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parents Štefan and Erika, and my sister Petra
for their understanding and support.



Preface

The aim of the book is to present a survey of a new class of chaotic systems, the so-

called fractional-order chaotic systems. This book can also be used as a textbook

for courses related to nonlinear systems, fractional-order systems, etc. The book is

suitable for advanced undergraduate and graduate students. It is a sort of a guide to

fractional-order chaotic systems that features material from original research papers,

including the author’s own studies. The book is organized as follows:

Chapter 1 is a brief introduction to fractional-order chaotic systems.

Chapter 2 provides fundamentals of fractional calculus, its properties and integral

transfer methods. Three well-known definitions of fractional derivatives/integrals

and methods for their numerical approximation are presented.

Chapter 3 includes a presentation of fractional-order systems, their descrip-

tion and properties. Fractional linear time-invariant (LTI), nonlinear systems, and

fractional-order controllers are considered.

Chapter 4 is devoted to stability of the fractional-order (LTI and nonlinear) sys-

tems. The stability of interval fractional-order system is also investigated.

Chapter 5 contains a survey of various fractional-order chaotic systems with the

total order less than three. The well-known systems such as, for example, Chua’s

oscillator, Lorenz’s system, Rössler’s system, Duffing’s system, and some other sys-

tems, for instance, Volta’s system, are analyzed as well.

Chapter 6 begins with the introduction to control strategies of the fractional-order

chaotic systems. Three general approaches: feed-back control, sliding mode control,

and synchronization, are described. Other strategies are mentioned and discussed as

well.

Chapter 7 concludes this book by some additional remarks.

Appendix A lists Matlab functions used for simulation of the fractional-order

chaotic systems described in Chapter 5.

Appendix B lists a Laplace transform and inverse Laplace transform table of the

functions used in fractional calculus.

Košice, April, 2010 Ivo Petráš
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Chapter 1
Introduction

Fractional calculus is a topic being more than 300 years old. The idea of fractional

calculus has been known since the regular calculus, with the first reference proba-

bly being associated with Leibniz and L’Hospital in 1695 where half-order deriva-

tive was mentioned. In a correspondence between Johann Bernoulli and Leibniz

in 1695, Leibniz mentioned the derivative of general order. In 1730 the subject of

fractional calculus did not escape Euler’s attention. J. L. Lagrange in 1772 con-

tributed to fractional calculus indirectly, when he developed the law of exponents

for differential operators. In 1812, P. S. Laplace defined the fractional derivative by

means of integral and in 1819 S. F. Lacroix mentioned a derivative of arbitrary or-

der in his 700-page long text, followed by J. B. J. Fourier in 1822, who mentioned

the derivative of arbitrary order. The first use of fractional operations was made by

N. H. Abel in 1823 in the solution of tautochrome problem. J. Liouville made the

first major study of fractional calculus in 1832, where he applied his definitions to

problems in theory. In 1867, A. K. Grünwald worked on the fractional operations.

G. F. B. Riemann developed the theory of fractional integration during his school

days and published his paper in 1892. A. V. Letnikov wrote several papers on this

topic from 1868 to 1872. Oliver Heaviside published a collection of papers in 1892,

where he showed the so-called Heaviside operational calculus concerned with linear

generalized operators. In the period of 1900 to 1970 the principal contributors to the

subject of fractional calculus were, for example, H. H. Hardy, S. Samko, H. Weyl,

M. Riesz, S. Blair, etc. From 1970 to the present, they are for instance J. Spanier,

K. B. Oldham, B. Ross, K. Nishimoto, O. Marichev, A. Kilbas, H. M. Srivastava,

R. Bagley, K. S. Miller, M. Caputo, I. Podlubny, and many others (Cafagna, 2007;

Miller and Ross, 1993).

At present, the number of applications of fractional calculus rapidly grows. These

mathematical phenomena allow us to describe and model a real object more accu-

rately than the classical “integer” methods. The real objects are generally fractional

(Nakagava and Sorimachi, 1992; Oustaloup, 1995; Podlubny, 1999a; Westerlund,

2002), however, for many of them, the fractionality is very low. A typical example

of a non-integer (fractional) order system is the voltage-current relation of a semi-

infinite lossy transmission line (Wang, 1987) or diffusion of heat through a semi-
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infinite solid, where the heat flow is equal to the half-derivative of the temperature

(Podlubny, 1999a).

The main reason for using integer-order models was the absence of solution

methods for fractional differential equations. At present, there are many methods

for approximation of the fractional derivative and integral, and fractional calcu-

lus can be easily used in wide areas of applications. Fractional-order calculus has

played an important role in physics (Parada et al., 2007; Torvik and Bagley, 1984),

electrical engineering (electrical circuits theory and fractances) (Arena et al., 2000;

Bode, 1949; Carlson and Halijak, 1964; Nakagava and Sorimachi, 1992; West-

erlund, 2002), control systems (Axtell and Bise, 1990; Dorčák, 1994; Podlubny,

1999b; Oustaloup, 1995), robotics (Marcos et al., 2008), signal processing (Tseng,

2007; Vinagre et al., 2003), chemical mixing (Oldham and Spanier, 1974), bioengi-

neering (Magin, 2006), and so on. One of the very important areas of application is

the chaos theory (West et al., 2002; Zaslavsky, 2005).

At this point we have to note that various mathematical definitions of chaos are

known, but all of them express close characteristics of the dynamic systems that are

concerned with supersensitivity or sensitive dependence on the initial conditions,

which are characterized by Lyapunov instability as a main property of the chaotic

oscillation. Roughly speaking, chaotic behaviour arises whenever the system trajec-

tories are globally bounded and locally unstable (Andrievskii and Fradkov, 2003).

The fundamentals of a new mathematical apparatus for studying the chaotic phe-

nomena and the theory of nonlinear oscillations were laid in 1960’s and 1970’s by

A. Poincaré, B. Van der Pol, A. A. Andronov, N. M. Krylov, A. N. Kolmogorov,

D. V. Anosov, Ya. G. Sinai, V. K. Mel’nikov, Yu. I. Neimark, L. P. Shil’nikov,

G. M. Zaslavsky, and their collaborators. From that time on, the chaotic behavior

has been discovered in numerous systems in mechanics, chemistry, physics, biology

and medicine, electronic circuits, economics and so on (Andrievskii and Fradkov,

2004).

It is well known that chaos cannot occur in continuous nonlinear systems with the

total order less than three (Silva, 1993). This assertion is based on the usual concepts

of order, such as the number of states in a system or the total number of separate

differentiations or integrations in the system. The model of chaotic system can be

rearranged to three single differential equations, where the equations contain the

non-integer (fractional) order derivatives. The total order of the system is the sum

of each particular order instead of three. To put this fact into context, we can con-

sider the fractional-order dynamical model of the system. Hartley et al. introduced

the fractional-order Chua’s system (Hartley et al., 1995). In the work (Arena et al.,

1998), the fractional-order cellular neural network (CNN) was considered, the frac-

tional Duffing’s system was presented in the work (Gao and Yu, 2005), while other

fractional-order chaotic systems were described in many other works (e.g., Ahmad,

2005; Deng et al., 2007; Guo, 2005; Li and Chen, 2004; Lu, 2005a,b; Nimmo and

Evans, 1999, etc.). In all these cases chaos was exhibited in a system with total order

less than three.

The term of “system order” should be mentioned and explained as well. The

system order is not equal to the number of differential equations if we consider frac-
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tional differential equations. The system order is equal to the highest derivative of

the fractional differential equation of the mathematical model. Arena et al. (1998)

and Hartley et al. (1995) simply replaced the integer-order derivative by fractional

order one. For numerical simulation they used an approximation method proposed

by Charef et al. (1992). This approximation of fractional-order operators is in the

form of rational polynomial of high order in the frequency domain. Such approxi-

mation may produce the so-called fake chaos. As what has been shown in the works

(Tavazoei and Haeri, 2007, 2008), it is possible to calculate a minimal order of sys-

tem, where chaos is still observed. In other cases it is a numerical error, which leads

to the fake chaos. It is very important to take this into account.

The above considerations and conclusions in the aforementioned works by Arena

et al. and Hartley et al. lead to several notes. We will discuss three of them. The first

note is on fractional order of derivatives. We cannot simply replace the integer order

with fractional order without any reasons. Some appropriate reasons are described in

this book. It could be a fractional order in the capacitor model in the case of electrical

chaotic circuits. The second note is on approximation methods used. If we use a high

order approximation method then the total order of the system is not equal to the

highest derivative of the fractional differential equation but is equal to the highest

order of approximation polynomial. Moreover, the system could produce fake chaos

through numerical errors in calculations. The third note is on system order. In most

of the mentioned papers, the terms of system order, model order, number of initial

conditions, number of state space variables and methods for rewriting the state-

space representation to fractional differential equations are not clearly defined. In

this book, we will discuss how to define them.

This book is also presented a collection of the Matlab functions created for nu-

merical simulation of the described fractional-order chaotic systems. The function

codes are downloadable from the website of MathWorks, Inc. and their utilization

is described and commented in Appendix A of this book.
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Chapter 2
Fractional Calculus

2.1 Special Functions

Here, we should mention the most important function used in fractional calculus —

Euler’s Gamma function, which is defined as

Γ (n) =
∫ ∞

0
tn−1 e−t dt. (2.1)

This function is generalization of a factorial in the following form:

Γ (n) = (n−1)! (2.2)

Another function, which plays a very important role in the fractional calculus,

was in fact introduced by Humbert and Agarwal in 1953. It is a two-parameter

function of the Mittag-Leffler type defined as (Gorenflo et al., 1998):

Eα,β (z) =
∞

∑
k=0

zk

Γ (αk +β )
, α > 0, β > 0. (2.3)

There are some relationships (e.g. in Djrbashian, 1993; Podlubny, 1999):

E1,1(z) = ez, E1,2(z) =
ez −1

z
,

E2,1(z) = cosh(
√

z), E2,1(−z2) = cos(z),

E1/2,1(
√

z) =
2√
π

e−zerfc(−√
z).

For β = 1 we obtain the Mittag-Leffler function in one parameter (Mittag-Leffler,

1903):

Eα,1(z) =
∞

∑
k=0

zk

Γ (αk +1)
≡ Eα(z). (2.4)
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For the numerical evaluation of the Mittag-Leffler function with the default ac-

curacy set to 10−6 the Matlab routine written by Podlubny and Kacenak can be

used (Podlubny and Kacenak, 2005). Figures 2.1, 2.2 are plotted some well-known

functions (cos(z) and ez).

Fig. 2.1 Mittag-Leffler function for parameters E1,1(z), where −2 < z < 2

Fig. 2.2 Mittag-Leffler function for parameters E2,1(−z2), where 0 < z < 2π



2.3 Grünwald-Letnikov Fractional Integrals and Derivatives 9

2.2 Definitions of Fractional Derivatives and Integrals

Fractional calculus is a generalization of integration and differentiation to noninteger-

order fundamental operator aDα
t , where a and t are the bounds of the operation and

α ∈ R. The continuous integro-differential operator is defined as

aDα
t =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dα

dtα , α > 0,

1, α = 0,∫ t

a
(dτ)α , α < 0.

The three most frequently used definitions for the general fractional differinte-

gral are: the Grünwald-Letnikov (GL) definition, the Riemann-Liouville (RL) and

the Caputo definitions (Miller and Ross, 1993; Oldham and Spanier, 1974; Pod-

lubny, 1999). Other definitions are connected with well-known names as, for in-

stance, Weyl, Fourier, Cauchy, Abel, Nishimoto, etc.

In this book we will consider mainly the GL, the RL, and the Caputo’s defini-

tions. This consideration is based on the fact that for a wide class of functions, the

three best known definitions — GL, RL, and Caputo — are equivalent under some

conditions (Podlubny, 1999).

2.3 Grünwald-Letnikov Fractional Integrals and Derivatives

Let us consider the continuous function f (t). Its first derivative can be expressed as

d
dt

f (t) ≡ f ′(t) = lim
h→0

f (t)− f (t −h)
h

(2.5)

By using Eq. (2.5) twice, we obtain a second derivative of the function f (t) in the

form

d2

dt2
f (t) ≡ f ′′(t) = lim

h→0

f ′(t)− f ′(t −h)
h

= lim
h→0

1

h

{
f (t)− f (t −h)

h
− f (t −h)− f (t −2h)

h

}
= lim

h→0

f (t)−2 f (t −h)+ f (t −2h)
h2

. (2.6)

With (2.5) and (2.6) we can get a third derivative of the function f (t) as

d3

dt3
≡ f ′′′(t) = lim

h→0

f (t)−3 f (t −h)+3 f (t −2h)− f (t −3h)
h3

. (2.7)



10 2 Fractional Calculus

According to this rule we can write a general formula for n-derivative of the function

f (t) by t for n ∈ N, j > n in the following form:

dn

dtn f (t) ≡ f (n)(t) = lim
h→0

1

hn

n

∑
j=0

(−1) j
(

n
j

)
f (t − jh). (2.8)

The relation (2.8) expresses a linear combination of function values f (t) in variable

t. Binomial coefficients with alternating signs for positive value of n are defined as(
n
j

)
=

n(n−1)(n−2) · · ·(n− j +1)
j!

=
n!

j!(n− j)!
. (2.9)

In the case of negative value of n we have(−n
j

)
=

−n(−n−1)(−n−2) · · ·(−n− j +1)
j!

= (−1) j
[

n
j

]
, (2.10)

where
[

n
j

]
is defined as [

n
j

]
=

n(n+1) · · ·(n+ j−1)
j!

(2.11)

If we substitute −n in (2.8) for n, we can write

d−n

dt−n f (t) ≡ f (−n)(t) = lim
h→0

1

hn

n

∑
j=0

[
n
j

]
f (t − jh), (2.12)

where n is a positive integer number.

According to Eqs. (2.5)—(2.8) we can write the fractional-order derivative defi-

nition of order α , (α ∈ R) by t, which has the form

Dα
t f (t) = lim

h→0

1

hα

∞

∑
j=0

(−1) j
(

α
j

)
f (t − jh). (2.13)

For binomial coefficients calculation we can use the relation between Euler’s

Gamma function and factorial, defined as(
α
j

)
=

α!

j!(α − j)!
=

Γ (α +1)
Γ ( j +1)Γ (α − j +1)

(2.14)

for
(α

0

)
= 1.

If we consider n = t−a
h , where a is a real constant, which expresses a limit value,

we can write

aDα
t f (t) = lim

h→0

1

hα

[ t−a
h ]

∑
j=0

(−1) j
(

α
j

)
f (t − jh), (2.15)
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where [x] means the integer part of x, a and t are the bounds of operation for

aDα
t f (t).

2.4 Riemann-Liouville Fractional Integrals and Derivatives

For expression of the Riemann-Liouville definition, we will consider the Riemann -

Liouville n - fold integral defined as∫ t

a

∫ tn

a

∫ tn−1

a
. . .
∫ t3

a

∫ t2

a︸ ︷︷ ︸
n−fold

f (t1)dt1dt2 · · ·dtn−1dtn =
1

Γ (n)

∫ t

a

f (τ)
(t − τ)1−n dτ (2.16)

for n ∈ N, n > 0.

Fractional integral of order α for the function f (t) can be expressed from Eq.

(2.16) as follows:

aIα
t f (t) ≡ aD−α

t f (t) =
1

Γ (−α)

∫ t

a

f (τ)
(t − τ)α+1

dτ (2.17)

for α,a ∈ R, α < 0.

From relation (2.17) we can write formula for the Riemann-Liouville definition

of fractional derivative of the order α in the following form

aDα
t f (t) =

1

Γ (n−α)
dn

dtn

∫ t

a

f (τ)
(t − τ)α−n+1

dτ (2.18)

for (n−1 < α < n), where a and t are the limits of operation aDα
t f (t).

For the case of 0 < α < 1 and f (t) being a causal function of t, that is, f (t) = 0

for t < 0, the fractional integral is defined as:

0D−α
t f (t) =

1

Γ (α)

∫ t

0

f (τ)
(t − τ)1−α dτ, for 0 < α < 1, t > 0 (2.19)

and the expression for the fractional order derivative is:

0Dα
t f (t) =

1

Γ (n−α)
dn

dtn

∫ t

0

f (τ)
(t − τ)α−n+1

dτ, (2.20)

where Γ (·) is Euler’s Gamma function (Oldham and Spanier, 1974).
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2.5 Caputo Fractional Derivatives

The Caputo definition of fractional derivatives can be written as (Caputo, 1967;

Podlubny, 1999):

aDα
t f (t) =

1

Γ (n−α)

∫ t

a

f (n)(τ)
(t − τ)α−n+1

dτ, for n−1 < α < n. (2.21)

As mentioned above, under the homogenous initial conditions the Riemann-Liouville

and the Caputo derivatives are equivalent. Let us denote the Riemann-Liouville frac-

tional derivative by RL
a Dα

t t(t) and the Caputo defnition by C
a Dα

t f (t), then the rela-

tionship between them is:

RL
a Dα

t t(t) = C
a Dα

t f (t)+
n−1

∑
k=0

(t −a)k−α

Γ (k−α +1)
f (k)(a)

for f (k)(a) = 0, (k = 0,1, . . . ,n−1).
The initial conditions for the fractional-order differential equations with the Ca-

puto derivatives are in the same form as for the integer-order differential equations.

It is an advantage because applied problems require definitions of fractional deriva-

tives, where there are clear interpretations of initial conditions, which contain f (a),
f
′
(a), f

′′
(a), etc.

2.6 Laplace Transform Method

The Laplace transform method is a very frequently used tool for solving engineering

problems. In this section we will recall some basic facts about the Laplace transform

method for integer order and then we will show this method for fractional order as

well.

2.6.1 Basic Facts about the Laplace Transform

The function F(s) of the complex variable s defined by

F(s) = L{ f (t); s} =
∫ ∞

0
e−st f (t)dt (2.22)

is called the Laplace transform of function f (t), which is called the original. For the

existence of integral (2.22) the function f (t) must be of exponential order α , which

means that there exist positive constants M and T so that
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e−αt | f (t)| ≤ M, for all t > T.

In other words, the function f (t) must not grow faster than a certain exponential

function when t → ∞.

We will denote the Laplace transforms by the uppercase letters and the originals

by the lowercase letters.

The original f (t) can be restored from the Laplace transform F(s) with the help

of the inverse Laplace transform

f (t) = L−1{F(s); t} =
∫ c+ j∞

c− j∞
estF(s)ds, c = Re(s) > c0, (2.23)

where c0 lies in the right half plane of the absolute convergence of the Laplace

integral (2.22).

The direct evaluation of the inverse Laplace transform using the formula (2.23) is

often complicated, however, sometimes it gives useful information on the behavior

of the unknown original f (t) we look for.

The Laplace transform of the convolution

f (t)∗g(t) =
∫ t

0
f (t − τ)g(τ)dτ =

∫ t

0
f (τ)g(t − τ)dτ (2.24)

of the two functions f (t) and g(t), which are equal to zero for t < 0, is equal to the

product of the Laplace transform of those functions:

L{ f (t)∗g(t); s} = F(s)G(s) (2.25)

under the assumption that both F(s) and G(s) exist. We will use the property (2.25)

for the evaluation of the Laplace transform of the Riemann-Liouville fractional in-

tegral.

Another useful property we need is the formula for the Laplace transform of the

derivative of an integer order n of the function f (t):

L{ f n(t); s} = snF(s)−
n−1

∑
k=0

sn−k−1 f (k)(0) = snF(s)−
n−1

∑
k=0

sk f (n−k−1)(0), (2.26)

which can be obtained from the definition (2.22) by integrating by parts under the

assumption that the corresponding integrals exist.

In the following sections relating the Laplace transforms of the fractional deriva-

tives we consider the lower bound a = 0.
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2.6.2 Laplace Transform of Fractional Integrals

We will start with the Laplace transform of the Riemann-Liouville fractional inte-

gral of order p > 0 defined by (2.19), which we can write as a convolution of the

functions g(t) = t p−1 and f (t):

0D−p
t f (t) =0 D−p

t f (t) =
1

Γ (p)

∫ t

0
(t − τ)p−1 f (τ)dτ = t p−1 ∗ f (t). (2.27)

The Laplace transform of the function t p−1 is (Podlubny, 1999):

G(s) = L{t p−1; s} = Γ (p)s−p. (2.28)

Therefore, using the formula for the Laplace transform of the convolution (2.25)

we obtain the Laplace transform of the Riemann-Liouville and the Grünwald-

Letnikov fractional integrals:

L{0D−p
t f (t); s} = L{0D−p

t f (t); s} = s−pF(s). (2.29)

2.6.3 Laplace Transform of Fractional Derivatives

Now let us turn to the evaluation of the Laplace transform of the Riemann-Liouville

fractional derivative, which we, for this purpose, write in the form:

0Dp
t f (t) = g(n)(t), (2.30)

g(t) = 0D−(n−p)
t f (t)

1

Γ (k− p)

∫ t

0
(t − τ)n−p−1 f (τ)dτ, (2.31)

n−1 ≤ p < n.

The use of the formula for the Laplace transform of an integer-order derivative

(2.26) leads to

L{ 0Dp
t f (t); s} = snG(s)−

n−1

∑
k=0

skg(n−k−1)(0). (2.32)

The Laplace transform of the function g(t) is evaluated by (2.29):

G(s) = s−(n−p)F(s). (2.33)

Additionally, from the definition of the Riemann-Liouville fractional derivative

(2.20) it follows that
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g(n−k−1)(t) =
dn−k−1

dtn−k−1 0D−(n−p)
t f (t) = 0Dp−k−1

t f (t). (2.34)

Substituting (2.33) and (2.34) into (2.32) we obtain the following final expression

for the Laplace transform of the Riemann-Liouville fractional derivative of order

p > 0:

L{ 0Dp
t f (t); s} = spF(s)−

n−1

∑
k=0

sk
[

0Dp−k−1
t f (t)

]
t=0

. (2.35)

n−1 ≤ p < n.

The formula for the Laplace transform of the Caputo fractional derivative (2.18)

has the form (Podlubny, 1999):

∫ ∞

0
e−st

0Dα
t f (t)dt = sα F(s)−

n−1

∑
k=0

sα−k−1 f (m)(0), n−1 ≤ α < n. (2.36)

For zero initial conditions, the Laplace transform of fractional derivatives of or-

der r (Grünwald-Letnikov, Riemann-Liouville, and Caputo’s) reduces to:

L{0Dr
t f (t)} = srF(s). (2.37)

Morever, the Laplace transform of the Riemann-Liouville fractional derivative

is well known. However, its practical applicability is limited by the absense of the

physical interpretation of the limit values of fractional derivatives at the lower bound

t = 0. So far, such interpretation was partially solved only in the work done by

Heymans and Podlubny, in 2006.

2.7 Fourier Transform Method

2.7.1 Basic Facts about the Fourier Transform

The exponential Fourier transform of a continuous function h(t) absolutely inte-

grable in (−∞, ∞) is defined by

Fe{h(t); ω} =
∫ ∞

−∞
e jωth(t)dt, (2.38)

and the original h(t) can be restored from its Fourier transform He(t) with the help

of the inverse Fourier transform:

h(t) =
1

2π

∫ ∞

−∞
He(ω)e− jωtdω. (2.39)
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As mentioned above, we will denote originals by the lowercase letters, and their

transforms by the uppercase letters.

The Fourier transform of the convolution

h(t)∗g(t) =
∫ ∞

−∞
h(t − τ)g(τ)dτ =

∫ ∞

−∞
h(τ)g(t − τ)dτ (2.40)

of the two functions h(t) and g(t), which are defined in (−∞, ∞), is equal to the

product of their Fourier transforms:

Fe{h(t)∗g(t); ω} = He(ω)Ge(ω) (2.41)

under the assumption that both He(ω) and Ge(ω) exist. We will use the property

(2.41) for the evaluation of Fourier transforms of the Riemann-Liouville fractional

integral and Fourier transforms of fractional derivatives.

Another useful property of the Fourier transform, which is frequently used in

solving applied problems, is the Fourier transform of derivatives of h(t). Namely, if

h(t), h′(t), . . . , h(n−1)(t) vanish for t →±∞, then the Fourier transform of the n-th

derivative of h(t) is

Fe{h(n)(t); ω} = (− jω)nHe(ω) (2.42)

The Fourier transform is a powerful tool for frequency domain analysis of linear

dynamical systems.

2.7.2 Fourier Transform of Fractional Integrals

First we will evaluate the Fourier transform of the Riemann-Liouville fractional

integral with the lower terminal a = −∞, i.e. of

−∞D−α
t g(t) =

1

Γ (α)

∫ t

−∞
(t − τ)α−1g(τ)dτ, (2.43)

where we assume 0 < α < 1.

Let us start with the Laplace transform of the function

h(t) =
tα−1

Γ (α)

(see formula (2.28)), which can be written as

1

Γ (α)

∫ ∞

0
tα−1e−stdt = s−α . (2.44)

Let us take s = − jω , where ω is real. It follows from the Dirichlet theorem that

in such a case the integral (2.44) converges if 0 < α < 1. Therefore, we immediately
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obtain the Fourier transform of the function

h+(t) =

⎧⎨⎩
tα−1

Γ (α)
, t > 0,

0, t ≤ 0,

in the form

Fe{h+(t); ω} = (− jω)−α . (2.45)

Now we can find the Fourier transform of the Riemann-Liouville fractional inte-

gral (2.43), which can be written as a convolution (2.40) of the functions h+(t) and

g(t):
−∞D−α

t f (t) = h+(t)∗g(t). (2.46)

Using the rule (2.41) we obtain:

Fe
{
−∞D−α

t g(t); ω
}

= ( jω)−α G(ω), (2.47)

where G(ω) is the Fourier transform of the function g(t).
The formula (2.47) gives also the Fourier transform of the Grünwald-Letnikov

fractional integral −∞D−α
t g(t), because in the considered case it coincides with the

Riemann-Liouville fractional integral.

2.7.3 Fourier Transform of Fractional Derivatives

Let us now evaluate the Fourier transform of fractional derivatives.

Considering the lower terminal a = −∞ and requiring the resonable behavior of

g(t) and its derivatives for t → −∞ we can perform integration by parts and write

the Riemann-Liouville in the form:

−∞Dα
t g(t) =

1

Γ (n−α)

∫ t

−∞

g(n)(τ)dτ
(t − τ)α+1−n = −∞Dα−n

t g(n)(t), (2.48)

n−1 < α < n.

The Fourier transform of (2.48) with the use of the Fourier transform of the

Riemann-Liouville fractional integral (2.47) and then the Fourier transform of

an integer-order derivative (2.42) gives the following formula for the exponential

Fourier transform of the Riemann-Liouville with the lower terminal a = −∞:

Fe {Dα g(t); ω} = (− jω)α−nFe

{
g(n)(t); ω

}
= (− jω)α−n(− jω)nG(ω)
= (− jω)α G(ω). (2.49)
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2.8 Some Properties of Fractional Derivatives and Integrals

The main properties of fractional derivatives/integrals are as follows (Oldham and

Spanier, 1974):

1. If f (t) is an analytical function of t, then its fractional derivative 0Dα
t f (t) is an

analytical function of t, α .

2. For α = n, where n is integer, the operation 0Dα
t f (t) gives the same result as

classical differentiation of integer order n.

3. For α = 0 the operation 0Dα
t f (t) is the identity operator:

0D0
t f (t) = f (t).

4. Fractional differentiation and fractional integration are linear operations:

aDα
t (λ f (t)+ μg(t)) = λ aDα

t f (t)+ μ aDα
t g(t). (2.50)

5. The additive index law (semigroup property)

0Dα
t 0Dβ

t f (t) = 0Dβ
t 0Dα

t f (t) = 0Dα+β
t f (t)

holds under some reasonable constraints on the function f (t).
The fractional-order derivative commutes with integer-order derivative

dn

dtn (aDr
t f (t)) = aDr

t

(
dn f (t)

dtn

)
= aDr+n

t f (t), (2.51)

under the condition t = a we have f (k)(a) = 0, (k = 0,1,2, . . . ,n−1). The rela-

tionship above says the operators dn

dtn and aDr
t commute.

6. The Leibniz’s rule for fractional differentiation is given as:

aDr
t (φ(t) f (t)) =

∞

∑
k=0

(
r
k

)
φ (k)(t)aDr−k

t f (t), (2.52)

if φ(t) and f (t) and all their derivatives are continuous in the interval [a, t].
7. Geometric and physical interpretation of fractional integration and fractional dif-

ferentiation was clearly explained in Podlubny’s work (Podlubny, 2002).

Some other important properties of fractional derivatives and integrals as for ex-

ample translation, chain rule, behavior and dependence on limit and so on can be

found in several other works (e.g., Miller and Ross, 1993; Oldham and Spanier,

1974; Oustaloup, 1995; Podlubny, 1999, etc.).
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2.9 Numerical Methods for Calculation of Fractional Derivatives
and Integrals

For numerical calculation of fractional-order derivatives we can use the relation

(2.53) derived from the GL definition (2.15). This approach is based on the fact that

for a wide class of functions, three definitions — GL (2.15), RL (2.18), and Caputo’s

(2.21) — are equivalent. The relation to the explicit numerical approximation of q-

th derivative at the points kh, (k = 1,2, . . .) has the following form (Dorčák, 1994;

Podlubny, 1999; Vinagre et al., 2003):

(k−Lm/h)D
q
tk f (t) ≈ h−q

k

∑
j=0

(−1) j
(

q
j

)
f (tk− j), (2.53)

where Lm is the “memory length”, tk = kh, h is the time step of calculation and

(−1) j
(q

j

)
are binomial coefficients c(q)

j ( j = 0,1, . . .). For their calculation we can

use the following expression (Dorčák, 1994):

c(q)
0 = 1, c(q)

j =
(

1− 1+q
j

)
c(q)

j−1. (2.54)

Then, general numerical solution of the fractional differential equation

aDq
t y(t) = f (y(t), t),

can be expressed as

y(tk) = f (y(tk), tk)hq −
k

∑
j=v

c(q)
j y(tk− j). (2.55)

For the memory term expressed by the sum, a “short memory” principle can be used.

Then the lower index of the sums in relations (2.55) will be v = 1 for k < (Lm/h)
and v = k− (Lm/h) for k > (Lm/h), or without using the “short memory” principle,

we put v = 1 for all k.

Obviously, for this simplification we pay a penalty in the form of some inaccu-

racy. If f (t)≤ M, we can easily establish the following estimate for determining the

memory length Lm, providing the required accuracy ε:

Lm ≥
(

M
ε|Γ (1−q)|

)1/q

. (2.56)

An evaluation of the short memory effect and convergence relation of the error be-

tween short and long memory were clearly described and also proved in (Podlubny,

1999).

Described numerical method is the so-called Power Series Expansion (PSE) of

a generating function. It is important to note that PSE leads to approximation in the
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form of polynomials, that is, the discretized fractional operator is in the form of FIR

filter, which has only zeros.

The resulting discrete transfer function, approximating fractional-order opera-

tors, can be expressed in z-domain as follows:

0D±r
kT G(z) =

Y (z)
F(z)

=
(

1

T

)±r

PSE
{(

1− z−1
)±r
}

n
≈ T∓rRn(z−1), (2.57)

where T is the sample period, PSE{u} denotes the function resulting from applying

the power series expansion to the function u, Y (z) is the Z transform of the output

sequence y(kT ), F(z) is the Z transform of the input sequence f (kT ), n is the order

of the approximation, and R is polynomial of degree n, respectively, in the variable

z−1, z = exp(sT ), and k = 1,2, . . .. Matlab routine dfod1() of this method can be

downloaded from MathWorks, Inc. web site (Petráš, 2003b).

Other approach can be realized by Continued Fraction Expansion (CFE) of the

generating function and then the approximated fractional operator is in the form of

IIR filter, which has poles and zeros (Chen et al., 2006).

Taking into account that our aim is to obtain equivalents to the fractional inte-

grodifferential operators in the Laplace domain, s±r, the result of such approxima-

tion for an irrational function, G(s), can be expressed in the form:

G(s)  a0(s)+
b1(s)

a1(s)+
b2(s)

a2(s)+
b3(s)

a3(s)+ · · ·
= a0(s)+

b1(s)
a1(s)+

b2(s)
a2(s)+

b3(s)
a3(s)+

. . . , (2.58)

where ai(s) and bi(s) are rational functions of the variable s, or are constants. The

application of the method yields a rational function, which is an approximation of

the irrational function G(s).
In other words, for evaluation purposes, the rational approximations obtained

by CFE frequently converge much more rapidly than the PSE and have a wider

domain of convergence in the complex plane. On the other hand, the approximation

by PSE and the short memory principle is convenient for the dynamical properties

consideration.

For interpolation purposes, rational functions are sometimes superior to polyno-

mials. This is, roughly speaking, due to their ability to model functions with poles.

These techniques are based on the approximations of an irrational function, G(s),
by a rational function defined by the quotient of two polynomials in the variable s
in frequency s-domain:

G(s)  Ri(i+1)···(i+m) =
Pμ(s)
Qν(s)

=
p0 + p1s+ · · ·+ pμ sμ

q0 +q1s+ · · ·+qν sν , (2.59)

m+1 = μ +ν +1,
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passing through the points (si,G(si)), . . . , (si+m,G(si+m)).
The resulting discrete transfer function, approximating fractional-order opera-

tors, can be expressed as (Vinagre et al., 2003):

0D±r
kT G(z) =

Y (z)
F(z)

=
(

2

T

)±r

CFE

{(
1− z−1

1+ z−1

)±r
}

p,n

≈
(

2

T

)±r Pp(z−1)
Qn(z−1)

(2.60)

where T is the sample period, CFE{u} denotes the function resulting from applying

the continued fraction expansion to the function u, Y (z) is the Z transform of the

output sequence y(kT ), F(z) is the Z transform of the input sequence f (kT ), p and

n are the orders of the approximation, and P and Q are polynomials of degrees p and

n, respectively, in the variable z−1, and k = 1,2, . . .. Matlab routine dfod2() can be

downloaded from MathWorks, Inc. web site (Petráš, 2003a).

In general, the discretization of fractional-order differentiator/integrator s±r (r ∈
R) can be expressed by the generating function s≈ω(z−1). This generating function

and its expansion determine both the form of the approximation and the coefficients

(Lubich, 1986).

As a generating function ω(z−1) can be used in general in the following formula

(Barbosa et al., 2006):

ω(z−1) =
(

1

βT
1− z−1

γ +(1− γ)z−1

)
, (2.61)

where β and γ denote the gain and phase tuning parameters, respectively. For ex-

ample, when β = 1 and γ = {0,1/2,7/8,1,3/2}, the generating function (2.61)

becomes the forward Euler, the Tustin, the Al-Alaoui, the backward Euler, the im-

plicit Adams rules, respectively. In this sense the generating formula can be tuned

precisely. The expansion of the generating functions can be done by PSE or CFE.

Taking into account that our aim is to obtain discrete equivalents to the fractional

integrodifferential operators in the Laplace domain, s±r, the following considera-

tions have to be taken (Vinagre et al., 2003):

1. sr, (0 < r < 1), viewed as an operator, has a branch cut along the negative real

axis for arguments of s on (−π,π) but is free of poles and zeros.

2. It is well known that for interpolation or evaluation purposes, rational functions

are sometimes superior to polynomials, roughly speaking, because of their ability

to model functions with zeros and poles. In other words, for evaluation purposes,

rational approximations frequently converge much more rapidly than PSE and

have a wider domain of convergence in the complex plane.

In this section, for directly discretizing sr, (0 < r < 1), we shall concentrate

on the IIR form of discretization where as a generating function we will adopt an

Al-Alaoui idea on mixed scheme of Euler and Tustin operators (Al-Alaoui, 1993,
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1997), but we will use a different ratio between both operators. The mentioned new

operator, raised to power ±r, has the form (Petráš, 2003a):

(ω(z−1))±r =
(

1+a
T

1− z−1

1+az−1

)±r

, (2.62)

where a is the ratio term and r is the fractional order. The ratio term a is the amount

of phase shift and this tuning knob is sufficient for most engineering problems being

solved.

In expanding the above in rational functions, we will use the CFE. It should

be pointed out that for control applications, the obtained approximate discrete-time

rational transfer function should be stable. Furthermore, for a better fit to the con-

tinuous frequency response, it would be of great interest to obtain discrete approx-

imations with poles and zeros interlaced along the line z ∈ (−1,1) of the z plane.

The direct discretization approximations proposed in this paper enjoy the desired

properties.

The result of such approximation for an irrational function, Ĝ(z−1), can be ex-

pressed by G(z−1) in the CFE form (Vinagre et al., 2003):

G(z−1)  a0(z−1)+
b1(z−1)

a1(z−1)+
b2(z−1)

a2(z−1)+
b3(z−1)

a3(z−1)+ . . .

= a0(z−1)+
b1(z−1)

a1(z−1)+
b2(z−1)

a2(z−1)+
. . .

b3(z−1)
a3(z−1)+

. . . , (2.63)

where ai and bi are either rational functions of the variable z−1 or constants. The

application of the method yields a rational function, G(z−1), which is an approxi-

mation of the irrational function Ĝ(z−1).
The resulting discrete transfer function, approximating fractional-order opera-

tors, can be expressed as:

(ω(z−1))±r ≈
(

1+a
T

)±r

CFE

{(
1− z−1

1+az−1

)±r
}

p,q

=
(

1+a
T

)±r Pp(z−1)
Qq(z−1)

,

=
(

1+a
T

)±r p0 + p1z−1 + · · ·+ pmz−p

q0 +q1z−1 + · · ·+qnz−q , (2.64)

where CFE{u} denotes the continued fraction expansion of u; p and q are the orders

of the approximation and P and Q are polynomials of degrees p and q. Normally,

we can set p = q = n.
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Modified and improved digital fractional-order differentiator using fractional

sample delay and digital integrator using recursive Romberg integration rule and

fractional order delay as well have been described in (Tseng and Lee, 2008).

Some others solutions for design of IIR approximation using least-squares, e.g.

the Padé approximation, Prony’s method and Shranks’ method, were described in

(Barbosa et al., 2006). The Prony and Shranks methods can give better approxi-

mations than widely used CFE method. The Padé and the CFE methods yield the

same approximation (causal, stable and minimum phase). A different approach of

the CFE method was used in (Maione, 2008).

Example 2.1. : Here we present some results for fractional order r = ±0.5 (half-

order derivative/integral). The value of approximation order n is truncated to n = 5

and weighting factor a was chosen, a = 1/3. Assume sampling period T = 0.001s.

For r = 0.5 we have the following approximation of the fractional half-order

derivative:

G(z−1) =
985.9−1315z−1 +328.6z−2 +36.51z−3

27−18z−1 −3z−2 + z−3
. (2.65)

The Bode plots and unit step response of the digital fractional order differen-

tiator (2.65) and the analytical continuous solution of a fractional semi-derivative

are depicted in Fig. 2.3. Poles and zeros of the transfer function (2.65) lie in a unit

circle.

For r = −0.5 we have the following approximation of the fractional half-order

integral:

G(z−1) =
0.739−0.493z−1 −0.0822z−2 +0.0274z−3

27−36z−1 +9z−2 + z−3
. (2.66)

The Bode plots and unit step response of the digital fractional-order integrator

(2.66) and the analytical continuous solution of a fractional semi-derivative are de-

picted in Fig. 2.4. Poles and zeros of the transfer function (2.66) lie in a unit circle.

For simulation purpose, here we also present the Oustaloup’s Recursive Approx-

imation (ORA) algorithm (Oustaloup, 1995; Oustaloup et al., 2000). The method is

based on the approximation of a function of the form:

H(s) = sr, r ∈ R, r ∈ [−1;1] (2.67)

for the frequency range selected as (ωb,ωh) by a rational function:

Ĥ(s) = Co

N

∏
k=−N

s+ω ′
k

s+ωk
(2.68)

using the following set of synthesis formulas for zeros, poles and the gain:

ω ′
k = ωb

(
ωh

ωb

) k+N+0.5(1−r)
2N+1

ωk = ωb

(
ωh

ωb

) k+N+0.5(1−r)
2N+1

Co =
(

ωh

ωb

)− r
2 N

∏
k=−N

ωk

ω ′
k
,
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Fig. 2.3 Characteristics of approximated fractional-order differentiator (2.65).
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Fig. 2.4 Characteristics of approximated fractional-order integrator (2.66).
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where ωh,ωb are the high and low transitional frequencies. An implementation of

this algorithm in Matlab as a function ora foc() is given in (Chen, 2003).

Example 2.2. : Using the described Oustaloup’s-Recursive-Approximation (ORA)

method with

ωh = 103, ωb = 10−3, (2.69)

the obtained approximation for fractional function H(s) = s−
1
2 is:

Ĥ5(s) =
s5 +74.97s4 +768.5s3 +1218s2 +298.5s+10

10s5 +298.5s4 +1218s3 +768.5s2 +74.97s+1
. (2.70)

The Bode plots and the unit step response of the approximated fractional-order

integrator (2.70) are depicted in Fig. 2.5.

A description and overview of the various approximation methods and tech-

niques (Carlson’s (Carlson and Halijak, 1964), Charef’s (Charef et al., 1992), CFE

(Chen et al., 2006), CRONE-Oustaloup’s (Oustaloup, 1995), descriptor approach

(Tavazoei and Haeri, 2010), etc.) for continuous and discrete fractional-order mod-

els in form of IIR and FIR filters can be found in work (Vinagre et al., 2000). Besides

mentioned methods, some other approaches were described in work (Podlubny et

al., 2002). Last but not least, we should mention the approach proposed by Hwang,

which is based on B-splines function (Hwang et al., 2002) and Podlubny’s matrix

approach (Podlubny, 2000; Podlubny et al., 2009).

The frequency domain approximation methods are not always reliable, especially

in detecting chaos behavior in nonlinear systems (Tavazoei and Haeri, 2007a, 2008).

As has been shown, due to error of approximation, numerical simulation may result

in wrong conclusions, e.g. fake chaos is produced due to the implementation of the

frequency domain approximation methods (Tavazoei and Haeri, 2007b). Simulation

of the fractional-order system using the time domain methods is complicated and

due to long memory characteristics of these systems requires a very long simulation

time but on the other hand, it is more accurate. Applying some ideas as, for instance,

short memory principle (Podlubny, 1999), we can reduce the computational cost of

time-domain methods. Results obtained by these methods are more reliable than

those determined using the frequency-based approximation (Tavazoei and Haeri,

2008).

Some of the mentioned frequency methods in both forms of approximation have

been realized as the Matlab routines in Duarte Valerio’s toolbox called ninteger
(see detailed review in (Valerio, 2005)). In this toolbox was also created a Simulink

block nid for fractional derivative and integral, where order of derivative/integral

and method of its approximation can be selected. We will use this block for creat-

ing a model of fractional-order nonlinear systems in the Matlab/Simulink (see e.g.

(Petráš, 2006)).

In Fig. 2.6 is depicted a screenshot of the ninteger Simulink block, where

Oustaloup’s approximation technique (CRONE) of order n was selected for the

fractional-order 0.1 within desired frequency bandwidth.
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Fig. 2.5 Characteristics of approximated fractional-order integrator (2.70).
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Fig. 2.6 Properties of Simulink nid block.

For numerical simulation of the fractional-order system a method on the basis of

the Adams-Bashforth-Moulton type predictor-corrector scheme has also been pro-

posed (Deng, 2007a). It is suitable for Caputo’s derivative because it just requires

the initial conditions and for unknown function it has clear physical meaning. The

method is based on the fact that fractional differential equation

Dq
t y(t) = f (y(t), t), y(k)(0) = y(k)

0 , k = 0,1, . . . ,m−1

is equivalent to the Volterra integral equation

y(t) =
[q]−1

∑
k=0

y(k)
0

tk

k!
+

1

Γ (q)

∫ t

0
(t − τ)q−1 f (τ,y(τ))dτ. (2.71)

Discretizing the Volterra equation (2.71) for uniform grid tn = nh (n = 0,1, . . . ,N),
h = Tsim/N and using the short memory principle (fixed or logarithmic (Ford and

Simpson, 2001)) we obtain a close numerical approximation of the true solution

y(tn) of fractional differential equation while preserving the order of accuracy. As-

sume that we have calculated approximations yh(t j), j = 1,2, . . . ,n and we want to

obtain yh(tn+1) by means of the equation

yh(tn+1) =
m−1

∑
k=0

tk
n+1

k!
y(k)

0 +
hq

Γ (α +2)
f (tn+1,y

p
h(tn+1))

+
hq

Γ (α +2)

n

∑
j=0

a j,n+1 f (t j,yn(t j)), (2.72)
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where

a j,n+1 =

⎧⎪⎪⎨⎪⎪⎩
nq+1 − (n−q)(n+1)q, if j = 0,

(n− j +2)q+1 +(n− j)q+1 +2(n− j +1)q+1, if 1 ≤ j ≤ n,

1, if j = n+1.

The preliminary approximation yp
h(tn+1) is called predictor and it is given by

yp
h(tn+1) =

m−1

∑
k=0

tk
n+1

k!
y(k)

0 +
1

Γ (q)

n

∑
j=0

b j,n+1 f (t j,yn(t j)), (2.73)

where

b j,n+1 =
hq

q
((n+1− j)q − (n− j)q). (2.74)

A slightly improved predictor-corrector approach for solving the Fokker-Planck

equation has been mentioned in (Deng, 2007b).

As shown in paper (Petráš, 2009), both mentioned time-domain numerical meth-

ods (Grünwald-Letnikov or Adams-Bashforth-Moulton) have approximately the

same order of accuracy and good match of numerical solutions. A collection of

various other numerical algorithms was also presented in (Diethelm et al., 2005).

2.10 Fractional Calculus and Electricity

There are a large number of electric and magnetic phenomena where the fractional

calculus can be used (Westerlund, 2002). We will consider three of them — the

capacitor, the inductor and the memristor.

Westerlund et al. in 1994, proposed a new linear capacitor model (Westerlund

and Ekstam, 1994). It is based on Curie’s empirical law of 1889 which states that

the current through a capacitor is

I(t) =
V0

h1tα ,

where h1 and α are constants, V0 is the dc voltage applied at t = 0, and 0 < α < 1,

(α ∈ R).
For a general input voltage V (t) the current is

I(t) = C
dαV (t)

dtα ≡C 0Dα
t V (t), (2.75)

where C is the capacitance of the capacitor. It is related to a kind of dielectric.

Another constant α (order) is related to the losses of the capacitor. Westerlund pro-
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vided in his work the table of various capacitor dielectrics with appropriate constant

α which has been obtained experimentally by measurements.

For a current in the capacitor the voltage is

V (t) =
1

C

∫ t

0
I(t)dtα ≡ 1

C 0D−α
t I(t). (2.76)

Then the impedance of a fractional capacitor is

Zc(s) =
1

C sα =
1

ωαC
e j(−α π

2 ). (2.77)

Ideal Bode’s characteristics of the transfer function for real capacitor (2.77) are

depicted in Fig. 2.7.

Fig. 2.7 Bode plots of real capacitor.

Westerlund in his work also described behavior of real inductor (Westerlund,

2002). For a general current in the inductor the voltage is

V (t) = L
dα I(t)

dtα ≡ L 0Dα
t I(t), (2.78)

where L is the inductance of the inductor and constant α is related to the “proximity

effect”. Some coefficients for real inductors can be found in (Schafer and Kruger,

2008).

Then the impedance of a fractional inductor is

ZL(s) = Lsα = ωα Le jα π
2 . (2.79)
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Ideal Bode’s characteristics of the transfer function for real inductor (2.79) are

depicted in Fig. 2.8.

Fig. 2.8 Bode plots of real inductor.

Professor Leon O. Chua in 1971 predicted a new circuit element called memristor

characterized by a relationship between the charge q(t) and the flux φ(t). It is the

fourth basic circuit element (Chua, 1971). The voltage across a charge – controlled

memristor – is given by

v(t) = M(q(t))i(t), where M(q(t)) = dφ(q)/dq. (2.80)

The memristor used in this book is a flux – controlled memristor characterized

by

I(t) = W (φ(t))V (t), where W (φ(t)) = dq(φ)/dφ , (2.81)

where W (φ(t)) is an incemental memductance of the memristor.

Professor Leon O. Chua and Dr. Sung–Mo Kang published another paper, in

1976, that described a large class of devices and systems they called memristive de-

vices and systems (Chua and Kang, 1976). Whereas a memristor has mathematically

scalar state, a system has vector state. The number of state variables is independent

of, (usually greater than), the number of terminals. In that paper, Chua applied the

model to empirically observed phenomena, including the Hodgkin-Huxley model of

the axon and a thermistor at constant ambient temperature. He also described mem-

ristive systems in terms of energy storage and easily observed electrical characteris-

tics. These characteristics match resistive random-access memory and phase-change

memory, relating the theory to active areas of research. Chua extrapolated the con-

ceptual symmetry between the resistor, inductor, and capacitor, and inferred that the
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memristor is a similarly fundamental device. Other scientists had already used fixed

nonlinear flux-charge relationships, but Chua’s theory introduces generality. This

relation is illustrated in Fig. 2.9.

Fig. 2.9 Connection of four basic electrical elements (Inspired by figure in (Strukov et al., 2008)).

Possible applications of memristive systems (see e.g. (Wikipedia, 2009), etc.):

• new memory without access cycle limitations with new memory cells for more

energy-efficient computers (Tour and He, 2008) e.g.: 1 bit = 1 memristor;

• new analog computers that can process and associate information in a manner

similar to that of the human brain (Snider, 2008);

• new electronic circuits, e.g. (Itoh and Chua, 2009; Susse et al., 2005; Chua and

Kang, 1976): cellular automata, voltage divider, switcher, compensator, AD –

DA converters, etc.;

• new control systems/controllers with memory (Coopmans et al., 2009);

Noting from Faraday’s law of induction that magnetic flux φ(t) is simply the

time integral of voltage (dφ =V (t)dt) and charge q(t) is the time integral of current

(dq = I(t)dt), the more convenient form of the current, voltage equation for the

memristor, is (Chua, 1971).

M(q(t))
∫ t

0
I(t)dt =

∫ t

0
V (t)dt, (2.82)
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Fig. 2.10 Theoretical current-voltage characteristics of a memristor with applied voltage V (t) =
V0(t)sin(ωt) for V0 = 1V and ω = 1rad/s (Thang, 2003).

where M(q(t)) is the memristance of the memristor. If M(q(t)) is a constant

(M(q(t)) ≡ R(t)), then we obtain Ohm’s law R(t) = V (t)/I(t). If M(q(t)) is non-

trivial, the equation is not equivalent because q(t) and M(q(t)) will vary with time.

Furthermore, the memristor is static if no current is applied. If I(t) = 0, we find

V (t) = 0 and M(t) is constant. This is the essence of the memory effect, which

allows us to extend the notion of memristive systems to capacitive and inductive

elements in the form of memcapacitors and meminductors whose properties depend

on the state and history of the system (Mouttet, 2009; Ventra et al., 2009).

Similar to the capacitor and the inductor, the memristor is also not an ideal circuit

element and we can predict the fractional-order model of such element. Applying

the fractional calculus to relation (2.82), we obtain the following general formula

for fractional-order memristive systems:

K 0Dγ
t I(t) = 0Dβ

t V (t), γ,β ∈ R, (2.83)

where K is the resistance, inductance, capacitance or memristance, respectively.

Aplying the Laplace transform technique (2.37), we get the following equation

K sγ I(s) = sβV (s) (2.84)

and the resulting impedance of the memristive system (MS) is

ZMS(s) = K sγ−β = K sk, k ∈ R, (2.85)



34 2 Fractional Calculus

where k is the real order of the memristive system and for ideal electrical elements

has the following particular values, if

• γ = 0 and β = 0 then k = 0 – resistor and then K = R [Ω ];
• γ = −1 and β = 0 then k = −1 – capacitor and then K = 1/C [F ];
• γ = 0 and β = −1 then k = 1 – inductor and then K = L [H];
• γ = −1 and β = −1 then k = 0 – memristor and then K = M(t) [Ω ].

However, as already has been mentioned, the real electrical elements are not

ideal and with the help of fractional calculus it was shown that the intermediate

cases between the known characteristic behavior of the electrical elements resistor

R, capacitor C and inductor L change continuously (Susse et al., 2005). By deduction

the memristor M, which has storage properties, could be also considered as a real

electrical element with the fractional order of its mathematical model. The fractional

calculus can help us to describe the memory behavior of the memristor. As we can

see in Definitions (2.15), (2.18), and (2.21), the essence of the definitions consists of

the memory term and takes into account the history. It is suitable for the description

of memristive systems and their applications.

General characteristics of the transfer function of a real memristive system (2.85)

are:

• Magnitude: constant slope of α20dB/dec.;
• Crossover frequency: a function of K;

• Phase: horizontal line of α π
2 ;

• Nyquist: straight line at argument α π
2 .

The above concepts of memory devices are not necessarily limited to resistance

– memristor, but can in fact be generalized to capacitative and inductive systems.

If x(t) denotes a set of n state variables describing the internal state of the system,

u(t) and y(t) are any two complementary constitutive variables (current, charge,

voltage, or flux) denoting input and output of the system, and g is a generalized

response, we can define a general class of nth-order u-controlled dynamical systems

called memristive systems or devices described by the following equations (Chua

and Kang, 1976)
dx(t)

dt
= f (x,u, t),

y(t) = g(x,u, t)u(t),
(2.86)

where f is a continuous n-dimensional vector function and we assume unique solu-

tion for any initial state x(t) at time t = t0.

General fractional-order differential equation (2.83) can be rewritten to its canon-

ical form and then Eqs. (2.86) become

0Dα
t x(t) = f (x,u, t)

y(t) = g(x,u, t)u(t).
(2.87)

An alternative version of the connection diagram in Fig. 2.9 is presented in

Fig. 2.11. By moving parts of the original diagram (moving the resistor symbol
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R to the center, for example), and assuming continuous real numerical space for α
and β , space is included for the “Fractor” as presented by Bohannan (Bohannan,

2002), as well as a new “element”, a so-called fractional inductor, or “Fractductor”.

This device has a fractional-order coupling between flux and current.

C

Fig. 2.11 Alternative electrical component connection diagram.

2.10.1 Analogue Fractional-Order Circuits

We are able to define arbitrary real order α for the memristive system behavior

description (2.85). The amplitude of this impedance function is A = 20α and the

phase angle is Φ = α(π/2) for α ∈ R. Electrical elements (memristive system or

fractance) with such property are sometimes called constant phase elements for cer-

tain frequency range (Bode, 1949). So far, the constant phase elements (CPE) have

been approximated by the ladder network constructed from RLC elements, tree net-

work, metal-insulator-liquid interface, etc. (see e.g. (Biswas et al., 2006; Carlson

and Halijak, 1964; Charef, 2006; Dutta Roy, 1967; Ichise et al., 1971; Jones and

Shenoi, 1970; Krishna and Reddy, 2008; Nakagava and Sorimachi, 1992; Oldham

and Zoski, 1983; Petráš et al., 2002; Takyar and Georgiu, 2007; Wang, 1987), etc.).

We can use an active operating amplifier (op-amp) and its inverting connection

with impedance Z1 in direct connection and impedance Z2 in feedback connection.

The transfer function of the circuit depicted in Fig. 2.12 is

H(s) =
Vo(s)
Vin(s)

= −Z2(s)
Z1(s)

.

Generally, basic electrical elements (resistor, capacitor, inductor, memristor),

electrical networks (RC ladder, RC tree, RLC grid, CPE) or new electrical elements

(fractor, fractductor) can be used as electrical elements with the impedances Z1 and

Z2. In this way we can obtain various new dividers, filters, integrators, etc.
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_

+

Fig. 2.12 Basic connection of two impedances with op-amp.

2.10.2 Experimental Measurement

Here we present a measurement on a new “element”, a so-called fractional induc-

tor, or “Fractductor”. This device has a fractional-order coupling between flux and

current.

Preliminary attempts to construct a fractductor have produced a device using

magnetorheological fluid as the core in a transformer-like device. A bode plot

(Fig. 2.13), and basic block schematic (Fig. 2.14) are shown (Petráš et al., 2009).

Fig. 2.13 Bode plots of an experimental fractional flux coupling device, the fractductor.

As we can see in Fig. 2.14, connections of electrical elements were done ac-

cording to suggestions described in prevoius subsections. It is a practical realization

of fractional-order memristive system which can be used for fractional-order con-

troller implementations as well. Estimated fractional order of the real fractductor is

α = 0.5 (see Bode plots in Fig. 2.13).
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l

Fig. 2.14 Simplified schematic diagram of the fractductor and test circuit.

2.10.3 Additional Remarks

One can say that the memristor is not a basic electrical element, being nonlinear

because of its nonlinear current-voltage characteristic (Fig. 2.10), and the other basic

elements (resistor, capacitor and inductor) are linear elements.

Basically, all resistors are in reality nonlinear. Current which flows through the

resistors causes their heating and therefore their conductivity grows. The character-

istic is V = f (R, I). The situation is similar also to capacitors. Permittivity of some

dielectrics varies with the magnetic field intensity and therefore capacity is a nonlin-

ear function of voltage on the capacitor. The current that flows across the capacitor

is given by I = d(CV )/dt, where capacitance C is variable and is a function of

voltage V . For inductors, their nonlinearity is given by hysteresis. Permeability of

inductor cores depends on the magnetic field and therefore inductivity is a function

of current. The voltage on nonlinear inductor is U = d(LI)/dt, where L is induc-

tivity varying with current I. According to above notes, we can state that all basic

elements are nonlinear but for some of them the nonlinearity is very low and neg-

ligible (Kotek et al., 1973). For this reason we can consider them to be linear and

use much easier mathematical tools for their modeling. In fact, this consideration

indirectly proves that the memristor is basic electrical element, the so-called fourth
element.

In general, if we consider electromechanical analogy, we can use a fractional-

order model for viscoelastic materials, where there is a relationship between stress

and strain for solids. There are several kinds of such models which have been de-

scribed in literature (Podlubny, 1999). For our purpose a generalized five-parameter

Zener model is suitable:

σ(t)+a1Dα
t σ(t) = b0ε(t)+b1Dβ

t ε(t),

where σ(t) is the stress and ε(t) is the strain.

The proposed model of memristive systems in the form

K Dγ
t I(t) = Dβ

t V (t), γ,β ∈ R
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could be modified according to the Zener model to

b0I(t)+b1Dγ
t I(t) = a0V (t)+a1Dβ

t V (t), γ,β ∈ R, (2.88)

which is a more general model of fractional-order memristive systems.

Taking into account that all four basic electrical elements are nonlinear and frac-

tional, we can modify the general model (2.88) to a new one as follows:

f0 I(t)+ f1 Dγ
t I(t) = f2 V (t)+ f3 Dβ

t V (t), γ,β ∈ R, (2.89)

where f0, f1, f2, and f3 are nonlinear functions of R, C, L, and M depending on

voltage V (t), current I(t), charge q(t) and flux φ(t) at time t. It can be written

as f0,1,2,3 = F(R(t),C(t),L(t),M(t),V (t), I(t),q(t),φ(t), t). The new mathematical

model (2.89) should provide a satisfactory description of most real electrical ele-

ments.
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Chapter 3
Fractional-Order Systems

3.1 Fractional LTI Systems

A general fractional-order system can be described by a fractional differential equa-

tion of the form

anDαny(t)+an−1Dαn−1y(t)+ · · ·+a0Dα0y(t)

= bmDβmu(t)+bm−1Dβm−1u(t)+ · · ·+b0Dβ0u(t), (3.1)

where Dγ ≡ 0Dγ
t denotes the Grünwald-Letnikov, the Riemann-Liouville or the Ca-

puto’s fractional derivative (Podlubny, 1999a). The corresponding transfer function

of incommensurate real orders has the following form (Podlubny, 1999a):

G(s) =
bmsβm + · · ·+b1sβ1 +b0sβ0

ansαn + · · ·+a1sα1 +a0sα0
=

Q(sβk)
P(sαk)

, (3.2)

or in the frequency domain it has form (Petráš et al., 2000):

G( jω) =
bm( jω)βm + · · ·+b1( jω)β1 +b0( jω)β0

an( jω)αn + · · ·+a1( jω)α1 +a0( jω)α0
=

Q(( jω)βk)
P(( jω)αk)

, (3.3)

where ak (k = 0, . . . ,n), bk (k = 0, . . . ,m) are constants, and αk (k = 0, . . . ,n), βk
(k = 0, . . . ,m) are arbitrary real or rational numbers and without loss of generality

they can be arranged as αn > αn−1 > · · · > α0, and βm > βm−1 > · · · > β0.

The incommensurate order system (3.2) can also be expressed in commensurate

form by the multivalued transfer function (Bayat and Afshar, 2008)

H(s) =
bmsm/v + · · ·+b1s1/v +b0

ansn/v + · · ·+a1s1/v +a0

, v > 1. (3.4)
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Note that every fractional-order system can be expressed in the form (3.4) and the

domain of the H(s) definition is a Riemann surface with v Riemann sheets (LePage,

1961).

In the particular case of commensurate order systems, it holds that αk = αk,βk =
αk,0 < α < 1,∀k ∈ Z, and the transfer function has the following form:

G(s) = K0
∑M

k=0 bk(sα)k

∑N
k=0 ak(sα)k

= K0
Q(sα)
P(sα)

. (3.5)

With N > M, the function G(s) becomes a proper rational function in the complex

variable sα which can be expanded in partial fractions of the following form:

G(s) = K0

[
N

∑
i=1

Ai

sα +λi

]
, (3.6)

where λi (i = 1,2, . . . ,N) are the roots of the pseudo-polynomial P(sα) or the system

poles which are assumed to be simple without loss of generality. The analytical

solution of the system (3.6) can be expressed as

y(t) = L−1

{
K0

[
N

∑
i=1

Ai

sα +λi

]}
= K0

N

∑
i=1

Aitα Eα,α(−λitα), (3.7)

where Eμ,ν(z) is the Mittag-Leffler function defined as (2.3).

A fractional-order plant to be controlled can be described by a typical n-term

linear homogeneous fractional-order differential equation (FODE) in time domain

an Dαn
t y(t)+ · · ·+a1 Dα1

t y(t)+a0 Dα0
t y(t) = 0, (3.8)

where ak (k = 0,1, . . . ,n) are constant coefficients of the FODE; αk (k = 0,1,2, . . . ,n)
are real numbers. Without loss of generality, assume that αn > αn−1 > · · ·> α0 ≥ 0.

The analytical solution of the FODE (3.8) is given by general formula in the form

(Podlubny, 1999a):

y(t) =
1

an

∞

∑
m=0

(−1)m

m!
∑

k0+k1+···+kn−2=m
k0≥0;... ;kn−2≥0

(m;k0,k1, . . . ,kn−2) (3.9)

×
n−2

∏
i=0

(
ai

an

)ki

Em(t,−an−1

an
;αn −αn−1,αn +

n−2

∑
j=0

(αn−1 −α j)k j +1),

where (m;k0,k1, . . . ,kn−2) are the multinomial coefficients and Ek(t,λ ; μ,ν) is the

function of Mittag-Leffler type introduced by Podlubny (Podlubny, 1999a). The

function is defined by

Ek(t,λ ; μ,ν) = tμk+ν−1E(k)
μ,ν(λ tμ), k = 0,1,2, . . . (3.10)
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where E(k)
μ,ν(z) is k-th derivative of the Mittag-Leffler function of two parameters

given by

E(k)
μ,ν(z) =

∞

∑
i=0

(i+ k)! zi

i! Γ (μi+ μk +ν)
, k = 0,1,2, . . . . (3.11)

The Laplace transform of the function Ek(t,±λ ;α,β ) is (Podlubny, 1999a):

L{Ek(t,±λ ;α,β )} =
k!sα−β

(sα ∓λ )k+1

for s > |λ |1/α .

The Laplace transforms for several other Mittag-Leffler type functions are sum-

marized as follows (Gorenflo et al., 2004; Magin et al., 2009; Podlubny, 1999a):

L{Eα(−λ tα)} =
sα−1

sα +λ
,

L{tα−1Eα,α(−λ tα)} =
1

sα +λ
, (3.12)

L{tβ−1Eα,β (−λ tα)} =
sα−β

sα +λ

for s > |λ |1/α .

A useful list of Laplace and inverse Laplace transforms of functions related to

fractional calculus is presented in Appendix B and in (Chen et al., 2001).

Consider a control function which acts on the FODE system (3.8) as follows:

an Dαn
t y(t)+ · · ·+a1 Dα1

t y(t)+a0 Dα0
t y(t) = u(t). (3.13)

By Laplace transform, we can get a fractional transfer function:

G(s) =
Y (s)
U(s)

=
1

ansαn + · · ·+a1sα1 +a0sα0
. (3.14)

The fractional-order linear time-invariant (LTI) system can also be represented by

the following state-space model (Matignon, 1998):

0Dq
t x(t) = Ax(t)+Bu(t),

y(t) = Cx(t),
(3.15)

where x ∈ Rn, u ∈ Rr and y ∈ Rp are the state, input and output vectors of the system

and A∈Rn×n, B∈Rn×r, C∈Rp×n, and q = [q1,q2, . . . ,qn]T are the fractional orders.

If q1 = q2 = · · · = qn ≡ α , system (3.15) is called a commensurate-order system,

otherwise it is an incommensurate-order system.

The state transition matrix is
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x(t) =
[

I+
Ax(0)

Γ (1+α)
tα +

A2x(0)
Γ (1+2α)

t2α + · · ·+ Akx(0)
Γ (1+ kα)

tkα + · · ·
]

=

(
∞

∑
k=0

Aktkα

Γ (1+ kα)

)
x(0) = φ(t)x(0). (3.16)

Similar to conventional observability and controllability concept, the controlla-

bility is defined as follows (Matignon and D’Andrea-Novel, 1996): System (3.15)

is controllable on [t0, t f inal ] if the controllability matrix

Ca = [B|AB|A2B| · · · |An−1B]

has rank n.

The observability is defined as follows (Matignon and D’Andrea-Novel, 1996):

System (3.15) is observable on [t0, t f inal ] if the observability matrix

Oa =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

CA2

...

CAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
has rank n.

A fractional-order system described by n-term fractional differential equation

(3.13) can be rewritten into the state-space representation in the form (Dorčák et al.,

2002; Yang and Liu, 2006):⎡⎢⎢⎢⎢⎢⎢⎣
0Dq1 x1(t)

0Dq2 x2(t)

...

0Dqn xn(t)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 · · · 0

0 0 1 0

...
...

...

−a0/an −a1/an · · · an−1/an

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
x1(t)

x2(t)

...

xn(t)

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

...

1/an

⎤⎥⎥⎥⎥⎥⎥⎦u(t)

y(t) =
[

1 0 · · · 0 0
]
⎡⎢⎢⎢⎢⎢⎢⎣

x1(t)

x2(t)

...

xn(t)

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.17)

where α0 = 0, q1 = α1, q2 = αn−1 − αn−2, . . . ,qn = αn − αn−1, and with initial

conditions:

x1(0) = x(1)
0 = y0, x2(0) = x(2)

0 = 0, . . .
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xi(0) = x(i)
0 =

{
y(k)

0 , if i = 2k +1,

0, if i = 2k,
i ≤ n. (3.18)

The n-term FODE (3.13) is equivalent to the system of Eqs. (3.17) with the initial

conditions (3.18) if Caputo’s derivative is considered.

3.2 Fractional Nonlinear Systems

In this book, we will consider the general incommensurate fractional-order nonlin-

ear system represented as follows:

0Dqi
t xi(t) = fi(x1(t),x2(t), . . . ,xn(t), t),
xi(0) = ci, i = 1,2, . . . ,n, (3.19)

where ci are initial conditions. The vector representation of (3.19) is:

Dqx = f(x), (3.20)

where q = [q1,q2, . . . ,qn]T for 0 < qi < 2, (i = 1,2, . . . ,n) and x ∈ Rn.

The equilibrium points of system (3.20) are calculated via solving the following

equation

f(x) = 0 (3.21)

and we suppose that E∗ = (x∗1,x
∗
2, . . . ,x

∗
n) is an equilibrium point of system (3.20).

3.3 Fractional-Order Controllers

3.3.1 Definition of Fractional-Order Controllers

The fractional-order PIλ Dδ (also PIλ Dμ controller) controller (FOC) was proposed

in (Podlubny, 1999a,b) as a generalization of the PID controller with integrator

of real order λ and differentiator of real order δ . The transfer function of such

controller in the Laplace domain has this form (Podlubny, 1999b; Podlubny et al.,

2002):

C(s) =
U(s)
E(s)

= Kp +Ti s−λ +Td sδ , (λ ,δ > 0), (3.22)

where Kp is the proportional constant, Ti is the integration constant and Td is the

differentiation constant.

As we can see in Fig. 3.1, the internal structure of the fractional-order controller

consists of the parallel connection, the proportional, integration, and derivative part

(Dorf and Bishop, 1990). The transfer function (3.22) corresponds in time domain
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K

Fig. 3.1 General structure of a PIλ Dδ controller.

to fractional differential equation (3.23)

u(t) = Kp e(t)+Ti 0D−λ
t e(t)+Td 0Dδ

t e(t), (3.23)

or discrete transfer function given below:

C(z) =
U(z)
E(z)

= Kp +
Ti

(ω(z−1))λ +Td(ω(z−1))δ , (3.24)

where ω(z−1) denotes the discrete operator, expressed as a function of the complex

variable z or the shift operator z−1.

Taking λ = 1 and δ = 1, we obtain a classical PID controller. If λ = 0 and Ti = 0,

we obtain a PDδ controller, etc. All these types of controllers are particular cases

of the fractional-order controller, which is more flexible and gives an opportunity to

better adjust the dynamical properties of the fractional-order control system.

It can also be mentioned that there are many other considerations of the fractional-

order controller (Xue and Chen, 2002). For example, we can mention several of

them:

• CRONE controller (1st generation) (Oustaloup, 1995), characterized by the

band-limited lead effect (Oustaloup, 1983):

C(s) = C0

(
1+ s/ωb

1+ s/ωh

)r

(3.25)

where 0 < ωb < ωh, C0 > 0 and r ∈ (0,1).
There are a number of real life applications of three generations of the CRONE

controller such as the car suspension control (Oustaloup et al., 1996), flexible

transmission (Oustaloup et al., 1995), and hydraulic actuator.



3.3 Fractional-Order Controllers 49

• Fractional lead-lag compensator (Raynaud and Zergaı̈noh, 2000; Monje et al.,

2008), given by

C(s) = kc

(
s+1/λ
s+1/xλ

)r

= kcxr
(

λ s+1

xλ s+1

)r

, (3.26)

r ∈ R, 0 < x < 1.

• Non-integer integral and its application to control (Manabe, 1961);

• T ID compensator (Lurie, 1994), which has structure similar to a PID con-

troller but the proportional component is replaced with a tilted component having

a transfer function s to the power of (−1/n). The resulting transfer function of

the T ID controller has the form:

C(s) =
T

s1/n +
I
s
+Ds, (3.27)

where T , I and D are the controller constants and n is a non-zero real number,

preferably between 2 and 3. The transfer function (3.27) more closely approxi-

mates an optimal transfer function and an overall response is achieved, which is

closer to the theoretical optimal response determined by Bode (Bode, 1949).

3.3.2 Properties and Characteristics of Controller

It can be expected that PIλ Dδ controller (3.22) may enhance the systems control

performance due to more tuning knobs introduced, which is intuitively illustrated in

Fig. 3.2.

Fig. 3.2 PID controller: from points to plane.

The PIλ Dδ controller with complex zeros and poles located anywhere in the

left-hand s-plane may be rewritten as
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C(s) = K
(s/ωn)

δ+λ +(2ζ sλ )/ωn +1

sλ , (3.28)

where K is the gain, ζ is the dimensionless damping ratio and ωn is the natural

frequency. Normally, we choose ζ < 1. When ζ = 1, the condition is called critical

damping (Dorf and Bishop, 1990).

Example 3.1. : Let us consider the fractional-order controller (3.28) with the follow-

ing parameters: K = 6.5, ωn = 1, ζ = 0.5 and λ = δ = 0.5.

In Fig. 3.3 are shown the Bode plots of the fractional PIλ Dδ controller (3.28)

with the above-mentioned parameters.

Fig. 3.3 Bode plots of PIλ Dδ controller (3.28) with K = 6.5, ωn = 1, ζ = 0.5 and λ = δ = 0.5.

The slopes of the magnitude and the value of the phase for low and high fre-

quencies can be selected, which are related with the relative stability and the high

frequencies gained by Vinagre (2000). Asymptotically, at low frequency the slope

will be −λdB/dec and the phase will be −λ π
2 , and at high frequency the slope will

be δdB/dec and the phase will be δ π
2 .

For a wide class of controlled objects we recommend the fractional PInDδ con-

troller, which is a particular case of PIλ Dδ controller, where λ = n, n∈N and δ ∈ R.

Integer-order integrator is important for steady-state error cancellation but on the

other hand, the fractional integral is also important for obtaining a Bode’s ideal loop
transfer function response with constant phase margin for desired frequency range

(Aström, 2000; Bode, 1949; Manabe, 1961; Tustin et al., 1958).
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3.3.3 Design of Controller Parameters and Implementation

The tuning of PIλ Dδ controller parameters is determined according to the given

requirements. These requirements are, for example, the damping ratio, the steady-

state error (ess), dynamical properties, etc. One of the methods being developed is

the method of dominant roots (Petráš, 1999; Petráš and Dorčák, 2003), based on the

given stability measure and the damping ratio of the closed control loop. Assume

that the desired dominant roots are a pair of complex conjugate root as follows:

s1,2 = −σ ± jωd ,

designed for the damping ratio ζ and natural frequency ωn. The damping constant

(stability measure) is σ = ζωn and the damped natural frequency of oscillation

ωd = ωn
√

1−ζ 2. The design of parameters: Kp, Ti, λ , Td and δ can be computed

numerically from characteristic equation. More specifically, for simple plant model

P(s), this can be done by solving

min
Kp,Ti,λ ,Td ,δ

||C(s)P(s)+1||s=−σ± jωd .

Another possible way to obtain the controller parameters is using the tuning for-

mula, based on gain Am and phase Φm margins specifications for crossover fre-

quency ωcg. Gain and phase margins have always served as important measures

of robustness. The equations that define the phase margin and the gain crossover

frequency are expressed as (Monje et al., 2008; Vinagre, 2000):

|C( jωcg)P(ωcg)|dB = 0dB

arg(C( jωcg)P(ωcg)) = −π +Φm

The above equations are often used also for the so-called auto-tuning techniques. For

instance, relay auto-tuning process has been widely used in industrial application

and it was already modified for the fractional-order controllers (Monje et al., 2008).

Last but not least, we should mention the optimization algorithm based on the

integral absolute error (IAE) minimization (Podlubny, 1999b):

IAE(t) =
∫ t

0
|e(t)|dt =

∫ t

0
|w(t)− y(t)|dt,

where w(t) is the desired value of closed control loop and y(t) is the real value of

closed control loop. This method does not ensure the desired stability measure of the

closed control loop. Measure of stability has to be checked out additionally by some

known method as, for example, frequency method described in literature (Petráš and

Dorčák, 1999).

Implementation techniques for the FOC have been described in several works.

Some proposal can be found in the work by Vinagre (2000). An analogue implemen-
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tation was proposed in the book by Petráš et al. (2002) and a digital implementation

was suggested in the book by Caponetto et al. (2010).

It can be expected that PIλ Dδ controller (3.22) may enhance the systems control

performance due to more tuning knobs introduced. Actually, in theory, PIλ Dδ itself

is an infinite-dimensional linear filter due to the fractional order in differentiator or

integrator.

We comment that since PID control is ubiquitous in industry process control,

fractional-order PID control will also be ubiquitous when tuning and implementa-

tion techniques are well developed (Caponetto et al., 2010; Chen, 2006; Chen et al.,

2008, 2009; Monje et al., 2008; Petráš, 1999).
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Petráš I., 1999, The fractional-order controllers: methods for their synthesis and

application, Journal of Electrical Engineering, 50, 284–288.
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Chapter 4
Stability of Fractional-Order Systems

4.1 Preliminary Consideration

Stability as an extremely important property of dynamical systems can be investi-

gated in various domains (Bellman, 1953; Dorf and Bishop, 1990). The usual con-

cept of the bounded input-bounded output (BIBO) or external stability in time do-
main can be defined via the following general stability conditions (Matignon, 1998):

A causal LTI system with impulse response h(t) will be BIBO stable if the nec-

essary and sufficient condition is satisfied∫ ∞

0
||h(τ)||dτ < ∞,

where the output of the system is defined by convolution

y(t) = h(t)∗u(t) =
∫ ∞

0
h(τ)u(t − τ)dτ,

where u,y ∈ L∞ and h ∈ L1.

Another very important domain is frequency domain. In the case of frequency

method for evaluating the stability we transform the s-plane into the complex plane

Go( jω) and the transformation is realized according to the transfer function of the

open loop system Go( jω). During the transformation, all roots of the characteristic

polynomial are mapped from s-plane into the critical point (−1, j0) in the plane

Go( jω). The mapping of the s-plane into Go( jω) plane is conformal, that is, the

direction and location of points in the s-plane are preserved in the Go( jω) plane.

Frequency investigation method and utilization of the Nyquist frequency character-

istics based on argument principle were described in the paper by Petráš and Dorčák

(1999).

However, we cannot directly use algebraic tools as, for example, Routh-Hurwitz

criteria for the fractional-order system because we do not have a characteristic poly-

nomial but pseudo-polynomial with rational power — multivalued function. It is

possible only in some special cases (Ahmed et al., 2006). Moreover, modern con-
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trol methods as, for example, LMI (Linear Matrix Inequality) methods (Oustaloup

et al., 2008) or other algorithms (Hamamci, 2008; Hwang and Cheng, 2006) have

already been developed. The advantage of LMI methods in control theory is due

to their connection with the Lyapunov method (existence of a quadratic Lyapunov

function). More generally, LMI methods are useful to test if matrix eigenvalues

belong to a certain region in the complex plane. A simple test can be used (An-

derson et al., 1974). Roots of polynomial P(s) = det(sI −A) lie inside the region

−π/2−δ < arg(s) < π/2+δ if eigenvalues of the matrix

A1 =
[

Acosδ −Asinδ
Asinδ Acosδ

]
≡ A⊗

[
cosδ −sinδ
sinδ cosδ

]
(4.1)

have negative real part, where ⊗ denotes the Kronecker product. This property has

been used in stability analysis of ordinary fractional order LTI systems and also for

interval fractional-order LTI systems (Tavazoei and Haeri, 2009).

The stability of the fractional-order delayed systems was investigated in (Bonnet

and Partington, 2000; Chen and Moore, 2002; Özturk and Uraz, 1985) as well as the

stability of the discrete fractional-order systems in (Dzieliski and Sierociuk, 2008).

When dealing with incommensurate fractional-order systems (or, in general, with

fractional-order systems), it is important to bear in mind that P(sα), α ∈ R is a mul-

tivalued function of sα , α = u/v, the domain of which can be viewed as a Riemann

surface with finite number of Riemann sheets v, where the origin is a branch point

and the branch cut is assumed at R− (Fig. 4.1). Function sα becomes holomorphic

in the complement of the branch cut line. It is a fact that in multivalued functions

only the first Riemann sheet has its physical significance (Gross and Braga, 1961).

Note that each Riemann sheet has only one edge at branch cut and not only poles

and singularities originating from the characteristic equation, but branch points and

branch cut of given multivalued functions are also important for the stability analy-

sis (Bayat and Afshar, 2008; Bayat and Ghartemani, 2008).

In this book the branch cut is assumed at R− and the first Riemann sheet is

denoted by Ω and defined as (Fig. 4.1)

Ω := {re jφ |r > 0,−π < φ < π}. (4.2)

It is well known that an integer-order LTI system is stable if all the roots of the

characteristic polynomial P(s) are negative or have negative real parts if they are

complex conjugate (e.g. (Dorf and Bishop, 1990)). This means that they are located

on the left of the imaginary axis of the complex s-plane. System G(s) = Q(s)/P(s)
is BIBO stable if

∃ ||G(s)|| ≤ M < ∞, M > 0, ∀s,ℜ(s) ≥ 0.

A necessary and sufficient condition for the asymptotic stability is (El-Salam and

El-Sayed, 2007):

limt→∞||X(t)|| = 0.
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Fig. 4.1 Branch cut (0,−∞) for branch points in the complex plane.

According to the final value theorem proposed in (Ghartemani and Bayat, 2008), for

fractional-order case, when there is a branch point at s = 0, we assume that G(s) is

a multivalued function of s, then

x(∞) = lims→0[sG(s)].

Example 4.1. : Let us investigate the simplest multivalued function defined as

w = s
1
2 (4.3)

and there will be two s-planes which map onto a single w-plane. The interpretation

of the two sheets of the Riemann surface and the branch cut is depicted in Fig. 4.2.

Define the principal square root function as

f1(s) = |s| 1
2 e

jφ
2 = re

jφ
2 ,

where r > 0 and −π < φ < +π . The function f1(s) is a branch of w. Using the same

notation, we can find other branches of the square root function. For example, if we

let

f2(s) = |s| 1
2 e

jφ+2π
2 = re

jφ+2π
2 ,

then f2(s) = − f1(s) and it can be thought of as “plus” and “minus” square root

functions. The negative real axis is called a branch cut for the functions f1(s) and

f2(s). Each point on the branch cut is a point of discontinuity for both functions

f1(s) and f2(s). As has been shown in (LePage, 1961), the function described by
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Fig. 4.2 Riemann surface interpretation of the function w = s
1
2 .

(4.3) has a branch point of order 1 at s = 0 and at infinity. They are located at the

ends of the branch cut (Fig. 4.1).

Example 4.2. : Let us investigate the transfer function of fractional-order system

(multivalued function) defined as

G(s) =
1

sα +b
, (4.4)

where α ∈ R (0 < α ≤ 2) and b ∈ R (b > 0).
The analytical solution of the fractional-order system (4.4) obtained according to

relation (3.9) has the following form:

g(t) = E0(t,−b;α,α). (4.5)

The Riemann surface of the function (4.4) contains an infinite number of sheets

and infinitely many poles in positions

s = b
1
α e

j(π+2πn)
α , n = 0,±1,±2, . . . for α > 0andb > 0.

The sheets of the Riemann surface are all different if α is irrational.

For 1 < α < 2 we have two poles corresponding to n = 0 and n = −1, and the

poles are
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s = b
1
α e±

iπ
α .

However, for 0 < α < 1 in (4.4) the denominator is a multivalued function and the

singularity of the system cannot be defined unless it is made singlevalued. Therefore

we will use the Riemann surface. Let us investigate transfer function (4.4) for α =
0.5 (half-order system), then we get

G(s) =
1

s
1
2 +b

, (4.6)

and by equating the denominator to zero we have

s
1
2 +b = 0.

Rewriting the complex operator s
1
2 in exponential form and using the well-known

relation e jπ +1 = 0 (or e j(±π+2kπ) +1 = 0) we get the following formula:

r
1
2 e j(φ/2+kπ) = ae j(±π+2kπ) (4.7)

From relationship (4.7) it can be deduced that the modulus and phase (arg) of the

pole are:

r = b2 and φ = ±2π(1+ k) for k = 0,1,2, . . .

However, the first sheet of the Riemann surface is defined for range of −π < φ <
+π , the pole with the angle φ = ±2π , does not fall within this range but the pole

with the angle φ = 2π falls into the range of the second sheet defined for π <
φ < 2π . Therefore this half-order pole with magnitude b2 is located on the second

sheet of the Riemann surface that consequently maps to the left side of the w-plane

(Fig. 4.3). On this plane the magnitude and phase of the singlevalued pole are b2

and π , respectively (LePage, 1961).

Example 4.3. : Analogous to previous examples we can also investigate function

w = s
1
3 , (4.8)

where in this case the Riemann surface has three sheets with each mapping onto one

third of the w-plane (Fig. 4.4).

Definition 4.1. Generally, for the multivalued function defined as

w = s
1
v , (4.9)

where v∈N (v = 1,2,3, . . .) we get the v sheets in the Riemann surface. In Fig. 4.5 is

shown the relationship between the w-plane and the v sheets of the Riemann surface

where sector −π/v < arg(w) ≤ π/v corresponds to Ω (first Riemann sheet).

Definition 4.2. Mapping the poles from the sq-plane into the w-plane, where q ∈ Q

is such that q =
k
m

for k,m ∈ N and |arg(w)| = |φ |, can be done by the following
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Fig. 4.3 Correspondence between the s-plane and the w-plane.

rule: If we assume k = 1, then the mapping from s-plane to w-plane is independent

of k. Unstable region from the s-plane transforms to sector |φ | < π
2m and stable

region transforms to sector π
2m < |φ |< π

m . The region where |φ |> π
m is not physical.

Therefore, the system will be stable if all roots in the w-plane lie in the region |φ |>
π

2m . Stability regions depicted in Fig. 4.6 correspond to the following propositions:

1. For k < m (q < 1) the stability region is depicted in Fig. 4.6(a).

2. For k = m (q = 1) the stability region corresponds to the s-plane.

3. For k > m (q > 1) the stability region is depicted in Fig. 4.6(b).
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Fig. 4.4 Correspondence between the 3-sheet Riemann surface and w-plane for Eq. (4.8).
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Fig. 4.5 Correspondence between the w-plane and the Riemann sheets.
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Fig. 4.6 Stability regions of the fractional-order system.

4.2 Stability of Fractional LTI Systems

As we can see in previous subsection, in the fractional case, the stability is different

from the integer case. It is interesting that a stable fractional system may have roots

in the right half of complex w-plane (Fig. 4.6). Since the principal sheet of the

Riemann surface is defined for −π < arg(s) < π , by using the mapping w = sq, the

corresponding w domain is defined by −qπ < arg(w) < qπ , and the w plane region

corresponding to the right half plane of this sheet is defined by −qπ/2 < arg(w) <
qπ/2.

Consider the fractional-order pseudo-polynomial

Q(s) = a1sq1 +a2sq2 + · · ·+ansqn = a1sc1/d1 +a2sc2/d2 + · · ·+anscn/dn ,

where qi are rational numbers expressed as ci/di and ai are real numbers for i =
1,2, . . . ,n. If for some i, ci = 0 then di = 1. Let v be the least common multiple

(LCM) of d1,d2, . . . ,dn denoted as v = LCM{d1,d2, . . . ,dn}, then (Ghartemani and

Bayat, 2008)

Q(s) = a1s
v1
v +a2s

v2
v + · · ·+ans

vn
v = a1(s

1
v )v1 +a2(s

1
v )v2 + · · ·+an(s

1
v )vn . (4.10)

The fractional degree (FDEG) of the polynomial Q(s) is defined as (Ghartemani and

Bayat, 2008)

FDEG{Q(s)} = max{v1,v2, . . . ,vn}.
The domain of definition for (4.10) is the Riemann surface with v Riemann sheets

where the origin is a branch point of order v− 1 and the branch cut is assumed at

R−. The number of roots for fractional algebraic equation (4.10) is given by the fol-
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lowing proposition (Bayat et al., 2009):

Proposition 4.1. Let Q(s) be a fractional-order polynomial with FDEG{Q(s)} = n.
Then the equation Q(s)=0 has exactly n roots on the Riemann surface.

Definition 4.3. The fractional-order polynomial

Q(s) = a1s
n
v +a2s

n−1
v + · · ·+ans

1
v +an+1

is minimal if FDEG{Q(s)}= n. We will assume that all fractional-order polynomial

are minimal. This ensures that there is no redundancy in the number of the Riemann

sheets (Ghartemani and Bayat, 2008).

On the other hand, it has been shown, by several authors and by using several

methods, that for the case of FOLTI system of commensurate order, a geometrical

method of complex analysis based on the argument principle of the roots of the char-

acteristic equation (a polynomial in this particular case) can be used in the stability

check in the BIBO sense (Matignon, 1998; Petráš and Dorčák, 1999). The stability

condition can then be stated as follows (Matignon, 1996, 1998; Vinagre and Feliu,

2007):

Theorem 4.1. (Matignon, 1996): A commensurate-order system described by a ra-
tional transfer function (3.5) is stable if and only if

|arg(λi)| > α
π
2

, for all i

with λi being the i-th root of P(sα).

For the FOLTI system with commensurate order where the system poles are in

general complex conjugate, the stability condition can also be expressed as follows:

Theorem 4.2. (Matignon, 1996, 1998): A commensurate-order system described by
a rational transfer function

G(w) =
Q(w)
P(w)

,

where w = sq, q ∈ R+, (0 < q < 2), is stable if and only if

|arg(wi)| > q
π
2

,

with ∀wi ∈ C being the i-th root of P(w) = 0.
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When w = 0 is a single root (singularity in origin) of P, the system cannot be

stable. For q = 1, this is the classical theorem of pole location in the complex plane:

P has no pole in the closed right half plane of the first Riemann sheet. The stability

region suggested by this theorem tends to the whole s-plane when q tends to 0,

corresponds to the Routh-Hurwitz stability when q = 1, and tends to the negative

real axis when q tends to 2.

Theorem 4.3. (Aoun et al., 2004; Matignon, 1998; Tavazoeiand Haeri, 2007a, b,
2008a): It has been shown that commensurate system (3.15) is stable if the follow-
ing condition is satisfied (also if the triplet A, B, C is minimal)

|arg(eig(A))| > q
π
2

, (4.11)

where 0 < q < 2 and eig(A) represents the eigenvalues of matrix A.

Proposition 4.2. We can assume that some incommensurate-order systems described
by the FODE (3.13) or (3.15) can be decomposed into the following modal form of
the fractional transfer function (the so-called Laguerre functions (Aoun et al., 2007)) :

F(s) =
N

∑
i=1

nk

∑
k=1

Ai,k

(sqi +λi)k (4.12)

for some complex numbers Ai,k, λi, and positive integer nk.
A system (4.12) is BIBO stable if and only if qi and the argument of λi denoted

by arg(λi) in (4.12) satisfy the inequalities

0 < qi < 2 and |arg(λi)| < π
(

1− qi

2

)
for all i. (4.13)

Henceforth, we will restrict the parameters qi to the interval qi ∈ (0,2). For the case
qi = 1 for all i we obtain a classical stability condition for integer-order system (no
pole is in right half plane). The inequalities (4.13) were obtained by applying the
stability results given in (Akcay and Malti, 2008; Matignon, 1998).

Theorem 4.4. (Deng et al., 2007) : Consider the following autonomous system for
internal stability definition

0Dq
t x(t) = Ax(t), x(0) = x0, (4.14)

with q = [q1,q2, . . . ,qn]T and its n-dimensional representation:

0Dq1
t x1(t) = a11x1(t)+a12x2(t)+ · · ·+a1nxn(t),

0Dq2
t x2(t) = a21x1(t)+a22x2(t)+ · · ·+a2nxn(t),

. . . . . .

0Dqn
t xn(t) = an1x1(t)+an2x2(t)+ · · ·+annxn(t), (4.15)
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where all qi’s are rational numbers between 0 and 2. Assume m to be the LCM of
the denominators ui’s of qi’s , where qi = vi/ui, vi,ui ∈ Z+ for i = 1,2, . . . ,n and we
set γ = 1/m. Define:

det

⎛⎜⎜⎜⎝
λ mq1 −a11 −a12 . . . −a1n

−a21 λ mq2 −a22 . . . −a2n
...

...
−an1 −an2 . . . λ mqn −ann

⎞⎟⎟⎟⎠= 0. (4.16)

The characteristic equation (4.16) can be transformed to integer-order polynomial
equation if all qi’s are rational number. Then the zero solution of system (4.15)

is globally asymptotically stable if all roots λi’s of the characteristic (polynomial)
equation (4.16) satisfy

|arg(λi)| > γ
π
2

for all i.

Denoting λ by sγ in Eq. (4.16), we get the characteristic equation in the form
det(sγ I −A) = 0.

Corollary 4.1. Suppose q1 = q2 = · · · = qn ≡ q, q ∈ (0,2), all eigenvalues λ of
matrix A in (3.17) satisfy |arg(λ )| > qπ/2, the characteristic equation becomes
det(sqI − A) = 0 and all characteristic roots of the system (3.15) have nega-
tive real parts (Deng et al., 2007). This result is Theorem 1 of the paper by
Matignon (1996).

Remark 4.1. : Generally, when we assume s = |r|e jφ , where |r| is the modulus and φ
is the argument of a complex number in the s-plane, respectively, the transformation

w = s
1
m to the complex w-plane can be viewed as s = |r| 1

m e
jφ
m and thus |arg(s)| =

m.|arg(w)| and |s| = |w|m. Proof of this statement is obvious.

Stability test procedure for a general fractional-order LTI system can be sum-
marized as follows:

The characteristic equation of a general LTI fractional-order system of the form:

ansαn + · · ·+a1sα1 +a0sα0 ≡
n

∑
i=0

aisαi = 0 (4.17)

may be rewritten as
n

∑
i=0

ais
ui
vi = 0

and transformed into the w-plane

n

∑
i=0

aiwi = 0, (4.18)
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with w = s
k
m , where m is the LCM of vi. The steps for the stability analysis are

(Petráš, 2009; Radwan et al., 2009):

1. For given ai calculate the roots of Eq. (4.18) and find the absolute phase of all

roots |φw|.
2. Roots in the primary sheet of the w-plane which have corresponding roots in the

s-plane can be obtained by finding all roots which lie in the region |φw| < π
m

then applying the inverse transformation s = wm (see Remark 4.1). The region

where |φw| > π
m is not physical. For testing the roots in desired region the matrix

approach (4.1) can be used.

3. The condition for stability is π
2m < |φw| < π

m . Condition for oscillation is |φw| =
π

2m , otherwise the system is unstable (Fig. 4.5(b)). If there is no root in the phys-

ical s-plane, the system will always be stable.

Example 4.4. : Let us consider the linear fractional-order LTI system described by

the transfer function (Dorčák, 1994; Podlubny, 1999):

G(s) =
Y (s)
U(s)

=
1

0.8s2.2 +0.5s0.9 +1
, (4.19)

where the corresponding FODE has the following form:

0.8 0D2.2
t y(t)+0.5 0D0.9

t y(t)+ y(t) = u(t) (4.20)

with zero initial conditions.

The system (4.20) can be rewritten to its state-space representation (x1(t)≡ y(t)):[
0D

9
10 x1(t)

0D
13
10 x2(t)

]
=
[

0 1

−1/0.8 −0.5/0.8

][
x1(t)
x2(t)

]
+
[

0

1/0.8

]
u(t),

y(t) =
[

1 0
][ x1(t)

x2(t)

]
. (4.21)

The eigenvalues of the matrix A are λ1,2 =−0.3125±1.0735 j and then |arg(λ1,2)|=
1.8541. Because of various derivative orders in (4.21), Theorem 4.3 cannot be used

directly.

The analytical solution of the FODE (4.20) for u(t) = 0 obtained from general

solution (3.9) has the following form:

y(t) =
1

0.8

∞

∑
k=0

(−1)k

k!

(
1

0.8

)k

Ek(t,−0.5

0.8
;2.2−0.9,2.2+0.9k). (4.22)

In Fig. 4.7 is depicted the analytical solution of the FODE (4.20) where u(t) = 0.

As we can see in the figure, the solution is stable because limt→∞y(t) = 0.

Let us investigate stability according to the previously described method. The

corresponding characteristic equation of the system is:
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Fig. 4.7 Analytical solution of FODE (4.20) where u(t) = 0 for 50s and zero initial conditions.

P(s) : 0.8s2.2 +0.5s0.9 +1 = 0 ⇒ 0.8s
22
10 +0.5s

9
10 +1 = 0, (4.23)

when m = 10, w = s
1
10 , then the roots wi’s and their appropriate arguments of the

polynomial

P(w) : 0.8w22 +0.5w9 +1 = 0 (4.24)

are:

w1,2 = −0.9970±0.1182 j, |arg(w1,2)| = 3.023;

w3,4 = −0.9297±0.4414 j, |arg(w3,4)| = 2.698;

w5,6 = −0.7465±0.6420 j, |arg(w5,6)| = 2.431;

w7,8 = −0.5661±0.8633 j, |arg(w7,8)| = 2.151;

w9,10 = −0.259±0.9625 j, |arg(w9,10)| = 1.834;

w11,12 = −0.0254±1.0111 j, |arg(w11,12)| = 1.595;

w13,14 = 0.3080±0.9772 j, |arg(w11,12)| = 1.265;

w15,16 = 0.5243±0.8359 j, |arg(w15,16)| = 1.010;

w17,18 = 0.7793±0.6795 j, |arg(w17,18)| = 0.717;

w19,20 = 0.9084±0.3960 j, |arg(w19,20)| = 0.411;

w21,22 = 1.0045±0.1684 j, |arg(w21,22)| = 0.1661.
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Physical significance roots are in the first Riemann sheet, which is expressed by

relation −π/m < φ < π/m, where φ = arg(w). In this case they are complex conju-

gate roots w21,22 = 1.0045±0.1684 j (|arg(w21,22)|= 0.1661), which satisfy condi-

tions |arg(w21,22)| > π/2m = π/20. It means that system (4.20) is stable (Fig. 4.8).

Other roots of the polynomial equation (4.24) lie in region |φ | > π
m which is not

physical (outside of closed angular sector limited by thick line in Fig. 4.8(b)).

In Fig. 4.8(a) is depicted the Riemann surface of the function w = s
1
10 with the 10-

Riemann sheets and in Fig. 4.8(b) are depicted the roots in complex w-plane with

angular sector corresponding to stability region (dash line) and the first Riemann

sheet (thick line).

The interesting notion of Remark 4.1 should be mentioned here. The character-

istic equation (4.23) has the following poles: s1,2 = −0.10841± 1.19699 j, in the

first Riemann sheet in s-plane, which can be obtained, e.g., via the Matlab rou-

tine as, for instance, s=solve(’0.8*s2.2+0.5*s0.9+1=0’,’s’). When we com-

pare |arg(w21,22)| = 0.1661 with |arg(s1,2)| = 1.661, we can see that |arg(s1,2)| =
m|arg(w21,22)|, where m = 10 in transformation w = s

1
m . The first Riemann sheet is

transformed from the s-plane to the w-plane as follows: −π/10 < arg(w) < π/10

and then −π < 10arg(w) < π . Therefore from this consideration we obtain relation

|arg(s)| = 10 |arg(w)|.
Example 4.5. : Consider the closed loop system with controlled system (electrical

heater)

G(s) =
1

39.96s1.25 +0.598
(4.25)

and PD controller

C(s) = 64.47+12.46s. (4.26)

The resulting closed loop transfer function Gc(s) becomes (Petráš et al., 2004b):

Gc(s) =
Y (s)
W (s)

=
12.46s+64.47

39.69s1.25 +12.46s+65.068
(4.27)

The analytical solution (impulse response) of the fractional-order control system

(4.27) is:

y(t) =
12.46

39.69

∞

∑
k=0

(−1)k

k!

(
12.46

39.69

)k

×Ek(t,−65.068

39.69
;1.25,0.25− k) (4.28)

+
64.47

39.69

∞

∑
k=0

(−1)k

k!

(
65.068

39.69

)k

×Ek(t,−12.46

39.69
;1.25−1,1.25+ k)

with zero initial conditions.

The characteristic equation of this system is

39.69s1.25 +12.46s+65.068 = 0 ⇒ 39.69s
5
4 +12.46s

4
4 +65.068 = 0 (4.29)
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Fig. 4.8 Riemann surface of function w = s
1
10 and roots of Eq. (4.24) in complex w-plane.
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Using the notation w = s
1
m , where LCM is m = 4, we obtain a polynomial of complex

variable w in the form

39.69w5 +12.46w4 +65.068 = 0. (4.30)

Solving the polynomial (4.30) we get the following roots and their arguments:

w1 = −1.17474, |arg(w1)| = π,

w2,3 = −0.40540±1.0426 j, |arg(w2,3)| = 1.9416,

w4,5 = 0.83580±0.64536 j, |arg(w4,5)| = 0.6575.

This first Riemann sheet is defined as a sector in w-plane within interval −π/4 <
arg(w) < π/4. Complex conjugate roots w4,5 lie in this interval and satisfy the sta-

bility condition given as |arg(w)| > π
8 , therefore the system is stable. The region

where |arg(w)| > π
4 is not physical.

Example 4.6. : Let us examine an interesting example of application, the so-called

Bessel function of the first kind, the transfer function of which is (Matignon, 1998):

H(s) =
1√

s2 +1
, ∀s, ℜ(s) > 0. (4.31)

We have two branch points s1 = j, and s2 =− j and two cuts. One along the half line

(−∞+ j, j) and the other along the half line (−∞− j,− j). In this doubly cut com-

plex plane, we have the identity
√

s2 +1 =
√

s− j
√

s+ j. The well-known asymp-

totic expansion of Eq. (4.31) is:

h(t) ≈
√

2

πt
cos(t − π

4
) =

√
2

π
t−

1
2 E2,1

(
−(t − π

4
)2
)

.

According to the branch points and above asymptotic expansion we can state that

the system described by the Bessel function (4.31) is on the boundary of stability

and has oscillation behaviour.

Example 4.7. : Let us consider the more complex example, namely, Nuclear Mag-

netic Resonance (NMR). In physics and bio-engineering, specifically in NMR or

magnetic resonance imaging the Bloch equations are a set of macroscopic equa-

tions that are used to calculate the nuclear magnetization M = (Mx(t),My(t),Mz(t))
as a function of time when relaxation time is T1 (spin-lattice) and T2 (spin-spin).

These equations were introduced by Felix Bloch in 1946 and can be expressed in

the following form (Bloch, 1946):

dMx(t)
dt

= γ(M(t)×B(t))x − Mx(t)
T2

,

dMy(t)
dt

= γ(M(t)×B(t))y − My(t)
T2

, (4.32)
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dMz(t)
dt

= γ(M(t)×B(t))z − Mz(t)−M0

T1
,

where γ/2π is the gyromagnetic ratio, B(t) = (Bx(t),By(t),B0 +ΔBz(t)) is the mag-

netic field experienced by the nuclei, and M0 is the equilibrium magnetization.

However, the relaxation terms describe the return to equilibrium, but only for

a field pointing along the z-axis, the Bloch equations (4.32) for the constant static

magnetic field B0 (z-component) reduce to the equations (Haacke et al., 1999):

dMx(t)
dt

= ω0My(t)− Mx(t)
T2

,

dMy(t)
dt

= −ω0Mx(t)− My(t)
T2

, (4.33)

dMz(t)
dt

=
M0 −Mz(t)

T1
,

where ω0 = γB0 and ω0 = 2π f0 (e.g. gyromagnetic ratio γ/2π = f0/B0 = 42.57

Mhz/Tesla for water protons).

Now, we consider the fractional-order Bloch equations, where integer-order

derivatives are replaced by fractional-order ones. The mathematical description of

the fractional-order system with Caputo’s derivatives is expressed as (Magin et al.,

2009):

0Dq1
t Mx(t) = ω

′
0My(t)− Mx(t)

T ′
2

,

0Dq2
t My(t) = −ω

′
0Mx(t)− My(t)

T ′
2

, (4.34)

0Dq3
t Mz(t) =

M0 −Mz(t)
T ′

1

,

where q1, q2, and q3 are the derivative orders. The total order of the system is q̄=(q1,

q2, q3). Here, ω ′
0, T

′
1 , and T

′
2 have the units of (sec)−q to maintain a consistent set of

units for the magnetization.

Analytical solution of the fractional-order Bloch equations (4.34) based on

Mittag-Leffler function has been derived and discussed in (Magin et al., 2009). In

addition, we will use a more convenient numerical solution of the fractional-order

Bloch equations (4.34), which is based on the Grünwald-Letnikov method described

in Chapter 2, having the form:

Mx(tk) =

(
ω

′
0My(tk−1)− Mx(tk−1)

T ′
2

)
hq1 −

k

∑
j=v

c(q1)
j Mx(tk− j),
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My(tk) =

(
−ω

′
0Mx(tk)− My(tk−1)

T ′
2

)
hq2 −

k

∑
j=v

c(q2)
j My(tk− j), (4.35)

Mz(tk) =

(
M0 −Mz(tk−1)

T ′
1

)
hq3 −

k

∑
j=v

c(q3)
j Mz(tk− j),

where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (Mx(0),
My(0), Mz(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j ∀i
are calculated according to relation (2.54). All simulations described in this section

were performed without using the short memory principle (v = 1) for time step

h = 0.00001.

Stability of the fractional-order Bloch equations (4.34) can be investigated ac-

cording to Theorem 4.3 or Theorem 4.4. The first and second equations of set (4.34)

are coupled and the third one is independent of them. The stability condition is de-

termined from the following expression

0Dq
t

[
Mx(t)

My(t)

]
=

⎡⎣− 1

T ′
2

ω ′
0

−ω ′
0 − 1

T2
′

⎤⎦[Mx(t)

My(t)

]
, (4.36)

where q = [q1,q2]T .

The system matrix is defined as

A =

⎡⎢⎣− 1

T2
′ ω ′

0

−ω ′
0 − 1

T2
′

⎤⎥⎦ . (4.37)

For the following system parameters (Magin et al., 2009): T
′

2 = 20(ms)q, and

f0 = 160Hz we obtain the eigenvalues eig(A) =−50±1005.3 j and |arg(eig(A))|=
1.6205. According to the stability condition of Theorem 4.3, the system (4.36) for

the above parameters is stable if q < 1.03163 in the case q1 = q2. For q1 = q2 ≈
1.03163 we get the critical stability border and the solution of the system (4.36) is

depicted in Fig. 4.9. In Fig. 4.9(a), we observe a limit cycle and Fig. 4.9(b) plots

spiral.

In the case where we consider q1 = q2 = q3 = 1 in (4.34), we have the integer-

order (classical) model of the Bloch equations (4.32), and the numerical solution

obtained by (4.35) is shown in Fig. 4.10.

When we consider q1 = q2 = q3 = 0.9 in (4.34), we have the fractional-order

model of the Bloch equations (4.32), and the numerical solution obtained by (4.35)

is shown in Fig. 4.11.

When we consider q1 = 0.8, q2 = 0.9, and q3 = 1.0 in (4.34), we have the

fractional-order model of the Bloch equations (4.32), and the numerical solution

obtained by (4.35) is shown in Fig. 4.12.

According to Theorem 4.4, the stability condition for equations orders q1 = 0.8,

q2 = 0.9, q3 = 1.0 of the solution depicted in Fig. 4.12 is given as |arg(λi)| >
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Fig. 4.9 Numerical solutions of Bloch equations (4.35) with parameters: q ≡ q1 = q2 ≈ 1.03163,
T

′
1 = 1(s)q, T

′
2 = 20(ms)q, f0 = 160Hz, and initial conditions Mx(0) = 0, My(0) = 100, Mz(0) = 0

for Tsim = 0.1s.
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Fig. 4.10 Numerical solutions of Bloch equations (4.34) with parameters: q ≡ q1 = q2 = q3 = 1,
T

′
1 = 1s, T

′
2 = 20ms, f0 = 160Hz, and initial conditions Mx(0) = 0, My(0) = 100, Mz(0) = 0 for

Tsim = 1s
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Fig. 4.11 Numerical solutions of Bloch equations (4.35) with parameters: q ≡ q1 = q2 = q3 = 0.9,
T

′
1 = 1s, T

′
2 = 20ms, f0 = 160Hz, and initial conditions Mx(0) = 0, My(0) = 100, Mz(0) = 0 for

Tsim = 1s.
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Fig. 4.12 Numerical solutions of Bloch equations (4.35) with parameters: q1 = 0.8, q2 = 0.9, q3 =
1.0, T

′
1 = 1s, T

′
2 = 20ms, f0 = 160Hz, and initial conditions Mx(0) = 0, My(0) = 100, Mz(0) = 0

for Tsim = 1s.
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π/(2m), ∀i. For m = 10 we get the characteristic polynomial in the form

λ 17 +50λ 8 +50λ 9 +2500+102400π2 = 0.

All λi (i = 1,2, . . . ,17) satisfy the condition |arg(λi)| > π/20 and therefore the

system is stable.

Example 4.8. : Let us consider two examples of certain class of the fractional-order

systems (Kheirizad et al., 2009). The first of them has the following form:

0D1.1
t

⎡⎣ x1(t)
x2(t)
x3(t)

⎤⎦ =

⎡⎣−8 2 −3

−1 −2 0.2
0.5 −1 −2

⎤⎦⎡⎣ x1(t)
x2(t)
x3(t)

⎤⎦+

⎡⎣1

1

1

⎤⎦u(t), (4.38)

y(t) =
[

0 0 1
]⎡⎣ x1(t)

x2(t)
x3(t)

⎤⎦ ,

where x ∈ R3. For the system matrix A of the system (4.38) we get the eigenval-

ues λ1,2 = −2.2719± 0.8119 j, λ3 = −7.4562. All eigenvalues satisfy the stabil-

ity conditions of Theorem 4.3, where |arg(λ1,2)| = 2.7984 and |arg(λ3)| = π , thus

|arg(eig(A))| > 1.1 π
2 and therefore the system (4.38) is stable.

The second of them has the following form:

0D1.2
t

⎡⎣ x1(t)
x2(t)
x3(t)

⎤⎦ =

⎡⎣−4 1 1

0 −3 1

1 3 1

⎤⎦⎡⎣ x1(t)
x2(t)
x3(t)

⎤⎦+

⎡⎣0

0

1

⎤⎦u(t),

y(t) =
[

0 0 1
]⎡⎣ x1(t)

x2(t)
x3(t)

⎤⎦ .

(4.39)

For the system matrix A of the system (4.39) we get the eigenvalues λ1 = 1.8284, λ2 =
−4, and λ3 = −3.8284. The eigenvalue λ1 does not satisfy the stability condition

of Theorem 4.3, where |arg(λ1)| = 0 and |arg(λ2,3)| = π , thus |arg(λ1)| < 1.2 π
2 and

therefore system (4.39) is unstable.

4.3 Stability of Fractional Nonlinear Systems

Stability of the fractional-order nonlinear system is very complex and is different

from the fractional-order linear system. The main difference is that for a nonlin-

ear system it is necessary to investigate steady states having two types: equilibrium

point and limit cycle. Nonlinear systems may have several equlibrium points. For



4.3 Stability of Fractional Nonlinear Systems 79

nonlinear systems, there are many definitions of stability (asymptotic, global, or-

bital, etc.). The basic idea was formulated by A. M. Lyapunov.

As mentioned in (Matignon, 1996), exponential stability cannot be used to char-

acterize asymptotic stability of fractional-order systems. A new definition was in-

troduced (Oustaloup et al., 2008).

Definition 4.4. Trajectory x(t) = 0 of the system (3.19) is t−q asymptotically stable

if there is a positive real q so that:

∀||x(t)|| with t ≤ t0, ∃N(x(t)), such that ∀t ≥ t0, ||x(t)|| ≤ Nt−q.

The fact that the components of x(t) slowly decay towards 0 following t−q leads to

fractional systems sometimes called long memory systems. Power law stability t−q

is a special case of the Mittag-Leffler stability (Li et al., 2008).

Theorem 4.5. According to stability theorem defined in (Tavazoei and Haeri, 2008b),
the equilibrium points are asymptotically stable for q1 = q2 = · · · = qn ≡ q if
all the eigenvalues λi, (i = 1,2, . . . ,n) of the Jacobian matrix J = ∂ f/∂x, where
f = [ f1, f2, . . . , fn]T , evaluated at the equilibrium E∗, satisfy the condition
(Tavazoei and Haeri, 2007b,a):

|arg(eig(J))| = |arg(λi)| > q
π
2

, i = 1,2, . . . ,n. (4.40)

Figure 4.6 shows stable and unstable regions of the complex plane for such case.

Theorem 4.6. When we consider the incommensurate fractional-order system q1 �=
q2 �= · · · �= qn and suppose that m is the LCM of the denominators ui’s of qi’s, where
qi = vi/ui, vi,ui ∈ Z+ for i = 1,2, . . . ,n and we set γ = 1/m. System (3.20) is asymp-
totically stable if

|arg(λ )| > γ
π
2

for all roots λ of the following equation

det(diag([λ mq1 λ mq2 · · · λ mqn ])−J) = 0. (4.41)

Proof. The proof of this statement is obvious (Tavazoei and Haeri, 2008b).

A necessary stability condition for fractional-order systems (3.20) to remain

chaotic is keeping at least one eigenvalue λ in the unstable region (Tavazoei and Haeri,

2007b). The number of equilibrium points and eigenvalues for one-scroll, double-

scroll and multi-scroll attractors was exactly described in the work by Tavazoei and

Haeri (2008a). Assume that a 3D chaotic system has only three equilibria. There-

fore, if the system has a double-scroll attractor, it has two saddle-focus points sur-

rounded by scrolls and one additional saddle point.

Definition 4.5. Suppose that the unstable eigenvalues of scroll focus points are:

λ1,2 = α1,2 ± jβ1,2. The necessary condition to exhibit double-scroll attractor of
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system (3.20) is the eigenvalues λ1,2 remaining in the unstable region (Tavazoei and

Haeri, 2008a). The condition for commensurate derivatives order is

q >
2

π
atan

( |βi|
αi

)
, i = 1,2. (4.42)

This condition can be used to determine the minimum order for which a nonlinear

system can generate chaos (Tavazoei and Haeri, 2007b). In other words, when the

instability measure π/2m−min(|arg(λ )|) is negative, the system cannot be chaotic.

Example 4.9. : Let us investigate the singular points of the nonlinear systems (Kotek

et al., 1973):

dx1(t)
dt

= x2(t),

dx2(t)
dt

= bx1(t)− cx3
1(t)−ax2(t), (4.43)

for b,c > 0. The system (4.43) has three singular points (equilibrium) at E1 = (0,0),

E2 = (+
√

b
c ,0), and E3 = (−

√
b
c ,0). The Jacobian matrix of the system evaluated

at equilibrium E∗ = (x∗1,x
∗
2) is:

J =
[

0 1

b−3cx∗1
2 −a

]
. (4.44)

For the first singular point (x∗1 = 0, x∗2 = 0) we have the following characteristic

equation

det(λ I - J) = λ 2 +aλ −b = 0,

where the real roots are: λ1,2 = (−a±√
a2 +4b)/2. The singular point is a saddle

point.

For the second and third singular points E2 = (+
√

b
c ,0), and E3 = (−

√
b
c ,0) we

have the following characteristic equation

det(λ I - J) = λ 2 +aλ +2b = 0,

where the roots are: λ1,2 = (−a±√
a2 −8b)/2. The singular point depends on the

values of a and b. For (a2/4) < 2b we get complex-conjugate roots and the singular

point is a stable focus. For (a2/4) > 2b we get real negative roots and the singular

point is a stable node. It is valid for 2D systems. For 3D systems it is a bit different.

When the type of singular point is known, it is possible to construct approximated

shape of a phase trajectory around the singular points. From the theory of stability

for nonlinear systems, for the above-mentioned singular points, the net of phase

trajectories in the (x1, x2) plane resembles the trajectories for a flip-flop circuit with

two stable steady states.
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Example 4.10. : Let us investigate Chen’s system with a double scroll attractor in

3D state space. The fractional-order form of such system can be described as (Tava-

zoei and Haeri, 2008b):

0D0.8
t x1(t) = 35[x2(t)− x1(t)],

0D1.0
t x2(t) = −7x1(t)− x1(t)x3(t)+28x2(t),

0D0.9
t x3(t) = x1(t)x2(t)−3x3(t). (4.45)

The system has three equilibria at (0,0,0), (7.94,7.94,21), and (−7.94,−7.94, 21).
The Jacobian matrix of the system evaluated at equilibrium E∗ = (x∗1,x

∗
2,x

∗
3) is:

J =

⎡⎣ −35 35 0

−7− x∗3 28 −x∗1
x∗2 x∗1 −3

⎤⎦ . (4.46)

The last two equilibrium points are saddle points and are surrounded by a chaotic

double scroll attractor. For these two points, Equation (4.41) becomes:

λ 27 +35λ 19 +3λ 18 −28λ 17 +105λ 10 −21λ 8 +4410 = 0. (4.47)

The characteristic equation (4.47) has unstable roots λ1,2 = 1.2928 ± 0.2032 j,
|arg(λ1,2)| = 0.1560, therefore the system (4.45) satisfies the necessary condition

for exhibiting a double scroll attractor. Instability measure is 0.0012.

Numerical simulation of the system (4.45) for initial conditions (−9,−5,14) is

depicted in Fig. 4.13.

Fig. 4.13 Double scroll attractor of Chen’s system (4.45) projected into 3D state space for 30s.
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4.4 Robust Stability of Fractional-Order LTI Systems

In this section, we consider an even more complicated situation where the param-

eters, even the fractional orders in (3.2) are not exactly known but are interval real

numbers with known interval bounds.

The motivation of this problem comes from the modelling of the dynamics of

nonferrous materials and/or their composites such as the nonlaminated magnetic

bearing. The fractional order of the LTI model may be derived from the mean slope

of the Bode plot. The variance of the slopes of the measured Bode plots can be

practically described by using an interval of width ±3γ centered at the mean slope.

For the LTI FOS with uncertainty several methods were developed for its stability

analysis (Chen et al., 2006b; Petráš et al., 2004a,b; Tan et al., 2009). A method

based on existence of a Hermitian matrix that the complex Lyapunov inequalities

are satisfied for all vertex matrices was described in (Ahn and Chen, 2008). A linear

matrix inequality (LMI) approach was given in (Lu and Chen, 2009).

4.4.1 Stability Check When the Fractional Orders Are Crisp and
Commensurate

Consider the following LTI FOS with interval uncertainties in the parameters:

0Dα
t x(t) = Ax(t)+Bu(t), (4.48)

where α is the fractional commensurate order, x(t) ∈ Rn and u(t) ∈ Rp denote the

state and the control vector, respectively, the system matrices A and B are interval

uncertain in parameterwise, defined as A ∈ AI = [A, Ā], and B ∈ BI = [B, B̄], where

A = [ai j]n×n, Ā = [āi j]n×n satisfy ai j ≤ āi j, and B = [bi j]n×p, B̄ = [b̄i j]n×p satisfy

bi j ≤ b̄i j for all 1 ≤ i ≤ n, 1 ≤ j ≤ p.

Applying the Laplace trasform technique to (4.48) we obtain a transfer function

G(s) of the system (4.48) in the form of (3.2) with the interval characteristic poly-

nomial:

ansαn + · · ·+a1sα1 +a0sα0 = 0,

where s is the Laplace operator, αi > α j > 0 if i < j, and ai ∈ [ai, āi] are interval

parameters beyond [q−i ,q+
i ].

The robust stability test procedure for the LTI FOS of commensurate orders with

interval parametric uncertainties was proposed in (Petráš et al., 2002a) and can be

divided into the following steps:

• step 1: Transcribe the LTI FOS G(s) of the commensurate order α into the equiv-

alent system H(σ), where the transformation is: sα → σ , α ∈ R+;

• step 2: Write the interval polynomial P(σ ,q) of the equivalence system H(σ),
where interval polynomial is defined as



4.4 Robust Stability of Fractional-Order LTI Systems 83

P(σ ,q) =
n

∑
i=0

[q−i ,q+
i ]σ i;

• step 3: For interval polynomial P(σ ,q), construct four Kharitonov’s polynomi-

als: p−−(σ), p−+(σ), p+−(σ), p++(σ);
• step 4: Test the four Kharitonov’s polynomials to clarify whether they satisfy the

stability condition: |arg(σi)| > α π
2 , ∀σ ∈ C, with σi being the i-th root of P(σ);

Note that for low-degree polynomials, fewer Kharitonov’s polynomials are to be

tested (Henrion, 2001; Yeung and Wang, 1987):

• Degree 5: p−−(σ), p−+(σ), p+−(σ);
• Degree 4: p+−(σ), p++(σ);
• Degree 3: p+−(σ).

We demonstrate this technique for the robust stability check for the LTI FOS with

parametric interval uncertainties through the following illustrative example (see also

(Petráš et al., 2002a) for the time-domain and the frequency cross-validation).

Example 4.11. : Consider a family of the LTI FOS (with commensurate orders) de-

scribed by

G(s,a,b) =
1

s1.5 +as0.5 +b
, (4.49)

where a ∈ [0,1] and b ∈ [1,2].
Question: Is G(s,a,b) robustly stable for all a and b ?

The unit-step response is found by (3.9):

y(t) =
∞

∑
k=0

(−1)k

k!
(b)k Ek(t,−a;1,1.5+0.5k +1) (4.50)

with zero initial conditions.

Graphical Method:

For the interval uncertainty of the parameters a and b we can show the area of roots

for characteristic equation of the system (4.49) in the s-complex plane. As we can

see in Fig. 4.14, all roots are located in the left half plane.

Fig. 4.15 shows the unit step responses to various values of parameter a ∈ [0,1]
with a fixed value of variable b (b = 1) and to time Tsim = 7s.

Fig. 4.16 shows the unit step responses to various values of parameter a ∈ [0,1]
with a fixed value of variable b (b = 2) and to time Tsim = 7s.

For better visibility of robust stability, Fig. 4.17 is presented to show the 3D pro-

jection of the stable plane for characteristic pseudo-polynomial with various values

of the coefficients a and b.
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Fig. 4.14 Poles map in s-complex plane for LTI FOS (4.49) with parametric interval uncertainties
a ∈ [0,1] and b ∈ [0,1].

Fig. 4.15 Transient unit step responses to (4.49) for variable parameter a ∈ [0,1] and to fixed value
of b (b = 1).
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Fig. 4.16 Transient unit step responses to (4.49) for variable parameter a ∈ [0,1] and to fixed value
of b (b = 2).

Fig. 4.17 Real parts of pseudo-polynomial poles projected in 3D view according to parameters a
and b.
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Kharitonov-Based Method:

Applying the robust stability theorem, however, we have the equivalence system

H(σ) =
1

σ3 +aσ +b
, (4.51)

where the transformation is sα → σ , α = 0.5. The new characteristic polynomial

with uncertain parameters a and b is

P(σ) = σ3 +aσ +b = 0.

An interval polynomial is then

p(σ ,q) = [1,2]+ [0,1]σ +σ3

and four Kharitonov’s polynomials are:

p−−(σ) = 1+σ3,

p−+(σ) = 1+σ +σ3,

p+−(σ) = 2+σ3,

p++(σ) = 2+σ +σ3. (4.52)

Fig. 4.18 Poles map in σ -complex plane and stability limits (closed angular sector) for α = 0.5.
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For our case, where polynomial degree is 3, it will be sufficient to test the polyno-

mial p+−(σ). The roots of the polynomial p+−(σ) = 2 + σ3 are: σ1,2 = 0.629±
1.091 j, σ3 = −1.265. Fig. 4.18 shows the poles map, where all poles lie inside the

limited angular sector because |arg(σ ) > π/4| for all σ , where |arg(σ1,2)| = 1.0472

and |arg(σ3)| = π for α = 0.5.

The results given above show that system G(s,a,b) is robustly stable for all a ∈
[0,1] and b ∈ [0,1].

4.4.2 Stability Check When the Fractional Orders Are Also
Interval Real Numbers

In the general case of fractional-order systems the transfer function has the form

of (3.2). Here, we consider a more specific form of (3.2) with interval uncertainties

in the fractional orders and parameters. Then, the Kharitonov polynomial can be

expressed in the following “new” general form:

P(s,o,q) =
n

∑
i=0

[q−i ,q+
i ]s[o−,o+]

i , (4.53)

where q± are parametric interval uncertainties and o± are interval order uncertain-

ties.

Now the question is: Can we extend the Kharitonov theorem to interval polyno-

mial with interval orders as in (4.53) as well? Our conjecture is “yes” for some sit-

uations. Intuitively, we should have 16 edge polynomials: p−−
−−(s), p−−

−+(s), p−−
+−(s),

p−−
++(s), p−+

−−(s), p−+
−+(s), p−+

+−(s), p−+
++(s), p+−

−−(s), p+−
−+(s), p+−

+−(s), p+−
++(s), p++

−−(s),
p++
−+(s), p++

+−(s), p++
++(s), where the upper index is for the order intervals and the

lower index is for parameter intervals.

The general form above is not very appropriate for stability investigation be-

cause there is a large number of polynomials and we need to reduce this number in

practice. Let us consider the combination approach. For example, if we have two

intervals (one for parameter and one for order), we can write four new Kharitonov

polynomials; if we have three intervals (two for parameters and one for order), we

can write eight polynomials, etc. In general, we can write 2n polynomials where n
is the total number of intervals in the polynomial (4.53).

Fortunately, in practice, we usually use two or three terms at most in the

fractional-order mathematical models (Podlubny, 1999). In this case, we have to

investigate four or eight edge polynomials.

In what follows, we consider a special case where the noninteger-order intervals

are assumed to have commensurate limits for orders. This assumption is not un-

reasonable in the sense that we can slightly fine adjust (enlarge) the order intervals

so that the bounds are commensurate. Then, we can apply the transform method

sα → σ to checking the stability in σ -complex plane.
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Therefore, the robust stability test procedure for the LTI FOS of commensurate

orders with parametric interval and order uncertainties is similar to the one presented

in Section 4.4.1 for crisp orders. The robust stability test procedures are summarized

in the following:

• step 1: Rewrite the LTI FOS G(s) of the commensurate order α to the equiva-

lence system H(σ), where the transformation is: sα → σ , α ∈ R+;

• step 2: Write the interval polynomial P(σ ,o,q) of the equivalence system H(σ),
where interval characteristic polynomial is defined as

P(σ ,o,q) =
n

∑
i=0

[q−i ,q+
i ]σ [o−,o+]

i ;

• step 3: For interval polynomial P(σ ,o,q), construct 2n Kharitonov polynomials;

• step 4: Test the 2n Kharitonov’s polynomials to clarify whether they satisfy the

stability condition: |arg(σi)| > α π
2 , ∀σ ∈ C, with σi being the i-th root of P(σ);

The robust stability test procedure for the LTI of fractional orders with parametric

interval and order uncertainties, in general form of (3.2), can be divided into the

following steps:

• step 1: Write the interval polynomial P(s,o,q) of the system G(s), where interval

polynomial is defined as (4.53);

• step 2: For interval polynomial P(s,o,q), construct 2n Kharitonov polynomials;

• step 3: Test the 2n Kharitonov’s polynomials to clarify whether they satisfy the

stability condition: |arg(si)| > π
2 , ∀s ∈ C, with si being the i-th root of P(s).

Note that for pseudo-polynomials of fractional power we can effectively use

Matlab Symbolic Math Toolbox. We will demonstrate this technique for the robust

stability check upon the LTI FOS with parametric and order interval uncertainties

through the following illustrative examples.

Example 4.12. : Consider the simple case of the fractional-order system, where frac-

tional order α is within the interval α ∈ [1,2):

G(s) =
1

sα +1
. (4.54)

We assume that the above simple plant will stabilize with simple proportional

controller with the transfer function C(s) = Kp. To investigate the stability property

it is necessary to check the following characteristic pseudo-polynomial:

p(s) = sα +1+Kp, (4.55)

where Kp is the controller gain. In this particular case we will use the controller

gain Kp = 2 and then we obtain the characteristic pseudo-polynomial in the form

p(s) = sα +3, where α is within the considered interval α ∈ [1,2).
The resulting transfer function of closed control loop has the following form:
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Gc(s) =
2

sα +3
. (4.56)

Graphical Method:

Figure 4.19 shows the pole positions in the complex plane for characteristic pseudo-

polynomial with various values of α .

Fig. 4.19 Pole locations for characteristic pseudo-polynomial p(s) = sα +3 for α ∈ [1,2).

Figure 4.20 shows the unit step responses to various values of order α ∈ [1,2)
and to time Tsim = 7s.

Remark 4.2. If we compare the unit step responses depicted in Fig.4.20 and the pole

distribution depicted in Fig.4.19, we can see the correlation. For the single pole [−3]

case when α = 1 (lower limit of α), a monotonous unit step response results while

for the complex conjugate roots [±1.73] case when α = 2 (upper limit of α), an

oscillating unit step response results.

Consider the other unknown parameter a which is assumed to lie in a known

interval a ∈ [1,2]. The transfer function of controlled system is

G(s) =
1

sα +a
(4.57)
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Fig. 4.20 Transient unit step responses to (4.56) for variable order α ∈ [1,2).

and the characteristic pseudo-polynomial of closed control loop has the form p(s) =
sα +a+2.

The resulting closed-loop transfer function has the following form:

Gc(s) =
2

sα +a+2
. (4.58)

The unit-step response was derived from (3.9) and has the form

y(t) = 2E0(t,−(a+2);α,α +1) (4.59)

with zero initial conditions.

The pole locations in the complex plane for the characteristic pseudo-polynomial

with various values of orders α and a are shown in Fig. 4.21 where we can see that

the poles in the stability region of the complex plane have been changed from curves

to a plane, which depends on the values α and a in the pseudo-polynomial.

Figure 4.22 shows the unit step time responses to various values of the order

α ∈ [1,2) with a fixed a = 2.

Remark 4.3. Comparing the unit step responses in Fig. 4.20 and the unit step re-

sponses in Fig. 4.22, we can see another correlation. Both responses are for variable

values of order α ∈ [1,2), But the first is for the lower limit of parameter a = 1 and

the second is for the upper limit of parameter a = 2. The difference correlates with

the poles distribution depicted in Fig. 4.21. With a = 2, we have a single pole [−4].

When α = 1 (lower limit of α), we obtain a monotone unit step response. Similarly,
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Fig. 4.21 Poles location for characteristic pseudo-polynomial p(s) = sα +a+2 for α ∈ [1,2) and
a ∈ [1,2].

Fig. 4.22 Transient unit step responses to (4.58) for variable order α ∈ [1,2) and to fixed value of
a (a = 2).
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we have complex conjugate roots [±2.0] when α = 2 (upper limit of α) and we

obtain an oscillating unit step response.

In both cases, the poles lie in the stability region (left-hand half-plane) and we

can say that the closed-loop system with the mentioned simple plant and simple

proportional controller is robustly stable for all parameters α and a within the known

considered intervals.

For higher visibility of robust stability, Fig. 4.23 is presented to show the 3D pro-

jection of the stable plane for characteristic pseudo-polynomial with various values

of the order α and the coefficient a.

Fig. 4.23 Real parts of pseudo-polynomial poles projected in 3D view according to parameter a
and real order α .

Kharitonov-Based Method:

The graphical method presented in the above is the best for the validation of the

Kharitonov-based stability check procedure proposed in Subsection 4.4.2.

From Fig. 4.21, we can observe the limit points for the bounded shape in the

complex plane: [-3, -4] on the real axis and [±1.73 j,±2 j] on the imaginary axis.

If we return to characteristic pseudo-polynomial p(s) = sα +a+K for α ∈ [1,2)
and a ∈ [1,2], we can write the following “new” form for polynomial (for K = 2):

p(s) = s[1,2] + [1,2]+2. (4.60)
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We assume that such forms of polynomials are continuous and analytical func-

tions and have roots, which can be single or complex-conjugate (branch points). We

can write the following polynomials based on Kharitonov’s principle but modified

for interval orders as well:

1 p(s) = s+1+2 = s+3 → s = −3,
2 p(s) = s+2+2 = s+4 → s = −4,
3 p(s) = s2 +1+2 = s2 +3 → s1,2 = ±1.73 j,
4 p(s) = s2 +2+2 = s2 +4 → s1,2 = ±2. (4.61)

From the polynomials in (4.61), we actually can obtain the limit points for

a shape in the complex plane as depicted in Fig. 4.21, as roots of each polynomial,

respectively.

When the order interval limits are commensurate, we can use the method de-

scribed in Section 4.4.2. The characteristic pseudo-polynomial (4.60) can be rewrit-

ten by using the transform method sα → σ as a polynomial in the following form:

p(σ) = σ [2,4] + [1,2]+2, (4.62)

where the transformation is such that s0.5 → σ .

According to the proposed test procedure, we can write the following four poly-

nomials:

1 p(σ) = σ2 +3 → σ1,2 = ±1.732 j,
2 p(σ) = σ2 +4 → σ1,2 = ±2.000 j, (4.63)

3 p(σ) = σ4 +3 → σ1,2,3,4 = ±0.930±0.930 j,
4 p(σ) = σ4 +4 → σ1,2,3,4 = ±1.000±1.000 j.

Figure 4.24 shows the pole locations in σ - complex plane for the characteristic

polynomials (4.63). The closed angular stability limits for απ/2, for α = 0.5, are

also drawn in Fig. 4.24.

The system is stable because all roots σi, ∀i of polynomials (4.63) have |arg(σi)|>
α π

2 , for α = 0.5.

This result validates the results depicted in Fig. 4.21 and Fig. 4.23. Based on

these results, we can declare that the system (4.57) is robustly stable for interval

parametric uncertainties and interval order uncertainties and can be controlled by a

simple proportional controller C(s) = 2.

Example 4.13. : Let us recall the application of Example 4.5 already considered in

this chapter for stability investigation and analysis, which is based on the work of

Petráš et al. (2002b), where the application of fractional-order controller for tem-

perature control of heat solid (electrical heater) was performed.

To obtain mathematical models of the controlled object, various identification

methods can be used. In (Petráš et al., 2002b), two models were chosen as the nom-
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Fig. 4.24 Pole locations for the polynomials (4.63) and the stability limits π/4.

inal models for control system design. The first one is an integer first-order model

given by

GI(s) =
1

20.14s+0.598
. (4.64)

The second one is a fractional-order one-term model of the following form:

GF(s) =
1

39.69s1.25 +0.598
. (4.65)

The second one is closer to the reality based on our experience. For comparison, the

integer first-order model is also used (Petráš et al., 2002b) with the standard control

design techniques. However, the reality is probably somewhere in between the GI(s)
and GF(s).

Now, we follow a new idea of using the standard control design method with

a PD controller (particular case of PDδ controller for δ = 1) for control of this

object but two assumed uncertainties in the mathematical model of the controlled

object. The new uncertain model has the following form:

G(s) =
1

asα +0.598
, (4.66)

where a ∈ [15,45] and α ∈ [1,1.3].
With the PD controller

C(s) = K +Tds,
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to achieve the desired stability measure St = 2.0, the following parameters were

designed (Petráš et al., 2002b): K = 64.47 and Td = 12.46, which means that the

closed-loop characteristic equation has a simple root [-2].

Now, we apply the designed PD controller C(s) = 64.47 + 12.46s to the new

uncertain model (4.66). The resulting closed-loop transfer function becomes

Gc(s) =
12.46s+64.47

asα +12.46s+65.068
, (4.67)

where a ∈ [15,45] and α ∈ [1,1.3].
The unit-step response of system (4.67) is obtained by (3.9) as follows:

y(t) =
12.46

a

∞

∑
k=0

(−1)k

k!

(
12.46

a

)k

×Ek(t,−65.068

a
;α,α − k)

+
64.47

a

∞

∑
k=0

(−1)k

k!

(
65.068

a

)k

×Ek(t,−12.46

a
;α −1,α + k +1),

with zero initial conditions.

The characteristic polynomial of the control system (4.27) with reference to in-

tervals for order α and parameter a has the following form:

p(s) = [15,45]s[1,1.3] +12.46s+65.068 = 0. (4.68)

According to the stability test procedure in Section 4.4.2, we should check the

following four polynomials:

1 p(s) = 27.46s+65.068 → s = −2.37,
2 p(s) = 15s1.3 +12.46s+65.068,→ s1,2 = −1.97±1.04 j,
3 p(s) = 57.46s+65.068 → s = −1.13,
4 p(s) = 45s1.3 +12.46s+65.068 → s1,2 = −0.94±0.65 j. (4.69)

From the polynomials in (4.69), we can obtain the limit points for the shape of

the pole locations in the complex plane as the roots of each polynomial. Clearly, the

shape is situated in the left-hand side of the complex plane which means that the

closed-loop system is stable. According to the proposed test procedure, the system

is stable as well because all roots si, ∀i of polynomials (4.69) have |arg(si)| > π
2 .

Based on these results, we can declare that system (4.66) is robustly stable for

interval parametric and fractional order uncertainties and can be controlled by the

PD controller C(s) = 64.47+12.46s.

Figure 4.25 shows the unit step responses for various values of order α ∈ [1,1.3]
with a fixed value of variable a (a = 15).

Similarly, Fig. 4.26 shows the unit step responses to various values of order α ∈
[1,1.3] with a fixed value of variable a (a = 45).
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Fig. 4.25 Transient unit step responses to (4.27) for variable order α ∈ [1,1.3] and to fixed value
of a (a = 15).

Fig. 4.26 Transient unit step responses to (4.27) for various order α ∈ [1,1.3] and to fixed value
of a (a = 45).



4.5 Stability of Fractional-Order Nonlinear Uncertain Systems 97

4.5 Stability of Fractional-Order Nonlinear Uncertain Systems

As we mentioned in previous sections, there are several methods to study stability

of linear fractional-order linear systems with uncertainties. However, for nonlinear

fractional-order systems, there is a lack of tools for performing the stability investi-

gation.

The stability analysis of autonomous nonlinear fractional-order systems can be

converted to a problem of investigating the existence of oscillations known as limit

cycles. If the limit cycles are predicted, then it is also interesting to know the number

of limit cycles, their frequencies, amplitudes and other characteristics.

In paper by Nataraj and Kalla (2009) was proposed an algorithm to compute

limit cycles for the uncertain nonlinear fractional-order system with a prescribed

accuracy. The uncertain parameter may be associated with either the linear or non-

linear element in the system.

Consider the following uncertain fractional-order system with parametrical un-

certainties (N’Doye et al., 2009):

0Dq
t x(t) = Ax(t)+Bu(t)+ΔA(x)+ΔB(u),

y(t) = Cx(t)+Du(t)+ΔC(x)+ΔD(u), (4.70)

x(k)(0) = x(k)
0 , k = 0,1, . . . ,n−1,

where ΔA(x), ΔB(u), ΔC(x), and ΔD(u) are nonlinear parametrical uncertainties.

Suppose that the pair (A,B) is controllable and the pair (C,A) is the observable

matrix.

If the uncertainties are unknown but can be decribed by the input-output form,

then

0Dq
t x(t) = Ax(t)+Bu(t),

y(t) = Cx(t)+Du(t)+Δh(u), (4.71)

x(k)(0) = x(k)
0 , k = 0,1, . . . ,n−1,

where the model uncertainty Δh(u) is nonlinear and bounded |Δh(u)| ≤ c|u|, where

c is positive constant.

Consider the Lur’e problem, which has a forward path that is linear and time-

invariant and a feedback path that contains memoryless, possibly time-varying, non-

linear function which is piecewise continuous in t. The linear part can be character-

ized by four matrices (A,B,C,D), in the case of state space representation or trans-

fer function L(s), while the nonlinear part is h(u) with h(u)/u ∈ [a,b], a < b, ∀y and

the nonlinear element h(u) is a time-invariant nonlinearity belonging to open sector

(0,∞). The Lur’e problem is to derive conditions involving only the transfer matrix

L(s) and a, b so that x = 0 is a globally uniformly asymptotically stable equilibrium

of the system. From the view of modern robustness theory, the absolute stability

theory can be considered as the first approach to robust stability of nonlinear uncer-
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tain systems. An illustrative example of the uncertain neutral type Lur’e system and

robust absolute stability criteria for this system can be found (Han et al., 2008).

In Fig. 4.27 is presented a basic feedback system, which is the so-called Lur’e

problem. There exist two main theorems concerning this problem: the circle crite-

rion and the Popov criterion, which is applicable only to autonomous systems.

Fig. 4.27 Lur’e problem diagram.

Let us consider the following general autonomous fractional-order nonlinear sys-

tem with uncertainties:

0Dq
t x(t) = f(t,x(t))+Δ f(x),

x(k)(0) = x(k)
0 , k = 0,1, . . . ,n−1, (4.72)

where 0Dq
t is the Caputo’s fractional derivative of order q, and Δ f(x) is vector of

uncertain parameters, which is ussualy bounded |Δ f(x)| ≤ c.

When the fractional-order nonlinear system with uncertainties has a sector non-

linearity it can be reduced to Lur’e problem and solved via method described (Han

et al., 2008). It is possible only for very limited class of nonlinear systems. In some

special cases of the nonlinear system with uncertanties in the linear part of the sys-

tem we may use the techniques described in previous section. However, in the case

of system with uncertainties in nonlinear part it is not possible. In general, the ro-

bust stability analysis of the uncertain nonlinear fractional-order system is an open

problem.
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Chapter 5
Fractional-Order Chaotic Systems

5.1 Introduction to Chaotic Dynamics

In general, a nonlinear system is a system which is not linear, that is, a system which

does not satisfy the superposition principle. In mathematics, a nonlinear system is

any problem, where the variables to be solved cannot be written as a linear com-

bination of independent components. If the equation contains a nonlinear function

(power or cross product), the system is nonlinear as well. The system is nonlinear

also if it has a nonlinear transfer characteristic as, for example, current-voltage char-

acteristic of a diode. Last but not least, we should mention typical nonlinearity. The

system is nonlinear if there is some typical nonlinearity as, for instance, saturation,

hysteresis, etc. These characteristics are basic properties of the nonlinear systems.

Nonlinear systems are very interesting to engineers, physicists and mathemati-

cians because most real physical systems are inherently nonlinear in nature. Non-

linear equations are difficult to be solved by analytical methods and give rise to

interesting phenomena such as bifurcation and chaos. Even simple nonlinear (or

piecewise linear) dynamical systems can exhibit completely a unpredictable behav-

ior, the so-called deterministic chaos. Chaos theory has been so surprising because

chaos can also be found within trivial systems. At this point we have to say that

the word “chaos” is not uniquely defined. In the most used sense, chaotic dynamics

are dynamics originated by regular dynamical equations with no stochastic coeffi-

cients, but at the same time, with trajectories that are similar or indistinguishable

from some stoachastic processes (Zaslavsky, 2005).

There are a few definitions of the chaotic dynamics, e.g.: (i) a system with at

least one positive Lyapunov exponent is chaotic; (ii) a system with positive entropy

is chaotic; (iii) a system equivalent to hyperbolic or Anosov system is chaotic, etc.

The common part of all definitions is the existence of local instability and diver-

gence of initially close trajectories. At the same time, all definitions are not exactly

equivalent.

In the next sections we focus on the well-known nonlinear systems, which exhibit

chaos and hyperchaos (e.g., (Petráš, 2009b; Petráš et al., 2009), etc.).
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5.2 Concept of Chua’s Circuit

5.2.1 Classical Chua’s Oscillator

Classical Chua’s circuit, which is shown in Fig. 5.1, is a simple electronic circuit that

exhibits nonlinear dynamical phenomena such as bifurcation and chaos. In fact, in

order to exhibit chaos, an autonomous electronic circuit must satisfy some essential

criteria which are necessary (not sufficient) conditions for the appearance of chaos

(Kennedy, 1993a): the circuit must contain at least three energy-storage elements, at

least one nonlinear element and at least one locally active resistor. The Chua’s diode,

being a nonlinear locally active resistor, allows Chua’s circuit to satisfy the last

two conditions. Chua’s circuit satisfies all the above-mentioned criteria. The active

resistor supplies energy to separate trajectories, the nonlinearity provides folding,

and the three-dimensional state space permits persistent stretching and folding in a

bounded region of the state space.

Fig. 5.1 Chua’s circuit.

The simplest and most widely studied nonlinear Chua’s circuit consists of five

elements: two capacitors C1 and C2, an inductor L, a resistor R and a nonlinear

resistor (NR), known as Chua’s diode.

By applying Kirchhoff’s circuit laws, such circuit, generally known as Chua’s

oscillator, can be described by the following equations (Matsumoto, 1984):

dV1(t)
dt

=
1

C1
[G(V2(t)−V1(t))− f (V1(t))] ,

dV2(t)
dt

=
1

C2
[G(V1(t)−V2(t))+ IL(t)] , (5.1)

dIL(t)
dt

=
1

L
[−V2(t)−RLIL(t)] ,
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where conductance G = 1/R, IL(t) is the current through the inductance L, V1(t)
and V2(t) are the voltages over the capacitors C1 and C2, respectively, and f (V1(t))
is the piecewise-linear v− i characteristic of NR - Chua’s diode, depicted in Fig. 5.2,

which can be described by the following state equations:

INR(t) = f (V1(t)) = GbV1(t)+
1

2
(Ga −Gb)(|V1(t)+Bp|− |V1(t)−Bp|), (5.2)

with Bp being the breakpoint voltage of a diode, and Ga < 0 and Gb < 0 being some

appropriate constants (slope of the piecewise-linear resistance).

Fig. 5.2 Typical three-segment piecewise-linear v− i characteristic of the nonlinear resistor.

By defining the rescaling

x = V1/Bp, y = V2/Bp, z = IL/BpG,

α = C2/C1, β = C2/(LG2), γ = C2R/(LG), (5.3)

m1 = Gb/G, m0 = Ga/G, τ = t|G/C2|,

we can transform (5.1) into the following corresponding dimensionless form of

Chua’s circuit (Chua et al., 1993; Deregel, 1993):

dx(t)
dt

= α (y(t)− x(t)− f (x)) ,

dy(t)
dt

= x(t)− y(t)+ z(t), (5.4)
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dz(t)
dt

= −βy(t)− γz(t),

where

f (x) = m1x(t)+
1

2
(m0 −m1)× (|x(t)+1|− |x(t)−1|) (5.5)

and τ in transformation equations (5.3) is the dimensionless time.

Because of the piecewise-linear nature of NR, the vector field of Chua’s circuit

can be decomposed into three distinct affine regions. It depends on the values of

±Bp. We call these regions the outer D−1, (V1 < −Bp), the inner (middle) region

D0, (|V1| < Bp) and the outer D1, (V1 > Bp), respectively. The global dynamics of

Chua’s circuit may be determined by piecing together the three-dimensional vector

fields of the regions D−1, D0, and D1, then we obtain a qualitative description of the

whole circuit.

The equilibrium points of Chua’s oscillator (5.1) are defined by

0 =
1

C1
[G(V2(t)−V1(t))− INR(t))] ,

0 =
1

C2
[G(V1(t)−V2(t))+ IL(t)] , (5.6)

0 =
1

L
[−V2(t)−RLIL(t)] ,

where INR(t) is given by relation (5.2). The origin is obviously an equilibrium point.

In D0 (inner) region, where |V1| ≤ Bp, the state equations of Chua’s oscillator are

linear. The Jacobian matrix has the following form:

JGa =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−(G+Ga)
C1

G
C1

0

G
C2

−G
C2

1

C2

0 −1

L
−RL

L

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (5.7)

The characteristic equation of Chua’s system in the inner region is

det|λ I−JGa | = λ 3 +
(

G+Ga

C1
+

G
C2

+
RL

L

)
λ 2

+
(

GGa

C1C2
+

G+Ga

C1L
RL +

GRL

C2L
+

1

C2L

)
λ

+
RLGGa +(G+Ga)

C1C2L
= 0. (5.8)

In D−1 and D1 (outer) regions, where |V1| > Bp, the state equations of Chua’s oscil-

lator are linear. The Jacobian matrix has the following form:
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JGb =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−(G+Gb)
C1

G
C1

0

G
C2

−G
C2

1

C2

0 −1

L
−RL

L

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (5.9)

The characteristic equation of Chua’s system in the outer region is

det|λ I−JGb | = λ 3 +
(

G+Gb

C1
+

G
C2

+
RL

L

)
λ 2

+
(

GGb

C1C2
+

G+Gb

C1L
RL +

GRL

C2L
+

1

C2L

)
λ

+
RLGGb +(G+Gb)

C1C2L
= 0. (5.10)

The dynamic behavior of any type of Chua’s circuit is determined by the six

eigenvalues (Chua et al., 1986). They can be obtained by solving the characteristic

equations (5.8) and (5.10) and depend on the value of electrical components.

When G > |Ga| or G < |Gb|, the circuit has a unique equilibrium point at the

origin and two virtual equilibria E− and E+ (lie outside regions D−1 and D1). Oth-

erwise it has three equilibrium points ar E−, 0, and E+. The equilibrium point E− in

the D−1 region has three eigenvalues. It usually consists of a real (λ1) and a pair of

complex conjugate values (λ2,3). We assume that eigenvalue λ1 is stable and eigen-

values λ2,3 are unstable. With symmetry, it is the same to equilibrium point E+.

For more detailed description of stability analysis of equilibrium points, the dy-

namics of the outer and inner regions, we refer the reader to (Kennedy, 1993b; Pivka

et al., 1994).

Given the techniques of fractional calculus, there are a number of ways in which

the order of system could be amended. In the next parts we will show several of

them.

5.2.2 Fractional-Order Chua’s Oscillator

As we already mentioned in Chapter 2, there are many electric and magnetic phe-

nomena where the fractional calculus can be used. In this section we consider two

of them — models of real capacitor and real inductor.

The circuit behavior can be described by three fractional differential equations

with various orders. Applying Kirchhoff’s laws for two current nodes and one volt-

age loop and relation (2.75), and (2.78) into circuit depicted in Fig. 5.1, we obtain

the following mathematical model of the circuit for state variables V1(t), V2(t) and

I(t):
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C1 0Dq1
t V1(t)+ INR(t) =

V2(t)−V1(t)
R2

,

C2 0Dq2
t V2(t)− I(t) =

V1(t)−V2(t)
R2

,

L1 0Dq3
t I(t)+V2(t)+RLI(t) = 0.

(5.11)

Equations (5.11) can be rewritten into the following form (Petráš, 2008):

0Dq1
t V1(t) =

1

C1R2
[V2(t)−V1(t)]− f (V1(t))

C1
,

0Dq2
t V2(t) =

1

C2R2
[V1(t)−V2(t)]+

I(t)
C2

, (5.12)

0Dq3
t I(t) =

1

L1
[−V2(t)−RLI(t)],

where V1 is the voltage across the capacitor C1, V2 is the voltage across the capacitor

C2, I is the current through the inductance L1, q1 is the real order of the capacitor

C1, q2 is the real order of the capacitor C2, q3 is the real order of the inductor L1,

f (V1) is the piecewise-linear v− i characteristic of nonlinear Chua’s diode, which

can be described by (5.2).

By using the transformation (5.3), we can rewrite Eqs. (5.12) into the following

dimensionless form (Petráš, 2008):

0Dq1
t x(t) = α (y(t)− x(t)− f (x)) ,

0Dq2
t y(t) = x(t)− y(t)+ z(t), (5.13)

0Dq3
t z(t) = −βy(t)− γz(t),

where f (x) is the piecewise-linear nonlinearity (5.5).

5.2.2.1 Experimental Measurements

Classical Chua’s oscillator can also be realized by electrical elements according to

the scheme shown in Fig. 5.3, which is a very simple electronic circuit that exhibits

nonlinear dynamical phenomena such as bifurcation and chaos (Kennedy, 1992).

Chua’s diode (5.2) – nonlinear resistor – was realized by operating amplifier LM 358

and resistors R1, R7, and R8 (R7 = R8) as negative impedance converter (Bartissol

and Chua, 1988).

For experimental verification of Chua’s system depicted in Fig. 5.3 and described

by Eqs. (5.12) and (5.2), the following values of electrical elements were chosen

(Caponetto et al., 2010; Petráš, 2008):
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Fig. 5.3 Practical realization of Chua’s circuit.

C1 = 4.71nF, C2 = 48nF, L1 = 4.64mH, (5.14)

RL = 15.8Ω , R1 = 897Ω , R2 = 998Ω , R7 = R8 = 393Ω .

We use the metalized paper capacitors C1 and C2 with the real order q1 = q2 = 0.98

and we assume the real order of inductor q3 = 0.94 (see e.g. (Schafer and Kruger,

2008; Westerlund and Ekstam, 1994; Westerlund, 2002)). The total order of the

system is q̄ = 2.90.

The measured breakpoints of the non-linear characteristic (5.2) are:

−Bp = (−8.79V, 7.7mA), Bp = (9.12V, −7.9mA).

Assuming the three-segment piecewise-linear voltage-current transfer charac-

teristic of negative impedance converter (5.2), we have the slope Ga = −1/R1 =
−1.1148 mA/V for R7 = R8 and the slope Gb was calculated using the breakpoints

Bp and it has the value Gb = −0.8710 mA/V .

The resistors R3, R4, R5, R6, and the diodes D1 and D2 generate the positive and

negative halves of the nonlinearity.

In Fig. 5.4 is depicted the photo of the digital oscilloscope screen (Tektronix

TDS1002, 60 Mhz). It is a real measurement of voltages V1−V2 for circuit presented

in Fig. 5.3 with the parameters of electrical components (5.14). The result shown in

Fig. 5.4 is the double-scroll attractor of fractional-order Chua’s system described by

Eqs. (5.12) and (5.2). We can observe an amplification of the system.

An alternative scheme of the practical implementation of the Chua’s oscillator

with two operating amplifiers for a different kind of nonlinearity with saturation can

be found, for instance, in (Chua et al., 1993; Kennedy, 1993b) or for an IC chip

implementation we refer to (Cruz, 1993).
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Fig. 5.4 Photo of oscilloscope screen: Strange attractor of the Chua’s system (5.12).

5.2.2.2 Simulation Results

For simulation purposes we will use a numerical solution of Chua’s equations (5.13)

obtained by using the relationship (2.53) derived from the Grünwald-Letnikov defi-

nition (2.15), which leads to equations in the form:

x(tk) = (α(y(tk−1)− x(tk−1)− f (x(tk−1))))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (x(tk)− y(tk−1)+ z(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.15)

z(tk) = (−βy(tk)− γz(tk−1))hq3 −
k

∑
j=v

c(q3)
j z(tk− j),

where

f (x(tk−1)) = m1x(tk−1)+
1

2
(m0 −m1)× (|x(tk−1)+1|− |x(tk−1)−1|) (5.16)

and where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i,
are calculated according to relation (2.54).

Similar and comparable results we have measured can be obtained by simulation

using Eqs. (5.15) for time step h = 0.001 and the short memory principle with length

Lm = 10 (10000 values and coefficients from history). Figure 5.5 shows the double-
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Fig. 5.5 Strange attractor of the fractional-order Chua’s system (5.13) with total order q̄ = 2.90 for
the parameters: α = 10.1911, β = 10.3035, γ = 0.1631, q1 = q2 = 0.98, q3 = 0.94, m0 =−1.1126,
m1 = −0.8692, and simulation time Tsim = 100s.

Fig. 5.6 Strange attractor from the fractional-order Chua’s system (5.13) with total order q̄ = 2.84
for the parameters: α = 10.725, β = 10.593, γ = 0.268, q1 = 0.93, q2 = 0.99, q3 = 0.92, m0 =
−1.1726, m1 = −0.7872 and simulation time Tsim = 100s.
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scroll attractor of Chua’s circuit (5.13) computed numerically for initial conditions

(x(0),y(0),z(0)) = (0.6,0.1,−0.6) and for the value of electrical parts (5.14) by

using a short memory principle (Lm = 10).

In Fig. 5.6 is depicted the result from (Zhu et al., 2009), where simulation was

performed without using the short memory principle (v = 1) for time step h = 0.001

and also for a different set of parameters and initial conditions (x(0),y(0),z(0)) =

(0.2,−0.1,0.1).
For simulation we are able to use the Matlab/Simulink approach as well. The

state-space expression of the fractional-order Chua’s equations (5.13) with parame-

ters α , β , and γ is given by using the integration operation and the properties (2.50)

and (2.51), and has the following form:

x(t) = 0D1−q1
t

(∫ t

0
[α(y(t)− x(t)− f (x))]dt

)
,

y(t) = 0D1−q2
t

(∫ t

0
[x(t)− y(t)+ z(t)]dt

)
, (5.17)

z(t) = 0D1−q3
t

(∫ t

0
[−βy(t)− γz(t)]dt

)
.

Fig. 5.7 Matlab/Simulink block diagram (model) for Chua’s system (5.13).
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The system model developed from the state equations (5.17) for system parame-

ters α , β , and γ by using the Matlab/Simulink environment is depicted in Fig. 5.7.

For simulation of the fractional derivative (integral) we used a Simulink block nid
created by Duarte Valerio (Valerio, 2005) with the combination of the classical in-

tegrator by using the property of commutation of two operators.

In Fig. 5.8 is depicted the simulation results obtained by numerical simulation

in the Matlab/Simulink for the following values of the parameters: A ≡ α = 10.19,

B ≡ β = 10.30, C ≡ γ = 0.16, q1 = q2 = 0.98, and q3 = 0.94, for the initial con-

ditions: (x(0),y(0),z(0)) = (0.6,0.1,−0.6) and for the slopes of Chua’s diode (5.5)

characteristic: m0 = −1.11 and m1 = −0.86.

As we can observe in Fig. 5.8, the obtained simulation results are comparable to

the results depicted in Fig. 5.5.

Fig. 5.8 Simulation result (x vs. y) of Chua’s system (5.13).

5.2.3 Fractional-Order Chua-Podlubny’s Oscillator

This system uses an approach where the order of any of three constitutive equa-

tions (5.4) can be changed so that the total order gives the desired value. In Chua-

Podlubny’s case, in equation one the first differentiation is replaced by a fractional

one. The final dimensionless equations of the system are (Podlubny, 1999):
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0Dq
t x(t) = α 0Dq−1

t (y(t)− x(t))− 2α
7

(
4x(t)− x3(t)

)
,

dy(t)
dt

= x(t)− y(t)+ z(t), (5.18)

dz(t)
dt

= −100

7
y(t) = −βy(t),

where α = C2/C1 and β = C2R2
2/L1, and fractional order q < 1, q ∈ R.

5.2.4 Fractional-Order Chua-Hartley’s Oscillator

The Chua-Hartley’s system is different from the usual Chua’s system (5.4) in that

the piecewise-linear nonlinearity is replaced by an appropriate cubic nonlinearity

which yields very similar behavior. Derivatives on the left side of the differential

equations are replaced by the fractional derivatives as follows (Hartley et al., 1995):

0Dq
t x(t) = α

(
y(t)+

x(t)−2x3(t)
7

)
,

0Dq
t y(t) = x(t)− y(t)+ z(t), (5.19)

0Dq
t z(t) = −βy(t) = −100

7
y(t),

where q ≤ 1, q ∈ R is the fractional order of derivatives.

5.2.5 Fractional-Order Memristor-Based Chua’s Oscillator

Since the memristor was postulated by L. O. Chua in 1971 and discovered by

R. Williams et al. (HP laboratory) in 2008 (realized as a Pt − TiO2 −Pt device),

it becomes the fourth circuit element. This fact allows us to use the memristor as a

nonlinear element in circuits which exhibit chaos. In the case of Chua’s circuit, the

nonlinear resistor NR is replaced by an active memristor M as shown in Fig. 5.9.

The memristor in Fig. 5.9 is a flux-controlled memristor whose characteristic is

given by literature (Chua, 1971):

IM(t) = W (φ(t))V1(t), (5.20)

where W (φ(t)) is the incremental memductance defined as (Chua, 1971)

W (φ) =
dq(φ)

dφ
. (5.21)
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Fig. 5.9 Chua’s circuit with active memristor.

Taking this into account we can write the equations for the memristor-based chaotic

circuit depicted in Fig. 5.9 as follows:

dV1(t)
dt

=
1

C1
[G(V2(t)−V1(t))− IM(t))] ,

dV2(t)
dt

=
1

C2
[G(V1(t)−V2(t))+ IL(t)] , (5.22)

dIL(t)
dt

=
1

L
[−V2(t)−RLIL(t)] ,

dφ(t)
dt

= V1(t),

where G = 1/R, and IM(t) is defined by Eq. (5.20).

For the flux-controlled memristor a monotone-increasing piecewise-linear char-

acteristic (Itoh and Chua, 2008, 2009) was assumed. The memristor constitutive

relation is shown in Fig. 5.10 and can be expressed as

q(φ) = bφ +0.5(a−b)× (|φ +1|− |φ −1|), (5.23)

where a,b > 0. The memductance function obtained from the q(φ) function is:

W (φ) =
dq(φ)

dφ

{
a, |φ | < 1,

b, |φ | > 1.
(5.24)

Several modifications of the memristor-based Chua’s circuit, where chaos was

observed, were described and analyzed in (Itoh and Chua, 2008). For a practical

implementation of the memristor it is possible to use operating amplifiers (Zhong,

1994) and then a smooth cubic nonlinearity could be used for replacing a q− φ
function depicted in Fig. 5.10.

The dynamics of the Chua’s circuit with a passive memristor (flux-controlled

memristor and negative conductance) depicted in Fig. 5.11 are given by the follow-

ing set of differential equations:
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Fig. 5.10 The constitutive relation of a piecewise-linear flux-controlled memristor.

Fig. 5.11 Chua’s circuit with flux-controlled memristor and negative conductance.

dV1(t)
dt

=
1

C1

[
(V2(t)−V1(t))

R
+GV1(t)−W (φ)V1(t))

]
,

dV2(t)
dt

=
1

C2

[
(V1(t)−V2(t))

R
+ IL(t)

]
, (5.25)

dIL(t)
dt

=
1

L
[−V2(t)−RLIL(t)] ,

dφ(t)
dt

= V1(t),
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where functions q(φ) and W (φ) are given in (5.23) and (5.24), respectively.

If we set

x = V1, y = V2, z = IL, w = φ , C2 = 1, R = 1,
α = 1/C1, β = 1/L, γ = RL/L, ζ = G,

(5.26)

then Eqs. (5.25) can be transformed into the dimensionless form (Itoh and Chua,

2008):

dx(t)
dt

= α (y(t)− x(t)+ζ x(t)−W (w)x(t)) ,

dy(t)
dt

= x(t)− y(t)+ z(t),

dz(t)
dt

= −βy(t)− γz(t),

dw(t)
dt

= x(t),

(5.27)

where piecewise-linear function W (w) is given below:

W (w) =
{

a : |w| < 1,
b : |w| > 1.

(5.28)

The equilibrium points of the system (5.27) are given by setting the left side of

equations to 0 except the last one. We set w as constant, which corresponds to the

w –axis (Itoh and Chua, 2008). The Jacobian matrix at this equilibrium state is (Itoh

and Chua, 2008):

JW =

⎡⎢⎢⎢⎢⎢⎣
α(−1+ζ −W (w)) α 0 0

1 −1 1 0

0 −β −γ 0

1 0 0 0

⎤⎥⎥⎥⎥⎥⎦ . (5.29)

For the following parameter set (Itoh and Chua, 2008): α = 10, β = 13, γ =
0.35, ζ = 1.5, a = 0.3, and b = 0.8, four eigenvalues λi (i = 1,2,3,4) for |w| < 1

can be written as

λ1,2 ≈−1.31103±2.74058 j, λ3 ≈ 3.27207, λ4 = 0

and four eigenvalues for |w| > 1 can be written as

λ1,2 ≈ 0.07865±2.84655 j, λ3 ≈−4.50731, λ4 = 0.

They are characterized by an unstable saddle-focus point and numerical simula-

tions for the above paremeters show that the system (5.27) has chaotic behavior.

In Fig. 5.12 and Fig. 5.13 are depicted chaotic attractors in 3D state space for

Tsim = 200s.
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Fig. 5.12 Strange attractor of the memristor-based Chua’s system (5.27) in w− x− y state space,
for parameters α = 10, β = 13, γ = 0.35, ζ = 1.5, a = 0.3, and b = 0.8, initial conditions:
x(0) = 0.8, y(0) = 0.05, z(0) = 0.007, w(0) = 0.6 and simulation time Tsim = 200s.

Fig. 5.13 Strange attractor of the memristor-based Chua’s system (5.27) in x− y− z state space,
for parameters α = 10, β = 13, γ = 0.35, ζ = 1.5, a = 0.3, and b = 0.8, initial conditions:
x(0) = 0.8, y(0) = 0.05, z(0) = 0.007, w(0) = 0.6 and simulation time Tsim = 200s.
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In Fig.5.14 and Fig. 5.15 are depicted the attractors of the memristor-based

Chua’s system (5.27) for parameters α = 10, β = 13, γ = 0.35, ζ = 1.5, a = 0.3,

b = 0.8, initial conditions: x(0) = 0.8, y(0) = 0.05, z(0) = 0.007, w(0) = 0.6 and

simulation time Tsim = 200s, projected onto y−w, and z−w planes, respectively.

If we consider a fractional-order model for each electrical element in the circuit

depicted in Fig. 5.11, we can write a more general mathematical model for this

circuit. As already mentioned, real capacitor and real inductor are “fractional” and

for real memristor we postulated a fractional-order model as well (dα φ(t)/dtα =
V (t)). By using a technique of fractional calculus we obtain the following equations:

0Dq1
t x(t) = α (y(t)− x(t)+ζ x(t)−W (w)x(t)) ,

0Dq2
t y(t) = x(t)− y(t)+ z(t),

0Dq3
t z(t) = −βy(t)− γz(t),

0Dq4
t w(t) = x(t),

(5.30)

where function W (w) is given in (5.28) and where q1, q2, q3, and q4 are fractional

orders of real electrical elements (memristive systems): capacitor C1, capacitor C2,

inductor L, and memristor M, respectively.

The stability of the new fractional-order memristor-based Chua’s system can be

investigated by using Theorem 4.6. For the fractional incommensurate-order system

(5.30), we can rewrite real order as qi = vi/ui, vi,ui ∈ Z+ for i = 1,2,3,4 and if we

set γ = 1/m, where m is the LCM of the denominators, the characteristic equation

of the system (5.30) for the Jacobian matrix JW is:

det(diag([λ mq1 λ mq2 λ mq3 λ mq4 ])−JW ) = 0

and then the stability condition is defined as follows:

|arg(λi)| > γ
π
2

for all eigenvalues λi.

In the case of piecewise-nonlinearity depicted in Fig. 5.10, we should investigate

the characteristic equation for the linear part with slope a and for the linear part with

slope b. If |w| < 1 then we are dealing with slope a and the Jacobian matrix is

JWa =

⎡⎢⎢⎢⎢⎢⎣
α(−1+ζ −a) α 0 0

1 −1 1 0

0 −β −γ 0

1 0 0 0

⎤⎥⎥⎥⎥⎥⎦ (5.31)

and if |w| > 1 then we are dealing with slope b and the Jacobian matrix is
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Fig. 5.14 Strange attractor of the memristor-based Chua’s system projected onto y−w plane.

Fig. 5.15 Strange attractor of the memristor-based Chua’s system projected onto z−w plane.
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JWb =

⎡⎢⎢⎢⎢⎢⎣
α(−1+ζ −b) α 0 0

1 −1 1 0

0 −β −γ 0

1 0 0 0

⎤⎥⎥⎥⎥⎥⎦ . (5.32)

The characteristic equation for the linear part with the slope a with matrix (5.31)

is

det(diag([λ mq1 λ mq2 λ mq3 λ mq4 ])−JWa) = 0

and for linear part with the slope b and matrix (5.32) it has the form

det(diag([λ mq1 λ mq2 λ mq3 λ mq4 ])−JWb) = 0.

When we consider a simple case where the fractional-order memristor-based

Chua’s system has commensurate order, which means q1 = q2 = q3 = q4 ≡ q, the

stability can be investigated according to Theorem 4.5, where the condition is:

|arg(eig(JW ))| = |arg(λi)| > q
π
2

for all eigenvalues λi.

As in the previous case, stability should be investigated for both piecewise-linear

parts of memristor characteristic shown in Fig. 5.10. In this case it means that we

should find the angle of all eigenvalues for both Jacobian matrices JWa and JWb
respectively. A necessary stability condition for fractional-order systems (5.30) to

remain chaotic is keeping at least one eigenvalue λ in the unstable region.

Because the frequency approximation techniques (Carlson and Halijak, 1963;

Oustaloup et al., 2000) are unreliable in recognising chaos in fractional-order non-

linear systems (Tavazoei and Haeri, 2007a), for simulation purposes we use a nu-

merical solution of the memristor-based Chua’s equations (5.30) obtained by the

method descibed in (Petráš, 2009a, 2010). It is a time domain method derived by

using the relationship (2.53), which leads to equations in the following form:

x(tk) = (α(y(tk−1)− x(tk−1)+ζ x(tk−1)−W (w(tk−1))x(tk−1)))hq1−

−
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (x(tk)− y(tk−1)+ z(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j),

z(tk) = (−βy(tk)− γz(tk−1))hq3 −
k

∑
j=v

c(q3)
j z(tk− j),

w(tk) = x(tk)hq4 −
k

∑
j=v

c(q4)
j w(tk− j),

(5.33)
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where

W (w(tk−1)) = a for |w(tk−1)| < 1,

W (w(tk−1)) = b for |w(tk−1)| > 1,
(5.34)

and where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0), w(0)) is the start point (initial conditions).

The binomial coefficients c(qi)
j , ∀i are calculated according to relation (2.54).

If we consider the parameter set α = 10, β = 13, γ = 0.35, ζ = 1.5, a = 0.3,

and b = 0.8, according to Definition 4.5, for these parameters we are able to calcu-

late a minimal commensurate order for which the system (5.30) remains chaotic. In

this case it is q > 0.98.

Let us consider the paremeter set α = 10, β = 13, γ = 0.1, ζ = 1.5, a = 0.3,

and b = 0.8. For these parameters a minimal commensurate order is q > 0.95. We

performed a simulation for the above parameters and commensurate order q = 0.97

(q1 = q2 = q3 = q4 = 0.97). The total order of the system is 3.88.

In Fig. 5.16 and Fig. 5.17 are depicted chaotic attractors in 3D state space for

Tsim = 200s. Both simulations were performed without using the short memory prin-

ciple (v = 1) for time step h = 0.005 with the initial conditions: x(0) = 0.8, y(0) =
0.05, z(0) = 0.007, w(0) = 0.6.

In Fig.5.18 and Fig. 5.19 are depicted the attractors of the memristor-based

Chua’s system (5.30) for parameters (5.35), a = 0.3, b = 0.8, orders q1 = q2 = q3 =
q4 = 0.97, initial conditions: x(0) = 0.8, y(0) = 0.05, z(0) = 0.007, w(0) = 0.6 and

simulation time Tsim = 100s, projected onto y−w, and z−w planes, respectively.

When we consider real orders of capacitors models (Westerlund and Ekstam,

1994): q1 = q2 = 0.98, real order of inductor model (Schafer and Kruger, 2008):

q3 = 0.99, and we assume a real order of memristor model: q4 = 0.97, for the pa-

rameters:

α = 10, β = 13, γ = 0.1, ζ = 1.5, (5.35)

a = 0.3, b = 0.8, the initial conditions: x(0)= 0.8, y(0)= 0.05, z(0)= 0.007, w(0)=
0.6, simulation time Tsim = 100s, and time step h = 0.005, we get the chaotic double-

scroll attractor as well for the total system order 3.92.

In Fig. 5.20 and Fig. 5.21 are depicted chaotic attractors in 3D state space for

Tsim = 100s. The simulations were performed without using the short memory prin-

ciple (v = 1) for time step h = 0.005 with the initial conditions: x(0) = 0.8, y(0) =
0.05, z(0) = 0.007, w(0) = 0.6. In this case, we just estimated the real order of the

memristor. Simulations show double-scroll atractors and we can observe a chaotic

behavior.

The characteristic equation of the system (5.30) with parameters (5.35), orders

q1 = q2 = 0.98 = 98/100, q3 = 0.99 = 99/100, q4 = 0.97 = 97/100, for Jacobian

(5.31) is

λ 392 −λ 294 +
λ 293

10
−12λ 196 +

129λ 195

10
− 136λ 97

5
= 0

and for Jacobian (5.32) it has form
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Fig. 5.16 Strange attractor of the memristor-based Chua’s system (5.30) in w− x− y state space,
for parameters α = 10, β = 13, γ = 0.1, ζ = 1.5, a = 0.3, b = 0.8, orders q1 = q2 = q3 =
q4 = 0.97, initial conditions: x(0) = 0.8, y(0) = 0.05, z(0) = 0.007, w(0) = 0.6 and simulation
time Tsim = 200s.

Fig. 5.17 Strange attractor of the memristor-based Chua’s system (5.30) in x− y− z state space,
for parameters α = 10, β = 13, γ = 0.1, ζ = 1.5, a = 0.3, b = 0.8, orders q1 = q2 = q3 =
q4 = 0.97, initial conditions: x(0) = 0.8, y(0) = 0.05, z(0) = 0.007, w(0) = 0.6 and simulation
time Tsim = 200s.
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Fig. 5.18 Strange attractor of the memristor-based Chua’s system projected onto y−w plane.

Fig. 5.19 Strange attractor of the memristor-based Chua’s system projected onto z−w plane.
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Fig. 5.20 Strange attractor of the memristor-based Chua’s system (5.30) in w− x− y state space,
for parameters α = 10, β = 13, γ = 0.1, ζ = 1.5, a = 0.3, b = 0.8, orders q1 = q2 = 0.98,
q3 = 0.99, q4 = 0.97, initial conditions: x(0) = 0.8, y(0) = 0.05, z(0) = 0.007, w(0) = 0.6 and
simulation time Tsim = 100s.

Fig. 5.21 Strange attractor of the memristor-based Chua’s system (5.30) in x− y− z state space,
for parameters α = 10, β = 13, γ = 0.1, ζ = 1.5, a = 0.3, b = 0.8, orders q1 = q2 = 0.98,
q3 = 0.99, q4 = 0.97, initial conditions: x(0) = 0.8, y(0) = 0.05, z(0) = 0.007, w(0) = 0.6 and
simulation time Tsim = 100s.
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λ 392 +4λ 294 +
λ 293

10
−7λ 196 +

67λ 195

5
+

383λ 97

10
= 0.

Both above characteristic equations are polynomials of very high order and it is

difficult to find the roots of such polynomials. For the system to remain chaotic, there

should be at least one root λ in the unstable region, which means that |arg(λ )| <
π/200.

Because of roots calculation problem, we can predict one unstable eigevalue and

assume that the stability condition for chaos is satisfied. It can be indirectly proved

via the double-scroll attractor, which can be observed in Fig. 5.20.

In Fig. 5.22 and Fig. 5.23 are depicted the attractors of the memristor-based

Chua’s system (5.30) for parameters (5.35), a = 0.3, b = 0.8, orders q1 = q2 =
0.98, q3 = 0.99, q4 = 0.97, initial conditions: x(0) = 0.8, y(0) = 0.05, z(0) =
0.007, w(0) = 0.6 and simulation time Tsim = 100s, projected onto y−w, and z−w
planes, respectively. These strange attractors also indirectly confirm that the system

is chaotic.

Fig. 5.22 Strange attractor of the memristor-based Chua’s system projected onto y−w plane.
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Fig. 5.23 Strange attractor of the memristor-based Chua’s system projected onto z−w plane.

5.3 Fractional-Order Van der Pol Oscillator

The Van der Pol oscillator (VPO) represents a nonlinear system with an interesting

behavior that exhibits naturally in several applications. It has been used for study

and design of many models including biological phenomena, such as the heartbeat,

neurons, acoustic models, radiation of mobile phones, and as a model of electrical

oscillators (implemented with a tunnel diode, memristor or operating amplifier).

The VPO model was used by Van der Pol in 1920 to study oscillations in vacuum

tube circuits. In the standard form, it is given by a nonlinear differential equation of

type:

y′′(t)+ ε(y(t)2 −1)y
′
(t)+ y(t) = 0, (5.36)

where ε is the control parameter. Equation (5.36) can be rewritten into its state-space

representation as follows:

dy1

dt
= y2(t),

dy2

dt
= −y1(t)− ε(y2

1(t)−1)y2(t),
(5.37)

with an equilibrium point in origin. The Jacobian matrix of the system (5.37) is
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J =

[
0 1

−1−2εy∗1y∗2 −ε(y∗1
2 −1)

]
(5.38)

for the equilibrium point E∗ = (y∗1,y
∗
2).

A modified version of the classical VPO was proposed by fractional derivative of

order q in a state space formulation of Eq. (5.37). It has the following form (Chen

and Chen, 2008; Barbosa et al., 2007):

0Dq
t y1(t) = y2(t),

dy2

dt
= −y1(t)− ε(y2

1(t)−1)y2(t), (5.39)

where the order is 0 < q < 1 and ε > 0. The resulting fractional-order Van der Pol

oscillator (FrVPO) reduces to the classical VPO when q = 1. The total system order

is changed from the integer value 2 to the fractional value 1+q < 2. If we consider

q = 0.9 = 9/10 and ε = 1 then the characteristic equation of the system (5.39) for

γ = 1/10 is det(λ γ I−J) = 0, that is,

λ 19 +λ 9 +1 = 0.

All equation roots λi satisfy the condition |arg(λi)|> π/20 for (i = 1,2, . . . ,19) and

therefore the system is stable. Detailed analysis of the fractional-order Van der Pol

system for various system orders has been made in (Barbosa et al., 2007; Ge and

Hsu, 2007). This analysis may be useful for a better understanding and control of

such system.

In Fig. 5.24 is depicted the limit cycle in the phase plane of the fractional-order

Van der Pol oscillator (5.39) for simulation time Tsim = 30s and time step h = 0.005.

Let us consider the modified version of the FrVPO in the following form:

0Dq1
t y1(t) = y2(t),

0Dq2
t y2(t) = −y1(t)− ε(y2

1(t)−1)y2(t),
(5.40)

where q1 and q2 are orders (0 < q1,2 < 2) and ε > 0. If we consider q1 = q2 ≡ q in

(5.40), we obtain a commensurate-order system. The characteristic equation of the

commensurate-order system (5.40) is det(λ qI−J) = 0 and the stability condition is

|arg(eig(J))| > qπ/2.

For simulation purpose, we derived a numerical solution of the FrVPO, obtained

by using the relations (2.53) and (2.54), which has the following form:

y1(tk) = y2(tk−1)hq1 −
k

∑
j=v

c(q1)
j y1(tk− j),

y2(tk) =
(−y1(tk)− ε(y2

1(tk)−1)y2(tk−1)
)

hq2 −
k

∑
j=v

c(q2)
j y2(tk− j),

(5.41)
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Fig. 5.24 Limit cycle in phase plane y1 − y2 for FrVPO with fractional order q = 0.9, parameter
ε = 1, and initial conditions (y1(0),y2(0)) = (0,−2).

Fig. 5.25 Oscillation in phase plane y1 − y2 for FrVPO with integer-orders q1 = q2 = 1.0, param-
eter ε = 0.1, and initial conditions (y1(0),y2(0)) = (0.2,−0.2).
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where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (y1(0),
y2(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i are

calculated according to relation (2.54).

In Fig. 5.25 and Fig. 5.26 are depicted the oscillations in the phase plane of the

fractional-order Van der Pol oscillator (5.39) for various orders q1 and q2, parameter

ε , simulation time Tsim = 60s and time step h = 0.005.

Fig. 5.26 Limit cycle in phase plane y1 − y2 for FrVPO with fractional-orders q1 = 1.2, q2 = 0.8,
parameter ε = 1, and initial conditions (y1(0),y2(0)) = (0.2,−0.2).

5.4 Fractional-Order Duffing’s Oscillator

Duffing’s oscillator, introduced in 1918 by G. Duffing, with negative linear stiffness,

damping and periodic excitation is often written in the form

x
′′
(t)− x(t)+αx

′
(t)+ x3(t) = δ cos(ωt). (5.42)

Equation (5.42) can be extended to the complex domain in order to study strange

attractors and chaotic bahavior of forced vibrations of industrial machinery. The

periodically forced complex Duffing’s oscillators have the form
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z
′′
(t)− z(t)+αz

′
(t)+ εz|z2(t)| = γ

′
cos(ωt), (5.43)

where γ ′
=
√

2γ e jπ/4, γ,α,ω are positive parameters, z = x+ jy is a complex func-

tion. Equation (5.43) can be reduced to the famous Duffing’s oscillator (5.42) when

z = x,(y = 0) and ε = 1. When we substitute z = x + jy into Eq. (5.43), we get a

system of two coupled nonlinear second-order differential equations (Gao and Yu,

2005):

x
′′
(t)− x(t)+αx

′
(t)+ εx(t)(x2(t)+ y2(t)) = γ cos(ωt),

y
′′
(t)− y(t)+αy

′
(t)+ εy(t)(x2(t)+ y2(t)) = γ cos(ωt).

(5.44)

To get the fractional-order Duffing’s system, Equation (5.42) can be rewritten as

a system of the first-order autonomous differential equations in the form:

x(t)
dt

= y(t),

y(t)
dt

= x(t)− x3(t)−αy(t)+δ cos(ωt).
(5.45)

Here, the conventional derivatives in Eqs. (5.45) are replaced by the fractional

derivatives as follows:

0Dq1
t x(t) = y(t),

0Dq2
t y(t) = x(t)− x3(t)−αy(t)+δ cos(ωt),

(5.46)

where q1,q2 are two fractional orders and α,δ ,ω are the system parameters.

The Jacobian matrix of the Duffing’s system is

J =
[

0 1

1−3x∗ −α

]
(5.47)

for the equilibrium point E∗ = (x∗,y∗). The characteristic equation of the linearized

incommensurate-order system (5.46) for γ = 1/m is det(λ γ I− J) = 0, where m is

the LCM of the denominators ui, if we set qi = vi/ui, vi,ui ∈ Z+ for i = 1,2. The

stability condition is |arg(λi)| > γπ/2 for all roots λi of the characteristic equation.

A numerical solution of the fractional-order Duffing’s system (5.46), obtained by

using the relations (2.53) and (2.54), has the following form:

x(tk) = y(tk−1)hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) =
(
x(tk)− x3(tk)−αy(tk−1)+δcos(ωtk)

)
hq2 −

k

∑
j=v

c(q2)
j y(tk− j),

(5.48)

where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0)) is the start point (initial conditions).
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Let us investigate the integer-order Duffing’s system (5.45) with parameters

α = 0.15, δ = 0.3, ω = 1. This system has three fixed points (equilibria): E1 =
(1.07288371;0), E2 = (−0.90615851;0), and E3 = (−0.16672520;0) and their

stability can be studied by computing the corresponding eigenvalues. For equi-

librium E1 we obtain the eigenvalues λ1,2 = −0.0750 ± 1.487624 j, for E2 we

get λ1 ≈ 1.8547928, λ2 ≈ −2.004792873 and for E3 we have λ1 ≈ 1.1521106,

λ2 ≈ −1.3021106. The eigenvalues λ1 and λ2 of the equilibrium points E2 and E3

are saddle points which satisfy the stability condition for chaotic behavior.

In Fig. 5.27 is depicted chaotic attractor of the integer-order Duffing’s system

(5.45) for the following parameters α = 0.15, δ = 0.3, ω = 1 with initial conditions

(x(0),y(0)) = (0.21,0.13) for simulation time Tsim = 200s and time step h = 0.005.

Fig. 5.27 Phase trajectory (attractor) in plane x− y for the integer-order Duffing’s system (5.45)
with parameters α = 0.15, δ = 0.3, ω = 1, and initial conditions (x(0),y(0)) = (0.21,0.13).

When we assume commensurate orders q1 = q2 = 0.95 and parameters α = 0.5,

δ = 1.3, ω = 1 in system (5.46), we obtain a stable limit cycle. All roots of the

characteristic equation satisfy the stability condition.

In Fig. 5.28 is depicted the limit cycle of the fractional-order Duffing’s system

(5.46) for the following parameters α = 0.5, δ = 1.3, ω = 1, derivative orders q1 =
q2 = 0.95 with initial conditions (x(0),y(0)) = (1.0,1.0) for simulation time Tsim =
100s and time step h = 0.005.

In addition, we consider an incommensurate-order system (5.46) with parameters

α = 0.15, δ = 0.3, ω = 1 and orders q1 = 0.9 = 9/10, and q2 = 1.0 = 10/10. The

system has three equilibria and we should investigate the stability of all equilibrium
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Fig. 5.28 Phase trajectory (limit cycle) in plane x− y for the fractional-order Duffing’s system
(5.46) with parameters α = 0.5, δ = 1.3, ω = 1, derivative orders q1 = q2 = 0.95, and initial
conditions (x(0),y(0)) = (1.0,1.0).

points. Because of the system parameters, the equilibrium points are the same as in

the case of integer-order system. For the equilibrium E1 the characteristic equation

of linearized system is

λ 19 +3/20λ 9 −3.7184755 = 0,

and it has one unstable root λ ≈ 1.0673 because |arg(λ )| < π/20. For the equilib-

rium E2 the characteristic equation of the linearized system is

λ 19 +3/20λ 9 −1.5001756 = 0,

and it has one unstable root λ ≈ 1.0151 because |arg(λ )|< π/20. Both equilibrium

points are unstable nodes. The equilibrium E3 is a stable focus. The condition to

have at least one root in the unstable region in order for the system to be chaotic is

satisfied.

In Fig. 5.29 is depicted double scroll attractor of the fractional-order Duffing’s

system (5.46) for the following parameters α = 0.15, δ = 0.3, ω = 1, derivative

orders q1 = 0.9,q2 = 1.0 with initial conditions (x(0),y(0)) = (0.21,0.13) for sim-

ulation time Tsim = 200s and time step h = 0.005.

An alternative and a bit modified version of the fractional-order Duffing’s system

and its phase portraits, Poincaré maps, bifurcation diagram and chaotic behavior was
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Fig. 5.29 Phase trajectory (attractor) in plane x−y for the fractional-order Duffing’s system (5.46)
with parameters α = 0.15, δ = 0.3, ω = 1, derivative orders q1 = 0.9,q2 = 1.0, and initial condi-
tions (x(0),y(0)) = (0.21,0.13).

studied in (Ge and Ou, 2007). The chaotic system reported in the above-mentioned

paper considered the Duffing’s chaotic system to be an autonomous system with

four state variables x(t), y(t), z(t), and w(t) and has the following form:

0Dq1
t x(t) = y(t),

0Dq2
t y(t) = −x(t)− x3(t)−ay(t)+bz(t), (5.49)

0Dq3
t z(t) = w(t),

0Dq4
t w(t) = −cz(t)−dz3(t),

where a,b,c are constant parameters of the system and q1,q2,q3 and q4 are fractional-

order numbers. Usually, the system parameter b is allowed to be variable.

Chaos was found in system (5.49) for the lowest total order of the system 3.8 (Ge

and Ou, 2007).

5.5 Fractional-Order Lorenz’s System

The Lorenz oscillator is a three-dimensional dynamical system that exhibits chaotic

flow. The Lorenz attractor was named after Edward N. Lorenz, who derived it from
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the simplified equations of convection rolls arising in the equations of the atmo-

sphere in 1963. He for the first time used the term “butterfly effect”, which in

chaos theory means sensitive dependence on initial conditions. Lorenz wrote a pa-

per in 1979 entitled “Predictability: Does the Flap of a Butterfly’s Wings in Brazil

Set Off a Tornado in Texas?” Small variations of the initial condition of a dynam-

ical system may produce large variations in the long-term behavior of the system.

The phrase refers to the idea that a butterfly’s wings might create tiny changes in

the atmosphere that may ultimately alter the path of a tornado or delay, accelerate

or even prevent the occurrence of a tornado in a certain location. The flapping wing

represents a small change in the initial condition of the system, which causes a chain

of events leading to large-scale alterations of events.

Lorenz’s chaotic system is desribed by

dx(t)
dt

= σ(y(t)− x(t)),

dy(t)
dt

= x(t)(ρ − z(t))− y(t), (5.50)

dz(t)
dt

= x(t)y(t)−β z(t),

where σ is called the Prandtl number and ρ is called the Rayleigh number. All

σ ,ρ,β > 0, but usually σ = 10, β = 8/3 and ρ is varied. The system exhibits

chaotic behavior for ρ = 28 and displays orbits for other values.

Lorenz’s system has three equilibria, where one is obviously in origin

E1 = (0;0;0) and the other two are: E2 = (
√

(βρ −β );
√

(βρ −β ); ρ − 1),
E3 = (−√(βρ −β ); −√(βρ −β ); ρ −1). The Jacobian matrix of Lorenz’s sys-

tem (5.50) at the equilibrium point E∗ = (x∗,y∗,z∗) is given by

J =

⎡⎣ −σ σ 0

ρ − z∗ −1 −x∗
y∗ x∗ −β

⎤⎦ . (5.51)

The equilibrium points of the system with the above parameters are: E1 =
(0;0;0), E2 = (8.4853;8.4853;27), and E3 = (−8.4853;−8.4853;27).

The fractional-order Lorenz’s system is described as (e.g. (Li and Yan, 2007)):

0Dq1
t x(t) = σ(y(t)− x(t)),

0Dq2
t y(t) = x(t)(ρ − z(t))− y(t), (5.52)

0Dq3
t z(t) = x(t)y(t)−β z(t),

where q1, q2, and q3 are derivative orders.

The numerical solution of the fractional-order Lorenz’s system has the following

form:

x(tk) = (σ(y(tk−1)− x(tk−1)))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),
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y(tk) = (x(tk)(ρ − z(tk−1))− y(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.53)

z(tk) = (x(tk)y(tk)−β z(tk−1))hq3 −
k

∑
j=v

c(q3)
j z(tk− j),

where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i
are calculated according to the relation (2.54).

To determine a minimal order for which the Lorenz system is chaotic with the

parameters (σ ,ρ,β ) = (10,28,8/3), we can use the relation (4.42). In this case the

minimal commensurate order is q > 0.9941, if we consider q1 = q2 = q3 ≡ q.

Let us set q1 = q2 = q3 = 0.995, the fractional-order Lorenz’s system (5.52) has

a chaotic attractor as depicted in Fig. 5.30 – Fig. 5.32.

In Fig. 5.30 – Fig. 5.32 are depicted the simulation results of the Lorenz system

(5.52) for the following parameters: σ = 10,ρ = 28,β = 8/3, orders q1 = q2 = q3 =
0.995 and computational time 100s for time step h = 0.005.

In case of the incommensurate orders (q1, q2, q3) of the system (5.52), the stabil-

ity at the equilibrium can be investigated via characteristic equation det(λ γ I−J) =
0, for γ = 1/m, where m is the LCM of the denominators ui, if we set qi = vi/ui,

vi,ui ∈ Z+ for i = 1,2,3, and the stability condition |arg(λ )| > γπ/2.

Fig. 5.30 Simulation result of the Lorenz system (5.52) in x−y plane for parameters: σ = 10,ρ =
28,β = 8/3, orders q1 = q2 = q3 = 0.995, and initial conditions (x(0),y(0),z(0)) = (0.1,0.1,0.1).
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Fig. 5.31 Simulation result of the Lorenz system (5.52) in x− z plane for parameters: σ = 10,ρ =
28,β = 8/3, orders q1 = q2 = q3 = 0.995, and initial conditions (x(0),y(0),z(0)) = (0.1,0.1,0.1).

Fig. 5.32 Simulation result of the Lorenz system (5.52) in state space for parameters: σ = 10,ρ =
28,β = 8/3, orders q1 = q2 = q3 = 0.995, and initial conditions (x(0),y(0),z(0)) = (0.1,0.1,0.1).
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5.6 Fractional-Order Chen’s System

In 1999, Chen found another a simple three-dimensional autonomous system, which

is not topologically equivalent to Lorenz’s system and which has a chaotic attractor

as well. Chen’s system is described by the following equations (Lu and Chen, 2002;

Zhou et al., 2004):

dx(t)
dt

= a(y(t)− x(t)),

dy(t)
dt

= (c−a)x(t)− x(t)z(t)+ cy(t), (5.54)

dz(t)
dt

= x(t)y(t)−bz(t),

where (a,b,c) ∈ R3. When (a,b,c) = (35,3,28) the chaotic attractor exists.

The equilibrium points of the system with the above parameters are: E1 =
(0;0;0), E2 = (7.9373;7.9373;21), and E3 = (−7.9373;−7.9373;21).

The Jacobian matrix of Chen’s system (5.54) at the equilibrium point E∗ =
(x∗,y∗,z∗) is given by

J =

⎡⎣ −a a 0

c−a− z∗ c −x∗
y∗ x∗ −β

⎤⎦ . (5.55)

For the equilibrium E1 we obtain the eigenvalues λ1 = −3, λ2 ≈ 23.8359, and

λ3 ≈−30.8359, for E2 we get λ1 ≈−18.4280, and λ2,3 ≈ 4.2140±14.8846 j, and

for E3 we have λ1 ≈ −18.4280, λ2,3 ≈ 4.2140± 14.8846 j. The eigenvalues λ1,

λ2 and λ3 show that the equilibrium E1 is a saddle point, the equilibria E2 and E3

are saddle-focus points. All of them satisfy the stability condition to keep chaotic

behavior.

The fractional-order Chen’s system is described as (Lu and Chen, 2006):

0Dq1
t x(t) = a(y(t)− x(t)),

0Dq2
t y(t) = (c−a)x(t)− x(t)z(t)+ cy(t), (5.56)

0Dq3
t z(t) = x(t)y(t)−bz(t),

where 0 < q1,q2,q3 ≤ 1, its total order is denoted by q̄ = (q1,q2,q3).
Numerical solution of the fractional-order Chen’s system has the following form:

x(tk) = (a(y(tk−1)− x(tk−1)))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (dx(tk)− x(tk)z(tk−1)+ cy(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.57)

z(tk) = (x(tk)y(tk)−bz(tk−1))hq3 −
k

∑
j=v

c(q3)
j z(tk− j),
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where d = (c− a), Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h],
and (x(0), y(0), z(0)) is the start point (initial conditions). The binomial coefficients

c(qi)
j , ∀i are calculated according to the relation (2.54).

To determine a minimal order for which the Chen system is chaotic with the

parameters (a,b,c) = (35,3,28), we can use the relation (4.42). In this case the

minimal commensurate order is q > 0.8244, if we consider q1 = q2 = q3 ≡ q.

Let us consider the parameters (a,b,c,d) = (35,3,28,−7) and the commensurate

orders q1 = q2 = q3 = 0.9 in the numerical solution (5.57).

Fig. 5.33 Simulation result of Chen’s system (5.56) in state space for parameters: a = 35, b =
3, c = 28, d = −7, orders q1 = q2 = q3 = 0.9, and initial conditions (x(0),y(0),z(0)) =
(−9,−5,14).

In Fig. 5.33 is depicted the simulation result (double scroll-attractor) of the

fractional commensurate-order Chen’s system (5.56) computed for simulation time

Tsim = 100s and time step h = 0.005. For these parameter sets the characteristic

equation of the equilibrium points E2 and E3 is

λ 27 +10λ 18 +84λ 9 +4410 = 0

and unstable roots are λ1,2 = 1.3417 ± 0.1944 j, because |arg(λ1,2)| ≈ 0.1439 <
π/2m, where m = 10. These equilibrium points are unstable foci. The equilibrium

E1 is a saddle point connecting two scrolls.

Simulation results of the fractional incommensurate-order Chen’s system (5.56)

are described in Section 4.3 and depicted in Fig. 4.13, where in Eqs. (5.56) we
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used the parameters a = 35, b = 3, c = 28, d = −7, and orders q1 = 0.8, q2 = 1.0,

q3 = 0.9. The stability of such system was investigated as well.

5.7 Fractional-Order Lü’s System

The so-called Lü’s system is known as a bridge between the Lorenz system and

Chen’s system. Its fractional version is described as follows (Deng and Li, 2005):

0Dq1
t x(t) = a(y(t)− x(t)),

0Dq2
t y(t) = −x(t)z(t)+ cy(t), (5.58)

0Dq3
t z(t) = x(t)y(t)−bz(t),

where 0 < q1,q2,q3 ≤ 1, are derivatives orders, and a,b,c are system parameters.

The system (5.58) has three equilibrium points E1 = (0;0;0), E2 = (
√

bc;
√

bc;c)
and E3 = (−√

bc;−√
bc;c).

The Jacobian matrix for equilibria E∗ = (x∗,y∗,z∗) is defined as

J =

⎡⎣ −a a 0

−z∗ c −x∗
y∗ x∗ −b

⎤⎦ . (5.59)

Numerical solution of the fractional-order Lü’s system (5.58) is given as follows:

x(tk) = (a(y(tk−1)− x(tk−1)))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (−x(tk)z(tk−1)+ cy(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.60)

z(tk) = (x(tk)y(tk)−bz(tk−1))hq3 −
k

∑
j=v

c(q3)
j z(tk− j),

where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i
are calculated according to the relation (2.54).

Let us consider the following parameters a = 36,b = 3,c = 20 of the system

(5.58). For equilibrium points E1 we obtain the following eigenvalus of the Ja-

cobian matrix (5.59): λ1 = −3, λ2 = 20 and λ3 = −36. It is a saddle point. For

the equilibrium E2 = (7.7460;7.7460;20) we get the eigenvalues λ1 ≈ −22.6516

and λ2,3 ≈ 1.8258 ± 13.6887 j. It is a saddle-focus point. The equilibrium point

E3 = (−7.7460;−7.7460;20) has the same eigenvalues as the equilibrium E2. From

the above eigenvalues we can determine a minimal commensurate order to keep the

system chaotic and it is q > 0.9156.
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Fig. 5.34 Simulation result of the fractional-order Lü’s system (5.58) in state space for parameters
a = 36,b = 3,c = 20 and orders q1 = 0.95,q2 = 0.95,q3 = 0.95.

Fig. 5.35 Simulation result of the fractional-order Lü’s system (5.58) in state space for parameters
a = 36,b = 3,c = 20 and orders q1 = 0.985,q2 = 0.99,q3 = 0.98.
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In Fig. 5.34 is depicted phase trajectory for commensurate derivative orders

q1 = 0.95,q2 = 0.95,q3 = 0.95 and parameters a = 36,b = 3,c = 20 with the initial

conditions: (x(0),y(0),z(0)) = (0.2,0.5,0.3), for simulation time 90s, and time step

h = 0.005.

In Fig. 5.35 is depicted phase trajectory for incommensurate derivative orders

q1 = 0.985,q2 = 0.99,q3 = 0.98 and parameters a = 36,b = 3,c = 20 with the initial

conditions: (x(0),y(0),z(0)) = (0.2,0.5,0.3), for simulation time 90s and time step

h = 0.005.

5.8 Fractional-Order Liu’s System

A novel three-dimensional autonomous chaotic dynamical system was introduced

by C. Liu, L. Liu and T. Liu and reported in literature (Liu et al., 2009). The differ-

ential equations that described the system are

dx(t)
dt

= −ax(t)− ey2(t),

dy(t)
dt

= by(t)− kx(t)z(t), (5.61)

dz(t)
dt

= −cz(t)+mx(t)y(t),

where a = e = 1, b = 2.5, k = m = 4, c = 5 and initial conditions (0.2,0,0.5) yield

chaotic trajectory.

The system (5.61) has five equilibrium points. Two of them are complex and three

are real equilibrium points E1 = (0;0;0), E2 = (−0.88388;−0.940150;0.664786),
and E3 = (−0.88388;0.940150;−0.664786). In the paper (Liu et al., 2009) were

calculated different equilibrium points because in spite of the following parameters

declaration a = e = 1, b = 2.5, k = m = 4, c = 5 for calculations they probably used

different parameters.

The corresponding Jacobian matrix for equilibria E∗ = (x∗,y∗,z∗) is

J =

⎡⎣ −a −2ey∗ 0

−kz∗ b −kx∗
my∗ mx∗ −c

⎤⎦ . (5.62)

The roots of the characteristic equation evaluated at equilibrium E1 are λ1 =−1,

λ2 = −5, and λ3 = 2.5. It is a saddle point. The eigenvalues of the Jacobian ma-

trix evaluated at equilibrium points E2 and E3 are λ1 ≈ −4.387767, and λ2,3 ≈
0.4438837±3.346383 j. It is a saddle-focus point. Because all eigenvalues are un-

stable, the condition for chaos is satisfied and chaotic system (5.61) with the above

parameters can exhibit chaotic behavior.

Its fractional-order version was described (Gejji and Bhalekar, 2010) and has the

form:
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0Dq1
t x(t) = −ax(t)− ey2(t),

0Dq2
t y(t) = by(t)− kx(t)z(t), (5.63)

0Dq3
t z(t) = −cz(t)+mx(t)y(t),

where q1, q2, q3 are derivative orders, the total order is denoted by q̄ = (q1,q2,q3).
In case we consider a commensurate order system (5.63) with q1 = q2 = q3 ≡ q,

a minimal order q for chaotic behavior can be determinned according the condition

(4.42) and it is q > 0.916. Thus the system deos not show chaotic behavior for

q < 0.916.

Numerical solution of the fractional-order Liu’s system (5.63) is given as follows:

x(tk) =
(−ax(tk−1)− ey2(tk−1)

)
hq1 −

k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (by(tk−1)− kx(tk)z(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.64)

z(tk) = (−cz(tk−1)+mx(tk)y(tk))hq3 −
k

∑
j=v

c(q3)
j z(tk− j),

where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i
are calculated according to the relation (2.54).

In Fig. 5.36 are depicted the simulation results of the (integer-order) Liu’s system

(5.61) for the following parameters: a = e = 1, b = 2.5, k = m = 4, c = 5, and

computational time 100s, for time step h = 0.005.

Consider the commensurate order of the fractional-order Liu’s system (5.63) with

q = 0.95 and parameters a = e = 1, b = 2.5, k = m = 4. The characteristic equation

of the linearized system is

λ 285 +3.5λ 190 +7.5λ 95 +50 = 0

and unstable roots are λ1,2 ≈ 1.0128 ± 0.0153 j, because |arg(λ1,2)| = 0.0151 <
π/2m, where m = 100 (LCM of orders denominator).

In Fig. 5.37 is depicted the simulation result of the (integer-order) Liu’s system

(5.63) for the following parameters: a = e = 1, b = 2.5, k = m = 4, c = 5, orders

q1 = q2 = q3 = 0.95 and computational time 100s for time step h = 0.005.

Let us consider the incommensurate order of the fractional-order Liu’s system

(5.63) with q1 = 1.0, q2 = 0.9, and q3 = 0.8 and parameters a = e = 1, b = 2.5,

k = m = 4. The characteristic equation of the linearized system is

λ 27 +5λ 19 −2.5λ 18 +λ 17 +5λ 9 +2.5λ 8 +50 = 0

and unstable roots are λ1,2 ≈ 1.1224 ± 0.1770 j, because |arg(λ1,2)| = 0.1565 <
π/2m, where m = 10.
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Fig. 5.36 Simulation result of the Liu’s system (5.61) in state space for parameters: a = e = 1,
b = 2.5, k = m = 4, c = 5, and initial conditions (x(0),y(0),z(0)) = (0.2,0,0.5).

Fig. 5.37 Simulation result of the Liu’s system (5.63) in state space for parameters: a = e = 1,
b = 2.5, k = m = 4, c = 5, orders q1 = q2 = q3 = 0.95, and initial conditions (x(0),y(0),z(0)) =
(0.2,0,0.5).
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In Fig. 5.38 is depicted the simulation result of the (fractional-order) Liu’s system

(5.63) for the following parameters: a = e = 1, b = 2.5, k = m = 4, c = 5, orders

q1 = 1.0, q2 = 0.9, and q3 = 0.8, and computational time 100s, for time step h =
0.005.

Fig. 5.38 Simulation result of the Liu’s system (5.63) in state space for parameters: a = e = 1,
b = 2.5, k = m = 4, c = 5, orders q1 = 1.0, q2 = 0.9, and q3 = 0.8, and initial conditions
(x(0),y(0),z(0)) = (0.2,0,0.5).

Note that this fractional-order system has been investigated and described for

various orders, where condition for chaotic behavior was cross-validated with the

Lyapunov exponent together with the instability measure for each equilibrium point

(Gejji and Bhalekar, 2010). Numerical experiments performed in the mentioned pa-

per showed the existence of chaos for a minimum total order of the commensurate-

order system 2.76 and in the case of incommensurate-order system it was 2.60. The

total order of the system is sometimes also called a minimum effective dimension.

5.9 Fractional-Order Genesio-Tesi’s System

The Genesio-Tesi’s system is described by the system of equations (Genesio and

Tesi, 1992):
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dx(t)
dt

= y(t),

dy(t)
dt

= z(t), (5.65)

dz(t)
dt

= −β1x(t)−β2y(t)−β3z(t)+β4x2(t),

where β1,β2,β3 and β4 are system parameters.

Genesio-Tesi’s system (5.65) has two equilibrium points E1 = (0;0;0) and E2 =
(β1/β4;0;0). The Jacobian matrix for equilibria E∗ = (x∗,y∗,z∗) is defined as

J =

⎡⎣ 0 1 0

0 0 1

−β1 +2β4x∗ −β2 −β3

⎤⎦ . (5.66)

The corresponding eigenvalues of the equilibrium E1 for the parameters β1 =
1, β2 = 1.1, β3 = 0.44, β4 = 1.0 are λ1 ≈ −0.750293 and λ2,3 ≈ 0.155146 ±
1.144002 j. For the equilibrium E2 they are λ1 ≈ 0.587161 and λ2,3 ≈−0.5135806±
1.199726 j. Both of them are unstable saddle-focus points and therefore the condi-

tion for chaotic behavior is satisfied.

In Fig. 5.39 is depicted the simulation result of the (integer-order) Genesio-Tesi’s

system (5.65) for the following parameters: β1 = 1, β2 = 1.1, β3 = 0.44, β4 = 1.0,

and computational time 200s, for time step h = 0.005.

Fig. 5.39 Simulation result of the Genesio-Tesi’s system (5.65) in state space for parameters: β1 =
1, β2 = 1.1, β3 = 0.44, β4 = 1.0, and initial conditions (x(0),y(0),z(0)) = (−0.1,0.5,0.2).
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The fractional-order Genesio-Tesi’s system is defined as follows (Guo, 2005):

0Dq1
t x(t) = y(t),

0Dq2
t y(t) = z(t), (5.67)

0Dq3
t z(t) = −β1x(t)−β2y(t)−β3z(t)+β4x2(t),

where q ∈ [q1,q2,q3] and 0 < q ≤ 1.

Numerical solution of the fractional-order Genesio-Tesi’s system (5.67) is given

as follows:

x(tk) = (y(tk−1))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (z(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.68)

z(tk) =
(−β1x(tk)−β2y(tk)−β3z(tk−1)+β4x(tk)2

)
hq3 −

k

∑
j=v

c(q3)
j z(tk− j),

where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i
are calculated according to the relation (2.54).

Let us consider the commensurate order q1 = q2 = q3 ≡ q = 0.9 and system

parameters: β1 = 1, β2 = 1.1, β3 = 0.15, β4 = 1.0. The characteristic equation of

the system (5.67) evaluated at the equilibria E1 and E2, respectively, is

λ 27 +3/20λ 18 +11/10λ 9 ±1 = 0

and unstable roots for the equilibrium E1 are λ1,2 ≈ 1.0100 ± 0.1525 j, because

|arg(λ1,2)| = 0.1499 < π/2m, where m = 10 (LCM of orders denominator) and un-

stable root for the equilibrium E2 is λ1 ≈ 0.9498. As shown in (Guo, 2005), the

system exhibits chaotic behavior.

Now, consider the incommensurate-order system, where q1 = 1.0, q2 = 1.0, and

q3 = 0.95 and system parameters are β1 = 1.1, β2 = 1.1, β3 = 0.45, β4 = 1.0. The

characteristic equation of the system (5.67) evaluated at the equilibria E1 and E2,

respectively, is

λ 295 +9/20λ 200 +11/10λ 100 ±1.1 = 0

and unstable roots for the equilibrium E1 are λ1,2 ≈ 1.0014 ± 0.0145 j, because

|arg(λ1,2)| = 0.0145 < π/2m, where m = 100 (LCM of orders denominator) and

unstable root for the equilibrium E2 is λ1 ≈ 0.9952.

In Fig. 5.40 is depicted the simulation result of the Genesio-Tesi’s system (5.67)

for the following parameters: β1 = 1.1, β2 = 1.1, β3 = 0.45, β4 = 1.0, orders q1 =
1.0, q2 = 1.0, q3 = 0.95 and computational time 200s, for time step h = 0.005. As

we can see in the figure, the fractional-order Genesio-Tesi’s system is chaotic with

one scroll attractor.
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Fig. 5.40 Simulation result of the Genesio-Tesi’s system (5.67) in state space for initial conditions
(x(0),y(0),z(0)) = (−0.1,0.5,0.2).

5.10 Fractional-Order Arneodo’s System

Arneodo’s system is described by

dx(t)
dt

= y(t),

dy(t)
dt

= z(t), (5.69)

dz(t)
dt

= −β1x(t)−β2y(t)−β3z(t)+β4x3(t),

where β1,β2,β3 and β4 are constant parameters. This system has three equilibrium

points E1 = (0;0;0;), E2 = (
√

(β4β1)/β4;0;0), and E3 = (−√(β4β1)/β4;0;0).
The Jacobian matrix for equilibria E∗ = (x∗,y∗,z∗) is defined as

J =

⎡⎣ 0 1 0

0 0 1

−β1 +3β4x∗2 −β2 −β3

⎤⎦ . (5.70)

When β1 = −5.5, β2 = 3.5, β3 = 1 and β4 = −1, the system (5.69) equilibrium

points are E1 = (0;0;0), E2 = (2.345207;0;0), and E3 = (−2.345207;0;0). Corre-

sponding eigenvalues for equilibrium E1 are λ1 = 1, λ2,3 ≈−1±2.12132 j, and for

equilibria E2 and E3 the eigenvalues are λ1 =−2, λ2,3 = 0.5±2.2912878 j. All equi-



5.10 Fractional-Order Arneodo’s System 149

libria are saddle-focus points. The condition for chaos is satisfied and the system has

chaotic attractor shown in Fig. 5.41.

Fig. 5.41 Simulation result of the Arneodo’s system (5.69) in state space for initial conditions
(x(0),y(0),z(0)) = (−0.2,0.5,0.2).

In Fig. 5.41 is depicted the chaotic attractor of Arneodo’s system (5.69) for the

following parameters: β1 = −5.5, β2 = 3.5, β3 = 1, β4 = −1.0, and computational

time 200s, for time step h = 0.005.

The fractional-order Arneodo’s system is defined as follows (Lu, 2005):

0Dq1
t x(t) = y(t),

0Dq2
t y(t) = z(t), (5.71)

0Dq3
t z(t) = −β1x(t)−β2y(t)−β3z(t)+β4x3(t),

where q∈ [q1,q2,q3] and 0 < q≤ 1. This system is very similar to the Genesio-Tesi’s

system (5.67) but with the different kind of nonlinearity.

Numerical solution of the fractional-order Arneodo’s system (5.71) is given as

follows:

x(tk) = (y(tk−1))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (z(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.72)

z(tk) =
(−β1x(tk)−β2y(tk)−β3z(tk−1)+β4x(tk)3

)
hq3 −

k

∑
j=v

c(q3)
j z(tk− j),
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where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i
are calculated according to the relation (2.54).

For the above paremeters we are able to determine a minimal commensurate

order of the system (5.71), which is q > 0.86 in case q1 = q2 = q3 ≡ q.

Let us consider the incommensuraty fractional-order Arneodo’s system (5.71)

with the following paremeters β1 = −5.5, β2 = 3.5, β3 = 0.8, β4 = −1.0 and or-

ders q1 = q2 = 0.97, and q3 = 0.96. Thus the total order of the system is 2.9. The

characteristic equation of the system (5.71) evaluated at the equilibrium E1 is

λ 290 +4/5λ 194 +7/2λ 97 −5.5 = 0

with unstable root λ1 ≈ 1.0002. The characteristic equation of the system (5.71)

evaluated at the equilibria E2 and E3, respectively, is

λ 290 +4/5λ 194 +7/2λ 97 +11 = 0

and unstable roots are λ1,2 ≈ 1.0089 ± 0.0139 j, because |arg(λ1,2)| = 0.0138 <
π/2m, where m = 100 (LCM of orders denominator).

In Fig. 5.42 and Fig. 5.43 are depicted the simulation results of Arneodo’s sys-

tem (5.71) for the following parameters: β1 =−5.5, β2 = 3.5, β3 = 0.8, β4 =−1.0,

orders q1 = 0.97, q2 = 0.97, q3 = 0.96, and computational time 200s, for time step

h = 0.005.

Fig. 5.42 Simulation result of the fractional-order Arneodo’s system (5.71) projected onto x− y
plane for the initial conditions (x(0),y(0),z(0)) = (−0.2,0.5,0.2).
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Fig. 5.43 Simulation result of the fractional-order Arneodo’s system (5.71) in state space for the
initial conditions (x(0),y(0),z(0)) = (−0.2,0.5,0.2).

In the paper (Lu, 2005) were performed simulations for various commensurate

order q of the fractional-order Arneodo’s system (5.71). Those simulations were

cross-validated with the Lyapunov exponent. The results showed that the lowest

total order of the fractional-order Arneodo’s system to yield chaos was 2.1.

5.11 Fractional-Order Rössler’s System

Otto Rössler proposed Rössler’s system with strange attractor in 1976, but the orig-

inally theoretical equations were later found to be useful in modeling equilibrium

in chemical reactions. This attractor has only one manifold and can be obtained as

a solution of the following equations:

dx(t)
dt

= −(y(t)+ z(t)),

dy(t)
dt

= x(t)+ay(t),

dz(t)
dt

= b+ z(t)(x(t)− c) , (5.73)

where for the parameters a = 0.2, b = 0.2, c = 5.7 this system yields chaotic behav-

ior. This system has two equilibrium points E1 and E2 located at
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E1,2 =

(
c±√

c2 −4ab
2

;−c±√
c2 −4ab
2a

;
c±√

c2 −4ab
2a

)
.

The Jacobian matrix for the equilibria E∗ = (x∗,y∗,z∗) is defined as

J =

⎡⎣ 0 −1 −1

1 a 0

z∗ 0 x∗ − c

⎤⎦ . (5.74)

Consider a fractional-order generalization of the Rössler’s system (5.73) as fol-

lows (Li and Chen, 2004):

0Dq1
t x(t) = −(y(t)+ z(t)),

0Dq2
t y(t) = x(t)+ay(t),

0Dq3
t z(t) = b+ z(t)(x(t)− c) , (5.75)

where conventional derivatives are replaced by the fractional ones.

Numerical solution of the fractional-order Rössler’s system (5.75) is given as

follows:

x(tk) = (−y(tk−1)− z(tk−1))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (x(tk)+ay(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.76)

z(tk) = (b+ z(tk−1)(x(tk)− c))hq3 −
k

∑
j=v

c(q3)
j z(tk− j),

where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i
are calculated according to the relation (2.54).

Let us consider the system (5.75) for the parameters a = 0.5, b = 0.2 and

c = 10. The system has two equilibria: E1 = (9.98998;−19.97997;19.97997) and

E2 = (0.10010;−0.20020;0.20020) and their corresponding eigenvalues are: λ1 ≈
0.47595, λ2,3 ≈ 0.007017± 4.57910 j for the eqiulibrium E1 and λ1 ≈ −9.98800,

λ2,3 ≈ 0.249007±0.96808 j for the equilibrium E2. The equilibrium E1 is unstable

focus-node point and the equibrium E2 is unstable saddle-focus point. The condition

for chaotic behavior is satisfied. With the above eigenvalues and condition (4.42) we

can determine that the minimal commensurate order of this system is q > 0.839.

When we assume the commensurate order q1 = q2 = q3 = 0.9 and parameters

a = 0.5, b = 0.2 and c = 10, we get the following characteristic equation of the

linearized system for the equilibrium E1:

λ 27 −0.489989λ 18 +20.974974λ 9 −9.979979 = 0,
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with unstable root λ1 ≈ 0.9208. The characteristic equation for the equilibrium E2

is

λ 27 +9.489989λ 18 −3.974974λ 9 +9.979979 = 0,

with unstable roots λ1,2 ≈ 0.9892±0.1460 j, because |arg(λ1,2)| = 0.1466 < π/2m,

where m = 10 (LCM of orders denominator).

In Fig. 5.44 is depicted phase trajectory of the fractional-order Rössler’s system

(5.75) for commensurate order q = 0.9 and parameters a = 0.5, b = 0.2, c = 10, with

the initial conditions (x(0),y(0),z(0)) = (0.5,1.5,0.1), for simulation time 120s and

time step h = 0.005.

Fig. 5.44 Simulation result of the fractional-order Rössler’s system (5.75) in state space for pa-
rameters a = 0.5, b = 0.2, c = 10 and orders q1 = q2 = q3 = 0.9 for simulation time 120s, with
initial conditions (x(0),y(0),z(0)) = (0.5,1.5,0.1).

When we assume the incommensurate order q1 = 0.90, q2 = 0.85, q3 = 0.95 and

parameters a = 0.5, b = 0.2 and c = 10, we get the following characteristic equation

of the linearized system for the equilibrium E1:

λ 270−1/2λ 185 +0.010010λ 175 +λ 95−0.005005λ 90 +19.97997λ 85−9.97997 = 0,

with unstable root λ1 ≈ 0.9913. The characteristic equation for the equilibrium E2

is

λ 270−1/2λ 185 +9.98998λ 175 +λ 95−4.994994λ 90 +9.97997+0.020020λ 85 = 0,

with unstable roots λ1,2 ≈ 1.0000±0.0151 j, because |arg(λ1,2)| = 0.0151 < π/2m,

where m = 100 (LCM of orders denominator).
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In Fig. 5.45 is depicted phase trajectory of the fractional-order Rössler’s sys-

tem (5.75) for incommensurate orders q1 = 0.90, q2 = 0.85, q3 = 0.95 and pa-

rameters a = 0.5, b = 0.2, c = 10, with the initial conditions (x(0),y(0),z(0)) =
(0.5,1.5,0.1), for simulation time 120s and time step h = 0.005.

Fig. 5.45 Simulation result of the fractional-order Rössler’s system (5.75) in state space for pa-
rameters a = 0.5, b = 0.2, c = 10 and orders q1 = 0.90, q2 = 0.85, q3 = 0.95 for simulation time
120s, with initial conditions (x(0),y(0),z(0)) = (0.5,1.5,0.1).

The fractional-order Rössler hyperchaos equations were investigated in (Li and

Chen, 2004), where chaotic behavior was cross-validated with the largest Lyapunov

exponent.

5.12 Fractional-Order Newton-Leipnik’s System

The Newton-Leipnik’s system is described by the following nonlinear differential

equations (Leipnik and Newton, 1981):

dx(t)
dt

= −ax(t)+ y(t)+10y(t)z(t),

dy(t)
dt

= −x(t)−0.4y(t)+5x(t)z(t), (5.77)

dz(t)
dt

= bz(t)−5x(t)y(t),
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where a and b are positive parameters.

In the paper (Leipnik and Newton, 1981), it has been noted that the Newton-

Leipnik’s system is a chaotic system with two strange attractors. When a = 0.4 and

b = 0.175, with initial states (0.349,0,−0.16) and (0.349,0,−0.18), system (5.77)

displays two strange attractors.

The system (5.77) with parameters a = 0.4 and b = 0.175 has five equilibrium

points, where one of them is the origin. The other equilibria, approximately, are:

E2 = (−0.23896;−0.03080;0.21031), E3 = (−0.03154;0.12237;−0.11031), E4 =
(0.03154;−0.12237;−0.11031), and E5 = (0.23896;0.03080;0.21031).

The Jacobian matrix of the system (5.77) for equilibrium E∗ = (x∗,y∗,z∗) is

J =

⎡⎣ −a 1+10z∗ 10y∗
−1+5z∗ −0.4 5x∗
−5y∗ −5x∗ b

⎤⎦ . (5.78)

The eigenvalues of the Jacobian matrix (5.78) evaluated at all equilibrium points

show that all equilibria are the saddle-focus points. For the equilibrium E1 we obtain

λ1 ≈ 0.175 and λ2,3 ≈ −0.4±1.0 j, for the equilibria E2 and E5 we get λ1 ≈ −0.8
and λ2,3 ≈ 0.0875±1.2113 j and for the equilibria E3 and E4 we have λ1 ≈−0.8 and

λ2,3 ≈ 0.0875±0.8752 j. All these eigenvalues satisfy the condition for the system

to be chaotic.

Here, the fractional-order Newton-Leipnik’s system is considered, where integer-

order derivative is replaced by a fractional one, as follows (Sheu et al., 2008):

0Dq1
t x(t) = −ax(t)+ y(t)+10y(t)z(t),

0Dq2
t y(t) = −x(t)−0.4y(t)+5x(t)z(t), (5.79)

0Dq3
t z(t) = bz(t)−5x(t)y(t),

where 0 < q1,q2,q3 ≤ 1 are derivatives orders.

In the case of commensurate-order system, where q1 = q2 = q3 ≡ q we can de-

termine a minimal order to satisfy a necessary condition (4.42) for chaotic behavior.

For the equilibria E2 and E5 it is q > 0.9540 and for the equilibria E3 and E4 it is

q > 0.9365.

Numerical solution of the fractional-order Newton-Leipnik’s system (5.75) is

given as follows:

x(tk) = (ax(tk−1)+ y(tk−1)+10y(tk−1)z(tk−1))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (−x(tk)−0.4y(tk−1)+5x(tk)z(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.80)

z(tk) = (bz(tk−1)−5x(tk)y(tk))hq3 −
k

∑
j=v

c(q3)
j z(tk− j),
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where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i
are calculated according to the relation (2.54).

Let us consider the following parameters a = 0.4, b = 0.175, orders q1 = 0.95,

q2 = 0.95, and q3 = 0.95 of the system (5.79).

In Fig. 5.46 is depicted phase trajectory for derivative orders q1 = 0.95, q2 =
0.95, q3 = 0.95, parameters a = 0.4, b = 0.175 for simulation time 200s, time step

h = 0.005 and with the initial conditions: (x(0),y(0),z(0)) = (0.19,0.0,−0.18). In

the paper (Sheu et al., 2008). it has been noted that the system still approaches the

same attractor for both initial states (0.349,0,−0.16) and (0.349,0,−0.18), and we

can confirm it. Because of this we use a different set of initial conditions.

Fig. 5.46 Simulation result of the fractional-order Newton-Leipnik’s system (5.79) in state space
for parameters a = 0.4, b = 0.175 and orders q1 = q2 = q3 = 0.95 for simulation time 200s.

In Fig. 5.47 is depicted phase trajectory for derivative orders q1 = 0.95, q2 =
0.95, q3 = 0.95, parameters a = 0.4, b = 0.175 for simulation time 200s, time step

h = 0.005 and with the initial conditions: (x(0),y(0),z(0)) = (0.19,0.0,−0.18) pro-

jected onto x− y plane. We can observe that double scroll attractor surrounded the

equilibria E3 and E4.

The characteristic equation of the linearized system evaluated at the equilibrium

E3 or E4 is

λ 285 +5/8λ 190 +0.63369λ 95 +0.618953 = 0,

with unstable roots λ1,2 ≈ 0.9985±0.0155 j, because |arg(λ1,2)| = 0.0155 < π/2m,

where m = 100 (LCM of orders denominator).
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Fig. 5.47 Simulation result of the fractional-order Newton-Leipnik’s system (5.79) projected onto
x− y plane for parameters a = 0.4, b = 0.175 and orders q1 = q2 = q3 = 0.95.

The characteristic equation of the linearized system evaluated at the equilibrium

E1 is

λ 285 +5/8λ 190 +1.020λ 95 −0.2030 = 0

with unstable root λ ≈ 0.9818. The equilibria E2 and E5 are stable for the above

parameters and orders of the system.

Let us consider the following parameters a = 0.4, b = 0.175, orders q1 = 1, q2 =
0.97, and q3 = 1 of the system (5.79).

In Fig. 5.48 is depicted phase trajectory for derivative orders q1 = q3 = 1, q2 =
0.97, parameters a = 0.4, b = 0.175 for simulation time 200s, time step h = 0.005

and with the initial conditions: (x(0),y(0),z(0)) = (−0.8,0.0,0.18).
In Fig. 5.49 is depicted phase trajectory for derivative orders q1 = q3 = 1, q2 =

0.97, parameters a = 0.4, b = 0.175 for simulation time 200s, time step h = 0.005

and with the initial conditions: (x(0),y(0),z(0)) = (−0.8,0.0,0.18) projected onto

x−y plane. We can observe that double scroll attractor surrounded the equilibria E2

and E5.

The characteristic equation of the linearized system evaluated at the equilibrium

E2 or E5 is

λ 297 +2/5λ 200 +9/40λ 197 +1.35761λ 100 −0.02255λ 97 +1.18004 = 0,
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Fig. 5.48 Simulation result of the fractional-order Newton-Leipnik’s system (5.79) in state space
for parameters a = 0.4, b = 0.175 and orders q1 = q3 = 1, q2 = 0.97 for simulation time 200s.

Fig. 5.49 Simulation result of the fractional-order Newton-Leipnik’s system (5.79) projected onto
x− y plane for parameters a = 0.4, b = 0.175 and orders q1 = q3 = 1, q2 = 0.97.



5.12 Fractional-Order Newton-Leipnik’s System 159

with unstable roots λ1,2 ≈ 1.0018±0.0152 j, because |arg(λ1,2)| = 0.0152 < π/2m,

where m = 100.

The characteristic equation of the linearized system evaluated at the equilibrium

E1 is

λ 297 +9/40λ 197 +2/5λ 200 +1.090λ 100 −7/100λ 97 −0.203 = 0,

with unstable root λ ≈ 0.9827.

The characteristic equation of the linearized system evaluated at the equilibrium

E3 or E4 is

λ 297 +2/5λ 200 +9/40λ 197 −0.04511λ 100 +0.67880λ 97 +0.61895 = 0,

with unstable roots λ1,2 ≈ 0.9986±0.0148 j, because |arg(λ1,2)| = 0.0148 < π/2m,

where m = 100.

It is interesting to observe that the system has two strange attractors to rotate

by approximately 90◦ as depicted in Fig. 5.50. The dynamic of the fractional-order

Newton-Leipnik’s system was studied (Sheu et al., 2008), where the lowest total

order of the system to yield chaos was found to be 2.82. This system displays better

dynamic behavior.

Fig. 5.50 Simulation results of the fractional-order Newton-Leipnik’s system (5.79) projected onto
x − y plane for parameters a = 0.4, b = 0.175, orders q1 = q2 = q3 = 0.95 and q1 = q3 = 1,
q2 = 0.97, respectively, for simulation time 200s.
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5.13 Fractional-Order Lotka-Volterra System

The Lotka-Volterra equations, also known as the predator-prey (or parasite-host)

equations, are a pair of first order, non-linear, differential equations frequently used

to describe the dynamics of biological systems in which two species interact on each

other, one is a predator and the other is its prey. They were proposed independently

by Alfred J. Lotka in 1925 and Vito Volterra in 1926.

Classical integer-order model of the Lotka-Volterra system is deffined as

dx(t)
dt

= x(t)(α −βy(t)) (5.81)

dy(t)
dt

= −y(t)(γ −δx(t)),

where y(t) is the number of some predators (for example, wolves); x(t) is the number

of its prey (for example, rabbits); dy(t)/dt and dx(t)/dt represent the growth of the

two populations against time; t represents the time; and α , β , γ and δ are parameters

representing the interaction of the two species.

The equations have periodic solutions which do not have a simple expression

in terms of the usual trigonometric functions. However, an approximate linearized

solution yields a simple harmonic motion with the population of predators following

that of prey by 90◦.

In the model system, the predators thrive when there are plentiful prey but, ulti-

mately, outstrip their food supply and decline. As the predator population is low the

prey population will increase again. These dynamics continue in a cycle of growth

and decline. Hence the equation represents the change in the prey’s numbers given

by its own growth minus the rate at which it is preyed upon; the change in the preda-

tor population as the growth of the predator population, minus natural death. As the

predator population is low the prey population will increase again. These dynamics

continue in a cycle of growth and decline.

There are two equilibria when the system is solved for x and y. The above system

of equations yields to E1 = (0;0) and E2 = (λ/δ ;α/β ).
The stability of the equlibrium point E1 is of importance. If it were stable, non-

zero populations might be attracted towards it. However, as the fixed point in origin

is a saddle point, and hence unstable, we find that the extinction of both species is

difficult in the model.

The second fixed point E2 is not hyperbolic, so no conclusions can be drawn from

the linear analysis. However, the system admits a constant of motion and the level

curves are closed trajectories surrounding the fixed point. Consequently, the levels

of the predator and prey populations cycle, and oscillate around this fixed point.

The fractional-order Lotka-Volterra (or fractional-order predator-prey model)

system was proposed and described as (Ahmed et al., 2007):

0Dq
t x(t) = x(t)(α − rx(t)−βy(t))

0Dq
t y(t) = −y(t)(γ −δx(t)), (5.82)
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where 0 < q � 1, x � 0, y � 0 are prey and predator densities, respectively, and all

constants r, α , β , γ and δ are positive. For r = 0 and q = 1 we obtain a well-known

model (5.81). The stability analysis and numerical solutions of such kind of system

have been studied (Ahmed et al., 2007).

In the paper (Samardzija and Greller, 1988) was proposed a two-predator and

one-prey generalization of the Lotka-Volterra system. We assume its fractional-

order modification as follows:

0Dq1
t x(t) = ax(t)−bx(t)y(t)+ ex2(t)− sz(t)x2(t),

0Dq2
t y(t) = −cy(t)+dx(t)y(t), (5.83)

0Dq3
t z(t) = −pz(t)+ sz(t)x2(t),

where a,b,c,d,e, p,s are model parameters and q1,q2,q3 are fractional orders.

When we consider p = 0, s = 0, q1 = q2 and e =−r in the general model (5.83), we

obtain the fractional-order (one predator and one prey) Lotka-Volterra model (5.82)

upon the substitutions α ≡ a, β ≡ b, γ ≡ c, and δ ≡ d.

The proposed fractional-order Lotka-Volterra system (5.83) has five equilibrium

points: E1 = (0;0;0), E2 = (−a/e;0;0), E3 = (
√

sp/s;0;(a + (e
√

sp)/s)/
√

sp),
E4 = (−√

sp/s;0;−(a− (e
√

sp)/s)/
√

sp), and E5 = (c/d;(da+ ec)/db;0);
The Jacobian matrix of the system (5.83) for equilibrium E∗ = (x∗,y∗,z∗) is

J =

⎡⎣a−by∗ +2ex∗ −2sz∗x∗ −bx∗ −sx∗2

dy∗ −c+dx∗ 0

2sx∗z∗ 0 −p+ sx∗2

⎤⎦ . (5.84)

Numerical solution of the fractional-order Lotka-Volterra system (5.83) is given

as follows:

x(tk) = (x(tk−1)(a−by(tk−1)+ ex(tk−1)− sz(tk−1)x(tk−1)))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (−cy(tk−1)+dx(tk)y(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.85)

z(tk) =
(−pz(tk−1)+ sz(tk−1)x2(tk)

)
hq3 −

k

∑
j=v

c(q3)
j z(tk− j),

where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i
are calculated according to the relation (2.54).

Let us consider the following system parameters a = 2,b = 1,c = 3,d = 1,e =
0, p = 0,s = 0 and derivative orders q1 = q2 = q3 = 1 and q1 = q2 = q3 = 0.9,

respectively. For these parameters the system (5.83) has two equilibria E1 = (0;0)
and E2 = (3;2) and their corresponding eigenvalues are λ1 = 2 and λ2 = −3 for E1
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and λ1,2 = ±2.4495 j for E2. Equilibrium E1 is a saddle point and equilibrium E2 is

a center. The fixed point E2 is not hyperbolic.

In Fig. 5.51 and Fig. 5.52 are depicted phase trajectories for various derivative

orders q̄ = 1.0 and q̄ = 0.9, respectively, for simulation time 60s, time step h = 0.005

and for the initial conditions: (x(0),y(0),z(0)) = (1,2,0).
Let us consider the following system parameters a = 1,b = 1,c = 1,d = 1,e =

2, p = 3,s = 2.7 and orders q1 = q2 = q3 = 0.95.

In Fig. 5.53 and Fig. 5.54 are depicted phase trajectories of the fractional-order

Lotka-Volterra system (5.83) for orders q1 = q2 = q3 = 0.95, and parameter a =
1,b = 1,c = 1,d = 1,e = 2, p = 3,s = 2.7, for simulation time 200s, time step h =
0.005, and for the initial conditions: (x(0),y(0),z(0)) = (1,1.4,1). We can observe

the so-called “fractal torus” (Samardzija and Greller, 1988).

For the above parameters we obtain the following values of equilibrium points

E1 =(0;0;0), E2 =(−0.5;0;0), E3 =(−1.0540;0;0.3893), E4 =(1.0540;0;1.0921),
and E5 = (1;3;0). The corresponding eigenvalues of the Jacobian matrix (5.84) eval-

uated at equilibrium points are: λ1 = −3, λ2 = −1, λ3 = 1 for E1, λ1 −−1, λ2 =
−1.5, λ3 = −2.325 for E2, λ1 ≈ −3.1266, λ2 ≈ 2.12661, λ3 ≈ −2.05409 for E3,

λ1 = 0.5409, λ2,3 ≈−0.50±4.2894 j for E4, and λ1 = −0.3, λ2,3 ≈ 1.0±1.4142 j
for E5. The equlibrium E1 is saddle point, the equilibrium E2 is stable node, the

equlibrium E3 is saddle point, the equilibria E4 and E5 are saddle-focus points.

Fig. 5.51 Phase plane x−y trajectory (limit cycle) for the Lotka-Volterra system with orders q1 =
q2 = 1.0, q3 = 0, and parameters a = 2,b = 1,c = 3,d = 1,e = 0, p = 0,s = 0.
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Fig. 5.52 Phase plane x−y trajectory for the Lotka-Volterra with fractional-orders q1 = q2 = q3 =
0.9, and parameters a = 2,b = 1,c = 3,d = 1,e = 0, p = 0,s = 0.

Fig. 5.53 Phase trajectory of the Lotka-Volterra system with orders q1 = q2 = q3 = 0.95 and
parameters a = 1,b = 1,c = 1,d = 1,e = 2, p = 3,s = 2.7 in state space.
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Fig. 5.54 Phase trajectory for the Lotka-Volterra with fractional-orders q1 = q2 = q3 = 0.95, and
parameters a = 1,b = 1,c = 1,d = 1,e = 2, p = 3,s = 2.7 in state plane x− z.

The characteristic equation of the linearized system (5.83) at the equlibrium point

E1 is

(λ 95 −1)(λ 95 +1)(λ 95 +3) = 0,

with unstable root λ1 = 1. The characteristic equation at equilibrium E2 is

(λ 95 +1.0)(λ 95 +1.5)(λ 95 +2.3250) = 0,

with stable roots. The characteristic equation of the linearized system (5.83) at equi-

librium E3 is

λ 285 +3.054092λ 190 −4.59501λ 95 −13.657888 = 0,

with unstable root λ1 ≈ 1.0080. The characteristic equation of the linearized system

at equilibrium E4 is

λ 285 +0.945907λ 190 +18.595018λ 95 −1.008778 = 0,

with unstable root λ1 ≈ 0.9698. Finally, the characteristic equation at equilibrium

point E5 is

λ 285 −1.7λ 190 +2.4λ 95 +0.9 = 0,



5.14 Fractional-Order Financial System 165

with unstable roots λ1,2 ≈ 1.0057±0.0101 j, because |arg(λ1,2)| = 0.0101 < π/2m,

where m = 100 (LCM of orders denominator). The condition for the chaotic system

is satisfied.

The “fractal torus” attractor exhibited by the system (5.83) for certain values

of the parameters and orders is interesting because it exhibits a structure entirely

different from attractors such as, for instance, the Rössler or Lorenz attractors. Nu-

merical simulations showed that different initial conditions often lead to different

fast manifolds.

The system described in this section suggests that it is a reasonable biological or

chemical model. It could be modified also to one-predator and two-prey scheme.

5.14 Fractional-Order Financial System

The chaotic phenomenon in macro economics was found in 1985. The continuos

economical system was described and analyzed (Ma and Chen, 2001a,b). The sim-

plified financial model is defined as:

dx(t)
dt

= z(t)+(y(t)−a)x(t),

dy(t)
dt

= 1−by(t)− x(t)2, (5.86)

dz(t)
dt

= −x(t)− cz(t),

where a is the saving amount, b is the cost per investment, and c is the elasticity of

demand of commercial market. The state variables are: x(t) is the interest rate, y(t)
is the investment demand, and z(t) is the price index.

The system (5.86) has three equilibrium points: E1 = (0;1/b;0),

E2 = (
√

(c−b−abc)/c;(1+ac)/c;−(1/c)
√

(c−b−abc)/c,

E3 = (−
√

(c−b−abc)/c;(1+ac)/c;(1/c)
√

(c−b−abc)/c.

The Jacobian matrix of the system (5.86), evaluated at the equilibrium E∗ =
(x∗,y∗,z∗), is given by

J =

⎡⎢⎢⎢⎣
−a+ y∗ x∗ 1

−2∗ −b 0

−1 0 −c

⎤⎥⎥⎥⎦ . (5.87)

The fractional-order financial system is described as follows (Chen, 2008):
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0Dq1
t x(t) = z(t)+(y(t)−a)x(t),

0Dq2
t y(t) = 1−by(t)− x(t)2, (5.88)

0Dq3
t z(t) = −x(t)− cz(t),

where the total order of the system is denoted by q̄ = (q1,q2,q3).
The numerical solution of the fractional-order financial system has the following

form:

x(tk) = (z(tk−1)− (y(tk−1)−a)x(tk−1))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) =
(
1−by(tk)− x2(tk)

)
hq2 −

k

∑
j=v

c(q2)
j y(tk− j), (5.89)

z(tk) = (−x(tk)− cz(tk−1))hq3 −
k

∑
j=v

c(q3)
j z(tk− j),

where Tsim is the simulation time, k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x(0),
y(0), z(0)) is the start point (initial conditions). The binomial coefficients c(qi)

j , ∀i
are calculated according to the relation (2.54).

Let us consider the following parameters of the system (5.88): a = 1.0, b = 0.1
and c = 1.0. The corresponsing eigenvalues for the system equilibrium E1 =
(0;10;0) are: λ1 ≈ 8.898979, λ2 ≈ −0.8989794, and λ3 ≈ −0.1. It is a sad-

dle point. For the equilibrium points E2 = (0.894427;2;−0.894427) and E3 =
(−0.894427;2;0.894427) they are: λ1 ≈ −0.7608747 and λ2,3 ≈ 0.3304373 ±
1.411968 j. It is a saddle-focus point. Because it is an unstable equilibrium, the

condition for chaos is satisfied and chaotic system (5.88) with the above parame-

ters can exhibit chaotic behavior. The minimal commensurate order of the system is

q > 0.8536.

Assume the commensurate order q1 = q2 = q3 = 0.9 of the system (5.88) with

the parameters a = 1.0, b = 0.1, and c = 1.0. The characteristic equation of the

linearized system for equilibrium E1 is

λ 27 −7.9λ 18 −8.8λ 9 −0.8 = 0

and the unstable root for the equilibrium E1 is λ1 ≈ 1.2749. The characteristic equa-

tion of the linearized system for equilibria E2 and E3 is

λ 27 +0.1λ 18 +1.6λ 9 +1.6 = 0

and unstable eigenvalues for equilibria E2 and E3 are λ1,2 ≈ 1.0306±0.1547 j, be-

cause |arg(λ1,2)| = 0.1490 < π/2m, where m = 10 (LCM of orders denominator).

In Fig. 5.55 is depicted the simulation result of the financial system (5.88) for the

following parameters: a = 1, b = 0.1, and c = 1.0, orders q1 = 0.9, q2 = 0.9, q3 =
0.9, and computational time 200s, for time step h = 0.005.



5.14 Fractional-Order Financial System 167

Fig. 5.55 Simulation result of the fractional-order financial system (5.88) in state space for the
initial conditions (x(0),y(0),z(0)) = (2,−1,1).

Assume the incommensurate order q1 = 1.0, q2 = 0.95, q3 = 0.9 of the system

(5.88) with the parameters a = 1.0, b = 0.1, and c = 1.0. The characteristic equation

of the linearized system for equilibrium E1 is

λ 285 +λ 195 +1/10λ 190 −9λ 185 +1/10λ 100 −8λ 95 −0.9λ 90 −0.8 = 0

and unstable root for the equilibrium E1 is λ1 ≈ 1.0221. The characteristic equation

of the linearized system for equilibria E2 and E3 is

λ 285 +λ 195 +1/10λ 190 −λ 185 +1/10λ 100 +1.5λ 90 +1.6 = 0

and unstable eigenvalues for equilibria E2 and E3 are λ1,2 ≈ 1.0035±0.0139 j, be-

cause |arg(λ1,2)| = 0.0138 < π/2m, where m = 100 (LCM of orders denominator).

In Fig. 5.56 are depicted the simulation results of the financial system (5.88)

for the following parameters: a = 1.0, b = 0.1, and c = 1.0, orders q1 = 1.0, q2 =
0.95, q3 = 0.9, and computational time 200s, for time step h = 0.005.

Investigation of chaos in various cases of the fractional-order financial system

and its cross-validation with the largest Lyapunov exponent was done (Chen, 2008).

The lowest order at which this system yielded chaos was 2.35.

In the next chapter we will use this system as a controlled system for the sliding

mode control strategy.
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Fig. 5.56 Simulation result of the fractional-order financial system (5.88) in state space for the
initial conditions (x(0),y(0),z(0)) = (2,−1,1).

5.15 Fractional-Order CNN

The basic circuit unit of the Cellular Neural Network (CNN) is a cell. The CNN

was introduced by L. O. Chua in 1988. It contains linear and non-linear circuit ele-

ments, which typically are: linear capacitor, linear resistors, linear and non-linear

controlled sources, and independent sources. Any cell in the CNN is connected

only to its neighbor cells. Theoretically we can define the CNN of any dimension,

e.g. two-dimensional array of M ×N, having M rows and N columns. We call the

cell on the i-th row and the j-th column the cell C(i, j). Observe from Fig. 5.57

that each cell C(i, j) contains one independent voltage source Ei, j, one indepen-

dent current source I, one linear capacitor C, two linear resistors Rx and Ry, con-

trolling input voltage ui j, state voltage of the cell xi j, feedback from the output

voltage yi j of each neighbor cell C(k, l). In fact each cell C(i, j) mutually inter-

acts with all the cells belonging to its neighbors Nr(i, j) by means of the voltage-

controlled current source Ixy(i, j;k, l) = A(i, j;k, l)ykl , Ixu(i, j;k, l) = B(i, j;k, l)ukl
and Ixx(i, j;k, l) =C(i, j;k, l)xkl . The constant coefficients A(i, j;k, l), B(i, j;k, l) and

C(i, j;k, l) are known as the cloning templates. If they are equal for each cell, they

are called space-invariant. The CNN is described by the following state equation of

all its cells (Chua and Roska, 1993):
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Fig. 5.57 The CNN cell

C
dxi j(t)

dt
= − 1

Rx
xi j(t)+ ∑

C(k,l)∈Nr(i, j)
A(i, j;k, l)ykl(t)

+ ∑
C(k,l)∈Nr(i, j)

B(i, j;k, l)ukl(t)+C(i, j;k, l)xkl(t)+ I, (5.90)

with xi j(0) = xi j0, C > 0, Rx > 0, 1 ≤ i ≤ M, and 1 ≤ j ≤ N, where

Nr(i, j) = {C(k, l) : max(|k− i|− |l − j|) ≤ r}

is the r-neighborhood. Input equation is: ui j(t) = Ei j. Output equation is:

f (xi j) = yi j(t) =
1

2
(|xi j(t)+1|− |xi j(t)−1|). (5.91)

This model with direct dependence of state variable on the state of the neighboring

cells is known as a state-controlled CNN. Such kind of CNNs is also able to show

chaotic behavior (Chua and Roska, 1993; Biey et al., 2003; Zou and Nossek, 1993).

The only non-linear element in each cell is a piecewise-linear voltage-controlled

current source: Iyx = (1/Ry) f (xi j).
In addition, in this section we derive the fractional-order model of the CNN de-

scribed by (5.90). For this purpose we will consider the general model of a capacitor

described by Equation (2.75). Westerlund and Ekstam provided in their work (West-

erlund and Ekstam, 1994) the table of various capacitor dielectric with appropriate

constant m (derivative order), which has been obtained experimentally by measure-

ments. Carlson also studied, in 1963, the fractional capacitor and appropriate ap-

proximation technique for its model (Carlson and Halijak, 1963).

Applying the Kirchhoff law and the relation (2.75) to standard model of the CNN

which is described by Equation (5.90), we obtain a fractional-order model of the

CNN in the following form (Petráš, 2006):
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C
dmxi j(t)

dtm = − 1

Rx
xi j(t)+ ∑

C(k,l)∈Nr(i, j)
A(i, j;k, l)ykl(t)

+ ∑
C(k,l)∈Nr(i, j)

B(i, j;k, l)ukl(t)+C(i, j;k, l)xkl(t)+ I, (5.92)

with xi j(0) = xi j0, C > 0, 0 < m < 1, Rx > 0, 1 ≤ i ≤ M, and 1 ≤ j ≤ N.

In the works (Arena at al., 1998; Arena et al., 2000), the parameter m is 1 < m <
1.5 and two-cell CNN was studied. Considering that 0 < m < 1 and the fact that we

would like to study the behavior of system with the total order less than three, we

have to consider three-cell fractional-order CNN. Referring to the general definition

of CNN given by (5.92) and choosing the opposite-sign template we obtain the

following three-cell CNN (M = 3, N = 1, C = 1, R = 1, and ukl = 0):

0Dq1
t x1(t) = −x1(t)+ p1 f (x1(t))− s f (x2(t))− s f (x3(t)),

0Dq2
t x2(t) = −x2(t)− s f (x1(t))+ p2 f (x2(t))− r f (x3(t)), (5.93)

0Dq3
t x3(t) = −x3(t)− s f (x1(t))+ r f (x2(t))+ p3 f (x3(t)),

where p1 > 1, p2 > 1, p3 ≥ 1, r > 0, and s > 0 are the CNN parameters, q1, q2, and

q3 are the derivative orders for each cell (related to the capacitor order m).

Let us assume that we have the three-identical-cell CNN described by Eqs.

(5.93), with fractional commensurate order q1 = q2 = q3 = 0.99 (orders of real ana-

log capacitors). We can use the relations (2.53) and (2.54) to derive a numerical

solution of the fractional-order CNN described by (5.93) as follows:

x1(tk) = (−x1(tk−1)+ p1 f (x1(tk−1))− s f (x2(tk−1))− s f (x3(tk−1)))hq1

−
k

∑
j=v

c(q1)
j x1(tk− j),

x2(tk) = (−x2(tk−1)− s f (x1(tk))+ p2 f (x2(tk−1))− r f (x3(tk−1)))hq2

−
k

∑
j=v

c(q2)
j x2(tk− j), (5.94)

x3(tk) = (−x3(tk−1)− s f (x1(tk))+ r f (x2(tk))+ p3 f (x3(tk−1)))hq3

−
k

∑
j=v

c(q3)
j x3(tk− j),

where a nonlinear function f (.) is defined by (5.91), Tsim is the simulation time,

k = 1,2,3, . . . ,N, for N = [Tsim/h], and (x1(0), x2(0), x3(0)) is the start point (initial

conditions).
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Fig. 5.58 State space trajectory of the CNN (5.93) for the parameters: p1 = 1.24, p2 = 1.1, p3 =
1, s = 3.21, r = 4.4, orders q1 = q2 = q3 = 0.99, with initial conditions: (x1(0),x2(0),x3(0)) =
(0.1,0.1,0.1).

The simulation result for time step h = 0.005 and simulation time Tsim = 100s
is depicted in Fig. 5.58. The result shows the chaotic double scroll attractor of the

three-cell fractional-order CNNs (5.93) for the parameters p1 = 1.24, p2 = 1.1, p3 =
1, s = 3.21, r = 4.4, and system orders q1 = 0.99, q2 = 0.99, and q3 = 0.99 with the

initial conditions: (x1(0),x2(0),x3(0)) = (0.1,0.1,0.1).

5.16 Fractional-Order Volta’s System

The system was discovered by Volta – a student at the Department of Physics, Gen-

ova University, in 1984, when writing his thesis with Prof. Antonio Borsellino and

Dr. Francisco Fu Arcardi.

Volta’s system is described by the system of state differential equations (Hao,

1989):

ẋ(t) = −x(t)−5y(t)− z(t)y(t),

ẏ(t) = −y(t)−85x(t)− x(t)z(t), (5.95)

ż(t) = 0.5z(t)+ x(t)y(t)+1.
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The Lyapunov exponents (LE) of the system (5.95) computed according to the

method described in the work (Wolf et al., 1985) are: LE1 = 0.064979, LE2 =
−1.0708, and LE3 = −1.4936 for initial values (8, 2, 1).

Fig. 5.59 Chaotic attractor of Volta’s system (5.95) projected into 3D state space for initial condi-
tions (x(0),y(0),z(0)) = (8,2,1) and Tsim = 20s.

Fig. 5.60 shows the time histories of variables x(t), y(t), and z(t) of the system

(5.95), for Tsim = 10 s. In Fig. 5.59 is depicted a phase trajectory in 3D state-space

of Volta’s system (5.95) for Tsim = 20s starting from (x(0),y(0),z(0)) = (8,2,1).
In Fig. 5.61 are shown the phase trajectories, starting from (x(0),y(0),z(0)) =

(8,2,1), and projected into 2D phase planes, respectively.

Obviously, if the Laypunov exponent LE1 is positive and if we observe strange

attractors in Fig. 5.59 and Fig. 5.61, the system (5.95) has chaotic behavior toward

initial values (x(0),y(0),z(0)) = (8,2,1).
We can generalize Volta’s system (5.95) to the following form:

dx(t)
dt

= −x(t)−ay(t)− z(t)y(t),

dy(t)
dt

= −y(t)−bx(t)− x(t)z(t), (5.96)

dz(t)
dt

= cz(t)+ x(t)y(t)+1.

The Jacobian matrix of the system (5.96), evaluated at the equilibrium E∗ =
(x∗,y∗,z∗), is given by
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Fig. 5.60 Time responses of Volta’s system (5.95) to Tsim = 10s and (x(0),y(0),z(0)) = (8,2,1).
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Fig. 5.61 Phase plane projections of Volta’s system (5.95) for Tsim = 20s.
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J =

⎡⎢⎢⎣
−1 −a− z∗ −y∗

−b− z∗ −1 −x∗

y∗ x∗ c

⎤⎥⎥⎦ . (5.97)

When (a,b,c) = (5,85,0.5), Volta’s system shows chaotic behavior (Fig. 5.59

and Fig. 5.61). For these system parameters, Volta’s system has three quilib-

ria E1 = (0;0;−2), E2 = (−57.6282;−0.7202;−85.0124), E3 = (57.6282;0.7202;

−85.0124) and their corresponding eigenvalues are: λ1 ≈ 14.7797, λ2 ≈−16.7797,

λ3 = 0.5 for E1, λ1 = −2, λ2,3 ≈ 0.25 ± 57.6322 j for E2, and λ1 ≈ −10.6861,

λ2 ≈ 11.18617, λ3 −2 for E3.

Hence, the equilibria E1 and E3 are unstable saddle points. The equilibrium E2 is

a saddle-focus point. According to the stability conditions (4.40), where q = 1, we

have eigenvalues for equilibria E1, E2 and E3 in the unstable region and therefore we

can confirm the chaotic behavior of Volta’s systems (5.95) for the initial conditions

(x(0),y(0),z(0)) = (8,2,1).
Now, we consider the fractional-order Volta’s system, where integer-order deriva-

tives are replaced by fractional-order ones. The mathematical description of the

fractional-order chaotic system is expressed as (Petráš, 2009a):

0Dq1
t x(t) = −x(t)−ay(t)− z(t)y(t),

0Dq2
t y(t) = −y(t)−bx(t)− x(t)z(t), (5.98)

0Dq3
t z(t) = cz(t)+ x(t)y(t)+1,

where q1, q2, and q3 are the derivative orders. The total order of the system is q̄=(q1,

q2, q3).

For numerical solution of the chaotic system (5.98) we use the relationship

(2.53), which leads to approximation in FIR form. By setting N = [Tsim/h], we have

x(tk) = (−x(tk−1)−ay(tk−1)− z(tk−1)y(tk−1))hq1 −
k

∑
j=v

c(q1)
j x(tk− j),

y(tk) = (−y(tk−1)−bx(tk)− x(tk)z(tk−1))hq2 −
k

∑
j=v

c(q2)
j y(tk− j), (5.99)

z(tk) = (cz(tk−1)+ x(tk)y(tk)+1)hq3 −
k

∑
j=v

c(q3)
j z(tk− j),

where Tsim is the simulation time, k = 1,2,3, . . . ,N and (x(0),y(0),z(0)) is the start

point (initial conditions). The binomial coefficients c(qi)
j , ∀i are calculated according

to the relation (2.54).

When we assume the same orders of derivatives in state equations (5.98), i.e.

q1 = q2 = q3 ≡ q, we get a commensurate-order system. According to condition

(4.42) it is determined that the commensurate order q of derivatives has to be
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q > 0.99. It means that for system parameters (a,b,c) = (5,85,0.5), only for in-

teger order q = 1, chaos can be observed. If we would like to go to the frac-

tional (commensurate) order, we have to change the system parameters, e.g. for

system parameters (a,b,c) = (19,11,0.73), chaos can be observed if q > 0.977.

For these parameter sets, Volta’s system has three equilibria E1 = (0;0;−1.3698),
E2 = (−1.26310;−10.26032;−19.12310), E3 = (1.26310;10.26032;−19.12310)
and their corresponding eigenvalues are λ1 ≈ 12.0299, λ2 ≈ −14.0299, λ3 − 0.73

for E1, λ1 =−2, λ2,3 ≈ 0.3650±10.3313 j for E2, and λ1 ≈−7.2088, λ2 ≈ 7.93883,

λ3 = −2 for E3.

Hence, the equilibria E1 and E3 are saddle points and the equilibrium E2 is

saddle-focus point. The characteristic equation evaluated at equilibrium E1 is

λ 294 +127/100λ 196 −170.2406λ 98 +123.2098 = 0,

with unstable roots λ1 ≈ 0.9968 and λ2 ≈ 1.0257.

The characteristic equation evaluated at equilibrium E2 is

λ 294 +127/100λ 196 +105.40980λ 98 +213.7396 = 0,

with unstable roots λ1,2 ≈ 1.0240±0.0160 j, becasue |arg(λ1,2)| = 0.0157 < π/2m,

where m = 100 (LCM of orders denominator).

The characteristic equation evaluated at equilibrium E3 is

λ 294 +127/100λ 196 −58.6898λ 98 −114.45960 = 0,

with unstable root λ1 ≈ 1.0214.

According to the stability conditions (4.40), where q = 0.98, we have eigenvalues

of the equilibrium points E1, E2 and E3 in the unstable region and therefore we

can confirm the chaotic behavior of Volta’s systems (5.98) for the initial conditions

(8,2,1). Instability measure is 0.0157. It means that commensurate fractional-order

Volta’s system is chaotic.

In Fig. 5.62 is shown the chaotic behavior toward fractional-order system (5.98),

where system parameters are (a,b,c) = (19,11,0.73), commensurate order of the

derivatives is q = 0.98, the initial conditions are (x(0),y(0),z(0)) = (8,2,1) for

simulation time Tsim = 20s and time step h = 0.0005.

When we assume the different orders of derivatives in state equations (5.98), i.e.

q1 �= q2 �= q3, we get a general incommensurate-order system. There is no exact

condition for determining the orders to obtain chaotic behavior of the system. We

experimentally found the following orders (Petráš, 2010): q1 = 0.89, q2 = 1.10, and

q3 = 0.91 for system parameters (a,b,c) = (5,85,0.5).
The stability can be investigated according to characteristic equation (4.41). For

the above derivative orders and the system parameters, and for the Jacobian matrix

(5.97) evaluated at the equilibrium points E∗, Equation (4.41) becomes

det(diag([λ 89 λ 110 λ 91])−J) = 0, (5.100)
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Fig. 5.62 Chaotic attractor of Volta’s system (5.98) projected into 3D state space for initial con-
ditions (x(0),y(0),z(0)) = (8,2,1), parameters (a,b,c) = (19,11,0.73), orders (q1,q2,q3) ≡ (q =
0.98) and Tsim = 20s.

where the LCM is m = 100. The characteristic equation (5.100) evaluated at equi-

librium E1 is

λ 290 +λ 201 −1/2λ 199 +λ 180 −1/2λ 110 −248λ 91 −1/2λ 89 +124 = 0,

with unstable roots λ1 ≈ 1.0274 and λ2 ≈ 0.9924.

The characteristic equation evaluated at equilibrium E2 is

λ 290 −1/2λ 199 +λ 180 +3320.5186λ 89 +λ 201 +
0.01874λ 110 −0.127x10−28λ 91 +6643.0748 = 0,

with unstable roots λ1,2 ≈ 1.0411±0.0161 j, becasue |arg(λ1,2)| = 0.0155 < π/2m,

where m = 100 (LCM of orders denominator).

The characteristic equation evaluated at equilibrium E3 is

λ 290 −1/2λ 199 +λ 180 −0.5186λ 89 +λ 201 −
120.0187λ 110 +0.333×10−29λ 91 −239.0748 = 0,

which has unstable root λ1 = 1.0270.

Because the system has unstable roots, the system satisfies the necessary condi-

tion for exhibiting chaotic attractor. Instability measure is 2.137×10−4.
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Fig. 5.63 Chaotic attractor of Volta’s system (5.98) projected into 3D state space for initial con-
ditions (x(0),y(0),z(0)) = (8,2,1), parameters (a,b,c) = (5,85,0.5), orders (q1,q2,q3) ≡ q̄ ∈
(0.89,1.10,0.91) and Tsim = 20s.

In Fig. 5.63 is shown the chaotic behavior for fractional-order chaotic system

(5.98), where system parameters are (a,b,c) = (5,85,0.5), incommensurate orders

of the derivatives are: q1 = 0.89, q2 = 1.10, and q3 = 0.91, and the initial conditions

are (x(0),y(0),z(0)) = (8,2,1) for the simulation time Tsim = 20s and time step h =
0.0005. As we can see, behavior of the fractional-order Volta’s system is still chaotic

because we have observed double-scroll attractor (Tavazoei and Haeri, 2007b) and

total order of the system is q̄ = 2.9.

The state equations of the fractional-order Volta’s chaotic system (5.98) with

parameters (a,b,c) = (5,85,0.5) are given by using the integration operation and

the properties (2.50), and (2.51) and have form:

x(t) = 0D1−q1
t

(∫ t

0
[−x(t)−5y(t)− z(t)y(t)]dt

)
,

y(t) = 0D1−q2
t

(∫ t

0
[−y(t)−85x(t)− x(t)z(t)]dt

)
, (5.101)

z(t) = 0D1−q3
t

(∫ t

0
[0.5z(t)+ x(t)y(t)+1]dt

)
.
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The system model developed from the state equations (5.101) for system param-

eters (a,b,c) = (5,85,0.5) by using the Matlab/Simulink environment is depicted

in Fig. 5.64.

The simulation results for simulation time Tsim = 20 s obtained from model

(5.101) for real order q1 = 0.93, q2 = 0.99, and q3 = 0.98 are dipicted in Fig. 5.65.

As we can see, behavior of the fractional-order Volta’s system is chaotic because we

have observed double scroll attractor in x−y plane (Tavazoei and Haeri, 2007b) and

the total order of the system is q̄ = 2.9.

In Fig. 5.65 are shown the phase trajectories of the Simulink system model, start-

ing from (x(0), y(0), z(0))=(8, 2, 1), and projected into 2D phase planes, respectively.

1
s

Fig. 5.64 Matlab/Simulink block diagram (model) for fractional order Volta’s system (5.101).
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Fig. 5.65 Phase plane projections of fractional-order Volta’s system (5.101) for Tsim = 20s.
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Chapter 6
Control of Fractional-Order Chaotic Systems

6.1 Preliminary Considerations

Control of nonlinear systems, especially chaotic systems, was the subject of inten-

sive studies in the last few decades. As noted (Andrievskii and Fradkov, 2003, 2004),

several thousand publications have appeared over the recent decade due to the fact

that chaotic behavior was discovered in numerous systems in mechanics, laser and

radio physics, hydrodynamics, chemistry, biology and medicine, electronic circuits,

economical systems, etc. For this reason a natural question arises: How can we con-

trol chaotic systems?

The first important thing is that we need the mathematical formulation of chaotic

processes by the basic models of the chaotic systems that are used. The most popular

mathematical models used in the literature on control of chaos are represented by the

systems of ordinary differential equations. In some works we can also find discrete

models defined by difference state equations. The second important thing is the

formulation of the problems of control ing chaotic processes. An important type of

problems of controling chaotic processes is represented by the modification of the

attractors, for example, transformation of chaotic oscillations into periodic state and

so on.

It could be a problem of stabilization of unstable periodic solutions. The problem

lies in determining the control function as either the open-loop control action, or the

state feedback, or the output feedback satisfying the control objective. Stabilization

of an unstable equilibrium is a special case.

The second class includes the control problems of excitation or generation of

chaotic oscillations. These problems are also called chaotization or anticontrol. They

arise in the circumst ances where chaotic motion is the desired behavior of the sys-

tem. These problems are characterized by the fact that the trajectory of the system

phase vector is not predetermined, is unknown, or is of no consequence for attaining

the objective.

The third important class of the control objectives corresponds to the problems

of synchronization or, more precisely, controllable synchronization as opposed to
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the autosynchronization. Numerous publications on control of synchronization of

chaotic processes and its application in the data transmission systems appeared in

the 1990’s. In the general case, by the synchronization is meant the coordinated

variation of the states of two or more systems or, possibly, coordinated variation of

some of their characteristics such as oscillation frequencies.

Let us take a look at the synchronization more closely. Several methods can be

used for synchronization of chaotic systems. In this paragraph we will mention three

well-known methods. If chaos synchronization is achieved by drive-response sys-

tems, the instability measure is negative. That means the system is not chaotic.

The first method is the Master-Slave (or drive-response) configuration scheme of

two autonomous n-dimensional fractional-order chaotic systems (Peng, 2007):⎧⎪⎪⎨⎪⎪⎩
M :

dα x
dtα = f (x),

S :
dα x̃
dtα = f (x̃)+C(x− x̃),

(6.1)

where α = (α1,α2, . . . ,αn) ∈ Rn, αi > 0, is the fractional order and the sys-

tems are chaotic. C is a coupling matrix. For simplicity, let C have the form:

C = diag(d1,d2, . . . ,dn), where di ≥ 0. The error is e = x− x̃ and the aim of the

synchroniziation is to design the coupling matrix so that ||e(t)|| → 0 as t → +∞.

The second method is the method for constructing the drive-response configura-

tion which was introduced by Pecora and Carroll (Pecora and Carroll, 1990), known

as a PC. Let us build a PC drive-response configuration in which a drive system is

given by the fractional-order system (with three state variables: x,y,z) and a response

system is given by the subspace containing the (x,y) variables. Then we can use the

chaotic signal z to drive the response subsystem (Deng and Li, 2005).

The third method is the synchronization via active-passive decomposition method

(APD). Let us build an APD drive-response configuration with a drive system given

by the chaotic system and with a response system given by its replica. Then we can

take s(t) as a drive signal (Li et al., 2006).

Chaos synchronization and its potential application to secure communications

have attracted much attention from scholars engaged in various disciplines in sci-

ence and engineering since the pioneering work of Pecora and Carroll (Pecora and

Carroll, 1990). In this section, we briefly discuss the chaos synchronization meth-

ods between the chaotic fractional-order systems an we can also mention method

via master-slave configuration with linear coupling (Zhu et al., 2009).

The fractional calculus techniques as, for example, a fractional-differentiator-

based controller of a fractional-integrator-based controller can also be used (Tava-

zoei et al., 2009). Both of them are particular cases of the fractional-order controllers

described in Section. 3.3, which are more flexible than classical ones and give bet-

ter results of the control performances (Caponetto et al., 2010; Chen et al., 2009).

A different type of controller was proposed (Hosseinnia et al., 2010).

A detailed review of several applications, where chaos was controlled in systems

of various disciplines such as mechanics, physics (control of turbulence, lasers, and
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plasma), chemistry and raw material processing, biology and ecology (control of

population), economics, medicine, space engineering (control of chaotic spacecraft

angular oscillations), electrical and electronic systems, communication systems, and

information systems, was decribed (Andrievskii and Fradkov, 2004).

6.2 A Survey of Control Strategies

In the paper (Andrievskii and Fradkov, 2003) were collected and presented several

methods used for the control of chaotic processes. The authors considered the clas-

sical integer-order chaotic systems but in general we can use those methods for the

fractional-order chaotic systems as well. In addition, some other methods have been

proposed for control of such systems and they can be summarized as follows:

1. Open loop (feed-forward) control is based on varying behavior of the nonlin-

ear system under the action of predetermined external input. This approach is

simple because it works without any measurements or sensors. This is especially

important for the control of superfast processes.

2. Linear and nonlinear (feed-back) control deals with the possibilities of us-

ing the traditional approaches, and methods of automatic control over the prob-

lems of chaos control are discussed in numerous papers. The desired aim can be

reached sometimes even by means of the simple proportional law of control and

feedback (Genesio et al., 1993). The potentialities of the dynamic feedbacks can

be better realized by using the observers (Ushio, 1999). Other methods of the

modern theory of nonlinear control such as the theory of center manifold, slid-

ing mode control (Ammour et al., 2009; Yang et al., 2009; Vinagre et al., 2006),

the backstepping procedure, the reset control (Beker et al., 2004; Vinagre et al.,

2007), and the H∞-optimal design (Pan and Yin, 1997) can be used to solve the

problems of stabilization for the given state.

3. Adaptive control assumes the possibility of applying the methods of adaptation

to the control of chaotic processes, where the parameters of the controlled plant

are unknown and the information about the model structure more often than not

is incomplete. A number of the existing methods of adaptation such as the meth-

ods of gradient and speed gradient, least squares, and maximum likelihood can

be used to develop algorithms of adaptive control and parametric identification.

A controller is usually designed using the reference model or the methods of

linearization by feedback (Ladaci and Charef, 2006; Vinagre et al., 2002).

4. Linearization of the Poincaré map method can be formulated by the following

key ideas: (1) designing controller by the discrete system model based on lin-

earization of the Poincaré map and (2) using the property of recurrence of the

chaotic trajectories and applying the control action only at the instants when the

trajectory returns to some neighborhood of the desired state or given orbit.

5. Time-delayed feedback method considers the problem of stabilizing an unstable

periodic orbit of a nonlinear system by a simple feedback law with time delay.
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Sensitivity to the parameter, especially to the delay time, is a disadvantage of the

control law.

6. Neural network-based control deals with the ability of neural networks to con-

trol and predict behavior of nonlinear systems. The various structures of neural

networks for control and prediction of the processes in nonlinear chaotic systems

can be found in literature.

7. Fuzzy control uses a description of system indeterminacy in terms of fuzzy mod-

els, provides specific versions of the control algorithms, which consists of four

blocks: knowledge base, fuzzification, inference and defuzzification (Calvo and

Cartwright, 1998).

6.3 Examples: Feed-Back Control of Chaotic Systems

As already mentioned, the control of chaos means the control of unstable systems.

The proposed controller has to reduce chaotic oscillations to the regular ones or

eliminate them.

The control of chaos has also been studied and observed in many experiments

(e.g., Ahmad et al., 2004; Lenz and Obradovic, 1997; Pan and Yin, 1997; Ushio,

1999; Tavazoei and Haeri, 2008; Wang et al., 2009, etc.). Especially, the control

of well-known Chua’s system by sampled data has been studied (Yang and Chua,

1998). The main motivation for the control of chaos via sampled data is well-

developed digital control techniques.

6.3.1 Sampled-Data Control of Chua’s Oscillator

In this brief study the practical results from sampled-data feedback control (case of

the control strategy) of the fractional-order chaotic dynamical system are presented.

The system was modeled by the state equation ẋ = f(x), where x ∈ Rn is state vari-

able, f : Rn → Rn is nonlinear function and f(0) = 0.

The structure of control system with sampled data (Yang and Chua, 1998) is

shown in Fig. 6.1. The state variables of the chaotic system are measured and the

result is used to construct the output signal y(t) = Dx(t), where D is a constant

matrix. The output y(t) is then sampled by sampling block to obtain y(k) = Dx(k)
at the discrete moments kT , where k = 0,1,2, . . . and T is the sampling period. Then

Dx(k) is used by the controller to calculate the control signal u(k), which is fed back

into chaotic system.

The controlled chaotic system is defined by the following relations (Yang and

Chua, 1998):

dx(t)
dt

= f(x(t))+Bu(k), t ∈ [kT,(k +1)T )

u(k +1) = Cu(k)+Dx(k), k = 0,1,2 . . . , (6.2)
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Fig. 6.1 Structure of the control system.

where u ∈ Rm, B ∈ Rn ×Rm, C ∈ Rm ×Rm, D ∈ Rm ×Rn and t ∈ R+; x(k) is the

sampled value of x(t) at t = kT . We suppose that (0;0;0) is an equilibrium point of

the system (6.2).

The approach described in this example is concentrating on the feedback control

of the chaotic fractional-order Chua’s system, where the total order of the system is

2.9. The controlled fractional-order Chua’s system is defined by (Petráš, 2002):

dx1(t)
dt

= α 0D1−q
t (x2(t)− x1(t)− f (x1))+u1(t),

dx2(t)
dt

= x1(t)− x2(t)+ x3(t)+u2(t), (6.3)

dx3(t)
dt

= −βx2(t)+u3(t),

where as a function f (x1) we consider a piecewise-linear nonlinearity (5.5). The

linearized output y(t) is given as y(t) = x1(t)/α + x3(t)/β .
For numerical simulations the following parameters of the fractional Chua’s sys-

tem (6.3) are chosen:

α = 10, β =
100

7
, q = 0.9, m0 = −1.27, m1 = −0.68,

and the following parameters (experimentally found) of the controller:

B =

⎛⎝ 1 0 0

0 0 0

0 0 0

⎞⎠ , C =

⎛⎝ 0.8 0 0

0 0 0

0 0 0

⎞⎠ , D =

⎛⎝−3.3 0 0

0 0 0

0 0 0

⎞⎠ . (6.4)
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Using the above parameters (6.4) the digital controller in state space feedback form

is defined as

u1(k +1) = 0.8u1(k)−3.3x1(k), (6.5)

for k = 0,1,2, . . . where u2(t) = 0 and u3(t) = 0. The initial conditions for Chua’s

circuit were (x1(0),x2(0),x3(0)) = (0.2,−0.1,−0.01) and the initial condition for

the controller (6.5) was u1(0) = (0). The sampling period was T = 0.01s.

For the computation of the fractional-order derivative in Eqs. (6.3) a numerical

approximation method expressed by the relation (2.53) was used. The length of

memory was Lm = 10 (1000 values and coefficients from the history for sampling

time T = 0.01s).

Fig. 6.2 shows the attractor of Chua’s circuit (6.3) without control for the sim-

ulation time 100s. Similar behavior was shown in the work (Hartley et al., 1995),

where piecewise linear nonlinearity was replaced by cubic nonlinearity which yields

very similar properties.

Fig. 6.2 Strange attractor of the fractional-order Chua’s system without control over parameters
α = 10, β = 100

7 , q = 0.9, m0 =−1.27, m1 =−0.68, and initial conditions x̄0 = (0.2,−0.1,−0.01).

In Fig. 6.3 is shown the controlled trajectory of state variables of the fractional-

order Chua’s system (6.3), which tends to origin asymptotically.

In Fig. 6.4 is shown the trajectory of the fractional-order Chua’s system under

control in state space for the simulation time 100s.

In Fig. 6.5 is shown control signal from the digital controller (6.5). We can ob-

serve that signal tends to origin asymptotically similar to state variables behavior.
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Fig. 6.3 Controlled state variables x1(t), x2(t), and x3(t).

Fig. 6.4 The trajectory of the controlled fractional-order Chua’s system in state space.
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Fig. 6.5 Control signal u1(t).

A different type of the fractional-order chaotic system can be controlled by using

this control strategy as well. It is a uniform approach to the control of chaos where

the discrete proportional feedback controller is used (Jie and Lian, 2010).

6.3.2 Sliding Mode Control of the Economical System

A sliding model control (SMC) strategy is also applicable to the fractional-order

chaotic systems. It is a form of variable structure control method that alters the dy-

namics of a nonlinear system by application of a high-frequency switching control.

The state feedback control law is not a continuous function of time. It switches from

one continuous structure to another based on the current position in the state space.

Trajectories always move toward a switching condition. The motion of the system

as it slides along these boundaries is called a sliding mode. The sliding mode control

scheme involves: (i) selection of the sliding surface σ(t) that represents a desirable

system dynamic behavior, (ii) finding a switching control law that a sliding mode

exists on every point of the sliding surface.

Consider the following general structure of the fractional-order nonlinear system

under control

0Dq
t x(t) = f(x(t))+Bu(t), (6.6)
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where u(t) = [u1(t)u2(t) · · ·um(t)]T is an m-dimensional input vector that will be

used and the following control structure will be considered for state feedback:

u(t) = ueq(t)+usw(t), (6.7)

where ueq(t) is the equivalent control and usw(t) is the switching control of the

system (6.6). A common task is to design a state feedback control law to stabilize

the dynamical system (6.6) around the origin x(t) = [0,0, . . . ,0]T . In the sliding

mode, the sliding surface and its derivative must satisfy σ(t) = 0 and σ̇(t) = 0.

Let us use the controlled fractional-order financial system in the following form

(Dadras and Momeni, 2010):

0Dq1
t x1(t) = x3(t)+(x2(t)−a)x1(t),

0Dq2
t x2(t) = 1−bx2(t)− x2

1(t)+u(t), (6.8)

0Dq3
t x3(t) = −x1(t)− cx3(t),

where a is the saving amount, b is the cost per investment, and c is the elasticity of

demand of commercial market, (a,b,c) ∈ R+. The state variables x1(t), x2(t), and

x3(t) are the interest rate, the investment demand, and the price index, respectively.

The proposed fractional sliding surface is defined as

σ(t) =
∫ t

0
(x2

1(τ)+Kx2(τ))dτ +0 Dq2−1
t x2(t), (6.9)

where K is a positive constant, in addition, K ≡ Keq. The equivalent control ueq(t)
is obtained by setting the derivative of sliding surface to zero and then solving the

second equation of (6.8) for u(t). We obtain

0Dq2
t x2(t) = −(x2

1(t)+Kx2(t))

and then we get the relation

ueq(t) = 0Dq2
t x2(t)−1+bx2(t)+ x2

1(t) (6.10)

= −x2
1(t)+Keqx2(t)−1+bx2(t)+ x2

1(t) = (b−Keq)x2(t)−1,

where Keq is the constant of the controller.

The switching control usw(t) law is chosen in order to satisfy the sliding condition

usw(t) = Kswsign(σ), (6.11)

where

sign(σ) =

⎧⎪⎪⎨⎪⎪⎩
+1, σ > 0,

0, σ = 0,

−1, σ < 0.

and Ksw is the gain of the controller (Ksw < 0).
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Finally, the total control law is defined as

u(t) = ueq(t)+usw(t) = (b−Keq)x2(t)−1+Kswsign(σ). (6.12)

We assume the following parameters of the chaotic system (6.8): a = 1, b =
0.1, c = 1, and the controller (6.12) parameters (experimentally found): Keq = 1.5
and Ksw = −3.5. The controller will be applied at t = 15s. In the first case we use

a commensurate order of derivatives q1 = q2 = q3 = 0.9 and in the second case we

use an incommensurate order of the derivatives q1 = 1.0, q2 = 0.95, and q3 = 0.99

of the fractional-order chaotic system (6.8). The initial conditions for both cases are

(x1(0),x2(0),x3(0)) = (2,−1,1).

Fig. 6.6 Controlled state variables x1(t), x2(t), and x3(t) of commensurate fractional order finan-
cial system, where SMC was activated at 15s.

In Fig. 6.6 are depicted the controlled state variables of the commensurate

fractional-order financial systems (6.8) with the parameters: a = 1, b = 0.1, c = 1,

orders q1 = q2 = q3 = 0.9, controller (6.12) parameters: Keq = 1.5 and Ksw = −3.5,

initial conditions: (x1(0),x2(0),x3(0)) = (2,−1,1) for simulation time Tsim = 90s
and time step h = 0.005.

In Fig. 6.7 is shown the control law of commensurate fractional-order financial

system which drives the system states to the sliding surface. We can observe chat-

tering in the sliding mode.

In Fig. 6.8 are depicted the controlled state variables of the incommensurate

fractional-order financial systems (6.8) with the parameters: a = 1, b = 0.1, c = 1,
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Fig. 6.7 Time response of control law u(t) to commensurate fractional-order financial system,
where SMC was activated at 15s.

Fig. 6.8 Controlled state variables x1(t), x2(t), and x3(t) of incommensurate fractional order fi-
nancial system, where SMC was activated at 15s.
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orders q1 = 1.0, q2 = 0.95, and q3 = 0.99, controller (6.12) parameters: Keq = 1.5
and Ksw = −3.5, initial conditions: (x1(0),x2(0),x3(0)) = (2,−1,1) for simulation

time Tsim = 90s and time step h = 0.005.

In Fig. 6.9 is shown the control law of incommensurate fractional-order finan-

cial system which drives the system states to the sliding surface. We can observe

chattering in the sliding mode.

Fig. 6.9 Time response of control law u(t) for incommensurate fractional-order financial system,
where SMC was activated at 15s.

In Fig. 6.10 are depicted the time responses of the sliding surface. We can observe

that the controller kept the system states on the sliding surface for all subsequent

time.

Performed simulations show that system responses after applying the control law

(6.12) are satisfactory for both cases. The results confirm that obtained control strat-

egy is efficient for controlling the fractional-order financial system (6.8).

To solve the chattering problem depicted in Fig. 6.7 and Fig. 6.9 we can use

a new reaching law (Wang et al., 2009) or a fuzzy logic controller (Delavari et al.,

2010).

The proposed control method is simple and control law is achieved to asymptot-

ically stabilize the system if the controller is applied to the investment demand in

order to control the whole economical system. This approach is applicable to differ-

ent types of fractional-order chaotic systems as well (e.g., Wang et al., 2009; Yang

et al., 2009, etc.).
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Fig. 6.10 Time response of sliding surface σ(t) to commensurate and incommensurate fractional-
order financial system, where SMC was activated at 15s.
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Chapter 7
Conclusion

In this book the fractional-order nonlinear systems and methods for their numeri-

cal simulation and stability analysis are presented. By illustrative examples we have

shown chaotic behaviour of such systems and studied their dynamics. We presented

the examples of electrical, mechanical, hydrodynamical, chemical, biological, eco-

nomical, and the other chaotic systems. We studied only the state trajectories (at-

tractors) and we avoided bifurcation analysis and Poincaré maps.

Some authors consider the attractors of chaotic systems a numerical error (Yao,

2010). In fact, deterministic chaos exists if the Lyapunov exponent of the system is

positive (Parker and Chua, 1989). We also presented the so-called instability mea-

sure as a condition to determine chaos in fractional-order systems. Computation of

strange attractors in fractional-order nonlinear systems is very important and there-

fore we have to find appropriate approximation methods. Utilization of methods in

the form of rational polynomial leads to high-order systems. In this case we must

consider different initial conditions and large numerical errors which are amplified

by the systems constants and approximation polynomial constants. We recommend

using a method in the form of FIR filter with a large number of coefficients be-

cause it works more accurately and numerical errors are much smaller than those

of the methods in the form of IIR filter (Vinagre et al., 2003). However, the time of

computation is longer because of the number of coefficients.

In this book we also mention a total order of fractional-order systems. The system

order in such case is equal to the sum of particular fractional orders of differential

equations. The conclusion of this work confirms the conclusions of the works (Arena

et al., 2000; Hartley et al., 1995; Podlubny, 1999) that there is a need to refine

the notion of the order of a system which cannot be considered only by the total

order of differentiation. For fractional-order differential equations the number of

terms in equations and the number of equations are more important than the order

of differentiation.

We have considered examples of chaotic fractional-order systems which exhibit

chaotic behavior, with total order less than three except Duffing’s, Van der Pol’s

oscillators and Lotka-Volterra system with total order less than two, and mem-

ristor based Chua’s oscillator with hyperchaos and total order less than four. We
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have shown chaotic systems with several types of nonlinearities as for example

piecewise-linear nonlinearity, cross product, square and cubic power and so on. For

these fractional-order chaotic systems we have made:

• mathematical description,

• stability investigation,

• numerical solution,

• Matlab routines for simulation,

• Matlab/Simulink models (for two systems).

The Matlab functions have been created for all described chaotic systems and

they are listed in Appendix A. The Simulink models have been created only for two

systems, namely, fractional-order Chua’s and Volta’s systems as a general guide for

such kind of system simulation.

There are a large number of fractional-order chaotic systems that are not de-

scribed in this book. This number rapidly grows (e.g., Caponetto et al., 2010; Hilfer,

2000; West et al., 2002; Zaslavsky, 2005, etc.). To have a closer picture we refer to

several additional references but we have to note that this list is not complete. For

illustration we can mention additional well-known fractional-order chaotic systems,

e.g., delayed fractional-order chaotic systems (Deng et al., 2007; Guo, 2006), hyper-

chaotic systems (Ahmad, 2005b; Deng et al., 2009; Matouk, 2009), fractional-order

HIV model (Ye and Ding, 2009), fractional-order multi-scroll attractors system (Ah-

mad, 2005a; Deng and Lu, 2007), fractional-order 3-D quadratic autonomous sys-

tem with 4-wing attractor (Wang et al., 2010), fractional-order Sprott’s electronic

oscillator and mechanical “jerk” model (Ahmad and Sprott, 2003), fractional neu-

ron network system (Zhou et al., 2008), etc. In addition, we note that there are var-

ious modifications of Chen’s system as, for example, hybrid Lorenz-Chen system

(Lian at al., 2007) or Chen-Lee system (Tam and Tou, 2008). There are also many

works which report possible electronic implemenation of such type chaotic systems

(e.g., Li et al., 2009; Tavazoei et al., 2008, etc.) and its utilization, for instance, in

a chaotic secure communication scheme (Kiani-B et al., 2009).

Various numerical methods may also be used in chaotic attractor computations.

In addition to the proposed algorithm based on Grünwald-Letnikov definition of

the fractional derivative, a modified matrix approach (Podlubny, 2000; Podlubny et

al., 2009) or the Adams-Bashforth-Moulton type predictor-corrector scheme (Deng,

2007a,b; Diethelm et al., 2005; Ford and Simpson, 2001) can be successfully used.

The frequency-based methods are not sufficient because as shown in (Tavazoei

and Haeri, 2007a,b, 2008), false chaos can be observed in systems, which are not

chaotic. It is influenced by approximation error.

Some remarks on chaos control have been noted as well. We mentioned several

control strategies and synchronization techniques and by illustrative examples pre-

sented control of chaos via feedback methods. Two such methods are described: (i)

digital state-space proportional feedback controller, and (ii) sliding mode controller.

Finally, for detecting chaotic behavior in the system an instability measure can be

used. Computation of the Lyapunov exponents is sometimes impossible and instead
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of these exponents, the instability measure is a sufficient condition for detecting

chaos in the fractional-order chaotic systems.

As has been demonstrated, the idea of fractional calculus requires one to recon-

sider dynamic system concepts that are often taken for granted. So by changing

the order of a system from integer to real, we also move from a three-dimensional

system to infinite dimension. A lot of tasks have been opened, namely, stability anal-

ysis of uncertain nonlinear fractional-order systems, conditions to determine chaos,

control strategies and so on. They should be considered in further work.

Besides mentioned one we also have to note a problem related to an identification

of the fractional-order chaotic system parameters (Al-Assaf et al., 2004). It is a dif-

ficult task because any change in the system fractional derivative orders or system

coefficients generates completely different time response. It is necessary to find an

effective identification technique in order to obtain dynamical models that represent

the given measured chaotic data in finite time. It could bring a lot of possible appli-

cations such as, for example, modelling of the macroeconomic performance of the

countries (Petráš and Podlubny, 2007), or many other interesting phenomena with

chaotic nature.
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Vinagre B. M., Chen Y. Q. and Petráš I., 2003, Two direct Tustin discretization

methods for fractional-order differentiator/integrator, J. Franklin Inst., 340, 349–

362.

Wang Z., Sun Y., Qi G. and van Wyk B. J., 2010, The effects of fractional order

on a 3-D quadratic autonomous system with four-wing attractor, Nonlinear Dyn.,
DOI: 10.1007/s11071-010-9705-7.

West B. J., Bologna M. and Grigolini P., 2002, Physics of Fractal Operators,

Springer, New York.

Yao L. S., 2010, Computed chaos or numerical errors, Nonlinear Analysis: Mod-
elling and Control, 15, 109–126.

Ye H. and Ding Y., 2009, Nonlinear Dynamics and Chaos in a Fractional-Order HIV

Model, Mathematical Problems in Engineering, Article ID 378614.

Zaslavsky G. M., 2005, Hamiltonian Chaos and Fractional Dynamics, Oxford Uni-

versity Press, Oxford.

Zhou S., Li H. and Zhu Z., 2008, Chaos control and synchronization in a fractional

neuron network system, Chaos, Solitons and Fractals, 36, 973–984.



Appendix A
A List of Matlab Functions

A list of Matlab functions created for simulation of fractional-order chaotic systems:

• function [T, Y] = FOChuaNR(parameters, orders, TSim, Y0)
• function [T, Y] = FOChuaM(parameters, orders, TSim, Y0)
• function [T, Y] = FOvanDerPol(parameters, orders, TSim, Y0)
• function [T, Y] = FODuffing(parameters, orders, TSim, Y0)
• function [T, Y] = FOGenTesi(parameters, orders, TSim, Y0)
• function [T, Y] = FOArneodo(parameters, orders, TSim, Y0)
• function [T, Y] = FOLorenz(parameters, orders, TSim, Y0)
• function [T, Y] = FORossler(parameters, orders, TSim, Y0)
• function [T, Y] = FOLu(parameters, orders, TSim, Y0)
• function [T, Y] = FOChen(parameters, orders, TSim, Y0)
• function [T, Y] = FOLotkaVolterra(parameters, orders, TSim, Y0)
• function [T, Y] = FONewLeipnik(parameters, orders, TSim, Y0)
• function [T, Y] = FOVolta(parameters, orders, TSim, Y0)
• function [T, Y] = FO3CNN(parameters, orders, TSim, Y0)
• function [T, Y] = FOLiu(parameters, orders, TSim, Y0)
• function [T, Y] = FOFinanc(parameters, orders, TSim, Y0)

In all the above functions, variable parameters are for parameters of each

chaotic system, variable orders are for real orders of the fractional derivatives in

the chaotic system equations, variable TSim is the simulation time, and Y0 are ini-

tial conditions. Returning parameters are: T-vector of the computional time for the

0 : h : T Sim, where h is the time step and Y-vector of the numerical solution for state

variables (Y (1),Y (2), . . .), respectively.

Supporting Matlab function memo() is the so-called memory term used for calcu-

lation of the fractional derivative.

The full codes with demo and full description of each function are downloadable

as a Matlab toolbox (Fractional Order Chaotic Systems) from FileExchange at the

MathWorks, Inc. (http://www.mathworks.com/matlabcentral/fileexchange/27336/).
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For illustration is presented an example of using the Matlab function created for

the fractional-order Volta system (FOVolta()). By typing command

>>help FOVolta

we ge the following description of this function:

% Numerical Solution of the Fractional-Order Volta’s System
%
% D^q1 x(t) = -x(t) - a y(t) - z(t)y(t)
% D^q2 y(t) = -y(t) - b x(t) - x(t)z(t)
% D^q3 z(t) = c z(t) + x(t)y(t) + 1
%
% function [T, Y] = FOVolta( parameters, orders, TSim, Y0 )
%
% Input: parameters - model parameters [a, b, c]
% orders - derivatives orders [q1, q2, q3]
% TSim - simulation time (0 - TSim) in sec
% Y0 - initial conditions [Y0(1), Y0(2), Y0(3)]
%
% Output: T - simulation time (0 : Tstep : TSim)
% Y - solution of the system (x=Y(1),y=Y(2),z=Y(3))
%
% Author: (c) Ivo Petras (ivo.petras@tuke.sk), 2010.
%

For instance, if we consider the following parameters of the fractional-order Volta

system: a = 19, b = 11, c = 0.73 and the orders q1 = q2 = q3 = 0.98, for the sim-

ulation time Tsim = 20s and the initial conditions (x(0),y(0),z(0)) = (8,2,1), it is

necessary to call the following command in the Matlab environment:

>>[t, y] = FOVolta([19 11 0.73], [0.98 0.98 0.98], 20, [8 2 1]).

It is necessary to have a supporting function memo() in the same folder. The re-

turning vector y consists of the numerical solution for the system for each particular

state variable (x,y,z) in accordance to the vector of time variable t. Time step is

set explicitly in each function to the default value h = 0.005. The results can be

interpreted as follows:

• plotting the solution of state variable x(t) for time 0−20s in black color:

>>plot(t, y(:,1),’k’);
>>xlabel(’Time [sec]’);
>>ylabel(’x(t)’);
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• plotting the solution of state variable y(t) for time 0−20s in black color:

>>plot(t, y(:,2),’k’);
>>xlabel(’Time [sec]’);
>>ylabel(’y(t)’);

• plotting the solution of state variable z(t) for time 0−20s in black color:

>>plot(t, y(:,3),’k’);
>>xlabel(’Time [sec]’);
>>ylabel(’z(t)’);

• plotting the trajectory of state variables x(t),y(t),z(t) in state space in black

color:

>>plot3(y(:,1), y(:,2), y(:,3), ’k’);
>>xlabel(’x(t)’);
>>ylabel(’y(t)’);
>>zlabel(’z(t)’);

• plotting the trajectory of state variables x(t),y(t) in state plane in black color:

>>plot(y(:,1), y(:,2) ’k’);
>>xlabel(’x(t)’);
>>ylabel(’y(t)’);

• plotting the trajectory of state variables x(t),z(t) in state plane in black color:

>>plot(y(:,1), y(:,3), ’k’);
>>xlabel(’x(t)’);
>>ylabel(’z(t)’);

• plotting the trajectory of state variables y(t),z(t) in state plane in black color:

>>plot(y(:,2), y(:,3), ’k’);
>>xlabel(’y(t)’);
>>ylabel(’z(t)’).

If the grid in figures is necessary, the command grid is used as well. The above

syntax is useful for all created functions and it has been used for simulations per-

formed and described in this book. It is important to note that other Matlab functions

are very helpful. For example, function solve() is useful for equilibrium calcula-

tion, function eig() returns eigenvalues, etc.
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Laplace and Inverse Laplace Transforms

Table B.1 A list of Laplace and inverse Laplace transforms related to fractional-order calculus
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Glossary

Fractional calculus is a branch of mathematical analysis that studies the possi-

bility of differentiation and integration of arbitrary real or complex orders of the

differential operator.

Differintegral in fractional calculus is a combined differentiation/integration op-

erator.

Short memory principle means taking into account the behavior of function only

in the “recent past”.

Singlevalued function is a function that, for each point in the domain, has a unique

value in the range.

Multivalued function is a function that assumes two or more distinct values in its

range for at least one point in its domain.

State space is the set of all possible states of a dynamical system, where each state

of the system corresponds to a unique point in the state space.

Equilibrium point, sometimes called fixed point is a solution of the autonomous

system of ordinary differential equations that does not change with time.

Jacobian matrix is the matrix of all first-order partial derivatives of a vector-

valued function. It describes the orientation of a tangent plane to the function at

a given point. The behavior of the system near a stationary point is related to the

eigenvalues of the Jacobian at the equilibrium point.

Saddle point is when all eigenvalues are real and at least one of them is positive

and at least one is negative. Saddles are always unstable.

Node point is when all eigenvalues are real and have the same sign. The node is

stable (unstable) when the eigenvalues are negative (positive).

Focus point, called also spiral point, is when eigenvalues are complex-conjugate.

The focus is stable when the eigenvalues have negative real part and unstable when

they have positive real part.



216 Glossary

Focus-Node point is when it has one real eigenvalue and a pair of complex-

conjugate eigenvalues, and all eigenvalues have real parts of the same sign. This

equilibrium is stable (unstable) when the sign is negative (positive).

Saddle-Focus point is when it has one real eigenvalue with the sign opposite to

the sign of the real part of a pair of complex-conjugate eigenvalues. This type of

equilibrium is always unstable.

Center equilibrium occurs when a system has only two eigenvalues on the imag-

inary axis, namely, one pair of pure-imaginary eigenvalues.

Instability measure for equilibrium points of the fractional-order nonlinear sys-

tem is mathematically equivalent to difference between the angle of stability border

given by necessary stability condition and minimal angle of all roots obtained from

characteristic equation of the system.

Lyapunov exponent of a dynamical system is a quantity that characterizes the rate

of separation of infinitesimally close trajectories.
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