
Chapter 5
Fractional-Order Chaotic Systems

5.1 Introduction to Chaotic Dynamics

In general, a nonlinear system is a system which is not linear, that is, a system which

does not satisfy the superposition principle. In mathematics, a nonlinear system is

any problem, where the variables to be solved cannot be written as a linear com-

bination of independent components. If the equation contains a nonlinear function

(power or cross product), the system is nonlinear as well. The system is nonlinear

also if it has a nonlinear transfer characteristic as, for example, current-voltage char-

acteristic of a diode. Last but not least, we should mention typical nonlinearity. The

system is nonlinear if there is some typical nonlinearity as, for instance, saturation,

hysteresis, etc. These characteristics are basic properties of the nonlinear systems.

Nonlinear systems are very interesting to engineers, physicists and mathemati-

cians because most real physical systems are inherently nonlinear in nature. Non-

linear equations are difficult to be solved by analytical methods and give rise to

interesting phenomena such as bifurcation and chaos. Even simple nonlinear (or

piecewise linear) dynamical systems can exhibit completely a unpredictable behav-

ior, the so-called deterministic chaos. Chaos theory has been so surprising because

chaos can also be found within trivial systems. At this point we have to say that

the word “chaos” is not uniquely defined. In the most used sense, chaotic dynamics

are dynamics originated by regular dynamical equations with no stochastic coeffi-

cients, but at the same time, with trajectories that are similar or indistinguishable

from some stoachastic processes (Zaslavsky, 2005).

There are a few definitions of the chaotic dynamics, e.g.: (i) a system with at

least one positive Lyapunov exponent is chaotic; (ii) a system with positive entropy

is chaotic; (iii) a system equivalent to hyperbolic or Anosov system is chaotic, etc.

The common part of all definitions is the existence of local instability and diver-

gence of initially close trajectories. At the same time, all definitions are not exactly

equivalent.

In the next sections we focus on the well-known nonlinear systems, which exhibit

chaos and hyperchaos (e.g., (Petráš, 2009b; Petráš et al., 2009), etc.).
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5.2 Concept of Chua’s Circuit

5.2.1 Classical Chua’s Oscillator

Classical Chua’s circuit, which is shown in Fig. 5.1, is a simple electronic circuit that

exhibits nonlinear dynamical phenomena such as bifurcation and chaos. In fact, in

order to exhibit chaos, an autonomous electronic circuit must satisfy some essential

criteria which are necessary (not sufficient) conditions for the appearance of chaos

(Kennedy, 1993a): the circuit must contain at least three energy-storage elements, at

least one nonlinear element and at least one locally active resistor. The Chua’s diode,

being a nonlinear locally active resistor, allows Chua’s circuit to satisfy the last

two conditions. Chua’s circuit satisfies all the above-mentioned criteria. The active

resistor supplies energy to separate trajectories, the nonlinearity provides folding,

and the three-dimensional state space permits persistent stretching and folding in a

bounded region of the state space.

Fig. 5.1 Chua’s circuit.

The simplest and most widely studied nonlinear Chua’s circuit consists of five

elements: two capacitors C1 and C2, an inductor L, a resistor R and a nonlinear

resistor (NR), known as Chua’s diode.

By applying Kirchhoff’s circuit laws, such circuit, generally known as Chua’s

oscillator, can be described by the following equations (Matsumoto, 1984):

dV1(t)
dt

=
1

C1
[G(V2(t)−V1(t))− f (V1(t))] ,

dV2(t)
dt

=
1

C2
[G(V1(t)−V2(t))+ IL(t)] , (5.1)

dIL(t)
dt

=
1

L
[−V2(t)−RLIL(t)] ,
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where conductance G = 1/R, IL(t) is the current through the inductance L, V1(t)
and V2(t) are the voltages over the capacitors C1 and C2, respectively, and f (V1(t))
is the piecewise-linear v− i characteristic of NR - Chua’s diode, depicted in Fig. 5.2,

which can be described by the following state equations:

INR(t) = f (V1(t)) = GbV1(t)+
1

2
(Ga −Gb)(|V1(t)+Bp|− |V1(t)−Bp|), (5.2)

with Bp being the breakpoint voltage of a diode, and Ga < 0 and Gb < 0 being some

appropriate constants (slope of the piecewise-linear resistance).

Fig. 5.2 Typical three-segment piecewise-linear v− i characteristic of the nonlinear resistor.

By defining the rescaling

x = V1/Bp, y = V2/Bp, z = IL/BpG,

α = C2/C1, β = C2/(LG2), γ = C2R/(LG), (5.3)

m1 = Gb/G, m0 = Ga/G, τ = t|G/C2|,

we can transform (5.1) into the following corresponding dimensionless form of

Chua’s circuit (Chua et al., 1993; Deregel, 1993):

dx(t)
dt

= α (y(t)− x(t)− f (x)) ,

dy(t)
dt

= x(t)− y(t)+ z(t), (5.4)
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dz(t)
dt

= −βy(t)− γz(t),

where

f (x) = m1x(t)+
1

2
(m0 −m1)× (|x(t)+1|− |x(t)−1|) (5.5)

and τ in transformation equations (5.3) is the dimensionless time.

Because of the piecewise-linear nature of NR, the vector field of Chua’s circuit

can be decomposed into three distinct affine regions. It depends on the values of

±Bp. We call these regions the outer D−1, (V1 < −Bp), the inner (middle) region

D0, (|V1| < Bp) and the outer D1, (V1 > Bp), respectively. The global dynamics of

Chua’s circuit may be determined by piecing together the three-dimensional vector

fields of the regions D−1, D0, and D1, then we obtain a qualitative description of the

whole circuit.

The equilibrium points of Chua’s oscillator (5.1) are defined by

0 =
1

C1
[G(V2(t)−V1(t))− INR(t))] ,

0 =
1

C2
[G(V1(t)−V2(t))+ IL(t)] , (5.6)

0 =
1

L
[−V2(t)−RLIL(t)] ,

where INR(t) is given by relation (5.2). The origin is obviously an equilibrium point.

In D0 (inner) region, where |V1| ≤ Bp, the state equations of Chua’s oscillator are

linear. The Jacobian matrix has the following form:

JGa =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−(G+Ga)
C1

G
C1

0

G
C2

−G
C2

1

C2

0 −1

L
−RL

L

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (5.7)

The characteristic equation of Chua’s system in the inner region is

det|λ I−JGa | = λ 3 +
(

G+Ga

C1
+

G
C2

+
RL

L

)
λ 2

+
(

GGa

C1C2
+

G+Ga

C1L
RL +

GRL

C2L
+

1

C2L

)
λ

+
RLGGa +(G+Ga)

C1C2L
= 0. (5.8)

In D−1 and D1 (outer) regions, where |V1| > Bp, the state equations of Chua’s oscil-

lator are linear. The Jacobian matrix has the following form:
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JGb =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−(G+Gb)
C1

G
C1

0

G
C2

−G
C2

1

C2

0 −1

L
−RL

L

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (5.9)

The characteristic equation of Chua’s system in the outer region is

det|λ I−JGb | = λ 3 +
(

G+Gb

C1
+

G
C2

+
RL

L

)
λ 2

+
(

GGb

C1C2
+

G+Gb

C1L
RL +

GRL

C2L
+

1

C2L

)
λ

+
RLGGb +(G+Gb)

C1C2L
= 0. (5.10)

The dynamic behavior of any type of Chua’s circuit is determined by the six

eigenvalues (Chua et al., 1986). They can be obtained by solving the characteristic

equations (5.8) and (5.10) and depend on the value of electrical components.

When G > |Ga| or G < |Gb|, the circuit has a unique equilibrium point at the

origin and two virtual equilibria E− and E+ (lie outside regions D−1 and D1). Oth-

erwise it has three equilibrium points ar E−, 0, and E+. The equilibrium point E− in

the D−1 region has three eigenvalues. It usually consists of a real (λ1) and a pair of

complex conjugate values (λ2,3). We assume that eigenvalue λ1 is stable and eigen-

values λ2,3 are unstable. With symmetry, it is the same to equilibrium point E+.

For more detailed description of stability analysis of equilibrium points, the dy-

namics of the outer and inner regions, we refer the reader to (Kennedy, 1993b; Pivka

et al., 1994).

Given the techniques of fractional calculus, there are a number of ways in which

the order of system could be amended. In the next parts we will show several of

them.

5.2.2 Fractional-Order Chua’s Oscillator

As we already mentioned in Chapter 2, there are many electric and magnetic phe-

nomena where the fractional calculus can be used. In this section we consider two

of them — models of real capacitor and real inductor.

The circuit behavior can be described by three fractional differential equations

with various orders. Applying Kirchhoff’s laws for two current nodes and one volt-

age loop and relation (2.75), and (2.78) into circuit depicted in Fig. 5.1, we obtain

the following mathematical model of the circuit for state variables V1(t), V2(t) and

I(t):
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C1 0Dq1
t V1(t)+ INR(t) =

V2(t)−V1(t)
R2

,

C2 0Dq2
t V2(t)− I(t) =

V1(t)−V2(t)
R2

,

L1 0Dq3
t I(t)+V2(t)+RLI(t) = 0.

(5.11)

Equations (5.11) can be rewritten into the following form (Petráš, 2008):

0Dq1
t V1(t) =

1

C1R2
[V2(t)−V1(t)]− f (V1(t))

C1
,

0Dq2
t V2(t) =

1

C2R2
[V1(t)−V2(t)]+

I(t)
C2

, (5.12)

0Dq3
t I(t) =

1

L1
[−V2(t)−RLI(t)],

where V1 is the voltage across the capacitor C1, V2 is the voltage across the capacitor

C2, I is the current through the inductance L1, q1 is the real order of the capacitor

C1, q2 is the real order of the capacitor C2, q3 is the real order of the inductor L1,

f (V1) is the piecewise-linear v− i characteristic of nonlinear Chua’s diode, which

can be described by (5.2).

By using the transformation (5.3), we can rewrite Eqs. (5.12) into the following

dimensionless form (Petráš, 2008):

0Dq1
t x(t) = α (y(t)− x(t)− f (x)) ,

0Dq2
t y(t) = x(t)− y(t)+ z(t), (5.13)

0Dq3
t z(t) = −βy(t)− γz(t),

where f (x) is the piecewise-linear nonlinearity (5.5).

5.2.2.1 Experimental Measurements

Classical Chua’s oscillator can also be realized by electrical elements according to

the scheme shown in Fig. 5.3, which is a very simple electronic circuit that exhibits

nonlinear dynamical phenomena such as bifurcation and chaos (Kennedy, 1992).

Chua’s diode (5.2) – nonlinear resistor – was realized by operating amplifier LM 358

and resistors R1, R7, and R8 (R7 = R8) as negative impedance converter (Bartissol

and Chua, 1988).

For experimental verification of Chua’s system depicted in Fig. 5.3 and described

by Eqs. (5.12) and (5.2), the following values of electrical elements were chosen

(Caponetto et al., 2010; Petráš, 2008):
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Fig. 5.3 Practical realization of Chua’s circuit.

C1 = 4.71nF, C2 = 48nF, L1 = 4.64mH, (5.14)

RL = 15.8Ω , R1 = 897Ω , R2 = 998Ω , R7 = R8 = 393Ω .

We use the metalized paper capacitors C1 and C2 with the real order q1 = q2 = 0.98

and we assume the real order of inductor q3 = 0.94 (see e.g. (Schafer and Kruger,

2008; Westerlund and Ekstam, 1994; Westerlund, 2002)). The total order of the

system is q̄ = 2.90.

The measured breakpoints of the non-linear characteristic (5.2) are:

−Bp = (−8.79V, 7.7mA), Bp = (9.12V, −7.9mA).

Assuming the three-segment piecewise-linear voltage-current transfer charac-

teristic of negative impedance converter (5.2), we have the slope Ga = −1/R1 =
−1.1148 mA/V for R7 = R8 and the slope Gb was calculated using the breakpoints

Bp and it has the value Gb = −0.8710 mA/V .

The resistors R3, R4, R5, R6, and the diodes D1 and D2 generate the positive and

negative halves of the nonlinearity.

In Fig. 5.4 is depicted the photo of the digital oscilloscope screen (Tektronix

TDS1002, 60 Mhz). It is a real measurement of voltages V1−V2 for circuit presented

in Fig. 5.3 with the parameters of electrical components (5.14). The result shown in

Fig. 5.4 is the double-scroll attractor of fractional-order Chua’s system described by

Eqs. (5.12) and (5.2). We can observe an amplification of the system.

An alternative scheme of the practical implementation of the Chua’s oscillator

with two operating amplifiers for a different kind of nonlinearity with saturation can

be found, for instance, in (Chua et al., 1993; Kennedy, 1993b) or for an IC chip

implementation we refer to (Cruz, 1993).
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Fig. 5.4 Photo of oscilloscope screen: Strange attractor of the Chua’s system (5.12).

5.2.2.2 Simulation Results

For simulation purposes we will use a numerical solution of Chua’s equations (5.13)

obtained by using the relationship (2.53) derived from the Grünwald-Letnikov defi-

nition (2.15), which leads to equations in the form:

x(tk) = (α(y(tk−1)− x(tk−1)− f (x(tk−1))))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (x(tk)− y(tk−1)+ z(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.15)

z(tk) = (−βy(tk)− γz(tk−1))hq3 −
k

∑
j=v

c(q3)
j z(tk− j),

where

f (x(tk−1)) = m1x(tk−1)+
1

2
(m0 −m1)× (|x(tk−1)+1|− |x(tk−1)−1|) (5.16)

and where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i,
are calculated according to relation (2.54).

Similar and comparable results we have measured can be obtained by simulation

using Eqs. (5.15) for time step h = 0.001 and the short memory principle with length

Lm = 10 (10000 values and coefficients from history). Figure 5.5 shows the double-
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Fig. 5.5 Strange attractor of the fractional-order Chua’s system (5.13) with total order q̄ = 2.90 for
the parameters: α = 10.1911, β = 10.3035, γ = 0.1631, q1 = q2 = 0.98, q3 = 0.94, m0 =−1.1126,
m1 = −0.8692, and simulation time Tsim = 100s.

Fig. 5.6 Strange attractor from the fractional-order Chua’s system (5.13) with total order q̄ = 2.84
for the parameters: α = 10.725, β = 10.593, γ = 0.268, q1 = 0.93, q2 = 0.99, q3 = 0.92, m0 =
−1.1726, m1 = −0.7872 and simulation time Tsim = 100s.
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scroll attractor of Chua’s circuit (5.13) computed numerically for initial conditions

(x(0),y(0),z(0)) = (0.6,0.1,−0.6) and for the value of electrical parts (5.14) by

using a short memory principle (Lm = 10).

In Fig. 5.6 is depicted the result from (Zhu et al., 2009), where simulation was

performed without using the short memory principle (v = 1) for time step h = 0.001

and also for a different set of parameters and initial conditions (x(0),y(0),z(0)) =

(0.2,−0.1,0.1).
For simulation we are able to use the Matlab/Simulink approach as well. The

state-space expression of the fractional-order Chua’s equations (5.13) with parame-

ters α , β , and γ is given by using the integration operation and the properties (2.50)

and (2.51), and has the following form:

x(t) = 0D1−q1
t

(∫ t

0
[α(y(t)− x(t)− f (x))]dt

)
,

y(t) = 0D1−q2
t

(∫ t

0
[x(t)− y(t)+ z(t)]dt

)
, (5.17)

z(t) = 0D1−q3
t

(∫ t

0
[−βy(t)− γz(t)]dt

)
.

Fig. 5.7 Matlab/Simulink block diagram (model) for Chua’s system (5.13).
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The system model developed from the state equations (5.17) for system parame-

ters α , β , and γ by using the Matlab/Simulink environment is depicted in Fig. 5.7.

For simulation of the fractional derivative (integral) we used a Simulink block nid
created by Duarte Valerio (Valerio, 2005) with the combination of the classical in-

tegrator by using the property of commutation of two operators.

In Fig. 5.8 is depicted the simulation results obtained by numerical simulation

in the Matlab/Simulink for the following values of the parameters: A ≡ α = 10.19,

B ≡ β = 10.30, C ≡ γ = 0.16, q1 = q2 = 0.98, and q3 = 0.94, for the initial con-

ditions: (x(0),y(0),z(0)) = (0.6,0.1,−0.6) and for the slopes of Chua’s diode (5.5)

characteristic: m0 = −1.11 and m1 = −0.86.

As we can observe in Fig. 5.8, the obtained simulation results are comparable to

the results depicted in Fig. 5.5.

Fig. 5.8 Simulation result (x vs. y) of Chua’s system (5.13).

5.2.3 Fractional-Order Chua-Podlubny’s Oscillator

This system uses an approach where the order of any of three constitutive equa-

tions (5.4) can be changed so that the total order gives the desired value. In Chua-

Podlubny’s case, in equation one the first differentiation is replaced by a fractional

one. The final dimensionless equations of the system are (Podlubny, 1999):
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0Dq
t x(t) = α 0Dq−1

t (y(t)− x(t))− 2α
7

(
4x(t)− x3(t)

)
,

dy(t)
dt

= x(t)− y(t)+ z(t), (5.18)

dz(t)
dt

= −100

7
y(t) = −βy(t),

where α = C2/C1 and β = C2R2
2/L1, and fractional order q < 1, q ∈ R.

5.2.4 Fractional-Order Chua-Hartley’s Oscillator

The Chua-Hartley’s system is different from the usual Chua’s system (5.4) in that

the piecewise-linear nonlinearity is replaced by an appropriate cubic nonlinearity

which yields very similar behavior. Derivatives on the left side of the differential

equations are replaced by the fractional derivatives as follows (Hartley et al., 1995):

0Dq
t x(t) = α

(
y(t)+

x(t)−2x3(t)
7

)
,

0Dq
t y(t) = x(t)− y(t)+ z(t), (5.19)

0Dq
t z(t) = −βy(t) = −100

7
y(t),

where q ≤ 1, q ∈ R is the fractional order of derivatives.

5.2.5 Fractional-Order Memristor-Based Chua’s Oscillator

Since the memristor was postulated by L. O. Chua in 1971 and discovered by

R. Williams et al. (HP laboratory) in 2008 (realized as a Pt − TiO2 −Pt device),

it becomes the fourth circuit element. This fact allows us to use the memristor as a

nonlinear element in circuits which exhibit chaos. In the case of Chua’s circuit, the

nonlinear resistor NR is replaced by an active memristor M as shown in Fig. 5.9.

The memristor in Fig. 5.9 is a flux-controlled memristor whose characteristic is

given by literature (Chua, 1971):

IM(t) = W (φ(t))V1(t), (5.20)

where W (φ(t)) is the incremental memductance defined as (Chua, 1971)

W (φ) =
dq(φ)

dφ
. (5.21)
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Fig. 5.9 Chua’s circuit with active memristor.

Taking this into account we can write the equations for the memristor-based chaotic

circuit depicted in Fig. 5.9 as follows:

dV1(t)
dt

=
1

C1
[G(V2(t)−V1(t))− IM(t))] ,

dV2(t)
dt

=
1

C2
[G(V1(t)−V2(t))+ IL(t)] , (5.22)

dIL(t)
dt

=
1

L
[−V2(t)−RLIL(t)] ,

dφ(t)
dt

= V1(t),

where G = 1/R, and IM(t) is defined by Eq. (5.20).

For the flux-controlled memristor a monotone-increasing piecewise-linear char-

acteristic (Itoh and Chua, 2008, 2009) was assumed. The memristor constitutive

relation is shown in Fig. 5.10 and can be expressed as

q(φ) = bφ +0.5(a−b)× (|φ +1|− |φ −1|), (5.23)

where a,b > 0. The memductance function obtained from the q(φ) function is:

W (φ) =
dq(φ)

dφ

{
a, |φ | < 1,

b, |φ | > 1.
(5.24)

Several modifications of the memristor-based Chua’s circuit, where chaos was

observed, were described and analyzed in (Itoh and Chua, 2008). For a practical

implementation of the memristor it is possible to use operating amplifiers (Zhong,

1994) and then a smooth cubic nonlinearity could be used for replacing a q− φ
function depicted in Fig. 5.10.

The dynamics of the Chua’s circuit with a passive memristor (flux-controlled

memristor and negative conductance) depicted in Fig. 5.11 are given by the follow-

ing set of differential equations:
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Fig. 5.10 The constitutive relation of a piecewise-linear flux-controlled memristor.

Fig. 5.11 Chua’s circuit with flux-controlled memristor and negative conductance.

dV1(t)
dt

=
1

C1

[
(V2(t)−V1(t))

R
+GV1(t)−W (φ)V1(t))

]
,

dV2(t)
dt

=
1

C2

[
(V1(t)−V2(t))

R
+ IL(t)

]
, (5.25)

dIL(t)
dt

=
1

L
[−V2(t)−RLIL(t)] ,

dφ(t)
dt

= V1(t),
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where functions q(φ) and W (φ) are given in (5.23) and (5.24), respectively.

If we set

x = V1, y = V2, z = IL, w = φ , C2 = 1, R = 1,
α = 1/C1, β = 1/L, γ = RL/L, ζ = G,

(5.26)

then Eqs. (5.25) can be transformed into the dimensionless form (Itoh and Chua,

2008):

dx(t)
dt

= α (y(t)− x(t)+ζ x(t)−W (w)x(t)) ,

dy(t)
dt

= x(t)− y(t)+ z(t),

dz(t)
dt

= −βy(t)− γz(t),

dw(t)
dt

= x(t),

(5.27)

where piecewise-linear function W (w) is given below:

W (w) =
{

a : |w| < 1,
b : |w| > 1.

(5.28)

The equilibrium points of the system (5.27) are given by setting the left side of

equations to 0 except the last one. We set w as constant, which corresponds to the

w –axis (Itoh and Chua, 2008). The Jacobian matrix at this equilibrium state is (Itoh

and Chua, 2008):

JW =

⎡⎢⎢⎢⎢⎢⎣
α(−1+ζ −W (w)) α 0 0

1 −1 1 0

0 −β −γ 0

1 0 0 0

⎤⎥⎥⎥⎥⎥⎦ . (5.29)

For the following parameter set (Itoh and Chua, 2008): α = 10, β = 13, γ =
0.35, ζ = 1.5, a = 0.3, and b = 0.8, four eigenvalues λi (i = 1,2,3,4) for |w| < 1

can be written as

λ1,2 ≈−1.31103±2.74058 j, λ3 ≈ 3.27207, λ4 = 0

and four eigenvalues for |w| > 1 can be written as

λ1,2 ≈ 0.07865±2.84655 j, λ3 ≈−4.50731, λ4 = 0.

They are characterized by an unstable saddle-focus point and numerical simula-

tions for the above paremeters show that the system (5.27) has chaotic behavior.

In Fig. 5.12 and Fig. 5.13 are depicted chaotic attractors in 3D state space for

Tsim = 200s.
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Fig. 5.12 Strange attractor of the memristor-based Chua’s system (5.27) in w− x− y state space,
for parameters α = 10, β = 13, γ = 0.35, ζ = 1.5, a = 0.3, and b = 0.8, initial conditions:
x(0) = 0.8, y(0) = 0.05, z(0) = 0.007, w(0) = 0.6 and simulation time Tsim = 200s.

Fig. 5.13 Strange attractor of the memristor-based Chua’s system (5.27) in x− y− z state space,
for parameters α = 10, β = 13, γ = 0.35, ζ = 1.5, a = 0.3, and b = 0.8, initial conditions:
x(0) = 0.8, y(0) = 0.05, z(0) = 0.007, w(0) = 0.6 and simulation time Tsim = 200s.
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In Fig.5.14 and Fig. 5.15 are depicted the attractors of the memristor-based

Chua’s system (5.27) for parameters α = 10, β = 13, γ = 0.35, ζ = 1.5, a = 0.3,

b = 0.8, initial conditions: x(0) = 0.8, y(0) = 0.05, z(0) = 0.007, w(0) = 0.6 and

simulation time Tsim = 200s, projected onto y−w, and z−w planes, respectively.

If we consider a fractional-order model for each electrical element in the circuit

depicted in Fig. 5.11, we can write a more general mathematical model for this

circuit. As already mentioned, real capacitor and real inductor are “fractional” and

for real memristor we postulated a fractional-order model as well (dα φ(t)/dtα =
V (t)). By using a technique of fractional calculus we obtain the following equations:

0Dq1
t x(t) = α (y(t)− x(t)+ζ x(t)−W (w)x(t)) ,

0Dq2
t y(t) = x(t)− y(t)+ z(t),

0Dq3
t z(t) = −βy(t)− γz(t),

0Dq4
t w(t) = x(t),

(5.30)

where function W (w) is given in (5.28) and where q1, q2, q3, and q4 are fractional

orders of real electrical elements (memristive systems): capacitor C1, capacitor C2,

inductor L, and memristor M, respectively.

The stability of the new fractional-order memristor-based Chua’s system can be

investigated by using Theorem 4.6. For the fractional incommensurate-order system

(5.30), we can rewrite real order as qi = vi/ui, vi,ui ∈ Z+ for i = 1,2,3,4 and if we

set γ = 1/m, where m is the LCM of the denominators, the characteristic equation

of the system (5.30) for the Jacobian matrix JW is:

det(diag([λ mq1 λ mq2 λ mq3 λ mq4 ])−JW ) = 0

and then the stability condition is defined as follows:

|arg(λi)| > γ
π
2

for all eigenvalues λi.

In the case of piecewise-nonlinearity depicted in Fig. 5.10, we should investigate

the characteristic equation for the linear part with slope a and for the linear part with

slope b. If |w| < 1 then we are dealing with slope a and the Jacobian matrix is

JWa =

⎡⎢⎢⎢⎢⎢⎣
α(−1+ζ −a) α 0 0

1 −1 1 0

0 −β −γ 0

1 0 0 0

⎤⎥⎥⎥⎥⎥⎦ (5.31)

and if |w| > 1 then we are dealing with slope b and the Jacobian matrix is
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Fig. 5.14 Strange attractor of the memristor-based Chua’s system projected onto y−w plane.

Fig. 5.15 Strange attractor of the memristor-based Chua’s system projected onto z−w plane.
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JWb =

⎡⎢⎢⎢⎢⎢⎣
α(−1+ζ −b) α 0 0

1 −1 1 0

0 −β −γ 0

1 0 0 0

⎤⎥⎥⎥⎥⎥⎦ . (5.32)

The characteristic equation for the linear part with the slope a with matrix (5.31)

is

det(diag([λ mq1 λ mq2 λ mq3 λ mq4 ])−JWa) = 0

and for linear part with the slope b and matrix (5.32) it has the form

det(diag([λ mq1 λ mq2 λ mq3 λ mq4 ])−JWb) = 0.

When we consider a simple case where the fractional-order memristor-based

Chua’s system has commensurate order, which means q1 = q2 = q3 = q4 ≡ q, the

stability can be investigated according to Theorem 4.5, where the condition is:

|arg(eig(JW ))| = |arg(λi)| > q
π
2

for all eigenvalues λi.

As in the previous case, stability should be investigated for both piecewise-linear

parts of memristor characteristic shown in Fig. 5.10. In this case it means that we

should find the angle of all eigenvalues for both Jacobian matrices JWa and JWb
respectively. A necessary stability condition for fractional-order systems (5.30) to

remain chaotic is keeping at least one eigenvalue λ in the unstable region.

Because the frequency approximation techniques (Carlson and Halijak, 1963;

Oustaloup et al., 2000) are unreliable in recognising chaos in fractional-order non-

linear systems (Tavazoei and Haeri, 2007a), for simulation purposes we use a nu-

merical solution of the memristor-based Chua’s equations (5.30) obtained by the

method descibed in (Petráš, 2009a, 2010). It is a time domain method derived by

using the relationship (2.53), which leads to equations in the following form:

x(tk) = (α(y(tk−1)− x(tk−1)+ζ x(tk−1)−W (w(tk−1))x(tk−1)))hq1−

−
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (x(tk)− y(tk−1)+ z(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j),

z(tk) = (−βy(tk)− γz(tk−1))hq3 −
k

∑
j=v

c(q3)
j z(tk− j),

w(tk) = x(tk)hq4 −
k

∑
j=v

c(q4)
j w(tk− j),

(5.33)



122 5 Fractional-Order Chaotic Systems

where

W (w(tk−1)) = a for |w(tk−1)| < 1,

W (w(tk−1)) = b for |w(tk−1)| > 1,
(5.34)

and where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0), w(0)) is the start point (initial conditions).

The binomial coefficients c(qi)
j , ∀i are calculated according to relation (2.54).

If we consider the parameter set α = 10, β = 13, γ = 0.35, ζ = 1.5, a = 0.3,

and b = 0.8, according to Definition 4.5, for these parameters we are able to calcu-

late a minimal commensurate order for which the system (5.30) remains chaotic. In

this case it is q > 0.98.

Let us consider the paremeter set α = 10, β = 13, γ = 0.1, ζ = 1.5, a = 0.3,

and b = 0.8. For these parameters a minimal commensurate order is q > 0.95. We

performed a simulation for the above parameters and commensurate order q = 0.97

(q1 = q2 = q3 = q4 = 0.97). The total order of the system is 3.88.

In Fig. 5.16 and Fig. 5.17 are depicted chaotic attractors in 3D state space for

Tsim = 200s. Both simulations were performed without using the short memory prin-

ciple (v = 1) for time step h = 0.005 with the initial conditions: x(0) = 0.8, y(0) =
0.05, z(0) = 0.007, w(0) = 0.6.

In Fig.5.18 and Fig. 5.19 are depicted the attractors of the memristor-based

Chua’s system (5.30) for parameters (5.35), a = 0.3, b = 0.8, orders q1 = q2 = q3 =
q4 = 0.97, initial conditions: x(0) = 0.8, y(0) = 0.05, z(0) = 0.007, w(0) = 0.6 and

simulation time Tsim = 100s, projected onto y−w, and z−w planes, respectively.

When we consider real orders of capacitors models (Westerlund and Ekstam,

1994): q1 = q2 = 0.98, real order of inductor model (Schafer and Kruger, 2008):

q3 = 0.99, and we assume a real order of memristor model: q4 = 0.97, for the pa-

rameters:

α = 10, β = 13, γ = 0.1, ζ = 1.5, (5.35)

a = 0.3, b = 0.8, the initial conditions: x(0)= 0.8, y(0)= 0.05, z(0)= 0.007, w(0)=
0.6, simulation time Tsim = 100s, and time step h = 0.005, we get the chaotic double-

scroll attractor as well for the total system order 3.92.

In Fig. 5.20 and Fig. 5.21 are depicted chaotic attractors in 3D state space for

Tsim = 100s. The simulations were performed without using the short memory prin-

ciple (v = 1) for time step h = 0.005 with the initial conditions: x(0) = 0.8, y(0) =
0.05, z(0) = 0.007, w(0) = 0.6. In this case, we just estimated the real order of the

memristor. Simulations show double-scroll atractors and we can observe a chaotic

behavior.

The characteristic equation of the system (5.30) with parameters (5.35), orders

q1 = q2 = 0.98 = 98/100, q3 = 0.99 = 99/100, q4 = 0.97 = 97/100, for Jacobian

(5.31) is

λ 392 −λ 294 +
λ 293

10
−12λ 196 +

129λ 195

10
− 136λ 97

5
= 0

and for Jacobian (5.32) it has form
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Fig. 5.16 Strange attractor of the memristor-based Chua’s system (5.30) in w− x− y state space,
for parameters α = 10, β = 13, γ = 0.1, ζ = 1.5, a = 0.3, b = 0.8, orders q1 = q2 = q3 =
q4 = 0.97, initial conditions: x(0) = 0.8, y(0) = 0.05, z(0) = 0.007, w(0) = 0.6 and simulation
time Tsim = 200s.

Fig. 5.17 Strange attractor of the memristor-based Chua’s system (5.30) in x− y− z state space,
for parameters α = 10, β = 13, γ = 0.1, ζ = 1.5, a = 0.3, b = 0.8, orders q1 = q2 = q3 =
q4 = 0.97, initial conditions: x(0) = 0.8, y(0) = 0.05, z(0) = 0.007, w(0) = 0.6 and simulation
time Tsim = 200s.
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Fig. 5.18 Strange attractor of the memristor-based Chua’s system projected onto y−w plane.

Fig. 5.19 Strange attractor of the memristor-based Chua’s system projected onto z−w plane.
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Fig. 5.20 Strange attractor of the memristor-based Chua’s system (5.30) in w− x− y state space,
for parameters α = 10, β = 13, γ = 0.1, ζ = 1.5, a = 0.3, b = 0.8, orders q1 = q2 = 0.98,
q3 = 0.99, q4 = 0.97, initial conditions: x(0) = 0.8, y(0) = 0.05, z(0) = 0.007, w(0) = 0.6 and
simulation time Tsim = 100s.

Fig. 5.21 Strange attractor of the memristor-based Chua’s system (5.30) in x− y− z state space,
for parameters α = 10, β = 13, γ = 0.1, ζ = 1.5, a = 0.3, b = 0.8, orders q1 = q2 = 0.98,
q3 = 0.99, q4 = 0.97, initial conditions: x(0) = 0.8, y(0) = 0.05, z(0) = 0.007, w(0) = 0.6 and
simulation time Tsim = 100s.
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λ 392 +4λ 294 +
λ 293

10
−7λ 196 +

67λ 195

5
+

383λ 97

10
= 0.

Both above characteristic equations are polynomials of very high order and it is

difficult to find the roots of such polynomials. For the system to remain chaotic, there

should be at least one root λ in the unstable region, which means that |arg(λ )| <
π/200.

Because of roots calculation problem, we can predict one unstable eigevalue and

assume that the stability condition for chaos is satisfied. It can be indirectly proved

via the double-scroll attractor, which can be observed in Fig. 5.20.

In Fig. 5.22 and Fig. 5.23 are depicted the attractors of the memristor-based

Chua’s system (5.30) for parameters (5.35), a = 0.3, b = 0.8, orders q1 = q2 =
0.98, q3 = 0.99, q4 = 0.97, initial conditions: x(0) = 0.8, y(0) = 0.05, z(0) =
0.007, w(0) = 0.6 and simulation time Tsim = 100s, projected onto y−w, and z−w
planes, respectively. These strange attractors also indirectly confirm that the system

is chaotic.

Fig. 5.22 Strange attractor of the memristor-based Chua’s system projected onto y−w plane.
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Fig. 5.23 Strange attractor of the memristor-based Chua’s system projected onto z−w plane.

5.3 Fractional-Order Van der Pol Oscillator

The Van der Pol oscillator (VPO) represents a nonlinear system with an interesting

behavior that exhibits naturally in several applications. It has been used for study

and design of many models including biological phenomena, such as the heartbeat,

neurons, acoustic models, radiation of mobile phones, and as a model of electrical

oscillators (implemented with a tunnel diode, memristor or operating amplifier).

The VPO model was used by Van der Pol in 1920 to study oscillations in vacuum

tube circuits. In the standard form, it is given by a nonlinear differential equation of

type:

y′′(t)+ ε(y(t)2 −1)y
′
(t)+ y(t) = 0, (5.36)

where ε is the control parameter. Equation (5.36) can be rewritten into its state-space

representation as follows:

dy1

dt
= y2(t),

dy2

dt
= −y1(t)− ε(y2

1(t)−1)y2(t),
(5.37)

with an equilibrium point in origin. The Jacobian matrix of the system (5.37) is
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J =

[
0 1

−1−2εy∗1y∗2 −ε(y∗1
2 −1)

]
(5.38)

for the equilibrium point E∗ = (y∗1,y
∗
2).

A modified version of the classical VPO was proposed by fractional derivative of

order q in a state space formulation of Eq. (5.37). It has the following form (Chen

and Chen, 2008; Barbosa et al., 2007):

0Dq
t y1(t) = y2(t),

dy2

dt
= −y1(t)− ε(y2

1(t)−1)y2(t), (5.39)

where the order is 0 < q < 1 and ε > 0. The resulting fractional-order Van der Pol

oscillator (FrVPO) reduces to the classical VPO when q = 1. The total system order

is changed from the integer value 2 to the fractional value 1+q < 2. If we consider

q = 0.9 = 9/10 and ε = 1 then the characteristic equation of the system (5.39) for

γ = 1/10 is det(λ γ I−J) = 0, that is,

λ 19 +λ 9 +1 = 0.

All equation roots λi satisfy the condition |arg(λi)|> π/20 for (i = 1,2, . . . ,19) and

therefore the system is stable. Detailed analysis of the fractional-order Van der Pol

system for various system orders has been made in (Barbosa et al., 2007; Ge and

Hsu, 2007). This analysis may be useful for a better understanding and control of

such system.

In Fig. 5.24 is depicted the limit cycle in the phase plane of the fractional-order

Van der Pol oscillator (5.39) for simulation time Tsim = 30s and time step h = 0.005.

Let us consider the modified version of the FrVPO in the following form:

0Dq1
t y1(t) = y2(t),

0Dq2
t y2(t) = −y1(t)− ε(y2

1(t)−1)y2(t),
(5.40)

where q1 and q2 are orders (0 < q1,2 < 2) and ε > 0. If we consider q1 = q2 ≡ q in

(5.40), we obtain a commensurate-order system. The characteristic equation of the

commensurate-order system (5.40) is det(λ qI−J) = 0 and the stability condition is

|arg(eig(J))| > qπ/2.

For simulation purpose, we derived a numerical solution of the FrVPO, obtained

by using the relations (2.53) and (2.54), which has the following form:

y1(tk) = y2(tk−1)hq1 −
k

∑
j=v

c(q1)
j y1(tk− j),

y2(tk) =
(−y1(tk)− ε(y2

1(tk)−1)y2(tk−1)
)

hq2 −
k

∑
j=v

c(q2)
j y2(tk− j),

(5.41)
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Fig. 5.24 Limit cycle in phase plane y1 − y2 for FrVPO with fractional order q = 0.9, parameter
ε = 1, and initial conditions (y1(0),y2(0)) = (0,−2).

Fig. 5.25 Oscillation in phase plane y1 − y2 for FrVPO with integer-orders q1 = q2 = 1.0, param-
eter ε = 0.1, and initial conditions (y1(0),y2(0)) = (0.2,−0.2).
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where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (y1(0),
y2(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i are

calculated according to relation (2.54).

In Fig. 5.25 and Fig. 5.26 are depicted the oscillations in the phase plane of the

fractional-order Van der Pol oscillator (5.39) for various orders q1 and q2, parameter

ε , simulation time Tsim = 60s and time step h = 0.005.

Fig. 5.26 Limit cycle in phase plane y1 − y2 for FrVPO with fractional-orders q1 = 1.2, q2 = 0.8,
parameter ε = 1, and initial conditions (y1(0),y2(0)) = (0.2,−0.2).

5.4 Fractional-Order Duffing’s Oscillator

Duffing’s oscillator, introduced in 1918 by G. Duffing, with negative linear stiffness,

damping and periodic excitation is often written in the form

x
′′
(t)− x(t)+αx

′
(t)+ x3(t) = δ cos(ωt). (5.42)

Equation (5.42) can be extended to the complex domain in order to study strange

attractors and chaotic bahavior of forced vibrations of industrial machinery. The

periodically forced complex Duffing’s oscillators have the form
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z
′′
(t)− z(t)+αz

′
(t)+ εz|z2(t)| = γ

′
cos(ωt), (5.43)

where γ ′
=
√

2γ e jπ/4, γ,α,ω are positive parameters, z = x+ jy is a complex func-

tion. Equation (5.43) can be reduced to the famous Duffing’s oscillator (5.42) when

z = x,(y = 0) and ε = 1. When we substitute z = x + jy into Eq. (5.43), we get a

system of two coupled nonlinear second-order differential equations (Gao and Yu,

2005):

x
′′
(t)− x(t)+αx

′
(t)+ εx(t)(x2(t)+ y2(t)) = γ cos(ωt),

y
′′
(t)− y(t)+αy

′
(t)+ εy(t)(x2(t)+ y2(t)) = γ cos(ωt).

(5.44)

To get the fractional-order Duffing’s system, Equation (5.42) can be rewritten as

a system of the first-order autonomous differential equations in the form:

x(t)
dt

= y(t),

y(t)
dt

= x(t)− x3(t)−αy(t)+δ cos(ωt).
(5.45)

Here, the conventional derivatives in Eqs. (5.45) are replaced by the fractional

derivatives as follows:

0Dq1
t x(t) = y(t),

0Dq2
t y(t) = x(t)− x3(t)−αy(t)+δ cos(ωt),

(5.46)

where q1,q2 are two fractional orders and α,δ ,ω are the system parameters.

The Jacobian matrix of the Duffing’s system is

J =
[

0 1

1−3x∗ −α

]
(5.47)

for the equilibrium point E∗ = (x∗,y∗). The characteristic equation of the linearized

incommensurate-order system (5.46) for γ = 1/m is det(λ γ I− J) = 0, where m is

the LCM of the denominators ui, if we set qi = vi/ui, vi,ui ∈ Z+ for i = 1,2. The

stability condition is |arg(λi)| > γπ/2 for all roots λi of the characteristic equation.

A numerical solution of the fractional-order Duffing’s system (5.46), obtained by

using the relations (2.53) and (2.54), has the following form:

x(tk) = y(tk−1)hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) =
(
x(tk)− x3(tk)−αy(tk−1)+δcos(ωtk)

)
hq2 −

k

∑
j=v

c(q2)
j y(tk− j),

(5.48)

where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0)) is the start point (initial conditions).
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Let us investigate the integer-order Duffing’s system (5.45) with parameters

α = 0.15, δ = 0.3, ω = 1. This system has three fixed points (equilibria): E1 =
(1.07288371;0), E2 = (−0.90615851;0), and E3 = (−0.16672520;0) and their

stability can be studied by computing the corresponding eigenvalues. For equi-

librium E1 we obtain the eigenvalues λ1,2 = −0.0750 ± 1.487624 j, for E2 we

get λ1 ≈ 1.8547928, λ2 ≈ −2.004792873 and for E3 we have λ1 ≈ 1.1521106,

λ2 ≈ −1.3021106. The eigenvalues λ1 and λ2 of the equilibrium points E2 and E3

are saddle points which satisfy the stability condition for chaotic behavior.

In Fig. 5.27 is depicted chaotic attractor of the integer-order Duffing’s system

(5.45) for the following parameters α = 0.15, δ = 0.3, ω = 1 with initial conditions

(x(0),y(0)) = (0.21,0.13) for simulation time Tsim = 200s and time step h = 0.005.

Fig. 5.27 Phase trajectory (attractor) in plane x− y for the integer-order Duffing’s system (5.45)
with parameters α = 0.15, δ = 0.3, ω = 1, and initial conditions (x(0),y(0)) = (0.21,0.13).

When we assume commensurate orders q1 = q2 = 0.95 and parameters α = 0.5,

δ = 1.3, ω = 1 in system (5.46), we obtain a stable limit cycle. All roots of the

characteristic equation satisfy the stability condition.

In Fig. 5.28 is depicted the limit cycle of the fractional-order Duffing’s system

(5.46) for the following parameters α = 0.5, δ = 1.3, ω = 1, derivative orders q1 =
q2 = 0.95 with initial conditions (x(0),y(0)) = (1.0,1.0) for simulation time Tsim =
100s and time step h = 0.005.

In addition, we consider an incommensurate-order system (5.46) with parameters

α = 0.15, δ = 0.3, ω = 1 and orders q1 = 0.9 = 9/10, and q2 = 1.0 = 10/10. The

system has three equilibria and we should investigate the stability of all equilibrium
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Fig. 5.28 Phase trajectory (limit cycle) in plane x− y for the fractional-order Duffing’s system
(5.46) with parameters α = 0.5, δ = 1.3, ω = 1, derivative orders q1 = q2 = 0.95, and initial
conditions (x(0),y(0)) = (1.0,1.0).

points. Because of the system parameters, the equilibrium points are the same as in

the case of integer-order system. For the equilibrium E1 the characteristic equation

of linearized system is

λ 19 +3/20λ 9 −3.7184755 = 0,

and it has one unstable root λ ≈ 1.0673 because |arg(λ )| < π/20. For the equilib-

rium E2 the characteristic equation of the linearized system is

λ 19 +3/20λ 9 −1.5001756 = 0,

and it has one unstable root λ ≈ 1.0151 because |arg(λ )|< π/20. Both equilibrium

points are unstable nodes. The equilibrium E3 is a stable focus. The condition to

have at least one root in the unstable region in order for the system to be chaotic is

satisfied.

In Fig. 5.29 is depicted double scroll attractor of the fractional-order Duffing’s

system (5.46) for the following parameters α = 0.15, δ = 0.3, ω = 1, derivative

orders q1 = 0.9,q2 = 1.0 with initial conditions (x(0),y(0)) = (0.21,0.13) for sim-

ulation time Tsim = 200s and time step h = 0.005.

An alternative and a bit modified version of the fractional-order Duffing’s system

and its phase portraits, Poincaré maps, bifurcation diagram and chaotic behavior was
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Fig. 5.29 Phase trajectory (attractor) in plane x−y for the fractional-order Duffing’s system (5.46)
with parameters α = 0.15, δ = 0.3, ω = 1, derivative orders q1 = 0.9,q2 = 1.0, and initial condi-
tions (x(0),y(0)) = (0.21,0.13).

studied in (Ge and Ou, 2007). The chaotic system reported in the above-mentioned

paper considered the Duffing’s chaotic system to be an autonomous system with

four state variables x(t), y(t), z(t), and w(t) and has the following form:

0Dq1
t x(t) = y(t),

0Dq2
t y(t) = −x(t)− x3(t)−ay(t)+bz(t), (5.49)

0Dq3
t z(t) = w(t),

0Dq4
t w(t) = −cz(t)−dz3(t),

where a,b,c are constant parameters of the system and q1,q2,q3 and q4 are fractional-

order numbers. Usually, the system parameter b is allowed to be variable.

Chaos was found in system (5.49) for the lowest total order of the system 3.8 (Ge

and Ou, 2007).

5.5 Fractional-Order Lorenz’s System

The Lorenz oscillator is a three-dimensional dynamical system that exhibits chaotic

flow. The Lorenz attractor was named after Edward N. Lorenz, who derived it from
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the simplified equations of convection rolls arising in the equations of the atmo-

sphere in 1963. He for the first time used the term “butterfly effect”, which in

chaos theory means sensitive dependence on initial conditions. Lorenz wrote a pa-

per in 1979 entitled “Predictability: Does the Flap of a Butterfly’s Wings in Brazil

Set Off a Tornado in Texas?” Small variations of the initial condition of a dynam-

ical system may produce large variations in the long-term behavior of the system.

The phrase refers to the idea that a butterfly’s wings might create tiny changes in

the atmosphere that may ultimately alter the path of a tornado or delay, accelerate

or even prevent the occurrence of a tornado in a certain location. The flapping wing

represents a small change in the initial condition of the system, which causes a chain

of events leading to large-scale alterations of events.

Lorenz’s chaotic system is desribed by

dx(t)
dt

= σ(y(t)− x(t)),

dy(t)
dt

= x(t)(ρ − z(t))− y(t), (5.50)

dz(t)
dt

= x(t)y(t)−β z(t),

where σ is called the Prandtl number and ρ is called the Rayleigh number. All

σ ,ρ,β > 0, but usually σ = 10, β = 8/3 and ρ is varied. The system exhibits

chaotic behavior for ρ = 28 and displays orbits for other values.

Lorenz’s system has three equilibria, where one is obviously in origin

E1 = (0;0;0) and the other two are: E2 = (
√

(βρ −β );
√

(βρ −β ); ρ − 1),
E3 = (−√(βρ −β ); −√(βρ −β ); ρ −1). The Jacobian matrix of Lorenz’s sys-

tem (5.50) at the equilibrium point E∗ = (x∗,y∗,z∗) is given by

J =

⎡⎣ −σ σ 0

ρ − z∗ −1 −x∗
y∗ x∗ −β

⎤⎦ . (5.51)

The equilibrium points of the system with the above parameters are: E1 =
(0;0;0), E2 = (8.4853;8.4853;27), and E3 = (−8.4853;−8.4853;27).

The fractional-order Lorenz’s system is described as (e.g. (Li and Yan, 2007)):

0Dq1
t x(t) = σ(y(t)− x(t)),

0Dq2
t y(t) = x(t)(ρ − z(t))− y(t), (5.52)

0Dq3
t z(t) = x(t)y(t)−β z(t),

where q1, q2, and q3 are derivative orders.

The numerical solution of the fractional-order Lorenz’s system has the following

form:

x(tk) = (σ(y(tk−1)− x(tk−1)))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),
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y(tk) = (x(tk)(ρ − z(tk−1))− y(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.53)

z(tk) = (x(tk)y(tk)−β z(tk−1))hq3 −
k

∑
j=v

c(q3)
j z(tk− j),

where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i
are calculated according to the relation (2.54).

To determine a minimal order for which the Lorenz system is chaotic with the

parameters (σ ,ρ,β ) = (10,28,8/3), we can use the relation (4.42). In this case the

minimal commensurate order is q > 0.9941, if we consider q1 = q2 = q3 ≡ q.

Let us set q1 = q2 = q3 = 0.995, the fractional-order Lorenz’s system (5.52) has

a chaotic attractor as depicted in Fig. 5.30 – Fig. 5.32.

In Fig. 5.30 – Fig. 5.32 are depicted the simulation results of the Lorenz system

(5.52) for the following parameters: σ = 10,ρ = 28,β = 8/3, orders q1 = q2 = q3 =
0.995 and computational time 100s for time step h = 0.005.

In case of the incommensurate orders (q1, q2, q3) of the system (5.52), the stabil-

ity at the equilibrium can be investigated via characteristic equation det(λ γ I−J) =
0, for γ = 1/m, where m is the LCM of the denominators ui, if we set qi = vi/ui,

vi,ui ∈ Z+ for i = 1,2,3, and the stability condition |arg(λ )| > γπ/2.

Fig. 5.30 Simulation result of the Lorenz system (5.52) in x−y plane for parameters: σ = 10,ρ =
28,β = 8/3, orders q1 = q2 = q3 = 0.995, and initial conditions (x(0),y(0),z(0)) = (0.1,0.1,0.1).
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Fig. 5.31 Simulation result of the Lorenz system (5.52) in x− z plane for parameters: σ = 10,ρ =
28,β = 8/3, orders q1 = q2 = q3 = 0.995, and initial conditions (x(0),y(0),z(0)) = (0.1,0.1,0.1).

Fig. 5.32 Simulation result of the Lorenz system (5.52) in state space for parameters: σ = 10,ρ =
28,β = 8/3, orders q1 = q2 = q3 = 0.995, and initial conditions (x(0),y(0),z(0)) = (0.1,0.1,0.1).
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5.6 Fractional-Order Chen’s System

In 1999, Chen found another a simple three-dimensional autonomous system, which

is not topologically equivalent to Lorenz’s system and which has a chaotic attractor

as well. Chen’s system is described by the following equations (Lu and Chen, 2002;

Zhou et al., 2004):

dx(t)
dt

= a(y(t)− x(t)),

dy(t)
dt

= (c−a)x(t)− x(t)z(t)+ cy(t), (5.54)

dz(t)
dt

= x(t)y(t)−bz(t),

where (a,b,c) ∈ R3. When (a,b,c) = (35,3,28) the chaotic attractor exists.

The equilibrium points of the system with the above parameters are: E1 =
(0;0;0), E2 = (7.9373;7.9373;21), and E3 = (−7.9373;−7.9373;21).

The Jacobian matrix of Chen’s system (5.54) at the equilibrium point E∗ =
(x∗,y∗,z∗) is given by

J =

⎡⎣ −a a 0

c−a− z∗ c −x∗
y∗ x∗ −β

⎤⎦ . (5.55)

For the equilibrium E1 we obtain the eigenvalues λ1 = −3, λ2 ≈ 23.8359, and

λ3 ≈−30.8359, for E2 we get λ1 ≈−18.4280, and λ2,3 ≈ 4.2140±14.8846 j, and

for E3 we have λ1 ≈ −18.4280, λ2,3 ≈ 4.2140± 14.8846 j. The eigenvalues λ1,

λ2 and λ3 show that the equilibrium E1 is a saddle point, the equilibria E2 and E3

are saddle-focus points. All of them satisfy the stability condition to keep chaotic

behavior.

The fractional-order Chen’s system is described as (Lu and Chen, 2006):

0Dq1
t x(t) = a(y(t)− x(t)),

0Dq2
t y(t) = (c−a)x(t)− x(t)z(t)+ cy(t), (5.56)

0Dq3
t z(t) = x(t)y(t)−bz(t),

where 0 < q1,q2,q3 ≤ 1, its total order is denoted by q̄ = (q1,q2,q3).
Numerical solution of the fractional-order Chen’s system has the following form:

x(tk) = (a(y(tk−1)− x(tk−1)))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (dx(tk)− x(tk)z(tk−1)+ cy(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.57)

z(tk) = (x(tk)y(tk)−bz(tk−1))hq3 −
k

∑
j=v

c(q3)
j z(tk− j),
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where d = (c− a), Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h],
and (x(0), y(0), z(0)) is the start point (initial conditions). The binomial coefficients

c(qi)
j , ∀i are calculated according to the relation (2.54).

To determine a minimal order for which the Chen system is chaotic with the

parameters (a,b,c) = (35,3,28), we can use the relation (4.42). In this case the

minimal commensurate order is q > 0.8244, if we consider q1 = q2 = q3 ≡ q.

Let us consider the parameters (a,b,c,d) = (35,3,28,−7) and the commensurate

orders q1 = q2 = q3 = 0.9 in the numerical solution (5.57).

Fig. 5.33 Simulation result of Chen’s system (5.56) in state space for parameters: a = 35, b =
3, c = 28, d = −7, orders q1 = q2 = q3 = 0.9, and initial conditions (x(0),y(0),z(0)) =
(−9,−5,14).

In Fig. 5.33 is depicted the simulation result (double scroll-attractor) of the

fractional commensurate-order Chen’s system (5.56) computed for simulation time

Tsim = 100s and time step h = 0.005. For these parameter sets the characteristic

equation of the equilibrium points E2 and E3 is

λ 27 +10λ 18 +84λ 9 +4410 = 0

and unstable roots are λ1,2 = 1.3417 ± 0.1944 j, because |arg(λ1,2)| ≈ 0.1439 <
π/2m, where m = 10. These equilibrium points are unstable foci. The equilibrium

E1 is a saddle point connecting two scrolls.

Simulation results of the fractional incommensurate-order Chen’s system (5.56)

are described in Section 4.3 and depicted in Fig. 4.13, where in Eqs. (5.56) we
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used the parameters a = 35, b = 3, c = 28, d = −7, and orders q1 = 0.8, q2 = 1.0,

q3 = 0.9. The stability of such system was investigated as well.

5.7 Fractional-Order Lü’s System

The so-called Lü’s system is known as a bridge between the Lorenz system and

Chen’s system. Its fractional version is described as follows (Deng and Li, 2005):

0Dq1
t x(t) = a(y(t)− x(t)),

0Dq2
t y(t) = −x(t)z(t)+ cy(t), (5.58)

0Dq3
t z(t) = x(t)y(t)−bz(t),

where 0 < q1,q2,q3 ≤ 1, are derivatives orders, and a,b,c are system parameters.

The system (5.58) has three equilibrium points E1 = (0;0;0), E2 = (
√

bc;
√

bc;c)
and E3 = (−√

bc;−√
bc;c).

The Jacobian matrix for equilibria E∗ = (x∗,y∗,z∗) is defined as

J =

⎡⎣ −a a 0

−z∗ c −x∗
y∗ x∗ −b

⎤⎦ . (5.59)

Numerical solution of the fractional-order Lü’s system (5.58) is given as follows:

x(tk) = (a(y(tk−1)− x(tk−1)))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (−x(tk)z(tk−1)+ cy(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.60)

z(tk) = (x(tk)y(tk)−bz(tk−1))hq3 −
k

∑
j=v

c(q3)
j z(tk− j),

where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i
are calculated according to the relation (2.54).

Let us consider the following parameters a = 36,b = 3,c = 20 of the system

(5.58). For equilibrium points E1 we obtain the following eigenvalus of the Ja-

cobian matrix (5.59): λ1 = −3, λ2 = 20 and λ3 = −36. It is a saddle point. For

the equilibrium E2 = (7.7460;7.7460;20) we get the eigenvalues λ1 ≈ −22.6516

and λ2,3 ≈ 1.8258 ± 13.6887 j. It is a saddle-focus point. The equilibrium point

E3 = (−7.7460;−7.7460;20) has the same eigenvalues as the equilibrium E2. From

the above eigenvalues we can determine a minimal commensurate order to keep the

system chaotic and it is q > 0.9156.
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Fig. 5.34 Simulation result of the fractional-order Lü’s system (5.58) in state space for parameters
a = 36,b = 3,c = 20 and orders q1 = 0.95,q2 = 0.95,q3 = 0.95.

Fig. 5.35 Simulation result of the fractional-order Lü’s system (5.58) in state space for parameters
a = 36,b = 3,c = 20 and orders q1 = 0.985,q2 = 0.99,q3 = 0.98.
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In Fig. 5.34 is depicted phase trajectory for commensurate derivative orders

q1 = 0.95,q2 = 0.95,q3 = 0.95 and parameters a = 36,b = 3,c = 20 with the initial

conditions: (x(0),y(0),z(0)) = (0.2,0.5,0.3), for simulation time 90s, and time step

h = 0.005.

In Fig. 5.35 is depicted phase trajectory for incommensurate derivative orders

q1 = 0.985,q2 = 0.99,q3 = 0.98 and parameters a = 36,b = 3,c = 20 with the initial

conditions: (x(0),y(0),z(0)) = (0.2,0.5,0.3), for simulation time 90s and time step

h = 0.005.

5.8 Fractional-Order Liu’s System

A novel three-dimensional autonomous chaotic dynamical system was introduced

by C. Liu, L. Liu and T. Liu and reported in literature (Liu et al., 2009). The differ-

ential equations that described the system are

dx(t)
dt

= −ax(t)− ey2(t),

dy(t)
dt

= by(t)− kx(t)z(t), (5.61)

dz(t)
dt

= −cz(t)+mx(t)y(t),

where a = e = 1, b = 2.5, k = m = 4, c = 5 and initial conditions (0.2,0,0.5) yield

chaotic trajectory.

The system (5.61) has five equilibrium points. Two of them are complex and three

are real equilibrium points E1 = (0;0;0), E2 = (−0.88388;−0.940150;0.664786),
and E3 = (−0.88388;0.940150;−0.664786). In the paper (Liu et al., 2009) were

calculated different equilibrium points because in spite of the following parameters

declaration a = e = 1, b = 2.5, k = m = 4, c = 5 for calculations they probably used

different parameters.

The corresponding Jacobian matrix for equilibria E∗ = (x∗,y∗,z∗) is

J =

⎡⎣ −a −2ey∗ 0

−kz∗ b −kx∗
my∗ mx∗ −c

⎤⎦ . (5.62)

The roots of the characteristic equation evaluated at equilibrium E1 are λ1 =−1,

λ2 = −5, and λ3 = 2.5. It is a saddle point. The eigenvalues of the Jacobian ma-

trix evaluated at equilibrium points E2 and E3 are λ1 ≈ −4.387767, and λ2,3 ≈
0.4438837±3.346383 j. It is a saddle-focus point. Because all eigenvalues are un-

stable, the condition for chaos is satisfied and chaotic system (5.61) with the above

parameters can exhibit chaotic behavior.

Its fractional-order version was described (Gejji and Bhalekar, 2010) and has the

form:
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0Dq1
t x(t) = −ax(t)− ey2(t),

0Dq2
t y(t) = by(t)− kx(t)z(t), (5.63)

0Dq3
t z(t) = −cz(t)+mx(t)y(t),

where q1, q2, q3 are derivative orders, the total order is denoted by q̄ = (q1,q2,q3).
In case we consider a commensurate order system (5.63) with q1 = q2 = q3 ≡ q,

a minimal order q for chaotic behavior can be determinned according the condition

(4.42) and it is q > 0.916. Thus the system deos not show chaotic behavior for

q < 0.916.

Numerical solution of the fractional-order Liu’s system (5.63) is given as follows:

x(tk) =
(−ax(tk−1)− ey2(tk−1)

)
hq1 −

k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (by(tk−1)− kx(tk)z(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.64)

z(tk) = (−cz(tk−1)+mx(tk)y(tk))hq3 −
k

∑
j=v

c(q3)
j z(tk− j),

where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i
are calculated according to the relation (2.54).

In Fig. 5.36 are depicted the simulation results of the (integer-order) Liu’s system

(5.61) for the following parameters: a = e = 1, b = 2.5, k = m = 4, c = 5, and

computational time 100s, for time step h = 0.005.

Consider the commensurate order of the fractional-order Liu’s system (5.63) with

q = 0.95 and parameters a = e = 1, b = 2.5, k = m = 4. The characteristic equation

of the linearized system is

λ 285 +3.5λ 190 +7.5λ 95 +50 = 0

and unstable roots are λ1,2 ≈ 1.0128 ± 0.0153 j, because |arg(λ1,2)| = 0.0151 <
π/2m, where m = 100 (LCM of orders denominator).

In Fig. 5.37 is depicted the simulation result of the (integer-order) Liu’s system

(5.63) for the following parameters: a = e = 1, b = 2.5, k = m = 4, c = 5, orders

q1 = q2 = q3 = 0.95 and computational time 100s for time step h = 0.005.

Let us consider the incommensurate order of the fractional-order Liu’s system

(5.63) with q1 = 1.0, q2 = 0.9, and q3 = 0.8 and parameters a = e = 1, b = 2.5,

k = m = 4. The characteristic equation of the linearized system is

λ 27 +5λ 19 −2.5λ 18 +λ 17 +5λ 9 +2.5λ 8 +50 = 0

and unstable roots are λ1,2 ≈ 1.1224 ± 0.1770 j, because |arg(λ1,2)| = 0.1565 <
π/2m, where m = 10.
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Fig. 5.36 Simulation result of the Liu’s system (5.61) in state space for parameters: a = e = 1,
b = 2.5, k = m = 4, c = 5, and initial conditions (x(0),y(0),z(0)) = (0.2,0,0.5).

Fig. 5.37 Simulation result of the Liu’s system (5.63) in state space for parameters: a = e = 1,
b = 2.5, k = m = 4, c = 5, orders q1 = q2 = q3 = 0.95, and initial conditions (x(0),y(0),z(0)) =
(0.2,0,0.5).
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In Fig. 5.38 is depicted the simulation result of the (fractional-order) Liu’s system

(5.63) for the following parameters: a = e = 1, b = 2.5, k = m = 4, c = 5, orders

q1 = 1.0, q2 = 0.9, and q3 = 0.8, and computational time 100s, for time step h =
0.005.

Fig. 5.38 Simulation result of the Liu’s system (5.63) in state space for parameters: a = e = 1,
b = 2.5, k = m = 4, c = 5, orders q1 = 1.0, q2 = 0.9, and q3 = 0.8, and initial conditions
(x(0),y(0),z(0)) = (0.2,0,0.5).

Note that this fractional-order system has been investigated and described for

various orders, where condition for chaotic behavior was cross-validated with the

Lyapunov exponent together with the instability measure for each equilibrium point

(Gejji and Bhalekar, 2010). Numerical experiments performed in the mentioned pa-

per showed the existence of chaos for a minimum total order of the commensurate-

order system 2.76 and in the case of incommensurate-order system it was 2.60. The

total order of the system is sometimes also called a minimum effective dimension.

5.9 Fractional-Order Genesio-Tesi’s System

The Genesio-Tesi’s system is described by the system of equations (Genesio and

Tesi, 1992):
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dx(t)
dt

= y(t),

dy(t)
dt

= z(t), (5.65)

dz(t)
dt

= −β1x(t)−β2y(t)−β3z(t)+β4x2(t),

where β1,β2,β3 and β4 are system parameters.

Genesio-Tesi’s system (5.65) has two equilibrium points E1 = (0;0;0) and E2 =
(β1/β4;0;0). The Jacobian matrix for equilibria E∗ = (x∗,y∗,z∗) is defined as

J =

⎡⎣ 0 1 0

0 0 1

−β1 +2β4x∗ −β2 −β3

⎤⎦ . (5.66)

The corresponding eigenvalues of the equilibrium E1 for the parameters β1 =
1, β2 = 1.1, β3 = 0.44, β4 = 1.0 are λ1 ≈ −0.750293 and λ2,3 ≈ 0.155146 ±
1.144002 j. For the equilibrium E2 they are λ1 ≈ 0.587161 and λ2,3 ≈−0.5135806±
1.199726 j. Both of them are unstable saddle-focus points and therefore the condi-

tion for chaotic behavior is satisfied.

In Fig. 5.39 is depicted the simulation result of the (integer-order) Genesio-Tesi’s

system (5.65) for the following parameters: β1 = 1, β2 = 1.1, β3 = 0.44, β4 = 1.0,

and computational time 200s, for time step h = 0.005.

Fig. 5.39 Simulation result of the Genesio-Tesi’s system (5.65) in state space for parameters: β1 =
1, β2 = 1.1, β3 = 0.44, β4 = 1.0, and initial conditions (x(0),y(0),z(0)) = (−0.1,0.5,0.2).
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The fractional-order Genesio-Tesi’s system is defined as follows (Guo, 2005):

0Dq1
t x(t) = y(t),

0Dq2
t y(t) = z(t), (5.67)

0Dq3
t z(t) = −β1x(t)−β2y(t)−β3z(t)+β4x2(t),

where q ∈ [q1,q2,q3] and 0 < q ≤ 1.

Numerical solution of the fractional-order Genesio-Tesi’s system (5.67) is given

as follows:

x(tk) = (y(tk−1))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (z(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.68)

z(tk) =
(−β1x(tk)−β2y(tk)−β3z(tk−1)+β4x(tk)2

)
hq3 −

k

∑
j=v

c(q3)
j z(tk− j),

where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i
are calculated according to the relation (2.54).

Let us consider the commensurate order q1 = q2 = q3 ≡ q = 0.9 and system

parameters: β1 = 1, β2 = 1.1, β3 = 0.15, β4 = 1.0. The characteristic equation of

the system (5.67) evaluated at the equilibria E1 and E2, respectively, is

λ 27 +3/20λ 18 +11/10λ 9 ±1 = 0

and unstable roots for the equilibrium E1 are λ1,2 ≈ 1.0100 ± 0.1525 j, because

|arg(λ1,2)| = 0.1499 < π/2m, where m = 10 (LCM of orders denominator) and un-

stable root for the equilibrium E2 is λ1 ≈ 0.9498. As shown in (Guo, 2005), the

system exhibits chaotic behavior.

Now, consider the incommensurate-order system, where q1 = 1.0, q2 = 1.0, and

q3 = 0.95 and system parameters are β1 = 1.1, β2 = 1.1, β3 = 0.45, β4 = 1.0. The

characteristic equation of the system (5.67) evaluated at the equilibria E1 and E2,

respectively, is

λ 295 +9/20λ 200 +11/10λ 100 ±1.1 = 0

and unstable roots for the equilibrium E1 are λ1,2 ≈ 1.0014 ± 0.0145 j, because

|arg(λ1,2)| = 0.0145 < π/2m, where m = 100 (LCM of orders denominator) and

unstable root for the equilibrium E2 is λ1 ≈ 0.9952.

In Fig. 5.40 is depicted the simulation result of the Genesio-Tesi’s system (5.67)

for the following parameters: β1 = 1.1, β2 = 1.1, β3 = 0.45, β4 = 1.0, orders q1 =
1.0, q2 = 1.0, q3 = 0.95 and computational time 200s, for time step h = 0.005. As

we can see in the figure, the fractional-order Genesio-Tesi’s system is chaotic with

one scroll attractor.
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Fig. 5.40 Simulation result of the Genesio-Tesi’s system (5.67) in state space for initial conditions
(x(0),y(0),z(0)) = (−0.1,0.5,0.2).

5.10 Fractional-Order Arneodo’s System

Arneodo’s system is described by

dx(t)
dt

= y(t),

dy(t)
dt

= z(t), (5.69)

dz(t)
dt

= −β1x(t)−β2y(t)−β3z(t)+β4x3(t),

where β1,β2,β3 and β4 are constant parameters. This system has three equilibrium

points E1 = (0;0;0;), E2 = (
√

(β4β1)/β4;0;0), and E3 = (−√(β4β1)/β4;0;0).
The Jacobian matrix for equilibria E∗ = (x∗,y∗,z∗) is defined as

J =

⎡⎣ 0 1 0

0 0 1

−β1 +3β4x∗2 −β2 −β3

⎤⎦ . (5.70)

When β1 = −5.5, β2 = 3.5, β3 = 1 and β4 = −1, the system (5.69) equilibrium

points are E1 = (0;0;0), E2 = (2.345207;0;0), and E3 = (−2.345207;0;0). Corre-

sponding eigenvalues for equilibrium E1 are λ1 = 1, λ2,3 ≈−1±2.12132 j, and for

equilibria E2 and E3 the eigenvalues are λ1 =−2, λ2,3 = 0.5±2.2912878 j. All equi-
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libria are saddle-focus points. The condition for chaos is satisfied and the system has

chaotic attractor shown in Fig. 5.41.

Fig. 5.41 Simulation result of the Arneodo’s system (5.69) in state space for initial conditions
(x(0),y(0),z(0)) = (−0.2,0.5,0.2).

In Fig. 5.41 is depicted the chaotic attractor of Arneodo’s system (5.69) for the

following parameters: β1 = −5.5, β2 = 3.5, β3 = 1, β4 = −1.0, and computational

time 200s, for time step h = 0.005.

The fractional-order Arneodo’s system is defined as follows (Lu, 2005):

0Dq1
t x(t) = y(t),

0Dq2
t y(t) = z(t), (5.71)

0Dq3
t z(t) = −β1x(t)−β2y(t)−β3z(t)+β4x3(t),

where q∈ [q1,q2,q3] and 0 < q≤ 1. This system is very similar to the Genesio-Tesi’s

system (5.67) but with the different kind of nonlinearity.

Numerical solution of the fractional-order Arneodo’s system (5.71) is given as

follows:

x(tk) = (y(tk−1))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (z(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.72)

z(tk) =
(−β1x(tk)−β2y(tk)−β3z(tk−1)+β4x(tk)3

)
hq3 −

k

∑
j=v

c(q3)
j z(tk− j),
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where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i
are calculated according to the relation (2.54).

For the above paremeters we are able to determine a minimal commensurate

order of the system (5.71), which is q > 0.86 in case q1 = q2 = q3 ≡ q.

Let us consider the incommensuraty fractional-order Arneodo’s system (5.71)

with the following paremeters β1 = −5.5, β2 = 3.5, β3 = 0.8, β4 = −1.0 and or-

ders q1 = q2 = 0.97, and q3 = 0.96. Thus the total order of the system is 2.9. The

characteristic equation of the system (5.71) evaluated at the equilibrium E1 is

λ 290 +4/5λ 194 +7/2λ 97 −5.5 = 0

with unstable root λ1 ≈ 1.0002. The characteristic equation of the system (5.71)

evaluated at the equilibria E2 and E3, respectively, is

λ 290 +4/5λ 194 +7/2λ 97 +11 = 0

and unstable roots are λ1,2 ≈ 1.0089 ± 0.0139 j, because |arg(λ1,2)| = 0.0138 <
π/2m, where m = 100 (LCM of orders denominator).

In Fig. 5.42 and Fig. 5.43 are depicted the simulation results of Arneodo’s sys-

tem (5.71) for the following parameters: β1 =−5.5, β2 = 3.5, β3 = 0.8, β4 =−1.0,

orders q1 = 0.97, q2 = 0.97, q3 = 0.96, and computational time 200s, for time step

h = 0.005.

Fig. 5.42 Simulation result of the fractional-order Arneodo’s system (5.71) projected onto x− y
plane for the initial conditions (x(0),y(0),z(0)) = (−0.2,0.5,0.2).
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Fig. 5.43 Simulation result of the fractional-order Arneodo’s system (5.71) in state space for the
initial conditions (x(0),y(0),z(0)) = (−0.2,0.5,0.2).

In the paper (Lu, 2005) were performed simulations for various commensurate

order q of the fractional-order Arneodo’s system (5.71). Those simulations were

cross-validated with the Lyapunov exponent. The results showed that the lowest

total order of the fractional-order Arneodo’s system to yield chaos was 2.1.

5.11 Fractional-Order Rössler’s System

Otto Rössler proposed Rössler’s system with strange attractor in 1976, but the orig-

inally theoretical equations were later found to be useful in modeling equilibrium

in chemical reactions. This attractor has only one manifold and can be obtained as

a solution of the following equations:

dx(t)
dt

= −(y(t)+ z(t)),

dy(t)
dt

= x(t)+ay(t),

dz(t)
dt

= b+ z(t)(x(t)− c) , (5.73)

where for the parameters a = 0.2, b = 0.2, c = 5.7 this system yields chaotic behav-

ior. This system has two equilibrium points E1 and E2 located at
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E1,2 =

(
c±√

c2 −4ab
2

;−c±√
c2 −4ab
2a

;
c±√

c2 −4ab
2a

)
.

The Jacobian matrix for the equilibria E∗ = (x∗,y∗,z∗) is defined as

J =

⎡⎣ 0 −1 −1

1 a 0

z∗ 0 x∗ − c

⎤⎦ . (5.74)

Consider a fractional-order generalization of the Rössler’s system (5.73) as fol-

lows (Li and Chen, 2004):

0Dq1
t x(t) = −(y(t)+ z(t)),

0Dq2
t y(t) = x(t)+ay(t),

0Dq3
t z(t) = b+ z(t)(x(t)− c) , (5.75)

where conventional derivatives are replaced by the fractional ones.

Numerical solution of the fractional-order Rössler’s system (5.75) is given as

follows:

x(tk) = (−y(tk−1)− z(tk−1))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (x(tk)+ay(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.76)

z(tk) = (b+ z(tk−1)(x(tk)− c))hq3 −
k

∑
j=v

c(q3)
j z(tk− j),

where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i
are calculated according to the relation (2.54).

Let us consider the system (5.75) for the parameters a = 0.5, b = 0.2 and

c = 10. The system has two equilibria: E1 = (9.98998;−19.97997;19.97997) and

E2 = (0.10010;−0.20020;0.20020) and their corresponding eigenvalues are: λ1 ≈
0.47595, λ2,3 ≈ 0.007017± 4.57910 j for the eqiulibrium E1 and λ1 ≈ −9.98800,

λ2,3 ≈ 0.249007±0.96808 j for the equilibrium E2. The equilibrium E1 is unstable

focus-node point and the equibrium E2 is unstable saddle-focus point. The condition

for chaotic behavior is satisfied. With the above eigenvalues and condition (4.42) we

can determine that the minimal commensurate order of this system is q > 0.839.

When we assume the commensurate order q1 = q2 = q3 = 0.9 and parameters

a = 0.5, b = 0.2 and c = 10, we get the following characteristic equation of the

linearized system for the equilibrium E1:

λ 27 −0.489989λ 18 +20.974974λ 9 −9.979979 = 0,
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with unstable root λ1 ≈ 0.9208. The characteristic equation for the equilibrium E2

is

λ 27 +9.489989λ 18 −3.974974λ 9 +9.979979 = 0,

with unstable roots λ1,2 ≈ 0.9892±0.1460 j, because |arg(λ1,2)| = 0.1466 < π/2m,

where m = 10 (LCM of orders denominator).

In Fig. 5.44 is depicted phase trajectory of the fractional-order Rössler’s system

(5.75) for commensurate order q = 0.9 and parameters a = 0.5, b = 0.2, c = 10, with

the initial conditions (x(0),y(0),z(0)) = (0.5,1.5,0.1), for simulation time 120s and

time step h = 0.005.

Fig. 5.44 Simulation result of the fractional-order Rössler’s system (5.75) in state space for pa-
rameters a = 0.5, b = 0.2, c = 10 and orders q1 = q2 = q3 = 0.9 for simulation time 120s, with
initial conditions (x(0),y(0),z(0)) = (0.5,1.5,0.1).

When we assume the incommensurate order q1 = 0.90, q2 = 0.85, q3 = 0.95 and

parameters a = 0.5, b = 0.2 and c = 10, we get the following characteristic equation

of the linearized system for the equilibrium E1:

λ 270−1/2λ 185 +0.010010λ 175 +λ 95−0.005005λ 90 +19.97997λ 85−9.97997 = 0,

with unstable root λ1 ≈ 0.9913. The characteristic equation for the equilibrium E2

is

λ 270−1/2λ 185 +9.98998λ 175 +λ 95−4.994994λ 90 +9.97997+0.020020λ 85 = 0,

with unstable roots λ1,2 ≈ 1.0000±0.0151 j, because |arg(λ1,2)| = 0.0151 < π/2m,

where m = 100 (LCM of orders denominator).
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In Fig. 5.45 is depicted phase trajectory of the fractional-order Rössler’s sys-

tem (5.75) for incommensurate orders q1 = 0.90, q2 = 0.85, q3 = 0.95 and pa-

rameters a = 0.5, b = 0.2, c = 10, with the initial conditions (x(0),y(0),z(0)) =
(0.5,1.5,0.1), for simulation time 120s and time step h = 0.005.

Fig. 5.45 Simulation result of the fractional-order Rössler’s system (5.75) in state space for pa-
rameters a = 0.5, b = 0.2, c = 10 and orders q1 = 0.90, q2 = 0.85, q3 = 0.95 for simulation time
120s, with initial conditions (x(0),y(0),z(0)) = (0.5,1.5,0.1).

The fractional-order Rössler hyperchaos equations were investigated in (Li and

Chen, 2004), where chaotic behavior was cross-validated with the largest Lyapunov

exponent.

5.12 Fractional-Order Newton-Leipnik’s System

The Newton-Leipnik’s system is described by the following nonlinear differential

equations (Leipnik and Newton, 1981):

dx(t)
dt

= −ax(t)+ y(t)+10y(t)z(t),

dy(t)
dt

= −x(t)−0.4y(t)+5x(t)z(t), (5.77)

dz(t)
dt

= bz(t)−5x(t)y(t),
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where a and b are positive parameters.

In the paper (Leipnik and Newton, 1981), it has been noted that the Newton-

Leipnik’s system is a chaotic system with two strange attractors. When a = 0.4 and

b = 0.175, with initial states (0.349,0,−0.16) and (0.349,0,−0.18), system (5.77)

displays two strange attractors.

The system (5.77) with parameters a = 0.4 and b = 0.175 has five equilibrium

points, where one of them is the origin. The other equilibria, approximately, are:

E2 = (−0.23896;−0.03080;0.21031), E3 = (−0.03154;0.12237;−0.11031), E4 =
(0.03154;−0.12237;−0.11031), and E5 = (0.23896;0.03080;0.21031).

The Jacobian matrix of the system (5.77) for equilibrium E∗ = (x∗,y∗,z∗) is

J =

⎡⎣ −a 1+10z∗ 10y∗
−1+5z∗ −0.4 5x∗
−5y∗ −5x∗ b

⎤⎦ . (5.78)

The eigenvalues of the Jacobian matrix (5.78) evaluated at all equilibrium points

show that all equilibria are the saddle-focus points. For the equilibrium E1 we obtain

λ1 ≈ 0.175 and λ2,3 ≈ −0.4±1.0 j, for the equilibria E2 and E5 we get λ1 ≈ −0.8
and λ2,3 ≈ 0.0875±1.2113 j and for the equilibria E3 and E4 we have λ1 ≈−0.8 and

λ2,3 ≈ 0.0875±0.8752 j. All these eigenvalues satisfy the condition for the system

to be chaotic.

Here, the fractional-order Newton-Leipnik’s system is considered, where integer-

order derivative is replaced by a fractional one, as follows (Sheu et al., 2008):

0Dq1
t x(t) = −ax(t)+ y(t)+10y(t)z(t),

0Dq2
t y(t) = −x(t)−0.4y(t)+5x(t)z(t), (5.79)

0Dq3
t z(t) = bz(t)−5x(t)y(t),

where 0 < q1,q2,q3 ≤ 1 are derivatives orders.

In the case of commensurate-order system, where q1 = q2 = q3 ≡ q we can de-

termine a minimal order to satisfy a necessary condition (4.42) for chaotic behavior.

For the equilibria E2 and E5 it is q > 0.9540 and for the equilibria E3 and E4 it is

q > 0.9365.

Numerical solution of the fractional-order Newton-Leipnik’s system (5.75) is

given as follows:

x(tk) = (ax(tk−1)+ y(tk−1)+10y(tk−1)z(tk−1))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (−x(tk)−0.4y(tk−1)+5x(tk)z(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.80)

z(tk) = (bz(tk−1)−5x(tk)y(tk))hq3 −
k

∑
j=v

c(q3)
j z(tk− j),
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where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i
are calculated according to the relation (2.54).

Let us consider the following parameters a = 0.4, b = 0.175, orders q1 = 0.95,

q2 = 0.95, and q3 = 0.95 of the system (5.79).

In Fig. 5.46 is depicted phase trajectory for derivative orders q1 = 0.95, q2 =
0.95, q3 = 0.95, parameters a = 0.4, b = 0.175 for simulation time 200s, time step

h = 0.005 and with the initial conditions: (x(0),y(0),z(0)) = (0.19,0.0,−0.18). In

the paper (Sheu et al., 2008). it has been noted that the system still approaches the

same attractor for both initial states (0.349,0,−0.16) and (0.349,0,−0.18), and we

can confirm it. Because of this we use a different set of initial conditions.

Fig. 5.46 Simulation result of the fractional-order Newton-Leipnik’s system (5.79) in state space
for parameters a = 0.4, b = 0.175 and orders q1 = q2 = q3 = 0.95 for simulation time 200s.

In Fig. 5.47 is depicted phase trajectory for derivative orders q1 = 0.95, q2 =
0.95, q3 = 0.95, parameters a = 0.4, b = 0.175 for simulation time 200s, time step

h = 0.005 and with the initial conditions: (x(0),y(0),z(0)) = (0.19,0.0,−0.18) pro-

jected onto x− y plane. We can observe that double scroll attractor surrounded the

equilibria E3 and E4.

The characteristic equation of the linearized system evaluated at the equilibrium

E3 or E4 is

λ 285 +5/8λ 190 +0.63369λ 95 +0.618953 = 0,

with unstable roots λ1,2 ≈ 0.9985±0.0155 j, because |arg(λ1,2)| = 0.0155 < π/2m,

where m = 100 (LCM of orders denominator).



5.12 Fractional-Order Newton-Leipnik’s System 157

Fig. 5.47 Simulation result of the fractional-order Newton-Leipnik’s system (5.79) projected onto
x− y plane for parameters a = 0.4, b = 0.175 and orders q1 = q2 = q3 = 0.95.

The characteristic equation of the linearized system evaluated at the equilibrium

E1 is

λ 285 +5/8λ 190 +1.020λ 95 −0.2030 = 0

with unstable root λ ≈ 0.9818. The equilibria E2 and E5 are stable for the above

parameters and orders of the system.

Let us consider the following parameters a = 0.4, b = 0.175, orders q1 = 1, q2 =
0.97, and q3 = 1 of the system (5.79).

In Fig. 5.48 is depicted phase trajectory for derivative orders q1 = q3 = 1, q2 =
0.97, parameters a = 0.4, b = 0.175 for simulation time 200s, time step h = 0.005

and with the initial conditions: (x(0),y(0),z(0)) = (−0.8,0.0,0.18).
In Fig. 5.49 is depicted phase trajectory for derivative orders q1 = q3 = 1, q2 =

0.97, parameters a = 0.4, b = 0.175 for simulation time 200s, time step h = 0.005

and with the initial conditions: (x(0),y(0),z(0)) = (−0.8,0.0,0.18) projected onto

x−y plane. We can observe that double scroll attractor surrounded the equilibria E2

and E5.

The characteristic equation of the linearized system evaluated at the equilibrium

E2 or E5 is

λ 297 +2/5λ 200 +9/40λ 197 +1.35761λ 100 −0.02255λ 97 +1.18004 = 0,
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Fig. 5.48 Simulation result of the fractional-order Newton-Leipnik’s system (5.79) in state space
for parameters a = 0.4, b = 0.175 and orders q1 = q3 = 1, q2 = 0.97 for simulation time 200s.

Fig. 5.49 Simulation result of the fractional-order Newton-Leipnik’s system (5.79) projected onto
x− y plane for parameters a = 0.4, b = 0.175 and orders q1 = q3 = 1, q2 = 0.97.
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with unstable roots λ1,2 ≈ 1.0018±0.0152 j, because |arg(λ1,2)| = 0.0152 < π/2m,

where m = 100.

The characteristic equation of the linearized system evaluated at the equilibrium

E1 is

λ 297 +9/40λ 197 +2/5λ 200 +1.090λ 100 −7/100λ 97 −0.203 = 0,

with unstable root λ ≈ 0.9827.

The characteristic equation of the linearized system evaluated at the equilibrium

E3 or E4 is

λ 297 +2/5λ 200 +9/40λ 197 −0.04511λ 100 +0.67880λ 97 +0.61895 = 0,

with unstable roots λ1,2 ≈ 0.9986±0.0148 j, because |arg(λ1,2)| = 0.0148 < π/2m,

where m = 100.

It is interesting to observe that the system has two strange attractors to rotate

by approximately 90◦ as depicted in Fig. 5.50. The dynamic of the fractional-order

Newton-Leipnik’s system was studied (Sheu et al., 2008), where the lowest total

order of the system to yield chaos was found to be 2.82. This system displays better

dynamic behavior.

Fig. 5.50 Simulation results of the fractional-order Newton-Leipnik’s system (5.79) projected onto
x − y plane for parameters a = 0.4, b = 0.175, orders q1 = q2 = q3 = 0.95 and q1 = q3 = 1,
q2 = 0.97, respectively, for simulation time 200s.
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5.13 Fractional-Order Lotka-Volterra System

The Lotka-Volterra equations, also known as the predator-prey (or parasite-host)

equations, are a pair of first order, non-linear, differential equations frequently used

to describe the dynamics of biological systems in which two species interact on each

other, one is a predator and the other is its prey. They were proposed independently

by Alfred J. Lotka in 1925 and Vito Volterra in 1926.

Classical integer-order model of the Lotka-Volterra system is deffined as

dx(t)
dt

= x(t)(α −βy(t)) (5.81)

dy(t)
dt

= −y(t)(γ −δx(t)),

where y(t) is the number of some predators (for example, wolves); x(t) is the number

of its prey (for example, rabbits); dy(t)/dt and dx(t)/dt represent the growth of the

two populations against time; t represents the time; and α , β , γ and δ are parameters

representing the interaction of the two species.

The equations have periodic solutions which do not have a simple expression

in terms of the usual trigonometric functions. However, an approximate linearized

solution yields a simple harmonic motion with the population of predators following

that of prey by 90◦.

In the model system, the predators thrive when there are plentiful prey but, ulti-

mately, outstrip their food supply and decline. As the predator population is low the

prey population will increase again. These dynamics continue in a cycle of growth

and decline. Hence the equation represents the change in the prey’s numbers given

by its own growth minus the rate at which it is preyed upon; the change in the preda-

tor population as the growth of the predator population, minus natural death. As the

predator population is low the prey population will increase again. These dynamics

continue in a cycle of growth and decline.

There are two equilibria when the system is solved for x and y. The above system

of equations yields to E1 = (0;0) and E2 = (λ/δ ;α/β ).
The stability of the equlibrium point E1 is of importance. If it were stable, non-

zero populations might be attracted towards it. However, as the fixed point in origin

is a saddle point, and hence unstable, we find that the extinction of both species is

difficult in the model.

The second fixed point E2 is not hyperbolic, so no conclusions can be drawn from

the linear analysis. However, the system admits a constant of motion and the level

curves are closed trajectories surrounding the fixed point. Consequently, the levels

of the predator and prey populations cycle, and oscillate around this fixed point.

The fractional-order Lotka-Volterra (or fractional-order predator-prey model)

system was proposed and described as (Ahmed et al., 2007):

0Dq
t x(t) = x(t)(α − rx(t)−βy(t))

0Dq
t y(t) = −y(t)(γ −δx(t)), (5.82)
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where 0 < q � 1, x � 0, y � 0 are prey and predator densities, respectively, and all

constants r, α , β , γ and δ are positive. For r = 0 and q = 1 we obtain a well-known

model (5.81). The stability analysis and numerical solutions of such kind of system

have been studied (Ahmed et al., 2007).

In the paper (Samardzija and Greller, 1988) was proposed a two-predator and

one-prey generalization of the Lotka-Volterra system. We assume its fractional-

order modification as follows:

0Dq1
t x(t) = ax(t)−bx(t)y(t)+ ex2(t)− sz(t)x2(t),

0Dq2
t y(t) = −cy(t)+dx(t)y(t), (5.83)

0Dq3
t z(t) = −pz(t)+ sz(t)x2(t),

where a,b,c,d,e, p,s are model parameters and q1,q2,q3 are fractional orders.

When we consider p = 0, s = 0, q1 = q2 and e =−r in the general model (5.83), we

obtain the fractional-order (one predator and one prey) Lotka-Volterra model (5.82)

upon the substitutions α ≡ a, β ≡ b, γ ≡ c, and δ ≡ d.

The proposed fractional-order Lotka-Volterra system (5.83) has five equilibrium

points: E1 = (0;0;0), E2 = (−a/e;0;0), E3 = (
√

sp/s;0;(a + (e
√

sp)/s)/
√

sp),
E4 = (−√

sp/s;0;−(a− (e
√

sp)/s)/
√

sp), and E5 = (c/d;(da+ ec)/db;0);
The Jacobian matrix of the system (5.83) for equilibrium E∗ = (x∗,y∗,z∗) is

J =

⎡⎣a−by∗ +2ex∗ −2sz∗x∗ −bx∗ −sx∗2

dy∗ −c+dx∗ 0

2sx∗z∗ 0 −p+ sx∗2

⎤⎦ . (5.84)

Numerical solution of the fractional-order Lotka-Volterra system (5.83) is given

as follows:

x(tk) = (x(tk−1)(a−by(tk−1)+ ex(tk−1)− sz(tk−1)x(tk−1)))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (−cy(tk−1)+dx(tk)y(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.85)

z(tk) =
(−pz(tk−1)+ sz(tk−1)x2(tk)

)
hq3 −

k

∑
j=v

c(q3)
j z(tk− j),

where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i
are calculated according to the relation (2.54).

Let us consider the following system parameters a = 2,b = 1,c = 3,d = 1,e =
0, p = 0,s = 0 and derivative orders q1 = q2 = q3 = 1 and q1 = q2 = q3 = 0.9,

respectively. For these parameters the system (5.83) has two equilibria E1 = (0;0)
and E2 = (3;2) and their corresponding eigenvalues are λ1 = 2 and λ2 = −3 for E1
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and λ1,2 = ±2.4495 j for E2. Equilibrium E1 is a saddle point and equilibrium E2 is

a center. The fixed point E2 is not hyperbolic.

In Fig. 5.51 and Fig. 5.52 are depicted phase trajectories for various derivative

orders q̄ = 1.0 and q̄ = 0.9, respectively, for simulation time 60s, time step h = 0.005

and for the initial conditions: (x(0),y(0),z(0)) = (1,2,0).
Let us consider the following system parameters a = 1,b = 1,c = 1,d = 1,e =

2, p = 3,s = 2.7 and orders q1 = q2 = q3 = 0.95.

In Fig. 5.53 and Fig. 5.54 are depicted phase trajectories of the fractional-order

Lotka-Volterra system (5.83) for orders q1 = q2 = q3 = 0.95, and parameter a =
1,b = 1,c = 1,d = 1,e = 2, p = 3,s = 2.7, for simulation time 200s, time step h =
0.005, and for the initial conditions: (x(0),y(0),z(0)) = (1,1.4,1). We can observe

the so-called “fractal torus” (Samardzija and Greller, 1988).

For the above parameters we obtain the following values of equilibrium points

E1 =(0;0;0), E2 =(−0.5;0;0), E3 =(−1.0540;0;0.3893), E4 =(1.0540;0;1.0921),
and E5 = (1;3;0). The corresponding eigenvalues of the Jacobian matrix (5.84) eval-

uated at equilibrium points are: λ1 = −3, λ2 = −1, λ3 = 1 for E1, λ1 −−1, λ2 =
−1.5, λ3 = −2.325 for E2, λ1 ≈ −3.1266, λ2 ≈ 2.12661, λ3 ≈ −2.05409 for E3,

λ1 = 0.5409, λ2,3 ≈−0.50±4.2894 j for E4, and λ1 = −0.3, λ2,3 ≈ 1.0±1.4142 j
for E5. The equlibrium E1 is saddle point, the equilibrium E2 is stable node, the

equlibrium E3 is saddle point, the equilibria E4 and E5 are saddle-focus points.

Fig. 5.51 Phase plane x−y trajectory (limit cycle) for the Lotka-Volterra system with orders q1 =
q2 = 1.0, q3 = 0, and parameters a = 2,b = 1,c = 3,d = 1,e = 0, p = 0,s = 0.
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Fig. 5.52 Phase plane x−y trajectory for the Lotka-Volterra with fractional-orders q1 = q2 = q3 =
0.9, and parameters a = 2,b = 1,c = 3,d = 1,e = 0, p = 0,s = 0.

Fig. 5.53 Phase trajectory of the Lotka-Volterra system with orders q1 = q2 = q3 = 0.95 and
parameters a = 1,b = 1,c = 1,d = 1,e = 2, p = 3,s = 2.7 in state space.
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Fig. 5.54 Phase trajectory for the Lotka-Volterra with fractional-orders q1 = q2 = q3 = 0.95, and
parameters a = 1,b = 1,c = 1,d = 1,e = 2, p = 3,s = 2.7 in state plane x− z.

The characteristic equation of the linearized system (5.83) at the equlibrium point

E1 is

(λ 95 −1)(λ 95 +1)(λ 95 +3) = 0,

with unstable root λ1 = 1. The characteristic equation at equilibrium E2 is

(λ 95 +1.0)(λ 95 +1.5)(λ 95 +2.3250) = 0,

with stable roots. The characteristic equation of the linearized system (5.83) at equi-

librium E3 is

λ 285 +3.054092λ 190 −4.59501λ 95 −13.657888 = 0,

with unstable root λ1 ≈ 1.0080. The characteristic equation of the linearized system

at equilibrium E4 is

λ 285 +0.945907λ 190 +18.595018λ 95 −1.008778 = 0,

with unstable root λ1 ≈ 0.9698. Finally, the characteristic equation at equilibrium

point E5 is

λ 285 −1.7λ 190 +2.4λ 95 +0.9 = 0,
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with unstable roots λ1,2 ≈ 1.0057±0.0101 j, because |arg(λ1,2)| = 0.0101 < π/2m,

where m = 100 (LCM of orders denominator). The condition for the chaotic system

is satisfied.

The “fractal torus” attractor exhibited by the system (5.83) for certain values

of the parameters and orders is interesting because it exhibits a structure entirely

different from attractors such as, for instance, the Rössler or Lorenz attractors. Nu-

merical simulations showed that different initial conditions often lead to different

fast manifolds.

The system described in this section suggests that it is a reasonable biological or

chemical model. It could be modified also to one-predator and two-prey scheme.

5.14 Fractional-Order Financial System

The chaotic phenomenon in macro economics was found in 1985. The continuos

economical system was described and analyzed (Ma and Chen, 2001a,b). The sim-

plified financial model is defined as:

dx(t)
dt

= z(t)+(y(t)−a)x(t),

dy(t)
dt

= 1−by(t)− x(t)2, (5.86)

dz(t)
dt

= −x(t)− cz(t),

where a is the saving amount, b is the cost per investment, and c is the elasticity of

demand of commercial market. The state variables are: x(t) is the interest rate, y(t)
is the investment demand, and z(t) is the price index.

The system (5.86) has three equilibrium points: E1 = (0;1/b;0),

E2 = (
√

(c−b−abc)/c;(1+ac)/c;−(1/c)
√

(c−b−abc)/c,

E3 = (−
√

(c−b−abc)/c;(1+ac)/c;(1/c)
√

(c−b−abc)/c.

The Jacobian matrix of the system (5.86), evaluated at the equilibrium E∗ =
(x∗,y∗,z∗), is given by

J =

⎡⎢⎢⎢⎣
−a+ y∗ x∗ 1

−2∗ −b 0

−1 0 −c

⎤⎥⎥⎥⎦ . (5.87)

The fractional-order financial system is described as follows (Chen, 2008):
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0Dq1
t x(t) = z(t)+(y(t)−a)x(t),

0Dq2
t y(t) = 1−by(t)− x(t)2, (5.88)

0Dq3
t z(t) = −x(t)− cz(t),

where the total order of the system is denoted by q̄ = (q1,q2,q3).
The numerical solution of the fractional-order financial system has the following

form:

x(tk) = (z(tk−1)− (y(tk−1)−a)x(tk−1))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) =
(
1−by(tk)− x2(tk)

)
hq2 −

k

∑
j=v

c(q2)
j y(tk− j), (5.89)

z(tk) = (−x(tk)− cz(tk−1))hq3 −
k

∑
j=v

c(q3)
j z(tk− j),

where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i
are calculated according to the relation (2.54).

Let us consider the following parameters of the system (5.88): a = 1.0, b = 0.1
and c = 1.0. The corresponsing eigenvalues for the system equilibrium E1 =
(0;10;0) are: λ1 ≈ 8.898979, λ2 ≈ −0.8989794, and λ3 ≈ −0.1. It is a sad-

dle point. For the equilibrium points E2 = (0.894427;2;−0.894427) and E3 =
(−0.894427;2;0.894427) they are: λ1 ≈ −0.7608747 and λ2,3 ≈ 0.3304373 ±
1.411968 j. It is a saddle-focus point. Because it is an unstable equilibrium, the

condition for chaos is satisfied and chaotic system (5.88) with the above parame-

ters can exhibit chaotic behavior. The minimal commensurate order of the system is

q > 0.8536.

Assume the commensurate order q1 = q2 = q3 = 0.9 of the system (5.88) with

the parameters a = 1.0, b = 0.1, and c = 1.0. The characteristic equation of the

linearized system for equilibrium E1 is

λ 27 −7.9λ 18 −8.8λ 9 −0.8 = 0

and the unstable root for the equilibrium E1 is λ1 ≈ 1.2749. The characteristic equa-

tion of the linearized system for equilibria E2 and E3 is

λ 27 +0.1λ 18 +1.6λ 9 +1.6 = 0

and unstable eigenvalues for equilibria E2 and E3 are λ1,2 ≈ 1.0306±0.1547 j, be-

cause |arg(λ1,2)| = 0.1490 < π/2m, where m = 10 (LCM of orders denominator).

In Fig. 5.55 is depicted the simulation result of the financial system (5.88) for the

following parameters: a = 1, b = 0.1, and c = 1.0, orders q1 = 0.9, q2 = 0.9, q3 =
0.9, and computational time 200s, for time step h = 0.005.
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Fig. 5.55 Simulation result of the fractional-order financial system (5.88) in state space for the
initial conditions (x(0),y(0),z(0)) = (2,−1,1).

Assume the incommensurate order q1 = 1.0, q2 = 0.95, q3 = 0.9 of the system

(5.88) with the parameters a = 1.0, b = 0.1, and c = 1.0. The characteristic equation

of the linearized system for equilibrium E1 is

λ 285 +λ 195 +1/10λ 190 −9λ 185 +1/10λ 100 −8λ 95 −0.9λ 90 −0.8 = 0

and unstable root for the equilibrium E1 is λ1 ≈ 1.0221. The characteristic equation

of the linearized system for equilibria E2 and E3 is

λ 285 +λ 195 +1/10λ 190 −λ 185 +1/10λ 100 +1.5λ 90 +1.6 = 0

and unstable eigenvalues for equilibria E2 and E3 are λ1,2 ≈ 1.0035±0.0139 j, be-

cause |arg(λ1,2)| = 0.0138 < π/2m, where m = 100 (LCM of orders denominator).

In Fig. 5.56 are depicted the simulation results of the financial system (5.88)

for the following parameters: a = 1.0, b = 0.1, and c = 1.0, orders q1 = 1.0, q2 =
0.95, q3 = 0.9, and computational time 200s, for time step h = 0.005.

Investigation of chaos in various cases of the fractional-order financial system

and its cross-validation with the largest Lyapunov exponent was done (Chen, 2008).

The lowest order at which this system yielded chaos was 2.35.

In the next chapter we will use this system as a controlled system for the sliding

mode control strategy.
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Fig. 5.56 Simulation result of the fractional-order financial system (5.88) in state space for the
initial conditions (x(0),y(0),z(0)) = (2,−1,1).

5.15 Fractional-Order CNN

The basic circuit unit of the Cellular Neural Network (CNN) is a cell. The CNN

was introduced by L. O. Chua in 1988. It contains linear and non-linear circuit ele-

ments, which typically are: linear capacitor, linear resistors, linear and non-linear

controlled sources, and independent sources. Any cell in the CNN is connected

only to its neighbor cells. Theoretically we can define the CNN of any dimension,

e.g. two-dimensional array of M ×N, having M rows and N columns. We call the

cell on the i-th row and the j-th column the cell C(i, j). Observe from Fig. 5.57

that each cell C(i, j) contains one independent voltage source Ei, j, one indepen-

dent current source I, one linear capacitor C, two linear resistors Rx and Ry, con-

trolling input voltage ui j, state voltage of the cell xi j, feedback from the output

voltage yi j of each neighbor cell C(k, l). In fact each cell C(i, j) mutually inter-

acts with all the cells belonging to its neighbors Nr(i, j) by means of the voltage-

controlled current source Ixy(i, j;k, l) = A(i, j;k, l)ykl , Ixu(i, j;k, l) = B(i, j;k, l)ukl
and Ixx(i, j;k, l) =C(i, j;k, l)xkl . The constant coefficients A(i, j;k, l), B(i, j;k, l) and

C(i, j;k, l) are known as the cloning templates. If they are equal for each cell, they

are called space-invariant. The CNN is described by the following state equation of

all its cells (Chua and Roska, 1993):
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Fig. 5.57 The CNN cell

C
dxi j(t)

dt
= − 1

Rx
xi j(t)+ ∑

C(k,l)∈Nr(i, j)
A(i, j;k, l)ykl(t)

+ ∑
C(k,l)∈Nr(i, j)

B(i, j;k, l)ukl(t)+C(i, j;k, l)xkl(t)+ I, (5.90)

with xi j(0) = xi j0, C > 0, Rx > 0, 1 ≤ i ≤ M, and 1 ≤ j ≤ N, where

Nr(i, j) = {C(k, l) : max(|k− i|− |l − j|) ≤ r}

is the r-neighborhood. Input equation is: ui j(t) = Ei j. Output equation is:

f (xi j) = yi j(t) =
1

2
(|xi j(t)+1|− |xi j(t)−1|). (5.91)

This model with direct dependence of state variable on the state of the neighboring

cells is known as a state-controlled CNN. Such kind of CNNs is also able to show

chaotic behavior (Chua and Roska, 1993; Biey et al., 2003; Zou and Nossek, 1993).

The only non-linear element in each cell is a piecewise-linear voltage-controlled

current source: Iyx = (1/Ry) f (xi j).
In addition, in this section we derive the fractional-order model of the CNN de-

scribed by (5.90). For this purpose we will consider the general model of a capacitor

described by Equation (2.75). Westerlund and Ekstam provided in their work (West-

erlund and Ekstam, 1994) the table of various capacitor dielectric with appropriate

constant m (derivative order), which has been obtained experimentally by measure-

ments. Carlson also studied, in 1963, the fractional capacitor and appropriate ap-

proximation technique for its model (Carlson and Halijak, 1963).

Applying the Kirchhoff law and the relation (2.75) to standard model of the CNN

which is described by Equation (5.90), we obtain a fractional-order model of the

CNN in the following form (Petráš, 2006):



170 5 Fractional-Order Chaotic Systems

C
dmxi j(t)

dtm = − 1

Rx
xi j(t)+ ∑

C(k,l)∈Nr(i, j)
A(i, j;k, l)ykl(t)

+ ∑
C(k,l)∈Nr(i, j)

B(i, j;k, l)ukl(t)+C(i, j;k, l)xkl(t)+ I, (5.92)

with xi j(0) = xi j0, C > 0, 0 < m < 1, Rx > 0, 1 ≤ i ≤ M, and 1 ≤ j ≤ N.

In the works (Arena at al., 1998; Arena et al., 2000), the parameter m is 1 < m <
1.5 and two-cell CNN was studied. Considering that 0 < m < 1 and the fact that we

would like to study the behavior of system with the total order less than three, we

have to consider three-cell fractional-order CNN. Referring to the general definition

of CNN given by (5.92) and choosing the opposite-sign template we obtain the

following three-cell CNN (M = 3, N = 1, C = 1, R = 1, and ukl = 0):

0Dq1
t x1(t) = −x1(t)+ p1 f (x1(t))− s f (x2(t))− s f (x3(t)),

0Dq2
t x2(t) = −x2(t)− s f (x1(t))+ p2 f (x2(t))− r f (x3(t)), (5.93)

0Dq3
t x3(t) = −x3(t)− s f (x1(t))+ r f (x2(t))+ p3 f (x3(t)),

where p1 > 1, p2 > 1, p3 ≥ 1, r > 0, and s > 0 are the CNN parameters, q1, q2, and

q3 are the derivative orders for each cell (related to the capacitor order m).

Let us assume that we have the three-identical-cell CNN described by Eqs.

(5.93), with fractional commensurate order q1 = q2 = q3 = 0.99 (orders of real ana-

log capacitors). We can use the relations (2.53) and (2.54) to derive a numerical

solution of the fractional-order CNN described by (5.93) as follows:

x1(tk) = (−x1(tk−1)+ p1 f (x1(tk−1))− s f (x2(tk−1))− s f (x3(tk−1)))hq1

−
k

∑
j=v

c(q1)
j x1(tk− j),

x2(tk) = (−x2(tk−1)− s f (x1(tk))+ p2 f (x2(tk−1))− r f (x3(tk−1)))hq2

−
k

∑
j=v

c(q2)
j x2(tk− j), (5.94)

x3(tk) = (−x3(tk−1)− s f (x1(tk))+ r f (x2(tk))+ p3 f (x3(tk−1)))hq3

−
k

∑
j=v

c(q3)
j x3(tk− j),

where a nonlinear function f (.) is defined by (5.91), Tsim is the simulation time,

k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x1(0), x2(0), x3(0)) is the start point (initial

conditions).
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Fig. 5.58 State space trajectory of the CNN (5.93) for the parameters: p1 = 1.24, p2 = 1.1, p3 =
1, s = 3.21, r = 4.4, orders q1 = q2 = q3 = 0.99, with initial conditions: (x1(0),x2(0),x3(0)) =
(0.1,0.1,0.1).

The simulation result for time step h = 0.005 and simulation time Tsim = 100s
is depicted in Fig. 5.58. The result shows the chaotic double scroll attractor of the

three-cell fractional-order CNNs (5.93) for the parameters p1 = 1.24, p2 = 1.1, p3 =
1, s = 3.21, r = 4.4, and system orders q1 = 0.99, q2 = 0.99, and q3 = 0.99 with the

initial conditions: (x1(0),x2(0),x3(0)) = (0.1,0.1,0.1).

5.16 Fractional-Order Volta’s System

The system was discovered by Volta – a student at the Department of Physics, Gen-

ova University, in 1984, when writing his thesis with Prof. Antonio Borsellino and

Dr. Francisco Fu Arcardi.

Volta’s system is described by the system of state differential equations (Hao,

1989):

ẋ(t) = −x(t)−5y(t)− z(t)y(t),

ẏ(t) = −y(t)−85x(t)− x(t)z(t), (5.95)

ż(t) = 0.5z(t)+ x(t)y(t)+1.



172 5 Fractional-Order Chaotic Systems

The Lyapunov exponents (LE) of the system (5.95) computed according to the

method described in the work (Wolf et al., 1985) are: LE1 = 0.064979, LE2 =
−1.0708, and LE3 = −1.4936 for initial values (8, 2, 1).

Fig. 5.59 Chaotic attractor of Volta’s system (5.95) projected into 3D state space for initial condi-
tions (x(0),y(0),z(0)) = (8,2,1) and Tsim = 20s.

Fig. 5.60 shows the time histories of variables x(t), y(t), and z(t) of the system

(5.95), for Tsim = 10 s. In Fig. 5.59 is depicted a phase trajectory in 3D state-space

of Volta’s system (5.95) for Tsim = 20s starting from (x(0),y(0),z(0)) = (8,2,1).
In Fig. 5.61 are shown the phase trajectories, starting from (x(0),y(0),z(0)) =

(8,2,1), and projected into 2D phase planes, respectively.

Obviously, if the Laypunov exponent LE1 is positive and if we observe strange

attractors in Fig. 5.59 and Fig. 5.61, the system (5.95) has chaotic behavior toward

initial values (x(0),y(0),z(0)) = (8,2,1).
We can generalize Volta’s system (5.95) to the following form:

dx(t)
dt

= −x(t)−ay(t)− z(t)y(t),

dy(t)
dt

= −y(t)−bx(t)− x(t)z(t), (5.96)

dz(t)
dt

= cz(t)+ x(t)y(t)+1.

The Jacobian matrix of the system (5.96), evaluated at the equilibrium E∗ =
(x∗,y∗,z∗), is given by
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Fig. 5.60 Time responses of Volta’s system (5.95) to Tsim = 10s and (x(0),y(0),z(0)) = (8,2,1).
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Fig. 5.61 Phase plane projections of Volta’s system (5.95) for Tsim = 20s.
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J =

⎡⎢⎢⎣
−1 −a− z∗ −y∗

−b− z∗ −1 −x∗

y∗ x∗ c

⎤⎥⎥⎦ . (5.97)

When (a,b,c) = (5,85,0.5), Volta’s system shows chaotic behavior (Fig. 5.59

and Fig. 5.61). For these system parameters, Volta’s system has three quilib-

ria E1 = (0;0;−2), E2 = (−57.6282;−0.7202;−85.0124), E3 = (57.6282;0.7202;

−85.0124) and their corresponding eigenvalues are: λ1 ≈ 14.7797, λ2 ≈−16.7797,

λ3 = 0.5 for E1, λ1 = −2, λ2,3 ≈ 0.25 ± 57.6322 j for E2, and λ1 ≈ −10.6861,

λ2 ≈ 11.18617, λ3 −2 for E3.

Hence, the equilibria E1 and E3 are unstable saddle points. The equilibrium E2 is

a saddle-focus point. According to the stability conditions (4.40), where q = 1, we

have eigenvalues for equilibria E1, E2 and E3 in the unstable region and therefore we

can confirm the chaotic behavior of Volta’s systems (5.95) for the initial conditions

(x(0),y(0),z(0)) = (8,2,1).
Now, we consider the fractional-order Volta’s system, where integer-order deriva-

tives are replaced by fractional-order ones. The mathematical description of the

fractional-order chaotic system is expressed as (Petráš, 2009a):

0Dq1
t x(t) = −x(t)−ay(t)− z(t)y(t),

0Dq2
t y(t) = −y(t)−bx(t)− x(t)z(t), (5.98)

0Dq3
t z(t) = cz(t)+ x(t)y(t)+1,

where q1, q2, and q3 are the derivative orders. The total order of the system is q̄=(q1,

q2, q3).

For numerical solution of the chaotic system (5.98) we use the relationship

(2.53), which leads to approximation in FIR form. By setting N = [Tsim/h], we have

x(tk) = (−x(tk−1)−ay(tk−1)− z(tk−1)y(tk−1))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (−y(tk−1)−bx(tk)− x(tk)z(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.99)

z(tk) = (cz(tk−1)+ x(tk)y(tk)+1)hq3 −
k

∑
j=v

c(q3)
j z(tk− j),

where Tsim is the simulation time, k = 1,2,3, . . . ,N and (x(0),y(0),z(0)) is the start

point (initial conditions). The binomial coefficients c(qi)
j , ∀i are calculated according

to the relation (2.54).

When we assume the same orders of derivatives in state equations (5.98), i.e.

q1 = q2 = q3 ≡ q, we get a commensurate-order system. According to condition

(4.42) it is determined that the commensurate order q of derivatives has to be
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q > 0.99. It means that for system parameters (a,b,c) = (5,85,0.5), only for in-

teger order q = 1, chaos can be observed. If we would like to go to the frac-

tional (commensurate) order, we have to change the system parameters, e.g. for

system parameters (a,b,c) = (19,11,0.73), chaos can be observed if q > 0.977.

For these parameter sets, Volta’s system has three equilibria E1 = (0;0;−1.3698),
E2 = (−1.26310;−10.26032;−19.12310), E3 = (1.26310;10.26032;−19.12310)
and their corresponding eigenvalues are λ1 ≈ 12.0299, λ2 ≈ −14.0299, λ3 − 0.73

for E1, λ1 =−2, λ2,3 ≈ 0.3650±10.3313 j for E2, and λ1 ≈−7.2088, λ2 ≈ 7.93883,

λ3 = −2 for E3.

Hence, the equilibria E1 and E3 are saddle points and the equilibrium E2 is

saddle-focus point. The characteristic equation evaluated at equilibrium E1 is

λ 294 +127/100λ 196 −170.2406λ 98 +123.2098 = 0,

with unstable roots λ1 ≈ 0.9968 and λ2 ≈ 1.0257.

The characteristic equation evaluated at equilibrium E2 is

λ 294 +127/100λ 196 +105.40980λ 98 +213.7396 = 0,

with unstable roots λ1,2 ≈ 1.0240±0.0160 j, becasue |arg(λ1,2)| = 0.0157 < π/2m,

where m = 100 (LCM of orders denominator).

The characteristic equation evaluated at equilibrium E3 is

λ 294 +127/100λ 196 −58.6898λ 98 −114.45960 = 0,

with unstable root λ1 ≈ 1.0214.

According to the stability conditions (4.40), where q = 0.98, we have eigenvalues

of the equilibrium points E1, E2 and E3 in the unstable region and therefore we

can confirm the chaotic behavior of Volta’s systems (5.98) for the initial conditions

(8,2,1). Instability measure is 0.0157. It means that commensurate fractional-order

Volta’s system is chaotic.

In Fig. 5.62 is shown the chaotic behavior toward fractional-order system (5.98),

where system parameters are (a,b,c) = (19,11,0.73), commensurate order of the

derivatives is q = 0.98, the initial conditions are (x(0),y(0),z(0)) = (8,2,1) for

simulation time Tsim = 20s and time step h = 0.0005.

When we assume the different orders of derivatives in state equations (5.98), i.e.

q1 �= q2 �= q3, we get a general incommensurate-order system. There is no exact

condition for determining the orders to obtain chaotic behavior of the system. We

experimentally found the following orders (Petráš, 2010): q1 = 0.89, q2 = 1.10, and

q3 = 0.91 for system parameters (a,b,c) = (5,85,0.5).
The stability can be investigated according to characteristic equation (4.41). For

the above derivative orders and the system parameters, and for the Jacobian matrix

(5.97) evaluated at the equilibrium points E∗, Equation (4.41) becomes

det(diag([λ 89 λ 110 λ 91])−J) = 0, (5.100)
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Fig. 5.62 Chaotic attractor of Volta’s system (5.98) projected into 3D state space for initial con-
ditions (x(0),y(0),z(0)) = (8,2,1), parameters (a,b,c) = (19,11,0.73), orders (q1,q2,q3) ≡ (q =
0.98) and Tsim = 20s.

where the LCM is m = 100. The characteristic equation (5.100) evaluated at equi-

librium E1 is

λ 290 +λ 201 −1/2λ 199 +λ 180 −1/2λ 110 −248λ 91 −1/2λ 89 +124 = 0,

with unstable roots λ1 ≈ 1.0274 and λ2 ≈ 0.9924.

The characteristic equation evaluated at equilibrium E2 is

λ 290 −1/2λ 199 +λ 180 +3320.5186λ 89 +λ 201 +
0.01874λ 110 −0.127x10−28λ 91 +6643.0748 = 0,

with unstable roots λ1,2 ≈ 1.0411±0.0161 j, becasue |arg(λ1,2)| = 0.0155 < π/2m,

where m = 100 (LCM of orders denominator).

The characteristic equation evaluated at equilibrium E3 is

λ 290 −1/2λ 199 +λ 180 −0.5186λ 89 +λ 201 −
120.0187λ 110 +0.333×10−29λ 91 −239.0748 = 0,

which has unstable root λ1 = 1.0270.

Because the system has unstable roots, the system satisfies the necessary condi-

tion for exhibiting chaotic attractor. Instability measure is 2.137×10−4.
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Fig. 5.63 Chaotic attractor of Volta’s system (5.98) projected into 3D state space for initial con-
ditions (x(0),y(0),z(0)) = (8,2,1), parameters (a,b,c) = (5,85,0.5), orders (q1,q2,q3) ≡ q̄ ∈
(0.89,1.10,0.91) and Tsim = 20s.

In Fig. 5.63 is shown the chaotic behavior for fractional-order chaotic system

(5.98), where system parameters are (a,b,c) = (5,85,0.5), incommensurate orders

of the derivatives are: q1 = 0.89, q2 = 1.10, and q3 = 0.91, and the initial conditions

are (x(0),y(0),z(0)) = (8,2,1) for the simulation time Tsim = 20s and time step h =
0.0005. As we can see, behavior of the fractional-order Volta’s system is still chaotic

because we have observed double-scroll attractor (Tavazoei and Haeri, 2007b) and

total order of the system is q̄ = 2.9.

The state equations of the fractional-order Volta’s chaotic system (5.98) with

parameters (a,b,c) = (5,85,0.5) are given by using the integration operation and

the properties (2.50), and (2.51) and have form:

x(t) = 0D1−q1
t

(∫ t

0
[−x(t)−5y(t)− z(t)y(t)]dt

)
,

y(t) = 0D1−q2
t

(∫ t

0
[−y(t)−85x(t)− x(t)z(t)]dt

)
, (5.101)

z(t) = 0D1−q3
t

(∫ t

0
[0.5z(t)+ x(t)y(t)+1]dt

)
.
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The system model developed from the state equations (5.101) for system param-

eters (a,b,c) = (5,85,0.5) by using the Matlab/Simulink environment is depicted

in Fig. 5.64.

The simulation results for simulation time Tsim = 20 s obtained from model

(5.101) for real order q1 = 0.93, q2 = 0.99, and q3 = 0.98 are dipicted in Fig. 5.65.

As we can see, behavior of the fractional-order Volta’s system is chaotic because we

have observed double scroll attractor in x−y plane (Tavazoei and Haeri, 2007b) and

the total order of the system is q̄ = 2.9.

In Fig. 5.65 are shown the phase trajectories of the Simulink system model, start-

ing from (x(0), y(0), z(0))=(8, 2, 1), and projected into 2D phase planes, respectively.

1
s

Fig. 5.64 Matlab/Simulink block diagram (model) for fractional order Volta’s system (5.101).
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Fig. 5.65 Phase plane projections of fractional-order Volta’s system (5.101) for Tsim = 20s.
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Petráš I., 2006, A Note on the fractional-order cellular neural networks, Proc. of
the International Joint Conference on Neural Networks, July 16-21, Vancouver,

Canada, 1021–1024.

Petráš I., 2008, A note on the fractional-order Chua’s system, Chaos, Solitons and
Fractals, 38, 140–147.
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Petráš I. and Bednárová D., 2009, Fractional – order chaotic systems, Proc. of the
IEEE Conference on Emerging Technologies & Factory Automation, ETFA 2009,

September 22–25, Palma de Mallorca, Spain.
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