
Chapter 3
Fractional-Order Systems

3.1 Fractional LTI Systems

A general fractional-order system can be described by a fractional differential equa-

tion of the form

anDαny(t)+an−1Dαn−1y(t)+ · · ·+a0Dα0y(t)

= bmDβmu(t)+bm−1Dβm−1u(t)+ · · ·+b0Dβ0u(t), (3.1)

where Dγ ≡ 0Dγ
t denotes the Grünwald-Letnikov, the Riemann-Liouville or the Ca-

puto’s fractional derivative (Podlubny, 1999a). The corresponding transfer function

of incommensurate real orders has the following form (Podlubny, 1999a):

G(s) =
bmsβm + · · ·+b1sβ1 +b0sβ0

ansαn + · · ·+a1sα1 +a0sα0
=

Q(sβk)
P(sαk)

, (3.2)

or in the frequency domain it has form (Petráš et al., 2000):

G( jω) =
bm( jω)βm + · · ·+b1( jω)β1 +b0( jω)β0

an( jω)αn + · · ·+a1( jω)α1 +a0( jω)α0
=

Q(( jω)βk)
P(( jω)αk)

, (3.3)

where ak (k = 0, . . . ,n), bk (k = 0, . . . ,m) are constants, and αk (k = 0, . . . ,n), βk
(k = 0, . . . ,m) are arbitrary real or rational numbers and without loss of generality

they can be arranged as αn > αn−1 > · · · > α0, and βm > βm−1 > · · · > β0.

The incommensurate order system (3.2) can also be expressed in commensurate

form by the multivalued transfer function (Bayat and Afshar, 2008)

H(s) =
bmsm/v + · · ·+b1s1/v +b0

ansn/v + · · ·+a1s1/v +a0

, v > 1. (3.4)
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Note that every fractional-order system can be expressed in the form (3.4) and the

domain of the H(s) definition is a Riemann surface with v Riemann sheets (LePage,

1961).

In the particular case of commensurate order systems, it holds that αk = αk,βk =
αk,0 < α < 1,∀k ∈ Z, and the transfer function has the following form:

G(s) = K0
∑M

k=0 bk(sα)k

∑N
k=0 ak(sα)k

= K0
Q(sα)
P(sα)

. (3.5)

With N > M, the function G(s) becomes a proper rational function in the complex

variable sα which can be expanded in partial fractions of the following form:

G(s) = K0

[
N

∑
i=1

Ai

sα +λi

]
, (3.6)

where λi (i = 1,2, . . . ,N) are the roots of the pseudo-polynomial P(sα) or the system

poles which are assumed to be simple without loss of generality. The analytical

solution of the system (3.6) can be expressed as

y(t) = L−1

{
K0

[
N

∑
i=1

Ai

sα +λi

]}
= K0

N

∑
i=1

Aitα Eα,α(−λitα), (3.7)

where Eμ,ν(z) is the Mittag-Leffler function defined as (2.3).

A fractional-order plant to be controlled can be described by a typical n-term

linear homogeneous fractional-order differential equation (FODE) in time domain

an Dαn
t y(t)+ · · ·+a1 Dα1

t y(t)+a0 Dα0
t y(t) = 0, (3.8)

where ak (k = 0,1, . . . ,n) are constant coefficients of the FODE; αk (k = 0,1,2, . . . ,n)
are real numbers. Without loss of generality, assume that αn > αn−1 > · · ·> α0 ≥ 0.

The analytical solution of the FODE (3.8) is given by general formula in the form

(Podlubny, 1999a):

y(t) =
1

an

∞

∑
m=0

(−1)m

m!
∑

k0+k1+···+kn−2=m
k0≥0;... ;kn−2≥0

(m;k0,k1, . . . ,kn−2) (3.9)

×
n−2

∏
i=0

(
ai

an

)ki

Em(t,−an−1

an
;αn −αn−1,αn +

n−2

∑
j=0

(αn−1 −α j)k j +1),

where (m;k0,k1, . . . ,kn−2) are the multinomial coefficients and Ek(t,λ ; μ,ν) is the

function of Mittag-Leffler type introduced by Podlubny (Podlubny, 1999a). The

function is defined by

Ek(t,λ ; μ,ν) = tμk+ν−1E(k)
μ,ν(λ tμ), k = 0,1,2, . . . (3.10)
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where E(k)
μ,ν(z) is k-th derivative of the Mittag-Leffler function of two parameters

given by

E(k)
μ,ν(z) =

∞

∑
i=0

(i+ k)! zi

i! Γ (μi+ μk +ν)
, k = 0,1,2, . . . . (3.11)

The Laplace transform of the function Ek(t,±λ ;α,β ) is (Podlubny, 1999a):

L{Ek(t,±λ ;α,β )} =
k!sα−β

(sα ∓λ )k+1

for s > |λ |1/α .

The Laplace transforms for several other Mittag-Leffler type functions are sum-

marized as follows (Gorenflo et al., 2004; Magin et al., 2009; Podlubny, 1999a):

L{Eα(−λ tα)} =
sα−1

sα +λ
,

L{tα−1Eα,α(−λ tα)} =
1

sα +λ
, (3.12)

L{tβ−1Eα,β (−λ tα)} =
sα−β

sα +λ

for s > |λ |1/α .

A useful list of Laplace and inverse Laplace transforms of functions related to

fractional calculus is presented in Appendix B and in (Chen et al., 2001).

Consider a control function which acts on the FODE system (3.8) as follows:

an Dαn
t y(t)+ · · ·+a1 Dα1

t y(t)+a0 Dα0
t y(t) = u(t). (3.13)

By Laplace transform, we can get a fractional transfer function:

G(s) =
Y (s)
U(s)

=
1

ansαn + · · ·+a1sα1 +a0sα0
. (3.14)

The fractional-order linear time-invariant (LTI) system can also be represented by

the following state-space model (Matignon, 1998):

0Dq
t x(t) = Ax(t)+Bu(t),

y(t) = Cx(t),
(3.15)

where x ∈ Rn, u ∈ Rr and y ∈ Rp are the state, input and output vectors of the system

and A∈Rn×n, B∈Rn×r, C∈Rp×n, and q = [q1,q2, . . . ,qn]T are the fractional orders.

If q1 = q2 = · · · = qn ≡ α , system (3.15) is called a commensurate-order system,

otherwise it is an incommensurate-order system.

The state transition matrix is
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x(t) =
[

I+
Ax(0)

Γ (1+α)
tα +

A2x(0)
Γ (1+2α)

t2α + · · ·+ Akx(0)
Γ (1+ kα)

tkα + · · ·
]

=

(
∞

∑
k=0

Aktkα

Γ (1+ kα)

)
x(0) = φ(t)x(0). (3.16)

Similar to conventional observability and controllability concept, the controlla-

bility is defined as follows (Matignon and D’Andrea-Novel, 1996): System (3.15)

is controllable on [t0, t f inal ] if the controllability matrix

Ca = [B|AB|A2B| · · · |An−1B]

has rank n.

The observability is defined as follows (Matignon and D’Andrea-Novel, 1996):

System (3.15) is observable on [t0, t f inal ] if the observability matrix

Oa =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

CA2

...

CAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
has rank n.

A fractional-order system described by n-term fractional differential equation

(3.13) can be rewritten into the state-space representation in the form (Dorčák et al.,

2002; Yang and Liu, 2006):⎡⎢⎢⎢⎢⎢⎢⎣
0Dq1 x1(t)

0Dq2 x2(t)

...

0Dqn xn(t)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 · · · 0

0 0 1 0

...
...

...

−a0/an −a1/an · · · an−1/an

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
x1(t)

x2(t)

...

xn(t)

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

...

1/an

⎤⎥⎥⎥⎥⎥⎥⎦u(t)

y(t) =
[

1 0 · · · 0 0
]
⎡⎢⎢⎢⎢⎢⎢⎣

x1(t)

x2(t)

...

xn(t)

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.17)

where α0 = 0, q1 = α1, q2 = αn−1 − αn−2, . . . ,qn = αn − αn−1, and with initial

conditions:

x1(0) = x(1)
0 = y0, x2(0) = x(2)

0 = 0, . . .
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xi(0) = x(i)
0 =

{
y(k)

0 , if i = 2k +1,

0, if i = 2k,
i ≤ n. (3.18)

The n-term FODE (3.13) is equivalent to the system of Eqs. (3.17) with the initial

conditions (3.18) if Caputo’s derivative is considered.

3.2 Fractional Nonlinear Systems

In this book, we will consider the general incommensurate fractional-order nonlin-

ear system represented as follows:

0Dqi
t xi(t) = fi(x1(t),x2(t), . . . ,xn(t), t),
xi(0) = ci, i = 1,2, . . . ,n, (3.19)

where ci are initial conditions. The vector representation of (3.19) is:

Dqx = f(x), (3.20)

where q = [q1,q2, . . . ,qn]T for 0 < qi < 2, (i = 1,2, . . . ,n) and x ∈ Rn.

The equilibrium points of system (3.20) are calculated via solving the following

equation

f(x) = 0 (3.21)

and we suppose that E∗ = (x∗1,x
∗
2, . . . ,x

∗
n) is an equilibrium point of system (3.20).

3.3 Fractional-Order Controllers

3.3.1 Definition of Fractional-Order Controllers

The fractional-order PIλ Dδ (also PIλ Dμ controller) controller (FOC) was proposed

in (Podlubny, 1999a,b) as a generalization of the PID controller with integrator

of real order λ and differentiator of real order δ . The transfer function of such

controller in the Laplace domain has this form (Podlubny, 1999b; Podlubny et al.,

2002):

C(s) =
U(s)
E(s)

= Kp +Ti s−λ +Td sδ , (λ ,δ > 0), (3.22)

where Kp is the proportional constant, Ti is the integration constant and Td is the

differentiation constant.

As we can see in Fig. 3.1, the internal structure of the fractional-order controller

consists of the parallel connection, the proportional, integration, and derivative part

(Dorf and Bishop, 1990). The transfer function (3.22) corresponds in time domain
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K

Fig. 3.1 General structure of a PIλ Dδ controller.

to fractional differential equation (3.23)

u(t) = Kp e(t)+Ti 0D−λ
t e(t)+Td 0Dδ

t e(t), (3.23)

or discrete transfer function given below:

C(z) =
U(z)
E(z)

= Kp +
Ti

(ω(z−1))λ +Td(ω(z−1))δ , (3.24)

where ω(z−1) denotes the discrete operator, expressed as a function of the complex

variable z or the shift operator z−1.

Taking λ = 1 and δ = 1, we obtain a classical PID controller. If λ = 0 and Ti = 0,

we obtain a PDδ controller, etc. All these types of controllers are particular cases

of the fractional-order controller, which is more flexible and gives an opportunity to

better adjust the dynamical properties of the fractional-order control system.

It can also be mentioned that there are many other considerations of the fractional-

order controller (Xue and Chen, 2002). For example, we can mention several of

them:

• CRONE controller (1st generation) (Oustaloup, 1995), characterized by the

band-limited lead effect (Oustaloup, 1983):

C(s) = C0

(
1+ s/ωb

1+ s/ωh

)r

(3.25)

where 0 < ωb < ωh, C0 > 0 and r ∈ (0,1).
There are a number of real life applications of three generations of the CRONE

controller such as the car suspension control (Oustaloup et al., 1996), flexible

transmission (Oustaloup et al., 1995), and hydraulic actuator.
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• Fractional lead-lag compensator (Raynaud and Zergaı̈noh, 2000; Monje et al.,

2008), given by

C(s) = kc

(
s+1/λ
s+1/xλ

)r

= kcxr
(

λ s+1

xλ s+1

)r

, (3.26)

r ∈ R, 0 < x < 1.

• Non-integer integral and its application to control (Manabe, 1961);

• T ID compensator (Lurie, 1994), which has structure similar to a PID con-

troller but the proportional component is replaced with a tilted component having

a transfer function s to the power of (−1/n). The resulting transfer function of

the T ID controller has the form:

C(s) =
T

s1/n +
I
s
+Ds, (3.27)

where T , I and D are the controller constants and n is a non-zero real number,

preferably between 2 and 3. The transfer function (3.27) more closely approxi-

mates an optimal transfer function and an overall response is achieved, which is

closer to the theoretical optimal response determined by Bode (Bode, 1949).

3.3.2 Properties and Characteristics of Controller

It can be expected that PIλ Dδ controller (3.22) may enhance the systems control

performance due to more tuning knobs introduced, which is intuitively illustrated in

Fig. 3.2.

Fig. 3.2 PID controller: from points to plane.

The PIλ Dδ controller with complex zeros and poles located anywhere in the

left-hand s-plane may be rewritten as
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C(s) = K
(s/ωn)

δ+λ +(2ζ sλ )/ωn +1

sλ , (3.28)

where K is the gain, ζ is the dimensionless damping ratio and ωn is the natural

frequency. Normally, we choose ζ < 1. When ζ = 1, the condition is called critical

damping (Dorf and Bishop, 1990).

Example 3.1. : Let us consider the fractional-order controller (3.28) with the follow-

ing parameters: K = 6.5, ωn = 1, ζ = 0.5 and λ = δ = 0.5.

In Fig. 3.3 are shown the Bode plots of the fractional PIλ Dδ controller (3.28)

with the above-mentioned parameters.

Fig. 3.3 Bode plots of PIλ Dδ controller (3.28) with K = 6.5, ωn = 1, ζ = 0.5 and λ = δ = 0.5.

The slopes of the magnitude and the value of the phase for low and high fre-

quencies can be selected, which are related with the relative stability and the high

frequencies gained by Vinagre (2000). Asymptotically, at low frequency the slope

will be −λdB/dec and the phase will be −λ π
2 , and at high frequency the slope will

be δdB/dec and the phase will be δ π
2 .

For a wide class of controlled objects we recommend the fractional PInDδ con-

troller, which is a particular case of PIλ Dδ controller, where λ = n, n∈N and δ ∈ R.

Integer-order integrator is important for steady-state error cancellation but on the

other hand, the fractional integral is also important for obtaining a Bode’s ideal loop
transfer function response with constant phase margin for desired frequency range

(Aström, 2000; Bode, 1949; Manabe, 1961; Tustin et al., 1958).
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3.3.3 Design of Controller Parameters and Implementation

The tuning of PIλ Dδ controller parameters is determined according to the given

requirements. These requirements are, for example, the damping ratio, the steady-

state error (ess), dynamical properties, etc. One of the methods being developed is

the method of dominant roots (Petráš, 1999; Petráš and Dorčák, 2003), based on the

given stability measure and the damping ratio of the closed control loop. Assume

that the desired dominant roots are a pair of complex conjugate root as follows:

s1,2 = −σ ± jωd ,

designed for the damping ratio ζ and natural frequency ωn. The damping constant

(stability measure) is σ = ζωn and the damped natural frequency of oscillation

ωd = ωn
√

1−ζ 2. The design of parameters: Kp, Ti, λ , Td and δ can be computed

numerically from characteristic equation. More specifically, for simple plant model

P(s), this can be done by solving

min
Kp,Ti,λ ,Td ,δ

||C(s)P(s)+1||s=−σ± jωd .

Another possible way to obtain the controller parameters is using the tuning for-

mula, based on gain Am and phase Φm margins specifications for crossover fre-

quency ωcg. Gain and phase margins have always served as important measures

of robustness. The equations that define the phase margin and the gain crossover

frequency are expressed as (Monje et al., 2008; Vinagre, 2000):

|C( jωcg)P(ωcg)|dB = 0dB

arg(C( jωcg)P(ωcg)) = −π +Φm

The above equations are often used also for the so-called auto-tuning techniques. For

instance, relay auto-tuning process has been widely used in industrial application

and it was already modified for the fractional-order controllers (Monje et al., 2008).

Last but not least, we should mention the optimization algorithm based on the

integral absolute error (IAE) minimization (Podlubny, 1999b):

IAE(t) =
∫ t

0
|e(t)|dt =

∫ t

0
|w(t)− y(t)|dt,

where w(t) is the desired value of closed control loop and y(t) is the real value of

closed control loop. This method does not ensure the desired stability measure of the

closed control loop. Measure of stability has to be checked out additionally by some

known method as, for example, frequency method described in literature (Petráš and

Dorčák, 1999).

Implementation techniques for the FOC have been described in several works.

Some proposal can be found in the work by Vinagre (2000). An analogue implemen-
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tation was proposed in the book by Petráš et al. (2002) and a digital implementation

was suggested in the book by Caponetto et al. (2010).

It can be expected that PIλ Dδ controller (3.22) may enhance the systems control

performance due to more tuning knobs introduced. Actually, in theory, PIλ Dδ itself

is an infinite-dimensional linear filter due to the fractional order in differentiator or

integrator.

We comment that since PID control is ubiquitous in industry process control,

fractional-order PID control will also be ubiquitous when tuning and implementa-

tion techniques are well developed (Caponetto et al., 2010; Chen, 2006; Chen et al.,

2008, 2009; Monje et al., 2008; Petráš, 1999).
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Raynaud H. F. and Zergaïnoh A., 2000, State-space representation for fractional

order controllers, Automatica, 36, 1017–1021.



54 3 Fractional-Order Systems

Tustin A., Allanson J. T., Layton J. M. and Jakeways R. J., 1958, The design of

systems for automatic control of the position of massive objects, The Proceedings
of the Institution of Electrical Engineers, 105C.

Vinagre B. M., Podlubny I., Hernandez A., and Feliu V., 2000, On realization of

fractional-order controllers, Proc. of the Conference Internationale Francophone
d’Automatique, Lille, Jule 5-8, 945–950.

Xue D. and Chen Y. Q., 2002, A comparative introduction of four fractional order

controllers, Proc. of the 4th World Congress on Intelligent Control and Automa-
tion, June 10 - 14, Shanghai, China.

Yang C. and Liu F., 2006, A computationally effective predictor-corrector method

for simulating fractional order dynamical control system, Australian and New
Zealand Industrial and Applied Mathematics Journal, 47, C168–C184.


	Chapter 3 Fractional-Order Systems
	3.1 Fractional LTI Systems
	3.2 Fractional Nonlinear Systems
	3.3 Fractional-Order Controllers
	3.3.1 Definition of Fractional-Order Controllers
	3.3.2 Properties and Characteristics of Controller
	3.3.3 Design of Controller Parameters and Implementation

	References




