65

Artiom Alhazov, Constantin Ciubotaru, Sergiu Ivanov, and
Yurii Rogozhin

Polymorphic P Systems . 81
Artiom Alhazov, Sergiu Ivanov, and Yurii Rogozhin

A Small Universal Splicing P System . 95
Artiom Alhazov, Yurii Rogozhin, and Sergey Verlan

VIII Table of Contents

Membrane Systems Working in Generating and Accepting Modes:
Expressiveness and Encodings . 103

Roberto Barbuti, Andrea Maggiolo-Schettini, Paolo Milazzo, and
Simone Tini

BioSimWare: A Software for the Modeling, Simulation and Analysis of
Biological Systems . 119

Daniela Besozzi, Paolo Cazzaniga, Giancarlo Mauri, and
Dario Pescini

Modeling Population Growth of Pyrenean Chamois
(Rupicapra p. pyrenaica) by Using P-Systems . 144

Maria Angels Colomer, Santiago Lav́ın, Ignasi Marco,
Antoni Margalida, Ignacio Pérez-Hurtado, Mario J. Pérez-Jiménez,
Delf́ı Sanuy, Emmanuel Serrano, and Luis Valencia-Cabrera

On Generalized Communicating P Systems with One Symbol 160
Erzsébet Csuhaj-Varjú, György Vaszil, and Sergey Verlan

A Faster P Solution for the Byzantine Agreement Problem 175
Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu

Computationally Complete Spiking Neural P Systems without Delay:
Two Types of Neurons Are Enough . 198

Rudolf Freund and Marian Kogler

P Systems and Unique-Sum Sets . 208
Pierluigi Frisco

An Integrated Approach to P Systems Formal Verification 226
Marian Gheorghe, Florentin Ipate, Raluca Lefticaru, and
Ciprian Dragomir

Using the SRSim Software for Spatial and Rule-Based Modeling of
Combinatorially Complex Biochemical Reaction Systems 240

Gerd Grünert and Peter Dittrich

Depth-First Search with P Systems . 257
Miguel A. Gutiérrez-Naranjo and Mario J. Pérez-Jiménez

Towards Modelling of Reactive, Goal-Oriented and Hybrid Intelligent
Agents Using P Systems . 265

Petros Kefalas and Ioanna Stamatopoulou

Goldbeter’s Mitotic Oscillator Entirely Modeled by MP Systems 273
Vincenzo Manca and Luca Marchetti

Table of Contents IX

Modelling Spatial Heterogeneity and Macromolecular Crowding with
Membrane Systems . 285

Ettore Mosca, Paolo Cazzaniga, Dario Pescini,
Giancarlo Mauri, and Luciano Milanesi

Randomized Gandy-Păun-Rozenberg Machines . 305
Adam Obtu�lowicz

Feasibility of Organizations – A Refinement of Chemical Organization
Theory with Application to P Systems . 325

Stephan Peter, Tomas Veloz, and Peter Dittrich

P Systems with Elementary Active Membranes: Beyond NP and
coNP . 338

Antonio E. Porreca, Alberto Leporati, Giancarlo Mauri, and
Claudio Zandron

Polynomial Complexity Classes in Spiking Neural P Systems 348
Petr Sośık, Alfonso Rodŕıguez-Patón, and Lucie Ciencialová

Spiking Neural P Systems with Neuron Division . 361
Jun Wang, Hendrik Jan Hoogeboom, and Linqiang Pan

Matrix Representation of Spiking Neural P Systems 377
Xiangxiang Zeng, Henry Adorna, Miguel Ángel Mart́ınez-del-Amor,
Linqiang Pan, and Mario J. Pérez-Jiménez

Author Index . 393

Membrane Computing at Twelve Years

Gheorghe Păun

Institute of Mathematics of the Romanian Academy
P.O. Box 1-764, 014700 Bucureşti, Romania, and

Department of Computer Science and Artificial Intelligence
University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
gpaun@us.es

Abstract. This is not a balance sheet of the domain, although twelve
years is a good time for a research area to have an overall assessment,
a comparison of initial dreams with the achievements, an overview of
main results, an estimation of research directions for the near future.
This would be too an ambitious task, although an useful exercise, so I
am postponing it. What I want however to mention is that the initial
aims were rather restricted, confined to computing theory, not imag-
ing, for instance, that this area can become a framework for modeling,
mainly of biological processes, but also for other areas. “There is nothing
more practical than a good theory” one often says. Membrane computing
proved to be practical; whether or not this means that it provides a good
theory, let us assess it after twelve more years.

The presentation here has two main aims.
First, it tries to introduce membrane computing through twelve basic

ideas about which I have worked along the years: cell-like P systems,
string objects, symport-antiport rules (computing by communication),
active membranes (especially, membrane division and membrane cre-
ation), tissue-like P systems, using P systems in the accepting mode,
trace languages, numerical P systems, P systems with objects on mem-
branes (brane calculi inspired P systems), P colonies, spiking neural P
systems, dP systems. Other topics will be touched, having or not con-
nections with my work: controls on rule application, minimal parallelism,
asynchronous systems, array objects, trees as a result of computations,
population P systems, conformon objects, probabilistic-stochastic P sys-
tems, MP systems, complexity approaches, and so on. Also, some open
problems and research topics will be mentioned.

Second, some hints will be given concerning applications, especially
in modeling biological processes, but also in studying-simulating ecosys-
tems; applications in economics, computer graphics, approximate opti-
mization, etc., will be also mentioned.

Very few precise bibliographical information will be given. Instead, the
reader will be refereed to the existing books available – see below – and to
the website of membrane computing, from http://ppage.psystems.eu.
A lot of information can also be found in the proceedings of the two
yearly meetings in the area, Brainstorming Week on Membrane Com-
puting and Workshop on Membrane Computing (the latter one being

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 1–2, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 Gh. Păun

the ancestor of the present conference), in the PhD theses with mem-
brane computing subject, and in the special issues of journals devoted to
membrane computing; details about all these can be found in the above
mentioned website.

References

1. Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Com-
puting. Springer, Berlin (2006)

2. Frisco, P.: Computing with Cells. Advances in Membrane Computing. Oxford Univ.
Press, Oxford (2009)

3. Păun, A.: Computability of the DNA and Cells. Splicing and Membrane Computing.
SBEB Publ., Choudrant (2008)

4. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
5. Păn, G., Rozenberg, A., Salomaa, A. (eds.): Handbook of Membrane Computing.

Oxford University Press, Oxford (2010)

Testing Based on P Systems – An Overview

Marian Gheorghe1,2 and Florentin Ipate2

1 Department of Computer Science, The University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, UK

M.Gheorghe@dcs.shef.ac.uk
2 Department of Computer Science, Faculty of Mathematics and Computer Science

The University of Pitesti
Str Targu din Vale 1, 110040 Pitesti

florentin.ipate@ifsoft.ro

Abstract. In this extended abstract there are surveyed various testing
approaches utilised so far for applications based on P systems.

1 Introduction

All software applications, as any engineering products, irrespective of their na-
ture and purpose, are thoroughly tested before being released, installed and
used. Testing appears everywhere, is part of any technology, and does not have
a substitute. In many hardware or software systems testing is conducted together
with formal verification, especially when a certain formal model is utilised. In
software industry testing is a necessary mechanism to increase the confidence in
the product correctness and to make sure it works properly.

P systems area, initially introduced by [11], has been under an intensive inves-
tigation in the last decade. It covers a broad range of aspects, from theoretical
investigations of the computational power and descriptional complexity of var-
ious mechanisms, to applications in modelling different natural or engineered
systems, and from interactions with other computational models to implemen-
tations of various problems utilising either certain tools or general purpose pro-
gramming languages. An account of the various developments of the field, mostly
at the theoretical level, is provided in [13], [12]; applications of P systems are
presented in [2]. The most recent research aspects of this field are reported in
[14].

In this note it will be overviewed an approach on black box testing which
requires that for a given specification defined as a P system, an implementation
of it exists and this will be tested utilising a test set derived from its specification.

Testing P systems has been so far considered by using certain coverage prin-
ciples. More often the rule coverage is utilised, by taking into account different
contexts. In order to reveal the usage of the rules, grammar and automaton
based methods are derived from P systems specifications. These two types of
testing methods are reviewed in the following sections. Some specific test set
generation methods are analysed and discussed.

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 3–6, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

4 M. Gheorghe and F. Ipate

2 Grammar Based Methods

In order to test an implementation developed from a P system specification, a
test set is built, in a black box manner, as a finite set of sequences containing
references to rules.

Although there are similarities between context-free grammars utilised in
grammar testing and basic P systems, that we aim to consider, there are also ma-
jor differences that pose new problems in defining testing methods and strategies
to obtain tests sets. Some of the difficulties encountered when some grammar-like
testing procedures are introduced, are related to: the hierarchical compartmen-
talisation of the P system model, parallel behaviour, communication mecha-
nisms, the lack of a non-terminal alphabet and the use of multisets of objects
instead of sets of strings.

The rule coverage criteria discussed will be illustrated for one compartment P
system, i.e., Π = (V, μ, w, R), where μ = [1]1. The simplest and most basic rule
coverage criterion, called rule coverage, is defined in such a way that every rule
from R is covered by a certain computation; i.e., for each rule r ∈ R, r : a → v,
there is a multiset ur over V which covers r (there is a computation w =⇒∗

xay =⇒ x′vy′ =⇒∗ ur; w, x, y, v, ur ∈ V ∗, a ∈ V). Some more complex coverage
criteria can be considered (see [4], [5]).

Let us consider the following one compartment P system, Π1 =
(V1, μ1, w1, R1), where V1 = {s, a, b, c}; μ1 = [1]1 - i.e., one compartment, de-
noted by 1; w1 = s; R1 = {r1 : s → ab, r2 : a → c, r3 : b → bc, r4 : b → c}.
Each multiset w, will be denoted by a vector of non-negative integer numbers
(|w|s, |w|a, |w|b, |w|c). Test sets for Π1 satisfying the rule coverage criterion are

– T1,1 = {(0, 1, 1, 0), (0, 0, 1, 2), (0, 0, 0, 2)} and
– T1,2 = {(0, 1, 1, 0), (0, 0, 1, 2), (0, 0, 0, 3)}.

More complex test sets can be built with the same elements, by considering
sequences of multisets rather than simple multisets as above [5].

3 Finite State Machine Based Methods

Finite state machine based testing is widely used for software testing. It provides
very efficient and exhaustive testing strategies and well investigated methods to
generate test sets. In this case it is assumed that a model of the system under
test is provided in the form of a finite state machine. In our case we will consider
a way to obtain such a machine from a partial computation in a P system.
More precisely we will consider computations of at most k steps, for a given
integer k, starting from the initial multisets. These can be considered paths
in an automaton defining partial computations of no more than k steps. The
minimal automaton covering it can be now utilised as a model to generate test
sets (see [5], [7]).

A different aproach can be also considered by using a special class of state ma-
chines, called X-machines. Given that the relationships between various classes

Testing Based on P Systems – An Overview 5

of P systems and these machines are well studied ([14], [1]) and the X-machine
based testing is well developed, standard techniques for generatig test sets based
on X-machines can be adapted to the case of P systems [6].

Specific coverage criteria can be defined in the case of finite state machine
based testing. One such criterion, called transition coverage, aims to produce a
test set in such a way that every single transition of the model is covered.

If we build a finite state machine associated with the previous P system,
Π1, for partial computations of length at most 4, then a test set satisfying the
transition cover principle is
T1,s = {(1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 1, 2), (0, 0, 0, 2), (0, 0, 1, 3), (0, 0, 0, 3)}.

The transition cover criterion, however, does not only depend on the rules
applied, but also on the state reached by the system when a given rule has been
applied.

4 Generating Test Sets Using Model Checking

The generation of different test sets, according to certain coverage criteria, can
be done by utilising some specific algorithms or by applying some tools that
indirectly will generate test sets. Such tools, like model checkers, can be used to
verify some general properties of a model and when these are not fulfilled then
some counter-examples are produced, which act as test sets in certain circum-
stances.

In the case of P systems an encoding based on a Kripke structure associated
with the system is provided for model checkers like NuSMV [9] or SPIN [10].
This relies on certain operations defined in [3] and encapsulates the main features
of a P system, including maximal parallelism and communication, but within a
finite space of values associated with the objects present in the system. The rule
coverage principle is expressed by using temporal logics queries available in such
contexts. By negating specific coverage criteria, counter-examples are generated.
For instance the rule coverage set T1,1 can be obtained in this way.

5 Conclusions

P systems based testing methods are reviewed and some coverage principles
presented. Two main classes of methods, based on grammars and finite state
machines, are introduced and specific test generation tools based on model check-
ing techniques are mentioned. Apart from these methods some other approaches
have been considered when mutation techniques have been employed [8].

The main goal of this research will be to develop specific testing methods
that make direct use of the concepts and elements, both static and dynamic, of
P systems and identify specific coverage principles, like compartment coverage.
These approaches should provide techniques to reveal the effect of very complex
interactions between the many components of such models.

6 M. Gheorghe and F. Ipate

Acknowledgements. The research of MG and FI is supported by CNCSIS -
UEFISCSU, project no.643/2008, An integrated evolutionary approach to formal
modelling and testing.

References

1. Aguado, J., Bǎlǎnescu, T., Cowling, A., Gheorghe, M., Holcombe, M., Ipate, F.:
P systems with replicated rewriting and stream X-machines (Eilenberg machines).
Fundamenta Informaticae 49, 17–33 (2002)

2. Ciobanu, G., Pérez-Jiménez, M.J., Păun, G. (eds.): Applications of membrane com-
puting. Natural Computing Series. Springer, Heidelberg (2006)

3. Dang, Z., Ibarra, O.H., Li, C., Xie, G.: Decidability of model-checking P systems.
Journal of Automata, Languages and Combinatorics 11, 179–198 (2006)

4. Gheorghe, M., Ipate, F.: On testing P systems. In: Corne, D.W., Frisco, P., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 204–216.
Springer, Heidelberg (2009)

5. Gheorghe, M., Ipate, F., Lefticaru, R., Dragomir, C.: An integrated approach to P
systems formal verification. In: Proceedings of the 11th Conference on Membrane
Computing, Jena, Germany, pp. 225–238 (2010)

6. Ipate, F., Gheorghe, M.: Testing non-deterministic stream X-machine models and
P systems. Electronic Notes in Theoretical Computer Science 227, 113–226 (2008)

7. Ipate, F., Gheorghe, M.: Finite state based testing of P systems. Natural Comput-
ing 8, 833–846 (2009)

8. Ipate, F., Gheorghe, M.: Mutation based testing of P systems. International Journal
of Computers, Communications & Control 4, 253–262 (2009)

9. Ipate, F., Gheorghe, M., Lefticaru, R.: Test generation from P systems using model
checking. Journal of Logic and Algebraic Programming 79, 350–362 (2010)

10. Ipate, F., Lefticaru, R., Tudose, C.: Formal verification of P systems using SPIN.
International Journal of Foundations of Computer Science (2010) (submitted)

11. Pǎun, G.: Computing with membranes. Journal of Computer and System Sci-
ences 61, 108–143 (2000)

12. Pǎun, G.: Membrane computing. An introduction. Springer, Berlin (2002)
13. Pǎun, G., Rozenberg, G.: A guide to membrane computing. Theoretical Computer

Science 287, 73–100 (2002)
14. Pǎun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford handbook of membrane

computing. The Oxford University Press, Oxford (2009)

Mobility in Computer Science
and in Membrane Systems

Gabriel Ciobanu

Romanian, Academy, Institute of Computer Science
and “A.I.Cuza” University of Iaşi

Blvd. Carol I no.11, 700506 Iaşi, Romania
gabriel@iit.tuiasi.ro, gabriel@info.uaic.ro

In Memory of Robin Milner (1934-2010)

Mathematical models are useful in different fields to provide a deeper and more
insightful understanding of various systems and notions. We refer here to the
formal description of mobility in computer science. The first formalism in com-
puter science able to describe mobility is the π-calculus [16]. It was followed
by ambient calculus [6]. A biologically-inspired version of ambient calculus is
given by bioambients [19] and several brane calculi [5]. On the other hand, sys-
tems of mobile membranes [13] represent other formalisms with mobility in the
framework of membrane computing.

1 Mobility in Process Calculi

When expressing mobility, we should mention what entities move and in what
space they move. There are several possibilities: processes moving in a physical
space of computing locations, processes moving in a virtual space of linked pro-
cesses, links moving in a virtual space of linked processes, etc. The π-calculus is a
formalism where links are the moving entities, and they move in a virtual space of
linked processes (the network of web pages is a good example for this approach).
This option is powerful enough to express moving processes both in a physical
space of computing locations and in a virtual space of linked processes [16].

The π-calculus was developed as a calculus of communicating systems that
allows the representation of concurrent computations whose configuration may
change during the computation. The computational world of the π-calculus con-
tains just processes (also called agents) and channels (also called ports). In
contrast to λ-calculus which represents computations through functions, the π-
calculus uses the process as an abstraction of an independent thread of control.
A channel is an abstraction of the communication link between processes, and
processes interact by sending information through these channels. Since vari-
ables may be channel names, computation can change the channel topology and
process mobility is supported. Milner emphasized the importance of identifying
the “elements of interaction” [15], and his π-calculus extends the Church-Turing
model by adding the interaction between a sender and a receiver to the algebraic

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 7–17, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

8 G. Ciobanu

elegance of λ-calculus. The π-calculus has a simple semantics and a tractable
algebraic theory [16]. Actually the π-calculus is a widely accepted model of in-
teracting systems with dynamically evolving communication topology and (chan-
nel) mobility. Its mobility increases the expressive power enabling the description
of many high-level concurrent features. The π-calculus can model networks in
which messages are sent from one site to another site and may contains links
to active processes or to other sites; it is a general model of computation which
takes interaction as primitive.

We shortly present the monadic version of the π-calculus (“monadic” means
that the messages sent between processes consist of exactly one name). Let X be
a infinite countable set of names. The elements of X are denoted by x, y, z, . . .
The terms (expressions) of this formalism are called processes, and they are
denoted by P, Q, R,

The processes are defined over the set X of names by the following grammar

P ::= 0 | x〈z〉.P | x(y).P | P | Q | P + Q | !P | νx P

The π-calculus expressions are defined by guarded processes x〈z〉.P and x(y).P ,
parallel composition P | Q, nondeterministic choice P + Q, replication !P and a
restriction νx P creating a local fresh channel x for process P . π-calculus repli-
cation !P can also be expressed by recursive equations of parametric processes.
0 is the empty process.

Input guards and output guards represent sending and receiving a channel
name along a link. The output guarded process x〈z〉.P sends z along x and then,
after the output has completed, continues as P . An input guarded process x(y).Q
waits until a name is received along x, substitutes it for the bound variable y and
continues as Q 1. The parallel composition x〈z〉.P | x(y).Q may thus synchronize
on x, and so the processes can interact by using channels they share. A name
received in one interaction can be used in another; by receiving a channel name, a
process can interact with processes which are unknown to it, but now they share
the same channel name. This aspect is important in defining the π-calculus
mobility, together with the scope of names defined by νx P and extrusion of
names from their scopes.

Over the set of processes it is defined a structural congruence relation ≡
providing a static semantics. The structural congruence is defined as the small-
est congruence over the set of processes which satisfies the following equalities
involving the set fn(P) of the free occurrences in a process P and standard
α-conversion denoted by =α:

– P ≡ Q if P =α Q

1 There is an important distinction between input and output guards. Output guard
is a simple sending of a name z along a channel x, but the input guard has a more
complex action: the name received along the channel x replaces y in the process
following the input guard. Input guard is a binding operator involving substitutions:
in x(y).P , the name y binds free occurrences of y in P . In a second binding operator
νx P , the name x binds free occurrences of x in P .

Mobility in Computer Science and in Membrane Systems 9

– P + 0 ≡ P , P + Q ≡ Q + P , (P + Q) + R ≡ P + (Q + R),
– P | 0 ≡ P , P | Q ≡ Q | P , (P | Q) | R ≡ P | (Q | R),
– !P ≡ P | !P
– νx0 ≡ 0, νxνyP ≡ νyνxP , νx(P | Q) ≡ P | νxQ if x �∈ fn(P).

The rule νx(P | Q) ≡ P | νxQ whenever x �∈ fn(P) describes the extrusion of
names from their scope, and it plays an important role in defining the π-calculus
mobility.

The evolution of a process is described in π-calculus by a reduction relation
over processes called reaction. This relation contains those transitions which can
be inferred from a set of rules. The reduction relation over processes is defined
as the smallest relation → satisfying the following rules:

(com) (x〈z〉.P + R1) | (x(y).Q + R2) → P | Q{z/y}
(par) P → Q implies P | R → Q | R
(res) P → Q implies (νx)P → (νx)Q
(str) P ≡ P ′, P ′ → Q′ and Q′ ≡ Q implies P → Q

We give an example describing a simple interaction between a handphone carried
in a car and two base stations. The connections between the car (handphone)
and a base station can change as the car is moving around.

...talk

switch switch

talk

b2:Baseb1:Base b1:Base b2:Base... ...

We consider three processes B1, B2 and C corresponding to the two base
stations and the car, respectively. We start with their parallel composition B1 |
C | B2 described by the left square of the picture. The base B1 and the car C are
connected by a channel talk, and B1 and B2 by a channel switch. This means
that talk is free in both B1 and C, and switch is a free name in both B1 and
B2. By the process expression ν talk (B1 | C) | B2, the name talk is restricted
to B1 and C, and we interpret that B1 and C have an exclusive communication
along the channel talk. If B1 = switch〈talk〉.B′

1, then base B1 wishes to send
the name of channel talk to base B2 along the channel switch. Moreover, if talk
is not free in B′

1 (talk �∈ fn(B′
1), then B′

1 will lose its link to C. Base B2 is
waiting for a channel name sent by B1, namely B2 = switch(y).B′

2. Applying
the reduction rule (com) and the extrusion of name talk from its previous scope
given by B, we get the transition

ν talk (B1 | C) | B2 −→ B′
1 | ν talk (C | B′′

2)

10 G. Ciobanu

where B′′
2 = B′

2{talk/y}. The initial process ν talk (B1 | C) | B2 changes its
communication topology, and it becomes as it is described in the right square
of the figure above. Now B′′

2 and C have an exclusive communication along the
channel talk. This is essentially the mobility mechanism offered by the π-calculus.
More details are in [16].

Various forms of behavioural equivalence in process algebras are based on the
notion of bisimulation. There are several definitions in the literature for bisimu-
lation; their definitions are given by using the labeled transition system defined
by the reduction rules. Systems can be checked automatically by studying the
bisimilarity between two processes, namely the model and its specification. The
properties of finite state transition systems can be specified in a very powerful
logic called μ-calculus. Thus it is possible to use various verification techniques
for proving properties about the mobile concurrent systems modelled in the π-
calculus. Modelling with π-calculus and verifying with μ-calculus and some of its
proper subsets have been thoroughly investigated in the literature. Model check-
ing π-calculus processes is discussed in several papers, and Mobility Workbench
[21] is the software tool supporting this model checking.

There are several variants and extensions of the π-calculus: Spi, Dpi, tDpi,
appliedPi, bigraphs. An important change is introduced in the distributed ver-
sion Dpi of the π-calculus presented in [11]: the mobility is expressed in a simpler
way, by using an explicit migration primitive goto l. P enabling mobility between
explicit locations names. A timed distributed π-calculus is introduced and study
in [8]. Regev and Shapiro use the π-calculus in describing the biochemical sys-
tems by abstracting “cell-as-computation”, and using processes as abstractions
of molecules in biomolecular systems [20]; the authors use these abstractions for
representation, simulation, and analysis of metabolic pathways.

Another formalism able to express mobility is ambient calculus [6]. Ambient
calculus describe computation carried out on mobile devices (i.e. networks hav-
ing a dynamic topology), and mobile computation (i.e. executable code able to
move around the network). The primitive concept of the ambient calculus is the
ambient defined as a bounded place in which computation can occur. The am-
bients can be nested inside other ambients. Each ambient has a name used to
control the access to this ambient. Computation is represented as the movement
of ambients: they can be moved as a whole, changing their location by consuming
certain capabilities: in, out, open. These basic operations are expressive enough
to simulate name-passing channels in the π-calculus. In certain conditions, the
π-calculus is also able to simulate the ambient calculus [10].

We consider a variant of mobile ambients called safe ambients for which the
movement of an ambient takes place only if both participants agree [14]. The
mobility is provided by the consumption of pairs of capabilities. The safe ambi-
ents differ from ambients by co-actions: if in ambients a movement is initiated
only by the moving ambient and the target ambient has no control over it, in
safe ambients both participants must agree by using a matching between an ac-
tion and its co-action. We present here a short description of pure safe ambients
(SA); more information can be found in [14].

Mobility in Computer Science and in Membrane Systems 11

Given an infinite set of names N (ranged over by m, n, . . .), we define the set
A of SA-processes (denoted by A, A′, B, B′, . . .) together with their capabilities
(denoted by C, C′, . . .) as follows:

C ::= in n | in n | out n | out n | open n | open n
A ::= 0 | C.A | n[A] | A | B

Process 0 is an inactive mobile ambient. A movement C. A is provided by the
capability C, followed by the execution of A. An ambient n[A] represents a
bounded place labelled by n in which a SA-process A is executed. A | B is a
parallel composition of mobile ambients A and B.

The structural congruence≡amb over ambients is the least congruence such that
(A, |,0) is a commutative monoid. The operational semantics of safe ambients is
given in terms of a reduction relation ⇒amb by the following axioms and rules:

Axioms
(In) n[in m.A | A′] | m[in m.B | B′] ⇒amb m[n[A | A′] | B | B′];

(Out) m[n[out m.A | A′] | out m.B | B′] ⇒amb n[A | A′] | m[B | B′];
(Open) open n.A | n[open n.B | B′] ⇒amb A | B | B′ .

Rules:

(Comp1) A ⇒amb A′

A | B ⇒amb A′ | B
; (Comp2) A ⇒amb A′ B ⇒amb B′

A | B ⇒amb A′ | B′ ;

(Amb) A ⇒amb A′

n[A] ⇒amb n[A′]
; (Struc) A ≡ A′, A′ ⇒amb B′, B′ ≡ B

A ⇒amb B .

⇒∗
amb denotes a reflexive and transitive closure of the binary relation ⇒amb.

Mobile ambients are well suited to express various aspects of mobile compu-
tations like working environment and access to resources. On the other hand,
bioambients are introduced as abstraction for biological compartments [19].

The biological inspiration is predominant in the case of brane calculus [5]. The
operations of the two basic brane calculi, namely pino, exo, phago (for the PEP
fragment) and mate, drip, bud (for the MBD fragment of brane calculus) are di-
rectly inspired by the biologic processes of endocytosis, exocytosis and mitosis.
Since some proteins are embedded in cell membranes, and can act on both sides
of the membrane simultaneously, brane calculus use both sides of the membrane,
emphasizing that computation happens also on the membrane surface. We present
here an overview of PEP fragment of brane calculus without replication. Cardelli
motivates that the replication operator is used to model the notion of a “multi-
tude” of components of the same kind, which is in fact a standard situation in bi-
ology. We do not consider the replicator operator because we are not able to define
a corresponding membrane system without knowing exactly the initial membrane
structure. More details on brane calculus can be found in [5].

A membrane structure consists of a collection of nested membranes as can
be seen from Table 1. Membranes are formed of patches σ, where a patch can
be composed from other patches σ | τ . A patch σ consists of an action a fol-
lowed, after its consumption, by another patch σ1: σ = a.σ1. Actions often come

12 G. Ciobanu

Table 1. Pino/Exo/Phage Calculus Syntax

Systems P, Q:: =P ◦ Q | σ() | σ(P) nests of membranes
Branes σ, τ :: =O | σ | τ | a.σ combinations of actions
Actions a, b :: =n↘ | n↘(σ) | n↖ | n↖ | pino(σ) phago ↘, exo ↖

in complementary pairs which cause the interaction between membranes. The
names n are used to pair-up actions and co-actions.

We abbreviate a.0 as a, 0(P) as (P), and 0() as (). The structural congruence
relation is a way of rearranging the system such that the interacting parts come
together; the structural congruence ≡b is defined in Table 2.

Table 2. Pino/Exo/Phage Structural Congruence

P ◦ Q ≡b Q ◦ P σ | τ ≡b τ | σ
P ◦ (Q ◦ R) ≡b (P ◦ Q) ◦ R σ | (τ | ρ) ≡b (σ | τ) | ρ

σ | 0 ≡b σ

P ≡b Q implies P ◦ R ≡b Q ◦ R σ ≡b τ implies σ | ρ ≡b τ | ρ
P ≡b Q and σ ≡b τ implies σ(P) ≡b τ (Q) σ ≡b τ implies a.σ ≡b a.τ

Table 3. Pino/Exo/Phago Calculus Reduction Rules

pino(ρ).σ | σ0(P) →b σ | σ0(ρ() ◦ P) Pino
n↖.τ | τ0(n↖.σ | σ0(P) ◦ Q) →b P ◦ σ | σ0 | τ | τ0(Q) Exo
n↘.σ | σ0(P) ◦ n↘(ρ).τ | τ0(Q) →b τ | τ0(ρ(σ | σ0(P)) ◦ Q) Phago
P →b Q implies P ◦ R →b Q ◦ R Par
P →b Q implies σ(P) →b σ(Q) Mem
P ≡b P ′ and P ′ →b Q′ and Q′ ≡b Q implies P →b Q Struct

In what follows we explain the rules of Table 3. The action pino(ρ) creates an
empty bubble within the membrane where the pino action resides. The original
membrane buckles towards inside and pinches off; the patch σ on the empty
bubble is a parameter of pino. The exo action n↖ comes with a complementary
co-action n↖; they model the merging of two nested membranes which starts
with the membranes touching at a point. In this process (which is a smooth and
continuous process), the subsystem P gets expelled to the outside, and all the
residual patches of the two membranes become contiguous. The phago action
n↘ comes with a complementary co-action n↘(ρ); they model a membrane (the
one with Q) “eating” another membrane (the one with P). Again, the process
has to be smooth and continuous, i.e., biologically implementable. It proceeds
by the Q membrane wrapping around the P membrane and joining itself on the
other side.Thus an additional layer of membrane is created around the eaten
membrane: the patch on that membrane is specified by the parameter ρ of the
co-phago action (similar to the parameter of pino action).

Mobility in Computer Science and in Membrane Systems 13

2 Mobility in Membrane Computing

Membrane systems are inspired by the living cells compartments. Membrane
systems contain multisets of objects, evolution rules and possibly other mem-
branes [17]. The model is inspired by biology, and uses rules as in formal lan-
guages theory. This is only one aspect that makes the model different from
process calculi. Other differences are given by the parallel application of rules,
depending also on the available ”resources”. The computations are performed
in the following way: starting from an initial structure, the system evolves by
applying the rules in a nondeterministic and maximally parallel manner; a rule
is applicable when all the involved objects and membranes appearing in its left
hand side are available. The maximally parallel way of using the rules means
that in each step we apply a maximal multiset of rules, namely a multiset of
rules such that no further rule can be added to the set. A halting configuration
is reached when no rule is applicable, and he result is represented by the number
of objects associated to a specified membrane. A specific feature of this model is
that we can prove computability results in terms of Turing machines rather by
reduction to the λ-calculus (as in the case of process calculi with mobility).

Mobile membranes represent a rule-based parallel computing model inspired
by cells and their movements in which mobility is given by specific endocytosis
and exocytosis rules [13]. Several systems of mobile membranes are studied in
[3], and their computational universality are proved by using a small number of
membranes [4].

Mobile membranes are characterized by two essential features:

– A spatial structure consisting of a hierarchy of membranes (which do not
intersect) with objects associated to them; a membrane without any other
membranes inside is called elementary.

– The general rules describing the evolution of the structure, namely endocyto-
sis (moving an elementary membrane inside a neighbouring membrane) and
exocytosis (moving an elementary membrane outside the membrane where
it is placed). More specific rules can be defined.

In terms of computation, we are working with membrane configurations. We
define the set M of membrane configurations (ranged by M, N, . . .) by using
the free monoid V ∗ (ranged over by u, v, . . .) generated by a finite alphabet V
(ranged over by a, b, . . .): M ::= u | [M]u | M‖M

If M and N are two membrane configurations, we say that M reduces to N
(denoted by M → N) if there exists a rule in the set of rules R applicable to
the configuration M such that we can obtain the new configuration N . When
applying the rules of R, we use also the following inference rules:

(Comp1) M → M ′

M‖N → M ′‖N ; (Comp2) M → M ′ N → N ′

M‖N → M ′‖N ′ ;

(Mem) M → M ′

[M]u → [M ′]u
; (Struc) M ≡mem M ′ M ′ → N ′ N ′ ≡mem N

M → N

14 G. Ciobanu

where the structural congruence ≡mem over M is the smallest congruence
relation such that (M, ‖, λ) is a commutative monoid. When describing a com-
putation given by a systems of mobile membranes, we start from an initial
configuration M0 and a set of rules.

We shortly present here a variant of systems with mobile membranes defined
by mutual mobile membranes. These membranes use the following mobility rules:

Mutual Endocytosis: [uv]h[uv′]m → [[w]hw′]m

h
uv

m

uv′

m

w′

h
w

Mutual Exocytosis: [[uv]huv′]m → [w]h[w′]m

m

uv′

h
uv

h
w

m

w′

Mutual mobile membranes can encode safe ambients. A translation T from
the set SA of safe ambients to the set M3 of membrane configurations is given
formally by T (A) = dlock T1(A), where T1 : SA → M3 is

T1(A) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cap n[]cap n if A = cap n
cap n[T1(A1)]cap n if A = cap n. A1
[T1(A1)]n if A = n[A1]
[]n if A = n[]
T1(A1), T1(A2) if A = A1 |A2

An object dlock is placed near the membrane structure to prevent the consump-
tion of capability objects in a membrane system which corresponds to a mobile
ambient which cannot evolve further. Several results are presented in [2]. We
mention only the operational correspondence.

Theorem 1. 1. If A � B, then T (A) → T (B).
2. If T (A) → M , then exists B such that A � B and M = T (B).

Another variant of systems with mobile membranes is given by mutual mobile
membranes with objects on surface. They use the following mobility rules:

Pino: []vau ⇒ [[]ux]vy

vau vy
ux

Exo: [[]au]av ⇒ []uvx

Mobility in Computer Science and in Membrane Systems 15

uvxav
au

Phago: []au[]abv ⇒ [[[]ux]b]vy

au

abv vy
b

ux

The number of objects from the right hand side of a rule is called its weight.
There are several results regarding the computational power of mutual membranes
with objects on surface. We investigate the computational power of systems of
mutual membranes with objects on surface controlled by pairs of rules: (pino,exo)
and (phago,exo), proving that they are universal even using a small number of
membranes. These cases were investigated initially in [12]; then we have obtained
better results by improving the number of membranes. A summary of the results
can be given by the following general sentence and the associated table.

Theorem 2. Mutual membranes with objects on surface using n membranes
and pair of operations (op1, op2) of weights (w1, w2) have the same computational
power as a Turing Machine.

Number n of Operations Weights Article
membranes (op1, op2) (w1, w2)

8 Pino, exo 4,3 Theorem 6.1 [Krishna07]
3 Pino, exo 5,4 Theorem 1 [AmanCiobanu09]
9 Phago, exo 5,2 Theorem 6.2 [Krishna07]
9 Phago, exo 4,3 Theorem 6.2 [Krishna07]
4 Phago, exo 6,3 Theorem 2 [AmanCiobanu09]

Mutual membranes with objects on surface can encode the processes of the
PEP fragment of brane calculus without replication. A translation T from the
set PEP of brane processes to the set M2OS of membrane configurations is
given by:

T (P) =
{

[T (P)]S(σ) if σ(P)
T (Q) T (R) if P = Q |R

where S : PEP → M2OS is defined as:

S(σ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ if σ = n↘ or σ = n↖ or σ = n↖

n↘ S(ρ) if σ = n↘(ρ)
pino S(ρ) if σ = pino(ρ)
S(a) S(ρ) if σ = a.ρ
S(τ) S(ρ) if σ = τ | ρ

16 G. Ciobanu

The rules of the systems of mutual membranes with objects on surface are
[]S(n↘σ|σ0)[]S(n↘(ρ).τ |τ0) → [[[]S(σ|σ0)]S(ρ)]S(τ |τ0)
[[]S(n↖.σ|σ0)]S(n↖.τ |τ0) → []S(σ|σ0|τ |τ0)
[]S(pino(ρ).σ|σ0) → [[]S(ρ)]S(σ|σ0) .

Proposition 1. 1. If P ≡b Q then T (P) ≡m T (Q),
where ≡m is the structural congruence over M2OS.

2. If T (P) ≡m M then there exists Q such that M = T (Q).

Moreover, we have an operational correspondence between these models.

Theorem 3. 1. If P ⇒ Q then T (P) → T (Q).
2. If T (P) → M then there exists Q such that P →b Q and M ≡m T (Q).

As a consequence of the fact that we translate a formalism using an interleaving
semantic into a formalism working in parallel, it is possible to have Q such that
M = T (Q), but P �→b Q. Let us assume P = n↖.n↖(n↖.n↘()). By translation,
we obtain M = (()n↖ ‖ n↘)n↖ ‖ n↖ , such that M → []n↘ ‖ n↖ = N . We observe
that there exist Q = n↘.n↖() such that N = T (Q), but P �→b Q.

3 Conclusion

Several computational models have various notions of mobility in computer sci-
ence. Here we have mentioned the π-calculus and distributed π-calculus, ambient
calculus, brane calculi and membrane systems. The π-calculus, mobile ambients
and brane calculi are closer to the λ-calculus. Membrane systems are strongly in-
fluenced by grammar rules, providing an automata and formal language view. All
of them are essentially models of distributed, parallel and nondeterministic sys-
tems. Some of them have been inspired from the structure and the functioning
of the living cell. We have provided translations of safe mobile ambients into mu-
tual mobile membranes, and of PEP fragment of brane calculus into mutual mem-
branes with objects on surface. Thus we prove that mobile membranes has at least
the same expressive power as safe ambient calculus and PEP fragment of brane
calculus. It seems that there is no significant expressiveness difference between
these models; however there are also few differences; e.g., ambient and brane cal-
culi have an interleaving semantic, while membrane systems have a parallel one.

Finally we can say that mobile membranes represent a computing model aim-
ing to put together the advantages of both P systems and process calculi with
mobility such as mobile ambients and brane calculi. Computations with mobile
membranes are defined over specific configurations (like in process calculi), and
represent a rule-based formalism (like P systems).

Acknowledgements

Several results regarding the P systems with mobile membranes were obtained
during the last years together with Bogdan Aman; I express my gratitude to
Bogdan for his work. Many thanks to all my process calculi collaborators.

This research work was supported by the CNCSIS project IDEI 402/2007.

Mobility in Computer Science and in Membrane Systems 17

References

1. Aman, B., Ciobanu, G.: Timed Mobile Ambients for Network Protocols. In:
Suzuki, K., Higashino, T., Yasumoto, K., El-Fakih, K. (eds.) FORTE 2008. LNCS,
vol. 5048, pp. 234–250. Springer, Heidelberg (2008)

2. Aman, B., Ciobanu, G.: On the Relationship Between Membranes and Ambients.
Biosystems 91, 515–530 (2008)

3. Aman, B., Ciobanu, G.: Simple, Enhanced and Mutual Mobile Membranes. In:
Priami, C., Back, R.-J., Petre, I. (eds.) Transactions on Computational Systems
Biology XI. LNCS(LNBI), vol. 5750, pp. 26–44. Springer, Heidelberg (2009)

4. Aman, B., Ciobanu, G.: Turing Completeness Using Three Mobile Membranes.
In: Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds.) UC
2009. LNCS, vol. 5715, pp. 42–55. Springer, Heidelberg (2009)

5. Cardelli, L.: Brane calculi. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS
(LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)

6. Cardelli, L., Gordon, A.: Mobile Ambients. In: Nivat, M. (ed.) FOSSACS 1998.
LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

7. Ciobanu, G., Krishna, S.N.: Enhanced Mobile Membranes: Computability Results.
Theory of Computing Systems (to appear, 2011)

8. Ciobanu, G., Prisacariu, C.: Timers for Distributed Systems. Electronic Notes in
Theoretical Computer Science 164, 81–99 (2006)

9. Ciobanu, G., Rotaru, M.: Molecular Interaction. Theoretical Computer Science 289,
801–827 (2002)

10. Ciobanu, G., Zakharov, V.: Encoding Mobile Ambients into π-calculus. In: Virbit-
skaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 148–161. Springer,
Heidelberg (2007)

11. Hennessy, M.: A Distributed π-calculus. Cambridge University Press, Cambridge
(2007)

12. Krishna, S.N.: Universality Results for P Systems Based on Brane Calculi Opera-
tions. Theoretical Computer Science 371, 83–105 (2007)

13. Krishna, S.N., Păun, G.: P Systems with Mobile Membranes. Natural Computing 4,
255–274 (2005)

14. Levi, F., Sangiorgi, D.: Mobile Safe Ambients. ACM TOPLAS 25, 1–69 (2003)
15. Milner, R.: Elements of Interaction. Turing Award Lecture. ACM Comm. 36, 78–89

(1993)
16. Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge Uni-

versity Press, Cambridge (1999)
17. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
18. Păun, G., Rozenberg, A., Salomaa, A.: Handbook of Membrane Computing. Oxford

University Press, Oxford (2010)
19. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients:

An Abstraction for Biological Compartments. Theoretical Computer Science 325,
141–167 (2004)

20. Regev, A., Shapiro, E.: The π-calculus as an Abstraction for Biomolecular Systems.
In: Ciobanu, G., Rozenberg, G. (eds.) Modelling in Molecular Biology. Natural
Computing Series. Springer, Heidelberg (2004)

21. Victor, B., Moller, F.: The Mobility Workbench – A Tool for the π-calculus. In: Dill,
D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 428–440. Springer, Heidelberg (1994)

Organization Oriented Chemical Computing

Peter Dittrich

Friedrich-Schiller University Jena
Institute of Computer Science
Bio Systems Analysis Group

Ernst-Abbe-Platz 14, 07743 Jena, Germany
peter.dittrich@uni-jena.de

All known life forms process information on a bio-molecular level, which is
known to be robust, self-organizing, adaptive, decentralized, asynchronous, fault
tolerant, and evolvable. In order to exploit these properties it has been suggested
to use artificial chemical systems like P-systems or artificial hormone systems.
However, finding the right chemical program appears to be difficult, because
computation emerges out of an interplay of many decentralized relatively simple
components called molecules. Therefore, a human programmer needs paradigms
and tools that allow to predict the behavior of a chemical program, i.e., a set
of reaction and transformation rules. In this talk, I focus on how chemical or-
ganization theory (Bull. Math. Biol., 69, 1199-, 2007) can help in designing and
understanding chemical computing systems. The theory decomposes reaction
networks into a hierarchy of closed and self-maintaining sub-networks called
organizations. For this analysis stoichiometric information is sufficient, which
can be directly obtained from the reaction rules and which is usually indepen-
dent from kinetics, e.g., a systems state. The fundamental idea of organization
oriented chemical programming is to view chemical computing as a movement
between organizations (Int. J. Unconv. Comp., 3(4), 285-309, 2007). Our hy-
pothesis is, if the behavior of a chemical program can be explained in terms of
organizations, it will be dynamically robust. This hypothesis is supported by a
theorem stating that all long-term behavior of a chemical ordinary differential
equation will end up in an organization. I will discuss the approach using exam-
ples like a chemical XOR, a flip-flop, a controllable oscillator, and the maximum
independent set problem, which could be relevant in a distributed sensor net-
works. Finally, as an open problem, I will discuss how it might be possible to
derive chemical organizations directly from implicit reaction rules.

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, p. 18, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Cellular Automata and the Quest for Nontrivial
Artificial Self-Reproduction

Markus Holzer and Martin Kutrib

Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany

{holzer,kutrib}@informatik.uni-giessen.de

Abstract. The quest for artificial self-reproduction dates back to the
end of the 1940’s and started with the work of John von Neumann on self-
reproducing cellular automata. Nowadays (artificial) self-reproduction is
one of the cornerstones of automata theory, which plays an important
role in the field of molecular nanotechnology. We briefly summarize the
development on the research subject of artificial self-reproduction start-
ing with von Neumann’s ideas. Moreover, we pay special attention to the
concepts of trivial and non-trivial self-reproduction by Herman, Langton,
and others. Our tour on the subject obviously lacks completeness and it
reflects our personal view of what constitute the most interesting links
to the important aspects of artificial self-reproduction.

1 Introduction

More than half a century ago John von Neumann had become interested in
the question of whether computing machines can construct copies or variants
of themselves, that is, whether artificial self-reproducing structures exist. He
started to investigate what kind of logical organization is sufficient for an au-
tomaton to control itself in such a manner that it reproduces itself, and found one
of the cornerstones in the theory of automata. It is remarkable that this prob-
lem was posed at a time when even the concept of a universal programmable
computer was in its infancy. At that time DNA had not yet been discovered as
the genetic material in nature, nor did von Neumann have the tools for building
a real machine at the bio-chemical or genetic level. However, the following five
fundamental questions raised by him [18] reveal the vision he had in mind. Nowa-
days we have to see the questions with the eyes of von Neumann, in particular,
with the eyes of a man who lived 60 year ago.

Fundamental Questions [John von Neumann 1949]

Logical universality. When is a class of automata logically universal, i.e., able
to perform all those logical operations that are at all performable with fi-
nite (but arbitrarily extensive) means? Also, with what additional—variable,
but in the essential respects standard—attachments is a single automaton
logically universal?

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 19–36, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

20 M. Holzer and M. Kutrib

Constructibility. Can an automaton be constructed, i.e., assembled and built
from appropriately defined “raw materials,” by another automaton? Or,
starting from the other end and extending the question, what class of au-
tomata can be constructed by one, suitably given, automaton? The variable,
but essentially standard, attachments to the latter, in the sense of the second
question of Logical universality, may here be permitted.

Construction-universality. Making the second question of Constructibility more
specific, can any one, suitably given, automaton be construction-universal,
i.e., be able to construct in the sense of question Constructibility (with
suitable, but essentially standard, attachments) every other automaton?

Self-reproduction. Narrowing question Self-reproduction, can any automaton
construct other automata that are exactly like it? Can it be made, in addi-
tion, to perform further tasks, e.g., also construct certain other, prescribed
automata?

Evolution. Combining questions Construction-universality and Self-reproduc-
tion, can the construction of automata by automata progress from simpler
types to increasingly more complicated types? Also, assuming some suitable
definition of “efficiency,” can this evolution go from less efficient to more
efficient automata?

While the answer to the first question was known from Turing’s famous
paper [16,17], von Neumann established affirmative answers to the questions
Constructibility, Construction-universality, and Self-reproduction. Basically, he
considered five models of self-reproduction, the kinematic, cellular, excitation-
threshold-fatigue, and continuous model [18], but mainly dealt with the kinematic
and the cellular model only.

Von Neumann’s Kinematic Model

In the kinematic model established as a thought experiment kinematic automata
are composed of different types of primitive elements [5]: switches as and, or,
not, and delay gates are used to form primitive computing elements, muscle-like
elements (for example, an artificial hand), which can move elements around when
signaled to do so by a computing element, cutting elements that can disconnect
two elements, fusing elements which can connect two (fitting) elements together,
rigid elements that provide structural support to assemblies of elements, and
sensing elements capable of recognizing each kind of element and communicating
this information to a computing element.

In order to design a self-reproducing kinematic automaton an environment is
necessary with which the automaton can interact. Assume the environment to be
an infinite hardware soup composed of the same ingredients as the automaton,
that is, the various primitive elements. So an indefinite supply of parts is available
to any kinematic automaton floating in the soup. Such an environment together
with the floating kinematic automata is called a kinematic system.

Cellular Automata and the Quest for Nontrivial Artificial Self-Reproduction 21

Fig. 1. Kinematic tapes representing 0110110 (left) and 1101001 (right)

Any finite kinematic automaton can be described by listing its part and its
connections. The binary blueprint can be stored on a kinematic tape, that is,
a zig-zag sequence of rigid elements, where at each intersection there is a pro-
truding rigid element if and only if a 1 is represented (see Figure 1). Now, a
kinematic automaton can move itself relative to the tape by means of kinematic
elements, it can change a 1 to a 0 by cutting the rigid element from the tape, it
can change a 0 to a 1, or extend the tape, by sensing a rigid element from the
hardware soup with a sensing element, picking it up and placing it in position
with a muscle-like element, and connecting it to the tape by a fusing element.
Therefore, suppose a constructing automaton that reads the blueprint on the
kinematic tape, interprets it by its computing elements, and assembles an au-
tomaton according to the specification of the blueprint. Since the constructing
automaton is itself a kinematic automaton, it can construct a copy of itself if
its own description is stored on the tape. The whole system consisting of the
automaton and the tape containing the blueprint is self-reproducing if, after the
construction of the new automaton, the constructing automaton makes a tape
for the new machine, copies its own tape content to the new tape and attaches
it to the new machine.

The main problem with this kinematic model is its impreciseness. It lacks
the possibility to be treated mathematically in detail. In order to work out a
detailed construction in a logically rigorous way, the powers of each element
and the rules of its operation, the interactions with the environment, etc., must
completely be specified. This appeared to be a much to complex task to deal
with mathematically. So, von Neumann gave it up. However, since it is close to
our intuitive understanding of artificial self-reproduction, let us look at its core.

Basically, the raw material in the environmental hardware soup should be as
elementary as possible. Into this environment the artificial system is introduced,
which itself is composed of this raw material. The system then organizes another
area of the environment according to its instructions. At the end of the process
the new area is a replica of the system. Having this in mind a step to a more
abstract model can be done. Suggested by Ulam, von Neumann changed to the
cellular model, which is less vivid and dramatic, less realistic, and less difficult
to deal with mathematically [11]. However, it eliminates the complexities of
the kinematic model. He employed a mathematical device which is a multitude
of interconnected finite-state machines operating in parallel to form a larger
machine. He showed that it is logically possible for such a nontrivial computing
device to replicate itself ad infinitum. This was the birth of cellular automata.

22 M. Holzer and M. Kutrib

2 Cellular Automata

Basically, the idea of cellular automata is to consider a universe which is a two-
dimensional infinite array of deterministic finite automata, the cells. In order to
keep the system tractable, a high degree of homogeneity is preferable. Therefore,
all cells are assumed to be identical, and a unique interconnection scheme defines
the cells which are connected to any given cell. Eventually, the cells operate
synchronously at discrete time steps obeying a local transition function, which
maps the current state of the cell itself and the current states of its connected
cells (neighbors) to the next state. There exists a special, so-called quiescent state
with the property that if some cell and all of its neighbors are in the quiescent
state then the cell remains in the quiescent state.

Before we turn to define cellular automata formally, we clarify the notions of
automata, machines, and environment in cellular automata. The single cells are
the raw material from which larger machines have to be built. So, the infinite
array is the environment, the hardware soup. Assume for a moment that all
cells of the array are in the quiescent state, that is, the computation of the
cellular automaton as a whole is stable. Now a larger machine is introduced
in the environment by adjusting the states of the cells in an area. These cells
form a machine which is clearly built from raw material. It may interact with
the environment by letting initially quiescent cells in the neighborhood change
their states according to the given local transition function. So, a multitude of
finite automata operating in parallel form a larger machine such that the global
behavior is achieved by local interactions only. In the cellular model a finite
connected area of cells corresponds to a kinematic automaton in the kinematic
model. Similarly, the whole array including the embedded machine corresponds
to a kinematic system.

In order to be general, we define cellular automata formally over arbitrary
dimensions. So, assume that the cells of a cellular space are arranged as a d-
dimensional grid such that we deal with the Euclidean space Zd. In this way
cells are identified by their integer coordinates.

Definition 1. A d-dimensional cellular automaton is a system 〈S, d, N, δ, q0〉,
where

1. S is the finite, nonempty set of cell states,
2. d ∈ N is the dimension,
3. N = (n1, n2, . . . , nk), with different components n1, . . . , nk ∈ Zd, is the

d-dimensional neighborhood-index of degree k.
4. δ : Sk → S is the local transition function, and
5. q0 ∈ S is the quiescent state such that δ(q0, q0 . . . , q0) = q0.

In general, the global behavior of a cellular automaton is of interest. It is in-
duced by the local behavior of all cells, that is, by the local transition function.
More precisely, a configuration of a cellular automaton 〈S, d, N, δ, q0〉 is a de-
scription of its global state, which is formally a mapping c : Zd → S. Successor

Cellular Automata and the Quest for Nontrivial Artificial Self-Reproduction 23

configurations are computed according to the global transition function Δ. Let c
be a configuration. Then its successor c′ = Δ(c) is defined by

c′(i) = δ(c(i + n1), . . . , c(i + nk)), for all i ∈ Zd.

So, in order to identify the neighbors of a cell i one has to add the elements
of N to i. In particular, if 0 belongs to N , then cell i is its own neighbor. Only
in this case the next state of a cell depends on its current state. Figure 2 shows
two generalized types of neighborhood-indices. The von-Neumann neighborhood
has been used by von Neumann [18] and the Moore-neighborhood has been
introduced by Moore in [11].

H̄1
1 H1

1 H2
1 M2

1 H̄2
2

Fig. 2. Generalized von-Neumann (Hd
r) and Moore (Md

r) neighborhoods. The origin
is shaded, d is the dimension, and r denotes the ‘radius’. A bar indicates a restricted
version where all coordinates of the components are non-negative. For example, H̄1

1 =
(0, 1), H1

1 = (−1, 0, 1), H2
1 = ((0, 0), (0, 1), (1, 0), (0,−1), (−1, 0)), H1

1 = (−1, 0, 1), and
M2

1 = ((0, 0), (−1, 1), (0, 1), (1, 1), (1, 0), (1,−1), (0,−1), (−1,−1), (−1, 0)).

The following example of a cellular automaton is know as the famous Game
of Life (see, for example, [4,7]). While the underlying rules are quite simple, the
global behavior is rather complex. In fact, it is unpredictable.

Example 1. We consider a two-dimensional automaton, where the cells are con-
nected according to the Moore-neighborhood M2

1 , that is, each cell is connected
to itself and to its eight immediate neighbors. The state set is {0, 1}. The local
transition function is defined by the sum of the states of the neighbors and of
the cell itself. In particular, a cell enters state 1, if the sum is three. it keeps its
current state, if the sum is four, and enters state 0 in all other cases. Figure 3
shows the evolution of a pattern (computation of an embedded machine) such

t t + 1 t + 2 t + 3 t + 4

Fig. 3. An embedded machine working according to the local transition function of the
Game of Life moving to the northeast. Empty cells are in state 0, shaded cells are in
state 1.

24 M. Holzer and M. Kutrib

that its position moves one cell to the right and one cell to the left every fourth
computation step. Embedded in an empty, that is, quiescent environment, the
machine moves across the environment forever. ��

3 Von Neumann’s Universal Constructor

Next, we formalize nontrivial self-reproduction and based on these definitions
we then present the basic properties of von Neumann’s cellular automaton.

3.1 The Notion of Nontrivial Self-Reproduction

Let c be a configuration. Then the set of all non-quiescent cells of c is said to be
the support of c, which is denoted by sup(c). A configuration c′ is a subconfigura-
tion of c if c|sup(c′) = c′|sup(c′). Configuration c is called passive if Δ(c) = c, and
completely passive if every subconfiguration of c is passive. Two configurations
c and c′ are said to be disjoint if sup c ∩ sup c′ = ∅. The union of two disjoint
configurations c and c′ is defined by

(c ∪ c′)(i) =

⎧
⎪⎨

⎪⎩

c(x) if x ∈ sup(c)
c′(x) if x ∈ sup(c′)
q0 otherwise,

where q0 is the quiescent state.

Definition 2. Let c and c′ be two configurations. Configuration c constructs c′

if there is a time t such that c′ is a subconfiguration of Δt(c) disjoint to c.

The requirement that c′ has to be disjoint from c eliminates the trivial case that
completely passive configurations constructing itself at every time step, and also
the case in which non-quiescent cells become quiescent. In [6] a stronger definition
is given. There, in addition, it is required that after a certain time Δt(c) has no
longer effect on c′.

Definition 3. A configuration c is self-reproducing if c constructs c.

The situation so far is somehow unsatisfactory as the following example of a
trivial self-reproduction reveals.

Example 2 (Trivial self-reproduction). Let 〈{q0, 1, 2}, 2, N, δ, q0〉 be a cellular
automaton with N = H2

1 = ((0, 0), (0, 1), (1, 0), (0,−1), (−1, 0)) and

δ(q0, 1, s2, q0, s4) = 2,
δ(q0, 1, s2, 1, s4) = q0,
δ(q0, 2, s2, s3, s4) = 1,
δ(1, s1, s2, s3, s4) = 1, and
δ(2, s1, s2, s3, s4) = q0, for s1, s2, s3, s4 ∈ {q0, 1, 2}

.

Cellular Automata and the Quest for Nontrivial Artificial Self-Reproduction 25

Basically, a quiescent cell enters the intermediate state 2 when its upper
neighbor is in state 1. Subsequently it becomes quiescent again and its lower
neighbor enters state 1. A quiescent cell with upper and lower neighbor both in
state 1remains quiescent, and a cell in state 1 always remains in state 1. So, for
any fixed j0 ∈ Z all configurations of the form c((i, j)) = q0 for i ∈ Z, j �= j0,
and c((i, j0)) ∈ {q0, 1} for all i ∈ Z, are trivially self-reproducing. That is, a line
of the array constructs a disjoint copy of itself two cells downward. ��

In order to cope with the problem of trivial self-reproduction one can require
that the self-reproducing system is able to perform other tasks, for example,
to compute recursive functions or to construct other machines according to a
blueprint. This in turn yields the necessity to deal with problem how to represent
data such as arguments of functions or blueprints of machines. It is reasonable
to represent data as completely passive configurations in order to ensure that
the data cannot modify itself in any way. So, a Turing domain T for a cellular
automaton is an infinite set of completely passive configurations with an effective
computable bijection from N to T . It follows that T permits to encode any
information that could be required. Let sup(T) be

⋃
d∈T sup(d).

Definition 4. A configuration c is a universal constructor for a class C
of configurations if for every c′ ∈ C there exists a d ∈ T such that c ∪ d
constructs c′.

In order to complete the clarification of notions we next consider the computation
of functions in cellular automata.

Definition 5. Given a cellular automaton A with Turing domain T , a partial
function ψ from T into T is computable in A, if there is a configuration cψ, a
so-called ψ-computer, disjoint from all elements in T , such that for every d ∈ T ,
ψ(d) is defined if and only if there is a t ∈ N such that Δt(cψ∪d)|sup(T) is passive
and belongs to T .

Figure 4 illustrates the computation of a function in a cellular automaton.

sup(d)cψ

sup(T)

sup(ψ(d))cψ

sup(T)

Fig. 4. Computation of a function ψ in a cellular automaton. The configuration at the
left evolves in some t steps into the configuration at the right.

26 M. Holzer and M. Kutrib

Definition 6. A cellular automaton A is computation universal, if there is a
Turing domain T for A such that every partial recursive function from T into T
is computable in A. A configuration c is said to be a universal computer (with
respect to T), if for any partial recursive function ψ from T into T there is a
dψ ∈ T (ψ-program), such that c∪d′ψ is a ψ-computer, where d′ψ is a copy of dψ

disjoint from c and all elements from T .

Figure 5 illustrates the principle of a universal computer in a cellular automaton.

sup(dψ)

UC

sup(T)

sup(d′ψ)

Fig. 5. Universal computer (UC) in a cellular automaton

In order to rule out trivial self-reproduction von Neumann required that
the self-reproducing configuration also being a universal computer. In addition,
each self-reproducing configuration should be a universal constructor for a large
class of configurations. Clearly, this class has to include the self-reproducing
configuration itself.

Analogous to the property of being computational universal one can ask for
the property of being construction universal. Let A be a computation universal
cellular automaton with Turing domain T , and C be the class of all ψ-computers
in A. If any member of C is constructible by some configuration of A disjoint
from all elements in C, then A is construction universal. Of particular interest is
the case in which both a universal computer and a universal constructor exist and
the set of tapes required by the universal constructor is included in T . A single
configuration with these properties is called a universal computer-constructor.

3.2 Von Neumann’s Cellular Automaton

John von Neumann succeeded to design a cellular automaton capable of non-
trivial self-reproduction. His model uses 29 states and the five cell neighborhood-
index H2

1 . The self-reproducing machine embedded in the cellular automaton is
designed from several parts which he called “organs” involving a central control
unit, a tape unit intended to read the tape containing the instructions, and a
constructing unit which is basically a constructing arm to build the offspring
(see Figure 6). The details can be found in the book [18] on more than 130

Cellular Automata and the Quest for Nontrivial Artificial Self-Reproduction 27

pages, partially in verbal and diagrammatic form. Note that a complete formal
representation of the transition function would have 295, or approximately 20
million, entries. Due to their complexity the details are beyond the scope of this
article.

However, roughly speaking, one basic module of the design principle are adja-
cent cells in certain transmission states that form data paths. These states can
be passive or excited, that is, transmit an “electron” or not. For example, by dif-
ferent signal sequences the construction arm can be controlled such that it moves
or writes at its end by changing the states of neighboring cells appropriately.

Tape

UC

Parent

Tape

UC

Offspring

Constructing Arm

Fig. 6. Principle of von Neumann’s self-reproducing automaton

The intuitive notion of self-reproduction was defined formally for the first time
by Thatcher in [15]. Based on this definitions he verified the exciting properties
of the von Neumann cellular automaton, which are presented in the following
propositions.

Garden-of-Eden configurations are configurations that cannot appear as a
result of an application of the global transition function. So, they can only appear
at initial time. In [11] it is shown that the existence of a pair of mutually erasable
configurations, that is, both have the same successor under the global transition
function, implies the existence of a Garden-of-Eden configuration. Since there
are Garden-of-Eden configurations in the von Neumann cellular automaton we
obtain the following proposition.

Proposition 1. There exist non-constructible configurations in the von Neumann
cellular automaton.

The process of constructing a configuration in the von Neumann cellular au-
tomaton is as follows. A description of the configuration to be constructed is
stored in explicit form on the tape of the universal constructor. Under direction
of the central control unit, the tape unit reads the description from the tape and
transmits it to the constructing unit. Using this description, the constructing unit

28 M. Holzer and M. Kutrib

sends signals into the constructing arm to bring out the construction. To this
end, the configuration to be constructed has to be completely passive.

Proposition 2. There exists a universal constructor for the class of completely
passive configurations in the von Neumann cellular automaton.

In order to obtain self-reproduction, first it has to be mentioned that the uni-
versal constructor itself is basically a completely passive configuration that has
initially to be activated. So, it becomes a self-reproducing configuration by ex-
tending its functionality as follows. When it is started with its own description
on the input tape, the description is executed and thereby a completely passive
(inactive) copy of the universal constructor is constructed. Driven by a code
on the tape the constructor will proceed to construct a copy of its own tape
and attaches it to the already constructed configuration at some standard place.
After the tape has been constructed the constructing arm will return to the
constructed configuration and give it an activation signal.

Proposition 3. There exists a self-reproducing universal constructor in the von
Neumann cellular automaton.

On passing, the design of the universal constructor shows how to embed an
arbitrary Turing machine in the von Neumann cellular automaton.

Proposition 4. The von Neumann cellular automaton is computation universal.

In particular a universal Turing machine can be embedded.

Proposition 5. There exists a universal computer in the von Neumann cellular
automaton.

Since a universal Turing machine can be combined with the universal constructor
we obtain the next appealing strong result.

Theorem 1. There exists a self-reproducing universal computer-constructor in
the von Neumann cellular automaton.

The result of von Neumann has been refined and simplified by Thatcher who
presented formal definitions of the underlying notions and the construction on
about 50 pages [15]. Codd reduced the size of the cells to eight states in a
proof of 80 pages [6]. Arbib reduced the length of the proof to eight pages, but
paid for it with extremely large cells having 2335 states [2]. Conversely, Banks
has shown on about 20 pages the existence of nontrivial self-reproducing ma-
chines in a cellular automaton with only four states [3]. In all these cases the
neighborhood-index is H2

1 including five cells, and non-triviality means that there
exists a universal computer-constructor. From a theorem of Codd follows that
there is no two-dimensional two-state cellular automaton with neighborhood-
index H2

1 capable of non-trivial self-reproduction [6]. However, for the nine-
cell neighborhood-index M2

1 non-trivial self-reproduction is possible with two

Cellular Automata and the Quest for Nontrivial Artificial Self-Reproduction 29

states [19] in the famous Game of Life (see, for example, [4,7]), provided the
definition of computability is slightly relaxed [19]. The later is necessary since
completely passive configurations cannot be used to represent data when only
two states are available. Therefore, the data is represented by certain periodic
configurations.

4 Trivial versus Nontrivial Self-Reproduction

Recalling the trivial self-reproducing cellular automaton of Example 2 it is in-
tuitively clear that such self-reproducing structures are not significant either
from the biological point of view or in answer to the problem of machine self-
reproduction. Due to the vague nature of the problem the question came up what
nontrivial self-reproduction is. Therefore, attention has been paid on designing
self-reproducing configurations in cellular automata that additionally can carry
out complex tasks. In order to formalize “complex tasks” the notion of a universal
computer-constructor has been introduced, which combines universality of com-
putations and constructions. So, a universal computer-constructor is anything
but trivial. However, the power of being a self-reproducing universal computer-
constructor is no guarantee for being a nontrivial self-reproducing configuration.
Herman presented the following construction of a universal computer-constructor
which is trivial self-reproducing [9].

Theorem 2. There exists a cellular automaton A with a Turing domain T and a
configuration u such that | sup(u)| = 1, u is self-reproducing, and u is a universal
computer-constructor.

In order to design such a system Herman started with a universal Turing ma-
chine U with state set Q, tape alphabet P and blank symbol � having the
following properties: the initial state s0 is never reached from any other state,
there is a distinguished halting state sf , that is, the transition function is not
defined for sf . Moreover, there are tape symbols 1, �, and �, and for all non-
negative integers m and n, if ψm(n) is not defined then U starting in state s0
scanning the right symbol � of the tape inscription �1m��1n� does not halt,
and else U halts in state sf scanning the right symbol � of the tape inscription
�1m��1ψm(n)�, and the initially scanned symbol � is never erased during the
computation. Here ψm denotes the function mapping from the nonnegative in-
tegers to the nonnegative integers that is computed by the Turing machine with
Gödel number m.

The cellular automaton A = 〈S, 2, M2
1 , δ, q0〉 is defined by S = Q ∪ P ∪

Q̄ ∪ Q̂, where Q̄ = { s̄ | s ∈ Q } is a disjoint copy of Q, Q̂ is defined
later, and q0 = �. The state transition δ is defined as we go along. With
M2

1 = ((0, 0), (−1, 1), (0, 1), (1, 1), (1, 0), (1,−1), (0,−1), (−1,−1), (−1, 0)) we set
δ(s0, �, x, �, �, �, y, �, �) = s0, for x, y ∈ {�, s0}, and δ(�, s0, �, �, �, �, �, �, �) = s0.

The configuration u is defined as u(i) = s0 if i = (0,−1), and � otherwise. So,
u is trivial self-reproducing.

30 M. Holzer and M. Kutrib

In order to define the Turing domain T , let for any n ≥ 0 a configuration dn

be as follows: dn(i) = � if i = (0, 0), dn(i) = 1 if i ∈ { (0, j) | 1 ≤ j ≤ n },
dn(i) = � if i = (0, n + 1), and dn(i) = � otherwise. Together with setting
δ(x1, x2, x3, x4, x5, x6, x7, x8, x9) = x1, for all xj ∈ P we obtain that T is in fact
a Turing domain.

Now, the cellular automaton A is extended such that it simulates the Turing
machine U step-by-step. To this end, it suffices to define δ for all remaining
arguments of Q ∪ P in such a way that starting with the configuration

� 1 · · · 1 � � 1 · · · 1 �

m-times
︷ ︸︸ ︷

n-times
︷ ︸︸ ︷

s0

(0,−1)

automaton A will reach the passive configuration

� 1 · · · 1 � � 1 · · · 1 �

m-times
︷ ︸︸ ︷

ψm(n)-times
︷ ︸︸ ︷

sf

(0,−1)

if ψm(n) is defined, that is, if U halts, then automaton A runs into a passive con-
figuration. Omitting details of the construction this shows that s0 is a universal
computer in A with Turing domain T .

Since the initial state s0 is never reached from any other state by U , so far, δ
is only defined for state s0 in the case it has a � in its top left neighbor.

For any m ≥ 0, let cm denote the passive configuration

� 1 · · · 1 �

m-times
︷ ︸︸ ︷

s̄0

(−1,−1)

which is a ψm-computer when δ is chosen as follows. For any dn ∈ T , starting
with the configuration cm ∪dn the cellular automaton A first moves the state s̄0
one cell to the right, and then simulates U by using states from Q̄ instead of Q.
If and only if the simulation halts, automaton A moves s̄f one cell to the left.
With other words, δ is defined for all arguments from Q̄∪ P in such a way that
if ψm(n) is defined then in its first step A transforms the configuration cm ∪ dn

� 1 · · · 1 � � 1 · · · 1 �

m-times
︷ ︸︸ ︷

n-times
︷ ︸︸ ︷

s̄0

(−1,−1)

Cellular Automata and the Quest for Nontrivial Artificial Self-Reproduction 31

into

� 1 · · · 1 � � 1 · · · 1 �

m-times
︷ ︸︸ ︷

n-times
︷ ︸︸ ︷

s̄0

(0,−1)

and subsequently in some t further time steps into

� 1 · · · 1 � � 1 · · · 1 �

m-times
︷ ︸︸ ︷

ψm(n)-times
︷ ︸︸ ︷

s̄f

(0,−1)

and finally into the passive configuration

� 1 · · · 1 � � 1 · · · 1 �

m-times
︷ ︸︸ ︷

ψm(n)-times
︷ ︸︸ ︷

s̄f

(−1,−1)

Now it remains to be shown that any ψm-computer of A is constructible by u.
In particular, the set Q̂ is used to construct, for any m, the configuration cm by
u ∪ dm. We define the so far undefined δ(s0, �, �, �, x, �, �, �, �), for x ∈ {1, �},
to be ŝ0, and furthermore δ for all arguments from Q̂∪P in such a way that the
configuration u ∪ dm

� 1 · · · 1 �

m-times
︷ ︸︸ ︷

s0

(0,−1)

in the first step of A is transformed to

� 1 · · · 1 �

m-times
︷ ︸︸ ︷

ŝ0

(0,−1)

and, after some t further steps into

� 1 · · · 1 �

m-times
︷ ︸︸ ︷

s̄0

(−1,−1)

Since this is the configuration cm, it follows that for each computable partial
function ψm from T into T , there exists a dm ∈ T such that u ∪ dm constructs

32 M. Holzer and M. Kutrib

the configuration cm which, in turn, computes ψm. Therefore, u is also a universal
constructor for the Turing domain T , and altogether u is a trivial self-reproducing
universal computer-contractor as stated by the theorem.

So, what does the result show? Since without any doubt the von Neumann
cellular automaton and its refined and simplified versions are nontrivial self-
reproducing machines, the result shows that the existence of a self-reproduc-
ing universal computer-constructor in itself is not relevant to the problem of
biological and machine self-reproduction.

We conclude this section with a question of Moore raised about half a century
ago [11] for which a satisfiable answer is still open:

What can be done to make the statement that one machine is more
general or less trivial than another in its self-producing behavior more
precise? There does not seem to be a clear-cut line of demarcation
between the trivial and nontrivial models.

5 Self-Reproducing Loop Cellular Automata

Von Neumann was interested in the question as to what kind of logical organi-
zation is sufficient for an artificial machine to be able to reproduce itself. We
have seen that the question is not precise and admits to trivial versions as well
as interesting ones. So, the question as to what kind of logical organization is
necessary for an artificial machine to be able to reproduce itself (in a nontrivial
way) arises immediately. In the last section we have seen that one single cell
can be a self-reproducing universal computer-constructor. But this one-cell ma-
chine is not simple, its logic includes the transition rules of a universal Turing
machine.

Langton [10] argued that the approach to rule out trivial self-reproduction by
requiring a universal computer-constructor also rules out all naturally occurring
self-reproducing systems, since none of these have been shown to be capable
of universal construction. He suggested another criterion which is satisfied by
molecular self-reproduction: the configuration must treat its input information
in two different manners, as instructions to be interpreted (translation) as well
as uninterpreted data (transcription). This is what happens in the von Neumann
cellular automaton. The instructions are executed in order to construct a ma-
chine, and they are copied and attached to the new machine. Langton proposed
a cellular automaton using the five-cell H2

1 neighborhood-index and a simple
embedded configuration, which can effect it own reproduction by employing the
process of transcription and translation [10].

The basic structure is a data-path similar as has been used by Codd [6]. A
data-path consists of core cells surrounded by sheath cells as shown in Figure 7.
Signals which consist of packages of two consecutive states (genes) travel along
the path and are copied at junctions (see Figure 7).

Cellular Automata and the Quest for Nontrivial Artificial Self-Reproduction 33

2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2

t

2 1 2
2 1 2
2 1 2

2 2 2 2 2 2 1 2 2 2 2 2 2
1 1 1 1 1 0 7 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2

t + 1

2 1 2
2 1 2
2 1 2

2 2 2 2 2 2 7 2 2 2 2 2 2
1 1 1 1 1 1 0 7 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2

Fig. 7. On the left, a data-path is shown, where core cells are represented by state 1,
and sheath cells by state 2. The two right drawings show that signals traveling along
a data-path are copied at junctions.

The possible signals are 40, 50, 60, or 70, where 0 is the quiescent state. At
the end of the path a signal is interpreted to extend the path. For example, when
signal 70 arrives the path is extended by one cell, and two 40 signals make it
turn left. In order to obtain self-reproduction, a loop with an exit (junction) is
constructed in which signals cycle. Since they arrive at the junction at regular
intervals, the problem to solve is to get a sequence of signals into the loop
(that are copied once and again at the junction) which reproduce the loop. The
solution of Langton is to consider a loop having the form of a square and to
use the signal sequence 70,70,70,70,70,70,40,40. The six signals 70 extend the
path by six cells, and the two 40 signals make it turn left. So, four copies of the
sequence will construct the four sides of the new loop (see Figure 8).

t = 35
2 2 2 2 2 2 2 2

2 4 0 1 1 1 1 1 7 2
2 1 2 2 2 2 2 2 0 2
2 0 2 2 1 2
2 4 2 2 7 2
2 1 2 2 0 2
2 0 2 2 1 2 2
2 7 2 2 2 2 2 2 7 2 2 2 2 2 2 2 2 2 2 1 2
2 1 0 7 1 0 7 1 0 7 1 0 7 1 0 7 1 1 1 1 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

t = 70
2 2 2 2 2 2 2 2 2 2

2 7 0 1 7 0 1 7 0 2 2 1 1 2
2 1 2 2 2 2 2 2 1 2 2 1 2
2 1 2 2 7 2 2 1 2
2 1 2 2 0 2 2 1 2
2 1 2 2 1 2 2 7 2
2 1 2 2 7 2 2 0 2
2 0 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2 1 2
2 4 1 0 4 1 0 7 1 0 7 1 0 7 1 0 7 1 0 7 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Fig. 8. Construction of an offspring loop

Finally, the offspring is separated by the collision of signals at the new junc-
tion. When this happens new signals are generated which separate the loops
and initiate the construction of new exits in both parent and offspring loops (see
Figure 9). If a loop tries to extend its arm to an occupied area, a sheath fragment
is generated that absorbs all genes. The details of the construction including the
transition function can be found in [10].

Under the criterion of nontriviality proposed by Langton the loop is capable
of nontrivial self-reproduction. However, it is not capable to do anything else.
So, even without knowing an answer to the question of Moore as quoted above
one can certainly say that the loop is a trivial self-reproducing system.

34 M. Holzer and M. Kutrib

t = 120

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 0 1 1 1 1 1 7 0 2 2 1 7 0 1 7 0 1 4 2
2 4 2 2 2 2 2 2 1 2 2 0 2 2 2 2 2 2 0 2
2 1 2 2 7 2 2 7 2 2 1 2
2 0 2 2 0 2 2 1 2 2 4 2
2 4 2 2 1 2 2 1 2 2 0 2
2 1 2 2 7 2 2 2 1 2
2 0 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2 1 2
2 7 1 0 7 1 0 7 1 0 7 1 0 7 1 0 7 1 1 1 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

t = 151
2

2 1 2
2 7 2
2 0 2
2 1 2

2 2 2 2 2 2 2 7 2 2 2 2 2 2 2 2 2
2 1 1 1 7 0 1 7 0 2 2 1 7 0 1 4 0 1 4 2
2 1 2 2 2 2 2 2 1 2 2 0 2 2 2 2 2 2 0 2
2 1 2 2 7 2 2 7 2 2 1 2
2 0 2 2 0 2 2 1 2 2 1 2
2 4 2 2 1 2 2 0 2 2 1 2
2 1 2 2 7 2 2 7 2 2 1 2
2 0 2 2 2 2 2 2 0 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2
2 4 1 0 7 1 0 7 1 2 2 0 7 1 0 7 1 0 7 1 1 1 1 1 2
2 2

Fig. 9. Configurations after 120 and 151 steps. In the latter drawing the loop has
reproduced itself exactly.

6 Reproduction of Arbitrary Configurations

This section is devoted to another aspect of self-reproduction in cellular au-
tomata. Are there cellular automata capable of reproducing any finite initial
configuration? The question has been answered in the affirmative for one- and
two-dimensional cellular automata by Amoroso and Cooper [1]. Generalizations
to arbitrary dimensions have been shown in [8,13].

The main result of Amoroso and Cooper reads as follows.

Theorem 3. For any set of states S containing at least two elements, and for
dimension d ∈ {1, 2}, there exists a cellular automaton 〈S, d, N, δ, q0〉 that repro-
duces any configuration c with finite support. The reproduction takes place in a
number t of steps that is a function of c, Further, if |S| is prime the reproduced
copies will be contained in a quiescent environment.

Roughly speaking, “to be contained in a quiescent environment” means that
sup(Δt(c)) contains nothing else than the copies of c.

Exemplarily we consider dimension one. The theorem is witnessed by the
cellular automaton 〈S, 1, (−1, 0), δ, 0〉, where S = {0, 1, . . . , n − 1} for n ≥ 2,
and δ is the addition modulo n, that is δ(s1, s2) = (s1 + s2) mod n. Let c be a
configuration with sup(c) = {0, 1, . . . , k}. Then by induction one shows that

Δr(c)(i) =

(
i∑

x=0

(
r

i − x

)

c(x)

)

mod n

for i ∈ {0, 1, . . . , k} and r ≥ 0. Setting r = n · k! and 0 ≤ x < i ≤ k we obtain
that n divides

(
r

i−x

)
. Therefore, the sum (mod n) is equal to

(
r
0

)
c(i) mod n = c(i),

and we have Δn·k!(c)(i) = c(i), for 0 ≤ i ≤ k. Similarly, it is shown that
Δn·k!(c)(i+n ·k!) = c(i), for 0 ≤ i ≤ k. It follows that the configuration Δn·k!(c)
contains two disjoint subconfigurations which are equal to c. One subconfigura-
tion is exactly c, the other one is translated n · k! cells to the right.

Cellular Automata and the Quest for Nontrivial Artificial Self-Reproduction 35

Example 3. S = {0, 1, 2, 3}, n = 4, k = 2, and r = n · k! = 8. The embedded
pattern 122 is reproduced after eight steps as depicted in the following space-time
diagram.

t

0 1 2 2 0 0 0 0 0 0 0 0 0 0
0 1 3 0 2 0 0 0 0 0 0 0 0 0
0 1 0 3 2 2 0 0 0 0 0 0 0 0
0 1 1 3 1 0 2 0 0 0 0 0 0 0
0 1 2 0 0 1 2 2 0 0 0 0 0 0
0 1 3 2 0 1 3 0 2 0 0 0 0 0
0 1 0 1 2 1 0 3 2 2 0 0 0 0
0 1 1 1 3 3 3 3 1 0 2 0 0 0
0 1 2 2 0 2 2 2 0 1 2 2 0 0

��

If the number n of states in S is a prime number then r can be chosen to be the
smallest power of n not less than k. This follows from the fact that for prime
numbers p each term

(
pr

x

)
with 1 ≤ x < pr, for any r ≥ 1, is of the form pr ·y for

some integer y, hence divisible by p. Since, in particular, divisibility by p means
to be equal zero modulo p and zero is the quiescent state, in this case the copies
of the initial pattern are contained in a quiescent environment.

Example 4. S = {0, 1, 2, 3, 4}, n = 5, k = 2, and r = 51 ≥ 2. The embedded
pattern 122 is reproduced in a quiescent environment after five steps as depicted
in the following space-time diagram.

t

0 1 2 2 0 0 0 0 0 0 0
0 1 3 4 2 0 0 0 0 0 0
0 1 4 2 1 2 0 0 0 0 0
0 1 0 1 3 3 2 0 0 0 0
0 1 1 1 4 1 0 2 0 0 0
0 1 2 2 0 0 1 2 2 0 0

��

7 Concluding Remarks

We reviewed the beginnings of and some basic aspects concerning nontrivial ar-
tificial self-seproduction, in particular in connection with the model of cellular
automata. Von Neumann’s self-reproducing universal computer-constructor was
addressed. Then we turned to the (still unanswered) question what nontrivial
self-reproduction is. The question is not precise and admits to trivial versions
as well as interesting ones. So, the question as to what kind of logical organiza-
tion is necessary for an artificial structure to be able to reproduce itself arises
immediately. Inspired by these ideas and results, further issues concerning arti-
ficial structures and self-reproduction are addressed. The presentation obviously

36 M. Holzer and M. Kutrib

lacks completeness. There is a vast of literature dealing with the problems in
question. We emphasize a result by Morita and Imai [12] which shows that self-
reproduction is also possible in reversible cellular automata. For a comprehensive
survey covering “Fifty Years of Research on Self-Replication” we refer to [14].

References

1. Amoroso, S., Cooper, G.: Tesselation structures for reproduction of arbitrary pat-
terns. J. Comput. System Sci. 5, 455–464 (1971)

2. Arbib, M.A.: Simple self-reproducing universal automata. Inform. Control 9, 177–
189 (1966)

3. Banks, E.R.: Information processing and transmission in cellular automata. Tech-
nical Report MAC TR-81, MIT (1971)

4. Berlekamp, E.R., Conway, J.H., Guy, R.K.: What is Life? In: Winning Ways for
your Mathematical Plays?, vol. 2, ch. 25, pp. 817–850. Academic Press, London
(1982)

5. Burks, A.W.: Von Neumann’s self-reproducing automata. In: Burks, A.W. (ed.)
Essays on Cellular Automata, pp. 3–64. University of Illinois Press, Urbana (1970)

6. Codd, E.F.: Cellular Automata. Academic Press, New York (1968)
7. Gardner, M.: The fantastic combinations of John Conway’s new solitaire game

‘life’. Sci. Amer. 223, 120–123 (1970)
8. Hamilton, W.L., Mertens Jr., J.R.: Reproduction in tesselation structures. J. Com-

put. System Sci. 10, 248–252 (1975)
9. Herman, G.T.: On universal computer-constructors. Inform. Process. Lett. 2, 61–64

(1973)
10. Langton, C.G.: Self-reproduction in cellular automata. Phys. D 10, 135–144 (1984)
11. Moore, E.F.: Machine models of self-reproduction. Proc. Symposia in Applied

Mathematics 14, 17–33 (1962)
12. Morita, K., Imai, K.: Self-reproduction in a reversible cellular space. Theoret. Com-

put. Sci. 168, 337–366 (1996)
13. Ostrand, T.J.: Pattern reproduction in tesselation automata of arbitrary dimen-

sion. J. Comput. System Sci. 5, 623–628 (1971)
14. Sipper, M.: Fifty years of research on self-replication: An overview. Artificial Life 4,

237–257 (1998)
15. Thatcher, J.W.: Universality in the von neumann cellular model. Technical Report

06376, 06689, 03105-30-T, University of Michigan (1964)
16. Turing, A.M.: On computable numbers, with an application to the entschei-

dungsproblem. Proc. London Math. Soc., Series 2 42, 230–265 (1936)
17. Turing, A.M.: On computable numbers, with an application to the entschei-

dungsproblem. Proc. London Math. Soc., Series 2 43, 544–546 (1937)
18. von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois

Press, Urbana (1966)
19. Wainwright, R.T.: Life is universal!. In: Winter Simulation Conference (WSC 1974).

WSC/SIGSIM, vol. 2, pp. 449–459 (1974)

An Algorithmic Approach to Tilings of
Hyperbolic Spaces: 10 Years Later

Maurice Margenstern

Université Paul Verlaine − Metz,
LITA EA 3097, UFR MIM, and CNRS, LORIA,

Campus du Saulcy,
57045 METZ Cédex 1, France

margens@univ-metz.fr

http://www.lita.sciences.univ-metz.fr/~margens

Abstract. In this paper, we give an account of the algorithmic ap-
proach developed by the author to study tilings of hyperbolic spaces.
We sketchily remember the results which were obtained by this approach
and we conclude by possible applications, indicating a few ones already
performed and proposing three others.

Introduction

Ten years ago, a paper appeared in the Journal of Universal Computer Science
which laid the basis of an algorithmic approach to tilings of the hyperbolic plane.
This approach appeared to be very fruitful and it gave rise to around 85 papers in
journals, conferences and workshops. A few other papers also appeared connected
with other approaches to such tilings, motivated by a combinatorial point of view
too.

In this paper, we give an account of the works of the algorithmic approach
developed by the author and to possible applications.

In Section 1, the paper will remind Poincaré’s disc model which summarizes
what is needed to know from hyperbolic geometry in order to understand the
results which will be presented. In Section 2, we shall explain our approach on
the classical case of the pentagrid, the tiling {5, 4} of the hyperbolic plane which
is obtained from the regular rectangular pentagon by reflection in its sides and,
recursively, by reflection of the images in their sides. We shall see that the tiling
is spanned by a tree and that numbering the nodes of the tree in an appropriate
way together with a suited representation of the numbers will make an impor-
tant property appear from which we can easily derive navigation tools in the
tiling. In Section 3, we show a remarkable property of the hyperbolic plane: the
navigation tools obtained for the pentagrid work exactly in the same way in the
heptagrid, the tiling {7, 3} of the hyperbolic plane, and, with a simple adapta-
tion, to all tilings of the hyperbolic plane of the form {p, 4} and {p+2, 3}. We
also indicate there the possible generalizations to other tilings of the hyperbolic
plane as well as of higher dimension, namely dimensions 3 and 4.

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 37–52, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

38 M. Margenstern

In Section 4, we remind the undecidability results obtained about tilings. This
concerns the tiling problem itself as well as connected results.

In Section 5, we consider the application of the navigation tools to the im-
plementation of cellular automata in hyperbolic tilings. The obtained results
can be divided into three categories: general properties, complexity results and
universality results. We shall briefly mention the universality results which were
investigated for the pentagrid, the heptagrid and the dodecagrid. This latter
tiling is the tessellation of the hyperbolic 3D space obtained from what is called
Poincaré’s dodecahedron whose faces are copies of the regular rectangular pen-
tagon. Figure 4 represents the basic bricks which allow us to construct this
tilings. All universality results which will be presented will be based on the
implementation of a railway circuit in the considered hyperbolic grid.

In Section 6, we investigate possible applications of the navigation tools. In
a first sub-section, we shall look at already obtained applications. Then, in the
second sub-section, we shall look at possible applications to biology. One ap-
plication is theoretical and deals with an implementation of P systems, it was
already presented a few years ago at the occasion of an issue of WMC. The other
two applications are more practical. The paper just gives a proposal which would
require a rather huge effort.

1 Poincaré’s Disc

The points of the hyperbolic plane are the points of the open unit disc U
whose border, ∂U , consists of the points at infinity. These latter points are
represented by the circle of Figure 1. Note that the points at infinity do not

A

p

P
Q

l

q

m

s

Fig. 1. Illustration of Poincaré’s disc model

Tilings of Hyperbolic Spaces: 10 Years Later 39

belong to the hyperbolic plane. Lines are trace on the open disc of diameters or
circles which are orthogonal to ∂U . Two lines are parallel if and only if they have
a common point at infinity. In Figure 1, we can see two parallels to � which pass
through A. We can see also a line passing through A which cuts �. Now there is
another kind of lines: in Figure 1, line m which also passes through A does not
cut �, neither in U , nor on ∂U , nor outside U . Such lines are called non-secant
lines. They are characterized by the following property: they possess a unique
common perpendicular.

2 The Pentagrid

The pentagrid is one of the infinitely many tessellations which live in the hy-
perbolic plane. Remember that a tessellation is defined starting from a convex
polygon P replicated by reflection in its sides and, recursively, by replicating the
images through reflections in their sides. We say that P generates a tessellation
if the images cover all the plane without overlapping. A theorem of Poincaré says

that any triangle with
2π

p
,

2π

q
and

2π

r
as angles, where p, q and r are positive

integers satisfying
1
p

+
1
q

+
1
r

<
1
2

generates a tessellation.

Accordingly, there are infinitely many tessellations in the hyperbolic plane. If

we consider a regular polygon P with p sides and
2π

q
as angle, P generates a

tessellation if and only if
1
p

+
1
q

<
1
2
. The tessellation is denoted by {p, q}. We

can interpret q as the number of copies of P which can be put around a vertex
filling a neighbourhood of the vertex without overlapping.

Fig. 2. The pentagrid and its underlying tree: the nodes of the tree are in bijection
with the tiles which exactly cover a quarter of the plane

40 M. Margenstern

The pentagrid is one of these tessellations, namely {5, 4}. It is generated by
the regular pentagon with right angles, whence the name. Note that there cannot
be a rectangular polygon with a smaller number of sizes in the hyperbolic plane.

As shown by Figure 2, the pentagrid is spanned by a tree. Figure 2 also
summarizes the way it is generated by an appropriate splitting of the hyperbolic
plane. We cannot describe this splitting here, referring the reader to [12,21].
What we can say is that the tree represented in Figure 2 is not arbitrary. It has
two kinds of nodes called black and white with two and three sons respectively.
In both cases, exactly one son is black. From that it is not difficult to prove that
the number of nodes which are on the same level of the tree belongs to the
Fibonacci sequence. More precisely, if h is the level, the number of nodes at this
level is f2h+1 where {fn}n∈IN with f0 = f1 = 1 is the usual Fibonacci sequence.
This is why we called this tree the Fibonacci tree. Now, number the nodes
level by level from the root of the tree and, on each level, from left to right.
Represent each number as a sum of single terms of the Fibonacci sequence,
always taking the longest representation, as there my be several representations.
Call coordinate of a tile this representation. Then, we have:

Theorem 1. (Margenstern, 2002, [13,21]) The language of the coordinates for
the tiles of the pentagrid is regular.

Theorem 2. (Margenstern, 2000, [12,15,21]) There is an algorithm to compute
the path from the root to a node from its coordinate which is linear in time in
the size of the coordinate.

3 Generalizations

As indicated by the title of this section, these properties are not specific for the
pentagrid. In the following sub-sections, we shall see several successive
generalizations.

3.1 The Heptagrid and the Tilings {p, 4} and {p+2, 3}, p ≥ 5

The first striking generalization is given by the transposition of the previous
theorems to the heptagrid, the tiling {7, 3} of the hyperbolic plane. This tiling
is illustrated by Figure 3 in which we also can see the underlying tree structure.

In Figure 3 we can not only see that the heptagrid is spanned by a tree but
also that the tree is the Fibonacci tree, exactly as it is for the pentagrid. Here,
the tree does not span a quarter of the plane but an angular sector corresponding

to the angle
2π

7
, as we can see on Figure 5. Accordingly, theorems 1 and 2 also

hold for the heptagrid.
This identity of the spanning tree raised the question of how we can go from

one tiling to the other? This issue was solved in [18,21] where another system
of coordinates based on the same tree is proposed. The construction of [18,21]
allows us to implement a bi-continuous bijection between the pentagrid and the
heptagrid.

Tilings of Hyperbolic Spaces: 10 Years Later 41

Fig. 3. The underlying tree of the tiling: the nodes of the tree are in bijection with the
tiles which exactly cover an angular sector of the plane

The reader is referred to [4,21] for a detailed account on the splitting
performed in the heptagrid.

3.2 The Splitting Method and the Tilings {p, q}
In fact, the property of being spanned by a tree is shared by almost all tessel-
lations of the hyperbolic plane. This result was proved by the author in [13,14]
where the splitting method was introduced. This method defines the notion
of a basis of a splitting. Informally, this means that the geometric space un-
der consideration can be generated by finitely many prototiles, and that the
space can be split into finitely many regions, each one being defined as a union
of copies of the prototiles. In the case of the pentagrid and of the heptagrid,
there is one prototile and two regions. We refer the reader to the already quoted
papers and to the book [21]. When such a basis exists, we say that the tiling is
combinatoric and the existence of the basis immediately yields a matrix whose
characteristic polynomial contains the information giving rise to the Fibonacci
representation in the case of the pentagrid and of the heptagrid.

Theorems 1 and 2 where first extended to the tilings {p, 4}, see [35] and then
to the tilings {p+2, 3}, with p ≥ 5, see [21]. They were also extended to many
tilings {p, q}, see [21] where the difficult case is given by the triangular tilings,
which was already noticed in [14].

3.3 The Dodecagrid and the 120-Grid

Another direction consists in extending the method to higher dimensions. This
was performed in [36] and [17].

42 M. Margenstern

The Poincaré’s disc model naturally extends to higher dimensions: replace the
open disc by the n-dimensional open hyper-ball, the circle by the n-dimensional
hyper-sphere, the lines by diametral hyperplanes or n-dimensional hyper-spheres
orthogonal to the border of the fixed n-dimensional open hyper-ball. Other k-
dimensional objects, with k < n−1 are defined as intersections of k+1-dimensio-
nal ones. A theorem by Sommerville shows that starting from dimension 5, there
are no tessellations in hyperbolic spaces. In dimensions 3 and 4 for there are only
finitely many of them: 4 and 5 respectively. This is a sharp difference with the
situation in the plane.

In the hyperbolic 3D space, the dodecagrid is the natural extension of the
pentagrid: as the cubic tessellation is the natural extension of the planar square
grid in the Euclidean case. This tiling was proved to be combinatoric in [36],
and Figure 4 gives a new basis of splitting, a bit simpler than the one indicated
in [36,21].

1

2

3

4

5
6

7

89

10 11

1

2

3

4

5
6

7

89

10 11

1

2

3

4

5
6

7

89

10 11

Fig. 4. The lego-like bricks for the dodecagrid

The extension of the dodecagrid to the hyperbolic 4D space exists and it gives
rise to a tessellation called the 120-grid after the 120-cell polytope which is
the polytope on which the tessellation is performed. The author proved that this
tiling also is combinatoric, see [17,21].

4 The Tiling Problem

Consider a finitely generated tiling. This means that we have a finite set of
prototiles and that the space is a union of copies of the prototiles without
overlapping. By copy of a prototile, we mean an image of a prototile under an
isometry of the space belonging to a fixed set of such transformations. We may
add decorations on the prototiles: this means that each side or facet is assigned
a symbol and that when a facet is shared by two copies, the facet must bare the
same symbol in each copy. We call this the matching condition at a facet.
In this case, a solution of the tiling problem is an assignment of the copies so
that the matching condition is satisfied at each facet.

The tiling problem consists in the following question:
Is there an algorithm which, from a description of a finite set of tiles, says yes

if there is a solution and no if such a solution does not exist?

Tilings of Hyperbolic Spaces: 10 Years Later 43

This problem was raised by Hao Wang in 1958 for the Euclidean plane and
this author proved a partial case to be undecidable. This partial case is called
the origin constrained problem: the first tile is fixed in advance. The general
problem, with no constraint, was proved undecidable by Robert Berger in 1966,
see [2]. The complex, but deep proof of Berger was significantly simplified in 1971
by Raphael Robinson, see [43] who raised the question of the same problem
for the hyperbolic plane. In 1978, Robinson proved the undecidability of the
origin constrained problem in the hyperbolic plane, see [44]. The algorithmic
approach presented in this paper allowed the author to prove the undecidability
of the general problem in the hyperbolic plane in 2007. The complete proof was
published in 2008, see [23]. A synthetic view of the proof appeared in 2007 in [22].
It is impossible, within the frame of this paper to go into details. The main goal
is to implement infinitely many simulations of the same Turing machine starting
from an empty tape. The problem boils down to implement large enough portions
of grids for this simulation and also in a rather uniform way in order to force the
construction. The main idea was to define a family of trees which are pairwise
either disjoint or one of them is embedded in the other. Then, we cut these trees
at appropriate levels defining triangle like figures of infinitely many different
sizes. From the legs of these triangles, extremal branches of the trees, we define
verticals vi which avoid the triangles which are inside the triangle where the vi

were defined. This defines the grids in which the above mentioned simulation
takes place. The reader who wishes to know how these trees and triangles are
implemented is referred to [22,23].

A bit later, two other problems about tiling, also connected to this one were
proved undecidable by the author: the finite tiling problem, see [24], and the
periodic tiling problem, see [29].

5 Cellular Automata in Hyperbolic Spaces

An important application of this algorithmic approach to hyperbolic geometry
is the implementation of cellular automata in the hyperbolic plane. The global
setting is illustrated by Figure 5. In each figure, α sectors are displayed around a
central tile with α = 5 for the pentagrid and α = 7 for the heptagrid. This is an
exact covering: in Figure 5, the sectors are a bit split away from each other and
from the central tile to emphasize on the shape of the sectors. In the pentagrid,
the sectors are quarters of the plane, as we already know. In the heptagrid, they
are angular sectors defined by two rays with an appropriate angle. These rays are
supported by so-called mid-point lines as their supporting lines pass through
the mid-points of consecutive edges of the heptagons they cross.

Now, we can define coordinates as follows: 0 is attached to the central cell.
Then, we number the sectors by counter-clockwise turning around the central
tile, fixing the first sector once and for all. Next, in each sector σ, with σ ∈ {1..α},
the tiling is in bijection with the Fibonacci tree. Accordingly each tile takes the
coordinate ν of the node to which it corresponds in the tree. And so, except the
central tile, the coordinate of a tile is given by the two numbers ν and σ and we

44 M. Margenstern

1

2

3

4

5 1

2

3

4
5

6

7

Fig. 5. Left-hand side: setting for the pentagrid. Right-hand side: setting for the
heptagrid.

write ν(σ). We also attach to each cell a local numbering which consists in
numbering the sides of the tile from 1 to α by counter-clockwise turning around
the tile. In the central cell, side 1 is the side in contact with the first sector.
In the other cells, side 1 is the side in contact with the father of the tile in the
tree. We say that the cell which is on the other side of side i is the neighbour i,
so that neighbour 1 is the father of the cell. Note that we define the father of
the root to be the central cell. This allows us to gather the trees spanning the
sectors as sub-trees of a bigger tree rooted at the central cell.

This allows us to define the format of the rules. We write them as follows:
η0η1..ηα → η1

0 or simpler η0η1..ηαη1
0 . In these notations, η0 is the current state

of the cell, ηi is the state of its neighbour i and η1
0 is the state of the cell after

applying the rule to the cell. We also say that η1
0 is the new state of the cell.

Note that this implementation corresponds to what is performed in the square
grid of the Euclidean plane identified with ZZ2. This identification consists of three
steps. First, we define a square to correspond to (0, 0). Then, we define which
neighbour of the square through a side will be called north, which fixes the square
attached to (0, 1). Next, the orientation, which does not belong to the Euclidean
plane itself, consists in fixing which square will be attached to (1, 0). We have an
analogous situation in the pentagrid. First, we fix the central cell. Then, we fix
which neighbour will be neighbour 1. At last, orientation, it does not belong nei-
ther to the hyperbolic plane, allows us to fix the leftmost son of the roots.

An important case of cellular automata in the hyperbolic plane is the case
of rotation invariant cellular automata. For these automata, the set of rules
has the property that if η0η1..ηαη1

0 belongs to the set, all rules η0ηπ(1)..ηπ(α)η
1
0

belong to the set too, where π is any circular permutation on [1..α]. This means
that the rules are the same if a rotation is performed around a cell. In particular,
for rotation invariant cellular automata, the rules are independent of the way we
fix side 1 in the cells. Only the ordering corresponding to a rotation around the
tile is required.

Tilings of Hyperbolic Spaces: 10 Years Later 45

5.1 General Results

An important notion, in the mathematical study of cellular automata, is the
global function attached to the cellular automaton. Let A be a cellular automa-
ton. We can denote by fA the function defined by the set of rules. If Q denotes
the set of states of A, fA is a mapping from Qα+1 into Q. A configuration is an
assignment of the states to each cell. Assuming that the cells are numbered in a
bijective way by IN , a configuration is a mapping from IN into Q. Let X denote
the set of configurations. The global function GA of A is a mapping of X into
itself defined by: GA(x)(c) = fA(c, V (c)), where x ∈ X , c is a cell and V (c) is
the set of neighbours of c, ordered from 1 to α.

In the Euclidean case, properties of the global function of a cellular automaton
were investigated. In particular, a characterization of the mappings from X into
itself which are the global function of some cellular automaton was found, see [6].
As a non-trivial corollary, if the global function of a cellular automaton A is
bijective, then the reverse function is also the global function of another cellular
automaton called the inverse of A. However, it is worth noticing that the proof of
this latter property is not constructive. Also, an interesting connection between
the injectivity of the global function and its surjectivity were found, see [42,41].
However, these properties were proved to be undecidable as the injectivity of the
global function was proved undecidable, see [11].

The author was able to prove a few analogues of these theorems for hyperbolic
cellular automata with, however, differences with the Euclidean situation. As an
example, Hedlund’s characterization for the global function of a cellular automa-
ton can be transported for rotation invariant cellular automata only, see [25].
The reason is that Hedlund’s characterization involves shifts and that in the
hyperbolic plane, shifts generate rotations. However, the connections between
injectivity and surjectivity of the global function do not hold for hyperbolic cel-
lular automata, see [28]. At last, the injectivity of the global function of a hyper-
bolic cellular automaton was also proved undecidable, see [27]. In the Euclidean
case, the proof starts from the construction used to prove the undecidability of
the tiling problem and it mixes this construction with the construction of a path
filling up the plane. In the hyperbolic case, the proof mixes the construction
used to prove the undecidability of the tiling problem with the construction of
a path which fills up at least a large enough region of the plane.

5.2 Complexity Results

Closer to the core of computer science, the complexity classes of cellular au-
tomata in the hyperbolic plane turned out to have surprising properties. The
very first result was a proof that SAT can be solved in polynomial time, see [34].
The authors did not know at that time that the property was foreseen in [40]
where, however, no precise description in terms of cellular automata was given.
A bit later, it was proved that Ph = NPh, see [10,26], where the subscript h
refers to the cellular automata in the hyperbolic plane. It is important to notice
that the results deals with time only, with no assumption on the space used for

46 M. Margenstern

the computation. It turned out that the class Ph is very large as it is the same
as the classical PSPACE. It was also proved that EXPh, again the purely time
complexity class, is as large as EXPSPACE, see [9].

The result about SAT relies on the fact that a complete binary tree of height h
can be constructed in the pentagrid in time h. In fact, the construction of [34] is
not only polynomial in time, it is linear. Now, the fact that this construction can
easily and efficiently be performed in the hyperbolic plane has two consequences.
It seems to me that this points at the fact that the traditional question is P equal
to NP? is an ill posed problem: it was not correct to ignore any connection with
space while raising the question. But at the same time, it seems to me that
the result that Ph = NPh is an important clue in favour of the statement that
P �= NP. A way of attacking this issue could be the following: if P = NP were
true, it would be possible to embed the hyperbolic plane into the Euclidean one
while preserving both angles and distances. Now, it is known that this latter
possibility is ruled out.

5.3 Universality Results

Another trend of research for cellular automata is the search of universal cellular
automata with as less states as possible. Also, for this purpose, very soon people
focused on weak universality. This means the following. We have a quiescent
state q characterized by the fact that if a cell is under the state q, if its neighbours
are also all under this state, the new state of the cell is again q. In this context,
we say that a configuration is finite if all cells except finitely many of them are in
the same quiescent state. Strong universality means that a Turing machine can
be simulated by the cellular automaton, when this latter one starts from a finite
initial configuration. Weak universality means that we relax the condition of
finite initial configuration. However, arbitrary initial configurations are also not
allowed, in which case the cellular automaton could solve the halting problem,
for instance. Usually, it is required that the initial configuration is regular is
some sense to be closer indicated. In what follows, universality always means
weak universality.

The first universal cellular automaton in the hyperbolic plane appeared in [8].
This cellular automaton had 22 states and it simulated the computation of a
two-register machine through the motion of a locomotive on a railway circuit,
adapting the implementation in the Euclidean plane devised by [45] to the hyper-
bolic plane, also replacing the simulation of a Turing machine by the simulation
of a register machine. There was also an implementation of the same railway
circuit in the dodecagrid, this time with 5 states, see [20]. A few years later, the
number of states was lowered down to 9 in the pentagrid, see [37]. Then a simu-
lation in the heptagrid was performed with 6 states, see [38]. This latter result
was recently lowered down to 4 in the heptagrid, see [30]. The simulation in the
dodecagrid was also lowered down to 3, see [31]. Very recently, the simulation in
the dodecagrid was lowered down to 2, so that this result cannot be improved,
at least for what is the number of states. Also very recently, a universal cellular

Tilings of Hyperbolic Spaces: 10 Years Later 47

automaton with two states was found in the heptagrid and in the pentagrid by
implementing a universal cellular automaton on the line called rule 110. See [5]
for rule 110 and [32] for the hyperbolic plane.

6 Possible Applications

The previous sections have already shown several applications of the algorithmic
approach to hyperbolic geometry. Of course, these are theoretical applications:
applications to mathematics and to computer science.

In the following sub-section, we shall deal with more practical applications.
In Sub-section 6.1, we look at those already performed. In Sub-section 6.2, we
suggest a few ones which might be possible.

6.1 What Was Already Performed

Two applications were already performed. One deals with a colour chooser. The
other deals with keyboards for various mobile devices like cell phones, ipods
and many others. All these applications are based on the possibility to move a
window over the pentagrid. To ensure this possibility, we have an algorithm to
know the new coordinates of a tile when the system of coordinate is changed.

The problem is the following. We have a fixed system of coordinate, the one
already defined in Section 5. We call it the absolute system. Now, we consider
the centre of the window as the centre of a coordinate system again, which we call
the relative system. And so, knowing the absolute coordinate of the centre of the
window, it is not very difficult to compute the absolute coordinates of the tiles
which can be seen in the window, see [19,26]. We call this the recomputation
algorithm.

The Colour Chooser. The colour chooser is based on the heptagrid. It could
also be based on the pentagrid. However, the heptagrid provides a better result,
both for efficiency and from an aesthetic point of view.

The principle of the chooser is the following. We fix a central cell, the black
one in Figure 6, which plays the role of the absolute system. Each tile receives a
colour which is defined by its radial position and its distance from the centre. A
first approximation of the radial position is given by the number of the sector to
which belongs the considered tile τ . Next, the coordinate of τ in its tree allows
us to determine the level to which it belongs, hence the distance to the centre,
and also to know the position of the tile on the corresponding level of the tree.
The radial position defines the hue of the colour and the distance from the center
defines its intensity, all these parameters computed in the interval (0, 1), using
the HSB system. The third parameter is always set to 1.

If the user wishes to select a colour, he/she moves in the heptagrid until it
finds the required colour. The motion is produced by placing the centre of the
window on the tile selected by the user. The recomputation algorithm allows us

48 M. Margenstern

Fig. 6. The colour chooser. On the right-hand side several moves. On two of them, the
initial centre disappeared. It is indicated by an appropriate arrow in the third figure.
The arrow works like a compass. Without it, once the old centre vanished from the
window, the user could never put it again inside the window.

to compute the absolute coordinates of the tiles around the centre of the window
and so, to produce the correct colour of the considered tile. We refer the reader
to [3] for more details on the chooser.

The Keyboards. As indicated in the beginning of this section, another appli-
cation deals with keyboards for mobile devices where there is no convenient room
for a standard keyboard. The first realization was for a French keyboard using
the pentagrid, see [39]. Then, it came to the author that the pentagrid is
especially suited for the Japanese language based on five vowels. This leads
to the presentation displayed by Figure 7 on which we can also see a prototype
of a true cell phone using this idea.

The idea is simple. Using the traditional presentation of the syllabic alphabets
in the Japanese language, a quarter around the central cell is attached to each
vowel and the syllables containing it are displayed around the root-tile following
the traditional order. The reader will find more information in [33].

6.2 What Could Be Done

Many applications are possible. An already quoted paper, [19], is also a basis for
applications to computer science which we have not the room to present, ranging
from the Internet to data storage and queries.

Here, we would like to briefly mention two new possible applications to biology.
A rather old one was presented for the representation of P systems, see [16].

Among the new applications, the first one deals with the brains and the other
with diffusion processes.

Tilings of Hyperbolic Spaces: 10 Years Later 49

Fig. 7. The Japanese keyboard. Left-hand side: hiraganas, right-hand side: cell phone
prototype.

Fig. 8. A crochet representation of the hyperbolic plane by Daina Taimina

The Brains. This idea comes from a rather well known fact that if we imple-
ment a tiling of the hyperbolic plane while keeping the lengths and the angle
on a soft textile medium, the surface cannot remain straight and it folds itself
more and more as the implemented portion of the hyperbolic plane is growing.
A striking example of this is given by the crochet realizations by Daina Taimina,
see [7]. Here is one of them:

This reminds the circumvolutions of the brains. Hyperbolic tilings could give
a possible new way to map the regions controlled by the nervous system.

Diffusion Processes. There are many diffusion processes in biology, starting
with the growth of colonies of bacteria. Any simulation of these processes, as the

50 M. Margenstern

Fig. 9. Left-hand side: the 7th step of the diffusion of the tree structure in a triangular
subdivision of the heptagrid. Right-hand side: a similar diffusion at its 35th step, in a
finer subdivision of the previous one. Compare with Figure 2 in [1].

ones of Figure 9 could contribute to a better knowledge of these phenomena. It
is now well established that colonies of bacteria have enormous abilities to adapt
themselves to environment, even to very hostile ones, see [1].

Figure 9 illustrates the propagation of the tree structure by a cellular au-
tomaton. On the left-hand side, the cells are triangles defined by the side and
the centre of a heptagon. On the right-hand side, the cells are triangles obtained
by splitting the previous ones into four sub-triangles, using the mid-points of
their sides.

Acknowledgment

The author is much in debt to the organizers of CMC’11 for inviting him to
deliver a talk of which the following paper is a very concise summary.

References

1. Ben-Jacob, E., Becker, I., Shapira, Y.: Bacterial Linguistic Communication and
Social Intelligence. Trends in Microbiology 12(8), 366–372 (2004)

2. Berger, R.: The undecidability of the domino problem. Memoirs of the American
Mathematical Society 66, 1–72 (1966)

3. Chelghoum, K., Margenstern, M., Martin, B., Pecci, I.: Palette hyperbolique: un
outil pour interagir avec des ensembles de données. In: IHM 2004, Namur (2004)
(Hyperbolic chooser: a tool to interact with data, (French))

4. Chelghoum, K., Margenstern, M., Martin, B., Pecci, I.: Tools for implementing
cellular automata in grid {7, 3} of the hyperbolic plane. In: DMCS 2004 (2004)

5. Cook, M.: Universality in Elementary Cellular Automata. Complex Systems 15(1),
1–40 (2004)

Tilings of Hyperbolic Spaces: 10 Years Later 51

6. Hedlund, G.: Endomorphisms and automorphisms of shift dynamical systems.
Math. Systems Theory 3, 320–375 (1969)

7. Henderson, D.W., Taimina, D.: Crocheting the Hyperbolic Plane. Mathematical
Intelligencer 23(2), 17–28 (2001)

8. Herrmann, F., Margenstern, M.: A universal cellular automaton in the hyperbolic
plane. Theoretical Computer Science 296, 327–364 (2003)

9. Iwamoto, C., Margenstern, M.: Time and Space Complexity Classes of Hyperbolic
Cellular Automata. IEICE Transactions on Information and Systems 387-D(3),
700–707 (2004)

10. Iwamoto, C., Margenstern, M., Morita, K., Worsch, T.: Polynomial Time Cellular
Automata in the Hyperbolic Plane Accept Exactly the PSPACE Languages. In:
SCI 2002 (2002)

11. Kari, J.: Reversibility and Surjectivity Problems of Cellular Automata. Journal of
Computer and System Sciences 48(1), 149–182 (1994)

12. Margenstern, M.: New Tools for Cellular Automata of the Hyperbolic Plane. Jour-
nal of Universal Computer Science 6(12), 1226–1252 (2000)

13. Margenstern, M.: A contribution of computer science to the combinatorial approach
to hyperbolic geometry. In: SCI 2002 (2002)

14. Margenstern, M.: Revisiting Poincaré’s theorem with the splitting method. In:
Bolyai 200. International Conference on Hyperbolic Geometry, Cluj-Napoca, Ro-
mania, October 1-4 (2002)

15. Margenstern, M.: Implementing Cellular Automata on the Triangular Grids of the
Hyperbolic Plane for New Simulation Tools. In: ASTC 2003 (2003)

16. Margenstern, M.: Can Hyperbolic Geometry Be of Help for P Systems? In: Mart́ın-
Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003.
LNCS, vol. 2933, pp. 240–249. Springer, Heidelberg (2004)

17. Margenstern, M.: The tiling of the hyperbolic 4D space by the 120-cell is combi-
natoric. Journal of Universal Computer Science 10(9), 1212–1238 (2004)

18. Margenstern, M.: A new way to implement cellular automata on the penta- and
heptagrids. Journal of Cellular Automata 1(1), 1–24 (2006)

19. Margenstern, M.: On the communication between cells of a cellular automaton
on the penta- and heptagrids of the hyperbolic plane. Journal of Cellular Au-
tomata 1(3), 213–232 (2006)

20. Margenstern, M.: A universal cellular automaton with five states in the 3D hyper-
bolic space. Journal of Cellular Automata 1(4), 315–351 (2006)

21. Margenstern, M.: Cellular Automata in Hyperbolic Spaces. Theory, vol. 1, p. 422.
Old City Publishing, Philadelphia (2007)

22. Margenstern, M.: The Domino Problem of the Hyperbolic Plane is Undecidable.
Bulletin of the EATCS 93, 220–237 (2007)

23. Margenstern, M.: The domino problem of the hyperbolic plane is undecidable.
Theoretical Computer Science 407, 29–84 (2008)

24. Margenstern, M.: The Finite Tiling Problem Is Undecidable in the Hyperbolic
Plane. International Journal of Foundations of Computer Science 19(4), 971–982
(2008)

25. Margenstern, M.: On a Characteriztion of Cellular Automata in Tilings of the
Hyperbolic Plane. International Journal of Foundations of Computer Science 19(5),
1235–1257 (2008)

26. Margenstern, M.: Cellular Automata in Hyperbolic Spaces. Implementation and
computations, vol. 2, p. 360. Old City Publishing, Philadelphia (2008)

52 M. Margenstern

27. Margenstern, M.: The Injectivity of the Global Function of a Cellular Automaton
in the Hyperbolic Plane is Undecidable. Fundamenta Informaticae 94(1), 63–99
(2009)

28. Margenstern, M.: About the Garden of Eden theorems for cellular automata in the
hyperbolic plane. Electronic Notes in Theoretical Computer Science 252, 93–102
(2009)

29. Margenstern, M.: The periodic domino problem is undecidable in the hyperbolic
plane. In: Bournez, O., Potapov, I. (eds.) RP 2009. LNCS, vol. 5797, pp. 154–165.
Springer, Heidelberg (2009)

30. Margenstern, M.: A universal cellular automaton on the heptagrid of the hyperbolic
plane with four states. Theoretical Computer Science (to appear, 2010)

31. Margenstern, M.: A weakly universal cellular automaton in the hyperbolic 3D
space with three states. arXiv:1002.4290v1[cs,DS], p. 54

32. Margenstern, M.: A weakly universal cellular automaton in the hyperbolic 3D
space with two states. arXiv:1005.4826v1[cs,FL], p. 38

33. Margenstern, M., Martin, B., Umeo, H., Yamano, S., Nishioka, K.: A Proposal for
a Japanese Keyboard on Cellular Phones. In: Umeo, H., Morishita, S., Nishinari,
K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 299–306.
Springer, Heidelberg (2008)

34. Margenstern, M., Morita, K.: NP problems are tractable in the space of cellu-
lar automata in the hyperbolic plane. Theoretical Computer Science 259, 99–128
(2001)

35. Margenstern, M., Skordev, G.: Fibonacci Type Coding for the Regular Rectangu-
lar Tilings of the Hyperbolic Plane. Journal of Universal Computer Science 9(5),
398–422 (2003)

36. Margenstern, M., Skordev, G.: Tools for devising cellular automata in the hyper-
bolic 3D space. Fundamenta Informaticae 58(2), 369–398 (2003)

37. Margenstern, M., Song, Y.: A universal cellular automaton on the ternary hepta-
grid. Electronic Notes in Theoretical Computer Science 223, 167–185 (2008)

38. Margenstern, M., Song, Y.: A new universal cellular automaton on the pentagrid.
Parallel Processing Letters 19(2), 227–246 (2009)

39. Martin, B.: VirHKey: a VIRtual Hyperbolic KEYboard with gesture interaction
and visual feedback for mobile devices. In: Mobile HCI 2005, pp. 99–106 (2005)

40. Morgenstein, D., Kreinovich, V.: Which Algorithms are Feasible and Which are not
Depends on the Geometry of Space-Time. Geocombinatorics 4(3), 80–97 (1995)

41. Moore, E.F.: Machine Models of Self-reproduction. In: Proceedings of the Sympo-
sium in Applied Mathematics, vol. 14, pp. 17–33 (1962)

42. Myhill, J.: The Converse to Moore’s Garden-of-Eden Theorem. In: Proceedings of
the American Mathematical Society, vol. 14, pp. 685–686 (1963)

43. Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Inven-
tiones Mathematicae 12, 177–209 (1971)

44. Robinson, R.M.: Undecidable tiling problems in the hyperbolic plane. Inventiones
Mathematicae 44, 259–264 (1978)

45. Stewart, I.: A Subway Named Turing, Mathematical Recreations in Scientific
American, pp. 90–92 (1994)

Flattening the Transition P Systems
with Dissolution

Oana Agrigoroaiei and Gabriel Ciobanu

Romanian Academy, Institute of Computer Science
Blvd. Carol I no.8, 700505 Iaşi, Romania

oanaag@iit.tuiasi.ro

“A.I.Cuza” University, Blvd. Carol I no.11, 700506 Iaşi, Romania
gabriel@info.uaic.ro

Abstract. Given a transition P system Π with dissolution, promot-
ers and inhibitors having several membranes, we construct a P system
Πf with promoters and inhibitors and with only one membrane. The
evolution of this “flat” P system Πf simulates the evolution of initial
transition P system Π by replacing any dissolution stage of a configu-
ration in Π by specific rules application in a configuration of Πf . The
transition P systems without dissolution represent a special case.

1 Introduction

Membrane systems (also called P systems) represent a biologically inspired
model of computation, involving parallel application of rules, communication be-
tween membranes and membrane dissolution. Membrane systems are introduced
by Gh.Păun and presented in monograph [5] as a class of distributed parallel
computing devices inspired by biology. This computing model is represented by
complex hierarchical structures with a flow of materials and information which
supports their functioning. Essentially, the membrane systems are composed of
various compartments with different tasks, all of them working simultaneously
to accomplish a more general task.

The motivation of constructing a P system with only one membrane which
simulates a P system with multiple membranes and dissolution is to use the
former in place of the latter without reducing the generality of a problem. In the
conclusion of this paper we discuss the constraints of such a replacement.

We construct the “flat” P system Πf by replacing objects in membranes of
Π with pairs of objects and labels of membranes. Each rule r of Π is translated
into sets of rules rf for Πf , and dissolution of a membrane labelled by i in Π is
translated into the use of rules from a set Di for Πf . An evolution step of Π is
translated into a single evolution step of Πf whenever the rules applied in Π do
not involve dissolution, and into two evolution steps in Πf whenever they do.
In the second case the first step of Πf corresponds to rule application in Π and
uses only rules from the sets rf , while the second step corresponds to dissolution
of membranes in Π and uses only rules from the sets Di together with a special
rule ∇ → 0 which acts like a semaphore for dissolution.

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 53–64, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

54 O. Agrigoroaiei and G. Ciobanu

1.1 P Systems and Multisets

We assume the reader is familiar with membrane computing [5]. For readability,
here we present only the necessary notions.

A P system of degree m is a tuple Π = (O, μ, R1, . . . , Rm), where

– O is an alphabet of objects;
– μ is a membrane structure, with the membranes labelled by natural numbers

1 . . .m, in a one-to-one manner;
– each Ri is a finite set of rules associated with the membrane labelled by i;

the rules have the form u → v, where u is a non-empty multiset of objects
and v a multiset over objects a and messages of the form (a, out), (a, inj), δ
with the condition that δ can appear at most once;

The rules of the skin membrane (which is labelled by 1) do not involve the special
symbol δ. This symbol, whenever it is produced by a rule, marks the dissolution
of the membrane in which it appears. By dissolution we understand that, after
applying rules in a maximally parallel manner, all the objects of a membrane in
which δ is produced are sent to its parent membrane. The membrane itself no
longer exists, thus modifying the structure of the system.

We can associate promoters and inhibitors with a rule u → v, in the form
(u → v)|prom,¬inhib, with prom, inhib sets of objects from O. Such a rule as-
sociated with a membrane i is applied to a multiset w of objects only if every
element of prom is present in w (w(a) ≥ 1, ∀a ∈ prom) and no element of inhib
is present in w (w(a) = 0, ∀a ∈ inhib). If one or both of the sets prom, inhib is
empty, we write the rule (u → v)|prom,¬inhib as (u → v)|prom or (u → v)|¬inhib

or simply u → v. The promoters and inhibitors of membrane systems formal-
ize the reaction enhancing and reaction prohibiting roles of various substances
present in cells [3]. Several papers use rules having at most one object as pro-
moter and one as inhibitor; here we consider sets of promoters and inhibitors.
Other generalizations are common in the literature (for instance [1]).

We consider a multiset w over a set S to be a function w : S → N. When
describing a multiset characterized for instance, by w(s) = 1, w(t) = 2, w(s′) =
0, s′ ∈ S\{s, t}, we use the representation s+2t. To each multiset w we associate
its support, denoted by supp(w), which contains those elements of S which have
a non-zero image. A multiset is called non-empty if it has non-empty support.
We denote the empty multiset by 0S or by 0 when the set over which the multiset
is defined is clear from the context. We overload the set notation to multisets by
using s ∈ w instead of w(s) ≥ 1.

The sum of two multisets w, w′ over S is the multiset w + w′ : S → N, (w +
w′)(s) = w(s)+w′(s). For two multisets w, w′ over S we say that w is contained
in w′ if w(s) ≤ w′(s), ∀s ∈ S. We denote this by w ≤ w′. If w ≤ w′ we can define
w′ − w by (w′ − w)(s) = w′(s) − w(s).

2 A Simple Semantics of P Systems

We call configuration of a P system a vector of length m (which is the de-
gree of the P system) whose elements are each either a multiset over O or a

Flattening the Transition P Systems with Dissolution 55

special symbol ∗. We denote by CT(Π) the set of configurations for Π . We call
intermediate configuration a vector of length m whose elements are either a
multiset over O ∪ {δ} or the special symbol ∗. We denote by C#

T (Π) the set of
intermediate configurations for Π . Note that CT(Π) ⊆ C#

T (Π).
Before we proceed, we introduce some new notations and definitions.
For W = (w1, . . . , wm) ∈ C#

T (Π) we denote by Δ(W) the set of labels {i ∈
{1, . . . , m}/wi = ∗} of previously dissolved membranes.

We use μ(i) = μ1(i) to denote the parent of the membrane i with respect to
the membrane structure μ. We use μk+1(i) to denote the parent of the membrane
μk(i). We let μW denote the map giving the membrane structure with respect
to W ∈ C#

T (Π), defined by

μW (j) =

⎧
⎨

⎩

undefined, if j ∈ Δ(W)
μ(j), if j, μ(j) �∈ Δ(W)
μl+1(j), if j �∈ Δ(W), μ(j), . . . , μl(j) ∈ Δ(W), μl+1(j) �∈ Δ(W).

In other words, μW (j) discards the dissolved membranes which are candidates
for parents of j until it reaches an undissolved one and chooses it as the current
parent of j.

Definition 1. We consider a label i and a configuration W = (w1, . . . , wm).
A family of multisets Ri over Ri is called valid with respect to W whenever
lhs(Ri) ≤ wi and for each rule r : (u → v)|prom,¬inhib such that r ∈ Ri we have:
(i) wi(a) ≥ 1, ∀a ∈ prom; (ii) wi(a) = 0, ∀a ∈ inhib; and (iii) if (a, inj) ∈ v
then μW (j) = i.

A family of multisets of rules {Rj}j∈{1,...,m}, with each Rj over Rj, is said to
be maximally valid with respect to a configuration W if it is valid with respect to
W and moreover it is maximal with this property: if another family of multisets
of rules R′

j is valid with respect to W and Rj ⊆ R′
j then Rj = R′

j , for all
j ∈ {1, . . . , m}.

We remark that there can exist rules r in Ri producing objects of form (a, inj)
where j is not a child of i in the initial membrane structure μ. Such rules can
become active after successive dissolutions.

We define the maximal rewriting stage, which in this semantics includes
message sending.

Definition 2. For W = (w1, . . . , wm) ∈ CT(Π) and V = (v1, . . . , vm) ∈ C#
T (Π)

we define (w1, . . . , wm) →mpr (v1, . . . , vm) if and only if the following hold:

– for all i ∈ {1, . . . , m}\Δ(W) there exist multisets of rules Ri over Ri which
are maximally valid with respect to W and such that for each r ∈ Ri and
(a, inj) ∈ rhs(r) we have j �∈ Δ(W);

– for all i ∈ {1, . . . , m}\Δ(W), vi is given by vi(δ) = 1 if rhs(Ri)(δ) > 1 and

vi(a) = wi(a) − lhs(Ri)(a) + rhs(Ri)(a)+

+ rhs(RμW (i))(a, ini) +
∑

j∈μ−1
W (i)

rhs(Rj)(a, out) (1)

56 O. Agrigoroaiei and G. Ciobanu

– for all i ∈ Δ(W), vi = ∗.

We now define the dissolution stage.

Definition 3. For (u1, . . . , um) ∈ C#
T (Π) and (v1, . . . , vm) ∈ CT(Π) we define

(u1, . . . , um) →δ (v1, . . . , vm) if and only if the following hold:

– there is at least one label i such that ui(δ) = 1;
– let U ′ = (u′

1, . . . , u
′
m) ∈ C#

T (Π) be given by u′
i = ∗ if ui = ∗ or ui(δ) = 1 and

u′
i = 0 otherwise;

– vi = ∗ if u′
i = ∗ and vi = ui +

∑
{uj − δ | u′

i �= ∗, uj(δ) = 1, μU ′(j) = i}
otherwise.

We ask that there exists at least one label i such that ui(δ) = 1 since otherwise
there is no need for a dissolution step. We construct U ′ to provide a “skeleton”
for the new membrane structure (note that Δ(U) = Δ(U ′)) so we know where to
send the contents of the membranes we just dissolved (those j with uj(δ) = 1),
namely to i = μU ′(j).

We define the transition system T on CT(Π) by setting

W =⇒T V if and only if W →mpr V or W →mpr→δ V

1

r1 : a → (b, in4)
r2 : b → a

b

2

r3 : a → δ

a

3

r4 : b → aδ
b

r5 : b → (c, out)

4
b

Fig. 1. Membrane structure, rules and the configuration W

Example 1. We use a running example of a P system with 4 membranes, with
μ(4) = 3, μ(3) = 2, μ(2) = 1, with R1 = {r1 : a → (b, in4), r2 : b → a},
R2 = {r3 : a → δ}, R3 = {r4 : b → aδ} and R4 = {r5 : b → (c, out). Consider a
configuration W = (b, a, b, b) (see Figure 1).

The evolution of the system, starting from configuration W , is:

W →mpr (a, δ, a+ c+ δ, 0) →δ (2a+ c, ∗, ∗, 0) →mpr (c, ∗, ∗, 2b) →mpr (3c, ∗, ∗, 0)

Flattening the Transition P Systems with Dissolution 57

3 Flattening Membrane Systems with Dissolution

Consider a transition P system Π with dissolution; in order to simplify our pre-
sentation, we assume its rules do not involve promoters and inhibitors. However
the procedure can be applied to transition P systems with promoters and in-
hibitors, by adding the promoters and inhibitors of each rule r to the “flat”
rules corresponding to r. Starting from a system Π , we construct a P system
Πf with only one membrane and with rules involving promoters and inhibitors
such that the evolution of Π corresponds to the evolution of Πf . In more de-
tail, a maximal parallel rewriting stage in Π corresponds to one in Πf , and a
dissolution stage in Π corresponds to a maximal parallel rewriting stage in Πf .

Definition 4. We say that i ∈ {1, . . . , m} is dissoluble if there exists a rule
r ∈ Ri such that δ ∈ rhs(r).

If a membrane is not dissoluble then it will never be dissolved in any possible
evolution of any initial configuration. Thus the skin membrane is not dissoluble.
On the other hand, if a membrane is dissoluble, then it might be dissolved
depending on the initial configuration chosen and on its evolution.

Definition 5. We define by maxparent(i) the “most remote” membrane which
can become a parent of i, after possible dissolutions of membranes. In more detail,
maxparent(i) is defined by

maxparent(i) = μk(i) where k = min{n ≥ 1 | μn(i) is not dissoluble}.

We let l(i) denote k such that μk(i) = maxparent(i).

In Example 1, maxparent(4) = maxparent(3) = maxparent(2) = 1 and
l(4) = 3, l(3) = 2, l(2) = 1. The configuration W is chosen such that membrane 4
does indeed become a child of the skin membrane after one evolution step.

For a multiset w over O ∪ O × {in1, . . . , inn} ∪ {δ, ∗} we denote by (w, i)
the multiset over (O ∪ {δ}) × {1, . . . , m} obtained by adding to every object
a ∈ O ∪ {δ} the label i, replacing inj by j and replacing ∗ by (δ, i):

– (w, i)(a, i) = w(a) + w(a, ini);
– (w, i)(a, j) = w(a, inj), for j �= i;
– (w, i)(δ, i) = w(δ) + w(∗);
– (w, i)(δ, j) = 0 for j �= i.

Note that by (w, i)(a, i) we understand function application, not string concate-
nation, since we do not use a string representation for multisets.

The P system Πf is defined by Πf = (Of , μf , Rf) with components defined
as follows. The alphabet Of of Πf is (O ∪ {δ})×{1, . . . , m} ∪ {∇}. The objects
(δ, i) are used to represent the fact that the membrane labelled by i is dissolved or
undergoing dissolution in Π . The special symbol ∇ is used to separate between
the application of rules in Πf which correspond to rules in Π and the application
of rules in Πf which simulate dissolution in Π . The membrane structure μf

58 O. Agrigoroaiei and G. Ciobanu

contains only one membrane. The set Rf of rules consists of a special rule ∇ → 0
together with the union of sets of rules rf for each rule r of the P system Π and
the union of sets of rules Di for each dissoluble i. Formally,

Rf =
⋃

r∈Ri

i∈{1,...,m}

rf ∪ {∇ → 0} ∪
⋃

i∈{1,...,m}
i dissolvable

Di

Note that the right hand side of the rule ∇ → 0 is the empty multiset 0, meaning
that no objects are produced by its application.

We define now the set rf of rules in Πf to simulate the application of the
corresponding rule r of Π , and the set Di of rules of Πf to simulate the dissolu-
tion of membrane i in Π . Namely, these rule sets are defined in a manner which
ensures that in each evolution step of the “flat” system Πf we either apply rules
from the sets rf or rules from the sets Di together with the special rule ∇ → 0.

Definition 6. For each rule r of Π we define the corresponding set rf of rules in
Πf . We start by defining prom(r) = {(δ, μl(j)) | ∃(a, inj) ∈ rhs(r) : μk(j) = i,
0 < l < k}.

1. For each rule u → v ∈ Ri such that v contains no out messages and v(δ) = 0,
rf contains only the rule r : (u, i) → (v, i)|prom(r),¬{∇};

2. for each rule u → v ∈ Ri such that v contains no out messages and v(δ) = 1,
rf contains only the rule r : (u, i) → (v, i)∇|prom(r),¬{∇};

3. for each rule u → (v, out)w ∈ Ri such that w contains no out messages and
w(δ) = 0, rf is the following set of rules

rf = {rk : (u, i) → (v, μk(i))(w, i)|promk(i),¬inhk(i) | k ∈ {1, . . . , l(i)}},

where the sets of promoters promk(i) and inhibitors inhk(i) are defined by
– prom1(i) = prom(r), inh1(i) = {∇, (δ, μ(i))};
– prom2(i) = prom(r) ∪ {(δ, μ(i))}, inh1(i) = {∇, (δ, μ2(i))};
– . . .
– proml(i)−1(i) = prom(r) ∪ {(δ, μ(i)), . . . (δ, μl(i)−2(i))}, inhl(i)−1(i) =

{∇, (δ, μl(i)−1(i))};
– proml(i)(i) = prom(r) ∪ {(δ, μ(i)), . . . (δ, μl(i)−1(i))}, inhl(i)(i) = {∇};

4. for each rule u → (v, out)w ∈ Ri such that w contains no out messages and
w(δ) = 1, rf is the following set of rules

rf = {rk : (u, i) → (v, μk(i))(w, i)∇|promk(i),¬inhk(i) | k ∈ {1, . . . , l(i)}},

where promk(i) and inhk(i) are defined as for the previous type of rule.

In Example 1, the sets of rules rf are as follows:

– from rule r1 : a → (b, in4) we get rf
1 = {(a, 1) → (b, 4)|{(δ,2),(δ,3)},¬{∇}};

– from rule r2 : b → a we get rf
2 = {(b, 1) → (a, 1)|¬{∇}};

– from rule r3 : a → δ we get rf
3 = {(a, 2) → (δ, 2)|¬{∇}};

Flattening the Transition P Systems with Dissolution 59

– from rule r4 : b → aδ we get rf
4 = {(b, 3) → (a + δ, 3)|¬{∇}}

– from rule r5 : b → (c, out) we get rf
5 containing the following rules:

• (b, 4) → (c, 3)|¬{∇,(δ,3)};
• (b, 4) → (c, 2)|{(δ,3)},¬{∇,(δ,2)};
• (b, 4) → (c, 1)|{(δ,3),(δ,2)},¬{∇}.

The set prom(r) is used to ensure that a rule from rf can only be applied if,
whenever a message (a, inj) appears in the right hand side of r, the membrane
with label j is the current child of membrane i after several dissolutions. This
means that if other membranes μl(j) existed between j and i = μk(j), they
should be dissolved before r can be applied. Translated to Πf and rf , this
becomes a requirement for (δ, μl(j)) to be present before the rules from rf can
be applied.

When the right hand side of the rule r does not contain out messages, the
choice for rf is straightforward: flatten the multisets in the right and left hand
side of r, and if r involves dissolution, we add a special symbol ∇ to the left
hand side. The symbol ∇ is also added as an inhibitor to ensure that until ∇ is
consumed these rules are not applied. The idea is that ∇ can only be consumed in
the stage simulating the dissolution of membranes in Π , which follows whenever
∇ is produced.

When the right hand side of the rule r does contain out messages, the rules
of the set rf are defined to ensure that the destination of the messages is the
first undissolved parent of i. For example, for k = 1, we have in rf the rule

r1 : (u, i) → (v, μ(i))(w, i)|¬{∇,(δ,μ(i))}

which “replaces” (v, out) with (v, μ(i)) and can be applied only when μ(i) is not
dissolved (and ∇ is not present). For k = 2, we have in rf a rule

r2 : (u, i) → (v, μ2(i))(w, i)|{(δ,μ(i))},¬{∇,(δ,μ2(i))}

which can be applied only when μ(i) is dissolved and μ2(i) is not dissolved
(and ∇ is not present). Note that inhl(i) contains only ∇ because by definition
μl(i)(i) = maxparent(i) cannot be dissolved.

Whenever we consider P systems with promoters and inhibitors, we should
add the set of promoters and the set of inhibitors of rule r to the set of promoters
and the set of inhibitors of each rule in rf , respectively.

Definition 7. For each dissoluble label i we define the corresponding set Di of
rules in Πf as follows:

Di = {da,i,k : (a, i) → (a, μk(i))|prom′
k(i),¬inh′

k(i) | a ∈ O, k ∈ {1, . . . , l(i)}},

where the sets of promoters prom′
k(i) and inhibitors inh′

k(i) are defined by

– prom′
1(i) = {∇, (δ, i)}, inh′

1(i) = {(δ, μ(i))};
– prom′

2(i) = {∇, (δ, i), (δ, μ(i))}, inh′
1(i) = {(δ, μ2(i))};

– . . .

60 O. Agrigoroaiei and G. Ciobanu

– prom′
l(i)−1(i) = {∇, (δ, i), . . . (δ, μl(i)−2(i)}, inh′

l(i)−1(i) = {(δ, μl(i)−1(i))};
– prom′

l(i)(i) = {∇, (δ, i), . . . (δ, μl(i)−1(i)}, inh′
l(i)(i) = ∅.

The object (δ, i) stands for the fact that the membrane labelled by i is dissolved
or undergoing dissolution in Π . If membrane i is dissolved in Π , no objects (a, i)
exist in Πf , and so no rules from Di can apply. If it undergoes dissolution, then
one of the rules in Di will be applied such that all (a, i) are transformed into
objects (a, j), where j is the first undissolved parent of i. The choice for j is
made using promoters and inhibitors in a similar manner to the replacement of
the message out in the sets rf . The object ∇ is used as promoter to ensure that
the rules from Di are applied only to simulate dissolution in Π , namely, after
some object (δ, i) is produced (together with ∇) by some rule from one of the
sets rf of Πf .

In Example 1, the sets Di are defined for i ∈ {2, 3} and O = {a, b, c}.
The set D2 contains rules of form (x, 2) → (x, 1)|{∇,(δ,2)} for x ∈ O. The set
D3 contains rules of form (x, 3) → (x, 2)|{∇,(δ,3)},¬{(δ,2)} or of form (x, 3) →
(x, 1)|{∇,(δ,3),(δ,2)} for x ∈ O.

We summarise the general ideas behind the construction of Πf in Figure 2.

Π with m membranes Πf with 1 membrane

object a in membrane i object (a, i)
δ appears in membrane i object (δ, i)
rule r without “out” a rule rf

rule r with “out” set rf of rules (possible parents)
membrane i dissoluble set Di of rules (x, i) → (x, cPari)

mpr step in Π mpr step in Πf using rf

(including communication)
diss step in Π mpr step in Πf using Di

– special rule ∇ → 0 to ensure separation
between applying rules from rf and rules from Di

Fig. 2. Correspondence between Π and Πf

For an intermediate configuration W = (w1, . . . , wn) of Π let flat(W) denote
the configuration of Πf defined by

– flat(W)(a, i) = wi(a);
– flat(W)(δ, i) = 1 if wi(δ) = 1 or wi = ∗; flat(W)(δ, i) = 0 otherwise;
– flat(W)(∇) =

∑
i wi(δ).

Note that if W is a configuration, flat(W) does not contain the special symbol ∇.

Theorem 1. For two configurations W and V of Π,

if W =⇒T V then flat(W) =⇒T flat(V) or flat(W) =⇒T=⇒T flat(V);
if flat(W) =⇒T flat(V) then W =⇒T V.

Flattening the Transition P Systems with Dissolution 61

Proof. Let W = (w1, . . . , wm) and V = (v1, . . . , vm).
First Implication: Firstly, suppose that the transition W =⇒T V does not
involve dissolution, in other words W →mpr V . We prove that in this case
flat(W) =⇒T flat(V).

Since W →mpr V , for each i ∈ {1, . . . , m} there exists a multiset Ri of rules
from Ri such that the family of multisets of rules is maximally valid with respect
to W . Moreover, Δ(V) = Δ(W) and lhs(r)(δ) = 0, ∀r ∈ Ri. We also know that
for each i ∈ {1, . . . , m}\Δ(W) vi are obtained from wi as in Equation (1).

Let R be the multiset of rules from Rf defined by

– R(s) = Ri(r) if s = r, r ∈ Ri;
– R(s) = Ri(r) if s = rk, r ∈ Ri and μk(i) = μW (i);
– R(s) = 0 if s = rk, r ∈ Ri and μk(i) �= μW (i);

with R(s) = 0 if s is the special rule ∇ → 0 or if s belongs to one of the sets Di.
We prove that R is maximally valid in flat(W) and that flat(W) =⇒T flat(V)
by using R.

Note that lhs(R)(a, i) = (lhs(Ri), i) because when defining R we always take
only one rule from each rf with the multiplicity that r has in Ri. Hence R is
valid in flat(W). If it was not maximally valid, there would be a rule s ∈ Rf

such that R+s is valid in flat(W). Since flat(W) does not contain ∇, s cannot
be ∇ → 0; nor can it be a rule of form da,i,k because if flat(W) contains the
promoter (δ, i) of da,i,k then flat(W)(a, i) = 0, ∀a ∈ O. So the rule s would be
either r or rk for some j and some rule r ∈ Rj . This, however, contradicts the
maximal validity of the family Ri since we would have lhs(Rj + r) ≤ wj .

To prove flat(W) =⇒T flat(V) we prove that flat(V) = flat(W)− lhs(R)+
rhs(R). We check the identity for all (x, i) ∈ (O ∪ {δ} × {1, . . . , m}. For all i ∈
Δ(W) we have flat(V)(x, i) = flat(W)(x, i) and lhs(R)(x, i) = rhs(R)(x, i) =
0. For all i ∈ {1, . . . , m}\Δ(W) the identity is inferred from

rhs(R)(a, i) = rhs(Ri)(a) + rhs(RμW (i))(a, ini) +
∑

j∈μ−1
W (i)

rhs(Rj)(a, out) (2)

which is proved by

rhs(R)(a, i) =
∑

j

∑

r∈Rj

∑

s∈rf

R(s) · rhs(s)(a, i) =

∑

j=i

∑

r∈Rj

Rj(r) · rhs(r)(a, i) +
∑

j=μW (i)

∑

r∈Rj

Rj(r) · rhs(r)(a, ini)+

+
∑

μW (j)=i

∑

r∈Rj

Rj(r) · rhs(r)(a, out).

Secondly, suppose that the transition W =⇒T V does involve dissolution, in
other words W →mpr→δ V . Then there exists an intermediate configuration

62 O. Agrigoroaiei and G. Ciobanu

U = (u1, . . . , um) and multisets of rules Ri, ∀i ∈ {1, . . . , m} such that W →mpr

U by using Ri and U →δ V . Let flat(U) be the configuration of Πf correspond-
ing to U .

The proof that flat(W) =⇒T flat(U) is similar to the proof that W =⇒T V
implies flat(W) =⇒T flat(V). Moreover, we note that flat(U)(∇) > 0. We
prove now that flat(U) =⇒T flat(V). Let D be the multiset of rules over Rf

defined by D(s) = 0, ∀s ∈ rf , D(∇ → 0) = flat(U)(∇) and

– D(da,i,k) = 0 if flat(U)(δ, i) = 0 or μk(i) �= μV (i);
– D(da,i,k) = flat(U)(a, i) if flat(U)(δ, i) > 0 and μk(i) = μV (i).

We prove that D is maximally valid in flat(U) and that flat(U) evolves to
flat(V) using D. The validity of D follows from its definition. To see that it is
also maximal with this property, suppose there exists s ∈ Rf such that D + s
is valid in flat(U). Clearly s cannot be a rule from one of the sets rf since all
those rules are inhibited by ∇. Also, s cannot be the special rule ∇ → 0 because
D(∇ → 0) = flat(U)(∇). Suppose s is one of the rules da,i,k. If flat(U)(δ, i) > 0
this contradicts D(da,i,k) = flat(U)(a, i). If flat(U)(δ, i) = 0 then the promoter
(δ, i) of s = da,i,k is missing from flat(U).

To prove that flat(U) evolves to flat(V) using D, we show that flat(V) =
flat(U) − lhs(D) + rhs(D). To this purpose, note that flat(V)(a, i) = 0 =
flat(U)(a, i) − lhs(D)(a, i) and rhs(D)(a, i) = 0 for all a ∈ O and i such that
(δ, i) ∈ flat(U). Moreover, for those i such that flat(U)(δ, i) = 0 we have
flat(V)(a, i) = flat(U)(a, i) + rhs(D)(a, i) and lhs(D)(a, i) = 0, ∀a ∈ O.
Second Implication: First suppose that flat(W) =⇒T flat(V) by using a
multiset R of rules over Rf . Since flat(W) does not contain ∇, the multiset
R of rules cannot contain rules from the sets Di nor the special rule ∇ → 0.
Moreover, it cannot contain rules which have (δ, i) in the right hand side (because
(δ, i) is always accompanied by ∇). From the way the sets rf are defined, a valid
multiset of rules R cannot contain two distinct rules from the same set rf . Thus
we can define the multisets Ri over each set Ri in Π by Ri(r) = R(s) if there
exists s ∈ rf such that R(s) > 0 (if it exists, s is unique) and Ri(r) = 0
otherwise.

We prove that the family of multisets Ri of rules is maximally valid with
respect to W and that V is obtained from W by using it. For validity, it suffices
to see that lhs(Ri) ≤ wi and that if (a, inj) ∈ rhs(r) then we obtain that
μW (j) = i, because flat(W)(δ, μs(j)) = 1 for all (δ, μs(j)) ∈ prom(r). For
maximal validity, suppose there exists some family of multisets R′

i valid with
respect to W such that Ri ≤ R′

i. Then the multiset R′ of rules defined as in
the proof of the first implication is valid with respect to flat(W) and R ≤ R′

which implies that Ri = R′
i. To see that V is obtained from W by using Ri we

just use identity (2) which holds for the multisets R and Ri defined above.

Proposition 1. For two configurations W and V of Π and a configuration X
of Πf such that ∇ ∈ X, if flat(W) =⇒T X =⇒T flat(V) then W =⇒T V.

Proof. Let W = (w1, . . . , wm) and V = (v1, . . . , vm).

Flattening the Transition P Systems with Dissolution 63

Let R be the multiset of rules used in flat(W) =⇒T X . Since ∇ �∈ flat(W)
it follows (exactly as in the proof of the second implication of Theorem 1)
that W →mpr U for a intermediate configuration U . Moreover, we obtain that
flat(U) = X .

Let D be the multiset of rules used in X =⇒T flat(V). Since ∇ ∈ X , any
rule in D is either from the sets Di or the special rule ∇ → 0. Clearly, D(∇ →
0) = X(∇). Moreover, for each i such that (δ, i) ∈ X and for each a such that
(a, i) ∈ X , there can be exactly one k = k(i) ≤ l(i) such that D(da,i,k) > 0. If
either (δ, i) or (a, i) does not appear in X , then D(da,i,l) = 0 for all l ≤ l(i).

We prove that U →δ V . Consider U ′ = (u′
1, . . . , u

′
m) as in Definition 3. Then

for k(i) previously defined we have μk(i)(i) = μU ′ (i) (because X = flat(U)).
Thus for all j �∈ Δ(V) we have

vj(a) = flat(V)(a, j) = X(a, j) +
∑

i

{X(a, i) | (δ, i) ∈ X, μU ′(i) = j}

which implies vi = ui +
∑

{uj − δ | u′
i �= ∗, uj(δ) = 1, μU ′ (j) = i}, and so

concluding the proof.

For P systems without dissolution, Theorem 1 and Proposition 1 can be com-
bined into a single result.

Corollary 1. Let Π be a P system without dissolution and Πf its associated P
system with only one membrane. For W and V configurations of Π,

W =⇒T V if and only if flat(W) =⇒T flat(V).

Remark 1. We end by emphasizing the size of the P system Πf with respect to
that of Π . Thus, the cardinality of the alphabet Of is card(Of) = (card(O) +
1) · m + 1, while the cardinality of the rule set Rf is, according to Definitions 6
and 7,

card(Rf) =
∑

i∈{1,...,m}

∑

r∈Ri

(card{r ∈ Ri | � ∃(a, out) ∈ rhs(r)} +

+ l(i) · card{r ∈ Ri | ∃(a, out) ∈ rhs(r)}) +
∑

i dissolvable

l(i) · card(O) + 1

4 Conclusion

In this paper we present a general approach for P systems with dissolution, based
on the use of special symbols as promoters and inhibitors. The main result is
Theorem 1, where we prove that the evolution of each transition P system Π
with multiple membranes is simulated by the evolution of its “flat” counterpart
Πf . This result is a generalization of the existing construction for P systems
without dissolution, as can be seen in Corollary 1.

64 O. Agrigoroaiei and G. Ciobanu

The results presented here may be used to simplify proofs of statements involv-
ing general transition P systems by using only P systems with one membrane.
However, a caveat applies: the evolution in Πf is staggered with respect to the
evolution in Π since two steps will take place in Πf for one involving dissolution
on Π . Other concerns may appear regarding the increasing number of objects
and rules in the P system Πf , according to Remark 1.

The idea of using a single membrane system to simulate P systems with multi-
ple membranes has previously appeared in several papers. A formal presentation
for (tissue) P systems without dissolution can be found in [4].

An early paper dealing with dissolution is [6]. While the paper is not directly
concerned with the simulation of a multiple membrane system by a one mem-
brane system, it presents the encoding of a multiple membrane system with
dissolution into a particular kind of Petri net. The resulting Petri net has tran-
sitions which simulate rule applications and special transitions which simulate
objects passing from dissolved membranes to their parents. In terms of Example
1, these special transitions simulate rules (x, 3) → (x, 2) and (x, 2) → (x, 1) for
x ∈ {a, b}. The authors do not explain in sufficient detail the semantics of their
version of Petri nets, and do not treat the case of simultaneous dissolutions.
More precisely, the Petri net simulating Example 1 should have three phases in
the “macro-step” in order to properly simulate the evolution of the system: one
for simulating maximally parallel rule application, one for moving objects from
the dissolved membrane 3 to membrane 2 and one for moving objects from the
dissolved membrane 2 to membrane 1.

A recent paper presenting a flat form for P systems is [2]. The construction of
this paper depends on the use of a special syntax and semantics for P systems,
named P algebra. This semantics, while complicated, is useful in establishing
various behavioural equivalences.

Acknowledgements. This research work was partially supported by the CNC-
SIS Grant 402/2007. We thank the reviewers for their helpful comments, as
well as Artiom Alhazov, Rudi Freund and George Păun for their insightful
suggestions during the CMC presentation.

References

1. Agrigoroaiei, O., Ciobanu, G.: Rewriting Logic Specification of Membrane Systems
with Promoters and Inhibitors. Electronic Notes in TCS 238, 5–22 (2009)

2. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: A P Systems Flat Form
Preserving Step-by-step Behaviour. Fundamenta Informaticae 87, 1–34 (2008)

3. Bottoni, P., Mart́ın-Vide, C., Paun, G., Rozenberg, G.: Membrane Systems with
Promoters/Inhibitors. Acta Informatica 38, 695–720 (2002)

4. Freund, R., Verlan, S.: A Formal Framework for Static (Tissue) P Systems. In:
Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC
2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007)

5. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
6. Qi, Z., You, J., Mao, H.: P Systems and Petri Nets. In: Mart́ın-Vide, C., Mauri,

G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp.
286–303. Springer, Heidelberg (2004)

The Family of Languages Generated
by Non-cooperative Membrane Systems

Artiom Alhazov1,2, Constantin Ciubotaru1,
Sergiu Ivanov1,3, and Yurii Rogozhin1

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova

Academiei 5, Chişinău MD-2028 Moldova
{artiom,chebotar,rogozhin,sivanov}@math.md

2 IEC, Department of Information Engineering Graduate School of Engineering,
Hiroshima University

Higashi-Hiroshima 739-8527 Japan
3 Technical University of Moldova, Faculty of Computers,

Informatics and Microelectronics,
Ştefan cel Mare 168, Chişinău MD-2004 Moldova

Abstract. The aim of this paper is to study the family of languages
generated by the transitional membrane systems without cooperation
and without additional ingredients. The fundamental nature of these
basic systems makes it possible to also define the corresponding family
of languages in terms of derivation trees of context-free grammars. We
also compare this family to the well-known language families and discuss
its properties. An example of a language is given which is considerably
more “difficult” than those in the established lower bounds.

1 Introduction

Membrane computing is a theoretical framework of parallel distributed multiset
processing. It has been introduced by Gheorghe Păun in 1998, and has been an
active research area; see [14] for the comprehensive bibliography and [9],[11] for
a systematic survey. Membrane systems are also called P systems.

The configurations of membrane systems (with symbol objects) consist of
multisets over a finite alphabet, distributed across a tree structure. Therefore,
even such a relatively simple structure as a word (i.e., a sequence of symbols) is
not explicitly present in the system. To speak of languages as sets of words, one
first needs to represent them in membrane systems, and there are a few ways to
do it.

– Represent words by string objects. Rather many papers take this approach,
see Chapter 7 of [11], but only few consider parallel operations on words.
Moreover, a tuple of sets or multisets of words is already a quite complicated
structure. The third drawback is that it is very difficult to define an elegant
way of interactions between strings. Polarizations and splicing are examples

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 65–80, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

66 A. Alhazov et al.

of that; however, these are difficult to use in applications. In this paper we
focus on symbol objects.

– Represent a word by a single symbol object, or by a few objects of the form
(letter,position) as in, e.g., [3]. This only works for words of bounded length,
i.e., one can speak about at most finite languages.

– Represent positions of the letters in a word by nested membranes. The cor-
responding letters can be then encoded by objects in the associated regions,
membrane types or membrane labels. Working with such a representation,
even implementing a rule a → bc requires sophisticated types of rules, like
creating a membrane around existing membrane, as defined in [4].

– Consider letters as digits and then view words as numbers, or use some other
encoding of words into numbers or multisets. Clearly, the concept of words
ceases to be direct with such encoding. Moreover, implementing basic word
operations in this way requires a lot of number processing, not to speak of
parallel word operations.

– Work in accepting mode, see, e.g., [5]. It is necessary to remark that in this
article we are mainly speaking of non-cooperative P systems, and working in
accepting mode without cooperation yields rather trivial subregular results.
More exactly, such systems would accept either the empty language or only
the empty word, or all the words over some subalphabet.

– Consider traces of objects across membranes. This is an unusual approach
in the sense that the result is not obtained from the final configuration, but
rather from the behavior of a specific object during the computation. This
makes it necessary to introduce an observer, complicating the model.

– Do all the processing by multisets, and regard the order of sending the objects
in the environment as their order in the output word. In case of ejecting
multiple symbols in the same step, the output word is formed from any of
their permutations. One can say that this approach also needs an implicit
observer, but at least this observer only inspects the environment and it is, in
some sense, the simplest possible one. This paper is devoted to this concept.

Informally, the family of languages we are interested in is the family gener-
ated by systems with parallel applications of non-cooperative rules that rewrite
symbol objects and/or send them between the regions. This model has been
introduced already in 2000, [10]. Surprisingly, this language family did not yet
receive enough attention of researchers. Almost all known characterizations and
even bounds for generative power of different variants of membrane systems with
various ingredients and different descriptional complexity bounds are expressed
in terms of REG, MAT , ET 0L and RE, their length sets and Parikh sets (and
much less often in terms of FIN or other subregular families, or CF or CS,
or those accepted by log-tape bounded Turing machines, [6], [8]). The mem-
brane systems language family presents interest since we show it lies between
regular and context-sensitive families, being incomparable with well-studied in-
termediate ones. As we show in the paper, the nature of LOP∗(ncoo, tar) is quite
fundamental, and in the same time it is not characterized in terms of well-studied
families. This is why we refer to it here as the membrane systems language family.

Languages Generated by Non-cooperative Membrane Systems 67

This paper is based on the ideas and initial work described in [2]. We also
give an example of a language which is considerably more “difficult” than the
currently established lower bounds. The word “difficult” informally refers to two
kinds of non-context-freeness needed to describe the language. The internal one
can be captured by permutations, while the external one can be captured by an
intersection of linear languages.

2 Definitions

2.1 Formal Language Preliminaries

Consider a finite set V . The set of all words over V is denoted by V ∗, the
concatenation operation is denoted by • (which is written only when necessary)
and the empty word is denoted by λ. Any set L ⊆ V ∗ is called a language. For
a word w ∈ V ∗ and a symbol a ∈ V , the number of occurrences of a in w is
written as |w|a. The permutations of a word w ∈ V ∗ are Perm(w) = {x ∈ V ∗ |
|x|a = |w|a∀a ∈ V }. We denote the set of all permutations of the words in L
by Perm(L), and we extend this notation to families of languages. We use FIN ,
REG, LIN , CF , MAT , CS, RE to denote finite, regular, linear, context-free,
matrix without appearance checking and with erasing rules, context-sensitive
and recursively enumerable families of languages, respectively. The family of
languages generated by extended (tabled) interactionless L systems is denoted
by E(T)0L. For more formal language preliminaries, we refer the reader to [12].

Throughout this paper we use string notation to denote the multisets. When
speaking about membrane systems, keep in mind that the order in which symbols
are written is irrelevant, unless we speak about the symbols sent to the environ-
ment. In particular, speaking about the contents of some membrane, when we
write an1

1 · · ·anm
m (or any permutation of it), we mean a multiset consisting of ni

instances of symbol ai, 1 ≤ i ≤ m.

2.2 Transitional P Systems

A membrane system is defined by a construct

Π = (O, μ, w1, · · · , wm, R1, · · · , Rm, i0), where
O is a finite set of objects,
μ is a hierarchical structure of membranes, bijectively labeled by 1, · · · , m,

the interior of each membrane defines a region;
the environment is referred to as region 0,

wi is the initial multiset in region i, 1 ≤ i ≤ m,

Ri is the set of rules of region i, 1 ≤ i ≤ m,

i0 is the output region; when languages are considered, i0 = 0 is assumed.

The rules of a membrane systems have the form u → v, where u ∈ O+, v ∈
(O × Tar)∗. The target indications from Tar = {here, out} ∪ {inj | 1 ≤ j ≤ m}

68 A. Alhazov et al.

are written as a subscript, and target here is typically omitted. In case of
non-cooperative rules, u ∈ O.

The rules are applied in maximally parallel way: no further rule should be
applicable to the idle objects. In case of non-cooperative systems, the concept
of maximal parallelism is the same as in L systems: all objects evolve by the
associated rules in the corresponding regions (except objects a in regions i such
that Ri does not contain any rule a → u, but these objects do not contribute to
the result). The choice of rules is non-deterministic.

A configuration of a P system is a construct which contains the information
about the hierarchical structure of membranes as well as the contents of every
membrane at a definite moment of time. The process of applying all rules which
are applicable in the current configuration and thus obtaining a new configu-
ration is called a transition. A sequence of transitions is called a computation.
The computation halts when such a configuration is reached that no rules are
applicable. The result of a (halting) computation is the sequence of objects sent
to the environment (all the permutations of the symbols sent out in the same
time are considered). The language L(Π) generated by a P system Π is the
union of the results of all computations. The family of languages generated by
non-cooperative transitional P systems with at most m membranes is denoted
by LOPm(ncoo, tar). If the number of membranes is not bounded, m is replaced
by ∗ or omitted. If the target indications of the form inj are not used, tar is
replaced by out.

a

bcc

bcc

bcc

bcc

a

bcc

bcc

bcc

a

bcc

bcc

a

λ

a

a

λ

bcc

bcc

bcc

bcc

⇒
⇒
⇒
⇒
.

Result

Perm(bccbcc)•
Perm(bcc)•
Perm(bcc).

Fig. 1. An example of a computation of a P system from Example 1. The lines are
only used to hint how the rules are applied.

Example 1. To illustrate the concept of generating languages, consider the fol-
lowing P system:

Π = ({a, b, c}, [1]1, a
2, {a → λ, a → a boutc

2
out}, 0).

Each of the two symbols a has a non-deterministic choice whether to be erased
or to reproduce itself while sending a copy of b and two copies of c into the
environment. Therefore, the contents of region 1 can remain a2 for an arbitrary
number m ≥ 0 of steps, and after that at least one copy of a is erased. The
other copy of a can reproduce itself for another n ≥ 0 steps before being erased.

Languages Generated by Non-cooperative Membrane Systems 69

Each of the first m steps, two copies of b and four copies of c are sent out, while
in each of the next n steps, only one copy of b and two copies of c are ejected.
Therefore, L(Π) = (Perm(bccbcc))∗(Perm(bcc))∗.

3 Context-Free Grammars and Time-Yield

Consider a non-terminal A in a grammar G = (N, T, S, P). We denote by GA

the grammar (N, T, A, P) obtained by considering A as axiom in G.
A derivation tree in a context-free grammar is an ordered rooted tree with

leaves labeled by terminals and all other nodes labeled by non-terminals. Rules
of the form A → λ cause a problem, which can be solved by allowing to also
label leaves by λ, or by transformation of the corresponding grammar. Note:
throughout this paper by derivation trees we only mean finite ones. Consider
a derivation tree τ . The following notion describes the sequence of terminal
symbols at a particular depth of a derivation tree:

The n-th level yield yieldn of τ can be defined as follows:

We define yield0(τ) = a if τ has a single node labeled by a ∈ T , and
yield0(τ) = λ otherwise.
Let k be the number of children nodes of the root of τ , and τ1, · · · , τk be
the subtrees of τ with these children as roots. We define yieldn+1(τ) =
yieldn(τ1) • yieldn(τ2) • · · · • yieldn(τk).

We now define the time yield Lt of a context-free grammar derivation tree
τ , as the usual yield except the order of terminals is vertical from root instead
of left-to-right, and the order of terminals at the same distance from root is
arbitrary. We use

∏
to denote concatenation in the following formal definition:

Lt(τ) =
height(τ)∏

n=0

(Perm(yieldn(τ))).

The time yield Lt(G) of a grammar G is the union of time yields of all its
derivation trees. The corresponding family of languages is

Lt(CF) = {Lt(G) | G is a context-free grammar}.

Example 2. Consider a grammar G1 = ({S, A, B, C}, {a, b, c}, S, P), where

P = {S → SABC, S → ABC, A → A, B → B, C → C, A → a, B → b, C → c}.

We now show that Lt(G1) = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c > 0} = L.
Indeed, all derivations of A are of the form A ⇒∗ A ⇒ a. Likewise, symbols B, C
are also trivially rewritten an arbitrary number of times and then changes into a
corresponding terminal. Hence, Lt(G1A) = {a}, Lt(G1B) = {b}, Lt(G1C) = {c}.
For inclusion Lt(G) ⊆ L it suffices to note that S always generates the same
number of symbols A, B, C.

70 A. Alhazov et al.

S

S

S

A

A

A

a

B

b

C

C

c

A

A

A

A

a

B

B

b

C

C

C

c

A

A

A

A

A

a

B

B

B

B

b

C

C

C

c

Time yield

Perm(bbc)•
Perm(ccb)•
Perm(aaa).

Fig. 2. An example of a derivation of the grammar from Example 2

The converse inclusion follows from the following simulation: given a word
w ∈ L, generate |w|/3 copies of A, B, C, and then apply their trivial rewriting
in such way that the timing when the terminal symbols appear corresponds to
their order in w.

Corollary 1. Lt(CF) �⊆ CF .

4 The Membrane Family via the Derivation Trees of
Context-Free Grammars

We first show that for every membrane system without cooperation, there is a
system from the same class with one membrane, generating the same language.

Lemma 1. LOP (ncoo, tar) = LOP1(ncoo, out).

Proof. Consider an arbitrary transitional membrane system Π (without coop-
eration and without additional ingredients). The known technique of flattening
the structure (this is “folklore” in membrane computing; see, e.g., [13], [7]) con-
sists of transforming Π in the following way. Object a in region associated to
membrane i is transformed into object (a, i) in the region associated to the single
membrane. The alphabet, initial configuration and rules are transformed accord-
ingly. Clearly, the configurations of the original system and the new system are
bisimilar, and the output in the environment is the same. �

Theorem 1. Lt(CF) = LOP (ncoo, tar).

Proof. By Lemma 1, the statement is equivalent to Lt(CF) = LOP1(ncoo, out).
Consider a P system Π = (O, [1]1, w, R, 0). We construct a context-free gram-
mar G = (O′∪{S}, O, S, P∪{S → w}), where S is a new symbol, ′ is a morphism
from O into new symbols and

P = {a′ → u′v | (a → u vout) ∈ R, a ∈ O, u, v ∈ O∗}
∪ {a′ → λ | ¬∃(a → u vout) ∈ R}.

Languages Generated by Non-cooperative Membrane Systems 71

Here vout are those symbols on the right-hand side of the rule in R which are
sent out into the environment, and u are the remaining right-hand side symbols.

The computations of Π are identical to parallel derivations in G, except the
following:

– Unlike G, Π does not keep track of the left-to-right order of symbols. This
does not otherwise influence the derivation (since rules are context-free) or
the result (since the order of non-terminals produced in the same step is
arbitrary, and the timing is preserved).

– The initial configuration of Π is produced from the axiom of G in one
additional step.

– The objects of Π that cannot evolve are erased in G, since they do not
contribute to the result.

It follows that Lt(CF) ⊇ LOP (ncoo, tar). To prove the converse inclusion, con-
sider an arbitrary context-free grammar G = (N, T, S, P). We construct a P
system Π = (N ∪ T, [1]1, S, R, 0), where R = {a → h(u) | (a → u) ∈ R},
where h is a morphism defined by h(a) = a, a ∈ N and h(a) = aout, a ∈ T .
The computations in Π correspond to parallel derivations in G, and the order
of producing terminal symbols in G corresponds to the order of sending them to
the environment by Π , hence the theorem statement holds. �

We now present a few normal forms for the context-free grammars in the context
of the time yield. Note that these normal forms incorporate a number of simi-
larities with both L systems and standard CF grammars, because level-by-level
derivation in context-free grammars corresponds to the evolution in L systems.
However, it is not possible to simply take existing normal forms, because the
result must be preserved, and the result is defined in a different way.

Lemma 2. (First normal form) For a context-free grammar G there exists a
context-free grammar G′ such that Lt(G) = Lt(G′) and in G′:

– the axiom does not appear in the right-hand side of any rule, and
– if the left side is not the axiom, then the right-hand side is not empty.

Proof. The technique is essentially the same as removing λ-productions in clas-
sical theory of context-free grammars. Let G = (N, T, S, P). First, introduce the
new axiom S′ and add a rule S′ → S. Compute the set E ⊆ N of non-terminals
that can derive λ. This set has the following properties (read “−→” as “then”):

(A → λ) −→ (A ∈ E),
(A → A1 · · ·Ak), (A1, · · · , Ak ∈ E) −→ (A ∈ E).

Then replace productions A → u by A → h(u), where h(a) = {a, λ} if a ∈ E and
h(a) = a if a ∈ N ∪ T \ E. Finally, remove λ-productions for all non-terminals
except the axiom. Note that this transformation preserves not only the generated
terminals, but also the order in which they are generated. �

The First normal form shows that erasing can be limited to the axiom.

72 A. Alhazov et al.

Lemma 3. (Binary normal form) For a context-free grammar G there exists a
context-free grammar G′ such that Lt(G) = Lt(G′) and in G′:

– the First normal form holds,
– the right-hand side of any production is at most 2.

Proof. The only concern in splitting the longer productions of G = (N, T, S, P)
in shorter ones is to preserve the order in which non-terminals are produced.
The number

n = �log2
(
max(A→u)∈P |u|

)
�

is the number of steps sufficient to implement all productions of G by at most
binary productions. Each production p : A → A1 · · ·Ak, k ≤ 2n, is replaced by

A → p0,0,

pi,j → pi+1,2jpi+1,2j+1 for 0 ≤ i ≤ n − 1, 0 ≤ j ≤ 2i − 1,

pn,i−1 → Ai for 1 ≤ i ≤ k,

pn,i → λ for k ≤ i ≤ 2n.

these productions implement a full binary tree of depth n, rooted in A with
new symbols in intermediate nodes, and leaves labeled A1, · · · , Ak, all remaining
leaves labeled λ (the first and last chain productions are given for the simplicity
of the presentation). It only remains to convert the grammar obtained to the
First normal form. Indeed, the derivations in the obtained grammar correspond
to the derivation of the original one, with the slowdown factor of n + 2, and the
order of producing terminal symbols is preserved. Obviously, converting into the
First normal form does not increase the right-hand side size of productions. �

The Binary normal form shows that productions with right-hand side longer
than two are not necessary.

Lemma 4. (Third normal form) For a context-free grammar G there exists a
context-free grammar G′ such that Lt(G) = Lt(G′) and in G′:

– the Binary normal form holds,
– G′ = (N, T, S, P ′) and every A ∈ N is reachable,
– either G′ = ({S}, T, S, {S → S}), or G′ = (N, T, S, P ′) and for every A ∈ N ,

Lt(G′
A) �= ∅.

Proof. Consider a context-free grammar in the Binary normal form. First,
compute the set D ⊆ N of productive non-terminals as closure of

(A → u), (u ∈ T ∗) −→ (A ∈ D)
(A → A1 · · ·Ak), (A1, · · · , Ak ∈ D) −→ (A ∈ D).

Remove all non-terminals that are not productive from N , and all productions
containing them. If the axiom was also removed, then Lt(G) = ∅, hence we can

Languages Generated by Non-cooperative Membrane Systems 73

take G′ = ({S}, T, S, {S → S}). Otherwise, compute the set R ⊆ N of reachable
non-terminals as closure of

(S ∈ R),
(A ∈ R), (A → A1 · · ·Ak) −→ (A1, · · · , Ak ∈ R).

Remove all non-terminals not reachable from N , and all productions containing
them. Note that all transformations preserve the generated terminals and the
order in which they are produced, as well as the Binary normal form. �

The Third normal form shows that never ending derivations are only needed to
generate the empty language.

5 Comparison with Known Families

Theorem 2. [10] LOP (ncoo, tar) ⊇ REG.

Proof. Consider an arbitrary regular language. Then there exists a complete
finite automaton M = (Q, Σ, q0, F, δ) accepting it. We construct a context-free
grammar G = (Q, Σ, q0, P), where P = δ ∪ {q → λ | q ∈ F}. The order
of symbols accepted by M corresponds to the order of symbols generated by
G, and the derivation can only finish when the final state is reached. Hence,
Lt(G) = L(M), and the theorem statement follows. �

Theorem 3. LOP (ncoo, tar) ⊆ CS.

Proof. Consider a context-free grammar G = (N, T, S, P) in the First normal
form. We construct a grammar G′ = (N ∪ {#1, L, R, F, #2}, T, S′, P ′), where

P ′ = {S′ → #1LS#2, L#2 → R#2, #1R → #1L, #1R → F, F#2 → λ}
∪ {LA → uL | (A → u) ∈ P} ∪ {La → aL, Fa → aF | a ∈ T }
∪ {aR → Ra | a ∈ N ∪ T }.

The symbols #1, #2 mark the edges, the role of symbol L is to apply productions
P to all non-terminals, left-to-right, while skipping the terminals. While reaching
the end marker, symbol L changes into R and returns to the beginning marker,
where it either changes back to L to iterate the process, or to F to check whether
the derivation is finished.

Hence, L(G′) = Lt(G). Note that the length of sentential forms in any deriva-
tion (of some word with n symbols in G′) is at most n + 3, because the only
shortening productions are the ones removing #1, #2 and F , and each should
be applied just once. Therefore, Lt(G) ∈ CS, and the theorem is proved. �

We now proceed to showing that the membrane systems language family does
not contain the family of linear languages. To show this, we first define the
notions of unbounded yield and unbounded time of a non-terminal.

74 A. Alhazov et al.

Definition 1. Consider a grammar G = (N, T, S, P). We say that A ∈ N has
an unbounded yield if Lt(GA) is an infinite language, i.e., there is no upper
bound on the length of words generated from A.

It is easy to see that Lt(GA) is infinite if and only if L(GA) is infinite; decidability
of this property is well-known from the theory of context-free grammars.

Definition 2. Consider a grammar G = (N, T, S, P). We say that A ∈ N has
unbounded time if the set of all derivation trees (for terminated derivations) in
GA is infinite, i.e., there is no upper bound on the number of parallel steps of
terminated derivations in GA.

It is easy to see that A has unbounded time if L(GA) �= ∅ and A ⇒+ A,
so decidability of this property is well-known from the theory of context-free
grammars.

Lemma 5. Let G = (N, T, P, S) be a context-free grammar in the Third normal
form. If for every rule (A → BC) ∈ P , symbol B does not have unbounded time,
than Lt(G) ∈ REG.

Proof. Assume the premise of the lemma holds. Let F be the set of the first
symbols in the right-hand sides of all binary productions. Then there exists
a maximum m of time bounds for the symbols in F . For every such symbol
B ∈ F there also exists a finite set t(B) of derivation trees in GB . Let t =
{∅}∪

⋃
B∈F t(B) be the set of all such derivation trees, also including the empty

tree. We recall that t is finite.
We perform the following transformation of the grammar: we introduce non-

terminals of the form A[τ1, · · · , τm−1], A ∈ N ∪ ∅, τi ∈ t, 1 ≤ i ≤ m − 1.
The new axiom is S[∅, · · · , ∅]. Every binary production A → BC is replaced by
productions

A[τ1, · · · , τm−1] → yield0(τ)yield1(τ1) · · · yieldm−1(τm−1)
C[τ, τ1, · · · , τm−2] for all τ ∈ t(B).

Accordingly, productions A → C, C ∈ N are replaced by productions

A[τ1, · · · , τm−1] → yield1(τ1) · · · yieldm−1(τm−1)C[∅, τ1, · · · , τm−2],

and productions A → a, a ∈ T are replaced by productions

A[τ1, · · · , τm−1] → a yield1(τ1) · · · yieldm−1(τm−1)∅[∅, τ1, · · · , τm−2].

Finally, ∅[∅, · · · , ∅] → λ and

∅[τ1, · · · , τm−1] → yield1(τ1) · · · yieldm−1(τm−1)∅[∅, τ1, · · · , τm−2].

In simple words, if the effect of one symbol is limited to m steps, then the
choice of the corresponding derivation tree is memorized as an index in the
other symbol, and needed terminals are produced in the right time. In total, m
indexes suffice. It is easy to see that underlying grammar is regular, since only
one non-terminal symbol is present. �

Languages Generated by Non-cooperative Membrane Systems 75

Lemma 6. L = {anbn | n ≥ 1} /∈ LOP (ncoo, tar).

Proof. Suppose there exists a context-free grammar G = (N, T, S, P) in the
Third normal form such that Lt(G) = L. Clearly, there must be a rule A → BC
or A → CB ∈ P such that both B and C have unbounded time (by Lemma 5,
since L /∈ REG) and C has unbounded yield (since L /∈ FIN).

Clearly, languages generated by any non-terminal from N must be scattered
subwords of words from L, otherwise G would generate some language not in L.
Thus, Lt(GB), Lt(GC) ⊆ {aibj | i, j ≥ 0}. It is not difficult to see that GC must
produce both symbols a and b. Indeed, since the language generated from C is
infinite, substituting derivation trees for C with different numbers of one letter
must preserve the balance of two letters. We now consider two cases, depending
on whether Lt(GB) ⊆ a∗.

If B only produces symbols a, then consider the shortest derivation tree τ in
GC . Since B has unbounded time, some symbol a can be generated after the
first letter b appears in τ , so Lt(G) generates some word not in L, which is a
contradiction.

Now consider the case when B can produce a symbol b in some derivation tree
τ in GB . On one hand, a bounded number of letters a can be generated from B
and C before the first letter b appears in τ ; on the other hand, C has unbounded
yield. Therefore, varying derivations under C we obtain a subset of Lt(G) which
is infinite, but the number of leading symbols a is bounded, so Lt(G) contains
words not in L, which is a contradiction. �

Corollary 2. LIN �⊆ LOP (ncoo, tar).

Lemma 7. The family LOP (ncoo, tar) is closed under permutations.

Proof. For a given grammar G = (N, T, S, P), consider a transformation where
the terminal symbols a are replaced by non-terminals aN throughout the de-
scription of G, and then the rules aN → aN , aN → a, a ∈ T are added to P . In
a way similar to the first example, the order in which terminals are generated is
arbitrary. �

Corollary 3. Perm(REG) ⊆ LOP (ncoo, tar).

Proof. Follows from regularity theorem 2 and permutation closure lemma 7. �

The results of comparison of the membrane system family with the well-known
language families can be summarized as follows:

Theorem 4. LOP (ncoo, tar) strictly contains REG and Perm(REG), is strictly
contained in CS, and is incomparable with LIN and CF .

Proof. All inclusions and incomparabilities have been shown in or directly fol-
low from Theorem 2, Corollary 3, Theorem 3, Corollary 2 and Corollary 1 with

76 A. Alhazov et al.

Theorem 1. The strictness of the first inclusions follows from the fact that REG
and Perm(REG) are incomparable, while the strictness of the latter inclusion
holds since LOP (ncoo, tar) only contains semilinear languages. �

The lower bound can be strengthened as follows:

Theorem 5. LOP (ncoo, tar) ⊇ REG • Perm(REG).

Proof. Indeed, consider the construction from the regularity theorem. Instead of
erasing the symbol corresponding to the final state, rewrite it into the axiom of
the grammar generating the second regular language, to which the permutation
technique is applied. �

Example 3. LOP (ncoo, tar) � L2 =
⋃

m,n≥1(abc)mPerm((def)n).

6 Closure Properties

It has been shown above that the family of languages generated by basic mem-
brane systems is closed under permutations. We now present a few other closure
properties.

Lemma 8. The family LOP (ncoo, tar) is closed under erasing/renaming mor-
phisms.

Proof. Without restricting generality, we assume that the domain and range of
a morphism h are disjoint (or rename the corresponding non-terminals). For a
given grammar G = (N, T, S, P), consider a transformation where every terminal
symbol a becomes a non-terminal a′ and the rules a′ → h(a), a ∈ T are added
to P . It is easy to see that the new grammar generates exactly h(Lt(G)). �

Corollary 4. {anbncn | n ≥ 1} /∈ LOP (ncoo, tar).

Proof. Assuming the contrary and applying the morphism defined by h(a) = a,
h(b) = b, h(c) = λ we obtain a contradiction with L = {anbn | n ≥ 1} /∈
LOP (ncoo, tar) from Lemma 6. �

Corollary 5. LOP (ncoo, tar) is not closed under intersection with regular
languages.

Proof. By Example 2, L = {w ∈ T ∗ | |w|a = |w|b = |w|c > 0} belongs to the
membrane systems language family. However, L ∩ a∗b∗c∗ = {anbncn | n ≥ 1}
does not, by Corollary 4. �

Theorem 6. LOP (ncoo, tar) is closed under union and not closed under
intersection or complement.

Languages Generated by Non-cooperative Membrane Systems 77

Proof. The closure under union follows from adding a new axiom and productions
of non-deterministic choice between multiple axioms. The family is not closed
under intersection because it contains all regular languages (Theorem 2) and is
not closed under intersection with them (Corollary 5). It follows that this family
is not closed under complement, since intersection is the complement of union
of complements. �

Lemma 9. L =
⋃

m,n≥1 Perm((ab)m)cn /∈ LOP (ncoo, tar).

Proof. Suppose there exists a context-free grammar G = (N, T, S, P) in the
Third normal form such that Lt(G) = L. Clearly, there must be a rule A → BC
or A → CB ∈ P such that both B and C have unbounded time (by Lemma
5, since L /∈ REG) and C has unbounded yield (since L /∈ FIN). By choosing
as A → BC or A → CB the rule satisfying above requirements which is first
applied in some derivation of G, we make sure that all three letters a, b, c appear
in words of Lt(GA).

Clearly, languages generated by any non-terminal from N must be scattered
subwords of words from L, otherwise G would generate some language not in
L. Thus, Lt(GB), Lt(GC) ⊆ {a, b}∗c∗. We now consider two cases, depending on
whether Lt(GB) ⊆ {a, b}∗.

If B only produces symbols a, b, then consider the shortest derivation tree τ
in GC . Since B has unbounded time, some symbol a or b can be generated after
the first letter c appears in τ , so Lt(G) generates some word not in L, which is
a contradiction.

Now consider the case when B can produce a symbol c in some derivation
tree τ in GB. On one hand, a bounded number of letters a, b can be generated
from B and C before the first letter c appears in τ ; on the other hand, C has
unbounded yield. Therefore, varying derivations under C we obtain a subset of
Lt(G) which is infinite, but the number of leading symbols a, b is bounded, so
Lt(G) contains words not in L, which is a contradiction. �

Corollary 6. LOP (ncoo, tar) is not closed under concatenation or taking the
mirror image.

Proof. Since
⋃

m≥1 Perm((ab)m) ∈ Perm(REG) ⊆ LOP (ncoo, tar) by Corollary 3
and c+ ∈ REG ⊆ LOP (ncoo, tar) by Theorem 2, the first part of the statement
follows from Lemma 9. Since

⋃
m,n≥1 cnPerm((ab)m) ∈ REG • Perm(REG) ⊆

LOP (ncoo, tar) by Theorem 5, the second part of the statement also follows
from Lemma 9. �

7 A Difficult Language

In this section we give an example of a language in LOP (ncoo, tar) which is
considerably more “difficult” than languages in REG•Perm(REG), in the sense

78 A. Alhazov et al.

informally explained below. Besides permutations of symbols sent out in the
same time, it exhibits another kind of non-context-freeness. This second source
of “difficulty” alone can, however, be captured as an intersection of two linear
languages.

ΠD = ({D, D′, a, b, c, a′, b′, c′}, [1]1, D
2, R),

R = {D → (abc)outD
′D′, D → (abc)out,

D′ → (a′b′c′)outDD, D′ → (a′b′c′)out}.

The contents of region 1 is a population of objects D, initially 2, which are
primed if the step is odd. Assume that there are k objects inside the system.
At every step, every symbol D is either erased or doubled (and primed or de-
primed), so the next step the number of objects inside the system will be any
even number between 0 and 2k. In addition to that, the output during that step
is Perm((abc)k), primed if the step is odd. Hence, the generated language can be
described as

L(ΠD) = { Perm((abc)2k0)Perm((a′b′c′)2k1) · · ·
Perm((abc)2k2t)Perm((a′b′c′)2k2t+1)
| k0 = 1, 0 ≤ ki ≤ 2ki−1, 1 ≤ i ≤ 2t + 1, t ≥ 0}.

For an idea of how complex a language generated by some non-cooperative mem-
brane system be, imagine that the skin may contain populations of multiple
symbols that can (like D in the example above) be erased or multiplied (with
different periods), and also rewritten into each other. The same, of course, hap-
pens in usual context-free grammars, but since the terminal symbols are collected
from the derivation tree level by level instead of left to right, the effect is quite
different.

Another upper bound has been recently proved.

Theorem 7. [1] LOP (ncoo, tar) ⊆ P.

This result means that membrane systems languages can be parsed in polyno-
mial time. However, the degree of such polynomials in the algorithm deciding
membership problem presented in [1] depends on the number of rules and the
size of the alphabet in the underlying P system.

8 Conclusions

In this paper we have reconsidered the family of languages generated by tran-
sitional P systems without cooperation and without additional control. It was
shown that one membrane is enough, and a characterization of this family was
given via derivation trees of context-free grammars. Next, three normal forms
were given for the corresponding grammars. It was than shown that the mem-
brane systems language family lies between regular and context-sensitive families
of languages, and it is incomparable with linear and with context-free languages.

Languages Generated by Non-cooperative Membrane Systems 79

Then, the lower bound was strengthened to REG • Perm(REG). An example
of a considerably more “difficult” language was given than the lower bound
mentioned above. We also mention another upper bound result, i.e., membrane
systems languages can be parsed in polynomial time [1].

The membrane systems language family was shown to be closed under union,
permutations, erasing/renaming morphisms. It is not closed under intersection,
intersection with regular languages, complement, concatenation or taking the
mirror image.

The following are examples of questions that are still not answered.

– Clearly, LOP (ncoo, tar) �⊇ MAT . What about LOP (ncoo, tar) ⊆ MAT ?
– Is LOP (ncoo, tar) closed under arbitrary morphisms? Conjecture: no. The

difficulty is to handle h(a) = bc if many symbols a can be produced in the
same step.

– Look for sharper lower and upper bounds.

Acknowledgments. Artiom Alhazov gratefully acknowleges the support of the
Japan Society for the Promotion of Science and the Grant-in-Aid for Scientific
Research, project 20·08364. All authors acknowledge the support by the Science
and Technology Center in Ukraine, project 4032.

References

1. Alhazov, A., Ciubotaru, C., Ivanov, S., Rogozhin, Y.: Membrane Systems Lan-
guages Are Polynomial-Time Parsable. Computer Science Journal of Moldova
(2010) (submitted)

2. Alhazov, A., Ciubotaru, C., Rogozhin, Y., Ivanov, S.: The Membrane Systems Lan-
guage Class. In: Eighth Brainstorming Week on Membrane Computing, Sevilla, 23–
35 (2010); And LA Symposium, RIMS Kôkyûroku Series 1691, Kyoto University,
pp. 44–50 (2010)

3. Alhazov, A., Sburlan, D.: Static Sorting P Systems. Applications of Membrane
Computing. In: Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.) Applications of
Membrane Computing. Natural Computing Series, pp. 215–252. Springer, Heidel-
berg (2005)

4. Bernardini, F., Gheorghe, M.: Language Generating by means of P Systems with
Active Membranes. Brainstorming Week on Membrane Computing, Technical Re-
port, 26/03, Rovira i Virgili University, Tarragona, 46–60 (2003)

5. Csuhaj-Varjú, E.: P Automata. In: Mauri, G., Păun, G., Jesús Pérez-J́ımenez,
M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 19–35.
Springer, Heidelberg (2005)

6. Csuhaj-Varjú, E., Ibarra, O.H., Vaszil, G.: On the Computational Complexity of
P Automata. Natural Computing 5(2), 109–126 (2006)

7. Freund, R., Verlan, S.: A Formal Framework for Static (Tissue) P systems. In:
Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC
2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007)

8. Ibarra, O.H., Păun, G.: Characterizations of Context-Sensitive Languages and
Other Language Classes in Terms of Symport/Antiport P Systems. Theoretical
Computer Science 358(1), 88–103 (2006)

80 A. Alhazov et al.

9. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
10. Păun, G., Rozenberg, G., Salomaa, A.: Membrane Computing with an External

Output. Fundamenta Informaticae 41(3), 313–340 (2000)
11. Păun, G., Rozenberg, G., Salomaa, A. (eds.): Handbook of Membrane Computing.

Oxford University Press, Oxford (2010)
12. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1-3.

Springer, Heidelberg (1997)
13. Qi, Z., You, J., Mao, H.: P Systems and Petri Nets. In: Mart́ın-Vide, C., Mauri,

G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp.
286–303. Springer, Heidelberg (2004)

14. P systems webpage, http://ppage.psystems.eu/

http://ppage.psystems.eu/

Polymorphic P Systems

Artiom Alhazov1,2, Sergiu Ivanov1,3, and Yurii Rogozhin1

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova

Academiei 5, Chişinău MD-2028 Moldova
{artiom,rogozhin,sivanov}@math.md

2 IEC, Department of Information Engineering
Graduate School of Engineering, Hiroshima University

Higashi-Hiroshima 739-8527 Japan
3 Technical University of Moldova, Faculty of Computers,

Informatics and Microelectronics,
Ştefan cel Mare 168, Chişinău MD-2004 Moldova

Abstract. Membrane computing is a formal framework of distributed
parallel computing. In this paper we introduce a variant of the multi-
set rewriting model where the rules of every region are defined by the
contents of interior regions, rather than being explicitly specified in the
description of the system. This idea is inspired by the von Neumann’s
concept of “program is data” and also related to the research direction
proposed by Gh. Păun about the cell nucleus.

1 Introduction

Membrane computing is a fast growing research field opened by Gh. Păun in
1998. It presents a formal framework inspired from the structure and function-
ing of the living cells. In this paper we define yet another, relatively powerful,
extension to the model, which allows the system to dynamically change the set
of rules, not limited to some finite prescribed set of candidates. There are three
motives for this extension. First, our experience shows that “practical” prob-
lems need “more” computing potential than just computational completeness.
Second, we attempt to import a very important computational ingredients into
P systems, this time from the conventional computer science. Third, this exten-
sion correlates with the biological idea that different actions are carried out by
different objects, which too can be acted upon. (This last idea was also consid-
ered in, e.g., [6] and [1], but there one represented each rule by a single objects,
therefore all rules were still prescribed, though not their multiplicities.) Let us
first explain these motives.

Most papers of the field belong to the following categories: 1) introducing
different models and variants, 2) studying the computational power of differ-
ent models depending on what ingredients are allowed and on the descriptional
complexity parameters, 3) studying the computational efficiency of solving in-
tractable problems (supercomputing potential) depending on the ingredients,

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 81–94, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

82 A. Alhazov, S. Ivanov, and Y. Rogozhin

4) using membrane computing to represent and model various processes and
phenomena, including but not limited to biology, 5) other applications.

There is a surprisingly big gap between the sets of ingredients needed to fulfill
requirements in directions 2, 3, and the sets of ingredients demanded by other
applications. For instance, very weak forms of cooperation between objects are
often enough for the computational completeness, but many “practical” prob-
lems cannot be solved in a satisfactory way under the same limitations. This
leads to the following question.

1.1 What Is Implicitly Required in Most “Practical” Problems?

We will mention just a few of these requirements below.

– Determinism or at least confluence. Clearly, the end user wants to obtain
the answer to the specified problem in a single run of a system instead of
examining infinitely many computations. This is a strong constraint, e.g.,
catalytic P systems and P systems with minimal symport/antiport are uni-
versal, while in the deterministic case non-universality is published for the
first ones and claimed for the latter ones. Informally speaking, less compu-
tational power is needed to just compute the result than it is to also enforce
choice-free behavior of the system.

– Input/output. Most of the universality results are formulated as generating
languages or accepting sets of vectors, or in an even more restricted setup.
There is no need to deal with input in the first case, and in the latter case
the final configuration itself is irrelevant (except yes or no in case of the
efficiency research). On the other side, both input and output are critical for
most applications.

– Representation. Clearly, any kind of discrete information can be encoded
in a single integer in some consistent way. However, a much more transpar-
ent data representation is typically required; even the intermediate configu-
rations in a computation are expected to reflect a state of the object in the
problem area.

– Efficiency. Suppose numbers are represented by multiplicities of certain
objects. The number of steps needed to multiply two numbers by plain (co-
operative) multiset processing is proportional to the result. If the multi-
set processing can be controlled by promoters/inhibitors/priorities, then the
number of steps needed for multiplication is proportional to one of the ar-
guments. However, many applications would ask for a multiplication to be
performed in a constant number of steps. Similar problems appear for string
processing.

– Data structures. Membrane computing deals with multisets distributed
over a graph, while conventional computers provide random memory access
and pointer operations, allowing much more complex structures to be built.

Some of these implicit requirements originate because the user wants a solu-
tion which is at least as good as the one that can be provided by conventional
computers. We hope that the explanations of the above list have convinced the
reader that this is often a challenge.

Polymorphic P Systems 83

1.2 Program is Data. Cell Nucleus

In this paper we try to introduce another feature into the membrane comput-
ing. This time the inspiration is not biological, but rather is from the area of
conventional computing. Suppose we want to be able to manipulate the rules
of the system during its computation. A number of papers has been written in
this direction (see, e.g., GP systems [6], rule creation [3], activators [1], inhibit-
ing/deinhibiting rules [4] and symport/antiport of rules [5]), but in most of them
the rules are predefined in the description of the system.

The most natural way to manipulate the rules is to represent them as data,
treat this data as rules, and manipulate it as usual in P systems, in the spirit of
von Neumann’s approach. In membrane systems, the data consists of multisets,
so objects should be treated as description of the rules. Informally, a rule j in a
region i can be represented by the contents of membranes jL and jR inside i.

For instance,

1 : ab → ac
2 : a → d

abbb
s

becomes

ab
1L

ac
1R

a
2L

d
2R

abbb
s
.

Changing the contents of regions jL and jR results in the corresponding
change of the rule j. The next section illustrates this effect in Figure 1 and gives
the formal definitions. We call such P systems polymorphic, by analogy with
polymorphic, or self-modifying computer programs.

At the same time, if a membrane system is an abstraction inspired by the
biological cell, one can view inner regions as an abstraction inspired by the cell
nucleus; their contents correspond to the genes encoding the enzymes performing
the reactions of the system. The simplicity of the proposed model is that we
consider the natural encoding, i.e., no encoding at all: the multisets describing
the rules are represented by exactly themselves. Therefore, we are addressing
a problem informally stated by Gh. Păun in Section “Where Is the Nucleus?”
of [7] by proposing a computational variant based on one simple difference: the
rules are taken from the current configuration rather than from the description
of the P system itself.

The idea of a nucleus was also considered in [9], but such a presentation
had the following drawbacks. First, one described the dynamics of the rules
in a high-level programming language (good for simulators, but otherwise too
powerful extension having the power of conventional computers directly built
into the definition). Second, this dynamics of the rules did not depend on the
actual configuration of the membrane system (no direct feedback from objects
to rules). In the model presented in this paper, the dynamics of rules is defined
by exactly the same mechanism as the standard dynamics of objects.

2 Definitions

We refer the reader to [8] for the standard preliminaries of membrane computing.
We denote the family of recursively enumerable sets of non-negative integers
by NRE.

84 A. Alhazov, S. Ivanov, and Y. Rogozhin

We define a polymorphic P system as a tuple

Π = (O, T, μ, ws, w1L, w1R, · · · , wmL, wmR, ϕ, iout),

where O is a finite alphabet, μ is a tree structure consisting of 2m+1 membranes,
bijectively labeled by elements of H = {s}∪{iL, iR | 1 ≤ i ≤ m} (the skin mem-
brane is labeled by s; we also require for 1 ≤ i ≤ m that the parent membrane
of iL is the same as the parent membrane of iR), wi is a string describing the
contents of region i, 1 ≤ i ≤ m, and ϕ is a mapping from {1, · · · , m} to the fea-
tures of the rules described below. The set T ⊆ O describes the output objects,
while iout ∈ H ∪ {0} is the output region (0 corresponds to the environment).

Notice that the rules of a P system are not explicitly given in its description.
Essentially, such a system has m rules, and these rules change as the contents of
regions other than skin changes. Initially, for 1 ≤ i ≤ m rule i : wiL → (wiR, ϕ(i))
belongs to the region defined by the parent membrane of iL and iR. If wiL is
empty, then the rule is considered disabled. For every step of the computation
each rule is defined in the same way, taking the current contents of iL and iR
instead of initial ones.

In what follows we mainly consider a single feature, i.e., target indications.
In this case, the range of ϕ is Tar = {ini | i ∈ H} ∪ {here, out}. We denote the
class of all polymorphic P systems with cooperative rules and target indications
and at most k membranes by

OPk(polym+d(coo), tar).

In the notation above, the number k is replaced by ∗ or omitted if no bound is
specified. The subscript +d means that the rules can be disabled; we write −d
instead, if wiL is never empty for 1 ≤ i ≤ m during any computation. We prefix
this notation with D if we restrict the class to the deterministic systems (for
every input if it is specified, see below).

A computation is a sequence of configurations starting in the initial configu-
ration, corresponding to the transitions induced by non-deterministic maximally
parallel application of rules; it is called halting if no rules are applicable to the
last configuration. In the latter case the multiset of objects from T in region iout

is called the result.
If we want to compute instead of generating, we extend the tuple Π by the

description of the input as follows. In the definition of the P system, we insert
the input alphabet Σ ⊂ O after O and we insert the input region iin after ϕ.
In this case, the input multiset over Σ is added to wiin before the computation
starts. If we want to accept instead of computing, we remove T and iout from
the description of the P system; the input is considered accepted if and only if
the system may halt. If we want to decide instead of computing, we construct a
system that always halts with either yes or no in the output region, such that
this answer uniquely depends on the input; the input is accepted if and only if
the answer is yes. Speaking about the time complexity is more appropriate for
deciding than for accepting.

Polymorphic P Systems 85

The set of numbers or vectors generated by a P system Π is denoted by
N(Π) or Ps(Π), respectively. In the accepting case, we write Na(Π) or Psa(Π).
In the deciding case, we write Nd(Π) or Psd(Π). If the computation of Π is
deterministic for every input, then the partial function computed by Π is denoted
by f(Π). In this way, the entire class of polymorphic P systems with cooperative
rules and target indications, allowing disabled rules, with at most k membranes,
defines a family of sets of numbers, of sets of vectors or of functions, respectively
denoted by

NOPk(polym+d(coo), tar), P sOPk(polym+d(coo), tar),
fDOPk(polym+d(coo), tar).

In a similar way it is possible to replace cooperative rules with a more restricted
set, remove target indications or add more features to the polymorphic P sys-
tems, modifying the notation accordingly. It is even possible to consider com-
pletely different rules instead of rewriting, e.g., symport/antiport rules, but we
do not address such a topic here.

We illustrate the definitions by the following example.

Example 1. A P system with a superexponential growth.

Π1 = ({a}, {a}, μ, a, a, a, a, a, a, aa, ϕ, 1), where
μ = [[]1L[[]2L[[]3L[]3R]2R]1R]s,

ϕ(i) = here, 1 ≤ i ≤ 3.

Naturally, contents of membranes 1L, 2L, 3L is never changed because they are
elementary and no rules have the corresponding target indications, and their
initial contents is a, so the system is non-cooperative, and the rules are never
disabled. Since only one rule acts in each of the regions s, 1R, 2R, the system is
deterministic. From all above we conclude that Π1 ∈ DOP7(polym−d(ncoo)), a
quite restricted class.

This system never halts. Its interesting aspect, however, is the growth of
the number of objects in the skin. We claim that at step n the skin contains
2n(n−1)(n−2)/6 objects, so the growth function is an exponential of a polynomial.
Indeed, this is not difficult to see by starting from the elementary membranes
and going outside.

The contents of 3R is aa and it never changes. Region 2R initially contains a
and undergoes rule a → aa every step, so its contents at step n is a2n

. Region 1R
initially contains a and undergoes rule a → a2n

at step n, so its contents at step
n is a2n(n−1)/2

. The skin originally contains a and at step n rule a → a2n(n−1)/2

is applied, so its contents at step n is a2n(n−1)(n−2)/6
, see Figure 1 for the actual

illustration of the computation and for the proof of the result.
This growth is faster than that of any non-polymorphic P systems, which is

bounded by the exponential Icn, where I is the initial number of objects in the
system and c is the maximum ratio for all rules of the right side size and its
left side size. It is not difficult to see that the growth function of a polymorphic

86 A. Alhazov, S. Ivanov, and Y. Rogozhin

a
1L

a
2L

a
3L

a2

3R

a
2R

a
1R

a
s

3 : a → a2 in 2R
2 : a → a in 1R
1 : a → a in s
⇒

a
1L

a
2L

a
3L

a2

3R

a2

2R

a
1R

a
s

3 : a → a2 in 2R
2 : a → a2 in 1R
1 : a → a in s
⇒

a
1L

a
2L

a
3L

a2

3R

a4

2R

a2

1R

a
s

3 : a → a2 in 2R
2 : a → a4 in 1R
1 : a → a2 in s
⇒

a
1L

a
2L

a
3L

a2

3R

a8

2R

a8

1R

a2

s

3 : a → a2 in 2R
2 : a → a8 in 1R
1 : a → a8 in s
⇒

a
1L

a
2L

a
3L

a2

3R

a16

2R

a64

1R

a16

s

3 : a → a2 in 2R
2 : a → a16 in 1R
1 : a → a64 in s
⇒ · · ·

Fig. 1. The computation of Π1 from Example 1. If the number of objects a in regions
3R, 2R 1R, s at step n is (xn, yn, zn, tn), respectively, then (x0, y0, z0, t0) = (2, 1, 1, 1)
and (xn+1, yn+1, zn+1, tn+1) = (xn, ynxn, znyn, tnzn).

Following just this quadruple, the computation can be represented as (2, 1, 1, 1) ⇒
(2, 2, 1, 1) ⇒ (2, 4, 2, 1) ⇒ (2, 8, 8, 2) ⇒ (2, 16, 64, 16) ⇒ (2, 32, 1024, 1024) ⇒
(2, 64, 32768, 1048576) ⇒ · · ·.

The exponents of the closed form formula (2, 2n, 2n(n−1)/2, 2n(n−1)(n−2)/6) can be
verified as follows. n + 1 = n + 1, (n + 1)n/2 = n(n − 1)/2 + n, (n + 1)n(n − 1)/6 =
n(n − 1)(n − 2)/6 + n(n − 1)/2.

Polymorphic P Systems 87

P system without target indications is bounded by Icp(n), where I and c are
defined as above and p is a polynomial whose degree equals the depth of the
membrane structure minus one.

3 Results

As long as full cooperation is allowed, the universality of polymorphic P system is
not difficult to obtain, even without the actual polymorphism (i.e. without ever
modifying rules) and without the use of target indications. The upper bound
on the number of membranes needed is one plus twice the number of rules,
because in the polymorphic P systems the rules can only be represented by pairs
of membranes. We recall that in [2] one presents a strongly universal P system
with 23 rules. Hence, the following theorem holds.

Theorem 1. NOP47(polym−d(coo)) = NRE.

Proof. The claim is fulfilled by taking the one-membrane construction from the
main result in [2] and replacing each of the 23 rules by two membranes containing
the left-hand side and the right-hand side of that rule.

In the rest of the paper we focus on the efficiency of computations performed
by polymorphic P systems, using the time complexity terms. We devote special
attention to fast generating and deciding factorials, because they best illustrate
constant-time multiplication where the factors are not known in advance and
are even changing during the computation. First, we present a non-cooperative
system generating “slightly” more than factorials, using target indications. It is
a bit more complicated than Π1 because, firstly, we need to multiply by numbers
that grow linearly, and secondly, we want the system to halt.

Example 2. A polymorphic P system from OP13(polym−d(ncoo), tar) which
generates {n! · nk | n ≥ 1, k ≥ 0}.

Π2 = ({a, b, c, d}, {a}, μ, ab, a, a, a, a, a, c, b, bd, b, λ, d, a, ϕ, 1), where
μ = [[[]2L[]2R[]3L[]3R]1L[]1R[]4L[]4R[]5L[]5R[]6L[]6R]s,

ϕ(i) = here, 1 ≤ i ≤ 5, ϕ(6) = in1R.

The initial configuration can be graphically represented as shown below. In fact,
such a graphical representation gives a complete description of Π2 except the
output alphabet and the output region. The target indication of a rule (here rule
6 in 1R) may be indicated by an arrow, in this case from 6R to 1R (keeping
in mind that the reactants of the rule are taken from the parent region of the
membranes describing the rule, in this case, from region 1). At the right we give
a simplified representation of the same system by replacing pairs of membranes
with constant contents by the rules written explicitly (this is just a different
representation, so-called “syntactic sugar”, and we still count such rules as pairs
of membranes). Rule 1 is not written with the rule syntax because the contents
of both 1L and 1R will change.

88 A. Alhazov, S. Ivanov, and Y. Rogozhin

The essence of the functioning of Π2 is the following. Rules 4 and 6 lead to
incrementation of the number of copies of a in 1R (the number of copies of a
in the skin does not change during the first two steps). The system will apply
rule 4 for n − 1 ≥ 0 times and then rule 5 (applying rule 5 is necessary for the
system to halt). Suppose that all this time rule 2 has been applied in region
1L. Then, the number of objects in region 1R will grow linearly, and subsequent
applications of a dynamic rule 1 : a → ai, 1 ≤ i ≤ n will produce an! in the
skin. After that, the number of objects a in the skin will be multiplied by n
until rule 3 is applied, because 1 : c → an will be no longer applicable, halting
with the skin only containing objects a their number being an arbitrary number
of the form n! · nk. Now assume that rule 3 has been applied earlier, effectively
stopping the multiplication of the number of objects a in the skin before the
incrementation of objects a in 1R is finished. In that case the multiplicity of
objects a in the skin will be just a factorial of a smaller number, and the system
will evolve by application of rules 4, 6 until rule 5 is applied, without affecting the
result. Notice that the time complexity (understood as the shortest computation
producing the corresponding result) of generating n! · nk is only n + k + 1.

To generate exactly {n! | n ≥ 1} we need to stop the multiplication when we
stop the increment. This seems impossible without cooperative rules.

Example 3. A P system from OP9(polym−d(coo), tar) generating {n! | n ≥ 1}.

Π3 = ({a, b, c, d}, {a}, μ, ab, a, a, b, bd, b, c, d, a, ϕ, 1), where
μ = [[[]1L[]1R[]2L[]2R[]3L[]3R[]4L[]4R]s,

ϕ(i) = here, 1 ≤ i ≤ 2, ϕ(3) = in1L, ϕ(4) = in1R.

This system is very similar to Π2. There are only the following differences. First,
rules a → a and a → c are removed from region 1L. Second, instead of erasing
b in the skin, the corresponding rule sends object c to region 1L, which stops
both increment (b is erased) and multiplication (1 : ac → an is not applicable in
the skin). Ironically, this system never applies any non-cooperative rule, but the
non-cooperative feature seems unavoidable in order to stop the computation in
the synchronized way. A compact graphical representation of Π3 is given below.

Polymorphic P Systems 89

a
1L

a
1R

2 : b → bd, 3 : b → (c, in1L), 4 : d → (a, in1R)

ab
s

Now we proceed to describing a P system generating {22n | n ≥ 0} in O(n)
steps. Since the growth of polymorphic P systems without target indications is
bounded by exponential of polynomials, the system below grows faster than any
of them. Moreover, it produces the above mentioned result by halting.

It is also worth noting that even polymorphic P systems cannot grow faster
than exponential of exponential in linear time, because if a system has n+n+1 >
3 objects at some step, then it cannot have more than n2 + n + 1 objects in the
next step. Indeed, consider that some rule r is applied for n times; let its left side
contain x objects and let its right side contain y objects. Then, x+ y objects are
needed to describe the rule and they transform nx other objects into ny objects.
It is not difficult to see that the growth is maximal if x = 1 and y = n. Since
n2 + n + 1 is less than the square of n + n + 1, and iterated squaring yields the
growth which is exponential of exponential, it is not possible to grow faster. The
system below grows three times slower than this bound.

Example 4. A P system from OP15(polym−d(ncoo), tar) generating numbers
from {22n | n ≥ 0} in 3n + 2 steps.

Π4 = ({a, b, a′, b′, c}, {a}, μ, b2, a, λ, a, a, a, c, b, λ, b, a′b′, a′, a, b′, b, ϕ, 1), where

μ = [[[]2L[]2R[]3L[]3R]1L[[]4L[]4R]1R

7∏

i=5

(
[] iL[] iR

)
]s,

ϕ(i) = here, 1 ≤ i ≤ 6, ϕ(7) = in1R.

The desired effect is obtained by iterated squaring. By rules 5, 6, 7, in two steps
each copy of b in the skin changes into a and also sends a copy of b in region
1R. In the next step, if region 1L still contains an a, each copy of a in the skin
is replaced by the contents of region 1R, and the process continues. Therefore,
if we had bk in the skin at some step, then in two steps we will have ak in the
skin and rule 1 will be of the form a → bk, yielding bk2

in the third step. The
iteration continues while rule 2 is being applied in region 1L. When rule 3 is
applied, the cycle stops because rule 1 : c → bk will not be applicable, and the
result is given as the multiplicity of objects a in the skin. Clearly, 2 = 220

and
22n+1

= (22n

)2, so the systems generates 2nth powers of 2. We underline that
no cooperation was used in this case. A compact graphical representation of this
system is shown below.

2 : a → a, 3 : a → c
a

1L

4 : b → λ
λ

1R
5 : b → a′b′, 6 : a′ → a, 7 : b′ → (b, in1R)

b2

s

90 A. Alhazov, S. Ivanov, and Y. Rogozhin

We remind the reader that the picture above represents a system with 15
membranes because the rules notation is simply a compact way to represent
pairs of membranes. Note that one rule could have been saved if the right side
of the rule were allowed to have objects with different target indications, but
this issue does not affect the computational power, only the number of rules,
whereas the definitions are much simpler. Another rule could be saved at the
price of using a cooperative rule to stop the computation instead of rules 2 and
3, like in the previous example.

We now proceed to tasks which are more difficult than generating, namely,
deciding a set of numbers or computing a function in a deterministic way. We
illustrate the first case by modifying the previous example. We use an additional
ingredient compared to the previous systems: we rely on disabling a rule by emp-
tying the region describing its left side. Although we expect that this ingredient
does not change the computational power of the systems, we use it in order to
have smaller constructions.

Example 5. A deterministic P system from OP15(polym+d(coo), tar) computing
the function n −→ 22n

in 3n + 2 steps.

Π5 = ({a, b, a′, b′, c, d, d′}, {d}, {a}, μ, cb2, λ, λ, a, λ, b, λ,

b, a′b′, a′, a, cd, c′d′, c′, c′′, c′′, c, d′, a, b′, b, ϕ, 1, 1), where

μ = [[[[]2L[]2R]1L[[]3L[]3R]1R

10∏

i=4

(
[] iL[] iR

)
]s,

ϕ(i) = here, 1 ≤ i ≤ 8, ϕ(9) = in1L, ϕ(10) = in1R.

This system works like Π4 from the previous example. We only focus on the
differences. The previous system used non-deterministic choice between rules 2
and 3 to continue the computation or to stop it. In this case, squaring stops by
itself due to the rule 2 : a → λ, so producing object a in region 1L activates one
squaring. The most important difference is that the number n is given as input
into the skin, by the multiplicity of objects d. Moreover, besides two copies of b
the skin initially contains an object c, responsible for counting until n by con-
suming objects d and activating the squaring routine the corresponding number
of times. The cycle takes 3 steps, see rules 6, 7, 8, 9. When object c has no more
copies of d to consume, the result is obtained as the multiplicity of objects a in
the skin. We show a compact graphical representation of Π5 below.

2 : a → λ
λ

1L

3 : b → λ
λ

1R
4 : b → a′b′, 5 : a′ → a, 10 : b′ → (b, in1R)

6 : cd → c′d′, 7 : c′ → c′′, 8 : c′′ → c, 9 : d′ → (a, in1L)
cb2

input dn

s

Polymorphic P Systems 91

Note that this system uses cooperation for counting and disabling the rules for
easier control. We leave it as an exercise for the reader to construct a P system
Π ′

5 computing the same function without disabling rules. Hint: as long as objects
a only appear in the skin every third step, there is no need to disable rule 1 while
the computation is in progress. Object c can deterministically subtract d and
perform its appearance checking. Finally, when there are no copies of d in the
skin, moving c into 1L will make rule 1 inapplicable without the need to disable
it by emptying its left side.

Now we give an example of a P system deciding a set of numbers. It works
deterministically and produces an object yes or no in the skin, depending on
whether the input number belongs to the specified set. We also emphasize its
time complexity.

Example 6. A deterministic P system from OP37(polym−d(coo), tar) deciding
the set {n! | n ≥ 1}. A number k ≤ n! is decided in at most 4n steps, i.e., in a
sublogarithmic time with respect to k.

Π6 = ({a, b, c0, c1, c2, A, A′, B, B′, p0, p1, p2, p3, yes, no}, {a}, {yes, no}, μ,

p0c0, a
2, b, b, a, c1, c2, c2, λ, p0, AABp1, Aa, A′a, Bb, B′b, p1, p2,

p2B
′AA, p3d, p2B

′A′A, fno, p2B
′A′A′, fno, p2BAA, fno,

p2BA′A, fyes, p2BA′A′, fno, p3, p0c0, c0, c1, d, a, f, f, ϕ, 1, 1), where

μ = [[]1L[[]3L[]3R[]4L[]4R]2L[]2R

18∏

i=5

(
[] iL[] iR

)
]s,

ϕ(i) = here, 1 ≤ i ≤ 15, ϕ(16) = in2L, ϕ(17) = ϕ(18) = in1L.

The work of Π6 consists of iterated division of the input ak. Each cycle consists
of 4 steps. The role of object c0 is to enter into 2L by rule 16, thus preventing
rule 2 : b → a to work during the second and the third step of the cycle (bc1 → a
is not applicable, changing by rule 3 to bc2 → a, which is also not applicable,
and then being restored by rule 4).

Object p0 marks the steps and produces the necessary objects for checking
some numbers, and finally produces symbols to increment the divisor or to mod-
ify the dividing rule to stop the computation, and give the answer, as follows.
Suppose that the input is ak. In the first step, p0 changes into p1, also producing
checkers AAB. In the same time, the number k will be divided by n (initially
n = 2) by rule 1 : an → b, changing ak into bxay, where x is the quotient and y
is the remainder.

In the second step, p1 changes into p2, waiting for the checkers. The role of
the checking rules 6 : Aa → A′a and 7 : Bb → B′b is to test the multiplicity of
the remainder and the quotient, respectively. Hence, object B will be primed if
x > 0. Notice that since there are two copies of A in the system, the number of
symbols A that will be primed is min(y, 2). Thus, there are 6 combinations of
symbols A and B, primed or not.

In the third step, we distinguish two special cases. If x > 0 and y = 0, then
the input is a multiple of the currently computed factorial, and we proceed to

92 A. Alhazov, S. Ivanov, and Y. Rogozhin

the next iteration by rule 9 : p2B
′AA → p3d. If x = 0 and y = 1, then the

input is equal to the previously computed factorial, and the system gives the
positive answer by the rule 13 : p2BA′A → fyes. Four other combinations
correspond to detecting that the input is not equal to a factorial of any number
(two cases correspond to non-zero quotient and non-zero remainder, the third
case corresponds to the input being zero, and the last case corresponds to a
multiple of some factorial which is smaller than the next factorial), so fno is
produced.

In the fourth step, rule 2 : b → a is used, so the quotient is ready to be
divided again. Object f is used to stop the computation by rule 18, since rule
1 : anf → b is not applicable. In case we proceed to the next iteration, the role of
object d is to increment the multiplicity n of objects a in region 1L, and object
p3 changes back to p0 and produces a new copy of c0 for the next cycle.

Below is a compact graphical representation of Π6.

a2

1L
b

1R

3 : c1 → c2, 4 : c2 → λ
b

2L
a

2R
5 : p0 → AABp1, 6 : Aa → A′a, 7 : Bb → B′b, 8 : p1 → p2

9 : p2B
′AA → p3d, 10 : p2B

′A′A → fno, 11 : p2B
′A′A′ → fno

12 : p2BAA → fno, 13 : p2BA′A → fyes, 14 : p2BA′A′ → fno
15 : p3 → p0c0, 16 : c0 → (c1, in2L), 17 : d → (a, in1L), 18 : f → (f, in1L)

p0c0
input an

s

We summarize some of the results we obtained as follows.

Theorem 2. There exist

– A strongly universal P system from OP47(polym−d(coo));
– A P system Π1 ∈ DOP7(polym−d(ncoo)) with a superexponential growth;
– A P system Π2 ∈ OP13(polym−d(ncoo), tar) such that N(Π2) = {n! · nk |

n ≥ 1, k ≥ 0} and the time complexity of generating n! · nk is n + k + 1;
– A P system Π3 ∈ OP9(polym−d(coo), tar) such that N(Π3) = {n! | n ≥ 1}

and the time complexity of generating n! is n + 1;
– A P system Π4 ∈ OP15(polym−d(ncoo), tar) such that N(Π4) = {22n | n ≥

0} and the time complexity of generating 22n

is 3n + 2;
– A P system Π ′

5 ∈ DOP∗(polym−d(coo), tar) such that f(Π5) = (n −→ 22n

)
and the time complexity of computing n −→ 22n

is O(n);
– A P system Π6 ∈ DOP∗(polym−d(coo), tar) such that Nd(Π6) = {n! | n ≥

1} and the complexity of deciding any number k, k ≤ n! does not exceed 4n.

Moreover, polymorphic P systems can grow faster than any non-polymorphic P
systems, whereas even non-cooperative polymorphic P systems with targets can
grow faster than any polymorphic P systems without targets.

Polymorphic P Systems 93

4 Discussion

We proposed a variant of the rewriting model of P systems where the rules are
represented by objects of the system itself and thus can dynamically change. This
yields a mechanism whose idea is similar to the idea of the functioning of the
cell nucleus (i.e., DNA represent the proteins performing certain functions on the
objects including DNA), except our formalism is more elegant mathematically
because of its simplicity and because we only used a trivial encoding (which is no
encoding at all, except the left and right parts of the rule are given in dedicated
membranes).

This variant also has a number of connections to the conventional computing,
since the “program” can be changed by manipulating data (cf. von Neumann ar-
chitecture vs Harvard architecture). A number of possible extensions is suggested
in the Definition section of the paper.

Polymorphic P systems are universal (with 47 membranes) because non-
polymorphic P systems are universal. While the growth of non-polymorphic
P systems is bounded by exponential, polymorphic P systems without target
indications can grow faster, bounded by an exponential of polynomials, and
polymorphic P systems with target indications can grow even faster, bounded
by an exponential of exponentials.

Non-cooperative polymorphic P systems can generate non-context-free sets of
numbers. Cooperative polymorphic P systems can multiply numbers in constant
time and generate factorials of n or exponentials of exponentials of n in time
O(n), which is a very important advantage over non-polymorphic P systems.

An especially interesting case is that of deciding if the input belongs to a given
set, e.g., {n! | n ≥ 1}. While non-polymorphic P systems cannot even grow with
factorial speed, not to speak about halting or verifying the input, we have shown
that polymorphic P systems can decide factorials in time O(n). This implies that
there exist infinite sets of numbers that are accepted in a time which is sublinear
with respect to the size of the input in binary representation (without cheating
by only examining a part of the input to accept).

Many questions are left open, we mention three questions here. First, we
find it particularly interesting what is the exact characterization of the most
restricted classes we defined, like OP∗(polym−d(ncoo)). On the other hand, it
seems interesting how the (general classes of) polymorphic P systems can solve
the problems of real applications which non-polymorphic P system are not suit-
able for. Another question is whether the polymorphic P systems can effectively
use superexponential growth and dynamics of rule description to solve intractable
problems in polynomial time without dividing or creating membranes. Conjec-
ture: no, because the total number of rules (counting rules in different regions
as different) cannot grow.

Acknowledgments. The authors acknowledge the support by the Science and
Technology Center in Ukraine, project 4032. Artiom Alhazov also acknowleges
the support of the Japan Society for the Promotion of Science and the Grant-
in-Aid for Scientific Research, project 20·08364.

94 A. Alhazov, S. Ivanov, and Y. Rogozhin

References

1. Alhazov, A.: A Note on P Systems with Activators. In: Păun, G., Riscos-Núñez,
A., Romero-Jimenez, A., Sancho-Caparrini, F. (eds.): Second Brainstorming Week
on Membrane Computing, RGNC Report 01/2004, University of Sevilla, pp. 16–19
(2004)

2. Alhazov, A., Verlan, S.: Minimization Strategies for Maximally Parallel Multi-
set Rewriting Systems. Technical Report, 862, Turku Centre for Computer Sci-
ence, Turku (2008), http://tucs.fi and arXiv:1009.2706v1 [cs.FL] (September
14, 2010), http://arxiv.org/abs/1009.2706

3. Arroyo, F., Baranda, A., Castellanos, J., Păun, G.: Membrane Computing: The
Power of (Rule) Creation. Journal of Universal Computer Science 8(3), 369–381
(2002)

4. Cavaliere, M., Ionescu, M., Ishdorj, T.-O.: Inhibiting/de-inhibiting Rules in P
systems. In: Preproceedings of the Fifth Workshop on Membrane Computing
(WMC5), Milano, pp. 174–183 (2004)

5. Cavaliere, M., Genova, D.: P systems with Symport/Antiport of Rules. Journal of
Universal Computer Science 10(5), 540–558 (2004)

6. Freund, R.: Generalized P-systems. In: Ciobanu, G., Păun, G. (eds.) FCT 1999.
LNCS, vol. 1684, pp. 281–292. Springer, Heidelberg (1999)

7. Păun, G.: Research Topics in Membrane Computing. In: Gutiérrez-Naranjo, M.A.,
Păun, G., Riscos-Núñez, A., Romero-Campero, F.J. (eds.) Fourth Brainstorming
Week on Membrane Computing, Fénix Editora, Sevilla, vol. II, pp. 235–252 (2006)

8. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
9. Ştefănescu, G., Şerbănuţa, T., Chira, C., Roşu, G.: P Systems with Control Nuclei.

In: Preproceedings of the Tenth Workshop on Membrane Computing (WMC10),
Curtea de Argeş, pp. 361–365 (2009)

10. P systems webpage, http://ppage.psystems.eu/

http://tucs.fi
http://arxiv.org/abs/1009.2706
http://ppage.psystems.eu/

A Small Universal Splicing P System

Artiom Alhazov1,2, Yurii Rogozhin1, and Sergey Verlan3,1

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova

Academiei 5, Chişinău 2028 Moldova
{artiom,rogozhin}@math.md

2 IEC, Department of Information Engineering
Graduate School of Engineering, Hiroshima University

Higashi-Hiroshima 739-8527 Japan
3 LACL, Département Informatique, Université Paris Est

61, av. gén de Gaulle, 94010, Créteil, France
verlan@univ-paris12.fr

Abstract. In this article we present a universal splicing P system with
6 rules. Thus we improve the previous result that used 8 rules and lower
the possible value for the boundary between the universality and non-
universality for such systems.

1 Introduction

Head splicing systems (H systems) were one of the first theoretical model of bio-
molecular computing (DNA-computing) and they were introduced by T.Head [5].
The molecules from biology are replaced by words over a finite alphabet and the
chemical reactions are replaced by a splicing operation. An H system specifies
a set of rules used to perform a splicing and a set of initial words or axioms.
The computation is done by applying iteratively the rules to the set of words
until no more new words can be generated. This corresponds to a bio-chemical
experiment where one has enzymes (splicing rules) and initial molecules (axioms)
which are put together in a tube and one waits until the reaction stops.

H systems are not very powerful, so, a lot of other models introducing addi-
tional control elements were proposed (see [9] for an overview).

Another extension of H systems was done using the framework of P sys-
tems [8], see also [4] and [10]. In a formal way, splicing P systems can be consid-
ered like a graph, whose nodes contain sets of strings and sets of splicing rules.
Every rule permits to perform a splicing and to send the result to some other
node.

Since splicing P systems generate any recursively enumerable languages, it is
clear that there are universal splicing P systems. Like for small universal Turing
machines, we are interested by such universal systems that have a small number
of rules. A first result was obtained in [11] where a universal splicing P system
with 8 rules was shown. Similar investigations for P systems with symbol-objects
were done in [3,1] and the latter article constructs a universal antiport P system
with 23 rules.

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 95–102, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

96 A. Alhazov, Y. Rogozhin, and S. Verlan

In this article we provide a new construction for splicing P systems and prove
the remarkable fact that 6 splicing rules are powerful enough for the universality.

2 Definitions

We do not present here definitions concerning the concepts of the theory of
formal languages. We refer to [6] and [12] for more details. We only remark that
we denote the empty word by ε.

A tag system of degree m > 0, see [2] and [7], is the triplet T = (m, V, P),
where V = {a1, . . . , an+1} is an alphabet and where P is a set of productions of
form ai → Pi, 1 ≤ i ≤ n, Pi ∈ V ∗. We remark that for every ai, 1 ≤ i ≤ n, there
is exactly one production in P . The symbol an+1 is called the halting symbol.
A configuration of the system T is a word w. One passes from a configuration
w = ai1 . . . aimw′ to the next configuration z by erasing the first m symbols of
w and by adding Pi1 to the end of the word: w ⇒ z, if z = w′Pi1 .

The computation of T over the word x ∈ V ∗ is a sequence of configurations
x ⇒ . . . ⇒ y, where either y = an+1ai1 . . . aim−1y

′, or y′ = y and |y′| < m. In
this case we say that T halts on x and that y is the result of the computation
of T over x. We say that T recognizes the language L if there exists a coding ϕ
such that for all x ∈ L, T halts on ϕ(x), and T halts only on words from ϕ(L).

We note that tag systems of degree 2 are able to recognize the family of
recursively enumerable languages. Moreover, systems constructed in [2] and [7]
have non-empty productions and halt only by reaching the symbol an+1 in the
first position.

2.1 Splicing Operations

A splicing rule (over an alphabet V) is a 4-tuple (u1, u2, u3, u4) where u1, u2, u3,
u4 ∈ V ∗. It is frequently written as u1#u2$u3#u4, {$, #} �∈ V or in two dimen-

sions:
u1 u2

u3 u4
. Strings u1u2 and u3u4 are called splicing sites.

We say that a word x matches rule r if x contains an occurrence of one of
the two sites of r. We also say that x and y are complementary with respect
to a rule r if x contains one site of r and y contains the other one. In this
case we also say that x or y may enter rule r. When x and y can enter a rule
r = u1#u2$u3#u4, i.e., one has x = x1u1u2x2 and y = y1u3u4y2, it is possible
to define the application of r to the couple x, y. The result of this application
is w and z where w = x1u1u4y2 and z = y1u3u2x2. We also say that x and y
are spliced and w and z are the result of this splicing. We write this as follows:
(x, y) �r (w, z).

The pair σ = (V, R) where V is an alphabet and R is a set of splicing rules is
called a splicing scheme or an H-scheme.

For a splicing scheme σ = (V, R) and for a language L ⊆ V ∗ we define:
σ(L) def= {w, z ∈ V ∗ | ∃x, y ∈ L, ∃r ∈ R : (x, y) �r (w, z)}.
We now can introduce the iteration of the splicing operation.

A Small Universal Splicing P System 97

σ0(L) = L,
σi+1(L) = σi(L) ∪ σ(σi(L)), i ≥ 0,
σ∗(L) = ∪i≥0σ

i(L).
The iterated splicing preserves the regularity of a language:

Theorem 1. [9] Let L ⊆ T ∗ be a regular language and let σ = (T, R) be a
splicing scheme. Then language σ∗(L) is regular.

An extended H system is a quadruple γ = (V, T, A, R), where V is an alphabet,
T ⊆ V , A ⊆ V ∗, and R is a set of splicing rules over V . We call V the alphabet
of γ, T is the terminal alphabet, A is the set of axioms. The language generated
by γ is defined by L(γ) = σ∗(A) ∩ T ∗, where σ = (V, R) is the underlying H
scheme of γ.

We say that γ = (V, T, A, R) computes L ⊆ V ∗ on input w if L = L(γ′), where
γ′ = (V, T, A ∪ {w}, R).

2.2 Splicing (Tissue) P Systems

A splicing tissue P system of degree m ≥ 1 is a construct

Π = (V, T, G, A1, . . . , Am, R1, . . . , Rm),

where V is a finite alphabet, T ⊆ V is the terminal alphabet and G is the
underlying directed labeled graph of the system. The graph G has m nodes
(cells) numbered from 1 to m. Each node i contains a set of strings (a language)
Ai over V . Symbols Ri, 1 ≤ i ≤ m are finite sets of rules (associated to nodes)
of the form (r; tar1, tar2), where r is a splicing rule: r = u1#u2$u3#u4 and
tar1, tar2 ∈ {here, out} ∪ {goj | 1 ≤ j ≤ m} are target indicators. We remark
that the communication graph G can be deduced from the sets of rules. More
precisely, G contains an edge (i, j), iff there is a rule (r; tar1, tar2) ∈ Ri with
tark = goj , k ∈ {1, 2}. If one of tark is equal to here, then G contains the loop
(i, i).

A configuration of Π is the m-tuple (N1, . . . , Nm), where Ni ⊆ V ∗. A tran-
sition between two configurations (N1, . . . , Nm) ⇒ (N ′

1, . . . , N
′
m) is defined as

follows. In order to pass from one configuration to another, splicing rules of each
node are applied in parallel to all possible words that belong to that node. Af-
ter that, the result of each splicing is distributed according to target indicators.
More exactly, if there are x, y in Ni and r = (u1#u2$u3#u4; tar1, tar2) in Ri,
such that (x, y) �r (w, z), then words w and z are sent to nodes indicated
by tar1, respectively tar2. We write this as follows (x, y) �r (w, z)(tar1, tar2).
If tark = here, k = 1, 2, then the word remains in node i (is added to N ′

i); if
tark = goj, then the word is sent to node j (is added to N ′

j); if tark = out, the
word is sent outside of the system.

Since the words are present in an arbitrary number of copies, after the appli-
cation of rule r in node i, words x and y are still present in the same node.

A computation in a splicing tissue P system Π is a sequence of transi-
tions between configurations of Π which starts from the initial configuration

98 A. Alhazov, Y. Rogozhin, and S. Verlan

(A1, . . . , Am). The result of the computation consists of all words over terminal
alphabet T which are sent outside the system at some moment of the computa-
tion. We denote by L(Π) the language generated by system Π .

We also define the notion of an input for the system above. An input word
for a system Π is simply a word w over the non-terminal alphabet of Π . The
computation of Π on input w is obtained by adding w to the axioms of A1
and after that by evolving Π as usual. We denote by L(Π, w) the result of the
computation of Π on w.

We consider the following restricted variant of splicing tissue P systems. A
restricted splicing tissue P system is a subclass of splicing tissue P systems which
has the property that for any rule (r; tar1, tar2) either tar1 = tar2 = goj , or
tar1 = tar2 = out or tar1 = tar2 = here. This means that both resulting strings
are moved over the same connection. In this case, we may associate splicing
rules to corresponding edges. If both targets are out, then we can associate the
splicing rule with an edge going to the special node called out.

3 Universal Restricted Splicing Tissue P System of Small
Size

The universality proofs are based on a simulation of tag systems [2,7] using the
well known rotate-and-simulate method. We show that the functioning of any
tag system can be simulated using restricted splicing tissue P system with 6
rules. The universality of the corresponding system follow from the existence of
universal tag systems.

Let V = {a1, . . . , an+1} be an alphabet and α, β /∈ V . Consider coding
morphisms c and c̄ defined as follows: c(ai) = αi+1β, c̄(ai) = βαi+1.

Theorem 2. Let TS = (2, V, P) be a tag system and w ∈ V ∗. Then, there is a
restricted splicing tissue P system Π = (V ′, T, G, A1, A2, A3, R1, R2, R3), having
6 rules, which given the word Xββc(w)βY as input simulates TS on input w,
i.e. such that:

1. for any word w on which TS halts producing the result w′, the system Π
produces a unique result X ′c(w′)Y ′, i.e., L(Π, w) = {X ′c(w′)Y ′}.

2. for any word w on which TS does not halt, the system Π computes infinitely
without producing a result, i.e., L(Π, w) = ∅.

Proof. We construct the system Π as follows.
Let |V | = n + 1. We use the following alphabets V ′ and T .

V ′ = {α, β, X, X ′, Y, Y ′, Z, Z ′}, T = {X ′, Y ′, α, β}.
The initial languages Aj , j ∈ {1, 2, 3} are given as follows.

A1 = {Z ′c(Pi)c̄(ai)Y | ai → Pi ∈ P, 1 ≤ i ≤ n} ∪ {XβZ, ZY, Z ′Y ′},
A2 = {XZ},
A3 = {XZ, X ′Z}.

A Small Universal Splicing P System 99

The set of rules Rj , j ∈ {1, 2, 3} are given as follows.

R1 = {1.1 : (ε#βY $Z ′#ε; go3, go3); 1.2 : (ε#αY $Z#Y ; go2, go2);
1.3 : (Xβα#ε$Xβ#Z; here, here)};

R2 = {2.1 : (Xα#ε$X#Z; go1, go1)};
R3 = {3.1 : (Xββ#αα$X#Z; go1, go1); 3.2 : (Xββ#αβ$X ′#Z; out, out)}.

The graph G can be deduced from the rules above and it is represented in
Figure 1. We observe that this graph is induced by a tree structure with duplex
communication and loops.

�������	1

1.3:
Xβα ε

Xβ Z

��
1.1:

ε βY

Z′ ε

��

1.2:
ε αY

Z Y

��

out��

3.2:
Xββ αβ

X′ Z

���������

�������	3

3.1:
Xββ αα

X Z

��

�������	2

2.1:
Xα ε

X Z

��

Fig. 1. The communication graph G associated to the construction from Theorem 2

The simulation of TS is performed as follows. For every step of the derivation
in TS there is a sequence of several derivation steps in Π . The current config-
uration w of TS is encoded by a string Xββc(w)βY present in node 1 of Π
(the initial configuration of Π satisfies this property). The simulation of a pro-
duction ai → Pi, 1 ≤ i ≤ n is performed using the rotate-and-simulate method
used for many proofs in the area of splicing systems. We use this method as
follows. First, suffixes c(Pj)c̄(aj), 1 ≤ j ≤ n are attached to the string pro-
ducing Xαiβc(akw′)c(Pj)βαjY . After that one symbol α is removed at the left
end of the string (rule 2.1) and one symbol α is removed at the right end of
the string (rule 1.2). A process of deleting of symbols α continues in the same
manner. Hence, only the string for which j = i will remain at the end, producing
Xβc(akw′)βY . After that the symbol ak is removed (by removing corresponding
α’s) and a new round begins. The simulation stops when the first symbol is an+1.

Now we consider a simulation of one step of the derivation in TS. Notice,
that in our construction every string that cannot evolve during one step of the
simulation cannot evolve anymore. Let Xββc(w)βY be present in node 1 and
1 ≤ j ≤ n. Then, there are two cases with respect to the first letter of w.

100 A. Alhazov, Y. Rogozhin, and S. Verlan

1. If w = aiakw′, with 1 ≤ i ≤ n and 1 ≤ k ≤ n + 1 (hence the corresponding
configuration in Π will be Xββαiβαkβc(w′)βY), then the only possibility
is to use the rule 1.1:

(Xββαiβαkβc(w′)βY, Z′c(Pj)βαjY) �1.1 (Xββαiβαkβc(w′)c(Pj)βαjY, Z′βY),

or

(Xββαiβαkβc(w′)βY, Z′Y ′) �1.1 (Xββαiβαkβc(w′)Y ′, Z′βY).

The string Z ′βY cannot evolve anymore. The other strings can be used in
rule 3.1:

(Xββαiβαkβc(w′)c(Pj)βαjY, XZ) �3.1 (Xaiβαkβc(w′)c(Pj)βαjY, XββZ),

(Xββαiβαkβc(w′)Y ′, XZ) �3.1 (Xαiβαkβc(w′)Y ′, XββZ).

The strings XββZ and Xαiβαkβc(w′)Y ′ cannot evolve anymore. The re-
maining strings are of the form Xαiβαkβc(w′)c(Pj)βαjY . There are 4 cases
with respect to values of i and j.
Case i > 0, j > 0. Then only rule 1.2 is applicable, followed by the appli-

cation of rule 2.1:

(Xaiβαkβc(w′)c(Pj)βαjY, ZY) �1.2 (Xaiβαkβc(w′)c(Pj)βαj−1Y, ZαY),

(Xaiβαkβc(w′)c(Pj)βαj−1Y, XZ) �2.1 (Xai−1βαkβc(w′)c(Pj)βαj−1Y, XαZ).

Hence indices i and j are decremented simultaneously. The strings ZαY
and XαZ cannot evolve anymore.

Case i > 0, j = 0. Then rule 1.1 is applicable:

(Xαiβαkβc(w′)c(Pj)βY, Z′c(Pt)βαtY) �1.1

(Xαiβαkβc(w′)c(Pj)c(Pt)βαtY, Z′βY),

(Xαiβαkβc(w′)c(Pj)βY, Z′Y ′) �1.1 (Xαiβαkβc(w′)c(Pj)Y ′, Z′βY).

All the strings cannot evolve anymore in this case.
Case i = 0, j > 0. Then rule 1.3 can be applied followed by an application

of rule 1.2:

(Xβαkβc(w′)c(Pj)βαjY, XβZ) �1.3 (Xβαk−1βc(w′)c(Pj)βαjY, XβαZ),

(Xαtβc(w′)c(Pj)βαjY, ZY) �1.2 (Xαtβc(w′)c(Pj)βαj−1Y, ZαY),

for some t ≥ 0.

In this case, the strings cannot evolve anymore.

A Small Universal Splicing P System 101

Case i = 0, j = 0. We observe that in this case we had i = j. Then either
rule 1.3 can be iteratively applied until k = 0, or rule 1.1 is applied when
k > 0.

(Xβαkβc(w′)c(Pi)βY, XβZ) �1.3∗ (Xββc(w′)c(Pi)βY, XβαZ),

(Xβαkβc(w′)c(Pi)βY, Z′c(Pt)βαtY) �1.1 (Xβakβc(w′)c(Pi)c(Pt)

βαtY, Z′βY),

(Xβαkβc(w′)c(Pi)βY, Z′Y ′) �1.1 (Xβakβc(w′)c(Pi)Y ′, Z′βY).

In the first case the string Xββc(w′Pi)βY is obtained, which corresponds
to the string w′Pi of TS. Hence the corresponding production is simu-
lated. In the latter two cases, the resulting strings cannot evolve anymore.

2. If w = an+1w
′, (hence the corresponding configuration in Π will be Xββαβ

c(w′)βY), then the only possibility is to use rule 1.1:

(Xββαβc(w′)βY, Z′c(Pj)βαjY) �1.1 (Xββαβc(w′)c(Pj)βαjY, Z′βY),

(Xββαβc(w′)βY, Z′Y ′) �1.1 (Xββαβc(w′)Y ′, Z′βY).

Then the only applicable rule is rule 3.2.

(Xββαβc(w′)c(Pj)βαjY, X ′Z) �3.2 (X ′αβc(w′)c(Pj)βαjY, XββZ),

(Xββαβc(w′)Y ′, X ′Z) �3.2 (X ′c(w′)Y ′, XββZ).

Only the string X ′c(w′)Y ′ is considered as a result because other strings
contain nonterminal symbols.

So, Π correctly simulates one step of the derivation in TS, thus Π correctly
simulate whole derivation in TS. It is also clear that a successful computation in
TS may be reconstructed from a successful computation in Π . This concludes
the proof.

4 Conclusions

In this paper we investigated splicing tissue P systems and we constructed a
universal splicing P system with 6 rules. This result is quite remarkable, because
the usual implementation of the rotation method for splicing systems needs at
least 4 rules. An open problem raised by this result is if the above number is
minimal. Other open problems concern the minimal number of rules in the case
of other variants of splicing systems, like TVDH systems or splicing test tube
systems [9].

102 A. Alhazov, Y. Rogozhin, and S. Verlan

Acknowledgments. A.Alhazov gratefully acknowledges the support of the Japan
Society for the Promotion of Science and the Grant-in-Aid for Scientific Re-
search, project 20·08364. All authors acknowledge the support by the Science
and Technology Center in Ukraine, project 4032.

References

1. Alhazov, A., Verlan, S.: Minimization strategies for maximally parallel mul-
tiset rewriting systems. Technical Report 862, TUCS Report No. 862
(2008), http://tucs.fi and arXiv:1009.2706v1 [cs.FL] (September 14, 2010),
http://arxiv.org/abs/1009.2706

2. Cocke, J., Minsky, M.: Universality of Tag Systems with P=2. Journal of the
ACM 11(1), 15–20 (1964)

3. Csuhaj-Varjú, E., Margenstern, M., Vaszil, G., Verlan, S.: Small Computationally
Complete Symport/Antiport P systems. Theoretical Computer Science 372(2-3),
152–164 (2007)

4. Frisco, P.: Computing with Cells: Advances in Membrane Computing. Oxford Uni-
versity Press, Oxford (2009)

5. Head, T.: Formal Language Theory and DNA: an Analysis of the Generative Ca-
pacity of Specific Recombinant Behaviors. Bulletin of Mathematical Biology 49(6),
737–759 (1987)

6. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation, 2nd edn. Addison-Wesley, Reading (2001)

7. Minsky, M.: Computations: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs (1967)

8. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
9. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing

Paradigms. Springer, Heidelberg (1998)
10. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, Oxford (2010)
11. Rogozhin, Y., Verlan, S.: On the Rule Complexity of Universal Tissue P Systems.

In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS,
vol. 3850, pp. 356–362. Springer, Heidelberg (2006)

12. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3.
Springer, Heidelberg (1997)

http://tucs.fi
http://arxiv.org/abs/1009.2706

Membrane Systems Working in Generating and
Accepting Modes: Expressiveness and Encodings

Roberto Barbuti1, Andrea Maggiolo-Schettini1,
Paolo Milazzo1, and Simone Tini2

1 Dipartimento di Informatica, Università di Pisa
Largo Pontecorvo 3, 56127 Pisa, Italy

{barbuti,maggiolo,milazzo}@di.unipi.it
2 Dipartimento di Informatica e Comunicazione, Università dell’Insubria

Via Mazzini 5, 21100 Varese and Via Carloni 78, 22100 Como, Italy
simone.tini@uninsubria.it

Abstract. Membrane systems can be seen either as generators or as
acceptors of multiset languages. In this paper we compare the expres-
sive power of membrane systems working in accepting mode with that of
membrane systems working in generating mode. Features like determin-
ism, presence of promoters and of cooperative rules are considered. The
comparison between some of the considered classes of membrane systems
is carried out by defining encodings of one class into another.

1 Introduction

Membrane systems (P systems) were introduced by Paun in [13] as distributed
parallel computing devices inspired by the structure and the functioning of cells.
In the extension of [3] the application of rules may be conditioned by the presence
of promoter objects. A promoter does not participate in the application of rules,
and a single promoter may enable the application of several rules and multiple
applications of each one of these rules. P systems with promoters have been
shown to be universal even when non-cooperative rules are considered [3]. The
same holds for P systems without promoters, but with cooperative rules [14].

In universality proofs P systems based on multiset rewriting rules (transition
P systems) are often seen as multiset generators. A computation of a P system
gives as output a multiset, and the set of all multisets given as output by different
computations of a system are taken as the multiset language generated by the
system. An alternative view considers P systems as multiset acceptors. Given a
multiset as input, the computation of a P system may take to an accepting state.
The set of accepted multisets constitutes the multiset language accepted by the
P system. In this paper we are interested in comparing the expressive power of P
systems working in generating and in accepting modes. In particular, we consider
classes of P systems that are discriminated by admitting, or not, promoters,
cooperative rules and nondeterminism, and that do not consider other features
like membrane dissolution or creation, priorities, and symport/antiport rules.

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 103–118, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

104 R. Barbuti et al.

In some cases of interest the comparison will be carried out by defining encod-
ings of one class of generator P systems into the corresponding class of acceptor
P systems. These encodings will not only be given to prove some results on the
expressive power of the considered classes. They will given also as a tool for a
easier construction of P systems accepting languages of interest. In fact, for some
classes of languages the definition of a P system generating it could be easier
than the definition of an acceptor for it (or viceversa). The proposed encodings
may allow to obtain from a P system working in the mode that is easier to be
designed an equivalent P system working in the other mode.

The universality results of generator P systems are mostly well-known. As
regards acceptors, the universality of nondeterministic acceptor P systems with
catalysts has been proved in [9] through simulation of register machines, and
the universality of deterministic acceptors has been proved in [5] for P systems
with membrane creation and dissolution, and in [5, 10] for P systems with sym-
port/antiport rules. Different notions of P systems working in generating and
accepting modes have been considered, for instance in [12, 15], from the point of
view of complexity. Other variants of P systems working in accepting mode and
with symport/antiport rules have been introduced in [4], called P automata, and
in [11], called analyzing P systems. Generating and accepting modes have been
considered and compared also in the context of regulated rewriting [6–8].

2 Membrane Systems with Promoters

In this section we recall the definition of P systems with promoters and introduce
notions of P systems accepting and generating multiset languages.

2.1 Definition

A membrane system (or P system) consists of a hierarchy of membranes that
do not intersect, with a distinguishable membrane, called the skin membrane,
surrounding them all. As usual, we assume membranes to be labeled by natural
numbers. Given a set of objects V , a membrane m contains a multiset of ob-
jects in V , a set of evolution rules, and possibly other membranes, called child
membranes (m is also called the parent of its child membranes). A rule in a
membrane m consumes objects in m and produces objects according to target
indications, specifying the membranes where each object produced by applying
the rule is sent. The products of a rule with target indications are denoted with
a set of pairs of the following forms:

– (v, here), meaning that the multiset of objects v produced by the rule remain
in the same membrane m;

– (v, out), meaning that the multiset of objects v produced by the rule are sent
out of m;

– (v, inl), meaning that the multiset of objects v produced by the rule are sent
into the child membrane l.

Membrane Systems Working in Generating and Accepting Modes 105

An evolution rule may have some promoters that are objects required to be
present in the membrane m in order to enable the application of the rule. We
can assume that all evolution rules have the following form:

u → (vh, here)(vo, out)(v1, inl1) . . . (vn, inln)|p

where u is the multiset of objects consumed by the rule, {l1, . . . , ln} is a set
of membrane labels, vh, vo, v1, . . . , vn are the objects (grouped in multisets by
target) produced by the rule, and p is the multiset of promoters of the rule.
Notice that all objects mentioned in the rules are in V , therefore an object may
appear in the reactants, in the products, and in the promoters of the rules. The
size of the left–hand side u of an evolution rule is called the radius of such a
rule. If a P system contains rules of radius greater than one, then it is called a
cooperative system. Otherwise, it is called non–cooperative.

Application of evolution rules is done with maximal parallelism: at each evolu-
tion step a multiset of instances of evolution rules is chosen non–deterministically
such that no other rule can be applied to the system obtained by removing all
the objects necessary to apply all the chosen rules. Rule application consists of
removing all the reactants of the chosen rules from the system and adding the
products of the rules by taking into account the target indications. Promoters
are not consumed by the application of the corresponding evolution rule, thus
implying that the presence of a single occurrence of a promoter can enable the
application of more than one rule in each maximally parallel evolution step.

A P system has a tree-structure in which the skin membrane is the root and
the membranes containing no other membranes are the leaves. We assume mem-
branes labels to be unique: they are assigned at the beginning of the evolution
by counting the membranes encountered during a breadth-first visit of the tree–
structure, with 1 as the label of the skin membrane.

Now, we formally define P systems with promoters.

Definition 1. A P system is a construct Π = (V, μ, w1, . . . , wn, R1, . . . , Rn)
where:

– V is an alphabet whose elements are called objects;
– μ ⊂ IN × IN is a membrane structure, such that (l1, l2) ∈ μ denotes that the

membrane labeled by l2 is contained in the membrane labeled by l1;
– wj with 1 ≤ j ≤ n are strings from V ∗ representing multisets over V asso-

ciated with the membranes 1, . . . , n of μ;
– Rj with 1 ≤ j ≤ n are finite sets of evolution rules associated with the

membranes 1, . . . , n of μ.

In this paper we assume P systems to be closed computational devices, namely we
assume that objects cannot be sent out of the skin membrane (i.e.rules sending
objects out are not allowed in the skin membrane) and objects cannot be received
by the skin membrane from outside.

A computation of a P system is a sequence of maximally parallel evolution
steps. A computation is valid if and only if the sequence of computation steps

106 R. Barbuti et al.

1

2

pq → (q, here)(p, in2)

p → λ

aa → (a, here)|p

anpkq

Fig. 1. An example of P system with promoters

1

pq → (qp2, here)

p2 → λ

aa → (a, here)|p

anpkq

Fig. 2. The result of flattening
the P system given in Figure 1

is finite and leads to a final configuration, namely a configuration in which no
evolution rules can be further applied. A P system is said to be deterministic if
it may perform only one computation (either valid or not). This happens when
at each step there is only one maximal multiset of applicable evolution rules.

We show in Figure 1 an example of P system in which all the main features
of the formalism are used. In the figure, membranes are depicted as boxes con-
taining evolution rules, objects and inner membranes. The label of a membrane
is at a corner of the corresponding box. Exponents are used to have a compact
representation of multiple occurrences of an object in a multiset. For example,
anpkb represents the multiset consisting of n occurrences of a, k occurrences of
p and one occurrence of b. Symbol λ denotes the empty multiset.

The P system in the figure performs a computation consisting of k steps. At
each step the number of a’s is halved and one p is sent into membrane 2, where it
is canceled. In the final configuration, membrane 1 contains the multiset a� n

2k
q.
Let us assume that V is partitioned into sets Σ and C, where C is called as

the set of control objects. From [1] it follows that any P system with promoters
Π can be translated into an equivalent P system Π ′ having a (flat) membrane
structure that consists only of the skin. The idea is to obtain the alphabet of the
control objects in Π ′ by enriching the alphabet of the control objects in Π with
objects labeled with indexes of membranes in Π to represent objects of Π that
are placed in some inner membrane. It turns out that Π and Π ′ are equivalent
in the sense that each of them can mimic the behavior of the other, evolution
step by evolution step. At each step the skin membranes of Π and Π ′ contain
the same multisets over Σ. An analogous technique was previously used in [2, 16]
but with different classes of P systems. As an example, we show, in Figure 2,
the result of flattening the P system with promoters given in Figure 1.

For the sake of precision, the class of P systems considered in [1] is slightly
different: (i) promoters of an evolution rule are given as a set rather than a
multiset, (ii) membranes are enriched with an interface that filters the objects
that can be received from the external environment, and (iii) also rule inhibitors
and dissolving rules are considered. As regards (i), it is easy to see that the way
in which promoters are given does not influence the flattening technique. As
regards (ii), membrane interfaces are used in [1] to ensure compositionality. Here,

Membrane Systems Working in Generating and Accepting Modes 107

we consider closed computational systems, hence we do not allow interactions
with the external environment. As regards (iii), it is easy to see that inhibitors
and dissolving rules are not introduced by the flattening technique, hence the
flat version of a P system of the class we consider here is still in the same class.
To sum up, we have that the following result holds.

Theorem 1. Every P system with promoters can be translated into an equiva-
lent P system whose membrane structure consists only of the skin membrane.

Proof. Follows from results in [1]. ��

If one gives a suitable notion of size of a P system taking into account the
cardinality of the set of objects and of the set of rules, one can infer that the
flattening technique in [1] takes a P system of size s to a P system of size o(s).

We shall always assume flat P systems in our proofs, consequently we shall
always assume the here particle for products of evolution rules (e.g. we will write
a → b for a → (b, here)).

In the following we shall study how determinism, promoters, and cooperative
rules have an influence on the expressive power of P systems. We shall use
the following notations for the different classes of P systems: P (coo, ndet, pro)
denotes the class of P systems admitting cooperation, non determinism and
promoters, we replace coo with ncoo in the classes where cooperative rules are
not admitted, ndet with det in the classes where nondeterminism is not admitted,
and pro with npro in the classes where promoters are not admitted.

2.2 Membrane Systems and Multiset Languages

P systems can deal with multiset languages. A multiset language [4] is a set of
multisets over a given alphabet. It might be obtained from a language of strings
by applying the Parikh mapping to each string in the language. The Parikh
mapping takes a string into a vector of natural numbers, in which each element
corresponds to the number of occurrences in the string of one of the alphabet
symbols. After application of the Parikh mapping, information on the ordering
of symbols in the strings of the language is lost.

Among the most important classes of multiset languages we mention the class
obtained by applying the Parikh mapping to all context free languages of strings,
denoted PsCF , that coincides with the class obtained by applying the Parikh
mapping to all regular languages, denoted PsREG. We mention also the class
obtained by applying the Parikh mapping to all recursively enumerable lan-
guages of strings, denoted PsRE. Note that PsRE is the class of all recursively
enumerable sets of multisets (represented as sets of vectors of natural numbers).

A P system can be used either as an acceptor or as a generator of a multiset
language over Σ. In the first case, a multiset over Σ is inserted in the skin
membrane of the P system and the result of its computations says whether such
a multiset belongs to the multiset language accepted by the P system or not. In
the second case the P system has a fixed initial configuration and can give as
results (possibly in a non-deterministic way) all the possible multisets belonging
to a given multiset language.

108 R. Barbuti et al.

Let us formalize the notion of P system used as language acceptor.

Definition 2. A flat acceptor P system over an alphabet Σ is a P system Π =
(Σ ∪ C ∪ {T }, ∅, w1, R1), where:

– C is a set of control objects such that Σ ∩ C = ∅;
– T is a special object not contained in Σ ∪ C;
– w1 is a multiset of objects in C;
– A multiset w of objects over Σ is accepted by Π iff when we add w to w1

then a final configuration can be reached with T appearing in the membrane.

We remark that one could define equivalent notions of acceptor P systems by
assuming that a multiset is accepted if and only if a final configuration can be
reached (by ignoring the presence of T). We can simulate this simply by adding
T to w1 and by ensuring that there is no rule in R1 using such a special object.

We denote the language accepted by a P system Π as Ps(Π) (as Parikh set).
Moreover, we denote the set of languages accepted by a class of P systems by
adding prefix Ps and subscript a in the notation of the class itself as in the
following example: we use PsPa(ncoo, ndet, pro) to denote the set of languages
for which there exists an acceptor in the class P (ncoo, ndet, pro).

Now we formalize the notion of P system used as language generator.

Definition 3. A flat generator P system over an alphabet Σ is a P system
Π = (Σ ∪ C, ∅, w1, R1), where:

– C is a set of control objects such that Σ ∩ C = ∅;
– w1 is a multiset of objects in C;
– a multiset w of objects over Σ is generated by Π if and only if there exist

a multiset wC
o of objects over C and a final configuration that can be reached

having w ∪ wC
o as multiset of objects.

Note that also in the case of generator P systems there exist other equivalent
definitions that could be considered (and that have been considered in the liter-
ature). For instance, one could use a special membrane to collect the output of
the system, or could send the output out of the skin membrane.

As for acceptor P systems, we denote the language generated by a P systems
Π as Ps(Π), and we introduce a notation for the set of languages generated by
P systems of a certain class. In this case we replace subscript a with subscript
g as in the following example: we use PsPg(ncoo, ndet, coo) to denote the set of
languages for which there exists a generator in the class P (ncoo, ndet, coo).

3 Results on Expressive Power and Encodings

Given a class of P systems C accepting/generating the class of languages L, and
a class of P systems C′ accepting/generating the class of languages L′, we write
L ⇒ L′ if we can provide an encoding of C into C′. Notice that L ⇒ L′ implies
L ⊆ L′, but, in general, if we know that L ⊆ L′, then giving a mapping from C

Membrane Systems Working in Generating and Accepting Modes 109

PsPa(coo, ndet, pro) PsPa(coo, ndet, npro) PsPa(ncoo, ndet, pro)

‖ ‖ ‖⇑ ⇑ ⇑
PsRE PsPg(coo, ndet, pro) PsPg(coo, ndet, npro) PsPg(ncoo, ndet, pro)= = =

∪
PsPg(ncoo, ndet, npro)

∪
L1

PsPa(ncoo, ndet, npro)

‖

‖
L3

‖
PsRE PsPa(coo, det, pro) PsPa(coo, det, npro) PsPa(ncoo, det, pro) PsPa(ncoo, det, npro)= ⇔

= ⊃ ⊃
∪ ∪ ∪ ∪

L2 PsPg(coo, det, pro) PsPg(coo, det, npro) PsPg(ncoo, det, pro) PsPg(ncoo, det, npro)= = = =

Fig. 3. Relationships among classes of languages accepted and generated by the classes
of P systems considered in this paper

to C′ could be not trivial. If we know that both L = PsRE and L′ = PsRE, we
could exploit the universal formalism U that has been used to prove L′ = PsRE
and give “only” the encoding of C into U . However, it is often the case that the
universal formalism U does not include any form of parallelism. As a result, the
encoding of C (which is based on maximal parallelism) into U is often difficult
to be given. Moreover, the loss of parallelism in the encoding of C into U may
cause the acceptor/generator P systems in C′ given by the combination of the
two encodings of C into U and of U into C′, to be much less efficient than the
original ones. This motivates the proposal of direct encodings.

In this section we study the expressiveness of several classes of acceptor P sys-
tems, by focusing, in particular, on their encoding ability, following the idea that
relation L ⇒ L′ is more meaningful than L ⊆ L′. Our results are summarized
in Figure 3, where we report also results that are well known in the literature.
Classes L1,L2 and L3 will be defined later.

Our first three theorems (Thms. 2, 3, 4) show that PsPg(ncoo, ndet, pro) ⇒
PsPa(ncoo, ndet, pro), PsPg(coo, ndet, pro) ⇒ PsPa(coo, ndet, pro), and, finally,
PsPg(coo, ndet, npro) ⇒ PsPa(coo, ndet, npro). Since the three classes of gener-
ators are universal (see, for instance, [3] and [14]), this implies the universality
of these three classes of acceptors. Notice, however, that the universality of the
last class was already proved in [9].

If one gives a suitable notion of size of a P system taking into account the
cardinality of the set of objects and of the set of rules, one can infer that these
encodings take a generator of size s to an acceptor of size o(s). Formal proofs of
these results are omitted here for lack of space.

In the following, given a multiset of objects v, we shall write v′ to denote the
multiset {a′ | a ∈ v}, v′′ to denote the multiset {a′′ | a ∈ v}, and so on.

Theorem 2. PsPg(ncoo, ndet, pro) ⇒ PsPa(ncoo, ndet, pro).

Proof. Given any generator Π in P (ncoo, ndet, pro), we construct an equivalent
acceptor Πa in P (ncoo, ndet, pro). By Thm. 1 we can assume that Π is flat. Let

110 R. Barbuti et al.

Π = (Σ∪C, ∅, w, R). Also Πa will be flat, of the form (Σa∪Ca∪{T }, ∅, wa, Ra).
The idea is that Πa embeds Π and, for any input multiset u for Πa, we exploit Π
to generate a multiset v in Ps(Π) and, then, we compare u with v: if they coincide
then Πa accepts u. The non-determinism ensures that for every u ∈ Ps(Π) there
is an execution by Πa accepting it.

Actually, when Π is embedded into Πa, all initial objects in w and all objects
mentioned in the rules in R are primed, in order to distinguish them from the
input of Πa, and are considered as control objects. Hence, we have that Σa = Σ,
Ca ⊇ Σ′ ∪C′ and wa ⊇ w′. Then, in the construction of Πa we have to face two
problems. The first problem is that we must be able to check for termination
of Π in order to ensure to compare with the input of Πa an actual multiset in
Ps(Π) rather than something that is the result of a partial execution of Π . The
second problem is that we must implement the comparison.

To these purposes, let us add two fresh control objects to Ca: s, which triggers
the comparison, and g, which is initially in wa, is produced by all rules derived
from Π and prevents the production of s. So, first of all Ra contains all rules:

RΠ = {a′ → v′g|p′ | a → v|p is a rule in R}
Then, Ra contains the following set of rules, denoted R1, where also x, x′, 1, 2
are fresh objects in Ca and x and 1 are also in wa:

x → x′|1g x → s|2 x′ → x|2 g → λ 1 → 2 2 → 1|x′

Sets RΠ and R1 are such that some instances of g are in Πa as long as rules
in RΠ are applied. When no rule in RΠ can be applied, which simulates the
termination of the execution by Π , no occurrence of g is anymore in Πa. This
makes the rule x → x′|1g no longer applicable. Notice that Πa either contains
both 1 and x, or it contains both 2 and x′. In the former case, since x → x′|1g

cannot be applied and 2 is produced by 1 → 2, after one computation step s is
produced by x → s|2 and the comparison is triggered. In the latter case, x and
1 are produced by x′ → x|2 and 2 → 1|x′ , respectively, and we come back to the
previous case. Finally, let us add to Ca also the objects 0, 1, 2 and 3 and the set
Ĉ consisting of the capitalized versions of the symbols in Σ ∪ Σ′. Moreover, let
us add 0 and T to wa. The comparison of the multiset generated by the rules in
RΠ with the input is performed by the following set of rules (denoted R2):

0 → 1|s 1 → 2 2 → 3 { 3 → 1|Taa′ | a ∈ Σ}
{ a → a|1 | a ∈ Σ } { a → A|1 | a ∈ Σ }

{ a′ → a′|1 | a ∈ Σ } { a′ → A′|1 | a ∈ Σ }

{T → λ|AB2 | A, B ∈ Ĉ } {T → λ|A′B′2 | A′, B′ ∈ Ĉ }

{T → λ|A3 | A ∈ Ĉ } {T → λ|A′3 | A′ ∈ Ĉ } {T → T |AA′3 | A, A′ ∈ Ĉ }
{A → λ|3 | A ∈ Ĉ } {A′ → λ|3 | A′ ∈ Ĉ }

Objects 0, 1, 2 and 3 are used to sequentialize different phases of the compari-
son. In particular, the rule consuming 0 starts the comparison, and it is triggered
by s when the rules in RΠ are no longer applicable.

Membrane Systems Working in Generating and Accepting Modes 111

Rules promoted by 1 transform a non-deterministically chosen portion of the
objects of the input multiset and of the multiset generated by RΠ into their
capitalized version. Rules promoted by 2 check that at most one object of each
of the two multisets to be compared has been capitalized, otherwise they replace
T with λ. Rules promoted by 3 check that at least one object of each of the
two multisets to be compared has been capitalized, and that such two objects
are one the primed version of the other. Moreover, the capitalized objects are
deleted. These three phases remove one object from the input multiset and the
corresponding primed one from the multiset generated by RΠ , and they are
repeated until there are pairs of corresponding objects in the two multisets and
T has not been removed. Such a control is performed by the promoters of rules
consuming 3.

Summarizing, Σa = Σ, Ca = Σ′ ∪ C′ ∪ Ĉ ∪ {0, 1, 2, 3, x, x′, 1, 2, g, s}, wa =
w′ ∪ {0, 1, x, g, T} and Ra = RΠ ∪ R1 ∪ R2. ��

Theorem 3. PsPg(coo, ndet, pro) ⇒ PsPa(coo, ndet, pro).

Proof. Following the proof of Thm. 2, given any generator Π in P (coo, ndet, pro)
we construct an acceptor Πa in P (coo, ndet, pro) that embeds Π . The acceptor
Πa can be constructed exactly as in the proof of Thm. 2. However, since here we
can exploit cooperative rules, the set of rules R2 used in the proof of Thm. 2 to
implement the comparison between the input of Πa and the multiset generated
by RΠ can be replaced by the following rules:

{aa′ → λ|s | a ∈ Σ} ∪ {aT → λ|s | a ∈ Σ} ∪ {a′T → λ|s | a ∈ Σ}
In this case the comparison requires only one computation step. ��

Theorem 4. PsPg(coo, ndet, npro) ⇒ PsPa(coo, ndet, npro).

Proof. Also in this case we exploit the generator Π in P (coo, ndet, npro) to build
an equivalent acceptor Πa in P (coo, ndet, npro). By Thm. 1 we can assume
that Π is flat. Let Π = (Σ ∪ C, ∅, w, R). Also Πa will be flat, of the form
(Σa ∪ Ca ∪ {T }, ∅, wa, Ra). As in the proof of Thm. 2, we rename all objects in
Π so that Σa = Σ, Ca ⊇ Σ′ ∪ C′, wa ⊇ w′, and we introduce a fresh control
object s in Ca triggering the comparison between the input multiset of Πa and
the multiset generated by the rules in Πa derived from those in Π . Here s is
triggered by another control object t ∈ Ca, trough the rule

t → rs

where also r is a fresh object in Ca. The idea is that t is initially in wa and
the other rules in Ra will ensure that in all computations leading to a final
configuration with T in the membrane, then this rule fires only after the rules
derived from those in Π have generated their multiset.

Acceptor Πa performs a loop with 3 steps, until s is produced from t by rule
t → rs. The sequence of these 3 steps simulates a single computation step by Π .
At the first step in the loop, the following set of rules R1

Π may fire:

{u′ → v′′v′′′, tu′ → v′′v′′′t′ | u → v is a rule in R}

112 R. Barbuti et al.

Firing tu′ → v′′v′′′t′ prevents firing t → rs and, as a consequence, the production
of s. Object t′ is in Ca and serves to produce t once more.

At the second step, the following set of rules R2
Π may fire:

{a′′′rT → λ | a ∈ Σ} ∪ {t′ → t′′} ∪ {a′′ → a′′′′ | a ∈ Σ}

The rules in the first set check that s has not been produced (note that s can
be produced only together with r) if the computation by Π has not terminated
yet. More precisely, if s has been already produced and the computation by Π
has not terminated yet, T is removed.

At the third step the following set of rules R3
Π may fire:

{a′′′a′′′′ → a′ | a ∈ Σ} ∪ {t′′ → t}

so that the first step can begin once more.
When Πa exits from the loop, which simulates the termination by Π , s can

be exploited for the comparison implemented by the following set of rules R1:

{saa′ → s | a ∈ Σ} ∪ {saT → λ | a ∈ Σ} ∪ {sa′T → λ | a ∈ Σ}

Summarizing, Σa = Σ, Ca = {a′, a′′, a′′′, a′′′′ | a ∈ Σ ∪ C} ∪ {r, s, t, t′, t′′},
wa = w′ ∪ {t, T }, Ra = {t → rs} ∪ R1

Π ∪ R2
Π ∪ R3

Π ∪ R1. ��

From our first three theorems, the following results follow.

Corollary 1. It holds that:

– PsPg(ncoo, ndet, pro) ⊆ PsPa(ncoo, ndet, pro),
– PsPg(coo, ndet, pro) ⊆ PsPa(coo, ndet, pro),
– PsPg(coo, ndet, npro) ⊆ PsPa(coo, ndet, npro).

Let us prove now that if we admit neither promoters nor cooperative rules, then
nondeterministic acceptors and deterministic acceptors have the same expressive
power, and are less expressive than nondeterministic generators. To this purpose,
we characterize both PsPa(ncoo, ndet, npro) and PsPa(ncoo, det, npro).

Given a set of objects Σ and A, N ⊆ Σ, let LA,N and LN denote the following
multiset languages:

LA,N = {u | A ∩ u 	= ∅ and N ∩ u = ∅}, LN = {u | N ∩ u = ∅} .

Let L1 be the class L1 = {LA,N | A, N ⊆ Σ for some set of objects Σ}∪{LN |
N ⊆ Σ for some set of objects Σ}.

Theorem 5. PsPa(ncoo, ndet, npro) = PsPa(ncoo, det, npro) = L1.

Proof. First of all we prove that L1 ⊆ PsPa(ncoo, det, npro). Given a set of
objects Σ and sets A, N ⊆ Σ, an acceptor for LA,N has no control object and
rules {a → T | a ∈ A} and {b → b | b ∈ N}. An acceptor for LN contains
initially an occurrence of T and has rules {b → b | b ∈ N}.

It remains to prove that PsPa(ncoo, ndet, npro) ⊆ L1. Assume any acceptor
Π ∈ P (ncoo, ndet, npro). If it contains a rule of the form T → u, for any u ∈ Σ∗,

Membrane Systems Working in Generating and Accepting Modes 113

then Ps(Π) = ∅, and ∅ ∈ L1 (∅ = LΣ). Otherwise, let G be the graph having a
node for each object in Σ ∪ C and an arch from a to b if there is a rule a → u
with b ∈ u. Let N be the set of the objects a ∈ Σ such that all paths from a
are infinite, meaning that there exists an object a′ such that a → · · · → a′ and
a′ → · · · → a′, and let A be the set of the objects a ∈ Σ such that at least
one path from a is finite and leads to T , namely has the form a → · · · → T .
If T is an initial object in Π then a multiset is accepted iff it gives rise to a
finite computation, because no rule can remove T and the final configuration, if
reached, contains T for sure. Therefore, Ps(Π) = LN . If T is not initially in Π ,
then a multiset is accepted iff it gives rise to a finite computation that introduces
T in one of its steps. Therefore, Ps(Π) = LA,N . ��

Corollary 2. PsPg(ncoo, ndet, npro) ⊃ PsPa(ncoo, ndet, npro).

Proof. Follows from results in [14], where P systems without cooperative rules
and with the output interpreted as a natural number are proven to be able to
generate semilinear set of numbers (Theorem 3.3.2). In the proof of the theorem
a translation of context free grammars into P systems without cooperation is
given which implies that PsREG ⊆ PsPg(ncoo, ndet, npro). It is obvious that
L1 ⊂ PsREG. (Recall that PsREG = PsCF .) ��

Let us switch to deterministic systems. In this case the expressive power of gen-
erators is quite poor, and equivalent to the class of multiset languages consisting
of at most one multiset. Let L2 = {{w} | w is a multiset} ∪ {∅}.

Proposition 1. PsPg(ncoo, det, pro)=PsPg(coo, det, pro)=PsPg(ncoo, det, npro)=
PsPg(coo, det, npro) = L2.

Proof. The initial configuration of a generator P system is fixed. Determinism
implies that there is one only possible execution. If such an execution terminates,
then it gives the only multiset of the language as output, otherwise the generated
language is empty. Any language consisting of one multiset u can be generated
by means of a non-cooperative rule without promoters a → v at the first step,
where a is a control object initially in the P system. Cooperation and promoters
do not increase expressiveness. ��

We already know that PsPa(ncoo, det, npro) = L1. Let us characterize the class
PsPa(ncoo, det, pro), which turns out to be more expressive. Let L3 denote the
least class of multiset languages including all sets {an|n ≥ k} for every object a
and every k ∈ IN, closed by complementation, finite union and finite intersection.
Let us write u

R→ v to denote that by performing a multiset of rules R we rewrite
a multiset of objects u into a multiset of objects v. Let us write u |= r if a multiset
of objects u triggers a rule r.

Theorem 6. PsPa(ncoo, det, pro) = L3.

Proof. Let us prove first that PsPa(ncoo, det, pro) ⊆ L3. Let Π be an acceptor
in P (ncoo, det, pro). By Thm. 1 we can assume that Π is flat. Let Π = (Σ ∪C ∪

114 R. Barbuti et al.

{T }, ∅, w, R). Assume that R = {ri | i ∈ I}, with each ri of the form ai → ui|pi .
Let m = max {h | ∃i ∈ I, b ∈ Σ. bh ∈ pi}.

To prove that Ps(Π) ∈ L3 it is enough to prove that if ahu ∈ Ps(Π) for some
a ∈ Σ, u ∈ Σ∗ and h ≥ m, then also ah+1u ∈ Ps(Π).

Assume that ahu is accepted by Π by performing n computation steps, for
some n ∈ IN. More precisely, there exist n multisets T1, . . . , Tn, with Tj = {rni,j

i |
i ∈ I}, and n + 1 multisets of objects u0, u1, . . . , un such that u0

T1→ u1
T2→ · · · Tn→

un, u0 = ahu, T ∈ un and un �|= ri for any i ∈ I.
Let v0 = ah+1u. We can prove that there exist n multisets T ′

1, . . . , T
′
n, with

T ′
j = {rn′

i,j

i | i ∈ I}, and n multisets of objects v1, . . . , vn such that v0
T ′
1→ v1

T ′
2→

· · · T ′
n→ vn, vn �|= ri for any i ∈ I, ni,j ≤ n′

i,j and ni,j = 0 ⇒ n′
i,j = 0 for each

i ∈ I and 1 ≤ j ≤ n, and, finally, vj ⊇ uj and bx ∈ uj and bx+y ∈ vj with y > 0
and bx+y �⊆ uj imply x ≥ m for each 0 ≤ j ≤ n.

In fact, we know that v0 ⊇ u0 and that bx ∈ u0 and bx+y ∈ v0 with y > 0
and bx+y �⊆ u0 imply that b is a, and, therefore, x = h ≥ m. Now, given any
0 ≤ j ≤ n, assume that vj ⊇ uj and that bx ∈ uj and bx+y ∈ vj with y > 0
and bx+y �⊆ uj imply x ≥ m. This implies that vj and uj promote the same
rules. Therefore, if j = n, since uj �|= ri for any i ∈ I, we infer that also
vj �|= ri for any i ∈ I. If j < n then vj ⊇ uj implies that a computation step

vj

T ′
j→ vj+1 with n′

i,j ≥ ni,j actually exists. Since uj and vj promote the same rules
and all rules are non-cooperative, we also infer that ni,j = 0 implies n′

i,j = 0.
Moreover, uj+1 = (uj ∩ {b | b �= ai for any i with ni,j > 0})∪ {uni,j

i | i ∈ I} and

vj+1 = (vj ∩ {b | b �= ai for any i with ni,j > 0}) ∪ {un′
i,j

i | i ∈ I}. The relation
uj+1 ⊆ vj+1 follows immediately. It remains to prove that it cannot happen that
bx ∈ uj+1, bx+y ∈ vj+1, y > 0, bx+y �⊆ uj+1 and x < m for any b ∈ Σ. If,
by contradiction, this happens for some b, then there is a rule ri = ai → ui|pi

with b ∈ ui such that n′
i,j > ni,j and ni,j < x + y. We infer that a

n′
i,j

i ∈ vj and
a

ni,j

i ∈ uj. Since we know that for all c it holds that ck ∈ uj and ck+h ∈ vj with
h > 0 imply k ≥ m, we infer that ni,j ≥ m. Having ni,j ≥ m and x < m is a
contradiction, since x ≥ ni,j .

Let us prove now that PsPa(ncoo, det, pro) ⊇ L3. Actually, we prove that
each multiset in L3 is accepted by a P system in P (ncoo, det, pro) that always
terminates and that consumes neither objects in Σ nor the symbol T .

The multiset {an | n ≥ k} is accepted by a P system with a control object b,
initial multiset b and a rule b → T |ak .

The multiset {an | n < k} is accepted by a P system with control objects
b, 1, 2, initial multiset b1 and rules b → λ|ak , 1 → 2 and 2 → T |b.

Finally, assume two multiset languages L1 and L2 in L3 and let Π1 and Π2
be the P systems accepting them. Assume that the set of control objects in Π1
and Π2 are disjoint. Let Π ′

1 and Π ′
2 be the P systems obtained from Π1 and

Π2 by replacing T with T1 and T with T2, respectively. The language L1 ∩L2 is
built by joining all control objects and rules in Π ′

1 with all control objects and
rules in Π ′

2 and by adding the rule T1 → T |T2 . The language L1 ∪ L2 is built

Membrane Systems Working in Generating and Accepting Modes 115

by joining all objects and rules in Π ′
1 with all objects and rules in Π ′

2 and by
adding the rules T1 → T and T2 → T . ��

Let us prove now the universality of the class PsPa(coo, det, npro). In this case
the corresponding class PsPg(coo, det, npro) is less expressive, therefore look-
ing for an encoding of PsPg(coo, det, npro) into PsPa(coo, det, npro) as done in
Thms. 2, 3, 4 is useless. We directly simulate 3-register machines, for which uni-
versality has been proven without the need of any complicated representation of
data and instructions (as it happens with 2-register machines). Notice that the
universality of deterministic acceptors was already proved in [5] and [10], for P
systems with symport and antiport rules.

Theorem 7. PsPa(coo, det, npro) = PsRE.

Proof. We provide a map assigning to a 3-register machine M an equivalent
acceptor P system ΠM in P (coo, det, npro). Let R1, R2 and R3 be the three
registers of M , and 0 ≤ i ≤ m be the labels of its instructions. A state of M
is a triple (i, A, B, C), with 0 ≤ i ≤ m and A, B, C ∈ IN, the initial state is
(1, A′, B′, C′) for some A′, B′, C′ ∈ IN, and the pair (A′, B′, C′) is accepted if M
starting from (1, A′, B′, C′) reaches (0, 0, 0, 0). The idea is that ΠM uses objects
i with 0 ≤ i ≤ n, a, b and c, and represents a configuration (i, A, B, C) with
multiset (iaAbBcC).

Instruction i : R1+, j is simulated by rule i → aj.
Instruction i : R1−, j, k is simulated by rules

i → xiyi axi → x′
i yi → y′

i y′
ix

′
i → j y′

ixi → k .

Instructions over R2 and R3 are analogous, we simply replace any occurrence
of a with b or c, respectively. Finally, we need the following rules:

0 → T Ta → λ Tb → λ Tc → λ . ��

All results over deterministic acceptors proved so far can be summarized in the
following corollary.

Corollary 3. PsPa(ncoo, det, npro) ⊂ PsPa(ncoo, det, pro) ⊂PsPa(coo, det, npro)=
PsPa(coo, det, pro).

Proof. Directly from Thm. 5, Thm. 6 and Thm. 7 ��

Moreover, we have that each class of deterministic generators is strictly included
in the corresponding class of acceptors.

Corollary 4. It holds that:

– PsPg(ncoo, det, npro) ⊂ PsPa(ncoo, det, npro);
– PsPg(ncoo, det, pro) ⊂ PsPa(ncoo, det, pro);
– PsPg(coo, det, npro) ⊂ PsPa(coo, det, npro);
– PsPg(coo, det, pro) ⊂ PsPa(coo, det, pro).

116 R. Barbuti et al.

Proof. Directly from Thm. 5, Prop. 1, Cor. 3 and L2 ⊂ L1.

Finally, we provide an encoding of deterministic acceptors with cooperative
rules and promoters into the subclass without promoters.

Theorem 8. PsPa(coo, det, pro) ⇔ PsPa(coo, det, npro).

Proof. The encoding PsPa(coo, det, npro) ⇒ PsPa(coo, det, pro) is obvious. As
regards the other direction, given any acceptor Π ∈ P (coo, det, pro), we derive
an equivalent acceptor Π̂ ∈ P (coo, det, npro). By Thm. 1 we can assume that
Π is flat. Let Π = (Σ ∪C, ∅, w, R). Assume that R = {r1, . . . , rk} and Σ ∪C =
{a1, . . . , an}. Also Π̂ will be flat, of the form Π̂ = (Σ̂ ∪ Ĉ, ∅, ŵ, R̂), with Σ̂ = Σ,
Ĉ ⊃ C and ŵ ⊇ w.

The starting idea is that for any rule ri ≡ ui → vi|pi in R we have a rule r′i
without promoters in R̂ of the form r′i ≡ uipi → vipi, so that performing a step
S by Π with ni occurrences of ri in parallel for each 1 ≤ i ≤ k is simulated by
performing ni occurrences of r′i in sequence, for each 1 ≤ i ≤ k.

Rules ri as above do not work, for three reasons. The first point is that if
ui ∩ pi �= ∅ then ri is triggered by (ui ∪ pi) \ (ui ∩ pi), whereas r′i requires the
whole multiset ui ∪ pi. This can be repaired by rewriting all ri as ui → vi|pi\ui

,
without modifying the behavior of Π , before deriving Π̂ from Π . The second
point is that by moving promoters to left hand sides of rules we may introduce
nondeterminism. (For example, by transforming rules a → d|c and b → e|c into
ac → dc and bc → ec.) This can be repaired by rewriting r′i as iuipi → vipi,
where 1 ≤ i ≤ k are new control objects in Ĉ that must be introduced in
sequence. The third point is that if vi ∩ ui �= ∅ then performing r′i may trigger
r′i itself, which should be prevented when we are simulating a single evolution
step S by Π . This can be repaired by rewriting r′i as iu′

ipi → v′′i pi, provided that
new control objects a′, a′′ are introduced in Ĉ for each a ∈ Σ ∪C, objects a are
rewritten into a′ before the sequence of steps by Π̂ simulating S and objects a′′

are rewritten into a after the same sequence.
The initial multiset ŵ contains two fresh control objects s, s′ ∈ Ĉ. Acceptor

Π̂ may start by performing the following rules:

ss′ → 1s′1̂1 Ra = {a → a′ | a ∈ Σ ∪ C}
so that the object 1 triggering r′1 is introduced and all objects in Σ∪C are primed.
Also s′, 1̂ and 1 are new control objects in Ĉ, whose role will be clarified later.

Then, for each 1 ≤ i ≤ k, Ĉ contains also objects i′, i′′, i′′′, i′′′, and r′i is
adjusted once more as

r′i ≡ i′u′
ip

′
i → v′′

i p′
ii

′′′

For each 1 ≤ i < k the following set of rules are added to R̂

Ri = {i → i′i′′, i′′ → i′′′′, i′′′i′′′′ → i, i′i′′′′ → i + 1}
so that i is rewritten into i + 1 as soon as r′i remains without u′

ip
′
i. Moreover,

the following rules are added to R̂

Rk = {k → k′k′′, k′′ → k′′′′, k′′′k′′′′ → k, k′k′′′′ → v1}
where the role of the control object v1 ∈ Ĉ will be explained later.

Membrane Systems Working in Generating and Accepting Modes 117

Notice that a step S by Π consisting of ni occurrences of ri for each 1 ≤ i ≤ n
is simulated by performing n1 occurrences of r′1 in sequence, then n2 occurrences
of r′2 in sequence and so on. This is correct only if Π is deterministic, as in our
case. In fact, when Π is nondeterministic, our strategy solves the nondeterminism
and, therefore, does not simulate some valid behaviors by Π .

It remains to map any a′ that has not been consumed by r′1, . . . , r
′
k and any

a′′ that has been introduced by r′1, . . . , r
′
k to a. To this purpose, first of all we

add to Ĉ new control objects v1, . . . , vn and t1, . . . , tn, respectively.
Then, for each 1 ≤ j ≤ n, R̂ contains the following set of evolution rules

Rj = {vj → v′
jv

′′
j , v′

ja
′
j → v′′′

j aj , v
′′
j → v′′′′

j , v′′′
j v′′′′

j → vj , v
′
jv

′′′′
j → tj}

mapping all a′
js to aj , where also v′j , v

′′
j , v′′′j , v′′′′j are new objects in Ĉ. When

this task has been completed, tj is introduced. Moreover, for all 1 ≤ j < n, R̂
contains the following set of evolution rules

Rj
∗ = {tj → t′jt

′′
j , t′ja

′′
j → t′′′j aj , t

′′
j → t′′′′j , t′′′j t′′′′j → tj , t

′
jt

′′′′
j → vj+1}

mapping all a′′
j s to aj , where also t′j , t

′′
j , t′′′j , t′′′′j are new objects in Ĉ. Finally, R̂

contains also the following set of evolution rules

Rn
∗ = {tn → t′nt′′n, t′na′′

n → t′′′n an, t′′n → t′′′′n , t′′′n t′′′′n → tn, t′nt′′′′n → t}

mapping all a′′
ns to an. When this task has been completed, object t ∈ Ĉ is

introduced, which is exploited to trigger the rule t → s so that s and s′ can rein-
troduce 1 once more and the subsequent step by Π can be simulated. It remains
to solve a point: When no rule r′1, . . . , r

′
k is triggered, Π̂ does not terminate but

enters an infinite loop. Notice that this happens when object v1 is introduced in
3k steps after object 1. So, let us rewrite the rule k′k′′′′ → v1 introducing v1 as
k′k′′′′ → v1zz′, where z, z′ are new control objects in Ĉ, and let us add to R̂ the
following set of rules R′:

{̂i → î + 1 | 1 ≤ i < 3k} {i → i + 1 | 1 ≤ i ≤ 3k}
z3̂ks′ → λ 3k + 13̂k → λ z′ → z′′ zz′′ → λ

so that when 3̂k and z appear at the same step then s′ is removed and the
infinite loop is prevented. Objects i are needed since 3k + 1 removes 3̂k when 3̂k
appears before z. ��

4 Conclusions

The paper has studied relationships among classes of multiset languages accepted
and generated by P systems. In particular, the role of determinism, presence of
promoters and cooperative rules have been considered.

In the nondeterministic case, when either promoters or cooperative rules are
allowed, acceptor P systems have shown to be universal. The same is known to
hold for the corresponding classes of nondeterministic generator P systems. In

118 R. Barbuti et al.

the deterministic case, acceptor P systems have been shown to be universal only
if cooperative rules are allowed. Universality has been shown not to hold for the
corresponding classes of generator P systems.

All the considered classes of languages have been characterized, and results of
strict inclusion among some of them have been proved. Moreover, in some cases,
we have been able to give encodings of P systems working in generating mode
into the corresponding P systems working in accepting mode. The definition of
other encodings between the considered classes of P systems and the study of the
complexity aspects of these encodings (both in terms of the complexity of the
encodings themselves and of the size and efficiency of the results of the encoding
with respect to the corresponding input) will be the subject of further work.

References

1. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: A P Systems Flat Form
Preserving Step-by-step Behaviour. Fundamenta Informaticae 87, 1–34 (2008)

2. Bianco, L., Manca, V.: Encoding–Decoding Transitional Systems for Classes of P
Systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005.
LNCS, vol. 3850, pp. 134–143. Springer, Heidelberg (2006)

3. Bottoni, P., Martin-Vı́de, C., Pǎun, G., Rozenberg, G.: Membrane Systems with
Promoters/Inhibitors. Acta Informatica 38, 695–720 (2002)

4. Csuhaj-Varjú, E.: P Automata. In: Mauri, G., Păun, G., Jesús Pérez-J́ımenez,
M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 19–35.
Springer, Heidelberg (2005)

5. Calude, C.S., Pǎun, G.: Bio-steps beyond Turing. BioSystems 77, 175–194 (2004)
6. Fernau, H.: Graph-controlled Grammars as Language Acceptors. Journal of Au-

tomata, Languages and Combinatorics 2, 79–91 (1997)
7. Fernau, H., Holzer, M.: Accepting Multi-Agent Systems II. Acta Cybernetica 12,

361–380 (1996)
8. Fernau, H., Holzer, M., Bordihn, H.: Accepting Multi-Agent Systems. Computers

and Artificial Intelligence 15, 123–139 (1996)
9. Freund, R., Kari, L., Oswald, M., Sosk, P.: Computationally Universal P Systems

Without Priorities: Two Catalysts Are Sufficient. Theor. Comput. Sci. 330(2), 251–
266 (2005)

10. Freund, O., Pǎun, G.: On Deterministic P Systems (Manuscript),
http://ppage.psystems.eu/

11. Freund, R., Oswald, M.: A short note on analysing P systems. Bulletin of the
EATCS 79, 231–236 (2002)

12. Ibarra, O.H.: On the Computational Complexity of Membrane Systems. Theoret-
ical Computer Science 320, 89–109 (2004)

13. Pǎun, G.: Computing with Membranes. Journal of Computer and System Sci-
ences 61, 108–143 (2000)

14. Pǎun, G.: Membrane computing. An introduction. Springer, Berlin (2002)
15. Porreca, A.E., Mauri, G., Zandron, C.: Complexity Classes for Membrane Systems.

Theoretical Informatics and Applications 40, 141–162 (2006)
16. Qi, Z., You, J., Mao, H.: P systems and Petri nets. In: Mart́ın-Vide, C., Mauri,

G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp.
286–303. Springer, Heidelberg (2004)

http://ppage.psystems.eu/

BioSimWare: A Software for the Modeling,
Simulation and Analysis of Biological Systems

Daniela Besozzi1, Paolo Cazzaniga2, Giancarlo Mauri2, and Dario Pescini2

1 Università degli Studi di Milano
Dipartimento di Informatica e Comunicazione

Via Comelico 39, 20135 Milano, Italy
besozzi@dico.unimi.it

2 Università degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione

Viale Sarca 336, 20126 Milano, Italy
{cazzaniga,mauri,pescini}@disco.unimib.it

Abstract. BioSimWare is a novel software that provides a user-friendly frame-
work for the modeling and stochastic simulation of complex biological systems,
ranging from cellular processes to population phenomena. BioSimWare imple-
ments several stochastic algorithms to simulate the dynamics of single or multi-
volume models, as well as automatic tools to analyze the effect of variation of the
system parameters. BioSimWare supports SBML format, and can automatically
convert stochastic models into the corresponding deterministic formulation. The
main features of BioSimWare are presented in this paper, together with some ap-
plications which highlight the most relevant aspects of the computational tools
that it provides.

1 Introduction

Over the last decades, multidisciplinary approaches aimed at the analysis of cellular
systems have aroused an increasing attention of both experimental and theoretical re-
searchers, for their promising capability of gaining an unprecedented understanding
of the emergent behavior of complex biological systems [32,60,67]. Indeed, one of the
points that can aid in the elucidation of the mechanisms assuring the functionality of any
cellular process, is represented by the modeling and simulation of the spatio-temporal
network of its molecular interactions.

By exploiting mathematical modeling tools and computer simulation techniques, in-
tegrated with the available experimental data, we are now in the condition of making
predictions on a system behavior, therefore gaining insights into the working principles
and the organization of various biological systems. In particular, computational tools
allow to conduct many experiments that are unfeasible in laboratory. In this context,
simulators specifically built for biological systems, which can be used to understand
how the modeled system behaves in normal conditions and how it reacts to (simulated)
alterations of some of its components, surely present many advantages over conven-
tional experimental biology in terms of cost, ease to use and speed.

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 119–143, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

120 D. Besozzi et al.

In the last few years a wide variety of models of cellular processes have been pro-
posed, based on different formalisms. For example, deterministic models of chemical
kinetics – based on the law of mass action – attempt to represent cellular processes by
means of sets of ordinary differential equations (ODEs). At a different level of abstrac-
tion, many formalisms originally developed by computer scientists to model systems of
interacting components, have been applied in the field of Computational Biology (e.g.
Petri Nets [16] or π-calculus [55]).

Besides this, several experimental investigations have recently evidenced the pres-
ence of biological noise at the single-cell level [8,20,39], which is due to the inherently
random interactions between cellular molecules and takes place especially for those
species occurring in low amounts inside the cell. The classical modeling approach based
on ODEs is not actually able to capture the effects of these stochastic processes, which
can lead the cell behavior to complex dynamics such as bistability (that is, the possi-
bility of switching between two different stable steady states), that can be effectively
investigated only by means of stochastic modeling approaches. As a matter of fact,
many algorithms developed to perform stochastic simulations of biological systems
have proved their suitability for reproducing the dynamics of many cellular processes
(see, e.g., [12,40,61] and references therein).

Recently, also the framework of P systems [47,48] has been exploited in this field
of research. The most attractive features of P systems, which make them a suitable
framework for the modeling of biological systems, can be recognized in their peculiar
characteristics: the compartmentalized space, defined by means of a distributed mem-
brane structure, which allows to delimit distinct “reaction volumes” where different re-
actions can take place and operate onto local molecular species; the easy understandable
formalism in the writing of reactions, which provides a good flexibility in the expres-
sion and a good comprehension of the model also to non specialists; the possibility to
communicate chemicals among distinct volumes, which grants the flow of information
from a local level to the global level of the system, and allows to mimic the movement
of chemicals within cellular spaces; the application of reactions performed in parallel
at the level of volumes, which gives the strong capability to keep track of the global
functioning of the system, and so on.

In this paper, we describe the main features of BioSimWare, a software based on the
modeling approach of P systems, which allows to analyze a broad variety of biolog-
ical systems, ranging from cellular processes to population phenomena. BioSimWare
implements several stochastic simulation algorithms for both single and multi-volume
systems, as well as other useful tools (e.g. parameter estimation and parameter sweep
application) for the automatic analysis of the system dynamics under different
conditions.

The paper is structured as follows. In the next three sections we deal with the theoret-
ical issues that stand at the basis of BioSimWare. In particular, in Section 2 we present
the modeling approach, while in Section 3 we briefly describe the stochastic algorithms
currently available in BioSimWare for the simulation of single and multi-volume sys-
tems. The analysis tools are discussed in Section 4 where, in particular, we show how
the problem of parameter estimation for stochastic systems can be faced with the use
of (population-based) optimization methods. In Section 5 we present some examples of

BioSimWare 121

application of BioSimWare for the modeling and analysis of various biological dynam-
ics, as bistability, stiffness, oscillations, and so on. Section 6 concludes the paper with
some final remarks on our simulation environment.

2 Modeling Biological Systems with BioSimWare

In this section, we describe the modeling approach used in BioSimWare, by present-
ing the feature of compartmentalization and the description of reactions and molecular
species. We refer to Section 5 for some examples of various biological models that have
been studied with BioSimWare.

2.1 Compartmentalization

In BioSimWare the question of space is handled by providing the definition of a “com-
partmental geometry”, whereby space is divided into different volumes, with no su-
perimpositions between one another (note also that no specific geometrical properties,
given by a system of coordinates, are defined in BioSimWare for the compartmental-
ized volumes). Each volume can correspond to a real cellular compartment (i.e. the
cytoplasm, the nucleus, the mitochondria, etc.), or can represent a “virtual” compart-
ment, a concept that can be exploited to model specific aspects of a biological system
(e.g. virtual volumes might be used to describe the diffusion of molecular species [1]).

Adjacent (real or virtual) volumes can communicate with each other, thus mimicking
the passage of chemicals through a cellular membrane or their spatial diffusion. More-
over, each volume in the compartmentalized space is assumed to satisfy the conditions
– uniform molecular distribution and fixed size – stated in Section 3.1.

As BioSimWare has been used for the modeling not only of cellular processes, but
also of ecological systems, and might as well be applied to any other generic system de-
scribable in terms of individual components interacting in a compartmentalized geome-
try, we highlight here that the concept of volume can be extended to represent different
types of compartments. For instance, in the study of metapopulation systems – which
are ecological models describing the interactions and the behavior of populations living
in fragmented habitats – the compartments represent the patches (i.e. local areas) where
individuals of a population live, grow and interact with other individuals (see [7,3,5]).

2.2 Species and Reactions

After the definition of the compartmentalized geometry, the biological system is mod-
eled in BioSimWare by providing a set of molecular species and a set of chemical
reactions inside each volume.

Molecular species can be either “elementary” chemicals, or “molecular complexes”
formed by the interaction of other (elementary or complex) species.

The interaction between chemicals is described by using the formalism of biochemi-
cal reactions, having the general form α1S1+α2S2+· · ·+αkSk → β1S1+β2S2+· · ·+
βkSk, where S1, . . . , Sk are distinct molecular species, and α1, . . . , αk, β1, . . . , βk ∈ N
(with some αi, βi possibly equal to zero) represent the stoichiometric coefficients. In
other terms, a reaction of this type represents the interaction between α1 copies of

122 D. Besozzi et al.

species S1, . . . , αk copies of species Sk (called the reagents), which produces β1 copies
of species S1, . . . , βk copies of species Sk (called the products). Actually, in the mod-
eling of real biological systems, reaction of second-order, at most, should be defined
(that is, no more than two copies of the same or different molecular species can appear
as reagents). The rational behind this is that the simultaneous collision and chemical
interaction of more than three molecules at a time, has a probability to occur close to
zero in real systems.

According to the definition of the stochastic algorithms used to simulate the bio-
logical systems modeled with BioSimWare (see Section 3), each reaction is also char-
acterized by a numerical factor, i.e. a stochastic constant, that expresses the chemical
and physical characteristics of that molecular interaction. Note that, in order not to vi-
olate the correctness of the simulation algorithms, the reactions cannot have any other
form than the one given above. For instance, reactions that describe a signal transduc-
tion event through a cellular membrane, and which have as reagents some chemical
belonging to an external compartment and some other chemical belonging to an inter-
nal compartment, should be transformed into an opportune sequence of legal reactions
if one wants to execute the standard form of stochastic simulation algorithms.

Particular attention is to be taken when dealing with “communication reactions”,
which are the reactions that allow to move chemicals among the various volumes oc-
curring in the model (e.g. diffusion events). In BioSimWare, this aspect is implemented
by attaching a destination target to each communication reaction, specifying the volume
to which its products should be sent, as it is done in the definition of classical P sys-
tems. The communicated chemicals will then be considered as belonging to the target
volume only at the end of the simulation step, as better described in Section 3.2 (see
also [4,12]).

Note that, when defining models of biological systems where the basic interacting
components are not chemicals (e.g. metapopulations, populations of cell, etc.), the for-
malization of species and reactions does not require any modification in BioSimWare.
What changes is simply the meaning that these variables assume: for instance, in models
of metapopulations, they correspond to population species and the interaction between
individuals.

3 Stochastic Simulations Algorithms for Single and Multi-volume
Systems

Several stochastic algorithms are implemented in BioSimWare and can be chosen for
the simulation of the dynamics of single and multi-volume systems. These includes SSA
[22], tau leaping [10], adaptive tau leaping [11], DPP [49], τ -DPP [14] and Sτ -DPP
[13]. In this section, we briefly review some of the methods available with BioSimWare
for both single volume (Sections 3.1) and multi-volume systems (Section 3.2).

3.1 Single Volume Stochastic Simulation Algorithms

The stochastic simulation algorithm (SSA) allows to generate an exact reproduction of
the temporal evolution of biochemical systems [21,22]. In order to guarantee its exact-
ness – i.e. the logical equivalence to the Chemical Master Equation – some necessary

BioSimWare 123

conditions for the application of SSA have to be satisfied: (i) the system must be con-
tained within a single volume, whose physical conditions (pressure, temperature, etc.)
are assumed to remain constant during the simulation – that is, the volume cannot shrink
or increase, nor divide into other volumes, and no experimental variations are assumed
to be done during the simulation; (ii) the molecular species are considered uniformly
distributed inside the volume – that is, the volume is assumed to be well-mixed. The
amount of each molecular species is represented by the copy number of molecules;
(iii) molecular species can interact each other according to a given set of chemical
reactions, each one specified by a stoichiometric relationship between reactants and
products. Each reaction is also characterized by a stochastic constant (whose unit of
measurement is t−1) that reflects the physical and chemical properties of the species
involved in that reaction, under the experimental conditions fixed for the system.

At each time step of the simulation, the state of the system is represented by a state
vector whose elements correspond to the amount of each molecular species occurring
in the system. The state vector, together with the stochastic constants of reactions, is
used to compute the probability for each reaction (its propensity function) to occur in
the system at that time step. When a reaction event occurs in the system, the state vector
is updated by removing the reactants that have been consumed and adding the products
that have been produced. So doing, the state vector changes from time to time, and the
propensity functions of reactions vary accordingly. In [22] it is shown how to evaluate,
during each iterative step of the algorithm, the current time increment τ and the index
μ of the reaction that will be executed during τ . By iteratively finding τ and μ, SSA
performs a sequential description of the behavior of the system, meaning that at each
time increment only one reaction event occurs. This can result in a huge computational
burden, making therefore hard to efficiently simulate real cases of large biochemical
systems.

In order to speed up stochastic simulations, in [23] it was introduced another SSA-
based algorithm, called (explicit) tau leaping. With this method, instead of describing
the dynamics of the system by tracing every single reaction event, a time increment τ
is computed and a certain number of reactions are selected and executed in parallel.
In this case, the obtained behavior of the chemical system is not exact, though the
approximation error can be controlled by opportunely setting some parameters (see
[10] for more details).

Several different versions of the tau leaping algorithm have been proposed, aimed at
improving the procedure to compute the τ value and to select the reactions to be ap-
plied during each step. In BioSimWare, we have implemented the version of tau leaping
defined in [10], where a good approximation of the system dynamics as well as the com-
putational speedup are guaranteed by: (i) the “leap condition”, used to uniformly bound
the changes in the propensity functions of the reactions during each step; (ii) the divi-
sion of reactions into “critical” and “non-critical” reactions, which avoid the possibility
of generating state vectors with negative molecular populations (that might be due to the
application of a number of reactions greater than the number of the necessary reagent
molecules currently present inside the volume). A full description of the functioning
and settings of tau leaping algorithm can be found in [10].

124 D. Besozzi et al.

Some variants of tau leaping have also be presented to account for the phenomenon
of stiffness in biochemical systems [24,25]. Stiff systems are characterized by the pres-
ence of widely varying timescales, that is, reactions with fast and slow timescales –
with the fastest dynamical modes being stable. Indeed, many cellular systems consist
of a mixture of fast reactions, which occur very frequently, and of slow reactions, which
occur only rarely. The problem of stiffness is well known for ODEs, but it also impacts
the performance of stochastic simulation algorithms. When simulating stiff systems, the
SSA will spend most of the time in executing the fast reactions, one at a time; though, as
the majority of the fast reactions are usually not as important as the slow ones, then the
simulation will proceed very slowly (see the example given in Section 5.3). The same
problem arises with tau leaping, since the selection procedure of the time steps – that
assures the accurateness of the algorithm – is restricted to the timescale of the fastest
reactions, thus generating unnecessarily small step sizes.

To overcome these limits, other variants of stochastic simulation algorithms have
been developed for simulating stiff chemical systems: the implicit tau leaping algorithm
[54] (which mirrors the implicit Euler method in ODE theory), the slow-scale SSA
[9] (in which the fast reactions are skipped over), and the adaptive explicit-implicit
tau leaping algorithm [11]. BioSimWare implements the adaptive algorithm, that is
based on an opportune strategy to identify stiffness and to automatically switch between
the explicit and the implicit selection methods of time steps in tau leaping, therefore
achieving much better efficiency than other simulation methods.

3.2 Multi-volume Stochastic Simulation Algorithms

As stated above, the definition of standard stochastic simulation algorithms only holds
for biochemical systems enclosed in a single volume. In order to overcome this limita-
tion, novel approaches have been recently introduced. For instance, to simulate systems
with spatial heterogeneity (i.e. non uniform distribution of chemicals), the next subvol-
ume method [19] or the binomial τ -leap spatial stochastic simulation algorithm [37] can
be used (see also [12] for a more detailed state of the art on this topic). These methods
work by dividing the system volume into separated subvolumes, each one being small
enough to be considered well-mixed. So doing, the requisites for SSA are satisfied, and
both the evaluation of propensity functions and the diffusion processes occurring inside
every single subvolume can be handled.

Another limitation consists in the fact that the volume occupied by the chemicals –
or the fact that their amount can arbitrarily increase because of iterated application of
some reactions – is not usually considered when performing stochastic simulations of
biochemical systems.

To face these two questions – spatiality and the size of chemicals in stochastic sim-
ulation algorithms – in BioSimWare we have implemented two procedures, τ -DPP and
Sτ -DPP, respectively, that are hereby presented.

τ -DPP. τ -DPP [14] is an algorithm based on tau leaping, that enables the simulation of
multi-volume systems, where each volume is defined such that the usual SSA conditions
hold. The distinct volumes can be arranged according to a specified hierarchy, under the
additional assumption that the topological structure and the volume dimensions do not

BioSimWare 125

change during the system evolution. Inside each volume, two different types of reaction
can be defined: (1) internal reactions correspond to the classical biochemical reactions
that modify the chemicals inside the volume where they take place; (2) communication
reactions are used to send the chemicals from the volume where they are executed
towards an adjacent volume. Both types of reactions have the form given in Section 2.2,
and are characterized by a stochastic constant.

With τ -DPP, the temporal evolution of the whole system is generated by letting all
volumes evolve in parallel, and by using the following strategy for the choice of time
steps. At each iteration, we consider the state vector of each volume and calculate a time
increment inside each volume independently from the others, according to the standard
tau leaping algorithm. Then, the smallest time increment among all volumes is selected
and used to evaluate the next-step evolution of the entire system. Since all volumes lo-
cally evolve according to the same time increment, τ -DPP is able to correctly work out
the global dynamics of the multi-volume system, without causing any troubles in the
time increment procedure within distinct volumes. In other words, we let all volumes
proceed along a shared timeline, therefore avoiding paradoxical situations where one
volume will execute reactions that take place in the future or in the past time of another
volume. Moreover, by adopting this procedure, the simulated evolutions of all volumes
get synchronized at the end of each iterative step. This also guarantees that the commu-
nication of chemicals among adjacent volumes is correctly simulated. A more detailed
description of τ -DPP algorithm can be found in [14,4].

Sτ -DPP. Sτ -DPP [13] is a variant of τ -DPP that allows to characterize biochemical
systems by adding appropriate measures to represent the size of the volumes and of
the different molecular species within each volume. These measures are useful to avoid
the possibility of having an infinite accumulation of chemicals inside a compartment,
which can represent an unwanted feature in the modeling of some real biochemical sys-
tem. In Sτ -DPP, the topological organization of the volumes is described by means of
a hybrid membrane structure, where tree-like membrane structures [47] can be embed-
ded into tissue-like membrane structures [38]. The communication of chemicals among
volumes does not necessarily pertains only to adjacent volumes – as in classical mem-
brane structures – but can be arbitrarily defined. This characteristic of Sτ -DPP takes
inspiration from specific components of living cells, the so-called microtubules [52], to
the aim of reproducing their role as intracellular “highways” for the transport of some
cellular components, such as vesicles and proteins. The simulation of the dynamics with
Sτ -DPP is then performed by applying the same strategy defined for τ -DPP, with an ad-
ditional requirement on the application of reactions: the execution of a tossed reaction
is allowed only if the production of chemicals does not exceed the available amount of
“free volume” occurring in the current state (see [13] for more details and examples of
application).

4 Tools for the Analysis of Stochastic Simulations

Computational investigations of biological systems require the knowledge of many nu-
merical factors, like the molecular amounts and stochastic constants (concentrations of

126 D. Besozzi et al.

molecular species and values of reaction rates, respectively, in a continuous determin-
istic context), which represent an indispensable quantitative information to perform an
analysis of the system behavior. Unfortunately, the experimental values of these factors
are usually not available, since carrying out their measurements in vivo can be some-
times tangling or even impossible [56]. In a few cases, the values of some parameters
can be assumed by fitting a mathematical derived dynamics against the concentration
time series that result from in vitro measurements. In general, anyway, the lack and the
inaccuracy of these information cause the problem of assigning the correct values to all
parameters, in order to reproduce the expected dynamics in the best possible way.

In this section we discuss about the importance of automatic tools for the analy-
sis of the dynamics of a biological system and we focus, in particular, on the prob-
lems related to the choice of parameters. In this context, we present two methodologies
implemented in BioSimWare, called parameter estimation (PE) and parameter sweep
(PSA), discussed in Section 4.1. Optimization methods can be used to tackle the cali-
bration problem of PE, by minimizing a cost function which quantitatively defines how
good is the system behavior obtained by using some predicted values of the parameters,
with respect to the actual experimental dynamics (see [41,56] and references therein).
In addition, once that the calibration of the parameters has been carried out, it might
be interesting to study the effects that different combinations of parameters values can
cause. This issue can be faced by means of PSA, an analysis method suitable to the
exploration of very large and complex search spaces. Other analysis tools that are cur-
rently under development in BioSimWare are sketched in Section 4.2.

4.1 Parameter Estimation

The peculiarity of the PE approach implemented in BioSimWare is that it embeds
the (forward) problem of performing stochastic simulations of the system dynamics,
into the (inverse) problem of estimating its unknown parameters. More precisely, this
method exploits the outcome of stochastic simulation algorithms to effectively evaluate
the fitness function used by the optimization techniques that are at the basis of our PE
tool. To better explain this matter, we refer to Figure 1, left side, where we show the
comparison between an experimental dynamics (the smooth line called “target”), and
a set of stochastic dynamics generated by changing the value of one parameter of the
model, which results in pretty distinct outcomes. Besides the marked differences that
various “estimated” dynamics can present with each other, the right side graphic shows
that, when dealing with stochastic simulations it is also necessary to develop appropri-
ate methods to correctly measure the “distance” between the experimental curve and
the (best) estimated curve, in order to handle the problem of stochastic fluctuations.

In [6] we started our analysis of PE by comparing the performances of two different
optimization algorithms, genetic algorithms (GAs) [28] and particle swarm optimiza-
tion (PSO) [31]. That work was motivated by the fact that PE represents an example
of dynamic optimization problems, meaning that the fitness function value may change
during the iteration of the algorithm – more precisely, each individual can have slightly
different fitness values each time it is evaluated – and a number of contributions ex-
ist about the use of GAs and PSO for this kind of problems. In [6], both GAs and PSO

BioSimWare 127

 560

 580

 600

 620

 640

 660

 680

 700

 720

 740

 760

 0 0.5 1 1.5 2 2.5 3 3.5

m
ol

ec
ul

es

time[a.u.]

target
0.00245015
0.0015
0.001
0.0005
0.0001

 560

 580

 600

 620

 640

 660

 680

 700

 720

 740

 760

 0 0.5 1 1.5 2 2.5 3 3.5

m
ol

ec
ul

es

time [a.u.]

target
generated

Fig. 1. Left side. Comparison between a target dynamics and some generated dynamics using
different values of one parameter. Right side. Comparison between the best estimated stochastic
dynamics and the target dynamics: the problem of stochastic fluctuations.

formulations used for PE evolve individuals consisting of n-length vectors of floating
point numbers, where n is the number of parameters (e.g. stochastic constants) that have
to be optimized.

The definition of the fitness function used in BioSimWare for running GAs and
PSO, is based on the consideration that, in order to optimize the stochastic constants
of a model (or, similarly, the amounts of molecular species), it is usual to compare a
given experimental outcome (the target dynamics) with a set of estimated dynamics,
that are generated by running a stochastic simulation algorithm using the parameter
values codified in the individuals of GAs or PSO. In our implementation, the fitness of
each individual is evaluated by calculating the area between the target dynamics and the
estimated dynamics of each molecular species which has a known behavior, at the same
time managing all the troublesome aspects that are inherent to stochastic simulations
(such as different time samplings among the target and the estimated curves, the quanti-
tative differences among stochastic simulations even if they are performed starting with
the same initial conditions, etc. – see details and a complete explanation in [6]).

In BioSimWare different versions of these optimization techniques have been al-
ready implemented: we refer to [6,12] for further details and to Section 5.2 for a simple
application of PE with this method.

Parameter sweep application. The methodology used in PE to determine the “good-
ness” of a set of parameters can also be exploited for PSA, a suitable method for the
exploration of the parameter space of biological systems. Real systems usually consists
of a large number of chemical species, which interact through many reactions, therefore
resulting in a search space – constituted by all possible combinations of the parameters
values – that has a high number of dimensions. Moreover, the behavior of these dy-
namical systems is mainly influenced by the fixed initial conditions, i.e. the molecular
quantities and the value of stochastic constants – whereby different inputs can gen-
erate different dynamics outcome. So, if one wishes to quantify the influence of the
parameter values on the system dynamics, the exploration of such kind of search spaces
turns out to be a hard task, as it requires a huge number of simulations. PSA represents

128 D. Besozzi et al.

one of the simplest techniques for facing this problem and, in addition, it can easily ex-
ploit high–throughput computing applications on parallel and distributed architectures.

To be more precise, PSA works by comparing the dynamics resulting from a chosen
input setting with respect to a target dynamics, obtained by using a given parametriza-
tion. Hence, given the biological model to analyze, the first step consists in defining the
ranges and the distribution of the parameters values that will be perturbed during the
PSA, therefore finding an efficient method to sample the multidimensional space. In
[42] this has been done by exploiting the quasi-random series, that allow to uniformly
cover the search space with few samples. The quality of each initial parametrization
of the model is then measured by using an appropriate fitness function (as the one
described above). Since each instance of a PSA – corresponding to a simulation of
the biochemical system – is independent from the others, the grid computing frame-
work constitutes a good solution to tackle the high computational cost of this kind of
application.

4.2 Other Analysis Tools

Other tools for the analysis of biological systems are currently under development in
BioSimWare. The first tool concerns the automatic analysis of steady states: our ap-
proach exploits GAs to optimize a frequency distribution (e.g. gaussian distribution) of
the values that a species undergoes during a simulation. So doing, we can determine
the mean value of the steady state, the maximal and minimal values it assumes during
stochastic fluctuations, its duration in time, etc. This kind of investigation is particularly
interesting in case of systems showing bistability, whereby the dynamics can switch be-
tween two different steady states. In cases like this, we are interested in devising the
measures characterizing the different steady states (mean value, amplitude), as well as
the number of switches occurring during a fixed simulation time, the time spent in each
state, etc. In Section 5.1 we briefly present an example of a prototype bistable scheme,
the Schlögl system, in order to clarify the relevance of such issues.

The second tool concerns the application of sensitivity analysis (SA), which repre-
sents an indispensable technique to understand how much the variations of the model
parameters impact on the variation of the model outcome (see [58,57,50,27] and refer-
ences therein). In other words, SA allows to measure the influence that the uncertainties
occurring in the proposed model will have on the uncertainty in the results of simu-
lations; as such, the development of SA tools will allow us to assess in a more accu-
rate way the goodness of our models. Moreover, the analysis of sensitivities can also
reveal which are the model factors bringing about the most striking effects on the sys-
tem behavior: this is a very significant issue in the investigation of biological systems,
since these factors can be assumed to be good “control points” of the system dynamics.
Therefore, SA can also provide help in the design of ad hoc laboratory experiments.

The third tool that we are planning to develop concerns the reverse engineering of
system networks, that is a relevant problem in the case that only scarce or partial in-
formation is available about the interactions of the various components of a system
(e.g. which proteins interact with a given protein, what is the exact temporal cas-
cade of protein-protein interactions, etc.). Our approach will consist in exploiting a

BioSimWare 129

co-evolutionary system joining Genetic Programming [33] for the inference of the struc-
ture, and an optimization technique (as GAs or PSO) for the concurrent estimation of
the system parameters.

5 Applications

BioSimWare has been exploited for the investigation of many biological systems, char-
acterized by different levels of complexity in terms of the structure of the model and of
its related dynamical behaviors. For instance, at the level of single cells we have investi-
gated several cellular pathways, such as the Ras/cAMP/PKA pathway in yeast [15] and
bacterial chemotaxis [2,1]. At the level of population of cells, we have proposed a study
for the synthetic genetic oscillator called Repressilator, coupled with a quorum sensing
communication mechanism in bacterial colonies [4]. At the level of ecosystems, we
have analyzed several aspects of metapopulations [7,3,5]. In the following sections, we
present a few examples of applications of BioSimWare, which highlight some of the
relevant issues of modeling, simulation and analysis discussed above.

5.1 The Schlögl System

In this section we present one of the simplest prototype chemical system that presents
a bistable dynamical behavior, the Schlögl system [63,66]. Bistability is a capacity ex-
hibited by many biological systems, consisting in the possibility of switching between
two different stable steady states in response to some chemical signaling (see, e.g.,
[17,51,65] and references therein). The Schlögl system consists of 4 chemical reac-
tions and 3 molecular species: r1 : A + 2X → 3X, r2 : 3X → A + 2X, r3 : B →
3X, r4 : X → B, where A, B are chemical species given as input and always kept
at a constant amount, while X is the species that exhibits the bistable behavior. The
values of stochastic parameters used for the simulations presented in this section are:
A = 1·105, B = 2·105, X = 250, c1 = 3·10−7, c2 = 1·10−4, c3 = 1·10−3, c4 = 3.5.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50000 100000 150000 200000 250000 300000 350000 400000

X
 M

ol
ec

ul
es

Time [a.u.]

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 100 200 300 400 500 600 700 800

F
re

qu
en

cy

X Molecules

Fig. 2. Left side. Multiple switches between the upper and lower steady states in the Schlögl
system. Right side. Frequency distribution of molecules X related to the left side simulation.

In Figure 2, left side, we show a simulation of the Schlögl system where four switches
between the upper and lower stable states have occurred. On the right side, we plot the

130 D. Besozzi et al.

frequency distribution of the values that species X assumes in the left side simulation,
showing the bimodal behavior of the system (the peaks of distribution are centered on
the medium values of the two steady states).

Bistable systems represent the most significant example in favour of stochastic mod-
eling with respect to classical deterministic approach based on ODEs. Indeed, in cases
like this the modeling with ODEs is not adequate, since it cannot capture the possibility
of having random switches between the two stable steady state. As a matter of fact, in
Figure 3 we compare one deterministic simulation (plain line) against four independent
stochastic simulations of the Schlögl system (line and points). All dynamics were gener-
ated by considering the same initial conditions (the correspondence between stochastic
and deterministic parameters has been determined by using the formula given in [22],
and assuming a volume V = 1.667 · 10−17l). The graphic clearly shows that, start-
ing from a given condition, the deterministic approach can only reach one of the two
steady state, while stochastic simulations are able to represent both of the two possible
behaviors of this bistable system.

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20

X
 M

ol
ec

ul
es

Time [a.u.]

Fig. 3. Comparison between a deterministic model (ODE numerical integration, plain line) and a
stochastic model (4 independent simulations, lines and points) of the Schlögl system

5.2 The Brussellator

The Brussellator is a simplified scheme for the Belousov-Zhabotinskii reaction, a fam-
ily of inorganic redox reaction systems that exhibit macroscopic temporal oscillations
and spatial patterns formation. This theoretical scheme is recognized as the prototype
of nonlinear oscillating (open and well-stirred) systems, and well represents the signif-
icance and the variety of complex rhythms occurring in many biological systems. With
respect to the formulation of the Brussellator given in [62], here we consider a descrip-
tion that leaves out the presence of two chemical products, since they are not directly
involved in the formation of the oscillating limit cycle. Thus, we assume the following
set of reactions: r1 : A → X, r2 : B+X → Y, r3 : 2X+Y → 3X, r4 : X → λ, where
A, B are two chemicals that are given as input and always kept at a constant amount,
X, Y are the intermediate product chemicals that exhibit oscillations, and λ represents
the degradation of species X .

BioSimWare 131

In Figure 4 we show how different values of the stochastic constants can lead to dis-
tinct dynamics for this simple system: the graphic on the left is characterized by regular
oscillations, the one in the middle by initial oscillations that get rapidly damped (this
behavior is obtained by a slight variation in the value of constant c2, with respect to
the previous simulation), the one on the right shows a random behavior, that is interme-
diate among the presence and the absence of oscillations (this behavior is obtained by
varying the value of constant c4, with respect to the first simulation). The exact values
of constants c1, . . . , c4 used to generate each dynamics are reported in the caption of
Figure 4, while the initial amounts of molecules are A = X = 200, B = 600 and
Y = 300 for all simulations.

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50

M
ol

ec
ul

es

Time [a.u.]

X
Y

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50

M
ol

ec
ul

es

Time [a.u.]

X
Y

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50

M
ol

ec
ul

es

Time [a.u.]

X
Y

Fig. 4. Different dynamics of the Brussellator (thick line: species X, thin line: species Y). Values
of stochastic constants: (left) c1 = 1, c2 = 5 · 10−3, c3 = 2.5 · 10−5, c4 = 1.5; (middle)
c1 = 1, c2 = 3.25 · 10−3, c3 = 2.5 · 10−5, c4 = 1.5; (right) c1 = 1, c2 = 5 · 10−3, c3 =
2.5 · 10−5, c4 = 1.5 · 10−1.

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25

M
o
l
e
c
u
l
e
s

Time [a.u.]

X
Y

X target
Y target

 5000

 10000

 15000

 20000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
v
e
r
a
g
e

B
e
s
t

F
i
t
n
e
s
s

Fitness Evaluations

PSO1
PSO2

GA

Fig. 5. Result of parameter estimation for the oscillating dynamics of the Brussellator. Left side.
Comparison between target and estimated dynamics. Right side. Average Best Fitness against
fitness evaluations.

In Figure 5 we show the results of the application of the PE method described in
Section 4.1 to the Brussellator dynamics with oscillating regime, over one period of
oscillation. On the left side, we compare the target dynamics – here generated by means
of a transformation of the Brussellator in corresponding ODEs formulation – with an
estimated dynamics, which has been generated considering the best solution found by
PSO (the best solution corresponds to these estimated constants: c1 = 1.23966, c2 =
0.00634, c3 = 4.37171 · 10−5, c4 = 2.71063). On the right side, we report the Average

132 D. Besozzi et al.

Best Fitness (ABF) against fitness evaluations for the implementation of GA and of the
two variants of PSO that we have used for PE. We refer to [6] for further details and
other examples of PE for simple biochemical systems.

5.3 Stiff Systems

In this section we show how the performance of stochastic simulation algorithms highly
varies when dealing with the problem of stiffness. In particular, we compare SSA, tau
leaping and adaptive tau leaping with respect to the average number of steps and to
the execution time. To this aim, we consider a simple stiff system, the decaying dimer-
ization (DD) model [23,11], which consists of 4 reactions and 3 molecular species:
r1 : S1 → λ, r2 : S1 + S1 → S2, r3 : S2 → S1 + S1, r4 : S2 → S3. The sys-
tem models the irreversible isomerization (or decay) of species S1, coupled with the
reversible formation of complex S2 (which mimics the dimerization of S1), that can in
turn be converted into the stable species S3. If the values of constants c2, c3 are suffi-
ciently large, then the decaying of S1 through reaction r1 is superimposed on the fast
reversible dimerization given by reactions r2, r3. The values of stochastic constants and
of initial molecular amounts for the simulations presented below have been chosen so
that the reversible reactions r2, r3 are close to partial equilibrium (besides the initial
steps), and they are: c1 = 1, c2 = 10, c3 = 1000, c4 = 0.1, S1 = 10000, S2 = S3 = 0.

In Figure 6 we show the dynamics of the DD system obtained, under identical condi-
tions, by means of SSA (top left), tau leaping (top right), adaptive tau leaping (bottom
left), as well as the superimposition of these three dynamics (bottom right). As graphics
show, all simulations have generated the same behavior for all molecular species. In
particular, we can see that the initial population of S1 immediately drops down because
of reaction r1, along with the rapid burst in the amount of S2 due to the application
of the concurrent reaction r2. Thereafter, the unstable species S1, S2 start to be slowly
depleted by the application of (slow) reactions r1, r4, respectively, while the population
of S3 slowly increases, thus turning the initial population of unstable S1 molecules into
a final population of stable S3 molecules. The top graphics in Figure 6 also show the ef-
fect of slow and fast reactions during the execution of SSA and tau leaping algorithms:
the simulation of the dynamics of species S1 and S2 requires a huge number of ap-
plications of the fast reactions r2 and r3 – which highlight the considerable stochastic
fluctuations occurring in the dynamics of these species – but, as a consequence, turn
out in a reduced performance of these two algorithms. If we are interested in efficiently
capturing the dynamics of the most significant species in the DD model, i.e. S3, without
loosing computation time in simulating the exact dynamics of S1 and S2, then adaptive
tau leaping should be used (bottom left), since it can more appropriately choose the
length of simulation steps, therefore greatly enhancing its performance and, at the same
time, resulting in dynamics that are very well comparable with the other algorithms
(bottom right).

In Table 1 we compare the average number of steps and the execution times of the
simulation of the DD model, evaluated over 10000 executions of SSA, tau leaping and
adaptive tau leaping. All the simulations have been performed using a Personal Com-
puter with an Intel Core2 duo CPU (2.66 GHz) running Linux (Ubuntu 9.10). The table
clearly shows that, if compared with respect to the average number of executed steps,

BioSimWare 133

 0

 1000

 2000

 3000

 4000

 5000

 0 0.5 1 1.5 2 2.5 3 3.5 4

M
ol

ec
ul

es

Time [a.u.]

S1

S2

S3

 0

 1000

 2000

 3000

 4000

 5000

 0 0.5 1 1.5 2 2.5 3 3.5 4

M
ol

ec
ul

es

Time [a.u.]

S1

S2

S3

 0

 1000

 2000

 3000

 4000

 5000

 0 0.5 1 1.5 2 2.5 3 3.5 4

M
ol

ec
ul

es

Time [a.u.]

S1

S2

S3

 0

 1000

 2000

 3000

 4000

 5000

 0 0.5 1 1.5 2 2.5 3 3.5 4

M
ol

ec
ul

es

Time [a.u.]

S1

S2

S3

SSA
tau-leaping

adaptive tau-leaping

Fig. 6. Dynamics of the stiff decaying dimerization model (see text)

Table 1. Comparison of average number of steps and execution times between SSA, tau leaping
and adaptive algorithm of the DD model

SSA tau leaping adaptive tau leaping

average number of steps 2.46 · 107 1 · 106 945

total execution time 175h 1m 11h 47m 1m 51s

tau leaping is around 20-fold faster than SSA, and adaptive tau leaping is around 100-
fold faster than tau leaping for this stiff system.

5.4 Bacterial Chemotaxis

Chemotaxis is an efficient signal transduction pathway, tightly regulated by feedback
mechanisms, that allows bacterial cells to move in ever-changing environments in re-
sponse to concentration gradients of attractants and repellents. The binding of ligand
molecules to the chemotactic transmembrane receptors triggers a cascade of protein-
protein interactions, which eventually influence the cytoplasmic amount of the phospho-
rylated form of a pivotal protein, CheY. CheYp rapidly diffuses through the cytoplasm
and induces the rotations of flagella: if CheYp interacts with the proteins of the flagellar
motor, then a clockwise (CW) rotation occurs, otherwise the flagellum will rotate coun-
terclockwise (CCW). When the flagella are turning CW, they are uncoordinated and the
bacterium performs a tumbling movement, while if all flagella are turning CCW, then

134 D. Besozzi et al.

Fig. 7. Tumbling (left side) and running (right side) motions of bacterial cells after coordination
of flagella

they get coordinated in a bundle, thus allowing the bacterium to swim directionally with
a running movement (see Figure 7).

When they move in a homogeneous environment, bacteria usually perform random
walks by alternating rapid tumblings with short runnings, which are determined by a
high switch frequency of CW and CCW rotations of flagella. On the contrary, in the
presence of a ligand concentration gradient, bacteria carry out longer directional swim-
ming toward (against) the attractants (repellents), by reducing the switch frequency of
flagella rotations. Anyway, if the ligand concentration remains constant in time, then
the switch frequency is reset to the prestimulus level: the cell is able to realize an adap-
tation of its chemotactic response to the external variations of ligand concentration. So
doing, bacteria can efficiently sample and adapt to the continuous mutations in their
surroundings.

At the molecular level, this complex chemotactic response is governed by the (de)-
phosphorylation and (de)methylation of several transmembrane and cytoplasmic pro-
teins, whose genetic regulation and biochemical functions have been well characterized
[64]. Based on these data, in [2] we have defined a mechanistic model of the chemosen-
sory system of E. coli bacteria, in response to attractant chemicals, consisting of 32
molecular species and 62 reactions, which accounts for all protein-protein interactions
and the feedback control mechanisms regulating the pathway. Stochastic simulations
have been performed with BioSimWare to analyze the temporal evolution of CheYp un-
der different conditions, such as the deletion of other proteins involved in the pathway,
the addition of distinct amounts of external ligand, and the effect of different methyla-
tion states (see [2] for a complete presentation of the model and simulation results).

In Figure 8, left side, we show a typical dynamics of CheYp in response to the
simulated addition of two consecutive amounts of external ligand: starting from the
steady state level of CheYp, the cell receives a first stimulus corresponding to a ligand
amount of 100 molecules, added to the system at time t = 3000 sec and removed at
time t = 6000 sec, and then a second stimulus corresponding to a ligand amount of 500
molecules, added at time t = 9000 sec and removed at time t = 12000 sec.

The results obtained through stochastic simulations have been exploited to investi-
gate the possible effects that stochastic fluctuations of CheYp might have on the syn-
chronization of flagella. In particular, we have focused on the analysis of the mean
time periods during which the cell performs a running or a tumbling motion, as well
as the time of adaptation to environmental changes, with respect to a varying number
of flagella. This analysis has been carried out by using an automatic procedure that we
defined to measure the time intervals of CW and CCW rotations of each flagellum. To
distinguish between CW and CCW rotations, we assume that each flagellum is sensi-
tive to a threshold level of CheYp, that is evaluated as the mean value (μ) of CheYp at

BioSimWare 135

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2000 4000 6000 8000 10000 12000 14000

C
he

Y
p

M
ol

ec
ul

es

Time [sec]

Fig. 8. Left side. Dynamics of CheYp: adaptation response to two consecutive stimuli. Right side.
(Top) Determination of time intervals of CCW and CW rotation of the single flagellum (“true”
and “false” values, respectively) with respect to the fixed threshold μ of CheYp. (Bottom) Syn-
chronization of running motion between two different flagella (s1, s2 represent the time intervals
of CCW rotation for flagellum 1 and 2, respectively).

steady state (see Figure 8, right side). Because of stochastic fluctuations, the amount of
CheYp will randomly switch from below to above this value, thus reversing the rotation
of each flagellum from CCW (value of CheYp below the threshold) to CW (value of
CheYp above the threshold).

Then, to identify the periods of running motion, we determine the time intervals dur-
ing which all flagella are rotating CCW. Similar considerations have been adopted for
the analysis of tumbling motions and adaptation times. This analysis has been carried
out for an increasing number n of bacterial flagella, with n = 1, . . . , 10 (a typical E. coli
cell possesses around half a dozen flagella). According to biological expectations, the
analysis we performed in [2] on the effect of stochastic fluctuations have shown that: (i)
the running-to-tumbling ratio decreases as n increases – this highlights the role of the
number of flagella in the individual cell, and the necessity of their synchronization for
a proper chemotactic behavior; (ii) the adaptation time does not depend strongly on the
value of n in individual cells – this guarantees an appropriate adaptation mechanism,
independently from phenotypic variations among distinct individual cells in a bacterial
colony.

In [1] we extended this single volume model of bacterial chemotaxis to a multi-
volume model, in order to account for the presence of a cytoplasmic gradient of CheYp,
that is due to its diffusion from the area where it is phosphorylated (close to the chemo-
tactic receptors) to the area of its activity (close to flagella) [36]. Its spatial localization,
together with the localization of flagella, might indeed have a significant role in chemo-
taxis that is worth considering in this type of analysis. To this aim, we have split the
bacterial volume into “slices”, modeled by communicating virtual volumes, which al-
low to follow the diffusion of CheYp throughout the whole volume. So doing, in the
analysis of synchronization of flagella, the virtual volumes containing a flagellar motor
will be exposed to a local amount of CheYp that will be generally different from other
local amounts in the adjacent virtual volumes. The analysis of flagella synchronization

136 D. Besozzi et al.

in the multi-volume model will be presented in a forthcoming work, to the aim of de-
termining whether significative changes to running, tumbling or adaptation times occur
in the condition of CheYp diffusion.

5.5 Simulation of Fredkin Circuits by Chemical Reaction Systems

In this section we present one example of modeling and simulation of multi-volume
systems, and refer to [1,5] for other multi-volume models analyzed with BioSimWare.
Here we show how to simulate the functioning of logic gates and circuits, by exploiting
formal chemical systems where molecular species and chemical reactions are used to
perform computations. This is achieved by encoding boolean variables and logic func-
tions into chemicals and reactions, respectively, and then following the temporal evolu-
tion of the chemicals to generate the correct mapping of the corresponding gate/circuit.
The basic idea is to provide a “bottom-up” construction for the whole circuit, by using
a single volume model to simulate each gate, and then opportunely connecting all the
volumes such that the corresponding topology of the circuit is respected. So doing, the
simulations of the multi-volume system compute exactly the logical function codified
by the circuit itself. In particular, we show here the simulation of Fredkin gates and
circuits.

The Fredkin gate is a boolean gate, whose map FG : {0, 1}3 → {0, 1}3 associates
input triple (αi, βi, γi) to output triple (αo, βo, γo) according to the formula: αo = αi,
βo = (¬αi ∧ βi) ∨ (αi ∧ γi), γo = (αi ∧ βi) ∨ (¬αi ∧ γi). The Fredkin gate
behaves as a conditional switch, where αi can be considered a control line whose
value determines whether the input values βi and γi have to be exchanged or not:
FG(1, βi, γi) = (1, γi, βi) and FG(0, βi, γi) = (0, βi, γi) for every βi, γi ∈ {0, 1}.

The simulation of the Fredkin gate can be done by defining two different types of
molecular species for each of its lines, one species representing the boolean value 0, the
other species the value 1. In particular, we use a, A for input αi and output αo on the
first line (here two different chemical species suffice, since the output bit is always equal
to the input bit on this line), b, B for input βi and d, D for output βo on the second line,
c, C for input γi and e, E for output γo on the third line (since these two lines implement
the logic switch, we need to distinguish among the 0 and 1 bits that are either given
as input or generated as output). All these chemicals are manipulated inside a single
volume by using 21 internal reactions: 6 input reactions, needed to produce the input
chemicals inside the volume, thus simulating the input bits that are given to the gate;
10 logical reactions, which describe how the output chemicals are produced whenever
the corresponding input chemicals appear inside the reaction volume; 5 degradation
reactions, needed to avoid the simultaneous presence of two conflicting species inside
the volume, representing both the states 0 and 1 on the same gate line. This problem may
arise in the case that a second input is given to the logic gate after the first one: in this
case, a time delay elapses before the corresponding output can be effectively generated
– due to an average degradation time before the reaction volume can be cleared out of
the old input and output chemicals – so that the new output chemicals can increase and
produce the expected outcome. The complete model of the Fredkin gate is reported in
[35].

BioSimWare 137

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600 800 1000 1200 1400

M
o
l
e
c
u
l
e
s

Time [a.u.]

a
d
E
D

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000

M
o
l
e
c
u
l
e
s

Time [a.u.]

a
A
d
e
E
D

Fig. 9. Simulations of the Fredkin gate. Left side. Output results for the first input (αi, βi, γi) =
(0, 0, 1) at t = 0, and the second input (αi, βi, γi) = (0, 1, 1) at t = 500. Right side. Output
results for the first input (αi, βi, γi) = (0, 0, 1) at t = 0, and the second input (αi, βi, γi) =
(1, 0, 1) at t = 400.

In Figure 9 we show two different simulations of the Fredkin gate, each one cor-
responding to two different input triples given at distinct time instants (see details in
the caption). On the left side, we can see that, according to the functioning of the
Fredkin gate, when the first input is received the corresponding output triple has to
be (αo, βo, γo) = (0, 0, 1). Translated into molecular species, this output corresponds
to the chemicals d and E produced inside the volume: this is simulated by the linear
growth of these two species in the time interval t ∈ [0, 500]. At t = 500, when the
second input is given, the molecular species D starts to be produced. Therefore, the
system generates a configuration where some copies of both species d and D (values 0
and 1 on βo) simultaneously occur inside the volume. To solve this contradiction, the
output species d and D for βo have to be degraded, along with the corresponding input
species b and B for βi. Once that all copies of species d are erased from the volume
(around t = 1000), the number of copies of species D increases, thus generating the
correct second output for the second line. Similar considerations can be done for the
graphic shown on the right side of Figure 9, where an input that implements the logic
switch between the second and third lines is simulated.

Fig. 10. A Fredkin circuit with three gates and two layers (left) and its tissue-like representation
(right)

138 D. Besozzi et al.

We consider now the circuit depicted on the left side of Figure 10, consisting of three
Fredkin gates, structured into two layers (where we denote by x1, . . . , x7 and y1, . . . , y7
the input and output lines of the circuit, respectively). On the right side of this figure, we
also represent the multi-volume model that is used here to simulate the entire circuit:
we connect three reaction volumes (called FG1, FG2, FG3) in such a way that the
output chemicals of lines γ1

o and α2
o of gates 1 and 2 in the first circuit layer correspond

to the input chemicals of lines α3
i and γ3

i of gate 3, respectively (where the superscripts
on line names denote the number of the gate). Moreover, we consider an additional
reaction volume whose function is to collect all output species of each gate.

Each reaction volume FGi corresponds to a single volume model describing a Fred-
kin gate, with the addition of communication reactions inside volumes FG1, FG2,
FG3 in order to send the output chemicals coming from FG1, FG2, FG3 to the output
volume, and the output chemicals coming from FG1 and FG2 to volume FG3. The
output volume contains only the degradation reactions which are needed to erase the
conflicting output chemicals whenever the input to the circuit is changed. The complete
model of the Fredkin circuit is reported in [35].

In Figure 11 we show a simulation of this Fredkin circuit performed with BioSim-
Ware by using the τ -DPP algorithm, where the output chemicals are split into three dis-
tinct panels for a better comprehension of their temporal evolution. The circuit receives

 0

 500

 1000

 1500

 2000

 2500
y1 = 1
y2 = 0
y2 = 1

 0

 200

 400

 600

 800

 1000

 1200

M
o
l
e
c
u
l
e
s

y3 = 0
y3 = 1
y4 = 1
y5 = 0

 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600
 1800

 0 500 1000 1500 2000

Time [a.u.]

y6 = 1
y7 = 0

Fig. 11. Simulation of the Fredkin circuit: first input (x1, x2, x3, x4, x5, x6, x7) =
(1, 1, 0, 0, 1, 0, 1) given at t = 0; second input (x1, x2, x3, x4, x5, x6, x7) = (1, 0, 1, 1, 0, 1, 0)
given at t = 500

BioSimWare 139

a first input (x1, x2, x3, x4, x5, x6, x7) = (1, 1, 0, 0, 1, 0, 1) at time t = 0, and then a
second input (x1, x2, x3, x4, x5, x6, x7) = (1, 0, 1, 1, 0, 1, 0) at time t = 500. These
two inputs generate the two outputs (y1, y2, y3, y4, y5, y6, y7) = (1, 0, 1, 1, 0, 1, 0) and
(y1, y2, y3, y4, y5, y6, y7) = (1, 1, 0, 1, 0, 1, 0), respectively. Note that in the latter case
only the bits on lines y2 and y3 are changed. During the first time interval t ∈ [0, 500],
the output chemicals corresponding to the first input are first generated inside the three
reaction volumes FG1, FG2 and FG3 and then, by using the communication reac-
tions, all these output chemicals are collected in the output volume. At time t = 500 all
lines of the circuit, except the first one, receive a different bit: this change results in the
variation of two output bits on the lines y2 and y3, and the corresponding production of
two new output chemicals in reaction volumes FG1 and FG3. The dynamics of these
two output chemicals can be seen in the top and central panels, respectively, where it is
apparent that the chemicals corresponding to the output bits y2 = 1 and y3 = 0 start
to increase as soon as their conflicting chemicals (corresponding to the old output bits
y2 = 0 and y3 = 1) are completely degraded.

6 Conclusion

The detailed modeling and stochastic simulation of the spatio-temporal cascades of
molecular interactions is nowadays allowing a better comprehension of complex bio-
logical systems. Several disciplines, such as computer science, mathematics, physics,
molecular biology, biotechnology, and so on, are therefore getting challenged in order to
devise the theories or measurement/analysis tools that will provide the most appropriate
combination of instruments to gain a deep understanding and a good control of biologi-
cal systems. To this aim, several simulation environments have been and continue to be
developed, based on stochastic or deterministic approaches, considering either spatial
issues or well-mixed volume reactions, and providing different tools for the analysis of
biological systems (see, e.g., [59,34]). In this context, BioSimWare represents one of
the latest simulation environments, whose potentiality lies in the simplicity of use and
in the numerous tools that it makes available for the stochastic investigation of various
biological systems characterized by different levels of complexity, that can range from
cellular processes to population phenomena or ecological systems.

BioSimWare is available for free download at http://biosimware.disco.unimib.it/. It
can be run on single-processor personal computers (under Windows, Linux and Mac
OS X operating systems), as well as on parallel architectures exploiting the message
passing interface (MPI) [44], or on distributed architectures such as grid. Moreover,
a further extension for graphic processing unit based on CUDA libraries is currently
under development.

The software supports SBML format [29], and can also automatically convert sto-
chastic models into the corresponding deterministic formulation. Simulations of sys-
tems of ODEs can be performed by using different numerical integration algorithms,
provided by the gnu scientific libraries (gsl) [26], such as fourth order Runge-Kutta
method.

A preliminary version of a user-friendly interface for BioSimWare has been de-
veloped by using Java language. Currently, the interface supports the modeling and

140 D. Besozzi et al.

stochastic simulation of single volume systems by allowing: (1) the definition of the
model through the data entry of reactions and parameters (stochastic constants, molec-
ular amounts, species whose amount has to be fixed during the simulation, etc.); (2) the
choice of the stochastic algorithm and of the simulation setting (total simulation time,
value of the control parameter for the accuracy of tau leaping algorithm, etc.); (3) the
creation and saving of the graphics corresponding to the simulated dynamics for the
chosen molecular species; (4) the import and export of SBML files of the model.

Other P systems-based simulators, considering either the stochastic or the determin-
istic modeling approach, have been developed in the last years for the investigation
of the dynamical properties of biological systems. We mention here the MetaPlab vir-
tual laboratory [43], the Multicompartmental Gillespie framework [45], the workbench
called Infobiotic [30], and the Cyto-Sim software [18]. We refer to [48] and [46] for
further references, including several applications of P systems for the description of
natural systems.

References

1. Besozzi, D., Cazzaniga, P., Cocolo, S., Mauri, G., Pescini, D.: Modeling diffusion in a signal
transduction pathway: the use of virtual volumes in P systems. To appear in International
Journal of Foundations of Computer Science

2. Besozzi, D., Cazzaniga, P., Dugo, M., Pescini, D., Mauri, G.: A study on the combined
interplay between stochastic fluctuations and the number of flagella in bacterial chemotaxis.
EPTCS 6, 47–62 (2009)

3. Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G.: Seasonal variance in P system models for
metapopulations. Progress in Natural Science 17(4), 392–400 (2007)

4. Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G.: A multivolume approach to stochastic
modelling with membrane systems. In: Algorithmic Bioprocesses, pp. 519–542. Springer,
Berlin (2009)

5. Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G.: An analysis on the influence of network
topologies on local and global dynamics of metapopulation systems. EPTCS 33, 1–17 (2010)

6. Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D., Vanneschi, L.: A comparison of genetic al-
gorithms and particle swarm optimization for parameter estimation in stochastic biochemical
systems. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.) EvoBIO 2009. LNCS, vol. 5483,
pp. 116–127. Springer, Heidelberg (2009)

7. Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G.: Modelling metapopulations with stochas-
tic membrane systems. BioSystems 91(3), 499–514 (2008)

8. Blake, W.J., Kærn, M., Cantor, C.R., Collins, J.J.: Noise in eukaryotic gene expression. Na-
ture 422, 633–637 (2003)

9. Cao, Y., Gillespie, D.T., Petzold, L.R.: The slow-scale stochastic simulation algorithm. Jour-
nal of Chemical Physics 122(1), 14116 (2005)

10. Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simu-
lation method. Journal of Chemical Physics 124, 44109 (2006)

11. Cao, Y., Gillespie, D.T., Petzold, L.R.: The adaptive explicit-implicit tau-leaping method
with automatic tau selection. Journal of Chemical Physics 126, 224101 (2007)

12. Cazzaniga, P.: Stochastic algorithms for biochemical processes. Ph.D. thesis, Università degli
Studi di Milano-Bicocca (2010)

BioSimWare 141

13. Cazzaniga, P., Mauri, G., Milanesi, L., Mosca, E., Pescini, D.: A novel variant of tissue P
systems for the modelling of biochemical systems. In: Păun, G., Pérez-Jiménez, M.J., Riscos-
Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 210–226.
Springer, Heidelberg (2010)

14. Cazzaniga, P., Pescini, D., Besozzi, D., Mauri, G.: Tau leaping stochastic simulation method
in P systems. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006.
LNCS, vol. 4361, pp. 298–313. Springer, Heidelberg (2006)

15. Cazzaniga, P., Pescini, D., Besozzi, D., Mauri, G., Colombo, S., Martegani, E.: Modeling and
stochastic simulation of the Ras/cAMP/PKA pathway in the yeast Saccharomyces cerevisiae
evidences a key regulatory function for intracellular guanine nucleotides pools. Journal of
Biotechnology 133(3), 377–385 (2008)

16. Chaouiya, C.: Petri net modelling of biological networks. Briefings in Bioinformatics 8(4),
210–219 (2007)

17. Craciun, G., Tang, Y., Feinberg, M.: Understanding bistability in complex enzyme-driven
reaction networks. Proceedings of the National Academy of Sciences 103(23), 8697–8702
(2006)

18. Cyto-Sim,
http://www.cosbi.eu/index.php/research/prototypes/cyto-sim

19. Elf, J., Ehrenberg, M.: Spontaneous separation of bi-stable biochemical systems into spatial
domains of opposite phases. IEE Proceedings Systems Biology 1(2), 230–236 (2004)

20. Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single
cell. Science 297, 1183–1186 (2002)

21. Gillespie, D.T.: General method for numerically simulating stochastic time evolution of cou-
pled chemical-reactions. Journal of Computational Physics 22, 403–434 (1976)

22. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physi-
cal Chemistry 81(25), 2340–2361 (1977)

23. Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting sys-
tems. Journal of Chemical Physics 115(4), 1716–1733 (2001)

24. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annual Review of Physical
Chemistry 58, 35–55 (2007)

25. Gillespie, D.T.: Simulation methods in systems biology. In: Bernardo, M., Degano, P., Za-
vattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 125–167. Springer, Heidelberg (2008)

26. The GSL Web Page, http://www.gnu.org/software/gsl/
27. Gunawan, R., Cao, Y., Petzold, L., Doyle, F.J.: Sensitivity analysis of discrete stochastic

systems. Biophysical Journal 88, 2530–2540 (2005)
28. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan

Press, Ann Arbor (1975)
29. Hucka, M., et al.: The Systems Biology Markup Language (SBML): a medium for represen-

tation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)
30. The Infobiotic Web Page, http://www.infobiotic.org/
31. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of the IEEE International

Conference on Neural Networks, Piscataway, NJ, vol. IV, pp. 1942–1948 (1995)
32. Klipp, E., Liebermeister, W., Wierling, C., Kowald, A., Lehrach, H., Herwig, R.: Systems

Biology: A Textbook. Wiley, Chichester (2009)
33. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural

Selection. The MIT Press, Cambridge (1992)
34. Lemerle, C., Di Ventura, B., Serrano, L.: Space as the final frontier in stochastic simulations

of biological systems. FEBS Letters 579(8), 1789–1794 (2005)
35. Leporati, A., Besozzi, D., Cazzaniga, P., Pescini, D., Ferretti, C.: Computing with energy and

chemical reactions. Natural Computing 9(2), 493–512 (2010)

http://www.cosbi.eu/index.php/research/prototypes/cyto-sim
http://www.gnu.org/software/gsl/
http://www.infobiotic.org/

142 D. Besozzi et al.

36. Lipkow, K., Andrews, S.S., Bray, D.: Simulated diffusion of phosphorylated CheY through
the cytoplasm of Escherichia coli. Journal of Bacteriology 187(1), 45–53 (2005)

37. Marquez-Lago, T.T., Burrage, K.: Binomial tau-leap spatial stochastic simulation algorithm
for applications in chemical kinetics. Journal of Chemical Physics 127(10), 104101 (2007)

38. Martín-Vide, C., Pazos, J., Păun, G., Rodríguez-Patón, A.: A new class of symbolic abstract
neural nets: Tissue P systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS,
vol. 2387, pp. 573–679. Springer, Heidelberg (2002)

39. McAdams, H., Arkin, A.: Stochastic mechanisms in gene expression. Proceedings of the
National Academy of Sciences 94(3), 814–819 (1997)

40. Meng, T.C., Somani, S., Dhar, P.: Modeling and simulation of biological systems with
stochasticity. In Silico Biology 4, 24 (2004)

41. Moles, C.G., Mendes, P., Banga, J.R.: Parameter estimation in biochemical pathways: A
comparison of global optimization methods. Genome Research 13(11), 2467–2474 (2003)

42. Mosca, E., Cazzaniga, P., Merelli, I., Pescini, D., Mauri, G., Milanesi, L.: Stochastic simu-
lations on a grid framework for parameter sweep applications in biological models. In: Int.
Workshop on High Performance Computational Systems Biology, HiBi 2009, vol. 0, pp.
33–42. IEEE Computer Society, Los Alamitos (2009)

43. The MP Virtual Laboratory, http://mplab.scienze.univr.it/
44. The MPI standard Web Page, http://www-unix.mcs.anl.gov/mpi/
45. P system modelling framework,

http://www.dcs.shef.ac.uk/~marian/PSimulatorWeb/~P_Systems_
applications.htm

46. The P Systems Web Page, http://ppage.psystems.eu/
47. Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1),

108–143 (2000)
48. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Comput-

ing. Oxford University Press, Oxford (2010)
49. Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical probabilistic P systems. Inter-

national Journal of Foundations of Computer Science 17(1), 183–204 (2006)
50. Plyasunov, S., Arkin, A.: Efficient stochastic sensitivity analysis of discrete event systems.

Journal of Computational Physics 221, 724–738 (2007)
51. Pomerening, J.R.: Uncovering mechanisms of bistability in biological systems. Current

Opinion in Biotechnology 19(4), 381–388 (2008)
52. Pouton, C.W., Wagstaff, K.M., Roth, D.M., Moseley, G.W., Jans, D.A.: Targeted delivery to

the nucleus. Advanced Drug Delivery Reviews 59(8), 698–717 (2007)
53. The PRISM Web Page, http://www.prismmodelchecker.org/
54. Rathinam, M., Petzold, L.R., Cao, Y., Gillespie, D.T.: Stiffness in stochastic chemically re-

acting systems: The implicit tau-leaping method. Journal of Chemical Physics 119, 12784–
12794 (2003)

55. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical pro-
cesses using the pi-calculus process algebra. In: Pacific Symposium of Biocomputing (PSB
2001), pp. 459–470 (2001)

56. Reinker, S., Altman, R.M., Timmer, J.: Parameter estimation in stochastic biochemical reac-
tions. In: IEE Proceedings Systems Biology, vol. 153, pp. 168–178 (2006)

57. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M.,
Tarantola, S.: Global Sensitivity Analysis: The Primer. Wiley Interscience, Hoboken (2008)

58. Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F.: Sensitivity analysis for chemical mod-
els. Chemical Reviews 105, 2811–2827 (2005)

59. The SBML portal, http://www.sbml.org/
60. Szallasi, Z., Stelling, J., Periwal, V.: Systems Modeling in Cellular Biology. The MIT Press,

Cambridge (2006)

http://mplab.scienze.univr.it/
http://www-unix.mcs.anl.gov/mpi/
http://www.dcs.shef.ac.uk/~marian/PSimulatorWeb/~P_Systems_applications.htm
http://www.dcs.shef.ac.uk/~marian/PSimulatorWeb/~P_Systems_applications.htm
http://ppage.psystems.eu/
http://www.prismmodelchecker.org/
http://www.sbml.org/

BioSimWare 143

61. Turner, T.E., Schnell, S., Burrage, K.: Stochastic approaches for modelling in vivo reactions.
Computational Biology and Chemistry 28, 165–178 (2004)

62. Tyson, J.J.: Some further studies of nonlinear oscillations in chemical systems. Journal of
Chemical Physics 58, 3919–3930 (1973)

63. Vellela, M., Qian, H.: Stochastic dynamics and non-equilibrium thermodynamics of a
bistable chemical system: the Schlögl model revisited. Journal of the Royal Society Inter-
face 6(39), 925–940 (2009)

64. Wadhams, G.H., Armitage, J.P.: Making sense of it all: bacterial chemotaxis. Nature Reviews
Molecular Cell Biology 5(12), 1024–1037 (2004)

65. Widder, S., Macía, J., Solé, R.: Monomeric bistability and the role of autoloops in gene
regulation. PloS One 4(4), e5399 (2009)

66. Wilhelm, T.: The smallest chemical reaction system with bistability. BMC Systems Biol-
ogy 3(1), 90 (2009)

67. Wilkinson, D.J.: Stochastic Modelling for Systems Biology. Chapman & Hall, Boca Raton
(2006)

Modeling Population Growth of Pyrenean
Chamois (Rupicapra p. pyrenaica) by Using

P-Systems

Maria Angels Colomer1, Santiago Lav́ın2, Ignasi Marco2, Antoni Margalida3,
Ignacio Pérez-Hurtado4, Mario J. Pérez-Jiménez4, Delf́ı Sanuy5,

Emmanuel Serrano2, and Luis Valencia-Cabrera4

1 Dpt. of Mathematics, University of Lleida
Av. Alcalde Rovira Roure, 191. 25198 Lleida, Spain

colomer@matematica.udl.es
2 Servei d’Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i

Cirurgia Animals, Universitat Autònoma de Barcelona (UAB),
E-08193-Bellaterra (Barcelona), Spain

{Santiago.Lavin,Ignasi.Marco,Emmanuel.Serrano}@uab.cat
3 Bearded Vulture Study & Protection Group

Apdo. 43 E-25520 El Pont de Suert (Lleida), Spain
margalida@inf.entorno.es

4 Research Group on Natural Computing
Dpt. of Computer Science and Artificial Intelligence, University of Sevilla

Avda. Reina Mercedes s/n. 41012 Sevilla, Spain
{perezh,marper,lvalencia}@us.es

5 Dpt. of Animal Production, University of Lleida
Av. Alcalde Rovira Roure, 191. 25198 Lleida, Spain

dsanuy@prodan.udl.cat

Abstract. P systems provide a high level computational modeling
framework which integrates the structural and dynamic aspects of ecosys-
tems in a comprehensive and relevant way. In previous works,several
ecosystems modeled by using P systems were presented. The good re-
sults obtained encourage us to study new ecosystems such as the one
presented in this paper. Pyrenean Chamois (Rupicapra p. pyrenaica) is
an ungulate species inhabiting the Catalan Pyrenees. In recent years,
several diseases have caused a drastic decrease in the number of individ-
uals. Since they provide significant economic contributions in the area
and constitutes an important food resource for obligate and facultative
scavengers, it is very interesting to provide a model in order to facilitate
the management of their ecosystems.

1 Introduction

Modeling a biological system is usually very complicated because each biological
process involves a large number of factors interacting with each other. Therefore
the most common solution is to define it a scenario in which the number of
variables and interactions between variables is very limited.

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 144–159, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Modeling Population Growth of Pyrenean Chamois by Using P-Systems 145

Most of the existing models for the study of population dynamics are based
on differential equations (ODEs), but this approach has some drawbacks. When
the number of species in a model is greater than two, the equations system
proposed is so complex that it is usually solved using numerical methods. Be-
sides, improvements on the performance of the models are generally obtained
by the addition of ingredients, which in the case of ODEs means that the whole
modeling process needs to start from scratch.

Computer models based on P system offer significant advantages: modularity,
parallelism, and no limitation on the number of interrelated variables that evolve
parallely. These properties make them very attractive for modeling complex
ecosystems.

Each ecosystem has its own important peculiarities, thus trying to design
an “universal” ecosystem model is not a good approach. The model should be
adapted taking into account if a protected and endangered species is being stud-
ied, or if the ecosystem deals with an invasive species, or simply an endemic
area.

Nevertheless, there are some aspects common to most ecosystems such as:

– They contain a large number of individuals and species.
– The life cycles of species inhabiting the ecosystem display several basic pro-

cesses such as: feeding, growth, reproduction and death.
– These processes are repeated annually.
– The evolution often depends on the environment: weather, soil, vegetation,

etc.
– The natural dynamics suffers modifications due to human activities.

These common features yield some requisites for the model from a computa-
tional point of view: many processes take place simultaneously, there is cooper-
ation between individuals and elements of the ecosystem, partial synchroniza-
tion among the dynamic evolution sub-ecosystems (for example, there could be
adverse weather conditions some year, and this does not affect a single sub-
ecosystem, but has a global influence on the entire ecosystem), situations need
to be restored annually.

These considerations lead to the definition of an appropriate modeling seman-
tic context for the P system. In particular, a precise semantics of the multien-
vironment functional probabilistic P system with active membranes has been
used to model two real ecosystems: One based on scavenger birds in the Cata-
lan Pyrenees (Spain) [1] and another one based on the zebra mussel (Dreissena
polymorpha) in the Ribarroja reservoir (Spain) [2]. In the first case, an endan-
gered species is modeled and the purpose of the obtained model is the study
of the evolution of the ecosystem under different scenarios to make the most
appropriate management decisions for the conservation of species. The second
study case corresponds to a completely different situation, the zebra mussel is
an exotic species that has shown an excellent adaptation after its introduction
in the reservoir. Its uncontrolled reproduction causes significant economic and
ecological damage.

146 M.A. Colomer et al.

In both cases we have designed a simulator to validate the results so that
managers have now two tools enabling them to perform virtual experiments
under different conditions.

To show that the proposed modeling framework enables the study of a wide
range of ecosystems, this paper presents a model for the study of the Pyrenean
Chamois dynamics in the Catalan Pyrenees (Spain). It is an emblematic species
that was in danger of extinction a few years ago and have an important role on
the chain food of this area. Aquila chrysaetos

2 Pyrenean Chamois

It is a small ungulate living in the Pyrenees of great interest, not only from a
hunting standpoint, but also naturalistic and touristic. At present the existing
population in the Pyrenees is estimated to be 53,000 individuals. The status of
the species has not always been so favorable, for example, in the late 60s the pop-
ulation decreased down to the edge of extinction due to indiscriminate hunting.
Fortunately, National Hunting Reserves managed by the regional administration
were created in order to save the species.

This species has no major predators in the Pyrenees, except for the brown
bear (Ursus arctos), and the golden eagle (Aquila chrysaetos). However it is a
species with a small growth rate compared with other species of ungulates. In
recent years, the population has suffered from several epidemics of infectious ker-
atoconjunctivitis and, more recently from a new disease associated to a Border
Disease Virus (Genus Pestivirus, Familiy Flaviviridae) has affected some Pyre-
nean chamois populations. However, only the second one has been responsible
for local population decreases greater than 80% (Marco et al 2009). The Pyre-
nean chamois has a life expectancy of 20 years, though the mortality rate is high
for animals older than 11 years. In early ages, the mortality rate ranges from
40% to 50%, while it is around 10% for adults younger than 11 years. At the
age of two, they reach the reproductive age, and approximately 75% of females
mate once a year generally producing one single descendant.

The disease associated to a Pestivirus is having a very important impact on a
social and economic scale in the Pyrenees. The media have been blare of different
epidemics occurring, being a reflection of the concerns of local communities, the
Government of Catalonia, ranchers, hiking groups, conservationists and hunters.
The suspension of Pyrenean chamois hunting in the affected areas has led to major
loss of economic income. This loss is due not only to the lack of direct income
through payment of hunting licences, but also by the disappearance of the indirect
income (ecoturism) that hunters and their guests bring out. Last but not least, we
must highlight the considerable ecological impact of the sudden disappearance of
this herbivore in the affected areas. Despite the detailed studies being carried out
currently, the resulting consequences in the ecosystem are still unclear.

In Spain, Pestivirus infection of the species is up to now affecting only the
region of Catalonia. However, it is possible that the process spreads to other
regions. The process also affects the French Pyrenees sector, which borders the
affected Catalan area [6].

Modeling Population Growth of Pyrenean Chamois by Using P-Systems 147

In the Catalan Pyrenees there are 5 main protected areas where Pyrenean
chamois live in herds, figure 1. We assume that it is unlikely that this species
moves between areas and hence, wherever there is a lack of resources the animals
die.

In this work we aim to present a model to simulate the evolution of the
Pyrenean Chamois populations in the Catalan Pyrenees.

Fig. 1. Study area in the Catalan Pyrenees. Area 1: National Reservoir of hunting in
l’Alt Pallars-Aran. Area 2: RNC Cerdanya-Alt Urgell. Area 3: RNC Cad́ı. Area 4: RNC
Freser-Setcases. Area 5: Parc Nacional, not include in the study.

3 A P System Based Modeling Framework

It will define the variant of P-Sytem to be used for modeling the Pyrenean
Chamois.

Definition 1. A multienvironment functional probabilistic P system with active
membranes of degree (q, m) with q ≥ 1, m ≥ 1, taking T time units, T ≥ 1, is a
tuple

(G, Γ, Σ, RE , Π, {fr,j : r ∈ RΠ , 1 ≤ j ≤ m}, {Mi,j : 0 ≤ i ≤ q−1, 1 ≤ j ≤ m})

where:

– G = (V, S) is a directed graph such that (x, x) ∈ S, for each x ∈ V . Let
V = {e1, . . . , em} whose elements are called environments;

– Γ is the working alphabet and Σ � Γ is an alphabet representing the objects
that can be present in the environments;

148 M.A. Colomer et al.

– RE is a finite set of communication rules between environments of the form

(x)ej

p(x,j,j1,...,jh)−−−→ (y1)ej1
. . . (yh)ejh

where x, y1, . . . , yh ∈ Σ, (ej , ejl
) ∈ S (l = 1, . . . , h) and p(x,j,j1,...,jh)(t) ∈

[0, 1], for each t = 1, . . . , T . If p(x,j,j1,...,jh)(t) = 1, for each t, then we omit
the probabilistic function. These rules verify the following:

� for each ej and for each x, the sum of functions associated with the
rules from RE whose left–hand side is (x)ej coincide with the constant
function equal to 1.

– Π = (Γ, μ, RΠ) where
• μ is a membrane structure consisting of q membranes, with the mem-

branes injectively labeled with 0, . . . , q− 1. The skin membrane is labeled
with 0. We also associate electrical charges from the set {0, +,−} with
membranes; and

• RΠ is a finite set of evolution rules of the form r : u[v]αi → u′[v′]α
′

i

where u, v, u′, v′ ∈ M(Γ), i ∈ {0, 1, . . . , q − 1}, and α, α′ ∈ {0, +,−};
– For each r ∈ RΠ and for each j, 1 ≤ j ≤ m, fr,j is a computable function

whose domain is {1, 2, . . . , T} and its range is contained in [0, 1], verifying
the following:

� For each u, v ∈ M(Γ), i ∈ {0, . . . , q − 1} and α ∈ {0, +,−}, if r1, . . . , rz

are the rules from RΠ whose left–hand side is u[v]αi , then
∑z

j=1 fr,j(t) =
1, for each t, 1 ≤ t ≤ T .

– For each j (1 ≤ j ≤ m), M0,j, . . . ,Mq−1,j are strings over Γ , describing
the multisets of objects initially placed in the q regions of μ.

A multienvironment probabilistic functional extended P system with active mem-
branes of degree (q, m) taking T time units

(G, Γ, Σ, RE , Π, {fr,j : r ∈ RΠ , 1 ≤ j ≤ m}, {Mi,j : 0 ≤ i ≤ q−1, 1 ≤ j ≤ m})

can be viewed as a set of m environments e1, . . . , em linked between them by
the arcs from the directed graph G. Each environment ej contains a functional
probabilistic P system with active membranes of degree q, each of them with the
same skeleton, Π , and such that M0j, . . .Mq−1,j describe their initial multisets.

When a communication rule between environments

(x)ej

p(x,j,j1,...,jh)−−−→ (y1)ej1
. . . (yh)ejh

is applied, object x pass from ej to ej1 , . . . , ejh
possibly modified into objects

y1, . . . , yh, respectively. At any moment t, 1 ≤ t ≤ T , in which an object x is in
environment ej , one and only one rule will be applied according to its probability
which is given by p(x,j,j1,...,jh)(t).

We assume that a global clock exists, marking the time for the whole system
(for its compartments), that is, all membranes and the application of all rules
are synchronized.

The tuple of multisets of objects present at any moment in the m environ-
ments and at each of the regions of the P systems located within them, and the

Modeling Population Growth of Pyrenean Chamois by Using P-Systems 149

polarizations of the membranes in each P system, constitutes a configuration of
the system at that moment. At the initial configuration of the system we assume
that all environments are empty and all membranes have a neutral polarization.

The P system can pass from one configuration to another by using the rules
from R = RE ∪

⋃m
j=1 RΠj as follows: at each transition step, the rules to be

applied are selected according to the probabilities assigned to them, and all
applicable rules are simultaneously applied and all occurrences of the left–hand
side of the rules are consumed, as usual.

4 Model

Pyrenean chamois is one of the species that were considered in the ecosystem
modeled in [1]. However, that paper focuses mainly on the processes of feeding,
reproduction, and mortality, including also that migration to other areas may
occur in the event of resources shortage. The possibility that the species could
be affected by disease was not taken into account, neither the fact that some
biological parameters depend on the weather.

Taking advantage of the modularity of the P system, in order to cover these
new aspects it suffices to modify the schema of the model presented in [1] by
adding two modules, weather and disease module. In this work we have di-
vided the mortality module in two, natural and hunter module. Besides, mod-
ules related to exchange between environments will be removed, since Pyrenean
chamois do not migrate when there are not enough resources (as mentioned in
section 2).

We present a preliminary study of the dynamics of Pyrenean Chamois, taking
into account the following considerations:

– There are four separated areas in the Catalan Pyrenees were the Pyrenean
chamois lives.

– Weather conditions, especially in winter (particularly the thickness of the
snow layer), influence the values of biological parameters of the Pyrenean
chamois species[4].

– Causes of death for this species include: natural death, hunting and disease.
Only Pestivirus infection will be taken into account, while other diseases of
importance that are known to affect the species will not be considered yet.

– The possibility of introducing more species in the model remains open. Note
that in the same geographical space other wild and domestic ungulates may
coexist in some cases, and this is worth studying especially if these species
are competing for food with the parameters of the species.

The algorithmic scheme of the proposed model is shown in figure 2. The algo-
rithm has been sequenced, but all animals evolve in parallel. The processes to be
modeled will be the weather conditions (snow), reproduction, regulation of den-
sity, food, natural mortality, hunting mortality and mortality due to a disease.
In order to model these processes for each species it is needed some biological,
geographical and human factors, that is shown in Table1.

150 M.A. Colomer et al.

Fig. 2. Scheme model of the Pyrenean chamois model

The proposed model consists of a multienvironment functional probabilistic
P system with active membranes of degree (4, 11), taking T times units

(G, Γ, Σ, RE , Π, {fr,ν : r ∈ RΠ , 1 ≤ ν ≤ 4}, {Mi,ν : 0 ≤ i ≤ 10, 1 ≤ ν ≤ 4})

where:

– The graph of the system is G = (V, S), where V = {e1, . . . , e4} is the set of
nodes called environments, and S = {(e1, ei) : 1 ≤ i ≤ 4}.

– The working alphabet is

Γ = {Xjy , Yjy, Y ′
jy, Y ′′

jy, Zjy , Vjy , Wjy : 0 ≤ j ≤ g3, 1 ≤ y ≤ T} ∪
{a, c, d, e, t, h, d1 F, D, S, N} ∪ {ti : 1 ≤ i ≤ 3} ∪ {Gi : 4 ≤ i ≤ 10} ∪
{Ri : 0 ≤ i ≤ 7}

The objects X , Y , Y ′,Y ′′, Z, V and W are associated with animals in dif-
ferent states, index j represents the age of the animal and index y represents
the moment of the simulation. The t are objects associated with the weather.
F is an object that allows the generation of food in the form of grass. Gi are
objects associated with the production of grass in the month i. The objects
D, c, and e are used to control the density of animals of each species. The
objects h1 and h are used in order to know the state of Pesti-virus. The
objects S and N indicate presence or absence of the disease, respectively,
and finally there is the counter R that will allow us to synchronize the P
System.

– The environment alphabet is

Σ = {t, ti : 1 ≤ i ≤ 10}

Modeling Population Growth of Pyrenean Chamois by Using P-Systems 151

Table 1. Biological and geographical information (i month, ν area, l Snow thickness
category)

Biological Parameter

Age at which they are considered adults g0

Age at which they begin to be fertile g1

Age at which they cease to be fertile g2

Life expectancy g3

Proportion of females in the population (as per 1) k1

Fertility rate (as per 1) k2

Number of descendants per female k3

Rate of natural mortality on young animals (as per 1) m1

Rate of natural mortality on adult animals (as per 1) m2

Amount of grass consumed per month and animal βi 1 ≤ i ≤ 10
Geographical Parameter

Amount of grass produced per month αi,ν , 1 ≤ i ≤ 10, 1 ≤ ν ≤ 4
Probability of having the disease msν , 1 ≤ ν ≤ 4
Probability of dying from a disease mdν , 1 ≤ ν ≤ 4
Maximum density of the ecosystem d1ν , 1 ≤ ν ≤ 4
Number of animals that survive after reaching
the maximum density d2ν , 1 ≤ ν ≤ 4
Human factors Parameter

Young animals hunted h1ν , 1 ≤ ν ≤ 4
Adult animals hunted h2ν , 1 ≤ ν ≤ 4

– The purpose of the set RE of environment rules is to select the weather con-
ditions for the year, and to distribute this information to all environments.
This is done because there are some biological parameters that vary depend-
ing on weather conditions. In particular, we are able to simulate the snow
thickness.

re1 ≡
(
t
)

e1

1/10−−−→
(
ti
)

e1

(
ti
)

e2

(
ti
)

e3

(
ti
)

e4
1 ≤ i ≤ 10

re2 ≡
(
t
)

ek
→

(
#
)

ek
, 1 < k ≤ 4

– Π = (Γ, μ, RΠ) is the skeleton of a functional probabilistic P system with
active membranes of degree 11, whose membrane structure is μ = [[]1[]2 . . .
[]10]0.
The set RΠ of rules of the system is the following (where the probabilistic
constants associated with the rules have been incorporated):

* Preparation of the system to start a cycle.
r1 ≡ ti[]00 → [ti]00, 1 ≤ i ≤ 10.

r2 ≡ ti[]0i → [t]−i , 1 ≤ i ≤ 10.

After applying the environment rules, re1 object ti enters from the en-
vironment carrying the information about the climatic condition of the
next year to be simulated.

152 M.A. Colomer et al.

Each of the inner membranes labeled with 1, 2 or 10, stores informa-
tion on biological parameters for each one of the then different climatic
scenarios that the model envisages. The objects associated with animals
should then enter the same membrane as object ti.

r3 ≡ Xj,y[]−k → [Xj,y]0k,

⎧
⎨

⎩

1 ≤ j ≤ g3,
1 ≤ y ≤ T,
1 ≤ k ≤ 10.

Each geographic area in which the species lives has a monthly production
of food (grass).

r4 ≡
(
F []−k → [Gα4(ν)

4 , . . . , G
α10(ν)
10]0k

)

eν
,

{
1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.

where αj(ν) corresponds to the amount of grass produced in the area ν
for the month j.

When the pesti-virus appears in an area, object h is produced. It will
be present in the following configurations.

r5 ≡ h[]−k → [h]0k, 1 ≤ k ≤ 10.

The amount of animals in the ecosystem should be controled so that it
can not exceed a maximum load. This operation is performed by the
objects a.

r6 ≡
(
c[]−k → [a0.9d1ν e0.2d1ν]0k

)

eν
,

{
1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.

The following rules simulate the presence or absence of disease.

r7 ≡ d[]−k → [d]0k, 1 ≤ k ≤ 10.

r8 ≡ [d h → d1]0k, 1 ≤ k ≤ 10. ¡

r9 ≡
(
[d1

msν−−−→S]0k
)

eν
,

{
1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.

r10 ≡
(
[d1

1−msν−−−→N]0k
)

eν
,

{
1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.

Then we have counter Ri that will allow us to synchronize the P system

r11 ≡ R0[]−k → [R0]0k, 1 ≤ k ≤ 10.

r12 ≡ [Ri → Ri+1]0k,

{
0 ≤ i ≤ 4,
1 ≤ k ≤ 10.

Finally, we introduce some randomness in the density control

r13 ≡ [e 0.5−−−→ a]0k, 1 ≤ k ≤ 10.

r14 ≡ [e 0.5−−−→#]0k, 1 ≤ k ≤ 10.

Modeling Population Growth of Pyrenean Chamois by Using P-Systems 153

* Reproduction rules

Males of childbearing age

r15 ≡ [Xj,y
1−k1−−−→Yj,yD]0k,

⎧
⎨

⎩

g1 ≤ j < g2,
1 ≤ y ≤ T,
1 ≤ k ≤ 10.

Females of childbearing age that reproduce

r16 ≡ [Xj,y
k1·k2l−−−→Yj,yY k3

0,yDk3+1]0k,

⎧
⎨

⎩

g1 ≤ j < g2,
1 ≤ y ≤ T,
1 ≤ k ≤ 10.

Females of childbearing age that do not reproduce

r17 ≡ [Xj,y
k1·(1−k2l)−−−→ Yj,yD]0k,

⎧
⎨

⎩

g1 ≤ j < g2,
1 ≤ y ≤ T,
1 ≤ k ≤ 10.

Animals that are not fertile

r18 ≡ [Xj,y → Yj,yD]0k,

⎧
⎨

⎩

g2 ≤ j ≤ g3,
1 ≤ y ≤ T,
1 ≤ k ≤ 10.

Young animals that do not reproduce

r19 ≡ [Xj,y → Yj,yD]0k,

⎧
⎨

⎩

1 ≤ j < g2,
1 ≤ y ≤ T,
1 ≤ k ≤ 10.

* Density rules

Checking if the maximum density has been reached

r20 ≡
(
[Dd1ν ad1ν−d2ν]0k → [h0]]0k

)

eν
,

{
1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.

r21 ≡ [d, h0]0k → [d0]0k, 1 ≤ k ≤ 10.

Transformation of objects that represent animals

r22 ≡ [Yj,y → Y ′
j,y]0k,

⎧
⎨

⎩

0 ≤ j ≤ g3,
1 ≤ y ≤ T,
1 ≤ k ≤ 10

* Feeding rules

r23 ≡ [Y ′
j,yaGβ4

4 Gβ5
5 Gβ6

6 Gβ7
7 Gβ8

8 Gβ9
9 Gβ10

10 → Zj,y]0k,

⎧
⎨

⎩

0 ≤ j ≤ g3,
1 ≤ y ≤ T,
1 ≤ k ≤ 10.

where βi represents the need of food in month i.

154 M.A. Colomer et al.

* Natural mortality rules

Young animals that survive

r24 ≡
(
[Zj,y

1−m1k,ν−−−→ Vj,y]0k
)

eν
,

⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ j < g0,
1 ≤ y ≤ T,
1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.

Young animals that leave the ecosystem or die

r25 ≡
(
[Zj,y

m1k,ν−−−→#]0k
)

eν
,

⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ j < g0,
1 ≤ y ≤ T,
1 ≤ k ≤ 10
1 ≤ ν ≤ 4.

Adult animals that survive

r26 ≡ [Zj,y
1−m2−−−→Vj,y]0k,

⎧
⎨

⎩

g0 ≤ j < g3,
1 ≤ y ≤ T,
1 ≤ k ≤ 10

Adult animals that die

r27 ≡ [Zj,y
m2−−−→#]0k,

⎧
⎨

⎩

g0 ≤ j < g3,
1 ≤ y ≤ T,
1 ≤ k ≤ 10.

Animals that reach the maximum age of the species

r28 ≡ [Yg3,y → #]0k,

{
1 ≤ y ≤ T,
1 ≤ k ≤ 10.

* Hunting mortality

Young animals that survive hunting

r29 ≡
(
[Vj,y

1−h1ν−−−→Wj,y]0k
)

eν
,

⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ j < g0,
1 ≤ y ≤ T,
1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.

Young animals that are hunted

r30 ≡
(
[Vj,y

h1ν−−−→#]0k
)

eν
,

⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ j < g0,
1 ≤ y ≤ T,
1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.

Adult animals that survive hunting

r31 ≡
(
[Vj,y

1−h2ν−−−→Wj,y]0k
)

eν
,

⎧
⎪⎪⎨

⎪⎪⎩

g0 ≤ j < g3,
1 ≤ y ≤ T,
1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.

Modeling Population Growth of Pyrenean Chamois by Using P-Systems 155

Adult animals that are hunted

r32 ≡
(
[Vj,y

h2ν−−−→#]0k
)

eν
,

⎧
⎪⎪⎨

⎪⎪⎩

g0 ≤ j < g3,
1 ≤ y ≤ T,
1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.

* Disease mortality

r33 ≡ [R5S]0k → [R6 h]−k , 1 ≤ k ≤ 10.

r34 ≡ [R5N → R6 h]0k, 1 ≤ k ≤ 10.

r35 ≡ [R5d0 → R6 h]0k, 1 ≤ k ≤ 10.

r36 ≡ [R5d → R6]0k, 1 ≤ k ≤ 10.

r37 ≡ [R6]−k → [#]+k , 1 ≤ k ≤ 10.

r38 ≡ [R6]0k → [#]+k , 1 ≤ k ≤ 10.

r39 ≡ ([Wj,y]−k
mdν−−−→[#]+k)eν ,

⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ j < g3,
1 ≤ y ≤ T,
1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.

r40 ≡ ([Wj,y]−k
1−mdν−−−→[Wj,y]+k)eν ,

⎧
⎪⎪⎨

⎪⎪⎩

0 ≤ j < g3,
1 ≤ y ≤ T,
1 ≤ k ≤ 10,
1 ≤ ν ≤ 4.

* Updating rules

r41 ≡ [Wj,y]+k → Xj+1,y+1[]0k,

⎧
⎨

⎩

0 ≤ j < g3,
1 ≤ y ≤ T,
1 ≤ k ≤ 10.

r42 ≡ [Y ′
j,y]+k → [#]0k,

⎧
⎨

⎩

0 ≤ j < g3,
1 ≤ y ≤ T,
1 ≤ k ≤ 10.

r43 ≡ [t]+k → R0, F, t, c, d[]0k, 1 ≤ k ≤ 10.

r44 ≡ [h]+k → h []0k, 1 ≤ k ≤ 10.

r45 ≡ [a]+k → [#]0k, 1 ≤ k ≤ 10.

r46 ≡ [Gi]+l → [#]0k,

{
4 ≤ i ≤ 10,
1 ≤ k ≤ 10.

r47 ≡ [t]00 → t[]00
– M0,ν , . . . M10,ν (1 ≤ ν ≤ 4) are strings over Γ which describe the initial

multiset of objects located in the regions of μ.

M0,ν = {F, R0, c, d} ∪ {Xqν,j

j,1 : 1 ≤ ν ≤ 4, 1 ≤ j ≤ g3}, for 1 ≤ ν ≤ 4.

Mi,ν = ∅, for 1 ≤ i ≤ 10 and 1 ≤ ν ≤ 4.

156 M.A. Colomer et al.

5 A Software Tool for Simulation

A software tool under GNU GPL license [8] for simulating P systems modeling
ecosystems was presented in [2]. The simulation of two real and relevant ecosys-
tems has been achieved by using this software tool [2]. One of them is related to
an endangered species (the bearded vulture) and the other one is related to an
exotic and invasive species (the zebra mussel). For each one, an ad hoc graphic
user interface (GUI) has been developed in order to configure the initial parame-
ters of the ecosystem and collect the results of the simulation by means of tables
and graphics. The simulation core that has been used is based on P-Lingua [5,9]
and pLinguaCore [5,10]. The software tool allows two different types of users:
the first one is the designer user, who is the responsible for defining, debugging
and validating the model for the ecosystem; and the second one is the end-user,
who is the final user of the software tool and he/she uses it for carrying out
virtual experiments over the ecosystem.

One of the main problems of the software tool is the need to design, de-
velop and maintain several different graphic user interfaces. In this paper, a
new software tool, MeCoSim [7], has been used. MeCoSim (Membrane Com-
puting Simulator) allows the same functionality as its predecessor, and besides
the designer user is provided with an easy-to-use method for creating new ad
hoc GUIs for specific ecosystem models, by means of the definition in data
bases. In this sense, the development of the GUI in Java Swing (or other pro-
gramming languages) has been avoided, delegating this process on the designer
user.

To summarize, MeCoSim offers to the users (designer and end-user) a highly
customizable simulators generator to apply simulation algorithms for P systems
modelling several scenarios under study. Thus, MeCoSim is a final product that
avoid the necessity of ad-hoc GUI development per each scenario, introducing
enough flexibility to permit the designer user to generate a simulator adapted
to the scope of the domain of study of the end-user, with the inputs, parameters
and outputs he needs.

The process to adapt MeCoSim to each scenario requires the definition of a
configuration file. The structure of the file is provided to the designer user in
order to configurate the custom simulator he wants to generate. After that,
the file is processed by MeCoSim, that loads it in an embed database and
generates the custom simulator that comply with the information introduced
by the designer user. With this simple task done by the designer and with-
out any software development, the end-user will get a custom simulator for his
specific domain problem or case study. A change in the original model struc-
ture (desired structure of inputs, outputs or parameters) will be reflected in
the simulator with the simple change of the configuration file and its reload
in MeCoSim. For more information about the GUI configuration process with
MeCoSim, see [7].

Modeling Population Growth of Pyrenean Chamois by Using P-Systems 157

Fig. 3. MeCoSim3: edition process for the initial parameters of the model

Figure 3 shows a snapshot of the software tool MeCoSim with an specific
graphic user interface for editing the initial parameters of the model presented
in this paper.

6 Results

There are experimental data available from 1988 on although censuses where
not carried out annually so that, experimental series is not a continuous one.
Using the censuses in 1988 as input for the model, 22 years have been simu-
lated repeating the process 50 times for each of the years simulated. Figure 4
shows the results and more specifically, the continuous line represents the average
value of the 50 simulations whereas the broken lines correspond to 95% interval
and the dots are the values obtained experimentally. In both Alt Pallars-Aran
and Cerdanya-Alt Urgell areas, animals have suffered from pesti-virus infections
whereas in Freser-Setcases, the population dynamics have not suffered the dis-
ease caused by this infection.

In general, the model behaves well in all cases; nonetheless, there are some
experimental values near the lines corresponding to the confidence interval that
should be studied.

The model considers the main processes and dynamics of the species although
some of them have been omitted because they are considered to be less impor-
tant. This may explain the differences between the values obtained with the
model and experimental ones. Among these factors, it should be highlighted the
influence of domestical animals living in the area on the spread of pesti-virus
infection. In addition, there are few data regarding the thickness of the snow
layer and those used in the model have been obtained from ski resorts so that
they may be overdimensioned and then, may affect the results significantly. We
suggest studying the relationship between the thickness of the snow layer and
other available climatic data in the area such as temperature and the length of
the winter interval.

158 M.A. Colomer et al.

Fig. 4. Results

7 Conclusions

This paper presents the first computational model of a real ecosystem from
the Catalan Pyrenees involving the Pyrenean Chamois. The model is based on
Membrane Computing.

In [2], a general framework for modeling ecosystems using multienvironment
P systems was presented. The rules in that framework were associated with
probability functions depending on a number of parameters, such as the simu-
lation time. The model presented in this paper can be considered as a practical

Modeling Population Growth of Pyrenean Chamois by Using P-Systems 159

application of the introduced framework previously. The model is still under the
experimental validation phase. Some preliminary validation of this model has
been assessed by ecologists resulting in very encouraging and promising results
that will be reported elsewhere. In order to assist the validation of the model,
we are developing a simulation tool called MeCoSim [7]. This software allows
the designer user to specify the Graphics User Interface for a specific model by
editing a configuration file.

References

1. Cardona, M., Colomer, M.A., Pérez–Jiménez, M.J., Sanuy, D., Margalida, A.: Mo-
delling ecosystems using P Systems: The Bearded Vulture, a case of study. In:
Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008.
LNCS, vol. 5391, pp. 137–156. Springer, Heidelberg (2009)

2. Cardona, M., Colomer, M.A., Margalida, A., Palau, A., Pérez-Hurtado, I., Pérez-
Jiménez, M.J., Sanuy, D.: A Computational Modeling for real Ecosystems Based
on P Systems. Natural Computing,
http://dx.doi.org/10.1007/s11047-010-9191-3

3. Colomer, M.A., Margalida, A., Sanuy, D., Pérez-Jiménez, M.J.: A bio-inspired
computing model as a new tool for modeling ecosystems: the avian scavengers as
a case study. Ecological modelling (in press, 2010)

4. Crampe, J.P., Gaillard, J.M., Loison, A.: L’enneigement hivernal: un facteur de
variation du recrutement chez l’isard (Rupicapra pyrenaica pyrenaica). Canadian
Journal of Zoology 80, 306–1312 (2002)

5. Garćıa-Quismondo, M., Gutiérrez-Escudero, R., Pérez-Hurtado, I., Pérez-Jiménez,
M.J., Riscos-Núñez, A.: An overview of P-lingua 2.0. In: Păun, G., Pérez-Jiménez,
M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS,
vol. 5957, pp. 264–288. Springer, Heidelberg (2010)

6. Marco, I., Rosell, R., Cabezón, O., Mentaberre, G., Casas, E., Velarde, R., Lav́ın,
S.: Border disease virus among chamois, Spain. Emerging Infectious Diseases 15,
448–451 (2009)

7. Valencia-Cabrera, L., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Colomer, M.A.:
MecoSim: A General purpose software tool for simulating biological phenomena
by means of P systems. In: Pre-proceedings of the IEEE Fifth International Con-
ference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2010) (in
press, 2010)

8. GPL license, http://www.gnu.org/copyleft/gpl.html
9. The P-Lingua website, http://www.p-lingua.org/
10. The pLinguaCore library website,

http://www.p-lingua.org/wiki/index.php/PLinguaCore

http://dx.doi.org/10.1007/s11047-010-9191-3
http://www.gnu.org/copyleft/gpl.html
http://www.p-lingua.org/
http://www.p-lingua.org/wiki/index.php/PLinguaCore

On Generalized Communicating P Systems with
One Symbol�

Erzsébet Csuhaj-Varjú1,��, György Vaszil1, and Sergey Verlan2

1 Computer and Automation Research Institute, Hungarian Academy of Sciences
Kende u. 13-17, 1111 Budapest, Hungary

{csuhaj,vaszil}@sztaki.hu
2 Laboratoire d’Algorithmique, Complexité et Logique, Département Informatique

Université Paris Est
61, av. Général de Gaulle, 94010 Créteil, France

verlan@univ-paris12.fr

Abstract. Generalized communicating P systems (GCPSs) are tissue-
like membrane systems with only rules for moving pairs of objects.
Despite their simplicity, they are able to generate any recursively enu-
merable set of numbers even having restricted variants of communication
rules. We show that GCPSs still remain computationally complete if they
are given with a singleton alphabet of objects and with only one of the
restricted types of rules: parallel-shift, join, presence-move, or chain.

1 Introduction

The notion of a generalized communicating P system was introduced in [14], with
the aim of providing a common generalization of various purely communicating
models in the framework of P systems.

A generalized communicating P system, or a GCPS for short, corresponds
to a hypergraph where each node is represented by a cell and each edge is
represented by a rule. Every cell contains a multiset of objects which – by com-
munication rules – may move between the cells. The form of a communication
rule is (a, i)(b, j) → (a, k)(b, l) where a and b are objects and i, j, k, l are labels
identifying the input and the output cells. Such a rule means that an object
a from cell i and an object b from cell j move synchronously to cell k and
cell l, respectively. Communication rules can also be interpreted as interaction
rules.

Depending on their form, several restrictions on communication rules (modulo
symmetry) can be introduced; we provide a detailed description of these variants
in Section 2. When a GCPS has only one type of these restricted rules, then we

� Research supported in part by the Hungarian Scientific Research Fund, “OTKA”,
project K75952 and by Science and Technology Center in Ukraine, project 4032.

�� Also affiliated with the Department of Algorithms and Their Applications, Faculty of
Informatics, Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest,
Hungary.

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 160–174, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Generalized Communicating P Systems with One Symbol 161

speak of a generalized communicating P system with minimal interaction or
a minimal interaction P system (with the given type of rules), called also a
GCPSMI, for short.

Due to the simplicity of their rules, the generative power of minimal inter-
action P systems is of particular interest and it has been studied in details. In
[14,4] it was proved that eight of the possible nine restricted variants (with re-
spect to the form of rules) are able to generate any recursively enumerable set
of numbers; in the ninth case only finite sets of singletons can be obtained. Fur-
thermore, these systems even with relatively small numbers of cells and simple
underlying (hypergraph) architectures are able to achieve this generative power.

In this paper, we introduce one more restriction, i.e., we study minimal in-
teraction P systems where the alphabet of objects is a singleton. We show that
these so-called one-symbol minimal interaction P systems given with any of the
parallel-shift, presence-move, chain, and join rules are able to generate every
recursively enumerable set of natural numbers. These results demonstrate that
computational completeness can be achieved with (certain variants of) GCPSMIs
defined over the simplest alphabets. We also examine the generative power of
one-symbol minimal interaction P systems with conditional-uniport-in rules and
prove that these constructs are less powerful than the previous variants. We
note that, by definition, the concept of the remaining restricted communication
rules is not applicable for GCPSs over a one-symbol object alphabet. Finally, we
provide topics for future research.

2 Preliminaries

In this section we recall some basic notions and notations used in membrane
computing, formal language theory and computability theory. For further details
and information the reader is referred to [9,10,11].

An alphabet is a finite non-empty set of symbols. For an alphabet V , we
denote by V ∗ the set of all strings over V , including the empty string, λ.

A finite multiset over V is a mapping M : V −→ N; M(a) is said to be
the multiplicity of a in M (N denotes the set of non-negative integers). A finite
multiset M over an alphabet V can be represented by all permutations of a
string x = a

M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ V ∗, where aj ∈ V , 1 ≤ j ≤ n; x represents

M in V ∗. If no confusion arises, we also may use the customary set notation for
denoting multisets. The size of a finite multiset M, represented by x ∈ V ∗ is
defined as Σa∈V |x|a.

A register machine is a 5-tuple M = (Q, R, q0, qf , P), where Q is a finite non-
empty set, called the set of states, R = {A1, . . . , Ak}, k ≥ 1, is a set of registers,
q0 ∈ Q is the initial state, and qf ∈ Q is the final state. P is a set of instructions
of the following forms: (p, A+, q, s), where p, q, s ∈ Q, p �= qf , A ∈ R, called an
increment instruction, or (p, A−, q, s), where p, q, s ∈ Q, p �= qf , A ∈ R, called a
decrement instruction. Furthermore, for every p ∈ Q, (p �= qf), there is exactly
one instruction of the form either (p, A+, q, s) or (p, A−, q, s).

A configuration of a register machine M , defined above, is given by a (k + 1)-
tuple (q, m1, . . . , mk), where q ∈ Q and m1, . . . , mk are non-negative integers, q

162 E. Csuhaj-Varjú, G. Vaszil, and S. Verlan

corresponds to the current state of M and m1, . . . , mk are the current numbers
stored in the registers (in other words, the current contents of the registers or
the value of the registers) A1, . . . Ak, respectively.

A transition of the register machine consists in updating the number stored
in a register and in changing the current state to another one, according to an
instruction. An increment instruction (p, A+, q, s) ∈ P is performed if M is in
state p, the number stored in register A is increased by 1, and after that M enters
either state q or state s, chosen non-deterministically. A decrement instruction
(p, A−, q, s) ∈ P is performed if M is in state p, and if the number stored in
register A is positive, then it is decreased by 1, and then M enters state q, and
if the number stored in A is 0, then the contents of A remains unchanged and
M enters state s.

We say that a register machine M = (Q, R, q0, qf , P), with k registers, given as
above, generates a non-negative integer n if starting from the initial configuration
(q0, 0, 0, . . . , 0) it enters the final configuration (qf , n, 0, . . . , 0). The set of non-
negative integers generated by M is denoted by N(M).

For further details on register machines the reader is referred to [7]. It is known
that they compute all recursively enumerable sets of non-negative integers; the
family of these sets of numbers is denoted by NRE. We denote the family of
finite sets of non-negative integers by NFIN .

Next we recall the basic definitions concerning generalized communicating P
systems [14].

Definition 1. A generalized communicating P system (a GCPS) of degree n,
where n ≥ 1, is an (n + 4)-tuple Π = (O, E, w1, . . . , wn, R, h) where

1. O is an alphabet, called the set of objects of Π;
2. E ⊆ O; called the set of environmental objects of Π;
3. wi ∈ O∗, 1 ≤ i ≤ n, is the multiset of objects initially associated to cell i;
4. R is a finite set of interaction rules (or communication rules) of the form

(a, i)(b, j) → (a, k)(b, l), where a, b ∈ O, 0 ≤ i, j, k, l ≤ n, and if i = 0 and
j = 0, then {a, b} ∩ (O \ E) �= ∅; i.e., a /∈ E and/or b /∈ E;

5. h ∈ {1, . . . , n} is the output cell.

The system consists of n cells, labeled by natural numbers from 1 to n, which
contain multisets of objects over O; initially cell i contains multiset wi (the initial
contents of cell i is wi). We distinguish an additional special cell, labeled by 0,
called the environment. The environment contains objects of E in an infinite
number of copies.

The cells interact by means of the rules (a, i)(b, j) → (a, k)(b, l), with a, b ∈ O
and 0 ≤ i, j, k, l ≤ n. As the result of the application of the rule, object a moves
from cell i to cell k and b moves from cell j to cell l. If two objects from the
environment move to some other cell or cells, then at least one of them must not
appear in the environment in an infinite number of copies. Otherwise, an infinite
number of objects can be imported in the system in one step.

A configuration of a GCPS Π , as above, is an (n+1)-tuple (z0, z1, . . . , zn) with
z0 ∈ (O \E)∗ and zi ∈ O∗, for all 1 ≤ i ≤ n; z0 is the multiset of objects present

On Generalized Communicating P Systems with One Symbol 163

in the environment in a finite number of copies, whereas, for all 1 ≤ i ≤ n, zi is
the multiset of objects present inside cell i. The initial configuration of Π is the
tuple (λ, w1, . . . , wn).

Given a multiset of rules R over R and a configuration u = (z0, z1, . . . , zn)
of Π , we say that R is applicable to u if all its elements can be applied si-
multaneously to the objects of multisets z0, z1, . . . , zn such that every object is
used by at most one rule. Then, for a configuration u = (z0, z1, . . . , zn) of Π ,
a new configuration u′ = (z′0, z′1, . . . , z′n) is obtained by applying the rules of R
in a non-deterministic maximally parallel manner: taking an applicable multi-
set of rules R over R such that the application of R results in configuration
u′ = (z′0, z′1, . . . , z′n) and there is no other applicable multiset of rules R′ over R
which properly contains R.

One such application of a multiset of rules satisfying the conditions listed
above represents a transition in Π from configuration u to configuration u′. A
transition sequence is said to be a successful generation by Π if it starts with
the initial configuration of Π and ends with a halting configurations, i.e., with a
configuration where no further transition step can be performed.

We say that Π generates a non-negative integer n if there is a successful
generation by Π such that n is the size of the multiset of objects present inside
the output cell in the halting configuration. The set of non-negative integers
generated by a GCPS Π in this way is denoted by N(Π).

In the following we recall the notions of the possible restrictions on the in-
teraction rules (modulo symmetry). Let O be an alphabet and let us consider
an interaction rule (a, i)(b, j) → (a, k)(b, l) with a, b ∈ O, i, j, k, l ≥ 0. Then we
distinguish the following cases:

1. i = j = k �= l: the conditional-uniport-out rule
(the uout rule, for short) sends b to cell l provided that a and b are in cell i;

2. i = k = l �= j: the conditional-uniport-in rule
(the uin rule, for short) brings b to cell i provided that a is in that cell;

3. i = j, k = l, i �= k : the symport2 rule
(the sym2 rule, for short) corresponds to the minimal symport rule [10], i.e.,
a and b move together from cell i to k;

4. i = l, j = k, i �= j : the antiport1 rule
(the anti1 rule, for short) corresponds to the minimal antiport rule [10], i.e.,
a and b are exchanged in cells i and k;

5. i = k and i �= j, i �= l, j �= l: the presence-move rule
(the presence rule, for short) moves the object b from cell j to l, provided
that there is an object a in cell i and i, j, l are pairwise different cells;

6. i = j, i �= k, i �= l, k �= l : the split rule
(the split rule, for short) sends a and b from cell i to cells k and l, respectively;

7. k = l, i �= j, k �= i, k �= j : the join rule
(the join rule, for short) brings a and b together to cell i;

8. i = l, i �= j, i �= k and j �= k : the chain rule
(the chain rule, for short) moves a from cell i to cell k while b is moved from
cell j to cell i, i.e., to the cell where a was previously ;

164 E. Csuhaj-Varjú, G. Vaszil, and S. Verlan

9. i, j, k, l are pairwise different numbers: the parallel-shift rule
(the shift rule, for short) moves a and b from two different cells to another
two different cells.

A generalized communicating P system may have rules of several types as defined
above. When it only has one of them, then we call the corresponding GCPS a
minimal interaction P system (with the given type of rules), or a GCPSMI, for
short.

In the following, NOtPk(x) denotes the family of the sets of numbers gen-
erated by minimal interaction P systems of degree k and with rules of type x,
k ≥ 1 and x ∈ {uout, uin, sym2, anti1, presence, split, join, chain, shift}, and
NOtP∗(x) is the notation for

⋃∞
k=1 NOtPk(x). If the number of objects in the al-

phabet of objects in the GCPSMI is l, then the previous notations are changed
to NOltPk(x) and NOltP∗(x), respectively. We call these GCPSMIs l-symbol
minimal interaction P systems (with a given type of rules).

Throughout the paper, we also refer to the symbol in the one-symbol P sys-
tems as token (denoted by •). Furthermore, without any loss of the generality
we may assume that one-symbol GCPSMIs are given over alphabet O = {•}.

Notice that in the case of one-symbol minimal interaction P systems, the
concepts of rule types conditional-uniport-out, symport2, antiport1, and split
are not applicable. Since O = E, in these cases the rules (•, i)(•, j) → (•, k)(•, l)
do not satisfy condition 4. of Definition 1, namely, that if i = 0 and j = 0, then
{•} ∩ (O \ E) �= ∅.

Due to their simplicity, the generative power of minimal interaction P systems
is of particular interest. In [14,4] and it was shown that NOtP∗(anti1) ⊂ NFIN ,

NRE = NOtP30(uin) = NOtP30(uot) = NOtP9(split) = NOtP7(join) =
= NOtP36(presence) = NOtP19(shift) = NOtP∗(chain),

and moreover, accepting systems with ten cells and sym2 rules are also able to
characterize any set from NRE.

These results are valid if no restriction is introduced on the size of the object
alphabet. In the following we restrict the size of the alphabet of objects to one,
and will investigate the generative power of one-symbol minimal interaction
P systems.

We observe that such systems are similar to Petri Nets having a restricted
topology. This is especially visible if a graphical notation is used. However, the
maximal parallelism and the concept of the environment are specific to P sys-
tems, so we place this study in the latter framework. A converse study of P
systems from the point of view of Petri Nets can be found in [5]. For more
details on Petri Nets and membrane computing we also refer to [10].

3 Main Results

In this section we show that one-symbol minimal interaction P systems with
any of rule types parallel-shift, presence-move, chain, or join are able to gener-
ate every recursively enumerable set of numbers. In the case of systems Π with

On Generalized Communicating P Systems with One Symbol 165

conditional-uniport-in rules, either a finite set of non-negative numbers is gen-
erated, or there exists a K ∈ N such that N(Π) contains any natural number
l ≥ K.

We first start with one-symbol minimal interaction P systems with parallel-
shift rules and show their computational completeness. A similar result is given
in Theorem 4.4 of [5]. The definition used there is slightly different, but the
construction can be adapted to the case of GCPSMI with parallel-shift rules.
We give below a different proof and use it in the rest of the sequel.

Theorem 1. NO1tP∗(shift) = NRE.

Proof. Let S ∈ NRE be generated by a register machine M = (Q, R, q0, qf , P)
with R = {A1, . . . An}, n ≥ 1 (M is given as in Section 2). We construct a
one-symbol minimal interaction P system Π = (O, E, w1, . . . , wr, R1, h), r ≥ 1,
with parallel-shift rules such that N(M) = N(Π) holds. The proof idea is based
on the simulation of the application of the instructions of M by applications of
rule sets of Π .

The components of Π are defined as follows. Let O = E = {•}, and let
Π have for any p ∈ Q cells labeled by elements of {p, 1p, 2p, 3p, 4p, 5p}. (Note
that for every p ∈ Q, (p �= qf), there is exactly one instruction of the form
either (p, A+, q, s) or (p, A−, q, s).) Furthermore, let Π have for any register Ai,
1 ≤ i ≤ n, in M a dedicated cell labeled by Ai; the output cell is the one which
corresponds to the output register of M . Let these cells be pairwise different and
also different from the cells defined previously to the instructions. For the sake
of simplicity, throughout the paper, we use terms “cell p” , “cell Ai” and “cell
labeled by p”, “cell labeled by Ai” as equivalent, respectively.

We define the rule set, R1, of Π as follows. For any increment instruction
(p, Ai+, q, s) of M , 1 ≤ i ≤ n, R1 contains the following rules.

(1(p)) : (•, p)(•, 0) → (•, q)(•, Ai) (2(p)) : (•, p)(•, 0) → (•, s)(•, Ai)

For any decrement instruction (p, Ai−, q, s) of M , 1 ≤ i ≤ n, R1 contains the
following rules.

(1(p)) : (•, p)(•, 0) → (•, 1p)(•, 2p) (2(p)) : (•, 1p)(•, Ai) → (•, 3p)(•, 0)

(3(p)) : (•, 2p)(•, 0) → (•, 4p)(•, 5p) (4(p)) : (•, 1p)(•, 4p) → (•, s)(•, 0)

(5(p)) : (•, 3p)(•, 4p) → (•, q)(•, 0)

Furthermore, R1 consists only of the rules defined above.
The initial contents of the cells are given by wq0 = •, and wx = λ for x ∈

Q ∪ {ky | 1 ≤ k ≤ 5, y ∈ Q} ∪ {Ai | 1 ≤ i ≤ n}, this configuration corresponds
to the initial configuration of M.

We show that the application of an increment instruction or a decrement
instruction of M can be simulated by the application of the corresponding rule
set of Π defined above.

The reader may easily notice that the presence of a token (•) in cell p means
that the current state of M is p, therefore the rules (1(p)) and (2(p)) describe the
application of an increment instruction of M .

166 E. Csuhaj-Varjú, G. Vaszil, and S. Verlan

Suppose now that the instruction of M to be simulated is (p, Ai−, q, s). Then
cell p contains a token. (We note that no cell p, where p ∈ Q has more than one
token during any step of the generation). At the first step of the simulation, only
rule (1(p)) is applicable which moves the token from cell p and one token from
the environment to cells 1p and 2p, respectively. If cell Ai contains at least one
token, then, by rule (2(p)), a token from cell 1p moves to cell 3p and one token
from cell Ai exits to the environment. Meantime, the token from cell 2p and
one token from the environment are transported to cells 4p and 5p, respectively.
At the next step, the token in cell 3p moves to cell q and the token in cell 4p

exits to the environment, thus, the obtained configuration of Π corresponds to
the configuration of M after performing the decrement instruction if register Ai

contained at least one symbol. If cell Ai does not contain any token, then after
performing rule (1(p)), the only applicable rule is (3(p)), which sends one-one
tokens to cell 4p and cell 5p. After then, rule (4(p)) is applied, which moves the
token from cell 1p to cell s and sends the token in cell 4p to the environment.

Examining the proof above, the reader may observe that the generation pro-
cess in Π is governed by the token arriving in a cell labeled by a state of M and
no simulation of simultaneous instructions of M is possible.

By the construction of R1, if M enters state qf , then Π halts, since there is
no applicable rule if cell qf contains a token. It also can easily be seen that the
number of tokens at the output cell is equal to the number stored in the output
register of M by halting. Thus, N(M) = N(Π).

Using in part the construction in the proof of Theorem 1, we show that one-
symbol minimal interaction P systems with join rules are also computationally
complete.

Theorem 2. NO1tP∗(join) = NRE.

Proof. The proof, as the previous one, is based on simulation of the work of
a register machine. Let S ∈ N(RE) be generated by a register machine M =
(Q, R, q0, qf , P) with R = {A1, . . . An}, n ≥ 1. (M is given as in Section 2.) We
now construct a one-symbol minimal interaction P system Π = (O, E, w1, . . . , ws,
R1, h), s ≥ 1, with join rules such that N(M) = N(Π) holds. The construction
of Π is done in several steps.

We first note that by Theorem 1 there exists a one-symbol minimal inter-
action P system Π ′ = ({•}, {•}, w′

1, . . . , w
′
r, R

′
1, h

′), r ≥ 1, with parallel-shift
rules which generates S. Suppose that Π ′ is given as the GCPSMI in the proof
of Theorem 1. It is easy to see that the application of any parallel-shift rule
(t) : (•, i)(•, j) → (•, k)(•, l), where i, j, k, l are labels of cells and (t) is the
label of the rule, can be simulated by the application of a join rule (t′) :
(•, i)(•, j) → (•, ct)(•, ct) followed by a split rule (t′′) : (•, ct)(•, ct) → (•, k)(•, l),
where ct is a new cell introduced to rule (t) : (•, i)(•, j) → (•, k)(•, l). The new
cells are pairwise different and different from the already existing ones. By this
observation, we can construct a one-symbol minimal interaction P system Π ′′

such that N(Π ′′) = N(Π ′) and the rule set of Π ′′ consists of the join and split
rules constructed to the rules of Π ′ in the previously described manner. Then,

On Generalized Communicating P Systems with One Symbol 167

starting from Π ′′, we will construct Π . To do this, for any split rule in Π ′′ we
design a set of rules in Π which rule set simulates the application of the split
rule and only that. For this reason, we first define a block of cells, a so-called
pseudo-split block. The term “pseudo-split” refers to that the rule set realizes a
split if some special conditions hold.

A pseudo-split block is given as follows (see Figure 1). The block aims to split
two tokens from cell 1 to cells 2 and 3. Cell 1 is supposed to have at least two
tokens. One of them is sent to cell 2 and the other one to cell 3. Furthermore,
one of the following conditions must hold:

(i) In one of the nodes 2 and 3 only one token can leave the cell to outside the
block in the next step of the generation.

(ii) In one of the nodes 2 and 3 no token can leave the cell to outside the block
for at least the next step of the generation.

Fig. 1. A pseudo-split block Fig. 2. Pseudo-split blocks simulat-
ing a split rule

The pseudo-split block is implemented by join rules as follows (initially cells
4, 4′ have two tokens and cell # is a so-called trap cell):

(1) : (•, 1)(•, 4) → (•, 5)(•, 5) (2) : (•, 1)(•, 4′) → (•, 5′)(•, 5′)
(3) : (•, 4)(•, 5) → (•, 3)(•, 3) (4) : (•, 4′)(•, 5′) → (•, 2)(•, 2)
(5) : (•, 4)(•, 5′) → (•, #)(•, #) (6) : (•, 4′)(•, 5) → (•, #)(•, #)
(7) : (•, 5)(•, 3) → (•, 4)(•, 4) (8) : (•, 5′)(•, 2) → (•, 4′)(•, 4′)

The rules corresponding to the trap cell are the following:

(#1) : (•, #)(•, 0) → (•, #̄)(•, #̄) (#2) : (•, #̄)(•, 0) → (•, #)(•, #)

We explain how the block functions. At starting, the only possibility not
leading to an infinite generation is to equally distribute the tokens found at cell
1 between cells 5 and 5′ (rules (1) and (2)). After that, two tokens will arrive
at cell 2 and two tokens at cell 3 (from cells 4′ and 5′ and from cells 4 and 5,
respectively). Suppose now that no token can leave cell 3 in the next step (i.e.,
condition (ii) holds). Then, one token from cell 3 and one token from cell 5 move
to cell 4. This implies that at the same time one token from cell 2 and one token

168 E. Csuhaj-Varjú, G. Vaszil, and S. Verlan

from cell 5′ will move to cell 4′, because if this does not take place, then at
the next step a token from cell 4 and the one remained in 5′ will move to the
trap cell. Since the construction is symmetric, a similar generation phase will
be performed if it is cell 2 that cannot evolve for one step. The block functions
similarly if condition (i) holds.

Notice that the pseudo-split block corresponds to a split rule only if at least
one of the conditions (1) and (2) holds. In the following we construct a block
arrangement consisting of pseudo-split blocks such that the above criterion is
satisfied (see Figure 2).

The block arrangement functions as follows. Initially, each cell 8 and 9 contains
one token. Firstly, a pseudo-split block is used to separate two tokens from cell 1
to cells 4 and 5. After then, a join rule is applied to send a token from cell 4 and
cell 8 to cell 6 and from cell 5 and cell 9 to cell 7, respectively. This implies that
the destination cells of the previously performed pseudo-split, i.e., cells 4 and 5
satisfy condition (i), since only one token can leave these cells. This phase of the
generation is followed by two pseudo-splits, where the destination cells satisfy
condition (ii), i.e., no token will be able to leave cell 8 and 9, respectively, at
the next step. This implies that no simulation of another split instruction can
start before the tokens coming from cell 1 arrive at cell 2 and 3. Hence, a split
instruction is performed.

Combining join and split operations as described above, the rule set of Π can
be constructed. We leave the details of the construction to the reader. It can
easily be seen that Π generates the same set of numbers as Π ′, thus N(Π) =
N(M) holds.

Next we show that one-symbol minimal interaction P systems with presence-
move rules are also computationally complete.

Theorem 3. NO1tP∗(presence) = NRE.

Proof. Let S ∈ NRE and let S be generated by a register machine M =
(Q, R, q0, qf , P) with R = {A1, . . . An}, n ≥ 1. (M is given as in Section 2.)
As in the case of the previous statements, we show that a one-symbol minimal
interaction P system Π with presence-move rules can be constructed such that
N(M) = N(Π) holds. GCPSMI Π is defined in several steps.

Instead of direct simulations of the increment and decrement instructions of
M , we define sets of rules, called (primitive) blocks, as it was done in [14,13,4]
and then we show how a set of rules simulating the application of an increment
instruction or that of a decrement instruction can be constructed from these
blocks. We will use three types of blocks: the uniport block, the main block, and
the zero block.

The uniport block is denoted by an arrow between circles labeled by i and j. It
corresponds to the move of a token from cell i to cell j. This action is simulated
by the following presence-move rule: (we suppose that a token is present initially
in cell i′): (•, i′)(•, i) → (•, i′)(•, j).

The main block, see Figure 3, permits to move synchronously a token from
cell i to cell j and a token from cell k to cell m. If no token is present in cell

On Generalized Communicating P Systems with One Symbol 169

k, then an infinite loop occurs. The arrows show the direction of the move of
the objects and the circles corresponds to the cells. Since the semantics of the
block is not symmetric, the double circle indicates the place of the symbol that
triggers the generation and for which the infinite loop can occur.

Fig. 3. The main block Fig. 4. The zero block

The zero block, see Figure 4, moves a token from cell i to cell j providing that
there is no token in cell k. If this is not the case, then the generation enters an
infinite loop. The notations are analogous to the ones used in Figure 3, namely,
the arrow denotes the direction of the movement of the object, the circles denote
cells, the double line and the circle labeled with k refer to the condition that no
token is present in cell k.

In the following we show how the main block and the zero block are imple-
mented in Π . The simulation of the main block is done by the following rule set.
We suppose that initially each of cells 5, 8 and 13 contains a token.

(1) : (•, 1)(•, 5) → (•, 1)(•, 6) (2) : (•, 6)(•, 1) → (•, 6)(•, 7)
(3) : (•, 7)(•, 3) → (•, 7)(•, 4) (4) : (•, 8)(•, 6) → (•, 8)(•, 9)
(5) : (•, 9)(•, 7) → (•, 9)(•, 12) (6) : (•, 12)(•, 9) → (•, 12)(•, 5)
(7) : (•, 5)(•, 12) → (•, 5)(•, 2) (8) : (•, 8)(•, 9) → (•, 8)(•, 10)
(9) : (•, 8)(•, 10) → (•, 8)(•, 11) (10) : (•, 8)(•, 11) → (•, 8)(•, 10)
(11) : (•, 13)(•, 7) → (•, 13)(•, 10)

These rules are also depicted on Figure 5 where the arrow represents the
movement direction and the dashed line the controlling cell.

First, by applying rule (1), a token from cell 1 and the token from cell 5 (notice
that cell 1 may contain more than one tokens) moves to cell 6. Then, the use of
rule (4) will lead to an infinite generation, therefore rule (2) is used. At the next
step, two possibilities may occur depending on whether cell 3 contains a token or
not. Suppose that there exists a token in cell 3. Then rules (3) and (4) are applied
in parallel, thus a token in cell 3 moves to cell 4 and the token in cell 6 moves to
cell 9. After that, by rule (5), the token in cell 7 is transported to cell 12, and
then, by rule (6), the token leaves cell 9 and arrives in cell 5. Then, the token in
cell 12 moves to cell 2 (rule (7)), which means that the operations of the main
block are performed, i.e., a token from cell 1 moved to cell 2 and a token from
cell 3 moved to cell 4. Furthermore, the conditions of the initial configuration
hold as well, i.e., each of cells 5, 8, 13 contains one token. If cell 3 does not

170 E. Csuhaj-Varjú, G. Vaszil, and S. Verlan

contain a token, then after performing rule (2), an infinite generation follows
(the token moves infinitely many times between cells 10 and 11). The reader
may easily see that the above rules can properly function only in the previously
described manner. Notice that if we want to ensure that only one symbol in cell
1 is processed by this block, then we add rule (12):(•, 14)(•, 1) → (•, 14)(•, 10)
to the above rule set.

Fig. 5. A set of presence-move rules implementing a main block

The simulation of the zero block can be obtained from the rule set above,
by eliminating rule (11) and replacing rule (3) : (•, 7)(•, 3) → (•, 7)(•, 4) with
(•, 3)(•, 7) → (•, 3)(•, 10). In this case, if rules (3) and (4) are simultaneously
applied, i.e., if there is a token in cell 3, then a token will appear in cell 10 leading
to an infinite generation by rules (9) and (10). If rule (3) is not applicable, then
applying the sequence of rules (4), (5), (6), (7), a token from cell 1 is successfully
moved to cell 2 on the condition that cell 3 does not contain any token. The reader
may notice that the rules cannot be applied in any other manner as described
previously.

Now we construct block arrangements of rules of Π which simulate the incre-
ment instructions and the decrement instructions of M , illustrated by Figure 6
and Figure 7, respectively.

For any increment instruction (p, Ai+, q, s) of M , R1 contains a rule set which
is the implementation of a main block with the following modifications: cell 1 is
replaced by cell p, cell 3 by the environment, and cell 4 by cell Ai. Cells i are
replaced by cells i(p) for 5 ≤ i ≤ 12, respectively. Since M may enter from state p
either state q or state s, which both represent cell 2 in Π , therefore, instead of rule
(7) : (•, 5)(•, 12) → (•, 5)(•, 2), we consider (•, 5(p))(•, 12(p)) → (•, 5(p))(•, q) and
(•, 5(p))(•, 12(p)) → (•, 5(p))(•, s). The reader may immediately see that through
the main blocks described above, any increment instruction of M can be simu-
lated with Π .

For a decrement instruction (p, Ai−, q, s) of M , R1 contains two uniport blocks
(•, 1′)(•, p) → (•, 1′)(•, 2) and (•, 1′)(•, 2) → (•, 1′)(•, 3), i.e., we guess whether
or not cell Ai contains a token. Furthermore, it contains a block arrangement

On Generalized Communicating P Systems with One Symbol 171

Fig. 6. Block arrangement for sim-
ulating an increment instruction

Fig. 7. Block arrangement for sim-
ulating a decrement instruction

which is a combination of a main block and a zero block. The main block moves
a token from cell 2 to cell q and one token from cell Ai to the environment (if Ai

contains at least one token and a token from cell p was sent to cell 2), or the token
sent from cell p to cell 3 is forwarded to cell s (if Ai does not contain any token).
In any other case, the constructed block arrangement implies the occurrence of
an infinite loop. It is easy to see that the block arrangement described above
simulates the application of the decrement instruction of M .

M halts in the final state qf and the result of the generation is the num-
ber stored in its output register, Ah. To simulate the halting in M, we do not
associate any rule to cells qf , thus no further generation steps in Π can be
performed.

At the beginning of the generation Π contains a token in cell q0, 1′, and in all
the cells in the main blocks used for simulating the increment instructions and
in the block arrangements used for simulating the decrement instructions which
should initially contain at least one token. Due to the construction of R1, the
generation in Π is governed by cells p which correspond to the instructions of
M to be performed, therefore any successful generation in Π corresponds to a
successful generation in M and conversely. This implies that N(M) = N(Π).

Over a one-symbol alphabet of objects, any chain rule corresponds to a presence-
move rule, therefore the following statement is a direct consequence of
Theorem 3.

Corollary 1. NO1tP∗(chain) = NRE.

Next we describe the generative power of minimal interaction P systems with
conditional-uniport-in rules.

Theorem 4. For any GCPSMI Π with conditional-uniport-in rules either N(Π)
is finite or there is a K ∈ N such that l ∈ N(Π) for every l ≥ K.

Proof. Let Π = (O, E, w1, . . . , wr, R1, h), r ≥ 1, be a one-symbol minimal inter-
action P system with conditional-uniport-in rules. Since these rules involve only
two cells, to any configuration c of Π , we can assign a directed graph G(c) where
node i represents the cell i of Π , 1 ≤ i ≤ r. The edges of G are determined by
the rules of Π , i.e., if there is a rule of the form p : (•, i)(•, j) → (•, i)(•, i) in
R1, and cell i is not empty, then there is a directed edge from node j to node

172 E. Csuhaj-Varjú, G. Vaszil, and S. Verlan

representing i. We call this graph the communication graph of Π in configuration
c. Note that if cell i contains no token, then, despite that p ∈ R1, G(c) has no
edge from node j to node i. In this case we say that the edge from node j to
node i has been broken.

In what follows, if no confusion arises, we use Π and graph G, in particular, the
terms node/cell and edge/rule as equivalent. Without the loss of any generality,
we also assume that at the initial configuration every cell contains at least one
token (due to the forms of the rules, if the cell is empty, then it will remain
empty during the generation).

A node k for which there is an edge (h, k) in the representing graph G of Π in
some configuration c is called a neighbor of node h in c. We denote by NBR(h, c)
the set of all neighbors of a node h in configuration c and by NBR(h) the set
of all nodes which are neighbors of h during any generation. We also recall that
a knot in a graph is a subset of nodes X such that for every edge (i, j), i ∈ X it
holds j ∈ X , i.e., it is not possible to leave X .

We call a path p(c) = i0, i1, . . . , ilp in the communication graph G(c) corre-
sponding to configuration c of Π an alive path (of length lp) if i0 denotes the
environment, ilp = h, and a token (•) from the environment can move to cell h
in lp steps via the cells of p(c) in the given order. This means that after lp steps,
Π may reach a configuration where any cell of the path contains at least two
tokens, i.e., any cell ij+1 can import a token from cell ij , 0 ≤ j ≤ lp − 1.

The reader may observe that if the following condition does not hold, then
L(Π) = {0} or L(Π) = ∅.

(1) There exists a generation which can reach a configuration c with no set of
nodes X ⊆ (NBR(h, c) ∪ NBR(i0, c) \ {i1}) such that X forms a knot.

If there is always an X as above, such that it is a set of neighbors of the en-
vironment not containing i1 (the first node from the alive path p(c)), that is,
if X ⊆ (NBR(i0, c) \ {i1}), then L(Π) = ∅, otherwise, if X is different, then
L(Π) = {0}.

Now we show that the existence of such an alive path implies that there exists
a constant K ∈ N such that l ∈ L(Π) for any l ≥ K. Suppose that there exists
a configuration c and an alive path p(c) in Π which satisfies condition (1). Then
there is a generation in Π which permits to bring any number of new tokens in
the output cell as follows: a token that was imported at the first time from the
environment by cell i1 (at the first configuration change in cell i1) at the next
step will be used for bringing in one other token from the environment. Then,
after |p| steps the token that first entered from the environment arrives at cell
h and at the same time each internal cell in the path, i.e., cells i1, . . . , ilp−1 will
contain at least two tokens.

Now we should prove that after some point the process can stop at any time.
Our assertion is based on the following observation. If there are two cells i (with
n tokens) and j with one token, and there is a rule (•, j)(•, i) → (•, j)(•, j) (i.e.
an edge (i, j)), then by using all tokens present in j at every step, after at most n
steps all tokens in cell i can be transported to cell j. This observation comes from

On Generalized Communicating P Systems with One Symbol 173

the fact that there is a generation, such that the number of tokens in cell j after
k steps is 2k, while the number of tokens in cell i can be at most 2k(n−k). Using
this procedure, it is possible to break an edge in the graph G(c) representing Π
in some configuration c, i.e., to obtain a configuration where the communication
graph has not this edge anymore.

This observation implies that for an alive path p(c) = i0 . . . ilp = h of Π , it
is possible to break all edges in the graph which are different from the edges
(ij , ij+1), 1 ≤ j ≤ lp − 1. (We also break the edges of all other possible alive
paths: edge by edge, starting from the one linked to the environment.) After that,
using a similar procedure for every node in p(c), we may obtain a configuration
that all cells belonging to the path, except i0 and h, contain exactly two tokens.

Finally, because condition (1) holds, there is no subset of neighbor nodes of
h which forms a knot, for any configuration c and every node k ∈ NBR(h, c),
either there is a node k′ ∈ NBR(k, c) but k′ �∈ NBR(h, c), or there is a path
from k consisting of neighbors of h to some node k′ ∈ NBR(h, c) such that it
has a neighbor k′′ ∈ NBR(k′, c) which is not neighbor of h (k′′ �∈ NBR(h, c)).
We observe that in the first case node k can be emptied, thus the edge (h, k)
can be broken, while in the second, case all tokens can move from k to k′ (for
all possible k) which reduces to the first case.

In a similar way, since condition (1) holds, it is possible to break all edges
(i0, k), k ∈ (NBR(i0, c) \ {i1}). Then, it is possible to break at the same time
the edges going out from h as well as edges going out from the environment (i0).

Hence, we can obtain a configuration c, such that there is only one alive path
p(c), where each cell contains exactly two tokens. Moreover, in this configuration
h has no neighbor, and the only neighbor of the environment is i1. Let K − 1 be
the number of tokens at cell h at this configuration. Take any l ≥ K. In order
to obtain l it is enough to perform l−K +1 generation steps where every cell ik
belonging to p brings one token from ik−1 and sends one token to ik+1 and after
that bring two tokens to cell h, thus breaking the last edge. Thus, h will contain
l tokens. The generation will stop some steps later as follows. Firstly, the path
p(c) is broken edge by edge, starting from the edge linking to the environment.
This concludes the proof.

4 Conclusions

In this paper we provided alternatives of register machines, i.e., computational
complete computing devices over the simplest alphabet, but with other types of
simple architectures and rules. Since the concept of four types of the restricted
communication rules were not applicable for one-symbol minimal interaction P
systems, but GCPSMIs with three of them were computational complete if no
restriction was put on the size of the object alphabet, the problem of finding
the minimal number k such that GCPSMIs with a given type of rule (except
antiport1) with object alphabet of size at most k are computationally complete
is of particular interest. Finally, another important topic for future research is
the relation between one-symbol minimal interaction P systems and Petri nets.
Similar questions have already been studied in [3,5].

174 E. Csuhaj-Varjú, G. Vaszil, and S. Verlan

References

1. Alhazov, A., Freund, R., Oswald, M., Verlan, S.: Partial versus total halting in P
systems. In: Gutiérrez-Naranjo, M.A., et al. (eds.) Proceedings of the Fifth Brain-
storming Week on Membrane Computing, Sevilla, pp. 1–20 (2007)

2. Alhazov, A., Freund, R., Rogozhin, Y.: Computational power of symport/antiport:
History, advances, and open problems. In: Freund, R., Păun, G., Rozenberg, G.,
Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 1–30. Springer, Heidelberg
(2006)

3. Bernardini, F., Gheorghe, M., Margenstern, M., Verlan, S.: Producer/consumer in
membrane systems and Petri nets. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE
2007. LNCS, vol. 4497, pp. 43–52. Springer, Heidelberg (2008)

4. Csuhaj-Varjú, E., Verlan, S.: On generalized communicating P systems with min-
imal interaction rules. Theoretical Computer Science (to appear)

5. Frisco, P.: Computing with Cells. Oxford University Press, Oxford (2009)
6. Mart́ın-Vide, C., Păun, G., Pazos, J., Rodŕıguez-Patón, A.: Tissue P systems.

Theoretical Computer Science 296(2), 295–326 (2003)
7. Minsky, M.: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)
8. Păun, A., Păun, G.: The power of communication: P systems with sym-

port/antiport. New Generation Computing 20, 295–305 (2002)
9. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
10. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, Oxford (2010)
11. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1-3.

Springer, Heidelberg (1997)
12. The P systems webpage, http://ppage.psystems.eu
13. Verlan, S., Bernardini, F., Gheorghe, M., Margenstern, M.: On communication

in tissue P systems: conditional uniport. In: Hoogeboom, H.J., Păun, G., Rozen-
berg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 521–535. Springer,
Heidelberg (2006)

14. Verlan, S., Bernardini, F., Gheorghe, M., Margenstern, M.: Generalized communi-
cating P systems. Theoretical Computer Science 404(1-2), 170–184 (2008)

http://ppage.psystems.eu

A Faster P Solution for the Byzantine Agreement
Problem

Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu

Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland, New Zealand

{mjd,yun,radu}@cs.auckland.ac.nz

Abstract. We propose an improved generic version of P modules, an extensible
framework for recursive composition of P systems. We further provide a revised
P solution for the Byzantine agreement problem, based on Exponential Informa-
tion Gathering (EIG) trees, for N processes connected in a complete graph. Each
process is modelled by the combination of N + 1 modules: one “main” module,
plus one “firewall” communication module for each process (including one for
itself). The EIG tree evaluation functionality is localized into a “main” single cell
P module. The messaging functionality is localized into a three cells communica-
tion P module. This revised P solution improves overall running time from 9L+6
to 6L+1, where L is the number of messaging rounds. Most of the running time,
5L steps, is spent on the communication overhead. We briefly discuss if single
cells can solve the Byzantine agreement without support and protection from ad-
ditional communication cells; we conjecture that this is not possible, within the
currently accepted definitions.

Keywords: P systems, P modules, Byzantine agreement, Distributed algorithms,
Modular design.

1 Introduction

Large distributed systems are typically composed from smaller building blocks. How-
ever, until recently, classical P systems did not offer enough support for effective
programmability. Recent papers, such as [19,18,16], have started to address these prob-
lems. Guided by similar goals, we recently proposed a new modular framework, called
P modules, that supports generic objects, encapsulation, information hiding and re-
cursive composition [8]. Our proposal is compatible with any data structure based on
directed arcs, i.e. it covers cell-like P systems (based on trees), hP systems (based on
dags) and nP systems (based on digraphs).

In this paper, we extend this previous proposal, with external definitions and external
references, which support safer and more flexible module interconnection facilities. We
demonstrate its enhanced expressibility on a couple of simple examples, then we use it
to provide a new and improved P systems solution to the Byzantine agreement problem.

The Byzantine agreement problem was first proposed by Pease et al. in 1980 [17]
and further elaborated in Lamport et al.’s seminal paper [10]. This problem addresses a
fundamental issue in complex systems: correctly functioning processes must be able to

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 175–197, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

176 M.J. Dinneen, Y.-B. Kim, and R. Nicolescu

overcome their possible differences and achieve a consensus, despite arbitrarily faulty
processes that can give conflicting information to different parts of the system.

The Byzantine agreement has become one of the most studied problems in distributed
computing—some even consider it the “crown jewel” of distributed computing. Lynch
covers many versions of this problem and their solutions, including a complete descrip-
tion of the classical algorithm, based on Exponential Information Gathering (EIG) trees
as a data structure [11].

Recent years have seen revived interest in this problem and its solutions, to achieve
higher performance or stronger resilience, in a wide variety of contexts [4,1,3,12], in-
cluding, for example, solutions for quantum computers [2].

To the best of our knowledge, except our previous work on Byzantine agreement
problem [8], no other complete solution for P systems has been published. In the con-
text of P systems, this problem was briefly mentioned, without solutions [6,5]. Our
solution was based on the classical EIG-based algorithm, where each EIG node was
implemented by a distinct cell.

In this paper, we provide a revised P solution for the Byzantine agreement problem,
based on EIG trees, for N processes connected in a complete graph. Each process is
modelled by the combination of N + 1 modules: one “main” module, plus one “fire-
wall” communication module for each process (including one for itself). The EIG tree
evaluation functionality is localized into a “main” single cell P module. The messaging
functionality is localized into a communication P module with three cells. This revised
P solution uses only duplex channels, uses fewer cells and rules, and improves overall
running time from 9L + 6 to 6L + 1, where L is the number of messaging rounds.

The rest of the paper is organized as follows. Section 2 covers a few basic preliminar-
ies, then introduces a combinatorial definition of the EIG data structure. We describe the
Byzantine agreement problem in detail in Section 3, which also includes a small case
study with four processes. An extended version of P modules is formally introduced in
Section 4. In Section 5, using our new modular framework, we model and develop the
structure of a P systems implementation of the Byzantine agreement problem. The rules
used in our design are described in Section 6, where we also discuss the correctness of
our design. Finally, in Section 7, we summarize our results and discuss related open
problems.

2 Preliminaries

We assume that the reader is familiar with the basic terminology and notations: func-
tions, relations, graphs, nodes (vertices), arcs, directed graphs, dags, trees, alphabets,
strings and multisets [13]. Given two sets, A, B, a subset f of their cartesian product,
f ⊆ A × B, is a functional relation if ∀(x, y1), (x, y2) ∈ f ⇒ y1 = y2. Obviously,
any function f : A → B can be viewed a functional relation, {(x, f(x)) | x ∈ A}, and,
vice-versa, any functional relation can be viewed as a function.

We now recall a few basic concepts from combinatorial enumerations. The integer
range from m to n is denoted by [m, n], i.e. [m, n] = {m, m+1, . . . , n}, if m ≤ n, and
[m, n] = ∅, if m > n. The set of permutations of n of length m is denoted by P (n, m),
i.e. P (n, m) = {π : [1, m] → [1, n] | π is injective}. A permutation π is represented

A Faster P Solution for the Byzantine Agreement Problem 177

by the sequence of its values, i.e. π = (π1, π2, . . . , πm), and we will often abbreviate
this further as the sequence π = π1.π2 . . . πm. The sole element of P (n, 0) is denoted
by (), or by λ, if the context removes any possible ambiguity. Given a subrange [p, q]
of [1, m], we define a subpermutation π(p : q) ∈ P (n, q − p + 1) by π(p : q) =
(πp, πp+1, . . . , πq). The image of a permutation π, denoted by Im(π), is the set of
its values, i.e. Im(π) = {π1, π2, . . . , πm}. The concatenation of two permutations is
denoted by ⊕, i.e. given π ∈ P (n, m) and τ ∈ P (n, k), such that Im(π)∩ Im(τ) = ∅,
π ⊕ τ = (π1, π2, . . . , πm, τ1, τ2, . . . , τk) ∈ P (n, m + k).

An Exponential Information Gathering (EIG) tree TN,L, N ≥ L ≥ 0, is a labelled
(ordered) rooted tree of height L that is defined recursively as follows. The tree TN,0
is a rooted tree with just one node, its root, labelled λ. For L ≥ 1, TN,L is a rooted
tree with 1 + N |TN−1,L−1| nodes (where |T | is the size of tree T), root λ, having N
subtrees, where each subtree is isomorphic with TN−1,L−1 and each node, except the
root, is labelled by the least element of [1, N] that is different from any ancestor node
or any left sibling node. Alternatively, TN,L−1 is isomorphic and identically labelled
with the tree obtained from TN,L by deleting all its leaves. It is straightforward to see
that there is a bijective correspondence between the permutations of P (N, L) and the
sequences (concatenations) of labels on all paths from root to the leaves of TN,L. Thus,
each node σ in an EIG tree TN,L is uniquely identified by a permutation πσ ∈ P (N, l),
where l ∈ [0, L] is also σ’s depth, and, vice-versa, each such permutation π has a
corresponding node σπ . We will further use this node-permutation identification, while
referring to nodes.

Given EIG tree TN,L, an attribute is a function ℵ : TN,L → V , for some value set V ;
alternatively, ℵ can be given as a functional subset of {π ∈ P (N, t) | t ∈ [0, L]} × V .

See Figure 1 for an example of the EIG tree, T4,2. Level 0 corresponds to permutation
set {λ}. Level 1 corresponds to permutation set {(1), (2), (3), (4)}. Level 2 corresponds
to permutation set {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1),
(4, 2), (4, 3)}. This tree is decorated with two attributes, α and β. Using an alternate
notation for permutations (to avoid embedded parentheses), attribute α corresponds to
the functional relation {(λ, 1), (1, 0), (2, 0), (3, 1), (4, 1), (1.2, 0), (1.3, 0), (1.4, 1),
(2.1, 0), (2.3, 0), (2.4, 0), (3.1, 0), (3.2, 1), (3.4, 1), (4.1, 1), (4.2, 1), (4.3, 1)}.

1 2 3 4

2 4 1 4 1 4 1 3

0 0 1 0 0 0 1 1 1 1 1

0 0 1 1

0 0 1 0 0 0 1 1 1 1 1

0

0
1

3 3 2 2

λ

0
0

0 1 1

Fig. 1. A sample EIG tree, T 3
4,2, completed with two attributes, α and β. The node labels appear

besides the node blob. Each node blob contains its two attribute values: the α value at the top,
and the β value at the bottom.

178 M.J. Dinneen, Y.-B. Kim, and R. Nicolescu

3 The EIG-Based Byzantine Agreement Algorithm

Each process starts with its own initial decision choice (typically different). At the end,
all non-faulty processes must take the same final decision, even if the faulty processes
attempt to disrupt the agreement, accidentally or intentionally.

The classical EIG-based algorithm solves the Byzantine agreement problem in the
binary decision case (no = 0, yes = 1), for N processes, connected in a complete
graph (where edges indicate reliable duplex communication lines), provided that N ≥
3F + 1, where F is the maximum number of faulty processes. This is a synchronous
algorithm; celebrated results (see for example [11]) show that the Byzantine agreement
is not possible if N ≤ 3F , in the asynchronous case or when the communication links
are not reliable.

Without providing a complete description, we provide a sketch of the classical algo-
rithm, reformulated on the basis of the theoretical framework introduced in Section 2.
For a more complete and verbose description of this algorithm, including correctness
and complexity proofs, we refer the reader to Lynch [11].

Each non-faulty process, h, has its own copy of an EIG tree, T h
N,L, where L = F +1.

This tree is decorated with two attributes, αh, βh : {π ∈ P (N, t) | t ∈ [0, L]} →
{0, 1, null}, where null designates undefined items (not yet evaluated). Attributes αh

and βh are also known as valh and newvalh [11], or top-down and bottom-up [8]. As
their alternative names suggest, αh is first evaluated, in a top-down tree traversal, in
increasing level order; next, βh is evaluated, in a bottom-up traversal, in decreasing
level order.

The algorithm works in two phases. Its first phase is a messaging phase which com-
pletes the evaluation of the top-down attribute αh. Initially, αh(λ) = vh, the initial
choice of process h; all the other αh and βh values are still undefined. Next, there are
L messaging rounds. At round t ∈ [1, L], h broadcasts to all processes (including self),
a reversibly encoded message which identifies its αh values at level t − 1, i.e. the set
{(π, αh(π)) | π ∈ P (N, t − 1)}. All other non-faulty processes broadcast messages,
in a similar way. Process h decodes and processes the messages that it receives. From
process f , f ∈ [1, N], process h receives the set {(π, αf (π)) | π ∈ P (N, t − 1)}.
Each item (π, αf (π)), where f /∈ Im(π), is used to assign further αh values, to the
next level down the EIG tree, by setting αh(π ⊕ f) = αf (π); items where f ∈ Im(π)
are silently discarded. As this formula suggests, it is indeed critical that h “knows” the
origin f of each received message and that this origin mark cannot be faked by faulty
processes. Wrong or missing values are replaced by the value of a predefined default
parameter, W ∈ {0, 1}. Thus, there are L messaging rounds and, after the last round,
all nodes are decorated with values of attribute α. In fact, only the last level α values
are actually needed, to start the next phase, a practical implementation can choose to
discard the other α values.

Next, the algorithm switches to its second phase, the evaluation of the bottom-up
attribute βh. First, for leaves, βh(π) = αh(π), π ∈ P (N, L). Next, given βh values
for level t ∈ [1, L], each βh value for the next level up, βh(π), π ∈ P (N, t − 1),
is evaluated on the basis of the βh values of node π’s children, i.e. on the multiset
{βh(π⊕f) | f ∈ [1, N]\Im(π)}, using a local majority voting scheme: βh(π) = 0, if
a strict majority of the above multiset values are 0; or, βh(π) = 1, if a strict majority of

A Faster P Solution for the Byzantine Agreement Problem 179

the above multiset values are 1; or, βh(π) = W (the same default parameter mentioned
above), if there is a tie. At the end, the βh value for the EIG root, βh(λ), is process
h’s final decision. All non-faulty processes will simultaneously reach the same final
decision; any decision taken by faulty nodes is not relevant.

Example 1 (Sample Byzantine scenario). Consider a Byzantine scenario with N = 4
and F = 1, thus L = 2. Assume that processes 1, 2, 3 and 4 start with initial choices 0,
0, 1, and 1, respectively. Further, assume that process 1 is faulty and these four processes
exchange the messages described in Figure 2. For a more verbose description of this
example, please see our technical paper [7].

1

2

4

3

1 2 3 4

Faulty

Round 1
messages
Round 2
messages

Final
decision

Initial
choice

0 0 1 1

Yes No No No

(λ, x) (λ, 0) (λ, 1) (λ, 1)

0 0 0

(1, 0)(2, 0)
(3, y)(4, 1)

(1, 0)(2, 0)
(3, 1)(4, 1)

(1, 0)(2, 0)
(3, 1)(4, 1)

(1, 1)(2, 0)
(3, 1)(4, 1)

?

Process

Fig. 2. A sample Byzantine scenario, N = 4, F = 1, where process 1 is faulty

4 P Modules

For this section, and the rest of the paper, we assume familiarity with P systems [14,15],
nP systems [15] and hP systems [13]. We will also use a terminology inspired from
standard modular design.

Intuitively, a P module is one of the above P systems, with additional features, re-
quired for its further assembly into a larger P module. A P module exposes the following
additional features, collectively called generic parameters, which can be further instan-
tiated, when the current module is combined with other modules:

– Besides objects of the initial alphabet, rules can also use generic symbols. A generic
symbol, abbreviated as sym, can be instantiated to one of the already existing ob-
jects or as a new object (thereby extending the initial alphabet).

– Cells can be designated as external definitions. An external definition indicates ei-
ther the start or the end of a potential arc and is abbreviated as def↑ or as def↓,
respectively.

– Arcs can be designated as external arcs, indicating potential arcs between existing
cells and external definitions of other modules. An external arc has one uninstanti-
ated start or end cell, called an external reference, which is abbreviated as ref↑ or
as ref↓, respectively.

– An external arc can be instantiated by identifying its external reference to a match-
ing external definition from another module, i.e. either its ref↓ reference to a def↓
definition, or its ref↑ reference to a def↑ definition.

180 M.J. Dinneen, Y.-B. Kim, and R. Nicolescu

τ1

θ1 τ2

θ2 τ1

θ1 τ2

θ2

(a) (b) (c)

Z1

Z2

Π1 Π2 Π3

Fig. 3. Composing two simple P modules. Module Π3 is the composition of modules Π1 and Π2,
after instantiating Z1 = τ2, Z2 = τ1. External references are indicated by labels on outgoing
arcs, Z1 and Z2, and external definitions by shaded cells, τ1 and τ2.

Figure 3 illustrates these intuitive ideas. Module Π1 offers a def↓ definition, τ1, and
uses a ref↓ reference, Z1. Module Π2, which can be viewed as a copy of Π1, offers
a def↓ definition, τ2, and uses a ref↓ reference, Z2. Module Π3 is the result of their
composition, after instantiating Z1 = τ2 and Z2 = τ1, thereby instantiating arcs (θ1, τ2)
and (θ2, τ1).

Definition 1 (P module). A P module is a system Π = (O, K, δ, S, D↑, D↓, R↑, R↓),
where:

1. O is a finite non-empty alphabet of objects;
2. K is a finite set of cells;
3. δ is a subset of (K × K) ∪ (K × R↓) ∪ (R↑ × K), i.e. a set of parent-child

structural arcs, representing duplex or simplex communication channels, between
two existing cells or between an existing cell and an external reference;

4. S is a finite alphabet, disjoint of O, of generic sym objects;
5. D↑ is a subset of K , representing def↑ definitions;
6. D↓ is a subset of K , representing def↓ definitions;
7. R↑ is a finite set, disjoint of K , representing ref↑ references;
8. R↓ is a finite set, disjoint of K , representing ref↓ references.

Let Ō = O ∪ S be the original alphabet extended with the generic symbols. Each cell,
σ ∈ K , has the form σ = (Q, s0, w0, R), where:

– Q is a finite set of states;
– s0 ∈ Q is the initial state;
– w0 ∈ Ō∗ is the initial multiset of objects;
– R is a finite ordered set of multiset rewriting rules of the general form: s x →α

s′ x′ (u)βγ , where s, s′ ∈ Q, x, x′ ∈ Ō∗, u ∈ Ō∗, α ∈ {min, max}, β ∈ {↑
, ↓, !,↔}, γ ∈ {one, spread, repl} ∪ K ∪ R↑ ∪ R↓. If u = λ, this rule can be
abbreviated as s x →α s′ x′. The semantics of the rules and of the α, β, γ operators
are further described in the rest of this section.

Remark 1. This definition of P module subsumes several earlier definitions of P sys-
tems, hP systems and nP systems. If δ is a tree, then Π is essentially a tree-based
P system (which can also be interpreted as a cell-like P system). If δ is a dag, then Π is
essentially an hP system. If δ is a digraph, then Π is essentially an nP system.

A Faster P Solution for the Byzantine Agreement Problem 181

Remark 2. Most often, our P systems are introduced semi-formally, where the objects,
cells, arcs and rules are inferred from diagrams and listings. In this case, we use angular
brackets to emphasize generic parameters, together with their type. For example, the
generic parameters of module Π1 of Figure 3 can be indicated as 〈def↓ τ1, ref↓ θ1〉,
and the whole module can be emphasized as Π1〈def↓ τ1, ref↓ θ1〉.

The rules given by the ordered set R are attempted in weak priority order [15]. If a rule
is applicable, then it is applied and then the next rule is attempted (if any). If a rule is not
applicable, then the next rule is attempted (if any). Note that state-based rules introduce
an extra requirement for determining rule applicability, namely the target state indicated
on the right-hand side must be the same as the previously chosen target state (if any)
[14,13]. Rules are applied under the usual immediate (“eager”) evaluation of their left-
hand sides and deferred (“lazy”) evaluation of their right-hand sides [14].

With these conventions, one cell’s ordered set of rules becomes a sequence of pro-
gramming statements for a hypothetical P machine, where each rule includes a simple
if-then-fi conditional test for applicability and, as we see below, some while-do-od loop-
ing facilities (max and repl operators), with some potential for in-cell parallelism, in
addition to the more obvious inter-cell parallelism. State compatibility introduces an-
other intra-cell if-then-fi conditional test, this time between rules.

The rewriting operator α = min indicates that the rewriting is applied once, if the
rule is applicable; and α = max indicates that the rewriting is applied as many times as
possible, if the rule is applicable.

The transfer operator β = ↑ indicates that the multiset u is sent “up”, to the parents;
β = ↓ indicates that the multiset u is sent “down”, to the children; β = ! indicates that
the multiset u is sent both “up” and “down”, to both parents and children; and β =↔,
indicates “lateral” transfer, to the siblings (this ↔ operator is not used in this paper).

The additional transfer operator γ = one indicates that the multiset u is sent to
one recipient (parent or child, according to the direction indicated by β). The operator
γ = spread indicates that the multiset u is spread among an arbitrary number of
recipients (parents, children or parents and children, according to the direction indicated
by β). The operator γ = repl indicates that the multiset u is replicated and broadcast
to all recipients (parents, children or parents and children, according to the direction
indicated by β). The operator γ = σ ∈ K ∪ R↑ ∪ R↓ indicates that the multiset u is
sent to σ, if cell σ is in the direction indicated by β; otherwise, the multiset u is “lost”.
By convention, if cells have unique indices or are labelled and labels are locally unique,
we can abbreviate γ = σ by γ = i, where i is the index or label of σ.

The following examples illustrate the behaviour of these operators. Consider a cell
σ, in state s and containing aa. Consider the potential application of a rule s a →α

s′ b (c)βγ , by looking at specific values for α, β, γ operators:

– The rule s a →min s′ b (c)↑repl can be applied and, after its application, cell σ will
contain ab and a copy of c will be sent to each of σ’s parents.

– The rule s a →max s′ b (c)↑repl can be applied and, after being applied twice, cell σ
will contain bb and a copy of cc will be sent to each of σ’s parents.

– The rule s a →min s′ b (c)↓σ′ (where σ′ ∈ K), can be applied and, after its appli-
cation, cell σ will contain ab and a copy of c will be sent to σ′, if σ′ appears among
the children of σ, otherwise, this c will be lost.

182 M.J. Dinneen, Y.-B. Kim, and R. Nicolescu

– The rule s a →max s′ b (c)↓σ′ (where σ′ ∈ K) can be applied and, after being
applied twice, cell σ will contain bb and a copy of cc will be sent to σ′, if σ′ appears
among the children of σ, otherwise, this cc will be lost.

In this paper, we are only interested in deterministic solutions, and we will exclusively
use the min, max, repl, and K operators, and avoid operators with a higher potential
for non-determinism, such as par, one, spread.

By default, the channels are duplex, allowing simultaneous transmissions from both
ends. Although we do not use them here, simplex channels are also available in our
model; a simplex channel indicates a single open direction, either from parent to child,
or from child to parent (thus there is no necessary relation between the structural di-
rections and communication direction); messages sent in the other direction are silently
“lost”.

Given an arbitrary finite set of P modules, we can construct a higher level P module
by instantiating some of their external references to some of their external definitions,
which implicitly instantiates some new arcs, and by instantiating some of their unspec-
ified symbols. This construction requires that the original P modules are disjoint, in the
sense specified below.

Consider a finite family of n P modules, P = {Πi | i ∈ [1, n]}, where Πi =
(Oi, Ki, δi, Si, D↑i, D↓i, R↑i, R↓i), i ∈ [1, n]. This family P is cell-disjoint, if their
cell sets disjoint, i.e. Ki ∩ Kj = ∅, for i, j ∈ [1, n]. If required, any such family can be
made cell-disjoint, by a deep copy process, which clones all cells and, as a convenience,
automatically allocates successive indices to cloned cells (e.g., starting from cell σ, the
first cloned cell is σ1, the second is σ2, etc). However, a good practice is to systemat-
ically index all cells of a P module, by labels related to the generic parameters, such
that distinct copies of the same generic module are automatically cell-disjoint. We will
generally follow this convention.

Given a family P , the result of a composition depends on the actual instantiations,
i.e. which unspecified symbols are instantiated and which external references
and definitions are matched. Symbol instantiation is specified by a partial mapping
ω :

⋃
i∈[1,n] Si → Ω, where Ω is a universal alphabet, covering all alphabets used in

a given application. The symbols that have been instantiated are defined by the domain
of ω, i.e. Dom(ω), and their assigned objects by the image of ω, i.e. Im(ω). Exter-
nal references are similarly matched to external definitions by two partial mappings,
ρ↑ :

⋃
i∈[1,n] R↑i →

⋃
i∈[1,n] D↑i, ρ↓ :

⋃
i∈[1,n] R↓i →

⋃
i∈[1,n] D↓i. A previously

uninstantiated arc (σ, x), σ ∈ Ki, x ∈ R↓i, i ∈ [1, n], is instantiated as (σ, ρ↓(x)), and
a previously uninstantiated arc (x, σ), σ ∈ Ki, x ∈ R↑i, i ∈ [1, n], is instantiated as
(ρ↑(x), σ).

Definition 2 (P modules composition). The P module Ψ = (O, K , δ, S, D↑, D↓, R↑,
R↓) is a composition of the P module family P , if:

– P is cell-disjoint;
– ω, ρ↑, ρ↓ are the partial mappings which define the instantiation (as previously

introduced);
– O =

⋃
i∈[1,n] Oi ∪ Im(ω);

– K =
⋃

i∈[1,n] Ki;

A Faster P Solution for the Byzantine Agreement Problem 183

– δ = {(ρ̂↑(σ), ρ̂↓(σ)) | (σ, τ) ∈
⋃

i∈[1,n] δi}, where ρ̂↑ and ρ̂↓ are defined by
ρ̂↑(σ) = σ ∈ Dom(ρ↑) ? ρ↑(σ) : σ, ρ̂↓(σ) = σ ∈ Dom(ρ↓) ? ρ↓(σ) : σ;

– S =
⋃

i∈[1,n] Si \ Dom(ω);
– D↑ ⊆

⋃
i∈[1,n] D↑i, D↓ ⊆

⋃
i∈[1,n] D↓i;

– R↑ =
⋃

i∈[1,n] R↑i \ Dom(ρ↑), R↓ =
⋃

i∈[1,n] R↓i \ Dom(ρ↓).

In this case, the P modules in P are called components of Ψ . We omit here the straight-
forward but lengthy details of the required translations of the rulesets. Note that we
can keep any of the previous external definitions, even those matched by external refer-
ences (for further matches), thus the instantiations alone do not completely define the
composition result.

This modular approach provides encapsulation, information hiding and recursive com-
position, facilitating the design of P programs for complex algorithms. We now give a
more elaborated example, where we use modules both to build a more complex system
and to argue about its properties.

Example 2 (A composite P module for computing the GCD).
The left diagram of Figure 4 illustrates a logical flowchart for computing the standard
Euclidean Greatest Common Divisor (GCD) algorithm, where, initially, x and y are
the two positive integer inputs, and, on termination, the final value of y is the resulting
GCD. For illustrative purposes, this design is recursively built, starting from four ele-
mentary blocks, Π1, Π2, Π3 and Π4. We first combine Π1, Π2 and Π3 into a high-level
block Π5, and then combine Π5 and Π4 into a higher-level block Π6. Our correctness
proofs can start from the elementary blocks and then follow up this recursive composi-
tion.

The right diagram of Figure 4 illustrates a closely related recursive composition of
four elementary P modules, Π1, Π2, Π3 and Π4, which solves the same problem (mod-
ulo a straightforward encoding).

Module Π1〈def↓ σ1, ref↓ Y1, ref↓ N1〉 contains a single cell, σ1, which also ap-
pears as an external def↓ definition, and makes external ref↓ references to two unspec-
ified cells, Y1 and N1. Using the ruleset which follows this paragraph, a straightforward
argument shows that, if cell σ1 receives x copies of a and y copies of b, then Π1 ends
by sending x copies of a and y copies of b; to Y1, if x ≥ y; or to N1, otherwise.

1. s0 ab →max s1 cde
2. s1 a →max s2 c
3. s1 b →max s3 d
4. s1 e →max s2
5. s1 e →max s3

6. s2 c →max s0 (a)↓Y1

7. s2 d →max s0 (b)↓Y1

8. s3 c →max s0 (a)↓N1

9. s3 d →max s0 (b)↓N1

Module Π2〈def↓ σ2, ref↓ Z2〉 contains a single cell σ2, which also appears as an ex-
ternal def↓ definition, and makes external ref↓ references to one unspecified cell, Z2.

184 M.J. Dinneen, Y.-B. Kim, and R. Nicolescu

x ≥ y

x← x− y

x = 0

z ← x, x← y, y ← z

No

Y es

Y es

No

Π1

Π3

Π2

Π4

Π5

Π6

N1

Y1

Z6 = Y4

N4

Π1

Π3

Π2

Π4

Π5

Π6

σ1

σ3

σ4

σ2

Z3

Z2

Fig. 4. Diagrams for computing GCD: left, a logical flowchart; right, a recursive composition of
P modules

Using the ruleset which follows this paragraph, a straightforward argument shows that,
if cell σ2 receives x copies of a and y copies of b, then Π2 ends by sending, to Z2, y
copies of a and x copies of b.

1. s0 a →max s0 (b)↓Z2

2. s0 b →max s0 (a)↓Z2

Module Π3〈def↓ σ3, ref↓ Z3〉 contains a single cell σ3, which also appears as an
external def↓ definition, and makes external ref↓ references to one unspecified cell,
Z3. Using the ruleset which follows this paragraph, a straightforward argument shows
that, if cell σ3 receives x copies of a and y copies of b, then Π3 ends by sending, to Z3,
x′ copies of a and y′ copies of b, where x′ = x − min(x, y), y′ = min(x, y).

1. s0 ab →max s0 (b)↓Z3

2. s0 a →max s0 (a)↓Z3

Module Π4〈def↓ σ4, ref↓ Y4, ref↓ N4〉 contains a single cell σ4, which also appears
as an external def↓ definition, and makes external ref↓ references to two unspecified
cells, Y4 and N4. Using the ruleset which follows this paragraph, a straightforward
argument shows that, if cell σ4 receives x copies of a and y copies of b, then, if x = 0,
Π4 ends by sending, to Y4, y copies of c; or, if x �= 0, Π4 ends by sending, to N4, x
copies of a and y copies of b.

1. s0 a →max s1 a
2. s0 b →max s0 (c)↓Y4

3. s1 a →max s0 (a)↓N4

4. s1 b →max s0 (b)↓N4

We first combine Π1, Π2 and Π3, using the following generic instantiations: Y1 =
σ3, N1 = σ2, Z2 = σ3; this instantiates the connecting arcs (σ1, σ3), (σ1, σ2) and

A Faster P Solution for the Byzantine Agreement Problem 185

(σ2, σ3). The result is a composite module with two generic parameters, an external
definition and an external reference, Π5〈def↓ σ1, ref↓ Z3〉. Module Π5’s behaviour
can be inferred from the behaviour of its constituent modules, Π1, Π2 and Π3. If cell
σ1 receives x copies of a and y copies of b, then Π5 ends by sending, to Z3, x′ copies
of a and y′ copies b, where x′ = max(x, y) − min(x, y), y′ = min(x, y).

We further combine Π5 and Π4, using the following generic instantiations: Z3 =
σ4, N4 = σ1; this instantiates the connecting arcs (σ3, σ4) and (σ4, σ1). The result is
another composite module with two generic parameters, an external definition and an
external reference, Π6〈def↓ σ1, ref↓ N4〉, which can also be renamed as Π6〈def↓ σ1,
ref↓ Z6〉. Module Π6’s behaviour can be inferred from the behaviour of its constituent
modules, Π5 and Π4. If cell σ1 receives x copies of a and y copies of b, then Π6 ends
by sending, to Z6, z copies of c, where z = gcd(x, y).

5 Revised Byzantine Agreement Solution

Our revised P solution for the Byzantine agreement problem is still based on Expo-
nential Information Gathering (EIG) trees, for N processes connected in a complete
graph, with “hardcoded” parameters L, the EIG tree height, and W , the default value
(for missing or wrong messages). Each non-faulty process h, h ∈ [1, N], is modelled
by a “process” module, Πh, which is a combination of N + 1 modules: one “main”
module, Ψh, which provides the main EIG functionality; plus one “firewall” communi-
cation module, Γhf , for each process f , f ∈ [1, N]. Compared to the previous solution,
this revised P solution uses fewer cells and rules and only duplex channels.

Elementary modules are illustrated in Figure 5. Module Ψh has a single cell, ψh,
which is also offered as an external definition, 〈def↓ ψh〉. Module Γhf has three cells,
γhf , γ′

hf , γ′′
hf , offers one external definition 〈def↓ γ′

hf 〉, and uses two external refer-
ences 〈ref↓ ψh, ref↓ γ′

fh〉.

Γhf

γ′hf

γhf

γ′′hf

γ′fh

Ψh

ψh

(a)

(b)

ψh

Fig. 5. Elementary P modules for Byzantine agreement: (a) main module Ψh, (b) communica-
tion module Γhf . The ref↓ references are indicated by labels on outgoing arcs and the def↓
definitions are indicated by shaded cells.

As mentioned, process module Πh is composed from modules {Ψh} ∪ {Γhf | f ∈
[1, N]}; this composition instantiates arcs {(γhf , ψh) | f ∈ [1, N]}. Module Πh

186 M.J. Dinneen, Y.-B. Kim, and R. Nicolescu

ψh

Γh4

Πh

Ψh

Γh3Γh2Γh1

γ′h1

γh1

γ′h2

γh2

γ′h3

γh3

γ′h4

γh4

γ′′h1 γ′′h2 γ′′h3 γ′′h4

γ′1h γ′2h γ′3h γ′4h

Fig. 6. The process module Πh, for N = 4, L = 2. Its ref↓ references are indicated by labels
on outgoing arcs (γ′

1h, γ′
2h, γ′

3h, γ′
4h) and its def↓ definitions are indicated by shaded cells (γ′

h1,
γ′

h2, γ′
h3, γ′

h4).

offers N external definitions, 〈def↓ γ′
hf | f ∈ [1, N]〉, and uses N external references,

〈ref↓ γ′
fh | f ∈ [1, N]〉. Composite module Πh, for N = 4, L = 2, is illustrated in

Figure 6.
Any arbitrary module can play the role of a faulty module; however, to provide

maximal adversity, it needs connection facilities similar to the expected facilities of
non-faulty module. Therefore, without loss of generality, we model faulty processes by
arbitrary modules Θh, h ∈ [1, N], which offer N def↓ definitions and use N ref↓
references.

The final system is the composition of N modules from {Πh | h ∈ [1, N]} ∪ {Θh |
h ∈ [1, N]}, that instantiates arcs {(γ′′

hf , γ′
fh) | h, f ∈ [1, N]}. The Byzantine agree-

ment problem can be solved if at least %2(N − 1)/3& of these modules are non-faulty,
i.e. from the Πh family. Figure 7 shows a fragment with two modules, Π2 and Π3, of
the four process modules of the final system, for the case N = 4, L = 2.

6 Rules and Correctness

The following objects are used by all non-faulty processes: Ω = {xv
π | v ∈ {0, 1, ?, ∗},

t ∈ [0, L − 1], π ∈ P (N, t)} ∪ {xv
π | v ∈ {0, 1}, π ∈ P (N, L)}. Object xv

π is
viewed as an encoding of pair (π, v), which associates a permutation π, i.e. an EIG
node, with a value v; object xv

λ can be abbreviated as v. Encodings with binary digit
values, xv

π , v ∈ {0, 1}, are called value objects and represent EIG nodes with known
αh or βh values. Where process number h is clearly inferred from the context, we will
use α and β instead of αh and βh, respectively. Encodings with asterisks, x∗

π, are called
placeholder objects, and represent EIG nodes with still undefined βh values. Encodings
with question marks, x?

π, are called template objects, and are used to filter incoming
messages which are not well-formed.

A Faster P Solution for the Byzantine Agreement Problem 187

ψ2

Γ21

Π2

Ψ2

Γ22 Γ23 Γ24

γ′24

γ24

γ′23

γ23

γ′22

γ22

γ′21

γ21

γ′′24γ′′23γ′′22γ′′21

ψ3

Γ34

Π3

Ψ3

Γ33Γ32Γ31

γ′31

γ31

γ′32

γ32

γ′33

γ33

γ′34

γ34

γ′′31 γ′′32 γ′′33 γ′′34

γ′12

γ′13

γ′22 γ′42

γ′23 γ′33 γ′43

γ′32

Fig. 7. Interconnection details between process modules Π2 and Π3, for N = 4, L = 2

Besides encodings in Ω, faulty process can send any other available objects. The set
of all possible objects is denoted by a universal set �, i.e. � = Ω ∪ {all other objects
which can be sent by a faulty process}.

The following sets of objects, which appear in several of the subsequent sections, are
defined here:

Rαh

t = {xαh(π)
π | π ∈ P (N, t)}, t ∈ [0, L]

Rβh

t = {xβh(π)
π | π ∈ P (N, t)}, t ∈ [0, L]

Rv
t = {xv

π | π ∈ P (N, t)}, t ∈ [0, L], v ∈ {0, 1, ?, ∗}
R0,1

t = {xv
π | π ∈ P (N, t), v ∈ {0, 1}}, t ∈ [0, L]

The first three sets, Rαh

t , Rβh

t , Rv
t , describe functional relations, on the underlying

permutation π; the last one, R0,1
t , is not. Where h can be unambiguously inferred from

the context, the superscript h can be dropped from attribute names, α and β, i.e. in such

cases, Rα
t = Rαh

t , Rβ
t = Rβh

t .
Our technical report [7] provides specialized versions of these template rules, for the

case N = 4 and L = 2.

188 M.J. Dinneen, Y.-B. Kim, and R. Nicolescu

6.1 Rule Sequence for Ψh’s Cell ψh

According to the following rules, and as illustrated in the diagram of Figure 8, cell ψh

progresses through states s0 (start state), s1, . . ., sL, eL, eL−1, . . ., e0 (final state).

s0 s1 sL eL. . .
L-1s e0e1. . .

L-1e

Fig. 8. State diagram for module Ψh, i.e. cell ψh

1. st xv
π →min st+1 x∗

π (xv
πx?

π)↑repl , for v ∈ {0, 1}, t ∈ [0, L − 1], π ∈ P (N, t)
2. sL xv

π →min eL xv
π, for v ∈ {0, 1}, π ∈ P (N, L)

3. et+1 x0
π⊕kx1

π⊕l →max et, for v ∈ {0, 1}, t ∈ [0, L − 1], π ∈ P (N, t), k, l ∈
[1, N] \ Im(π), k �= l

4. et+1 xv
π⊕kx∗

π →min et xv
π , for v ∈ {0, 1}, t ∈ [0, L − 1], π ∈ P (N, t), k ∈

[1, N] \ Im(π)
5. et+1 xv

π⊕k →max et, for v ∈ {0, 1}, t ∈ [0, L−1], π ∈ P (N, t), k ∈ [1, N]\Im(π)
6. et+1 x∗

π →min et xW
π , for t ∈ [0, L − 1], π ∈ P (N, t)

Initially, cell ψh is in state s0 and contains a value object describing its initial choice,
vh. Cell ψh is a def↓ definition, thus, if properly connected, is able to receive and send
objects from/to one or more parent cells, belonging to one or more “parent” modules.
Cell ψh works in two phases, which roughly correspond to the two phases of the clas-
sical EIG-based algorithm: first, a messaging phase, implemented by rule groups 1 and
2, and, secondly, a bottom-up phase, implemented by rule groups 3, 4, 5 and 6.

The external behaviour of cell ψh’s messaging phase, and therefore of module Ψh, is
governed by the external contract described by the following paragraph.

Module Ψh’s messaging phase takes L+1 rounds, indexed by [0, L]. The first round,
0, starts immediately, triggered by the presence of the initial value object. Each other
round t, t ∈ [1, L], starts after receiving, collectively from its parent modules, the set
Rαh

t . Each round t, except the last, t ∈ [0, L − 1], ends by sending up, to each parent
module, by replication, the set Rαh

t ∪ R?
t . Each round t, t ∈ [0, L], is completed in

exactly one P step. Module Ψh is idle between successive rounds.
Each x

α(π)
π sent up is accompanied by a corresponding template object, x?

π , which is
used, by cell ψh’s parents, to build a filter, for next round value objects.

Messaging rounds here have different granularity and boundaries than in Section 3:
in the classical EIG algorithm, a round starts by sending and continues by receiving
messages; here, a round is triggered by receiving objects (except the first round, which is
triggered by the initial choice) and continues by processing and sending objects (except
the last round, which does only processing). This explains why, here, this messaging
phase has L + 1 rounds, but the messaging phase of Section 3 has L rounds.

The internal behaviour of cell ψh is very important, during both phases. At all steps,
cell ψh’s contents can be viewed as forming a virtual EIG tree, similar, but not identical,
to the classical EIG tree of process h. The nodes of this virtual tree are represented by
objects from the sets Rα

t , Rβ
t , R∗

t , t ∈ [0, L].

A Faster P Solution for the Byzantine Agreement Problem 189

This virtual tree is gradually built, in increasing level order, during the messaging
phase, and it gradually shrinks, in decreasing level order, during the bottom-up phase.
Messaging round t, t ∈ [0, L], is triggered by receiving value objects Rα

t . Just before
receiving Rα

t , the virtual tree is given by ∪l∈[0,t−1]R
∗
l . Then, receiving Rα

t extends this
virtual tree to (∪l∈[0,t−1]R

∗
l)∪Rα

t . Next, if t ∈ [0, L−1], messaging round t transforms
the tree by “replacing” α value objects by placeholders, i.e. the virtual tree is now given
by (∪l∈[0,t]R

∗
l) (which maintains the invariant); otherwise, if t = L, the virtual tree is

not changed.
Using rule groups 1 and 2, an induction argument on round number t, t ∈ [0, L],

shows that cell ψh maintains its external contract for round t, gradually builds its virtual
tree as mentioned, and transits from state st to state st+1, except for round t = L, when
it transits from state sL to state eL.

As an example, consider that cell ψ3 corresponds to process 3 in the scenario of
Example 1. Figures 9 (a,b,c,d,e) illustrate the gradual completion of the virtual EIG
tree, via the three messaging rounds of cell ψ3.

These trees are represented with the help of the following sets; R∗
0 = {x∗

λ}, R∗
1 =

{x∗
1, x

∗
2, x

∗
3, x

∗
4}, Rα

0 = {x1
λ}, Rα

1 = {x0
1, x

0
2, x

1
3, x

1
4}, Rα

2 = {x0
12, x

0
13, x

1
14, x

0
21,

x0
23, x

0
24, x0

31, x
1
32, x

1
34, x

1
41, x

1
42, x

1
43}. Rβ

2 = Rα
2 , Rβ

1 = {x0
1, x

0
2, x

1
3, x

1
4}, Rβ

0 = {x0
λ}.

For a comparison, see also Figure 1.

(e)

∗

∗ ∗ ∗

0 0 1 0 0 0 0 1 1

∗

1 1 1
2 3 4

1

λ

2 3 4

1 3 4 1 2 4 1 2 3

∗

0 0 1
1 2 3

λ

1
4

λ

(f)

(g)

0

λ

(a)

∗
λ

(b)

∗

0 0 1
1 2 3

λ

1
4

(c)

∗
1 2 3

λ

4

(d)

∗ ∗ ∗ ∗
1

Fig. 9. The evolution and involution of cell ψ3’s virtual EIG tree. Message round 0: (a) ⇒ (b);
Message round 1: (c) ⇒ (d); Message round 2: (d) ⇒ (e); Bottom-up step 1 : (e)⇒ (f); Bottom-up
step 2 : (f) ⇒ (g).

There are L + 1 messaging rounds. Cell ψh completes each round in one P step and
stays idle between rounds. Thus, the messaging phase will take L(1 + θ) + 1 steps in
total, where θ is the interval when cell ψh is idle, assumed fixed. (As we will see later,
this interval is indeed fixed, θ = 4, making a total of five P steps, required for sending
objects from cell ψh to another cell ψf , f ∈ [1, N], and vice-versa).

State eL triggers the start of the bottom-up evaluation of attribute β, on the virtual
EIG tree, in decreasing level order. Each level evaluation takes exactly one P step. Be-
cause β(π) = α(π), for π ∈ P (N, L), the virtual tree at state eL can be alternatively

190 M.J. Dinneen, Y.-B. Kim, and R. Nicolescu

viewed as (∪t∈[0,L−1]R
∗
t) ∪ Rβ

L. An induction argument on t = L, L − 1, . . . , 1, 0,
shows that, after L− t steps since it has reached state eL, cell ψh transits to state et and
the virtual tree “shrinks” to (∪u∈[0,t−1]R

∗
u) ∪ Rα

t .
Intuitively, at each transition from et+1 to et, the β value objects for level t + 1,

Rβ
t+1, are removed, and the placeholder objects for level t, R∗

t , are “replaced” by β

value objects for level t, Rβ
t .

Rule groups 3, 4, 5 and 6 run the required strict majority voting scheme, transiting
from state et+1 to state et. For each EIG sibling group at level t + 1,

– Rule group 3 cancels pairs of β value objects at level t + 1 with opposite binary
values, until there either remains only objects with the same binary value, or no β
value objects at all.

– Rule group 4 takes one of the remaining β value objects at level t + 1, if there is a
strict majority, and creates a corresponding β value object at level t.

– Rule group 5 removes all superfluous remaining β value objects at level t + 1.
– Rule group 6 is activated in the tie case and creates a β value objects at level t with

the default value W .

The last step of the bottom-up iteration evaluates Rβ
λ , which contains a single β value

object, x
β(λ)
λ , where β(λ) is the final decision of process h. At the same time, cell ψh

stops, because it reaches the final state e0.
Figures 9 (e,f,g) continue the previous example, based on process 3 of the scenario of

Example 1, and illustrate how the virtual tree “shrinks” after each step of the bottom-up
evaluation. Note the tie breaker required for the last bottom-up step.

Including the root, the EIG tree has L + 1 levels. Therefore, after receiving and
processing the last round objects, which records the β(π) = α(π) values, for the leaves
π, π ∈ P (N, L), cell ψh needs L more P steps to reach the final state e0 and evaluate
the final decision value.

6.2 Rule Sequences for Γhf

Conceptually, module Γhf belongs to process h and stands as a local firewall, between
its main module Ψh and a corresponding firewall module Γfh, belonging to untrusted
remote process f .

Module Γhf contains three distinct cells, γ′
hf , γ′′

hf , γhf , each having its own rule
sequence and states. As indicated before, on one side (the “home” side), module Γhf

is connected to the main module Ψh, and, on the other side (the “foreign” side), mod-
ule Γhf expects to be connected to module Γfh (part of a “friend-or-foe” process f).
Specifically, cell γhf is connected as parent of main cell ψh (which is given as an exter-
nal reference), cell γ′′

hf is connected as parent of foreign cell γ′
fh (which is given as an

external reference), and cell γ′
hf (which is given as an external definition) is connected

as child of foreign cell γ′′
fh.

As will be shown in the next three subsections, cells γ′
hf , γ′′

hf , γhf , work in lock-
step, cycling continuously through a five P steps period, each period corresponding to
a complete messaging round. As shown in Section 6.1, cell ψh completes its messag-
ing related tasks in short one P step activity bursts, thus module Ψ does not have its

A Faster P Solution for the Byzantine Agreement Problem 191

own time constraints for the messaging phase. Therefore, (a) the overall progress of
module Ψh, during the messaging phase, is also determined by module Γhf , and (b)
between successive messaging rounds, cell ψh stays idle for exactly four P steps, and
the parameter θ, used in Section 6.1, is 4).

If counter s designates the global step number, s = 1, 2, . . ., then the messaging
round number is given by counter t = (s − 1)/5, and counter u ∈ [0, 4], defined by
u = s − 1 (mod 5), indicates the current substep inside the five steps period, which
is also indicated by their current state index (e.g., cell γ′

hf ’s states are indexed as cu,
u ∈ [0, 4]). Module Γhf ’s cells and their external connections are expected to switch
their responsibilities according to this counter u. Provided that both processes, h and f ,
are non-faulty, the expected messaging workflow of module Γh can be summarized as
follows:

1. when u = 0, external cell ψh is expected to send up, to cell γhf , the object set

Rαh

t ∪ R?
t ;

2. when u = 1, cell γhf is expected to send down, to cell γ′′
hf , the object set Rαh

t ;
3. when u = 2, cell γ′′

hf is expected to send down, to external cell γ′
fh, the object set

Rαh

t , and, vice-versa, external cell γ′′
fh is expected to send down, to cell γ′

hf , the

object set Rαf

t ;
4. when u = 3, cell γ′

hf is expected to send down, to cell γhf , the object set Rαf

t ;

5. when u = 4, cell γhf is expected to send down, to cell ψh, the object set Rαf

t .

If these expectations are not met, i.e. if the foreign process f is faulty, module Γhf

works as firewall, protecting its associated main module Ψh against bad, wrongly timed
and missing messages. The message flow will not stop and, instead of bad or expected
but missing objects, module Ψh will timely receive objects recreated with the default
value W . A faulty process f might receive back some of the wrong messages it has
itself sent to h, but this does not harm the algorithm.

Figure 10 illustrates a fragment of this workflow, by tracing the actual messages
between cells ψ2, ψ3, the main cells associated to processes 2 and 3, respectively, in the
Byzantine scenario of Example 1.

Module Γhf is hardwired for given level L. After L messaging phases, cell γhf stops
working and enters its final state. The other two cells, γ′

hf and γ′′
hf continue to loop over

their five step cycles. This can be easily fixed, if this is not desired. However, this will
involve a state-based countdown counter, because these two cells are on the frontline
towards an untrusted process f , which potentially can alter their contents at any time.

The following three subsections detail the rules of module Γhf ’s three cells and
discuss their behaviour.

6.3 Rule Sequence for Γhf ’s Cell γ′
hf

According to the following rules, and as illustrated in Figure 11 (a), cell γ′
hf cycles

continuously through states c0 (start state), c1, c2, c3, c4.

1. c0 →min c1
2. c1 →min c2

192 M.J. Dinneen, Y.-B. Kim, and R. Nicolescu

ψ3

ψ2

γ32

γ′
32 γ′′

32

γ′′
23 γ′

23

γ23

1 ?

0 ?

1

0

1
0

1

0

(2,0)

(3,1)

(1) (2) (3) (4) (5)

ψ3

ψ2

γ32

γ′
32 γ′′

32

γ′′
23 γ′

23

γ23

ψ3

ψ2

γ32

γ′
32 γ′′

32

γ′′
23 γ′

23

γ23

ψ3

ψ2

γ32

γ′
32 γ′′

32

γ′′
23 γ′

23

γ23

ψ3

ψ2

γ32

γ′
32 γ′′

32

γ′′
23 γ′

23

γ23

ψ3

ψ2

γ32

γ′
32 γ′′

32

γ′′
23 γ′

23

γ23

(6) (7) (8) (9) (10)

ψ3

ψ2

γ32

γ′
32 γ′′

32

γ′′
23 γ′

23

γ23

ψ3

ψ2

γ32

γ′
32 γ′′

32

γ′′
23 γ′

23

γ23

ψ3

ψ2

γ32

γ′
32 γ′′

32

γ′′
23 γ′

23

γ23

ψ3

ψ2

γ32

γ′
32 γ′′

32

γ′′
23 γ′

23

γ23

(1,0)(1,?)
(2,0)(2,?)
(3,1)(3,?)
(4,1)(4,?)

(1,0)(1,?)
(2,0)(2,?)
(3,1)(3,?)
(4,1)(4,?)

(1,0)
(2,0)
(3,1)
(4,1)

(1,0)
(2,0)
(3,1)
(4,1)

(1,0)
(2,0)
(3,1)
(4,1)

(1,0)
(2,0)
(3,1)
(4,1)

(1,0)
(2,0)
(3,1)
(4,1)

(1,0)
(2,0)
(3,1)
(4,1)

(1.3,0)
(2.3,0)
(4.3,1)

(1.2,0)
(3.2,0)
(4.2,1)

Fig. 10. Traces of the messaging phase between main cells ψ2 and ψ3, in the Byzantine scenario
of Example 1

3. c2 →min c3
4. c2 o →max c3, for o ∈ �
5. c3 →min c4
6. c3 xv

π →min c4 (xv
π)↓γhf

, for v ∈ {0, 1}, t ∈ [0, L − 1], π ∈ P (N, t)
7. c4 →min c0

Assume that s, t and u, are the correlated counters, defined in Section 6.2. When u = 2,
cell γ′

hf is in state c2, clears its contents by rule group 4 (practically useful, but not

strictly needed) and expects Rαf

t from γ′′
fh, if process f is non-faulty; however, a faulty

process f may send, at any time, any objects in �. Next, when u = 3, cell γ′
hf is in state

c3 and, by rule group 6, forwards, to γhf , R ∩ (∪l∈[0,L−1]R
0,1
l), a filtered subset of the

actually received object set, R. This filter is “good-enough”, but not complete, because
it does not ensure that the forwarded objects form a functional relation on π or that π
matches the current message round t. However, this mechanism protects cell γhf against
wrongly timed objects or bad objects which could corrupt its internal consistency. As

A Faster P Solution for the Byzantine Agreement Problem 193

c0 c1 c2 c3

p00 p01

c4

d0 d1 d2 d3 d4

p02 p03 p04

p10 p11 p12 p13 p14

p1
L1-p0

L1- p2
L1- p3

L1- p4
L1-

pL0

(a)

(b) (c)

Fig. 11. State diagrams for module Γhf : (a) for cell γ′
hf , (b) for cell γ′′

hf , (c) for cell γhf

we will see, cell γhf is able to solve the remaining formatting issues. For other values
of u, cell γ′

hf keeps cycling, without doing any other significant work.

6.4 Rule Sequence for Γhf ’s Cell γ′′
hf

According to the following rules, and as illustrated in Figure 11 (b), cell γ′′
hf cycles

continuously through states d0 (start state), d1, d2, d3, d4.

1. d0 →min d1
2. d1 →min d2
3. d1 o →max d2, for o ∈ �
4. d2 xv

π →max d3 (xv
π)↓γ′

fh

, for v ∈ {0, 1}, t ∈ [0, L − 1], π ∈ P (N, t)
5. d3 →min d4
6. d4 →min d0

Assume that s, t and u, are the correlated counters, defined in Section 6.2. When u = 1,
cell γ′′

hf is in state d1, clears its contents by rule group 3 (practically useful, but not

strictly needed) and expects Rαh

t from γhf . Next, when u = 2, cell γ′′
hf is in state d2

and, by rule group 4, forwards down, to γ′
fh, the previously received objects, i.e. Rαh

t .
For other values of u, cell γ′′

hf keeps cycling, without doing any other significant work.

6.5 Rule Sequence for Γhf ’s Cell γhf

According to the following rules, and as illustrated in Figure 11 (c), cell γhf progresses
through states p0

0 (start state), p0
1, p0

2, p0
3, p0

4, p1
0, p1

1, p1
2, p1

3, p1
4, . . . , pL

0 (final state).

1. pt
0 →min pt

1, for t ∈ [0, L − 1]
2. pt

1 →min pt
2, for t ∈ [0, L − 1]

3. pt
1 xv

π →min pt
2 (xv

π)↓γ′′
hf

, for v ∈ {0, 1}, t ∈ [0, L − 1], π ∈ P (N, t)

4. pt
2 →min pt

3, for t ∈ [0, L − 1]
5. pt

3 →min pt
4, for t ∈ [0, L − 1]

194 M.J. Dinneen, Y.-B. Kim, and R. Nicolescu

6. pt
4 →min pt+1

0 , for t ∈ [0, L − 1]
7. pt

4 x?
π x0

π →min pt+1
0 (x0

π⊕f)↓ψh
, for t ∈ [0, L − 1], π ∈ P (N, t), f /∈ Im(π)

8. pt
4 x?

π x1
π →min pt+1

0 (x1
π⊕f)↓ψh

, for t ∈ [0, L − 1], π ∈ P (N, t), f /∈ Im(π)
9. pt

4 x?
π →min pt+1

0 (xW
π⊕f)↓ψh

, for t ∈ [0, L − 1], π ∈ P (N, t), f /∈ Im(π)
10. pt

4 o →max pt+1
0 , for t ∈ [0, L − 1], o ∈ Ω

Assume that s, t and u, are the correlated counters, defined in Section 6.2. When u = 0,
cell γhf is in state pt

0, is empty, and expects Rαh

t ∪R?
t from ψh. Next, when u = 1, cell

γhf is in state pt
1 and, by rule group 3, forwards down, to γ′′

hf , the value objects destined

to process f , Rαh

t but keeps the template objects, R?
t . Next, when u = 2, cell γhf is in

state pt
2 and keeps cycling, by rule group 4, without doing any other significant work.

Next, when u = 3, cell γhf is in state pt
3 and expects, from cell γ′

hf , a set of good-

enough value objects, ideally Rαf

t , but could be any subset of (∪l∈[0,L−1]R
0,1
l).

Case u = 4 describes a critical step, where cell γhf uses the process number f to
tag the objects which are forwarded to ψh. Consider the partial function Sf : Ω → Ω,
defined by Sf (xv

π) = xv
π⊕f , for π ∈ (∪l∈[0,L−1]P (N, l)), v ∈ {0, 1}. Cell γhf is in

state pt
4 and forwards down, to cell ψh, either (a) the set Sf (Rαf

t), if process f is non-
faulty; or, (b) a reconstructed version, where unavailable objects are replaced by value
objects, reconstructed with the default value W .

The correct format is checked by matching received value objects against template
objects R?

t . Rule group 7 applies when a 0 valued object can be matched against a tem-
plate. Rule group 8 applies when a 1 valued object can be matched against a template.
Rule group 9 applies when no value object matched the template and recreates a miss-
ing value object based on the default value W . After this, cell γhf clears all its contents,
by rule group 10, preparing itself for the next cycle.

6.6 Module Πh

Collecting the above results, we can now complete the last item required by the contract
between the main module, Ψh, with its firewall modules, Γhf , f ∈ [1, N]. Assume again
that s, t and u, are the correlated counters, defined in Section 6.2 and t ∈ [0, L − 1].
As shown in Section 6.5, when u = 4, for each h, f ∈ [1, N], cell Γhf sends down,

to cell ψh, either (a) the set Sf (Rαf

t), if process f is non-faulty; or, (b) a reconstructed
version, where unavailable objects are replaced by value objects, reconstructed with the
default value W .

Therefore, cell ψh receives, collectively from its parent modules, the set S =
∪f∈[1,N]Sf (Rαf

t). A straightforward argument shows that sets Sf (Rαf

t), f ∈ [1, N],
are disjoint, and their union S is S = Rαh

t+1. This triggers the next messaging round
t + 1, with the required new set of value objects, which completes the argument.

6.7 Complexity

As indicated by the next theorem, this new version of the Byzantine algorithm improves
the runtime of the previous version [8], from 9L + 6 to 6L + 1, where, typically, L =
�N/3�.

A Faster P Solution for the Byzantine Agreement Problem 195

Theorem 1. This revised EIG-based Byzantine algorithm takes 6L + 1 steps, where L
is the number of messaging rounds.

Proof. As seen above, it takes 5L P steps from start until the last message is received
by the main cells, ψh, h ∈ [1, N], One additional P step is required to transit from
ψh’s state sL to state eL, i.e. to transit from from the messaging phase to the bottom-up
phase. Finally, cell ψh needs L more P steps for its bottom-up phase, to evaluate its final
decision value and reach the final state. Thus, the revised Byzantine algorithm takes a
total of 5L + 1 + L = 6L + 1 steps.

The new version reduces the total number of cells required, from super-exponential,
O(N !), to a small polynomial, O(N2). However, some other static complexity mea-
sures are still very large. The new version does not change the message complexity of
the previous version, which is mostly determined by the EIG algorithm itself. Table 1
summarizes these complexity measures.

Table 1. Summary of complexity measures (where, typically, L = �N/3�)

Complexity measure Previous version Current version
Number of steps 9L + 6 6L + 1
Number of cells per Π module 2N + 1 + O(N !) 3N + 1
Number of objects O(N !) O(N !)
Maximum number of states per ele-
mentary module

O(L) O(L)

Maximum number of rules per ele-
mentary module

O(N !) O(N !)

Number of messages exchanged be-
tween Π modules

N2L N2L

7 Conclusions and Open Problems

In this paper, we proposed an improved generic version of P modules, an extensible
framework for recursive composition of P systems, and used it to provide a faster P so-
lution for the Byzantine agreement algorithm, based on Exponential Information Gath-
ering (EIG) trees.

Our modular framework offers three types of generic parameters: generic objects,
external definitions and external references and supports encapsulation, information
hiding and modular composition.

Our revised P solution uses only duplex channels, fewer cells and fewer rules, while
improving overall running time from 9L + 6 to 6L + 1, where L is the number of
messaging rounds. We proved that modules, i.e. cell clusters, can solve the classical
Byzantine agreement problem. Our design uses 3N +1 cells for each module, with one
“main” cell and 3N ancillary cells, which enclose the main cell inside a “firewall”. Can
we solve the Byzantine agreement directly between individual cells, without help from
any additional firewall?

196 M.J. Dinneen, Y.-B. Kim, and R. Nicolescu

In our case, firewall cells have a complex role. They protect the main cell against
badly formatted, wrongly timed and missing messages. If they reach the main cell,
wrongly timed bad messages have the potential to corrupt the internal structures, re-
quired by the internal cell logic. Additionally, our firewall cells tag incoming messages
with unforgeable origin marks (a feature that current passive channels do not offer).
This is a critical feature of the EIG-based algorithm itself (not of the cell implementing
it). If the originator is not guaranteed, this algorithm will fail.

We believe that some of these firewall tasks can be retrofitted into the main cell itself,
but not all required critical features. Thus, it seems that it is not possible to achieve a
Byzantine agreement between individual cells, if we rely on the classical EIG-based
algorithm.

However, there are many other algorithms for the Byzantine agreement, thus, our
question is more general. Is there any other algorithm able to solve the Byzantine agree-
ment at the cell level, still using passive channels, as in the current framework? We con-
jecture that the answer is negative. If this is indeed the case, what is the minimal size of
one firewall component, one, two, three?

One can make a parallel to the history of the Internet. “The Internet protocols were
originally designed for openness and flexibility, not for security. The ARPA researchers
needed to share information easily, so everyone needed to be an unrestricted insider on
the network” [9]. It seems that this was also the case in the early development of P sys-
tems. Are there simple ways to enhance our passive channels to provide more safety?
Besides distributed computing, would this be useful in other modelling scenarios? A
related problem, are there real-life biological scenarios, which need sophisticated fault-
tolerant mechanisms, similar to the Byzantine agreement algorithms used in distributed
computing, and, if yes, how do these really work?

Besides the above conjecture, our investigation leaves open a number of other inter-
esting and challenging problems. Can we extend our P system solution to cover 2F +1
connected graphs, but not necessarily complete? Can we design P system solutions
for other Byzantine agreement algorithms, not EIG-based, for example using reliable
broadcasts? Will other solutions work “better”, e.g., faster or with smaller communi-
cation overhead? Is it possible to solve the Byzantine agreement problem with a fixed
number of P rules? If not, which is likely the case, can we solve this problem by propos-
ing simple “natural” extensions to current rule system? Finally, can we provide solu-
tions for some types of asynchronous P systems and what additional constraints will be
needed in this case?

References

1. Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M.K., Wylie, J.J.: Fault-scalable
Byzantine fault-tolerant services. In: Herbert, A., Birman, K.P. (eds.) SOSP, pp. 59–74.
ACM, New York (2005)

2. Ben-Or, M., Hassidim, A.: Fast quantum Byzantine agreement. In: Gabow, H.N., Fagin, R.
(eds.) STOC, pp. 481–485. ACM, New York (2005)

3. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantinople: Practical asyn-
chronous Byzantine agreement using cryptography. J. Cryptology 18(3), 219–246 (2005)

A Faster P Solution for the Byzantine Agreement Problem 197

4. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery. ACM
Trans. Comput. Syst. 20(4), 398–461 (2002)

5. Ciobanu, G.: Distributed algorithms over communicating membrane systems. Biosys-
tems 70(2), 123–133 (2003)

6. Ciobanu, G., Desai, R., Kumar, A.: Membrane systems and distributed computing. In: Păun,
G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 187–
202. Springer, Heidelberg (2003)

7. Dinneen, M.J., Kim, Y.-B., Nicolescu, R.: A faster P solution for the Byzantine agreement
problem. Report CDMTCS-388, Centre for Discrete Mathematics and Theoretical Computer
Science, The University of Auckland, Auckland (July 2010)

8. Dinneen, M.J., Kim, Y.-B., Nicolescu, R.: P systems and the Byzantine agreement. The Jour-
nal of Logic and Algebraic Programming (in Press, 2010) Corrected Proof)

9. Froehlich, F.E., Kent, A.: Encyclopedia of Telecommunications, vol. 15. CRC Press, Boca
Raton (1997)

10. Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine generals problem. ACM Trans. Pro-
gram. Lang. Syst. 4(3), 382–401 (1982)

11. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco
(1996)

12. Martin, J.-P., Alvisi, L.: Fast Byzantine consensus. IEEE Trans. Dependable Sec. Com-
put. 3(3), 202–215 (2006)

13. Nicolescu, R., Dinneen, M.J., Kim, Y.-B.: Towards structured modelling with hyperdag
P systems. International Journal of Computers, Communications and Control 2, 209–222
(2010)

14. Păun, G.: Membrane Computing: An Introduction. Springer, New York (2002)
15. Păun, G.: Introduction to membrane computing. In: Ciobanu, G., Pérez-Jiménez, M.J.,

Păun, G. (eds.) Applications of Membrane Computing. Natural Computing Series, pp. 1–
42. Springer, Heidelberg (2006)

16. Păun, G., Pérez-Jiménez, M.J.: Solving problems in a distributed way in membrane com-
puting: dP systems. International Journal of Computers, Communications and Control 5(2),
238–252 (2010)

17. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of faults. J.
ACM 27(2), 228–234 (1980)

18. Romero-Campero, F.J., Twycross, J., Cámara, M., Bennett, M., Gheorghe, M., Krasnogor,
N.: Modular assembly of cell systems biology models using P systems. Int. J. Found. Com-
put. Sci. 20(3), 427–442 (2009)

19. Serbanuta, T., Stefanescu, G., Rosu, G.: Defining and executing P systems with structured
data in K. In: Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC
2008. LNCS, vol. 5391, pp. 374–393. Springer, Heidelberg (2009)

Computationally Complete
Spiking Neural P Systems without Delay:

Two Types of Neurons Are Enough

Rudolf Freund1 and Marian Kogler1,2

1 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria

{rudi,marian}@emcc.at
2 Institute of Computer Science, Martin Luther University Halle-Wittenberg

Von-Seckendorff-Platz 1, 06120 Halle (Saale), Germany
kogler@informatik.uni-halle.de

Abstract. In this paper, we consider spiking neural P systems without
delay with specific restrictions on the types of neurons. Two neurons are
considered to be of the same type if the rules, the number of spikes in the
initial configuration and the number of outgoing synapses are identical.
We show that computational completeness can be achieved in both the
generating and the accepting case with only two types of neurons, where
the number of neurons with unbounded rules is constant even minimal.

1 Introduction

Spiking neural P systems, introduced by Ionescu et al. in [3], are a special class
of P systems (see [7], [8], [12]) inspired by the working of the (human) brain. In
spiking neural P systems, the cells represent neurons, which are connected by
synapses. Spiking neural P systems have only one symbol, the spike, multiple
copies of which can be sent (“fired”) from neurons via synapses to other neurons
or simply “forgotten” (i.e., removed). The exchange of spikes is regulated by
firing and forgetting rules in the neurons.

The problem which “ingredients” are needed to achieve computational com-
pleteness or universality with spiking neural P systems has been a challenging
question since the introduction of this kind of systems. Several answers have
been given, for instance showing that many additional conditions such as delays
can be left off [2] or that a limited number of rules per neuron suffices [1], [5], or
giving universal P systems with a small number of neurons [6], [11].

Recently, Zeng et al. [10] have considered homogeneous spiking neural P sys-
tems, i.e. P systems where the rules in every neuron are identical. However,
to achieve universality in this model, some extra conditions such as delays are
required.

In our paper, we consider spiking neural P systems with only two types of
neurons, without using delays. We consider two neurons to be of the same type
if the rules, the number of spikes in the initial configuration, and the number

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 198–207, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Computationally Complete SN P Systems without Delay 199

of outgoing edges (synapses) are identical. We show that we are able to achieve
computational completeness both in the accepting and in the generating case.
Moreover, we are able to give a constant (even minimal) bound on the required
number of neurons with unbounded rules.

The rest of the paper is organized as follows: in the next section, we consider
some basic formalisms from formal language theory and give the definition of
spiking neural P systems. In Section 3 we present our results regarding compu-
tational completeness. Finally, we conclude the paper with a short summary of
the results obtained in this paper and some interesting open questions for future
research.

2 Definitions

The reader is assumed to be familiar with basic notions of formal language theory
(for instance, see [9]).

In the following, by NRE we denote the family of recursively enumerable
sets of natural numbers. For a regular expression E, the corresponding regular
language is denoted by L(E).

A nondeterministic register machine is a construct

M = (n, B, p0, ph, I) where

1. n, n ≥ 1, is the number of registers,
2. B is the set of instruction labels,
3. p0 is the start label,
4. ph is the halting label (only used for the HALT instruction) and
5. I is a set of (labeled) instructions being of one of the following forms:

– pi : (ADD(r), pj , pk) increments the value in register r and continues with
one of the instructions labeled by pj and pk, chosen in a nondeterministic
way,

– pi : (SUB(r), pj , pk) tries to decrement the value in register r; if the reg-
ister was non-empty before the instruction, the computation continues
with the instruction labeled with pj, if not, it continues with the instruc-
tion pk;

– ph : HALT halts the machine.

As the only nondeterminism occurs in the ADD-instructions, we can easily con-
struct deterministic register machines by imposing the condition pj = pk. In
this case, we write pi : (ADD(r), pj). We will be using nondeterministic register
machines as generators and deterministic register machines as acceptors.

A deterministic register machine accepts a (vector of) natural numbers by
starting with the number(s) as input in the first register(s), with all other regis-
ters being empty. Starting from the instruction labeled with p0, the instructions
are applied and the contents of the registers changed; if and when the machine
reaches ph and therefore halts, the vector or number is accepted. Register ma-
chines can accept all recursively enumerable sets of (vectors of) natural numbers
(with k components) with k + 2 registers (for instance, see [4]).

200 R. Freund and M. Kogler

In the generating case, the (now nondeterministic) register machine starts
with empty registers at the initial instruction p0. When the machine halts, the
contents of the first k registers form the result. Every recursively enumerable
set of (vectors of) natural numbers can be generated with only k + 2 registers,
where the first k registers are never decremented [4].

2.1 Spiking Neural P Systems

A spiking neural P system (without delays) is a construct

Π = (O, ρ1, ..., ρn, syn, in, out) where

1. O = {a} is the (unary) set of objects (the object a is called spike),
2. ρ1, ..., ρn are the neurons, where ρi = (di, Ri) for 1 ≤ i ≤ n, with di being

the initial configuration of the neuron i and Ri being the set of rules, where
the rules have one of the following forms:
– E/ai → aj , where E is a regular expression over O and i, j ≥ 1 (firing

rules) or
– ai → λ, where i ≥ 1 (forgetting rules).

There must not be any rule ai → λ such that ai ∈ L(E) for some E of a
firing rule.

3. syn ⊆ {1, ..., n} × {1, ..., n} are the synapses, where (i, j) ∈ syn indicates a
synapse from i to j,

4. in is the input neuron (with the only function to spike once in generating
spiking neural P systems in order to start a computation), and

5. out is the output neuron (no function in accepting spiking neural P systems).

A computation of a spiking neural P system starts from the initial configuration
(d0, d1, ..., dn) (di represents the number of spikes in neuron i, 1 ≤ i ≤ n, and d0
the number of spikes in the environment) and then proceeds by making compu-
tation steps until the system halts, i.e., when in no neuron a rule can be applied
any more. With the system being in the configuration (c0, c1, ..., cn), where ci

represents the number of spikes in neuron i, 1 ≤ i ≤ n, and c0 the number of
spikes to be sent from the environment to the input neuron, a computation step
is carried out as follows: in every neuron, one rule – if possible – is chosen in a
nondeterministic way and applied. A firing rule E/ai → aj ∈ Rk can be applied
in neuron k if, for ck = am, ck ∈ L(E) and m ≥ i, removing i spikes from k and
adding j spikes in every neuron l where (k, l) ∈ syn. A forgetting rule ai → λ
can be applied in neuron k if and only if ck = ai; such a rule removes all spikes
from the neuron.

Per step and neuron, only one rule may be applied. This is in contrast to
other variants of P systems, which usually utilize the maximally parallel mode.
As spiking and forgetting rules are mutually exclusive, the only way a nondeter-
ministic computation step may happen is by the existence of two rules where the
languages generated by their regular expressions have a non-empty intersection
and the number of fired spikes is not equal.

Computationally Complete SN P Systems without Delay 201

A spiking neural P system inputs and outputs numbers via a spike train. A
spike train starts with a spike given in step t1 and ends with a spike given in
step t2. The number is specified by t2 − t1 − 1, i.e., the number of steps that
elapse between the two spikes. It accepts an input by a series of configurations,
starting from the initial configuration and ending in a halting configuration.

Rules of the form E/ai → aj where L(E) is finite (infinite) are called bounded
(unbounded) rules.

Two neurons ρi and ρj are of the same type if and only if Ri = Rj , di = dj

and |{(i, k) ∈ sym | k ∈ {1, ..., n}}| = |{(j, k) ∈ sym | k ∈ {1, ..., n}}|.
By NSNaccP∗(typesk) (NSNgenP∗(typesk)) we denote the family of sets of

natural number accepted (generated) by spiking neural P systems needing neu-
rons of at most k different types.

3 Results

Theorem 1. NSNaccP∗(types2) = NRE.

Proof. We prove computational completeness by simulating deterministic regis-
ter machines with three registers, where the first one is the input register. We
use two types of neurons, where neurons of type 1 are responsible for most of the
computations, and neurons of type 2 are equivalent to registers (if the register r
contains the value i, the neuron r contains 2i spikes). Therefore, only three neu-
rons of type 2 are required, whereas we have an unbounded number of neurons
of type 1. Both types have exactly two outgoing synapses and λ (i.e. no spike)
in the initial configuration. The two types of neurons and their ingredients are
shown in Figure 1.

λ

a/a → a

a2 → λ

a3/a3 → a

a4/a4 → a

a5 → λ

Type 1

λ

a → λ

a3(a2)∗/a → a

Type 2

Fig. 1. The two types of neurons used in the proof of Theorem 1

In the following, we will depict cells of type 1 by squares and cells of type 2
by dashed squares without giving the rules or the initial configuration again.

As all neurons have an out-degree of two and the generation of additional
spikes is only possible with extra steps, it is sometimes necessary to utilize
dummy neurons. A dummy neuron structure (see Figure 2) takes in one spike
and forgets it. A circle with the letter “D” will be used in the following to denote
such a structure.

202 R. Freund and M. Kogler

d1

d2 d3

�� ��

d4

����

d5

�
�
�
��

�
�
�
�	�

�
�
�

�
�
�
��

Fig. 2. A dummy neuron structure

pi1

pi2 pi3

�� ��

r

����

� �� �
pj D

Fig. 3. A neuron structure simulating an ADD-instruction

When a spike enters neuron d1, it triggers the rule a/a → a, which causes the
neuron to spike into the neurons d2 and d3, which both fire into the neurons d4
and d5, thus giving two spikes in both of these neurons, which are forgotten by
the rule a2 → λ. As the neurons d4 and d5 never spike, the synapses from the
neurons d4 and d5 back to the neurons d2 and d3 have no effect.

The simulation of an ADD instruction pi : (ADD(r), pj) is accomplished by the
neuron structure as shown in Figure 3: When a spike enters neuron pi1 , the
simulation starts. The neuron fires and sends a spike into pi2 and pi3 , which fire
two spikes into r (thereby increasing the value in register r by 1), one spike into
the neuron structure for pj (to start the simulation of the instruction pj), and one
spike into a dummy structure. Therefore, the simulation of an ADD-instruction
requires three neurons (not including the dummy structure) and two steps.

For SUB-instructions, we do not consider the instructions individually; rather,
we construct a structure responsible for all SUB(r)-instructions. In the following,
we will denote the SUB-instructions for some register r by pi : (SUB(r), pis , pif

)
for 1 ≤ i ≤ n, where the pi are the instructions, the pis are the follow-up in-
structions in case of success (i.e., when the register is non-empty) and the pif

the
follow-up instructions in case of failure (i.e., when the register is empty). Figure 4
illustrates the neuron structure needed for the simulation of SUB(r)-instructions;
pi denotes the instruction currently being executed and n the number of SUB(r)-
instructions. In this diagram, only one possible instruction is described in detail.

Computationally Complete SN P Systems without Delay 203

Dummy structures – used where there is only one non-dummy outgoing edge –
have been left off. Moreover, the spike from register r has to be forwarded to
all possible p′j1 (for this, �

√
n�(�

√
n�−1)

2 neurons are needed) and the spike for the
instruction needs to be delayed until this spike arrives (using 2(�

√
n	− 1) cells).

p11 pi1pn1

... ...

pi2 pi3

pi4 pi5

r

� �

�

���...

� �
... ...

... ...

... ...

p′
11 p′

n1 p′
i1

p̃i1 p̃i2
...

p̃i4 p̃i5 p′
i2 p′

i3
......

p′
if

p′
is

� �� �

��

�
�

pis

pif

�

�

�
��

�
��

p̃i3

���

��

Fig. 4. A simplified diagram of a SUB-instruction neuron structure

When the simulation of the instruction starts, one spike is sent into the neuron
representing register r. If the register is empty (i.e., the neuron contains no spike),
the spike is forgotten by the rule a → λ, if not, the rule a3(a2)∗/a → a removes
two spikes (thus decrementing the value in the register) and fires one spike.
However, as the register does not know which instruction caused the subtraction,
this spike is forwarded to all possible instructions. In parallel, one spike is fired
by the instruction neuron, to be duplicated and forwarded to the neuron of
the instruction. To make sure that the spikes from the register and the spikes
from the instruction reach the register at the same time, the two spikes from
the instruction neuron (after duplication) are delayed by additional neurons of
type 1. Finally, the neurons p′if

and p′is
act as “gatekeepers” of the respective

instructions.
The neuron p′is

corresponding to the current instruction receives two spikes.
If the subtraction succeeded (i.e., if the register was non-empty), every neuron
p′is

receives two spikes. If only two spikes are present (i.e., if the neuron belongs
to a different instruction or the operation was not successful), they are forgotten
by the rule a2 → λ; otherwise, four spikes are in the neuron, which causes it
to fire by the rule a4/a4 → a and therefore to start the simulation of the next
instruction pis . Moreover, the neuron p′if

receives three spikes from the current

204 R. Freund and M. Kogler

instruction, which causes it to fire if the subtraction did not succeed and therefore
to start the simulation of the next instruction pif

; if the subtraction succeeded,
two additional spikes are sent from the register, triggering the forgetting rule
a5 → λ. If only these two spikes representing a successful subtraction are sent
in, the forgetting rule a2 → λ can be applied and removes them.

The simulation of a SUB-instruction takes 5 + (�
√

n	 − 1) steps and 15 +
(�
√

n	−1) neurons (not counting dummy structures). Additionally, �
√

n�(�
√

n�−1)
2

neurons for every register are needed, where n is the number of SUB-instructions
that affect this register.

The HALT-instruction is represented by a dummy structure, which consumes
the spike, thus ending the computation of the P system.

Finally, we consider the input to be given by two spikes: one in the first step
and one in the n + 2th step, where n is the input number. The neuron structure
as depicted in Figure 5 puts 2n spikes into the input register ri. When the first
spike enters the system, it initializes the two loops and puts one spike into the
register (which is forgotten because of the rule a → λ). Per step, the first loop
(neurons i3 and i4) puts two spikes into the register, thereby increasing the count
by 1. The second loop (neurons i11 and i12) puts two spikes into an intermediate
neuron i13 (where they are forgotten immediately).

�

in

i1 i2

i3 i4

r1

�� ��

� �

����

��
�
�
�
�	 i6 i7

i8 i9

i5

i10
���	 ��

�

�	 ��

i11 i12
�	 ����

i13
�

��D
�D�

�
�
�
����D ������

�p0

�

Fig. 5. The neuron structure initializing the computation

After the second spike has entered, the loops stop (as the forgetting rules
a2 → λ can be applied), another spike is fired into the register (as the input is
the number of steps between the two spikes, but the loop runs one more time,
it is necessary to decrement the register once) and four spikes enter i13, thus
causing it to fire a spike into the structure simulating the first instruction p0.

For any number as input, the spiking neural P system halts if and only if the
corresponding register machine halts. This observation concludes the proof. �

Computationally Complete SN P Systems without Delay 205

Theorem 2. NSNgenP∗(types2) = NRE.

Proof. Our construction is similar to the proof given for Theorem 1. However, we
need to simulate nondeterministic register machines here, so we need to modify
the simulation of ADD-instructions. To be able to simulate nondeterminism, we
introduce two additional rules to the neuron type 1 (see Figure 6), which allows
for the nondeterministic simulation of an instruction pi : (ADD(r), pj , pk) (see
Figure 7).

λ

a/a → a

a2 → λ

a3/a3 → a

a4/a4 → a

a5 → λ

a6/a6 → a

a6/a6 → a2

Type 1

λ

a → λ

a3(a2)∗/a → a

Type 2

Fig. 6. The two types of neurons used in the proof of Theorem 2

pi1

pi2 pi3

�� ��

r

����
pi4 pi5

pi6 pi7 pi8 pi9

pi10 pi11 pi12 pi13 pi14 pi15 pi16 pi17

pi18
pi19 pi20

�pj

pi22pi21

�

�pk

�
�

��� ��� �
����������������

���� ���

� �

� �

��

��

� �

!!!!!!"

Fig. 7. A neuron structure simulating an ADD-instruction (without dummy structures)

After the instruction has been executed, the neuron pi18 contains six spikes,
which nondeterministically triggers one of the rules a6/a6 → a and a6/a6 → a2.
If the first rule is executed, the instruction pj immediately follows; otherwise,
the instruction pk is executed. (This construction is vaguely similar to the one

206 R. Freund and M. Kogler

used for SUB-instructions; however, in this case, both input spikes come from
the same source.) This simulation requires 22 neurons (not counting the dummy
structures) per ADD-instruction and is executed in seven steps.

The simulation of SUB-instructions is exactly as in the proof given in the proof
of the previous theorem. However, we do not need to consider SUB-instructions
for the output register 1, as we can assume that this first register is never decre-
mented.

To start a computation, the input neuron has to receive a spike from the
environment, which then is immediately sent to the first neuron of the neuron
structure simulating the initial instruction p0.

When the machine halts with the HALT-instruction, we still have to output
the result as a spike train. As the first register is never subtracted from during
the simulation of the register machine, we can construct the output structure as
shown in Figure 8:

o1

o2 o3

o4 o5 o6 o7

r1
o8

o9

o11

o10

out
�

�

�����

�

�

� �� ��

##�
�

�����

� �

Fig. 8. The output structure (without dummy neurons)

The basic mechanism of the output structure is as follows: the system spikes
if and only if there was no spike from the current subtraction from the register
or from the last subtraction from the register. This is the case at the begin-
ning (where there is no preceding subtraction) and at the end (when the last
subtraction cannot be executed, as the register is empty). The number of steps
between these two spikes is always the number in the register minus one (or, if
the register was empty, there would be only one spike). Therefore, we need to
increment the register (by adding two spikes) before starting the output.

The output of the spiking neural P system (given by the spike train) is equiv-
alent to the output of the corresponding register machine (given by the value in
the first register upon halting). This observation concludes the proof. �

Corollary 1. NSNaccP∗(unbound3) = NSNgenP∗(unbound3) = NRE.

Computationally Complete SN P Systems without Delay 207

4 Conclusions

By using the characterization of types (where two neurons are of the same type
if the rules, the initial configuration and the number of outgoing synapses are
identical), we were able to prove that for obtaining computational completeness
only two types of neurons are needed, where only the second type of neurons
contains unbounded rules. We also showed that three neurons of the second type
are enough, which already is the minimal number needed anyway as registers
can only be represented by neurons with unbounded rules. However, the number
of neurons of the first type could not be bounded; this can be achieved by
simulating universal register machines (yet then we have to use spike trains with
three spikes to introduce the code of the machine to be simulated as well as
its input). Further interesting questions for future research remain, for example,
which ingredients are needed to generalize the results for recursively enumerable
sets of vectors of natural numbers or which changes in the constructions of the
proofs elaborated in this paper are necessary for the input (in the accepting case)
or the output (in the generating case) being initially (finally) given as contents
of an unbounded input (output) neuron.

References

1. Garćıa-Arnau, M., Peréz, D., Rodŕıguez-Patón, A., Sośık, P.: Spiking neural P
systems: Stronger normal forms. In: Gutiérrez-Naranjo, M.A., Păun, G., Romero-
Jiménez, A., Riscos-Núñez, A. (eds.) Proceedings of the Fifth Brainstorming Week
on Membrane Computing, pp. 33–62 (2007)

2. Ibarra, O.H., Păun, A., Păun, G., Rodŕıguez-Patón, A., Sośık, P., Woodworth, S.:
Normal forms for spiking neural P systems. Theor. Comput. Sci. 372(2-3), 196–217
(2007)

3. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundam.
Inf. 71(2,3), 279–308 (2006)

4. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Inc., Up-
per Saddle River (1967)

5. Pan, L., Păun, G.: Spiking neural P systems: An improved normal form. Theoretical
Computer Science 411(6), 906–918 (2010)

6. Păun, A., Păun, G.: Small universal spiking neural P systems. Biosystems 90(1),
48–60 (2007)

7. Păun, G.: Computing with membranes. J. of Computer and System Sci. 61(1),
108–143 (2000)

8. Păun, G.: Membrane Computing: An Introduction. Springer, New York (2002)
9. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Word, Lan-

guage, Grammar, vol. 1. Springer, Heidelberg (1997)
10. Zeng, X., Zhang, X., Pan, L.: Homogeneous spiking neural P systems. Fundam.

Inf. 97(1-2), 275–294 (2009)
11. Zhang, X., Zeng, X., Pan, L.: Smaller universal spiking neural P systems. Fundam.

Inf. 87(1), 117–136 (2008)
12. The P Systems Web Page, http://ppage.psystems.eu

http://ppage.psystems.eu

P Systems and Unique-Sum Sets

Pierluigi Frisco

School of Math. and Comp. Sciences
Heriot-Watt University

EH14 4AS Edinburgh, UK
P.Frisco@hw.ac.uk

Abstract. We study P systems with symport/antiport and a new model
of purely catalytic P systems, called purely multi-catalytic P systems,
when these devices use only one symbol. Our proofs use unique-sum sets,
sets of integer numbers whose sum can only be obtained in a unique way
with the elements of the set itself.

We improve some results related to the descriptional complexity of
the P systems with symport/antiport considered by us and we define
one infinite hierarchy of computations.

1 Introduction

Membrane systems (P systems) are an abstract model of computation inspired
by the compartmentalisation present in eukariotic cells [14,15,6,3]. For several
models of P systems it is possible to define rewriting systems without any com-
partment able to simulate (that is, mimic the behaviour of) the original P system.
This is possible through the use in the rewriting systems of several symbols en-
coding the compartments of the P system and the passage of the symbols in the
P system from one compartment to another.

This possibility to remove the compartments from a P system is something
well known in this field of research and it has been formally studied through the
use of Petri nets [6,17].

Some models of P systems do not allow a reduction to rewriting systems. If,
for instance, a P system with several compartments is ought to have only one
symbol, then no other symbol can be introduced in a rewriting system simulating
the P system. So, it makes a lot of sense to study P systems with restrictions
in the number of used symbols, as these systems are the ones that do need the
compartments in order to operate.

The computational power of P systems with symport/antiport, one of the
most elegant and the most studied model of P system [13], has been studied
when restrictions on the number of used symbols are in place [16,1,2,6,11].

Here we continue this line of research on P systems with symport/antiport
proving that when these devices operate under maximal parallelism, then the
model using only one symbol and with 2n + 1, n ≥ 2, compartments can simu-
late register machines. In this way we partially answer suggestion for research
5.3 in [6] and we solve a problem stated in [11]. We also prove that when the

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 208–225, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

P Systems and Unique-Sum Sets 209

number of occurrences of the unique symbol is bounded, then an infinite hier-
archy on the number of compartments is present. We also study purely multi-
catalytic P systems a model of catalytic P systems introduced in the present
paper, when these systems have several catalysts and only one symbol which is
not a catalyst.

The provided proofs employ the use of unique-sum sets: sets of integer numbers
whose sum can only be obtained in a unique way with the elements of the set
itself.

2 Basic Definitions

We assume the reader to have familiarity with basic concepts of formal lan-
guage theory [9], register machines and P systems [6,3]. In this section we recall
particular aspects relevant to our presentation.

The symbol N denotes the set of natural numbers {0, 1, 2, . . .}, while N+ de-
notes {1, 2, 3, . . .} and ∅ denotes the empty set.

Given a set V its cardinality, that is, the number of elements in V , is denoted
with |V |; V ∗ denotes the free monoid generated by V with the operation of
concatenation, λ indicates the empty word.

Let a grammar G = (N, T, S, P) be of type-0 or of type-3. The length of the
strings over T which can be obtained by derivations of G is the set of numbers
generated by G. The respective classes of numbers are denoted by N REG and
N RE.

For k ∈ N, Nk RE equals the family of recursively enumerable sets with ele-
ments greater than or equal to k i.e., {L ∈ N RE | {0, . . . , k − 1} ∩ L = ∅}, or
equivalently, {k+L | L ∈ N RE}, where k+L = {k+n | n ∈ L}. From the point
of computational completeness, the families N RE and Nk RE are equivalent, as
a Turing machine can make the translation, but here we inherit the language
definition used in the literature of P systems and make this distinction.

A multiset (over V) is a function M : V → N∪{+∞}; for a ∈ V , M(a) defines
the multiplicity of a in the multiset M . We say that an element a of a multiset
M has infinite multiplicity if M(a) = +∞. In case the multiplicity of an element
of a multiset is 1 we indicate just the element, otherwise (a, M(a)) is indicated.
The support of a multiset M is the set supp(M) = {a ∈ V | M(a) > 0}. The
size of a multiset is defined by the function | | : (V → N∪+{∞}) → N∪ {+∞},
where for M multiset over V , |M | =

∑
a∈supp(M) M(a). The symbol φ indicates

the empty multiset, that is the multiset whose support is the empty set.
Let M1, M2 : V → N∪{+∞} be two multisets. The union of M1 and M2 is the

multiset M1 ∪M2 : V → N∪+{∞} defined by (M1 ∪M2)(a) = M1(a) + M2(a),
for all a ∈ V . The difference M1 − M2 is here defined only when M2 is included
in M1 (which means that M1(a) ≥ M2(a) for all a ∈ V) and it is the multiset
M1−M2 : V → N∪{+∞} given by (M1−M2)(a) = M1(a)−M2(a) for all a ∈ V .
Of course, if M1(a) = +∞ and M2(a) is finite, then M1(a) − M2(a) = +∞.

210 P. Frisco

In this paper we describe formal systems simulating other formal systems.
The concept of simulation is widely used in (theoretical) computer science and
it refers to the fact that a device can mimic the behaviour of another device. In
the present paper we use the definition of this concept as given in [7].

2.1 P Systems

In this section we introduce the models of P system used in the present paper.
Before doing so we define cell-trees.

A directed graph μ = (N, E), where N is the finite set of vertices and E is
the set of edges, is said to be a cell-tree if:

0 ∈ N where the vertex 0 is the root of the tree;
each vertex in N except the root defines a membrane compartment (in this

paper referred simply as compartment) of a P system Π ; the root 0 defines
the environment;

the root has only one child; this last is called skin compartment;
the set E is the ‘father of’ relation present in μ equivalent to the nesting of

membranes normally used in the literature of P systems.

In the following we represent cell-tree as boxes with a subscript, the number
of the vertex represented by them, and eventually containing other boxes and
symbols.

An accepting P system with symport/antiport [13,6,3] of degree m, m ≥ 1, is
a construct

Π = (V, μ, L0, L1, . . . , Lm, R1, . . . , Rm, comp)

where:

V is a finite set of symbols;
μ = (N, E) is a cell-tree with m vertices underlying Π ;
Li, 0 ≤ i ≤ m, are multisets over V defining the initial multisets of symbols.

All the symbols in L0 have infinite multiplicity while the ones in L1, . . . , Lm

do not;
Ri, 1 ≤ i ≤ m, are sets containing a finite number of rules of the form:

(v; in), (v; out) (called symport rules), or (w; out/v; in) (called antiport rules),
with v, w nonempty multisets over V with a finite support. Thus the sym-
ports (φ; in) and (φ; out) and the antiports (b; out/a; in) with a = φ or b = φ
are not allowed;

comp ⊂ {1, . . . , m} is the set of initial compartments. It is common practice
to have |comp| = 1, anyhow, in this paper we consider also cases in which
|comp| > 1.

A configuration of a P system with symport/antiport of degree m is given
by the m + 1-tuple (M0 − L0, M1, . . . , Mm) of multisets over V associated to
the environment and the compartments {1, . . . , m} respectively. Note that the
configuration does not record the symbols in the environment that occur with

P Systems and Unique-Sum Sets 211

infinite multiplicity as they are invariant to any configuration. The m + 1-
tuple (φ, L1, . . . , Lm) is called initial configuration. For two configurations (M0−
L0, M1, . . . , Mm), (M ′

0−L0, M
′
1, . . . , M

′
m) of Π we write (M0−L0, M1, . . . , Mm)

⇒ (M ′
0 − L0, M

′
1, . . . , M

′
m) indicating a transition from (M0 − L0, M1, . . . , Mm)

to (M ′
0 − L0, M

′
1, . . . , M

′
m) that is the application of a set of rules associated to

each compartment under the requirement of maximal parallelism: rules are ap-
plied in parallel to the maximum degree possible. If more than one maximal set
of rules can be applied, then exactly one of them is nondeterministically chosen;
all rules present in this set are applied in parallel.

The rules Rq associated to a compartment q ∈ N\{0} can change the multisets
Mq and Mp of p father of q in μ in the following way:

– a multiset v included in Mp may be subtracted from Mp and may be united
to Mq, if the symport rule (v; in) is present in Rp. In this case the multisets
change from Mp and Mq to M ′

p = Mp − v and M ′
q = Mq ∪ v respectively;

– a multiset v included in Mq may be subtracted from Mq and united to Mp

if the symport rule (v; out) is present in Rq. The multisets change from Mp

and Mq to M ′
p = Mp ∪ v and M ′

q = Mq − v respectively;
– a multiset v included in Mp may be united to Mq while, at the same time,

a multiset w included in Mq may be united to Mp if the antiport rule
(w; out/v; in) is present in Rq. In this case the multisets of symbols change
from Mp and Mq to M ′

p = (Mp−v)∪w and M ′
q = (Mq −w)∪v respectively.

In general, if a multiset v is subtracted from Mp and united to Mq we say that
v passes from compartment p to compartment q.

The weight of a rule is given by |v| (that is, the cardinality of the multiset
v) in case of a symport (v; in) or (v; out) and by max({|v|, |w|}) in case of an
antiport (v; out/w; in).

A computation is a finite sequence of transitions between configurations of
a system Π starting from the initial configuration (φ, L1, . . . , Lm). If a compu-
tation is finite, then the last configuration is called final and we say that the
system halts.

The result of the computation is given by the vector of multiset of symbols
(the vector has dimension |comp|, if this dimension is 1, then we speak of set of
numbers) present in the compartments in comp in the initial configuration when,
on such initial configuration, the P system halts (that is, when the multiset of
applicable rules has empty support).

The set of numbers whose elements are bigger than k, k ∈ N+, accepted by
P systems with symport/antiport operating under maximal parallelism using s
symbols, degree at most m, using symports of weight at most p and antiports of
weight at most q is denoted by NkaOsPm(symp, antiq). When p, q or m are not
bounded, then they are replaced by ∗.

We now introduce a model of purely catalytic P systems [14,6,3], called purely
multi-catalytic P systems, with limitations in its alphabet and having a new kind
of rules.

212 P. Frisco

An accepting purely multi-catalytic P system of degree m is a construct

Π = (V, C, μ, L1, . . . , Lm, R1, . . . , Rm, comp)

where:

V = {a} is an alphabet;
C, C ∩ V = ∅, is a set of catalysts;
μ = (N, E) is a cell-tree with m vertices underlying Π ;
Li, 1 ≤ i ≤ m, are multisets over V defining the initial multisets of symbols;
Ri, 1 ≤ i ≤ m, are finite sets of rules of the kind: cap → c(aq, tar) with

p, q ∈ N+, c ∈ C and tar ∈ {here, in, out}, where the set {here, in, out}
contains target indicators;

comp ∈ {1, . . . , m} is the initial compartment.

A configuration of Π is an m-tuple (M1, . . . , Mm) of multisets over V asso-
ciated with the compartments of Π . The m-tuple (L1, . . . , Lm) is called initial
configuration.

Let Π = (V, C, μ, L1, . . . , Lm, R1, . . . , Rm, comp) be an accepting purely mul-
ti-catalytic P system and let j, i and k be three vertices in μ such that i is the
parent of j and j is the parent of k. Moreover, let Rj be the set of rules associated
with compartment j and let Mj , Mi and Mk be multisets over V , associated
with vertices j, i and k, respectively, such that cap → c(aq, tar) ∈ Rj , p, q ∈ N+
and tar ∈ {here, in, out}. Depending on the value of tar the application of
cap → c(aq, tar) ∈ Rj changes the multisets Mj , Mi and Mk according to the
following:

if tar = here, then Mj becomes M ′
j = Mj \ {ap} ∪ {aq} while Mi and Mk

remain unchanged;
if tar = in, then Mj becomes M ′

j = Mj \ {ap}, Mk becomes M ′
k = Mk ∪ {aq}

and Mi remains unchanged;
if tar = out, then Mj becomes M ′

j = Mj \ {ap}, Mi becomes M ′
i = Mi ∪ {aq}

and Mk remains unchanged.

In the following the target indicator here is omitted. For two configurations
(M1, . . . , Mm) and (M ′

1, . . . , M
′
m) of Π we write (M1, . . . , Mm) ⇒ (M ′

1, . . . , M
′
m)

to denote a transition from (M1, . . . , Mm) to (M ′
1, . . . , M

′
m), that is, the applica-

tion of a multiset of rules associated with each compartment under the require-
ment of maximal parallelism.

A computation is a sequence of transitions between configurations of a system
Π starting from the initial configuration (L1, . . . , Lm). If a computation is finite,
then the last configuration is called final and we say that the system halts.

Given a purely multi-catalytic P system Π = (V, C, μ, L1, . . . , Lm, R1, . . . ,
Rm, comp) with comp = c1, we consider two results from a computation of Π :

N(Π): the sum of occurrences of a and catalysts present in comp in the initial
configuration, when, on such initial configuration, Π halts;

N−c(Π): the occurrences of a present in comp in the initial configuration, when,
on such initial configuration, Π halts.

P Systems and Unique-Sum Sets 213

Moreover,

NkaO1Pm(pmcatp) = {N(Π) | Π is an accepting purely multi-catalytic P sys-
tem operating under maximal parallelism with degree at most m and using
at most p catalysts and such that each element in N(Π) is bigger than
k, k ∈ N+;

NaO1Pm,−c(pmcatp) = {N−c(Π) | Π is an accepting purely multi-catalytic P
system operating under maximal parallelism, of degree at most m and using
at most p catalysts};

So, for instance, if such a P system has comp = 2 and the only initial configura-
tion for which the P system halts is such that compartment 2 has two catalysts
and three occurrences of a, then:

{5} is the set accepted if all symbols counted with their multiplicity are consid-
ered;

{3} is the set accepted if only the a symbols are considered;

2.2 Register Machines

A register machine [12] (also known as (multi)counter machines, multipushdown
machines, program machine and counter automata) with n registers (n ∈ N+) is
a construct M = (S, R, s1, sf), where:

S is a finite set of states;
R is a finite set of instructions of the form (sp, γ

−
t , sq), (sp, γ

+
t , sq) or (sp, γj

=0,
sq), with sp, sq ∈ S, sp �= sf , 1 ≤ t ≤ n;

s1, sf ∈ S are respectively called the initial and final states.

A configuration of a register machines M with n registers is given by an element
in the n + 1-tuples (s, Nn), s ∈ S. Given two configurations (s, val(γ1), . . . ,
val(γn)) and (s′, γ′

1, . . . , γ
′
n) (where val : {γ1, . . . , γn} → N is the function return-

ing the content of a register) we define a computational step as (s, val(γ1), . . . ,
val(γn)) � (s′, γ′

1, . . . , γ
′
n):

– if (s, γ−
t , sq) ∈ S and val(γt) �= 0, then s′ = sq, γ′

t = val(γt) − 1, γ′
k =

val(γk), k �= t, 1 ≤ k ≤ n;
if val(γt) = 0, then the register machine halts in the non-final state s;
(informally: in state s if the content of register γt is greater than 0, then
subtract 1 from that register and change state into sq, otherwise halt in a
non-final state);

– if (sp, γ
=0
j , sq) ∈ S and val(γt) = 0, then s′ = sq, γ′

k = val(γk), 1 ≤ k ≤ n;
if val(γt) �= 0, then the register machine halts in the non-final state s;
(informally: in state s if the content of register γt is 0, then change state into
sq, otherwise halt in a non-final state);

– if (s, γ+
t , sq) ∈ S, then s′ = sq, γ

′
t = val(γt) + 1, γ′

k = val(γk), k �= t, 1 ≤
k ≤ n;
(informally: in state s add 1 to register γt and change state into sq).

214 P. Frisco

A computation is a sequence of computational steps of a register machine M
starting from the initial configuration (s1, val(γ1), 0, . . . , 0). If a computation is
finite, then the last configuration is called final. If a final configuration has sf

as state and all the counters are empty, then we say that M halts and it ac-
cepts the input val(γ1). For this reason γ1 is called the input register and M
is called an accepting register machine. Starting from an initial configuration
(s1, val(γ1), 0, . . . , 0) a register machine M could have a finite sequence of com-
putational steps in which the last one does not have sf as state. In this case we
say that M stops and val(γ1) is not accepted.

Partially blind register machines [8] are defined as register machines without
test on zero. The only allowed operations are (s, γ+, s′) and (s, γ−, s′) where γ
is a register. In case the machine tries to subtract from a register having value
zero it halts in a non-final state. Partially blind register machines are strictly
less powerful from a computational point of view than register machines.

We summarise in the following proposition, results from [12,4]:

Proposition 1. Register machines with three registers can accept N RE, the
number of registers can be decreased to two if specific input format (for example,
2x instead of x) is used.

Register machines with only one register can accept N REG.

Restricted register machines are defined as register machines restricted in their
operations: they can increase the value of a register, say β, only if they decrease
the value of another register, say γ, at the same time.

So, restricted register machines have only one kind of instruction: (s, γ−, β+,
v, w) with s, v, w states and γ, β different registers of the restricted register
machine. If when in state s the content of register γ can be decreased by 1,
then the one of register β is increased by 1 and the machine goes into state v,
otherwise no operation is performed on the registers and the machine goes into
state w.

Here a theorem from [10] that we need:

Theorem 1. Restricted register machines with n+1 registers are more powerful
from a computational point of view than those with n registers.

A consequence of this theorem is that an infinite hierarchy is induced, by means
of the number of registers, among families of computed vectors of numbers.

2.3 Unique-Sum Sets

Some proof in this paper use the following mathematical concepts.

Definition 1. Let U = {u1, . . . , up} be a set of distinct natural numbers and
σU =

∑p
i=1 ui the sum of the elements of U . The set U is said to be a unique-

sum set if the equation
∑p

i=1 ciui = σU , ci ∈ N, has only the solutions ci =
1, 1 ≤ i ≤ p.

P Systems and Unique-Sum Sets 215

An example of unique-sum set is U ′ = {4, 6, 7} as 4+6+7 = 17 and 17 cannot be
obtained with any other linear combination of 4, 6 and 7. The set U ′′ = {4, 5, 6}
is not a unique-sum set as 4 + 5 + 6 = 15 = 5 + 5 + 5.

It should be clear that any subset of a unique-sum set is a unique-sum set,
too. In particular none of the elements of a unique-sum set can be obtained as
a linear combination of the remaining elements in the set.

Definition 2. The family of sets M1SV is Up = ∪p
m=1(2

p − 2p−m) with gp ∈
Np

+, p ∈ N+.

The sum of the elements of the sets in this family is σUp = (p − 1)2p + 1. The
first sets in this family are:

U1 = {1};
U2 = {2, 3};
U3 = {4, 6, 7};
U4 = {8, 12, 14, 15};
U5 = {16, 24, 28, 30, 31};
U6 = {32, 48, 56, 60, 62, 63}.

From [5] it is known that:

Theorem 2. For all p ∈ N+ the set Up in M1SV is a unique-sum set.

3 P Systems with Symport/Antiport

In [11] it was proved that P system with symport/antiport operating under
maximal parallelism, with only one symbol and degree 2n + 3 can simulate a
partially blind register machines with n registers. In [11] it was also proved that
if priorities are added to the rules, then the obtained P system, having n + 3
compartments, can simulate register machines with n registers. The former result
was improved in [6] where it was proved that any partially blind register machine
with n registers can be simulated by a P system with symport/antiport with only
one symbol, degree n+3 and operating under maximal parallelism. Here we prove
that P systems with symport/antiport operating under maximal parallelism,
with only one symbol and degree 2n + 1 can simulate register machines with n
registers.

Theorem 3. Any accepting register machines with n registers can be simulated
by an accepting P system with symport/antiport operating under maximal paral-
lelism, using only one symbol and with degree 2n + 1.

Proof. Let M = (S, I, s1, sf) be a register machine with n registers γ1, . . . , γn.
We define the P system with symport/antiport operating under maximal
parallelism

216 P. Frisco

Π=({a}, μ, {a}, L1, . . . , Ln+1, L2′ , . . . , Ln+1′ , R1, . . . , Rn+1, R2′ , . . . , Rn+1′ , {2})

where:

μ = 2 2′
. . .

n+1
n+1′

1

;

L1 = ac(s1)+
∑n+1

i=2 2b(j);
Lj+1 = a2b(j)+val(γj), 1 ≤ j ≤ n;
Lj+1′ = a2b(j), 1 ≤ j ≤ n;
R1 = {1 : (ac(p); out/ac(1)(q)+2b(t)+1; in), 2 : (ac(1)(q); out/ac(2)(q); in),

3 : (ac(2)(q)+2b(t); out/ac(q); in) | (sp, γ
+
t , sq) ∈ I}∪

{4 : (ac(p); out/ac(3)(q)+2b(t); in), 5 : (ac(3)(q); out/ac(4)(q); in),
6 : (ac(4)(q)+2b(t)+1; out/ac(q); in) | (sp, γ

−
t , sq) ∈ I}∪

{7 : (ac(p); out/ac(5)(q)+3b(t)+1; in), 8 : (ac(5)(q); out/ac(6)(q); in),
9 : (ac(6)(q); out/ac(7)(q); in), 10 : (ac(7)(q); out/ac(8)(q); in),
11 : (ac(8)(q); out/ac(9)(q); in), 12 : (ac(9)(q)+3b(t)+1; out/ac(q)

; in),
| (sp, γ

=0
t , sq) ∈ I}∪

{13 : (ac(sf)+
∑n+1

i=2 2b(j); out), 14 : (a; out/aσ+1; in)};
Rj+1′ = {15 : (a2b(j); out/a2b(j); in), 16 : (a2b(j); out/a2b(j)+1; in),

17 : (a2b(j)+1; out/a2b(j); in), 18 : (a2b(j); out/a3b(j)+1; in),
19 : (a3b(j)+1; out/a2b(j); in)} 1 ≤ j ≤ n;

Rj+1 = {20 : (a2b(j); out/a2b(j)+1; in), 21 : (a2b(j)+1; out/a2b(j); in),
22 : (a; out/ab(j); in)} 1 ≤ j ≤ n;

In order to facilitate the explanation rules have been numbered. The number
of occurrences of a brought in by rule 14 is σ + 1 where σ is the sum of the
occurrences of a brought out by the remaining rules present in compartment 1.
The reason for this value for σ is explained in the following.

This proof requires the use of a unique-sum U with at most n+10|S| elements.
Different multiplicities of a, where the multiplicities are elements in U , are as-
sociated with each of the registers and instructions of M . This is performed by
the function b : {1, . . . , n} → U and the ten functions c, c(1), . . . , c(9) all from S
to U , injective and with disjoint values. The exact definition of these functions
is irrelevant for the proof.

The simulation performed by the P system Π is strongly based on the use of
a unique-sum set and on the property that for such sets none of the elements
can be obtained as a linear combination of the remaining elements in the set.
During the computation of Π , different occurrences of the symbol a are present
in the skin compartment. Specific sequences of applied rules allow Π to simulate
instructions of M . Other sequences of applied rules let Π to never halt.

The compartments j + 1, j + 1′, 1 ≤ j ≤ n, are uniquely associated with
registers in M . Each of these compartments contains at least b(j) occurrences
of a in the initial configuration. This number of occurrences of a represents
0 as content of the registers in M . The addition of 1 to register γj in M is
performed adding one occurrence of a to compartment j + 1. Conversely for the

P Systems and Unique-Sum Sets 217

subtraction. The presence of just ac(s), s ∈ S, in the skin compartment indicates
that Π simulates the register machine being in state s.

The application of rule 14 let Π start an infinite computation. This is due
to the fact that maximal parallelism is used and to the fact that even if all
remaining rules in compartment 1 were used (bringing out σ occurrences of a),
then there would still be another occurrences of s to be used by rule 14.

In the following description it will be clear that the symbols present in the
skin compartments and in compartments j +1′, 1 ≤ j ≤ n, are always kept busy,
that is, they are always subject to a rule. In particular, rule 15 moves 2b(j)
occurrences of a between the skin and compartments j + 1′, 1 ≤ j ≤ n.

Rules in parenthesis denote their parallel application.
The simulation of instructions of the kind (sp, γ

+
t , sq) is performed by the

sequential application of rules (1,15), (2, 16, 15), (3, 20, 15). It should be clear
that when (1, 15) takes place, rule 15 is applied to all j+1′ compartments, while
in the following two steps rule 15 is applied to all the j + 1′ compartments with
the exception of compartment t + 1.

If the sequence of rules (1, 15), (2, 16, 15), (3, 15) is instead applied, then 1
occurrences of a remains in compartment t + 1, and this leads Π to never halt.
This occurs because we assume that M halts with all registers empty, so, sooner
or later Π tries to subtract 1 from compartment t + 1 and this would lead Π to
never halt.

The simulation of instructions of the kind (sp, γ
−
t , sq), if in compartment t+1

there are at least 2b(t) + 1 occurrences of a, is performed by the sequential
application of rules (4, 21, 15), (5, 17, 15), (6, 15). It should be clear that when
(6, 15) takes place, rule 15 is applied to all j + 1′ compartments, while in the
other two steps rule 15 is applied to all the j+1′ compartment with the exception
of compartment t + 1.

If in compartment t + 1 there are less than 2b(t) + 1 occurrences of a, then
rule 21 cannot be applied and, as a consequence, rule 6 cannot be applied. The
subsequent application of rule 14 let Π to never halt.

The simulation of instructions of the kind (sp, γ
=0
t , sq), if in compartment t+1

there are just 2b(t) occurrences of a (simulating the counter t being empty), is
performed by the sequential application of rules (7,15), (8, 18, 15), (9, 20, 15),
(10, 21, 15), (11, 19, 15), (12, 15). It should be clear that when (7, 15) and
(12, 15) take place, rule 15 is applied to all j + 1′ compartments, while in the
other steps rule 15 is applied to all the j + 1′ compartment with the exception
of compartment t + 1.

If compartment t + 1 contains more than 2b(t) occurrences of a, then the
following rules are applied: (7,15), (8, 18, 22, 15). The application of rule 22 let
b(t) occurrences of a to be brought into compartment t+1. As a consequence of
this, rule 19 and rule 12 cannot be applied, rule 14 is applied and Π never halts.

When ac(sf) is present in compartment 1, then the application of rule 30 let
ac(sf)+

∑n+1
i=2 2b(j) to pass to the environment, rule 15 is no longer applied, and

the computation halts only if rule 14 has never been applied.

218 P. Frisco

The simulation of M is faithful, that is, Π cannot simulate sequences of in-
structions that cannot be performed by M . This means that if Π starts in
a configuration in which ac(s1)+

∑n+1
i=2 2b(j) is present in the skin compartment,

a2b(1) is present in compartment 2′, a2b(1)+val(γ1) is present in compartment 2
and compartments j + 1, j + 1′, 3 ≤ j ≤ n, contain a2b(j), then Π halts with
a2b(j) in compartments j + 1, j + 1′, 1 ≤ j ≤ n, only if M reached the final state
with all registers empty if it started from the configuration (s1, val(γ1), 0, . . . , 0).

�From the previous theorem and Proposition 1 we have:

Corollary 1. There exist b, b′, p, p′, q, q′ ∈ N+ such that

NbO1P7(symp, antiq) = NbRE;

Nb′O1P5(symp′ , antiq′) = Nb′RE if a specific input format is used,

If a P system with symport/antiport Π is such that the skin compartment con-
tains no rule then, for each computation of Π , the number and type of symbols
in Π is constant and equal to the one of the initial configuration. In the following
we consider such systems when they use only one symbol.

Theorem 4. The set of vectors accepted by restricted register machines coin-
cides with the ones accepted by P systems with symport/antiport operating under
maximal parallelism, using a constant number of occurrences of only one symbol.

Proof. Part I: (These P systems can simulate restricted register machines) This
proofs follows from the one of Theorem 3 after a few changes in the P system
there. Let M = (S, I, s1, sf) be a restricted register machines with n registers
γ1, . . . , γn.

We define the P system with symport/antiport operating under maximal par-
allelism
Π = ({a}, μ, {a}, L1, . . . , Ln+3, L2′ , . . . , Ln+2′ , R1, . . . , Rn+3, R2′ , . . . , Rn+2′ ,

{2, . . . , n + 1})
where:

μ = 2 2′
. . .

n+1
n+1′ n+2

n+2′
1

n+3

;

Ln+2 = a;
Ln+2′ = φ;
Ln+3 = aσ;
Rn+2 = (a; out/a; in);
Rn+2′ = (a; in);
Rn+3 = ∅;
where:

rule 14 in the proof of Theorem 3 is absent in the present system;
σ is the sum of the unique sum set U used in the proof of Theorem 3;
the remaining elements of Π are defined as in the proof of Theorem 3;
the unique sum set U and the functions b, c, c(1), . . . , c(9) are as defined in the

proof of Theorem 3.

P Systems and Unique-Sum Sets 219

The fact that the number of occurrences of the only symbol is constant in Π
derives from the fact that in restricted register machines the sum of the content
of the counters is constant.

The simulation of the instructions (s, γ−, β+, v, w) can be performed with the
non-deterministic simulations of either (s, γ=0, w) or (s, γ−, v′) and (v′, β+, v),
as explained in the proof of Theorem 3, where v′ is a newly introduced state
uniquely associated to (s, γ−, β+, v, w).

It should be clear that, as the sum of the registers in M is constant, in Π oc-
currences of a needed to simulate the instructions of M are provided by compart-
ment Ln+3. Moreover, if M starts in a configuration with val(γ1), . . . , val(γn)
in its registers, then Π starts in an initial configuration with 2b(j) + var(γj)
in compartment j + 1, 1 ≤ j ≤ n. So, if M reaches its final state sf on input
val(γ1), . . . , val(γn), then Π could halt on input 2b(j) + var(γj), 1 ≤ j ≤ n,
accepting this vector of numbers.

The infinite loop primed by rule 14 in the proof of Theorem 3, is here replaced
by compartments n + 2, n + 2′ and the symbols and rules associated to them. If
the rule in compartment n + 2′ is applied, then the rule in compartment n + 2
is continuously applied and Π never halts.

If the simulated restricted register machine has n registers, then the simulat-
ing P system has 2n + 4 compartments.

Part II: (Restricted register machines can simulate these P systems) Let Π
be such a P system and let M be the restricted register machine simulating
it. Each compartment of Π is associated to a different register in M whose
content reflects the number of occurrences of the only symbol in the associated
compartment. The simulations of each rule of Π is performed by a sequence of
instructions decreasing and increasing the value of registers. With ‘sequence of
instructions’ we mean instructions such that the output state of one instruction
is the input state of the following instruction in the sequence.

Let, for instance, compartment s contain compartment r and let (ap; out/aq;
in) belong to the set of rules associated to r. The set of instructions of M will
then contain a sequence of p instructions decreasing the value of register r and
increasing the one of register s followed by a sequence of q instructions decreasing
the value of register s and increasing the one of register r. If the simulation of
the whole rule cannot be performed, then M restores the content of the registers
(this can be done keeping track in the finite states of how far the simulation of a
rule went) and M goes on trying to simulate another rule. The machine M tries
to simulate all the rules in a random sequence (all the possible sequences can be
encoded in the finite state control of M) and, a rule is simulated as many time
as possible (this is because Π works under maximal parallelism). If in one cycle
none of the rules could be simulated (again, the finite number of states can keep
track of this), then M goes into its final state. �

We do not know if 2n+4 is the minimum number of compartments needed for the
P systems in Theorem 4 to simulate restricted register machines with n registers.
Anyhow, as these P systems have a constant number of only one symbols, it is

220 P. Frisco

unlikely that such a P system with a number of compartment independent from
n could simulate restricted register machines with an arbitrary number n of
registers.

So, knowing Theorem 4 and that restricted register machines induce an infinite
hierarchy on the number of registers, we feel confident to say that:

Corollary 2. P systems with symport/antiport operating under maximal par-
allelism, using a constant number of occurrences of only one symbol induce an
infinite hierarchy on the number of compartments.

4 Purely Multi-catalytic P Systems

In this section we show how unique-sum sets can be useful to purely catalytic P
systems using only one symbol.

Theorem 5. Any accepting register machines with n registers can be simulated
by an accepting purely multi-catalytic P system operating under maximal paral-
lelism, using only one symbol and with degree 2n + 1.

Proof. Let M = (S, I, s1, sf) be an accepting register machine with n registers:
γ1, . . . , γn. We define the purely multi-catalytic P system

Π = ({a}, C, μ, L2, R1, . . . , R2n+1, 2)

where:
C = {c1} ∪ {cj, cj′ , c

(1)
j′ , c

(2)
j′ | 2 ≤ j ≤ n + 1};

μ = 2 2′
. . .

n+1
n+1′

1

;

L1 = af(s1);
L2 = a2val(γ1);
Lj+1 = φ, 2 ≤ j ≤ n;
L′

j+1 = φ, 1 ≤ j ≤ n;
R1 = {1 : c1a

f(p) → c1a
f(q)(a2, int′+1) | (p, γ+

t , q) ∈ I}∪
{2 : c1a

f(p) → c1a
f(1)(q)(ab(t), int′+1),

3 : c1a
f(1)(q) → c1a

f(2)(q),

4 : c1a
f(2)(q)+b(t)+2 → c1a

f(q),

5 : c1a
f(p) → c1a

f(3)(p),

6 : c1a
f(3)(p) → c1a

f(1)(q)(ab(t), int′+1) | (p, γ−
t , q) ∈ I}∪

7 : {c1a
f(p) → c1a

f(4)(q)(ab(t), int′+1),
8 : c1a

f(4)(q) → c1a
f(5)(q)(ab(t), int′+1),

9 : c1a
f(5)(q)+b(t)+2 → c1a

f(6)(q)(b(t), int′+1),
10 : c1a

f(6)(q)+b(t)+2 → c1a
f(7)(q)(b(t), int′+1),

11 : c1a
f(7)(q)+b(t)+2 → c1a

f(8)(q),

P Systems and Unique-Sum Sets 221

12 : c1a
f(8)(q)+b(t)+2 → c1a

f(q) | (p, γ=0
t , q) ∈ I}∪

{13 : c1a
f(sf) → c1(af(sf), out), 14 : c′1a → c′1a

σ+1};
Rj′ = {17 : cj′a

2 → cj′(a2, inj),
18 : cj′a

b(j−1)+2 → cj′(ab(j−1)+2, out),
19 : c

(1)
j′ ab(j−1) → c

(1)
j′ (ab(j−1), out),

20 : c
(1)
j′ a2 → c

(1)
j′ (a2, inj),

21 : c
(1)
j′ ab(j−1)−2 → c

(1)
j′ (ab(j−1)−2, out),

22 : c
(2)
j′ a2 → c

(2)
j′ (a2, out)} 2 ≤ j ≤ n + 1;

Rj = {23 : cja
2 → cj(a2, out)} 2 ≤ j ≤ n + 1.

In order to facilitate the explanation rules have been numbered. The number
of occurrences of a generated by rule 14 is σ+1 where σ is the sum of occurrences
of a used by the remaining rewriting rules in R1.

This proof requires the use of a unique-sum set U with at least n + 9|S|
elements. Different multiplicities of a, where the multiplicities are elements in U ,
are associated with each of the registers and instructions of M. This is performed
by the function b : {1, . . . , n} → U and the nine functions f, f (1), . . . , f (8) all
from S to U , all injective and with disjoint values. The exact definition of these
functions is irrelevant for the proof, the only thing that is essential is that the
different elements of U are at least 3 units apart from each other. The reason
for this requirement is explained in the following.

The simulation performed by the P system Π is strongly based on the use of
a unique-sum set and on the property that for such sets none of the elements
can be obtained as a linear combination of the remaining elements in the set.
During the computation of Π , different occurrences of the symbol a are present
in the skin compartment. Specific sequences of applied rules allow Π to simulate
instructions of M . Other sequences of applied rules let Π to never halt.

If rule 14 is applied, then an infinite loop, given by the repeated application
of rule 14. If this happens, then Π never halts.

The compartments 2 ≤ j, j′ ≤ n+1, in Π are associated in a unique way to the
registers of M . If during a simulation, register γj contains the value val(γj), then
the sum of the occurrences of the symbol a present in j and j′ is 2val(γj). The
addition of 1 to register γj is then simulated with the addition of two occurrences
of a to compartment j′. The subtraction of 1 from register γj is simulated with
the removal of two occurrences of a from compartment j′.

During the simulation, if compartment j′ contains at least 2 occurrences of a,
then either rule 17 or rule 20 can be applied. The passage of a2 from compartment
j to compartment j′ is performed by the application of rule 23. This means
that if both compartments j and j′ contain at least 2 occurrences of a, then
these occurrences keep been moved to j′ and j, respectively. In the following
description we avoid to repeat that the application of these rules can take place
during the simulation of the instructions of M .

If the skin compartment has f(s) occurrences of a, then Π simulates M being
in state s.

222 P. Frisco

The simulation of instructions of the kind (p, γ+
t , q) is performed by the se-

quential application of rule 1 and then either rule 17 or 20. In this way the
number of occurrences of a in the skin compartment changes from f(p) to f(q),
indicating that Π simulates the state change of M from p to q, and 2 occurrences
of a pass to compartment t′ and then to compartment t, simulating the addition
of 1 unit to register γt.

To describe the simulation of instructions of the kind (p, γ−
t , q) we have to

consider different configurations of t and t′ when rule 2 is applied:

i) a2 is present in t′ and ak, k ≥ 2, k even, is present in t;
ii) a2 is present in t′ and t does not contain any a;
iii) t′ does not contain any a and t contains a2.

Because of rules 17, 20 and 23, it cannot be that when t′ does not contain any
a, t contains more than 2 occurrences of a.

In the following rule numbers in parenthesis denote that the rules are applied
in parallel. The simulation of such instructions can non-deterministically start
with either rule 2 or rule 5. If it starts with rule 2 and Π is in configuration ii,
then the applied rules are (2, 17) (or (2, 18)) followed by (3, 19, 23) (or (3, 17,
20, 22, 23), or (3, 17, 21, 23)). In all these cases, rule 4 cannot be subsequently
applied and Π starts an infinite loop. Similarly, if the simulation starts with
rule 5 and Π is in configuration iii. In the other cases the simulation of the
instruction can be completed.

Now we describe these possibilities one by one.
If Π is in configuration i, then (2, 17, 23) can be applied. When this happens

compartment t′ has b(t)+2 occurrences of a. If now rules (3, 18, 23) are applied,
then in the following configuration rules (4, 17), and eventually also 23, can be
applied. This is a simulation of (p, γ−

t , q).
When ab(t)+2 is present in t′, then other groups of rules can be applied in

parallel. It is important to notice that maximal parallelism forces all these b(t)+2
occurrences of a to be subject to a rule. For instance, it can be that (3, 17, 19,
23) are applied. If this occurs, then, as rule 3 cannot be applied, rule 14 is applied
starting in this way an infinite loop.

If Π is in configuration iii, then (2, 23) can be applied. What can happen
next is similar to what just described.

If Π is in configuration ii, then rules (2, 17) are applied. When this happens
b(t) occurrences of a are present in t′ and the applied rules let Π start an infinite
loop.

If Π is in configuration i, then (5, 17, 23), (6, 17, 23) can be applied. When
this happens compartment t′ has b(t) + 2 occurrences of a and the simulation
can go on as described in the above.

If Π is in configuration ii, then rules (5, 17), (6, 23) can be applied, again
b(t)+2 occurrences of a and the simulation can go on as described in the above.

If Π is in configuration iii, then rules (5, 23) can be applied. When this
happens b(t) occurrences of a are present in t′ and the applied rules let Π start
an infinite loop.

P Systems and Unique-Sum Sets 223

The simulation of instructions of the kind (p, γ=0
t , q) can start while t and t′

are in one of the following configurations:

iv) a2 is present in t′ and at least a2 is present in t;
v) a2 is present in t′ and t does not contain any a;
vi) t′ does not contain any a and t contains a2;
vii) both t and t′ do not contain any a.

Only configuration iv can let Π not to end up in an infinite loop. We describe
this simulation with a detailed description using a graphical representation of
the compartments in Π . Here we indicate only the compartments and symbols
relevant for the considered explanation.

t
t′
ac(p)

1

⇒7 t
ab(t)

t′
ac(4)(q)

1

⇒8,17,21

a2
t
ab(t)

t′
ac(5)(q)+b(t)−2

1

⇒9,17,21,23

a2
t
ab(t)+2

t′
ac(6)(q)+b(t)−2

1

⇒10,18,23

t
ab(t)+2

t′
ac(7)(q)+b(t)+2

1

⇒11,18 t
t′

ac(8)(q)+b(t)+2

1

⇒12

t
t′
ac(q)

1

In the above simulation many other sequences of configurations could occur
but none of them would lead the system to a halt. For instance, instead of
applying rules (8, 17, 21) the rules (8, 19) or (8, 17, 20, 22) could be applied but
in both cases the computation would go on forever.

The reason why we ask that the elements of U are at least 3 units apart
from each other is that because some configurations see ‘spare’ a’s present in
the skin compartment. For instance, in the above when rule 1 is applied the skin
compartment contains ac(q)+2. If the elements of U were not at least 3 units
apart from each other there could be a rule using the number of occurrences of
a’s together with other a’s present in the skin compartment. The application of
this rule could let Π not to simulate M . As we ask the elements of U to be at
least 3 units apart from each other, then this cannot happen.

When only f(sf) occurrences of a are present in the skin compartment, then
the application of rule 13 halts the computation.

The simulation of M is faithful, that is Π cannot simulate sequences of in-
structions that cannot be performed by M . This means that if Π starts with a
configuration in which af(s1) is present in the skin compartment and a2val(γ1) is
present in compartment 2, then Π halts with no a’s in any of its compartments
if and only if M would reach the final state with all registers empty if it started
from the configuration (s1, val(γ1), 0, . . . , 0).

224 P. Frisco

It is important to notice that the presence of catalysts is essential. If they
were not present, then, for instance, rules 17 and 20 would be equal. Moreover,
the fact that different rules in the same compartment share the same catalyst
(as, for instance, rules 20 and 21) does not allow these rules to be used at the
same time. �

Considering Theorem 5 and Proposition 1, we have:

Corollary 3.

N1aO1P7(pmcat15) = N1RE;
NaO1P7,−c(pmcat15) = N RE;
N1aO1P5(pmcat11) = N1RE if a specific input format is used;
NaO1P5,−c(pmcat11) = N RE if a specific input format is used;
NaO1P3,−c(pmcat7) ⊇ N REG.

5 Final Remarks

Theorem 3 partially answers suggestion for research 5.3 in [6] and it solves a
problem stated in [11].

The suggestion for research in [6] proposed to understand why maximal par-
allelism was needed for a model of P systems to have a computational power
equivalent to the one of partially blind register machines. Here we proved that
increasing the number of compartments, these devices can simulate program
machines.

The problem in [11] asked to investigate weather P systems with symport/
antiport using only one symbol and operating under maximal parallelism are
universal. Theorem 3 solves this problem.

We did not succeed in determining the power of the P systems considered in
Theorems 3 and Theorem 5 when they operate in a sequential (asynchronous)
mode.

It is not known if M1SV defines the family of unique-sum sets having mini-
mum sun in function of their number of elements.

Acknowledgements

We thankfully acknowledge the feedback Oscar Ibarra, György Vaszil, Rudy Fre-
und, Artiom Alhazov and one anonymous referee provided to previous versions
of the present paper.

References

1. Alhazov, A., Freund, R.: P systems with one membrane and symport/antiport
rules of five symbols are computationally complete. In: Gutiérrez-Naranjo, M.A.,
Riscos-Núñez, A., Romero-Campero, F.R., Sburlan, D. (eds.) Proceedings of the
Third Brainstorming week on Membrane Computing, Sevilla, Spain, January 31 -
February 4, pp. 19–28 (2005), Fénix Editoria, Sevilla (2005),

P Systems and Unique-Sum Sets 225

2. Alhazov, A., Freund, R., Oswald, M.: Symbol/membrane complexity of P systems
with symport/antiport. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.)
WMC 2005. LNCS, vol. 3850, pp. 96–113. Springer, Heidelberg (2006)

3. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford (2010)

4. Ja Barzin, M.: On a certain class of Turing machines (Minsky machines. Algebra
i Logika 1(6), 42–51 (1963) (in Russian) MR 27 #2415.

5. Frisco, P.: On s-sum vectors. Technical report, Heriot-Watt University, HW-MACS-
TR-0058 (2008), http://www.macs.hw.ac.uk:8080/techreps/build_table.jsp

6. Frisco, P.: Computing with Cells. Advances in Membrane Computing. Oxford Uni-
versity Press, Oxford (2009)

7. Frisco, P.: Conformon P systems and topology of information flow. In: Păun, G.,
Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC
2009. LNCS, vol. 5957, pp. 30–53. Springer, Heidelberg (2010)

8. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter ma-
chines. Theoretical Computer Science 7, 311–324 (1978)

9. Hopcroft, J.E., Ullman, D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

10. Ibarra, O.H.: On membrane hierarchy in P systems. Theoretical Computer Sci-
ence 334, 115–129 (2005)

11. Ibarra, O.H., Woodworth, S.: On symport/antiport P systems with small number
of objects. International Journal of Computer Mathematics 83(7), 613–629 (2006)

12. Minsky, M.L.: Computation: Finite and Infinite Machines. In: Automatic compu-
tation, Prentice-Hall, Englewood Cliffs (1967)

13. Păun, A., Păun, G.: The power of communication: P systems with sym-
port/antiport. New Generation Computing 20(3), 295–306 (2002)

14. Păun, G.: Computing with membranes. Journal of Computer and System Sci-
ences 1(61), 108–143 (2000)

15. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
16. Păun, G., Pazos, J., Pérez-Jiménez, M.J., Rodriguez-Paton, A.: Symport/antiport

P systems with three objects are universal. Fundamenta Informaticae 64, 1–4
(2005)

17. Qi, Z., You, J., Mao, H.: P systems and Petri nets. In: Mart́ın-Vide, C., Mauri,
G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp.
286–303. Springer, Heidelberg (2004)

18. The P Systems Webpage, http://ppage.psystems.eu/

http://www.macs.hw.ac.uk:8080/techreps/build_table.jsp
http://ppage.psystems.eu/

An Integrated Approach to P Systems
Formal Verification

Marian Gheorghe1,2, Florentin Ipate2,
Raluca Lefticaru2, and Ciprian Dragomir1

1 Department of Computer Science, University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, UK

M.Gheorghe@dcs.shef.ac.uk
2 Department of Computer Science, University of Pitesti

Str Targu din Vale 1, 110040 Pitesti, Romania
florentin.ipate@ifsoft.ro, raluca.lefticaru@gmail.com

Abstract. This paper presents a method to formally verify P system
specifications by first identifying invariants and then checking them,
using the NuSMV model checker, against a Kripke structure represen-
tation. The method is applied to a basic class of P systems with trans-
formation and communication rules using either maximal parallelism or
asynchronous rewriting strategy and for a special variant of P systems
with electrical charges, but without active membranes.

1 Introduction

P systems, introduced in [19], represent a new computational model inspired
by the structure and functioning of the living cell. In the last ten years there
have been various investigations related to this computational paradigm, ranging
from computability and complexity for different variants of these systems [20] to
various applications and connections with other computational models [4]. In the
last period the research on various programming approaches to P systems ([8],
[22]) and formal semantics ([3], [1], [15]), or with respect to decidability of some
model checking properties [7], has created the basis for investigating different
aspects related to the formal verification and testing of these systems.

The testing has been investigated for some covering criteria ([11], [13]) and
certain formal based approaches [14].

Formal verification has been studied for different variants of P systems by
using rewriting logic and the Maude tool [1] or, for stochastic systems [2], PRISM
and associated probabilistic temporal logic [12].

In this paper we consider an integrated method for formally verifying P sys-
tems. A method for identifying invariants in a formal specification and a tool,
NuSMV, that checks such properties against a Kripke structure representation is
presented. This method is applied for a basic class of P systems, with transforma-
tion and communication rules using either maximal parallelism or asynchronous
rewriting strategy and for a special variant of P systems with electrical charges,
but without active membranes. The invariants are extracted from traces of sim-
ulations of P systems represented in P-Lingua.

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 226–239, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Integrated Approach to P Systems Formal Verification 227

2 Basic Definitions and Preliminary Relationships

2.1 P Systems

A basic cell-like P system is defined as a hierarchical arrangement of compart-
ments delimited by membranes. Each compartment may contain a finite multiset
of objects and a finite set of rules, as well as a finite set of other compartments.
The rules perform transformation and communication operations. The class of
such models will be called transformation-communication P systems.

Definition 1. A P system is a tuple Π = (V, μ, w1, ..., wn, R1, ..., Rn), where V
is a finite set, called alphabet; μ defines the membrane structure, i.e., the hier-
archical arrangement of n compartments called regions delimited by membranes;
the membranes and regions are identified by integers 1 to n; wi, 1 ≤ i ≤ n, rep-
resents the initial multiset occurring in region i; Ri, 1 ≤ i ≤ n, denotes the set
of processing rules applied in region i.

The membrane structure, μ, is denoted by a string of left and right brackets
([, and]), each with the label of the membrane it points to and describing the
position of this membrane in the hierarchy. The rules in each region have the
form u → (a1, t1)...(am, tm), where u is a multiset of symbols from V , ai ∈ V ,
ti ∈ {in, out, here}, 1 ≤ i ≤ m. When such a rule is applied to a multiset u in
the current compartment, u is replaced by the symbols ai. The symbols ai with
ti = here, remain in the compartment; if ti = out, then they are sent to the
outer compartment or outside the system when the current compartment is the
external one; when ti = in, the symbols are sent into one of the compartments
contained in the current one, arbitrarily chosen. In the following definitions and
examples all the symbols (ai, here) are used as ai. The rules are applied in
maximally parallel mode which means that they are used in all the compartments
at the same time and in each compartment all the objects to which a rule can
be applied it must be the subject of a rule application [19].

A configuration of the P system Π , is a tuple c = (u1, ..., un), where ui ∈
V ∗, is the multiset associated with compartment i, 1 ≤ i ≤ n. A computation
from a configuration c1 to c2 using the maximal parallelism mode is denoted by
c1 =⇒ c2.

A configuration, c = (u1, ..., un), is a terminal configuration if there is no
compartment i such that ui can be further developed.

Another variant of P systems considered in this paper will be the P systems
with electrical charges. This is a simplification of the usual variant occurring in
the literature [21]. Each compartment has a specific electrical charge (+,−, 0)
which can be changed by a communication rule. The set of electrical charges is
denoted by H . The set of rules contains the following types of rules:

– [u → v]hb ;
– u[]h1

b → [v]h2
b ;

– [u]h1
b → v[]h2

b ;

228 M. Gheorghe et al.

where b indicates a compartment and h, h1, h2 ∈ H. The rules are applied in the
normal way; for more details see [21].

The maximal parallelism can be replaced by other execution strategies. One
of them, called asynchronous execution mode, implies that at each step at least
one rule is executed.

In the sequel we will consider transformation-communication P systems using
maximal parallelism or with asynchronous behaviour or P systems with electrical
charges and maximal parallelism.

2.2 Kripke Structures

Definition 2. A Kripke structure over a set of atomic propositions AP is a four
tuple M = (S, H, I, L), where S is a finite set of states; I ⊆ S is a set of initial
states; H ⊆ S×S is a transition relation that must be left-total, that is, for every
state s ∈ S there is a state s′ ∈ S such that (s, s′) ∈ H; L : S −→ 2AP is an
interpretation function, that labels each state with the set of atomic propositions
true in that state.

In general, the Kripke structure representation of a system consists of sets of
values associated to the system variables. Assuming that var1, . . . , varn are the
system variables and V ali the set of values for vari, with vali a value from V ali,
1 ≤ i ≤ n, we can introduce the states of the system as

S = {(val1, . . . , valn) | val1 ∈ V al1, . . . , valn ∈ V aln}.

The set of atomic predicates are given by AP = {(vari = vali) | 1 ≤ i ≤ n, vali ∈
V ali}. Naturally, L will map each state (given by the values of system variables)
onto the corresponding set of atomic propositions.

Additionally, a halt (sink) state is needed when H is not left-total and an
extra atomic proposition, that indicates that the system has reached this state,
is added to AP .

2.3 Linear Temporal Logic (LTL)

The most widely used query languages in model checking are based on Linear
Temporal Logic (LTL) [17,18] and the branching time logic CTL (Computation
Tree Logic) [5]. A superset of these logics is CTL* [9], which combines both
linear-time and branching-time operators. A state formula in CTL* may be
obtained from a path formula by prefixing it with a path quantifier, either A
(for every path) or an E (there exists a path).

In LTL the only path quantifier allowed is A, i.e. we can describe only one
path property per formula and the only state subformulas permitted are atomic
propositions. More precisely, LTL formulas satisfy the following rules [6]:

– If p ∈ AP , then p is a path formula
– If f and g are path formulas, then ¬f , f ∨ g, f ∧ g, Xf , Ff , Gf , fUg and

fRg are path formulas, where:

An Integrated Approach to P Systems Formal Verification 229

• The X operator (”neXt time”) requires that a property holds in the next
state of the path.

• The F operator (”eventually” or ”in the future”) is used to assert that
a property will hold at some state on the path.

• Gf (”always” or ”globally”) specifies that a property, f , holds at every
state on the path.

• fUg operator (U means ”until”) holds if there is a state on the path
where g holds, and at every preceding state on the path, f holds. This
operator requires that f has to hold at least until g, which holds at the
current or a future position.

• R (”release”) is the logical dual of the U operator. It requires that the
second property holds along the path up to and including the first state
where the first property holds. However, the first property is not required
to hold eventually: if f never becomes true, g must remain true forever.

2.4 Transformation-Communication P Systems and Kripke
Structure

In this section, following the presentation from [14], it is shown how a P system
operating in a maximal parallel manner can be transformed into a Kripke struc-
ture. Then this will be adapted for other types of P systems. We only consider
1-membrane P systems in order to simplify the presentation. The approach pre-
sented below can be generalised for membrane systems with arbitrary number
of compartments.

Consider a 1-membrane P system Π = (V, μ, w, R), where R = {r1, . . . , rm};
each rule ri, 1 ≤ i ≤ m, is of the form ui −→ vi, where ui and vi are multisets
over the alphabet V . In the sequel, we treat the multisets as vectors of non-
negative integers. If k denotes the number of symbols in V and u a multiset of
V , then we will write u ∈ Nk.

The Kripke structure associated to Π utilises two predicates, MaxPar and
Apply (similar to [7]):

MaxPar(u, u1, v1, n1, . . . , um, vm, nm), u ∈ Nk, n1, . . . , nm ∈ N,

Apply(u, v, u1, v1, n1, . . . , um, vm, nm), u, v ∈ Nk, n1, . . . , nm ∈ N.

The first predicate shows that a computation from the configuration u in
maximally parallel mode is obtained by applying the rules r1 : u1 −→ v1, . . . , rm :
um −→ vm, n1, . . . , nm times, respectively, to u; in particular, MaxPar(u, u1, v1,
0, . . . , um, vm, 0) signifies that no rule can be applied and so u is a terminal
configuration.

The predicate Apply denotes that v is obtained from u by applying rules
r1, . . . , rm, n1, . . . , nm times, respectively.

In order to keep the number of configurations finite, we will assume that, for
each configuration u = (u(1), ..., u(k)), each component, u(i), 1 ≤ i ≤ k, cannot
exceed an established upper bound, denoted Max and, in each computation,
each rule can only be applied for at most a given number of times, denoted Sup.

230 M. Gheorghe et al.

We denote u ≤ Max whenever u(i) ≤ Max for every 1 ≤ i ≤ k and similarly
(n1, . . . , nm) ≤ Sup if ni ≤ Sup for every 1 ≤ i ≤ m; Nk

Max = {u ∈ Nk |
u ≤ Max}, Nm

Sup = {(n1, . . . , nm) ∈ Nm | (n1, . . . , nm) ≤ Sup}. Analogously
to [7], the system is assumed to crash whenever u ≤ Max or (n1, . . . , nm) ≤
Sup does not hold (this is different from the normal termination, which occurs
when u ≤ Max, (n1, . . . , nm) ≤ Sup and no rule can be applied). Under these
conditions, the 1-membrane P system Π can be described by a Kripke structure
MΠ = (S, H, I, L) with S = Nk

Max ∪ {Halt, Crash} with Halt, Crash /∈ Nk
Max,

Halt �= Crash; I = w and H defined by:

– (u, v) ∈ H , u, v ∈ Nk
Max, if ∃(n1, . . . , nm) ∈ Nm

Sup \ {(0, . . . , 0)} ·
MaxPar(u, u1, v1, n1, . . . , um, vm, nm) ∧
Apply(u, v, u1, v1, n1, . . . , um, vm, nm);

– (u, Halt) ∈ H , u ∈ Nk
Max, if MaxPar(u, u1, v1, 0, . . . , um, vm, 0);

– (u, Crash) ∈ H , u ∈ Nk
Max, if ∃(n1, . . . , nm) ∈ Nm, v ∈ Nk ·

¬((n1, . . . , nm) ≤ Sup∧v ≤ Max) ∧ MaxPar(u, u1, v1, n1, . . . , um, vm, nm)
∧ Apply(u, v, u1, v1, n1, . . . , um, vm, nm);

– (Halt, Halt) ∈ H ;
– (Crash, Crash) ∈ H .

It can be observed that the relation H is left-total. It is easy to show that for
every u, v ∈ Nk

Max, v is computed from u, in Π , if and only if (u, v) ∈ H , hence
Π and MΠ show the same behaviour.

In the rest of our presentation we will consider a more compact form of the
Kripke structure, MΠ , whereby all the states Nk

Max will be replaced by one
Running state. So, Running state will define a state of normal behaviour as
opposed to the situation described by the other two states, Halt and Crash. In
the first case the system stops in normal circumstances whereas in the case of
the Crash state, the system fails by going beyond some initially set finite limits.

Note that, in this section, the Kripke structure representation of a P system is
given for maximal parallelism. On the other hand, the associated Kripke struc-
ture of a P system can be similarly constructed for other execution modes as
well (e.g. asynchronous rewriting strategy) as illustrated by the examples given
in the next section.

3 Transforming P Systems to NuSMV Specifications

In this section it is shown how the P systems considered in this paper will be
mapped into the NuSMV model checker by adequately codifying Kripke struc-
tures associated with them in accordance with the principles presented in [14]
and the description made in Section 2.4. Simple examples will illustrate the
presentation.

3.1 Transformation-Communication P Systems to NuSMV
Specifications

The presentation will follow the general principles, introduced in [14], for trans-
lating such P systems into NuSMV. The presentation below will be illustrated by

An Integrated Approach to P Systems Formal Verification 231

the following example: Π1 = (V, []1, w1, R1), where V = {a, b, c, d, x, y}, w1 = xy,
R1 = {r1 : x → a, r2 : y → b, r3 : a → xc, r4 : b → ydd}. Please note that the
system will not halt, but this is less significant in this context. A computation
in Π1 has the following steps

xy =⇒ ab =⇒ xcydd =⇒ acbdd =⇒ xccydddd . . . =⇒ xcnyd2n =⇒ acnbd2n . . .

In the NuSMV codification, we will use for each symbol, a, a ∈ V, above, a
variable with the same name to denote the number of occurrences of this symbol
in compartment 1 in the current step. If more than a compartment is considered
then this variable should be indexed by the compartment number. For each rule
ri, we will identify by ni the NuSMV variable that expresses the number of
times ri is applied in the current step in a maximally parallel manner - this is
the value that appears in the MaxPar predicate.

We will describe a computation step in NuSMV by a transition from the state
Running to itself in the Kripke structure associated with Π1, MΠ1 . The maximal
parallelism is expressed by the condition

x - next(n1) = 0 & y - next(n2) = 0 & a - next(n3) = 0 & b - next(n4) = 0

Additional conditions to characterise the Running state as well as equations to
compute the values of the multisets in the next step are provided below.

state = running & next(state) = running &

x - next(n1) = 0 & y - next(n2) = 0 & a - next(n3) = 0 & b-next(n4) = 0 &

next(x) = x - next(n1) + next(n3) &

next(y) = y - next(n2) + next(n4) &

next(a) = a - next(n3) + next(n1) &

next(b) = b - next(n4) + next(n2) &

next(c) = c + next (n3) &

next(d) = d + 2 * next (n4) &

! (next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0) &

! (step >= MaxSteps | next(a) > Max | next(b) > Max | next(c) > Max |

next(d) > Max | next(x) > Max | next(y) > Max | next(n1) > Sup |

next(n2) > Sup | next(n3) > Sup | next(n4) > Sup)

The entire text providing details about the other transitions in the Kripke
structure is available from the Appendix.

3.2 Asynchronous Transformation-Communication P Systems
Mapped to NuSMV Specifications

We will illustrate the approach using the previous example, Π1, but we will de-
note it by Π2 as it runs in a different way. In the case of asynchronous behaviour
the Kripke structure is slightly different. Although it is still possible to use the
same states, the transitions will be different, as they reflect the asynchronous
behaviour. The above mentioned NuSMV condition expressing maximal paral-
lelism, becomes now

next(n1) + next(n2) + next(n3) + next(n4) > 0

232 M. Gheorghe et al.

showing that at least one rule is applied. The entire set of conditions for the
Running state as well as equations defining the transition from this state to
itself are listed below.

state = running & next(state) = running &

(next(n1) + next(n2) + next(n3) + next(n4) > 0) &

(0 <= next(n1) & next(n1) <= x &

0 <= next(n2) & next(n2) <= y &

0 <= next(n3) & next(n3) <= a &

0 <= next(n4) & next(n4) <= b) &

next(a) = a - next(n3) + next(n1) &

next(b) = b - next(n4) + next(n2) &

next(c) = c + next(n3) &

next(d) = d + 2*next(n4) &

next(x) = x - next(n1) + next(n3) &

next(y) = y - next(n2) + next(n4) &

! (next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0)&

! (step >= MaxSteps | next(a) > Max | next(b) > Max | next(c) > Max |

next(d) > Max | next(x) > Max | next(y) > Max | next(n1) > Sup |

next(n2) > Sup | next(n3) > Sup | next(n4) > Sup)

3.3 P Systems with Electrical Charges Mapped to NuSMV
Specifications

In the case of electrical charges the above mentioned Kripke structures associated
with P systems need to be extended to cope with additional conditions required
in this case.

We will consider the following example of a P system with electrical charges
and two compartments. Π3 = (V3, [[]2]1, w1, w2, R), where V3 = {a, b, c, d, x, y},
w1 = xy, w2 = λ, R = {r1 : x[]02 → [a]+2 , r2 : y[]02 → [b]+2 , r3 : [a → xc]+2 , r4 : [b →
ydd]+2 , r5 : [x]+2 → []02x, r6 : [y]+2 → []02y}. The maximal parallelism strategy will
be applied in running the system.

The Kripke structure associated with this example will codify the behaviour
of the two-compartment P system by using a mapping of the symbols of the
alphabet into compartments.

The main change to the Kripke structure represented in NuSMV for transfor-
mation-communication P systems consists in adding a new set of conditions, that
represent the restrictions imposed by electrical charges associated with compart-
ments. These constraints allow only for some rules to be applied. Two excerpts
of NuSMV text for the P system Π3 are listed below. The first one shows that
the second membrane polarisation will become positive after applying rules like
r1, . . . r4 and neutral in case at least one of the rules r5, r6 is applied. Other-
wise, if no rule is applied, the polarisation does not change. The second code
excerpt shows how the restrictions are applied, e.g. each rule can be applied if
the membrane charge is appropriate.

next(charge_2) := case

next(n1) > 0 | next(n2) > 0 | next(n3) > 0 | next(n4) > 0 : 1;

next(n5) > 0 | next(n6) > 0 : 0;

An Integrated Approach to P Systems Formal Verification 233

1 : charge_2;

esac;

state = running & next(state) = running &

((charge_2 = 0 & (x_1 > 0 | y_1 > 0) &

x_1 - next(n1) = 0 & y_1 - next(n2) = 0 &

next(n3) = 0 & next(n4) = 0 & next(n5) = 0 & next(n6) = 0) |

(charge_2 = 1 & (a_2 > 0 | b_2 > 0) &

a_2 - next(n3) = 0 & b_2 - next(n4) = 0 &

next(n1) = 0 & next(n2) = 0 & next(n5) = 0 & next(n6) = 0) |

(charge_2 = 1 & (x_2 > 0 | y_2 > 0) &

x_2 - next(n5) = 0 & y_2 - next(n6) = 0 &

next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0)) &

next(x_1) = x_1 - next(n1) + next(n5) &

next(y_1) = y_1 - next(n2) + next(n6) &

next(a_2) = a_2 - next(n3) + next(n1) &

next(b_2) = b_2 - next(n4) + next(n2) &

next(c_2) = c_2 + next(n3) &

next(d_2) = d_2 + 2 * next(n4) &

next(x_2) = x_2 - next(n5) + next(n3) &

next(y_2) = y_2 - next(n6) + next(n4) &

! (next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0 &

next(n5) = 0 & next(n6) = 0) &

! (step >= MaxSteps | next(x_1) > Max | next(y_1) > Max |

next(a_2) > Max | next(b_2) > Max | next(c_2) > Max |

next(d_2) > Max | next(x_2) > Max | next(y_2) > Max |

next(n1) > Sup | next(n2) > Sup | next(n3) > Sup |

next(n4) > Sup)

4 Formal Verification Using NuSMV

In this section we will show how a P system mapped into NuSMV is verified
for certain properties, by using model checking techniques. The properties that
will be checked are first identified by Daikon, a tool which dynamically detects
program invariants based on execution traces. Following the strategy exposed in
[2], we synthesise the traces from the P-Lingua environment’s execution data[8],
and then run Daikon to generate an extended list of invariants, which help us
formulate the LTL properties. The Daikon tool is even able to detect some
mathematical relationships between various variables of the system, based on
complex mathematical functions, not all of them expressible in NuSMV. Both,
the translation from P-Lingua specification to NuSMV specification and the P-
Lingua traces conversion to Daikon inputs are obtained in an automatic way.

We will refer to the three examples presented above and to a nondetermin-
istic variant of the predator-prey problem [10] in order to illustrate what kind
of properties we can check. There are various ways to classify the properties we
aim to verify. In certain areas there have been identified specific types of queries

234 M. Gheorghe et al.

categorised as patterns [16]. We will refer to some of these in the presentation
below. We will present those properties as they have been captured by the Daikon
tool and as LTL expressions.

We have initially looked at those properties that state the main invariants of
the system. These invariants represent one of the main sets of patterns in [16].
It is obvious that we have been after properties like “two times the number of
c’s equals the number of d’s” in the examples given by Π1 and Π3. Indeed, these
properties have been identified by the Daikon tool as

2 * c - d == 0

or

2 * orig(c) - orig(d) == 0

where orig(c) means c in the previous step.
This property is then checked with the LTL query G (2 * c - d = 0). It

is easy to observe that this invariant does not hold for the P system Π2, which
works in an asynchronous way. Indeed this is neither returned by Daikon nor
verified by NuSMV. This is a good example of a property that returns a test
sequence for our system.

Other properties that are extracted by Daikon from the traces generated by P-
Lingua describe some expected properties of a correct model. For instance in all
these examples we expect that the number of occurrences of each of the variables
a, b, x, y is either 0 or 1. This is present in the list of properties identified by
Daikon and the NuSMV model checker shows this is true (in Daikon they occur
as a one of { 0, 1 } or b is boolean and in NuSMV are expressed as LTL
expressions G (0 <= a & a <= 1) or G (0 <= b & b <= 1)).

Some properties extracted by Daikon reveal relationships between elements of
the multiset across development, sometimes involving different steps. These are
not always obvious and can be utilised to generate some further more complex
conditions. For example for the first P system, Π1, it is identified the property
2 * c - 2 * orig(a) == orig(d) which links c with a, d occurring in the
previous step. This property holds for this example as it is shown by NuSMV.

Daikon was able to identify simple forms of consequence patterns [16], when
the two states appear one after the other. For the Π1 P system a relationship be-
tween consecutive occurrences of c is stated as (c == 0) ==> (orig(c) == 0),
which is true as it is shown by the NuSMV formula G((c=0)->(c_old=0)).

The nondeterministic variant of the predator-prey problem can be defined
by the following P system, ΠPP = (V, []1, w1, R1), where V = {a, x, y, b},
R1 = {ax → xx, xy → yy, y → b} and w1 is the initial multiset. We considered
simulations for w1 = a100x100y10 and simulations and verifications using NuSMV
for w1 = a10x10y5. This system simulates the interplay between preys, x’s, and
predators, y’s, in an environment with a fixed amount of resources, a’s. Preys
breed when resources are available and are eaten by predators which also die – the
last rule. Various simulations and analysis made with Daikon reveal consistently
some invariants of this problem; of them only (b == 0) ==> (orig(b) == 0)

An Integrated Approach to P Systems Formal Verification 235

and (orig(a) == 0) ==> (a == 0) are validated by NuSMV (G ((step > 1
& b = 0) -> b_old = 0) and G ((step > 1 & a_old = 0) -> a = 0), re-
spectively). These show that if at a moment in time the number of death preda-
tors is 0 then this is true for all the previous steps and if the resources are
exhausted they will remain the same. Other potential invariants, like (a <= x)
or (x > y) or (b < x), are not true and NuSMV confirms this. They can be true
only for some executions, but not in general, irrespective of the initial values.

A comprehensive list of Daikon invariants and associated LTL specifications
for the above examples has been collected and is available from EvoMT website
http://fmi.upit.ro/evomt/psys/psys_daikon.html.

5 Conclusions

This paper has investigated a methodology to verify P systems specifications, by
first identifying these properties as invariants produced by the Daikon tool and
then formally checking whether these are true, by using NuSMV. The benefits
of this methods have been identified and assessed through some case studies.

The methods suffers from the well known scalability issues most of the model
checking based approaches exhibit.

In our future research we aim to overcome some of the limitations of the above
presented approach, by better codifications of the systems and better formulated
properties to be checked. We also intend to link the formal verification with
testing and to expand it to other classes of P systems, including stochastic P
systems which start to be increasingly used in various applications.

Acknowledgements

This research of MG, FI and RL was supported by CNCSIS - UEFISCSU, project
number PNII - IDEI 643/2008. The authors would like to thank the anonymous
reviewers for their useful comments and for suggesting the use of the prey-
predator example to illustrate the interplay between various tools employed.

References

1. Andrei, O., Ciobanu, G., Lucanu, D.: A rewriting logic framework for operational
semantics of membrane systems. Theor. Comput. Sci. 373(3), 163–181 (2007)

2. Bernardini, F., Gheorghe, M., Romero-Campero, F.J., Walkinshaw, N.: A hybrid
approach to modeling biological systems. In: Eleftherakis, G., Kefalas, P., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 138–159.
Springer, Heidelberg (2007)

3. Ciobanu, G.: Semantics of P systems. In: Păun, G., Rozenberg, G., Salomaa, A.
(eds.) Handbook of Membrane Computing, ch. 16, pp. 413–436. Oxford University
Press, Oxford (2010)

4. Ciobanu, G., Pérez-Jiménez, M.J., Păun, G. (eds.): Applications of Membrane
Computing. Natural Computing Series. Springer, Heidelberg (2006)

236 M. Gheorghe et al.

5. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

6. Clarke Jr, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge
(1999)

7. Dang, Z., Ibarra, O.H., Li, C., Xie, G.: On the decidability of model-checking for
P systems. Journal of Automata, Languages and Combinatorics 11(3), 279–298
(2006)

8. Dı́az-Pernil, D., Graciani, C., Gutiérrez-Naranjo, M.A., Pérez-Hurtado, I., Pérez-
Jiménez, M.J.: Software for P systems. In: Păun, G., Rozenberg, G., Salomaa, A.
(eds.) Handbook of membrane computing, ch. 17, pp. 437–454. Oxford University
Press, Oxford (2010)

9. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. In: Proceedings of the Fourteenth Annual ACM
Symposium on Theory of Computing, STOC 1982, pp. 169–180. ACM Press, New
York (1982)

10. Fontana, F., Manca, V.: Predator-prey dynamics in P systems ruled by metabolic
algorithm. Biosystems 91, 545–557 (2008)

11. Gheorghe, M., Ipate, F.: On testing P systems. In: Corne, D.W., Frisco, P., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 204–216.
Springer, Heidelberg (2009)

12. Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A tool for au-
tomatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

13. Ipate, F., Gheorghe, M.: Testing non-deterministic stream X-machine models and
P systems. Electronic Notes in Theoretical Computer Science 227, 113–126 (2009)

14. Ipate, F., Gheorghe, M., Lefticaru, R.: Test generation from P systems using model
checking. Journal of Logic and Algebraic Programming 79(6), 350–362 (2010)

15. Kleijn, J., Koutny, M.: Petri nets and membrane computing. In: Păun, G., Rozen-
berg, G., Salomaa, A. (eds.) Handbook of membrane computing, ch. 15, pp. 389–
412. Oxford University Press, Oxford (2010)

16. Monteiro, P.T., Ropers, D., Mateescu, R., Freitas, A.T., de Jong, H.: Temporal
logic patterns for querying dynamic models of cellular interaction networks. Bioin-
formatics 24(16), 227–233 (2008)

17. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, FOCS 1977, pp. 46–57. IEEE, Los Alamitos (1977)

18. Pnueli, A.: The temporal semantics of concurrent programs. Theoretical Computer
Science 13, 45–60 (1981)

19. Păun, G.: Computing with membranes. Journal of Computer and System Sci-
ences 61(1), 108–143 (2000)

20. Păun, G.: Membrane Computing: An Introduction. Springer, Heidelberg (2002)
21. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, Oxford (2010)
22. Şerbănuţă, T., Ştefănescu, G., Roşu, G.: Defining and executing P systems with

structured data in K. In: Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Sa-
lomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 374–393. Springer, Heidelberg
(2009)

An Integrated Approach to P Systems Formal Verification 237

Appendix

NuSMV Specification

Based on the P system specification, the tool developed by the authors generates
a SMV file, that will be processed by the NuSMV model checker.

-- This is a 1-membrane P system working in a maximally parallel manner

-- The NuSMV file is automatically generated

-- The P system consists of:

-- Alphabet = [a, b, c, d, x, y]

-- Initial multiset = x, y

-- Rules:

-- r1 : x --> a

-- r2 : y --> b

-- r3 : a --> x, c

-- r4 : b --> y, d*2

MODULE main

VAR

a : 0..15;

b : 0..15;

c : 0..15;

d : 0..15;

x : 0..15;

y : 0..15;

a_old : 0..15;

b_old : 0..15;

c_old : 0..15;

d_old : 0..15;

x_old : 0..15;

y_old : 0..15;

n1 : 0..15;

n2 : 0..15;

n3 : 0..15;

n4 : 0..15;

state : {running, halt, crash};

step : 0..15;

DEFINE

Max := 10;

MaxSteps := 10;

Sup := 10;

ASSIGN

init(a) := 0;

init(b) := 0;

init(c) := 0;

init(d) := 0;

238 M. Gheorghe et al.

init(x) := 1;

init(y) := 1;

init(a_old) := 0;

init(b_old) := 0;

init(c_old) := 0;

init(d_old) := 0;

init(x_old) := 0;

init(y_old) := 0;

init(n1) := 0;

init(n2) := 0;

init(n3) := 0;

init(n4) := 0;

init(state) := running;

init(step) := 0;

ASSIGN

next(a_old) := a;

next(b_old) := b;

next(c_old) := c;

next(d_old) := d;

next(x_old) := x;

next(y_old) := y;

next(step) := case

(step <= MaxSteps & state=running) : step + 1;

1 : step;

esac;

TRANS

-- STATE = running

state = running & next(state) = running &

x - next(n1) = 0 & y - next(n2) = 0 & a - next(n3) = 0 & b-next(n4) = 0 &

next(a) = a - next(n3) + next(n1) &

next(b) = b - next(n4) + next(n2) &

next(c) = c + next(n3) &

next(d) = d + 2*next(n4) &

next(x) = x - next(n1) + next(n3) &

next(y) = y - next(n2) + next(n4) &

! (next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0)&

! (step >= MaxSteps | next(a) > Max | next(b) > Max | next(c) > Max |

next(d) > Max | next(x) > Max | next(y) > Max | next(n1) > Sup |

next(n2) > Sup | next(n3) > Sup | next(n4) > Sup) |

state = running & next(state) = halt &

x - next(n1) = 0 & y - next(n2) = 0 & a - next(n3) = 0 & b-next(n4) = 0 &

next(a) = a - next(n3) + next(n1) &

next(b) = b - next(n4) + next(n2) &

next(c) = c + next(n3) &

next(d) = d + 2*next(n4) &

An Integrated Approach to P Systems Formal Verification 239

next(x) = x - next(n1) + next(n3) &

next(y) = y - next(n2) + next(n4) &

(next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0) &

! (step >= MaxSteps | next(a) > Max | next(b) > Max | next(c) > Max |

next(d) > Max | next(x) > Max | next(y) > Max | next(n1) > Sup |

next(n2) > Sup | next(n3) > Sup | next(n4) > Sup) |

state = running & next(state) = crash &

x - next(n1) = 0 & y - next(n2) = 0 & a - next(n3) = 0 & b-next(n4) = 0 &

next(a) = a - next(n3) + next(n1) &

next(b) = b - next(n4) + next(n2) &

next(c) = c + next(n3) &

next(d) = d + 2*next(n4) &

next(x) = x - next(n1) + next(n3) &

next(y) = y - next(n2) + next(n4) &

! (next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0) &

(step >= MaxSteps | next(a) > Max | next(b) > Max | next(c) > Max |

next(d) > Max | next(x) > Max | next(y) > Max | next(n1) > Sup |

next(n2) > Sup | next(n3) > Sup | next(n4) > Sup) |

-- STATE = HALT

state = halt & next(state) = halt &

next(n1) = 0 & next(n2) = 0 & next(n3) = 0 & next(n4) = 0 &

next(a) = a & next(b) = b & next(c) = c & next(d) = d & next(x) = x &

next(y) = y |

-- STATE = CRASH

state = crash & next(state) = crash &

next(n1) = n1 & next(n2) = n2 & next(n3) = n3 & next(n4) = n4 &

next(a) = a & next(b) = b & next(c) = c & next(d) = d & next(x) = x &

next(y) = y

-- Simple LTL checks

LTLSPEC G (a = b)

LTLSPEC G (x = y)

LTLSPEC G (0 <= a & a <= 1)

LTLSPEC G (d mod 2 = 0)

LTLSPEC G (0 <= x & x <= 1)

LTLSPEC G (step > 1 & state = running -> a = x_old)

LTLSPEC G (2 * c - d = 0)

Using the SRSim Software for Spatial and
Rule-Based Modeling of Combinatorially
Complex Biochemical Reaction Systems

Gerd Grünert and Peter Dittrich

Jena Center for Bioinformatics, Bio Systems Analysis Group,
Institute of Computer Science, Friedrich Schiller University Jena,

Ernst-Abbe-Platz 1-4, 07743 Jena, Germany
{Gerd.Gruenert,Peter.Dittrich}@uni-jena.de

http://www.biosys.uni-jena.de/

Abstract. The simulator software SRSim is presented here. It is con-
structed from the molecular dynamics simulator LAMMPS and a set
of extensions for modeling rule-based reaction systems. The aim of this
software is coping with reaction networks that are combinatorially com-
plex as well as spatially inhomogeneous. On the one hand, there is a
combinatorial explosion of necessary species and reactions that occurs
when complex biomolecules are allowed to interact, e.g. by polymer-
ization or phosphorilation processes. On the other hand, diffusion over
longer distances in the cell as well as the geometric structures of sophis-
ticated macromolecules can further influence the dynamic behavior of a
system. Addressing the mentioned demands, the SRSim simulation sys-
tem features a stochastic, particle based, spatial simulation of Brownian
Dynamics in three dimensions of a rule-based reaction system.

1 Rule-Based Modeling in Space

Biological systems exhibit a high number of possible combinations between in-
teracting proteins, frequently leading to huge molecules of interconnected protein
compounds. Examples are the complexes assembled for RNA or DNA transcrip-
tases, ATP synthases [26], mitotic checkpoint networks [18] or the death inducing
signaling complex (DISC) [41]. Next to the resulting complex graphs of interact-
ing proteins, there are post-translational modification to proteins, e.g. from phos-
phorilations. Basically, each modification pattern defines a new chemical species
with its unique chemical behavior. Exemplary, this would result in a number of 227

different species for the tumor suppressor protein p53 which comprises 27 phos-
phorilation sites [2]. Such a high number of species poses problems for the simu-
lation with (partial) differential equations and stochastic algorithms. But it also
becomes very hard to analyze and understand the “mechanics” of such a complex
model. A possible remedy for stochastic simulations is discussed here [35].

Another possible solution to the problem of combinatorial explosion is pro-
posed by the domain-oriented approach and rule-based modeling [27,15,16,8,
12]. In this scenario, elementary molecules consist of a set of components or

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 240–256, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.biosys.uni-jena.de/

SRSim Software Manual 241

domains which can be modified or bound to the components of other molecules.
Components, sites, binding sites and domains are used synonymously in this
article. The resulting complex species, formed from a connection of elementary
molecules, are called molecule graphs.

Instead of using reactions between explicit species now, the reactions are re-
placed by implicit reaction rules, which are applicable to a certain subset of all
possible complex molecular species. This subset is defined through an equivalence
class given by a molecule graph pattern. Any complex molecule graph that con-
tains the graph pattern as an isomorphic sub-pattern is included in the equivalence
class. A pattern might for example be described as demonstrated in Figure 1.

There is a lot of software available for rule-based modeling, as for example
Stochsim [27], BioNetGen [5], BIOCHAM [10], Moleculizer [23] or Pathway Logic
Assistant [39] or Cellucidate. Nonetheless spatial aspects are mostly neglected
in these approaches (except for Stochsim).

1.1 Spatial Aspects

Spatiotemporal heterogeneities in reaction systems are generally considered to
be of high importance for many systems [3, 25, 19, 38]. This led to a variety
of spatial simulation techniques, starting from deterministic, population-based,
partial differential equations [28] towards stochastic simulation of single particles
in discrete or continuous 3d space [40,9,21]. See [22,38] for an overview on spatial
simulation systems.

Similar to and partially based on the approaches [4, 34, 43, 20, 11, 37], we are
using individual agents for each elementary molecule in the simulation. Syn-
onymously with the agents, we are using the terms particles and elementary
molecules here. The spatial simulation is carried out as an extension to the
molecular dynamics simulator LAMMPS [31]. Each particle is represented by its
position, its velocity, its species and the state of its components. The particles
diffuse through the reactor and can push away other molecules if they come
too close. When two molecules approach one another, a bimolecular reaction
can happen between them, if they are fitting to a reaction pattern specified in
the reaction rules and if the geometric constraints are met. If a reaction binds
two elementary molecules together, bond forces are applied and their diffusion
through the reactor is coupled, forming a complex molecule graph. Monomolec-
ular reactions can be used to spontaneously break bonds in molecule graphs or
to modify the component states of a molecule. More conventional reactions can
also be used to completely exchange one molecule for another.

The inclusion of spatial aspects in the rule-based reaction systems results in
an expressive simulation system for moderately sized systems. Up to 100000 sim-
ulated particles can still be run on a desktop system for about 106 timesteps in
some hours of computing time. Though SRSim was designed for the simulation
of biological systems, also designing and planning chemical computing experi-
ments might be a good application. We simulated for example the formation of
Sierpinski triangles [13] following the work of Winfree et al. and Rothemund et
al. [42, 33].

242 G. Grünert and P. Dittrich

�

�

�

Fig. 1. Exemplary rule-based system, taken from [13]. Two elementary molecule types
(A, B) with their sub domains (or components) are displayed (a). Each component
can be bound to another component or be modified, e.g. denoting a phosphorylation or
a conformational change. Site names need not be unique and hence a wide spectrum of
possibilities for the system’s specification is offered. Multiple elementary molecules can
be connected at their components to form complex molecule graphs (b). Reaction
rules, as the binding reaction (c), are specified by using patterns graphs (or reactant
patterns) A reactant pattern fits to a molecule graph, if it is contained as a subgraph
in the molecule graph. Note that some components are missing in the reactant pattern’s
definition, which are then ignored in the matching process. Panel (d) shows two different
instances of the reaction rule. In the upper realization, two independent molecule graphs
are connected. For the lower example on the other hand, both of the rules’ reactant
patterns are found in a single connected molecule graph.

SRSim Software Manual 243

Though the SRSim simulation system cannot directly be used to simulate
P-Systems [29, 30], there are some parallels to the membrane computing per-
spective. Similar to some P-System [24,32] we are using a stochastic simulation
approach that is based on individual particles in 3d space, though with limited
support for the constitution of membranes. That is, if we want to setup an im-
plicit diffusion barrier in our system “SRSim”, we can do this by adding forces
to the reactor that confine certain molecules to defined subvolumes inside the
reactor. Then, reactions can be used to transfer particles with specified rates
through these pseudo-membranes. Nonetheless, that would be a rather awkward
workaround to the ,,missing” membranes in the SRSim approach. On the other
hand, similar to approaches like [11,36], the dynamic creation, modification and
destruction of membranes can be reduced to the underlying macromolecular
interactions by simulating lipid molecules that build the membranes.

Another similarity might be that both approaches, the rule-based and the
membrane-computing systems, use further constraints on the underlying non-
deterministic reaction system. While in membrane computing, there are dynamic
membranes to separate different molecules against interactions, there are the ge-
ometry and the complex molecule-graph structure in the SRSim approach that
allows or even favours one kind of reactions and that inhibits other types. For the
inner workings of biological cells, both types of processes might be equally impor-
tant. Maybe there could even be seen a hierarchy of first controlling geometries of
interacting particles on the level of macromolecules and then constraining these
interactions through the relationship between the compartments. From the com-
putational point of view, both types of systems offer a high combinatorial com-
plexity, leading to computational capacities as shown for P-Systems [30,36] and
for self-assembly systems [1, 33, 7]. When intending to build computing systems
from scratch, self-assembling macromolecules as well as structured membranes
might both supply helpful building blocks.

Though that is not what we present in this paper, it might prove interesting
to combine both types of constraints to a single system. This would also open
the possibility to describe geometric relations not only between the particles,
but also between the membranes. For the rule-based modelling community on
the other hand, it would certainly be very handy to use the concept of dynamic
membrane formation and decay. In the case of non-spatial simulation and static
membranes, this was already done [14].

In the following sections, we try not to unfold the complete technical simu-
lation process. Instead, the process of setting up and running a simple system
will be demonstrated from installing the software to setting up and running the
simulation. For the theory behind the spatial and rule-based simulation, please
refer to [13].

2 Installing SRSim

Unfortunately the installation of SRSim is not yet fully automatized, so there
are some uncomplicated steps to do. The following installation instructions are

244 G. Grünert and P. Dittrich

addressed to x86 linux users, who are assumed to have Gnu Make and a C++
compiler installed. No tests were carried out using different hard- or software
platforms, but as long as the required libraries are present, no architecture spe-
cific code is used.

2.1 Required Software

In the first place, make sure that the following libraries are present on your
system, namely Xerces-C++1, which is required for XML parsing. The other
dependency is the “Message Passing Interface”2 (MPI), a parallel computing
standard used by LAMMPS. There are different MPI implementations available.

It is recommended but not necessary to install the software “Visual Molecu-
lar Dynamics”3 (VMD) [17], which can be very helpful to visualize molecular
trajectories calculated by SRSim.

2.2 Compiling SRSim

To build a SRSim executable, first the Rule System is compiled to a library
that is later linked against the LAMMPS molecular dynamics simulator sources.
After unpacking the SRSim distribution to a directory X, this should basically
be done by invoking make lmp srsim in the directory X/source of the SRSim
distribution. This will create the library, build the tool createGeo and then
compile LAMMPS with the additional modules necessary for SRSim.

If the MPI and Xerces libraries are not in the standard paths for include
and library files, you have to modify the -I and -L paths in the makefiles
X/source/lammpsCompilation/Makefile and X/source/RuleSys/Makefile.

After the successful compilation, two new executables,
X/source/lammpsCompilation/lmp srsim and X/source/RuleSys/createGeo
can be found. You have to copy or link these files to a place in your system that is
in your search path, as for example /usr/local/bin or ∼/bin. If you do not have
a special directory for executables, you can just add the LAMMPS compilation
directory directly to your search path by editing ∼/.bashrc and adding a line
export PATH=$PATH:X/source/lammpsCompilation:X/source/RuleSys.

If the command lmp srsim outputs the following line, you are done installing
SRSim.

LAMMPS (7 Jul 2009)

Here, the 7th July 2009 is the LAMMPS version, that SRSim was built upon.

1 Download from http://xerces.apache.org/xerces-c/ or use the system’s packet
manager. Versions 2.7 and 2.8 seem to work fine.

2 Download for example MPICH from
http://www.mcs.anl.gov/research/projects/mpich2/ or use your system’s packet
manager.

3 Download from http://www.ks.uiuc.edu/Research/vmd/

SRSim Software Manual 245

Fig. 2. Overview of the input / output file structure of SRSim

3 Using the Software

The molecular dynamics simulator LAMMPS is a script-driven command line
program. Since SRSim is no autonomous tool, but an extension to LAMMPS,
it is started in the same way as the Molecular Dynamics simulator: lmp srsim
< input script.in. The LAMMPS input script *.in is then referencing three
other input files and two or more output files as illustrated in Figure 2. The
referenced input files are the *.bngl file, specifying the used rule-based reac-
tion system, the *.geo file for the molecular geometry definition and finally the
*.tgeo file for the template geometry definition. The output files will usually
be a *.srsim.gdat file containing the concentrations of the observed species
and a *.lammpstrj file with all the molecular coordinates, which can be used
to visualize and to analyze the simulation run in detail.

To observe the results, gnuplot and VMD can be used. Type
vmd output.lammpstrj for instance, to see a graphic representation of the re-
action volume. Though VMD (See Section 2.1) was rather designed to display
all-atom systems, it can be customized neatly and various helper scripts can be
found on the Internet.

3.1 An Exemplary System

Let us assume we try to build a simple simulation with two elementary molecules.
Species A will be a polymerizing molecule that requires energy provided by a
molecule B to further polymerize. To allow a linear polymerization for molecules
of type A, two opposing components a and c are introduced. A third component
b will be used as the binding site for the type B molecules. The type B particles
will only be able to bind to type A molecules, so only one binding site b is
necessary. Nonetheless, to demonstrate the concept of modifications, we will
also add another component e to the type B particles. Component e will be
existing in two different energetic levels ~triP and ~diP. See figures 3 and 4 for
an idea of what the system’s behavior should be like, when simulated.

3.2 Definition of the Rule System

The rule-based reaction system is specified in the BioNetGen Language [16]
(BNGL4). Basically it is not necessary to change a BNGL file to use it with
4 See the BioNetGen Documentation. A BioNetGen tutorial can be found online at
http://bionetgen.org/index.php/BioNetGen Tutorial .

246 G. Grünert and P. Dittrich

Fig. 3. Particle Quantity Trajectory. The displayed quantities will be defined and ex-
plained in the next Section about the rule system. The curve nA1 + nA11 denotes the
number of particles “A” that have only either their site “a” or “c” bound. It can be
observed, that this value increases rapidly in the beginning and falls down slowly then.
This decrease is due to the larger complexes that are slowly forming in the later phase
of the simulation.

SRSim. However, the commands generate_network, simulate_ode, simulate
_ssa and setConcentration will be ignored. These commands’ semantics can
be replaced by using the LAMMPS input script instead, as we will explain later.

To define the reaction system, we first add the “parameters” and “species”
blocks which allow the definitions of rate constants and the molecule types to
appear in the simulation. Note that a molecular species is defined by its name
followed by its components in brackets, optionally followed by a modification
state. The constants A0 and B0 denote the initial quantity of particles of this
type.

example1.bngl - part 1 of 3

begin parameters

k1 1.5e-2

k2 1.5e-2

k3 5e-5

A0 500

B0 700

end parameters

begin species

A(a,b,c) A0

B(b,e~triP) B0

end species

The next block defines which reactions are possible. A first rule is used to bind
molecule A with a free b site to a molecule B with a free b site. The connections of

SRSim Software Manual 247

Fig. 4. A scene rendered from the reactor with VMD after 500000 timesteps. short
multimerizations of two to four A-B dimers can be observed.

two molecules via their components is expressed through the exclamation mark,
followed by a common identifier, !1. Since we did not mention any of the sites a
or c of molecule A, they can be in any state, free or bound to any other complex
molecule. To allow the polymerization of the A molecules, we need to define the
second reaction rule. It should state, that a molecule A with a free binding site
a can bind to another molecule A’ with a free binding site a’. But only when
one of them has bound an energy supplying molecule B. The third rule states,
that a high-energy molecule B drops down into a lower energy state ~diP, when
the molecule A it belongs to has no free connection sites any more. Note that
the binding symbol a!+ marks a site that is bound to any other molecule that
is not explicitly named.

example1.bngl - part 2 of 3

begin reaction rules

1 A(b) + B(b) -> A(b!1).B(b!1) k1

2 A(c) + A(a,b!1).B(b!1,e~triP) -> A(c!2).A(a!2,b!1).B(b!1,e~triP) k2

3 A(a!+,c!+,b!1).B(b!1,e~triP) -> A(a!+,c!+,b!1).B(b!1,e~diP) k3

end reaction rules

For the analysis of the reaction system, a fourth, optional block can be de-
fined, listing patterns whose quantities should be output in the simulation. This
might be for example the numbers of A molecules with no, one or two attached
neighbors, or the numbers of B molecules in the high- or low energy state.

example1.bngl - part 3 of 3

begin observables

Molecules nA0 A(a,c)

Molecules nA1 A(a,c!+)

Molecules nA11 A(a!+,c)

248 G. Grünert and P. Dittrich

Molecules nA2 A(a!+,c!+)

Molecules nBtri B(e~triP)

Molecules nBdi B(e~diP)

end observables

3.3 Molecule and Template Geometry Files

Now that the reaction system is defined, we have to specify the geometry for
the elementary molecules A and B that we want to use in the *.geo geometry
file. For each species, the mass and radius as well as the attributes for each
component have to be defined. The orientations of the particles’ binding sites are
expressed as spherical coordinates through the angles phi, theta and a distance
from the particles center. Phi can be imagined as the geographic longitude, while
theta is similar to the geographic latitude. In contrast to geographic coordinates,
theta=0 specifies one pole, 90◦ is the equatorial plane and 180◦ is the other pole.
For each elementary molecule type, a molecule section has to be defined. Within
this, each site that is mentioned in the reaction system has to be represented by
a site tag inside the molecule definition.

A general section in the beginning of the geometry file lists general property
values for the simulation and values that should be used by default for all the
particles. To specify certain values more individually, property tags can be in-
cluded in the molecule and site blocks as well. See Table 1 for a list of property
names and where they can be used.

A final section DihedralAngles can be used in the geometry definition to
specify dihedral angles for certain bonds.

example1.geo - part 1 of 3

<?xml version="1.0"?>

<molecule-geometry-definition>

<version value="1.01"/>

<GeneralProperties>

<property name="GPT_Devi_Dist" value="0.2"/>

<property name="GPT_Devi_Angle" value="40"/>

<property name="GPT_Mol_Mass" value="50"/>

<property name="GPT_Mol_Rad" value="1"/>

<property name="GPT_Site_Dist" value="1"/>

<property name="GPT_Force_Repulsion" value="1.5"/>

<property name="GPT_Force_Bond" value="1.5"/>

<property name="GPT_Force_Angle" value="1.5"/>

<property name="GPT_Force_Dihedral" value="1.5"/>

<property name="GPT_Temperature" value="300"/>

<property name="GPT_Option_Dihedrals" value="1"/>

<property name="GPT_Option_Impropers" value="0"/>

<property name="GPT_Option_Rigid" value="0"/>

</GeneralProperties>

SRSim Software Manual 249

Table 1. Overview of the options that can be specified in the geometry file. The
columns “glob” to “site” indicate, whether an option is (r)equired or (p)ossible on
the (glob)al, the per-(mol)ecule, or the per-(site) level, respectively. Values that are
defined in a more specialized context, e.g. for a special site overwrite the values that
were specified in the more global context.

Property Name glob mol site function
GPT Site Theta p p rp spheric site coordinates
GPT Site Phi p p rp “
GPT Site Dist p p rp “
GPT Site Dihedral p - - not yet used
GPT Mol Mass p rp - molecular mass
GPT Mol Rad p rp - molecular radius
GPT Devi Dist p p rp max distance deviation for bond

formation
GPT Devi Angle p p rp max angular deviation for bond for-

mation
GPT Diffusion p p - not yet used
GPT Refractory p p - not yet used
GPT Force Repulsion rp - - factor for repulsive forces
GPT Force Bond rp - - factor for bond forces
GPT Force Angle rp - - factor for angular forces
GPT Force Dihedral rp - - factor for dihedral angles
GPT Temperature rp - - not yet used
GPT Option Dihedrals rp - - use dihedrals 0/1
GPT Option Impropers rp - - not yet used
GPT Option Rigid rp - - use rigid bodies 0/1

<molecule name="A">

<site name="a" phi="0" theta="0" dist="1" />

<site name="c" phi="0" theta="180" dist="1" />

<site name="b" phi="0" theta="90" dist="1">

<property name="GPT_Devi_Angle" value="30"/>

</site>

</molecule>

<molecule name="B">

<property name="GPT_Mol_Mass" value="30"/>

<site name="b" phi="0" theta="0" dist="1" />

<site name="e" phi="0" theta="180" dist="1" />

</molecule>

<DihedralAngles>

<dihedral around="A(b,a!1).A(c!1,b)" angle="10" />

</DihedralAngles>

</molecule-geometry-definition>

250 G. Grünert and P. Dittrich

When complex molecule graphs are initially added to the simulation, the rel-
ative positions of the constituting elementary molecules have to be known. So
they are specified manually or calculated in advance by an independent simula-
tion step using the tool createGeo and stored in the template geometry *.tgeo
files. In our case, this file looks very simple, since we are not adding complex
molecules. More complex template definitions can be found in the other examples
distributed with SRSim.

example1.tgeo

<?xml version="1.0"?>

<template-geometry-definition>

<template id="0" name="A(a,b,c)">

<mol id="0" x= "0" y="0" z= "0" />

</template>

<template id="1" name="B(b,e~triP)">

<mol id="0" x= "0" y="0" z= "0" />

</template>

</template-geometry-definition>

3.4 The LAMMPS Input Script

The LAMMPS input script is parsed line by line, each of which holds one com-
mand modifying the simulation system. Comments can be added using the #
sign. Note that the order of the commands is important since the input script
is parsed from top to bottom. There is a large number of possible commands
that can be used to customize the simulation, so please refer to the LAMMPS
documentation5 for further details on the original LAMMPS commands. These
commands can for example be used to define custom force terms or to create
simulation outputs in different formats.

example1.in

##

Phase 1 - setup reactor

##

dimension 3

boundary f f f # use fixed boundary conditions

units real # timescale: fs, distances: Angstrom

newton on

atom_style srsim example1.bngl example1.geo example1.tgeo 11111

########## cmd .bngl .geo .tgeo random_seed

5 The LAMMPS documentation comes together with LAMMPS’ sources and can be
accessed online at http://lammps.sandia.gov/doc/Manual.html.

SRSim Software Manual 251

lattice none

region Nucleus block -40 40 -40 40 -40 40 units box

dimensions of the reaction volume

create_box 100 Nucleus

n_atom_types Region_name

start_state_srsim coeffs

start_state_srsim atoms

set initial values e.g. bond forces etc.

and add molecules to the simulation

neighbor 5.0 bin

size of neighbor-grouping bins

##

Phase 2 - setup forces

##

fix 1 all langevin 300 300 160.0 12345

parameters: Temp Temp Gamma^-1 random_seed

fix 2 all nve

fix 3 all wall/reflect xlo xhi ylo yhi zlo zhi

fix 4 all srsim 1 45678 1.0 1.0 1.0 1.0 1.0 50

fix srsim syntax: fix id group srsim | nEvery randomSeed

preFactBindR preFactBreakR preFactExchangeR

preFactModifyR_1 preFactModifyR_2 refractoryTime

##

Phase 3 - run

##

Dumps:

thermo 5000 # write themodynamics information every 5k timesteps

timestep 1 # one timestep = 1 fs

dump 1 all atom 1000 example1.lammpstrj

############### trajectory output

dump_modify 1 scale yes

dump 2 all srsim 1000 example1.srsim.gdat

################ concentrations output

first run phase for 500k ts

run 500000

second run phase with higher time-resolution

dump_modify 1 every 10

run 5000

252 G. Grünert and P. Dittrich

In the first phase, some basic parameters have to be set, as for example the
units to be used, the size of the reaction volume, the maximum number of molec-
ular species and the initial configuration of the simulation system. Note that the
command atom_style uses a special atom style, specially designed for SRSim,
which is followed by the names of the other input files and the random seed.

In the second phase, different “fixes” are selected to be applied to the simula-
tion. These are computations which influence each molecule’s data, for example
their positions, velocities or binding states. The most basic fix, called nve, is the
calculation applied to move each particle according to Newton’s equations of mo-
tion in dependency of the applied forces. The fix langevin adds implicit solvent ef-
fects, resulting in Brownian movement of the particles. The second last parameter
to the fix langevin is called damping factor (γ−1). It depends directly on the dif-
fusion coefficient D and the temperature T by γ−1 = D

kBT , where kB is the Boltz-
mann constant. Since fixed boundary conditions were chosen before, molecules
moving out of the reaction volume would be lost, so the fix wall/reflect is ap-
plied. The last fix, srsim is the part of SRSim that checks for molecular collisions,
analyzes which rules are applicable and finally executes them.

In the last phase, the types of output and the length of the simulation runs will
be defined. The dump type srsim creates a plain text file in the same format as
BioNetGen, to allow an easy comparison of the computed trajectories. Note that
the intervals between two successive output data writes can be changed using the
command dump_modify. If new molecules are to be added to the running simu-
lation, the command runmodif_srsim addMols can be used, given the specified
molecule-graph type was already listed in the reaction system definition.

3.5 The Tool “createGeo”

To simplify the creation of .geo and .tgeo files, the tool createGeo was added
to the SRSim programs. It is used in the following syntax:

createGeo input.bngl input.geo input.tgeo
If either the .geo or the .tgeo file is not exiting, it will created. Molecule
geometries are created with initial values of 1.0 for all distances and predefined
angles for up to 6 sites. Template geometries are calculated by running short
MD simulations to relax all bond distances and angles.

4 Concluding Remarks

In this manual, we have shown for a very simple system how to setup the SR-
Sim simulation system. Not every possibility for configuration was mentioned,
though. This is mostly due to the vast amount of options offered by the LAMMPS
scripting language. Most of the molecular dynamics simulator’s capabilities can
still be used with SRSim, offering a great potential to describe a system’s pe-
culiarities. Another reason is, that SRSim is still under development and some

SRSim Software Manual 253

features are still changing or are not yet fully tested. There are other examples
in the SRSim package which might convey more ideas on what is possible with
the simulation system.

Features that are missing at the moment are reactions that can change the
states of three or more components instantaneously. So at this stage of the
development, it is not possible to have a binding reaction, that also changes the
modification state of a component at the same time. Nonetheless a wide range of
reaction systems can be expressed under these constraints and more features will
be included in future releases of the software. Another aspect that is not covered
by this paper on the SRSim software, is the analysis of the results. Though
special systems will probably require customized methods for the analysis, a first
idea of what happens in the reactor can mostly be obtained through molecular
dynamics visualization tools. VMD [17] for example comes with an import filter
for LAMMPS trajectories. It is also possible to extend VMD with python and
tcl scripts for more specialized purposes.

SRSim can be interpreted as a P-System without explicit membranes. Re-
actions are constrained by spatial configurations and geometries instead of ex-
plicit membranes. So far, membranes can only be defined as static force fields
or can emerge (e.g. like lipid layers formations [36]), which is computationally
extremely demanding. Thus, we suggest to use explicit membranes like it is done
in P-Systems, enriched by geometric information. In this approach, geometric
properties like a form (e.g. sphere), a location, a size and a velocity are added
to a membrane, so that it can have an effect on and can be affected by spatial
heterogenities. For example, a reaction to make a molecule of species A leave a
membrane x

[[..., Ai]x...]y −→ [[...]xAi...]y

might require an appropriate particle Ai to be situated close to the membrane,
before it can exit. Other constraints follow easily, e.g. mean transition times from
one membrane into another compartment that is situated some distance away.
Similar ideas were implemented in demonstrating software by Damien Pous6

following the concepts of “mobile ambients” [6].
SRSim as well as LAMMPS are released under the GPL, so the sources can

freely be downloaded7 and modified. Especially the Rule System that handles
the rule-based reaction system is independent from the molecular dynamics sim-
ulator and could be plugged into a different spatial or non-spatial realization of
a rule-based simulation system.

Acknowledgements

The research was supported by the NEUNEU project (248992) sponsored by
the European Community within FP7-ICT-2009-4 ICT-4-8.3 - FET Proactive
3: Bio-chemistry-based Information Technology (CHEM-IT) program.

6 http://www-sop.inria.fr/mimosa/ambicobjs/
7 www.biosystemsanalysis.de

http://www-sop.inria.fr/mimosa/ambicobjs/
www.biosystemsanalysis.de

254 G. Grünert and P. Dittrich

References

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.
Science 266(5187), 1021–1024 (1994)

2. Arkin, A.P.: Synthetic cell biology. Curr. Opin. Biotechnol. 12(6), 638–644
(2001)

3. Berg, O.G., von Hippel, P.H.: Diffusion-controlled macromolecular interactions.
Annu. Rev. Biophys. Biophys. Chem. 14(1), 131–158 (1985)

4. Berger, B., Shor, P.W., Tucker-Kellogg, L., King, J.: Local rule-based theory of
virus shell assembly. Proc. Natl. Acad. Sci. U S A 91(16), 7732–7736 (1994)

5. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: Bionetgen: software for
rule-based modeling of signal transduction based on the interactions of molecular
domains. Bioinformatics 20(17), 3289–3291 (2004)

6. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FOSSACS 1998.
LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

7. Conrad, M., Zauner, K.P.: Dna as a vehicle for the self-assembly model of comput-
ing. Biosystems 45(1), 59–66 (1998)

8. Conzelmann, H., Saez-Rodriguez, J., Sauter, T., Kholodenko, B.N., Gilles, E.D.: A
domain-oriented approach to the reduction of combinatorial complexity in signal
transduction networks. BMC Bioinformatics 7, 34 (2006)

9. Ermak, D.L., Mccammon, J.A.: Brownian dynamics with hydrodynamic interac-
tions. J. Chem. Phys. 69(4), 1352–1360 (1978)

10. Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction
networks in the biochemical abstract machine BIOCHAM. J. of biol. phys. and
chem. 4, 64–73 (2004)

11. Fellermann, H., Rasmussen, S., Ziock, H., Solé, R.: Life cycle of a minimal protocell-
a dissipative particle dynamics study. Artificial Life 13(4), 319–345 (2007)

12. Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining
of molecular systems. Proc. Natl. Acad. Sci. U S A 106(16), 6453 (2009)

13. Gruenert, G., Ibrahim, B., Lenser, T., Lohel, M., Hinze, T., Dittrich, P.: Rule-
based spatial modeling with diffusing, geometrically constrained molecules. BMC
Bioinformatics 11(1), 307 (2010)

14. Harris, L.A., Hogg, J.S., Faeder, J.R.: Compartmental rule-based modeling of bio-
chemical systems. In: Rossetti, M., Hill, R., Johansson, B., Dunkin, A., Ingalls, R.
(eds.) Proceedings of the 2009 Winter Simulation Conference (2009)

15. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Perelson, A.S., Goldstein, B.: The
complexity of complexes in signal transduction. Biotechnol. Bioeng. 84(7), 783–
794 (2003)

16. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.:
Rules for modeling signal-transduction systems. Sci STKE 2006(344) re6 (2006)

17. Humphrey, W., Dalke, A., Schulten, K.: VMD – Visual Molecular Dynamics. Jour-
nal of Molecular Graphics 14, 33–38 (1996)

18. Ibrahim, B., Diekmann, S., Schmitt, E., Dittrich, P.: In-silico modeling of the
mitotic spindle assembly checkpoint. PLoS ONE 3(2), e1555 (2008)

19. Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules.
Nat. Struct. Biol. 9(9), 646–652 (2002)

SRSim Software Manual 255

20. Kurth, W., Kniemeyer, O., Buck-Sorlin, G.: Relational growth grammars - a graph
rewriting approach to dynamical systems with a dynamical structure. In: Banâtre,
J.P., Fradet, P., Giavitto, J.L., Michel, O. (eds.) Unconventional Programming
Paradigms, pp. 56–72. Springer, Berlin (2005)

21. Leach, A.: Molecular Modelling: Principles and Applications, 2nd edn. Prentice-
Hall, Englewood Cliffs (2001)

22. Lemerle, C., Ventura, B.D., Serrano, L.: Space as the final frontier in stochastic
simulations of biological systems. FEBS Lett. 579(8), 1789–1794 (2005)

23. Lok, L., Brent, R.: Automatic generation of cellular reaction networks with mole-
culizer 1.0. Nature Biotech. 23(1), 131–136 (2005)

24. Manca, V., Bianco, L., Fontana, F.: Evolution and oscillation in p systems: Ap-
plications to biological phenomena. In: Mauri, G., Păun, G., Jesús Pérez-J́ımenez,
M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 63–84.
Springer, Heidelberg (2005)

25. Minton, A.P.: The influence of macromolecular crowding and macromolecular con-
finement on biochemical reactions in physiological media. J. Biol. Chem. 276(14),
10577–10580 (2001)

26. Nakamoto, R.K., Scanlon, J.A.B., Al-Shawi, M.K.: The rotary mechanism of the
atp synthase. Archives of Biochemistry and Biophysics 476(1), 43–50 (2008); special
Issue: Transport ATPases

27. Novère, N.L., Shimizu, T.S.: Stochsim: modelling of stochastic biomolecular pro-
cesses. Bioinformatics 17(6), 575–576 (2001)

28. Øksendal, B.: Stochastic Differential Equations: An Introduction with Applica-
tions. Springer, Heidelberg (2005)

29. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing
Paradigms. Springer, Berlin (1998)

30. Păun, G.: Introduction to Membrane Computing. In: Applications of Membrane
Computing, pp. 1–42. Springer, Berlin (2006)

31. Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J.
Comp.Phys. 117, 1–19 (1995)

32. Romero-Campero, F., Pérez-Jiménez, M.: Modelling gene expression control using
p systems: The lac operon, a case study. BioSystems 91(3), 438–457 (2008)

33. Rothemund, P., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA
Sierpinski triangles. PLoS Biology 2(12), e424 (2004)

34. Schwartz, R., Shor, P.W., Prevelige, P.E., Berger, B.: Local rules simulation of the
kinetics of virus capsid self-assembly. Biophys. J. 75(6), 2626–2636 (1998)

35. Slepoy, A., Thompson, A., Plimpton, S.: A constant-time kinetic Monte Carlo al-
gorithm for simulation of large biochemical reaction networks. J. Chem. Phys. 128,
205101 (2008)

36. Smaldon, J., Krasnogor, N., Alexander, C., Gheorghe, M.: Liposome logic. In:
Rothlauf, F. (ed.) GECCO 2009: Proceedings of the 11th Annual conference on
Genetic and evolutionary computation, pp. 161–168. ACM Press, New York (2009)

37. Sweeney, B., Zhang, T., Schwartz, R.: Exploring the Parameter Space of Complex
Self-Assembly through Virus Capsid Models. Biophys. J. 94(3), 772 (2008)

38. Takahashi, K., Arjunan, S.N.V., Tomita, M.: Space in systems biology of signaling
pathways–towards intracellular molecular crowding in silico. FEBS Lett. 579(8),
1783–1788 (2005)

256 G. Grünert and P. Dittrich

39. Talcott, C., Dill, D.: The pathway logic assistant. In: Plotkin, G. (ed.) Proceed-
ings of the Third International Workshop on Computational Methods in System
Biology, pp. 228–239 (2005)

40. Verlet, L.: Computer ”experiments” on classical fluids. I. Thermodynamical prop-
erties of lennard-jones molecules. Phys. Rev. 159(1), 98 (1967)

41. Weber, C.H., Vincenz, C.: A docking model of key components of the disc com-
plex: death domain superfamily interactions redefined. FEBS Lett. 492(3), 171–176
(2001)

42. Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of two-
dimensional DNA crystals. Nature 394(6693), 539–544 (1998)

43. Zhang, T., Rohlfs, R., Schwartz, R.: Implementation of a discrete event simulator
for biological self-assembly systems. In: Proceedings of the 37th Winter Simula-
tion Conference, Orlando, FL, USA, December 4-7, 2005, pp. 2223–2231. ACM,
New York (2005)

Depth-First Search with P Systems

Miguel A. Gutiérrez-Naranjo and Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain

{magutier,marper}@us.es

Abstract. The usual way to find a solution for an NP complete problem
in Membrane Computing is by brute force algorithms. These solutions
work from a theoretical point of view but they are implementable only
for small instances of the problem. In this paper we provide a family
of P systems which brings techniques from Artificial Intelligence into
Membrane Computing and apply them to solve the N-queens problem.

1 Introduction

Brute force algorithms have been widely used in the design of solutions for NP
problems in Membrane Computing. Trading time against space allows us to
solve NP problems in polynomial time with respect to the input data. The cost
is the amount of resources, which grows exponentially. The usual idea of these
brute force algorithms is to encode each feasible solution in one membrane. The
number of candidates to solution is exponential in the input size, but the coding
process can be done in polynomial time. Once generated all these candidates,
each of them is tested in order to check whether it represents a solution to the
problem or not. This checking stage is made simultaneously in all membranes
by using massive parallelism. Next, the P system halts and sends a signal to
the user with the output of the process. Such theoretical process works and
different P system models have been explored by searching the limits between
tractability and intractability [3]. In such way, several ingredients have been
mixed and nowadays there exist many open problems in the area (see, e.g., [6]).

In spite of the great success in the design of theoretical solutions to NP prob-
lems, these solutions have an intrinsic drawback from a practical point of view. In
all imaginable implementation, a membrane will have a space associated (maybe
a piece of memory in a computer, a pipe in a lab or the volume of a bacterium)
and brute force algorithms only will be able to implement little instances of such
problems. As an illustration, if we consider an in vivo implementation where each
feasible solution is encoded in an elementary membrane and such elementary
membrane is implemented in a bacterium of mass similar to E. Coli (∼ 7×10−16

kg., see [9]), then, a brute force algorithm which solves an instance of an NP
problem with input size 40 will need approximately the mass of the Earth for
an implementation (∼ 6 × 1024 kg., ibid.).

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 257–264, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

258 M.A. Gutiérrez-Naranjo and M.J. Pérez-Jiménez

In this paper we explore the possibility of searching solutions to NP problems
with Membrane Computing techniques, but taking ideas from Artificial Intelli-
gence instead of using brute force algorithms. Of course, the worst case of any
solution of an NP-problem needs an exponential amount of resources, but we are
not always in the worst case. The contribution of using search strategies from
Artificial Intelligence is that, on average, the number of resources for solving
several instances of an NP problem decreases with respect to the number of re-
sources used by brute force. As a case study, we present the N-queens problem
(Section 2), previously studied in the framework of Membrane Computing in [2].

The paper is organized as follows: Next we present the N-queens problem and
recall the algorithm presented in [2]. In Section 3, we give some brief notions
of searching strategies in Artificial Intelligence and in Section 4, an implemen-
tation of depth-first search with P systems is shown. In Section 5, we present
a family of P systems which solve the N-queens problem based on the cellular
implementation. Finally, some conclusions and open research lines are presented.

2 The N-Queens Problem

Along this paper we will consider the N-queens problem as a case study. It is a
generalization of a classic problem known as the 8-queens problem. It consists
on putting N queens on an N×N chessboard in such way that none of them is
able to capture any other using the standard movement of the queens in chess,
i.e., at most one queen can be placed on each row, column and diagonal line.

In [2], a first solution to the N-queens problem in Membrane Computing was
shown. For that aim, a family of deterministic P systems with active membranes
was presented. In this family, the N-th element of the family solves the N-queens
problem and the last configuration encodes all the solutions of the problem.

In order to solve the N-queens problem, a truth assignment that satisfies a
formula in conjunctive normal form (CNF) is searched. This problem is exactly
SAT, so the solution presented in [2] uses a modified solution for SAT from [7].
Some experiments were presented by running the P systems with an updated
version of the P-lingua simulator [1]. The experiments were performed on a sys-
tem with an Intel Core2 Quad CPU (a single processor with 4 cores at 2,83Ghz),
8GB of RAM and using a C++ simulator under the operating system Ubuntu
Server 8.04.

According to the representation in [2], the 3-queens problem is expressed by
a formula in CNF with 9 variables and 31 clauses. The input multiset has 65
elements and the P system has 3185 rules. Along the computation, 29 = 512
elementary membranes need to be considered in parallel. Since the simulation
was carried out on a uniprocessor system, these membranes were evaluated se-
quentially. It took 7 seconds to reach the halting configuration. It is the 117-th
configuration and in this configuration one object No appears in the environment.
As expected, this means that we cannot place three queens on a 3×3 chessboard
satisfying the restriction of the problem.

Depth-First Search with P Systems 259

In the 4-queens problem, we try to place four queens on a 4×4 chessboard.
According to the representation, the problem can be expressed by a formula in
CNF with 16 variables and 80 clauses. Along the computation, 216 = 65536 ele-
mentary membranes were considered in the same configuration and the P system
has 13622 rules. The simulation takes 20583 seconds (> 5 hours) to reach the
halting configuration. It is the 256-th configuration and in this configuration one
object Yes appears in the environment. This configuration has two elementary
membranes encoding the two solutions of the problem (see [2] for details).

According to this design, for the solution of the N-queens problem in a stan-
dard 8×8 chessboard 264 = 18.446.744.073.709.551.616 elementary membranes
should be considered simultaneously. If we follow with the analogy from the In-
troduction, an E. Coli implementation of such P system will need approximately
a metric ton of bacteria to solve the problem.

3 Searching Strategies

Searching has been deeply studied in Artificial Intelligence. In its basic form, a
state is a description of the world and two states are linked by a transition which
allows to reach a state from a previous one. In this way, a directed graph where
the nodes are the states and the edges are the actions is considered. Given a
starting state, a sequence of actions to one of the final states is searched.

In sequential algorithms, only one node is considered in each time unit and the
order in which we explore new nodes determines the different searching strate-
gies. In the usual framework, several possible unexplored nodes are reachable
and we need to choose one of them in order to continue the search. In the best
case, we have a heuristic which can help us to decide the best options among the
candidates. Such heuristic represents, in a certain sense, how far the considered
node is from a solution node and it captures our information about the nature
of the problem. In many other situations we have no information about how far
we are from a solution and we need to use a blind strategy. Since there is no
information about the nature of the problem, blind strategies are based in the
topology of the graph and the order in which new nodes are reached.

The two basic blind search strategies are depth-first search and breadth-first
search. The main difference between them is that depth-first search follows a path
to its completion before trying an alternative path. Some paths can be infinite,
so this search may never succeed. It involves backtracking: One alternative is
selected for each node and it backtracks to the next alternative when it has
pursued all of the paths from the first choice. In the worst case, depth-first
search will explore all of the nodes in the search tree. The complexity in time is
linear on the maximum of the number of vertices and the number of edges and
the complexity in space is quadratic. In breadth-first search the order in which
nodes are explored depends on the number of arcs in the path. The algorithm
always selects one of the paths with fewest arcs. In this case the complexity in
time and in space is the same as for depth-first search.

260 M.A. Gutiérrez-Naranjo and M.J. Pérez-Jiménez

4 Depth-First Search with P Systems

The idea of representing an instantaneous description of the world as a state
and a transition from a state to the following one as an edge in the graph is
so general that many real-life problems can be modeled as a problem of space
of states. In this paper, a first approach to depth-first search with P systems is
presented. The aim of this first approach is not to provide a minimalist approach.
We are not looking for the minimum number of ingredients for implementing the
depth-first search in P systems. In fact, we use four of the most powerful available
ingredients: inhibitors, cooperation, priorities and dissolution. As we will remark
in Section 6, it is an open question to weaken these conditions.

In an abstract way, a representation of a problem P = (a, S, E, F) as a space
of states consists of a set of states S and an initial state, a ∈ S; a set E of ordered
pairs (x, y), called transitions, where x and y are states and y is reachable from x
in one step and a set F of final states. Technically, a cost mapping is also needed,
which assigns a cost to each transition (x, y), but we will consider a constant
cost and we will omit it. Given a problem P = (a, S, E, F), we will consider a P
system Π = (Γ, H, μ, wu, ws, R1, R2, R3, R1 > R2 > R3) where

– The alphabet Γ = S ∪ {px |x ∈ S} ∪ {re | e ∈ E}
– The set of labels H = {u, s}
– A membrane structure μ = [[]u]s
– The initial multisets wu = {a} and ws = ∅.
– The sets of rules R1, R2 and R3 are associated with the membrane u:

• R1 = {[x]u → λ : x ∈ F}. For each final state we have a dissolution rule
which dissolves the membrane u.

• R2 = {[x¬py → y rxy]u : (x, y) ∈ E}. For each transition (x, y), x
produces y rxy if py does not occur in the membrane u, i.e., py acts as
an inhibitor.

• R3 = {[y rxy → x py]u : (x, y) ∈ E}. For each transition (x, y) we have
a cooperative rule where the multiset y rxy is rewritten as x py in the
membrane u.

– An order among the rules is considered. Rules of R1 have higher priority
than the other rules and rules from R2 have priority over rules from R3.

In each configuration (but in the last one) there is one object from S in the
configuration. It represents the current state in the searching process. For each
state y, the object py is an inhibitor1 which forbids to visit the state y. Finally,
the occurrence of the object rxy represents that the transition (x, y) belongs to
the path from the initial state to the current one.

4.1 Example

Let us consider a representation of a problem as a space of states P = (a, S, E, F)
with S = {a, b, c, d, e, f, g}, a the initial state, the set of transitions E = {(a, b),
1 Notice that the object py is never removed. If the state y can be reached from

different paths, then we should add new rules in order to prevent it.

Depth-First Search with P Systems 261

(a, c), (b, d), (b, e), (e, f), (c, g)} and the set of final states F = {g}. Let Π be the
P system associated with this space as described above. The initial configuration
is C0 = [[a]u]s. Two rules are applicable from the set R2, rb ≡ [a¬pb → b rab]u
and rc ≡ [a¬pc → c rac]u. Let us suppose that non-deterministically rb is chosen.
Then C1 = [[b rab]u]s is obtained. From C1, three rules are applicable rd ≡
[b¬pd → d rbd]u ∈ R2, re ≡ [b¬pe → e rbe]u ∈ R2 and rb ≡ [b rab → a pb]u ∈ R3.

Since R2 has priority over R3, only rd or re can be non-deterministically
chosen. We choose re and reach C2 = [[e rab rbe]u]s. Now, only two rules are
applicable, rf ≡ [e¬pf → f ref]u ∈ R2 and re ≡ [e rbe → b pe]u ∈ R3. Since
R2 has priority, rf is applied and the configuration C3 ≡ [[f rab rbe ref]u]s is
reached. From C3, the unique applicable rule is rf ≡ [f ref → e pf]u ∈ R3 and
C4 ≡ [[e rab rbe pf]u]s. Notice than the application of rf is an implementa-
tion of backtracking. In the configuration C4, the current state is e and the
state f is forbidden. From C4, only re ≡ [e rbe → b pe]u ∈ R3 is applicable.
The application of this rule is a new step of backtracking and it leads us to
the configuration C5 ≡ [[b rab pe pf]u]s. From C5, two rules are applicable,
rd ≡ [b¬pd → d rbd]u ∈ R2 and rb ≡ [b rab → a pe]u ∈ R3. Notice that the
rule re ≡ [b¬pe → e rbe]u ∈ R2 is not applicable due to the occurrence of
the inhibitor pe in the membrane u. Since R2 has priority over R3, the rule rd

is applied and the configuration C6 ≡ [[d rab rbd pe pf]u]s is reached. From C6
only backtracking can be done by applying the rule rd ≡ [d rbd → b pd]u ∈ R3
and reach C7 ≡ [[b rab pd pe pf]u]s. By applying now rb ≡ [b rab → a pb]u ∈ R3
the configuration C8 ≡ [[a pb pd pe pf]u]s is obtained. From C8 we only can ap-
ply rc ≡ [a¬pc → c rac]u ∈ R2 and reach C9 ≡ [[c rac pb pd pe pf]u]s. From
C9 two rules are applicable, rg ≡ [c¬pg → g rcg]u ∈ R2 and rc ≡ [c rac →
a pc]u ∈ R3. Due to the priority of R2 over R3, rg is applied and the configu-
ration C10 ≡ [[g rac rcg pb pd pe pf]u]s is obtained. Finally, the applicable rules
are rF ≡ [g]u → λ ∈ R1 and rg ≡ [g rcg → c pg]u ∈ R3. Since R1 has priority
over R3, the rule rF is applied and the configuration C11 ≡ [rac rcg pb pd pe pf]s.
No more rules are applicable and C11 is a halting configuration. The objects rac

and rcg determine a path from the initial state to the final one. Notice that the
chosen rules in the non-deterministic points are crucial. From C0 the configura-
tion C∗

3 ≡ [rac rcg]s is reachable in three steps by applying sequentially the rules
rc ≡ [a¬pc → c rac]u ∈ R2, rg ≡ [c¬pg → g rcg]u ∈ R2 and rF ≡ [g]u → λ ∈ R1.

5 A New Solution for the N-Queens Problem

The first step for designing a new solution for the N-queens problem is to de-
termine the space of states. We have chosen an incremental formulation (see
[8]), which starts from the empty state and each action adds a queen to the
state. This formulation reduces drastically the space of states, since a new queen
added to the description of a state can be placed only in a non forbidden square.
In this way, states are arrangements of k queens (0 ≤ k ≤ N), one per col-
umn in the leftmost k columns and transitions are pairs (x, y) where the state

262 M.A. Gutiérrez-Naranjo and M.J. Pérez-Jiménez

y is the state x with a new queen is added in the leftmost empty column. Such
new queen is not attacked by any other one already present on the board.

The basic idea of the P system design is to encode the position of a queen
as a set of four objects xi, yj , ui−j and vi+j , where xi represents a column and
yj represents a row (1 ≤ i, j ≤ N). The objects ui−j and vi+j represent the
ascendant and the descendant diagonals respectively and their subindices are
determined by the corresponding column and row i and j. Placing a queen on
the chessboard means to choose a square, i.e., a set {xi, yj, ui−j , vi+j} among the
eligible objects and delete them from the corresponding membrane. The choice
is recorded. If the final state is reached then the process finishes; otherwise we
do backtracking and choose another eligible set.

We present a family of P systems which solves the decision problem associated
to the N-queens problem (a P system for each value of N) slightly different from
the general one presented in Section 4. We add a new set of rules R∗ for removing
useless objects. For each positive integer greater than 2, we consider the P system

Π = (Γ, H, μ, wu, ws, R1, R
∗, R2, R3, R1 > R∗ > R2 > R3) where

– The alphabet Γ = {xi, yj , ui−j , vi+j , pi,j : i, j ∈ {1, . . . , N}} ∪ {xN+1}
– The set of labels H = {u, s}
– The initial multisets wu = {x1, y1, . . . , yN , u1−N , . . . , uN−1, v2, . . . , v2N} and

ws = ∅.
– A membrane structure μ = [[]u]s
– Four sets of rules R1, R∗, R2 and R3

• R1 = {[xN+1]u → λ : x ∈ F}. In this design, when the object kN is
reached, the membrane u is dissolved and the computation ends.

• R∗ = {[pi,jxi−1 → xi−1]u : i ∈ {2, . . . , N}, j ∈ {1, . . . , N}} Just clean-
ing rules.

• R2 = {[xi yj ui−j vi+j ¬pi,j → xi+1 ri,j]u : i, j ∈ {1, . . . , N}} These
rules put a new queen on the chessboard by choosing an eligible position.

• R3 = {[ri,j xi+1 → xi yj ui−j vi+j pi,j]u : i, j ∈ {1, . . . , N}}. These rules
remove one queen from the chessboard and implement the backtracking.

– Finally, the order R1 > R∗ > R2 > R3 among the sets of rules is settled.

5.1 A Brief Overview of the Computation

From the objects {x1, . . . , xN}, only x1 occurs in the initial configuration. This
means that the column 1 is already chosen. In order to take the row, one of
the N rules [k0 x1 yj u1−j v1+j ¬p1,j,0 → x2 r1,j,1 k2]u where j ∈ {1, . . . , N} is
chosen. The choice of this rule determines the square (x1, yj) where the first
queen is placed. The application of the rule removes the objects corresponding
to the column, row ascendant and descendant diagonal lines x1 yj u1−j v1+j in
the chessboard. The associated column, row and diagonals to these objects are
not eligible and the new queen will be placed in a safe square, in the sense
that no other queen in the board threatens this position (i.e., there are no
other queens in the same row, nor in the same column, nor in both diagonals).
The application of the rule produces the object x2. Next, a rule from the set

Depth-First Search with P Systems 263

1-20 2-1 3-3 4-5 5-2 6-4 7-13 8-10 9-17 10- 15
11-6 12-19 13-16 14-18 15-8 16-12 17-7 18-9 19-11 20-14

Fig. 1. A solution for the 20-queens problem

[k1 x2 yj u2−j v2+j ¬p2,j,1 → x3 r2,j,2 k3]u is chosen. If the successive choices are
right, then the object kN is reached and the membrane u dissolved. The objects
ri,j,r in the membrane s from the halting configuration give us a solution to the
problem. If no rules from the set R2 can be applied, then we apply one rule
from R3. As shown in the general case, such rules implement backtracking and
produce objects pi,j,r which act as inhibitors. Before applying rules from R2 or
R3, the P system tries to apply rules from R1, which means the halt of the
computation, or from R∗, which clean useless inhibitor objects.

5.2 Examples

An ad hoc CLIPS program (available from the authors) has been written based on
this design of solution for the N-queens problem based on Membrane Computing
techniques. Some experiments have been performed on a system with an Intel
Pentium Dual CPU E2200 at 2,20 GHz, 3GB of RAM and using CLIPS V6.241
under the operating system Windows Vista. Finding one solution took 0,062
seconds for a 4×4 board and 15,944 seconds for a 20×20 board. Figure 1 shows
a solution for the 20-queens problem found by this computer program.

6 Conclusions and Future Work

The purpose of this paper is twofold. On the one hand, to stress the inviability
of solutions based on brute force algorithms for intractable problems, even in
case of future implementations. On the other hand, to open a door in Membrane
Computing to Artificial Intelligence techniques, which are broadly studied and
which can enrich the methodology of the design of P system solutions.

264 M.A. Gutiérrez-Naranjo and M.J. Pérez-Jiménez

This first approach can be improved in many senses. As pointed out in Section
4, the aim of this paper is not minimalist and probably, searching algorithms can
be implemented into P systems by using simpler P system models. The second
improvement is associated to the nature of P systems. The design of P systems
which compute searching is too close to the classical sequential algorithm. In fact,
although the presented P system family uses non-determinism in the choice of
the rules, it does not explore the intrinsic parallelism of P systems. The next
step in this way is to design algorithms which use a limited form of parallelism
where several rules can be applied simultaneously, but controlling the exponential
explosion of brute force algorithms. The current parallel computing architectures
(see, e.g., [4]) can be a clue for these new generations of membrane algorithms.

Acknowledgements. The authors acknowledge the support of the projects
TIN2008-04487-E and TIN-2009-13192 of the Ministerio de Ciencia e Innovación
of Spain and the support of the Project of Excellence with Investigador de Re-
conocida Vaĺıa of the Junta de Andalućıa, grant P08-TIC-04200.

References

1. Dı́az-Pernil, D., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A P-
lingua programming environment for membrane computing. In: Corne, D.W., Frisco,
P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp.
187–203. Springer, Heidelberg (2009)

2. Gutiérrez-Naranjo, M.A., Mart́ınez-del-Amor, M.A., Pérez-Hurtado, I., Pérez-
Jiménez, M.J.: Solving the n-queens puzzle with P systems. In: Gutiérrez-Escudero,
R., et al. (eds.) Seventh Brainstorming Week on Membrane Computing, Fénix Ed-
itora, Sevilla, Spain, vol. I, pp. 199–210 (2009)

3. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-
Campero, F.J.: Computational efficiency of dissolution rules in membrane systems.
International Journal of Computer Mathematics 83(7), 593–611 (2006)

4. Mart́ınez-del-Amor, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Cecilia, J.M.,
Guerrero, G.D., Garćıa, J.M.: Simulation of recognizer P systems by using manycore
gpus. In: Mart́ınez-del-Amor, M.A., et al. (eds.) Seventh Brainstorming Week on
Membrane Computing, Fénix Editora, Sevilla, Spain, vol. II, pp. 45–58 (2009)

5. Păun, G., Rozenberg, G., Salomaa, A. (eds.): Handbook of Membrane Computing.
Oxford Univ. Press, Oxford (2010)

6. Pérez-Jiménez, M.J.: A computational complexity theory in membrane computing.
In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A.
(eds.) WMC 2009. LNCS, vol. 5957, pp. 125–148. Springer, Heidelberg (2010)

7. Pérez-Jiménez, M.J., Romero-Jiménez, Á., Sancho-Caparrini, F.: Complexity classes
in models of cellular computing with membranes. Natural Computing 2(3), 265–285
(2003)

8. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.
Prentice-Hall, Englewood Cliffs (2002)

9. Wikipedia, http://en.wikipedia.org/wiki/orders_of_magnitude_mass

http://en.wikipedia.org/wiki/orders_of_magnitude_mass

Towards Modelling of Reactive, Goal-Oriented
and Hybrid Intelligent Agents Using P Systems

Petros Kefalas and Ioanna Stamatopoulou

Department of Computer Science, CITY College, Thessaloniki, Greece,
International Faculty of the University of Sheffield
{kefalas,istamatopoulou}@city.academic.gr

Abstract. Intelligent agents are classified into various types depending
on whether they just react to the stimuli they perceive (reactive) or they
develop plans to solve their own goals (proactive or goal-oriented). In
practice, agents are a mixture of two layers since they perform reactive
or proactive tasks depending on what is the most appropriate at a given
time (hybrid agents). Bearing in mind the dynamic organisation of a
multi-agent system consisting of any of the above types, it is only natural
to consider Population P Systems as a suitable candidate for modelling.
In this paper, we describe preliminary work done towards modelling of
MAS which include all types of agents. An initial attempt is made to
tackle certain issues that have to do with the objects and rules that define
each agent operation. Alongside the alternative solutions, we present a
concrete example to demonstrate our findings and raise discussions.

1 Introduction

Intelligent agents are robotic or software entities which can exhibit autonomous,
reactive, proactive and social behaviour [14]. Agents perceive their environment,
react immediately if it is necessary, update their beliefs, revise their strategies,
prioritise their goals and develop plans to achieve them. Multi-agent systems
(MAS) are built upon the social behaviour of individual agents that can com-
municate, collaborate and negotiate in order to achieve their goals. Naturally,
MAS are highly interactive, highly parallel and highly dynamic (change of or-
ganisation, change of roles, change in configuration etc). These dynamics make
MAS specification, modelling and implementation a challenging activity. In our
area of interest, formal modelling is particularly attractive as it raises many is-
sues that cannot be tackled in a straightforward manner and leave many open
challenges.

Intelligent agent architectures can be broadly categorised into reactive, goal-
oriented and hybrid. In reactive agents, intelligent behaviour can be achieved
without explicit symbolic representations or explicit abstract reasoning but it is
an emergent property (e.g. ant colonies). The agents operation is based around
a hierarchy of behaviours which resemble if situation then action rules.

On the other hand, goal-oriented agents and their most known representative
Belief-Desire-Intention (BDI) agents [8], are based on: (a) Beliefs, i.e. the infor-
mation an agent has about the environment, which may be false; (b) Desires,

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 265–272, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

266 P. Kefalas and I. Stamatopoulou

i.e. the things that the agent would like to see achieved; and (c) Intentions, i.e.
the goals that the agent is committed to. In principle, a BDI agent perceives
its environment and updates its beliefs. Based on the current state of affairs, it
may revise its options and prioritise its goals. Having picked up a current goal,
generates a sequence of actions that achieve the goal and executes this plan.
Finally, in most cases it is necessary for the agents to exhibit both reactive and
proactive behaviour, hence the hybrid model.

Practically, BDI agents are not as complicated as the underlying theory dic-
tates [3]. Desires play a strategic role to problem solving and in highly specialised
agents desires are shrink down to one, the general raison d’etre of the agent.
Plans are not generated but are ready made, residing in a library of plans that
are brought into the play according the current goal. The current goal is the
intention that is picked up for deliberation; if it is directly executable the agent
performs an action; if not, the current intention is replaced by a more analytical
list of new intentions (the plan).

There have been several attempts to formally model individual intelligent
agents as well as MAS structure and change. Most of them were based on state
machines and their variations, but were primarily concerned with simple reac-
tive agents [4,2]. Though such methods are adequate for the representation of
the internal state of an agent, problems arose when having to deal with the dy-
namics of the structure of a system consisting of multiple agents. As a result
other attempts used new computing paradigms, such as membrane computing.
Such methods can efficiently address the aforementioned limitation of state-based
methods (Population P Systems for example are very flexible in representing the
dynamics of a population’s structure), but were primarily concerned with biolog-
ically inspired or biological agents exhibiting emergent behaviour [10]. Finally,
previous work has demonstrated that we can combine the above in order to
take advantage of the complementary characteristics of the aforementioned for-
mal methods [12]. For a complete review of this work, in terms of rationale and
results, the interested reader is referred to [5].

With this paper, we initialise an effort towards modelling of goal-oriented
agents using a variation of Population P Systems [1]. The following sections
describe the modelling toolkit that should be available in order to formally model
MAS that consists of reactive, goal-oriented or hybrid agents. We discuss the
proposal along side with a MAS case in order to clarify our claims. Finally, we
reach an initial definition of a Population P System suitable for modelling any
type of MAS.

2 A MAS Scenario Including Goal-Oriented Agents

Assume a disaster area with civilians injured who are incapable of helping them-
selves in between obstacles and ruins [9]. A number of agents (rescue units or
RU) are equipped with the necessary first aid kit and could provide help to in-
jured civilians, thus temporarily rescuing victims from immediate danger. They
can then broadcast the exact coordinates to the agents in their neighbourhood

Modelling of Reactive Agents Using P Systems 267

and continue their rescue mission. Another set of agents (ambulance vehicles
or AV) are capable of approaching the temporarily rescued civilians and carry
them to a more secure establishment (e.g. emergency room or ER). Of course
various parameters play an important role in this rescue scenario, such as num-
ber of agents, the amount of supplies, the capacity of the ambulances, etc. Also,
one should take into account possible failures of agents as well as non-trivial
interaction and mode of communication.

The development of such MAS would normally involve two kind of agents.
RU would be reactive agents which would function under certain rules obeying
a strict hierarchy such as for example:

if there is an obstacle then avoid obstacle �
if injured civilian is detected then

provide first aid to victim and inform nearby agents about location �
if empty space then move randomly

Injured civilians could also be modelled as reactive agents. On the other hand,
AV would be goal-oriented agents which need to form plans to satisfy their goals,
i.e. having updated their beliefs on where the victims are located based on in-
coming information and develop a sequence of actions to pick up their victims.
In reality, AV agents should also have a reactive layer on top, which will respond
to immediate threats, such as:

if there is an obstacle then avoid obstacle �
if at ER then upload the injured civilians �
if load reached the maximum capacity then move towards the ER �
if injured civilian is detected and not at ER then pick up victim

The above reactive layer deals with the simple behaviours, apart from moving
towards the victim behaviour which requires planning. This is the main dif-
ference from agent RU that searches the space randomly for locating injured
civilian.

Therefore the requirements for modelling the above is summarised in the
following:

– modelling of individual separate agents of various types is necessary;
– the agent models should be developed with non-trivial data structures and

their accompanying operations;
– there must be a way to code the rules for behaviours within an agent, in-

cluding the communication behaviour;
– it is essential to set up priorities on these behaviours for the agent to perform

the desired overall task;
– describing the change in communication links is desirable according to some

“neighbouring” criteria;
– modelling of agents roles, generation and destruction must be possible in

order to model the dynamic configuration of the system;
– agents in a MAS could operate in parallel exhibiting an asynchronous be-

haviour;

268 P. Kefalas and I. Stamatopoulou

Most of the above naturally lead to considering elements of Tissue P Systems
[7], Populations P Systems [1] and P colonies [6], equipped with some new fea-
tures that could make them more focused to the modelling of goal-oriented and
hybrid agents.

3 Formal Modelling of MAS

3.1 Agents as Cells

Each agent can be directly mapped to a cell. Cells are arranged in a graph
(population) rather than a hierarchical tree structure. Cells must have types
each corresponding to a different role of each agent in the MAS. For instance,
in the rescue scenario there are four types of cells, namely a rescue unit (RU),
an ambulance vehicle (AV), the civilian victim (CV) and the emergency room
(ER). The latter could be an agent if it has certain characteristics (e.g. it is a
mobile emergency unit, it can communicate with other agents etc.) or can be
modelled as a simple entity otherwise. Instances of all these cell types make a
MAS configuration. The graph denotes the communication between cells, e.g.
neighbouring RUs and AVs have a direct communication, as well as a CV with
a RU or AV on the same spot, the AV when it reaches the ER, the ERs between
them etc.

3.2 Data Structures and Objects

Objects within cells should be more than multisets of symbols. Practically, more
sets and mathematical structures are needed, such as naturals, reals, atoms, n-
tuples, sequences/lists, sets, etc. as well as all operations applied on these. In
addition, objects should be partitioned in various subsets, in a kind of annotated
values of attributes. The absolutely necessary subsets of objects required for a
goal-oriented agent are: (a) a set of Beliefs, (b) a set of Goals and (d) a set of
internal agent States, and (e) a set of incoming Messages. Thus, for instance:

B = {(victim at X Y), (er at X Y), . . .} where X, Y ∈ N ,
G = {(pickup victim X Y), (move towards X Y), (leave victim at er) . . .},
States = {doing nothing, rescuing, moving to er, . . .},
IncomingMessage = {(found victim at X Y), . . .} etc.

These in turn would be used in the list of goals, queue of incoming messages
etc. Depending on the problem, some more sets might be necessary, such as the
current position and direction is space, the capacity of an AV, the current load,
the current supplies, fuel, etc. In practical modelling, we would need some sort
of notation that differentiates objects according to the set they belong, for ex-
ample:

B : (victim at 3 8), State : rescuing, Pos : (4 5),
ListOfGoals : 〈(move towards 6 7), (leave victim at er), . . .〉,
IncomingQueue : 〈(found victim at 6 7), (found victim at 9 1), . . .〉, etc.

Modelling of Reactive Agents Using P Systems 269

3.3 Behaviours and Rewrite/Communication Rules

Reactive behaviours can be modelled as a set of transformation rules for a spe-
cific agent type. For example, the rule:
avoid obtacle : (State : moving to er Obstacle : (X Y) Pos : (X1 Y1)
Direction : D if (next to X Y X1 Y1) →
State : moving to er Obstacle : (X Y) Pos : (X1 Y1) Direction : D′ where
(random D′))AV

The objects on the left hand side are consumed and replaced by the objects of the
right hand side within a cell of type AV. Checks and new values are performed
and produced through the guards following the if delimiter and operations fol-
lowing the where delimiter. All rules could be identified by a unique identifier at
the far left, in this case avoid obtacle.

Proactive behaviours, such as updating beliefs, adding goals to the list or
executing primitive goals (actions) can be modelled in a similar way.

Similarly, there exist communication rules that are used to pass messages to
cells that are linked through the graph structure. For example, the rule:

send victim position :
(B : (victim at 4 2); incoming message : (found victim at 4 2), broadcast)RU

means that in the presence of an object B : (victim at 4 2) inside a cell of type
RU an object incoming message : (found victim at 4 2) can be obtained by all
neighbouring cells, that is, those connected through links. The receiving agent
can put the incoming message in the queue of incoming messages through a
simple transformation rule. Guards and new values may also be required in the
form of the rules.

Communication rules could also be used for perceiving the environment. For
instance, the rule:

perceive obstacle :
Pos : (X Y); Obstacle : (X1 Y1) if (within range X Y X1 Y1), perceive)AV

is the same as the above with the exception that object Obstacle : (X1 Y1) is ob-
tained by the environment. The other way round, i.e. an object is can be expelled
out to the environment through an output rule. The performatives broadcast,
perceive and output are equivalent to the commonly used in membrane compu-
ting in, enter and exit.

3.4 Priorities of Behaviours

In order to achieve the correct overall agent behaviour, individual behaviours in-
cluding communication should be ordered. A top level ordering should determine
which type of task behaviour should be tried first and whether communication
(either broadcast or perceive or output) should precede or follow task behaviours.
For example, a possible ordering might be:

broadbast rules � perceive rules ≺ reactive rules ≺
proactive rules � output rules

270 P. Kefalas and I. Stamatopoulou

which implies that incoming message and perceptions should fire first followed
by reactive rules followed by proactive rules and sending out messages.

At a lower level ordering between rules within the same type must exist. For
instance, a possible ordering for the reactive behaviour should be:

avoid obstcle ≺ upload victims ≺ move towards er ≺ pick up victim

It should be noted at this point that imposing such priorities in types of rules,
or rules themselves, in combination to the use of lists for objects may have a
restrictive effect on the maximal parallelism of the P system, which however for
MAS modelling purposes is acceptable.

3.5 Communication Links and Bond Making

The graph connecting the cells is by no means fixed. Depending on the prob-
lem, the notion of “neighbourhood”between cells can be defined. This will allow
cells to communicate directly through the existing links. Establishment of links
is governed by a bond making rule that states the preconditions which must be
true. For example, a bond making rule between an AV and a RU can be:

connect neighboring agents : (AV, Pos : (Xav Yav); Pos : (Xru Yru), RU)
if (neighbours Xav Yav Xru Yru)

meaning that in the presence of neighbouring Pos : (Xav Yav) and Pos :
(Xav Yav) inside two cells of type AV and RU respectively, a bond is created
between the two cells.

3.6 Dynamic Structure and Cell Differentiation/Division/Death

It is often the case that new agents should appear into the system, perhaps some
change role and eventually some will disappear. Such situations can be handled
effectively by cell division, cell differentiation and cell death rules. For instance,
a RU which runs out of fuel is removed from the system:

out of order : (fuel : 0)RU → †

4 Main Proposal

Bearing in mind the above, we propose that MAS consisting of any type of
agents can be modelled using a variation of Population P Systems with Active
Membranes, which can be defined as the construct:
αP = (V, Φ, T, γ, α, wE , A1, A2, . . . , An, Rb, Rs, Ob, Or, Op) where:

– V is a finite set of structures and symbols called objects and V = Beliefs∪
Goals ∪ States ∪ Messages . . . ;

– Φ is a set of default and user-defined operations on items of V ;
– T is a finite alphabet of symbols, which define different types of agents;
– γ = ({1, 2, . . . n}, G), with G ⊆ {{i, j} | 1 ≤ i �= j ≤ n }, is a finite undirected

graph;
– α is a finite set of bond-making rules;

Modelling of Reactive Agents Using P Systems 271

– wE ∈ V ∗ is a finite multi-set of objects initially assigned to the environment;
– Ai = (wi, ti), for each 1 ≤ i ≤ n, with wi ∈ V ∗ a finite multi-set of objects,

and ti ∈ T the type of agent/cell i;
– Rb is a finite set of behavioural rules and Rb = BroadCast ∪ Perceive ∪

Output ∪ Reactive ∪ Proactive.
– Rs is a finite set of structural rules and Rs = Differentiation∪Division∪

Death.
– Ob is a partial order over behaviours Rb

– Or is a partial order over the set of Reactive behaviour rules
– Op is a partial order over the set of Proactive behaviour rules

The form of the rules is not formally defined here but can be fairly directly
implied by the examples stated above.

5 Conclusions and Open Issues

We have made an initial attempt to define a new variation of Population P
Systems with Active Membranes, namely αP , which is suitable for modelling
multi-agent systems including all types of agents, such as reactive, goal-oriented
and hybrid. This is the main difference from previous work, in which we only
dealt with simple biological reactive agents. We demonstrated the need through
an example of a disaster scenario in which agents are trying to rescue civilians
injured. A more concrete and precise definition, including the theoretical BDI
model as well as the detailed computation steps are in our immediate intentions.
Before that, however, we need to identify the other practical issues raised by such
modelling. The main question is whether the constructs of the αP are adequate
to map a MAS (including BDI agents) or there is a need to extend it with new
ones. This will lead us to the design and implementation of a tool that animates
the models, along the lines of previous work done both textually [11] and visually
[13].

References

1. Bernardini, F., Gheorghe, M.: Population P Systems. Journal of Universal Com-
puter Science 10(5), 509–539 (2004)

2. Coakley, S.: Formal Software Architecture for Agent-Based Modelling in Biology.
PhD thesis, Dept. of Comp. Science, Univ. of Sheffield, UK (2007)

3. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: Proc. of the 6th
Conference on Artificial Intelligence, pp. 677–682 (1987)

4. Kefalas, P., Holcombe, M., Eleftherakis, G., Gheorghe, M.: A formal method for
the development of agent-based systems. In: Plekhanova, V. (ed.) Intelligent Agent
Software Engineering, pp. 68–98. Idea Publishing Group Co., USA (2003)

5. Kefalas, P., Stamatopoulou, I.: Modelling of multi-agent systems: Experiences
with membrane computing and future challenges. In: Applications of Mem-
brane computing, Concurrency and Agent-based modelling in POPulation biology
(AMCA-POP), Satellite event of the 11th Conference on Membrane Computing
(to appear, 2010)

272 P. Kefalas and I. Stamatopoulou

6. Kelemen, J., Kelemenova, A., Paun, G.: Preview of P colonies: A biochemically
inspired computing model. In: Pollack, J.B., Bedau, M., Husbands, P., Ikegami, T.,
Watson, R.A. (eds.) Proceedings of the 9th Intern. Conference on the Simulation
and Synthesis of Living Systems (Alife IX), pp. 82–86. MIT Press, Cambridge
(2004)

7. Martin-Vide, C., Păun, G., Pazos, J., Rodriguez-Paton, A.: Tissue P systems. The-
oretical Computer Science 296, 295–326 (2003)

8. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture.
In: Allen, J., Fikes, R., Sandewall, E. (eds.) Proceedings of the 2nd International
Conference on Principles of Knowledge Representation and Reasoning (KR 1991),
pp. 473–484. Morgan Kaufmann, San Francisco (1991)

9. Sakellariou, I., Kefalas, P., Stamatopoulou, I.: Enhancing NetLogo to simulate BDI
communicating agents. In: Darzentas, J., Vouros, G.A., Vosinakis, S., Arnellos, A.
(eds.) SETN 2008. LNCS (LNAI), vol. 5138, pp. 263–275. Springer, Heidelberg
(2008)

10. Stamatopoulou, I., Gheorghe, M., Kefalas, P.: Modelling dynamic configuration of
biology-inspired multi-agent systems with Communicating X-machines and Popu-
lation P Systems. In: Mauri, G., Păun, G., Jesús Pérez-J́ımenez, M., Rozenberg, G.,
Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 389–401. Springer, Heidelberg
(2005a)

11. Stamatopoulou, I., Kefalas, P., Eleftherakis, G., Gheorghe, M.: A modelling lan-
guage and tool for Population P Systems. In: PCI 2005 (2005b)

12. Stamatopoulou, I., Sakellariou, I., Kefalas, P., Eleftherakis, G.: OPERAS for social
insects: Formal modelling and prototype simulation. Special Issue of Romanian
Journal of Information Science and Technology (ROMJIST) on Natural Computing
— from biology to computer science and back to applications 11(3), 267–280 (2008)

13. Wilensky, U.: Netlogo Center for Connected Learning and Computer-based Mod-
elling. Northwestern University, Evanston, IL (1999),
http://ccl.northwestern.edu/netlogo

14. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. Knowl-
edge Engineering Review 10(2), 115–152 (1995)

http://ccl.northwestern.edu/netlogo

Goldbeter’s Mitotic Oscillator
Entirely Modeled by MP Systems

Vincenzo Manca and Luca Marchetti

University of Verona, Department of Computer Science
Strada Le Grazie 15, 37134 Verona, Italy

vincenzo.manca@univr.it, luca.marchetti@univr.it

Abstract. MP systems are a class of P systems introduced for model-
ing metabolic processes. Here we apply an algorithm, we call Log-Gain
Stoichiometric Stepwise Regression (LGSS), to Golbeter’s oscillator. In
general, LGSS derives MP models from the time series of observed dy-
namics. In the case of Golbeter’s oscillator, we found that by considering
different values of the resolution time τ , different analytical forms of
regulation maps were appropriate. By means of a suitable MATLAB im-
plementation of LGSS, we automatically generated 700 MP models (τ
varying from 10−3 min to 700 · 10−3 min with increments of 10−3 min).
Many of these models exhibit a good approximation, and have second
degree polynomials as regulation maps. These results provide an exper-
imental evidence of LGSS adequacy.

1 Introduction

Any living organism has to maintain processes which: i) introduce matter of some
kinds from the external environment, ii) transform internal matter by chang-
ing the molecule distribution of a number of biochemical species (substances,
metabolites), and iii) expel matter that is not useful or dangerous to the organ-
ism. The molecule distribution identifies the metabolic state of the system in
question, and can be represented as a multiset over a set of molecular species.

An important problem of systems biology is the mathematical definition of a
dynamical system that explains the observed dynamics of a phenomenon under
investigation, by taking into account what is already known about the phe-
nomenon. When this is possible, then we can hope that a greater knowledge of
the phenomenon is gained.

An important line of research of biological modeling is aimed at defining new
classes of discrete models avoiding some limitations of classical continuous mod-
els based on ordinary differential equations (ODE). In fact, very often, the eval-
uation of the kinetic reaction rates in differential models is problematic because
it may require measurements hardly accessible in living organisms. Moreover,
these measurements dramatically alter the context of the investigated processes.
In contrast to ODEs, Metabolic P systems (MP systems) [11,9,8,10], based on
Păun’s P systems [14], were introduced for modeling metabolic systems by means
of suitable multiset rewriting grammars.

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 273–284, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

274 V. Manca and L. Marchetti

In MP systems no single instantaneous kinetic is addressed, but rather the
variation of the whole system under investigation is considered, at discrete time
points, separated by a specified macroscopic interval τ . The dynamics is given
along a sequence of steps and, at each step, it is governed by partitioning the
matter among reactions which transform it. The log-gain theory of MP sys-
tems [8] is aimed at reconstructing the flux regulation maps associated to the
metabolic transformations. Metabolic P systems proved to be promising in many
contexts and their applicability was tested in many situations where differential
models are prohibitive due to the unavailability or the unreliability of the kinetic
rates [10,12].

Here we apply an algorithm, we call Log-Gain Stoichiometric Stepwise Re-
gression (LGSS), to Golbeter’s oscillator given in Table 1 [3,4,5]. In this manner,
we generate automatically 700 models of this oscillator, which, for the most part,
provide the same order of approximation of Golbeter’s model. Moreover, by con-
sidering the phenomenon at different time grains, we obtain different models
and in many cases the analytical form of these models is simpler than Golbeter’s
model.

The fundamental mechanism of mitotic oscillations concerns the periodic
change in the activation state of a protein produced by the cdc2 gene in fis-
sion yeast or by homologous genes in other eukaryotes. The simplest form of this
mechanism is found in early amphibian embryos (see [5] at page 24). Here (see
the picture in the left part of Table 1) cyclin (C) is synthesized at a constant rate
and triggers the transformation of inactive (M+) into active (M) cdc2 protein,
which leads to the formation of a complex known as M-phase promoting factor
(MPF). MPF triggers mitosis, but at the same time M elicits the activation of a
protease from state X+ to X . The active protease then degrades cyclin resulting
in the inactivation of cdc2. This brings the cell back to initial conditions and a
new division cycle can take place. The ODE presented in the right part of Ta-
ble 1 is the differential model of dynamics described in the left part of Figure 1
at page 277, where C, M, X are the concentrations of C, M, X respectively and
1 − M, 1 − X are the concentrations of M+, X+ respectively (the definitions of
the parameters of the ODE model of table 1 are not simple and are not relevant
for our further discussion, however they can be found in [3]).

Table 1. Goldbeter’s oscillator, which has a cycle of about 25 min [3]

dC
dt

= vi − vdX C
Kd+C

− kdC
dM
dt

= VM1
C

Kc+C
(1−M)

K1+(1−M)
− V2

M
K2+M

dX
dt

= MVM3
(1−X)

K3+(1−X)
− V4

X
K4+X

Goldbeter’s Mitotic Oscillator Modeled by MP Systems 275

2 MP Systems

Metabolic P systems, or P metabolic systems, represent metabolic processes in
a discrete mathematical framework. The letter P of MP systems comes from
the theoretical framework of P systems introduced by Gheorghe Păun [14] in
the context of membrane computing. In fact MP systems are a special class of P
systems introduced in 2004 [11] to express metabolism in a discrete mathematical
setting.

A metabolic P system is essentially a multiset grammar where multiset trans-
formations are regulated by functions. Namely, a multiset rule like A + B → C
means that a number u of molecules of kind A and the same number u of
molecules B are replaced by u molecules of type C. The value of u is the flux of
the rule application. Assume to consider a system at some time steps 0, 1, 2, . . . , t,
and consider a substance x that is produced by rules r1, r3 and is consumed by
rule r2. If u1[i], u2[i], u3[i] are the fluxes of the rules r1, r2, r3 respectively, in the
passage from step i to step i + 1, then the variation of substance x is given by:

x[i + 1] − x[i] = u1[i] − u2[i] + u3[i] (1)

In a MP system it is assumed that in any state the flux of each rule is provided
by a function, called regulator of the reaction. Substances, reactions, and regu-
lators (plus parameters which are variables different from substances occurring
as arguments of regulators) specify a discrete dynamics at steps indexed in the
set N of natural numbers. Moreover, a temporal interval τ , a conventional mole
size ν, and substances masses are considered, which specify the time and pop-
ulation (discrete) granularities respectively. They are scale factors that do not
enter directly in the definition of the dynamics of a system, but are essential for
interpreting it at a specific physical level of mass and time granularity.

From a mathematical point of view, a MP system M of type (n, m, k), that
is, of n substances, m reactions and k parameters (this type will be implicitly
assumed), is specified as follows (see also [10]):

Definition 1 (MP system). A MP system is a discrete dynamical system
specified by a construct

M = (S, R, H, Φ, τ, ν, μ)

where S, R are finite disjoint sets and the following conditions hold (n, m, k ∈ N):

– S is a set of n substances (the types of molecules) determining, for any
metabolic state of the system, a vector X of substance quantities which varies
on Rn;

– R is a set of m reactions specified by m pairs (r−1 , r+
1), . . . , (r−m, r+

m) ∈ Nn ×
Nn, composed by the left and right vectors of the reactions (relative to the
reactants and to the products respectively). The matrix A = (r#

1 , . . . , r#
m) is

the stoichiometric matrix associated to the reactions having as columns the
stoichiometry balances of the rules;

– H : N → Rk is a function providing, at each step i ∈ N, the vector H [i] of
parameters;

276 V. Manca and L. Marchetti

– Φ = (ϕ1, . . . , ϕm) is a vector of regulators (or flux regulation functions),
where Φ : Rn × Rk → Rm provides the fluxes of reactions corresponding
to any global state of the system, that is, a pair in Rn × Rk constituted
by the metabolic state and by the parameter vector. Given a reaction r, the
substances and the parameters which occur as arguments of the corresponding
regulator ϕr are called the tuners of the reaction r.

– τ ∈ R is the time interval between two consecutive steps;
– ν ∈ R is the number of molecules which gives a (conventional) mole in the

model;
– μ ∈ Rn is the vector of the mole masses of substances.

Given a vector X [0] ∈ Rn relative to an initial state of a given system, the
dynamics of M is specified by the following vector recurrent equation, called
EMA[i] (Equational Metabolic Algorithm), where × is the usual matrix product,
and, in dependence on the context, + is the usual sum or the component-wise
vector sum:

X [i + 1] = A × U [i] + X [i] (2)

providing the state of the system X [i + 1], for each step i ∈ N, by means of
the vector of fluxes U [i] = (ur[i] | r ∈ R) where ur[i] = ϕr(a[i], b[i], . . .) and
a[i], b[i], . . . are components of X [i], H [i] which are the tuners of reaction r.

A MP system is completely described by a MP grammar where multiset rewriting
rules (reactions) are given with the corresponding regulators (plus parameter
evolution functions and scale factors for a complete specification of the system).
A MP grammar can be also specified by a MP graph where the relationships
between reactions and regulators appear in a more direct way. An example of
MP graph, which represents the Golbeters oscillator [3], is given in the right part
of Figure 1.

A Java software, called MetaPlab, was developed starting from a prototypal
version. MetaPlab is downloadable from the official site of MetaPlab software1.
This platform enables the user to design MP models by means of some useful
graphical tools, to simulate their dynamics, and to automatise some procedures
which can help the user to develop new models. MetaPlab is based on an exten-
sible set of plugins, namely Java tools, for solving specific tasks relevant in the
framework of MP systems. A guide for this software is available at the official
site of MetaPlab software.

2.1 The Log-Gain Principle of MP Systems

The log-gain principle was introduced in MP systems theory for solving the
following inverse dynamic problem [8,10]. Given a time series (X [i], H [i]) ∈ Rn+k

(for i = 0, 1, 2, . . . t) of some consecutive states and parameters of a metabolic
system (at a time interval τ), is it possible to deduce a corresponding time
series of vectors U [i] ∈ Rm which put in the equation (2) provide the time
series of substance quantities? This is the dynamical problem of reaction flux
1 http://mplab.scienze.univr.it

Goldbeter’s Mitotic Oscillator Modeled by MP Systems 277

Fig. 1. On the left: a numerical solution of the set of differential equations (right part
of Table 1) comprising the model introduced by A. Goldbeter (figure taken from [3]).
On the right: a MP graph which represents the Golbeter’s oscillator. Nodes: triangles
represent matter introduction and expulsion, circles C, M, Mp, X, Xp stand for sub-
stances, circles R1, R2, . . . , R7 for reactions, rounded corner rectangles for regulators,
and rectangles for parameters. Edges: transformation edges go from substances to re-
actions (consumption) and from reactions to substances (production), regulation edges
go from regulators to reactions, and influence edges go from substance or parameters
(tuners) to regulators.

discovery. The deduction of time series U [i] is related to the time granularity
τ of the systemic logic governing the matter transformations of the observed
metabolic states. When vectors U [i] are known, the discovery of maps Φ which
provide U [i], in correspondence to the vectors (X [i], H [i]), is a typical problem
of approximation which can be solved with standard techniques of mathematical
regression.

An important remark is due in this context. The approach of flux discovery
is essentially observational, macroscopic, and global, in a sense which is oppo-
site to the perspective of differential models, which is infinitesimal, and local. In
fact, we do not intend to discover the real kinetics responsible for the biochemi-
cal dynamics of each reaction, but we only try to capture the global pattern of
reaction ratios of an observed dynamics. In other words, leaving unknown the
real local internal dynamics, we decide to consider the system at an abstraction
level which is sufficient to reveal the logic of the behavior we observe. This more
abstract approach can be less informative, with respect to specific important
details, but such a more generic information could be very useful in discrimi-
nating important aspects of the reality, and often, especially in the case of very
complex systems, is the only way for grasping a kind of comprehension of the
reality under investigation.

We call the system (2) ADA (Avogadro and Dalton Action), when we search
to determine U [i] from the knowledge of substance quantities (Avogadro refers
to the integer stoichiometric coefficients, and Dalton to the summation of the
effects of reactions). The log-gain principle assists us by adding new knowledge
to the stoichiometric information of ADA equations. This principle derives from

278 V. Manca and L. Marchetti

Fig. 2. Correlation indices of the three substances for each model w. r. t. the values of
resolution time τ (on the top). Root mean square errors (RMSE) of the three substances
for each model w. r. t. the values of resolution time τ (on the bottom).

a general biological principle called allometry [1], according to which, in a living
organism, the global variation of its typical variables are proportional to the
relative variations of the variables related to them. In differential terms the rel-
ative variation in time of a variable coincides with the variation of its logarithm,
therefore we used the term “log-gain” for any law grounded on this assumption.
In the specific context of our problem, we assume that the relative variation
of a reaction flux is a linear combination of the relative variations of substance
quantities and parameters affecting the reaction. We refer to the papers [8,10]
for a detailed account on the log-gain theory of MP systems.

The Log-Gain Stoichiometric Stepwise regression algorithm (LGSS), presented
and motivated in [13], combines and extends the log-gain principle with the
classical method of Stepwise Regression [6,2], which is a statistical regression
technique based on Least Square Approximation [7,12] and a Fisher test F. In
fact stepwise regression tries to find the best combination of some prefixed basic
functions for approximating a given time series. In LGSS we add the specific

Goldbeter’s Mitotic Oscillator Modeled by MP Systems 279

Fig. 3. Plot of the number of different regressors and of the total number of monomials
for each model w. r. t. the values of resolution time τ

knowledge of the stoichiometry of the system under investigation and the re-
quirement that the log-gain principle has to be satisfied in the best possible way.
We do not give here the details of the algorithm, which was implemented by
suitable MATLAB functions, but it turned definitively out that the addition of
these two aspects, related to the particular nature of metabolism, provided an
effective improvement of the approximation performance of stepwise regression.

3 Statistical Distribution of Mitotic MP Models

In general, LGSS derives MP models from the time series of observed dynamics.
In the case of Golbeter’s oscillator [3,4,5] we found that by considering different
values of the resolution time τ , different analytical forms of regulation maps
were appropriate. By means of a suitable MATLAB implementation of LGSS,
we automatically generated 700 MP models (τ varying from 10−3 min to 700 ·
10−3 min with increments of 10−3 min). Figure 2 displays Pearson’s correlation
indices [16] and root mean square errors (RMSE) for each of these models. Each
model provides an RMSE with magnitude order at most equal to 10−2 and
permits the calculation of values which are highly correlated to the observed
one.

The regulation maps calculated by the LGSS are obtained starting from a
dictionary of 20 possible regressors, that is monomials of C, M and X with
degree less than or equal to 3 (i.e. the constant, C, M , X , C2, M2, X2, CM ,
CX , MX , C3, M3, X3, C2M , CM2, C2X , CX2, M2X , MX2 and CMX)2.
Figure 3 displays a diagram giving the number of regressors and the total number
of monomials occurring in all the regulation maps of each MP model. We need
at least 6 different regressors to get a good MP model while we need at least 18
monomials to define all the regulation maps that comprise a model.
2 Substances M+ and X+ are not considered because they depend on M and X

respectively.

280 V. Manca and L. Marchetti

Fig. 4. Number of MP models w. r. t. grammatical schemata (please see Table 2 for
details)

4 Model Classification According to Descriptional
Parameters

Given a MP grammar, providing the dynamics of a MP model, we can ab-
stract from the particular values of the constants of regressors by identifying
a MP grammatical schemata defined in terms only of the analytical form of
regressors constituting each regulation map. In this section we present the dis-
tribution of these grammatical schemata over the population of mitotic models.
We found that all the 700 models are distributed into 40 different grammat-
ical schemata. If we order these schemata according to the number of mod-
els where they occur we find the distribution given in Figure 4. For exam-
ple the grammatical schemata at the 10th position has 26 models. In Table 2
other descriptional indices of models are given for the first 14 grammatical
schemata which define 621 models from a total of 700 (89%). These indices
are useful for discriminating interesting aspects of the MP grammars and they
comprehend:

1. the number of regressors;
2. the total number of monomials;
3. the temporal grain of dynamics observation which is expressed by the values

of time interval τ ;
4. the best value of τ which is relative to the model which provides the best

dynamical approximation of the mitotic phenomenon;
5. the best RMSE which is the average value of the RMSE relative to the

substances curves corresponding to the best τ .

It is worthwhile to remark that the grammatical schemata occurring at the first
positions (with high frequency) are also the grammatical schemata having a
small number of regressors and monomials.

Goldbeter’s Mitotic Oscillator Modeled by MP Systems 281

Table 2. Descriptional indices of models given for the first 14 grammatical schemata
ordered as explained in section 4

Grammatical number of number of total n. of τ interval best τ best
schemata models regressors monomials (10−3 min) (10−3 min) RMSE

1 135 6 16 151 – 345 315 1.61 · 10−2

2 128 6 17 343 – 477 401 1.62 · 10−2

3 49 6 17 43 – 93 43 1.84 · 10−2

4 46 6 16 138 – 232 219 1.95 · 10−2

5 44 8 24 1 – 71 40 1.48 · 10−2

6 38 6 16 525 – 699 683 1.78 · 10−2

7 33 6 16 473 – 563 556 1.79 · 10−2

8 32 5 15 514 – 694 602 2.78 · 10−2

9 28 7 16 570 – 696 671 1.09 · 10−2

10 26 6 16 493 – 684 684 1.8 · 10−2

11 20 8 23 118 – 137 137 5.86 · 10−2

12 15 9 25 103 – 117 103 9.6 · 10−3

13 15 6 17 474 – 499 474 1.62 · 10−2

14 12 7 21 191 – 212 212 1.97 · 10−2

Table 3. The best MP mitotic oscillator whose MP grammar belongs to the grammat-
ical schemata 1 of Table 2 (τ = 315 · 10−3 min, RMSE ≈ 1.61 · 10−2). Constants and
initial values: vi = 0.025, k1 = 0.0158, k2 = 0.0168923, k3 = 0.0428226, k4 = 0.054506,
k5 = 0.03327, k6 = 0.0485192, k7 = 0.00245843, k8 = 0.540636, k9 = 0.219284,
k10 = 0.14129, k11 = 0.308615, k12 = 1.01307, k13 = 0.0338141, k14 = 0.468994,
k15 = 0.756053, k16 = 1.15991, C[0] = M [0] = X[0] = 0.01, M+[0] = X+[0] = 0.99.

r1 : ∅ → C ϕ1 = vi

r2 : C → ∅ ϕ2 = k1 + k2 C + k3 M + k4 X − k5 C2 − k6 CM
r3 : M+ → M ϕ3 = k7 + k8 CM
r4 : M → M+ ϕ4 = k9 M + k10 X
r5 : X+ → X ϕ5 = k11 C + k12 M
r6 : X → X+ ϕ6 = k13 + k14 X + k15 C2 + k16 CM

282 V. Manca and L. Marchetti

Table 4. The best MP mitotic oscillator whose MP grammar belongs to the grammat-
ical schemata 2 of Table 2 (τ = 401 ·10−3 min, RMSE ≈ 1.62 ·10−2). Constants and ini-
tial values: vi = 0.025, k1 = 0.0129, k2 = 0.0255671, k3 = 0.0666719, k4 = 0.0632731,
k5 = 0.0522867, k6 = 0.0749538, k7 = 0.02125, k8 = 0.836282, k9 = 0.00202831,
k10 = 0.385222, k11 = 0.14451, k12 = 0.392585, k13 = 1.2218, k14 = 0.0346891,
k15 = 0.586917, k16 = 0.962714, k17 = 1.35871, C[0] = M [0] = X[0] = 0.01,
M+[0] = X+[0] = 0.99.

r1 : ∅ → C ϕ1 = vi

r2 : C → ∅ ϕ2 = k1 + k2 C + k3 M + k4 X − k5 C2 − k6 CM
r3 : M+ → M ϕ3 = k7 C + k8 CM
r4 : M → M+ ϕ4 = k9 + k10 M + k11 X
r5 : X+ → X ϕ5 = k12 C + k13 M
r6 : X → X+ ϕ6 = k14 + k15 X + k16 C2 + k17 CM

Table 5. The MP mitotic oscillator with the minimum number of different regressors
(τ = 602 · 10−3 min, RMSE ≈ 2.78 · 10−2). Constants and initial values: vi = 0.025,
k1 = 0.0123, k2 = 0.116301, k3 = 0.0922507, k4 = 0.00704311, k5 = 0.148285, k6 =
0.0596357, k7 = 1.78159, k8 = 0.0162002, k9 = 0.922378, k10 = 0.119154, k11 =
0.0388314, k12 = 1.38018, k13 = 0.173718, k14 = 0.634806, k15 = 1.69501, C[0] =
M [0] = X[0] = 0.01, M+[0] = X+[0] = 0.99.

r1 : ∅ → C ϕ1 = vi

r2 : C → ∅ ϕ2 = k1 + k2 M + k3 X − k4 C − k5 CM
r3 : M+ → M ϕ3 = k6 C + k7 CM
r4 : M → M+ ϕ4 = k8 + k9 M + k10 X
r5 : X+ → X ϕ5 = k11 + k12 M
r6 : X → X+ ϕ6 = k13 C + k14 X + k15 CM

Goldbeter’s Mitotic Oscillator Modeled by MP Systems 283

Table 6. The MP mitotic oscillator with the minimum total number of monomials
(τ = 173 · 10−3 min, RMSE ≈ 2.67 · 10−2). Constants and initial values: vi = 0.025,
k1 = 0.0209, k2 = 0.0149329, k3 = 0.0351323, k4 = 0.0200062, k5 = 0.000662743,
k6 = 0.215816, k7 = 0.0696881, k8 = 0.0911799, k9 = 0.166106, k10 = 0.569463,
k11 = 0.00823672, k12 = 0.252676, k13 = 0.404647, k14 = 0.668527, C[0] = M [0] =
X[0] = 0.01, M+[0] = X+[0] = 0.99.

r1 : ∅ → C ϕ1 = vi

r2 : C → ∅ ϕ2 = k1 + k2 M + k3 X − k4 CM
r3 : M+ → M ϕ3 = k5 + k6 CM
r4 : M → M+ ϕ4 = k7 M + k8 X
r5 : X+ → X ϕ5 = k9 C + k10 M
r6 : X → X+ ϕ6 = k11 + k12 X + k13 C2 + k14 CM

4.1 Analytical Forms of Mitotic MP Grammars

In this section we will present a number of MP models where regulation maps
present very simple and nice forms especially in comparison with the analytical
form of Goldbeter’s model of Table 1. They were chosen according to some crite-
ria of representativeness that are based on the classification analysis developed
in the previous section.

Tables 3 and 4 give the best two MP mitotic oscillators whose grammars
belong to the first two grammatical schemata presented in Table 2. Tables 5
and 6 give the two simpler MP grammars which define a mitotic oscillator: the
first one uses the minimum number of different regressors (only 5: the constant,
C, M , X and CM) while the second one uses the minimum (total) number of
monomials (only 14 monomials).

5 Conclusions

In this paper, by using Golbeter’s oscillator as a case study, we show that
metabolic P systems yield a robust method for biological modeling. The method
we used can be applied without any knowledge about reaction rate kinetics,
and can provide, with respect to differential models, different and even simpler
mathematical formulations. This possibility is strictly related to the chosen time
scale of observed dynamics, and seems to be a promising perspective towards
multi-scale modeling, which is a challenging aspect in systems biology.

284 V. Manca and L. Marchetti

In [13] we develop a systematic analysis and a generalization of the algorithm
of Log-Gain Stoichiometric Stepwise Regression (LGSS) on which our results
are based. It combines the equational formulation of MP dynamics with the
log-gain principle and with the classical statistical regression technique of step-
wise regression. This algorithm represents the most recent solution, in terms
of MP systems, of the inverse dynamics problem, that is, of the identification
of (discrete) mathematical models exhibiting an observed dynamics and satis-
fying all the constraints imposed by the specific knowledge about the modeled
phenomenon.

References

1. von Bertalanffy, L.: General Systems Theory: Foundations, Developments, Appli-
cations. George Braziller Inc., New York (1967)

2. Draper, N., Smith, H.: Applied Regression Analysis, 2nd edn. John Wiley & Sons,
New York (1981)

3. Goldbeter, A.: A minimal cascade model for the mitotic oscillator involving cyclin
and cdc2 kinase. PNAS 88(20), 9107–9111 (1991)

4. Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms: The molecular
bases of periodic and chaotic behaviour. Cambridge University Press, Cambridge
(1996)

5. Goldbeter, A.: Computational approaches to cellular rhythms. Nature 420, 238–245
(2002)

6. Hocking, R.R.: The Analysis and Selection of Variables in Linear Regression. Bio-
metrics, 32 (1976)

7. Luenberger, D.G.: Optimization by Vector Space Methods. John Wiley & Sons,
Chichester (1969)

8. Manca, V.: Log-Gain Principles for Metabolic P Systems. In: Condon, A., et al.
(eds.) Algorithmic Bioprocesses. Natural Computing Series, ch. 28, pp. 585–605.
Springer, Heidelberg (2009)

9. Manca, V.: Fundamentals of Metabolic P Systems. In: [15], ch. 19.Oxford Univer-
sity Press, Oxford (2010)

10. Manca, V.: Metabolic P systems. Scholarpedia 5(3), 9273 (2010)
11. Manca, V., Bianco, L., Fontana, F.: Evolutions and Oscillations of P systems:

Theoretical Considerations and Application to biological phenomena. In: Mauri,
G., Păun, G., Jesús Pérez-J́ımenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC
2004. LNCS, vol. 3365, pp. 63–84. Springer, Heidelberg (2005)

12. Manca, V., Marchetti, L.: Metabolic approximation of real periodical functions.
Journal of Logic and Algebraic Programming (2010), doi:10.1016/j.jlap.2010.03.005

13. Manca, V., Marchetti, L.: Log-Gain Stoichiometic Stepwise regression for MP sys-
tems. IJFCS (to appear, 2010)

14. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
15. Păun, G., Rozenberg, G., Salomaa, A. (eds.): Oxford Handbook of Membrane

Computing. Oxford University Press, Oxford (2010)
16. Pearson, K.: Notes on the History of Correlation. Biometrika 13(1), 25–45 (1920)

Modelling Spatial Heterogeneity and
Macromolecular Crowding with Membrane

Systems

Ettore Mosca1, Paolo Cazzaniga2, Dario Pescini2,
Giancarlo Mauri2, and Luciano Milanesi1

1 Institute for Biomedical Technologies, National Research Council, Via Fratelli
Cervi, 20090 Segrate (MI), Italy

{ettore.mosca,luciano.milanesi}@itb.cnr.it
2 Department of Informatics, Systems and Communications, University of

Milan-Bicocca, Viale Sarca 336, 20126 Milan, Italy
{cazzaniga,pescini,mauri}@disco.unimib.it

Abstract. In biological processes, intrinsic noise, spatial heterogeneity
and molecular crowding deeply affect the system dynamics. The classic
stochastic methods lack of the necessary features needed for the descrip-
tion of these phenomena. Membrane systems are a suitable framework
to embed these characteristics; in particular, the variants of τ -DPP and
Sτ -DPP allow the modelling and stochastic simulations of multi-volume
biochemical systems, in which diffusion and size of volumes and chemi-
cals are taken into account improving the description of these biological
systems. In this paper we show, by means of two models of reaction-
diffusion and crowded systems, the correctness and accuracy of our sim-
ulation methods.

1 Introduction

Membrane systems [25] (also called P systems) have been recently exploited for
the modelling of biological systems and for the investigation of their dynamical
properties (we refer the reader to [28] for an updated bibliography). There are
several important features that makes P systems suitable for the modelling of
biological systems: a membrane structure is used to describe a compartmental-
ized environment, in which membranes are organized according to a specified
hierarchy. Inside different membranes, different sets of objects (e.g. molecular
species) can be defined along with sets of multiset rewriting rules (e.g. chemical
reactions) to describe the evolution of the system.

On the other hand, there are some characteristics of the basic definition of
P systems which are not adequate for the description of the biological reality.
Among others, the maximal parallelism of the rules application, which consists in
the application of all rules by consuming all objects present in the system, or the
non deterministic selection of concurrent rules, are not suitable to the description
of the stochasticity usually present in biological systems where some molecular

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 285–304, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

286 E. Mosca et al.

species occur in small quantities. In order to achieve a better description of bi-
ological systems, the variant of dynamical probabilistic P systems (DPPs) [27]
has been introduced. In DPPs, the maximal parallelism has been mitigated by
assigning probabilities to the rules, and these values vary according to the sys-
tem state. By exploiting these values, it is possible to provide a description of
the system’s dynamics, that is, DPPs allow to reproduce the stochastic varia-
tions of the elements (i.e. chemical species) occurring in the system. However,
this description is only qualitative, in the sense that an effective (physical) time
streamline cannot be directly associated to the evolution steps of the system.

τ -DPP has been introduced to overcome the limitations of DPPs, providing
a quantitative description of a system dynamics, by extending the single-volume
algorithm of tau-leaping [8].

In order to correctly describe the behaviour of a system, τ -DPP runs in parallel
inside each volume. A modified version of the tau-leaping procedure presented
in [8] is exploited to compute the length of the step τ . In this novel version of
the simulation algorithm, the least value for the time increment, among those
computed inside each volume, is used to sample the number of reactions to
execute (as in the original tau-leaping algorithm). Thanks to this “common”
time increment, shared by all volumes, the simulation is synchronized at each
step, allowing the correct passage of the molecules involved in communication
rules.

A novel variant of τ -DPP, presented in [11], has been introduced to consider
the size of volumes and objects involved in a system, in order to better describe
systems where the “space” play an important role in the dynamics, such as
crowded systems. This variant of our multi-volume stochastic simulation algo-
rithm, called Sτ -DPP, is based on the same modelling framework of τ -DPP, and
it exploits the same strategy for the simulation of the system’s behaviour.

τ -DPP and Sτ -DPP algorithms can be used in the modelling and simula-
tion of reaction–diffusion (RD) systems and crowded environments. RD systems
are mathematical models used to describe those chemical systems for which the
spatial distribution of chemicals influence the overall dynamics. The standard
methods used to describe such systems are based on partial differential equa-
tions; however, when the intrinsic fluctuations of the chemical system play a
major role in the dynamic, as in the case of many systems of interest for bi-
ology, a stochastic approach is more suitable. The intracellular environment is
considered crowded since it is characterised by the presence of high concentra-
tions of soluble and insoluble macromolecules; therefore, the classic approaches
which consider molecules as points (without specifying their size), are no longer
adequate. Under crowded conditions, the rate of some cellular processes can be
increased or decreased, according to the “free space” in the system. By using
Sτ -DPP, it is possible to consider the size of reaction volumes and chemicals,
achieving a correct description of a crowded system by computing the reactions
probability according to the free space occurring in a volume.

In this paper we show the simulation of the heat equation by means of τ -DPP,
proving its correctness in the simulation of diffusive processes. To this aim, we

Modelling Spatial Heterogeneity with P Systems 287

compare the results of the stochastic simulations with the exact solution of the
heat equation. Afterwards, we present the results of the simulation of a crowded
environment, showing how macromolecules affect the reactions probability and
the overall system dynamics.

The paper is organised as follows. In the next section we give a description
of spatial heterogeneity and macromolecular crowding in living cells, and we
briefly present the classic computational approaches used in the description of
these phenomena; in Section 3, we describe the stochastic simulation algorithms
we have developed for the modelling and description of multi-volume systems. In
order to validate our approaches for the simulation of RD systems and crowded
environments, we present in Section 4 the results obtained from the simulation
of the heat equation, and in Section 5 the simulation of a biological system
with macromolecules that induce crowding effects. We conclude with some re-
marks about the results of the presented systems and with some possible future
extensions.

2 Spatial Heterogeneity and Macromolecular Crowding
in Living Cells

Living cells are very far from the homogeneous and diluted compartment that
is often used for their modelling. These requirements can be considered satisfied
in many cases without taking them explicitly into account; however, there are
several processes in which the effects of spatial heterogeneity (due to diffusive
processes) and crowding (caused by the presence of macromolecules) must be
considered in order to capture the correct system dynamics.

2.1 Reaction-Diffusion Systems

RD systems are mathematical models used to describe those chemical systems for
which the spatial distribution of chemicals influences the overall dynamics. The
standard approach exploits a continuous time and space domain description of
the systems, such as the partial differential equations, where the mass transport,
the chemical kinetics and the conservation laws, together with the boundary
conditions, are embedded within the same set of equations that can be solved
analytically or numerically.

When the intrinsic fluctuations of the chemical system play a major role in
the dynamics, as is the case for many systems of interest for Biology, a master
equation approach is more suitable [4,17]. The chemical master equation formu-
lation adopts a mechanistic perspective on the chemical system describing it as
a sequence of collision events among molecules. Each of these scattering events
can lead either to a new compound (reactive collision) or to an elastic scattering
(diffusive collision) which does not alter the chemical species distributions but
only the particles speed and direction. Which of the two collisions pathways will
be followed by each scattering event is determined by the energy involved in
the process: if this energy exceed the Arrhenius threshold (activation energy)

288 E. Mosca et al.

then the two molecules will react to form the new compound. According to this
scheme it is possible to separate the RD process into a free flight phase followed
by the interaction phase. The resulting dynamics is the superposition of a brow-
nian motion (random walk) with an interaction/reaction process. The existence
of an activation energy imposes that the diffusive events are the most probable
ones, if the environment in which the reactions take place is homogeneous, this
picture corresponds to a well stirred reactor and the dynamics can be tracked
by means of a stochastic simulation algorithm such as the Gillespie’s one [17].

A natural extension of the master equation approach to heterogeneous (space)
systems consists of dividing the original volume V into smaller sub-volumes Vv,
each one with a characteristic length h (Vv = hd, being d ∈ {1, 2, 3} the spatial
dimensions), such that each of these sub-volumes can be considered homoge-
neous. Moreover, it is possible to define a mean jump frequency D̃i,v [4] for each
chemical species Si in the sub-volume Vv, in order to connect the microscopic de-
scription of the master equation with the macroscopic Fick’s diffusion coefficient
Di

D̃i,v =
2d

h2
v

Di, (1)

and to verify if the well stirred condition still holds. The latter requirements
is equivalent to impose in each sub-volume that the diffusion time τD � h2

2dD
is much smaller then the reaction waiting time τR [5], condition that should be
also granted for the molecules diffusing across the sub-volumes. This observation
allows to define the expression for the stochastic kinetic constant associated to
the “diffusive” reactions

cD =
D

h2 (2)

that mimic the molecules movement from one sub-volume to another.

2.2 Macromolecular Crowding

The intracellular environment is characterised by the presence of high concentra-
tions of soluble and insoluble macromolecules [16,23,34]. This medium is termed
“crowded”, “confined” or “volume-occupied”, rather than “concentrated”, be-
cause single molecular species may occur at low concentrations, but all species
taken together occupy a considerable fraction of the total volume [24].

The term “macromolecular crowding” refers to the non-specific influence of
steric repulsions (i.e., a consequence of the mutual impenetrability of molecules
due to the Pauli exclusion principle) on molecular processes that occur in highly
volume-occupied media [29].

Due to macromolecular crowding, biochemical, biophysical, and physiological
processes in living cells may be quite different from those under idealized condi-
tions [33], and order-of-magnitude effects of crowding have been demonstrated
by both experimental and theoretical works on a broad range of processes [29].
All these effects are related to variations occurring in macromolecular thermo-
dynamics activities [33] and diffusion [15].

Modelling Spatial Heterogeneity with P Systems 289

To understand whether a crowded medium will increase or decrease the rate
of a process, it is important to take into account the changes induced by the
process itself on the available volume inside the system. Among others, binding
of macromolecules to one another, folding of proteins and nucleic-acid chains into
more compact shapes, the formation of aggregates, are all processes stimulated
in crowding conditions due to the induced net increase of the available volume
[15].

The other main effect of macromolecular crowding is related to anomalous
diffusion. In crowded media, the mean squared displacement, 〈r2〉, of a solute
particle in three dimensions is related to the diffusion coefficient D, but it is no
longer linearly proportional to the time t:

〈r2〉 = 6Dtα (3)

If α < 1, the diffusion is called anomalous subdiffusion; on the other hand, if
α > 1 the diffusion is called anomalous superdiffusion; if α = 1 the diffusion
is normal. Crowding can reduce the rate of diffusion (according to the size of
the diffusing molecule and to the degree of volume occupancy) and can lead
to anomalous diffusion [3]. Large reductions in solute diffusion are probably
indicators of interactions between the solute and cellular components, such as
membranes [13]. Therefore, the rates of diffusion-controlled biochemical pro-
cesses – mainly affected by the diffusion of the reactants – will be reduced in
crowded media. The decrease in the diffusion rates due to crowding may also lead
to complex phenomena like fractal kinetics (anomalous reaction orders and time-
dependent reaction rate coefficients [21]) and spatial segregation of molecules [6].
In the latter case, as a consequence of the increased probability of recollision,
crowding will determine the increase of the reaction rate of processes charac-
terised by a low reaction probability [20].

2.3 Classic Computational Approaches

Computational approaches aimed at studying spatially heterogeneous systems
and molecular crowding have to deal with the tabulation of spatial position of
particles as a function of time. Several computational frameworks can be used
to analyse such kind of systems [32]; we report hereafter the classic and most
used methods.

Molecular dynamics (MD) simulations provide detailed trajectories, but they
are computationally too expensive for simulating systems formed by a large num-
ber of atoms or with time scales above μs. MD has only been used in problems
involving time-scales of ns and space-scales of tens of nm.

Brownian dynamics (BD) is a particle-based stochastic approach used to de-
scribe the time and space motion of molecules. Time and space are continuous,
and noise is modelled by means of the Langevin equation. Crowded media can
be explicitly described since it is possible to represent crowder molecules. How-
ever, as the number of particle collisions increases, the BD simulations demands
a very high computational cost. Examples of methodologies based on BD are
Green’s function reaction dynamics algorithm [35], Smoldyn [2] and MCell [31].

290 E. Mosca et al.

Partial differential equations (PDEs) are a continuous and deterministic ap-
proach. PDEs represent the classical method used to model RD systems. Each
equation relates the time variation of a species concentration to its space varia-
tion and to the other species concentration. Crowding effects can be implicitly
represented acting on diffusion coefficients (e.g., by lowering their values) and
kinetic constants (e.g., by increasing their values). PDEs are usually solved us-
ing numerical methods (only in a few case the analytical solution is available);
moreover, as the time-step and the sub-volume size (the space domain is usu-
ally divided in a number of elements) are reduced, the solutions becomes more
accurate while the computational effort increases.

Cellular automata (CA) consist of a grid of cells (in any number of dimen-
sions), each cell has a finite set of states, and it evolves according to the neigh-
bours state. CA can be used to simulate RD systems at both microscopic and
mesoscopic scales, depending on the number of molecules associated with each
cell of the lattice. Crowding can be explicitly represented by considering crow-
der molecules or fixed barriers. For instance, people of the CyberCell project
modelled a virtual cell membrane using discrete automata [7].

Lastly, spatial approaches based on Gillespie’s method extend the stochastic
simulation algorithm [18] in order to represent an RD system as a set of a
well-stirred chemical reactors that communicate particles. The next sub-volume
method [14], spatial τ -leaping [30] and the method described in [5] are algorithms
that follow this approach; MesoRD [19] and SmartCell [1] are popular simulators.
As molecules are considered point particles, these tools cannot be utilised to
describe molecular crowding.

3 Multi-volume Stochastic Simulation Algorithms Based
on P Systems

The standard algorithms for the simulation of biochemical systems (see, for in-
stance, the stochastic simulation algorithm (SSA) [18]) have been developed for
the description of the exact behaviour of systems enclosed in a single volume.
Recently, novel approaches have been introduced to simulate spatial heterogene-
ity, as in the next sub-volume method [14]. By using these methods, the volume
of a system is divided into a number of separated sub-volumes, whose size is
small enough to satisfy the requirements of the SSA, so that the probabilities of
the reactions and the diffusive events occurring inside each sub-volume can be
properly described.

A limitation of these stochastic methods consists in the fact that the size of
chemicals and of the volumes in which reactions take place is not considered
during the simulation of the system dynamics. To overcome the issues related to
spatiality and size of chemicals, we have recently introduced two multi-volume
stochastic algorithms called τ -DPP [9] and Sτ -DPP [11], which will be presented
in the next subsections. These methods combine a variant of P systems called
dynamical probabilistic P systems [27] with the simulation method of tau-leaping
[8]: the first one is suitable for the description of chemical, biological and eco-
logical systems, and can be easily applied to the modelling and simulation of

Modelling Spatial Heterogeneity with P Systems 291

reaction-diffusion systems; the second one can be used for the simulation of
crowded systems, since the size of chemicals and volumes is taken into account
during the description of the system behaviour.

There exist different simulation methods based on P systems: among others
we recall here the multicompartmental Gillespie’s algorithm [26]. This algorithm
is used to simulate systems composed by many volumes (also called compart-
ments), exploiting the Gillespie’s procedure. In particular, the direct method is
used for the computation of the time τ and the index of the next reaction to
execute within each compartment. This information is stored in a list which is
updated at each iteration, modifying the values related to the compartments
affected by the executed reaction. This strategy is very similar to that of the
next subvolume method [14], with the difference that the multicompartmental
Gillespie’s algorithm does not use a particular data structure such as a heap or
an indexed queue to efficiently handle compartments information.

In the description of biochemical systems modelled by means of this method,
the so called boundary rules are exploited. Such kind of reactions are used to
capture the features of the communication and the transformation of molecules.
In particular, the authors consider special cases of boundary rules which involve
molecules occurring in different compartments, though it is not very clear how
Gillespie’s theory for single volume systems can be used to describe the propen-
sity functions of reactions that are simultaneously active in two compartments,
nor in which compartment this information is used to compute the value of τ .

τ -DPP

τ -DPP [11] is a computational method which can be used to describe and perform
stochastic simulations of complex biological or chemical systems. The “complex-
ity” of the systems that can be managed by means of τ -DPP, resides both in
the number of the (chemical) reactions and of the species involved, and in the
topological structure of the system, that can be composed by many volumes.
For instance, cellular pathways involving several spatial compartments (as the
extracellular ambient, the cytoplasm, the nucleus, etc.), or multicellular systems
like bacterial colonies, or multi-patched ecological systems as metapopulations,
are all examples of complex systems that could be investigated with τ -DPP.

The correct behaviour of the whole system is achieved by letting all volumes
evolve in parallel, and by using the following strategy for the choice of time
increments. At each iteration of τ -DPP, we consider the current state of each
volume (determined by the current number of molecules), and we calculate a
time increment independently in each volume (according to the standard tau-
leaping algorithm [8]). Then, the smallest time increment is selected and used
to evaluate the next-step evolution of the entire system. Since all volumes lo-
cally evolve according to the same time increment, τ -DPP is able to correctly
work out the global dynamics of the system. Moreover, by adopting this proce-
dure, the simulated evolutions of all volumes get naturally synchronized at the
end of each iterative step. The synchronization is also necessary – and exploited

292 E. Mosca et al.

together with a parallel update of all volumes – to manage the communication of
molecules among volumes (i.e., diffusive events), whenever prescribed by specific
(communication) rules.

The system is defined by means of a set of N volumes organised according
to the hierarchy specified by the membrane structure. The state of the whole
system is characterised by all multisets Mv occurring inside each volume Vv

(1 ≤ v ≤ N).
Inside the volumes, the sets of rules R1, . . . , RN are defined along with the

sets of stochastic constants C1, . . . , CN .
Each volume Vv can contain two different kinds of rules, termed internal and

communication rules. An internal rule describes the modification, or evolution,
of the objects inside the single volume where it is applied, while a communication
rule sends the objects from the volume where it is applied to an adjacent volume
(possibly modifying the form of these objects during the communication step).

More precisely, internal rules have the general form α1S1 + α2S2 + · · · +
αmSm → β1S1 + β2S2 + · · · + βmSm, where S1, . . . , Sm belong to the set of
distinct object types S, and α1, . . . , αm, β1, . . . , βm ∈ N. For instance, S1, . . . , Sm

can correspond to molecular species, and, in this case, α1, . . . , αm, β1, . . . , βm

represent stoichiometric coefficients. The objects appearing in the left-hand side
of the rule are called reagents, while the objects on the right-hand side are called
products. Note that, usually, we will consider the case where (at most) three
objects appear in the reagents group. The rational behind this is that we require
biochemical reactions to be (at most) of the third-order, since the simultaneous
collision and chemical interaction of more than three molecules at a time, has
a probability to occur close to zero in real biochemical systems. Moreover, the
interaction among more than three molecules can be modelled by using a set of
successive reactions with lower order. In what follows, we will refer to rules or
reactions without distinction.

When dealing with communication rules inside a volume, besides defining the
sets of reagents and products, it is necessary to specify the target volume where
the products of this rule will be sent1. Formally, a communication rule has the
form2 α1S1 + α2S2 + · · · + αmSm → (β1S1 + β2S2 + · · · + βmSm, tar), where
S1, . . . , Sm ∈ S are distinct object types, α1, . . . , αm, β1, . . . , βm ∈ N, and tar
represents the volume where the products of the reaction diffuse.

A complete an extensive description of the τ -DPP algorithm and some appli-
cations can be found in [9,10].

Sτ -DPP

Sτ -DPP [11] is obtained combining the structure definition of tissue P systems
[22] with the simulation strategy used in τ -DPP [9]. Here, nodes are arranged

1 This definition can be easily extended in order to assign a different target volume to
each object appearing in the set of products.

2 The condition that at most three objects appear as reagents is usually required also
for communication rules.

Modelling Spatial Heterogeneity with P Systems 293

in a tissue–like fashion, but each of them can have a complex internal hierarchy,
organised in a tree–like structure. Moreover, in this new variant we consider sizes
for both membranes and objects, and the rules defined inside each membrane will
be enabled only in the case there is sufficient free space in the membrane where
the rule is applied, for instance, to “create” new objects or to receive objects
from other volumes. The size considered here can be used in the modelling and
simulation of biochemical systems where diffusive processes play an important
role, and it is necessary to avoid the unlimited accumulation of objects in a
region of finite size.

In order to correctly describe the hierarchy of complex nodes of the system
we first need a graph representing the topology of the membranes. In particular,
this graph can have undirected edges to indicate that two membranes are placed
at the same hierarchical level (as in the standard definition of tP systems [22]).
On the other hand, directed edges of the graph are used to denote that the
“source” membrane contains the “target” membrane.

A second directed graph is needed to represent the communication channels
among membranes. Clearly, the arrows of the edges indicate the direction of
the (permitted) flow of objects between different compartments. Note that, this
communication graph can contain edges that are not indicated in the graph which
describes the membrane structure. The meaning of these particular edges is to
represent communication channels that connect non adjacent membranes. Using
these arcs, it is then possible to create privileged pathways of communication
between membranes.

The features of Sτ -DPP can be exploited to represent (among other real life
systems) reaction–diffusion systems [12]. In this case, the membrane structure
can be used to represent a reaction volume as the composition of a number of
finite size sub-volumes, and the communication graph will describe the diffusion
directions through the system.

With respect to the definition of τ -DPP, when using this simulation strategy
we need to specify additional information about the system under investigation.
First, we need to provide the sizes of the volumes composing the system and of
the molecular species occurring within them. Second, we have to compute the
initial free space of each volume.

Given the internal state Mv of a membrane Vv together with size sS1 , . . . , sSm

of the species, and the size sV1 , . . . , sVN of the volumes, it is possible to define
the occupied volume in Vv as:

O(Vv) =
m∑

i=1

(mi · sSi) +
∑

Vl∈aT (Vv)

sVl

where mi represents the amount of the species Si and aT (Vv) is the set of volumes
contained within the volume Vv. Hence, it is possible to define the value of the
free space in Vv as:

F (Vv) = sVv − O(Vv)

Internal and communication rules are defined as in τ -DPP, but, at each rule
execution (internal or communication), apart from updating the molecular

294 E. Mosca et al.

amounts of the species involved in the reaction, also the free space value has
to be updated. The update operation adds to the free space value the “volume”
of the objects consumed or sent by the rule and subtracts the “volume” of the
objects produced by the rule or received from other membranes. In particu-
lar, after the execution of an internal rule, the free space in Vv is updated as
F (Vv) = F (Vv)−

∑m
i=1(βi−αi)·sSi . On the contrary, when a communication rule

is applied, we need to update the free space of Vv (i.e., the membrane where the
reaction is applied) as F (Vv) = F (Vv) +

∑m
i=1 αi · sSi and the free space of each

target volume Vtgtk
indicated by the rule: F (Vtgtk

) = F (Vtgtk
) −

∑m
i=1 βi,ksSi .

At each iteration of the algorithm, in order to obtain a correct description of
the system’s dynamics, we need to check if a rule r (internal or communication)
is applicable. A complete description of Sτ -DPP can be found in [11]; some
additional details about the implementation of the algorithms will be provided
in the next section.

Handling Diffusive Events and Crowding in τ -DPP and Sτ -DPP
Algorithms

The iterations of the simulation algorithms described in the previous sections are
composed of three main stages: (i) computation of the reactions probability; (ii)
calculation of the τ value; (iii) selection of the reactions to execute and check of
the system state consistency. During these stages we have to keep into account
some details in order to correctly describe diffusive events and the effect due to
crowded media, as described in what follows.

In the first stage, given the system state x, the probability a(x) of a rule appli-
cation (i.e. the propensity function) is generally computed as follows: a(x) = c·h,
where c is the stochastic constant associated to the rule and h is a combinatorial
function depending on the left-hand side of the rule [18]. This definition is used
in τ -DPP to compute the propensity functions of each volume of the system.
Note that, this operation is performed independently in each volume; hence, the
propensity function of the reactions occurring inside a volume Vv depends only
on its current state (defined as Mv).

For what concerns the Sτ -DPP algorithm, the propensity functions of the
internal reactions are computed by also considering the value of the free space
of the current volume. So doing, we can correctly simulate crowded systems: we
suppose that while first order reactions (e.g. a → b) are not affected by the value
of the free space, in the case of reactions of higher orders, the lack of free space
enhances the reaction probability. Therefore, the propensity functions of second
and third order reactions are computed as follows:

a(x) =
c · h
F (V)

. (4)

On the other hand, communication rules representing diffusive events are not in-
fluenced by the free space left in the volume; therefore, their propensity functions
are computed as in the standard procedure.

Modelling Spatial Heterogeneity with P Systems 295

During the second phase of the algorithms, inside each volume of the system,
a candidate length τ of a step is obtained by using the following equation:

τ = min
i∈S

{
max{εmi/gi, 1}

|μi(x)| ,
max{εmi/gi, 1}2

σ2
i (x)

}

,

where gi is a value depending on the highest order of reaction in which a species
i ∈ S is involved and ε is an error control parameter, while μi(x) and σ2

i (x) are
calculated as described below (according to the definition presented in [8]):

μi(x) =
∑

j∈Rncr∩Rint

(vi,j aj(x)) +
∑

j∈Rncr∩Rcomm

(−lhsi,j aj(x)) , ∀i ∈ S,

σ2
i (x) =

∑

j∈Rncr∩Rint

(
v2

i,j aj(x)
)

+
∑

j∈Rncr∩Rcomm

(
−lhs2

i,j aj(x)
)
, ∀i ∈ S,

where j belongs to the set R of reactions of the considered volume, the restric-
tion on the set of noncritical reactions Rncr is present, due to the conditions of
the modified non-negative Poisson tau-leaping [8], while Rint represents the set
of internal rules and Rcomm the set of communication rules. During the compu-
tation of μi and σ2

i , we consider the variation of the species i due to the reaction
j (specified by the value vi,j), for what concerns internal rules. On the other
hand, we only consider the variation of the species i described by the left-hand
side of a communication rule j (lhsi,j), since the current volume is affected only
by these variations.

There exists different approaches in which communication rules (i.e. diffusive
processes) are considered as special events and their probabilities are computed
by using a deterministic formulation, and during the calculation of μi and σ2

i

besides the changes of the species due to the rule, also the contribution of the
neighbourhood volumes is taken into consideration (see, for instance, [30]).

In the last part of the algorithms, the set of reactions to be executed inside
each volume is selected, and before the system update, the applicability of this
set has to be verified in order to obtain a consistent system state.

Both τ -DPP and Sτ -DPP select the number of occurrences of each reaction j
(inside each volume) by sampling a random number from a Poisson distribution
having mean and variance equal to aj(x)τ . Afterwards, the applicability of the
set of selected reactions is verified: both algorithms check if the system state
resulting from the execution of the reactions contains negative values for the
amount of some molecular species. Moreover, in the case of Sτ -DPP, the set of
reactions selected in a volume is applicable only if there is enough free space
after the rules application [11].

As stated above, a rule can be executed only if the free space of the volume,
after the rule application, is greater or equal to zero. The rule applicability
is computed differently for internal and communication rules. Given an inter-
nal rule occurring inside volume Vv, we need to check if, after the rule exe-
cution, F (Vv) ≥ 0. For what concerns a communication rule r, we also need

296 E. Mosca et al.

to check all the free space of all the target volumes indicated by the rule:
∀ tgtl of r, F (Vtgtl

) ≥ 0, where the values βj are the stoichiometric coefficients
of the molecular species associated with Vtgtl

.
Note that, using a strategy based on the tau-leaping algorithm to describe

the behaviour of the system, at each iteration step a certain number of rules is
applied in parallel. Hence, the applicability of the entire set of selected rules has
to be verified. This operation is realised by computing the free values of each
volume Vv considering the contribution of all the selected rules; if the values of
F (Vv) is greater or equal to zero (for each volume), then the execution is allowed.

If any of these requirements is not satisfied, then the value of τ is reduced by
half and a new set of reactions is selected (this strategy has been proposed in [8]).
On the other hand, the iteration of the τ -DPP and Sτ -DPP algorithms proceeds
by updating the system state and the simulation time; and the simulation finishes
if a termination criterion is reached.

4 Validation of the Diffusion Implemented with τ -DPP

In this section we present some results obtained from simulations performed by
using τ -DPP in order to verify if diffusion is correctly handled by our simula-
tion algorithm. Berstein [5] showed that it is possible to simulate mesoscopic
RD systems using the Gillespie’s algorithm comparing the simulations with the
solution of diffusion equations. We adopted the same strategy in order to show
that τ -DPP can be used to reproduce diffusion introducing a reasonably small
error.

4.1 A Popular Diffusion Equation: The Heat Equation

The heat equation is a partial differential equation which describes the heat
distribution in a region during time, and it is a special case of diffusion equation
where the diffusion coefficient D is constant in time and space:

∂u(−→x , t)
∂t

= DΔu(−→x , t) (5)

where u(−→x , t) is the density of the diffusive material in −→x at time t, and Δ =
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian operator.
To test the accuracy of τ -DPP in reproducing diffusion, we studied the uni-

dimensional diffusion of the molecule S in the region Ω ⊂ R:

∂[S](x, t)
∂t

= D
∂2[S](x, t)

∂x2 , ∀x ∈ Ω (6)

where [S](x, t) indicates the concentration of molecule S in position x at time t.
In particular, we considered the region Ω = [0, 1] and the Neumann boundary
conditions:

∂[S](0, t)
∂x

=
∂[S](1, t)

∂x
= 0, (7)

Modelling Spatial Heterogeneity with P Systems 297

indicating that the flux from outside into Ω is null. Considering D = 1, an exact
solution in the region Ω satisfying Eq. 7 is:

[S](x, t) = SΩ[1 + 1
2e−π2γ2tcos(γπx)] (8)

where SΩ is the total number of S molecules inside the system and γ is a non
negative integer. In all the cases that we will discuss in the next section we have
considered γ = 3 and SΩ = 500.

4.2 Comparison between τ -DPP and the Heat Equation

In order to compare the simulations performed by using τ -DPP with the con-
tinuous exact solution of the heat equation (Eq. 8) at a given time instant, we
dived the region Ω into N smaller adjacent regions Vv such that Ω =

⊕
v Vv,

and Vv = Ω/N .
A series of issues have to be handled to realize a meaningful comparison. First,

since τ -DPP algorithm is stochastic, it is crucial to consider a high number of
simulations in order to obtain a significant comparison with the heat equation.
We accomplished this task averaging the results of a sufficiently high number
G of simulations. Note that, in general, this average is not representative of the
final state of a system, like in the case of multistable systems, in which averaging
may lead to fictitious states. However, when the average solution converges to
the system state – as in the case we are considering here – the deviations from
the exact solution can be considered as a type of sampling error and the average
solution is a good representative of the system state.

Second, since τ -DPP simulator works with molecules, rather than molecule
concentration, we must calculate the initial distribution of S molecules within
Vv, i.e., S1, . . . , SN , from the solution of Eq. 8 at time t = 0, in order to use this
distribution as input for τ -DPP. Moreover, we must calculate τ -DPP predicted
concentrations, [S∗]1, . . . , [S∗]N , from the distribution of S molecules over the
sub-volumes at a particular time point. These conversions have been defined ac-
cording to the following relation between concentration [S] and molecule number
S:

[Sv] =
Sv

Vv
, ∀v (9)

Note that the solution of Eq. 8 must be calculated using the appropriate vector
x = (x1, . . . , xv, . . . , xN), whose members are located at the middle of each
volume sVv :

xv =
Vv

2
+ (v − 1)Vv, v = 1, . . . , N (10)

Third, since the time increments τ are randomly generated, it is very unlikely
that the simulator will output a numerical solution exactly at a specific time
point t. Therefore, the molecule distribution computed by τ -DPP at a particular
time point t has been calculated as a linear interpolation of the two numerical
solutions at t1 < t and t2 > t, where t1 and t2 are, respectively, the points

298 E. Mosca et al.

computed by the τ -DPP that immediately precede and follow t. An example of
comparison between the heat equation and the τ -DPP simulations is shown in
Fig. 1, where it is possible to observe the high closeness between the simulations
and exact solution.

 350

 400

 450

 500

 550

 600

 650

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

[S
]

x

Fig. 1. The heat equation exact solution (line) and τ -DPP average results (dots) at
t = 0.0078034, SΩ = 500, G = 10000, γ = 3, sVv = 0.025

Quantitatively, the quality of the τ -DPP simulation e = 1, . . . , G has been
assessed considering, as in [5], the error due to the difference between the exact
solutions [Sv] and the concentrations computed using the numerical results of
τ -DPP [S∗

v,e]:

εv =
1
G

G∑

e=1

(

1 −
[S∗

v,e]
[Sv]

)

(11)

in the volume v, considering a pool of G simulations ran with the same settings.
Note that εv → 0 as [S∗

v,e] → [Sv] (obviously) and in the case in which the
distribution of [S∗

v,e] is symmetric with respect to the exact value [Sv]. The
errors εv have been averaged considering all the elements of Ω:

ε =
1
N

N∑

v=1

| εv | (12)

We studied the relation of ε with the number of simulations 10 ≤ G ≤ 10000
and the number of volumes 10 ≤ N ≤ 40 used to discretise the spatial region Ω.

As the number of simulations increases the sampling error decreases (as shown
in Fig. 2). In particular, we observed a decrease of one order of magnitude pass-
ing from 10 to 104 simulations in all cases with exception of sVv = 0.1 (N = 10),
where the decrease has been lower. Note that as G → 0 the lowest error is

Modelling Spatial Heterogeneity with P Systems 299

associated to settings with a higher sVv , while as G → ∞ the lowest error is
associated to lower sVv . This can be attributed to the noise: as sVv → 0, the
volumes will contain a lower number of molecules (high noise); hence, a higher
number of simulations is required to eliminate noise. This phenomenon has been
particularly evident in the study presented here due to the relatively low quantity
of molecules used, SΩ = 500, with respect to the number of volumes for the
discretisation of Ω, 10 ≤ N ≤ 40: we passed from Sv ∈ [10, 102] when sVv = 0.1
(N = 10) to Sv ∈ [1, 10] when sVv = 0.025, (N = 40).

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

 1 1.5 2 2.5 3 3.5 4

lo
g 1

0(
ε)

log10(G)

Fig. 2. Relation between the error ε and the number of simulations (G). sVv = 0.1 (*),
sVv = 0.05 (�), sVv = 0.033̄ (�), sVv = 0.025 (◦), γ = 3, t = 0.0078034.

Another source of error is associated with the spatial discretisation, i.e. with
the number of membranes in which Ω is divided into. In order to reduce the
contribution of the sampling error it is crucial to study the behaviour of the
spatial discretisation error with a high G. This error decreases as sVv → 0
(Fig. 3).

5 Macromolecular Crowding with Sτ -DPP

Sτ -DPP allows to model objects of arbitrary size that react and diffuse through
a spatial region composed of membranes of arbitrary size; therefore, Sτ -DPP can
be used to simulate crowded RD systems. In a previous work, we have shown
that Sτ -DPP are able to reproduce systems in which crowding determines a
slower motion of molecules [11].

In this section we show the effects of macromolecular crowding which increases
a biochemical reaction rate due to the increase of reaction collision probabilities,
that is in turn determined by the reduction of the free space induced by crowding.
In particular, the reduction of the space in a volume determines the increase of
the propensity functions of second and third order reactions, as described in
Section 3.

300 E. Mosca et al.

-2.35

-2.3

-2.25

-2.2

-2.15

-2.1

-2.05

-1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1

lo
g 1

0(
ε)

log10(Vv)

Fig. 3. Relation between the spatial discretisation error and the volumes size at time
t = 0.0078034

We accomplished this task by modelling a crowded RD system composed by
four species, A, B, C, Z, within the spatial region Ω ⊂ R2, represented using a set
of 81 membranes organised as a 9x9 bidimensional lattice, and two biochemical
reactions:

r1 : A + B c1−→ C (13)

r2 : C c2−→ A + B (14)

where c1 = 0.0001 and c2 = 0.001 are the stochastic constants. Stochastic con-
stants for diffusion rules have been set three orders of magnitude higher than
c1, c2, that is cDA = cDB = cDC = 0.16, in order to ensure τD � τR. The
size of species Z is three orders of magnitudes bigger than that of the other
species (sZ = 0.1, sA = sB = 0.0001 and sC = 0.0002) and it has been used to
represent macromolecular crowding. The simulation has been done considering
100 molecules of A and 100 molecules of B in each membrane while molecule
Z have been randomly distributed among the membranes; the number of Z has
been chosen in order to occupy 0 (diluted media) or approximately 1

3 (crowded
media) of the total volume. Note that, while molecules A, B, C can diffuse to
each first next neighbour, molecules Z do not diffuse.

For each membrane we determined the average value assumed by the propen-
sity function associated with the reaction defined in Eq. 13 (i.e. production of
C), during the simulation in the time interval [0, 10].

In the diluted condition the reaction propensity assumes approximately the
same value within all membranes, with mean value μ = 0.9237 and standard
deviation σ = 0.001842 (Fig. 4(a)). The distribution of the propensity functions
values has been affected by the addiction of crowding molecules: in this condition
we obtained mean μ = 1.451 and standard deviation σ = 0.498 (Fig. 4(b)). The
average reaction propensity values in the crowded media are up to 6 folds higher

Modelling Spatial Heterogeneity with P Systems 301

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8 9

(a)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8 9

(b)

Fig. 4. Average propensity function values of reaction r1 within the spatial domain in
(a) diluted (μ = 0.9237, σ = 0.001842) and (b) crowded conditions (μ = 1.451, σ =
0.498)

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

C

Time [a.u]

Fig. 5. Number of C molecules in the crowded volume 78 (row 7 and column 9 of
Fig. 4) in diluted (solid line) and crowded (dashed line) conditions

then in the diluted case, and their homogeneity over the system is affected by
the presence of highly reactive volumes in which the production of molecules C
is faster, as shown in Fig. 5.

6 Conclusions

In this work we examined the application of two membrane systems variants,
τ -DPP and Sτ -DPP, in order to model and simulate spatial heterogeneity and
molecular crowding, two important characteristics of living cells.

To capture spatial heterogeneity at the molecular level, a spatial domain must
be defined and the time evolution of possibly reacting molecules must be tracked
in different locations of the domain. We showed that τ -DPP can reproduce the dif-
fusion of molecules within a spatial region divided in a set of sub-volumes (mem-
branes) that can move (communicate) objects, according to a defined topology.

302 E. Mosca et al.

We tested diffusion using the same strategy followed by Bernstein [5], i.e.,
we compared the τ -DPP simulations with an analytical solution of a PDE for
the heat equation (a diffusion equation). Note that for most applications of real
interest biological processes analytical solutions are hardly available.

The error that we reported is slightly greater than the one found in [5]. This
is due to the fact that the τ -leaping algorithm – which stands at the basis of
τ -DPP – generates an approximate dynamics with respect to the exact solution
of the chemical master equation, whereas the Gillespie’s algorithm used in [5] is
exact. We think that this loss of accuracy (that can be a priori controlled) is well
balanced by the increase in performance that enables simulations of more com-
plex systems. The quantitative characterisation of this discrepancy is currently
under investigations and it will be published in a future work.

Molecular crowding can be explicitly modelled by the Sτ -DPP variant, an
extension of τ -DPP, in which - among other features - sizes are associated to
objects and membranes. We have previously shown that Sτ -DPP captures the
delay in the communication of objects between volumes due to crowded con-
ditions [11]. In this contribution we showed that Sτ -DPP can also be used to
reproduce the reaction rate increase observed in crowded media due to the in-
crease of recollision probability determined by the reduction of the available free
space in a volume. This effect has been captured by modifying the propensity
function calculation of second and third order reactions, and it has been shown
with an example concerning a crowded RD system in a bidimensional region.

Considering the results provided in this work, Sτ -DPP can be successfully
used to model and simulate crowded RD systems. It is worthy to note that, the
current version of Sτ -DPP has all the features to capture the major effects that
a crowded medium determines over RD system dynamics, and we plan to do
an extensive study of this topic in future. Moreover, an interesting direction of
investigation, enabled by the possibility of arbitrarily defining the volumes size
and the topology of their communication, consists in the use of Sτ -DPP to study
RD systems dynamics in structured regions (as the cytoplasm of living cells).

Acknowledgements

This work has been supported by the NET2DRUG, EGEE-III, BBMRI, EDGE
European projects and by the MIUR FIRB LITBIO (RBLA0332RH), ITAL-
BIONET (RBPR05ZK2Z), BIOPOPGEN (RBIN064YAT), CNR-BIOINFOR-
MATICS initiatives, FAR-09 “Modelli di calcolo naturale e applicazioni” Italian
initiatives and “Dote Ricercatori”: FSE, Regione Lombardia.

References

1. Ander, M., Beltrao, P., Ventura, B.D., Ferkinghoff-Borg, J., Foglierini, M., Kaplan,
A., Lemerle, C., Toms-Oliveira, I., Serrano, L.: Smartcell, a framework to simu-
late cellular processes that combines stochastic approximation with diffusion and
localisation: analysis of simple networks. Systems Biology 1(1), 129–138 (2004)

Modelling Spatial Heterogeneity with P Systems 303

2. Andrews, S.S., Addy, N.J., Brent, R., Arkin, A.P.: Detailed simulations of cell
biology with smoldyn 2.1. PLoS Computational Biology 6(3), e1000705 (2010)

3. Banks, D.S., Fradin, C.: Anomalous diffusion of proteins due to molecular crowding.
Biophysical Journal 89(5), 2960–2971 (2005)

4. Baras, F., Mansour, M.: Reaction-diffusion master equation: A comparison with
microscopic simulations. Physical Review E 54(6), 6139–6148 (1996)

5. Bernstein, D.: Simulating mesoscopic reaction-diffusion systems using the gillespie
algorithm. Physical Review E 71(4 Pt 1), 041103 (2005)

6. Berry, H.: Monte carlo simulations of enzyme reactions in two dimensions: fractal
kinetics and spatial segregation. Biophysical Journal 83(4), 1891–1901 (2002)

7. Broderick, G., Ru’aini, M., Chan, E., Ellison, M.J.: A life-like virtual cell membrane
using discrete automata. In Silico Biology 5(2), 163–178 (2005)

8. Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-
leaping simulation method. Journal of Chemical Physics 124, 44109 (2006)

9. Cazzaniga, P., Pescini, D., Besozzi, D., Mauri, G.: Tau leaping stochastic simulation
method in p systems. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A.
(eds.) WMC 2006. LNCS, vol. 4361, pp. 298–313. Springer, Heidelberg (2006)

10. Cazzaniga, P.: Stochastic algorithms for biochemical processes. Ph.D. thesis, Uni-
versità degli Studi di Milano-Bicocca (2010)

11. Cazzaniga, P., Mauri, G., Milanesi, L., Mosca, E., Pescini, D.: A novel variant of
tissue p systems for the modelling of biochemical systems. In: Păun, G., Pérez-
Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009.
LNCS, vol. 5957, pp. 210–226. Springer, Heidelberg (2010)

12. De Wit, A.: Spatial patterns and spatiotemporal dynamics in chemical systems.
Advances in Chemical Physics 109, 435–513 (1999)

13. Dix, J.A., Verkman, A.S.: Crowding effects on diffusion in solutions and cells.
Annual Review of Biophysics 37, 247–263 (2008)

14. Elf, J., Ehrenberg, M.: Spontaneous separation of bi-stable biochemical systems
into spatial domains of opposite phases. In: IEE Proceedings Systems Biology,
vol. 1(2), pp. 230–236 (2004)

15. Ellis, R.J., Minton, A.P.: Cell biology: join the crowd. Nature 425(6953), 27–28
(2003)

16. Fulton, A.B.: How crowded is the cytoplasm? Cell 30(2), 345–347 (1982)
17. Gillespie, D.T.: A general method for numerically simulating the stochastic time

evolution of coupled chemical reactions. Journal of Computational Physics 22(4),
403–434 (1976)

18. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal
of Physical Chemistry 81(25), 2340–2361 (1977)

19. Hattne, J., Fange, D., Elf, J.: Stochastic reaction-diffusion simulation with
mesoRD. Bioinformatics 21(12), 2923–2924 (2005)

20. Kim, J.S., Yethiraj, A.: Effect of macromolecular crowding on reaction rates: a
computational and theoretical study. Biophysical Journal 96(4), 1333–1340 (2009)

21. Kopelman, R.: Fractal reaction kinetics. Science 241(4873), 1620–1626 (1988)
22. Mart́ın-Vide, C., Pazos, J., Păun, G., Rodŕıguez-Patón, A.: A new class of symbolic

abstract neural nets: Tissue p systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON
2002. LNCS, vol. 2387, pp. 290–299. Springer, Heidelberg (2002)

23. Minton, A.P.: The effect of volume occupancy upon the thermodynamic activ-
ity of proteins: some biochemical consequences. Molecular and Cellular Biochem-
istry 55(2), 119–140 (1983)

304 E. Mosca et al.

24. Minton, A.P.: The influence of macromolecular crowding and macromolecular con-
finement on biochemical reactions in physiological media. Journal of Biological
Chemistry 276(14), 10577–10580 (2001)

25. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
26. Pérez-Jiménez, M.J., Romero-Campero, F.J.: P Systems, a New Computational

Modelling Tool for Systems Biology. In: Priami, C., Plotkin, G. (eds.) Transactions
on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 176–197.
Springer, Heidelberg (2006)

27. Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical probabilistic P sys-
tems. International Journal of Foundations of Computer Science 17(1), 183–204
(2006)

28. The P systems web page, http://ppage.psystems.eu
29. Rivas, G., Ferrone, F., Herzfeld, J.: Life in a crowded world. EMBO Reports 5(1),

23–27 (2004)
30. Rossinelli, D., Bayati, B., Koumoutsakos, P.: Accelerated stochastic and hybrid

methods for spatial simulations of reaction-diffusion systems. Chemical Physics
Letters 451(1-3), 136–140 (2008)

31. Stiles, J.R., Bartol, T.M.: Monte Carlo Methods for Simulating Realistic Synaptic
Microphysiology Using MCell. In: Computational Neuroscience: Realistic Modeling
for Experimentalists, pp. 87–127. CRC Press, Boca Raton (2001)

32. Takahashi, K., Arjunan, S.N.V., Tomita, M.: Space in systems biology of signaling
pathways–towards intracellular molecular crowding in silico. FEBS Letters 579(8),
1783–1788 (2005)

33. Zimmerman, S.B., Minton, A.P.: Macromolecular crowding: biochemical, biophysi-
cal, and physiological consequences. Annual Review of Biophysics and Biomolecular
Structure 22, 27–65 (1993)

34. Zimmerman, S.B., Trach, S.O.: Estimation of macromolecule concentrations and
excluded volume effects for the cytoplasm of escherichia coli. Journal of Molecular
Biology 222(3), 599–620 (1991)

35. van Zon, J.S., ten Wolde, P.R.: Green’s-function reaction dynamics: a particle-
based approach for simulating biochemical networks in time and space. Journal of
Chemical Physics 123(23), 234910 (2005)

http://ppage.psystems.eu

Randomized Gandy-Păun-Rozenberg
Machines

Adam Obtu�lowicz

Institute of Mathematics, Polish Academy of Sciences,
Śniadeckich 8, P.O. Box 21, 00-956 Warsaw, Poland

adamo@impan.gov.pl

Abstract. An idea of a randomized Gandy–Păun–Rozenberg machine
providing a certain abstract implementation of concurrent (parallel) ran-
domized algorithms is introduced. A randomized Gandy–Păun–Rozen-
berg machine for solving 3-SAT problem in a polynomial time with the
low error probability and with subexponential number of indecompos-
able processors is shown. This machine assembles a distributed system
which then realizes a massively parallel computation.

1 Introduction

We propose and discuss an idea of a randomized Gandy–Păun–Rozenberg ma-
chine which is a randomized counterpart of a concept of a Gandy–Păun–Rozen-
berg machine introduced in [5] and recalled in Section 2 of the present paper,
where one finds the connections with membrane computing.

In general randomized Gandy–Păun–Rozenberg machines, briefly called ran-
domized G–P–R machines, are aimed to serve for an abstract implementation of
concurrent (parallel) randomized algorithms or to provide some description of
these algorithms.

Here one can describe informally a randomized algorithm as an algorithm
which contains a possibly deterministic algorithm (test) performed for some
randomly chosen input data in a possibly polynomial time, where there is known
some estimation of error probability of the final result of the test; for a more
formal approach see [6]. Randomized algorithms are used when for their tasks
there are not known efficient deterministic algorithms.

In particular a goal of randomization of Gandy–Păun–Rozenberg machines,
yielding randomized G–P–R machines, is to decrease the exponential expansion
of the number of indecomposable processors which appear in computations of
G–P–R machines constructed in the manner of [5] to solve NP complete prob-
lems in a polynomial time. A decreasing of exponential expansion of the number
of indecomposable processors to some subexponential one is achieved with a loss
of certainty of a final result which is reached with some error probability in a
similar way as in the case of randomized algorithms, where a subexponential
time of computations is achieved with a loss of certainty of a final result, cf. [4].
Randomized G–P–R machines are similar to Gandy–Păun–Rozenberg machines

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 305–324, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

306 A. Obtu�lowicz

except the initial instantaneous descriptions of randomized G–P–R machines
contain certain configurations chosen at random. These randomly chosen con-
figurations steer the computations in such a way that subexponential number of
indecomposable processors appear in the computations.

The subexponentiality is understood here in the following way. For the length
k of input data the time or space complexity measures with respect to k of a
given algorithm are called subexponential if they are bounded by a function ef(k)

for some function f(k) with lim
k→∞

f(k)
k = 0, see [4].

We present in Section 3 an explanatory example of a randomized G–P–R
machine which solves 3-SAT problem in a polynomial time with low error prob-
ability and with subexponential number of indecomposable processors. The ex-
ample shows that a parallelized randomization or randomized parallelization of
computations is possible, which is explained in the conclusion of the paper.

The example also shows a theoretical (discrete-topological) possibility of a
construction of a system, still in Gandy’s mechanism frames1 [2], whose compu-
tation process consists of two phases: a phase of assembly of a distributed system
(possibly with randomly chosen input data), and then a phase of massively par-
allel computation realized by this distributed system.

2 Gandy-Păun-Rozenberg Machines; Examples

An idea of a Gandy–Păun–Rozenberg machine, briefly G–P–R machine, intro-
duced in [5], is aimed to provide an answer to the question:

what is it an X possible machine?
for X ≡ set-theoretically, X ≡ discrete topologically, and X ≡ biologically
inspired.

The G–P–R machines are the constructs which have common features with
or are related to:

— Gandy’s machines [2], [9],
— P systems due to Gheorghe Păun (cf. [8]),
— parallel rewriting systems of graphs investigated by Grzegorz Rozenberg

himself with scientists cooperating with him, among others, in preparation
and editing of multi-volume Handbook of graph grammars and computing by
graph transformation [3].

The core of a G–P–R machine is a finite set of rewriting rules for certain finite
directed labelled graphs, where these graphs are instantenous descriptions for
the computation process realized by the machine.

The conflictless parallel (simultaneous) application of the rewriting rules of
a G–P–R machine is realized in Gandy’s machine mode (according to Local
Causality Principle), where (local) maximality of “causal neighbourhoods” re-
places (global) maximality of, e.g. conflictless set of evolution rules applied simul-
taneously to a membrane structure which appears during the evolution process
1 Via the representation of G–P–R machines by Gandy machines given in [5].

Randomized Gandy-Păun-Rozenberg Machines 307

generated by a P system. Therefore one can construct a Gandy’s machine from
a G–P–R machine in an immediate way, see [5].

The NP complete problems can be solved by G–P–R machines in a polynomial
time (but with an exponential number of indecomposable processors), see [5],
where one constructs a G–P–R machines solving SAT problem in a polynomial
time in a similar way to (families of) P systems solving this problem also in a
polynomial time (cf. Păun’s pioneering paper [7]).

For all unexplained terms and notation of category theory and graph theory
we refer the reader to Appendix.

Definition. A G–P–R machine M is determined by the following data:

— a finite set ΣM of labels or symbols of M,
— a skeletal set SM of finite isomorphically perfect labelled directed graphs

over Σ, which are called instantenous descriptions of M,
— a function FM : SM → SM called the transition function of M,
— a function RM : PREMM → CONCLM from a finite skeletal set PREMM

of finite isomorphically perfect labelled directed graphs over ΣM onto a
finite skeletal set CONCLM of finite isomorphically perfect labelled directed
graphs over ΣM such that RM determines the set

R̃M = {P � C | P ∈ PREMM and C = RM(P)}

of rewriting rules of M which are identified with ordered pairs r = (Pr, Cr),
where the graph Pr ∈ PREMM is the premise of r and the graph Cr =
RM(Pr) is the conclusion of r,

— a subset IM of SM which is the set of initial instantaneous descriptions
of M.

The above data are subject of the following conditions:

1) V (G) ⊆ V (FM(G)) for every G ∈ SM,
2) V (G) ⊆ V (RM(G)) for every G ∈ PREMM,
3) the rewriting rules of M are applicable to SM which means that for every

G ∈ SM the set

P�(G) =
{
h | h is an embedding of labelled graphs over Σ

with dom(h) ∈ PREMM and cod(h) = G
such that for every embedding h′ of labelled graphs over Σ

with dom(h′) ∈ PREMM and cod(h′) = G
if im(h) is a labelled subgraph of im(h′), then h = h′}

of maximal applications2 h of the rules dom(h) � RM(dom(h)) of M in
places im(h) is such that the following conditions hold:

2 With respect to the relation of being a labelled subgraph which can be treated as a
natural priority relation between the applications of the rewriting rules.

308 A. Obtu�lowicz

(i) V (G) =
⋃

h∈P�(G)
V (im(h)), E(G) =

⋃

h∈P�(G)
E(im(h)),

(ii) for all h1, h2 ∈ P�(G) the equation �Gh1
(ḣ−1

1 (v)) = �Gh2
(ḣ−1

2 (v)) holds for
every v ∈ V (im(h1))∩V (im(h2)), where �Gh1

, �Gh2
are the labelling func-

tions of Gh1 = RM(dom(h1)), Gh2 = RM(dom(h2)), respectively, and
ḣ−1

1 , ḣ−1
2 are the inverses of isomorphisms induced by the embeddings

h1, h2, respectively.
(iii) FM(G) is a colimit of a gluing diagram DG constructed in the following

way (the construction of DG is provided by (ii)):
• the set I of indexes of DG is such that I = P�(G) ∪ {Δ}, where

Δ /∈ P�(G) is the center of DG ,
• the family Gi (i ∈ I) of labelled graphs of DG is such that Gh =
RM(dom(h)) for every h ∈ P�(G), and GΔ is such that V (GΔ) =
V (G), E(GΔ) = ∅, and the labelling function �GΔ is such that pro-
vided by (ii)

�GΔ(v) = �Gh
(ḣ−1(v))

for every v ∈ V (im(h)) and every h ∈ P�(G), where ḣ−1 is the inverse
of the isomorphism ḣ induced by the embedding h,

• the gluing conditions glh (h ∈ P�(G)) of DG are defined by

glh =
{
(v, ḣ−1(v)) | v ∈ V (im(h))

}

for every h ∈ P�(G), where ḣ−1 is the inverse of the isomorphism ḣ
induced by embedding h,

(iv) the following equations hold:

V (FM(G)) =
⋃

i∈I
V (im(qi))

and E(FM(G)) =
⋃

i∈I
E(im(qi))

for the canonical injections qi : Gi → FM(G) (i ∈ I) forming a colimiting
cocone of the diagram DG defined in (iii),

(v) the canonical injection qΔ : GΔ → FM(G) is an inclusion of labelled
graphs, where Δ is the center of DG and qΔ is an element of the colimiting
cocone in (iv).

Thus FM(G) is the result of simultaneous application of the rules dom(h) �
RM(dom(h)) in the places im(h) for h ∈ P�(G), where one replaces simultane-
ously im(h) by im(qh) in G for h ∈ P�(G), respectively.

A finite sequence
(
F i

M(G)
)n

i=0 is called a finite computation of M, the num-
ber n is called the time of this computation, and Fn

M(G) is called the final
instantaneous description for this computation if

F0
M(G) = G ∈ IM, Fn−1

M (G) �= Fn
M(G), and FM(Fn

M(G)) = Fn
M(G),

where F i
M(G) is defined inductively: F i

M(G) = FM
(
F i−1

M (G)
)
.

Randomized Gandy-Păun-Rozenberg Machines 309

For a computation
(
F i

M(G)
)n

i=0 its space is defined by

space(M,G) = max{the number of elements of V (F i
M(G)) | 0 ≤ i ≤ n}

for G ∈ IM, where intuitively space(M,G) is understood as the size of hardware
measured by the number of indecomposable processors3 used in the computa-
tions.

Example 1 (G–P–R machine simulating the computations of a Turing
machine). Let T be a Turing machine4 whose alphabet Σ (including blank
symbol) is disjoint with the set Q of states of T and let δ : Σ × Q → Σ × Q ×
{L, 0, R} be the transition of T with cursor directions L for “left”, 0 for “stay”,
and R for “right”. We define a graphical instantaneous description of T to be a
labelled directed graph G over Σ0 = Σ ∪ Q ∪ {%, §} with {%, §} ∩ (Σ ∪ Q) = ∅
such that

• G is induced by some acceptable ordered triple of integers, see Appendix,
• if G is induced by an acceptable ordered triple (k, m, n) of integers, then

�G(−k) = %, �G(0) ∈ Q, �G(n) = § and �G(j) ∈ Σ for every j ∈
{
i ∈ V (G) |

−k < i < n and i �= 0
}

(here m corresponds to cursor position on Turing
machine tape indicated by the edge (0, m)).

By Lemma 4 in Appendix the set ST of all graphical instantaneous descriptions
of T is a skeletal set of isomorphically perfect labelled graphs. Thus we define a
G–P–R machine MT aimed to simulate the computations of T such that

• the set of instantaneous descriptions of MT is the set ST of graphical instan-
taneous descriptions of T,

• the transition function FT of MT and the rewriting rules of MT are de-
termined by the transition function δ of T such that if δ(a, q) = (a′, q′, R),
then

(fR) if G ∈ ST and G is induced by (k, m, n) such that �G(m) = a, �G(0) = q,
then
1) if m < n−1, then FT(G) is that G′ which is induced by (k, m̂, n) with

m̂ = m+1 for m �= −1 and m̂ = 1 for m = −1 such that �G′(0) = q′,
�G′(m) = a′, and �G′(i) = �G(i) for every i ∈ V (G) − {0, m},

2) if m = n−1, then FT(G) is that G′ which is induced by (k, m+1, n+1)
such that �G′(0) = q′, �G′(m) = a′, �G′(n) is blank symbol, and
�G′(i) = �G(i) for every i ∈ V (G′) − {0, m, n},

(rR) the rewriting rules are given by the following two schemes Gp � Gc such
that

(rR
1) the premise Gp is such that V (Gp) = {−1, 0, 1, 2}, E(Gp) = lin[1, 2]∪

{(0, 1)}, �Gp(−1) ∈ Σ ∪ {%}, �Gp(0) = q, �Gp(1) = a, �Gp(2) ∈ Σ,
the conclusion Gc is such that V (Gc) = V (Gp), E(Gc) = lin[1, 2] ∪
{(0, 2)}, �Gc(−1) = �Gp(−1), �Gc(0) = q′, �Gc(1) = a′, and �Gc(2) =
�Gp(2).

3 The indecomposable processors coincide with urelements appearing in those Gandy
machines which represent G–P–R machines in [5].

4 For the definition and unexplained terms we refer the reader to, e.g., [6].

310 A. Obtu�lowicz

(rR
2) the premise Gp is such that V (Gp) = {−1, 0, 1, 2}, E(Gp) = lin[1, 2]∪

{(0, 1)}, �Gp(−1) ∈ Σ ∪ {%}, �Gp(0) = q, �Gp(1) = a, �Gp(2) = §,
the conclusion Gc is such that V (Gc) = {−1, 0, 1, 2, 3}, E(Gc) =
lin[1, 3]∪{(0, 2)}, �Gc(−1) = �Gp(−1), �Gc(0) = q′, �Gc(1) = a′, �Gc(2)
is blank symbol, and �Gc(3) = §.

For the cases of equations δ(a, q) = (a′, q′, 0) and δ(a, q) = (a′, q′, L) the values
FT(G) and the rewriting rules are defined in a similar way, where, e.g., the
counterpart of (fR

2) for δ(a, q) = (a′, q′, L) is:

(fL2) if 1 = m = k or −k + 1 = m �= 0, then FT(G) is that G′ which
is induced by (k + 1,−k, n) such that �G′(−k − 1) = %, �G′(−k) is
blank symbol, �G′(0) = q′, �G′(m) = a′, and �G′(i) = �G(i) for all
i ∈ V (G′) − {−k − 1,−k, 0, m}.

The versions of the above rules Gp � Gc for both Gp and Gc completed by the
loop (i, i) for a unique i ∈ V (Gp) with �Gp(i) /∈ {%, §}∪Q are also necessary. The
identity rules G � G are also necessary, where G is of the following two forms:

(id1) V (G) = {0, 1}, E(G) = {(0, 1)}, {�G(0), �G(1)} ⊂ Σ0 − Q,
(id2) V (G) = {0}, E(G) = {(0, 0)}, �G(0) ∈ Σ.

There is no other rewriting rule of MT than that described by the above
schemes.

Since the graphical instantaneous descriptions of a Turing machine T coincide
with the usual instantaneous descriptions of T or configurations of T as in [6], the
G–P–R machine MT simulates the computations of T due to definition of FT.

Example 2 (G–P–R machine simulating the computations of certain
Boolean circuits). We define a disjunctive circuit G–P–R machine Mcirc
which is aimed to simulate computations of certain tree like Boolean circuits
such that

• the set Scirc of instantaneous descriptions of Mcirc is the set of those regular
labelled binary trees T of depth greater than 3 over the set {root, 0, 1} ×
{⊥, 0, 1} of labels, see Appendix, which satisfy the following condition
(circ0) for every binary string Γ ∈ V (T) of length equal to the depth of T

the number of elements of the set
{
i | i is a natural number with 0 < i ≤ n such that �2

T (Γ � i) �= ⊥
}

is not greater than 1 (thus this set may be empty), where n is the
depth of T and if Γ is (kj)n

j=1 then Γ � i denotes the string (kj)i
j=1

which is Γ itself for i = n and for i < n (kj)i
j=1 is a shortening of Γ

by cancellation of the elements kn, kn−1, . . . , ki+1.
• the transition function Fcirc of Mcirc is such that Fcirc(T) is the result of

simultaneous application to T in G–P–R machine mode5 the rewriting rules
5 Understood that the result of simultaneous application is a colimit of the gluing

diagram determined by the set P�(G) of maximal applications as in definition of
G–P–R machine.

Randomized Gandy-Păun-Rozenberg Machines 311

of Mcirc which do not introduce new vertices and which are given by the
following three schemes Tp � Tc such that
(circ1) the premise Tp is such that V (Tp) = {Λ, 0, 00, 01},

E(Tp) =
{
(Λ, 0), (0, 00), (0, 01), (00, 00), (01, 01)

}
,

�2
Tp

(Λ) = �2
Tp

(0) = ⊥, {�1
Tp

(Λ), �1
Tp

(0)} ⊆ {0, 1},
�1
Tp

(00) = 0, �1
Tp

(01) = 1, {�2
Tp

(00), �2
Tp

(01)} ⊆ {0, 1},
the conclusion Tc is such that V (Tc) = V (Tp), E(Tc) = E(Tp),
�Tc(Λ) = �Tp(Λ), �Tc(0) =

(
�1
Tp

(0), max{�2
Tp

(00), �2
Tp

(01)}
)
,

�Tc(00) = (0,⊥), �Tc(01) = (1,⊥),
(circ2) the premise Tp is such that V (Tp) = {Λ, 0, 00, 01, 000, 001, 010, 011},

E(Tp) =
{
(Γ, Γ i) | {Γ, Γ i} ⊆ V (Tp) and i ∈ {0, 1}

}
,

�2
Tp

(Γ) = ⊥ for all Γ ∈ V (Tp) − {00, 01},
{�2

Tp
(00), �2

Tp
(01)} ⊆ {0, 1}, {�1

Tp
(Λ), �1

Tp
(0)} ⊆ {0, 1},

�1
Tp

(Γi) = i for all Γ ∈ {0, 00, 01} and i ∈ {0, 1},
the conclusion Tc is such that V (Tc) = V (Tp), E(Tc) = E(Tp),
�Tc(Γ) = �Tp(Γ) for every Γ ∈ V (Tc) − {0, 00, 01},
�Tc(0) =

(
�Tp(0), max{�2

Tp
(00), �2

Tp
(01)}

)
,

�Tc(Γ) = (�1
Tp

(Γ),⊥
)

for every Γ ∈ {00, 11},
(circ3) the premise Tp is such that V (Tp) = {Λ, 0, 1, 00, 01, 10, 11},

E(Tp) =
{
(Γ, Γ i) | {Γ, Γ i} ⊆ V (Tp) and i ∈ {0, 1}

}
,

�1
Tp

(Γi) = i for all Γ ∈ {Λ, 0, 1} and i ∈ {0, 1},
�2
Tp

(Γ) = ⊥ for every Γ ∈ V (Tp) − {0, 1},
�1
Tp

(Λ) = root, {�2
Tp

(0), �2
Tp

(1)} ⊆ {0, 1},
the conclusion Tc is such that V (Tc) = V (Tp), E(Tc) = E(Tp),
�2
Tc

(Γ) = �2
Tp

(Γ) for every Γ ∈ V (Tc) − {Λ, 0, 1},
�Tc(Γ) = (�1

Tp
,⊥) for every Γ ∈ {0, 1},

and �Tc(Λ) =
(
root, max{�2

Tp
(0), �2

Tp
(1)}

)
.

The identity rules T � T are also necessary which are defined in a similar way
as in Example 1.

There is no other rewriting rule of Mcirc than that described by the above
schemes.

The following lemma characterizes the computations of G–P–R machine Mcirc.

Lemma 1. Let T ∈ Scirc be a regular labelled binary tree such that for every
binary string Γ of length equal to the depth of T there exists a natural number
i with i > 0 such that �2

T (Γ � i) �= ⊥. Then for

n = max
{
i | i is the length of some binary string Γ ∈ V (T) with �2

T (Γ) �= ⊥
}

the value Fn
circ(T) is that regular labelled tree T ′ which is such that V (T ′) =

V (T), E(T ′) = E(T), �2
T ′(Γ) = ⊥ for all Γ ∈ V (T ′) − {Λ} and �2

T ′(Λ) =
max

{
�2
T (Γ) | Γ ∈ V (T ′) and �2

T (Γ) �= ⊥
}
, where Fn

circ(T) is defined inductively
by F1

circ(T) = Fcirc(T) and Fn
circ(T) = Fcirc(Fn−1

circ (T)).

312 A. Obtu�lowicz

Example 3 (assembly of binary trees). The set Stree of labelled directed
graphs T j

n for natural numbers j, n with 0 ≤ j ≤ 3 · n − 3 (for the definition of
T j

n see Appendix) is the set of instantaneous descriptions of a G–P–R machine
Mtree whose transition function Ftree is defined by

Ftree(T j
n) = T j+1

n (j ≥ 0, n ≥ 0).

The rewriting rules of Mtree are given by the modified versions of the schemes
(ṙ1), (ṙ10), (ṙ11), (ṙ12) (see Appendix), and the identity rules, where, e.g., the
claimed modification of (ṙ1) is obtained by restricting the scheme to vertices 1, 2.
By Lemmas 6 and 7 in Appendix the machine Mtree starting with T 0

n stops after
3 · n − 3 steps with T 3·n−3

n as the final result which is isomorphic to a regular
labelled binary tree of depth n (n ≥ 0). The machine Mtree is inspired by the
similar constructs in [8], where the membrane division rules correspond to the
above rewriting rules of Mtree.

3 Randomized Gandy-Păun-Rozenberg Machines and
NP Complete Problems

We propose an open, with some loss of precision, definition of randomized G–P–R
machines to provide various their applications like applications in modelling
systems solving NP complete problems shown in the present paper and the future
applications in simulation of quantum computer computations by randomized
systems.

Definition. By a randomized G–P–R machine we understand a G–P–R ma-
chine whose initial instantaneous descriptions contain certain configurations or
structures chosen at random. These randomly chosen configurations or struc-
tures cause an uncertainty of the final result of machine computations which is
measured by an error probability.

The randomly chosen configurations or structures will be described more pre-
cisely for particular applications, respectively.

We use the following basic concepts for randomization of G–P–R machines
discussed in the present paper.

Definitions. By a ground random ternary sequence of length n we understand
a finite sequence Θ = (σΘ

i)n
i=1 of digits 0, 1, and a symbol @ with all elements

σΘ
i = {0, 1, @} chosen at random and with k > 0 occurrences of @ in Θ such

that possibly k = f(n) for some f satisfying lim
n→∞

f(n)
n = 0.

A ground random ternary sequence Θ = (σΘ
i)n

i=1 with k occurrences of @ in Θ
gives rise to 2k binary strings Γ = (σΓ

i)n
i=1 of length n which are obtained from

Θ by replacing the occurrences of @ in Θ by the occurrences of digits 0 or 1, i.e.,
σΓ

i ∈ {0, 1} for σΘ
i = @ and σΓ

i = σΘ
i for σΘ

i ∈ {0, 1}. These 2k binary strings
Γ obtained from Θ, called binary strings generated by Θ, are random binary
strings with randomness inherited from Θ.

Randomized Gandy-Păun-Rozenberg Machines 313

A ground random ternary sequence Θ of length n with k occurrences of @ can
be constructed from e.g. two random binary strings Γ and Γ ′ of length n and
n− k, respectively, such that @ is the i-th element of Θ iff 1 is the i-th element
of Γ and deleting all occurrences of @ in Θ yields Γ ′.

For all unexplained terms of logic and computational complexity theory, in-
cluding Turing machines and the formulation of SAT and 3-SAT problems, we
refer the reader to [6].

Example 4 (a randomized G–P–R machine solving 3-SAT problem in
a polynomial time). We use a Turing machine Ṫ such that for every formula ϕ
in a conjunctive normal form as in 3-SAT problem and every truth assignment T
for variables of ϕ the machine decides in the time ≤ nk0 whether ϕ is valid for T ,
where the ordered pair (ϕ, T) is an input for Ṫ from which the machine begins
the computation, k0 is some constant natural number, and n is the number of
variables occurring in ϕ. We claim for Ṫ that:

(A) if n is the number of variables occurring in ϕ, then any truth assignment T
for variables of ϕ is represented by that binary string Γ of length n in the
machine tape which is such that if the value “True” is assigned to the i-th
variable of ϕ, then 1 is the i-th element of Γ , otherwise the i-th element
of Γ is 0,

(A′) Turing machine Ṫ is constructed from some simpler three-string or three-
tape Turing machine 3-T according to the general construction in the proof
of Theorem 2.1, p. 30 of [6], where the first tape of 3-T is an output tape,
the second tape is an input tape containing some presentation of a truth
assignment, and the third tape is an input tape containing some presen-
tation of a formula. The machine 3-T reads only its input tapes and does
not move its head or cursor to the left or right on output tape.

(B) for the G–P–R machine M
Ṫ

simulating the computations of Ṫ if we have
that

(b1) Gϕ,Γ is that initial instantaneous description of M
Ṫ

which coincides
with the initial instantaneous description or initial configuration for
input (ϕ, T) with T represented by the binary string Γ in the machine
tape as in (A),

(b2) G = Fq

Ṫ
(Gϕ,Γ) is the final instantaneous description of M

Ṫ
for the

case of the final or halting state “stop” reached by Ṫ after q steps of
computation starting with input (ϕ, T) with T related to Γ as in (A),
where F

Ṫ
is the transition function of M

Ṫ
and Fq

Ṫ
(Gϕ,Γ) is inductively

defined: F1
Ṫ
(Gϕ,Γ) = F

Ṫ
(Gϕ,Γ) and Fq

Ṫ
(Gϕ,Γ) = F

Ṫ
(Fq−1

Ṫ
(Gϕ,Γ)),

then
(b′1) Gϕ,Γ is a labelled directed graph induced by an acceptable ordered

triple (1, 1, m0
ϕ) providing natural numbers m−

ϕ , m+
ϕ with 1 < m−

ϕ <
m+

ϕ < m0
ϕ and m+

ϕ − m−
ϕ = n, such that �Gϕ,Γ (m−

ϕ + j) is the j-th
element of Γ for every j with 1 ≤ j ≤ n, where the numbers m−

ϕ , m+
ϕ

are determined by the construction of Ṫ from 3-T such that the essential
content of the second tape of 3-T, i.e. Γ itself, is written in the n squares
(m−

ϕ + 1)-th, . . . , m+
ϕ -th, respectively, of the tape of Ṫ,

314 A. Obtu�lowicz

(b′2) G is a labelled graph induced by some acceptable triple (1, 1, m0
ϕ) of

integers such that �G(0) is the final state “stop” and �G(1) = 1 if ϕ is
valid for the truth assignment represented by Γ , otherwise �G(1) = 0.

The shape of formulas in a conjunctive normal form in 3-SAT problem (it suf-
fices to consider formulas of n > 3 variables which are conjunctions of ≤ 23 ·

(
n
3

)

nonrepetitive clauses, each disjunction of three literals containing different vari-
ables) provides that the machine 3-T reaches the final state in the time not
greater than 23 · n5 steps for a formula of n variables, hence by Theorem 2.1,
p. 30 of [6] the claimed machine Ṫ reaches the final state in the time not greater
than 26 · n10 steps for a formula of n variables.

For a function f defined on and valued in the set of natural numbers with
lim

n→∞
f(n)

n = 0 we outline a construction of a randomized G–P–R machine Mf
3-SAT

aimed to solve 3-SAT problem in a polynomial time.
We introduce now those classes of labelled directed graphs over Σ• which

we then use to define instantaneous descriptions of Mf
3-SAT for Σ• equal to a

disjoint union Σ ∪̇ Q ∪̇ {q0, q1, q2, q3, q4} ∪̇ {§, @} ∪̇ ({0, 1,⊥, root} × {0, 1,⊥}),
where Σ and Q are the alphabet and the set of states of the Turing machine
Ṫ, respectively, where � ∈ Σ is used to denote empty square of the tape of the
machine Ṫ and the states qstart, ‘stop’ of Ṫ are the starting state and the halting
state of Ṫ, respectively.

For natural numbers j, m, m′, n with 0 ≤ j ≤ 3 · f(n)− 3, 1 < m < m′, n > 3,
and for characteristic function δn of the subset {3 · q − 2 | 0 < q < f(n)} ∪
{3 · f(n) − 3} of the set {0, 1, . . . , 3 · f(n) − 3} we define a class Kδn(j)·m,m′

n,j to
be the class of labelled directed graphs G over Σ• which are such that

• V (G) =
(
T j

f(n) × {(0, 0)}
)
∪

⋃

(i,f(n))∈T j
f(n)

(
V (i,f(n)) × {(i, f(n))}

)
for

V (i,f(n)) =

⎧
⎨

⎩

{0, 1, . . . , m′} if �1
T j

f(n)

(
(i, f(n))

)
∈ {0,⊥} or δn(j) = 0,

{1, . . . , m} if �1
T j

f(n)

(
(i, f(n))

)
= 1 and δn(j) = 1,

for T j
f(n) and T j

f(n) see Appendix,

• E(G) =
{(

(v, (0, 0)), (v′, (0, 0))
)
| (v, v′) ∈ E(T j

f(n))
}
∪

⋃
(i,f(n))∈T j

f(n)

({(
((i, f(n)), (0, 0)), (1, (i, f(n)))

)}
∪

{(
(q, (i, f(n))), (q + 1, (i, f(n)))

)
| q > 0 and {q, q + 1} ⊂ V (i,f(n))

})
∪Xj ,

where Xj is determined by j in the following way:
(I) if δn(j) = 0 then

Xj =
{(

(0, (i, f(n))), (1, (i, f(n)))
)
| (i, f(n)) ∈ T j

f(n)

}
,

Randomized Gandy-Păun-Rozenberg Machines 315

(II) if δn(j) = 1 and j < 3 · f(n) − 3, then there exists a natural number p
with 1 ≤ p < m such that

Xj = K∇
p =

⋃{
∇n

i,p,z | �T j
f(n)

((i, f(n))) = 0, �T j
f(n)

((z, f(n))) = 1

and {(v, (i, f(n))), (v, (z, f(n)))} ⊂ E(T j
f(n)) for some v

}

where ∇n
i,p,z is such that

∇n
i,p,z =

{(
(p, (i, f(n))), (p, (z, f(n)))

)
,

(
(0, (i, f(n))), (p, (i, f(n)))

)
,
(
(0, (i, f(n))), (p, (z, f(n)))

)}
.

(III) if j = 3 · f(n) − 3, then one of the following conditions holds:
(III′) there exists a natural number p with 1 ≤ p < m such that Xj =

K∇
p ,

(III′′) m = m′ and there exists a function

g : {(i, f(n)) | (i, f(n)) ∈ T
3·f(n)−3
f(n) } → {1, . . . , m′}

such that

Xj =
{(

(0, (i, f(n))), (g((i, f(n))), (i, f(n)))
)
| (i, f(n)) ∈ T

3·f(n)−3
f(n)

}
.

For a formula ϕ in a conjunctive normal form of n > 3 variables and a ground
random ternary sequence Θ = (σΘ

i)n
i=1 with f(n) occurrences of @ in Θ we define

an initial instantaneous description G0
ϕ,Θ of Mf

3-SAT to be a labelled directed

graph belonging to K0,m0
ϕ

n,0 such that

•
(
(0, (0, f(n))), (1, (0, f(n)))

)
∈ E(G0

ϕ,Θ),
• �G0

ϕ,Θ

(
(v, (0, 0))

)
= �T 0

f(n)
(v) for every v ∈ T 0

f(n),

• �G0
ϕ,Θ

(
(0, (0, f(n)))

)
= q0,

• for r with 0 < r ≤ m0
ϕ

�G0
ϕ,Θ

(
(r, (0, f(n)))

)
=

⎧
⎪⎨

⎪⎩

(⊥,⊥) if r = 1,

σΘ
r if r = m−

ϕ + q and 1 ≤ q ≤ n,

�Gϕ,Γ (r) otherwise,

where Gϕ,Γ is an initial instantaneous description of M
Ṫ

for some Γ .

Thus the set IMf
3-SAT

of initial instantaneous descriptions of Mf
3-SAT is the

set of labelled graphs of the form G0
ϕ,Θ for some ϕ, Θ as above, where the values

�G0
ϕ,Θ

(
(r, (0, f(n)))

)
(m−

ϕ < r ≤ m+
ϕ) form a randomly chosen configuration in

the initial instantaneous description G0
ϕ,Θ which makes Mf

3-SAT a randomized
G–P–R machine.

316 A. Obtu�lowicz

For a formula ϕ and a ground random ternary sequence Θ as above we define
instantaneous descriptions of Mf

3-SAT in assembly phase to be labelled directed

graphs Gk
ϕ,Θ belonging to Kδn(j)·m,m0

ϕ

n,j and defined inductively such that Gk
ϕ,Θ

is the result of simultaneous application to Gk−1
ϕ,Θ in G–P–R machine mode the

rewriting rules given by the schemes (ṙ1)–(ṙ12) presented in Appendix, and the
identity rules defined in a similar way as in Section 1.

For a formula ϕ and a ground random ternary sequence Θ as above we de-
fine instantaneous descriptions of Mf

3-SAT in computation phase to be labelled
directed graphs Ġk

ϕ,Θ (k ≥ 0) defined inductively such that

— Ġ0
ϕ,Θ ∈ Icomp

ϕ,Θ =
{
Gk

ϕ,Θ | k > 0 and �Gk
ϕ,Θ

(
(0, (i, f(n)))

)
= qstart for some i

}
,

— Ġk
ϕ,Θ is the result of simultaneous application to Ġk−1

ϕ,Θ in G–P–R machine
mode the rules of M

Ṫ
with % replaced by the elements of {0, 1}×{⊥} and

Mcirc, and the following new rules given by the scheme

Gp � Gc, (∗)

where the premise Gp is such that
V (Gp) = {0, 1, 2, 3, 4},
E(Gp) =

{
(i, i + 1) | {i, i + 1} ⊆ V (Gp) − {0}

}
∪ {(0, 3), (2, 2)},

�Gp(i) ∈ {0, 1,⊥} × {⊥} for every i ∈ {1, 2}, �Gp(3) ∈ {0, 1}, �Gp(0) =
“stop” ∈ Q, �Gp(4) ∈ Σ,
the conclusion Gc is such that V (Gc) = V (Gp), E(Gc) = E(Gp),
�Gc(i) = �Gp(i) for every i ∈ {1, 4}, �Gc(0) = �Gc(3) = ⊥,
�Gc(2) =

(
�1
Gp

(2), �Gp(3)
)
, where �1

Gp
(2) is such that �Gp(2) = (�1

Gp
(2),⊥).

Thus the set SMf
3-SAT

of instantaneous descriptions of Mf
3-SAT is the union of

the set of instantaneous descriptions of Mf
3-SAT in assembly phase and the set

of instantaneous descriptions of Mf
3-SAT in computation phase. The transition

function Ff
3-SAT of Mf

3-SAT is such that Ff
3-SAT(Gm

ϕ,Θ) = Gm+1
ϕ,Θ with Gm

ϕ,Θ /∈
Icomp

ϕ,Θ , and Ff
3-SAT(Ġm

ϕ,Θ) = Ġm+1
ϕ,Θ .

The set of rewriting rules of Mf
3-SAT does not contain any other rule than

these introduced above for Mf
3-SAT.

Theorem. Let f be a computable function such that lim
n→∞

f(n)
n = 0 and let pϕ

be an estimation of the probability that a formula ϕ as in 3-SAT problem is valid
for a given truth assignment. Then the G–P–R machine Mf

3-SAT solves 3-SAT
problem in a polynomial time with subexponential number of indecomposable pro-
cessors determined by f and with error probability estimated by (pϕ)(2

f(n)) where
n is the number of variables occurring in ϕ.

Proof. The proof is contained in (or can be extracted from) the following de-
scription of the computation of G–P–R machine Mf

3-SAT.

Randomized Gandy-Păun-Rozenberg Machines 317

The computation of Mf
3-SAT consists of two phases: the assembly phase pre-

ceding the computation phase such that one splits Mf
3-SAT into two G–P–R

machines Mf,1
3-SAT and Mf,2

3-SAT corresponding to these phases, respectively, in
the following way:

— the machine Mf,1
3-SAT corresponding to assembly phase and determined by

the rules (ṙ1)–(ṙ12) begins its computation with the initial instantaneous
description of Mf

3-SAT itself and assembles initial instantaneous descrip-
tions of the machine Mf,2

3-SAT by assembly some trees (see the rules (ṙ1),
(ṙ10)–(ṙ12)) and copying appropriate subgraphs (see the rules (ṙ2)–(ṙ9)),

— the machine Mf,2
3-SAT corresponding to computation phase and determined

by the rules of M
Ṫ

with % replaced by the elements of {0, 1}×{⊥}, Mcirc,
and the new rules (∗) introduced in the definition of Mf

3-SAT continues the
computation to reach the final result of the computation of Mf

3-SAT itself,
where the computation of Mf,2

3-SAT consists of the following two subphases:
• a phase of simultaneous simulation of computations of appropriate

number of copies of the Turing machine Ṫ which precedes the following
phase

• a phase of simulation of computation of some Boolean circuit.

More precisely, for a given formula ϕ (as in 3-SAT problem) of n > 3 variables
and a ground random ternary sequence Θ of length n with f(n) occurrences
of @ in Θ the machine Mf,1

3-SAT starting with the initial instantaneous descrip-
tion G0

ϕ,Θ assembles instantaneous description Ġ0
ϕ,Θ which is an initial instan-

taneous description of Mf,2
3-SAT. Here Ġ0

ϕ,Θ contains, coded in some way, those
2f(n) random binary strings of length n which are generated by Θ and represent
2f(n) randomly chosen truth assignments for ϕ, respectively. Then Mf,2

3-SAT si-
multaneously simulates the computations of 2f(n) copies of Ṫ, where 2f(n) truth
assignments for ϕ represented by 2f(n) randomly chosen binary strings generated
by Θ are the inputs together with ϕ for these 2f(n) copies of Ṫ, respectively.

Then Boolean circuit part of Mf
3-SAT simulates the computation of tree-like

Boolean circuit C of 2f(n) input gates (see Lemma 1), where the underlying
graph of C is a tree of depth f(n) and all non-input gates of C are OR gates. The
2f(n) input gates of C receive those inputs which are the output results of the
computations of the above 2f(n) copies of Ṫ, respectively. Here each input gate
g is associated with that copy Ṫg of Ṫ for which g is connected with that unique
vertex i of the final graphical instantaneous description of Ṫg for which (0, i) is
an edge of this final graphical instantaneous description and i is labelled by the
output result of Ṫg with 0 labelled by the final or halting state of Ṫg. The inputs
of C are simultaneously processed by C to give the output result in the root of the
underlying graph of C. The output result contained in the root yields an answer
(with the error probability estimated in the Theorem) to a question whether
there exists a truth assignment for ϕ such that ϕ is valid for this assignment.
Therefore Mf

3-SAT solves 3-SAT problem in a polynomial time. ��

318 A. Obtu�lowicz

4 Concluding Remarks

For a formula ϕ of n variables as in 3-SAT problem and a ground random
ternary sequence Θ of length n with f(n) occurrences of @ in Θ the G–P–R
machine Mf

3-SAT simultaneously simulates the computations of 2f(n) copies of
the Turing machine Ṫ for 2f(n) randomly chosen instances of input data (i.e.,
the 2f(n) randomly chosen truth assignments6 for ϕ), respectively, where these
randomly chosen instances of input data are assembled in a polynomial time
by the machine Mf

3-SAT. Thus the machine Mf
3-SAT shows that a randomized

parallelization of computations or a parallelized randomization of these compu-
tations is possible to solve 3-SAT problem in a polynomial time. The assembly
of 2f(n) of randomly chosen instances of input data by Mf

3-SAT coincides with
some simultaneous random choice of these 2f(n) instances of input data. Thus
the parallelized randomization is here a spatial randomization despite to a tem-
poral or sequential randomization realized by repeating sequentially, i.e. step by
step, an experiment consisting of a random choice of a single instance of input
data then processed by, e.g., a single Turing machine, where the repeating of the
experiment decreases an error probability.

We point out that the initial instantaneous descriptions of Mf
3-SAT are of

the size depending linearly on the size of input data of a formula and a truth
assignment.

The machine Mf
3-SAT is a biologically inspired construct, according to the

ideas contained in [8], which illustrates a capability of (self)assembling of a dis-
tributed system which then realizes a process of massively parallel computation.
One can include this capability to a paradigm of biologically inspired computing.

References

1. Chi, H., Jones, E.L.: Generating parallel quasirandom sequences via randomization.
J. Parallel Distrib. Comput. 67, 876–881 (2007)

2. Gandy, R.: Church’s thesis and principles for mechanisms. In: Barwise, J., et al.
(eds.) The Kleene Symposium, pp. 123–148. North-Holland, Amsterdam (1980)

3. Rozenberg, G.: Handbook of graph grammars and computing by graph transfor-
mation, vol. 1. World Scientific, River Edge (1997); Ehrig, H. et al., Applications,
languages and tools, vol. 2. World Scientific, River Edge (1999); Ehrig, H., et al.,
Concurrency, parallelism, and distribution, vol. 3. World Scientific, River Edge
(1999)

4. Koblitz, N.: Algebraic Aspects of Cryptography, Berlin (1998)
5. Obtu�lowicz, A.: Gandy–Păun–Rozenberg machines. Romanian J. of Information

Science and Technology 13, 181–196 (2010)
6. Papadimitriou, G.: Computational Complexity. Addison–Wesley, Reading (1994)
7. Păun, G.: P systems with active membranes: Attacking NP complete problems.

Journal of Automata, Languages and Combinatorics 6, 75–90 (2000)
8. Păun, G.: Membrane Computing. An Introduction, Berlin (2002)
9. Sieg, W., Byrnes, J.: An abstract model for parallel computations: Gandy’s Thesis.

The Monist 82(1), 150–164 (1999)

6 In different way than e.g. in [1].

Randomized Gandy-Păun-Rozenberg Machines 319

Appendix

Graph-Theoretical and Category-Theoretical Preliminaries

A [finite] labelled directed graph over a set Σ of labels is defined as an ordered
triple G = (V (G), E(G), �G), where V (G) is a [finite] set of vertices of G, E(G) is
a subset of V (G) × V (G) called the set of edges of G, and �G is a function from
V (G) into Σ called the labelling function of G. We drop the adjective ‘directed’
if there is no risk of confusion.

A homomorphism of a labelled directed graph G over Σ into a labelled directed
graph G′ over Σ is an ordered triple (G, h : V (G) → V (G′),G′) such that h is a
function from V (G) into V (G′) which satisfies the following conditions:

(H1) (v, v′) ∈ E(G) implies (h(v), h(v′)) ∈ E(G′) for all v, v′ ∈ V (G),
(H2) �G′(h(v)) = �G(v) for every v ∈ V (G).

If a triple h = (G, h : V (G) → V (G′),G′) is a homomorphism of a labelled
directed graph G over Σ into a labelled directed graph G′ over Σ, we denote this
triple by h : G → G′, we write dom(h) and cod(h) for G and G′, respectively,
according to category theory convention, and we write h(v) for the value h(v).

A homomorphism h : G → G′ of labelled directed graphs over Σ is an embed-
ding of G into G′, denoted by h : G � G′, if the following condition holds:

(E) h(v) = h(v′) implies v = v′ for all v, v′ ∈ V (G).

An embedding h : G � G′ of labelled directed graphs G,G′ over Σ is an
inclusion of G into G′, denoted by h : G ↪→ G′, if the following holds:

(I) h(v) = v for every v ∈ V (G).

We say that a labelled directed graph G over Σ is a labelled subgraph of a
labelled directed graph G′ over Σ if there exists an inclusion h : G ↪→ G′ of
labelled directed graphs G,G′ over Σ.

For an embedding h : G � G′ of labelled directed graphs G,G′ over Σ we define
the image of h, denoted by im(h), to be a labelled directed graph Ĝ over Σ such
that V (Ĝ) =

{
h(v) | v ∈ V (G)

}
, E(Ĝ) =

{
(h(v), h(v′)) | (v, v′) ∈ E(G)

}
, and the

labelling function �Ĝ of Ĝ is the restriction of the labelling function �G′ of V (G′)
to the set V (Ĝ), i.e., �Ĝ(v) = �G′(v) for every v ∈ V (Ĝ).

A homomorphism h : G → G′ of labelled directed graphs over Σ is an iso-
morphism of G into G′ if there exists a homomorphism h−1 : G′ → G of labelled
directed graphs over Σ, called the inverse of h, such that the following conditons
hold:

(Iz1) h−1(h(v)) = v for every v ∈ V (G),
(Iz2) h(h−1(v)) = v for every v ∈ V (G′).

We say that a labelled directed graph G over Σ is isomorphic to a labelled
directed graph G′ over Σ if there exists an isomorphism h : G → G′ of labelled
graphs G,G′ over Σ.

320 A. Obtu�lowicz

For an embedding h : G � G′ of labelled directed graphs G,G′ over Σ we
define a homomorphism ḣ : G → im(h) by ḣ(v) = h(v) for every v ∈ V (G). This
homomorphism ḣ is an isomorphism of G into im(h), called an isomorphism
deduced by h.

For a labelled directed graph G over Σ, the identity homomorphism (or simply,
identity of G), denoted by idG , is the homomorphism h : G → G such that
h(v) = v for every v ∈ V (G).

We say that a labelled directed graph G over Σ is an isomorphically perfect
labelled directed graph over Σ if the identity homomorphism idG is a unique
isomorphism of labelled directed graph G into G.

Lemma 2. Let G be an isomorphically perfect labelled directed graph over Σ
and let h : G → G′, h′ : G → G′ be two isomorphisms of labelled graphs G,G′

over Σ. Then h = h′.

We say that a set or a class A of labelled directed graphs over Σ is skeletal if
for all labelled directed graphs G,G′ in A if they are isomorphic, then G = G′.

A gluing diagram D of labelled directed graphs over Σ is defined by:

— its set I of indexes with a distinguished index Δ ∈ I, called the center
of D,

— its family Gi (i ∈ I) of labelled directed graphs over Σ,
— its family gli (i ∈ I−{Δ}) gluing conditions which are sets of ordered pairs

such that
(i) gli ⊆ V (GΔ) × V (Gi) for every i ∈ I − {Δ},
(ii) (v, v′) ∈ gli implies �GΔ(v) = �Gi(v′) for all v ∈ V (GΔ), v′ ∈ V (Gi), and

for every i ∈ I − {Δ},
(iii) for every i ∈ I − {Δ} if gli is non-empty, then there exists a bijection

bi : L(gli) → R(gli)

for L(gli) = {v | (v, v′) ∈ gli for some v′} and R(gli) = {v′ | (v, v′) ∈ gli
for some v} such that

{
(v, bi(v)) | v ∈ L(gli)

}
= gli.

For a gluing diagram D of labelled directed graphs over Σ we define a cocone
of D to be a family hi : Gi → G (i ∈ I) of homomorphisms of labelled directed
graphs over Σ (here cod(hi) = G for every i ∈ I) such that

lG(hΔ(v)) = lG(hi(v′))

for every pair (v, v′) ∈ gli and every i ∈ I − {Δ}.
A cocone qi : Gi → G̃ (i ∈ I) of D is called a colimiting cocone of D if for

every cocone hi : Gi → G (i ∈ I) of D there exists a unique homomorphism
h : G̃ → G of labelled directed graphs G̃,G over Σ such that h(qi(v)) = hi(v) for
every v ∈ V (Gi) and for every i ∈ I. The labelled directed graph G̃ is called a
colimit of D, the homomorphisms qi (i ∈ I) are called canonical injections and
the unique homomorphism h is called the mediating morphism for hi : Gi → G
(i ∈ I).

Randomized Gandy-Păun-Rozenberg Machines 321

For a gluing diagram D one constructs its colimit G̃ in the following way:

— V (G̃) =
⋃

i∈I
(Vi × {i}), where

VΔ = V (GΔ) for the center Δ of D,
Vi = V (Gi) − R(gli) for every i ∈ I − {Δ},

— E(G̃) =
⋃

i∈I
Ei, where

EΔ =
{(

(v, Δ), (v′, Δ)
)
| (v, v′) ∈ E(GΔ)

}
for the center Δ of D,

Ei =
{(

(v, i), (v′, i)
)
| (v, v′) ∈ E(Gi) and {v, v′} ⊆ Vi

}

∪
{(

(v, Δ), (v′, Δ)
)
| (v, v′′) ∈ gli, (v′, v′′′) ∈ gli,

and (v′′, v′′′) ∈ E(Gi) for some v′′, v′′′
}

∪
{(

(v, Δ), (v′, i)
)
| v′ ∈ Vi, (v, v′′) ∈ gli and (v′′, v′) ∈ E(Gi) for some v′′

}

∪
{(

(v, i), (v′, Δ)
)
| v ∈ Vi, (v, v′′) ∈ gli and (v, v′′) ∈ E(Gi) for some v′′

}

for every i ∈ I − {Δ},
— the labelling function �G̃ is defined by �G̃((v, i)) = �Gi(v) for every (v, i) ∈

V (G̃).

The definition of a colimiting cocone of a gluing diagram D provides that any
other colimit of D is isomorphic to the colimit of D constructed above. Hence
one proves the following lemma.

Lemma 3. Let D be a gluing diagram of labelled graphs over Σ. Then for every
colimiting cocone qi : Gi → G (i ∈ I) of D if i′ �= i′′, then

(
V (im(qi′)) − V (im(qΔ))

)
∩
(
V (im(qi′′)) − V (im(qΔ))

)
= ∅

for all i′, i′′ ∈ I−{Δ}, where Δ is the center of D and the elements of nonempty
V (im(qi)) − V (im(qΔ)) with i �= Δ are ‘new’ elements and the elements of
V (im(qΔ)) are ‘old’ elements.

We say that an ordered triple (k, m, n) of integers k, m, n is acceptable if k > 0,
m �= 0, n > 1, and −k < m < n. We define

lin[k, n]=
{
(i, i+1) | i is an integer such that −k≤ i<−1 or 1≤ i<n

}
∪{(−1, 1)}

for k, n as above.
Then we say that a labelled directed graph G over Σ having more than one

label is induced by an acceptable ordered triple (k, m, n) if G is such that

— V (G) =
{
i | i is an integer such that − k ≤ i ≤ n

}
,

— E(G) = lin[k, n] ∪ {(0, m), (1, 1)},
— �G(0) /∈ {�G(−k), �G(m)}.

For a natural number n > 0 a regular labelled binary tree of depth n over
{root, 0, 1}×Σ is defined to be a labelled directed graph T over {root, 0, 1}×Σ
such that

— V (T) is the set of binary strings of length not greater than n including
empty string Λ,

322 A. Obtu�lowicz

— E(T) =
{
(Γ, Γ i) | {Γ, Γ i} ⊆ V (T) and i ∈ {0, 1}

}

∪
{
(Γ, Γ) | Γ is a binary string of length n

}
,

— the labelling function �T : V (T) → {root, 0, 1,⊥} × Σ of T is such that
�1
T (Λ) = root, �1

T (Γi) = i for every binary string Γ and every i ∈ {0, 1}
such that Γi ∈ V (T),

where �1
T (x), �2

T (x) denote the coordinates such that �T (x) = (�1
T (x), �2

T (x)) and
Γi denotes that binary string Θ whose last element is the digit i, and Γ is that
binary string which is the result of deleting the last element in Θ.

Lemma 4. The set of labelled directed graphs over Σ induced by acceptable or-
dered triples of integers is a skeletal set of isomorphically perfect graphs for Σ
having more than one label.

Lemma 5. The set of all regular binary trees of arbitrary depth over
{root, 0, 1} × Σ is a skeletal set of isomorphically perfect graphs.

We adopt the following notation for a set X of ordered pairs of natural numbers:

i � X = {(m · 2i, n + i) | (m, n) ∈ X} for a natural number i,

(0, 1) ⊕ X = {(m, n + 1) | (m, n) ∈ X},
(1, 1) ⊕ X = {(m + 2n, n + 1) | (m, n) ∈ X},

we recall that subtraction .− of natural numbers is given by m .− n = 0 if n ≥ m
and m − n if n ≤ m.

We define inductively the finite sets T m
n of ordered pairs of natural numbers

for natural numbers m, n by the following equations:

(t0) T 0
n = {(0, i) | i is a natural number with 0 ≤ i ≤ n},

(t1) T m
0 = T 0

0 ,
(t2) T n−i

n = T 0
i ∪ (i � T n−i

n−i) for 0 < i < n,
(t3) T n+i

n = T 0
0 ∪

(
(0, 1) ⊕ T

(n .−3)+i
n−1

)
∪
(
(1, 1) ⊕ T

(n .−3)+i
n−1

)
for n > 0 and i ≥ 0.

Lemma 6. For all natural numbers n ≥ 2 and i > 0 we have T 3·n−3+i
n = T 3·n−3

n .

For natural numbers m, n we define labelled directed graph T m
n over

{⊥, root, 0, 1} × {0, 1,⊥} by

— V (T m
n) = T m

n ,
— E(T m

n) = Em,n
1 ∪ Em,n

2 for
Em,n

1 =
{(

(i, j), (i′, j′)
)
| {(i, j), (i′, j′)} ⊂ T m

n , j′ = j + 1,

i ≤ i′/2, and i = max{k | (k, j) ∈ T m
n , and k ≤ i′/2}

}
,

Em,n
2 =

{(
(i, n), (i, n)

)
| (i, n) ∈ T m

n

}
,

— the labelling function �T m
n

of T m
n is such that

�T m
n

((i, j)) =
(
�1
T m

n
((i, j)),⊥

)
for �1

T m
n

((i, j)) defined by
(t′0) �1

T m
n

((0, 0)) = root,
(t′1) if x ∈ T m

n with x �= (0, 0) and Px =
{
y | {(z, y), (z, x)} ⊂ Em,n

1 for
some z

}
has exactly one element, then �T m

n
(x) = ⊥,

Randomized Gandy-Păun-Rozenberg Machines 323

(t′2) if x ∈ T m
n and Px = {(i, j), (i′, j)} with i < i′, then �1

T m
n

((i, j)) = 0 and
�1
T m

n
((i′, j)) = 1.

Lemma 7. For every natural number n ≥ 2 the labelled directed graph T 3·n−3
n

is isomorphic to a regular labelled binary tree T of depth n over {⊥, root, 0, 1}×
{0, 1,⊥} such that �2

T (Γ) = ⊥ for all Γ ∈ V (T).

The schemes (ṙ1)–(ṙ12) of the rewriting rules are illustrated by the figures below,
where the numbers in circles are the vertices of the corresponding labelled graphs,
the new vertices are indicated by bold dots •, the labels of the vertices stand
close to the corresponding circles, and ?, !, ⊥ are the abbreviations of the labels
(0,⊥), (1,⊥), (⊥,⊥), respectively. The variables x, y, z, i, j, k range over the set
Σ• of labels.

◦0

◦1
◦2
◦3
◦4

ṙ1

q0

z

⊥

y

x ◦0

◦1
◦2
◦3
◦4

•
•
•q1

z

?

y

x

!

�

§

{x,y}⊂Σ

z∈{0,1,⊥}×{⊥}

◦0

◦1
◦2
◦3

◦4
◦5
◦6

ṙ2

q1

y

x

y

z

�

§

y
=§
x/∈{@,�}

◦0

◦1
◦2
◦3

◦4
◦5
◦6
•q1

y

x

y

z

x

�

§

◦0

◦1
◦2
◦3

◦4
◦5
◦6

ṙ3

q1

z

@

y

x

�

§

y
=§

◦0

◦1
◦2
◦3

◦4
◦5
◦6
•§

�

1

x

y

0

z

q2

◦0

◦1
◦2
◦3

◦4
◦5
◦6

ṙ4

q2

z

x

y

i

�

§

y
=§
x
=�

◦0

◦1
◦2
◦3

◦4
◦5
◦6
•q2

z

x

y

i

x

�

§

◦0

◦1
◦2
◦3

◦4
◦5
◦6

ṙ5

q2

§

�

z

§

x

y x
=�

◦0
◦1
◦2
◦3

◦4
◦5
◦6

q3

§

x

z

§

x

y

◦0

◦1
◦2
◦3

◦4
◦5
◦6

ṙ6

q3

z

x

j

z

y

k

@/∈{x,y}
{z,i}∩{!,?}=∅

◦0
◦1
◦2
◦3

◦4
◦5
◦6

q3

z

x

j

i

y

k

◦0

◦1
◦2
◦3

◦4
◦5
◦6

ṙ7

q3

y

@

x

z

@

i

◦0
◦1
◦2
◦3

◦4
◦5
◦6

q4

y

@

x

z

@

i ◦0

◦1
◦2
◦3

◦4
◦5
◦6

ṙ8

{i,j}∩{?,!}=∅

q4

i

x

y

j

x

z

◦0
◦1
◦2
◦3

◦4
◦5
◦6

q4

i

x

y

j

x

z

324 A. Obtu�lowicz

◦0

◦1
◦2
◦3
◦4

◦5
◦6
◦7

ṙ9

q3

y

?

i

x

!

i

z

y∈{0,1}×{⊥}

◦0

◦1
◦2
◦3
◦4

◦5
◦6
◦7•qstart

y

qstart

?

i

x

!

i

z

◦0

◦1
◦2

◦3
◦4
◦5

◦6
◦7
◦8

ṙ10

q4

y

⊥

?

i

x

!

i

z

y∈{0,1,⊥}×{⊥}

◦0

◦1
◦2
◦3
◦4
◦5

◦6
◦7
◦8

•

•q0

y

?

⊥

i

x

⊥

i

z

q0

!

◦1
◦2
◦3
◦4
◦5
◦6◦7

◦8
◦9
◦10
◦11◦12

ṙ11

z

⊥

?

⊥

i

x

q0

!

⊥

i

y

q0

z∈{0,1,⊥}×{⊥}
◦1
◦2
◦3
◦4
◦5
◦6◦7

◦8
◦9
◦10
◦11◦12

•!

z

?

⊥

⊥

i

x

q0

⊥

⊥

i

y

q0

◦1
◦2

◦3
◦4

◦5
◦6

ṙ12

x

⊥

?

⊥

!

⊥

x∈{0,1,⊥,root}×{⊥}
◦1

◦2
◦3
◦4

◦5
◦6

•!

x

?

⊥

⊥

⊥

⊥

Feasibility of Organizations –
A Refinement of Chemical Organization Theory

with Application to P Systems

Stephan Peter1,∗, Tomas Veloz2,∗, and Peter Dittrich1

1 Friedrich Schiller University of Jena, Department for Mathematics and Computer
Sciences, Bio Systems Analysis Group, D-07743 Jena, Germany

2 University of Chile, Departamento de Ciencias de la Computacion, C.P. 837-0459
Santiago, Chile

Abstract. In membrane computing, a relatively simple set of reaction
rules usually implies a complex “constructive” dynamics, in which novel
molecular species appear and present species vanish. Chemical organiza-
tion theory is a new approach that deals with such systems by describ-
ing chemical computing as a transition between organizations, which are
closed and self-maintaining sets of molecular species. In this paper we
show that for the case of mass-action kinetics some organizations are
not feasible in the space of concentrations and thus need not to be con-
sidered in the analysis. We present a theorem providing criteria for an
unfeasible organization. This is a refinement of organization theory mak-
ing its statements more precise. In particular it follows for the design of
a membrane computing system that the desired resulting organization
of a chemical computing process should be a feasible organization. Nev-
ertheless we show that due to the membranes in a P system unfeasible
organizations can be observed, suggesting a strong link between the two
approaches.

1 Introduction

Inspired by Fontana and Buss [6], Dittrich and Speroni have developed a general
definition of a chemical organization [4]. Compared to other network analysis ap-
proaches like elementary flux modes [13,14], feedback loops [15], Petri nets [12]
or deficiency [5], organization theory works on a very abstract level which al-
lows for dealing with constructive dynamical systems. These systems allow for
appearance and disappearance of qualitatively new variables beyond a quanti-
tative change of a constant number of variables. They arise in particle physics,
chemical systems or even in social systems [7] where communication can pro-
duce further, new communication. In those systems chemical organization theory
can be applied for static [2,3] and dynamic [11] analyses, description [9] or de-
sign of chemical programs [8] despite a huge number of species effecting huge
non-simulatable systems or incomplete information.
� Contributed equally.

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 325–337, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

326 S. Peter, T. Veloz, and P. Dittrich

Fixed points are important in the dynamical analysis of reaction systems [18].
Dittrich and Speroni have shown that every fixed point of a chemical reaction
system corresponds to an organization (Theorem 1 in [4]). Given kinetic laws,
there is not necessarily a fixed point for each organization. Thus, it is useful to
rule out such unfeasible organizations. Assuming mass-action kinetics, in this
paper we give a necessary and sufficient criterion for the feasibility of organiza-
tions. This criterion gives a refinement of the systems organizational structure
allowing for a better description of its dynamical behavior.

Membrane computing or P systems [19,20] also deal with the understanding
of chemical reaction systems, but its focus is different. They are concerned with
reaction systems distributed to several compartments. We show that in a P sys-
tem membranes can effect the occurrence of organizations, by making possible
the stability of unfeasible organizations as well as disturbing the stability of
feasible organizations. In Section 2 is provided the basic concepts of chemical or-
ganization theory, in Section 3 it is introduced the feasibility of organizations in
chemical organization theory, the necessary and sufficient conditions to decide if
an organization is feasible for mass-action kinetics systems and it is discussed the
relevance of feasibility in P systems. In Section 4 there are presented some illus-
trative examples showing the consequences of feasibility in chemical organization
theory and the tight relation between organizations, feasibility and membranes
in the dynamics of a chemical system. Finally we conclude the work with the
indication of future work and open questions.

2 Chemical Organization Theory

This chapter provides the basics of chemical organization theory. In what follows
let M = {s1, . . . , sm} be a finite set of m species reacting with each other
according to a finite set R = {r1, . . . , rn} of n reactions. Together, the set of
species and the set of reactions is called reaction network.

2.1 Preliminaries

Given a vector k ∈ Rn
>0 containing a strictly positive rate constant for each

reaction, we can describe the dynamics of the species concentrations x by the
ODE

ẋ = Nv(x;k), (1)

where N ∈ Zm×n is the stoichiometric matrix and (v(x;k))i = ki
∏m

j=1 xaij

j for
i = 1, . . . , n, is the flux according to mass-action kinetics. Here xj denominates
the concentration of the species sj. We call ODE (1) a chemical reaction system.

The number aij ∈ N denominates the number of occurences of sj in the
support (reactants) of the i-th reaction. Together these numbers form a matrix
A ∈ Nn×m. With the rate constants k on the diagonal of a diagonal matrix
K ∈ Nn×n we can write

v(x;k) = KxA. (2)

Feasibility of Organizations 327

Definition 1. For a reaction ri ∈ R, the set supp(ri) ≡ {sj ∈ M : aij > 0} is
the support of ri.

Definition 2. Let P (M) be the power set of M and

φ : Rm
≥0 → P (M) , x !→ φ (x) ≡ {s ∈ M : xs > 0} . (3)

For a state x ∈ Rm
≥0, the set φ (x) is the abstraction of x. For a given set of

species S ⊆ M, a state x ∈ Rm
≥0 is an instance of S if and only if its abstraction

equals S.

2.2 Chemical Organizations

The following definition is the core of chemical organization theory.

Definition 3. A subset of species S ⊆ M is an organization if and only if

1. S is closed, i.e. none of the reactions with support within S produces a
species which is not contained in S, and

2. S is self-maintaining, i.e. there is a flux vector v = (v1, ..., vn) with Nv ≥
0 and

vi

{
> 0 ⇔ supp(ri) ⊆ S,

= 0 otherwise.

The following Theorem from [4] relates fixed points to organizations.

Theorem 1. If x is a fixed-point of the ODE (1), i.e. Nv(x;k) ≥ 0, then the
abstraction φ(x) is an organization.

Proofs can be found in [4] and [11].

Remark 1. Since fixed points play a crucial role in the analysis of dynamical sys-
tems [18], Theorem 1 provides a link between the behavior of a chemical reaction
system and its underlying set of reactions. This justifies the study of the systems
dynamics by chemical organization theory. In particular, organizations appear
in the long-term behavior of chemical reaction systems making the observation
of organizations in such systems provable [11].

Remark 2. The converse of Theorem 1 does not hold in general, i.e., given a
chemical reaction system, the underlying reaction network can exhibit an orga-
nization O for which there is no fixed point with abstraction equal to O. This
unfeasibility is studied in the next chapter.

3 Feasibility

In this section we introduce and study the feasibility of an organization. In what
follows assume that O ≡ M is an organization.

328 S. Peter, T. Veloz, and P. Dittrich

3.1 Definitions

We are going to introduce the notations required to state the main theorem.

Definition 4. O is feasible with respect to k if and only if there is a vector
of concentrations x ∈ Rm

>0 such that

Nv(x;k) ≥ 0. (4)

O is feasible if and only if it is feasible with respect to each k ∈ Rn
>0. Otherwise

it is unfeasible.

Now we define the image Im(A) of the matrix A and the set Ker∗(N). The
latter is derived from the kernel of the matrix N by only allowing for vectors
with all components strictly positive and fulfilling an inequality instead of the
equality required for the definition of the kernel.

Definition 5. We define

Im(A) ≡ {y : y = Ax, x ∈ Rm}, (5)
Ker∗(N) ≡ {v ∈ Rn

>0 : Nv ≥ 0}. (6)

Next we define the application of the logarithm function to vectors and sets of
vectors.

Definition 6. For a set U of vectors, a vector u = (u1, u2, ...) ∈ U and a
number β > 0 we define

logβ(u) ≡ (logβ(u1), logβ(u2), . . .)T , (7)
logβ(U) ≡ {w : w = logβ(u), u ∈ U}, (8)

where superscript T denotes vector transposition.

Lastly, we define arithmetic operations over sets of vectors.

Definition 7. For sets U, V of vectors we define

U + V ≡ {w : w = u + v, u ∈ U,v ∈ V }. (9)

3.2 Theorem

Now we state the main theorem which gives a necessary and sufficient criterion
for feasibility in mass-action kinetics.

Theorem 2. O is feasible if and only if

Rn \ (logβ(Ker∗(N)) − Im(A)) = ∅. (10)

Feasibility of Organizations 329

Proof. For any β > 0, O is feasible if and only if

∀k ∈ Rn
>0 ∃x ∈ Rm

>0 : Nv(x;k) ≥ 0 (11)
Eq. 2⇐⇒

∀k ∈ Rn
>0 ∃x ∈ Rm

>0, v̂ ∈ Rn
>0 : Nv̂ ≥ 0 ∧ v̂ = v(x;k) = KxA (12)

Def. 5⇐⇒
∀k ∈ Rn

>0 ∃x ∈ Rm
>0, v̂ ∈ Ker∗(N) : v̂ = KxA (13)

⇔
∀k ∈ Rn

>0 ∃x ∈ Rm
>0, v̂ ∈ Ker∗(N) : logβ(v̂) = logβ(k) + A · logβ(x) (14)

⇔
∀k ∈ Rn

>0 ∃x ∈ Rm
>0, v̂ ∈ Ker∗(N) : logβ(k) = logβ(v̂) − A · logβ(x) (15)

k̂≡logβ(k)⇐⇒
∀k̂ ∈ Rn ∃x ∈ Rm

>0, v̂ ∈ Ker∗(N) : k̂ = logβ(v̂) − A · logβ(x) (16)
y≡A·logβ(x)⇐⇒

∀k̂ ∈ Rn ∃y ∈ Im(A), v̂ ∈ Ker∗(N) : k̂ = logβ(v̂) − y (17)
w≡logβ(v̂)⇐⇒

∀k̂ ∈ Rn ∃y ∈ Im(A),w ∈ logβ(Ker∗(N)) : k̂ = w − y, (18)
⇔

Rn \ (logβ(Ker∗(N)) − Im(A)) = ∅. (19)

Theorem 2 reveals how both the structure of the supports of the reactions (repre-
sented by A) and the stoichiometric matrix N restrict the possible flux vectors.
When the set of restrictions has a special structure the organization O is unfea-
sible. That means that there are rate constants such that there exists no set of
strictly positive species concentrations to build up a flux vector v which is in
Ker∗(N).

Remark 3. The set logβ(Ker∗(N)) is not a linear vector space with respect to
addition. This makes the computational verification of Theorem 2 by methods
from linear algebra difficult.

As a consequence of Theorem 2 we get the following statement about the exis-
tence of fixed points.

Corollary 1. If the set Rn \ (logβ(Ker∗(N))−Im(A)) is not empty, then there
are rate constants k such that the ODE (1) has no fixed point with abstraction
equal O.

Proof. We assume that the set Rn \ (logβ(Ker∗(N)) − Im(A)) is not empty.
Then from Theorem 2 follows that O is unfeasible. Then there exists a vector of
rate constants k such that O is not feasible with respect to this k (Definition 4).

330 S. Peter, T. Veloz, and P. Dittrich

Also from Definition 4 follows that then for all vectors of concentrations x ∈ Rm
>0

the inequality

Nv(x;k) ≥ 0 (20)

does not hold. Particularly, Nv(x;k) �= 0 for all x ∈ Rm
>0, i.e., there exists no

fixed point with abstraction equal O for the ODE (1).

Remark 4. If the set Rn \ (logβ(Ker∗(N)) − Im(A)) is empty, there can also
exist rate constants such that the ODE (1) has no fixed point with abstraction
equal O. The reason is that Nv(x;k) ≥ 0 does not imply Nv(x;k) = 0. And
fixed points require strict equality.

3.3 Feasibility in P Systems

Now we know that the set of species representing an unfeasible organization O
is less probable to be observed in a single reaction system than one representing
a feasible organization. We will show in the next section that for a P system
membranes can compensate for this phenomenon (cf. Example 5): a membrane
can provide several compartments each possibly containing different subsets of
species (feasible organizations) such that there union is O. In this case, the unfea-
sibility of organization O can be attributed to an incompatibility of two smaller
feasible organizations. I.e., whenever an unfeasible organization O can be written
as union of feasible organizations, membranes can allow for the appearance of O
even though it is unfeasible, because the membranes helps to separate properly
the incompatible organizations. Furthermore, we will show that, even when an
exchange of molecules between the compartments is permitted, the unfeasible
organization can be maintained in time. Thus, in a P system, membranes can
allow for the appearance of those sets of species which - following the refine-
ment of chemical organization theory stated in the previous sections - could not
appear if there would not be a membrane. This implies that destruction of mem-
branes can lead also to the opposite effect, destabilizing the equilibria process
described above between unfeasible organizations (partially or totally) separed
by the membranes.

4 Examples

In this section there are shown different aspects of unfeasibility as well as its
relation with P systems. Therefore the notation of Theorem 2 is used. The fol-
lowing two examples show straight consequences of Theorem 2:

Example 1. Let M = {s1, s2} and R = {s1 → s2, s2 → s1}. We have

A =
(

1 0
0 1

)

, N =
(
−1 1
1 −1

)

.

Note that

Im(A) = R2, Ker∗(N) = {(v1, v2) ∈ R2
>0 : v1 = v2}.

Feasibility of Organizations 331

Then we have
R2 \ (logβ(Ker∗(N)) − Im(A)) = ∅.

Thus, M is feasible. We are going to verify this.
We have to solve the system

Nv(x) = NKxA =
(
−1 1
1 −1

)(
k1x1
k2x2

)

≥ 0. (21)

Where ki and xi are the rate constant of reaction ri and the concentration of
species si for i = 1, 2, respectively. Then, Nv(x) ≥ 0 iff x1 = k2

k1
x2. The latter

equation has a solution for all strictly positive reaction rates k = (k1, k2), thus
we conclude M is feasible.

Example 2. Let M = {s1, s2} and R = {s1 + s2 → 2s2, s1 + s2 → 2s1}. Then
we have

A =
(

1 1
1 1

)

, N =
(
−1 1
1 −1

)

.

Note that

Im(A) = {(v1, v2) ∈ R2 : v1 = v2} = Ker∗(N) (22)
⇒

Im(A) − logβ(Ker∗(N)) = {(v1, v2) ∈ R2 : v1 = v2} (23)
⇒

Rn \ (Im(A) − logβ(Ker∗(N))) �= ∅. (24)

Thus, for this example M is unfeasible. We are going to verify this by analysing
the inequalities

Nv(x) = NKxA =
(
−1 1
1 −1

)(
k1x1x2
k2x1x2

)

≥ 0. (25)

They are solvable if and only if k1x1x2 = k2x1x2, i.e. k1 = k2. Thus, M is
unfeasible, because M is not feasible with respect to any rate constant vector
fulfilling k1 �= k2.

Remark 5. Note that in Examples 1 and 2 it is obtained the same stoichiometric
matrix from the reactions which define the systems. But in Example 1 the or-
ganization {s1, s2} is feasible and in Example 2 the organization {s1, s2} is not
feasible. Then we conclude that feasibility is a phenomenon which is beyond the
stoichiometric information.

Example 3. In this example it is shown a way to build unfeasible organizations.
We will use a reaction network of four molecular species and four reactions, but
the method we are going to exemplify could be done for any set of molecules
and reactions. Let M = {s1, s2, s3, s4} and xi the concentration of species si for
i = 1, ..., 4. We are going to build R such that M is an unfeasible organization.

332 S. Peter, T. Veloz, and P. Dittrich

First we are going to choose Ker∗(N) such that logβ(Ker∗(N)) � Rn (In other
case M would be feasible without necessity of knowing A). For simplicity we
choose

Ker∗(N) = {(v, v, v, v) : v > 0}.

Now we are going to choose the support of the reactions:

v(x) = (k1x1x2,

k2x1x3,

k3x3x4,

k4x4x2).

(26)

Note there are two shared species between every triad of reactions, what helps to
obtain unfeasibility. As we already know Ker∗(N), we can choose some relation
between the reaction rates in order to obtain contradictory concentration equa-
tions for every vector in Ker∗(N) fulfilling mass-action kinetics (Equation 4).
Note that to every flux vector which verifies the self-maintenance property of M
has to hold that k1x1x2 = k2x1x3 = k3x3x4 = k4x4x2. We are going to prove
that if k1 > k2 and k3 > k4 the organization is unfeasible with respect to k. By
the first and second reactions we have k1x1x2 = k2x1x3. As k1 > k2 we have

x3 > x2. (27)

By third and fourth reaction we have k3x3x4 = k4x4x2. As k3 > k4 we have

x2 > x3. (28)

We have a contradiction. Note that if we would choose k1 < k2 and k3 < k4
we would obtain also a contradiction. Now we just have to build up the stoi-
chiometric matrix by choosing the produced species of each reaction, in order to
keep Ker∗(N) as it was stated at the beginning of the example. Choosing the
reactions

s1 + s2 → 2s1,

s1 + s3 → 2s2,

s3 + s4 → 2s3,

s2 + s4 → 2s4,

(29)

we obtain Ker∗(N) as it was stated at the beginning of this example. Then the
organization {s1, s2, s3, s4} is unfeasible. Theorem 2 confirms this.

Remark 6. It is interesting that in Example 2 both reactions have the same
support. Example 3 shows that even if all reactions have different supports, the
organization can be unfeasible.

Remark 7. In Example 3, note that if we would have chosen Ker∗(N) = {(v1, v2,
v3, v4) : v1 ≥ v2 ≥ v3 ≥ v4} and the same support for the reactions, it would

Feasibility of Organizations 333

Fig. 1. Evolution of the concentrations in mass-action kinetics. The concentration of
s1, s2, s3, s4 are grey, grey-dashed, black and black-dashed respectively. Figures a) and
b) show the evolution in time beginning from an instance of the organization O8 for two
different sets of rate constants. Thus, despite changing the rate constants, the evolution
of O8 in a) and b) is structurally the same, asymptotic convergence to a fixed point
corresponding to O8, i.e. all species are persistent. This is possible since O8 is feasible.
Beginning from O7 we obtain the same behavior (not shown in the figures) because of
its feasibility. Figures c),d),e) show the evolution of concentrations beginning from an
instance of M for three different sets of rate constants, such that M is unfeasible with
respect to the rate constants chosen for Figures c) and d) and feasible with respect
to the rate constants chosen for e). The system asymptotically tends to the reactive
organization O7 (Figure c)), the non-reactive organization O5 ≡ {s3, s4} (Figure d)) or
M (Figure e)). Non-persistence of M in cases c) and d) is predicted by the unfeasibility
of M. The situation is illustrated within the lattice of organizations in Figure 2 (Left).

be obtained the same contradictions stated in Equations 27 and 28 when k1 >
k2 and k3 > k4. In the opposite case, if we would have choosen Ker∗(N) =
{(v1, v2, v3, v4) : v1 ≤ v2 ≤ v3 ≤ v4} it would be obtained the contradictions
when k1 < k2 and k3 < k4. In both cases mentioned above, the stoichiometric
matrix which keeps Ker∗(N) would look quite different to the stoichiometric
matrix of Example 3.

Remark 8. The contradiction which we found between Equations 27 and 28 can
be thought as a game where given Ker∗(N), it has to be chosen the support
of the reactions and the relation between reaction rates to obtain a system of
inequalities Nv ≥ 0 with no solution.

The unfeasible organizations shown in the previous examples were composed
by non-reactive organizations, this means any organization which is (strictly)
contained in the unfeasible organization mentioned in every previous example
verifies its self-maintenance by an empty flux vector.

Definition 8. An organization is non-reactive if its self-maintenance is verified
by an empty flux vector.

334 S. Peter, T. Veloz, and P. Dittrich

From the point of view of combining organizations, what is shown in the previ-
ous examples is that combining non-reactive (trivially feasible) organizations it
is possible to obtain an unfeasible organization. An interesting question is if it is
possible to obtain an unfeasible organization from combining feasible and reac-
tive organizations. The next example shows the positive answer to that question.

Example 4. In this example we are going to show that unfeasibility can be also
generated by incompatibility between reactive organizations.

Let M = O8∪O7, O8 = {s1, s2, s3}, O7 = {s1, s2, s4}, and R = {r1, r2, r3, r4},
where

r1 : s1 + s3 → 2s3,

r2 : s2 + s3 → s1 + s2,

r3 : s2 + s4 → 2s4,

r4 : s1 + s4 → s1 + s2.

Note that O8 and O7 are both feasible (and reactive) organizations, but together
they form M which is an unfeasible organization. This is because under k1 < k2
and k3 > k4 (or k1 > k2 and k3 < k4) the flux vector which verifies self-
maintenance of M has to hold x1 > x2 and x2 > x1 simultaneously1.

For the results of simulations of this example see Figure 1 and Figure 2 (Left).

Fig. 2. Left: Lattice of organizations of Example 4. Each rectangle stands for an orga-
nization. There is a thin line between two organizations of different sizes iff the smaller
organization is a subset of the bigger one and no other organization is between them.
The arrows denote the (down-)movement in time from the unfeasible organization O9

to the feasible organization O8 (cf. Fig. 1 (c)), and to the non-reactive organization O5

(cf. Fig. 1 (d)). Right: Diagram of the P system of Example 5. There are two compart-
ments each surrounded by a membrane. The membranes allow for exchange-diffusion
of molecules between compartments. Within each compartment the reaction rules are
the same. But due to different initial conditions, different reaction rate for the same
reaction in each compartment, or diffusion, the species concentrations can differ and
different organizations can appear in each compartment.

1 To verify this it is required to build Ker∗(N) and check that under those reaction
rates no flux vector can follow mass-action kinetics and simultaneously verify the
self-maintenance property.

Feasibility of Organizations 335

Fig. 3. In all plots the grey, grey-dashed, black, black-dashed curve represents the
concentration of s1, s2, s3, s4 respectively. In rows a), b) and c) the left plot shows
the concentration of molecules in the inner compartment, the middle plot shows the
concentration of the outer compartment and the right plot shows the concentration of
the sum of inner and outer concentrations (the total concentration in the P system
considered as a whole). The plots in row a) show the P system when the exchange
reaction rates are switched to zero (compartments do not interact with each other).
We see that the inner compartment tends to O7 and the outer compartment to O8,
and thus the P system considered as a whole tends to O9. The plots in row b) show
the same system of plot row a), but permitting exchange of molecules through the
membranes. It is observed an oscillatory regime in which O9 is maintained in both
compartments, because the exchanged molecules help to the long-term stability of the
system. This oscillatory regime is not possible in a single membrane system. The plots
in row c) show again the same system as in a) but with different exchange-reaction
rates. This time the exchange reactions lead in asymptotic regime to the non-reactive
organization O6.

Example 5. In this example we show how feasibility and membranes are comple-
mentary concepts to understand the asymptotic behavior in biological systems.

We are going to define a P system of two membranes, one internal and the
other external, such that there are an inner and an outer compartment. Both
compartments have the same reaction rules (we are going to use the reactions
of Example 4), and we are going to allow exchange of molecules through the
internal membrane (from the inner to outer compartment and vice versa). See
Figure 2 (Right) for an illustration.

We allow that reactions are fired with different reaction rates in the inner
and outer compartment (this assumption is theoretically plausible for example
in charged membranes). This fact makes possible the coexistence of the two
incompatible organizations O7 and O8 of Example 4 (one organization in each
membrane), and thus when considering the P system as a whole, we have that the
organization O9 increases its rates-region of feasibility because of the exchange

336 S. Peter, T. Veloz, and P. Dittrich

reactions. Furthermore, for some exchange rates the resulting behavior is an
asymptotic stability of O9 in each compartment, but in an oscillatory regime (if
the membrane is destroyed this equilibrium is broken). Finally, for certain ex-
change rates, the asymptotic behavior of a feasible and reactive organization is
a non-reactive organization, this implies that the creation/destruction of mem-
branes can also break the stability of feasible organizations. See Figure 3 for
simlations showing this phenomena.

5 Conclusions

We have shown that, given a kinetic law of mass-action type, feasibility can
be computed for each organization, i.e. whether it has a corresponding fixed
point in the ODE (1) or not. This complements the fixed point theorem (The-
orem 1 in [4]) and refines the information organization theory can give about
a systems dynamics. We presented an intuitive way to build unfeasible organi-
zations (cf. Example 3). We have shown that the unfeasibility can emerge from
combining reactive as well as non-reactive feasible organizations. This means
the phenomena of unfeasibility are potentially present in any reaction network.
Thus, terms like feasibility or incompatibility of organizations can give rise to
formalizations of various ecological-like phenomena in nature, e.g., competition,
symbiosis, depredation, etc. (cf. Example 2, 4 and 5). We succesfully applied
chemical organization theory to P systems: We have shown that in a P system
creation and destruction of membranes allow for the occurrence of unfeasible
organizations as well as destruction of feasible organizations, thus enriching the
set of possible behaviors of a chemical reaction system.

The interface of Chemical organization theory and P systems provides a wide
field for further research promising new analysis techniques for reaction net-
works. E.g., the concept of compatibility of organizations informally introduced
in this paper could be further developed and applied to the above mentioned
ecological-like concepts. Future work should also be concerned with the relation
between different kinetic laws and feasibility of organizations. Furthermore it
should be analyzed how complicated it is to determine feasibility automatically
since methods from linear algebra do not suffice.

Acknowledgments. The authors would like to thank Peter Kreyßig and
Thomas Hintze for their helpful advices.

References

1. National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov
2. Centler, F., Dittrich, P.: Chemical Organizations in Atmospheric Photochemistries:

A New Method to Analyze Chemical Reaction Networks. Planet. Space Sci. 55,
413–428 (2007)

3. Centler, F., Kaleta, C., Speroni di Fenizio, P., Dittrich, P.: Computing Chemical
Organizations in Biological Networks. Bioinformatics 24, 1611–1618 (2008)

http://www.ncbi.nlm.nih.gov

Feasibility of Organizations 337

4. Dittrich, P., Speroni di Fenizio, P.: Chemical Organization Theory. Bull. Math.
Biol. 69, 1199–1231 (2007)

5. Feinberg, M., Horn, F.J.M.: Dynamics of Open Chemical Systems and the Alge-
braic Structure of the Underlying Reaction Network. Chem. Eng. Sci. 29, 775–787
(1974)

6. Fontana, W., Buss, L.W.: The Arrival of the Fittest: Toward a Theory of Biological
Organization. Bull. Math. Biol. 56, 1–64 (1994)

7. Luhmann, N.: Soziale Systeme. Suhrkamp, Frankfurt a.M (1984)
8. Matsumaru, N., Centler, F., di Fenizio, P.S., Dittrich, P.: Chemical Organization

Theory as a Theoretical Base for Chemical Computing. Int. Jour. on Unconven-
tional Computing 3, 285–309 (2007)

9. Matsumaru, N., Centler, F., di Fenizio, P.S., Dittrich, P.: Chemical Organization
Theory Applied to Virus Dynamics. Information Technology 48, 154–160 (2006)

10. Murray, J.D.: Mathematical Biology I: An Introduction. Springer, New York (2002)
11. Peter, S.: Chemische Organisationen und kontinuierliche Dynamik. Diploma Thesis

(2008)
12. Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, University of Bonn,

Bonn (1962)
13. Schilling, C.H., Schuster, S., Palsson, B.O., Heinrich, R.: Metabolic Pathway Anal-

ysis: Basic Concepts and Scientific Applications in the Post-genomic Era. Biotech-
nol. Prog. 15, 296–303 (1999)

14. Schuster, S., Dandekar, T., Fell, D.A.: Detection of Elementary Flux Modes in
Biochemical Networks: A Promising Tool for Pathway Analysis and Metabolic
Engineering. Trends Biotechnol. 17, 53–60 (1999)

15. Sensse, A.: Convex and Toric Geometry to Analyze Complex Dynamics in Chemical
Reaction Systems. Ph.D. thesis, Otto-von-Guericke University Magdeburg, Magde-
burg (2005)

16. Sensse, A., Eiswirth, M.: Feedback Loops for Chaos in Activator-inhibitor Systems.
Jour. Chem. Phys. 122, 044516–044516-9 (2005)

17. Sensse, A., Hauser, M.J.B., Eiswirth, M.: Feedback Loops for Shilnikov Chaos: The
Peroxidase-oxidase Reaction, Jour. Chem. Phys. 125, 014901–014901-12 (2006)

18. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Westview Press, Cambridge (2000)
19. Paun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
20. Bernardini, F., Manca, V.: Dynamical aspects of P systems. Biosystems 70, 85–93

(2003)

P Systems with Elementary Active Membranes:
Beyond NP and coNP

Antonio E. Porreca, Alberto Leporati, Giancarlo Mauri, and Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy

{porreca,leporati,mauri,zandron}@disco.unimib.it

Abstract. We prove that a uniform family of P systems with active
membranes, where division rules only operate on elementary membranes
and dissolution rules are avoided, can be used to solve the following
PP-complete decision problem in polynomial time: given a Boolean for-
mula of m variables in 3CNF, do at least

√
2m among the 2m possi-

ble truth assignments satisfy it? As a consequence, the inclusion PP ⊆
PMCAM(−d,−n) holds: this provides an improved lower bound on the
class of languages decidable by this kind of P systems.

1 Introduction

P systems with active membranes [11] are a variant of P systems where a par-
ticularly important role in the computation is performed by the membranes
themselves: they possess an electrical charge that can inhibit or activate the
rules that govern the evolution of the system, and they can also increase expo-
nentially in number via division rules. The latter feature makes them extremely
efficient from a computational complexity standpoint: using exponentially many
membranes that evolve in parallel, they can be used to solve PSPACE-complete
problems [12,2] in polynomial time.

When the ability of dividing membranes is limited, the efficiency apparently
decreases. The so-called Milano theorem [14] tells us that no NP-complete
problem can be solved in polynomial time without using division rules, unless
P = NP holds.

On the other hand, the computing power of polynomial-time P systems with
division rules operating only on elementary membranes (that is, membranes
not containing other membranes) has not been yet characterised precisely. It
is a known fact that elementary division rules suffice to efficiently solve NP-
complete problems (and, due to closure under complement, also coNP-complete
ones). This result dates back to 2000 in the semi-uniform case [14], where each
input is mapped to a specific P system solving the problem for that particular
input, and to 2003 in the uniform case [9], where a single P system solves the
problem for all inputs of the same size. In terms of complexity classes, this is
written NP ∪ coNP ⊆ PMCAM(−n) ⊆ PMC	

AM(−n), where the star denotes

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 338–347, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

P Systems with Elementary Active Membranes 339

semi-uniformity. Since these results do not require membrane dissolution rules,
we also have the (possibly stronger) inclusion NP ∪ coNP ⊆ PMCAM(−d,−n);
the systems of type AM(−d,−n) are sometimes called P systems with restricted
elementary active membranes [2].

No significant improvement on the NP ∪ coNP lower bound for the com-
plexity classes PMCAM(−n) and PMCAM(−d,−n), or the corresponding semi-
uniform classes, has been found since then, although a PSPACE upper bound
was proved in 2007 [13].

In 2008, Alhazov et al. [1] proved that P systems with elementary active
membranes can be used to solve PP-complete problems, but their result is not
directly related to PMCAM(−n), since it requires either cooperative evolution
rules, a very strong feature which is not a part of standard P systems with
active membranes, or post-processing data of exponential size (when expressed
in unary).

The complexity class PP appears to be larger than NP, since it contains
NP as a subset and it is closed under complement: thus NP ∪ coNP ⊆ PP.
In this paper we prove that a PP-complete problem (and, as a consequence,
the totality of problems in PP) can indeed be solved in polynomial time using
standard P systems with restricted elementary active membranes.

2 Definitions

We begin by recalling the definition of P systems with restricted elementary
active membranes.

Definition 1. A P system with restricted elementary active membranes [2], in
symbols AM(−d,−n), of the initial degree d ≥ 1 is a tuple

Π = (Γ, Λ, μ, w1, . . . , wd, R)

where:

– Γ is a finite alphabet of symbols, also called objects;
– Λ is a finite set of labels for the membranes;
– μ is a membrane structure (i.e., a rooted unordered tree) consisting of d

membranes enumerated by 1, . . . , d; furthermore, each membrane is labelled
by an element of Λ, not necessarily in a one-to-one way;

– w1, . . . , wd are strings over Γ , describing the multisets of objects placed in
the d initial regions of μ;

– R is a finite set of rules.

Each membrane possesses a further attribute, named polarization or electrical
charge, which is either neutral (represented by 0), positive (+) or negative (−)
and it is assumed to be initially neutral.

340 A.E. Porreca et al.

The rules are of the following kinds:

– Object evolution rules, of the form [a → w]αh
They can be applied inside a membrane labelled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by the
multiset w).

– Send-in communication rules, of the form a []αh → [b]βh
They can be applied to a membrane labelled by h, having charge α and such
that the external region contains an occurrence of the object a; the object
a is sent into h becoming b and, simultaneously, the charge of h is changed
to β.

– Send-out communication rules, of the form [a]αh → []βh b
They can be applied to a membrane labelled by h, having charge α and
containing an occurrence of the object a; the object a is sent out from h to
the outside region becoming b and, simultaneously, the charge of h is changed
to β.

– Elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labelled by h, having charge α, contain-
ing an occurrence of the object a but having no other membrane inside; the
membrane is divided into two membranes having label h and charge β and
γ; the object a is replaced, respectively, by b and c while the other objects
in the initial multiset are copied to both membranes.

A configuration in a P system with active membranes is described by its cur-
rent membrane structure, together with its charges and the multisets of objects
contained in its regions. The initial configuration is given by μ, all membranes
having charge 0 and the initial contents of the membranes being w1, . . . , wd. A
computation step changes the current configuration according to the following
principles:

– Each object and each membrane can be subject to only one rule during a
computation step.

– The rules are applied in a maximally parallel way: each object which appears
on the left-hand side of applicable evolution, communication, or elementary
division rules must be subject to exactly one of them; the same holds for each
membrane which can be involved in a communication or division rule. The
only objects and membranes which remain unchanged are those associated
with no rule, or with rules that are not applicable in that particular step
(due to the charge of the membrane).

– When more than one rule can be applied to an object or membrane, the
actual rule to be applied is chosen nondeterministically; hence, in general,
multiple configurations can be reached from the current one.

– When division rules are applied to a membrane, the multiset of objects to
be copied is the one resulting after all evolution rules have been applied.

– The skin membrane cannot be divided. Furthermore, every object which is
sent out from the skin membrane cannot be brought in again.

P Systems with Elementary Active Membranes 341

A halting computation C of a P system Π is a finite sequence of configurations
(C0, . . . , Ck), where C0 is the initial configuration of Π , every Ci+1 can be reached
from Ci according to the principles just described, and no further configuration
can be reached from Ck (i.e., no rule can be applied). P systems might also
perform non-halting computations; in this case, we have infinite sequences C =
(Ci : i ∈ N) of successive configurations.

We can use families of P systems with active membranes as language recog-
nisers, thus allowing us to solve decision problems.

Definition 2. A recogniser P system with active membranes Π has an alphabet
containing two distinguished objects yes and no, used to signal acceptance and
rejection respectively; every computation of Π is halting and exactly one object
among yes, no is sent out from the skin membrane during each computation.

In what follows we will only consider confluent recogniser P systems with active
membranes, in which all computations starting from the same initial configura-
tion agree on the result.

Definition 3. Let L ⊆ Σ	 be a language and let Π = {Πx : x ∈ Σ	} be a family
of recogniser P systems. We say that Π decides L, in symbols L(Π) = L, when
for each x ∈ Σ	, the result of Πx is acceptance iff x ∈ L.

Usually some uniformity condition, inspired by those applied to families of
Boolean circuits, is imposed on families of P systems. Two different notions
of uniformity have been considered in the literature; they are defined as follows.

Definition 4. A family of P systems Π = {Πx : x ∈ Σ	} is said to be semi-
uniform when the mapping x !→ Πx can be computed in polynomial time, with
respect to |x|, by a deterministic Turing machine.

Definition 5. A family of P systems Π = {Πx : x ∈ Σ	} is said to be uniform
when there exist two polynomial-time deterministic Turing machines M1 and M2
such that, for each n ∈ N and each x ∈ Σn

– M1, on input 1n (the unary representation of the length of x), outputs the
description of a P system Πn with a distinguished input membrane;

– M2, on input x, outputs a multiset wx (an encoding of x);
– Πx is Πn with wx added to the multiset located inside its input membrane.

In other words, the P system Πx associated with string x consists of two parts;
one of them, Πn, is common for all strings of length |x| = n (in particular, the
membrane structure and the set of rules fall into this category), and the other
(the input multiset wx for Πn) is specific to x. The two parts are constructed
independently and, only as the last step, wx is inserted in Πn.

Time complexity classes for P systems [9] are defined as usual, by restricting the
amount of time available for deciding a language. By PMCAM(−d,−n) (resp.,
PMC	

AM(−d,−n)) we denote the class of languages which can be decided by

342 A.E. Porreca et al.

uniform (resp., semi-uniform) families Π of confluent P systems with restricted
elementary active membranes where each computation of Πx ∈ Π halts in poly-
nomial time with respect to |x|. These classes are known to be closed under
complement and polynomial-time reductions. Since uniformity is a special case
of semi-uniformity, the inclusion PMCAM(−d,−n) ⊆ PMC	

AM(−d,−n) holds; we
only consider uniform families in the rest of the paper.

The complexity class PP (Probabilistic P) was first introduced to characterise
those decision problems which can be solved efficiently by a probabilistic Turing
machine, whose probability of error on every input is strictly less than 1/2 [6].
An equivalent definition of PP is usually given in terms of nondeterministic
Turing machines by altering the notion of acceptance [8].

Definition 6. The complexity class PP consists of all languages L ⊆ Σ	 which
can be decided in polynomial time by a nondeterministic Turing machine N with
the following acceptance criterion: N accepts x ∈ Σ	 iff more than half of the
computations of N on input x are accepting.

3 Solving a PP-Complete Problem

One of the standard PP-complete problems is Majority-SAT [4,8]: given a
Boolean formula ϕ of m variables in conjunctive normal form, determine whether
more than half of the 2m possible truth assignments satisfy it. However, it is not
easy to provide a polynomial-time uniform solution for this problem, since the
clauses of ϕ may contain any number of literals between 1 and 2m. The usual
solution in membrane computing is to require the input formula to have exactly
three different literals per clause (see, e.g., [10]). Unfortunately, the resulting
decision problem Majority-3SAT is not known to be PP-complete. In par-
ticular, the standard reduction from SAT to 3SAT [5] is not applicable here,
as it requires the addition of “dummy” variables, which increase the number
of possible assignments without necessarily increasing the number of satisfying
ones: this can decrease the ratio of satisfying assignments over total assignments
from above 1/2 to a value less than or equal to this threshold.

There is, however, yet another slight variation of the problem that is suitable
for our purposes.

Definition 7. Sqrt-3SAT1 is the following decision problem: given a Boolean
formula of m variables in 3CNF, determine whether the number of truth assign-
ments satisfying it is at least

√
2m.

The problem Sqrt-3SAT is known to be PP-complete [3], and it is very close
in spirit to Majority-3SAT. Our solution to this problem follows the canon for
NP-complete problems in membrane computing [11,14], but with an additional
intermediate phase (numbered 3 in the following algorithm).

1 This problem is denoted by #3SAT(≥ 2m/2) in the original paper [3].

P Systems with Elementary Active Membranes 343

Algorithm 1. Solving Sqrt-3SAT on input ϕ, a 3CNF formula of m variables.

1. Generate 2m membranes using elementary division, each one containing a
different truth assignment to the variables occurring in ϕ.

2. Evaluate ϕ under the 2m assignments, in parallel, and send out from each
membrane an object t whenever the formula is satisfied by the corresponding
assignment.

3. Erase �
√

2m	−1 instances of t (or all of them, if less than �
√

2m	−1 occur).
4. Output yes if at least one instance of t remains; otherwise, output no.

Notice that, by removing Phase 3, we obtain the standard membrane comput-
ing algorithm for SAT. The additional phase was first proposed by Alhazov et
al. [1] for checking the value of the permanent of a matrix, but the authors used
cooperative object evolution rules, that are not part of standard P systems with
active membranes. In Section 3.2 we show how to implement this phase using
elementary division and communication rules, together with all the other steps
of Algorithm 1.

3.1 Encoding of Formulae

Formulae in 3CNF are easy to encode as binary strings [7,10]. Given m variables,
only 8

(
m
3

)
clauses without repeated variables exist: we have

(
m
3

)
sets of three out

of m variables, and each one of them can be either positive or negated. Once
an easily-computable enumeration of the clauses has been fixed (e.g., under a
lexicographic order, the i-th clause can be computed from i in polynomial time)
a formula ϕ can be represented by a string 〈ϕ〉 of n = 8

(
m
3

)
bits, where the i-th

bit is set iff the i-th clause occurs in ϕ.
Under this encoding, a string in {0, 1}n is a valid formula iff n = 8

(
m
3

)
for some

integer m ≥ 3. The number of variables m can be easily recovered in polynomial
time, given n in unary notation, by finding the unique positive integer root of
the polynomial p(m) = 8

(
m
3

)
−n = 4

3m3 − 4m2 + 8
3m−n. If no such root exists,

we can deduce that the input is not well-formed with respect to our encoding.

3.2 Solution to Sqrt-3SAT

The implementation of Algorithm 1 is a uniform variant of the solution described
by Zandron et al. [14]. To all strings x ∈ {0, 1}n with n = 8

(
m
3

)
, representing

Boolean formulae ϕ of m variables, we associate a P system with restricted
elementary active membranes Πn. The initial configuration of Πn (excluding
the input multiset) is the following one:

C0 =
[
q0r0 [p0x1x2 · · ·xm]01 [bi1]

0
2[bi2]

0
2 · · · [bih

]02
]0
0

Here the objects x1, . . . , xm represent the variables of ϕ, while p0, q0, and r0 are
objects used to implement three timers, counting from zero.

The number of membranes having label 2 and their contents are determined
as follows. Let k = �

√
2m	 − 1, and consider the binary representation of k:

344 A.E. Porreca et al.

for each i = 0, . . . , $log k%, if the i-th least significant bit of k is 1, then we
add to C0 a copy of membrane 2, containing the single object bi; otherwise we
add nothing. In other words, h and i1 < i2 < · · · < ih are the unique integers
such that k = 2i1 + 2i2 + · · · + 2ih . Clearly h is bounded by k, which is in turn
bounded by m

2 ; hence the configuration C0 can be costructed in polynomial time
with respect to n.

The input multiset, obtained from 〈ϕ〉, is placed inside membrane 1, and
contains all the objects ci such that the i-th clause does not occur in ϕ.

For instance, suppose m = 3, hence n = 8
(3
3

)
= 8. The eight (up to reordering

of literals) clauses over three variables x1, x2, x3 can be enumerated as

x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ ¬x3 x1 ∨ ¬x2 ∨ x3 x1 ∨ ¬x2 ∨ ¬x3

¬x1 ∨ x2 ∨ x3 ¬x1 ∨ x2 ∨ ¬x3 ¬x1 ∨ ¬x2 ∨ x3 ¬x1 ∨ ¬x2 ∨ ¬x3

and the formula ϕ = (x1∨¬x2 ∨x3)∧ (¬x1 ∨x2 ∨¬x3)∧ (¬x1 ∨¬x2 ∨x3) is then
encoded as 〈ϕ〉 = 0010 0110. The corresponding input multiset is c1c2c4c5c8.

Starting from the initial configuration, including the input multiset, the com-
putation proceeds as follows.

Phase 1 (Generate). Each variable object xi is used to divide membrane 1,
and is replaced by a “true” object ti on one side, and by a “false” object fi on
the other, denoting the two possible truth values that can be assigned to variable
xi. The corresponding rules are

[xi]01 → [ti]01[fi]01 for 1 ≤ i ≤ m.

While the membranes having label 1 divide, thus generating 2m copies (each one
containing a different assignment), the timer p0 is incremented, one step at a
time, up to m:

[pj → pj+1]01 for 0 ≤ j ≤ m − 1.

The object pm is then sent out of membrane 1, while changing the charge of the
membrane to positive, using the rule [pm]01 → []+1 pm.

The object pm is immediately brought back in (and renamed to u0) via
pm []+1 → [u0]+1 . Simultaneously, each object ti and fi is replaced by a set
of objects denoting the clauses that are satisfied when the variable xi is true or
false, respectively, i.e.:

[ti → ci1 · · · cis]
+
1 for 1 ≤ i ≤ m and xi occurs in clauses i1, . . . , is;

[fi → ci1 · · · cis]
+
1 for 1 ≤ i ≤ m and xi occurs in clauses i1, . . . , is.

Notice that computing these sets of clauses does not require the input formula ϕ,
but only its size n (this is consistent with a uniform construction). The clause-
objects cj are produced in the (m + 2)-th step.

While all these events described above occur inside the membranes labelled
by 1, we also divide the membranes with label 2 until we have �

√
2m	−1 copies.

Indeed, each object bi is used to create 2i copies, according to the following rules:

[bi]02 → [bi−1]02[bi−1]02 for 1 ≤ i ≤ $log k%.

P Systems with Elementary Active Membranes 345

Producing all copies of membrane 2 requires a number of steps bounded by

$log k% = $log(�
√

2m	 − 1)% ≤ log�
√

2m	 ≤ m

2
+ 1 ≤ m + 2.

Hence, Phase 1 requires a total of m + 2 steps.

Phase 2 (Evaluate). In this phase, the object uj inside each copy of membrane
1 behaves as a counter for the number of satisfied clauses, and initially it has
the value u0.

Now consider the contents of the membranes having label 1. If the i-th clause
occurs in ϕ and it is satisfied by the truth assignment corresponding to the
particular copy of membrane 1 under consideration, then one or more instances
of object ci have been generated in Phase 1. If this clause does not occur in ϕ,
then the object ci has been placed in membrane 1 as part of the input multiset:
the clause is then considered to be satisfied2. Finally, if this clause does occur in
ϕ but it is not satisfied, then no instance of ci occurs inside membrane 1.

We find out whether the clauses are satisfied, one by one in the order estab-
lished in Section 3.1, by checking whether an instance of the object c1 occurs,
then decrementing the subscript of all the other objects cj by one; this procedure
is repeated until an unsatisfied clause is found, or all of them are found to be
satisfied.

If c1 does indeed occur, then it is sent out and changes the charge of 1 to
negative, using the rule [c1]+1 → []−1 c1. While membrane 1 is negative, the
other subscripts are decremented:

[cj → cj−1]−1 for 1 ≤ j ≤ n.

Simultaneously, uj increments its subscript via

[uj → uj+1]−1 for 0 ≤ j < n,

and c1 re-enters membrane 1 (not necessarily the same instance of membrane
1, but any negatively charged one) as the “junk” object #, and sets its charge
back to positive via c1 []−1 → [#]+1 .

Phase 2 now restarts, with all clause-objects having their subscript decre-
mented by one. If one of the objects cj is missing for some j = 1, . . . , n, then
the computation in that copy of membrane 1 halts prematurely, and un is never
reached. On the other hand, if all objects c1, . . . , cn exist inside a certain copy
of membrane 1, the object un is reached in 2n steps: we can then conclude that
the formula is completely satisfied, and send out a t object to signal it, using the
rule [un]+1 → []+1 t. Notice that all t objects are sent out simultaneously from
all copies of membrane 1.

The total number of steps required for Phase 2 is 2n + 1 = 16
(
m
3

)
+ 1.

Phase 3 (Erase). When the instances of object t reach the skin membrane,
labelled by 0, each copy of membrane 2 absorbs one of them, if any is available,
2 This is consistent with the “true” value being the identity of conjunction.

346 A.E. Porreca et al.

using the communication rule t []02 → [#]+2 . After this computation step, one or
more copies of t remain inside membrane 0 iff the number of instances of t was
at least

√
2m, that is, iff ϕ is a positive instance of Sqrt-3SAT.

Phase 4 (Output). The sequences of objects qj and rj , which begin with q0
and r0 and whose behaviour we have not described yet, are meant to count the
number of steps across Phases 1, 2, and 3, that is, � = (m+2)+

(
16
(
m
3

)
+1

)
+1.

This is accomplished by using the following evolution rules:

[qj → qj+1]00 for 0 ≤ j ≤ �;
[rj → rj+1]α0 for 0 ≤ j ≤ � + 2 and α ∈ {+, 0,−}.

When the subscript of q reaches �, Phase 3 has just finished. This object is
sent out in order to change the charge of membrane 0 to positive, using the rule
[q�]00 → []+0 #; this enables any remaining instance of t inside membrane 0 to exit
and change again the charge of the skin to negative, using the rule [t]+0 → []−0 #.
If no object t exists inside membrane 0, the charge remains positive.

During the next computation step, the subscript of r is � + 2, and this object
is finally sent out, either as yes or no depending on the charge of membrane 0:

[r�+2]+0 → []+0 no [r�+2]−0 → []−0 yes.

According to the argument above, the object emerging from membrane 0 corre-
sponds to the correct answer to the problem.

The sizes of the sets of rules (hence, also the size of the alphabet) described
in each step of the algorithm are clearly bounded by a polynomial in n and
computable efficiently from 1n; thus, we can conclude that Sqrt-3SAT has a
polynomial time uniform solution.

Theorem 1. Sqrt-3SAT ∈ PMCAM(−d,−n), hence PP ⊆ PMCAM(−d,−n)
via polynomial-time reductions. &'

4 Conclusions

We improved one of the earliest results related to P systems with active mem-
branes, namely that elementary division is sufficient to solve NP-complete prob-
lems in polynomial time, by proving that PP problems can also be solved
efficiently by the same class of P systems, without the need for dissolution rules.
The method is a generalisation of the classic membrane computing algorithm
schema for NP-complete problems, where all candidate solutions are generated
and then tested in parallel.

This result does still not provide, however, a characterisation of the com-
plexity classes PMCAM(−d,−n) and PMCAM(−n) in terms of Turing machines;
furthermore, neither the PP lower bound, nor the PSPACE upper bound are
known to be strict. We think that the question is worth further investigation,
with the goal of finally establishing whether nonelementary division rules are a
redundant feature of P systems with active membranes, or a fundamental one.

P Systems with Elementary Active Membranes 347

References

1. Alhazov, A., Burtseva, L., Cojocaru, S., Rogozhin, Y.: Solving PP-complete and
#P-complete problems by P systems with active membranes. In: Corne, D.W.,
Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS,
vol. 5391, pp. 108–117. Springer, Heidelberg (2009)

2. Alhazov, A., Mart́ın-Vide, C., Pan, L.: Solving a PSPACE-complete problem by
recognizing P systems with restricted active membranes. Fundamenta Informati-
cae 58(2), 67–77 (2003)

3. Bailey, D.D., Dalmau, V., Kolaitis, P.G.: Phase transitions of PP-complete satisfi-
ability problems. Discrete Applied Mathematics 155(12), 1627–1639 (2007)

4. Balcázar, J.L., Dı́az, J., Gabarró, J.: Structural Complexity I, 2nd edn. Springer,
Heidelberg (1995)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman & Co., New York (1979)

6. Gill, J.T.: Computational complexity of probabilistic Turing machines. In: Proceed-
ings of the Sixth Annual ACM Symposium on Theory of Computing, pp. 91–95
(1974)

7. Lagoudakis, M.G., LaBean, T.H.: 2D DNA self-assembly for satisfiability. In: Win-
free, E., Gifford, D.K. (eds.) DNA Based Computers V. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 54, pp. 139–152 (1999)

8. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1993)
9. Pérez-Jiménez, M.J., Romero Jiménez, A., Sancho Caparrini, F.: Complexity

classes in models of cellular computing with membranes. Natural Computing 2(3),
265–285 (2003)

10. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with active mem-
branes: Trading time for space. Natural Computing (in press), doi:10.1007/s11047-
010-9189-x

11. Păun, G.: P systems with active membranes: Attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

12. Sośık, P.: The computational power of cell division in P systems: Beating down
parallel computers? Natural Computing 2(3), 287–298 (2003)

13. Sośık, P., Rodŕıguez-Patón, A.: Membrane computing and complexity theory: A
characterization of PSPACE. Journal of Computer and System Sciences 73(1),
137–152 (2007)

14. Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P sys-
tems with active membranes. In: Antoniou, I., Calude, C., Dinneen, M.J. (eds.)
Unconventional Models of Computation, UMC’2K: Proceedings of the Second In-
ternational Conference, pp. 289–301. Springer, Heidelberg (2001)

Polynomial Complexity Classes in Spiking
Neural P Systems

Petr Sośık1,2, Alfonso Rodŕıguez-Patón1, and Lucie Ciencialová2

1 Departamento de Inteligencia Artificial, Facultad de Informática,
Universidad Politécnica de Madrid, Campus de Montegancedo s/n,

Boadilla del Monte, 28660 Madrid, Spain
{psosik,arpaton}@fi.upm.es

2 Institute of Computer Science, Faculty of Philosophy and Science,
Silesian University in Opava, 74601 Opava, Czech Republic

lucie.ciencialova@fpf.slu.cz

Abstract. We study the computational potential of spiking neural (SN)
P systems. several intractable problems have been proven to be solvable
by these systems in polynomial or even constant time. We study first
their formal aspects such as the input encoding, halting versus spiking,
and descriptional complexity. Then we establish a formal platform for
complexity classes of uniform families of confluent recognizer SN P sys-
tems. Finally, we present results characterizing the computational power
of several variants of confluent SN P systems, characterized by classes
ranging from P to PSPACE.

1 Introduction

Spiking neural P system (abbreviated as SN P system) introduced in [3] is an
abstract computing model inspired by the theory of membrane computing, on
one hand, and spiking neural networks, on the other hand. The computational
power of SN P system has been extensively studied and several intractable prob-
lems such as Subset Sum, SAT, QSAT and others have been shown effectively
solvable by SN P systems under various conditions.

We intend to establish a platform allowing to characterize the computational
power of SN P systems more precisely. Computational complexity theory pro-
vides basic tools for this task. Necessary formal prerequisites are given in Section
3, including the input encoding of SN P systems, requirements for halting and
providing an output, and the size of the description of an SN P system. These
postulates allow to define polynomially uniform families of confluent SN P sys-
tems in Section 4 and to study their properties. Then we focus on uniform fam-
ilies of SN P systems. We show the closure of their polynomial time-restricted
complexity classes under complement and polynomial time reduction. Finally we
provide a characterization or limitation of some variants of uniform families of
recognizer SN P system in Section 5. We also mention the differences between
unary and binary encoding and study their influence on the presented results. We

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 348–360, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Polynomial Complexity Classes in Spiking Neural P Systems 349

show that some restricted variants of regular expressions (including the single
star normal form) characterize the class P, while in general their computational
power lies between classes NP, co-NP and PSPACE.

2 Prerequisites

We assume the reader to be familiar with basic language and automata theory,
as well as with elements of the computational complexity theory. We also refer
to [10] for an up-to-date information about membrane computing.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V ,
the empty string is denoted by λ, and the set of all nonempty strings over V is
denoted by V +. When V = {a} is a singleton, then we write simply a∗ and a+

instead of {a}∗, {a}+. The length of a string x ∈ V ∗ is denoted by |x|. Next we
recall the definition of regular expression to fix the notation.

Definition 1. For a finite alphabet V : (i) λ and each a ∈ V are regular expres-
sions, (ii) if E1, E2 are regular expressions over V , then also (E1)∪ (E2), (E1) ·
(E2), and (E1)∗ are regular expressions over V , and (iii) nothing else is a regular
expression over V .

The catenation operator · and non-necessary parentheses may be omitted when
writing a regular expression. With each expression E we associate its language
L(E) defined in a usual way. We call two expressions E1 and E2 equivalent if
L(E1) = L(E2).

Definition 2 ([1]). We say that a regular expression E = E1 ∪ . . .∪En (where
each Ei contains only · and ∗ operators) is in single-star normal form (SSNF)
if ∀i ∈ {1, . . . , n}, Ei has at most one occurrence of ∗.

Lemma 1 ([1]). Every regular expression over one-letter alphabet can be trans-
formed into an equivalent single-star normal form.

This transformation, however, might require an exponential time and the size
of the resulting expression can be exponential with respect to the size of the
original expression.

3 Spiking Neural P Systems

A spiking neural membrane system of degree m ≥ 1 is a construct of the form

Π = (O, σ1, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

350 P. Sośık, A. Rodŕıguez-Patón, and L. Ciencialová

where:
a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over a, c ≥ 1, and
d ≥ 0;

(2) as → λ, for some s ≥ 1, with the restriction that for each rule
E/ac → a; d of type (1) from Ri, we have as /∈ L(E);

3. syn ⊆ {1, 2, . . . , m}×{1, 2, . . . , m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses
between neurons);

4. in, out ∈ {1, 2, . . . , m} indicate the input neuron (resp., output neuron).

The rules of type (1) are firing (we also say spiking) rules. If the neuron σi

contains k spikes, and ak ∈ L(E), k ≥ c, then the rule E/ac → a; d can be
applied. The application of this rule means consuming (removing) c spikes (thus
only k − c remain in σi), the neuron is fired, and it produces a spike after d
time units (a global clock is assumed, hence the functioning of the system is
synchronized). If d = 0, then the spike is emitted immediately, if d = 1, then
the spike is emitted in the next step, etc. If the rule is used in step t and d ≥ 1,
then in steps t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed so that it cannot
receive new spikes. If a neuron has a synapse to a closed neuron and tries to
send a spike along it, then the spike is lost. In the step t + d, the neuron spikes
and becomes again open so that it can receive spikes.

The rules of type (2) are forgetting rules; they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi.

If a rule E/ac → a; d of type (1) has E = ac, then we will write it in the
following simplified form: ac → a; d.

In each time unit, if a neuron σi can use one of its rules, then a rule from Ri

must be used. Since two firing rules, E1/ac1 → a; d1 and E2/ac2 → a; d2, can
have L(E1) ∩ L(E2) �= ∅, it is possible that two or more rules can be applied
in a neuron, and in that case, only one of them is chosen non-deterministically.
Note that, by definition, if a firing rule is applicable, then no forgetting rule is
applicable, and vice versa. Thus, the rules are used in the sequential manner in
each neuron, but neurons function in parallel with each other.

A configuration of the system is described by the numbers of spikes
n1, n2, . . . , nm present in each neuron, and the number of steps remaining until
the neuron becomes open (if the neuron is already open, the number is 0). The
initial configuration of the system is described by the initial numbers of spikes
present in each neuron, with all neurons being open.

Using the rules described above, one can define transitions among configura-
tions. A transition between two configurations C1, C2 is denoted by C1 =⇒ C2.
Any sequence of transitions starting in the initial configuration is called a com-
putation. A computation halts if it reaches a configuration where all neurons
are open and no rule can be used. With any computation (halting or not) we
associate a spike train, the sequence of zeros and ones describing the behavior
of the output neuron: if the output neuron spikes, then we write 1, otherwise we
write 0. We refer the reader to [12] for more details.

Polynomial Complexity Classes in Spiking Neural P Systems 351

3.1 Unary versus Binary Input/Output

Original works on SN P systems, e.g., [3,11] focused on SN P systems working
in the generating mode. The output value(s) was represented as a time interval
between two spikes of a designated neuron, i.e., in unary. A similar convention
was later adopted also for input [6].

Unary input/output encoding
An input/output sequence of positive natural numbers n1, . . . , nk is represented
as a spike train 10n1−110n2−11 . . . 10nk−11.

However, it is known that standard SN P systems can simulate logic gates with
unbounded fan-in in a unit time [2] and, hence, also arbitrary logic circuits
in linear time. The unary input/output convention would decrease their com-
putational power exponentially in many cases. Therefore we propose a binary
encoding.

Binary input/output encoding
An input/output to an SN P system is a binary spike train received/emitted by
a designated input/output neuron.

Although certain aspects of the binary encoding can be also found problematic,
we use the binary encoding in the rest of the paper. Obviously, to switch from
binary to unary encoding, one needs a time exponential with respect to the
size of the original binary string unless an extended SN P system with maximal
parallelism is used [8].

3.2 Recognizer SN P Systems

In this subsection we define SN P systems solving decision problems. Let us
call decision problem a pair X = (IX , θX) where IX is a language over a finite
alphabet (whose elements are called instances) and θX is a total boolean function
over IX . The following convention was suggested by some authors: an SN P
systems solving an instance w ∈ IX would halt if and only if θX(w) = 1. Such
an SN P system is called accepting in [6]. However, this convention was rarely
implemented. Instead, many authors demonstrated SN P systems which always
halt and the output neuron spikes if and only if θX(w) = 1, see [2,5,6,7,8]
and others. We add that this convention is more compatible with definitions of
standard complexity classes and also with standard construction of families of
recognizer P systems [13]. Hence we suggest the following definition:

Definition 3. A recognizer SN P system satisfies the following conditions: all
computations are halting, and the output neuron spikes no more than once dur-
ing each computation. The computation is called accepting if the output neuron
spikes exactly once, otherwise it is rejecting.

Observe that the definition is compatible with the variant when the system is
asked to spike at least once in the case of accepting computation. To any such
SN P system we can add another neuron connected to the original output, with

352 P. Sośık, A. Rodŕıguez-Patón, and L. Ciencialová

two initial spikes and the rules a → λ and a3 → a; 0 which emits only the first
spike of those received.

Actually, the difference between the halting and spiking convention is not so
great. The following result is demonstrated in [6].

Lemma 2. Given a system Π with standard or extended rules, with or without
delays, we can construct a system Π ′ with rules of the same kinds as those of Π
which spikes if and only if Π halts.

Note that Π ′ does not have to halt if Π does not halt. In the other direction,
we can extend results in [6] using a similar technique:

Lemma 3. Given a system Π with standard or extended rules, with or without
delays, we can construct a system Π ′ with rules of the same kinds as those of Π
which halts if and only if Π spikes.

Proof. Consider an SN P system Π (possibly with extended rules), and let σout

be its output neuron. We “triple” this system by:

– tripling the number of spikes present in the initial configuration in each
neuron,

– replacing each rule E/ac → ap; d with 3E/a3c → ap; d, where 3E is a regular
expression for the set {www |w ∈ L(E)},

– tripling each neuron σc : adding two identical neurons σc′ , σc′′ and adding
new synapses: if σc had originally a synapse to a neuron γ, now each of σc,
σc′ and σc′′ will have synapses to each of γ, γ′ and γ′′.

Let us denote by 3Π the obtained system. In this way the behavior of the
system is not changed, in the sense that each neuron in 3Π spikes if and only if
its original version spikes in Π. If a neuron σc in Π contains n spikes in a certain
moment, then each of σc, σc′ and σc′′ in 3Π contains 3n spikes.

Let dmax denote the maximal delay in any neuron of Π. Let us construct a
module with an incoming synapse from σout which produces dmax+1 consecutive
spikes when obtaining a spike from σout, see Fig. 1. The neuron σhalt will have

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

a → a; 0 a → a; 0 a → a; 0

a → a; 0

out 1 2 dmax

halt

� � � �

�

· · ·

�

�
�
�

Fig. 1. A module emitting dmax + 1 consecutive spikes after the output neuron spikes

Polynomial Complexity Classes in Spiking Neural P Systems 353

an outgoing synapse to each neuron of 3Π. Even if some of these neurons may
be closed due to their refractory period, this period would end after ≤ dmax

steps. Hence, during dmax + 1 steps when the neuron σhalt spikes, each neuron
of 3Π receives a spike, its accumulated number spikes increases to 3n+1, n ≥ 0,
and none of its rules can be applied. However, more spikes from σhalt may
come. Hence, we add to each neuron of 3Π the rule (aaa)∗aa/a → λ to remove
additional spikes. In this way, each neuron will keep 3n+1 spikes and the system
eventually halts after dmax + 2 steps.

Finally, let us add to 3Π a “perpetuum mobile” circuit of two mutually inter-
connected neurons with a single initial spike and the rule a → a; 0 in each, and
with an incoming synapse from σhalt. In this way we ensure that 3Π halts only
if Π spikes.

3.3 Descriptional Complexity and Size of SN P Systems

According to [7], the size of a SN P system Π is based on the number of bits
necessary to its full description. Let m be the number of neurons, N be the
maximum natural number that appears in the definition of Π, R the maximum
number of rules which occur in its neurons, and S the maximum size required
by the regular expressions in succinct form that occur in Π. (The succinct form
means that an expression an is represented just by O(log n) bits.) Then the total
size of description of Π is polynomial with respect to m, R, S and log N.

Some authors [6,8,12] distinguish between the size of an SN P system and the
size of its description. They point out that the initial number of spikes in neurons
or the length of (unary) strings in regular expressions can be exponential with
respect to the size of description of the system. However, these unary strings and
regular expressions can be represented in the succinct form, as a binary value,
and neither natural nor artificial implementations of spiking neurons represent
spikes as physical strings. Hence we assume the size of an SN P system and the
size of its description the same.

4 Families of Recognizer SN P Systems

Standard SN P systems were shown to be computationally universal already in
the introductory paper [3]. However, as demonstrated in [9], no standard spik-
ing neural P system with a constant number of neurons can simulate Turing
machines with less than exponential time and space overheads. This is due to
the unary character of its unlimited memory - spikes accumulated in neurons.
Therefore, to achieve computational effectiveness in solving problems, many au-
thors have used families of SN P systems such that each member of a family
solves only a finite set of instances of a given size. In this section we propose a
formal specification for families of SN P systems. All definitions in this section
are inspired by [13] which studies families of P systems working with objects.

354 P. Sośık, A. Rodŕıguez-Patón, and L. Ciencialová

Definition 4. A family Π = {Π(w) : w ∈ IX} (respectively, Π = {Π(n) : n ∈
N}) of recognizer SN P without input (resp., with input) is polynomially uni-
form by Turing machines if there exists a deterministic Turing machine working
in polynomial time which constructs the system Π(w) (resp., Π(n)) from the
instance w ∈ IX (resp., from n ∈ N).

In the sequel we will denote such a family simply as uniform. The selection of
a proper member of the family and its input in the case of families of SN P
systems with input is done as follows.

Definition 5. Let X = (IX , θX) be a decision problem, and Π = {Π(n) : n ∈
N} a family of recognizer SN P systems with input membrane. A polynomial
encoding of X in Π is a pair (cod; s) of polynomial-time computable functions
over IX such that for each instance w ∈ IX , s(w) is a natural number (obtained
by means of a reasonable encoding scheme) and cod(w) is a binary string – an
input of the system Π(s(w)).

The common case is that s(w) is the size of w. Since Definition 4 and 5 conform
those in [13,14] we can adopt the following result whose proof in [14] is not
affected by a different type of P system.

Lemma 4. Let X1, X2 be decision problems, r a polynomial-time reduction from
X1 to X2, and (cod; s) a polynomial encoding of X2 in Π. Then, (cod ◦ r; s ◦ r)
is a polynomial encoding of X1 in Π.

Let R denote an arbitrary type of recognizer SN P systems. The following defi-
nitions are inspired by [13] and [6].

Definition 6. Let f : N → N be a constructible function. A decision problem X
is solvable by a family Π = {Π(w) : w ∈ IX} of recognizer SN P systems of type
R without input in time bounded by f, denoted by X ∈ SN∗

R(f), if the following
holds:

– The family Π is polynomially uniform by Turing machines.
– The family Π is f -bounded with respect to X ; that is, for each instance

w ∈ IX , every computation of Π(w) performs at most f(|w|) steps.
– The family Π is sound with respect to X ; that is, for each w ∈ IX , if there

exists an accepting computation of Π(w), then θX(w) = 1.
– The family Π is complete with respect to X ; that is, for each w ∈ IX , if

θX(w) = 1, then every computation of Π(w) is an accepting computation.

Note that the SN P system solving w can be generally nondeterministic, i.e, it
may have different possible computations, but with the same result. Such a P
system is also called confluent.

The family Π is said to provide a semi-uniform solution to the problem X.
In this case, for each instance of X we have a special P system. Specifically, we
denote by

PSN∗
R =

⋃

f polynomial

SN∗
R(f)

Polynomial Complexity Classes in Spiking Neural P Systems 355

the class of problems to which uniform families of SN P systems of type R
without input provide semi-uniform solution in polynomial time. Analogously we
define families which provide uniform solutions solutions to decision problems.

Definition 7. Let f : N → N be a constructible function. A decision problem X
is solvable by a family Π = {Π(n) : n ∈ N} of recognizer SN P systems of type
R with input in time bounded by f, denoted by X ∈ SNR(f), if the following
holds:

– The family Π is polynomially uniform by Turing machines.
– There exists a polynomial encoding (cod, s) of X in Π such that:

• The family Π is f -bounded with respect to X ; that is, for each instance
w ∈ IX , every computation of Π(s(w)) with input cod(w) performs at
most f(|w|) steps.

• The family Π is sound with respect to (X, cod, s); that is, for each
w ∈ IX , if there exists an accepting computation of Π(s(w)) with in-
put cod(w), then θX(w) = 1.

• The family Π is complete with respect to (X, cod, s); that is, for each
w ∈ IX , if θX(w) = 1, then every computation of Π(s(w)) with input
cod(w) is an accepting computation.

The family Π is said to provide a uniform solution to the problem X. Again, we
denote by

PSNR =
⋃

f polynomial

SNR(f)

the class of problems to which uniform families of SN P systems of type R
with input provide uniform solution in polynomial time. Obviously, for any con-
structible function f and a class of SN P systems R we have

SNR(f) ⊆ SN∗
R(f) and PSNR ⊆ PSN∗

R.

To describe a specific type R of SN P systems, we denote:

−reg for systems with regular expressions of the form an, n ≥ 1,
−del for systems without delays,
ssnf for systems with regular expressions in the single-star normal form.

When R is omitted, the standard definition of SN P systems is assumed.

Theorem 1. The classes SNR(f) and SN∗
R(f) are closed under the operation

of complement, for R omitted or R ∈ {−reg,−del, ssnf}.

Proof. We show that for each confluent SN P system Π there is a system Π ′

whose computation is accepting if and only if the computation of Π is reject-
ing. Our presentation is set as general as possible, taking into the account also
extended SN P systems, even if they are not mentioned in the statement of the
theorem.

356 P. Sośık, A. Rodŕıguez-Patón, and L. Ciencialová

Assume the construction described in Section 4, Fig. 6 in [6]. It presents a
module which, when added to any SN P system Π, emits a spike only after the
system Π halts. This module contains a set of rules ak → a; 0 for all k ∈ K,
where K is the set constructed as follows. For each neuron σi of Π, 1 ≤ i ≤ n
(where n is the degree of Π) denote

Pi =
⋃

1≤i≤n

{p |E/ac → ap; d is a rule of σi},

and

K =

{
n∑

i=1

pi | pi ∈ Pi

}

− {0}. (1)

Hence K contains sums of all possible n-tuples containing one element of each
Pi, hence the number of these n-tuples may be exponential with respect to n.
However, in such a case many of these sums will be equal. Let

pmax = max{p |E/ac → ap; d is a rule of σi},

then each sum on the right-hand side of (1) will be bounded by npmax. Therefore,

K ⊆ {1, 2, . . . , npmax}

and hence the size of K is linear with respect to n. Let us extend the module
described at Fig. 6 in [6] as follows. Let σout be the output neuron of this
module. Let a spike emitted from σout after halting of the system Π feed two
new neurons, each with a rule a → a; 0. Finally, add a new neuron σout′ with
incoming synapses from these two neurons, another synapse from the original
output neuron of Π, and with a rule a2 → a; 0. Let σout′ be the output neuron
of Π ′. Note that σout′ spikes if and only if Π halts and its output neuron σout

does not spike which concludes the proof.

Note that the above proof holds also for a certain subclass of extended SN P
systems with pmax bounded from above by poly(n). It is an open problem whether
an analogous result holds for unrestricted extended SN P systems.

Corollary 1. The classes PSNR and PSN∗
R are closed under the operation of

complement, for R omitted or R ∈ {−reg,−del, ssnf}.

Theorem 2. Let R be an arbitrary class of SN P systems. Let X and Y be
decision problems such that X is reducible to Y in polynomial time. If Y ∈
PSNR (respectively, Y ∈ PSN∗

R), then X ∈ PSNR (resp., X ∈ PSN∗
R).

Proof. We prove the case of SN P systems with input, adopting the technique
used in [14], the case without input is analogous. Let Π by a family providing
uniform solution to the problem Y. By its definition, let p be a polynomial and
(cod, s) a polynomial encoding of Y in Π such that Π is p-bounded with respect
to Y and sound and complete with respect to (Y, cod, s).

Let r : IX → IY be a polynomial time reduction from X to Y, hence there is
a polynomial q such that for each w ∈ IX , |r(w)| ≤ q(|w|). Observe that:

Polynomial Complexity Classes in Spiking Neural P Systems 357

– By Lemma 4, (cod ◦ r; s ◦ r) is a polynomial encoding of X in Π.
– Π is (p ◦ q)-bounded with respect to X since for each w ∈ IX , every com-

putation of Π(s(r(w))) with input cod(r(w)) performs at most p(|r(w)|) ≤
p(q(|w|)) steps.

– Π is sound and complete with respect to (X, cod ◦ r, s ◦ r) since for each
w ∈ IX ,
• if there exists an accepting computation of Π(s(r(w))) with input

cod(r(w)), then θY (r(w)) = 1 and, by reduction, also θX(w) = 1,
• if θX(w) = 1, then also θY (r(w)) = 1 and hence every computation of

Π(s(r(w))) with input cod(r(w)) is an accepting computation.

Consequently, X ∈ SNR(p ◦ q) and hence also in PSNR.

5 Efficiency of Basic Classes of SN P Systems

As we have already mentioned, no standard SN P system can simulate Turing
machine with less than exponential time and space overheads [9]. Therefore, we
focus on families of SN P systems in this section. We start with a simple variant
of SN P systems with restrictions imposed on their regular expressions. Results
in [7] together with Theorems 1 and 4 in [15] imply the following statement.

Theorem 3. PSN−reg,−del = PSN∗
−reg,−del = PSNssnf = PSN∗

ssnf = P

These results show that families of standard confluent SN P systems can reach
the computational power beyond P only with the aid of complex regular expres-
sions. Whenever we release the condition of single star normal forms in regular
expressions, the computational power of SN P systems reaches the class NP.

Theorem 4. (NP ∪ co-NP) ⊆ SN∗
−del(2)

Proof. A part of the statement concerning NP follows by Proposition 1 in [7]
which presents a construction of a standard deterministic SN P system solving
the problem Subset Sum in one step. By Theorem 1, also the complement of
this problem (which is co-NP-complete) can be solved in the same way. Actually,
in this case it is enough to add two more neurons which add one more step of
computation.

Corollary 2. (NP ∪ co-NP) ⊆ PSN∗
−del

Note that Theorem 4 and Corollary 2 hold only for succinct (binary) represen-
tation of unary strings in regular expressions and also initial number of spikes
in neurons.

Indeed, if one assumes unary representation of regular expressions and of
number of spikes in neurons, then uniform families of standard confluent SN P
system cannot solve NP-complete problems unless P = NP. Recall that any
confluent SN P system with simple regular expressions can be simulated by a
deterministic Turing machine in polynomial time [7]. With the unary representa-
tion, one can extend the result also to general regular expressions: an expression

358 P. Sośık, A. Rodŕıguez-Patón, and L. Ciencialová

E can be transformed into the equivalent NFA in polynomial time. Then it is
decidable in polynomial time with respect to the size of E and k, whether the
NFA accepts the string ak representing k spikes in a neuron.

It remains an open problem whether a result analogous to Corollary 2 holds
for standard confluent SN P systems with input. We conjecture that this can
be achieved only with the aid of maximal parallelism or extended rules which
would allow to transform rapidly a binary input to an exponential number of
spikes present in some neuron as in [8].

To establish an upper bound on the power of standard confluent families of
SN P systems with unlimited regular expressions, we need the following lemma
first:

Lemma 5. Matching of a regular expression E of size s in succinct form over a
singleton alphabet with a string ak can be done on a RAM in non-deterministic
time O(s log k).

Proof. Assume that we have the syntactic tree of the expression E at our disposal
(its parsing can be done in deterministic polynomial time). We treat the sub-
expressions of the form an as constants and assign them a leaf node of the tree
with the value n. The matching algorithm works as follows:

– Produce non-deterministically a random element of L(E) in succinct form
by the depth-first search traversal of its syntactic tree: start in the root and
evaluate recursively each node:
• leaf node containing a constant: return the value of the node;
• catenation: evaluate both subtrees of this node and add the results;
• union: choose non-deterministically one of the subtrees of this node and

evaluate it;
• star: draw a random number of iterations x within the range 〈0, k〉,

evaluate the subtree starting in this node and multiply the result by x.
– Compare the drawn element of L(E) with ak whether they are equal.

Whenever during the evaluation the computed value exceeds k, the algorithm
halts immediately and reports that ak does not match L(E). This guarantees
that the number of bits processed in each operation is always O(log k).

Each of the elementary operations described above can be performed in con-
stant time on RAM with unit instruction cost, except the multiplication which
requires O(log k) time. Total number of tree-traversal steps is O(s).

Theorem 5. PSN∗ ⊆ PSPACE

Proof. It has been shown in [7] that any confluent SN P system with simple
regular expressions can be simulated by a deterministic Turing machine in poly-
nomial time. Assuming general regular expressions, by Lemma 5 their matching
can be done in non-deterministic polynomial time, and since NP ⊆ PSPACE,
also in deterministic polynomial space. Indeed, if one replaces the random se-
lection in the proof of Lemma 5 by the depth-first search of all configurations
reachable by making nondeterministic choices, one gets a deterministic algorithm
running in polynomial space and exponential time.

Polynomial Complexity Classes in Spiking Neural P Systems 359

Denote by s the size of description of an SN P system Π. Observe that the
total number of bits to describe spikes in all neurons after t steps of computation
is O(s+ t) even in the case of maximal parallelism or exhaustive rules. The total
size of all regular expressions in Π is O(s). Hence, by Lemma 5, the simulation
of Π performs in polynomial space with respect to s + t.

Finally, let us note that a deterministic solution to PSPACE-complete problems
QSAT and Q3SAT with families of SN P systems with pre-computed resources
(i.e., with exponential amount of neurons) have been shown in [4].

6 Conclusion

We have introduced uniform families of standard confluent SN P systems and
studied their computational power under polynomial time restriction. Several
factors were focused on, influencing the obtained results: the input encoding,
the form of output (halting versus spiking), the descriptional complexity, the
form of regular expressions.

It was shown that, with the restriction of regular expressions to the single star
normal form, these families of SN P systems characterize the class P. It remains
an open problem whether this condition can be further relaxed.

When complex regular expressions are allowed (but note that the operation *
is not necessary), these families are capable to solve NP-complete problems in
constant time. The succinct representation of regular expressions and of spikes
in neurons is necessary to achieve this computational potential (unless P=NP).
Finally, the power of these families under polynomial time restriction is bounded
from above by PSPACE.

The results concerning intractable problems were shown for the case of families
without input. It is very likely that the same result for the case of families
with input is possible only when extended rules and/or maximal parallelism are
allowed. However, there is no formal proof known yet.

Acknowledgements

The research was supported by the Ministerio de Ciencia e Innovación
(MICINN), Spain, under project TIN2009–14421, by the Comunidad de Madrid
(grant No. CCG06-UPM/TIC-0386 to the LIA research group), by the Czech
Science Foundation, grant No. 201/09/P075, and by the Silesian University in
Opava, grant No. SGS/4/2010.

References

1. Andrei, S., Cavadini, S.V., Chin, W.-N.: A new algorithm for regularizing one-letter
context-free grammars. Theoretical Computer Science 306, 113–122 (2003)

2. Gutiérrez-Naranjo, M.A., Leporati, A.: Solving numerical NP-complete problems
by spiking neural P systems with pre-computed resources. In: Dı́az-Pernil, D., et al.
(eds.) Proceedings of Sixth Brainstorming Week on Membrane Computing, Sevilla,
Fenix Editora, pp. 193–210 (2008)

360 P. Sośık, A. Rodŕıguez-Patón, and L. Ciencialová

3. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta In-
formaticae 71(2–3), 279–308 (2006)

4. Ishdorj, T.-O., Leporati, A., Pan, L., Zeng, X., Zhang, X.: Deterministic solutions
to QSAT and Q3SAT by spiking neural P systems with pre-computed resources. In:
Mart́ınez-del-Amor, M.A., et al. (eds.) Seventh Brainstorming Week on Membrane
Computing, Sevilla, Fenix Editora, vol. 2, pp. 1–27 (2009)

5. Ishdorj, T.-O., Leporati, A., Pan, L., Zeng, X., Zhang, X.: Deterministic solutions
to QSAT and Q3SAT by spiking neural P systems with pre-computed resources.
In: Theoretical Computer Science (in Press, 2010)

6. Leporati, A., Mauri, G., Zandron, C., Păun, G., Pérez-Jiménez, M.J.: Uniform
solutions to SAT and Subset Sum by spiking neural P systems. Natural Comput-
ing 8(4), 681–702 (2009)

7. Leporati, A., Zandron, C., Ferretti, C., Mauri, G.: On the computational power of
spiking neural P systems. In: Gutiérrez-Naranjo, M.A., Păun, G., Romero-Jiménez,
A., Riscos-Núnez, A. (eds.) Proceedings of Fifth Brainstorming Week on Membrane
Computing, Sevilla, Fenix Editora, pp. 227–245 (2007)

8. Leporati, A., Zandron, C., Ferretti, C., Mauri, G.: Solving numerical NP-complete
problems with spiking neural P systems. In: Eleftherakis, G., Kefalas, P., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 336–352.
Springer, Heidelberg (2007)

9. Neary, T.: On the computational complexity of spiking neural P systems. In:
Calude, C.S., Costa, J.F., Freund, R., Oswald, M., Rozenberg, G. (eds.) UC 2008.
LNCS, vol. 5204, pp. 189–205. Springer, Heidelberg (2008)

10. The P Systems Web Page, http://ppage.psystems.eu/, [cit. 2009-12-29]
11. Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Spike trains in spiking neural P

systems. Intern. J. Found. Computer Sci. 17(4), 975–1002 (2006)
12. Ibarra, O.H., Leporati, A., Păun, A., Woodworth, S.: Spiking neural P systems. In:

Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) The Oxford Handbook of Membrane
Computing, pp. 337–362. Oxford University Press, Oxford (2009)

13. Pérez-Jiménez, M.J.: A computational complexity theory in membrane computing.
In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A.
(eds.) WMC 2009. LNCS, vol. 5957, pp. 125–148. Springer, Heidelberg (2010)

14. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: A polynomial
complexity class in P systems using membrane division. Journal of Automata,
Languages and Combinatorics 11(4), 423–434 (2006)

15. Rodŕıguez-Patón, A., Sośık, P., Cienciala, L.: On complexity clases of spiking neural
P systems. In: Mart́ınez-del-Amor, et al. (eds.) Proceedings of Eighth Brainstorm-
ing Week on Membrane Computing, Sevilla, Fenix Editora, pp. 267–282 (2010)

http://ppage.psystems.eu/

Spiking Neural P Systems with Neuron Division

Jun Wang1,2, Hendrik Jan Hoogeboom2, and Linqiang Pan1,	

1 Image Processing and Intelligent Control Key Laboratory of Education Ministry
Department of Control Science and Engineering
Huazhong University of Science and Technology

Wuhan 430074, Hubei, China
junwangjf@gmail.com, lqpan@mail.hust.edu.cn

2 Leiden Institute of Advanced Computer Science, Universiteit Leiden,
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

hoogeboom@liacs.nl

Abstract. Spiking neural P systems (SN P systems, for short) are a
class of distributed parallel computing devices inspired from the way
neurons communicate by means of spikes. The features of neuron divi-
sion and neuron budding are recently introduced into the framework of
SN P systems, and it was shown that SN P systems with neuron division
and neuron budding can efficiently solve computationally hard problems.
In this work, the computation power of SN P systems with neuron divi-
sion only, without budding, is investigated; it is proved that a uniform
family of SN P systems with neuron division can efficiently solve SAT in
a deterministic way, not using budding, while additionally limiting the
initial size of the system to a constant number of neurons. This answers
an open problem formulated by Pan et al.

1 Introduction

Spiking neural P systems (SN P systems, for short) have been introduced in
[4] as a new class of distributed and parallel computing devices, inspired by the
neurophysiological behavior of neurons sending electrical impulses (spikes) along
axons to other neurons (see, e.g., [3, 11, 12]). The resulting models are a variant
of tissue-like and neural-like P systems from membrane computing. Please refer
to the classic [14] for the basic information about membrane computing, to the
handbook [15] for a comprehensive presentation, and to the web site [16] for the
up-to-date information.

In short, an SN P system consists of a set of neurons placed in the nodes of
a directed graph, which send signals (spikes) along synapses (arcs of the graph).
Each neuron contains a number of spikes, and is associated with a number of
firing and forgetting rules : within the system the spikes are moved, created, or
deleted.

The computational efficiency of SN P systems has been recently investigated
in a series of works [1, 5–10]. An important issue is that of uniform solutions to

� Corresponding author. Tel.: +86-27-87556070; Fax: +86-27-87543130.

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 361–376, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

362 J. Wang, H.J. Hoogeboom, and L. Pan

NP-complete problems, i.e., where the construction of the system depends on
the problem and not directly on the specific problem instance (if may, however,
depend on the size of the instance). Within this context, most of the solutions
exploit the power of nondeterminism [8–10] or use pre-computed resources of
exponential size [1, 5–7].

Recently, another idea is introduced for constructing SN P systems to solve
computationally hard problems by using neuron division and budding [13], where
for all n, m ∈ N all the instances of SAT (n, m) with at most n variables and
at most m clauses are solved in a deterministic way in polynomial time using a
polynomial number of initial neurons. As both neuron division rules and neu-
ron budding rules are used to solve SAT (n, m) problem in [13], it is a natural
question to design efficient SN P systems omitting either neuron division rules
or neuron budding rules for solving NP-complete problem.

In this work, a uniform family of SN P systems with only neuron division is
constructed for efficiently solving SAT problem, which answers the above question
posed in [13]. Additionally, the result of [13] is improved in the sense that the
SN P systems are constructed with a constant number of initial neurons instead
of linear number with respect to the parameter n, while the computations still
last a polynomial number of steps.

2 SN P Systems with Neuron Division

Readers are assumed to be familiar with basic elements about SN P systems, e.g.,
from [4] and [16], and formal language theory, as available in many monographs.
Here, only SN P systems with only neuron division are introduced.

A spiking neural P system with neuron division is a construct Π of the fol-
lowing form:

Π = ({a}, H, syn, n1, . . . , nm, R, in, out), where:

1. m ≥ 1 (the initial degree of the system);
2. a is an object, called spike;
3. H is a finite set of labels for neurons;
4. syn ⊆ H × H is a synapse dictionary between neurons; with (i, i) �∈ syn for

i ∈ H ;
5. ni ≥ 0 is the initial number of spikes contained in neuron i, i ∈ {1, 2, . . . , m};
6. R is a finite set of developmental rules, of the following forms:

(1) extended firing (also spiking) rule [E/ac → ap; d]i, where i ∈ H , E is a
regular expression over a, and c ≥ 1, p ≥ 0, d ≥ 0, such that c ≥ p;

(2) neuron division rule [E]i → []j ‖ []k, where E is a regular expression
over a and i, j, k ∈ H ;

7. in, out ∈ H indicate the input and the output neurons of Π .

Several shorthand notations are customary for SN P systems. If a rule [E/ac →
ap; d]i has E = ac, then it is written in the simplified form [ac → ap; d]i; similarly,

Spiking Neural P Systems with Neuron Division 363

if it has d = 0, then it is written as [E/ac → ap]i; of course notation for E = ac

and d = 0 can be combined into [ac → ap]i. A rule with p = 0 is called extended
forgetting rule.

If a neuron σi (a notation used to indicate a neuron that has label i) contains
k spikes and ak ∈ L(E), k ≥ c, where L(E) denotes the language associated
with the regular expression E, then the rule [E/ac → ap; d]i is enabled and it
can be applied. It means that c spikes are consumed, k − c spikes remain in
the neuron, and p spikes are produced after d time units. If d = 0, then the
spikes are emitted immediately; if d ≥ 1 and the rule is used in step t, then
in steps t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed and it cannot receive
new spikes (these particular input spikes are “lost”; that is, they are removed
from the system). In the step t + d, the neuron spikes and becomes open again,
so that it can receive spikes. Once emitted from neuron σi, the p spikes reach
immediately all neurons σj such that there is a synapse going from σi to σj ,
i.e., (σi, σj) ∈ syn, and which are open. Of course, if neuron σi has no synapse
leaving from it, then the produced spikes are lost. If the rule is a forgetting one
of the form [E/ac → λ]i, then, when it is applied, c ≥ 1 spikes are removed, but
none are emitted.

If a neuron σi contains s spikes and as ∈ L(E), then the division rule [E]i →
[]j ‖ []k can be applied, consuming s spikes the neuron σi is divided into two
neurons, σj and σk. The child neurons contain no spike in the moment when
they are created, but they contain developmental rules from R and inherit the
synapses that the parent neuron already has; that is, if there is a synapse from
neuron σg to the parent neuron σi, then in the process of division, one synapse
from neuron σg to child neuron σj and another one from σg to σk are established.
The same holds when the connections are in the other direction (from the parent
neuron σi to a neuron σg). In addition to the inheritance of synapses, the child
neurons can have new synapses as provided by the synapse dictionary. If a child
neuron σg, g ∈ {j, k}, and another neuron σh have the relation (g, h) ∈ syn or
(h, g) ∈ syn, then a synapse is established between neurons σg and σh going
from or coming to σg, respectively.

In each time unit, if a neuron can use one of its rules, then a rule from R must
be used. For the general model, if several rules are enabled in the same neuron,
then only one of them is chosen non-deterministically. In this paper however
all neurons behave deterministically and there will be no conflict between rules.
When a neuron division rule is applied, at this step the associated neuron is
closed, it cannot receive spikes. In the next step, the neurons obtained by division
will be open and can receive spikes. Thus, the rules are used in the sequential
manner in each neuron, but neurons function in parallel.

The configuration of the system is described by the topological structure of
the system, the number of spikes associated with each neuron, and the state of
each neuron (open or closed). Using the rules as described above, one can define
transitions among configurations. Any sequence of transitions starting in the
initial configuration is called a computation. A computation halts if it reaches a
configuration where all neurons are open and no rule can be used.

364 J. Wang, H.J. Hoogeboom, and L. Pan

If m is the initial degree of the system, then the initial configuration of the
system consists of neurons σ1, . . . , σm with labels 1, . . . , m and connections as
specified by the synapse dictionary syn for these labels. Initially, σ1, . . . , σm

contain n1, . . . , nm spikes, respectively.
In the next section, the input of a system is provided by a sequence of spikes

entering the system in a number of consecutive steps via the input neuron. Such
a sequence is written in the form ai1 .ai2 . · · · .air , where r ≥ 1, ij ≥ 0 for each
1 ≤ j ≤ r, which means that ij spikes are introduced in neuron σin in step j of
a computation.

3 Solving SAT

In this section, a uniform family of SN P systems with neuron division is con-
structed for efficiently solving SAT, the most invoked NP-complete problem [2].
The instances of SAT consist of two parameters: the number n of variables and a
propositional formula which is a conjunction of m clauses, γ = C1∧C2∧· · ·∧Cm.
Each clause is a disjunction of literals, occurrences of xi or ¬xi, built on the set
X = {x1, x2, . . . , xn} of variables. An assignment of the variables is a mapping
p : X → {0, 1} that associates to each variable a truth value. We say that an
assignment p satisfies the formula γ if, once the truth values are assigned to
all the variables according to p, the evaluation of γ gives 1 (true) as a result
(meaning that in each clause at least one of the literals must be true).

The set of all instances of SAT with n variables and m clauses is denoted
by SAT (n, m). Because the construction is uniform, any given instance γ of
SAT (n, m) needs to be encoded. Here, the way of encoding given in [13] is
followed. As each clause Ci of γ is a disjunction of at most n literals, for each
j ∈ {1, 2, . . . , n} either xj occurs in Ci, or ¬xj occurs, or none of them occurs.
In order to distinguish these three situations the spike variables αi,j are defined,
for 1 ≤ i ≤ m and 1 ≤ j ≤ n, whose values are the amounts of spikes assigned
as follows:

αi,j =

⎧
⎨

⎩

a if xj occurs in Ci,
a2 if ¬xj occurs in Ci,
a0 otherwise.

In this way, clause Ci will be represented by the sequence αi,1.αi,2.αi,n of
spike variables. In order to give the systems enough time to generate the nec-
essary workspace before computing the instances of SAT (n, m), a spiking train
(a0.)4n is added in front of the formula encoding spike train. Thus, for any given
instance γ of SAT (n, m), the encoding sequence equals cod(γ) = (a0.)4n α1,1.
α1,2.α1,n.α2,1.α2,2.. . . .α2,n.αm,1.αm,2.αm,n.

For each n, m ∈ N, a system of initial degree 11 is constructed,

Π(〈n, m〉) = ({a}, H, syn, n1, . . . , n11, R, in, out),

with the following components:

Spiking Neural P Systems with Neuron Division 365

H = {in, out} ∪ {0, 1, 2, 3, 4}
∪ {bi | i = 1, 2, . . . , n − 1} ∪ {di | i = 0, 1, . . . , n}
∪ {ei | i = 1, 2, . . . , n − 1} ∪ {Cxi | i = 1, 2, . . . , n}
∪ {gi | i = 1, 2, . . . , n − 1} ∪ {hi | i = 1, 2, . . . , n}
∪ {Cxi0 | i = 1, 2, . . . , n} ∪ {Cxi1 | i = 1, 2, . . . , n}
∪ {ti | i = 1, 2, . . . , n + 1} ∪ {fi | i = 1, 2, . . . , n + 1};

syn = {(1, b1), (1, e1), (1, g1), (1, 2), (3, 4), (4, 0), (0, out)}
∪ {(i + 1, i) | i = 0, 1, 2} ∪ {(dn, d1), (dn, 4)}
∪ {(di, di+1) | i = 0, 1, . . . , n − 1} ∪ {(in, Cxi) | i = 1, 2, . . . , n}
∪ {(di, Cxi) | i = 1, 2, . . . , n} ∪ {(Cxi, hi) | i = 1, 2, . . . , n}
∪ {(Cxi1, ti) | i = 1, 2, . . . , n} ∪ {(Cxi0, fi) | i = 1, 2, . . . , n};

the labels of the initial neurons are: in, out, d0, b1, e1, g1, 0, 1, 2, 3, 4; the ini-
tial contents are nd0 = 5, nb1 = ne1 = ng1 = n2 = 2, n3 = 7, and there is no
spike in the other neurons;

R is the following set of rules:
(A) rules for the ‘Generation stage’:

[a2]bi → []di ‖ []bi+1 , i = 1, 2, . . . , n − 1,
[a2]bn−1 → []dn−1 ‖ []dn ,
[a2]ei → []Cxi ‖ []ei+1 , i = 1, 2, . . . , n − 1,
[a2]en−1 → []Cxn−1 ‖ []Cxn ,
[a2]gi → []hi ‖ []gi+1 , i = 1, 2, . . . , n − 1,
[a2]gn−1 → []hn−1 ‖ []hn ,
[a2]hi → []Cxi1 ‖ []Cxi0, i = 1, 2, . . . , n,
[a → λ]di , i = 1, 2, . . . , n,
[a2 → λ]di , i = 1, 2, . . . , n,
[a → λ]Cxi , i = 1, 2, . . . , n,
[a2 → λ]Cxi , i = 1, 2, . . . , n,
[a → λ]Cxi1, i = 1, 2, . . . , n,
[a2 → λ]Cxi1, i = 1, 2, . . . , n,
[a → λ]Cxi0, i = 1, 2, . . . , n,
[a2 → λ]Cxi0, i = 1, 2, . . . , n,
[a → a]i, i = 1, 2,
[a2 → a2]i, i = 1, 2,
[a3 → λ]2,
[a4 → a]2,
[a7/a2 → a2; 2n − 3]3,
[a5/a2 → a2; 2n − 1]3,
[a2 → λ]4,
[a2 → λ]0,
[a]0 → []t1 ‖ []f1 ,
[a]ti → []ti+1 ‖ []fi+1 , i = 1, 2, . . . , n − 1,
[a]fi → []ti+1 ‖ []fi+1 , i = 1, 2, . . . , n − 1;

(B) rules for the ‘Input stage’:
[a → a]in,
[a2 → a2]in,

366 J. Wang, H.J. Hoogeboom, and L. Pan

[a4/a3 → a3; 4n]d0 ,
[a → a; nm − 1]d0 ,
[a3 → a3]di , i = 1, 2, . . . , n,
[a4 → λ]d1 ,
[a3 → λ]Cxi , i = 1, 2, . . . , n,
[a4 → a4; n − i]Cxi, i = 1, 2, . . . , n,
[a5 → a5; n − i]Cxi, i = 1, 2, . . . , n;

(C) rules for the ‘Satisfiability checking stage’:
[a4 → a3]Cxi1, i = 1, 2, . . . , n,
[a5 → λ]Cxi1, i = 1, 2, . . . , n,
[a4 → λ]Cxi0, i = 1, 2, . . . , n,
[a5 → a3]Cxi0, i = 1, 2, . . . , n,
[a3 → a3; nm + 2]3,
[a3 → a; 1]4,
[a6 → a2; 1]4,
[a]tn → []tn+1 ‖ []fn+1 ,
[a3k+1 → λ]ti , 1 ≤ k ≤ n, i = 1, 2, . . . , n,
[a3k+2/a2 → a2]ti , 1 ≤ k ≤ n, i = 1, 2, . . . , n,
[a]fn → []tn+1 ‖ []fn+1 ,
[a3k+1 → λ]fi , 1 ≤ k ≤ n, i = 1, 2, . . . , n,
[a3k+2/a2 → a2]fi , 1 ≤ k ≤ n, i = 1, 2, . . . , n,
[a3k+1 → λ]tn+1 , 0 ≤ k ≤ n,
[a3k+2 → λ]tn+1 , 0 ≤ k ≤ n,
[a3k+1 → λ]fn+1 , 0 ≤ k ≤ n,
[a3k+2 → λ]fn+1 , 0 ≤ k ≤ n;

(D) rules for the ‘Output stage’:
[(a2)+/a → a]out.

To solve the SAT problem in the framework of SN P systems with neuron di-
vision, the strategy consists of four phases, as in [13]: Generation Stage, Input
Stage, Satisfiability Checking Stage and Output Stage. In the first stage, the neu-
ron division is applied to generate necessary neurons to constitute the input
and satisfiability checking modules, i.e., each possible assignment of variables
x1, x2, . . . , xn is represented by a neuron (with associated connections with other
neurons by synapses). In the input stage, the system reads the encoding of the
given instance of SAT. In the satisfiability checking stage, the system checks
whether or not there exists an assignment of variables x1, x2, . . . , xn that satis-
fies all the clauses in the propositional formula C. In the last stage, the system
sends a spike to the environment only if the answer is positive; no spikes are
emitted in case of a negative answer.

The initial structure of the original system from [13] is shown in Figure 1,
where the initial number of neurons is 4n + 7 and an exponential number of
neurons are generated by the neuron division and budding rules. In this work,
the initial number of neurons is reduced to constant 11 and only the neuron
division rule is used to generate the SN P systems. The division and budding
rules are not indicated in Figure 1: the process starts with neuron σ0 (to the

Spiking Neural P Systems with Neuron Division 367

a a ;2 nnm
a

a2
a2

in

a a

a4
a4

d 1

a4
a4

d 2

a4
a4

d n

a 

Cx1

a2


a5
 a5 ;n−1

a6
a6 ;n−1

a 

Cx2

a2


a5
 a5; n−2

a6
a6 ;n−2

a 

Cxn

a2


a5
 a5

a6
a6

a5
 a4

Cx1 1
a6



a5


Cx1 0
a6

a4

a5
 a4

Cx21
a6



a5


Cx20
a6

a4

C xn 1

a5


Cxn 0
a6

a4

⋮
⋮ ⋮

Input module

a0
⋅

2n
11⋅⋅1n⋅⋅m1⋅⋅mn

a5


d 0

a
a a ;2 n−1

a a
a2



a a

a

a2



/a a

a

1

0

out

2

3a4


a4


a4


a6
a4 ;2 n1

a6

a5
 a4

a6


Fig. 1. The initial structure the SN P system Π2 from [13]

right, before the output neuron), which then results in an exponential number
of neurons (with a linear number of fresh labels).

Let us have an overview of the computation. In the initial structure of the sys-
tem which is shown in Figure 2, there are 11 neurons: the left two neurons σd0 and
σin are the first layer of the input module; the two neurons σb1 and σe1 and their
offspring will be used to generate the second and third layers by neuron division
rules respectively; the neuron σg1 and its offspring will be used to generate the
first layer of the satisfiability checking module, while neuron σ0 and its offspring
will be used to produce an exponential workspace (the second layer of satisfiability
checking module); the auxiliary neurons σ1, σ2 and σ3 supply necessary spikes to
the neurons σb1 , σe1 , σg1 and σ0 and their offspring for neuron division rules; neu-
ron σ4 supplies spikes to the exponential workspace in the satisfiability checking
process; the neuron σout is used to output the computation result.

By the encoding of instances, it is easy to see that neuron σin takes 4n steps
to read (a0.)4n of cod(γ), then the spike variables αi,j will be introduced into
the neuron from step 4n + 1. In the first 2n − 1 steps, the system generates
the second and third layers of the input module, and also the first layer of the
satisfiability checking module; then in the next 2n + 1 steps, neurons σ0 and
its offspring will be used to generate the second layer of satisfiability checking
module. After that, the system reads the encoding of the spike variables αi,j ,
checks the satisfiability and outputs the result.

Generation Stage: Neuron σd0 initially contains 5 spikes and the rule [a5/a4 →
a4; 4n]d0 is applied. It will emit 4 spikes at step 4n+1 because of the delay 4n. In

368 J. Wang, H.J. Hoogeboom, and L. Pan

Fig. 2. The initial structure of system Π(〈n, m〉)

the beginning, neurons σb1 , σe1 and σg1 have 2 spikes respectively, their division
rules are applied, and six neurons σd1 , σb2 , σCx1 , σe2 , σh1 and σg2 are generated.
They have six associated synapses (1, d1), (1, b2), (1, Cx1), (1, e2), (1, h1) and
(1, g2), where they are obtained by the heritage of synapses (1, b1), (1, e1) and
(1, g1), respectively, and three new synapses (d0, d1), (d1, Cx1) and (Cx1, h1)
are generated by the synapse dictionary. At step 1, the auxiliary neuron σ2 sends
2 spikes to neuron σ1, then in the next step σ1 will send 2 spikes to neurons σb2 ,
σe2 , σh1 and σg2 for the next division. Note that neuron σ3 has 7 spikes in the
beginning, and will send 2 spikes to neuron σ2 at step 2n − 2 because of the
delay 2n − 3 (as we will see, at step 2n − 2, neuron σ2 also receive 2 spikes
from neuron σ1 and the rule [a4 → a]2 will be applied. Hence, after step 2n− 1,
neurons σ0 and its offspring will be used to generate an exponential workspace).
The structure of the system after step 1 is shown in Figure 3.

Fig. 3. The structure of system Π(〈n, m〉) after step 1

Spiking Neural P Systems with Neuron Division 369

At step 2, neuron σ1 sends 2 spikes to neurons σb2 , σe2 , σh1 , σg2 , σ2, σ0, σd1

and σCx1 , respectively. In the next step, the former four neurons consume their
spikes for neuron division rules; neuron σ2 sends 2 spikes back to σ1 (in this way,
the auxiliary neurons σ1, σ2, σ3 supply 2 spikes for division for every two steps
in the first 2n− 2 steps); the spikes in the other three neurons σ0, σd1 and σCx1

are deleted by the rules [a2 → λ]d1 , [a2 → λ]Cx1 and [a2 → λ]0, respectively. At
step 3, neurons σb2 , σe2 , σh1 and σg2 are divided, eight new neurons σd2 , σb3 ,
σCx2 , σe3 , σCx11, σCx10, σh2 and σg3 are generated, and the associated synapses
are obtained by heritage or synapse dictionary. The corresponding structure of
the system after step 3 is shown in Figure 4.

Fig. 4. The structure of system Π(〈n, m〉) after step 3

The neuron division is iterated until neurons σdi , σCxi , σCxi1 and σCxi0 (1 ≤
i ≤ n) are obtained at step 2n−1. Note that the division rules in neurons σbn−1 ,
σen−1 and σgn−1 are slightly different with those division rules in neurons σbi ,
σei and σgi (1 ≤ i ≤ n − 2). At step 2n− 2, neuron σ3 sends 2 spikes to neuron
σ2. At the same time, neuron σ1 also sends 2 spikes to σ2. So neuron σ2 sends
one spike to σ1 at step 2n − 1 by the rule [a4 → a]2 is applied. Similarly, the
auxiliary neurons σ1, σ2, σ3 supply one spike for every two steps to generate
an exponential workspace from step 2n − 1 to 4n (neuron σ0 and its offspring
use the spikes for division, while neurons σdi , σCxi , σCxi1 and σCxi0 delete the
spikes received). Note that the synapses (dn, d1) and (dn, 4) are established by
the synapse dictionary. The structure of the system after step 2n − 1 is shown
in Figure 5.

At step 2n, neuron σ0 has one spike coming from σ1, the rule [a]0 → []t1 ‖ []f1

is applied, and two neurons σt1 , σf1 are generated. They have 8 synapses (1, t1),
(1, f1), (4, t1), (4, f1), (t1, out), (f1, out), (Cx11, t1) and (Cx10, f1), where the
first 6 synapses are produced by the heritage of the synapses (1, 0), (4, 0) and (0,
out), respectively; the left two synapses are established by the synapse dictionary.
The structure of the system after step 2n + 1 is shown in Figure 6.

370 J. Wang, H.J. Hoogeboom, and L. Pan

Fig. 5. The structure of system Π(〈n,m〉) after step 2n − 1

Cx1 1

a 

a2

a4a3

a5

a

a2

a4

a5 a3

Cx1 0

Input module

Cxn 1

a 

a2

a4a3

a5

a

a2

a4

a5 a3

3

1

2

out

a
aa

a2a2
a5

a7/a2a2 ;2 n−3
a5/a2a2 ;2 n−1

a3 a3 ;nm2

a a
a2a2

a3

a4a

a2 /aa 4

a2

a3 a ;1
a6a2 ;1

⋯

Cxn 0Cx2 1

a 

a2

a4a3

a5

a

a2

a4

a5 a3

Cx2 0

t 1

[a]t1
[]t 2

∥[] f 2

a3k1

a3 k2/a2 a2

1≤k≤n
f 1

[a] f 1
[]t2

∥[] f 2

a3 k1

a3k2/a2 a2

1≤k≤n

d n

Fig. 6. The structure of system Π(〈n,m〉) after step 2n + 1

Spiking Neural P Systems with Neuron Division 371

At step 2n + 2, neurons σt1 and σf1 obtain one spike from neuron σ1 respec-
tively, then in the next step, only division rules can be applied in σt1 and σf1 . So
these two neurons are divided into four neurons with labels t2 or f2 correspond-
ing to assignments x1 = 1 and x2 = 1, x1 = 1 and x2 = 0, x1 = 0 and x2 = 1,
x1 = 0 and x2 = 0, respectively. The neuron σCx11 (encoding that x1 appears
in a clause) has synapses from it to neurons whose corresponding assignments
have x1 = 1. It means that assignments with x1 = 1 satisfy clauses where x1
appears. The structure of the system after step 2n + 3 is shown in Figure 7.

Cx1 1

a 

a2

a4a3

a5

a

a2

a4

a5 a3 Cx1 0

Input module

Cxn 1

a 

a2

a4a3

a5

a

a2

a4

a5 a3

3

1 2

out

a
aa

a2a2

a5

a7/a2a2 ;2 n−3
a5/a2a2 ;2 n−1

a3 a3 ;nm2

a a

a2a2

a3

a4 a

a2 /a a 4

a2

a3 a ;1
a6a2 ;1

⋯

Cxn 0
Cx2 1

a 

a2

a4a3

a5

a

a2

a4

a5 a3 Cx2 0

t 2

[a]t2
[]t3

∥[] f 3

a3k1

a3 k2/a2 a2

1≤k≤n

f 2

[a] f 2
[]t3

∥[] f 3

a3 k1

a3k2/a2 a2

1≤k≤n

[a]t2
[]t3

∥[] f 3

a3k1

a3 k2/a2 a2

1≤k≤n
f 2

[a] f 2
[]t3

∥[] f 3

a3 k1

a3k2/a2 a2

1≤k≤n
t 2t1 t 2 t1 f 2  f 1t 2  f 1 f 2

d n

Fig. 7. The structure of system Π(〈n,m〉) after step 2n + 3

The exponential workspace is produced by neuron division rules until 2n neu-
rons with labels tn or fn appear at step 4n− 1. At step 4n− 2, neuron σ3 sends
2 spikes to neurons σ2 and σ4 (the rule [a5/a2 → a2; 2n − 1]3 is applied at step
2n − 2), while neuron σ1 also send one spike to σ2. So the spikes in neurons σ2
and σ4 are deleted by the rules [a3 → λ]2 and [a2 → λ]4. The auxiliary neurons
σ1 and σ2 cannot supply spikes any more and the system passes to read the
encoding of a given instance. The structure of the system after step 4n − 1 is
shown in Figure 8.

Input Stage: The input module now consists of 2n + 2 neurons, which are in the
layers 1 – 3 as illustrated in Figure 5; σin is the unique input neuron. The spikes
of the encoding sequence code(γ) are introduced into σin one “package” by one
“package”, starting from step 1. It takes 4n steps to introduce (a0.)4n into neuron
σin. At step 4n + 1, the value of the first spike variable α11, which is the virtual
symbol that represents the occurrence of the first variable in the first clause,
enters into neuron σin. At the same time, neuron σd0 sends 3 spikes to neuron
σd1 (the rule [a4/a3 → a3; 4n]d0 is used at the first step of the computation). At

372 J. Wang, H.J. Hoogeboom, and L. Pan

Cx1 1

a 

a2

a4a3

a5

a

a2

a4

a5 a3 Cx1 0

Input module

Cxn 1

a 

a2

a4a3

a5

a

a2

a4

a5 a3 3

1

2

out

aa

a2a2

a3

a7/a2a2 ;2 n−3
a5/a2a2 ;2 n−1

a3 a3 ;nm2

a a

a2a2

a3

a4 a

a2 /aa

4

a2

a3 a ;1
a6a2 ;1

⋯

Cxn 0Cx2 1

a 

a2

a4a3

a5

a

a2

a4

a5 a3 Cx2 0

t n

[a]tn
[]tn1

∥[] f n1

a3k1

a3 k 2/a2 a2

1≤k≤n

t1 t 2... t n−1 tn

[a] f n
[]t n1

∥[] f n1

a3 k1

a3 k2/a2a2

1≤k≤n

f n
t1 t 2... t n−1 f n

t n

[a]tn
[]tn1

∥[] f n1

a3k1

a3 k 2/a2 a2

1≤k≤n

t1 t 2... f n−1 t n

[a] f n
[]t n1

∥[] f n1

a3 k1

a3k2/a2a2

1≤k≤n

f n
t1 t 2... f n−1 f n

t n

[a]tn
[]tn1

∥[] f n1

a3k1

a3 k 2/a2 a2

1≤k≤n

 f 1 f 2... f n−1 t n

[a] f n
[]t n1

∥[] f n1

a3 k1

a3k2/a2a2

1≤k≤n

f n
 f 1 f 2... f n−1 f n

⋯

d n

Fig. 8. The structure of system Π(〈n,m〉) after step 4n − 1

step 4n + 2, the value of the spike variable α11 is replicated and sent to neurons
σCxi , for all i ∈ {1, 2, . . . , n}, while neuron σd1 sends 3 auxiliary spikes to neurons
σCx1 and σd2 . Hence, neuron σCx1 will contain 3, 4 or 5 spikes: if x1 occurs in
C1, then neuron σCx1 collects 4 spikes; if ¬x1 occurs in C1, then it collects 5
spikes; if neither x1 nor ¬x1 occur in C1, then it collects 3 spikes. Moreover, if
neuron σCx1 has received 4 or 5 spikes, then it will be closed for n − 1 steps,
according to the delay associated with the rules in it; on the other hand, if 3
spikes are received, then they are deleted and the neuron remains open. At step
4n + 3, the value of the second spike variable α12 from neuron σin is distributed
to neurons σCxi , 2 ≤ i ≤ n, where the spikes corresponding to α11 are deleted
by the rules [a → λ]Cxi and [a2 → λ]Cxi , 2 ≤ i ≤ n. At the same time, the 3
auxiliary spikes are duplicated and one copy of them enters into neurons σCx2

and σd3 , respectively. The neuron σCx2 will be closed for n − 2 steps only if it
contains 4 or 5 spikes, which means that this neuron will not receive any spike
during this period. In neurons σCxi , 3 ≤ i ≤ n, the spikes represented by α12
are forgotten in the next step.

In this way, the values of the spike variables are introduced and delayed in
the corresponding neurons until the value of the spike variable α1n of the first
clause and the 3 auxiliary spikes enter together into neuron σCxn at step 5n + 1
(note that neuron σ4 also obtains 3 spikes from neuron σdn at the same step
and will send one spike to the exponential workspace). At that moment, the
representation of the first clause of γ has been entirely introduced in the system,
and the second clause starts to enter into the input module. In general, it takes
mn + 1 steps to introduce the whole sequence code(γ) in the system, and the
input process is completed at step 4n + nm + 1.

Spiking Neural P Systems with Neuron Division 373

At step 4n + nm + 1, the neuron σdn sends 3 spikes to neuron σd1 , while
the auxiliary neuron σd0 also sends a spike to the neuron σd1 (the rule [a →
a; nm − 1]d0 is applied at step 4n + 1). So neuron σd1 contains 4 spikes, and in
the next step these spikes are forgotten by the rule [a4 → λ]d1 . It ensures that
the system eventually halts.

Satisfiability Checking Stage: At step 5n +1, all the values of spike variables α1i

(1 ≤ i ≤ n), representing the first clause, have appeared in their corresponding
neurons σCxi in the third layer, together with a copy of the 3 auxiliary spikes.
In the next step, all the spikes contained in σCxi are duplicated and sent si-
multaneously to the pair of neurons σCxi1 and σCxi0 (1 ≤ i ≤ n) in the first
layer of the satisfiability checking module. In this way, each neuron σCxi1 and
σCxi0 receives 4 or 5 spikes when xi or ¬xi occurs in C1, respectively, whereas
it receives no spikes when neither xi nor ¬xi occurs in C1.

In general, if neuron σCxi1 (1 ≤ i ≤ n) receives 4 spikes, then the literal xi

occurs in the current clause (say Cj), and thus the clause is satisfied by all those
assignments in which xi is true. Neuron σCxi0 will also receive 4 spikes, but
they will be deleted during the next computation step. On the other hand, if
neuron σCxi1 receives 5 spikes, then the literal ¬xi occurs in Cj , and the clause is
satisfied by those assignments in which xi is false. Since neuron σCxi1 is designed
to process the case in which xi occurs in Cj , it will delete its 5 spikes. However,
neuron σCxi0 has received 5 spikes, and this time it will send 3 spikes to those
neurons which are bijectively associated with the assignments for which xi is
false (refer to the generation stage for the corresponding synapses). Note that,
neuron σ4 has 3 spikes at step 5n + 1, the rule [a3 → a; 1]4 is applied, one spike
is duplicated and each spike enters into 2n neurons with labels tn or fn at step
5n + 3 because of the delay 1.

In this way, each neuron with label tn or fn receives 1 or 3k + 1 spikes
(1 ≤ k ≤ n) at step 5n + 3. If one of neurons σtn or σfn (we assume the
assignment of the neuron is t1t2 . . . tn−1fn) receives 1 spike, which means that
none of the neurons σCxi1 and σCxi0 (1 ≤ i ≤ n) send spikes to this neuron,
then the first clause C1 is not satisfied by the assignment t1t2 . . . tn−1fn and
this neuron cannot be used to check whether other clauses Cj (2 ≤ j ≤ m) are
satisfied or not. So the neuron with corresponding assignment t1t2 . . . tn−1fn is
divided into two neurons σtn+1 and σfn+1 by the rule [a]fn → []tn+1 ‖ []fn+1 , and
the two new neurons cannot send any spike to the output neuron because they
will delete the received spikes by the rules [a3k+1 → λ]tn+1 , [a3k+2 → λ]tn+1 ,
[a3k+1 → λ]fn+1 and [a3k+2 → λ]fn+1 , with 0 ≤ k ≤ n. On the other hand,
if a neuron (it is assumed that the assignment of the neuron is t1t2 . . . tn−1tn)
receives 3k + 1 spikes from neurons σCxi1 and σCxi0, then these spikes will be
forgotten, with the meaning that the clause C1 is satisfied by the assignment
t1t2 . . . tn−1tn (note that the number of spikes received in neurons with label
tn or fn is not more than 3n + 1, because, without loss of generality, we as-
sume that the same literal is not repeated and at most one of literals xi or ¬xi,
for any 1 ≤ i ≤ n, can occur in a clause; that is, a clause is a disjunction of at

374 J. Wang, H.J. Hoogeboom, and L. Pan

Fig. 9. The structure of system Π(〈n,m〉) after step 5n + 4

most n literals). This occurs in step (5n + 4). In this way, the satisfiability
checking for the first clause has been done in 5n + 4 steps The structure of the
system after step 5n + 4 is shown in Figure 9 (it is assumed only the neuron
with corresponding assignment t1t2 . . . tn−1fn is divided).

In a similar way, satisfiability checking for the next clause can proceed, and
so on. Thus, the first m − 1 clauses can be checked to see whether there exist
assignments that satisfy all of them. If there exist some assignments that satisfy
the first m − 1 clauses, which means that their corresponding neurons never
receive a spike during the satisfiability checking process of the m − 1 clauses.

At step 4n + nm + 1, the spike variable αm,n of the last clause Cm and the 3
auxiliary spikes (coming from neuron σdn) enter into neuron σCxn . At the same
moment, neuron σ4 receives 3 spikes from neuron σdn and another 3 spikes from
neuron σ3 (the rule [a3 → a3; nm + 2]3 is applied at step 4n − 2). So neuron σ4
contains 6 spikes, and sends 2 spikes to the neurons with labels tn, fn, tn+1 or
fn+1 at step 4n + nm + 3 because of the delay 1. In this way, if neurons with
labels tn and fn receive 3k + 2 spikes (1 ≤ k ≤ n), with the meaning that these
neurons associated with the assignments satisfy all the clauses of γ, then the
rules [a3k+2/a2 → a2]tn and [a3k+2/a2 → a2]fn can be applied, sending 2 spikes
to neuron σout, respectively. On the other hand, if neurons with labels tn and
fn receive only 2 spikes, or if neurons with labels tn+1 and fn+1 receive 3k + 2
spikes (0 ≤ k ≤ n), none of they can send spikes to the output neuron because
they cannot satisfy all the clauses of γ. In this way, the satisfiability checking
module can complete its process at step 4n + nm + 4.

Spiking Neural P Systems with Neuron Division 375

Output Stage: From the above explanation of a computation processes, it is not
difficult to see that the neuron σout receives spikes if and only if the formula γ
is true. At step 4n + nm + 5, the output neuron sends exactly one spike to the
environment if and only if the formula γ is true.

According to the above four stages, one can see that the system correctly an-
swers the question whether or not the formula γ is satisfiable. The duration of the
computation is polynomial in term of n and m: the system sends one spike to the
environment at step 4n + mn + 5 if the answer is positive; otherwise, the system
does not send any spike to the environment and halts in 4n + mn + 5 steps.

The following is a comparison of the resources used in the systems constructed
in this work and in [13]:

Resources \Systems Systems from this work Systems from [13]
Initial number of neurons 11 4n + 7
Initial number of spikes 20 9
Number of neuron labels 10n + 7 6n + 8
Size of synapse dictionary 6n + 11 7n + 6
Number of rules 2n2 + 26n + 26 n2 + 14n + 12

From the above comparison, it is easy to see that the amount of necessary
resources for defining each system in this work is polynomial with respect to n.
Note that the sets of rules associated with the system Π(〈n, m〉) are recursive.
Hence, the family Π = {Π(〈n, m〉) | n, m ∈ N} is polynomially uniform by
deterministic Turing machines.

The result of [13] is improved in the sense that a constant number of ini-
tial neurons (instead of linear number) are used to construct the systems for
efficiently solving SAT problem, and the neuron budding rules are not used.

4 Conclusions and Remarks

In this work, a uniform family of SN P systems with only neuron division (not
using neuron budding) is constructed for efficiently solving SAT problem, which
answers an open problem posed in [13]. It is interesting that a constant number
of initial neurons are used to construct the systems.

There remain many open problems and research topics about neuron division
and neuron budding. As we know, all NP problems can be reduced to an NP-
complete problem in a polynomial time. In principle, if a family of P systems can
efficiently solve an NP-complete problem, then this family of P systems can also
efficiently solve all NP problems. But, until now, it remains open how a family
of P systems can be designed to efficiently compute the reduction from an NP
problem to an NP-complete problem. Before this open problem is solved, it is
still interesting to give efficient solutions to other computationally hard problems
in the framework of SN P systems with neuron division.

It is worth investigating the computation power of SN P systems with only
neuron budding rules without neuron division rules. Neuron budding can result
in a polynomial number of neurons in a polynomial time, and each neuron has a

376 J. Wang, H.J. Hoogeboom, and L. Pan

polynomial number of spikes. It is hard to believe that SN P systems with only
neuron budding rules can efficiently solve computationally hard problems unless
we happen to find a proof for P = NP.

Acknowledgements. This work was supported by National Natural Science
Foundation of China (61033003 and 30870826), the Fundamental Research Funds
for the Central Universities (2010ZD001), Ph.D. Programs Foundation of Min-
istry of Education of China (20100142110072), and Natural Science Foundation
of Hubei Province (2008CDB113 and 2008CDB180).

References

1. Chen, H., Ionescu, M., Ishdorj, T.-O.: On the efficiency of spiking neural P sys-
tems. In: Proc. 8th Intern. Conf. on Electronics, Information, and Communication,
Ulanbator, Mongolia, June 2006, pp. 49–52 (2006)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability. In: A Guide to the
Theory of NP-completeness. W.H. Freeman and Company, San Francisco (1979)

3. Gerstner, M., Kistler, W.: Spiking Neuron Models. Single Neurons, Populations,
Plasticity. Cambridge University Press, Cambridge (2002)

4. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta In-
formaticae 71(2-3), 279–308 (2006)

5. Ishdorj, T.-O., Leporati, A.: Uniform solutions to sat and 3-sat by spiking neural
P systems with pre-computed resources. Natural Computing 7(4), 519–534 (2008)

6. Ishdorj, T.-O., Leporati, A., Pan, L., Zeng, X., Zhang, X.: Deterministic solutions
to qsat and q3sat by spiking neural P systems with pre-computed resources.
Theoretical Computer Science 411(25), 2345–2358 (2010)

7. Leporati, A., Gutiérrez-Naranjo, M.A.: Solving Subset Sum by spiking neural
P systems with pre-computed resources. Fundamenta Informaticae 87(1), 61–77
(2008)

8. Leporati, A., Mauri, G., Zandron, C., Păun, G., Pérez-Jiménez, M.J.: Uniform
solutions to sat and Subset Sum by spiking neural P systems. Natural Comput-
ing 8(4), 681–702 (2009)

9. Leporati, A., Zandron, C., Ferretti, C., Mauri, G.: Solving numerical NP-complete
problems with spiking neural P systems. In: Eleftherakis, G., Kefalas, P., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 336–352.
Springer, Heidelberg (2007)

10. Leporati, A., Zandron, C., Ferretti, C., Mauri, G.: On the computational power of
spiking neural P systems. International Journal of Unconventional Computing 5(5),
459–473 (2009)

11. Maass, W.: Computing with spikes. Special Issue on Foundations of Information
Processing of TELEMATIK 8(1), 32–36 (2002)

12. Maass, W., Bishop, C. (eds.): Pulsed Neural Networks. MIT Press, Cambridge
(1999)

13. Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking neural P systems with neuron di-
vision and budding. In: 7th Brainstorming Week on Membrane Computing, vol. II,
pp. 151–168 (2009)

14. Păun, G.: Membrane Computing – An Introduction. Springer, Berlin (2002)
15. Păun, G., Rozenberg, G., Salomaa, A. (eds.): Handbook of Membrane Computing.

Oxford University Press, Cambridge (2010)
16. The P System Web Page, http://ppage.psystems.eu

http://ppage.psystems.eu

Matrix Representation
of Spiking Neural P Systems

Xiangxiang Zeng1, Henry Adorna2, Miguel Ángel Mart́ınez-del-Amor3,
Linqiang Pan1,	, and Mario J. Pérez-Jiménez3

1 Image Processing and Intelligent Control Key Laboratory of Education Ministry
Department of Control Science and Engineering
Huazhong University of Science and Technology

Wuhan 430074, Hubei, China
xzeng@foxmail.com,

lqpan@mail.hust.edu.cn
2 Department of Computer Science

(Algorithms and Complexity)
University of the Philippines

Diliman 1101 Quezon City, Philippines
hnadorna@dcs.upd.edu.ph

3 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

{mdelamor,marper}@us.es

Abstract. Spiking neural P systems (SN P systems, for short) are a
class of distributed parallel computing devices inspired from the way neu-
rons communicate by means of spikes. In this work, a discrete structure
representation of SN P systems with extended rules and without delay is
proposed. Specifically, matrices are used to represent SN P systems. In
order to represent the computations of SN P systems by matrices, con-
figuration vectors are defined to monitor the number of spikes in each
neuron at any given configuration; transition net gain vectors are also
introduced to quantify the total amount of spikes consumed and pro-
duced after the chosen rules are applied. Nondeterminism of the systems
is assured by a set of spiking transition vectors that could be used at
any given time during the computation. With such matrix representa-
tion, it is quite convenient to determine the next configuration from a
given configuration, since it involves only multiplication and addition of
matrices after deciding the spiking transition vector.

1 Introduction

Membrane computing was initiated by Păun [6] and has developed very rapidly
(already in 2003, ISI considered membrane computing as “fast emerging

� Corresponding author. Tel.: +86-27-87556070; Fax: +86-27-87543130.

M. Gheorghe et al. (Eds.): CMC 2010, LNCS 6501, pp. 377–391, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

378 X. Zeng et al.

research area in computer science”, see http://esi-topics.com). It aims to
abstract computing ideas (data structures, operations with data, computing
models, etc.) from the structure and the functioning of single cell and from
complexes of cells, such as tissues and organs, including the brain. The obtained
models are distributed and parallel computing devices, called P systems. For
updated information about membrane computing, please refer to [8].

This work deals with a class of neural-like P systems, called spiking neural
P systems (SN P systems, for short) [3]. SN P systems were inspired by the
neurophysiological behavior of neurons (in brain) sending electrical impulses
along axons to other neurons, with the aim of incorporating specific ideas from
spiking neurons into membrane computing. Generally speaking, in an SN P
system the processing elements are called neurons and are placed in the nodes
of a directed graph, called the synapse graph. The content of each neuron consists
of a number of copies of a single object type, namely the spike. Each neuron may
also contain rules which allow to remove a given number of spikes from it, or
send spikes (possibly with a delay) to other neurons. The application of every
rule is determined by checking the content of the neuron against a regular set
associated with the rule.

Representation of P systems by discrete structures has been one topic in the
field of membrane computing. One of the promising discrete structures to rep-
resent P systems is matrix. Models with matrices as their representation have
been helpful to physical scientists – biologists, chemists, physicists, engineers,
statisticians, and economists – solving real world problems. Recently, matrix
representation was introduced for represent a restricted form of cell-like P sys-
tems without dissolution (where only non-cooperative rules are used) [2]. It was
proved that with an algebraic representation P systems can be easily simulated
and computed backward (that is, to find all the configurations that produce a
given one in one computational step).

In this work, a matrix representation of SN P systems without delay is pro-
posed, where configuration vectors are defined to represent the number of spikes
in neurons; spiking vectors are used to denote which rules will be applied; a
spiking transition matrix is used to describe the skeleton of a system; the transi-
tion net gain vectors are also introduced to quantify the total amount of spikes
consumed and produced after the chosen rules are applied. With this algebraic
representation, matrix transition can be used to compute the next configuration
from a given one.

In addition, we consider another variant of SN P systems, SN P systems with
weights (WSN P systems, for short), which were introduced in [9]. In these
systems, each neuron has a potential and a given threshold, whose values are
real (computable) numbers. Each neuron fires when its potential is equal to its
threshold; at that time, part of the potential is consumed and a unit potential
is produced (a spike). The unit potential is passed to neighboring neurons mul-
tiplied with the weights of synapses. The weights of synapses can also be real
(computable) numbers. This variant of SN P system allows real numbers to be
computed by the system.

Matrix Representation of Spiking Neural P Systems 379

A matrix over RC is defined to represent WSN P systems, where vectors are
defined to represent the potentials in neurons and the application of rules. In
particular, when the potential of a neuron is smaller than its spiking threshold,
then this potential vanishes (the potential of the neuron is set to zero). Therefore,
a forgetting vector is introduced to denote the potential vanishing from neurons.
It is also shown that matrix representation is convenient for deciding the next
configuration of the system from a given configuration.

The rest of this paper is organized as follows. In the next section, the definition
of SN P systems is introduced. In Section 3 the matrix representation of SN P
systems is given, and an example is given to illustrate how to represent the
computation of an SN P system by matrix transition. In Section 4 the matrix
representation method is extended to WSN P systems. Conclusions and remarks
are given in Section 5.

2 Spiking Neural P Systems

In this section, a restricted variant of SN P systems, SN P systems without delay,
is introduced.

Definition 1. An SN P system without delay, of degree m ≥ 1, is a construct
of the form

Π = (O, σ1, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → ap, where E is a regular expression over a, and c ≥ 1, p ≥ 1,
with the restriction c ≥ p;

(2) as → λ, for s ≥ 1, with the restriction that for each rule E/ac → ap

of type (1) from Ri, as /∈ L(E);
3. syn = {(i, j) | 1 ≤ i, j ≤ m, i �= j } (synapses between neurons);
4. in, out ∈ {1, 2, . . . , m} indicate the input and output neurons, respectively.

The rules of type (1) are spiking (also called firing) rules, which are applied as
follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the rule
E/ac → ap ∈ Ri can be applied. This means that consuming (removing) c spikes
(thus only k−c spikes remain in σi), the neuron is fired, and it produces p spikes;
these spikes are transported to all neighbor neurons by outgoing synapses. If a
rule E/ac → ap has E = ac, then it is written in the simplified form ac → ap.

380 X. Zeng et al.

The rules of type (2) are forgetting rules; they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi.

In each time unit, if a neuron σi can apply one of its rules, then a rule from
Ri must be applied. Since two spiking rules, E1/ac1 → ap1 and E2/ac2 → ap2 ,
can have L(E1) ∩ L(E2) �= ∅, it is possible that two or more rules are ap-
plicable in a neuron. In that case, only one of them is chosen and applied non-
deterministically. However, note that, by definition, if a spiking rule is applicable,
then no forgetting rule is applicable, and vice versa.

Thus, the rules are applied in the sequential manner in each neuron, at most
one in each step, but neurons function in parallel with each other. It is important
to notice that the applicability of a rule is established based on the total number
of spikes contained in the neuron.

The configuration of the system is described by the number of spikes present in
each neuron. Using the rules as described above, one can define transitions among
configurations. Any sequence of transitions starting in the initial configuration is
called a computation. A computation halts if it reaches a configuration where no
rule can be applied. The result of a computation is the number of steps elapsed
between the first two spikes sent by the output neuron to the environment during
the computation.

3 Matrix Representation of SN P Systems

In this section, a matrix representation of SN P systems is given. Based on
this representation, it is shown how the computation of SN P systems can be
represented by operations with matrices.

As mentioned in the above section, a configuration of the system is described
by the number of spikes present in each neuron. Here, vectors are used to repre-
sent configurations.

Definition 2 (Configuration Vectors). Let Π be an SN P system with m
neurons, the vector C0 = (n1, n2, . . . , nm) is called the initial configuration
vector of Π, where ni is the amount of the initial spikes present in neuron σi,
i = 1, 2, . . . , m before a computation starts.

In a computation, for any k ∈ N, the vector Ck = (n(k)
1 , n

(k)
2 , . . . , n

(k)
m) is

called the kth configuration vector of the system, where n
(k)
i is the amount

of spikes in neuron σi, i = 1, 2, . . . , m after the kth step of the computation.

In order to describe which rules are chosen and applied in each configuration,
spiking vectors are defined.

Definition 3 (Spiking Vectors). Let Π be an SN P system with m neurons
and n rules, and Ck = (n(k)

1 , n
(k)
2 , . . . , n

(k)
m) be the kth configuration vector of Π.

Assume a total order d : 1, . . . , n is given for all the n rules, so the rules can be
referred as r1, . . . , rn. A spiking vector s(k) is defined as follows:

s(k) = (r(k)
1 , r

(k)
2 , . . . , r(k)

n),

Matrix Representation of Spiking Neural P Systems 381

where:

r
(k)
i =

⎧
⎪⎪⎨

⎪⎪⎩

1, if the regular expression Ei of rule ri is satisfied by the
number of spikes n

(k)
j (rule ri is in neuron σj) and

rule ri is chosen and applied;
0, otherwise.

In particular, s(0) = (r(0)
1 , r

(0)
2 , . . . , r

(0)
n) is called the initial spiking vector.

The application of each rule will change the number of spikes in some neurons,
for example, when the rule ri : E/ac → ap is applied in neuron σj , it consumes
c spikes in σj , and emits p spikes; these p spikes are immediately delivered to
all the neurons σs such that (j, s) ∈ syn. Here, a spiking transition matrix is
defined to denote the amount of spikes consumed (or received) by each neuron
via each rule.

Definition 4 (Spiking Transition Matrix). Let Π be an SN P system with
m neurons and n rules, and d : 1, . . . , n be a total order given for all the n rules.
The spiking transition matrix of the system Π, MΠ, is defined as follows:

MΠ = [aij]n×m,

where:

aij =

⎧
⎪⎪⎨

⎪⎪⎩

−c, if rule ri is in neuron σj and it is applied consuming c spikes;
p, if rule ri is in neuron σs (s �= j and (s, j) ∈ syn)

and it is applied producing p spikes;
0, if rule ri is in neuron σs (s �= j and (s, j) /∈ syn).

In a spiking transition matrix, the row i is associated with the rule ri : E/ac →
ap. Assume that the rule ri is in neuron σj . When the rule ri is applied, it
consumes c spikes in neuron σj ; neuron σs (s �= j and (j, s) ∈ syn) receives
p spikes from neuron σj ; neuron σs (s �= j and (j, s) /∈ syn) receives no spike
from neuron σj . By the definition of spiking transition matrix, the entry in the
position (i, j) is a negative number; the other entries in the row i are non-negative
numbers. So the following observation holds:

Observation 1: each row of a spiking transition matrix has exactly one negative
entry.

In a spiking transition matrix, the column i is associated with neuron σi. For
an SN P system, without loss of generality, it can be assumed that each neuron
has at least one rule inside (if a neuron has no rule inside, it just stores spikes,
sending no spikes to other neurons or environment, so it can be deleted without
any influence to the computational result of the system). Assume the rules in
neuron σi are rm, rn, These rules consume spikes of neuron σi when they are
applied. So the corresponding entries (m, i), (n, i), . . . in the spiking transition
matrix are negative numbers, and the following observation holds:

382 X. Zeng et al.

Observation 2: each column of a spiking transition matrix has at least one
negative entry.

In the following, it will be shown that how matrices representing SN P systems
can be used to represent the computation of SN P systems by operating with
matrices. Before the matrix operations for SN P systems are formally defined, a
simple example is provided as follows.

Example 1. Let us consider an SN P system Π = ({a}, σ1, σ1, σ3, syn, out) that
generates the set N of natural numbers excluding 1, where σ1 = (2, R1), with
R1 = {a2/a → a, a2 → a}; σ2 = (1, R2), with R2 = {a → a}; σ3 = (1, R3), with
R3 = {a → a, a2 → λ}; syn = {(1, 2), (1, 3), (2, 1), (2, 3)}; out = 3. Π is also
represented graphically in Figure 1, which may be easier to understand.

a
2

a
2
/a a

a
2
a

a

aa

a

aa

a
2


1

2

31

2

3

4

5

Fig. 1. An SN P system Π that generates the set N − {1}

In order to represent the above SN P system Π in a matrix, a total order is set
for all the rules in the system, which can be seen in Figure 1. With this order,
the rules can be denoted by r1, . . . , r5.

Let MΠ1 = [aij]5×3 be the spiking transition matrix for Π . By Definition 4,
the row i of MΠ is associated with the rule ri : E/ac → ap, c ≥ 1, p ≥ 0 in system
Π . The entries ai1, ai2, ai3 are the amount of spikes which neurons σ1, σ2, σ3 will
get (or consume) when rule ri is applied.

The spiking transition matrix for the SN P system Π depicted in Figure 1 is
as follows.

MΠ =

⎛

⎜
⎜
⎜
⎜
⎝

−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2

⎞

⎟
⎟
⎟
⎟
⎠

(1)

Initially, neurons σ1, σ2, and σ3 have 2, 1, and 1 spike(s), respectively. Ac-
cording to Definition 2, the initial configuration vector for system Π would be
C0 = (2, 1, 1). Since neuron σ1 has two rules r1 and r2 that are applicable in

Matrix Representation of Spiking Neural P Systems 383

the initial transition, one of the rules could be chosen, the initial spiking tran-
sition vector would be (1, 0, 1, 1, 0) or (0, 1, 1, 1, 0) by Definition 3. Note that
the rule r5 is not applicable because the regular expression a2 is not satisfied in
neuron σ3.

If the rule r1 : a2/a → a is applied, it consumes one spike in neuron σ1 and
sends one spike to neurons σ2 and σ3, respectively; at the same time, neuron σ2
sends one spike to each of the neurons σ1 and σ3. In this step, the net gain of
neuron σ1 is 0 spike (it consumes 1 spike by r1 and receives 1 spike from neuron
σ2); the net gain of neuron σ2 is 0 spike (it consumes 1 spike by r3 and receives 1
spike from neuron σ1); the net gain of neuron σ3 is 1 spike (it consumes 1 spike
by rule r5 and receives 1 spike from each of the neurons σ1 and σ2). After this
step, the numbers of spikes in neurons σ1, σ2 and σ3 are 2, 1 and 2, respectively.

The illustration above explained intuitively how an SN P system computes
from one configuration to the succeeding one. In order to use matrix operations
to represent it, the following definitions are needed:

Definition 5 (Transition Net Gain Vector). Let Π be an SN P system with
m neurons and n rules, and Ck = (n(k)

1 , n
(k)
2 , . . . , n

(k)
m) be the kth configuration

vector of Π. The transition net gain vector at step k is defined as NG(k) =
Ck+1 − Ck.

Lemma 1. Let Π be an SN P system with m neurons and n rules, d : 1, . . . , n
be a total order for the n rules, MΠ the spiking transition matrix of Π, and s(k)

the spiking vector at step k. Then the transition net gain vector at step k can be
obtained by

NG(k) = s(k) · MΠ . (2)

Proof. Assume that MΠ = [aij]m×n, s(k) = (r(k)
1 , r

(k)
2 , . . . , r

(k)
n), and NG(k) =

(g1, g2, . . . , gm). Note that the spiking vector s(k) is a {0, 1}-vector that identifies
the rules that would be applied at step k. Thus, Σn

i=1 r
(k)
i aij represents the total

amount of spikes received and consumed by neuron σj after applying the rules
identified by s(k). Therefore, the net gain of neuron σj is gj = Σn

i=1 r
(k)
i aij , for

all j = 1, 2, . . . , m. That is, NG(k) = s(k) · MΠ .

Theorem 1. Let Π be an SN P system with m neurons and n rules, d : 1, . . . , n
be a total order for the n rules, MΠ the spiking transition matrix of Π, Ck the kth
configuration vector, and s(k) the spiking vector at step k, then the configuration
Ck+1 of Π can be obtained by

Ck+1 = Ck + s(k) · MΠ . (3)

Proof. This results follows directly from the preceding Lemma.

Let us go back to the example shown in Figure 1. Given the initial configuration
vector C0 = (2, 1, 1), the next configuration of system Π can be computed as
follows.

384 X. Zeng et al.

If the rules r1, r3, r4 are chosen to be applied, the spiking vector is s(0) =
(1, 0, 1, 1, 0), and the next configuration is

C1 = (2, 1, 1) + (1, 0, 1, 1, 0)

⎛

⎜
⎜
⎜
⎜
⎝

−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2

⎞

⎟
⎟
⎟
⎟
⎠

= (2, 1, 2). (4)

In the next step, r1, r3, r5 are chosen to be applied, the spiking vector is
(1, 0, 1, 0, 1), and the next configuration is

C2 = (2, 1, 2) + (1, 0, 1, 0, 1)

⎛

⎜
⎜
⎜
⎜
⎝

−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2

⎞

⎟
⎟
⎟
⎟
⎠

= (2, 1, 2), (5)

where the transition net gain vector is

NG = (1, 0, 1, 0, 1)

⎛

⎜
⎜
⎜
⎜
⎝

−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2

⎞

⎟
⎟
⎟
⎟
⎠

= (0, 0, 0). (6)

Equation (6) means that the configuration of the system remains unchanged
as long as the rules r1, r3 and r5 are chosen to be applied. However, at any
moment, starting from the first step of computation, neuron σ1 can choose to
apply the rule r2 : a2 → a. In this case, system will go to another configuration.
The checking is left to the readers.

The following Corollary is a direct consequence of the preceding Theorem.

Corollary 1. Let Π be an SN P system with m neurons and n rules, d : 1, . . . , n
be a total order for the n rules, MΠ the spiking transition matrix of Π, Ck the
kth configuration vector, and s(k−1) the spiking vector at step k − 1, then the
previous configuration Ck−1 is

Ck−1 = Ck − s(k−1) · MΠ . (7)

In the above matrix representation, the spikes sent to the environment are not
considered. In order to consider the spikes sent to the environment, an augmented
spiking transition matrix is introduced.

Definition 6 (Augmented Transition Spiking Matrix). Let Π be an SN P
system with m neurons and n rules, d : 1, . . . , n be a total order for the n rules,
and MΠ the n × m spiking transition matrix of Π. An augmented spiking
transition matrix is defined as

[MΠ | e]n×(m+1),

Matrix Representation of Spiking Neural P Systems 385

where the column e = (e1, e2, . . . , en)T represents the spikes sent to the environ-
ment, with:

ei =
{

p, if rule ri is in the output neuron and it is applied producing p spikes;
0, if rule ri is not in the output neuron.

Correspondingly, the augmented configuration vector after the kth step in
the computation is defined as

Ck = (n(k)
1 , n

(k)
2 , . . . , n(k)

m , n(k)
e),

where n
(k)
i is the amount of spikes in neuron σi, for all i = 1, 2, . . . , m, n

(k)
e is

the amount of spikes collected in the environment. Using this vector instead of
the configuration vector in Definition 2 allows us to monitor the output of the
system.

4 Matrix Representation for WSN P Systems

In this section, matrix representation for spiking neural P systems with weights
(WSN P systems, for short) is investigated. Instead of counting spikes as in
usual SN P systems, each neuron in WSN P systems contains a potential, which
can be expressed by a computable real number. Each neuron fires when its
potential is equal to the given threshold. The execution of a rule consumes part
of the potential and produces a unit potential. This unit potential passes to
neighboring neurons multiplied with the weights of synapses. In an SN P system
with weights, the involved numbers – weights, thresholds, potential consumed by
each rule – can be real (computable) numbers. Formally, the system is defined
as follows.

Definition 7. An SN P system with weights, of degree m ≥ 1, is a construct of
the form

Π = (σ1, . . . , σm, syn, in, out),

where:

1. σ1, . . . , σm are neurons of the form σi = (pi, Ri), 1 ≤ i ≤ m, where:

a) pi ∈ Rc is the initial potential in σi;
b) Ri is a finite set of rules of the form Ti/ds → 1, s = 1, 2, . . . , ni for some

ni ≥ 1, where Ti ∈ Rc, Ti ≥ 1, is the firing threshold potential of neuron
σi, and ds ∈ Rc with the restriction 0 < ds ≤ Ti;

2. syn ⊆ {1, 2, . . . , m}× {1, 2, . . . , m}×Rc are synapses between neurons, with
i �= j, w �= 0 for each (i, j, w) ∈ syn, 1 ≤ i, j ≤ m;

3. in, out ∈ {1, 2, . . . , m} indicate the input and output neurons, respectively.

386 X. Zeng et al.

The spiking rules are applied as follows. Assume that at a given moment, neuron
σi has the potential equal to p. If p = Ti, then any rule Ti/ds → 1 ∈ Ri can be
applied. The execution of this rule consumes an amount of ds of the potential
(thus leaving the potential Ti − ds) and prepares one unit potential (we also
say a spike) to be delivered to all the neurons σj such that (i, j, w) ∈ syn.
Specifically, each of these neurons σj receives a quantity of potential equal to w,
which is added to the existing potential in σj . Note that w can be positive or
negative, hence the potential of the receiving neuron is increased or decreased.
The potential emitted by a neuron σi passes immediately to all neurons σj such
that (i, j, w) ∈ syn, that is, the transition of potential takes no time. If a neuron
σi spikes and it has no outgoing synapse, then the potential emitted by neuron
σi is lost.

The main feature of this system is: (1) each neuron σi has only one fixed
threshold potential Ti; (2) if a neuron has the potential equal to its threshold
potential, then all rules associated with this neuron are enabled, and only one
of them is non–deterministically chosen to be applied; (3) when a neuron spikes,
there is always only one unit potential (a spike) emitted.

If neuron σi has the potential p such that p < Ti, then the neuron σi returns
to the resting potential 0. If neuron σi has the potential p such that p > Ti, then
the potential p keeps unchanged.

Summing up, if neuron σi has potential p and receives potential k at step t,
then at step t + 1 it has the potential p′, where:

p′ =

⎧
⎨

⎩

k, if p < Ti;
p − ds + k, if p = Ti and rule Ti/ds → 1 is applied;
p+k, if p > Ti.

The configuration of the system is described by the distribution of potentials
in neurons. Using the rules described above, one can define transitions among
configurations. Any sequence of transitions starting in the initial configuration is
called a computation. A computation halts if it reaches a configuration where no
rule can be applied. The result of a computation is the number of steps elapsed
between the first two spikes sent by the output neuron to the environment during
the computation.

Similar to Section 2, some vectors are defined to represent configurations and
the application of rules.

Definition 8 (Configuration Vectors). Let Π be a WSN P system with m
neurons, the vector C0 = (p1, p2, . . . , pm) is called the initial configuration
vector of Π, where pi is the amount of the initial potential present in neuron
σi, i = 1, 2, . . . , m before a computation starts.

In a computation, for any k ∈ N, the vector Ck = (p(k)
1 , p

(k)
2 , . . . , p

(k)
m) is called

the kth configuration vector of the system, where p
(k)
i is the amount of spikes

in neuron σi, i = 1, 2, . . . , m after the kth step in the computation.

Definition 9 (Spiking Vectors). Let Π be a WSN P system with m neurons
and n rules, and Ck = (p(k)

1 , p
(k)
2 , . . . , p

(k)
m) be the kth configuration vector of Π.

Matrix Representation of Spiking Neural P Systems 387

Assume a total order d : 1, . . . , n is given for all the n rules, so the rules can be
referred as r1, . . . , rn. A spiking vector s(k) is defined as follows:

s(k) = (r(k)
1 , r

(k)
2 , . . . , r(k)

n),

where:

r
(k)
i =

⎧
⎨

⎩

1, if ri in neuron σj is enabled (the potential p
(k)
j in neuron σj is equal

to its spiking threshold tj) and the rule ri is chosen and applied;
0, otherwise.

In particular, s(0) = (r(0)
1 , r

(0)
2 , . . . , r

(0)
n) is called the initial spiking vector.

In WSN P systems, when the potential of a neuron is smaller than its spiking
threshold, then this potential vanishes, the potential of the neuron is set to zero.
In order to describe which neurons forget their potentials, forgetting vector is
defined.

Definition 10 (Forgetting vector). Let Π be a WSN P system with m neu-
rons, and Ck = (p(k)

1 , p
(k)
2 , . . . , p

(k)
m) be the kth configuration vector of Π. A

forgetting vector forg(k) is defined as follows:

forg(k) = (f (k)
1 , f

(k)
2 , . . . , f (k)

m),

where:

f
(k)
i =

{
1 if the potential p

(k)
i in neuron σi is less than its spiking threshold ti;

0 otherwise.

In particular, forg(0) = (f (0)
1 , f

(0)
2 , . . . , f

(0)
m) is called the initial forgetting

vector.

For a WSN P system, a spiking transition matrix is defined in order to store the
information of the amount of potential consumed (or received) by each neuron
when each rule is applied.

Definition 11 (Spiking Transition Matrix). Let Π be a WSN P system with
m neurons and n rules, d : 1, . . . , n a total order given for all the n rules. The
spiking transition matrix of the system Π, MΠ, is defined as follows:

MΠ = [aij]n×m,

where:

aij =

⎧
⎪⎪⎨

⎪⎪⎩

−c, if rule ri is in neuron σj and it is applied consuming potential c;
w, if rule ri is in neuron σs (s �= j and (s, j, w) ∈ syn)

and it is applied;
0, if rule ri is in neuron σs (s �= j and (s, j, w) /∈ syn, for w ∈ Rc).

388 X. Zeng et al.

The following example illustrates how to get the matrix representation of a WSN
P system.

Example 2. Let us consider a WSN P system Π1 = (σ1, σ1, σ3, syn, out) that
generates the set N of natural numbers excluding 1 and 2, where σ1 = (3, R1),
with R1 = {1.5/1.5 → 1, 1.5/1 → 1}; σ2 = (2, R2), with R2 = {1/1 → 1}; σ3 =
(1.5, R3), with R3 = {1.5/1 → 1}; syn = {(1, 2, 1),(1, 3,−0.5), (2, 1, 1),(2, 3, 1.5),
(3, 1,−1.5),(3, 2,−1)}; out = 3. Π1 is also represented graphically in Figure 2.
Note that in Figure 2, when the weight on a synapse is one, it is omitted.

3

1.5/1.5 1

1.5/1 1

2

1/1 1

1.5

1.5/1 1

1

2

3out 
1

2

3

4

−0.5

−1.5

−1

1.5

Fig. 2. A WSN P system Π1 that generates the set N − {1, 2}

As shown in Figure 2, a total order for the four rules is set. With this order, the
rules can be referred as r1, r2, r3, r4. According to Definition 11, the spiking
transition matrix MΠ1 for the WSN P system Π1 is

MΠ1 =

⎛

⎜
⎜
⎝

−1.5 1 −0.5
−1 1 −0.5
1.5 −1 1.5
−1.5 −1 −1.5

⎞

⎟
⎟
⎠ (8)

The initial configuration is C0 = (3, 2, 1.5). The initial spiking vector is (0, 0, 0, 1)
by Definition 9 and the order of rules.

At step 1, only the output neuron σ3 spikes, while the other two neurons σ1,
σ2 maintain their potentials, because their potentials are greater than their cor-
responding firing thresholds. Neurons σ1 and σ2 receive potentials −1.5 and −1,
respectively. After this step, the configuration vector becomes C1 = (1.5, 1, 0.5).
At step 2, neurons σ1 and σ2 have potentials 1.5 and 1, respectively, which equal
to their corresponding firing thresholds, hence both neurons σ1 and σ2 spike.
Neuron σ1 has two rules r1 : 1.5/1.5 → 1 and r2 : 1.5/1 → 1, and one of them
is non-deterministically chosen. If rule r1 is chosen to be applied, it consumes
potential 1.5 and, at the same time, it receives 1.5 unit of potential from neuron
σ2. Hence, in this step, the net gain of potential in neuron σ1 is 0 and at the
next step neuron σ1 still has potential 1.5. The net gain of potential in neuron

Matrix Representation of Spiking Neural P Systems 389

σ2 is also 0 (one unit of potential is consumed by r3 and one unit of potential
is received from neuron σ1), neuron σ3 forgets its potential 0.5 (because it is
less than the threshold 1.5), but gets another potential 0.5 from the other two
neurons (receives potential −0.5 from σ1 and potential 1 from σ2). At the next
step, the numbers of spikes in neurons σ1, σ2, and σ3 are still 1.5, 1 and 0.5,
respectively.

In order to denote the change of numbers of spikes in each neuron, a transition
net gain vector is defined.

Definition 12 (Transition Net Gain Vector). Let Π be a WSN P system
with m neurons and n rules, and Ck = (p(k)

1 , p
(k)
2 , . . . , p

(k)
m) be the kth config-

uration vector of Π. The transition net gain vector at step k is defined as
NG(k) = Ck+1 − Ck.

In order to compute the transition net gain vector, the Hadamard product is
used.

Definition 13 (Hadamard product). Let A and B be m × n matrices. The
Hadamard Product of A and B is defined by [A)B]ij = AijBij for all 1 ≤ i ≤ m,
1 ≤ j ≤ n.

To avoid confusion, juxtaposition of matrices will imply the “usual” matrix mul-
tiplication, and “)” is used for the Hadamard product.

Lemma 2. Let Π be a WSN P system with m neurons and n rules, d : 1, . . . , n
be a total order for the n rules, MΠ the spiking transition matrix of Π, Ck

the kth configuration vector, s(k) the spiking vector at step k, and forg(k) the
forgetting vector at step k. Then the transition net gain vector at step k is

NG(k) = s(k) · MΠ − forg(k)) Ck. (9)

Proof. Assume that MΠ = [aij]m×n, Ck = (p(k)
1 , p

(k)
2 , . . . , p

(k)
m), s(k) = (r(k)

1 , r
(k)
2 ,

. . . , r
(k)
n), forg(k) = (f (k)

1 , f
(k)
2 , . . . , f

(k)
m), and NG(k) = (g1, g2, . . . , gm). Note

that r
(k)
i is a {0, 1}-value that identifies whether the rule ri would be applied, f

(k)
i

is a {0, 1}-value that identifies whether the neuron σj would forget its potential.
Thus, Σn

i=1 r
(k)
i aij − f

(k)
j p

(k)
j represents the total amount of potential obtained,

consumed and forgotten by neuron σj at the kth step. Therefore, the net gain
of neuron σj is gj = Σn

i=1 r
(k)
i aij − f

(k)
j p

(k)
j , for all j = 1, 2, . . . , m. That is,

NG(k) = s(k) · MΠ − forg(k)) Ck.

Theorem 2. Let Π be a WSN P system with m neurons and n rules, d : 1, . . . , n
be a total order for the n rules, MΠ the spiking transition matrix of Π, Ck the kth
configuration vector, s(k) the spiking vector at step k, and forg(k) the forgetting
vector at step k. Then the configuration Ck+1 of Π can be obtained by

Ck+1 = Ck + s(k) · MΠ − forg(k)) Ck. (10)

390 X. Zeng et al.

Proof. This result follows directly from the preceding lemma.

In Example 2 shown in Figure 2, C0 = (3, 2, 1.5), at step 1 only the rule r4 is
applicable. As the potentials in all the neurons are higher than their thresholds,
no neuron forgets its potential. Therefore, s(0) = (0, 0, 0, 1), forg(0) = (0, 0, 0),
the next configuration can be obtained by

C1 = (3, 2, 1.5) + (0, 0, 0, 1)

⎛

⎜
⎜
⎝

−1.5 1 −0.5
−1 1 −0.5
1.5 −1 1.5
−1.5 −1 −1.5

⎞

⎟
⎟
⎠− (0, 0, 0)) (3, 2, 1.5) (11)

That is, C1 = (2, 1, 0.5).
In the next step, rules r1, r3 can be applied, so the spiking vector is (1, 0, 1, 0).

Because the potential in neuron σ3 is less than its threshold, neuron σ3 forgets
its potential, and the forgetting vector is forg(0) = (0, 0, 1). Hence, the next
configuration is

C2 = (2, 1, 0.5) + (1, 0, 1, 0)

⎛

⎜
⎜
⎝

−1.5 1 −0.5
−1 1 −0.5
1.5 −1 1.5
−1.5 −1 −1.5

⎞

⎟
⎟
⎠− (0, 0, 1)) (2, 1, 0.5) (12)

That is, C2 = (2, 1, 0.5).
This example clearly shows how matrix representation and operation can de-

scribe the computation of the system. Such matrix representation is useful for
the simulation of the system in computer.

5 Conclusions and Remarks

In this work, an algebraic representation for SN P systems is introduced. For
every SN P system without delay, configuration vectors are defined to represent
the number of spikes in each neuron; spiking vectors are used to denote which
rules will be applied; a spiking transition matrix is used to describe the skeleton
of system. Such algebraic representation is also extended for another variant of
SN P systems – WSN P systems.

It is not difficult to see that such matrix representation is also suitable for
other variants of SN P systems, such as asynchronous SN P systems [1] and
SN P systems with exhaustive use of rules [4]. The spiking transition matrix
is related to the structure of system only, so the elements of the matrix are
determined initially. During the computation of a system, it is only needed to
decide the spiking vector by checking the current configuration vector and the
regular expressions of rules. In general, such algebraic representation is easy to
be programmed for computer simulation.

The systems considered in this paper have no delay, which corresponds to the
biological feature that neurons have refractory time. It is open how to represent
the computations of SN P systems with delay by matrices.

Matrix Representation of Spiking Neural P Systems 391

Acknowledgements

The work of X. Zeng and L. Pan was supported by National Natural Science
Foundation of China (61033003 and 30870826) and the Fundamental Research
Funds for the Central Universities (2010ZD001). The work of H. Adorna is sup-
ported by Engineering Research and Development for Technology of the DOST,
Philippines. The work of M.A. Mart́ınez-del-Amor and M.J. Pérez-Jiménez is
supported by the project TIN2009-13192 of the Ministerio de Ciencia e Inno-
vación of Spain, cofinanced by FEDER funds, and the “Proyecto de Excelencia
con Investigador de Reconocida Vaĺıa” of the Junta de Andalućıa under grant
P08-TIC04200.

References

1. Cavaliere, M., Egecioglu, O., Ibarra, O.H., Woodworth, S., Ionescu, M., Păun,
G.: Asynchronous Spiking Neural P Systems. Theoretical Computer Science 410,
2352–2364 (2009)

2. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Searching Previous Configurations
in Membrane Computing. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A.,
Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 301–315.
Springer, Heidelberg (2010)

3. Ionescu, M., Păun, G., Yokomori, T.: Spiking Neural P Systems. Fundamenta In-
formaticae 71(2–3), 279–308 (2006)

4. Ionescu, M., Păun, G., Yokomori, T.: Spiking Neural P Systems with Exhaus-
tive Use of Rules. International Journal of Unconventional Computing 3, 135–154
(2007)

5. Nelson, J.K., McCormac, J.C.: Structural Analysis: Using Classical and Matrix
Methods, 3rd edn. Wiley, Chichester (2003)

6. Păun, G.: Computing with Membranes. Journal of Computer and System Sci-
ences 61(1), 108–143 (2000)

7. Păun, G.: Membrane Computing – An Introduction. Springer, Berlin (2002)
8. Păun, G., Rozenberg, G., Salomaa, A. (eds.): Handbook of Membrane Computing.

Oxford University Press, Oxford (2010)
9. Wang, J., Hoogeboom, H.J., Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking Neu-

ral P Systems with Weights. Neural Computation 22(10), 2615–2646 (2010)
10. The P System Web Page, http://ppage.psystems.eu

http://ppage.psystems.eu

Author Index

Adorna, Henry 377
Agrigoroaiei, Oana 53
Alhazov, Artiom 65, 81, 95

Barbuti, Roberto 103
Besozzi, Daniela 119

Cazzaniga, Paolo 119, 285
Ciencialová, Lucie 348
Ciobanu, Gabriel 7, 53
Ciubotaru, Constantin 65
Colomer, Maria Angels 144
Csuhaj-Varjú, Erzsébet 160

Dinneen, Michael J. 175
Dittrich, Peter 18, 240, 325
Dragomir, Ciprian 226

Freund, Rudolf 198
Frisco, Pierluigi 208

Gheorghe, Marian 3, 226
Grünert, Gerd 240
Gutiérrez-Naranjo, Miguel A. 257

Holzer, Markus 19
Hoogeboom, Hendrik Jan 361

Ipate, Florentin 3, 226
Ivanov, Sergiu 65, 81

Kefalas, Petros 265
Kim, Yun-Bum 175
Kogler, Marian 198
Kutrib, Martin 19

Lav́ın, Santiago 144
Lefticaru, Raluca 226
Leporati, Alberto 338

Maggiolo-Schettini, Andrea 103
Manca, Vincenzo 273

Marchetti, Luca 273
Marco, Ignasi 144
Margalida, Antoni 144
Margenstern, Maurice 37
Mart́ınez-del-Amor, Miguel Ángel 377
Mauri, Giancarlo 119, 285, 338
Milanesi, Luciano 285
Milazzo, Paolo 103
Mosca, Ettore 285

Nicolescu, Radu 175

Obtu�lowicz, Adam 305

Pan, Linqiang 361, 377
Păun, Gheorghe 1
Pérez-Hurtado, Ignacio 144
Pérez-Jiménez, Mario J. 144, 257, 377
Pescini, Dario 119, 285
Peter, Stephan 325
Porreca, Antonio E. 338

Rodŕıguez-Patón, Alfonso 348
Rogozhin, Yurii 65, 81, 95

Sanuy, Delf́ı 144
Serrano, Emmanuel 144
Sośık, Petr 348
Stamatopoulou, Ioanna 265

Tini, Simone 103

Valencia-Cabrera, Luis 144
Vaszil, György 160
Veloz, Tomas 325
Verlan, Sergey 95, 160

Wang, Jun 361

Zandron, Claudio 338
Zeng, Xiangxiang 377

	Title
	Preface
	Table of Contents
	Keynote Presentations
	Membrane Computing at Twelve Years
	References

	Testing Based on P Systems – An Overview
	Introduction
	Grammar Based Methods
	Finite State Machine Based Methods
	Generating Test Sets Using Model Checking
	Conclusions
	References

	Invited Presentations
	Mobility in Computer Science and in Membrane Systems
	Mobility in Process Calculi
	Mobility in Membrane Computing
	Conclusion
	References

	Organization Oriented Chemical Computing
	Cellular Automata and the Quest for Nontrivial Artificial Self-Reproduction
	Introduction
	Cellular Automata
	Von Neumann's Universal Constructor
	The Notion of Nontrivial Self-Reproduction
	Von Neumann's Cellular Automaton

	Trivial versus Nontrivial Self-Reproduction
	Self-Reproducing Loop Cellular Automata
	Reproduction of Arbitrary Configurations
	Concluding Remarks
	References

	An Algorithmic Approach to Tilings of Hyperbolic Spaces: 10 Years Later
	Poincaré's Disc
	The Pentagrid
	Generalizations
	The Heptagrid and the Tilings {p,4} and {p+2,3}, p5
	The Splitting Method and the Tilings {p,q}
	The Dodecagrid and the 120-Grid

	The Tiling Problem
	Cellular Automata in Hyperbolic Spaces
	General Results
	Complexity Results
	Universality Results

	Possible Applications
	What Was Already Performed
	What Could Be Done

	References

	Regular Presentations
	Flattening the Transition P Systems with Dissolution
	Introduction
	P Systems and Multisets

	A Simple Semantics of P Systems
	Flattening Membrane Systems with Dissolution
	Conclusion
	References

	The Family of Languages Generated by Non-cooperative Membrane Systems
	Introduction
	Definitions
	Formal Language Preliminaries
	Transitional P Systems

	Context-Free Grammars and Time-Yield
	The Membrane Family via the Derivation Trees of Context-Free Grammars
	Comparison with Known Families
	Closure Properties
	A Difficult Language
	Conclusions
	References

	Polymorphic P Systems
	Introduction
	What Is Implicitly Required in Most ``Practical" Problems?
	Program is Data. Cell Nucleus

	Definitions
	Results
	Discussion
	References

	A Small Universal Splicing P System
	Introduction
	Definitions
	Splicing Operations
	Splicing (Tissue) P Systems

	Universal Restricted Splicing Tissue P System of Small Size
	Conclusions
	References

	Membrane Systems Working in Generating and Accepting Modes: Expressiveness and Encodings
	Introduction
	Membrane Systems with Promoters
	Definition
	Membrane Systems and Multiset Languages

	Results on Expressive Power and Encodings
	Conclusions
	References

	BioSimWare: A Software for the Modeling, Simulation and Analysis of Biological Systems
	Introduction
	Modeling Biological Systems with BioSimWare
	Compartmentalization
	Species and Reactions

	Stochastic Simulations Algorithms for Single and Multi-volume Systems
	Single Volume Stochastic Simulation Algorithms
	Multi-volume Stochastic Simulation Algorithms

	Tools for the Analysis of Stochastic Simulations
	Parameter Estimation
	Other Analysis Tools

	Applications
	The Schlögl System
	The Brussellator
	Stiff Systems
	Bacterial Chemotaxis
	Simulation of Fredkin Circuits by Chemical Reaction Systems

	Conclusion
	References

	Modeling Population Growth of Pyrenean Chamois (Rupicapra p. pyrenaica) by Using P-Systems
	Introduction
	Pyrenean Chamois
	A P System Based Modeling Framework
	Model
	A Software Tool for Simulation
	Results
	Conclusions
	References

	On Generalized Communicating P Systems with One Symbol
	Introduction
	Preliminaries
	Main Results
	Conclusions
	References

	A Faster P Solution for the Byzantine Agreement Problem
	Introduction
	Preliminaries
	The EIG-Based Byzantine Agreement Algorithm
	P Modules
	Revised Byzantine Agreement Solution
	Rules and Correctness
	Rule Sequence for Ψ_h's Cell ψ_h
	Rule Sequences for Γ_hf
	Rule Sequence for Γ_hf's Cell $\gamma_'hf$
	Rule Sequence for Γ_hf's Cell '$\gamma_'hf$
	Rule Sequence for Γ_hf's Cell γ_hf
	Module Π_h
	Complexity

	Conclusions and Open Problems
	References

	Computationally Complete Spiking Neural P Systems without Delay: Two Types of Neurons Are Enough
	Introduction
	Definitions
	Spiking Neural P Systems

	Results
	Conclusions
	References

	P Systems and Unique-Sum Sets
	Introduction
	Basic Definitions
	P Systems
	Register Machines
	Unique-Sum Sets

	P Systems with Symport/Antiport
	Purely Multi-catalytic P Systems
	Final Remarks
	References

	An Integrated Approach to P Systems Formal Verification
	Introduction
	Basic Definitions and Preliminary Relationships
	P Systems
	Kripke Structures
	Linear Temporal Logic (LTL)
	Transformation-Communication P Systems and Kripke Structure

	Transforming P Systems to NuSMV Specifications
	Transformation-Communication P Systems to NuSMV Specifications
	Asynchronous Transformation-Communication P Systems Mapped to NuSMV Specifications
	P Systems with Electrical Charges Mapped to NuSMV Specifications

	Formal Verification Using NuSMV
	Conclusions
	References

	Using the SRSim Software for Spatial and Rule-Based Modeling of Combinatorially Complex Biochemical Reaction Systems
	Rule-Based Modeling in Space
	Spatial Aspects

	Installing SRSim
	Required Software
	Compiling SRSim

	Using the Software
	An Exemplary System
	Definition of the Rule System
	Molecule and Template Geometry Files
	The LAMMPS Input Script
	The Tool ``createGeo''

	Concluding Remarks
	References

	Depth-First Search with P Systems
	Introduction
	The N-Queens Problem
	Searching Strategies
	Depth-First Search with P Systems
	Example

	A New Solution for the N-Queens Problem
	A Brief Overview of the Computation
	Examples

	Conclusions and Future Work
	References

	Towards Modelling of Reactive, Goal-Oriented and Hybrid Intelligent Agents Using P Systems
	Introduction
	A MAS Scenario Including Goal-Oriented Agents
	Formal Modelling of MAS
	Agents as Cells
	Data Structures and Objects
	Behaviours and Rewrite/Communication Rules
	Priorities of Behaviours
	Communication Links and Bond Making
	Dynamic Structure and Cell Differentiation/Division/Death

	Main Proposal
	Conclusions and Open Issues
	References

	Goldbeter’s Mitotic Oscillator Entirely Modeled by MP Systems
	Introduction
	MP Systems
	The Log-Gain Principle of MP Systems

	Statistical Distribution of Mitotic MP Models
	Model Classification According to Descriptional Parameters
	Analytical Forms of Mitotic MP Grammars

	Conclusions
	References

	Modelling Spatial Heterogeneity and Macromolecular Crowding with Membrane Systems
	Introduction
	Spatial Heterogeneity and Macromolecular Crowding in Living Cells
	Reaction-Diffusion Systems
	Macromolecular Crowding
	Classic Computational Approaches

	Multi-volume Stochastic Simulation Algorithms Based on P Systems
	Validation of the Diffusion Implemented with -DPP
	A Popular Diffusion Equation: The Heat Equation
	Comparison between -DPP and the Heat Equation

	Macromolecular Crowding with S-DPP
	Conclusions
	References

	Randomized Gandy-P\u{a}un-Rozenberg Machines
	Introduction
	Gandy-\u{a}-Rozenberg Machines; Examples
	randomized Gandy-\u{a}-Rozenberg Machines and NP Complete Problems
	Concluding Remarks
	References

	Feasibility of Organizations – A Refinement of Chemical Organization Theory with Application to P Systems
	Introduction
	Chemical Organization Theory
	Preliminaries
	Chemical Organizations

	Feasibility
	Definitions
	Theorem
	Feasibility in P Systems

	Examples
	Conclusions
	References

	P Systems with Elementary Active Membranes: Beyond NP and coNP
	Introduction
	Definitions
	Solving a PP-Complete Problem
	Encoding of Formulae
	Solution to Sqrt-3SAT

	Conclusions
	References

	Polynomial Complexity Classes in Spiking Neural P Systems
	Introduction
	Prerequisites
	Spiking Neural P Systems
	Unary versus Binary Input/Output
	Recognizer SN P Systems
	Descriptional Complexity and Size of SN P Systems

	Families of Recognizer SN P Systems
	Efficiency of Basic Classes of SN P Systems
	Conclusion
	References

	Spiking Neural P Systems with Neuron Division
	Introduction
	SN P Systems with Neuron Division
	Solving SAT
	Conclusions and Remarks
	References

	Matrix Representation of Spiking Neural P Systems
	Introduction
	Spiking Neural P Systems
	Matrix Representation of SN P Systems
	Matrix Representation for WSN P Systems
	Conclusions and Remarks
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

