

Lecture Notes in Computer Science 6482
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Michael Domaratzki Kai Salomaa (Eds.)

Implementation
and Application
of Automata

15th International Conference, CIAA 2010
Winnipeg, MB, Canada, August 12-15, 2010
Revised Selected Papers

13

Volume Editors

Michael Domaratzki
University of Manitoba, Department of Computer Science
Winnipeg, MB, R3T 2T2, Canada
E-mail: mdomarat@cs.umanitoba.ca

Kai Salomaa
Queen’s University, School of Computing
Kingston, ON, K7L 3N6, Canada
E-mail: ksalomaa@cs.queensu.ca

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-18097-2 e-ISBN 978-3-642-18098-9
DOI 10.1007/978-3-642-18098-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010942794

CR Subject Classification (1998): F.2, F.1, G.2, F.3, E.1, F.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume of Lecture Notes in Computer Science contains revised versions
of papers presented at the 15th International Conference on Implementation
and Application of Automata, CIAA 2010. The conference was held at the Uni-
versity of Manitoba in Winnipeg, Canada, on August 12–15, 2010. The pre-
vious CIAA conferences were held in London, Ontario (2000), Pretoria (2001),
Tours (2002), Santa Barbara (2003), Kingston (2004), Nice (2005), Taipei (2006),
Prague (2007), San Francisco (2008) and Sydney (2009).

The CIAA meeting can be viewed as the main conference for researchers,
application developers, and users of automata-based systems. The topics of the
conference include applications of automata in, for example, computer-aided
verification, natural language processing, pattern matching, data storage and
retrieval, and bioinformatics, as well as foundational work on automata theory.

The 26 full papers and 6 short papers were selected from 52 submissions. Each
submitted paper was evaluated by at least three Program Committee members,
with the help of external referees. We warmly thank the invited speakers, the
authors of the contributed papers, as well as the reviewers and the Program
Committee members for their valuable work. All these efforts were the basis for
the success of the conference.

During the conference, Cyril Allauzen, with co-authors Corinna Cortes and
Mehryar Mohri, was presented with the CIAA 2010 Best Paper award for their
paper entitled “Large-Scale Training of SVMs with Automata Kernels.” The pa-
per describes transducer-based methods for improving the efficiency of training
SVMs in machine-learning applications.

The authors of the papers included in these proceedings come from the fol-
lowing countries: Canada, China, Czech Republic, France, Germany, Hungary,
Italy, Japan, Poland, Portugal, Spain, Taiwan, the UK and the USA. In addition,
the conference had participants with affiliations in Belgium and Finland.

We thank our sponsors for their generous financial support: the Fields Insti-
tute; MITACS; Office of the Vice-President (Research), University of Manitoba;
and the Department of Computer Science, University of Manitoba. To conclude,
we are indebted to Alfred Hofmann and Anna Kramer from Springer for the
efficient collaboration in producing this volume.

October 2010 M. Domaratzki
K. Salomaa

Organization

Invited Speakers

Natasha Jonoska University of South Florida, USA
Madhusudan Parthasarathy University of Illinois at Urbana-Champaign,

USA
Karen Rudie Queen’s University, Canada

Program Committee

Marie-Pierre Béal Université de Marne-la-Vallée, France
Cezar Câmpeanu University of Prince Edward Island, Canada
Pascal Caron Université de Rouen, France
Jean-Marc Champarnaud Université de Rouen, France
Mark Daley University of Western Ontario, Canada
Michael Domaratzki (Chair) University of Manitoba, Canada
Yo-Sub Han Yonsei University, South Korea
Tero Harju University of Turku, Finland
Markus Holzer Technische Universität München, Germany
Oscar Ibarra University of California, Santa Barbara, USA
Lucian Ilie University of Western Ontario, Canada
Masami Ito Kyoto Sangyo University, Japan
Stavros Konstantinidis Saint Mary’s University, Canada
Igor Litovsky Université de Nice, France
Carlos Mart́ın-Vide Rovira i Virgili University, Spain
Sebastian Maneth NICTA; University of New South Wales,

Australia
Denis Maurel Université de Tours, France
Ian McQuillan University of Saskatchewan, Canada
Mehryar Mohri Courant Institute of Mathematical Sciences,

USA
Alexander Okhotin University of Turku, Finland
Andrei Păun Louisiana Tech University, USA;

University of Bucharest, Romania
Giovanni Pighizzini Università degli Studi di Milano, Italy
Bala Ravikumar Sonoma State University, USA
Rogério Reis Universidade do Porto, Portugal
Kai Salomaa (Co-chair) Queen’s University, Canada
Bruce Watson University of Pretoria, South Africa; Sagantec,

USA
Hsu-Chun Yen National Taiwan University, Taiwan

VIII Organization

Sheng Yu University of Western Ontario, Canada
Djelloul Ziadi Université de Rouen, France

Additional Referees

Cyril Allauzen
Jean-Paul Allouche
Marco Almeida
Nicolas Bedon
Jean-Camille Birget
Sabine Broda
Bernd Burgstaller
Michael Burrell
Olivier Carton
Julien Cervelle
Alfredo Costa
Eugen Czeizler
Pal Domosi
Nathalie Friburger
Zoltan Fulop
Christopher Geib

Dora Giammarresi
Sebastian Jakobi
Artur Jez
Derrick Kourie
Martin Kutrib
Eric Laugerotte
Tommi Lehtinen
Aurelien Lemay
Peter Leupold
Beth Locke
Sylvain Lombardy
Violetta Lonati
António Machiavelo
Andreas Malcher
Andreas Maletti
Yoshihiro Mizoguchi

Nelma Moreira
Benedek Nagy
Florent Nicart
Xiaoxue Piao
Narad Rampersad
Michael Riley
Agata Savary
Shinnosuke Seki
Tinus Strauss
Jean-Yves Thibon
Mauro Torelli
Nicholas Tran
Andrea Visconti
Mikhail Volkov

Sponsors

Fields Institute MITACS University of Manitoba

Table of Contents

Using Automata to Describe Self-Assembled Nanostructures
(Invited Talk) . 1

Nataša Jonoska

A Summary of Some Discrete-Event System Control Problems
(Invited Talk) . 4

Karen Rudie

Large-Scale Training of SVMs with Automata Kernels 17
Cyril Allauzen, Corinna Cortes, and Mehryar Mohri

Filters for Efficient Composition of Weighted Finite-State
Transducers . 28

Cyril Allauzen, Michael Riley, and Johan Schalkwyk

Incremental DFA Minimisation . 39
Marco Almeida, Nelma Moreira, and Rogério Reis

Finite Automata for Generalized Approach to Backward Pattern
Matching . 49

Jan Antoš and Bořivoj Melichar

Partial Derivative Automata Formalized in Coq . 59
José Bacelar Almeida, Nelma Moreira, David Pereira, and
Simão Melo de Sousa

Regular Geometrical Languages and Tiling the Plane 69
Jean-Marc Champarnaud, Jean-Philippe Dubernard, and
Hadrien Jeanne

COMPAS – A Computing Package for Synchronization 79
Krzysztof Chmiel and Adam Roman

From Sequential Extended Regular Expressions to NFA with Symbolic
Labels . 87

Alessandro Cimatti, Sergio Mover, Marco Roveri, and
Stefano Tonetta

State Complexity of Catenation Combined with Union and
Intersection . 95

Bo Cui, Yuan Gao, Lila Kari, and Sheng Yu

Complexity Results and the Growths of Hairpin Completions of
Regular Languages (Extended Abstract) . 105

Volker Diekert and Steffen Kopecki

X Table of Contents

On Straight Words and Minimal Permutators in Finite Transformation
Semigroups . 115

Attila Egri-Nagy and Chrystopher L. Nehaniv

On Lazy Representations and Sturmian Graphs . 125
Chiara Epifanio, Christiane Frougny, Alessandra Gabriele,
Filippo Mignosi, and Jeffrey Shallit

Symbolic Dynamics, Flower Automata and Infinite Traces 135
Wit Foryś, Piotr Oprocha, and Slawomir Bakalarski

The Cayley-Hamilton Theorem for Noncommutative Semirings 143
Radu Grosu

Approximating Minimum Reset Sequences . 154
Michael Gerbush and Brent Heeringa

Transductions Computed by PC-Systems of Monotone Deterministic
Restarting Automata . 163

Norbert Hundeshagen, Friedrich Otto, and Marcel Vollweiler

Uniformizing Rational Relations for Natural Language Applications
Using Weighted Determinization . 173

J. Howard Johnson

Partially Ordered Two-Way Büchi Automata . 181
Manfred Kufleitner and Alexander Lauser

Two-Party Watson-Crick Computations . 191
Martin Kutrib and Andreas Malcher

Better Hyper-minimization. Not as Fast, But Fewer Errors 201
Andreas Maletti

Regular Expressions on Average and in the Long Run 211
Manfred Droste and Ingmar Meinecke

Reachability Games on Automatic Graphs . 222
Daniel Neider

Disambiguation in Regular Expression Matching via Position Automata
with Augmented Transitions . 231

Satoshi Okui and Taro Suzuki

A Polynomial Time Match Test for Large Classes of Extended Regular
Expressions . 241

Daniel Reidenbach and Markus L. Schmid

A Challenging Family of Automata for Classical Minimization
Algorithms . 251

Giusi Castiglione, Cyril Nicaud, and Marinella Sciortino

Table of Contents XI

State of Büchi Complementation . 261
Ming-Hsien Tsai, Seth Fogarty, Moshe Y. Vardi, and Yih-Kuen Tsay

Types of Trusted Information That Make DFA Identification with
Correction Queries Feasible . 272

Cristina Tı̂rnăucă and Cătălin Ionuţ Tı̂rnăucă

Compressing Regular Expressions’ DFA Table by Matrix
Decomposition . 282

Yanbing Liu, Li Guo, Ping Liu, and Jianlong Tan

Relational String Verification Using Multi-track Automata 290
Fang Yu, Tevfik Bultan, and Oscar H. Ibarra

A Note on a Tree-Based 2D Indexing . 300
Jan Žd’árek and Bořivoj Melichar

Regular Expressions at Their Best: A Case for Rational Design 310
Vincent Le Maout

Simulations of Weighted Tree Automata . 321
Zoltán Ésik and Andreas Maletti

Author Index . 331

Using Automata to Describe Self-Assembled
Nanostructures

Nataša Jonoska�

Department of Mathematics

University of South Florida, Tampa, FL 33620, USA

jonoska@math.usf.edu

There is an increased necessity for mathematical study of self-assembly of various
phenomena ranging from nano-scale structures, material design, crystals, bio-
molecular cages such as viral capsids and for computing. We show an algebraic
model for describing and characterizing nanostructures built by a set of molecular
building blocks. This algebraic approach connects the classifcal view of crystal
dissection with a more modern system based on algebraic automata theory.

A molecular building block is represented as a star-like graph with a central
vertex and molecular bonding sites at the single-valent vertices. Such a graph
represents a branched junction molecule whose arms contain “sticky ends” ready
to connect with other molecular blocks. The building blocks have specific chem-
ical properties on their bonding sites presented as labels or colors. These bonds
may be strong covalent or weak ionic (hydrogen) types of bonds and specify
which two sites can be superimposed or “glued” together. The connection or
bonding is allowed only along “compatible” sites, where the “compatibility” is
defined by a binary relation on the set of bond types. One can consider two types
of molecular building blocks, flexible and rigid. In the case of flexible building
blocks, the assembly of blocks in larger structures is guided only by the binary
relation specifying the bonding, without any geometric constraints. In the case
of rigid molecular building blocks, the geometry of the molecular building block
plays a major role in the assembly process.

We concentrate on two general problems: (1) how to characterize or clas-
sify structures that can be built? (2) how can two non-congruent structures be
distinguished?

For these questions we propose to use a finite state automaton whose states
are the molecular building block types and the transitions of the automaton are
the bonding operations. In the case of flexible building blocks (which we call
flexible tiles) the bonding operation is just the binary operation that specifies
the bonds, and therefore one can use the bond types as transition labels.

In the case of rigid building blocks (or rigid tiles) one utilizes classical symmetry
isometries based on translation and rotation as transition labels. If a block is used
in an assembly of a complex structure, it needs to be displaced by a vector x and
then rotated by an angle θ about a line � in order to meet the appropriate bonding

� This work has been supported in part by the NSF grants CCF-0726396 and DMS-

0900671. Based on joint work with G.L. McColm.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 1–3, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 N. Jonoska

sites. Its new placement can be described by the triple (x, �, θ). All block types that
take part in an assembly of the structure are assumed to be taken from a standard
position (centered at the origin in a particular orientation) and then displaced to
their appropriate position in the built structure. For every assembled structure we
assume that there is a building block which is in its standard position which we
call a reference block.

We also assume that there is a finite set of building block types, there are a
finite number of bond types, and a finite number of relative rotations that one
block can take with respect to another while bonding.

A structure can be described by knowing the positions of all building blocks,
and those positions are known if the paths from the reference block to each
block in the structure are known. Hence, we can describe a structure (composed
of building blocks) by describing all of the paths that traverse it. Every path
starts at the center of the reference block, and moves from block to block across
bonds.

A finite state automaton can be used to generate the possible paths for a given
set of block types within an assembled structure. The states of the automaton are
the block types. The automaton also has a zero state 0 to represent a state of an
illegal move. All states of the automaton are initial and terminal. The transition
alphabet of the automaton consists of all possible movements from one block (of
a specific type) to another block (of a specific type). As mentioned, in the case
of flexible tiles, the transition alphabet is just the set of bonding types. In the
case of rigid tiles, a transition is specified by a rotation and displacement vector
in addition to the bonding type. For example, a transition from a block b to
a block b′ labeled by symbol σ = (u, ı, ϕ) represents the following movement.
From a block b, rotate through an angle ϕ about a line ı (for ı displaced to go
through the center of b) and translate through the vector u to a new block b′.

To each walk within the structure we associate a walk in the directed graph
represented by the finite state automaton. A framed walk is a list of instructions
for walking through a structure. Intuitively we take that “structure” is a possible
assembled structure that can be obtained by gluing building blocks of given types
according to the bonding relation. We have the following definition.

Definition 1. Let C be a structure, and let b be a block of C. Let W (C,b) be
the set of framed walks in the automaton that can be walked in C starting at b
as a reference block. Furthermore, the length of a framed walk is the number of
transitions, i.e., |bσ1σ2 · · ·σnb′| = n. Let Wn(C,b) = {w ∈ W (C,b): |w| ≤ n}.
We now convert geometry to algebra by defining an equivalence that identifies
pairs of framed walks that lead from the same initial block to the same terminal
block. Let b0s1b ∼ b0s2b mean that if we start at a block of type b0 (in standard
position) and follow the walk instructions s1, we would wind up in the same
position and orientation, and hence the same block as if it followed the walk
instructions s2. We define a structure to be rigid with respect to ∼ if for any
three blocks b0,b1,b2 of the structure, where type(b0) = b0 and type(b1) =
type(b2) = b, the following is true: b1 = b2 if and only if for any framed walk
b0s1b from b0 to b1 and for any framed walk b0s2b from b0 to b2, b0s1b ∼ b0s2b.

Using Automata to Describe Self-Assembled Nanostructures 3

Notice that ∼ depends on the shapes of the blocks, and on the geometric space
in which the blocks are placed. This relation ∼ is defined through cycles in the
walkspace, i.e., by identifying those framed walks that in the geometry they lead
back to the block on which they started. For a set of walks W denote with Ŵ
the equivalence classes of walks in W .

In the case of flexible tiles, ∼ becomes trivial, since the flexibility of the
building blocs assures that there are no constraints for bonding of the tiles as
soon as there are available (non-attached) bonds.

This notion of rigidity of the structure has the following consequence.

Theorem 1. Suppose that two structures C1 and C2 which consist of n blocks
each are generated from the same block types according to transitions of the same
automaton. Then they are (geometrically) congruent if and only if for some block
b1 of C1 and some block b2 of C2, Ŵn(C1,b1) = Ŵn(C2,b2).

Hence we can treat a structure as a set of framed walks, i.e., as a language, thus
removing the geometry from the computation. Using this fact, and assuming that
∼ (and associated apparatus) is PTIME computable, we obtain that congruence
of rigid structurees is PTIME computable, which contrasts from the popular
suspicion that the Graph Isomorphism problem is not PTIME computable.

A Summary of Some Discrete-Event System
Control Problems�

Karen Rudie

Department of Electrical and Computer Engineering

Queen’s University

Kingston, Ontario K7L 3N6

Canada

Abstract. A summary of the area of control of discrete-event systems

is given. In this research area, automata and formal language theory

is used as a tool to model physical problems that arise in technologi-

cal and industrial systems. The key ingredients to discrete-event control

problems are a process that can be modeled by an automaton, events in

that process that cannot be disabled or prevented from occurring, and

a controlling agent that manipulates the events that can be disabled to

guarantee that the process under control either generates all the strings

in some prescribed language or as many strings as possible in some pre-

scribed language. When multiple controlling agents act on a process,

decentralized control problems arise. In decentralized discrete-event sys-

tems, it is presumed that the agents effecting control cannot each see

all event occurrences. Partial observation leads to some problems that

cannot be solved in polynomial time and some others that are not even

decidable.

Keywords: Discrete-Event Systems, Supervisory Control, Decentralized

Control.

1 Introduction

Discrete-event systems are processes whose behaviour can be characterized by
sequences of events. Behaviour of the system is captured by a formal language
and is typically represented by an automaton that recognizes that language. It is
assumed that some events that the system can generate can be prevented from
occurring (by an external agent, which may be software, hardware or a human
operator) and some other events cannot be prevented from occurring. Those
events that can be disabled are called controllable events and those that cannot
be disabled are called uncontrollable events. Control problems arise because the
systems can generate undesirable event sequences. Work in this area typically
addresses when it is possible to derive agents that can prohibit bad sequences
by disabling controllable events at various points along the strings that can be
� This work was supported by a Discovery Grant from the Natural Sciences and En-

gineering Research Council (NSERC).

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 4–16, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Summary of Some Discrete-Event System Control Problems 5

generated. These problems are more difficult computationally if they must be
solved using decentralized control, where there are multiple agents, each of which
has only a partial view of overall system behaviour and has only partial control.

The research area of supervisory control of discrete-event systems takes a
control-theoretic approach to solving problems that arise when dealing with
discrete-event processes but the technical machinery employed is all based on
automata theory and the theory of formal languages.

2 Supervisory Control Problems

The work described in this section is set in the supervisory control framework
for discrete-event systems developed by P.J. Ramadge and W.M. Wonham in
the early 1980s and initiated by the doctoral thesis of Ramadge [1, 2]. For more
details, refer to the primary textbook in discrete-event control systems [3].

The essence of discrete-event system (DES) control problems is the following.
There is a process, called the plant G, whose behaviour can be thought of as
sequences of events or actions. Some of the event sequences in G are undesirable
(e.g., perhaps because they contravene some safety specifications) and some of
the events in G can be prevented from occurring (i.e., “disabled”). The event
sequences that are not undesirable are called the legal sequences. An agent, called
a supervisor, is responsible for controlling G to ensure that the legal sequences
occur, or if that’s not possible, that only some subset of legal sequences occur.
By “agent” we mean a computer program or hardware or a human operator or
any entity that would be able to disable certain events and that would have some
means of observing (or sensing) at least some of the event occurrences.

Because plants are nothing more than generators of sequences of discrete
events, they can be modelled using automata. Consequently, the plant G is given
by an automaton over the alphabet Σ:

G = (Q, Σ, δ, q0, Qm) .

Although most of the examples in DES literature involve finite automata, the gen-
eral setting and theoretical results do not presume at the outset that the state set
is finite. When the state set is finite, we often visually represent the automaton
with a state-transition diagram. For example, consider the automaton depicted in
Figure 1. This plant might be describing part of a telecommunications network,
where some process sends data, the data is then either received or lost, and if it is
lost, it is re-sent. In DES parlance, we refer to terminal states as marked states
because we use those states to demarcate certain strings (generated by the plant)
for special consideration. Typically, sequences that end at marked states would
distinguish completed tasks. For example, in Figure 1, by marking only state 4,
we are able to speak about the sequences describing scenarios where the data
sent is actually received.

In the context of supervisory control of discrete-event systems, automata are
used as a way of representing event sequences. The set of all possible event
sequences is given by Σ∗. The transition function of G can be extended from

6 K. Rudie

4
send receive

lose resend

1 2

3

Fig. 1. State-Transition Diagram for Part of a Telecommunications Network

single event occurrences to event sequences: the idea is that for some s ∈ Σ∗,
δ(q0, s) indicates the state to which the sequence of events in s leads. We associate
with an automaton G two languages defined as follows:

L(G) := {s | s ∈ Σ∗ and δ(q0, s) is defined}

and
Lm(G) := {s | s ∈ Σ∗ and δ(q0, s) ∈ Qm} .

The language L(G) is the set of all possible event sequences which the plant may
generate (and is sometimes called the closed behaviour). The language Lm(G)
is intended to distinguish some subset of possible plant behaviour as represent-
ing completed tasks (and is sometimes called the marked behaviour). Note the
departure here from both the terminology and notation of standard automata
theory: the set L(G) is not the set of strings accepted by the automaton G; in
the DES community we use the notation Lm(G) for the set of strings accepted
by G. In contrast, the set L(G) is all those strings that the transition function
δ admits; they need not lead to a marked (i.e., terminal) state of G.

To impose supervision on the plant, we identify some of its events as con-
trollable and some as uncontrollable, thereby partitioning Σ into the disjoint
sets Σc, the set of controllable events, and Σuc, the set of uncontrollable events.
Controllable events are those which an external agent may enable (permit to
occur) or disable (prevent from occurring) while uncontrollable events are those
which cannot be prevented from occurring and are therefore considered to be
permanently enabled. For the plant in Figure 1 a reasonable partition of events
would be that “send” and “resend” are controllable events, whereas “lose” and
“receive” are uncontrollable (since once a message is sent, one cannot prevent it
from being lost). A supervisor (sometimes called a controller) is then an agent
which observes a sequence of events as it is generated by G and enables or dis-
ables any of the events under its control at any point in time throughout its
observation. By performing such a manipulation of controllable events, the su-
pervisor ensures that only a subset of L(G) is permitted to be generated (and
this subset captures those sequences that are “desirable” in some way). To cap-
ture the notion that a supervisor may only see some of the events generated

A Summary of Some Discrete-Event System Control Problems 7

by the plant, the event set Σ is also partitioned into the disjoint sets Σo of
observable events and Σuo of unobservable events.

To model a supervisor’s partial view of the plant, we use a mapping called
the projection, which we interpret as a supervisor’s view of the strings in Σ∗.
The projection P : Σ∗ −→ Σ∗

o is defined recursively as follows:

P (ε) := ε,

for σ ∈ Σ,

P (σ) :=
{

σ if σ ∈ Σo

ε otherwise

and for s ∈ Σ∗, σ ∈ Σ,
P (sσ) := P (s)P (σ).

In other words, P erases all events that are unobservable to the supervisor.
Formally, a supervisor S is a pair (T, ψ) where T is an automaton which

recognizes a language over the same event set as the plant G and ψ, called a
feedback map, is a map from Σ and states of T to the set {enable, disable}. If X
denotes the set of states of T , then ψ : Σ × X → {enable, disable} satisfies

ψ(σ, x) = enable if σ �∈ Σc, x ∈ X,

i.e., a supervisor cannot disable an uncontrollable event. In addition, S must
satisfy the condition that if an event σ is unobservable to the supervisor, then
the supervisor cannot change state upon the occurrence of σ. The automaton T
tracks and controls the behaviour of G. It changes state according to the events
generated by G that the agent can observe and in turn, at each state x of T , the
control rule ψ(σ, x) dictates whether σ is to be enabled or disabled.

The behaviour of the closed-loop system, i.e., the sequences of events gener-
ated while the plant G is under the control of S (where S = (T, ψ)), is represented
by an automaton S/G whose closed behaviour, denoted by L(S/G), permits a
string to be generated if the string is generated by G, generated by T and if each
event in the string is enabled by ψ. The closed-loop system’s marked behaviour
is denoted by Lm(S/G) and consists of those strings in L(S/G) that are marked
by both G and T .1

Typically, control problems will require finding supervisors that guarantee
that the sequences generated or marked in the closed-loop system either equal
some prescribed set of “legal” sequences or are a subset of these legal sequences.
However, sometimes when a supervisor is attached to a plant there are sequences
that can be generated by the plant and that, without control, would lead to
1 In some of the literature, supervisors are not endowed with any ability to “mark”

strings, i.e., they are either four-tuple automata with no specified set of marked

states or effectively five-tuples whose set of marked states is equal to the entire set

of states of the automaton. In those papers, the definition of closed-loop behaviour

is slightly different than ours but all problems addressed using supervisors that have

no ability to affect the marking of the closed-loop system can be recast as problems

where supervisors do have a marking function, and vice versa.

8 K. Rudie

marked states in the plant, but with control cannot reach a marked state. In
other words, the supervision imposed prevents the system from reaching com-
pletion.2 So, where possible, in the control problems below, we seek solutions
that are nonblocking, i.e., every string generated by the closed-loop system can
be completed to a marked string in the system. This requirement is expressed
as follows: a supervisor S is nonblocking for G if

Lm(S/G) = L(S/G),

where the overbar notation denotes prefix-closure. This is another departure from
typical mathematical notation where the overbar might denote complement of a
set or the negative of some logical proposition.

When a supervisor S ensures that Lm(S/G) = K (or L(S/G) = K), we say
that S synthesizes the language K, i.e., it guarantees that in closed-loop only
the strings in K are recognized (respectively, generated).

When only one supervisor is used to control a discrete-event system, we are
using centralized control. However, in some cases, we may require or find it
favourable to use multiple, say n, supervisors to control a plant. We call this
decentralized control. In such cases, the set of controllable events Σc can be
subdivided into (not necessarily disjoint) subsets Σ1,c, Σ2,c, . . . , Σn,c, where
Σi,c is the set of events that Supervisor i can disable. Similarly, the set Σo can
be subdivided into (not necessarily disjoint) subsets Σ1,o, Σ2,o, . . . , Σn,o, where
Σi,o is the set of events that Supervisor i can observe directly. We then extend
the notion of a projection and supervisor so that Pi stands for the projection
from Σ∗ −→ Σ∗

i,o and Si = (Ti, ψi) stands for a supervisor that controls events
in Σi,c and observes events in Σi,o.

Since we will consider cases where multiple supervisors impose control on a
plant, we require a way of formalizing the joint action of many controllers. The
definition will capture the idea that an event in the plant will be disabled if
any supervisor issues a disablement command. For simplicity, we restrict our
discussions to the case of only two supervisors but the results in Section 3 gener-
alize to an arbitrary, fixed number of supervisors. For supervisors S1 = (T1, ψ1)
and S2 = (T2, ψ2) acting on G, the conjunction of S1 and S2 is the supervisor
denoted by S1 ∧ S2 = ((T1 × T2), ψ1 ∗ ψ2) where T1 × T2 (called the product)
recognizes the intersection of the languages recognized by T1 and T2 and ψ1 ∗ψ2

disables an event if and only if ψ1 or ψ2 disables it.
The behaviour of the closed-loop system when it is under the control of two

supervisors, i.e., the sequences of events generated while the plant G is under the
control of S1∧S2 (where Si = (Ti, ψi), i = 1, 2), is represented by an automaton
S1 ∧ S2/G whose closed behaviour, denoted by L(S1 ∧ S2/G), permits a string
to be generated if the string is generated by G, generated by Ti (i = 1, 2) and if
each event in the string is enabled by both ψ1 and ψ2. The closed-loop system’s
2 This scenario is not the same thing as the more commonly used property in computer

science called deadlock. Deadlocks mean that a sequence reaches a state from which

no other events may occur; the kind of “blocking” we have in mind arises when

events can keep occurring but they will not lead the sequence to a marked state.

A Summary of Some Discrete-Event System Control Problems 9

marked behaviour is denoted by Lm(S1 ∧ S2/G) and consists of those strings in
L(S1 ∧ S2/G) that are marked by G and by each of T1 and T2.

3 Problems and Complexity

In this section we describe some of the key control problems in discrete-event
systems theory. This list is highly noncomprehensive. We are focusing on the
earlier work in the field, the work that set the stage for the more recent offshoots.
Also, these problems are interesting because, when the languages in question are
regular, in some cases the problems are solvable in polynomial time (in particular
when all events can be observed by the supervisors); in some cases decidable
but not solvable in polynomial time (presuming P �= NP), which is the case
when supervisors have only partial observation or are decentralized; and in a
few surprising cases, undecidable (which is the case for small variants on the
decidable decentralized DES problems).

Most of the DES control problems start with a plant G represented by an
automaton and a formal language E that recognizes the legal sequences. This
language E is called the legal language. The control problems involve finding a
supervisor (or supervisors in the case of decentralized control) that manipulates
the controllable events to guarantee that exactly the legal language is recognized
by the closed-loop system. Sometimes such supervisors do not exist, i.e., there is
no way to disable events at various points in the plant to guarantee that all the
strings in E are generated—because allowing some string s in E to occur will
necessitate allowing some other s′ not in E to occur, if for example, s′ = sσ for
some uncontrollable event σ and s ∈ E but sσ �∈ E. In those cases, we typically
try to find supervisors that guarantee that a subset of the legal language is
recognized in closed-loop and where possible, the largest subset of E that can
safely be generated.

The following are the two main DES control problems considered in the 1980s:

Centralized Supervisory Control Problem 1. Given a plant G over an
alphabet Σ, a legal language E such that ∅ �= E ⊆ Lm(G) and sets Σc ⊆ Σ,
Σo ⊆ Σ, does there exist a nonblocking supervisor S for G such that

Lm(S/G) = E ?

The supervisor S can disable only events in Σc and can observe only the events
in Σo. If a supervisor exists, construct it.

Centralized Supervisory Control Problem 2. Given a plant G over an
alphabet Σ, a prefix-closed legal language E such that ∅ �= E ⊆ L(G), a minimally
adequate language A such that A ⊆ E, and sets Σc ⊆ Σ, Σo ⊆ Σ, does there
exist a nonblocking supervisor S for G such that

A ⊆ L(S/G) ⊆ E ?

10 K. Rudie

The supervisor S can disable only events in Σc and can observe only the events
in Σo. If a supervisor exists, construct it.

Problem 1 was first solved in [4]. Supervisors exist if and only if the system
satisfies two properties: controllability and observability. Controllability was in-
troduced in [5].

Definition 1 (Controllability). Given G over Σ (with controllable events
Σc). For a language K ⊆ L(G), K is controllable with respect to G if

KΣuc ∩ L(G) ⊆ K .

If you think of E as some set of legal sequences and you want to know when it
will be impossible to stop an illegal sequence from happening then E will need
to be controllable. That is, if a string s starts out as legal (i.e., s ∈ E), and an
uncontrollable event σ could happen (i.e., sσ ∈ L(G)), then it must be the case
that the uncontrollable event doesn’t lead somewhere illegal (i.e., sσ ∈ E)—
since that event is uncontrollable and hence cannot be disabled. The definition
of observability, adopted from [4], is as follows.

Definition 2 (Observability). Given a plant G over alphabet Σ, sets Σc, Σo ⊆
Σ, projection P : Σ∗ −→ Σ∗

o , K ⊆ Lm(G) is observable with respect to G, P if
for all s, s′ ∈ Σ∗ such that P (s) = P (s′)

(i) (∀σ ∈ Σ) s′σ ∈ K ∧ s ∈ K ∧ sσ ∈ L(G) =⇒ sσ ∈ K
(ii) s′ ∈ K ∧ s ∈ K ∩ Lm(G) =⇒ s ∈ K .

Intuitively, a supervisor knows what action to take if it knows what sequence
of events actually occurred. However, a string which looks like (i.e., has the
same projection as) another string may be potentially ambiguous in determining
control action. On this basis, an informal description of observability is as follows.
A language K is observable if (i) after the occurrence of an ambiguous string,
s, in K, the decision to enable or disable a controllable event σ is forced by the
action that a supervisor would take on other strings which look like s and (ii) the
decision to mark or not mark a potentially confusing string is consistent for all
strings that look alike to the supervisor.

If the entire legal language cannot be synthesized, typically one tries to syn-
thesize a subset of E. If possible, one tries to find a supervisor whose closed-loop
behaviour generates as many of the legal sequences as possible, so that the lan-
guage L(S/G) is as large as possible and still contained in E. Such supervisors
are called maximally permissive because they ensure that events are only dis-
abled if necessary and, therefore, that the closed-loop language is as large as it
can be without violating the legal language specification. Notice that in Cen-
tralized Problem 2, a language A is introduced (and was not present in the
formulation of Centralized Problem 1). This is because if only some subset of
the legal language is going to be generated in closed-loop, then the specification
of A indicates some lower bound on acceptable behaviour.

A Summary of Some Discrete-Event System Control Problems 11

When G is a finite automaton and E is a regular language, if all events are
observable (i.e., Σo = Σ), Centralized Problem 2 is solvable in polynomial time
as follows. Controllability is closed under arbitrary union and so, from lattice
theory, the set of all controllable languages that are a subset of the legal language
has a supremal element, denoted by sup C(E, G). When G is a deterministic
finite automaton (DFA) and E is a regular language, a DFA that recognizes
sup C(E, G) can be calculated in polynomial time [3]. First you check if A ⊆
sup C(E, G); if not, no supervisor that solves Centralized Problem 2 exists. If the
inclusion is satisfied, then you can construct a supervisor whose state transition
structure is a recognizer for sup C(E, G).

When some events are not observable, one can check whether the legal
language is observable in polynomial time [6]. If E is both controllable and ob-
servable with respect to G, then one can construct a supervisor that solves Cen-
tralized Problem 1 by first constructing a DFA that recognizes E, then replacing
all unobservable events in that automaton by ε, then doing an NFA-to-DFA con-
version on the resulting NFA with ε moves. The resultant DFA recognizes P (E),
i.e., the set of legal sequences seen by a supervisor. One can then use this DFA
to do supervision on the plant G to guarantee that only the strings of E are
generated in closed-loop. The exponential-time operation cannot be obviated: as
shown in [6], even if the system is both controllable and observable, one cannot
always find a supervisor in polynomial time.

In contrast to the case when all events are observable (and one can find a
supremal controllable sublanguage of E), observability is not closed under union
and a supremal observable sublanguage of a given language need not exist. As a
result, Centralized Problem 2 (with partial observation) was solved in [4] using
the computation of the infimal, prefix-closed, observable superlanguage but this
solution is not necessarily maximally permissive. It was shown in [7] that if G is
a DFA and A is a regular language, then the infimal, prefix-closed, observable
superlanguage of A, denoted by inf O(A), can be calculated and is regular. It
was shown in [4] that inf O(A) ⊆ sup C(E) is a necessary and sufficient condition
for there to exist a supervisor that satisfies Centralized Problem 2.

The following are the two main decentralized discrete-event control problems
considered in the late 1980s and early 1990s:

Decentralized Supervisory Control Problem 1. Given a plant G over an al-
phabet Σ, a legal language E such that ∅ �= E ⊆ Lm(G) and sets Σ1,c, Σ2,c, Σ1,o,
Σ2,o ⊆ Σ, do there exist supervisors S1 and S2 such that S1∧S2 is a nonblocking
supervisor for G and such that

Lm(S1 ∧ S2/G) = E ?

For i = 1, 2, supervisor Si can observe only events in Σi,o and can control only
events in Σi,c. The set of uncontrollable events is Σ \(Σ1,c∪Σ2,c). If supervisors
exist, construct them.

Decentralized Supervisory Control Problem 2. Given a plant G over an
alphabet Σ, a prefix-closed legal language E such that ∅ �= E ⊆ L(G), a minimally

12 K. Rudie

adequate language A such that A ⊆ E, and sets Σ1,c, Σ2,c, Σ1,o, Σ2,o ⊆ Σ, do
there exist supervisors S1 and S2 such that

A ⊆ L(S1 ∧ S2/G) ⊆ E ?

Here again, for i = 1, 2, supervisor Si can observe only events in Σi,o and can
control only events in Σi,c. The set of uncontrollable events is Σ \ (Σ1,c ∪Σ2,c).
If supervisors exist, construct them.

Decentralized Problem 1 was first solved in [8]. Supervisors exist if the system
satisfies two properties: controllability and co-observability. The definition of co-
observability, taken from [9], is as follows.

Definition 3 (Co-observability). Given a plant G over alphabet Σ, sets Σ1,c,
Σ2,c, Σ1,o, Σ2,o ⊆ Σ, projections P1 : Σ∗ −→ Σ∗

1,o, P2 : Σ∗ −→ Σ∗
2,o, a language

K ⊆ Lm(G) is co-observable with respect to G, P1, P2 if for all s, s′, s′′ ∈ Σ∗, if
P1(s) = P1(s′) and P2(s) = P2(s′′),

(∀σ ∈ Σ1,c ∩ Σ2,c) s ∈ K ∧ sσ ∈ L(G) ∧ s′σ, s′′σ ∈ K =⇒ sσ ∈ K conjunct 1

∧ (∀σ ∈ Σ1,c \ Σ2,c) s ∈ K ∧ sσ ∈ L(G) ∧ s′σ ∈ K =⇒ sσ ∈ K conjunct 2

∧ (∀σ ∈ Σ2,c \ Σ1,c) s ∈ K ∧ sσ ∈ L(G) ∧ s′′σ ∈ K =⇒ sσ ∈ K conjunct 3

∧ s ∈ K ∩ Lm(G) ∧ s′, s′′ ∈ K =⇒ s ∈ K. conjunct 4

A string s that looks like s′ to one supervisor and like s′′ to another supervi-
sor can cause potential control problems because if the sequence of events in s
occurs, then both supervisors may not be sure whether s or a string that looks
like it happened. With that in mind, an informal description of co-observability
is as follows. A language K is co-observable if (1) after the occurrence of an am-
biguous string, s, in K, the decision to enable or disable a controllable event σ is
forced by the action that a supervisor which can control σ would take on other
strings which look like s (encompassed by conjuncts 1–3 in the definition of co-
observability), and (2) the decision to mark or not mark a potentially confusing
string is determined by at least one of the supervisors (covered by conjunct 4).

It was shown in [10] that if G is finite-state and E is a regular language then
co-observability can be checked in polynomial time. Decentralized Problem 2
was solved in [9] and requires the computation of the infimal, prefix-closed, con-
trollable and co-observable language containing another language. It follows from
the centralized control results of [6] that since the centralized analogue of Decen-
tralized Problem 2 cannot be solved in polynomial time then a fortiori neither
can the decentralized counterpart (otherwise one could use the decentralized so-
lution where one of the two supervisors cannot control or observe any events and
hence supervision falls entirely to one supervisor).

Decentralized DES formulations can be used to model telecommunication pro-
tocol problems. In [11], co-observability is used to verify that an erroneous variant
of the Alternating Bit Protocol is incorrect. In [8, 12, 13], DES control and ob-
servation problems are used to model the data transmission problem for which
the Alternating Bit Protocol is a solution.

A Summary of Some Discrete-Event System Control Problems 13

3.1 Undecidable Problems

While the centralized and decentralized supervisory control problems presented
in the last section were computable, variants of the decentralized control problem
are not decidable. Interest in such DES problems have come both from within the
DES control systems community and from the computer science community. In
particular, two research groups independently produced results that show that
variants on Problem 2 are undecidable. In [14], it is shown that the following
problem is undecidable.

Decentralized Supervisory Control Problem 3. Given a finite-state plant
G over an alphabet Σ and sets Σ1,c, Σ2,c, Σ1,o, Σ2,o ⊆ Σ, do there exist supervi-
sors S1 and S2 such that S1 ∧ S2 is a nonblocking supervisor for G?

The proof in [14] shows that the Halting Problem on Turing machines can be
reduced to Decentralized Problem 3. On the face of it, Decentralized Problem 3
appears to be a special case of Decentralized Problem 4 (below), which is also
shown to be undecidable in [15, 16]. In fact, one can show that each problem
reduces to the other (because the additional legal language requirement of De-
centralized Problem 4 can be incorporated into the plant itself).

Decentralized Supervisory Control Problem 4. Given a finite-state plant
G over an alphabet Σ, a regular language E, and sets Σ1,c, Σ2,c, Σ1,o, Σ2,o ⊆ Σ,
do there exist supervisors S1 and S2 such that S1∧S2 is a nonblocking supervisor
for G and such that

Lm(S1 ∧ S2/G) ⊆ E ?

The proof in [16] that Decentralized Problem 4 is undecidable reduces a decen-
tralized observation problem to the decentralized control problem. The latter
problem is shown to be undecidable by reducing the Post Correspondence Prob-
lem (PCP), which is known to be undecidable, to the observation problem.

Since there are limitations on what can be achieved by decentralized controllers
that make independent control decisions to effect joint control, various research
groups have also explored decentralized DES problems where the supervisors may
communicate with each other. In [17], it is shown that for a decentralized control
problem where supervisors may communicate but where communication delays
are unbounded, checking for existence of supervisors that solve the problem is un-
decidable. On the other hand, in the paper it is also shown that a decentralized
observation problem with bounded-delay communication is decidable.

4 Discussion

Early applications of discrete-event systems control theory had an industrial
engineering flavour to them, with a focus on manufacturing systems; see [2, 18–
20] for a sampling. In those early years of DES theory, most of the control was
centralized and events were generally assumed to be fully observable. Although,

14 K. Rudie

as discussed in Section 3, centralized DES problems (involving finite-state plants
and regular-language specifications) can be solved in polynomial time, often
these monolithic plants are the result of a composition of multiple subplants.
The typical composition strategies used create larger DFAs whose state spaces
are the Cartesian product of the state spaces of their constituent subplants.
Consequently, the number of their states may be exponential in the number
of subplants. As a result, the second wave of DES work focused on modular
architectures such as decentralized control [8, 9, 21] and hierarchical control
[22, 23] as a strategy for managing the computational complexity of centralized
systems. However, as pointed out in Section 3, when multiple supervisors are
involved, each agent no longer retains a full view of all event strings and the
resulting partial observability leads to computational pitfalls which are at best
exponential in the state space of each constituent module (which would at least
be smaller than a single, centralized module) but at worst result in undecidable
problems.

The state-space explosion problem coupled with the restrictions of the ba-
sic DES model has limited the applicability of the research to real engineering
problems. Researchers have sought to address some of these limitations and to
generally enhance the framework by augmenting the basic DES model to ac-
commodate timed events [24], by augmenting the model to allow for events to
have probabilities associated with them [25, 26], and by using formalisms such
as Petri nets (which can characterize classes of languages that are not regular)
[27], temporal logic [28] or other modal logics [29, 30]. Another promising avenue
of research is the limited lookahead approach [31] whereby instead of storing the
entire automaton representing the plant and the entire automaton the accepts
the legal language, we keep a running window of strings of some fixed number N
and then the supervisor performs on-line control and after each event occurrence,
the window is updated.

Our current research seeks to address some of the limitations of the basic DES
model by combining a Petri net representation of plants together with a limited
lookahead approach to traversing the reachability graph of the Petri net. We
have been applying this approach to automate concurrency control in software
engineering [32]. The idea of combining DES control and software engineering has
also been the focus of another research group that includes industrial partners
[33]. In addition, we have been trying to model emergency response protocols as
discrete-event systems. To accomplish this, we have had to augment the standard
Petri net model for DESs to account for event transitions with various timing
properties and event transition choices that occur with some probability [34].

There has been very little interaction between the automata theory and DES
communities even though the latter could benefit from the theoretical devel-
opments and insights of the former. Perhaps too, the control-theoretic angle
and recent interest in the DES community in solving real-world problems could
provide some motivating examples for the automata theory community.

Acknowledgements. I would like to thank Mike Domaratzki, Kai Salomaa and
John Thistle who provided helpful feedback on an earlier draft of this paper.

A Summary of Some Discrete-Event System Control Problems 15

References

1. Ramadge, P.J.: Control and Supervision of Discrete Event Processes. PhD thesis,

Department of Electrical Engineering, University of Toronto (1983)

2. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete-event

processes. SIAM Journal of Control and Optimization 25(1), 206–230 (1987)

3. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 2nd edn.

Springer, New York (2008)

4. Lin, F., Wonham, W.M.: On observability of discrete-event systems. Information

Sciences 44, 173–198 (1988)

5. Ramadge, P.J., Wonham, W.M.: Supervision of discrete event processes. In: Pro-

ceedings of the 21st IEEE Conference on Decision and Control, vol. 3, pp. 1228–

1229 (December 1982)

6. Tsitsiklis, J.N.: On the control of discrete-event dynamical systems. Mathematics

of Control, Signals, and Systems 2, 95–107 (1989)

7. Rudie, K., Wonham, W.M.: The infimal prefix-closed and observable superlanguage

of a given language. Systems & Control Letters 15(5), 361–371 (1990)

8. Cieslak, R., Desclaux, C., Fawaz, A.S., Varaiya, P.: Supervisory control of discrete-

event processes with partial observations. IEEE Transactions on Automatic Con-

trol 33(3), 249–260 (1988)

9. Rudie, K., Wonham, W.M.: Think globally, act locally: Decentralized supervisory

control. IEEE Transactions on Automatic Control 37(11), 1692–1708 (1992)

10. Rudie, K., Willems, J.C.: The computational complexity of decentralized discrete-

event control problems. IEEE Transactions on Automatic Control 40(7), 1313–1319

(1995)

11. Rudie, K., Wonham, W.M.: Protocol verification using discrete-event systems. In:

Proceedings of the 31st IEEE Conference on Decision and Control, Tucson, Ari-

zona, pp. 3770–3777 (December 1992)

12. Rudie, K., Wonham, W.M.: Supervisory control of communicating processes. In:

Logrippo, L., Probert, R.L., Ural, H. (eds.) Protocol Specification, Testing and

Verification X, pp. 243–257. Elsevier Science (North-Holland), Amsterdam (1990);

Expanded version appears as Systems Control Group Report #8907, Department

of Electrical Engineering, University of Toronto (1989)

13. Puri, A., Tripakis, S., Varaiya, P.: Problems and examples of decentralized ob-

servation and control for discrete event systems. In: Caillaud, B., Darondeau, P.,

Lavagno, L., Xie, X. (eds.) Synthesis and Control of Discrete Event Systems, pp.

37–55. Kluwer Academic Publishers, Dordrecht (2001)

14. Thistle, J.G.: Undecidability in decentralized supervision. Systems & Control Let-

ters 54, 503–509 (2005)

15. Tripakis, S.: Undecidable problems of decentralized observation and control. In:

Proceedings of the IEEE Conference on Decision and Control, Orlando, FL, pp.

4104–4109 (December 2001)

16. Tripakis, S.: Undecidable problems of decentralized observation and control on

regular languages. Information Processing Letters 90, 21–28 (2004)

17. Tripakis, S.: Decentralized control of discrete-event systems with bounded or un-

bounded delay communication. IEEE Transactions on Automatic Control 49(9),

1489–1501 (2004)

18. Brandin, B.A., Wonham, W.M., Benhabib, B.: Manufacturing cell supervisory

control—a timed discrete-event system approach. In: Proceedings of the IEEE

Conference on Robotics and Automation, Nice, France, pp. 931–936 (May 1992)

16 K. Rudie

19. Krogh, B.H., Holloway, L.E.: Synthesis of feedback control logic for discrete man-

ufacturing systems. Automatica 27(4), 641–651 (1991)

20. Balemi, S., Hoffmann, G.J., Gyugyi, P., Wong-Toi, H., Franklin, G.F.: Supervi-

sory control of a rapid thermal multiprocessor. IEEE Transactions on Automatic

Control 38(7), 1040–1059 (1993)

21. Yoo, T.-S., Lafortune, S.: A general architecture for decentralized supervisory con-

trol of discrete-event systems. Discrete Event Dynamic Systems: Theory and Ap-

plications 12, 335–377 (2002)

22. Zhong, H., Wonham, W.M.: On the consistency of hierarchical supervision in

discrete-event systems. IEEE Transactions on Automatic Control 35(10), 1125–

1134 (1990)

23. Caines, P.E., Wei, Y.J.: The hierarchical lattices of a finite machine. Systems &

Control Letters 25, 257–263 (1995)

24. Brandin, B.A., Wonham, W.M.: Supervisory control of timed discrete-event sys-

tems. IEEE Transactions on Automatic Control 39(2), 329–342 (1994)

25. Lawford, M., Wonham, W.M.: Supervisory control of probabilistic discrete event

systems. In: Proceedings of the 36th Midwest Symposium on Circuits and Systems,

Detroit, MI, pp. 327–331 (1993)

26. Kumar, R., Garg, V.K.: Control of stochastic discrete event systems modeled by

probabilistic languages. IEEE Transactions on Automatic Control 46(4), 593–606

(2001)

27. Holloway, L., Krogh, B.H., Giua, A.: A survey of Petri net methods for controlled

discrete event systems. Discrete Event Dynamic Systems: Theory and Applica-

tions 2(7), 151–190 (1997)

28. Ostroff, J.S., Wonham, W.M.: A framework for real-time discrete event control.

IEEE Transactions on Automatic Control 35(4), 386–397 (1990)

29. Ricker, S.L., Rudie, K.: Know means no: Incorporating knowledge into decen-

tralized discrete-event control. IEEE Transactions on Automatic Control 45(9),

1656–1668 (2000)

30. Ricker, S.L., Rudie, K.: Knowledge is a terrible thing to waste: Using inference in

discrete-event contol problems. IEEE Transactions on Automatic Control 52(3),

428–441 (2007)

31. Chung, S.-L., Lafortune, S., Lin, F.: Limited lookahead policies in supervisory

control of discrete event systems. IEEE Transactions on Automatic Control 37(12),

1921–1935 (1992)

32. Auer, A., Dingel, J., Rudie, K.: Concurrency control generation for dynamic

threads using discrete-event systems. In: Proceedings of the Allerton Conference on

Communication, Control and Computing, Monticello, IL, September 30-October

2, pp. 927–934 (2009)

33. Kelly, T., Wang, Y., Lafortune, S., Mahlke, S.: Eliminating concurrency bugs with

control engineering. Computer 42(12), 52–60 (2009)

34. Whittaker, S.-J., Rudie, K., McLellan, J., Haar, S.: Choice-point nets: A discrete-

event modelling technique for analyzing health care protocols. In: Proceedings of

the Allerton Conference on Communication, Control and Computing, Monticello,

IL, September 30-October 2, pp. 652–659 (2009)

Large-Scale Training of SVMs with Automata Kernels

Cyril Allauzen1, Corinna Cortes1, and Mehryar Mohri2,1

1 Google Research, 76 Ninth Avenue, New York, NY 10011, USA
2 Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA

Abstract. This paper presents a novel application of automata algorithms to ma-
chine learning. It introduces the first optimization solution for support vector ma-
chines used with sequence kernels that is purely based on weighted automata
and transducer algorithms, without requiring any specific solver. The algorithms
presented apply to a family of kernels covering all those commonly used in text
and speech processing or computational biology. We show that these algorithms
have significantly better computational complexity than previous ones and report
the results of large-scale experiments demonstrating a dramatic reduction of the
training time, typically by several orders of magnitude.

1 Introduction

Weighted automata and transducer algorithms have been used successfully in a variety
of natural language processing applications, including speech recognition, speech syn-
thesis, and machine translation [17]. More recently, they have found other important
applications in machine learning [5,1]: they can be used to define a family of sequence
kernels, rational kernels [5], which covers all sequence kernels commonly used in ma-
chine learning applications in bioinformatics or text and speech processing.

Sequences kernels are similarity measures between sequences that are positive defi-
nite symmetric, which implies that their value coincides with an inner product in some
Hilbert space. Kernels are combined with effective learning algorithms such as support
vector machines (SVMs) [6] to create powerful classification techniques, or with other
learning algorithms to design regression, ranking, clustering, or dimensionality reduc-
tion solutions [19]. These kernel methods are among the most widely used techniques
in machine learning.

Scaling these algorithms to large-scale problems remains computationally challeng-
ing however, both in time and space. One solution consists of using approximation
techniques for the kernel matrix, e.g., [9,2,21,13] or to use early stopping for optimiza-
tion algorithms [20]. However, these approximations can of course result in some loss
in accuracy, which, depending on the size of the training data and the difficulty of the
task, can be significant.

This paper presents general techniques for speeding up large-scale SVM training
when used with an arbitrary rational kernel, without resorting to such approximations.
We show that coordinate descent approaches similar to those used by [10] for linear
kernels can be extended to SVMs combined with rational kernels to design faster al-
gorithms with significantly better computational complexity. Remarkably, our solution
techniques are purely based on weighted automata and transducer algorithms and re-
quire no specific optimization solver. To the best of our knowledge, they form the first

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 17–27, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

18 C. Allauzen, C. Cortes, and M. Mohri

2/8 b:b/2

0
b:b/2

3/2

b:a/3

1

a:b/3

a:a/2

b:a/4

a:a/1

2/8 b/2

0
b/2

3/2

a/3

1

b/3

a/2

a/4

a/1

0

a:ε
b:ε

1a:a
b:b

2a:a
b:b

a:ε
b:ε

(a) (b) (c)

Fig. 1. (a) Example of weighted transducer U. (b) Example of weighted automaton A. In this
example, A can be obtained from U by projection on the output and U(aab, baa)=A(baa)=

3×1×4×2+3×2×3×2. (c) Bigram counting transducer T2 for Σ = {a, b}. Initial states are
represented by bold circles, final states by double circles and the weights of transitions and final
states are indicated after the slash separator.

automata-based optimization algorithm of SVMs, probably the most widely used al-
gorithm in machine learning. Furthermore, we show experimentally that our techniques
lead to a dramatic speed-up of training with sequence kernels. In most cases, we observe
an improvement by several orders of magnitude.

The remainder of the paper is structured as follows. We start with a brief introduc-
tion to weighted transducers and rational kernels (Section 2), including definitions and
properties relevant to the following sections. Section 3 provides a short introduction to
kernel methods such as SVMs and presents an overview of the coordinate descent solu-
tion by [10] for linear SVMs. Section 4 shows how a similar solution can be derived in
the case of rational kernels. The analysis of the complexity and the implementation of
this technique are described and discussed in Section 5. In section 6, we report the re-
sults of experiments with a large dataset and with several types of kernels demonstrating
the substantial reduction of training time using our techniques.

2 Preliminaries

This section introduces the essential concepts and definitions related to weighted trans-
ducers and rational kernels. Generally, we adopt the definitions and terminology of [5].

Weighted transducers are finite-state transducers in which each transition carries
some weight in addition to the input and output labels. The weight set has the struc-
ture of a semiring [12]. In this paper, we only consider weighted transducers over the
real semiring (R+, +,×, 0, 1). Figure 1(a) shows an example. A path from an initial
state to a final state is an accepting path. The input (resp. output) label of an accept-
ing path is obtained by concatenating together the input (resp. output) symbols along
the path from the initial to the final state. Its weight is computed by multiplying the
weights of its constituent transitions and multiplying this product by the weight of the
initial state of the path (which equals one in our work) and by the weight of the final
state of the path. The weight associated by a weighted transducer U to a pair of strings
(x,y) ∈ Σ∗×Σ∗ is denoted by U(x,y). For any transducer U we define the linear
operator D as the sum of the weights of all accepting paths of U.

Large-Scale Training of SVMs with Automata Kernels 19

A weighted automaton A can be defined as a weighted transducer with identical
input and output labels. Discarding the input labels of a weighted transducer U results
in a weighted automaton A, said to be the output projection of U, A = Π2(U). The
automaton in Figure 1(b) is the output projection of the transducer in Figure 1(a).

The standard operations of sum +, product or concatenation ·, multiplication by a
real number and Kleene-closure ∗ are defined for weighted transducers [18]. The inverse
of a transducer U, denoted by U−1, is obtained by swapping the input and output labels
of each transition. For all pairs of strings (x,y), we have U−1(x,y) = U(y,x). The
composition of two weighted transducers U1 and U2 with matching output and input
alphabets Σ, is a weighted transducer denoted by U1 ◦ U2 when the sum:

(U1 ◦ U2)(x,y)=
∑

z∈Σ∗
U1(x, z) × U2(z,y)

is well-defined and in R for all x,y [18]. It can be computed in time O(|U1||U2|))
where |U| denotes the sum of the number of states and transitions of a transducer U.

Given a non-empty set X , a function K:X×X→R is called a kernel. K is said to be
positive definite symmetric (PDS) when the matrix (K(xi,xj))1≤i,j≤m is symmetric
and positive semi-definite (PSD) for any choice of m points in X . A kernel between
sequences K: Σ∗×Σ∗→R is rational [5] if there exists a weighted transducer U such
that K coincides with the function defined by U, that is K(x,y) = U(x,y) for all
x,y ∈ Σ∗. When there exists a weighted transducer T such that U can be decomposed
as U=T◦T−1, then it was shown by [5] that K is PDS. All the sequence kernels seen
in practice are precisely PDS rational kernels of this form.

A standard family of rational kernels is n-gram kernels, see e.g. [15,14]. Let cx(z)
be the number of occurrences of z in x. The n-gram kernel Kn of order n is defined
as Kn(x,y) =

∑
|z|=n cx(z)cy(z). Kn is a PDS rational kernel since it corresponds

to the weighted transducer Tn ◦T−1
n where the transducer Tn is defined such that

Tn(x, z) = cx(z) for all x, z ∈ Σ∗ with |z|= n. The transducer T2 for Σ = {a, b} is
shown in Figure 1(c).

3 Kernel Methods and SVM Optimization

Kernel methods are widely used in machine learning. They have been successfully used
in a variety of learning tasks including classification, regression, ranking, clustering,
and dimensionality reduction. This section gives a brief overview of these methods, and
discusses in more detail one of the most popular kernel learning algorithms, SVMs.

3.1 Overview of Kernel Methods

Complex learning tasks are often tackled using a large number of features. Each point
of the input space X is mapped to a high-dimensional feature space F via a non-linear
mapping Φ. This may be to seek a linear separation in a higher-dimensional space,
which was not achievable in the original space, or to exploit other regression, ranking,
clustering, or manifold properties that are easier to attain in that space. The dimension
of the feature space F can be very large. In document classification, the features may be
the set of all trigrams. Thus, even for a vocabulary of just 200,000 words, the dimension
of F is 2×1015.

20 C. Allauzen, C. Cortes, and M. Mohri

The high dimensionality of F does not necessarily affect the generalization ability of
large-margin algorithms such as SVMs: remarkably, these algorithms benefit from the-
oretical guarantees for good generalization that depend only on the number of training
points and the separation margin, and not on the dimensionality of the feature space.
But the high dimensionality of F can directly impact the efficiency and even the prac-
ticality of such learning algorithms, as well as their use in prediction. This is because
to determine their output hypothesis or for prediction, these learning algorithms rely on
the computation of a large number of dot products in the feature space F .

A solution to this problem is the so-called kernel method. This consists of defining a
function K:X×X→R called a kernel, such that the value it associates to two examples
x and y in input space, K(x,y), coincides with the dot product of their images Φ(x)
and Φ(y) in feature space. K is often viewed as a similarity measure:

∀x,y ∈ X, K(x,y) = Φ(x)�Φ(y). (1)

A crucial advantage of K is efficiency: there is no need anymore to define and explicitly
compute Φ(x), Φ(y), and Φ(x)�Φ(y). Another benefit of K is flexibility: K can be
arbitrarily chosen so long as the existence of Φ is guaranteed, a condition that holds
when K verifies Mercer’s condition. This condition is important to guarantee the con-
vergence of training for algorithms such as SVMs. In the discrete case, it is equivalent
to K being PDS.

One of the most widely used two-group classification algorithm is SVMs [6]. The
version of SVMs without offsets is defined via the following convex optimization prob-
lem for a training sample of m points xi∈X with labels yi∈{1,−1}:

min
w,ξ

1
2
w2 + C

m∑
i=1

ξi s.t. yiw�Φ(xi) ≥ 1 − ξi ∀i ∈ [1, m],

where the vector w defines a hyperplane in the feature space, ξ is the m-dimensional
vector of slack variables, and C ∈ R+ is a trade-off parameter. The problem is typ-
ically solved by introducing Lagrange multipliers α ∈ Rm for the set of constraints.
The standard dual optimization for SVMs can be written as the convex optimization
problem:

min
α

F (α) =
1
2
α�Qα − 1�α s.t. 0 ≤ α ≤ C,

where α ∈ Rm is the vector of dual variables and the PSD matrix Q is defined in terms
of the kernel matrix K: Qij = yiyjKij = yiyjΦ(xi)�Φ(xj), i, j ∈ [1, m]. Expressed
with the dual variables, the solution vector w can be written as w=

∑m
i=1 αiyiΦ(xi).

3.2 Coordinate Descent Solution for SVM Optimization

A straightforward way to solve the convex dual SVM problem is to use a coordinate
descent method and to update only one coordinate αi at each iteration, see [10]. The
optimal step size β� corresponding to the update of αi is obtained by solving

min
β

1
2
(α + βei)�Q(α + βei) − 1�(α + βei) s.t. 0 ≤ α + βei ≤ C,

Large-Scale Training of SVMs with Automata Kernels 21

SVMCOORDINATEDESCENT((xi)i∈[1,m])

1 α ← 0
2 while α not optimal do
3 for i ∈ [1, m] do
4 g ← yix

�
i w − 1 and α′

i ← min(max(αi − g
Qii

, 0), C)

5 w ← w + (α′
i − αi)xi and αi ← α′

i

6 return w

Fig. 2. Coordinate descent solution for SVM

where ei is an m-dimensional unit vector. Ignoring constant terms, the optimization
problem can be written as

min
β

1
2
β2Qii + βe�

i (Qα − 1) s.t. 0 ≤ αi + β ≤ C.

If Qii = Φ(xi)�Φ(xi) = 0, then Φ(xi) = 0 and Qi = e�
i Q = 0. Hence the objective

function reduces to −β, and the optimal step size is β� =C−αi, resulting in the update:
αi←0. Otherwise Qii �=0 and the objective function is a second-degree polynomial in

β. Let β0 =−Q�
i α−1
Qii

, then the optimal step size and update is given by

β� =

⎧⎪⎨
⎪⎩

β0, if −αi≤β0≤C−αi,

−αi, if β0 ≤ −αi,

C − αi, otherwise

and αi ← min
(
max

(
αi−Q�

i α − 1
Qii

, 0
)

, C

)
.

When the matrix Q is too large to store in memory and Qii �=0, the vector Qi must be
computed at each update of αi. If the cost of the computation of each entry Kij is in
O(N) where N is the dimension of the feature space, computing Qi is in the O(mN),
and hence the cost of each update is in O(mN).

The choice of the coordinate αi to update is based on the gradient. The gradient of
the objective function is ∇F (α)=Qα−1. At a cost in O(mN) it can be updated via

∇F (α) ← ∇F (α) + Δ(αi)Qi.

Hsieh et al. [10] observed that when the kernel is linear, Q�
i α can be expressed in terms

of w, the SVM weight vector solution, w=
∑m

j=1 yjαjxj :

Q�
i α=

m∑
j=1

yiyj(x�
i xj)αj =yix�

i w.

If the weight vector w is maintained throughout the iterations, then the cost of an update
is only in O(N) in this case. The weight vector w can be updated via

w ← w + Δ(αi)yixi.

Maintaining the gradient ∇F (α) is however still costly. The jth component of the
gradient can be expressed as follows:

[∇F (α)]j = [Qα − 1]j =
m∑

i=1

yiyjx�
i xjαi − 1 = w�(yjxj) − 1.

22 C. Allauzen, C. Cortes, and M. Mohri

SVMRATIONALKERNELS((Φ′
i)i∈[1,m])

1 α ← 0
2 while α not optimal do
3 for i ∈ [1, m] do
4 g ← D(Φ′

i ◦W′) − 1 and α′
i ← min(max(αi − g

Qii
, 0), C)

5 W′ ← W′ + (α′
i − αi)Φ

′
i and αi ← α′

i

6 return W′

Fig. 3. Coordinate descent solution for rational kernels

i xi yi Qii

1 ababa +1 8
2 abaab +1 6
3 abbab −1 6

0

1a/2

2

b/2 3/1

b/1

a/1 0

1a/1

2

b/1

3/1

a/1
b/2

a/1 0

1a/-2

2

b/-1

3/1

b/1

a/1

b/1

(a) (b) (c) (d)

Fig. 4. (a) Example dataset. (b-d) The automata Φ′
i corresponding to the dataset of (a) when using

a bigram kernel. The given Φ′
i and Qii’s assume the use of a bigram kernel.

The update for the main term of component j of the gradient is thus given by:

w�xj ← w�xj + (Δw)�xj .

Each of these updates can be done in O(N). The full update for the gradient can hence
be done in O(mN). Several heuristics can be used to eliminate the cost of maintain-
ing the gradient. For instance, one can choose a random αi to update at each iteration
[10] or sequentially update the αis. Hsieh et al. [10] also showed that it is possible to
use the chunking method of [11] in conjunction with such heuristics. Using the results
from [16], [10] showed that the resulting coordinate descent algorithm, SVMCOOR-
DINATEDESCENT (Figure 2) converges to the optimal solution with a linear or faster
convergence rate.

4 Coordinate Descent Solution for Rational Kernels

This section shows that, remarkably, coordinate descent techniques similar to those
described in the previous section can be used in the case of rational kernels.

For rational kernels, the input “vectors” xi are sequences, or distributions over se-
quences, and the expression

∑m
j=1 yjαjxj can be interpreted as a weighted regular ex-

pression. For any i ∈ [1, m], let Xi be a simple weighted automaton representing xi,
and let W denote a weighted automaton representing w=

∑m
j=1 yjαjxj . Let U be the

weighted transducer associated to the rational kernel K . Using the linearity of D and
distributivity properties just presented, we can now write:

Q�
i α =

m∑
j=1

yiyjK(xi,xj)αj =
m∑

j=1

yiyj D(Xi ◦ U ◦ Xj)αj (2)

= D(yiXi ◦U ◦
m∑

j=1

yjαjXj) = D(yiXi ◦ U ◦ W).

Large-Scale Training of SVMs with Automata Kernels 23

0

1a/1

2

b/1

3
a/1

4
b/1

5
a/1

6

b/1

0

1a/1

2

b/1

3
a/1

4/(1/4)
b/1

5/(1/4)
a/1

6

b/1

0

1a/1

2

b/1

3/(1/24)
a/1

4/(1/3)
b/1

5/(7/24)
a/1

6

b/1

0

1a/1

2

b/1

3/(1/24)

a/1

4/(-23/72)
b/1

5/(-1/48)
a/1

6/(-47/144)

b/1

(a) (b) (c) (d)

Fig. 5. Evolution of W′ through the first iteration of SVMRATIONALKERNELS on the dataset
from Figure 4

0,0

1,1a/2

2,2

b/2

3,4
b/1

3,5
a/1

0,0

1,1a/1

2,2

b/1

3,3
a/1

3,4/(1/4)
b/2

3,5/(1/4)
a/1

0,0

1,1a/-2

2,2

b/-1

3,4/(1/3)b/1

3,5/(7/24)
a/1

3,6

b/1

(a) (b) (c)

Fig. 6. The automata Φ′
i◦W′ during the first iteration of SVMRATIONALKERNELS on the data

in Figure 4

Since U is a constant, in view of the complexity of composition, the expression yiXi◦
U◦W can be computed in time O(|Xi||W|). When yiXi ◦U◦W is acyclic, which
is the case for example if U admits no input ε-cycle, then D(yiXi ◦U◦W) can be
computed in linear time in the size of yiXi◦U◦W using a shortest-distance algorithm,
or forward-backward algorithm. For all of the rational kernels that we are aware of, U
admits no input ε-cycle and this property holds. Thus, in that case, if we maintain a
weighted automaton W representing w, Q�

i α can be computed in O(|Xi||W|). This
complexity does not depend on m and the explicit computation of m kernel values
K(xi,xj), j ∈ [1, m], is avoided. The update rule for W consists of augmenting the
weight of sequence xi in the weighted automaton by Δ(αi)yi:

W ← W + Δ(αi)yiXi.

This update can be done very efficiently if W is deterministic, in particular if it is
represented as a deterministic trie.

When the weighted transducer U can be decomposed as T◦T−1, as for all sequence
kernels seen in practice, we can further improve the form of the updates. Let Π2(U)
denote the weighted automaton obtained form U by projection over the output labels
as described in Section 2. Then

Q�
i α = D

(
yiXi ◦ T ◦ T−1 ◦ W

)
= D((yiXi ◦ T) ◦ (W ◦T)−1)

= D (Π2(yiXi ◦ T) ◦ Π2(W ◦ T)) = D(Φ′
i ◦ W′), (3)

24 C. Allauzen, C. Cortes, and M. Mohri

Table 1. First iteration of SVMRATIONALKERNELS on the dataset given Figure 4. The last line
gives the values of α and W′ at the end of the iteration.

i α W′ Φ′
i◦W′ D(Φ′

i◦W′) α′
i

1 (0, 0, 0) Fig. 5(a) Fig. 6(a) 0 1
8

2 (1
8
, 0, 0) Fig. 5(b) Fig. 6(b) 3

4
1
24

3 (1
8
, 1

24
, 0) Fig. 5(c) Fig. 6(c) − 23

24
47
144

(1
8
, 1

24
, 47

144
) Fig. 5(d)

where Φ′
i = Π2(yiXi◦T) and W′ = Π2(W ◦ T). Φ′

i, i∈ [1, m] can be precomputed
and instead of W, we can equivalently maintain W′, with the following update rule:

W′ ← W′ + Δ(αi)Φ′
i. (4)

The gradient ∇(F)(α)=Qα − 1 can be expressed as follows

[∇(F)(α)]j = [Q�α − 1]j = Q�
j α − 1 = D(Φ′

j ◦ W′) − 1.

The update rule for the main term D(Φ′
j◦W′) can be written as

D(Φ′
j ◦ W′) ← D(Φ′

j ◦ W′) + D(Φ′
j ◦ ΔW′).

Using (3) to compute the gradient and (4) to update W′, we can generalize Algorithm
SVMCOORDINATEDESCENT of Figure 2 and obtain Algorithm SVMRATIONALK-
ERNELS of Figure 3. It follows from [16] that this algorithm converges at least linearly
towards a global optimal solution. Moreover, the heuristics used by [10] and mentioned
in the previous section can also be applied here to empirically improve the convergence
rate of the algorithm. Table 1 shows the first iteration of SVMRATIONALKERNELS on
the dataset given by Figure 4 when using a bigram kernel.

5 Implementation and Analysis

A key factor in analyzing the complexity of SVMRATIONALKERNELS is the choice of
the data structure used to represent W′. In order to simplify the analysis, we assume that
the Φ′

is, and thus W′, are acyclic. This assumption holds for all rational kernels used in
practice, however, it is not a requirement for the correctness of SVMRATIONALKER-
NELS. Given an acyclic weighted automaton A, we denote by l(A) the maximal length
of an accepting path in A and by n(A) the number of accepting paths in A.

A straightforward choice follows directly from the definition of W′. W′ is rep-
resented as a non-deterministic weighted automaton, W′ =

∑m
i=1 αiΦ′

i, with a sin-
gle initial state and m outgoing ε-transitions, where the weight of the ith transition
is αi and its destination state the initial state of Φ′

i. The size of this choice of W′ is
|W′|=m +

∑m
i=1 |Φ′

i|. The benefit of this representation is that the update of α using
(4) can be performed in constant time since it requires modifying only the weight of

Large-Scale Training of SVMs with Automata Kernels 25

Table 2. Time complexity of each gradient computation and of each update of W′ and the space
complexity required for representing W′ given for each type of representation of W′

Representation of W′ Time complexity Space complexity
(gradient) (update) (for storing W′)

naive (W′
n) O(|Φ′

i|
∑m

i=1 |Φ′
i|) O(1) O(m)

trie (W′
t) O(n(Φ′

i)l(Φ
′
i)) O(n(Φ′

i)) O(|W′
t|)

minimal automaton (W′
m) O(|Φ′

i◦W′
m|) open O(|W′

m|)

one of the ε-transitions out of the initial state. However, the complexity of computing
the gradient using (3) is in O(|Φ′

j ||W′|)=O(|Φ′
j |

∑m
i=1 |Φ′

i|).
Representing W′ as a deterministic weighted trie can lead to a simple update us-

ing (4). A weighted trie is a rooted tree where each edge is labeled and each node is
weighted. During composition, each accepting path in Φ′

i is matched with a distinct
node in W′. Thus, n(Φ′

i) paths of W′ are explored during composition. Since the length
of each of these paths is at most l(Φ′

i), this leads to a complexity in O (n(Φ′
i)l(Φ

′
i)) for

computing Φ′
i◦W′ and thus for computing the gradient using (3). Since each accepting

path in Φ′
i corresponds to a distinct node in W′, the weights of at most n(Φ′

i) nodes
of W′ need to be updated. Thus, the complexity of an update of W′ is O (n(Φ′

i)).
The drawback of a trie representation is that it does not provide all of the sparsity

benefits of a fully automata-based approach. A more space-efficient approach consists
of representing W′ as a minimal deterministic weighted automaton which can be sub-
stantially smaller, exponentially smaller in some cases, than the corresponding trie.

The complexity of computing the gradient using (3) is then in O(|Φ′
i ◦W′|) which

is significantly less than the O (n(Φ′
i)l(Φ

′
i)) complexity of the trie representation. Per-

forming the update of W′ using (4) can be more costly though. With the straightforward
approach of using the general union, weighted determinization and minimization algo-
rithms [5], the complexity depends on the size of W′. The cost of an update can thus
sometimes become large. However, it is perhaps possible to design more efficient algo-
rithms for augmenting a weighted automaton with a single string or even a set of strings
represented by a deterministic automaton, while preserving determinism and minimal-
ity. The approach just described forms a strong motivation for the study and analysis
of such non-trivial and probably sophisticated automata algorithms since it could lead
to even more efficient updates of W′ and overall speed-up of the SVMs training with
rational kernels. We leave the study of this open question to the future. We note, how-
ever, that that analysis could benefit from existing algorithms in the unweighted case.
Indeed, in the unweighted case, a number of efficient algorithms have been designed for
incrementally adding a string to a minimal deterministic automaton while keeping the
result minimal and deterministic [7,3], and the complexity of each addition of a string
using these algorithms is only linear in the length of the string added.

Table 2 summarizes the time and space requirements for each type of representation
for W′. In the case of an n-gram kernel of order k, l(Φ′

i) is a constant k, n(Φ′
i) is the

number of distinct k-grams occurring in xi, n(W′
t) (= n(W′

m)) the number of distinct
k-grams occurring in the dataset, and |W′

t| the number of distinct n-grams of order less
than or equal to k in the dataset.

26 C. Allauzen, C. Cortes, and M. Mohri

Table 3. Time for training an SVM classifier using an SMO-like algorithm and SVMRA-
TIONALKERNELS using a trie representation for W′, and size of W′ (number of transitions)
when representing W′ as a deterministic weighted trie and a minimal deterministic weighted
automaton

Dataset Kernel SMO-like New Algo. trie min. aut.
Reuters 4-gram 2m 18s 25s 66,331 34,785
(subset) 5-gram 3m 56s 30s 154,460 63,643

6-gram 6m 16s 41s 283,856 103,459
7-gram 9m 24s 1m 01s 452,881 157,390

10-gram 25m 22s 1m 53s 1,151,217 413,878
gappy 3-gram 10m 40s 1m 23s 103,353 66,650
gappy 4-gram 58m 08s 7m 42s 1,213,281 411,939

Reuters 4-gram 618m 43s 16m 30s 242,570 106,640
(full) 5-gram >2000m 23m 17s 787,514 237,783

6-gram >2000m 31m 22s 1,852,634 441,242
7-gram >2000m 37m 23s 3,570,741 727,743

6 Experiments

We used the Reuters-21578 dataset, a large data set convenient for our analysis and com-
monly used in experimental analyses of string kernels (http://www.daviddlewis.
com/resources/). We refer by full dataset to the 12,902 news stories part of the Mod-
eApte split. Since our goal is only to test speed (and not accuracy), we train on training
and test sets combined. We also considered a subset of that dataset consisting of 466 news
stories. We experimented both with n-gram kernels and gappy n-gram kernels with dif-
ferent n-gram orders. We trained binary SVM classification for the acq class using the
following two algorithms: (a) the SMO-like algorithm of [8] implemented using LIB-
SVM [4] and modified to handle the on-demand computation of rational kernels; and
(b) SVMRATIONALKERNELS implemented using a trie representation for W′. Table 3
reports the training time observed using a dual-core 2.2 GHz AMD Opteron workstation
with 16GB of RAM, excluding the pre-processing step which consists of computing Φ′

i

for each data point and that is common to both algorithms. To estimate the benefits of
representing W′ as a minimal automaton, we applied the weighted minimization algo-
rithm to the tries output by SVMRATIONALKERNELS (after shifting the weights to the
non-negative domain) and observed the resulting reduction in size. The results reported
in Table 3 show that representing W′ by a minimal deterministic automaton can lead
to very significant savings in space and a substantial reduction of the training time with
respect to the trie representation using an incremental addition of strings to W′.

7 Conclusion

We presented novel techniques for large-scale training of SVMs when used with se-
quence kernels. We gave a detailed description of our algorithms and discussed differ-
ent implementation choices, and presented an analysis of the resulting complexity. Our
empirical results with large-scale data sets demonstrate dramatic reductions of the train-
ing time. Our software will be made publicly available through an open-source project.

http://www.daviddlewis.com/resources/
http://www.daviddlewis.com/resources/

Large-Scale Training of SVMs with Automata Kernels 27

Remarkably, our training algorithm for SVMs is entirely based on weighted automata
algorithms and requires no specific solver.

References

1. Allauzen, C., Mohri, M., Talwalkar, A.: Sequence kernels for predicting protein essentiality.
In: ICML 2008 (2008)

2. Bach, F.R., Jordan, M.I.: Kernel independent component analysis. JMLR 3, 1–48 (2002)
3. Carrosco, R.C., Forcada, M.L.: Incremental construction and maintenance of minimal finite-

state automata. Computational Linguistics 28(2), 207–216 (2002)
4. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001)
5. Cortes, C., Haffner, P., Mohri, M.: Rational Kernels: Theory and Algorithms. JMLR (2004)
6. Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20(3) (1995)
7. Daciuk, J., Mihov, S., Watson, B.W., Watson, R.: Incremental construction of minimal acyclic

finite state automata. Computational Linguistics 26(1), 3–16 (2000)
8. Fan, R.-E., Chen, P.-H., Lin, C.-J.: Working set selection using second order information for

training SVM. JMLR 6, 1889–1918 (2005)
9. Fine, S., Scheinberg, K.: Efficient SVM training using low-rank kernel representations. Jour-

nal of Machine Learning Research 2, 243–264 (2002)
10. Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S.S., Sundararajan, S.: A dual coordinate

descent method for large-scale linear SVM. In: ICML, pp. 408–415 (2008)
11. Joachims, T.: Making large-scale SVM learning practical. In: Advances in Kernel Methods:

Support Vector Learning. The MIT Press, Cambridge (1998)
12. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. In: EATCS Monographs on The-

oretical Computer Science, vol. 5. Springer, New York (1986)
13. Kumar, S., Mohri, M., Talwalkar, A.: On sampling-based approximate spectral decomposi-

tion. In: ICML (2009)
14. Leslie, C.S., Eskin, E., Noble, W.S.: The Spectrum Kernel: A String Kernel for SVM Protein

Classification. In: Pacific Symposium on Biocomputing, pp. 566–575 (2002)
15. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification

using string kernels. JMLR 2 (2002)
16. Luo, Z.Q., Tseng, P.: On the convergence of the coordinate descent method for convex dif-

ferentiable minimization. J. of Optim. Theor. and Appl. 72(1), 7–35 (1992)
17. Mohri, M.: Weighted automata algorithms. In: Handbook of Weighted Automata, pp. 213–

254. Springer, Heidelberg (2009)
18. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Springer,

Heidelberg (1978)
19. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge Univ.

Press, Cambridge (2004)
20. Tsang, I.W., Kwok, J.T., Cheung, P.-M.: Core vector machines: Fast SVM training on very

large data sets. JMLR 6, 363–392 (2005)
21. Williams, C.K.I., Seeger, M.: Using the Nyström method to speed up kernel machines. In:

NIPS, pp. 682–688 (2000)

Filters for Efficient Composition of Weighted
Finite-State Transducers

Cyril Allauzen, Michael Riley, and Johan Schalkwyk

Google Research, 76 Ninth Avenue, New York, NY 10011, USA

{allauzen,riley,johans}@google.com

Abstract. This paper describes a weighted finite-state transducer com-

position algorithm that generalizes the concept of the composition filter
and presents various filters that process epsilon transitions, look-ahead

along paths, and push forward labels along epsilon paths. These filters,

either individually or in combination, make it possible to compose some

transducers much more efficiently in time and space than otherwise possi-

ble. We present examples of this drawn, in part, from demanding speech-

processing applications. The generalized composition algorithm and many

of these filters have been included in OpenFst, an open-source weighted

transducer library.

1 Introduction

The composition algorithm plays a central role in the use of weighted finite-state
transducers. It is used, for example, to apply finite-state models to inputs and
to combine cascaded models. The classical version of the composition algorithm,
which simply matches transitions leaving paired input states, is easy to imple-
ment and often effective in practice. However, experience has shown that there
are some transducers of practical importance that do not compose efficiently
in this way. These cases typically create significant numbers of non-coaccessible
composition states that waste time and space. For some problems, it is possible
to find equivalent inputs that will compose more efficiently, but it is not always
possible or desirable to do so. This has been especially an issue in natural lan-
guage processing applications and led to special-purpose composition algorithms
for use in speech recognition [5,6,10,14] and speech synthesis [2].

In this paper we generalize the composition algorithm, subsuming several of
these specializations and others in an efficient way. The idea is to introduce a
composition filter, applied at each composition state during the construction,
that decides if composition is to continue. If we set out to create a general com-
position filter that blocks every non-coaccessible composition state for any input
transducers, then we have only delegated the job of doing a full composition to
the filter. Instead, we take the view that there are certain specific filters, tailored
to particular but common cases, that are efficient to use, involving only a limited
degree of look-ahead along paths. Composition itself is then parameterized to
take one or more of these filters that are selected by the user to fit his problem.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 28–38, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Filters for Efficient Composition of Weighted Finite-State Transducers 29

Section 2 presents the generalized composition algorithm and defines several
composition filters. Section 3 provides examples of these composition filters ap-
plied to practical problems. Section 4 briefly describes how these filters are used
in OpenFst [3], an open-source weighted transducer library.

2 Composition Algorithm

2.1 Preliminaries

A semiring (K,⊕,⊗, 0, 1) is ring that may lack negation. If ⊗ is commutative,
we say that the semiring is commutative.

The probability semiring (R+, +,×, 0, 1) is used when the weights represent
probabilities. The log semiring (R∪{∞} ,⊕log, +,∞, 0), isomorphic to the prob-
ability semiring via the negative-log mapping, is often used in practice for nu-
merical stability. The tropical semiring (R ∪ {∞} , min, +,∞, 0), derived from
the log semiring using the Viterbi approximation, is often used in shortest-path
applications.

A weighted finite-state transducer T = (A,B, Q, I, F, E, λ, ρ) over a semiring
K is specified by a finite input alphabet A, a finite output alphabet B, a finite
set of states Q, a set of initial states I ⊆ Q, a set of final states F ⊆ Q, a finite
set of transitions E ⊆ E = Q × (A ∪ {ε}) × (B ∪ {ε}) × K × Q, an initial state
weight assignment λ : I → K, and a final state weight assignment ρ : F → K.
E[q] denotes the set of transitions leaving state q ∈ Q.

Given a transition e ∈ E, p[e] denotes its origin or previous state, n[e] its
destination or next state, i[e] its input label, o[e] its output label, and w[e] its
weight. A path π = e1 · · · ek is a sequence of consecutive transitions: n[ei−1] =
p[ei], i = 2, . . . , k. The functions n, p, and w on transitions can be extended
to paths by setting: n[π] = n[ek] and p[π] = p[e1] and by defining the weight
of a path as the ⊗-product of the weights of its constituent transitions: w[π] =
w[e1] ⊗ · · · ⊗ w[ek]. A string is a sequence of labels; ε denotes the empty string.

The weight associated by T to any pair of input-output strings (x, y) is given
by:

T (x, y) =
⊕

π∈∪q∈I, q′∈F P (q,x,y,q′)

λ[p[π]] ⊗ w[π] ⊗ ρ[n[π]], (1)

where P (q, x, y, q′) denotes the set of paths from q to q′ with input label x ∈ A∗

and output label y ∈ B∗.
We denote by |T |Q the number of states, |T |E the number of transitions, and

d(T) the maximum out-degree in T . The size of T is then |T | = |T |Q + |T |E.

2.2 Composition

Let K be a commutative semiring and let T1 and T2 be two weighted trans-
ducers defined over K such that the input alphabet B of T2 coincides with the
output alphabet of T1. The result of the composition of T1 and T2 is a weighted
transducer denoted by T1 ◦ T2 and specified for all x, y by:

(T1 ◦ T2)(x, y) =
⊕

z∈B∗
T1(x, z) ⊗ T2(z, y). (2)

30 C. Allauzen, M. Riley, and J. Schalkwyk

Weighted-Composition(T1, T2, Φ)

1 Q ← I ← S ← I1 × I2 × {i3}
2 for each (q1, q2, i3) ∈ I do
3 λ(q1, q2, i3) ← λ1(q1) ⊗ λ2(q2)
4 while S
= ∅ do
5 (q1, q2, q3) ← Head(S)
6 Dequeue(S)
7 if (q1, q2, q3) ∈ F1 × F2 × Q3 and ρ3(q3)
= 0 then
8 F ← F ∪ {(q1, q2, q3)}
9 ρ(q1, q2, q3) ← ρ1(q1) ⊗ ρ2(q2) ⊗ ρ3(q3)

10 M ← {(e1, e2) ∈ EL[q1] × EL[q2] s.t. ϕ(e1, e2, q3) = (e′
1, e′

2, q′
3) with q′

3
=⊥}
11 for each (e1, e2) ∈ M do
12 (e′

1, e′
2, q′

3) ← ϕ(e1, e2, q3)
13 if (n[e′

1], n[e′
2], q′

3)
∈ Q then
14 Q ← Q ∪ {

(n[e′
1], n[e′

2], q′
3)

}
15 Enqueue(S, (n[e′

1], n[e′
2], q′

3))
16 E ← E ∪ {((q1, q2, q3), i[e′

1], o[e′
2], w[e′

1] ⊗ w[e′
2], (n[e′

1], n[e′
2], q′

3))}
17 return T

Fig. 1. Pseudocode of the composition algorithm

Leaving aside transitions with ε inputs or outputs, the following rule specifies
how to compute a transition of T1 ◦T2 from appropriate transitions of T1 and T2:
(q1, a, b, w1, q

′
1) and (q2, b, c, w2, q

′
2) results in ((q1, q2), a, c, w1 ⊗ w2, (q′1, q

′
2)). A

simple algorithm to compute the composition of two ε-free transducers, following
the above rule, is given in [13].

More care is needed when T1 has output ε labels or T2 input ε labels. An
output ε label in T1 may be matched with an input ε label in T2, following the
above rule with ε labels treated as regular symbols. However, an output ε label
may also be read in T1 without matching any actual transition in T2. This case
can be handled by the above rule after adding self-loops at every state of T2

labeled on the inner tape by a new symbol εL and on the outer tape by ε and
allowing transitions labeled by ε and εL to match. Similar self-loops are added
to T1 for matching input ε labels on T2. However, this approach can result in
redundant ε-paths since an epsilon label can match in the two above ways. The
redundant paths must be filtered out because they will produce incorrect results
in non-idempotent semirings (like the log semiring).1 We introduced the εL label
to distinguish these two types of match in the filtering.

In [13], a filter transducer is introduced that is used with relabeling and the
ε-free composition algorithm to correctly implement composition with ε labels.
Our composition algorithm extends this by generalizing the composition filter.

Our algorithm takes as input two weighted transducers T1 =
(A,B, Q1, I1, F1, E1, λ1, ρ1) and T2 = (B, C, Q2, I2, F2, E2, λ2, ρ2) over a
semiring K and a composition filter Φ = (T1, T2, Q3, i3,⊥, ϕ, ρ3), which has a
set of filter states Q3, a designated initial filter state i3, a designated blocking
filter state ⊥, a transition filter ϕ : EL

1 × EL
2 × Q3 → E1 × E2 × Q3 where

EL
n =

⋃
q∈Qn

EL[q], EL[q1] = E[q1] ∪
{
(q1, ε, ε

L, 1, q1)
}

for each q1 ∈ Q1,
EL[q2] = E[q2] ∪

{
(q2, ε

L, ε, 1, q2)
}

for each q2 ∈ Q2 and a final weight filter
ρ3 : Q3 → K.
1 Redundant ε-paths are also an issue in the unweighted case when testing for the

ambiguity of finite automata [1].

Filters for Efficient Composition of Weighted Finite-State Transducers 31

We shall see that the filter can be used in composition to block the expansion
of some states (by entering the ⊥ state) and modify the transitions and final
weights (useful for optimizations).

The states in the output of composition are identified with triples of a state
from each of the two input transducers and one from the filter. In particular, the
algorithm outputs a weighted finite-state transducer T = (A, C, Q, I, F, E, λ, ρ)
implementing the composition of T1 and T2 where Q ⊆ Q1 × Q2 × Q3 and
I = I1 × I2 × {i3}.

Figure 1 gives the pseudocode of this algorithm. E and F are all initialized
to the empty set and grown as needed. The algorithm uses a queue S containing
the set of state triples of states yet to be examined. The queue discipline of S
is arbitrary and does not affect the termination of the algorithm. The state set
Q is initially the set of triples of initial states of the original transducers and
filter, as is I and S, and the corresponding initial weights are computed (lines
1-3). Each time through the loop in lines 3-14, a new triple of states (q1, q2, q3)
is extracted from S (lines 5-6). The final weight of (q1, q2, q3) is computed by
⊗-multiplying the final weights of q1 and q2 and the final filter weight when they
are all final states (lines 8-9). Then, for each pair of transitions, the transition
filter is first applied. If the new filter state is not the blocking state ⊥ and a new
transition is created from the filter-rewritten transitions (e′1, e

′
2) (line 16). If the

destination state (n[e′1], n[e′2], q
′
3) has not been found previously, it is added to

Q and inserted in S (lines 13-15). The composition algorithm presented here is
available in the OpenFst library [3].

2.3 Elementary Composition Filters

In this section, we consider elementary filters for composition without and with
epsilon transitions.

Trivial Filter. Filter Φtrivial blocks no paths and leaves transitions and fi-
nal weights unmodified. For Φtrivial, let Q3 = {0,⊥}, i3 = 0, ϕ(e1, e2, q3) =
(e1, e2, q

′
3) with q′3 = 0 if o[e1] = i[e2] ∈ B and ⊥ otherwise, and ρ(q3) = 1

for all q3 ∈ Q3. With this filter, the pseudocode in Figure 1 matches the simple
epsilon-free composition algorithm given in [13].

Let us assume that the transitions at each state in T2 are sorted according to
their input label. The set M of transitions to be computed line 8 is simply equal
to {(e1, e2) ∈ E[q1] × E[q2] : o[e1] = i[e2]}. It can be computed by performing a
binary search over E[q2] for each transition in E[q1]. The time complexity of
computing M is then O(|E[q1]| log |E[q2]| + |M |). Since each element in M will
result in a transition in T , the worst-case time complexity of the algorithm is
O(|T |Qd(T1) log d(T2) + |T |E). The space complexity of the algorithm is O(|T |).

Epsilon-Matching Filter. Filter Φε-match handles epsilon labels, but disallows
redundant epsilon paths, preferring those that match actual ε labels. It leaves
transitions and final weights unmodified.

32 C. Allauzen, M. Riley, and J. Schalkwyk

For Φε-match, let Q3 = {0, 1, 2,⊥}, i3 = 0, ρ(q3) = 1 for all q3 ∈ Q3, and
ϕ(e1, e2, q3) = (e1, e2, q

′
3) where:

q′3 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if (o[e1], i[e2]) = (x, x) with x ∈ B,
0 if (o[e1], i[e2]) = (ε, ε) and q3 = 0,
1 if (o[e1], i[e2]) = (εL, ε) and q3 �= 2,
2 if (o[e1], i[e2]) = (ε, εL) and q3 �= 1,
⊥ otherwise.

With this filter, the pseudocode in Figure 1 matches the composition algorithm
given in [13] with the specified composition filter transducer. The complexity of
the algorithm is the same as when using the trivial filter.

Epsilon-Sequencing Filter. Alternatively, filter Φε-seq can also be used to
remove redundant epsilon paths. This filter favors epsilon paths consisting of
(output) ε-transitions in T1 (matched with staying at the same state in T2)
followed by (input) ε-transitions in T2 (matched with staying at the same state
in T1).

For Φε-seq, let Q3 = {0, 1,⊥}, i3 = 0, ρ(q3) = 1 for all q3 ∈ Q3, and
ϕ(e1, e2, q3) = (e1, e2, q

′
3) where:

q′3 =

⎧⎪⎪⎨
⎪⎪⎩

0 if (o[e1], i[e2]) = (x, x) with x ∈ B,
0 if (o[e1], i[e2]) = (ε, εL) and q3 = 0,
1 if (o[e1], i[e2]) = (εL, ε),
⊥ otherwise.

(3)

The complexity of the algorithm is the same as when using the trivial filter.
Replacing the pair (o[e1], i[e2]) by (i[e2], o[e1]) in (3) leads to the symmetric filter
Φε-seq. Whether it is better to choose the epsilon-matching or epsilon-sequencing
filter is problem-dependent as shown in Section 3.

2.4 Look-Ahead Composition Filters

In this section, we introduce filters that can result in more efficient composition
by looking-ahead along paths and blocking unsuccessful matches under various
scenarios.

String-Potential Filter. Filter Φsp looks-ahead along common prefixes of state
futures. Given two strings u and v, we denote by u∧v the longest common prefix
of u and v. Given a state q in a tranducer T , the input (resp. output) string
potential of q, denoted by pi(q) (resp. po(q)), is the longest common prefix of
the input (resp. output) labels of all the paths from q to a final state.

For Φsp, let Q3 = {0,⊥}, i3 = 0, ρ(0) = 1, and ϕ(e1, e2, q3) = (e1, e2, q
′
3)

where:

q′3 =
{

0 if po(n[e1]) ∧ pi(n[e2]) ∈ {po(n[e1]), pi(n[e2])},
⊥ otherwise.

This filter prevents the creation of some non-coaccessible states since a state
(q1, q2) in T1 ◦ T2 is coaccessible only if po(q1) is a prefix of pi(q2) or pi(q2) is a

Filters for Efficient Composition of Weighted Finite-State Transducers 33

prefix of po(q1) [2]. Computing string potentials can be done using the generic
single-source shortest-distance algorithm of [12] over the string semiring. This
can be done on-demand or as a pre-processing step. Naively storing a string
at each state results in a complexity (on-demand) of O(|T |Qd(T1) log d(T2) +
|T |E min(μ1, μ2)) in time and O(|T |+ |T1|Qμ1 + |T2|Qμ2) in space, with μi being
the length of the longest potential in Ti. This can be improved using better data
structures (such as tries or suffix trees).

Transition-Look-Ahead Filter. When states paired in composition have no
shared common prefixes, it is is necessary to examine the specific transitions
themselves in any look-ahead. A simple form of look-ahead is then to try to
match one set of transitions into the future.

Given a state q in a transducer T let us denote by Li(q) and Lo(q) the set of
input and output labels of outgoing transitions in q. For Φtr-la, let Q3 = {0,⊥},
i3 = 0, ρ(0) = 1, and ϕ(e1, e2, q3) = (e1, e2, q

′
3) where:

q′3 =
{

0 if Lo(n[e1]) ∩ Li(n[e2]) �= ∅ or ε ∈ Lo(n[e1]) ∪ Li(n[e2]),
⊥ otherwise.

The sets Li(q) and Lo(q) can be computed on-demand or as a pre-processing step
and can be represented using data-structures providing efficient intersection such
as bit vectors or Bloom filters. Using bit vectors, the complexity (on-demand) is
O(|T |Qd(T1) log d(T2) + |T |E log |B|) in time and O(|T |+ (|T1|Q + |T2|Q) log |B|)
in space.

Label-Reachability Filter. In transducers with epsilon transitions, looking-
ahead a single transition is not sufficient, since we can not match a (non-epsilon)
label without traversing epsilon paths. Filter Φreach precomputes those traverals.

When composing states q1 in T1 and q2 in T2, filter Φreach disallows following
an epsilon-labeled path from q1 that will fail to reach a non-epsilon label that
matches some transition leaving state q2. It leaves transitions and final weights
unmodified. For simplicity, we assume there are no input ε labels in T1.

For Φreach, let Q3 = {0,⊥}, i3 = 0, and ρ(q3) = 1 for all q3 ∈ Q3. Define
r : B × Q1 → {0, 1} such that r(x, q) = 1 if there is a path π from q to some q′

in T1 with o[π] = x, otherwise let r(x, q) = 0. Let ϕ(e1, e2, q3) = (e1, e2, 0) if (i)
o[e1] = i[e2] or if (ii) o[e1] = ε, i[e2] = εL, and for some e′2 ∈ E[p[e2]], i[e′2] �= ε
and r(i[e′2], n[e1]) = 1. Otherwise let ϕ(e1, e2, q3) = (e1, e2,⊥).

Let us denote by cr(T1) the cost of performing one reachability query in T1

using r, by Sr(T1) the total space required for r, and by dεT1 the maximal
number of output-ε transitions at a state in T1. The worst-case time complexity
of the algorithm is: O(|T |Q(d(T1) log d(T2)+dε(T1)cr(T1))+ |T |E), and the space
complexity is O(|T | + Sr(T1)).

There are different ways we can represent r and they will lead to different
complexities for composition. We will assume for our analysis, whatever its rep-
resentation, that r is precomputed and stored with T1. In general, we exclude
any T -specific precomputation from composition’s time complexity.

34 C. Allauzen, M. Riley, and J. Schalkwyk

Point Representation of r: Define Rq = {x ∈ B : r(x, q) = 1} for each state
q ∈ T1. If the labels in Rq are stored in a linked list, traversed linearly and each
matched against sorted input labels in T2 using binary search, then cr(T1) =
maxq |Rq| log d(T2) and Sr(T1) =

∑
q |Rq|.

Interval Representation of r: We can use intervals to represent Rq if B =
[1, |B|] ⊂ N by defining Iq = {[x, y) : x, y ∈ N, [x, y) ⊆ Rq, x−1 /∈ Rq, y /∈ Rq}. If
the intervals in Iq are stored in a linked list, traversed linearly and each matched
against sorted input labels in T2 using (lower-bound) binary search, then cr(T1)
= maxq |Iq| log d(T2) and Sr(T1) =

∑
q |Iq|.

Assuming the particular numbering of the labels is arbitrary, let permutation
Π : B → B be a bijection that is used to relabel both T1 and T2 prior to
composition. Among the |B|! different possible such permutations, some could
result in far fewer intervals in Iq than others. In fact, there may exist a Π that
results in one interval per Iq. Consider the |B| × |Q1| matrix R with R[i, j] =
r(i, j). The condition that the Iq each contain a single interval is equivalent to
the property that the ones in the columns of R are consecutive. A binary matrix
R that has a permutation of rows that results in columns with consecutive
ones is said to have the Consecutive One’s Property (C1P). The problem has
been extensively studied and has many applications [4,8,9,11]. There are linear
algorithms to find a permutation if it exists; the first, due to Booth and Lucker,
was based on PQ-trees [4]. There are approximate algorithms when an exact
solution does not exist [7]. Our speech application that follows admits C1P. As
such, the interval representation of r results in a significant complexity reduction
over the point representation.

Label-Reachability Filter with Label Pushing. A modification of the label-
reachability filter for the case of a single transition matching leads to smaller and
more efficient compositions as we will show in Section 3.

When matching an ε-transition e1 in q1 with an εL-loop in q2, the Φreach filter
allows this match if and only the set of transitions in q2 that match the future in
n[e1] is non-empty. In the special case where this set contains a unique transition
e′2, the Φpush-label filter allows e1 to match e′2, resulting in the early output of
o[e′2].

For Φpush-label, let Q3 = {ε,⊥}∪B, i3 = ε and ρ(q3) = 1 if q3 = ε and ρ(q3) = 0
otherwise. Let ϕ(e1, e2, q3) = (e1, e2, ε) if q3 = ε and o[e1] = i[e2], or if q3 =
o[e1] = ε, i[e2] = εL and | {e ∈ E[q2] : r(n[e1], i[e]) = 1} | ≥ 2, or if q3 = o[e1] �= ε
and i[e2] = εL. Let ϕ(e1, e2, q3) = (e1, e2, q3) if q3 �= ε, o[e1] = ε, i[e2] = εL

and r(n[e1], q3) = 1. Let ϕ(e1, e2, ε) = (e1, e
′
2, i[e

′
2]) if o[e1] = ε, i[e2] = εL and

{e ∈ E[q2] : r(n[e1], i[e]) = 1} = {e′2}. Otherwise, let ϕ(e1, e2, q3) = (e1, e2,⊥).
The complexity of the algorithm is the same as when using the label-

reachability filter.

2.5 Combining Filters

In Section 2.3 we presented composition filters for correctly handling epsilon
transitions and in Section 2.4 we presented look-ahead filters that can lead to

Filters for Efficient Composition of Weighted Finite-State Transducers 35

more efficient composition. In practice, we may need a combination of these
filters, for example, to match with epsilon transitions and look-ahead along paths
in a particular way. We present here how to synthesize a new composition filter
from two components filters.

Let Φa = (Qa
3 , i

a
3 ,⊥a, ϕa, ρa

3) and Φb = (Qb
3, i

b
3,⊥b, ϕb, ρb

3) be two composition
filters, we will define their combination as the filter Φa � Φb = (Q3, i3,⊥, ϕ, ρ3)
with Q3 = Qa

3 × Qb
3, i3 = (ia3 , i

b
3), ⊥= (⊥a,⊥b), ρ3((qa

3 , qb
3)) = ρa

3(q
a
3) ⊗ ρb

3(q
b
3),

and with ϕ defined as follows: given (e1, e2, q3) ∈ E1×E2×Q3 with q3 = (qa
3 , qb

3),
ϕb(e1, e2, q

b
3) = (e′1, e

′
2, r

b
3) and ϕa(e′1, e

′
2, q

a
3) = (e′′1 , e′′2 , ra

3), then let

ϕ(e1, e2, q3) = (e′′1 , e′′2 , q′3) with q′3 =
{⊥ if ra

3 =⊥a or rb
3 =⊥b,

(ra
3 , rb

3) otherwise.

The filter Φreach � Φε-seq can for instance be used to benefit from the label-
reachable filter when T2 contains input ε-transitions.

3 Examples

In this section, examples are given of the previously-defined composition filters.
All examples are benchmarked using the composition algorithm in OpenFst [3].

Let Σ = {1, . . . , 5000} and let D be the two-state transducer over Σ × Σ
that transduces each input symbol to ε as depicted in Figure 2(a). Consider the
composition D ◦ D−1 using the epsilon-matching and epsilon-sequencing filters.
The former creates a two-state machine with a transition for every element of
Σ × Σ while the latter is identical to the concatenation TT−1. Table 1(a)-(b)
compares the number of composition states, transitions, time and memory usage
with these two filters. In this example, the epsilon-sequencing filter gives a much
smaller and efficiently-generated result than the epsilon-matching filter. It is easy
to find examples where the opposite is true.

For the look-ahead filters, we draw our examples from a standard large-
vocabulary speech recognition task - DARPA Broadcast News (BN). There
are three alphabets for this task: Ω, the set of BN English words used where
|Ω| = 70,897; Π , the set of English phonemes where |Π | = 46; and Υ , a set
of English tri-phonemic acoustic models where |Υ | = 20,910. There are three
component transducers for this task:

0 1

1:ε

2:ε

...
5000:ε

abc bcdd/Pr(d|abc)
0

1εb:
2

εi:

d:bid xy yzm(xyz):y

(a) (b) (c) (d)

Fig. 2. Example transducers: (a) deleting transducer D, (b) n-gram language model G
transition, (c) pronunciation lexicon L path, and (d) context-dependency transducer

C transition

36 C. Allauzen, M. Riley, and J. Schalkwyk

Table 1. Number of composition states and transitions (before trimming), time and

memory usage for various composition filters. Observe that (a), (c), (e) and (g) corre-

spond to using the composition algorithm from [13]. Experiments were conducted on

a quad-core 2.2 GHz AMD Opteron machine with 32 GB of RAM.

composition filter T1 T2
T1 ◦ T2 T1 ◦ T2 time mem.
states transitions (sec) (mbytes)

(a) epsilon-matching D D−1 2 25,000,000 4.21 1419.5

(b) epsilon-sequencing D D−1 3 10,000 0.73 22.0
(c) trivial C α 47,021,923 47,021,922 48.45 4704.0
(d) string-potential C α 1,043,734 1,043,733 8.97 351.0
(e) trivial C L 1,952,555 3,527,612 2.77 225.0
(f) transition-look-ahead C L 120,489 149,972 0.84 33.4
(g) epsilon-sequencing L G ? ? > 7200.00 > 32,768.0
(h) label-reachability L G 30,884,222 39,965,633 177.93 3612.9
(i) lab.-reach. w/ label-pushing L G 13,377,323 22,151,870 113.72 1885.9

– a 4-gram language model G, which is a weighted automaton over Ω and has
2,213,539 states and 10,225,015 transitions. The weights model the prob-
ability of a particular sentence being uttered as estimated from the BN
corpus. Figure 2(b) depicts the 4-gram transition abcd in G with probablity
Pr(d|abc).

– a minimal deterministic lexicon transducer L over Ω × Π , which maps
phonemic pronunications to their word symbols and has 63,283 states and
145,710 transitions. The pronunciations are from a pronunciation dictionary.
Figure 2(c) depicts a path in L.

– a minimal deterministic tri-phonemic context-dependency transducer C over
Υ×Π , which maps from tri-phonemic model sequences to their corresponding
phonemic sequence and has 1454 states and 88,840 transitions. The acoustic
models are produced in the acoustic training phase of speech recognition
and model a phoneme in its left and right context (possibly clustered due to
data sparsity). Figure 2(d) depicts the transition in C for the triphonemic
xyz model, m(xyz).

For precise details about their form and construction of these three transduc-
ers, see [13]. We have chosen these transducers since the composition C ◦L ◦G,
mapping from tri-phonemic models to word sequences weighted by their proba-
bilities, is the recognition transducer matched against acoustic input during the
recognition of an utterance. However, both C and L present significant issues
for classical composition as detailed below. By constructing C and L differently,
it is possible to use classical composition more efficiently, however these con-
structions introduce considerable non-determinism in the result that requires an
expensive determinization to remove, something that we often wish to avoid.

While these examples are drawn from speech recognition, other application
areas (e.g. text-to-speech synthesis, optical character recognition, spelling cor-
rection) involve similar language models, dictionaries and/or context-dependent
constraints that can be modeled usefully with transducers and present similar
issues with composition.

Filters for Efficient Composition of Weighted Finite-State Transducers 37

In the examples below that involve ε-transitions, we in fact use look-ahead
filters combined with the epsilon-sequencing filter as described in Section 2.5.

String-Potential Filter: As depicted in Figure 2(d), a single symbol (the right
tri-phoneme) is the output label for each transition leaving a state in the C
transducer. That symbol is also the string potential at each state. In composition,
we can take advantage of this as demonstrated by Table 1(c)-(d), which compares
C composed with a random string α ∈ Π1000000 using the trivial versus the
string-potential filters. The trivial filter is inefficient due to the output non-
determinism, while the string-potential filter is much better in both time and
space. Another effective use of string potentials in composition is given in [2].

Transition-Look-Ahead Filter: Unlike the previous example, the composition
C ◦L will not benefit much from using the string-potential filter since the string
potential at most states in L is ε. In this case, the transition-look-ahead filter can
be applied. Table 1(e)-(f), which compares the trivial and transition-look-ahead
filters, demonstrates that the transition-look-ahead filter creates fewer states in
the (untrimmed) result, saving time and space.

Label-Reachability Filter: The composition L ◦G using the epsilon-sequencing
(or -matching) composition filter is very inefficient since the initial epsilon paths
in L create many non-coaccessible states in the result. For this problem, the label-
reachability filter is appropriate. Table 1(g)-(h) compares the epsilon-sequencing
and label-reachability filters. With the epsilon-sequencing filter, composition ter-
minates after 2 hours with RAM exhausted, while with the label-reachability
filter, only a few minutes are needed for completion.

Label-Reachability Filter with Label Pushing: While the label-reachability filter
addresses the non-coaccessible states in the composition L◦G (in fact, the result
is trim), it can further benefit from including label-pushing in the filter. Table 1(i)
shows that if we do so, the result is smaller, builds faster and uses less memory.
This benefit is due, in part, to all transitions entering a state in G having the
same label.

4 Implementation

In OpenFst [3], the default composition filter is the epsilon-sequencing filter. It
can be easily and very efficiently changed via templated options. For example,
to use the epsilon-matching filter, one invokes:

ComposeFstOptions<StdArc, MatchComposeFilter> opts;

ComposeFst<StdArc> result(t1, t2, opts);

All filters described here are available in OpenFst. Further, users can add new
ones by creating a class that meets the composition filter interface to handle
their specific applications.

Acknowledgements. We thank Mehryar Mohri for suggesting using a gener-
alized composition filter for solving problems such as those addressed here.

38 C. Allauzen, M. Riley, and J. Schalkwyk

References

1. Allauzen, C., Mohri, M., Rastogi, A.: General algorithms for testing the ambiguity

of finite automata. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp.

108–120. Springer, Heidelberg (2008)

2. Allauzen, C., Mohri, M., Riley, M.: Statistical modeling for unit selection in speech

synthesis. In: Proc. ACL, pp. 55–62 (2004)

3. Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFst: A gen-

eral and efficient weighted finite-state transducer library. In: Holub, J., Žďárek,

J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 11–23. Springer, Heidelberg (2007),

http://www.openfst.org

4. Booth, K., Lueker, G.: Testing for the consecutive ones property, interval graphs,

and graph planarity using pq-tree algorithms. J. of Computer and System Sci. 13,

335–379 (1976)

5. Caseiro, D., Trancoso, I.: A specialized on-the-fly algorithm for lexicon and lan-

guage model composition. IEEE Trans. on Audio, Speech and Lang. Proc. 14(4),

1281–1291 (2006)

6. Cheng, O., Dines, J., Doss, M.: A generalized dynamic composition algorithm of

weighted finite state transducers for large vocabulary speech recognition. In: Proc.

ICASSP, vol. 4, pp. 345–348 (2007)

7. Dom, M., Niedermeier, R.: The search for consecutive ones submatrices: Faster and

more general. In: Proc. ACID, pp. 43–54 (2007)

8. Habib, M., McConnell, R., Paul, C., Viennot, L.: Lex-BFS and partition refine-

ment with applications to transitive orientation, interval graph recognition and

consecutive ones testing. Theor. Comput. Sci. 234, 59–84 (2000)

9. Hsu, W.-L., McConnell, R.: PC trees and circular-ones arrangements. Theor. Com-

put. Sci. 296(1), 99–116 (2003)

10. McDonough, J., Stoimenov, E., Klakow, D.: An algorithm for fast composition of

weighted finite-state transducers. In: Proc. ASRU (2007)

11. Meidanis, J., Porto, O., Telles, G.: On the consecutive ones property. Discrete Appl.

Math. 88, 325–354 (1998)

12. Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems.

Journal of Automata, Languages and Combinatorics 7(3), 321–350 (2002)

13. Mohri, M., Pereira, F., Riley, M.: Speech recognition with weighted finite-state

transducers. In: Jacob Benesty, Y.H., Sondhi, M. (eds.) Handbook of Speech Pro-

cessing, pp. 559–582. Springer, Heidelberg (2008)

14. Oonishi, T., Dixon, P., Iwano, K., Furui, S.: Implementation and evaluation of fast

on-the-fly WFST composition algorithms. In: Proc. Interspeech, pp. 2110–2113

(2008)

http://www.openfst.org

Incremental DFA Minimisation�

Marco Almeida��, Nelma Moreira, and Rogério Reis

DCC-FC & LIACC, Universidade do Porto

R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

{mfa,nam,rvr}@ncc.up.pt

Abstract. We present a new incremental algorithm for minimising de-

terministic finite automata. It runs in quadratic time for any practical

application and may be halted at any point, returning a partially min-

imised automaton. Hence, the algorithm may be applied to a given au-

tomaton at the same time as it is processing a string for acceptance. We

also include some experimental comparative results.

1 Introduction

We present a new algorithm for incrementally minimise deterministic finite au-
tomata. This algorithm may be halted at any point, returning a partially min-
imised automaton that recognises the same language as the input. Should the
minimisation process be interrupted, calling the incremental minimisation al-
gorithm with the output of the halted process would resume the minimisation
process. Moreover, the algorithm can be run on some automaton D at the same
time as D is being used to process a string for acceptance.

Unlike the usual approach, which computes the equivalence classes of the set
of states, this algorithm proceeds by testing the equivalence of pairs of states in
the same line of Watson and Daciuk [Wat01, WD03]. The intermediate results
are stored for the speedup of ulterior computations in order to assure quadratic
running time and memory usage.

This paper is structured as follows. In the next Section some basic concepts
and notation are introduced. Section 3 is a small survey of related work. In
Section 4 we describe the new algorithm in detail, presenting the proofs of cor-
rectness and worst-case running-time complexity. Section 5 follows with exper-
imental comparative results, and Section 6 finishes with some conclusions and
future work.

2 Preliminaries

We recall here the basic definitions needed throughout the paper. For further
details we refer the reader to the work of Hopcroft et al. [HMU00].
� This work was partially funded by Fundação para a Ciência e Tecnologia (FCT) and

Program POSI, project ASA (PTDC/MAT/65481/2006) through Programs COM-

PETE and FEDER, and project CANTE (PTDC/EIA-CCO/101904/2008).
�� Marco Almeida is funded by FCT grant SFRH/BD/27726/2006.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 39–48, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

40 M. Almeida, N. Moreira, and R. Reis

An alphabet Σ is a nonempty set of symbols. A word over an alphabet Σ is a
finite sequence of symbols of Σ. The empty word is denoted by ε and the length
of a word w is denoted by |w|. The set Σ� is the set of words over Σ. A language
L is a subset of Σ�.

A deterministic finite automaton (DFA) is a tuple D = (Q, Σ, δ, q0, F) where
Q is finite set of states, Σ is the alphabet, δ : Q × Σ → Q the transition
function, q0 the initial state, and F ⊆ Q the set of final states. We can extend
the transition function to words w ∈ Σ� such that w = au by considering
δ(q, w) = δ(δ(q, a), u) for q ∈ Q, a ∈ Σ, and u ∈ Σ�. The language accepted
by the DFA D is L(D) = {w ∈ Σ� | δ(q0, w) ∈ F}. Two finite automata A
and B are equivalent, denoted by A ∼ B, if they accept the same language. For
any DFA D = (Q, Σ, δ, q0, F), let ε(q) = 1 if q ∈ F and ε(q) = 0 otherwise,
for q ∈ Q. Two states q1, q2 ∈ Q are said to be equivalent, denoted by q1 ∼ q2,
if for every w ∈ Σ�, ε(δ(q1, w)) = ε(δ(q2, w)). A DFA is minimal if there is
no equivalent DFA with fewer states. Given a DFA D, the equivalent minimal
DFA D/∼ is called the quotient automaton of D by the equivalence relation ∼.
Minimal DFAs are unique up to isomorphism.

2.1 The UNION-FIND Algorithm

The UNION-FIND [Tar75, CLRS03] algorithm takes a collection of n distinct
elements grouped into several disjoint sets and performs two operations on it:
merges two sets and finds to which set a given element belongs to. The algorithm
is composed by the following three functions:

– MAKE(i): creates a new set (singleton) for one element i (the identifier);
– FIND(i): returns the identifier Si of the set that contains i;
– UNION(i, j, k): combines the sets identified by i and j in a new set Sk =

Si ∪ Sj ; Si and Sj are destroyed.

An important detail of the UNION operation is that the two combined sets are
destroyed in the end. Our implementation of the algorithm (using rooted trees)
follows the one by Cormen et al. [CLRS03]. The main claim is that an arbitrary
sequence of i MAKE, UNION, and FIND operations, j of which are MAKE, can
be performed in O(iα(j)), where α(j) is related to a functional inverse of the
Ackermann function, and, as such, grows very slowly. In fact, for every practical
values of j (up to 16512), α(j) ≤ 4.

3 Related Work

The problem of writing efficient algorithms to find the minimal equivalent DFA
can be traced back to the 1950’s with the works of Huffman [Huf55] and Moore
[Moo58]. Over the years several alternative algorithms were proposed. In terms of
worst-case complexity the best know algorithm (log-linear) is by Hopcroft [Hop71].
Brzozowski [Brz63] presented an elegant but exponential algorithm that may also
be applied to non-deterministic finite automata.

Incremental DFA Minimisation 41

The first DFA incremental minimisation algorithm was proposed by Watson
[Wat01]. The worst-case running-time complexity of this algorithm is exponential
— O(kmax(0,n−2)), for a DFA with n states over an alphabet of k symbols.As shown
by Watson himself [Wat95], this bound is tight. Later, Watson and Daciuk [WD03]
proposed a new version of the algorithm. By using a memoization technique they
achieved an almost quadratic run-time. Recently, however, a bug was found on the
algorithm and one of the authors is currently trying to fix it.

4 The Incremental Minimisation Algorithm

Given an arbitrary DFA D as input, this algorithm may be halted at any time re-
turning a partially minimised DFA that has no more states than D and recognises
the same language. It uses a disjoint-set data structure to represent the DFA’s
states and the UNION-FIND algorithm to keep and update the equivalence classes.
This approach allows us to maintain the transitive closure in a very concise and
elegant manner. The pairs of states already marked as distinguishable are stored
in an auxiliary data structure in order to avoid repeated computations.

Let D = (Q, Σ, δ, q, F) be a DFA with n = |Q| and k = |Σ|. We assume that
the states are represented by integers, and thus it is possible to order them. This
ordering is used to normalise pairs of states, as presented in Listing 1.1.

1 def NORMALISE(p, q) :
2 i f p < q :
3 pair = (p, q)
4 else :
5 pair = (q, p)
6 return pair

Listing 1.1. A simple normalisation step

The normalisation step allows us to improve the behaviour of the minimisation
algorithm by ensuring that only n2

2 − n pairs of states are considered.
The quadratic time bound of the minimisation procedure MIN-INCR, pre-

sented in Listing 1.2, is achieved by testing each pair of states for equivalence
exactly once. We assure this by storing the intermediate results of all calls to
the pairwise equivalence-testing function EQUIV-P, defined in Listing 1.3. Some
auxiliary data structures, designed specifically to improve the worst-case running
time, are presented in Listing 1.4.

1 def MIN-INCR(D = (Q, Σ, δ, q0, F)) :
2 for q ∈ Q :
3 MAKE(q)
4 NEQ = {NORMALISE(p, q) | p ∈ F, q ∈ Q − F}
5 for p ∈ Q :
6 for q ∈ {x | x ∈ Q, x > p} :
7 i f (p, q) ∈ NEQ :
8 continue
9 i f FIND(p) = FIND(q) :

10 continue

42 M. Almeida, N. Moreira, and R. Reis

11 EQUIV = SET-MAKE(|Q|2)
12 PATH = SET-MAKE(|Q|2)
13 i f EQUIV-P(p, q) :
14 for (p′, q′) ∈ SET-ELEMENTS(EQUIV) :
15 UNION(p′, q′)
16 else :
17 for (p′, q′) ∈ SET-ELEMENTS(PATH) :
18 NEQ = NEQ ∪ {(p′, q′)}
19 classes = {}
20 for p ∈ Q :
21 lider = FIND(p)
22 classes[lider] = classes[lider] ∪ {p}
23 D′ = D
24 joinStates(D′, classes)
25 return D′

Listing 1.2. Incremental DFA minimisation in quadratic time

Algorithm MIN-INCR starts by creating the initial equivalence classes (lines
2–3); these are singletons as no states are yet marked as equivalent. The global
variable NEQ, used to store the distinguishable pairs of states, is also initialised
(line 4) with the trivial identifications. Variables PATH and EQUIV, also global and
reset before each call to EQUIV-P, maintain the history of calls to the transition
function and the set of potentially equivalent pairs of states, respectively.

The main loop of MIN-INCR (lines 5–18) iterates through all the normalised
pairs of states and, for those not yet known to be either distinguishable or equiv-
alent, calls the pairwise equivalence test EQUIV-P. Every call to EQUIV-P is
conclusive and the result is stored either by merging the corresponding equiva-
lence classes (lines 13–15), or updating NEQ (lines 16–18). Thus, each recursive
call to EQUIV-P will avoid one iteration on the main loop of MIN-INCR by
skipping (lines 7–10) that pair of states.

Finally, at lines 19–22, the set partition of the corresponding equivalence
classes is created. Next, the DFA D is copied to D′ and the equivalent states are
merged by the call to joinStates. The last instruction, at line 25, returns the
minimal DFA D′, equivalent to D.

1 def EQUIV-P(p, q) :
2 i f (p, q) ∈ NEQ :
3 return False
4 i f SET-SEARCH((p, q), PATH) �= nil :
5 return True
6 SET-INSERT((p, q), PATH)
7 for a ∈ Σ :
8 (p′, q′) = NORMALISE(FIND(δ(p, a)), FIND(δ(q, a)))
9 i f p′ �= q′ and SET-SEARCH((p′, q′), EQUIV) = nil :

10 SET-INSERT((p′, q′), EQUIV)
11 i f not EQUIV-P(p′, q′) :
12 return False
13 else :
14 SET-REMOVE((p′, q′), PATH)
15 SET-INSERT((p, q), EQUIV)
16 return True

Listing 1.3. Pairwise equivalence test for MIN-INCR

Incremental DFA Minimisation 43

Algorithm EQUIV-P, presented in Listing 1.3, is used to test the equivalence
of the two states, p and q, passed as arguments.

The global variables EQUIV and PATH are updated with the pair (p, q) during
each nested recursive call. As there is no recursion limit, EQUIV-P will only
return when p � q (line 3) or when a cycle is found (line 5). If a call to EQUIV-
P returns False, then all pairs of states recursively tested are distinguishable and
variable PATH — used to store the sequence of calls to the transition function —
will contain a set of distinguishable pairs of states. If it returns True, no pair of
distinguishable states was found within the cycle and variable EQUIV will contain
a set of equivalent states. This is the strategy which assures that each pair of
states is tested for equivalence exactly once: every call to EQUIV-P is conclusive
and the result stored for future use. It does, however, lead to an increased usage
of memory.

The variables EQUIV and PATH are heavily used in EQUIV-P as several insert,
remove, and membership-test operations are executed throughout the algorithm.
In order to achieve the desired quadratic upper bound, all these operations must
be performed in O(1). Thus, we present in Listing 1.4 some efficient set repre-
sentation and manipulation procedures.

1 def SET-MAKE(size) :
2 HashTable = HASH-TABLE(size)
3 List = LIST()
4 return (HashTable, List)
5
6 def SET-INSERT(v, Set) :
7 p0 = Set.HashTable[v]
8 LIST-REMOVE(p0, Set.List)
9 p1 = LIST-INSERT(v, Set.List)

10 Set.HashTable[v] = p1
11
12 def SET-REMOVE(v, Set) :
13 p0 = Set.HashTable[v]
14 LIST-REMOVE(p0, Set.List)
15 Set.HashTable[v] = nil
16
17 def SET-SEARCH(v, Set) :
18 i f Set.HashTable[v] �= nil :
19 p = Set.HashTable[v]
20 return LIST-ELEMENT(p, Set.List)
21 else :
22 return nil
23
24 def SET-ELEMENTS(Set) :
25 return Set.List

Listing 1.4. Set representation procedures

The set-manipulation procedures in Listing 1.4 simply combine a hash-table
with a doubly-linked list. This is another space-time trade-off that allows us to
assure the desired complexity on all operations. The hash-table maps a given
value (state of the DFA) to the address on which it is stored in the linked list.
Since we know the size of the hash-table in advance (n2) searching, inserting, and
removing elements is O(1). The linked list assures that, at lines 14–15 and 17–18

44 M. Almeida, N. Moreira, and R. Reis

of MIN-INCR, the loop is repeated only on the elements that were actually used
in the calls to EQUIV-P, instead of iterating through the entire hash-table.

Theorem 1. Algorithm MIN-INCR, in Listing 1.2, is terminating.

Proof. It should suffice to notice the following facts:

– all the loops in MIN-INCR are finite;
– the variable PATH on EQUIV-P assures that the number of recursive calls is

finite.

Lemma 1. Algorithm EQUIV-P, in Listing 1.3, runs in O(kn2) time.

Proof. The number of recursive calls to EQUIV-P is controlled by the local
variable PATH. This variable keeps the history of calls to the transition function
(line 8 in Listing 1.3). In the worst case, all possible pairs of states are used:
n2

2 − n, due to the normalisation step. Since each call may reach line 7, we need
to consider k additional recursive calls for each pair of states, hence O(kn2).

Lemma 2. Algorithm EQUIV-P returns True if and only if the two states
passed as arguments are equivalent.

Proof. Algorithm EQUIV-P returns False only when the two states, p and q,
used as arguments are such that (p, q) ∈ NEQ (lines 2–3). This is correct because
the global variable NEQ contains all the pairs of states already proven to be
distinguishable. Conversely, EQUIV-P returns True only if (p, q) ∈ PATH (lines
4–5) or a recursive call returned True (line 16). In both cases this means that a
cycle with no distinguishable elements was detected, which implies that all the
recursively visited pairs of states are equivalent.

Theorem 2. Given a DFA D = (Q, Σ, δ, q, F), algorithm MIN-INCR computes
the minimal DFA D′ such that D ∼ D′.

Proof. Algorithm MIN-INCR finds pairs of equivalent states by exhaustive enu-
meration. The loop in lines 5–18 enumerates all possible pairs of states, and,
for those not yet proven to be either distinguishable or equivalent, EQUIV-P is
called. When line 19 is reached, all pairs of states have been enumerated and the
equivalent ones have been found (cf. Lemma 2). The loop in lines 20–22 creates
the equivalence classes and the procedure joinStates, at line 24, merges the
equivalent states, updating the corresponding transitions. Since the new DFA
D′ does not have any equivalent states, it is minimal.

Lemma 3. At the top-level call at line 13 in MIN-INCR, when EQUIV-P returns
True, all the pairs of states stored in the global variable EQUIV are equivalent.

Proof. By Lemma 2, if EQUIV-P returns True then the two states, p and q, used
as arguments are equivalent. Since there is no depth recursion control, EQUIV-P
only returns True when a cycle is detected. Thus being, all the pairs of states
used as arguments in the recursive calls must also be equivalent. These pairs of
states are stored in the global variable EQUIV at line 10 of EQUIV-P.

Incremental DFA Minimisation 45

Lemma 4. At the top-level call at line 13 in MIN-INCR, if EQUIV-P returns
False, all the pairs of states stored in the global variable PATH are distinguishable.

Proof. Given a pair of distinguishable states (p, q), clearly all pairs of states
(p′, q′) such that δ(p′, w) = p and δ(q′, w) = q are also distinguishable, for
w ∈ Σ�. By Lemma 2, EQUIV-P returns False only when the two states, p and
q, used as arguments are distinguishable. Throughout the successive recursive
calls to EQUIV-P, the global variable PATH is used to store the history of calls
to the transition function (line 6) and thus contains only pairs of states with a
path to (p, q). All of these pairs of states are therefore distinguishable.

Lemma 5. Each time that EQUIV-P calls itself recursively, the two states used
as arguments will not be considered in the main loop of MIN-INCR.

Proof. The arguments of every call of EQUIV-P are kept in two global variables:
EQUIV and PATH.

By Lemma 3, whenever EQUIV-P returns True, all the pairs of states stored
in EQUIV are equivalent. Immediately after being called from MIN-INCR (line
13), if EQUIV-P returns True, the equivalence classes of all the pairs of states
in EQUIV are merged (lines 14–15). Future references to any of these pairs will
be skipped at lines 9–10.

In the same way, by Lemma 4, if EQUIV-P returns False, all the pairs of
states stored in PATH are distinguishable. Lines 17–18 of MIN-INCR update the
global variable NEQ with this new information and future references to any of
these pairs of states will be skipped at lines 7–8 of MIN-INCR.

Theorem 3. Algorithm MIN-INCR is incremental.

Proof. Halting the main loop of MIN-INCR at any point within the lines 5–18
only prevents the finding of all the equivalent pairs of states. Merging the known
equivalent states on D′, a copy of the input DFA D, assures that the size of D′

is not greater than that of D and thus, is closer to the minimal equivalent DFA.
Calling MIN-INCR with D′ as the argument would resume the minimisation
process, finding the remaining equivalent states.

Theorem 4 (Main result). Algorithm MIN-INCR, in Listing 1.2, runs in
O(kn2α(n)) time.

Proof. The number of iterations of the main loop in lines 5–18 of MIN-INCR
is bounded by n2

2 − n, due to the normalisation step. Each iteration may call
EQUIV-P, which, by Lemma 1, is O(kn2). By Lemma 5 every recursive call to
EQUIV-P avoids one iteration on the main loop. Therefore, disregarding the
UNION-FIND operations and because all operations on variables NEQ, EQUIV,
and PATH are O(1), the O(kn2) bound holds. Since there are O(kn2) FIND and
UNION intermixed calls, and exactly n MAKE calls, the time spent on all the
UNION-FIND operations is bounded by O(kn2α(n)) — cf. Subsection 2.1. All
things considered, MIN-INCR runs in O(kn2 + kn2α(n)) = O(kn2α(n)).

46 M. Almeida, N. Moreira, and R. Reis

Corollary 1. Algorithm MIN-INCR runs in O(kn2) time for all practical val-
ues of n.

Proof. Function α is related to an inverse of Ackermann’s function. It grows so
slowly (α(16512) ≤ 4) that we may consider it a constant.

5 Experimental Results

In this Section we present some comparative experimental results on four DFA
minimisation algorithms: Brzozowski, Hopcroft, Watson, and the new proposed
incremental one. The results are presented on Table 1, Table 2, and Table 3.

All algorithms are implemented in the Python programming language and
integrated in the FAdo project [FAd10]. The tests were executed in the same
computer, an Intel R© Xeon R© 5140 at 2.33GHz with 4GB of RAM, running a
minimal 64 bit Linux system. We used samples of 20.000 automata, with n ∈
{5, 10, 50, 100} states and alphabets with k ∈ {2, 10, 25, 50} symbols. Since the
data sets were obtained with a uniform random generator [AMR07, AAA+09],
the size of each sample is more than enough to ensure results statistically sig-
nificant with a 99% confidence level within a 1% error margin. The sample size
is calculated with the formula N = (z

2ε)
2, where z is obtained from the normal

distribution table such that P (−z < Z < z)) = γ, ε is the error margin, and γ
is the desired confidence level.

Table 1. Experimental results for ICDFAs with n ∈ {5, 10} states

n = 5
k = 2 k = 10 k = 25 k = 50

Perf. Space Perf. Space Perf. Space Perf. Space
Brzozowski 1424.50 4 119.71 4 45.24 4 22.66 4
Hopcroft 3442.34 4 980.39 4 469.37 4 238.46 4
Watson 3616.63 4 573.88 4 54.29 4 8.00 4
Incremental 4338.39 4 2762.43 4 1814.88 4 1091.70 4

n = 10
k = 2 k = 10 k = 25 k = 50

Perf. Space Perf. Space Perf. Space Perf. Space
Brzozowski 73.45 4 1.89 4 0.50 3248 0.21 1912
Hopcroft 1757.46 4 250.46 4 100.95 4 49.74 4
Watson 691.80 4 0.01 4 0.00 4 0.00 4
Incremental 2358.49 4 1484.78 4 885.73 4 488.75 4

Each test was given a time slot of 24 hours. Processes that did not finish
within this time limit were killed. Thus, and because we know how many ICDFAs
were in fact minimised before each process was killed, the performance of the
algorithms is measured in minimised ICDFAs per second (column Perf.). We
also include a column for the memory usage (Space), which measures the peak
value (worst-case) for the minimisation of the 20.000 ICDFAs in kilobytes.

Clearly, the new incremental method always performs better. Both Brzozowski
and Watson’s algorithm clearly show their exponential character, being in fact,
the only two algorithms that did not finish several minimisation tests. Hopcroft’s

Incremental DFA Minimisation 47

Table 2. Experimental results for ICDFAs with n ∈ {50, 100} states

n = 50
k = 2 k = 10 k = 25 k = 50

Perf. Space Perf. Space Perf. Space Perf. Space
Brzozowski 0.00 664704 0.00 799992 0.00 1456160 0.00 750312
Hopcroft 39.48 4 6.31 4 2.45 4 1.21 4
Watson 0.00 4 0.00 4 0.00 4 0.00 4
Incremental 117.21 288 94.33 540 73.94 612 53.31 636

n = 100
k = 2 k = 10 k = 25 k = 50

Perf. Space Perf. Space Perf. Space Perf. Space
Brzozowski 0.00 2276980 0.00 1061556 0.00 961144 0.00 2862312
Hopcroft 6.25 4 0.97 4 0.37 4 0.18 4
Watson 0.00 4 0.00 4 0.00 4 0.00 4
Incremental 28.23 1028 24.94 2452 21.58 3444 17.17 3824

Table 3. Experimental results for ICDFAs with 1000 states

n = 1000
k = 2 k = 3 k = 5

Perf. Space Perf. Space Perf. Space
Hopcroft 0.0121 4 0.0074 4 – –
Incremental 0.2616 34296 0.2416 34068 0.2411 33968

algorithm, although presenting a behaviour that appears to be very close to
its worst-case (O(kn log(n)), is always slower than the quadratic incremental
method.

Because of the big difference between the measured performance of Hopcroft’s
algorithm and the new quadratic incremental one, we ran a new set of tests, only
for these algorithms, using the largest ICDFA samples we have available. The
results are presented on Table 3. These tests were performed on the exact same
conditions as the previously described ones but each process was allowed to
execute for 96 hours. Surprisingly, while Hopcroft’s algorithm did not finish any
of the batches within this time limit, it took only a little over 23 hours for the
quadratic algorithm to minimise the sample of 20.000 ICDFAs with 1000 states
and 5 symbols. The memory usage of the incremental algorithm, however, is far
superior. It always required nearly 33MB while Hopcroft’s algorithm did not use
more than 4 kB.

6 Conclusions

We presented a new incremental minimisation algorithm. Unlike other non-
incremental minimisation algorithms, the intermediate results are usable and
reduce the size of the input DFA. This property can be used to minimise a DFA
when it is simultaneously processing a string or, for example, to reduce the size
of a DFA when the running-time of the minimisation process must be restricted
for some reason.

We believe that this new approach, while presenting a quadratic worst-case
running-time, is quite simple and easy to understand and to implement. Ac-
cording to the experimental results, this minimisation algorithm outperforms

48 M. Almeida, N. Moreira, and R. Reis

Hopcroft’s O(kn log(n)) approach, at least in the average case, for reasonably
sized automata.

References

[AAA+09] Almeida, A., Almeida, M., Alves, J., Moreira, N., Reis, R.: FAdo and GUI-

tar: tools for automata manipulation and visualization. In: Maneth, S. (ed.)

CIAA 2009. LNCS, vol. 5642, pp. 65–74. Springer, Heidelberg (2009)

[AMR07] Almeida, M., Moreira, N., Reis, R.: Enumeration and generation with

a string automata representation. Theoret. Comput. Sci. 387(2), 93–102

(2007); Special issue Selected papers of DCFS 2006

[Brz63] Brzozowski, J.A.: Canonical regular expressions and minimal state graphs

for definite events. In: Fox, J. (ed.) Proc. of the Sym. on Math. Theory of

Automata, NY. MRI Symposia Series, vol. 12, pp. 529–561 (1963)

[CLRS03] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Al-

gorithms. MIT, Cambridge (2003)

[FAd10] Project FAdo. FAdo: tools for formal languages manipulation,

http://www.ncc.up.pt/FAdo (access date:1.1.2010)

[HMU00] Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata The-

ory, Languages and Computation. Addison Wesley, Reading (2000)

[Hop71] Hopcroft, J.: An n log n algorithm for minimizing states in a finite automa-

ton. In: Proc. Inter. Symp. on the Theory of Machines and Computations,

Haifa, Israel, pp. 189–196. Academic Press, London (1971)

[Huf55] Huffman, D.A.: The synthesis of sequential switching circuits. The Journal

of Symbolic Logic 20(1), 69–70 (1955)

[Moo58] Moore, E.F.: Gedanken-experiments on sequential machines. The Journal

of Symbolic Logic 23(1), 60 (1958)

[Tar75] Tarjan, R.E.: Efficiency of a good but not linear set union algorithm.

JACM 22(2), 215–225 (1975)

[Wat95] Watson, B.W.: Taxonomies and toolkit of regular languages algortihms.

PhD thesis, Eindhoven Univ. of Tec. (1995)

[Wat01] Watson, B.W.: An incremental DFA minimization algorithm. In: Interna-

tional Workshop on Finite-State Methods in Natural Language Processing,

Helsinki, Finland (August 2001)

[WD03] Watson, B.W., Daciuk, J.: An efficient DFA minimization algorithm. Nat-

ural Language Engineering, 49–64 (2003)

http://www.ncc.up.pt/FAdo

Finite Automata for Generalized Approach to
Backward Pattern Matching�

Jan Antoš1 and Bořivoj Melichar2

1 Department of Computer Science & Engineering, Faculty of Electrical Engineering,

Czech Technical University, Karlovo nám. 13, 121 35 Prague 2, Czech Republic
2 Department of Theoretical Science, Faculty of Information Technology,

Czech Technical University, Kolejńı 2, 160 00 Prague 6, Czech Republic

antosj@fel.cvut.cz, melichar@fit.cvut.cz

Abstract. We generalized the DAWG backward pattern matching ap-

proach to be able to solve a broad range of pattern matching problems.

We use a definition of a class of problems. We describe a finite automaton

for the basic pattern matching problem of finding an exact occurrence of

one string in a text. We propose a mechanism to use simple operations

over finite automata in a systematic approach to derive automata for

solving problems from a defined class, such as approximate matching,

regular expression matching, sequence matching, matching of set of pat-

terns, etc. and their combinations. The benefit of this approach is the

ability to quickly derive solutions for newly formulated pattern matching

problems.

Keywords: backward pattern matching, finite automata theory, au-

tomata construction, approximate pattern matching, classification.

1 Introduction

1.1 Historical Context

The backward pattern matching is a discipline of pattern matching using a mech-
anism invented by Boyer and Moore in 1977 [4]. It speeds up the text processing
by skipping parts of a text. Its lower bound of time complexity is O(n/m) where
n is the length of the text and m is the length of a pattern. Many algorithms
for backward pattern matching appeared in later years [8]. One of these is Back-
ward DAWG Matching (BDM) [12] that uses a finite automaton called Directed
Acyclic Word Graph (DAWG).

The pattern matching includes not only a matching of a single string in a
text but also a broad range of other problems as a matching of a finite [1]
or infinite [11] set of patterns, approximate matching based on Hamming [9]
and Levenshtein [13] distances, sequence matching [5], don’t care symbols and
regular expressions [11], etc. In [15] a 6D classification was described classifying
192 pattern matching problems into one class.
� This research has been partially supported by the research program MSMT

6840770014 and by The Czech Science Foundation as project No. 201/09/0807.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 49–58, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

50 J. Antoš and B. Melichar

1.2 Motivation

The motivation of this paper is to describe an approach for quick creation of
new solutions to newly formulated pattern matching problems. If we start with
the BDM-like algorithm to solve the exact pattern matching of one string in a
text, then our motivation is to define algorithm(s) to derive similar solutions for
the mentioned broad range of problems from this basic algorithm.

The motivation is not to present a performance improvement over existing
algorithms for specific pattern matching problems, but rather to find a process
to derive new algorithms for new problems.

2 Basic Definitions

Definition 1 (Alphabet). An alphabet A is a finite non-empty set of symbols.
The number of symbols will be denoted by |A|.
Definition 2 (String). A string over the given alphabet A is a finite sequence
of symbols of the alphabet A. The length of a string w is the number of symbols in
the string w and is denoted by |w|. A substring of string s, where the substring
starts at position i of the string s and ends at position j (inclusive), will be
denoted as si . . . sj. For a string s = s1 . . . sn where n = |s| a reversed string is
string sR = sn . . . s1.

Definition 3 (Factor, prefix, suffix, antifactor). A string x is said to be a
factor (substring) of string y if y = uxv for some strings u, v, a prefix of y if
u = ε, a suffix of y if v = ε and antifactor if x is not a factor of y. The set
of all factors, prefixes, suffixes and antifactors of a string s will be denoted by
fact(s), pref(s), suff(s) and antifact(s) respectively.

Definition 4 (Proper prefix, proper suffix). A proper prefix (proper suffix)
of a string is a prefix (suffix) that is not equal to the string itself and not empty.
The set of all proper prefixes and proper suffixes of string s will be denoted by
pref+(s) and suff+(s) respectively. Functions fact, pref , suff , pref+ and suff+

are also defined for the set of strings S as fact(S) =
⋃

s∈S fact(s).

Definition 5 (Projection of Pattern, Image of Pattern). The projection
of a pattern is a function that, for a given pattern matching problem θ and a given
pattern p outputs a set of all strings in an alphabet A that are considered a match
to the given pattern. We will denote this function projθ,A(p) or simply proj(p).
For a set of patterns P the function is defined as proj(P) =

⋃
p∈P proj(p).

Strings produced by a projection are called pattern images.

Remark 1. Examples of pattern matching problems are: exact matching of one
string, of a finite set of strings, approximate matching, matching of all substrings,
etc. An instance of a pattern matching problem is a combination of a problem
and a set of patterns. For example: an instance of the problem “exact matching
of one string” and the pattern “banana” is “exact matching of string banana”.

Remark 2. A pattern is denoted by p, set of patterns by P , a pattern image by
g and set of pattern images by G.

Automata for Generalized Backward Pattern Matching 51

3 Background

3.1 Backward Pattern Matching

The principle of backward pattern matching is to examine whether a pattern
occurs in a sliding window in a text. By comparing symbols from right to left
only a part of the window is checked to decide. The matching time is sub-linear
with the length of text. Several approaches exist. Figure 1 (adapted from [16])
shows good-prefix shift approach [7] used in this paper.

TEXT

PATTERN

prefix found

equal prefix

length of shift

scanning direction

Fig. 1. The principle of backward pattern matching using the good-prefix shift method

3.2 Classification of Pattern Matching Problems

To specify a pattern matching problem we use the six-dimensional classification
of pattern matching problems presented in [15]. A problem is specified as a point
in 6D space (Figure 2). The points are referenced by six-letter abbreviations of
dimension values. An example is SFFRCO which stands for [String matching,
Full pattern, Finite number of patterns, approximate matching with Replace
edit distance (i.e. Hamming distance), take Care of all symbols, One string].

1

2 3

4

56

StringseQuence

Subpattern

Full pattern One

Finite

Infinite

Exact

R

DIR

Care

Don’t care
One

Sequence of

DIRT

Fig. 2. The six-dimensional classification of pattern matching problems

The proposed approach solves problems from 6D space as approximate pattern
matching, matching of finite or infinite set of patterns, don’t care symbols, sub
patterns, searching for sequences, etc. and their combinations (as approximate

52 J. Antoš and B. Melichar

matching of infinite set of patterns given by a regular expression). For some of
these 192 combinations a backward matching approach does not yet exist. New
problems can be solved by extending the 6D space.

4 Backward Pattern Matching Machine

For full details please refer to [3]. The processing in BPMM is split into two parts
(Figure 3). The constructor takes a problem and a set of patterns as inputs and
creates an extended deterministic finite automaton representing an instance of
pattern matching problem. The executor uses the automaton over a text to do
the pattern matching.

CONSTRUCTOR

Specification of
pattern matching

problem

Set of patterns

Automaton
EXECUTOR

Text

Occurences
of patterns

in text

Fig. 3. The schema of the universal Backward Pattern Matching Machine

4.1 Implementation Options

BPMM can be constructed using various implementation options. The good-
prefix shift method [7] is used to compute the shift function in this paper (other
options are repeated-suffix shift method [7], antifactor shift [16], etc.) To decide
whether to continue scanning the text in the sliding window a f = fact(G)
function is used (other options are suff(G), factoracle(G) [2] and others [6]).

To find prefixes of pattern images, a suffix automaton M , L(M) = suff(GR)
is used because the text is read backwards: (pref(G))R = suff(GR). The same
automaton is used to implement f as well. It holds that suff(GR) ⊂ fact(GR)
and antifact(GR) ∩ suff(GR) = ∅. The language accepted by M is not f but
the transition function for w ∈ f is defined and for w �∈ f is not: w ∈ fact(G) ⇒
|δ(q0, w

R)| ≥ 1 while w �∈ fact(G) ⇒ δ(q0, w
R) = ∅.

4.2 Executor

The executor’s algorithm (Algorithm 1) is the same for all pattern matching
problems from the studied class.

Variable position stores the index of the last symbol of a sliding window in
the text. Text is indexed from 1. Offset is counted from position toward the
beginning of the text. Transition counter (tc) tracks the number of transitions
from the last initialization of the automaton. To process each text window the
automaton is set to its initial state. It then reads the text backwards. A pattern
is found if a final state q ∈ Fp ∪ Fps is reached. A prefix of a pattern is found

Automata for Generalized Backward Pattern Matching 53

Algorithm 1: The executor algorithm

Input: Text T , description of problem instance M = (Q, A, δ, q0, Fp, Fs, Fps),

maximum safe shift distance shiftmax = |G|min

Output: Positions of the first symbols of patterns p ∈ P in text T
Method:

1 q ← q0, position ← shiftmax, offset ← 0

2 plc ← 0 (note: plc = prefix length counter)

3 tc ← 0 (note: tc = transition counter)

4 while position ≤ |T | do
5 if δ(q, Tposition−offset) �= ∅ then
6 q ← δ(q, Tposition−offset), tc ← tc + 1

7 if q ∈ Fs ∪ Fps then plc ← tc endif
8 if q ∈ Fp ∪ Fps then output(position − offset) endif
9 offset ← offset + 1

10 else
11 shift ← max{1, shiftmax − plc}
12 position ← position + shift
13 offset ← 0, plc ← 0, tc ← 0, q ← q0

14 endif
15 endwhile

if q ∈ Fs ∪ Fps is reached. Prefix length counter (plc) keeps track of the longest
prefix in the current window. When there is no transition defined for the input
symbol an antifactor has been found and the window is shifted.

The formal proof of the algorithm’s correctness is given in [3]. The memory
and the time complexity is also studied in [3]. The memory complexity of this
algorithm is constant with the length of text and the time complexity has the
upper bound of O(n|G|max) and the lower bound of O(n/|G|min) where n is
the length of the text and G is the set of pattern images. The average time
complexity depends on the problem solved. Optimizations leading to the upper
bound of O(n) are proposed in [3] for specific subclasses of problems.

4.3 Constructor

The output of the constructor is a Backward Pattern Matching Automaton
(BPMA) representing an instance of pattern matching problem. For the same
set of patterns different problems produce different BPMAs.

Definition 6 (Backward Pattern Matching Automaton). The Backward
Pattern Matching Automaton is a seven-tuple M = (Q, A, δ, q0, Fp, Fs, Fps),
where Q is a finite set of states, A is a finite input alphabet, δ is a mapping
Q × A → Q, q0 ∈ Q is the initial state, Fp ⊂ Q, Fs ⊂ Q, Fps ⊂ Q are
mutually disjoint sets of final states, i.e. (Fp ∩ Fs = ∅) ∧ (Fp ∩ Fps = ∅) ∧
(Fs ∩ Fps = ∅). Sets Fp, Fs and Fps are such, that if automaton Mp = (Q, A, δ,
q0, Fp) is accepting L(Mp) then automaton Ms = (Q, A, δ, q0, Fs) is accepting
L(Ms) = suff+(L(Mp)) \ L(Mp) and automaton Mps = (Q, A, δ, q0, Fps) is
accepting L(Mps) = suff+(L(Mp)) ∩ L(Ms).

54 J. Antoš and B. Melichar

The BPMA has three disjoint sets of final states accepting three languages Lp,
Ls and Lps that together represent the language of all reversed pattern images
GR and of all suffixes of all reversed pattern images suff+(GR):

Lp = GR \ suff+(GR), Ls = suff+(GR) \GR, Lps = GR ∩ suff+(GR).

The Ls language accepts pattern matches, Lp accepts prefixes of pattern matches
and Lps accepts prefixes that are at the same time pattern matches.

Remark 3. In transition diagrams, a state q ∈ Fp is denoted by a full inner circle,
q ∈ Fs by a dotted inner circle and q ∈ Fps by a dashed inner circle.

4.4 Construction of a Backward Pattern Matching Automaton

The construction has two steps:

1. For a problem θ and a set of patterns P we construct a Reversed Projec-
tion Automaton (RPA). RPA is nondeterministic finite automaton MRPA

accepting a set of all reversed pattern images L(MRPA) =
(
proj(P)

)R.
2. From MRPA we construct a BPMA by a problem-independent algorithm.

4.5 Construction of a Reversed Projection Automaton

A RPA for a specific problem is not constructed by a problem-specific algorithm.
The 6D classification is used to construct the automaton one step at time:

1. Construct automaton for Dimension 3: One - Finite - Infinite
2. Modify the automaton from step 1 for Dimension 5: Care - Don’t care
3. Modify the automaton from step 2 for Dimension 4: Exact - R - DIR - DIRT
4. Modify the automaton from step 3 for Dimension 2: Full pattern - Subpattern
5. Modify the automaton from step 4 for Dimension 1: seQuence - String
6. Modify the automaton from step 5 for Dimension 6: One - Sequence of

At first an automaton for a point on the 3rd axis (matching of one, finite or
infinite number of patterns) is constructed by one of three algorithms. The result
is RPA for one of SFOECO, SFFECO or SFIECO problems.

Next step is the 5th axis: If one string with “don’t care” symbols is to
be matched, a SFOECO automaton is converted to SFOEDO automaton. In
the same way, SFFECO automaton is converted to SFFEDO and SFIECO to
SFIEDO. The same algorithm is used for all three cases. By using at most two
algorithms (out of four: three for the 3rd axis and one for the 5th axis) a RPA
for six problems can be constructed. The 4th axis is processed next and so on
through the 6D space (or any other defined problem space).

At most six algorithms (out of ten) are needed to construct RPAs for all
192 problems. The same method and different classification will build RPAs for
different problems.

The approach is demonstrated here by giving algorithms needed to con-
struct BPMA for SFIERCO problem (approximate pattern matching of a regular

Automata for Generalized Backward Pattern Matching 55

expression). More algorithms are given in [3]. The algorithms are very straight-
forward, yet their combination can solve complex problems.

4.6 Example: Construction of RPA for SFIERCO Problem

Let us have the regular expression v = (aaaa)+b. We first construct RPA for
Dim 3 (infinite set of patterns). The RPA will accept language L(RPA) = vR.
We construct it by one of well known algorithms [10] (Figure 4).

Then we modify it by Algorithm 2 for Dim 4 (approximate matching by
Hamming distance). The result is RPA for SFIERCO problem (Figure 5).

Fig. 4. Reversed projection automaton for regular expression v = (aaaa)+b

Fig. 5. RPA for regular expression v = (aaaa)+b and Hamming distance with kmax = 1

Algorithm 2: Construction of automaton for Dimension 4 for R-matching

Input: Automaton Minput = (Q,A, δ, q0, F), Hamming distance kmax

Output: Nondeterministic finite automaton M
Method:

1 Q′ ← ∅, F ′ ← ∅
2 for ∀k ∈ 〈0, kmax〉 do
3 Q′ ← Q′ ∪ {qk,i : qi ∈ Q}
4 δ′(qk,i, a) ← δ′(qk,i, a) ∪ {qk,j : qj ∈ δ(qi, a)} for all a ∈ A, qi ∈ Q
5 F ′ ← F ′ ∪ {qk,i : qi ∈ F}
6 endfor
7 for ∀k ∈ 〈0, kmax − 1〉 do
8 δ′(qk,i, a) ← δ′(qk,i, a)∪{qk+1,j : qj ∈ δ(qi, a)} for all a ∈ A, qi ∈ Q
9 endfor

10 M ← (Q′, A, δ′, q0,0, F
′)

4.7 Construction of Backward Pattern Matching Automaton

A BPMA is constructed from RPA by Algorithm 3. We assume the RPA has
initial state with no incoming transitions.

56 J. Antoš and B. Melichar

Algorithm 3: Construction of nondeterministic BPMA

Input: Nondeterministic finite automaton MRPA = (Q, A, δ, q0, F),

Q = {q0, q1, · · · , qn}, q0 has no incoming transitions

Output: Extended nondeterministic finite automaton M
Method:

1 Q′ ← {qi,p, qi,s : i ∈<0, n>}
2 for ∀i, j ∈<0, n>,∀a ∈ A do
3 if δ(qi, a) � qj then
4 if i �= 0 then
5 δ′(qi,p, a) ← δ′(qi,p, a) ∪ qj,p

6 δ′(qi,s, a) ← δ′(qi,s, a) ∪ qj,s

7 else
8 δ′(q0,p, a) ← δ′(q0,p, a) ∪ qj,p

9 δ′(q0,p, a) ← δ′(q0,p, a) ∪ ⋃
qk∈Q\{q0} δ(qk, a)

10 endif
11 endif
12 endfor
13 Fp ← {qi,p : qi ∈ F, i ∈<0, n>}, Fs ← {qi,s : qi ∈ F, i ∈<0, n>}, Fps ← ∅
14 M ← (Q′, A, δ′, q0,p, Fp, Fs, Fps)

The algorithm creates a new automaton with two sets of states - states with
the second index p accept reversed patterns, states with the second index s
accept proper suffixes of reversed patterns. The result looks like the union of
a pattern automaton and a suffix automaton. The suffix automaton is cre-
ated by virtually adding the ε-transitions from the initial state to all s-indexed
states. (All ε-transitions are replaced by the equivalent non-epsilon transitions
on line 9.)

The output of Algorithm 3 is nondeterministic automaton but in the executor
we use a deterministic finite automaton. Well known algorithms for determina-
tion and minimization of finite automata (see [10]) can be used. They only need
to be adapted to work with the tree disjoint set of states, see [3].

4.8 Time and Space Complexity

The construction algorithms for RPA given in [3] run in linear time with the
length (or sum of lengths) of patterns. Also the size of the automaton is linear.
The complexity for SFIECO problem is given by the conversion of a regular
expression to an automaton [10].

The construction of BPMA (Alg. 3) has time complexity of O(|A|x2) where
x is the number of states of the input automaton: the for cycle (line 2) can be
implemented by a tree-traversal algorithm [10] to run at most x times. Line 9
can be implemented to iterate over incoming transitions (at most x|A| times).

It is well known that the conversion from nondeterministic (NFA) to deter-
ministic (DFA) automaton requires at most O(2x) time where x is the number
of states in NFA. The resulting DFA may have at most O(2x) states. For some
problems it has been shown that the upper bound is lower [14] but in general it
still needs to be studied. Yet for typical cases the size of BPMA is practical.

Automata for Generalized Backward Pattern Matching 57

Fig. 6. BPMA (after minimization and determinization) for regular expression v =

(aaaa)+b and Hamming distance with k = 1

 a a b b c a b c b a baaT :

q :

tc :

plc :

1 2 3 4 5 6 7 8 9 10 131211

0

0
0

Found !

shift = max(1,|G|min – plc) = 5 – 1 = 4

1
1

0

0
0

1
1

2
1

5

shift = 5 – 1 = 4

1
1

0

0
0

2
2

3
3

4
4

5
4

6
4shift = 5 – 4 = 1

0 1

20

2615180

START

END

11

Fig. 7. Example run of the executor: approximate matching of regular expression v =

(aaaa)+b in text

5 Conclusion

The proposed approach is a generalization of backward pattern matching. The
one-step-at-a-time approach for construction of Reversed Projection Automaton
(RPA) has the benefit of easy extension to new problems and their combination
with currently known problems. The BPMM Executor’s pattern matching algo-
rithm is universal to solve any problem described by RPA. The benefit is the
ability to quickly derive pattern matching solutions for new problems.

The pattern matching algorithm is not optimal but it can be optimized for
specific problem subclasses [3]. Future work will study in more detail the size
of BPMA (due to the determinization of NFA) to precisely characterize under
which conditions the approach might not be practical due to the size of the
automaton.

58 J. Antoš and B. Melichar

References

1. Aho, A.V., Corasick, M.J.: Efficient String Matching: An Aid to Bibliographic

Research. Communications of ACM 18(6), 333–340 (1975)

2. Allauzen, C., Crochemore, M., Raffinot, M.: Factor Oracle: A New Structure for

Pattern Matching. In: Bartosek, M., Tel, G., Pavelka, J. (eds.) SOFSEM 1999.

LNCS, vol. 1725, pp. 295–306. Springer, Heidelberg (1999)

3. Antoš, J.: Automaton-based Backward Pattern Matching. Dissertation thesis. CTU

in Prague (2010),

http://www.stringology.org/papers/Antos-PhD_thesis-2010.pdf

4. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. C. ACM 20(10), 762–772

(1977)

5. Chvatal, V., Klarner, D.A., Knuth, D.E.: Selected Combinatorial Research Prob-

lems. STAN-CS-72-292, Stanford University (1972)

6. Cleophas, L., Watson, B.W., Zwaan, G.: Automaton-based sublinear keyword pat-

tern matching. In: Proceedings of the 11th SPIRE, Padova, Italy (2004)

7. Crochemore, M., Czumaj, A.: Ga̧sieniec, L., et al.: Deux méthodes pour accélerer

l’algorithme de Boyer-Moore. In: Actes des 2e Journées franco-belges: Théories des

Automates et Applications, pp. 45–63. Public. de l’Univ. de Rouen, No. 176 (1991)

8. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-

versity Press, Cambridge (2007)

9. Hamming, R.W.: Error-detecting and error-correcting codes. Bell System Technical

Journal 29(2), 147–160 (1950)

10. Hopcroft, J.E., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-

guages, and Computation. Addison Wesley, Reading (2001)

11. Kleene, S.C.: Representation of Events in Nerve Nets and Finite Automata. In:

Automata Studies, pp. 3–42. Princeton University Press, Princeton (1956)

12. Lecroq, T.: A variation on the Boyer-Moore algorithm. Theoretical Computer Sci-

ence 92(1), 119–144 (1992)

13. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and

reversals. Doklady Akademii Nauk SSSR 163(4), 845–848 (1965)

14. Melichar, B.: String Matching with k Differences by Finite Automata. In: Proceed-

ings of the 13th ICPR, vol. II, pp. 256–260 (1996)

15. Melichar, B., Holub, J.: 6D Classification of Pattern Matching Problems. In: Pro-

ceedings of PSC 1997, Prague, Czech republic, pp. 24–32 (1997)

16. Melichar, B., Holub, J., Polcar, T.: Text Searching Algorithms, vol. I, II (2005),

http://psc.felk.cvut.cz/athens/

http://www.stringology.org/papers/Antos-PhD_thesis-2010.pdf
http://psc.felk.cvut.cz/athens/

Partial Derivative Automata Formalized in Coq

José Bacelar Almeida3, Nelma Moreira1,
David Pereira1, and Simão Melo de Sousa2

1 DCC-FC & LIACC, University of Porto
Rua do Campo Alegre 1021, 4169-007, Porto, Portugal

{nam,dpereira}@ncc.up.pt
2 LIACC & DI, University of Beira Interior

Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
desousa@di.ubi.pt

3 CCTC & DI, University of Minho,
Campus de Gualtar, 4710-057 Braga, Portugal

jba@di.uminho.pt

Abstract. In this paper we present a computer assisted proof of the
correctness of a partial derivative automata construction from a regular
expression within the Coq proof assistant. This proof is part of a for-
malization of Kleene algebra and regular languages in Coq towards their
usage in program certification.

1 Introduction

The use of proof assistants has gained increasing importance in mathematics
and computer science. Their value in the assurance of theorem and algorithm
correctness is obvious, since all the steps and intricacies involved in the proof
process are formally and mechanically checked. The use of the Coq proof assis-
tant for program verification is specially attractive because correctness proofs
can be compiled as proof certificates, and the constructive components of the
specification and proof development can be extracted into functional programs.

In this paper we describe a formalization of regular languages in Coq. Our
main result is the proof of the correctness of a partial derivative automata con-
struction from a regular expression. This result is a step towards the imple-
mentation of a proved terminating, and correct, decision procedure for regular
expression equivalence based on the notion of (partial) derivatives. From such
implementation it is possible to extract a correct-by-construction functional pro-
gram, and it is also possible to develop proof tactics that automate the con-
struction of proofs. Kleene algebra can be used to capture several properties
of programs. In this setting, testing Kleene algebra terms equivalence can cor-
respond to proving partial correctness of programs. Defining and proving the
correctness of a decision procedure within a proof assistant that features proof
objects1 allows to obtain certificates that facilitate the automation of formal
software verification.
1 In such systems proof objects are values that can be compiled into binary code.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 59–68, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

60 J. Bacelar Almeida et al.

The paper is organised as follows. In Section 2 we review some definitions
about regular languages and finite automata. The partial derivative automaton
and Mirkin’s construction are reviewed in Section 3. Section 4 presents a small
introduction to the Coq proof assistant. In Section 5 we describe the formaliza-
tion of regular languages in Coq and present the main result. In Section 6 we
comment on related work. Finally, in Section 7 we draw some conclusions and
point some future work.

2 Regular Languages and Finite Automata

Let Σ = {a1, a2, . . . , ak} be an alphabet (set of symbols). A word w over Σ is any
finite sequence of symbols. The empty word is denoted by ε. The concatenation
of two words w1 and w2 is the word w = w1w2. Let Σ� be the set of all words
over Σ. A language over Σ is a subset of Σ�. If L1 and L2 are two languages,
then L1 · L2 = {xy | x ∈ L1 and y ∈ L2}. The operator · is often omitted. The
power of a language L is inductively defined by L0 = {ε}, Ln = LLn−1, for
n ≥ 1. The Kleene star L� of a language L is ∪n≥0L

n. Given a word w ∈ Σ�

and L ∈ Σ�, the (left -)quotient of L by w is w−1L = {v | wv ∈ L}.
A regular expression (re) α over Σ represents a regular language L(α) ⊆ Σ�

and is inductively defined by: ∅ is a re and L(∅) = ∅; ε is a re and L(ε) = {ε};
a ∈ Σ is a re and L(a) = {a}; if α1 and α2 are re, (α1 + α2), (α1α2) and (α1)�

are re, respectively with L((α1 +α2)) = L(α1)∪L(α2), L((α1α2)) = L(α1)L(α2)
and L((α1)�) = L(α1)�. The alphabetic size of a re α is the number of symbols
of α and it is denoted by |α|Σ . The constant part of a re is denoted by ε(α) and
defined by ε(α) = ε if ε ∈ L(α), and ε(α) = ∅ otherwise. The same function can
be applied to languages. Let RE be the set of regular expressions over Σ. If two
re’s α and β are syntactically identical, we write α ≡ β. Two re’s are equivalent
if they represent the same regular language, that is, if L(α) = L(β), and we
write α = β. The equational properties of regular expressions are axiomatically
captured by a Kleene algebra (KA), normally called the algebra of regular events,
after the seminal work of S. C. Kleene [Kle56]. A KA is an algebraic structure
(K, 0, 1, +, ·,�) such that (K, 0, 1, +, ·) is an idempotent semiring and where the
operator � (Kleene’s star) is characterized by a set of axioms. The algebra of
regular events is given by (RE, ∅, ε, +, ·,�). There are several ways of axiomatizing
a KA but we considered the one presented by D. Kozen in [Koz94].

A non-deterministic finite automaton (NFA) A is a quintuple (Q, Σ, δ, q0, F)
where Q is a finite set of states, Σ is the alphabet, δ ⊆ Q × Σ × Q is the
transition relation, q0 the initial state and F ⊆ Q is the set of final states. For
q ∈ Q and a ∈ Σ, we denote the set {p | (q, a, p) ∈ δ} by δ(q, a), and we can
extend this notation to w ∈ Σ�, and to R ⊆ Q. An NFA is deterministic (DFA)
if for each pair (q, a) ∈ Q × Σ, |δ(q, a)| ≤ 1. The language recognized by A is
L(A) = {w ∈ Σ� | δ(q0, w) ∩ F �= ∅}. The set of languages recognized by NFA’
s coincides with the set of languages represented by regular expressions, i.e the
set of regular languages.

Partial Derivative Automata Formalized in Coq 61

Regular languages can be associated to sets of languages equations. Given an
automaton A = (Q, Σ, δ, q0, F) with |Q| = n + 1 we can consider Q = [0, n] and
q0 = 0. Let Li be the language recognized by the automaton ([0, n], Σ, δ, i, F), for
i ∈ [0, n] and L(A) = L0. Then, the following language equations are satisfied:

Li =
(⋃k

j=1 {aj}Lij

)
∪ ε(Li), ∀i ∈ [0, n],

Lij =
⋃

m∈Iij
Lm, Iij = δ(i, aj) ⊆ [0, n]

(1)

Conversely any set of languages {L0, . . . , Ln} that satisfies the set of equations
(1) defines an NFA with initial state L0. In particular if L0, . . . , Ln are repre-
sented by regular expressions α ≡ α0, . . . , αn, respectively, the following holds:

α ≡ α0

αi = a1αi1 + . . . + akαik + ε(αi), for i ∈ [0, n]
αij =

∑
m∈Iij

αm, Iij ⊆ [0, n]
(2)

Given α ∈ RE, to find a set of re’s that satisfies (2) is tantamount to find an
NFA equivalent to α.

3 Partial Derivative Automata

There are several constructions to obtain NFA from re’s. Based on the notion
of derivative, Brzozowski [Brz64] established a construction of a DFA from a re.
The partial derivative automaton (Apd), introduced by V. Antimirov [Ant96], is
a non-deterministic version of the Brzozowski automaton.

For a re α ∈ RE and a symbol a ∈ Σ, the set ∂a(α) of partial derivatives of α
w.r.t. a is defined inductively as follows:

∂a(∅) = ∂a(ε) = ∅
∂a(b) =

{{ε} if b ≡ a
∅ otherwise

∂a(α�) = ∂a(α) � α�

∂a(α + β) = ∂a(α) ∪ ∂a(β)

∂a(αβ) =
{

∂a(α)� β ∪ ∂a(β) if ε(α) = ε
∂a(α)� β otherwise,

where the operator � is defined ahead. Let S ⊆ RE and β ∈ RE. Then S � β =
{αβ |α ∈ S} if β �= ∅, and S � ∅ = ∅ otherwise. Analogously, one defines β � S.
Moreover, if S = {α1, . . . , αn}, let

∑
S denote the re α1 + · · ·+ αn.

Lemma 1 (Antimirov). For any a ∈ Σ and α ∈ RE, L(
∑

∂a(α)) = a−1L(α).

The definition of partial derivative can be extended to sets of regular expressions,
words, and languages. Given α ∈ RE and a ∈ Σ, ∂a(S) = ∪α∈S∂a(α) for S ⊆ RE,
∂ε(α) = {α}, ∂wa(α) = ∂a(∂w(α)) for w ∈ Σ�, and ∂L(α) = ∪w∈L∂w(α) for L ⊆
Σ�. Lemma 1 can be extended to words w ∈ Σ�. The set of partial derivatives of
α is defined by PD(α) = ∂Σ�α. An important fact is that |PD(α)| ≤ |α|Σ + 1.
Given a regular expression α, the partial derivative automaton Apd(α) is thus
defined as

Apd(α) = (PD(α), Σ, δpd, α, {q ∈ PD(α) | ε(q) = ε}),
where δpd(q, a) = ∂a(q), for all q ∈ PD(α) and a ∈ Σ.

62 J. Bacelar Almeida et al.

Proposition 1 (Antimirov). L(Apd(α)) = L(α).

Champarnaud and Ziadi [CZ01] proved that partial derivatives and Mirkin’s
prebases [Mir66] lead to identical constructions of non-deterministic automata.
We now review Mirkin’s construction. Given α ≡ α0 ∈ RE, the set π(α) =
{α1, . . . , αn}, where α1, . . . , αn are non-empty re’s, is called a support of α if
it satisfies the set of equations (2), where αij , for i ∈ [0, n] and j ∈ [1, k], is a
summation of elements of π(α). If π(α) is a support of α, then the set π(α)∪{α}
is called a prebase of α. B. Mirkin provided an algorithm for the computation of
a support of a re for which Champarnaud and Ziadi gave an elegant inductive
definition2.

Proposition 2 (Mirkin/Champarnaud&Ziadi). Let α ∈ RE. Then, the set
π(α), inductively defined by

π(∅) = ∅
π(ε) = ∅
π(a) = {ε}

π(α + β) = π(α) ∪ π(β)
π(αβ) = π(α) � β ∪ π(β)
π(α�) = π(α) � α�,

is a support of α.

In his original paper Mirkin showed that |π(α)| ≤ |α|Σ . Furthermore, Champar-
naud and Ziadi established that PD(α) = π(α) ∪ {α}. This fact can be proved
noticing that Apd(α) verifies equations (1) which lead exactly to a language
based version of equalities (2) when considering αij =

∑
∂aj αi, for i ∈ [0, n] and

j ∈ [1, k]. To prove Proposition 1 is then equivalent to prove Proposition 2. The
main result presented in this paper is the formalization of Proposition 2 in Coq.

4 The Coq Proof Assistant

The Coq proof assistant is an implementation of the Calculus of Inductive Con-
structions (CIC) [BC04], a typed λ-calculus that features polymorphism, depen-
dent types and very expressive (co-)inductive types. Coq provides users with the
means to define data-structures and functions, as in standard functional lan-
guages, and also allows to define specifications and to build proofs in the same
language, if we consider the underlying λ-calculus as an higher-order logic under
the Curry-Horward isomorphism programs-as-proofs principle (CHi) [How80].

In CHi, any typing relation t : A can either be seen as a value t of type A,
or as t being a proof of the proposition A. Any type in Coq is in the set of
sorts S = {Prop}∪{Type(i) | i ∈ N}. The Type(0) sort represents computational
types, while the Prop type represents logical propositions.

An inductive type is introduced by a collection of constructors, each with its
own arity. A value of an inductive type is a composition of such constructors.
As an example, natural numbers are encoded as follows:
I n d u c t i v e N : Type :=
| 0 : N | S : N → N .

2 That definition was corrected by Broda et al. [BMMR10].

Partial Derivative Automata Formalized in Coq 63

Coq automatically generates induction and recursion principles for each new
inductive type. More complex types can be created such as dependent types. As
an example of a dependent type, consider subset types (or Σ-types), formalized
in Coq as the type sig3.
I n d u c t i v e s i g (A : Type) (P :A → Prop) : Type :=
| e x i s t : ∀ x :A , P x → s i g P .

The type sig (that has a syntactical notation of { x | P}) is pair (x, H), where
x represents some computational value and H has the type P (x) and is a proof
that x satisfies P . Assuming the predicate Evenx which encodes even natural
numbers, an example of a Σ-type is the subset-type of even naturals sig Even, and
one of its possible inhabitants is the term value exist 2 (Even 2). The definition of
nested subset types is provided the following dependent type
I n d u c t i v e s i gS (A : Type) (P :A → Type) : Type :=
| e x i s t S : ∀ x :A, P x → s i gS A P .

(with the syntactical notation {x:A & P}), where P is either a sig or a sigS type.
In Coq, functions must be provably terminating. Termination is ensured by a

guard predicate that checks that recursive calls are always performed on struc-
turally smaller arguments. As an example, consider the function plus that adds
two natural numbers.
F i x p o i n t p l u s (n m: N) { s t r u c t n} : N :=
match n with
| 0 ⇒ m | S p ⇒ S (p l u s p m)
end .

The basic way of the Coq proof construction process is to explicitly build CIC
terms. However, proofs can be built more conveniently and interactively in a
backward fashion. This step by step process is done by the use of proof tactics.

Another appealing feature of Coq is the possibility to extract the constructive
parts of proof development into correct by construction functional programs.
Since the underlying logic of Coq is constructive, any value, proof included, can
be seen as a (functional) program. The extraction mechanism keeps the compu-
tational counterparts and translate them into standard functional programs. On
the other hand, purely logical sub-terms are discarded since they are computa-
tionally non-informative.

In this paper we use the Coq libraries Ensembles and FSets that formalize
sets. The Ensembles library formalizes the notion of set as a characteristic pred-
icate. The base type is Ensemble (X:Type) := X → Prop. Set operations are also
provided. As an example, consider the singleton and the union:
De f i n i t i o n I n (U : Type) (P : Ensemble U) (x :U) := P x .

I n d u c t i v e S i n g l e t o n (U: Type) (x :U) : Ensemble U :=
| I n_ s i n g l e t o n : I n U (S i n g l e t o n x) x .

I n d u c t i v e Union (U: Type) (B C : Ensemble U) : Ensemble U :=
| Un i on_ in t r o l : ∀ x :U, I n U B x → I n U (Union B C) x
| Un ion_int ro r : ∀ x :U, I n U C x → I n U (Union B C) x .

3 Note that the second argument of sig is a proof term that depends on the first
argument.

64 J. Bacelar Almeida et al.

The FSets library provides a rich implementation of finite sets over decidable
and/or ordered types.

5 Formalization in Coq

This section describes the main parts of our formalization in Coq. First we
present the formalization of regular languages and re’s.

5.1 Formal Languages and Regular Expressions

An alphabet sigma (Σ) can be specified as a non-empty list of symbols of a type
A. It is required that the type A is ordered. For that, a proof of compare_sy must
be given, that is, a term of type Compare and that corresponds to a function
that receives two variables x, y of type A and that returns a term proving if x
and y are either equal, or if x < y, or y < x.
I n d u c t i v e Compare (A : Type) (l t eq : A → A → Prop) (x y : A) : Type :=
| LT : l t x y → Compare l t eq x y
| EQ : eq x y → Compare l t eq x y
| GT : l t y x → Compare l t eq x y .

Module Type Alphabe t .
Parameter A : Set .
D e f i n i t i o n A_eq := (eq A) .
Parameter A_lt : A → A → Prop .
Parameter s igma : l i s t A .
Axiom sigma_nempty : s igma �= n i l .
Axiom compare_sy : ∀ x y :A, Compare s y l t s y eq x y .

End Alphabe t .

Words are lists whose elements have type A, and that belong to sigma. A word
w is a valid word if w ∈ Σ� which correspond to the IsWord predicate.
De f i n i t i o n I s S y (a :A) := a ∈ s igma .
De f i n i t i o n word := l i s t A .

I n d u c t i v e IsWord : word → Prop :=
| n i l_IsWord : IsWord ε
| cons_IsWord : ∀ a :A, I s S y a → ∀ u : word , IsWord u → IsWord (a : : u) .

Languages are sets of words, that is, terms of type Ensemble word. The languages
∅, {ε}, {a} for a ∈ Σ, and language union are defined using the corresponding
Ensembles definitions. Concatenation and Kleene’s star are formalized as the
predicates · and � as presented below. Equivalence of languages is denoted by
=L which is the standard set equivalence, and it is represented by the predicate
Same_set.
De f i n i t i o n l anguage := Ensemble word .

De f i n i t i o n ∅ := (Empty word) .
De f i n i t i o n ε := (S i n g l e t o n word n i l) .
De f i n i t i o n ([S] x) := (S i n g l e t o n word (x : : n i l)) .
De f i n i t i o n (x ∪ y) := Union word x y .

I n d u c t i v e (L1 · L2 : language) : l anguage :=
| ConcL_app : ∀ w1 w2 : word , w1 ∈ L1 → w2 ∈ L2 → (w1 ++ w2) ∈ (L1 · L2) .

Partial Derivative Automata Formalized in Coq 65

F i x p o i n t lpow (L : language) (n : N) : l anguage :=
match n with
| 0 => ε | (S m) => (L · (lpow L m))
end .

I n d u c t i v e (L : l anguage)� : l anguage :=
| starL_n : ∀ n : N w, w ∈ (lpow L n) → w ∈(L�) .

De f i n i t i o n (L1 =L L2 : language) := (Same_set L1 L2) .

Several properties of regular languages were proved, and, in particular, that
regular languages are a model for KA. This was accomplished considering the
KA implementation in Coq described in [PM08]. An extended description of that
proof is presented in [MPdS09]. Regular expressions are encoded by the inductive
type re. The language of any re α is obtained by applying the function re2rel to α.
This function was proved correct w.r.t. to RL, the predicate that defines regular
languages over the alphabet sigma (Theorem re2rel_is_RL).
I n d u c t i v e r e : Set :=
| r e0 : r e | r e1 : r e | re_sy : ∀ a :A, I s S y a → r e
| re_union : r e → r e → r e | re_conc : r e → r e → r e
| r e_s t a r : r e → r e .

F i x p o i n t r e 2 r e l (α : r e) : l anguage :=
match x with
| r e0 ⇒ ∅ | r e1 ⇒ ε | re_sy a H ⇒ ([S] a)
| re_union α1 α2 ⇒ (r e 2 r e l α1) ∪ (r e 2 r e l α2)
| re_conc α1 α2 ⇒ (r e 2 r e l α1) · (r e 2 r e l α2)
| r e_s t a r α1 ⇒ (r e 2 r e l α1) [∗]
end .

Coerc ion r e 2 r e l : r e � l anguage .

I n d u c t i v e RL : language → Prop :=
| RL0 : RL ∅ | RL1 : RL ε | RLs : ∀ a , RL ([S] a)
| RLp : ∀ l 1 l2 , RL l 1 → RL l 2 → RL (l 1 ∪ l 2)
| RLc : ∀ l 1 l2 , RL l 1 → RL l 2 → RL (l 1 · l 2)
| RLst : ∀ l , RL l → RL (l �) .

Theorem r e2 re l_ i s_RL : ∀ α : re , RL α .

In the code above, re2rel was declared as a coercion which allows one to refer to
a given re α where its language is required, i.e., without explicitly referring to
re2rel(α). For instance, the concatenation of the languages corresponding to the
re’s α1 and α2, is written α1 · α2 instead of (re2rel(α1))·(re2rel (α2)).

5.2 Correctness of Mirkin’s Construction

We now present the formalization of our main result, i.e., given a re α, π(α)
computes a support for α.

The function π is formalized in Coq as a structural recursive function, and
thus its termination is ensured. The function _�_ is defined using the auxiliary
function fold_conc, which concatenates a re to the right of each element of a set
of re’s. A set of re’s is represented by the type re_set).
De f i n i t i o n fo ld_conc (s : r e_se t) (r : r e) :=

f o l d (fun x ⇒ add (re_conc x r)) s empty .

De f i n i t i o n � (s : r e_se t) (r : r e) : t :=

66 J. Bacelar Almeida et al.

match r with
| r e0 ⇒ empty | _ ⇒ fo ld_conc s r
end .

F i x p o i n t π (r : r e) : r e_se t :=
match r with
| r e0 ⇒ ∅ | r e1 ⇒ ∅ | re_sy _ _ ⇒ {re1}
| re_union x y ⇒ (π x) ∪ (π y)
| re_conc x y ⇒ ((π x)� y) ∪ (π y)
| r e_s t a r x ⇒ � (π x) (r e_s t a r x)

end .

The proof that π(α) ≤ |α|Σ is provided by Theorem PI_upper_bound, where
the function |_|Σ is defined by structural induction.
F i x p o i n t |α : r e | Σ : N :=
match r with
| r e0 ⇒ 0 | r e1 ⇒ 0 | re_sy s _ ⇒ 1
| re_union x y ⇒ (|x|Σ) + (|y|Σ)
| re_conc x y ⇒ (|x|Σ) + (|y|Σ)
| r e_s t a r x ⇒ |x|Σ
end .

Lemma PI_upper_bound : ∀ r : re , c a r d i n a l (π r) ≤ | r |Σ .

Recall that the function π is a support if its elements satisfy the equations of
(2). The set of equations (2) is defined by the inductive type Support, which has
two constructors.
I n d u c t i v e Support (r : r e) (s : r e_se t) : l anguage :=
| mb_empty : ∀ w: word , w ∈ ε(r) → w ∈(Support r s)
| mb : ∀ (w : word) (a : s y) (H: I s S y a) , ¬Empty s →

{x : r e & {s ’ : r e_se t | x ∈ s ∧ w ∈ ((re_sy a H) · x) ∧
((re_sy a H) · x) ⊆ r ∧ s ’ ⊆ s ∧ x =L LS s ’) }} →

w ∈ (Support r s) .

The first constructor, mb_empty, corresponds to the case where a word w belongs
to ε(r). The second constructor, mb, corresponds to the case where a word w
belongs to one of the other parcels of the summation in the right side of equations
(2). It has a Σ-type as argument which is a witness, (x, (s′, P)), that P x s′ is
a proof that for each a ∈ Σ, the parcel a · αil is such that αil is built from an
s′ ⊆ s. The argument ¬Empty s is introduced for technical reasons only and to
facilitate proof construction.

Our main result is the proof that π calculates the support for a given re. This
is established in the following theorem:
Theorem PI_is_MSupport : ∀ r : re , r =L MSupport r (π r) .

The proof of this theorem follows the original proof provided by Mirkin. The
proof is constructed by induction on α. The equivalence between partial deriva-
tive automata and Mirkin’s construction was also proved correct through the
following theorem:

Lemma SupportParts_are_pdrv : ∀ r w,
w ?? (I s Suppo r t r (PI r)) → w = n i l \/ e x i s t s a , w ?? ([S a] [C] (pdrv r a)) .

The above theorem is a formalization of the result established by Champarnaud
and Ziadi [CZ01] where they show that the elements of the support correspond
to partial derivatives.

Partial Derivative Automata Formalized in Coq 67

6 Related Work and Applications

Formalization of finite automata in Coq was first approached by J.-C. Filliâtre
in [Fil97]. The author’s aim was to prove the pumping lemma for regular lan-
guages and the extraction of an OCaml program. More recently, S. Briais [Bri08]
developed a new formalization of formal languages in Coq, which covers Fil-
liâtre’s work. This formalization includes Thompson construction of an automa-
ton from a re and a naïve construction of two automata equivalence based in
testing if the difference of their languages is the empty language. Braibant and
Pous [BP09] formalized KA based on Kozen’s algebraic proof of completeness
of KA, and provided reflexive tactics to automatically decide KA expression’s
equivalence. Benoît Razet [Raz08] formalized an executable complete simula-
tor for finite Eilenberg machines. The soundness of the corresponding algorithm
was proved sound and correct, and was extracted as an executable OCaml pro-
gram. Pereira and Moreira [PM08] also presented a formalization of KA and
KAT in Coq. Kleene algebra with tests (KAT) [Koz97] extends KA with an em-
bedded Boolean algebra and it is particularly suited for the formal verification of
propositional programs. In particular, KAT subsumes propositional Hoare logic
(PHL) [KT00], a Hoare logic without the assignment axiom. Pereira and Mor-
eira provided a mechanically verified proof that the deductive rules of PHL are
theorems of KAT. However, no automation mechanisms were considered.

7 Concluding Remarks

In this paper we have described a formalization of regular languages in the
Coq proof assistant. Our main result is the correctness of Mirkin’s construction
of partial derivative automaton from a regular expression. The overall formal-
ization consists of approximately 2700 lines of specification code, and approx-
imately 7900 lines of proof code. The results of this paper provide the base
for the correctness of a decision procedure for re equivalence, based on the
notion of derivative. This kind of procedure was presented by several authors
[Brz64, AM95, AMR09a, AMR09b].

This work is the continuation of previous work on the formalization of KA,
KAT, and PHL in Coq. Since Coq is a proof assistant that allows the compilation
of proofs into binary proof objects, we envision the representation of propo-
sitional programs and their properties in the context of Proof-Carrying-Code
[Nec97]. In this context programs are packaged together with the certificates
that assert program partial correctness.

Acknowledgments

We thank Sebastien Briais for his willingness to respond promptly to questions
concerning his implementation of formal languages in the Coq proof assistant.
This work was partially funded by Fundação para a Ciência e Tecnologia (FCT)
and Program POSI and the project RESCUE (PTDC/EIA/65862/2006). David
Pereira is funded by FCT grant SFRH/BD/33233/2007.

68 J. Bacelar Almeida et al.

References

[AM95] Antimirov, V.M., Mosses, P.D.: Rewriting extended regular expressions.
Theor. Comput. Sci. 143(1), 51–72 (1995)

[AMR09a] Almeida, M., Moreira, N., Reis, R.: Antimirov and Mosses’s rewrite sys-
tem revisited. International Journal Of Foundations Of Computer Sci-
ence 20(04), 669–684 (2009)

[AMR09b] Almeida, M., Moreira, N., Reis, R.: Testing equivalence of regular lan-
guages. In: DCFS 2009, Magdeburg, Germany (2009)

[Ant96] Antimirov, V.M.: Partial derivatives of regular expressions and finite
automaton constructions. Theoret. Comput. Sci. 155(2), 291–319 (1996)

[BC04] Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program De-
velopment. Texts in Theoretical Computer Science. Springer, Heidelberg
(2004)

[BMMR10] Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average number
of states of partial derivative automata. In: Gao, Y., Lu, H., Seki, S., Yu,
S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 112–123. Springer, Heidelberg
(2010)

[BP09] Braibant, T., Pous, D.: A tactic for deciding Kleene algebras. In: First
Coq Workshop (Available as a HAL report) (August 2009)

[Bri08] Briais, S.: Finite automata theory in Coq (2008),
http://www.prism.uvsq.fr/~bris/tools/Automata_080708.tar.gz

[Brz64] Brzozowski, J.A.: Derivatives of regular expressions. JACM 11(4), 481–
494 (1964)

[CZ01] Champarnaud, J.M., Ziadi, D.: From Mirkin’s prebases to Antimirov’s
word partial derivatives. Fundam. Inform. 45(3), 195–205 (2001)

[Fil97] Filliâtre, J.-C.: Finite automata theory in Coq - a constructive proof of
Kleene’s theorem (1997)

[How80] Howard, W.A.: The formulae-as-types notion of construction, pp. 479–
490. Academic Press, London (1980)

[Kle56] Kleene, S.C.: Representation of events in nerve nets and finite automata.
In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–41.
Princeton University Press, Princeton (1956)

[Koz94] Kozen, D.: A completeness theorem for Kleene algebras and the algebra
of regular events. Infor. and Comput. 110(2), 366–390 (1994)

[Koz97] Kozen, D.: Kleene algebra with tests. Transactions on Programming Lan-
guages and Systems 19(3), 427–443 (1997)

[KT00] Kozen, D., Tiuryn, J.: On the completeness of propositional Hoare logic.
In: RelMiCS, pp. 195–202 (2000)

[Mir66] Mirkin, B.G.: An algorithm for constructing a base in a language of reg-
ular expressions. Engineering Cybernetics 5, 51–57 (1966)

[MPdS09] Moreira, N., Pereira, D., de Sousa, S.M.: On the mechanization of Kleene
algebra in Coq. Technical Report DCC-2009-03, DCC-FC&LIACC, Uni-
versidade do Porto (2009)

[Nec97] Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM
SIGPLAN-SIGACT symposium on Principles of Programming Lan-
guages POPL 1997, pp. 106–119. ACM, New York (1997)

[PM08] Pereira, D., Moreira, N.: KAT and PHL in Coq. Computer Science and
Information Systems 05(02) (December 2008) ISSN: 1820-0214

[Raz08] Razet, B.: Simulating Eilenberg Machines with a Reactive Engine: Formal
Specification, Proof and Program Extraction. Research Report (2008)

http://www.prism.uvsq.fr/~bris/tools/Automata_080708.tar.gz

Regular Geometrical Languages and Tiling the Plane

Jean-Marc Champarnaud, Jean-Philippe Dubernard, and Hadrien Jeanne

LITIS, University of Rouen, France
{jean-marc.champarnaud,jean-philippe.dubernard}@univ-rouen.fr,

hadrien.jeanne@univ-rouen.fr

Abstract. We show that if a binary language L is regular, prolongable and geo-
metrical, then it can generate, on certain assumptions, a p1 type tiling of a part of
N2. We also show that the sequence of states that appear along a horizontal line
in such a tiling only depends on the shape of the tiling sub-figure and is somehow
periodic.

1 Introduction

A tiling of the plane is a finite set of plane figures, called tiles, instances of which fill
the plane with no overlaps and no gaps. A p1 type tiling uses only translated instances.
A polyomino [8] is a polygon exactly covered by unit squares whose edges are hor-
izontal or vertical. Numerous decidability results have been published addressing the
problem of tiling the plane with polyominoes; see for example [2,11] for tiling with one
polyomino. A language is geometrical [3] if the set of its prefixes can be drawn over
N2 and if this set is equal to the language of the resulting geometrical figure. The study
of geometrical languages was initially motivated by their application to the modeling
of real-time task systems [1], via regular languages [7] or discrete geometry [10,7]. An
automaton-based characterization has been provided for the family of regular geome-
trical binary languages [5,4]. In this paper, we make use of this characterization and
show that, on certain hypotheses, a p1 type tiling of a part of N2 can be generated
by such a language. The following two sections recall fundamental notions concerning
languages, finite automata and 2-dimensional geometrical languages. Section 4 inves-
tigates the conditions for the figure of a geometrical language to admit a region that
is tiled by a specific sub-figure. In Section 5 it is shown that, given such a tiling, the
sequence of states that appear along a horizontal line only depends on the shape of the
tiling sub-figure and is in some way periodic.

2 Preliminaries

Let us first review basic notions concerning regular languages and finite automata. For
a comprehensive treatment of this domain, reference [6] can be consulted. Let Σ be
a nonempty finite set of symbols, called the alphabet. A word over Σ is a finite se-
quence of symbols, usually written x1x2 · · ·xn. The length of a word u, denoted by
|u|, is the number of symbols in u. The number of occurrences of a symbol a in u is
denoted by |u|a. The empty word, denoted by ε, has a null length. If u = x1 · · ·xn and

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 69–78, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

70 J.-M. Champarnaud, J.-P. Dubernard, and H. Jeanne

v = y1 · · · ym are two words over the alphabet Σ, their concatenation u · v, usually
written uv, is the word x1 · · ·xny1 · · · ym. Let Σ∗ be the set of words over Σ. Given
two words u and w in Σ∗, u is said to be a prefix of w if there exists a word v in Σ∗

such that uv = w. A language L over Σ is a subset of Σ∗. The set of prefixes of the
words of the language L is denoted by Pref(L). The set of regular languages over an
alphabet Σ contains the empty set and the set {a} for all a ∈ Σ and it is closed un-
der finite concatenation, finite union and star. A language L is said to be prolongable
if and only if for all u in L, there exists x in Σ such that u · x ∈ L. Let L be a lan-
guage over the alphabet Σ and u be a word in Σ∗; the left quotient of L by u is the set
u−1(L) = {v ∈ Σ∗ | uv ∈ L}.

A deterministic finite automaton (DFA) is a 5-tuple A = (Q, Σ, δ, s0, T) where Q
is a finite set of states, δ is a mapping from Q×Σ to Q, s0 is the initial state and T is
the set of final states. For all (p, x) ∈ Q×Σ, we will write p · x instead of δ(p, x); the
3-tuple (p, x, q) in Q×Σ ×Q is said to be a transition if and only if q = p · x. A DFA
A is said to be complete if for any q ∈ Q and any a ∈ Σ, |q ·a| = 1. In a complete DFA
there may exist a sink state σ such that σ �∈ T and, for all x ∈ Σ, σ · x = σ. Let p ∈ Q
and u = u1 · · ·ul ∈ Σ∗. The path (p, u) of length l starting from p and labeled by u is
the sequence of transitions ((p0, u1, p1), . . ., (pl−1, ul, pl)), with p0 = p. A path (p, u)
is said to be proper if p · u �= σ. It is said to be successful if p = s0 and p · u ∈ T . The
language L(A) recognized by the DFAA is the set of words that are labels of successful
paths. Kleene’s theorem [9] states that a language is recognized by a finite automaton if
and only if it is regular. The left language

←−
LA

q (resp. right language
−→
LA

q) of a state q is
the set of words w such that there exists a path in A from s0 to the state q (resp. from q
to a final state) with w as label. A DFA A is said to be accessible if for any q ∈ Q there
exists a path from s0 to q. A complete and accessible DFA A is minimal if and only
if any two distinct states of A have distinct right languages. According to the theorem
of Myhill-Nerode [12,13], the minimal DFA of a regular language is unique up to an
isomorphism. Notice that if A = (Q, Σ, δ, s0, T) is the minimal automaton of Pref(L)
and if L �= Σ∗, then there exists a sink state σ and Q = T ∪ {σ}; in this case, any
proper path is successful and reciprocally.

A permutation ϕ of a set E of cardinality m is a bijection from E to E. Without
loss of generality, we consider that E = {0, 1, . . . , m − 1}. Two elements i and j of
E belong to the same orbit if and only if there exists an integer p, 0 ≤ p < m, such
that ϕp(i) = j. We will say that a permutation ϕ is circular if there exists an integer a,
0 ≤ a < m, called a shift and such that for all h, 0 ≤ h < m, it holds ϕ(h) ≡ h + a
mod m. In this case, i and j belong to the same orbit if and only if the congruence
i + ax ≡ j mod m admits at least one solution.

Lemma 1. Let ϕ be a circular permutation of a set E of cardinality m and let a be
its shift. Let d = gcd(a, m). Then the permutation ϕ admits d orbits O0, . . ., Od−1, of
cardinality m/d. For all r, 0 ≤ r < d, it holds Or = (r + kd)0≤k<m/d.

3 Geometrical Languages

Let us now review basic definitions and properties of geometrical figures and languages,
as introduced in [3]. Since this paper deals with binary languages, we only describe the

Regular Geometrical Languages and Tiling the Plane 71

2-dimensional case. Let Σ = {a1, a2} be a binary alphabet. The Parikh mapping [14]
c : Σ∗ −→ N2 maps a word w to its coordinate vector (|w|a1 , |w|a2). In particular,
c(a1) = (1, 0) and c(a2) = (0, 1). Let O be the point with coordinate (0, 0). For any

point P in N2, we write P instead of
−−→OP . The level of the point P = (x1, x2) is

level(P) = x1 + x2.
Let F be a subset of N2 and P be a point in F . A trajectory of length l of F starting

from P is a sequence T = (Pi)1≤i≤l of points of F , such that P0 = P and for all i,
1 � i � l, there exists an integer ki, 1 � ki � 2, such that Pi = Pi−1 + c(aki). Notice
that if there exists such an integer ki, then it is unique, since the coordinate vector of a
point is unique. Hence the sequence T is defined by a unique word u = ak1 · · · akl

and
a trajectory is either a point sequence T or a pair (P, u) in F × Σ∗. The set of points
of a trajectory (P, u) is denoted by points(P, u). The set of trajectories of F starting
from P is denoted by Traj(P, F). Let P and P ′ be two points of F ; P ′ is said to be
accessible from P if and only if it belongs to a trajectory starting from P .

a
b

Fig. 1. F1 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 1)}

Definition 1. A 2-dimensional geometrical figure F is a (possibly empty) subset of N2

every point of which is accessible from O.

Figure 1 represents a 2-dimensional geometrical figure, with Σ = {a, b} as alpha-
bet. Notice that geometrical figures are drawn so that points with the same level lie
on a horizontal line. The geometrical figure of a language L is defined by F(L) =⋃

w∈Pref(L) points(O, w), and the language of a geometrical figure F by L(F) =
{u | (O, u) ∈ Traj(O, F)}. A language L is said to be geometrical if and only if
Pref(L) = L(F(L)). For any language L, Pref(L) ⊆ L(F(L)). Some languages how-
ever are such that L(F(L)) � Pref(L). For instance, the two languages {a, ba} and
{ab, ba} have the same geometrical figure; the former one is not geometrical, whereas
the latter one is.

Let us introduce informally the main properties of geometrical languages. Refer-
ences [3,5] can be consulted for complete proofs. The trajectories of a geometrical fig-
ure F have two properties: the intersection property P1 and the neighbourhood property
P2. The trajectories (O, u) and (O, v) are supposed to belong to Traj(O, F).

P1: c(u) = c(v)⇒ ∀w ∈ Σ∗, (O, uw) ∈ Traj(O, F)⇔ (O, vw) ∈ Traj(O, F)
P2: c(ub) = c(va)⇒ (O, ub) ∈ Traj(O, F)⇔ (O, va) ∈ Traj(O, F)

The corresponding properties of the language L(F) of a geometrical figure are:

P ′
1: c(u) = c(v)⇒ ∀w ∈ Σ∗, (uw ∈ L(F)⇔ vw ∈ L(F))

P ′
2: c(ub) = c(va)⇒ (ub ∈ L(F)⇔ va ∈ L(F))

72 J.-M. Champarnaud, J.-P. Dubernard, and H. Jeanne

The geometrical figure F = F(L) of a language L is built by drawing the trajecto-
ries of the words of L over N2. According to properties P1 and P2, new trajectories
can appear and thus it should be checked that the corresponding words in the language
L(F(L)) also exist in Pref(L). The two following conditions are necessary for the
equality Pref(L) = L(F(L)) to be satisfied. They apply to any language, not necessar-
ily a regular one. The words u and v are supposed to belong to Pref(L).

The semi-geometricity condition, C1, is a consequence of the property P ′
1.

C1 : c(u) = c(v)⇒ u−1Pref(L) = v−1Pref(L)

The neighbourhood condition, C2, is a consequence of the property P ′
2.

C2 : c(ub) = c(va)⇒ (ub ∈ Pref(L)⇔ va ∈ Pref(L))

It can be checked that C1 ⇐ Pref(L) = L(F(L)) and C2 ⇐ Pref(L) = L(F(L)).
For example, let L0 = {aba, b}, L1 = {aba, ba} and L2 = {aba, baa} be three lan-

guages that admit the same geometrical figure F0 represented by Figure 1. The language
L0 satisfies C1 but does not satisfy C2, whereas L1 satisfies C2 but does not satisfy C1.
The languages L0 and L2 are semi-geometrical. The language L2 is geometrical.

It can be proved1 that the geometricity condition C = C1 ∧ C2 is a necessary and
sufficient condition for the equality Pref(L) = L(F(L)) to be satisfied.

We now suppose that L is a regular language and we rewrite conditions C1 and C
from the minimal automaton A of Pref(L). Let u and v be two words of Pref(L).
Since A is the minimal automaton of Pref(L), it holds u−1Pref(L) = v−1Pref(L)⇔
s0 · u = s0 · v. Hence the condition C1 can be rewritten C′

a or C′
b:

C′
a : ∀u ∈ Pref(L), ∀v ∈ Pref(L), c(u) = c(v)⇒ s0 · u = s0 · v

C′
b : ∀P ∈ F(L), ∃!p ∈ Q | (∀u ∈ Pref(L), c(u) = P ⇔ s0 · u = p)

Let State be the mapping from F(L) to Q such that for all P ∈ F(L), State(P) is the
unique state satisfying the condition C′

b. For all P ∈ N2 \ F(L), since the condition
C′

b is satisfied by the state σ, we can set State(P) = σ. Let pb = State(P − c(b)) and
pa = State(P − c(a)). Finally, the geometricity condition C can be rewritten:

C′ : ∀(P, P − c(a), P − c(b)) ∈ N2 ×F(L)×F(L), pa · a = pb · b = State(P)

The basic figure FQ of a geometrical figure F(L) is the subset of points P of F(L)
such that ∀P ′ ∈ F(L), State(P) = State(P ′) ⇒ (x + y < x′ + y′) ∨ ((x + y =
x′ + y′) ∧ (x > x′)), where x and y (resp. x′ and y′) are the coordinate of P (resp. of
P ′). The restriction of State to FQ is a bijection. The inverse mapping is the mapping
Point from Q to FQ.

4 Geometrical Languages and Tiling

We first investigate the properties of some sub-figures of an arbitrary geometrical fig-
ure F . We then consider a regular prolongable binary language L. Assuming that L is
geometrical, we focus on the properties of the paths of the minimal DFA of Pref(L).
We then state a set of conditions for L to define a partial tiling of N2.

1 The wording of condition C2 is slightly different in [3].

Regular Geometrical Languages and Tiling the Plane 73

4.1 Tiling a Geometrical Figure

Let F be a geometrical figure and A be a point of F . Let z and z′ be two distinct words
of Σ+ such that c(z) = c(z′). We suppose that (A, z) and (A, z′) are two trajectories
of F . These trajectories are the boundary of a sub-figure of F called a quasi-polygon
and denoted by (A, z, z′). The interior of a quasi-polygon may contain one or several
points of F ; otherwise the quasi-polygon is empty.

a b

(1) (ab, bbb) (2) (ba, bbb) (3) (abbb, baa)

Fig. 2. Quasi-parallelograms (A, ss′, s′s) of N2

Let s and s′ be two distinct words of Σ+. The quasi-polygon (A, ss′, s′s) is called a
quasi-parallelogram. The notion of quasi-parallelogram is illustrated by Figure 2. Let
B = A + c(s), D = A + c(s′) and C = B + c(s′) = D + c(s). The opposite sides of
the parallelogram ABCD (resp. of the quasi-parallelogram ABCD) are pairwise par-
allel segments (resp. trajectories). The boundary of a quasi-parallelogram (A, ss′, s′s)
is obtained by deforming the associated parallelogram ABCD. Indeed, the parallel
sides AB and CD of the parallelogram are identically deformed, by action of the word
s, yielding the trajectories (A, s) and (C, s) of the quasi-parallelogram. Similarly, the
sides AC and BD yield, by action of the word s′, the trajectories (A, s′) and (B, s′).
Consequently, the boundary of (A, ss′, s′s) may define a p1 type tiling in the figure F .
It is the case for example if, for all α ≥ 1 and β ≥ 1, the trajectories (A, sαs′ω) and
(A, s′βsω) are trajectories of F .

By definition, a quasi-parallelogram is a set of points since it is a sub-figure of a
geometrical figure. An empty quasi-parallelogram can also be viewed as a particu-
lar parallelogram polyomino. It is proved in [2] that tilings of the plane by transla-
tion are generated by specific polyominoes called exact polyominoes. It can be easily
checked that an empty quasi-parallelogram defines an exact polyomino. A first dif-
ference from previous works dealing with tiling of the plane by polyominoes is that
quasi-parallelograms occurring in geometrical figures are not necessarily empty.

Let us assume that the quasi-parallelogram (A, ss′, s′s) contains ni ≥ 0 interior
points. For all interior point Mi, there exists a word wi ∈ Σ+ such that C = A +
c(wi) ∧ (A, wi) ∈ T (A, F) ∧Mi ∈ (A, wi). Thus it is sufficient that, for all α ≥ 1,
β ≥ 1 and 0 ≤ i ≤ ni, the trajectories (A, sαwω

i) and (A, s′βwω
i) also be trajectories

of F for the quasi-parallelogram to induce a tiling.

74 J.-M. Champarnaud, J.-P. Dubernard, and H. Jeanne

A quasi-parallelogram is said to be tiling if it induces a tiling of F . Let (A, ss′, s′s)
be a tiling quasi-parallelogram. Then the trajectory (A, sω) is in T (A, F) and it is called
the quasi-axis Xs. Similarly, the trajectory (A, s′ω) is called the quasi-axis Ys′ . The
region of N2 delimited by Xs and Ys′ is the (s, s′)-cone with A as origin. The tiling by
(A, ss′, s′s) covers the (s, s′)-cone with A as origin.

4.2 Tiling the Figure of a Geometrical Language

In this section we consider a regular prolongable binary language L and we assume that
L is geometrical. Let F(L) be the geometrical figure of L and A = (Q, Σ, δ, s0, T) be
the minimal DFA of Pref(L). We investigate the connections between the properties of
the paths of A and those of the sub-figures of F(L).

By definition, a path of an automaton is a transition sequence. In the following we
will consider specific proper paths (p, u), called state paths, such that for all 0 ≤ i <
|u|, the label ui+1 of the transition (pi, ui+1, pi+1) only depends on the state pi. A
state path (p, u) amounts to the state sequence (p0, . . . , p|u|). The right path (p, u) of
a state p ∈ T is the state path defined by the word u = u1 · · · such that ui+1 = b
if p · (u1 · · ·ui · b) �= σ and ui+1 = a otherwise. Since L is prolongable, it holds
p · (u1 · · ·ui · b) = σ ⇒ p · (u1 · · ·ui · a) �= σ and consequently p · (u1 · · ·ui+1) �= σ.
The left path (p, u′) of p is defined by the word u′ = u′

1 · · · such that u′
i+1 = a if

p · (u′
1 · · ·u′

i · a) �= σ and u′
i+1 = b otherwise.

A state path (p, u) is periodic if there exist two integers r and s, 0 ≤ r < s ≤ |u|,
such that pr = ps. We assume that r and s are the smallest integers satisfying this
equality. Then there exist two words v ∈ Σ∗ and w ∈ Σ+ such that |v| + |w| < n
and p · v = p · vw = pr, with u = vwω . The path is said to have a pre-period |v|
and a period |w|. The language L being by hypothesis prolongable, every right (resp.
left) path is infinite. Moreover, since L is regular, Q has a finite cardinality and every
right (resp. left) path is periodic. A path with a null pre-period is a cycle. The strongly
connected component of p, denoted by SCC(p) is the set of states that belong to a cycle
going through p.

The tuple (p, z, z′) ∈ T×Σ+×Σ+ is a bi-path if and only if z �= z′, (p, z) and (p, z′)
are proper paths of A and c(z) = c(z′). It is sufficient that L be semi-geometrical for
the condition c(z) = c(z′) to imply p · z = p · z′. Consequently, if (p, z, z′) is a bi-path,
then every point A of F(L) such that State(A) = p is the origin of a quasi-polygon
(A, z, z′). The bi-path is said to be empty if the quasi-polygon is empty.

Let s and s′ be two distinct words of Σ+. Let us consider a bi-path (p, ss′, s′s) such
that (p, s) and (p, s′) are proper and elementary paths of A. Then, every point A of
F(L) such that State(A) = p is the origin of a quasi-parallelogram (A, ss′, s′s). Let
us consider now the case where (p, s) and (p, s′) are elementary cycles of A. Then it
holds p · s = p = p · s′ and the bi-path (p, ss′, s′s) is called a bi-cycle. If (p, ss′, s′s)
is an empty bi-cycle then il is obvious that the condition p · s = p = p · s′ implies
that the quasi-parallelogram (A, ss′, s′s) is tiling. The following Lemma addresses the
reciprocal.

Lemma 2. Let p be a state of T and A be a point of F(L) such that State(A) = p.
Then, the two following conditions are equivalent:

Regular Geometrical Languages and Tiling the Plane 75

(1) The bi-path (p, ss′, s′s) is an empty bi-cycle.
(2) The empty quasi-parallelogram (A, ss′, s′s) is a tiling one.

Table 1. The transition function δ of A
δ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a 1 2 3 4 σ σ 7 0 σ σ 11 σ σ 14 6

b 8 σ 12 σ 5 6 σ σ 9 10 0 1 13 σ σ

Let us consider the DFA defined by Table 1. Figure 3 represents the tiling induced
by the maximal bi-cycle (0, ss′, s′s), with s = aaaabbaa and s′ = bbbb. The quasi-
parallelogram (O, ss′, s′s) is a puzzle made of three pieces, the holes of the 2-points
O, O + c(aa) andO + c(bbb).

a b

0

1

2

3

4

5

6

7

0

8

9
10

011

12

13

14

8

9
10

0

1

2

3

4

5

6

7

Fig. 3. Tiling induced by a maximal bi-cycle

If the bi-cycle (p, ss′, s′s) is not empty, the following condition has to be checked
for the quasi-parallelogram (A, ss′, s′s) to be a tiling one.

Lemma 3. Let p be a state of T and A be a point of F(L) such that State(A) = p.
Let us suppose that the bi-cycle (p, ss′, s′s) is not necessarily empty. Then a necessary

76 J.-M. Champarnaud, J.-P. Dubernard, and H. Jeanne

condition for the quasi-parallelogram (A, ss′, s′s) to be a tiling one is that the right
and left paths of p have a null pre-period.

The bi-cycle (p, ss′, s′s) is said to be maximal if the cycles (p, s) and (p, s′) respectively
are the left path and the right path of p. If (A, ss′, s′s) is tiling and if State(A) = p,
then the (s, s′)-cone of A is the cone of p. Moreover, the right (resp. left) trajectory
of P is associated with the right (resp. left) path of State(P). A point P ∈ F(L) is a
2-point if P + c(a) ∈ F(L) and P + c(b) ∈ F(L). The hole of a 2-point P of F(L)
is the region delimited by the right trajectory of (P + c(a)) and the left trajectory of
(P + c(b)). A hole is convergent if these trajectories intersect. The following lemma
shows that the necessary condition of Lemma 3 is also a sufficient condition.

Lemma 4. Let p be a state of T admitting a maximal bi-cycle (p, ss′, s′s) and A be
a point of F(L) such that State(A) = p. Let ni be the number of 2-points of the
quasi-parallelogram (A, ss′, s′s). Then this quasi-parallelogram is a puzzle made of
ni pieces, each of which is the hole of a 2-point.

The following proposition is a corollary of Lemma 3 and Lemma 4. It shows a sec-
ond difference with previous works dealing with tiling of the plane by polyominoes:
here geometrical figures are built from regular languages and the tiling of the plane is
actually deduced from a tiling of N2 ×Q.

Proposition 1. Let L be a regular binary prolongable language. If L is geometrical,
then for all state p of T such that (p, ss′, s′s) is a maximal bi-cycle, there exists a tiling
of the cone of the point A = Point(p) by the quasi-parallelogram (A, ss′, s′s).

5 State Sequences Associated with the Levels of a Tiling

We assume that L is a regular binary prolongable geometrical language. We consider
the maximal bi-cycle (p, ss′, s′s) and the tiling of the cone of A = Point(p) by
(A, ss′, s′s). In this section we compute the state sequence associated with the points
where the horizontal line Δλ intersect the sides of the quasi-parallelograms of the tiling.
This computation is illustrated by Figure 4.

Let B = A + c(s), D = A + c(s′) and C = A + c(ss′). The NE (resp. SE) side
of (A, ss′, s′s) is the trajectory (A, s′) (resp. (D, s)). The West (resp. East) contour
is the trajectory (A, ss′) (resp. (A, s′s)). The height of a point R of (A, ss′, s′s) is
height(R) = level(R) − level(A). The point with height h on the West (resp. East)
contour is denoted by Wh (resp. Eh). In a p1 type tiling every tile is obtained by
translation from the reference tile. For all (x, x′) ∈ N2, let us denote by [x, x′] the
quasi-parallelogram (M, ss′, s′s) obtained by the translation vector xc(s) + x′c(s′).
Any quasi-parallelogram [x, x′] such that x ≥ 1 admits two neighbours on its East con-
tour: [x − 1, x′] and [x, x′ + 1]. Any quasi-parallelogram [0, x′] admits one neighbour
on its East contour: [0, x′ + 1]. Let us set π = |s|, π′ = |s′| and m = π + π′.

Lemma 5. Let [x, x′] be a quasi-parallelogram. If x ≥ 1, for all h, 0 ≤ h < m, the
point Eh of [x, x′] coincides with the point Wh′ of one of its East neighbours, with
h′ ≡ h + π mod m. If x = 0, for all h, 0 ≤ h < π, the point Eh of [0, x′] is on the

Regular Geometrical Languages and Tiling the Plane 77

0

1

2

3

4

5

6

7

0

8

9
10

011

12

13

14

8

9
10

0

1

2

3

4

5

6

7

a b

3 10 7 3 10

4 0 4 0

Δ11

Δ12

Fig. 4. Computation of the state sequence of a level

quasi-axis Ys′ ; moreover, for all h, π ≤ h < m, the point Eh of [0, x′] coincides with
the point Wh′ of its SE neighbour, with h′ ≡ h + π mod m.

According to Lemma 5, for all h, 0 ≤ h < m, the computation of h′ with respect to h
only depends on π and π′; it can be performed on the quasi-parallelogram (A, ss′, s′s)
using the circular permutation ϕ defined by ∀h, 0 ≤ h < m, ϕ(h) ≡ h + π mod m.
Let us set d = gcd(π, m). According to Lemma 1, the permutation ϕ admits d orbits
and, for all r, 0 ≤ r < d, it holds Or = (r + id)0≤i<m/d. For all k, 0 ≤ k < m/d, let
us consider the sequence Or,k = (r + kd + id mod m)0≤i<m/d.

Proposition 2. Let (p, ss′, s′s) be a maximal bi-cycle and A = point(p). Let ϕ be
the circular permutation associated with the quasi-parallelogram (A, ss′, s′s), with
π = |s|, π′ = |s′|, m = π + π′ and d = gcd(π, m). Let S be the sequence of states of
the path (p, ss′). Let Δλ be the horizontal line of level λ, with λ ≥ level(A). Then the
sequence S1 = (q0, q1, . . . , qf−1) of the states associated with the intersection points
of Δλ with the tiling by (A, ss′, s′s) can be computed in the following way.
(1) Let us change the orbit O0 by setting O0 = O0 \ {0}.
(2) The sequence S2 = (h0, h1, . . . , hf−1) of the heights ot the intersection points
is computed by making use of the permutation ϕ. The height h0 is such that λ ≡ h0

mod π. Let us set h0 = r + kd. Then S2 is then made of the f first elements of the
sequence obtained by repeating Or,k as many times as necessary.
(3) As a consequence it holds S1 = (Shi)0≤i<f .

6 Conclusion

Let L be a regular binary prolongable geometrical language. Our main result is that a
necessary and sufficient condition for a point of the geometrical figure F(L) of L to be
the origin of a tiling by a sub-figure of F(L) is that the associated state of the minimal
DFA of Pref(L) admits both a cycle as left path and a cycle as right path. This property

78 J.-M. Champarnaud, J.-P. Dubernard, and H. Jeanne

of 2-dimensional geometrical languages is proved in the frame of the automaton-based
characterization of geometrical languages, and it is expected to facilitate the study of
d-dimensional geometrical languages.

References

1. Baruah, S.K., Rosier, L.E., Howell, R.R.: Algorithms and complexity concerning the pre-
emptive scheduling of periodic, real-time tasks on one processor. Real-Time Systems 2(4),
301–324 (1990)

2. Beauquier, D., Nivat, M.: On translating one polyomino to tile the plane. Discrete & Com-
putational Geometry 6, 575–592 (1991)

3. Blanpain, B., Champarnaud, J.-M., Dubernard, J.-P., Jeanne, H.: Geometrical languages. In:
Martin Vide, C. (ed.) International Conference on Language Theory and Automata (LATA
2007), vol. 35/07, GRLMC Universitat Rovira I Virgili (2007)

4. Champarnaud, J.-M., Dubernard, J.-P., Jeanne, H.: Geometricity of binary regular languages.
In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 178–
189. Springer, Heidelberg (2010)

5. Champarnaud, J.-M., Dubernard, J.-P., Jeanne, H.: An efficient algorithm to test whether a
binary and prolongeable regular language is geometrical. Int. J. Found. Comput. Sci. 20(4),
763–774 (2009)

6. Eilenberg, S.: Automata, languages and machines, vol. B. Academic Press, New York (1976)
7. Geniet, D., Largeteau, G.: Wcet free time analysis of hard real-time systems on multiproces-

sors: A regular language-based model. Theor. Comput. Sci. 388(1-3), 26–52 (2007)
8. Golomb, S.W.: Polyominoes: Puzzles, patterns, problems, and packings. Princeton Academic

Press, London (1996)
9. Kleene, S.: Representation of events in nerve nets and finite automata. Automata Studies,

Ann. Math. Studies 34, 3–41 (1956)
10. Largeteau-Skapin, G., Geniet, D., Andres, E.: Discrete geometry applied in hard real-time

systems validation. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS,
vol. 3429, pp. 23–33. Springer, Heidelberg (2005)

11. Lungo, A.D.: Polyominoes defined by two vectors. Theor. Comput. Sci. 127(1), 187–198
(1994)

12. Myhill, J.: Finite automata and the representation of events. WADD TR-57-624, 112–137
(1957)

13. Nerode, A.: Linear automata transformation. In: Proceedings of AMS, vol. 9, pp. 541–544
(1958)

14. Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)

COMPAS - A Computing Package for
Synchronization

Krzysztof Chmiel1 and Adam Roman2

1 DreamLab Onet.pl sp. z o.o., Gabrieli Zapolskiej 44, 30-126 Kraków, Poland
2 Institute of Computer Science, Jagiellonian University in Cracow, Poland

tikan@autocom.pl, roman@ii.uj.edu.pl

Abstract. In this paper we describe COMPAS - the open-source com-

puting package, dedicated to the computations on synchronizing au-

tomata. COMPAS design is based on a generic programming paradigm.

This makes the package very powerful because of its flexibility and ex-

tensibility. The paper describes shortly the package architecture and its

main algorithms and some examples of use. COMPAS allows to easily

operate on synchronizing automata, verifying new synchronizing algo-

rithms etc. To the best of our knowledge, this is the first such flexible,

extensible and open-source package for synchronization.

1 Introduction and Motivation

A finite automaton A is synchronizing, if there exists a state q and some word
w that takes all automaton states to q. The word w is called a synchronizing
word for A. The shortest such w is called a minimal synchronizing word. In
the past few years synchronization of finite automata has attracted attention of
many researchers. The main reason is the famous Černý Conjecture - an open
problem since 1964. Černý Conjecture claims that if an n-state automaton A is
synchronizing, then its minimal synchronizing word is no longer than (n − 1)2.
On the other hand, synchronization theory has many practical applications, such
as simple error recovery in finite automata or leader identification in processor
networks [13]. Since 60s till 90s synchronizing automata were considered as a
useful tool for testing of reactive systems (circuits, protocols) [27]. In the 80s
synchronizing theory was used in robotics - an interesting example with so-called
part orienters is given in [2].

Some results in synchronization theory required a numerical computations
or could be easily obtained with computer use. For example, in [11] Kari gave
a counterexample to the so-called Černý-Pin Conjecture. This result could be
obtained by checking directly some property of the minimal synchronizing word
for all six state synchronizing automata. In [26] Trahtman did computations
for checking the lengths of the minimal synchronizing words for automata with
2,3,...,10 states. He discovered some interesting trend for the length of the longest
minimal synchronizing word shorter that (n − 1)2 among all n-state automata,
n = 2, 3, ..., 10. In [20] the first automaton over 3-element alphabet, obtaining the

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 79–86, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

80 K. Chmiel and A. Roman

Černý upper bound, was presented. The automaton was found by the computer.
It is known that the Černý Conjecture holds true for all automata with less
than n = 11 states over binary alphabet. Again, for n = 7, 8, 9, 10 the result was
obtained by the numerical computations. With powerful computers and efficient
software, one could examine some bigger automata, or automata with alphabet
size greater than 2, and check if the conjecture still holds. Recently, motivated
by the work of Higgins [10], some authors began the research on the random
automata synchronization (cf. [27,24]). Two main questions in this new line of
research are: 1) what alphabet size s guarantees that with a high probability the
random automaton over s-letter alphabet is synchronizing and 2) what alphabet
size t guarantees that a random automaton over t-letter alphabet obey the Černý
Conjecture? By ’high probability’ we understand that the probability tends to
1 when the number of states goes to infinity. The exact lower bound for the
alphabet size is still not known. The numerical experiments could shed some
light on it. The computing package can be very helpful here.

From the practical point of view, the most important task in synchronization
is the following: given an automaton, find the synchronizing word as short as
possible. It is known that the problem of finding the minimal synchronizing word
is both NP-hard and coNP-hard and the problem of finding a synchronizing
word of a given length is NP-complete (see [23,8]). Therefore, assuming P �=
NP , for bigger automata we can only rely on heuristic, polynomial algorithms.
There are some well-known algorithms, such as Natarajan’s or Eppstein’s one
[17,8] or some newer [21,26]. Having a framework which could allow to generate
all synchronizing automata of a given number of states, one can compare the
algorithms effectiveness. An example of some partial comparison can be found
in [21] and [26].

Each above problem requires a different algorithm to use. Of course it is
possible to write a completely new program for each new problem, but a much
wiser solution is to create a framework, which could allow to solve these problems
in a fast, easy and efficient way. There are many packages dealing with automata,
semigroups, grammars and regular expressions (cf. [5,9,15]), but none of them is
dedicated directly to the synchronizing issues. The only existing such package is
TESTAS [25], but its functionality is restricted to some predefined algorithms. In
this paper we present COMPAS - a new computing package for synchronization.
It is a free, open-source package written in C++. COMPAS allows not only using
its embedded functions in a batch mode (like in Matlab), but also writing new
procedures, scripts or even standalone compiled programs, which use COMPAS
as a library. We also used the Python-C++ binding to allow a user writing
scripts in Python, which is a very ’readable’ language.

2 Synchronizing Automata and Synchronizing Algorithms

A deterministic finite automaton (DFA) is a triple A = (Q, A, δ), where Q is a
nonempty, finite set of states, A is a finite alphabet and δ : Q × A → Q is the
transition function, called also the automaton action. By A∗ we denote the free

COMPAS - A Computing Package for Synchronization 81

monoid over A, consisting of all finite words over A. By ε we denote an empty
word of length 0. It is convenient to extend the δ function on all subsets in the
usual way: for P ⊂ Q we define: δ(P, ε) = P , δ(P, a) = ∪p∈P {δ(p, a)}. We say
that w ∈ A∗ synchronizes A = (Q, A, δ) if |δ(Q, w)| = 1. If such a word exists,
A is called a synchronizing automaton. Notice, that if w ∈ A∗ is a synchronizing
word for A, then for all u, v ∈ A∗ uwv also synchronizes A. A natural question
arises: what is the shortest synchronizing word for a given DFA? This question
is also of a practical nature - in the real applications, as described in Section 1,
longer synchronizing word means usually higher cost of some action (time, money
etc.).

Let S ⊂ A∗ be the set of all synchronizing words for some synchronizing DFA
A = (Q, A, δ). A word s ∈ S, such that ∀t ∈ S |s| ≤ |t| is called a minimal
synchronizing word for A. Notice, that it is possible for a synchronizing DFA to
have more than one minimal synchronizing word. From the theoretical point of
view it is interesting to ask about the relationship between the number of states
of A and the length of the minimal synchronizing word for A. Let Πk denote the
set of all k-state synchronizing DFA (which are all different up to the labeling
of Q and of A) and let A = (Q, A, δ) ∈ Πk. Define n(A) = min{n ∈ N| ∃w ∈
A∗, |w| = n : |δ(Q, w)| = 1} and n(k) = maxA∈Πk

{n(A)}. In order to find a
lower bound for n(k), Černý [6] introduced a family C of automata, such that
|C ∩Πk| = 1 ∀k ≥ 2. These automata are called the Černý automata. We denote
by Ck a k-state Černý automaton. Ck = ({0, 1, ..., k − 1}, {a, b}, δ), where

δ(i, x) =

⎧⎨
⎩

i + 1mod k if x = a
i if x = b ∧ i < k − 1
0 if x = b ∧ i = k − 1

Černý proved that the minimal synchronizing word for Ck equals (k − 1)2. In
1971 he stated the famous Černy Conjecture:

Conjecture 1 (Černý). Let A ∈ Πk and let w be the minimal synchronizing word
for A. Then |w| ≤ (k − 1)2.

The conjecture was shown to be true for certain classes of automata (cf. [7,12]),
but in general case it is an open problem. The best known upper bound for n(k)
is k3−k

6 and this is a result of Pin [19]. Another, independent proof can be found
in [14]. The above results can be recapitulated in the following inequalities:

(k − 1)2 ≤ n(k) ≤ k3 − k

6
.

Now, we will shortly describe an algorithmic approach to the synchronization.
There are three main algorithmic problems concerning the synchronizing property:

(P1) Given a DFA A, check if A is synchronizing.
(P2) Given a synchronizing DFA A, find a synchronizing word for A.
(P3) Given a synchronizing DFA A, find a minimal synchronizing word for A.

82 K. Chmiel and A. Roman

(P1) can be solved in O(|A||Q|2), by checking the connectiveness of a so-called
pair-automaton forA. For (P2) we can use a modification of (P1) algorithm. This
is a well-known Eppstein algorithm [8] with O(|Q|3 + |A||Q|2) time complexity.
Decision version of (P3) is NP-hard, so assuming P �= NP we can use only an
exponential algorithm with O(|A|2|Q|) time complexity.

3 COMPAS Architecture and Functionality

COMPAS consists of three main parts: 1) a library (further called also a frame-
work) written in C++, which implements automata of different types and al-
gorithms working on them; 2) a module that allows using the library at the
script level (in Python); 3) GUI, in which one can write scripts in Python (a’la
Matlab).

Conceptual Design. Before we start implementing any bigger library, we have
to answer some fundamental questions: what do we really want to achieve? What
are the most important features of the library? In practice it is hardly possible
to implement a program that brings together good flexibility, scalability and
usability. Of course it is worth a try, but usually we have to compromise. Like-
wise, in COMPAS we stress on some (in our opinion, more important) aspects
of its functionality. The aims, graded in decreasing essentiality order, are the
following:

– Genericity, flexibility, scalability. A generic library gives to the program-
mer the freedom in choosing data structures. The implementation of different
objects is not predetermined. This also makes the library algorithms capa-
ble to solve effectively problems of different character (e.g., operations on
deterministic and non-deterministic automata) and of different size (e.g. op-
erations on automata with total transition function and on automata with
partially defined transition function).

– Efficiency. We want COMPAS algorithms to be as effective as the algo-
rithms written ’from scratch’ in C or C++ and dedicated directly to solve
some specific problems.

– Usability. The library must be easy to use. The programmer, after skim-
ming over the existing code, should be able to create his own automata and
use the basic algorithms. We don’t assume a user to be an expert in C++.
A user with some basic knowledge on C++ should be able to use the ma-
jority of package functions. Achieving the burst performance of COMPAS
and implementing effective algorithms requires a good or very good C++
knowledge.

We chose C++ for the COMPAS implementation. There were few reasons for
that, but maybe the most important one is the ability to write clear, elegant,
high-level code, keeping at the same time the high effectiveness (in some cases,
comparable to the effectiveness of a low-level code). When it is needed to op-
timize some parts of the algorithms, one can go to a low level and write some

COMPAS - A Computing Package for Synchronization 83

code in C. This is a very useful feature of C++. Due to a popularity of C++,
there are many high quality libraries for it. One of them is the boost library
[4], intensively utilized in our package. Boost extends the C++ capabilities, be-
ing somehow supplementary to the standard library STL. Last but not least, in
C++ we can use the template-based static polymorphism and in fact we make
use of that.

Static Polymorphism. In short, polymorphism is a language property, that
allows using objects of different types with the common, uniform interface. This
notion is independent of programming paradigm, but it is commonly found in
object-oriented languages. The classical way to implement polymorphism in OO
languages is to use inheritance in connection with virtual functions. This tech-
nique can be used in C++, but in COMPAS our approach rely on a so-called
static polymorphism. It is based on the class and function templates and is
realized during the compilation phase. The main advantage of this approach is
increased performance - there is no waste of time for realizing virtual calls (while
the time spent on a single virtual call is marginal, it becomes an important factor
in time complexity for the execution of short and frequently used function).

Concepts. Concept is a key notion in static polymorphism - it is a set of
requirements imposed on the type being a parameter of a given template. A
concept is parallel to the interface in classical OO programming. Simple examples
of concepts (taken from the standard library) are: Assignable (a type with assign
operator), CopyConstructible (types that must be able to be constructed from
another member of the type), WeakComparable (a type with < operator defining
the partial order). In a real life, concepts (like Automaton concept from our
library) are much more complicated. In addition to type requirements they can
impose requirements for constructors, associated types or just certain typedef
declarations nested in the class. It is surprising that concepts, as for so important
notion, are hardly supported by contemporary C++ compilers. One can say
that they are present in documentation and they are not specified in code. Type
checking takes place at the stage of creating the template instance, when a
specified property (method, field) of a given type is used. Thereby, in case of
some incompatibility, error messages are often illegible and illusorily not related
to the real cause of the problem. There are external libraries that deal with this
(one of them is available in the boost library).

Framework Structure. In general, the framework consists of two parts: the
first one is a set of templates that implement finite automata and the basic
operations on them. The second one is a set of algorithms working on automata.
This part includes several synchronizing algorithms. The library is, in some sense,
two-level generic. First, generic is the automata implementation itself: a user
can configure many parameters that have influence on properties, behavior and
efficiency. Next, the algorithms itself are generic - they don’t depend on the way
that a given automaton is implemented.

84 K. Chmiel and A. Roman

COMPAS Algorithms. There are four basic algorithms for automata in
COMPAS: first two check if an automaton is deterministic and total (that is,
if δ is a total function), third one reverses the automaton trasitions (note, that
the reversed automaton type is usually more general than the type of an initial
automaton), and the last one copies an automaton with the possibility of type
change; this function accepts two template parameters: original automaton type
and output automaton type. All these algorithms are implemented in a very
simple way and run in a linear time. There are several functions implemented
in COMPAS, responsible for the fast creation of some special synchronizing au-
tomata that are important from a theoretical point of view [6,11,16,3]. It is also
possible to generate a random automaton, an identity automaton and some other
types of automata. Synchronization is the most important issue for COMPAS.
Till now, four different synchronizing algorithms are implemented: expomen-
tial algorithm, Eppstein’s greedy algorithm, cycle algorithm (a modification of
Eppstein alg.) and genetic algorithm [22].

COMPAS contains also some other useful algorithms. Here we describe only
some of them. These are algorithms which allow: to build a power automaton; to
build a product automaton; to check if an automaton is Eulerian; to check if two
automata are isomorphic up to the state labeling and alphabet; to check if two
automata are equal. One of the useful functions is next automaton, which, for a
given automaton A, returns the next automaton in a specific order ≺. To define
≺, let us introduce the family of mappings Sn,m : An,m → {1, ..., n}n×m, param-
eterized by n and m, where An,m denotes the family of n-state automata over
m-letter alphabet. For a given automaton A = ({q1, ..., qn}, {a1, ..., am}, δ) we
put Sn,m(A) = (δ(q1, a1), ..., δ(q1, an), ..., δ(qn, am)). Let <l be the lexicographic
order on {1, ..., n}n×m. Formally, A1 ≺ A2 ⇔ Sn,m(A1) <l Sn,m(A2).

Acknowledgements and Future Work

COMPAS can be downloaded from http://www.assembla.com/spaces/compas.
On http://www.ii.uj.edu.pl/∼roman/publications.html one can find the exam-
ples of experiments on synchronizing automata written with COMPAS (for
example, finding the counterexample to the Černý-Pin Conjecture, finding au-
tomata reaching the upper bound (n − 1)2 from the Černý Conjecture and so
on. Due to the page limit restrictions we cannot present them in the paper.

We would like to stress that the COMPAS package is a young project and it
is still being developed. In the nearest future we plan to provide:

– a detailed English documentation,
– some standard I/O formats for presenting finite automata, like the Berkeley

KISS2 format,
– a completely new, much more advanced GUI (the work has already been

started),
– algorithms for presenting automata graphically in an elegant way,
– a new synchronizing algorithm, currently being developed by one of the

authors.

COMPAS - A Computing Package for Synchronization 85

We will also improve the effectiveness of some already implemented functions,
like generating all non-isomorphic n-state automata using a recently described
method from [1]. Notice also that the main idea of COMPAS is not to provide
some number of predefined synchronizing algorithms, but rather to provide to the
user the library, which allows to implement her/his own scripts, synchronizing
algorithms etc.

The authors would like to thank Stefan Chrobot, Adam Radzimowski and
Andrzej Kukier, who had their significant contribution in the initial phase of the
project and in application testing. We would also like to thank the anonymous
referees for their many valuable comments and ideas.

References

1. Almeida, M., Moreira, N., Reis, R.: Enumeration and generation with a string

automata representation. Theor. Comp. Sci. 387(2), 93–102 (2007)

2. Ananichev, D.S., Volkov, M.: Synchronizing monotonic automata. Theor. Comp.

Sci. 327(3), 225–239 (2004)

3. Ananichev, D.S., Volkov, M., Zaks, Y.I.: Synchronizing automata with a letter of

deficiency 2. Theor. Comp. Sci. 376(1-2), 30–41 (2007)

4. boost library, http://www.boost.org

5. Camparnaud, J.M., Hansel, G.: Automate, a computing package for automata and

finite semigroups. J. Symb. Comput. 12, 197–220 (1991)

6. Černý, J.: Poznámka k komogénnym experimentom s konečnými automatmi. Mat.

fyz. čas. SAV 14, 208–215 (1964)

7. Dubuc, L.: Sur les automates circulaires et la conjecture de Černý. RAIRO Inf.

Theor. Appl. 32, 21–34 (1998)

8. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comp. 19, 500–

510 (1990)

9. Froidure, V., Pin, J.E.: Algorithms for computing finite semigroups. Foundations

of Comp. Math., 112–126 (1997)

10. Higgins, P.M.: The range order of a product of i transformations from a finite full

transformation semigroup. Semigroup Forum 37, 31–36 (1988)

11. Kari, J.: A Counter Example to a Conjecture Concerning Synchronizing Words in

Finite Automata. Bull. EATCS 73, 146 (2001)

12. Kari, J.: Synchronizing finite automata on Eulerian digraphs. In: Sgall, J., Pultr, A.,

Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 432–438. Springer, Heidelberg

(2001)

13. Kari, J.: Synchronization and Stability of Finite Automata. J. Universal Comp.

Sci. 8(2), 270–277

14. Klyachko, A.A., Rystsov, I.C., Spivak, M.A.: An extremal combinatorial problem

associated with the bound of the length of a synchronizing word in an automaton.

Cybernetics 23, 165–171 (1987)

15. Lombardy, S., Régis-Gianas, Y., Sakarovitch, J.: Introducing VAUCANSON.

Theor. Comp. Sci. 328(1-2), 77–96 (2004)

16. Martjugin, P.V.: A series of slowly synchronizing automata with a zero state over

a small alphabet. Inform. and Comput. 206(9-10), 1197–1203 (2008)

17. Natarajan, B.K.: An algorithmic approach to the automated design of parts orien-

ters. In: 27th Annual Symposium on Foundations of Computer Science, pp. 132–

142. IEEE, Los Alamitos (1986)

http://www.boost.org

86 K. Chmiel and A. Roman

18. Pin, J.-E.: Sur un cas pariculier de la conjecture de Černý. In: Ausiello, G., Böhm,

C. (eds.) ICALP 1978. LNCS, vol. 62, pp. 345–352. Springer, Heidelberg (1978)

19. Pin, J.-E.: On two combinatorial problems arising from automata theory. Ann. of

Discr. Math. 17, 535–548 (1983)

20. Roman, A.: A Note on Černý Conjecture for Automata over 3-Letter Alphabet. J.

Aut. Lang. and Comb. 13(2), 141–143 (2008)

21. Roman, A.: Synchronizing finite automata with short reset words. Appl. Math.

Comp. 209(1), 125–136 (2009)

22. Roman, A.: Genetic Algorithm for Synchronization. In: Dediu, A.H., Ionescu, A.M.,

Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 684–695. Springer, Hei-

delberg (2009)

23. Samotij, W.: A note on the complexity of the problem of finding shortest syn-

chronizing words. In: Proc. AutoMathA 2007, Automata: from Mathematics to

Applications, Univ. Palermo, CD (2007)

24. Skvortsov, E., Zaks, Y.: Synchronizing Random Automata. In: AutoMathA 2009

Conference, to be published in Discr. Math. and Theor. Comp. Sci. (2009)

25. Trahtman, A.N.: A Package TESTAS for Checking Some Kinds of Testability. In:

Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS, vol. 2608, pp. 228–232.

Springer, Heidelberg (2003)

26. Trahtman, A.N.: An efficient algorithm finds noticeable trends and examples con-

cerning the Černý conjecture. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006.

LNCS, vol. 4162, pp. 789–800. Springer, Heidelberg (2006)

27. Volkov, M.: Synchronizing automata and the Road Coloring Theorem. In: A Tuto-

rial on a Satellite Workshop to CSR 2008 ”Workshop on Algebra, Combinatorics

and Complexity”, Moscow 2008 (2008)

From Sequential Extended Regular Expressions
to NFA with Symbolic Labels�

Alessandro Cimatti, Sergio Mover, Marco Roveri, and Stefano Tonetta

Fondazione Bruno Kessler - IRST

Abstract. Practical property specification languages such as the IEEE standard
PSL use at their core Sequential Extended Regular Expressions (SERE). In order
to enable the reuse of traditional verification techniques, it is necessary to trans-
late SEREs into automata. SERE are regular expressions built over alphabets re-
sulting from the state variables of the design under analysis. Thus, a traditional
approach to generate the automaton would suffer from the fact that the size of the
alphabet is exponential in the number of symbols in the design.

In this work, we tackle this problem by proposing non-deterministic finite au-
tomata with symbolic representation of transitions labels, by way of propositional
formulas, while states and transitions are explicitly represented. We provide a sym-
bolic version of the algorithms for all the major operations over non-deterministic
finite automata. The approach has been implemented in the AUTLIB library, with
Binary Decision Diagrams (BDD) used to represent transition labels.

We carried out a thorough experimental evaluation over a set of realistic bench-
marks, comparing our library against MONA (which uses deterministic finite au-
tomata with BDD-based symbolic transitions), and against GRAZ (which features
non-deterministic finite automata with a DNF-based representation of the labels).
Experimental results over a realistic set of benchmarks show that both features of
AUTLIB (the ability to deal with non-determinism, and a BDD-based treatment
of labels) are fundamental to achieve acceptable performance.

1 Introduction

Property specification languages (e.g. the IEEE standard PSL [1] and SVA [19]) are
increasingly used to represent requirements of hardware components. Such languages
extend the power of temporal operators [14] by featuring at their core an extended
form of regular expressions, called SERE. In order to generalize well-established model
checking techniques [9] from traditional temporal logics to such languages, recent ap-
proaches [8] require the ability to generate a finite automaton accepting the language
of a given SERE.

There exist well-known solutions to the automata construction from regular expres-
sion (cfr., e.g., [11,6,4,20]). These approaches are in principle valid in the context of
SEREs, which also represent regular languages. However, they are inefficient in the
context of SEREs mainly for the following reasons. First, the alphabet of a SERE over
a set of atomic propositionsP is ΣP = 2P , i.e. the powerset of the set of atomic propo-
sitions. This means that the size of the alphabet grows exponentially in the number of

� S. Tonetta is supported by the Provincia Autonoma di Trento (project ANACONDA). The
other authors are supported by EU grant FP7-2007-IST-1-217069 COCONUT.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 87–94, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

88 A. Cimatti et al.

atomic propositions. In real PSL formulas, the number of atomic propositions can be
large, thus inducing a huge alphabet. Second, SEREs are concise using Boolean formu-
las over atomic propositions as atomic regular expressions. Boolean formulas represent
a set of letters of alphabet, a classical automata construction would force an explicit
enumeration of the letters (i.e. the models of a formula), which is exponential.

We tackle this problem by proposing non-deterministic finite automata with a sym-
bolic representation of transitions labels (NFASL). The idea is to represent explicitly
states and transitions, and to represent the set of all transitions between two states with
just one transition labeled with a Boolean formula. This representation is more concise,
since multiple transitions can be collapsed together. Moreover, it avoids an explicit
enumerations of the alphabet letters, at the price of applying symbolic transformations
when combining transition labels. To this extent, we provide a symbolic version of the
algorithms for all the major operations over NFASL, and a procedure to map a SERE
into an NFASL. The approach has been implemented in the AUTLIB library, using Bi-
nary Decision Diagrams (BDDs) to represent transition labels.

We carried out a thorough experimental evaluation over a set of realistic benchmarks,
comparing our AUTLIB library against MONA and GRAZ. MONA is a well known and
optimized BDD-based procedure that uses deterministic finite automata with a sym-
bolic representation of the transition relation. GRAZ is a library that features non-
deterministic finite automata with a semi-symbolic representation of transition labels,
based on Disjunctive Normal Form (DNF). Experimental results over a realistic set of
benchmarks show substantial advantages over either competitor, and substantiate the
claim that both features of AUTLIB (the ability to deal with non-determinism, and a
fully symbolic treatment of labels) are fundamental to achieve acceptable performance.

The paper is structured as follows. In Sec. 2 we present some background on SERE.
In Sec. 3 we formalize the notion of NFASLs. In Sec. 4 we compare our approach with
related work, and in Sec. 5 we experimentally evaluate the AUTLIB library. In Sec. 6
we draw some conclusions and outline directions for future research.

2 Regular Expressions for Property Specification

PSL is an IEEE-standard language [1] for the specification of hardware requirements,
based on a combination of Linear Temporal Logic [14] with SERE, a variant of classic
regular expressions [11]. A key difference of SEREs with respect to classic regular
expressions is that a letter in the alphabet of a SERE is a truth assignment to a set of
atomic propositions, since SEREs are defined over Boolean formulas. In this section we
formally define syntax and semantics of SEREs.

Notation. We consider regular languages parameterized by a set of atomic propositions
P . The alphabet of such languages is given by the set ΣP = 2P of truth assignments
to the propositions of P . We will use BP to denote the set of Boolean formulas (ob-
tained applying conjunction ∧, disjunction ∨ and negation ¬) over the elements of P .
We use �,�′, �1,. . .,�n to refer to a letter in the alphabet ΣP . A finite word is a finite
sequence of letters. We use v, w, w1, w2 to denote finite words and Σ∗

P to denote the
set of all words in ΣP . Given v = �0, �1, . . . , �n ∈ Σ∗

P and w = �′0, �
′
1, . . . , �

′
n ∈ Σ∗

P ,

From SERE to NFA with Symbolic Labels 89

vw = �0, �1, . . . , �n, �′0, �
′
1, . . . , �

′
n is the concatenation of words v and w. w0 denotes

the first letter of w.

Syntax and Semantics. The syntax of SEREs is defined as follows:

Definition 1 (SEREs syntax). An atomic expression is either a Boolean formula φ ∈
BP or the empty word denoted with ε. SEREs are obtained by applying recursively the
following operators to the atomic expressions:

– if r1, r2 are SEREs, then r1 ; r2, r1 : r2, r1 ||| r2, r1 & r2 and r1 && r2 are SEREs;
– if r is a SERE, then r[*] and r[+] are SEREs.

Boolean formulas are interpreted over letters in ΣP : a propositional atom p is true in �
iff p ∈ �, false otherwise; Boolean connectives are interpreted in the standard way. If �
is a letter and b a Boolean formula, we denote with � |=B b by the fact that � is a model
of b.

Definition 2 (SERE semantics). Let w be a finite word over ΣP , φ a Boolean formula,
r, r1, r2 SEREs, then the satisfaction relation w |= r is defined as follows:

– w |= ε iff |w| = 0
– w |= φ iff |w| = 1 and w0 |=B φ
– w |= r1 ; r2 iff ∃w1, w2 s.t. w = w1w2, w1 |= r1, w2 |= r2

– w |= r1 : r2 iff ∃w1, w2, � s.t. w = w1�w2, w1� |= r1, �w2 |= r2

– w |= r1 ||| r2 iff w |= r1 or w |= r2

– w |= r1 & r2 iff either w |= r1 and ∃w1, w2 s.t. w = w1w2, w1 |= r2, or
w |= r2 and ∃w1, w2 s.t. w = w1w2, w1 |= r1

– w |= r1 && r2 iff w |= r1 and w |= r2

– w |= r[*] iff |w| = 0 or ∃w1, w2 s.t. |w1| �= 0, w = w1w2, w1 |= r, w2 |= r[*]
– w |= r[+] iff ∃w1, w2 s.t. w = w1w2, w1 |= r, w2 |= r[*]

Definition 3 (Language of SEREs). The language of a SERE r is the set L(r) :=
{w ∈ ΣP∗ | w |= r}.
Example 1. The SERE {start;{busy}[*];end}&&{{¬abort}[*]} over P = {start,
busy, end, abort} may represent the sequences of a potential hardware procedure that
lasts for an uncertain number of cycles while never aborted. The SERE {req;{{read
;{¬cancel r ∧ ¬done}[*]} ||| {write;{¬cancel w ∧ ¬done}[*]}};done} over P =
{req, read, write, cancel r, cancel w, done}may represent the sequences of a request
of read or write which is accomplished without being canceled.

3 Non-deterministic Finite Automata with Symbolic Labels

Definition 4 (NFASL). A Non-deterministic Finite-state Automaton with Symbolic
Labels (NFASL) is a tuple A = 〈P , Q, q0, ρ, F 〉, where P is the set of atomic propo-
sitions, Q is a finite set of states, q0 ∈ Q is the initial state, ρ : Q → 2BP×Q is the
symbolic transition function and F ⊆ Q is the set of final states.

By definition, an NFASL can move from a state q non-deterministically choosing a
pair of label-state. The definition of transition function differs from the classic one,

90 A. Cimatti et al.

where a move from state q is determined by a single letter of the alphabet, namely
ρC : Q × ΣP → 2Q. Given, ρ, we can define ρC as ρC(q, l) := {q′ | 〈φ, q′〉 ∈
ρ(q) for some φ s.t. l |= φ}. A tuple 〈q, φ, q′〉, where 〈φ, q′〉 ∈ ρ(q), is called a symbolic
transition. A symbolic transition 〈q, φ, q′〉 is said feasible iff φ is satisfiable.

Definition 5 (NFASL language). An NFASL A = 〈P , Q, q0, ρ, F 〉 accepts a word
l1, . . . , ln ∈ Σ∗

P iff there exists a sequence of states π = q0, q1, . . . , qn such that
q0 = q0, qn ∈ F , and, for all i, 1 ≤ i ≤ n, there exists φi ∈ BP such that
〈φi, qi〉 ∈ ρ(qi−1) and li |= φi. The set L(A) ⊆ Σ∗

P of words accepted by A is called
language of A.

We convert a SERE into an equivalent NFASL using a variant of the Berry-Sethi con-
struction (cfr. [20]). The algorithm builds the automaton in a bottom-up fashion, re-
cursively applying automata operations and exploiting the symbolic representation of
labels. For example, to intersect two automata we build the cross product of their states
and for each pair of transitions we take the conjunction of the labels. In the algorithm
we never add transitions with unsatisfiable labels and states that are not reachable from
the initial state. The construction matches the complexity of the standard algorithms, in
that it builds an automaton with a linear number of states if the SERE does not contain
any intersection operator, while it is in general exponential.

We also implemented the determinization and state reduction operations. The deter-
minization operation is a modified version of the subset construction algorithm. When
processing a state we do not compute for every letter the set of states where the automa-
ton can move, since this requires to enumerate all the possible truth assignments for
every label. Instead, we create a transition for every combination of labels: these tran-
sitions are deterministic, since all the combinations of labels do not have any common
assignment. We perform the reduction of the state space of a NFASL using the quotient
graph with regard to the bi-simulation relation. This is a standard technique (cfr., e.g.,
[12]), but we adapt the definition of simulation to the symbolic labels.

A detailed description of automata operations is reported in an extended version of
the paper available at http://es.fbk.eu/people/mover/paper/CIAA10/.

4 Related Work

Several works focus on the construction of automata from regular expressions. Most
of them (e.g. [13,16,5]) use classic automata representations, where states and labels
are represented explicitly. Other implementations (e.g., AUTOMATA1 and LIBFA2) have
a partially-symbolic representation of labels (e.g., intervals of letters). However, these
approaches are inefficient when considering Boolean formulas as atomic expressions.

Symbolic representations of finite state automata have been investigated in several
works. As in our approach, MONA [10] uses an explicit representation for states, but a
symbolic representation for the entire transition relation. The symbolic representation
is achieved using a variant of BDDs, called shared multi-terminal BDDs (SMBDDs).

1 http://www.brics.dk/automaton/
2 http://augeas.net/libfa/

http://es.fbk.eu/people/mover/paper/CIAA10/
http://www.brics.dk/automaton/
http://augeas.net/libfa/

From SERE to NFA with Symbolic Labels 91

Roots and leaves in a SMBDD are states of the automaton, while the internal nodes are
atomic propositions. A transition is represented with a path from a root to a leaf. Unlike
our approach, MONA cannot represent NFAs: given a state and a letter, there is a unique
leaf node. Moreover, MONA does not implement regular languages operations such as
concatenation and Kleene closure. STRANGER [21] is a library developed in the context
of static strings analysis for Web applications. It is implemented on top of MONA, and
extends it with more operations on automata.

Other approaches represent automata states and transitions explicitly and use a sym-
bolic representation of labels, as in our case. The GRAZ library [15] represents NFAs
where transitions are labeled with DNF formulas. Pairs of labels are combined by mul-
tiplying all the disjuncts of the first label with the disjuncts of the second label. This
library was previously used in the NUSMV [7] model checker to manage the construc-
tion of automata from SEREs [8].Also in FSA [17] a predicate is used as label for a
transition. The library uses Prolog and not BDDs to represent a predicate and to check
its satisfiability. FSA describes the algorithms that we use to perform intersection and
determinization. In [2] the authors give an efficient implementation of minimization
for NFAs with large alphabets. The representation of NFA is explicit for states, and
symbolic (BDD-based) for labels. This work does not take into account the construc-
tion of automata from regular expressions. Also REX [18] uses an approach similar in
spirit to ours, where states are explicit and labels are symbolic. The key difference is
that reasoning on symbolic labels is done using a Satisfiability Modulo Theory (SMT)
solver instead of BDDs. As ours, the approach aims at dealing with extended regular
expressions. However not all SEREs operations are covered (e.g. the fusion operator is
missing).

In the context of circuit synthesis for PSL monitoring, a construction of the automata
from SEREs is described in [3]. The approach is very similar to the one presented here,
using the same approach of handling symbolic labels on automata transitions. However,
the automata and the translation are not formally presented. Unfeasible transitions are
not removed, and no detail is given on how formulas are manipulated (BDD, DNF,
or strings). The goal of the approach indeed is not the automata construction, but the
generation of the circuit and the evaluation regards only the final hardware circuits. In
particular, there is no comparison with standard libraries for automata manipulation.

5 Experimental Evaluation

The approach described in previous sections has been implemented in the AUTLIB

library. The library is written in C, using adjacency lists to represent transitions outgoing
from a state, and BDDs from the CUDD package (http://vlsi.colorado.edu/
˜fabio) for transition labels. The architecture is extensible to other forms of Boolean
reasoning, such as propositional satisfiability (SAT), and to SMT. AUTLIB is used at
the core of an extension of the NUSMV [7] model checker able to deal with the PSL
language, and, as explained in [8], it is used to generate the automata necessary for PSL
verification.

Set up. The proposed algorithm is evaluated in terms of construction time of an au-
tomaton corresponding to a SERE, and number of states of the resulting automaton.

http://vlsi.colorado.edu/~fabio
http://vlsi.colorado.edu/~fabio

92 A. Cimatti et al.

The AUTLIB library was evaluated in two modes, with and without reduction. In the
first mode, the activation of reduction is controlled by a simple heuristic, namely re-
duction is run only after |||, && and & operators. For the comparison, we use a test suite
of 1200 SEREs, obtained by randomly modifying patterns extracted from industrial
case studies. The SEREs are combinations of concatenations where the top level oper-
ators are randomly chosen in {|||, &&, &, [*], [+]}. The concatenations combine atomic
Boolean expressions, or repetition of Boolean expressions using [*] or [+]. The num-
ber of concatenated SEREs is randomly chosen in the range [2, 10]. We generated 12
different families of benchmarks, choosing a possible configuration of parameters. The
parameters are the number of top-level operators (which ranges in {1, 2}), the depth of
Boolean expressions (which ranges in {2, 3}) and the number of atomic propositions
(which ranges in {8, 10, 15}). For each family we generated 100 random SEREs.

AUTLIB is compared against the GRAZ library [15] and MONA [10]. Also for GRAZ

we considered two operating modes: with and without NFA reduction. We compared
with MONA through the STRANGER library [21], that provides concatenation and star
as additional functions, and minimizes the DFA after such operations.

We ran the experiments on a Linux machine equipped with a 2.66GHz Intel(R)
Core(TM)2 Quad Core, and 4GB of RAM with a time out of 120 seconds and memory
limit of 3Gb. All results, together with the binaries and test cases necessary to reproduce
them, are available at http://es.fbk.eu/people/mover/tests/CIAA10/.

Results. The results are presented in two different forms. Survival plots are used to pro-
vide a global view of the results: for each competitor, the “snake” shows the cumulative
time required to solve a fixed number of instances. Pairwise comparison is obtained
by means of scatter plots, where the x and y coordinates for each point represent the
performance of the compared solvers on a given sample.

Figure 1(a) shows the cumulative plot for automata construction times for all the
evaluated libraries. The GRAZ library, with and without reduction, shows poor perfor-
mances, solving about 200 over 1200 examples. MONA can solve about 1050 examples
while AUTLIB solves all the random generated SEREs. AUTLIB, with and without
minimization, is much faster than MONA, and almost immediate on some instances.

AUTLIB and GRAZ can be compared from the scatter plots shown in Figure 1(c)
and 1(d). All the examples where GRAZ can construct the automaton before timeout are
trivial for AUTLIB. The bottleneck in the GRAZ approach is due to operations on labels
performed on the DNF structure of formulas. Comparing the number of states, GRAZ

generates bigger automata than AUTLIB. This is due to the management of labels in
GRAZ, where for performance reasons the satisfiability check of a conjunction of labels
is not complete. Transitions with inconsistent labels are thus created, possibly avoiding
the pruning of unreachable states.

Figure 1(e) shows the scatter plot that compares construction times for MONA, on x
axes, and AUTLIB, on y axes. AUTLIB outperforms MONA on every example. These
results can be explained looking at Figure 1(f), that shows the number of states for
the constructed automata. It is not surprising that DFAs generated by MONA are much
bigger than NFASL of AUTLIB, since non-deterministic automata have a much succinct
representation, which better adapts to common SERE expressions.

http://es.fbk.eu/people/mover/tests/CIAA10/

From SERE to NFA with Symbolic Labels 93

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000 1200

AutLib
AutLib reduction

Graz reduction
Graz

Mona

(a) Construction time (sec.)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 200 400 600 800 1000 1200

AutLib
AutLib reduction

Graz reduction
Graz

Mona

(b) Number of states

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

(c) Construction time (sec.): AUTLIB (X axes) vs
GRAZ (Y axes)

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

(d) # of states: AUTLIB (X axes) vs GRAZ (Y axes)

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

(e) Construction time (sec.): AUTLIB (X axes) vs
MONA (Y axes)

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

(f) # of states: AUTLIB (X axes) vs MONA (Y axes)

We also tested the effect of reductions for AUTLIB and GRAZ. For AUTLIB the
benefits deriving from reductions, i.e., a reduced number of states, seem to be modest
with respect to an increased construction time. As for GRAZ, although the reduction is a
costly operation in terms of time, the benefits in the number of states are more evident.
For lack of space, the scatter plots of the reductions are reported in the extended version
of the paper.

6 Conclusions and Future Work

In this paper we have addressed the problem of providing automata-based techniques
suitable for the manipulation of regular expressions arising in specification languages
such as PSL. We propose an approach where non-deterministic finite automata are
equipped with fully symbolic labels, represented by means of BDDs, over a given set
of variables. We implemented an efficient library where all the standard functionali-
ties are provided. The experiments demonstrate the need for the compactness of non-
deterministic finite automata (compared to approaches based on deterministic finite
automata), and the efficiency of a fully symbolic approach to label representation (with
respect to an approach based on sets of partial assignments).

In the future, we plan to extend the experimentation with additional benchmarks, and
to pinpoint possible bottlenecks of the current implementation. We will also investigate

94 A. Cimatti et al.

the use of alternative symbolic technique (e.g. SAT and SMT solvers), and will develop
fully symbolic minimization procedures.

Acknowledgments. We thank I. Pill for support with the GRAZ library, and O. Ibarra,
T. Bultan, F. Yu and M. Alkhalaf for providing us with the STRANGER library.

References

1. IEEE Standard for Property Specification Language (PSL). IEEE Std 1850-2005 (2005)
2. Aziz Abdulla, P., Deneux, J., Kaati, L., Nilsson, M.: Minimization of non-deterministic au-

tomata with large alphabets. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS,
vol. 3845, pp. 31–42. Springer, Heidelberg (2006)

3. Boule, M., Zilic, Z.: Efficient Automata-Based Assertion-Checker Synthesis of SEREs for
Hardware Emulation. In: ASP-DAC, pp. 324–329 (2007)

4. Champarnaud, J.-M.: Evaluation of Three Implicit Structures to Implement Nondeterministic
Automata From Regular Expressions. Int. J. Found. Comput. Sci. 13(1), 99–113 (2002)

5. Champarnaud, J.M., Hansel, G.: Automate, a computing package for automata and finite
semigroups. J. Symb. Comput. 12(2), 197–220 (1991)

6. Champarnaud, J.-M., Ponty, J.-L., Ziadi, D.: From Regular Expressions to Finite Automata.
International Journal of Computer Mathematics 72(4), 415–431 (1999)

7. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV: A New Symbolic Model
Checker. STTT 2(4), 410–425 (2000)

8. Cimatti, A., Roveri, M., Tonetta, S.: Symbolic Compilation of PSL. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 1737–1750 (2008)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge (1999)
10. Henriksen, J.G., Jensen, J., Jørgensen, M., Klarlund, N., Paige, B., Rauhe, T., Sandholm, A.:

Mona: Monadic second-order logic in practice (1995)
11. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation.

Addison-Wesley, Reading (1979)
12. Ilie, L., Navarro, G., Yu, S.: On NFA Reductions. In: Theory is Forever, pp. 112–124 (2004)
13. Kell, V., Maier, A., Potthoff, A., Thomas, W., Wermuth, U.: AMORE: a system for comput-

ing automata, monoids and regular expressions. In: Cori, R., Monien, B. (eds.) STACS 1989.
LNCS, vol. 349, pp. 537–538. Springer, Heidelberg (1989)

14. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems, Specifica-
tion. Springer Verlag, New York (1992)

15. Pill, I.: Requirements Engineering and Efficient Verification of PSL properties. PhD thesis,
Graz Univeristy of Technology (2008)

16. Raymond, D., Wood, D.: Grail: a C++ library for automata and expressions. J. Symb. Com-
put. 17(4), 341–350 (1994)

17. van Noord, G., Gerdemann, D.: Finite State Transducers with Predicates and Identities.
Grammars 4(3), 263–286 (2001)

18. Veanes, M., Grigorenko, P., de Halleux, P., Tillmann, N.: Rex: Symbolic Regular Expression
Explorer. In: ICST (2010)

19. Vijayaraghavan, S., Ramanathan, M.: A Practical Guide for SystemVerilog Assertions.
Springer, Heidelberg (2005)

20. Watson, B.W.: A Taxonomy of Finite Automata Construction Algorithms. Technical report,
Eindohoven University of Technology – Mathematics and Computing Science (1994)

21. Yu, F., Bultan, T., Cova, M., Ibarra, O.H.: Symbolic String Verification: An Automata-Based
Approach. In: Havelund, K., Majumdar, R. (eds.) SPIN 2008. LNCS, vol. 5156, pp. 306–324.
Springer, Heidelberg (2008)

State Complexity of Catenation Combined with
Union and Intersection�

Bo Cui, Yuan Gao, Lila Kari, and Sheng Yu

Department of Computer Science,

The University of Western Ontario,

London, Ontario, Canada N6A 5B7

Abstract. In this paper, we study the state complexities of two par-

ticular combinations of operations: catenation combined with union and

catenation combined with intersection. We show that the state complex-

ity of the former combined operation is considerably less than the math-

ematical composition of the state complexities of catenation and union,

while the state complexity of the latter one is equal to the mathematical

composition of the state complexities of catenation and intersection.

1 Introduction

State complexity is a type of descriptional complexity for regular languages based
on the deterministic finite automaton (DFA) model [18]. The state complexity
of an operation on regular languages is the number of states that are necessary
and sufficient in the worst case for the minimal, complete DFA that accepts the
resulting language of the operation [6]. Many results on the state complexities
of individual operations have been obtained, e.g. union, intersection, catenation,
star, etc [1, 2, 7, 9, 10, 13, 14, 16, 18].

However, in practice, the operation to be performed is often a combination of
several individual operations in a certain order, rather than only one individual
operation. The study of state complexities of combined operations was initiated
by A. Salomaa, K. Salomaa and S. Yu in 2007 [15] and followed by a number of
papers [2–4, 11, 12]. It has been shown that the state complexity of a combined
operation is not simply a mathematical composition of the state complexities of
its component operations. It appears that the state complexity of a combined
operation in general is more difficult to obtain than that of an individual op-
eration, especially the tight lower bound of the operation. This is because the
resulting languages of the worst case of one operation may not be among the
worst case input languages of the subsequent operation.

The study of the state complexity of individual operations has already much
relied on computer software to test and verify the results. One could say that,
� All correspondence should be directed to Yuan Gao at ygao72@csd.uwo.ca. This work

is supported by Natural Science and Engineering Council of Canada Discovery Grant

R2824A01, Canada Research Chair Award, and Natural Science and Engineering

Council of Canada Discovery Grant 41630.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 95–104, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

96 B. Cui et al.

without the use of computer software, there would be no results on the state
complexity of combined operations.

Although there is only a limited number of individual operations, the number
of combined operations is unlimited. It is impossible to study the state complex-
ity of all the combined operations. However, we consider that, besides the study
of estimation and approximation of state complexity of general combined oper-
ations [4, 5], it is important that the exact state complexity of some commonly
used and basic combined operations should be studied.

In this paper, we study the state complexities of catenation combined with
union, i.e., (L(A)(L(B)∪L(C))), and catenation combined with intersection, i.e.,
(L(A)(L(B) ∩ L(C))), for DFAs A, B and C of sizes m, n, p ≥ 1, respectively.
Both of them are basic combined operations and are commonly used in practice.
For L(A)(L(B) ∪ L(C)), we show that its state complexity is (m − 1)(2n+p −
2n − 2p + 2) + 2n+p−2, for m, n, p ≥ 1 (except the situations when m ≥ 2
and n = p = 1), which is much smaller than m2np − 2np−1, the mathematical
composition of the state complexities of union and catenation [13, 16]. On the
other hand, for L(A)(L(B)∩L(C)), we show that the mathematical composition
of the individual state complexities of this combined operation is m2np− 2np−1,
i.e., exactly equal to the state complexity of the operation (also except the cases
when m ≥ 2 and n = p = 1). Note that the individual state complexity of union
and that of intersection are exactly the same. However, when they combined
with catenation, the resulting state complexities are so different.

In the next section, we introduce the basic definitions and notations used
in the paper. Then we prove our results on catenation combined with union
and catenation combined with intersection in Sections 3 and 4, respectively. We
conclude the paper in Section 5.

2 Preliminaries

A non-deterministic finite automaton (NFA) is a quintuple A = (Q, Σ, δ, s, F),
where Q is a finite set of states, s ∈ Q is the start state, and F ⊆ Q is the set
of final states, and δ : Q × Σ → 2Q is the transition function. If |δ(q, a)| ≤ 1
for any q ∈ Q and a ∈ Σ, then this automaton is called a deterministic finite
automaton (DFA). A DFA is said to be complete if |δ(q, a)| = 1 for all q ∈ Q
and a ∈ Σ. All the DFAs we mention in this paper are assumed to be complete.
We extend δ to Q×Σ∗ → Q in the usual way. Then a word w ∈ Σ∗ is accepted
by the automaton if δ(s, w)∩F �= ∅. Two states in a finite automaton A are said
to be equivalent if and only if for every word w ∈ Σ∗, if A is started in either
state with w as input, it either accepts in both cases or rejects in both cases.
It is well-known that a language which is accepted by an NFA can be accepted
by a DFA, and such a language is said to be regular. The language accepted by
a DFA A is denoted by L(A). The reader may refer to [8, 17] for more details
about regular languages and finite automata.

The state complexity of a regular language L, denoted by sc(L), is the number
of states of the minimal complete DFA that accepts L. The state complexity of

State Complexity of Catenation Combined with Union and Intersection 97

a class S of regular languages, denoted by sc(S), is the supremum among all
sc(L), L ∈ S. The state complexity of an operation on regular languages is the
state complexity of the resulting languages from the operation as a function of
the state complexity of the operand languages. For example, we say that the
state complexity of the intersection of an m-state DFA language and an n-state
DFA language is exactly mn. This implies that the largest number of states of
all the minimal complete DFAs that accept the intersection of an m-state DFA
language and an n-state DFA language is mn, and such languages exist. Thus, in
a certain sense, the state complexity of an operation is a worst-case complexity.

3 Catenation Combined with Union

In this section, we consider the state complexity of L(A)(L(B)∪L(C)) for three
DFAs A, B, C of sizes m, n, p ≥ 1, respectively. We first obtain the following
upper bound (m−k)(2n+p−2n−2p +2)+k2n+p−2 (Theorem 1), and then show
that this bound is tight for m, n, p ≥ 1, except the situations when m ≥ 2 and
n = p = 1 (Theorems 2 and 3).

Theorem 1. For integers m, n, p ≥ 1, let A, B and C be three DFAs with
m, n and p states, respectively, where A has k final states. Then, there exists
a DFA of at most (m − k)(2n+p − 2n − 2p + 2) + k2n+p−2 states that accepts
L(A)(L(B) ∪ L(C)).

Proof. Let A = (Q1, Σ, δ1, s1, F1) where |F1| = k, B = (Q2, Σ, δ2, s2, F2), and
C = (A3, Σ, δ3, s3, F3). We construct D = (Q, Σ, δ, s, F) such that

Q = {〈q1, q2, q3〉 | q1 ∈ Q1 − F1, q2 ∈ 2Q2 − {∅}, q3 ∈ 2Q3 − {∅}}
∪{〈q1, ∅, ∅〉 | q1 ∈ Q1 − F1}
∪{〈q1, {s2} ∪ q2, {s3} ∪ q3〉 | q1 ∈ F1, q2 ∈ 2Q2−{s2}, q3 ∈ 2Q3−{s3}},

s = 〈s1, ∅, ∅〉 if s1 �∈ F1, s = 〈s1, {s2}, {s3}〉 otherwise,
F = {〈q1, q2, q3〉 ∈ Q | q2 ∩ F2 �= ∅ or q3 ∩ F3 �= ∅},
δ(〈q1, q2, q3〉, a) = 〈q′1, q′2, q′3〉, for a ∈ Σ, where q′1 = δ1(q1, a) and,

for i ∈ {2, 3}, q′i = Si ∪ {si} if q′1 ∈ F1, q′i = Si otherwise,
where Si = ∪r∈qi{δi(r, a)}.

Intuitively, Q is a set of triples such that the first component of each triple is a
state in Q1 and the second and the third components are subsets of Q2 and Q3,
respectively.

We notice that if the first component of a state is a non-final state of Q1, the
other two component are either both the empty set or both nonempty sets. This
is because the two components always change from the empty set to a non-empty
set at the same time. This is the reason to have the first and second terms of Q.

Also, we notice that if the first component of a state of D is a final state of A,
then the second component and the third component of the state must contain
the initial state of B and C, respectively. This is described by the third term of Q.

98 B. Cui et al.

Clearly, the size of Q is (m − k)(2n+p − 2n − 2p + 2) + k2n+p−2. Moreover,
one can easily verify that L(D) = L(A)(L(B) ∪ L(C)). ��
In the following, we consider the conditions under which this bound is tight. We
know that a complete DFA of size 1 only accepts either ∅ or Σ∗. Thus, when n =
p = 1, L(A)(L(B) ∪ L(C)) = L(A)Σ∗ if either L(B) = Σ∗ or L(C) = Σ∗, and
L(A)(L(B)∪L(C)) = ∅ otherwise. Therefore, in such cases, the state complexity
of L(A)(L(B) ∪ L(C)) is m as shown in [16].

Now, we consider the case when n = 1 and p ≥ 2. Since L(B)∪L(C) = L(C)
when L(B) = ∅, it is clear that the state complexity of L(A)(L(B) ∪ L(C)) is
equal to that of L(A)L(C), m2p − k2p−1 given in [16], which coincides with the
upper bound obtained in Theorem 1. The situation is analogous to the case when
n ≥ 2 and p = 1.

Next, we consider the case when m = 1 and n, p ≥ 2.

Theorem 2. Let A be a DFA of size 1. Then, for any integers n, p ≥ 2, there ex-
ist DFAs B and C with n and p states, respectively, such that any DFA accepting
L(A)(L(B) ∪ L(C)) needs at least 2n+p−2 states.

Proof. We use a four-letter alphabet Σ = {a, b, c, d}, and let A be the DFA
accepting Σ∗.

Let B = (Q2, Σ, δ2, 0, {n−1}), shown in Figure 1, where Q2 = {0, 1, . . . , n−1},
and the transitions are given as

– δ2(i, a) = i + 1 mod n, for i ∈ {0, . . . , n− 1},
– δ2(i, x) = i for i ∈ Q2, where x ∈ {b, d},
– δ2(0, c) = 0, δ2(i, c) = i + 1 mod n, for i ∈ {1, . . . , n− 1}.

Fig. 1. DFA B used for showing that the upper bound in Theorem 1 is reachable when

m = 1 and n, p ≥ 2

Let C = (Q3, Σ, δ3, 0, {p− 1}), whose transition diagram is similar to the one
shown in Figure 1, where Q3 = {0, 1, . . . , p− 1}, and the transitions are given as

– δ3(i, x) = i for i ∈ Q3, where x ∈ {a, c},
– δ3(i, b) = i + 1 mod p, for i ∈ {0, . . . , p− 1},
– δ3(0, d) = 0, δ3(i, d) = i + 1 mod p, for i ∈ {1, . . . , p− 1}.

State Complexity of Catenation Combined with Union and Intersection 99

Let D = (Q, {a, b, c, d}, δ, 〈0, {0}, {0}〉, F) be the DFA for accepting the language
L(A)(L(B) ∪ L(C)) constructed from those DFAs exactly as described in the
proof of the previous theorem, where

Q = {〈0, {0} ∪ q2, {0} ∪ q3〉 | q2 ∈ 2Q2−{0}, q3 ∈ 2Q3−{0}},
F = {〈q1, q2, q3〉 ∈ Q | n− 1 ∈ q2 or p− 1 ∈ q3}.

We omit the definition of the transitions.
Then we prove that the size of Q 2n+p−2 is minimal by showing that (I) any

state in Q can be reached from the initial state, and (II) no two different states
in Q are equivalent.

For (I), we first show that all the states 〈0, q2, q3〉 such that q3 = {0} are
reachable by induction on the size of q2.

The basis clearly holds, since the initial state is the only state whose second
component is of size 1.

In the induction steps, we assume that all states 〈0, q2, {0}〉 such that |q2| < k
are reachable. Then, we consider the states 〈0, q2, {0}〉 where |q2| = k. Let q2 =
{0, j2, . . . , jk} such that 0 < j2 < j3 < . . . < jk ≤ n − 1. Note that the states
such that j2 = 1 can be reached as follows

〈0, {0, 1, j3, . . . , jk}, {0}〉 = δ(〈0, {0, j3 − 1, . . . , jk − 1}, {0}〉, a),

where {0, j3 − 1, . . . , jk − 1} is of size k − 1. Then, the states such that j2 > 1
can be reached from these states as follows

〈0, {0, j2, . . . , jk}, {0}〉 = δ(〈0, {0, 1, j3− t, . . . , jk− t}, {0}〉, ct), where t = j2−1.

After this induction, all the states such that the third component is {0} have
been reached. Then, it is clear that, from each of these states 〈0, q2, {0}〉, all
the states in Q such that the second component is q2 and the size of their third
component is larger than 1 can be reached by using the same induction steps
but using the transitions on letters b and d.

Next, we show that any two distinct states 〈0, q2, q3〉 and 〈0, q′2, q
′
3〉 in Q are

not equivalent. We only consider the situations where q2 �= q′2, since the other
case can be shown analogously. Without loss of generality, there exists a state r
such that r ∈ q2 and r �∈ q′2. It is clear that r �= 0. Let w = dp−1cn−1−r. Then
δ(〈0, q2, q3〉, w) ∈ F but δ(〈0, q′2, q

′
3〉, w) �∈ F . ��

Then, we consider the more general case when m, n, p ≥ 2.

Example 1. We use a five-letter alphabet Σ = {a, b, c, d, e} in the following three
DFAs, which are modified from the two DFAs in the proof of Theorem 1 in [16].

Let A = (Q1, Σ, δ1, 0, {m − 1}), where Q1 = {0, . . . , m − 1} and, for each
state i ∈ Q1, δ1(i, a) = j, j = (i + 1) mod m, δ1(i, x) = 0, if x ∈ {b, d}, and
δ1(i, x) = i, if x ∈ {c, e}.

Let B = (Q2, Σ, δ2, 0, {n − 1}), where Q2 = {0, . . . , n − 1} and, for each
state i ∈ Q2, δ2(i, b) = j, j = (i + 1) mod m, δ2(i, c) = 1, and δ2(i, x) = i, if
x ∈ {a, d, e}.

100 B. Cui et al.

Let C = (Q3, Σ, δ3, 0, {p − 1}), where Q3 = {0, . . . , p − 1} and, for each
state i ∈ Q3, δ3(i, d) = j, j = (i + 1) mod m, δ3(i, e) = 1, and δ3(i, x) = i, if
x ∈ {a, b, c}.
Following the construction in the proof of Theorem 1, a DFA D can be con-
structed from the DFAs in Example 1 for showing that the upper bound is reach-
able for m, n, p ≥ 2. We note that, similar to the proof of Theorem 2, DFAs B
and C in this example change their states on disjoint letter sets, {b, c} and {d, e}.
Thus, by using a proof that is similar to the proof of Theorem 1 in [16], that shows
the upper bound of the state complexity of catenation can be reached, we can eas-
ily verify that there are at least (m−1)(2n+p−2n−2p+2)+2n+p−2 distinct equiv-
alence classes of the right-invariant relation induced by L(A)(L(B) ∪ L(C)) [8].
Therefore, the upper bound can be reached and the following theorem holds.

Theorem 3. Given three integers m, n, p ≥ 2, there exist a DFA A of m states,
a DFA B of n states, and a DFA C of p states such that any DFA accepting
L(A)(L(B) ∪L(C)) needs at least (m− 1)(2n+p − 2n − 2p + 2) + 2n+p−2 states.

A natural question is that, if we reduce the size of the alphabet used in DFAs
A, B, C, using a three-letter alphabet, can we reach the upper bound as well?
We give a positive answer in the next theorem under the condition m, n, p ≥ 3.

Theorem 4. For any integers m, n, p ≥ 3, there exist DFAs A, B and C of m,
n, and p states, respectively, defined over a three-letter alphabet, such that any
DFA accepting L(A)(L(B) ∪L(C)) needs at least (m− 1)(2n+p− 2n− 2p + 2) +
2n+p−2 states.

4 Catenation Combined with Intersection

In this section, we investigate the state complexity of L1(L2 ∩ L3), and show
that its upper bound (Theorem 5) coincides with its lower bound (Theorems 6
and 7). The following theorem shows an upper bound of the state complexity of
this combined operation.

Theorem 5. Let L1, L2 and L3 be three regular languages accepted by an m-
state, an n-state and a p-state DFA, respectively, for m, n, p ≥ 1. Then there
exists a DFA of at most m2np − 2np−1 states that accepts L1(L2 ∩ L3).

We omit the proof of Theorem 5 because m2np − 2np−1 is the mathematical
composition of the state complexities of the individual component operations,
which is obviously an upper bound of the state complexity of L1(L2 ∩ L3). In
the following, we investigate the lower bounds of the state complexity of this
combined operation under different conditions.

When n = p = 1, L(A)(L(B) ∩ L(C)) = L(A)Σ∗ if both L(B) and L(C)
are Σ∗. The resulting language is ∅ otherwise. Thus, the state complexity of
L(A)(L(B) ∩ L(C)) in this case is the same as that of L(A)Σ∗: m [16].

When n = 1, p ≥ 2, L(A)(L(B) ∩ L(C)) = ∅, if L(B) = ∅, and L(A)L(C)
if L(B) = Σ∗. In this case, the state complexity of the combined operation is

State Complexity of Catenation Combined with Union and Intersection 101

m2p − 2p−1 which is the same as that of L(A)L(C) [16]. Similarly, when n ≥ 2,
p = 1, the state complexity of L(A)(L(B)∩L(C)) is m2n−2n−1. Next, we show
the upper bound m2np − 2np−1 is reachable when m, n, p ≥ 2.

2 -1m
a a a......

c c c

a
0

b,d
b,d

b,c,d

a,b,d

1

Fig. 2. DFA A used for showing that the upper bound in Theorem 5 is reachable when

m ≥ 2 and n, p ≥ 1

Theorem 6. Given three integers m, n, p ≥ 2, there exists a DFA A of m states,
a DFA B of n states and a DFA C of p states such that any DFA accepting
L(A)(L(B) ∩ L(C)) needs at least m2np − 2np−1 states.

Proof. Let A = (QA, Σ, δA, 0, FA) be a DFA, shown in Figure 2, where QA =
{0, 1, . . . , m − 1}, FA = {m − 1}, Σ = {a, b, c, d} and the transitions are given
as:

– δA(i, a) = i + 1 mod m, i = 0, . . . , m− 1,
– δA(i, x) = 0, i = 0, . . . , m− 1, where x ∈ {b, d},
– δA(i, c) = i, i = 0, . . . , m− 1.

Let B = (QB, Σ, δB, 0, FB) be a DFA, shown in Figure 3, where QB = {0, 1, . . . ,
n− 1}, FB = {n− 1} and the transitions are given as:

– δB(i, x) = i, i = 0, . . . , n− 1, where x ∈ {a, d},
– δB(i, b) = i + 1 mod n, i = 0, . . . , n− 1,
– δB(i, c) = 1, i = 0, . . . , n− 1.

Let C = (QC , Σ, δC , 0, FC) be a DFA, whose transition diagram is similar to
the one shown in Figure 3, where QC = {0, 1, . . . , p− 1}, FC = {p− 1} and the
transitions are given as:

– δC(i, x) = i, i = 0, . . . , p− 1, where x ∈ {a, b},
– δC(i, c) = 1, i = 0, . . . , p− 1,
– δC(i, d) = i + 1 mod p, i = 0, . . . , p− 1.

We construct a DFA D = (QD, Σ, δD, sD, FD}, where

QD = {〈u, v〉 | u ∈ QB, v ∈ QC},
sD = 〈0, 0〉,
FD = {〈n− 1, p− 1〉},

102 B. Cui et al.

2 n
b b b......0

b,c
-1

c

b

a,c,d a,da,d a,d

c
1

Fig. 3. DFA B used for showing that the upper bound in Theorem 5 is reachable when

m ≥ 2 and n, p ≥ 1

and for each state 〈u, v〉 ∈ QD and each letter e ∈ Σ,

δD(〈u, v〉, e) = 〈u′, v′〉 if δB(u, e) = u′, δC(v, e) = v′.

Clearly, there are n · p states in D and L(D) = L(B) ∩L(C). Now we construct
another DFA E = (QE , Σ, δE, sE , FE}, where

QE = {〈q, R〉 | q ∈ QA − FA, R ⊆ QD} ∪ {〈m− 1, S〉 | sD ∈ S, S ⊆ QD},
sE = 〈0, ∅〉,
FE = {〈q, R〉 | R ∩ FD �= ∅, 〈q, R〉 ∈ QE},

and for each state 〈q, R〉 ∈ QE and each letter e ∈ Σ,

δE(〈q, R〉, e) =
{ 〈q′, R′〉 if δA(q, e) = q′ �= m− 1, δD(R, e) = R′,
〈q′, R′〉 if δA(q, e) = q′ = m− 1, R′ = δD(R, e) ∪ {sD}.

It is easy to see that L(E) = L(A)(L(B) ∩L(C)). There are (m− 1) · 2np states
in the first term of the union for QE. In the second term, there are 1 · 2np−1

states. Thus,

|QE | = (m− 1) · 2np + 1 · 2np−1 = m2np − 2np−1.

In order to show that E is minimal, we need to show that (I) every state in E is
reachable from the start state and (II) each state defines a distinct equivalence
class.

We prove (I) by induction on the size of the second component of states in
QE . First, any state 〈q, ∅〉, 0 ≤ q ≤ m − 2, is reachable from sE by reading a
word aq. The we consider all states 〈q, R〉 such that |R| = 1. In this case, let
R = {〈x, y〉}. We have

〈q, {〈x, y〉}〉 = δE(〈0, ∅〉, ambxdyaq).

Notice that the only state 〈q, R〉 in QE such that q = m − 1 and |R| = 1 is
〈m− 1, {〈0, 0〉}〉 since the fact that q = m− 1 guarantees 〈0, 0〉 ∈ R.

Assume that all states 〈q, R〉 such that |R| < k are reachable. Consider 〈q, R〉
where |R| = k. Let R = {〈xi, yi〉 | 1 ≤ i ≤ k} such that 0 ≤ x1 ≤ x2 ≤ . . . ≤
xk ≤ n− 1 if q �= m− 1 and 0 = x1 ≤ x2 ≤ . . . ≤ xk ≤ n− 1, y1 = 0, otherwise.
We have 〈q, R〉 = δE(〈0, R′〉, ambx1dy1aq), where

R′ = {〈xj − x1, (yj − y1 + n)mod n〉 | 2 ≤ j ≤ k}.

State Complexity of Catenation Combined with Union and Intersection 103

State 〈0, R′〉 is reachable from the start state, since |R| = k − 1. Thus, 〈q, R〉 is
also reachable.

To prove (II), let 〈q1, R1〉 and 〈q2, R2〉 be two different states in E. We consider
the following two cases.

1. q1 �= q2. Without loss of generality, we may assume that q1 > q2. There
always exists a string t = cam−1−q1bn−1dp−1 such that

δE(〈q1, R1〉, t) ∈ FE ,

δE(〈q2, R2〉, t) /∈ FE .

2. q1 = q2, R1 �= R2. Without loss of generality, we may assume that |R1| ≥
|R2|. Let 〈x, y〉 ∈ R1 −R2. Then

δE(〈q1, R1〉, bn−1−xdp−1−y) ∈ FE ,

δE(〈q2, R2〉, bn−1−xdp−1−y) /∈ FE .

Thus, the minimal DFA accepting L(A)(L(B)∩L(C)) needs at least m2np−2np−1

states for m, n, p ≥ 2. ��
Now we consider the case when m = 1, i.e., L(A) = Σ∗.

Theorem 7. Given two integers n, p ≥ 2, there exists a DFA A of 1 state,
a DFA B of n states and a DFA C of p states such that any DFA accepting
L(A)(L(B) ∩ L(C)) needs at least 2np−1 states.

This lower bound coincides with the upper bound given in Theorem 5. Thus,
the bounds are tight for the case when m = 1, n, p ≥ 2.

5 Conclusion

In this paper, we have studied the state complexities of two basic combined
operations: catenation combined with union and catenation combined with in-
tersection. We have proved that the state complexity of L(A)(L(B) ∪ L(C)) is
(m−1)(2n+p−2n−2p +2)+2n+p−2 for m, n, p ≥ 1 (except the situations when
m ≥ 2 and n = p = 1), which is significantly less than the mathematical compo-
sition of state complexities of its component operations, m2np− 2np−1. We have
also proved that the state complexity of L(A)(L(B)∩L(C)) is m2np− 2np−1 for
m, n, p ≥ 1 (except the cases when m ≥ 2 and n = p = 1), which is exactly the
mathematical composition of state complexities of its component operations. An
interesting question is: why are the state complexity results on these two very
similar combined operations so different?

Acknowledgement

We would like to thank the anonymous referees of CIAA 2010 for their careful
reading and valuable suggestions.

104 B. Cui et al.

References

1. Campeanu, C., Culik, K., Salomaa, K., Yu, S.: State complexity of basic operations

on finite language. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214,

pp. 60–70. Springer, Heidelberg (2001)

2. Domaratzki, M., Okhotin, A.: State complexity of power. Theoretical Computer

Science 410(24-25), 2377–2392 (2009)

3. Ésik, Z., Gao, Y., Liu, G., Yu, S.: Estimation of state complexity of combined

operations. Theoretical Computer Science 410(35), 3272–3280 (2009)

4. Gao, Y., Salomaa, K., Yu, S.: The state complexity of two combined operations:

star of catenation and star of Reversal. Fundam. Inform. 83(1-2), 75–89 (2008)

5. Gao, Y., Yu, S.: State complexity approximation. In: Proceedings of Descriptional

Complexity of Formal Systems, pp. 163–174 (2009)

6. Han, Y., Salomaa, K.: State complexity of basic operations on suffix-free regular

languages. Theoretical Computer Science 410(27-29), 2537–2548 (2009)

7. Holzer, M., Kutrib, M.: State complexity of basic operations on nondeterministic

finite automata. In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS,

vol. 2608, pp. 148–157. Springer, Heidelberg (2003)

8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation. Addison Wesley, Reading (1979)

9. Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and com-

plementation of regular languages. International Journal of Foundations of Com-

puter Science 16, 511–529 (2005)

10. Jirásková, G.: State complexity of some operations on binary regular languages.

Theoretical Computer Science 330, 287–298 (2005)

11. Jirásková, G., Okhotin, A.: On the state complexity of star of union and star of

intersection. Turku Center for Computer Science TUCS Technical Report No. 825

(2007)

12. Liu, G., Martin-Vide, C., Salomaa, A., Yu, S.: State complexity of basic language

operations combined with reversal. Information and Computation 206, 1178–1186

(2008)

13. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math-

ematics Doklady 11, 1373–1375 (1970)

14. Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular

languages. Theoretical Computer Science 320, 293–313 (2004)

15. Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. The-

oretical Computer Science 383, 140–152 (2007)

16. Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations

on regular languages. Theoretical Computer Science 125, 315–328 (1994)

17. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of

Formal Languages, vol. 1, pp. 41–110. Springer, Heidelberg (1997)

18. Yu, S.: State complexity of regular languages. Journal of Automata, Languages

and Combinatorics 6(2), 221–234 (2001)

Complexity Results and the Growths of Hairpin
Completions of Regular Languages

(Extended Abstract)

Volker Diekert and Steffen Kopecki

Universität Stuttgart, FMI

Universitätsstr. 38, 70569 Stuttgart, Germany

{diekert,kopecki}@fmi.uni-stuttgart.de

Abstract. The hairpin completion is a natural operation on formal lan-

guages which has been inspired by molecular phenomena in biology and

by DNA-computing. In 2009 we presented in [6] a (polynomial time) de-

cision algorithm to decide regularity of the hairpin completion. In this

paper we provide four new results: 1.) We show that the decision problem

is NL-complete. 2.) There is a polynomial time decision algorithm which

runs in time O(n8), this improves [6], which provided O(n20). 3.) For the

one-sided case (which is closer to DNA computing) the time is O(n2),

only. 4.) The hairpin completion is unambiguous linear context-free. This

result allows to compute the growth (generating function) of the hairpin

completion and to compare it with the growth of the underlying regular

language.

1 Introduction

The hairpin completion is a natural operation of formal languages which has
been inspired by molecular phenomena in biology and by DNA-computing. An
intramolecular base pairing, known as a hairpin, is a pattern that can occur
in single-stranded DNA and, more commonly, in RNA. Hairpin or hairpin-free
structures have numerous applications to DNA computing and molecular ge-
netics, see [5, 8, 9, 13, 14] and the references within. For example, an instance of
3-Sat has been solved with a DNA-algorithm and one of the main concepts was
to eliminate all molecules with a hairpin structure, see [18].

In this paper we study the hairpin completion from a purely formal language
viewpoint. The hairpin completion of a formal language was first defined in [4];
here we use a slightly more general definition which was introduced in [6]. The
formal operation of the hairpin completion on words is best explained in Fig. 1.
In that picture as in the rest of the paper we mean by putting a bar on a word
(like α) to read it from right-to-left in addition to replacing a with the Watson-
Crick complement a for letters. The hairpin completion of a regular language
is linear context-free [4]. For some time it was not known whether regularity
of the hairpin completion is decidable. It was only in 2009 when we presented
in [6] a decision algorithm. The runtime of that algorithm is in O(n20), hence
polynomial.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 105–114, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

106 V. Diekert and S. Kopecki

γ α β α annealing

γ
α

β

α

lengthening

γ
α

β

α
γ

strand hairpin hairpin completion

Fig. 1. Hairpin completion of a DNA-strand (or a word)

Here we present a modified approach to solve the decision problem. The new
approach leads to improved complexity results and a new structure theorem. We
show that the decision problem is NL-complete (Thm. 1). We show that there
is a polynomial time decision algorithm which runs in time O(n8) (Thm. 2, i.).
So, the improvement is from O(n20) down to O(n8). Moreover, in the biological
model the one-sided hairpin completion is of particular interest, and in that
special case we need quadratic time, only (Thm. 2, iii.). We also argue why the
time bounds might be optimal in the worst case.

A byproduct of the method yields that the hairpin completion of a regular
language is unambiguous linear context-free (Thm. 4). The result about unam-
biguity allows to compute the growth (generating function) of the hairpin com-
pletion and to compare it with the growth of the underlying regular language
(Thm. 3 and Cor. 1).

This takes us back to a challenging open problem in formal languages. Reg-
ularity of linear context-free languages is undecidable in general [1, 11]. But the
situation for unambiguous context-free languages is open for more than 40 years.
Hence, we have now a positive result within the classical context of deciding reg-
ularity within a class of unambiguous (linear) context-free languages.

Due to page limitation, some of the proofs have been removed. The missing
proofs can be found in the technical report [7].

2 Preliminaries and Notation

We assume the reader to be familiar with the fundamental concepts of formal
language theory, automata theory, and complexity theory, see [12,17]. By NL we
mean the complexity class NLOGSPACE, which contains the problems which
can be decided with a non-deterministic algorithm using O(log n) space. We
heavily rely on the well-known result that NL is closed under complementation.
We also use the fact that if L can be reduced to L′ via some single-valued non-
deterministic transduction in O(log n) space and L′ ∈ NL, then we have L ∈
NL, too. This reduction is performed by a non-deterministic log-space Turing
machine. In case the machine stops on input w, the output is always the same,
independently of non-deterministic moves during the computation. So, we can

Complexity Results and the Growths of Hairpin Completions 107

call the output r(w). The reduction property tells us w ∈ L if and only if both,
the machine sometimes stops on input w and r(w) ∈ L′.

By Σ we denote a finite alphabet with at least two letters which is equipped
with an involution : Σ → Σ. An involution for a set is a bijection such that
a = a. We extend the involution to words a1 · · · an by a1 · · · an = an · · ·a1. (Just
like taking inverses in groups.) For languages L denotes the set {w | w ∈ L}.
The set of words over Σ is denoted Σ∗; and the empty word is denoted by 1.
Given a word w, we denote by |w| its length and w(m) ∈ Σ its m-th letter. By
Σ≤m we mean the set of all words with length at most m. If w = xyz for some
x, y, z ∈ Σ∗, then x and z are called prefix and suffix, respectively. The prefix
relation between words x and w is denoted by x ≤ w.

Throughout the paper L1, L2 mean two regular languages in Σ∗ and by k
we mean a (small) constant, say k = 10. We define the hairpin completion
Hk(L1, L2) by

Hk(L1, L2) = {γαβαγ | (γαβα ∈ L1 ∨ αβαγ ∈ L2) ∧ |α| = k} .

Three cases are of main interest: 1.) L1 = L2, 2.) L1 = L2, and 3.) L1 = ∅ or
L2 = ∅. Compared to the definition of the hairpin completion in [4, 16] case 1.)
corresponds to the the two-sided hairpin completion and case 3.) to the one-sided
hairpin completion. Since we have better time complexities for 2.) and 3.) than
for 1.) or in the general case we make the time bounds rather precise.

Regular languages can be specified by non-deterministic finite automata (NFA)
A = (Q, Σ, E, I,F), where Q is the finite set of states, I ⊆ Q is the set of initial
states, and F ⊆ Q is the set of final states. The set E contains labeled edges (or
arcs), it is a subset ofQ×Σ×Q. For a word u ∈ Σ∗ we write p

u−→ q, if there is a
path from state p to q which is labeled by the word u. Thus, the accepted language
becomes

L(A) =
{
u ∈ Σ∗

∣∣∣ ∃p ∈ I, ∃q ∈ F : p
u−→ q

}
.

Later it will be crucial to use also paths which avoid final states. For this we
introduce a special notation. First remove all arcs (p, a, q) where q ∈ F is a
final state. Thus, final states do not have incoming arcs anymore in this reduced
automaton. Let us write p

u=⇒ q, if there is a path in this reduced automaton
from state p to q which is labeled by the word u. Note that for such a path
p

u=⇒ q we allow p ∈ F , but on the path we never meet any final state again.
An NFA is called a deterministic finite automaton (DFA), if it has one initial

state and for every state p ∈ Q and every letter a ∈ Σ there is exactly one arc
(p, a, q) ∈ E. In particular, a DFA in this paper is always complete, thus we can
read every word to its end. We also write p · u = q, if p

u−→ q. This yields a
(totally defined) function Q×Σ∗ → Q, which defines an action of Σ∗ on Q on
the right.

In the following we need a DFA accepting L1 as well as a DFA accepting L2,
but the DFA for L2 has to work from right-to-left. Instead of introducing this
concept we use a DFA (working as usual from left-to-right), which accepts L2.

108 V. Diekert and S. Kopecki

This automaton has the same number of states (and is structurally isomorphic
to) as a DFA accepting the reversal language of L2.

As input we assume that the regular languages L1 and L2 are specified by
DFAs with state set Qi, state q0i ∈ Qi as initial state, and Fi ⊆ Qi as final
states. We fix ni = |Qi| to be the number of states, i = 1, 2. By n we mean
max{n1, n2}. The input size is therefore the number n.

We also need the usual product DFA with state space

Q = {(p1, p2) ∈ Q1 ×Q2 | ∃w ∈ Σ∗ : (p1, p2) = (q01 · w, q02 · w)} .

The action is given by (p1, p2) · a = (p1 · a, p2 · a). We let n12 = |Q|. Hence,
n ≤ n12 ≤ n1 ·n2 ≤ n2, and n = n1 = n12 if L2 = ∅ or L1 = L2. In the following
we work simultaneously in all three automata defined so far. Moreover, in Q1

and Q2 we have to work backwards. This leads to nondeterminism. Our first
new construction concerns a special NFA in Section 3.1.

3 Main Results

The complexity results of this paper are the following:

Theorem 1. The decision problem whether the hairpin completion Hk(L1, L2)
is regular is NL-complete.

Theorem 2. i.) The problem whether the hairpin completion Hk(L1, L2) is
regular can be decided in time O(n8).

ii.) For L1 = L2 it can be decided in time O(n6).
iii.) For L2 = ∅ it can be decided in time O(n2).

An algorithm solving this problem is sketched in Section 3.3. For a proof of the
strict time bounds and a proof of the NL-hardness we refer to [7].

The growth or generating function gL of a formal language L is defined as:
gL(z) =

∑
m≥0

∣∣L ∩Σ≤m
∣∣ zm. We can view gL as a formal power series or as

an analytic function in one complex variable where the radius of convergence is
strictly positive. The radius of convergence is at least 1/ |Σ|.

It is well-known that the growth of a regular language L is effectively rational,
i.e., a quotient of two polynomials. The same is true for unambiguous linear con-
text-free languages. In particular, the growth is either polynomial or exponential.
If the growth is exponential, then we find an algebraic number ρ ∈ R such that∣∣L ∩Σ≤m

∣∣ behaves essentially as ρm, see [3, 10, 2].
It was shown in [4] that Hk(L1, L2) is an linear context-free language. As a

byproduct to our techniques to prove the complexity results above we find that
Hk(L1, L2) is unambiguous, and hence its growth (i.e., generating function) is a
rational function, see e.g. [15] for this well-known fact. We obtain:

Theorem 3. The hairpin completion Hk(L1, L2) is an unambiguous linear con-
text-free language with an effectively computable rational growth function.

This result is proved in Section 3.2.

Complexity Results and the Growths of Hairpin Completions 109

3.1 The NFA A
In this section we define a certain NFA which is called simply A. Almost all
further results are done by exploring properties of this NFA. The NFA is a sort
of product automaton over Q × Q1 × Q2 ⊆ Q1 × Q2 × Q1 × Q2 where Q1,Q2

and Q are defined as in Section 2. The size of this automaton is O(n4) in the
worst case, and our decision algorithm will take into account all pairs of states
in this NFA. Hence, O(n8) might be an optimal time bound and the decision
algorithm is not worse than quadratic in the size of the NFA A.

For every quadruple (p1, p2, q1, q2) ∈ Q1 ×Q2 ×Q1 ×Q2 we define a regular
language B(p1, p2, q1, q2) as follows:

B(p1, p2, q1, q2) = {w ∈ Σ∗ | p1 · w = q1 ∧ p2 · w = q2} .
We say that (p1, p2, q1, q2) is a basic bridge if B(p1, p2, q1, q2) �= ∅. The idea
behind of this notation is that B(p1, p2, q1, q2) closes a gap between pairs (p1, p2)
and (q1, q2) (which are on different sides). For a letter a ∈ Σ we call (p1, p2, q1, q2)
an a-bridge if B(p1, p2, q1, q2) ∩ aΣ∗ �= ∅.
Lemma 1. The number of basic bridges and a-bridges is bounded by O(n2

1n
2
2).

A table containing all these bridges can be computed in time O(n2
1n

2
2) ⊆ O(n4),

and there is a single-valued non-deterministic transduction working in O(log n)
space which outputs this table.

Proof. To compute the basic bridges amounts to compute the transitive closure
in some graph where the number of nodes and edges is in O(n1n2). This gives
the time bound. Once we have the bridges we can compute the a-bridges in time
O(n2

1n
2
2).

If (p1, p2, q1, q2) is a basic bridge, we can verify this property in NL. Since
NL is closed under complementation, we can output the whole table by a single-
valued non-deterministic transduction in O(log n) space.

We also need levels for 0 ≤ � ≤ k, hence there are k + 1 levels. By [k] we denote
in this paper the set {0, . . . , k}. Define

{((p1, p2), q1, q2, �) ∈ Q×Q1 ×Q2 × [k] | (p1, p2, q1, q2) is a basic bridge}
as the state space of the NFA A. Its size is bounded by N · (k + 1) ∈ O(N) ⊆
O(n4), where N = n12n1n2. We have N = n2 for L2 = ∅, and N = n3 for
L2 = L1.

By a (slight) abuse of languages we call a state ((p1, p2), q1, q2, �) a bridge, and
we keep in mind that there exists a word w such that p1 ·w = q1 and p2 ·w = q2.
Bridges are frequently denoted by (P, q1, q2, �) with P = (p1, p2) ∈ Q, qi ∈ Qi,
i = 1, 2, and � ∈ [k]. Bridges are a central concept in the following.

The a-transitions in the NFA for a ∈ Σ are given by the following arcs:

(P, q1 · a, q2 · a, 0) a−→ (P · a, q1, q2, 0) for qi · a /∈ Fi, i = 1, 2,

(P, q1 · a, q2 · a, 0) a−→ (P · a, q1, q2, 1) for q1 · a ∈ F1 or q2 · a ∈ F2,

(P, q1 · a, q2 · a, �) a−→ (P · a, q1, q2, � + 1) for 1 ≤ � < k.

110 V. Diekert and S. Kopecki

Observe that no state of the form (P, q1, q2, 0) with q1 ∈ F1 or q2 ∈ F2 has an
outgoing arc to level zero; we must switch to level one. There are no outgoing
arcs on level k, and for each (a, P, q1, q2, �) ∈ Σ×Q×Q1×Q2×[k−1] there exists
at most one arc (P, q′1, q

′
2, �)

a−→ (P · a, q1, q2, �
′). Indeed, the triple (q′1, q

′
2, �

′) is
determined by (q1, q2, �) and the letter a. Not all arcs exist because (P, q′1, q′2, �)
can be a bridge whereas (P ·a, q1, q2, �

′) is not. Thus, there are at most |Σ|·N ·k ∈
O(N) arcs in the NFA.

The set of initial states I contains all bridges of the form (Q0, q
′
1, q

′
2, 0) with

Q0 = (q01, q02). The set of final states F is given by all bridges (P, q1, q2, k) on
level k.

Remark 1. The NFA A can be computed by Lemma 1 in time O(n2
1n

2
2) and by

a single-valued non-deterministic transduction in O(log n) space. Thus for both
the polynomial time and the NL algorithm we can have direct access to A and
we can assume that A is written on the input tape.

The next result shows the unambiguity of paths in the automaton A.

Lemma 2. Let w ∈ Σ∗ be the label of a path in A from a bridge A = (P, p1, p2, �)
to A′ = (P ′, p′1, p

′
2, �

′), then the path is unique. This means that B = B′ whenever
w = uv and

A
u−→ B

v−→ A′, A
u−→ B′ v−→ A′.

Proof. It is enough to consider u = a ∈ Σ. Let B = (Q, q1, q2, m). Then we
have Q = P · a and qi = p′i · v. If � = 0 and pi /∈ Fi for i = 1, 2, then m = 0,
too. Otherwise m = � + 1. Thus, B is defined by A, A′, and u, v. We conclude
B = B′.

3.2 Structure Theorem and Rational Growth

For languages U and V we define the language V U as follows:

V U = {uvu | u ∈ U, v ∈ V } .

Clearly, if U and V are regular, then V U is linear context-free. We are interested
in a disjoint union of languages V U where for w ∈ V U the factorization w = uvu
with u ∈ U and v ∈ V is unambiguous.

Theorem 4. Let T = I×F . For each τ = (I, F) ∈ T with F = ((d1, d2), e1, e2, k)
let Rτ be the (regular) set of words which label a path from the initial bridge I to the
final bridge F and let Bτ = B(d1, d2, e1, e2). The hairpin completion is a disjoint
union

Hk(L1, L2) =
⋃
τ∈T

BRτ
τ .

Moreover, for each word in some w ∈ BRτ
τ there is a unique factorization w = ρβρ

with ρ ∈ Rτ and β ∈ Bτ .

Complexity Results and the Growths of Hairpin Completions 111

Corollary 1. The hairpin completion Hk(L1, L2) is an unambiguous linear con-
text-free language and it has a rational growth function. The growth can be di-
rectly calculated by the growth of the regular languages Rτ and Bτ .

Corollary 1 allows to compare the growth of L1 and L2 with the growth of
their hairpin completion Hk(L1, L2). It is also a slightly more precise version of
Theorem 3.

3.3 Complexity for Testing the Regularity of Hk(L1, L2)

First Test. The automaton A accepts the union of the languages Rτ as defined
in Theorem 4. If the accepted language is finite then all Rτ are finite and hence
all BRτ

τ are regular. This leads to the following result:

Proposition 1. i.) If the accepted language of the NFA A is finite, then the
hairpin completion Hk(L1, L2) is regular.

ii.) If L1 or L2 is finite, but the accepted language of A is infinite, then the
hairpin completion Hk(L1, L2) is not regular.

Test 1: Check either by some NL-algorithm or in time O(N) ⊆ O(n4) (in time
O(n2), if L1 or L2 is empty) whether the accepted language of the NFA A is
finite.

If “yes” (=L(A) is finite), then output that Hk(L1, L2) is regular. If “no”,
but L1 or L2 is finite, then output that Hk(L1, L2) is not regular.

Second Test. From now on we may assume that the automaton A accepts an
infinite language and both L1 and L2 are infinite as well. We assume that all
states are reachable from initial bridges and lead to some final bridges. (Recall
that graph reachability can be checked in NL.)

Let K be the set of non-trivial strongly connected components of the automa-
ton A (read as a directed graph). For κ ∈ K let Nκ = |κ| the number of states
in the component κ. Let us choose some Aκ ∈ κ and some shortest non-empty
word vκ ∈ Σ+ such that there is a path in A labeled by vκ from Aκ to Aκ.

The next lemma tells us that for a regular hairpin completion Hk(L1, L2)
the word vκ is uniquely defined by Aκ, its length is Nκ, and its conjugacy class
depends only on κ.

Lemma 3. Assume that the hairpin completion Hk(L1, L2) is regular.
1.) Let Aκ

vκ−→ Aκ as above and Aκ
w−→ C be a path in A to some final bridge.

Then the word w is a prefix of some word in v+
κ .

2.) The word vκ and the loop Aκ
vκ−→ Aκ are uniquely defined by the state Aκ

and we have |vκ| = Nκ.

3.) The loop Aκ
vκ−→ Aκ visits every other state B ∈ κ exactly once. Thus, the

loop defines an Hamiltonian cycle of κ.

Remark 2. We decompose the automaton A in its strongly connected compo-
nents by the algorithm of Tarjan in time O(N). (Note that we have K �= ∅

112 V. Diekert and S. Kopecki

since |L(A)| is infinite.) This is also possible by some single-valued non-deter-
ministic transduction. Putting some linear order on the set of bridges, we can
assign to each κ ∈ K the least Aκ ∈ κ. If Hk(L1, L2) is regular, then (by
Lemma 3) we can output the uniquely defined words vκ for all κ ∈ K. We ob-
serve that

∑
κ∈K |vκ| =

∑
κ∈K Nκ ≤ N. So, the list of all vκ is computable in

time O(N) and also by some single-valued non-deterministic transduction, in
case Hk(L1, L2) is regular.

Test 2: It has two parts. Part I: For each strongly connected component κ ∈ K
compute a shortest word v with 0 < |v| ≤ Nκ such that Aκ

v−→ Aκ is a loop
in the automaton A. If |v| �= Nκ, then stop and output that Hk(L1, L2) is not
regular. Part II: If |v| = Nκ for all κ, then let Lκ be the accepted language of
A when the bridge Aκ is used as initial state. Let Pref(v+) be the language of
prefixes of words in v+. (Note that a DFA for the complement of Pref(v+) has
Nκ + 1 states.) If we do not find Lκ ⊆ Pref(v+), then stop and output that
Hk(L1, L2) is not regular.

Part I can be done in time O(
∑

κ∈K Nκ) ⊆ O(N) or in NL. Part II can be
done in time O(

∑
κ∈K Nκ ·N) ⊆ O(N2) ⊆ O(n8). The NL-algorithm for Part II

is based on the fact that we can guess a position m where the m-th letter of
w ∈ Lκ differs from the (m mod Nκ)-th letter of vκ.

Remark 3. Henceforth we may assume that Test 2 was successful and following
Remark 2 we assume that the list of all words vκ is available. Thus, we can think
that the list (vκ; κ ∈ K) is written on the input tape. For the NL-algorithm we
perform another single-valued non-deterministic transduction to achieve this.

Third and Fourth Test. We fix a strongly connected component κ ∈ K of A.
We let A = Aκ = ((p1, p2), q1, q2, 0) and v = vκ as above. By u we denote some
word leading from an initial bridge ((q01, q02), q′1, q

′
2, 0) to A. (The following tests

do not rely on the choice of u.) The main idea is to investigate runs through the
DFAs for L1 and L2 where s, t ≥ n.

L1 : q01
u−→ p1

vs−→ p1
xy−→ c1

z−→ d1
x−→ e1

vn1
=⇒ q1

v∗
=⇒ q1

u=⇒ q′1

L2 : q02
u−→ p2

vt−→ p2
x−→ c2

z−→ d2
yx−→ e2

vn2
=⇒ q2

v∗
=⇒ q2

u=⇒ q′2

We investigate the case where uvsxyzxvtu ∈ Hk(L1, L2) for all s ≥ t and where
(by symmetry) this property is due to the longest prefix belonging to L1.

The following lemma is the most technical one in our paper.

Lemma 4. Let x, y, z ∈ Σ∗ be words and (d1, d2) ∈ Q1 ×Q2 with the following
properties:
1.) k ≤ |x| < |v|+ k and x is a prefix of some word in v+.
2.) 0 ≤ |y| < |v| and xy is the longest common prefix of xyz and some word in

v+.
3.) z ∈ B(c1, c2, d1, d2), where c1 = p1 · xy and c2 = p2 · x.

Complexity Results and the Growths of Hairpin Completions 113

4.) q1 = d1 · xvn1 and during the computation of d1 ·xvn1 we see after exactly k
steps a final state in F1 and then never again.

5.) q2 = d2 · yxvn2 and, let e2 = d2 · yx, during the computation of e2 · vn2 we
do not see a final state in F2.

If Hk(L1, L2) is regular, then xyzxv = μδβδμ where |δ| = k and δβδμu ∈ L2.

Lemma 5. The existence of words x, y, z ∈ Σ∗ and states (d1, d2) ∈ Q1 × Q2

satisfying 1.) to 5.) of Lemma 4, but where for all factorizations xyzxv = μδβδμ
we have p2 · μδβδ /∈ F2 (and accordingly δβδμu /∈ L2), can be decided in time
O(n2

12n
2
1n

2
2) ⊆ O(n8) and in NL.

Proof. It is enough to perform Tests 3, 4 below and to prove the complexity.

The tests distinguish whether the word z is non-empty or empty.

Test 3: Decide the existence of words x, y, z ∈ Σ∗ with z �= 1 and states
(d1, d2) ∈ Q1×Q2 satisfying 1.) to 5.) of Lemma 4, but where for all factorizations
xyzxv = μδβδμ we have p2 · μδβδ /∈ F2. If we find such a situation, then stop
and output that Hk(L1, L2) is not regular.

Test 4: Decide the existence of words x, y ∈ Σ∗ and states (d1, d2) ∈ Q1 × Q2

satisfying 1.) to 5.) of Lemma 4 with z = 1, but where for all factorizations
xyxv = μδβδμ we have p2 · μδβδ /∈ F2. If we find such a situation, then stop
and output that Hk(L1, L2) is not regular.

The correctness of both tests follows by Lemma 4, but even termination of
Test 3 is not completely obvious. Termination is due to condition that xy is the
longest common prefix of xyz and some word in v+. This means, if z �= 1, then
there exists a letter a such that z ∈ aΣ∗ and xya is no prefix of any word in v+.
Now |y| < |v|, hence we see that xyzxv = μδβδμ implies μδ ≤ xy.

Thus it is enough to check the computation starting in state d2 ∈ Q2 when
reading the word yx. Test 3 is successful if we find such a computation which
after more than k− 1 steps does not meet any final state in F2. We do not need
the word z, we just have to know that (c1, c2, d1, d2) is in the precomputed table
of a-bridges (cf. Lemma 1) where a is a letter such that xya is no prefix of any
word in v+. It is obvious that Test 3 can be performed in polynomial time as
well as in NL.

Test 4 is for z = 1, so in any case the number of factorizations xyxv = μδβδμ
is polynomial. It is again obvious that Test 4 can be performed polynomial time
as well as in NL.

The following lemma completes the proof of Theorem 1 and 2.

Lemma 6. Suppose no outcome of Tests 1, 2, 3, and 4 is “not regular”. Then
the hairpin completion Hk(L1, L2) is regular.

Acknowledgement

We thank the anonymous referees for many useful remarks and hints.

114 V. Diekert and S. Kopecki

References

1. Baker, B.S., Book, R.V.: Reversal-bounded multi-pushdown machines. In: Annual

IEEE Symposium on Foundations of Computer Science, pp. 207–211 (1972)

2. Berstel, J., Reutenauer, C.: Rational series and their languages. Springer, New

York (1988)

3. Ceccherini-Silberstein, T.: On the growth of linear languages. Advances in Applied

Mathematics 35(3), 243–253 (2005)

4. Cheptea, D., Martin-Vide, C., Mitrana, V.: A new operation on words suggested by

DNA biochemistry: Hairpin completion. Transgressive Computing, 216–228 (2006)

5. Deaton, R., Murphy, R., Garzon, M., Franceschetti, D., Stevens, S.: Good encod-

ings for DNA-based solutions to combinatorial problems. In: Proc. of DNA-Based

computers DIMACS Series, vol. 44, pp. 247–258 (1998)

6. Diekert, V., Kopecki, S., Mitrana, V.: On the hairpin completion of regular lan-

guages. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp.

170–184. Springer, Heidelberg (2009)

7. Diekert, V., Kopecki, S.: Complexity Result and the Growths of Hairpin Comple-

tions of Regular Languages. Technical Report Computer Science 2010/04, Univer-

sity of Stuttgart (June 2010)

8. Garzon, M., Deaton, R., Neathery, P., Murphy, R., Franceschetti, D., Stevens, E.:

On the encoding problem for DNA computing. In: The Third DIMACS Workshop

on DNA-Based Computing, pp. 230–237 (1997)

9. Garzon, M., Deaton, R., Nino, L., Stevens Jr., S., Wittner, M.: Genome encoding

for DNA computing. In: Proc. Third Genetic Programming Conference, pp. 684–

690 (1998)

10. Gawrychowski, P., Krieger, D., Rampersad, N., Shallit, J.: Finding the growth rate

of a regular or context-free language in polynomial time. In: Ito, M., Toyama, M.

(eds.) DLT 2008. LNCS, vol. 5257, pp. 339–358. Springer, Heidelberg (2008)

11. Greibach, S.A.: A note on undecidable properties of formal languages. Mathemat-

ical Systems Theory 2(1), 1–6 (1968)

12. Hopcroft, J.E., Ulman, J.D.: Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, Reading (1979)

13. Kari, L., Konstantinidis, S., Losseva, E., Sośık, P., Thierrin, G.: Hairpin structures

in DNA words. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892,

pp. 158–170. Springer, Heidelberg (2006)

14. Kari, L., Mahalingam, K., Thierrin, G.: The syntactic monoid of hairpin-free lan-

guages. Acta Inf. 44(3-4), 153–166 (2007)

15. Kuich, W.: On the entropy of context-free languages. Information and Control 16,

173–200 (1970)

16. Manea, F., Mitrana, V., Yokomori, T.: Two complementary operations inspired by

the DNA hairpin formation: Completion and reduction. Theor. Comput. Sci. 410(4-

5), 417–425 (2009)

17. Papadimitriou, C.H.: Computatational Complexity. Addison Wesley, Reading

(1994)

18. Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T.,

Hagiya, M.: Molecular Computation by DNA Hairpin Formation. Science 288(5469),

1223–1226 (2000)

On Straight Words and Minimal Permutators in
Finite Transformation Semigroups�

Attila Egri-Nagy and Chrystopher L. Nehaniv

Royal Society Wolfson BioComputation Research Lab

Centre for Computer Science & Informatics Research, University of Hertfordshire

Hatfield, Hertfordshire AL10 9AB, United Kingdom

{A.Egri-Nagy,C.L.Nehaniv}@herts.ac.uk

Abstract. Motivated by issues arising in computer science, we inves-

tigate the loop-free paths from the identity transformation and corre-

sponding straight words in the Cayley graph of a finite transformation

semigroup with a fixed generator set. Of special interest are words that

permute a given subset of the state set. Certain such words, called min-

imal permutators, are shown to comprise a code, and the straight ones

comprise a finite code. Thus, words that permute a given subset are

uniquely factorizable as products of the subset’s minimal permutators,

and these can be further reduced to straight minimal permutators. This

leads to insight into structure of local pools of reversibility in transfor-

mation semigroups in terms of the set of words permuting a given subset.

These findings can be exploited in practical calculations for hierarchical

decompositions of finite automata. As an example we consider groups

arising in biological systems.

1 Introduction

From the computational perspective it is very important to know how a par-
ticular element of a transformation semigroup can (efficiently) be generated. Of
special interest are elements of the semigroup that permute a subset of the state
set, as the hierarchical decomposition of the semigroup [8] depends on the group
components [1,2]. Here we study the ways in which a particular transformation
can be expressed without any redundancy. These generator words head towards
the target transformation without without revisiting any transformation along
the way, so they are called straight. Straight words also encode the information
describing all possible ways that particular semigroup element can be generated.

Notation. For a finite transformation semigroup (X, S) we fix a generator set
of transformations T = {t1, . . . , tn}, so S = 〈T 〉. We also consider the generators
as symbols, thus a finite product of the generator elements becomes a word in
T + (the free semigroup on generators T whose associative binary operation is
� Partial support for this work by the OPAALS EU project FP6-034824 is gratefully

acknowledged.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 115–124, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

116 A. Egri-Nagy and C.L. Nehaniv

concatenation). It is then convenient to consider the empty word ε as the identity
map. We need to distinguish between the word (often thought of as a sequence
of input symbols) and the transformation it realizes: for the word we just write
the generator symbols in sequence ti1 . . . tin ∈ T + while the transformation is
denoted by

−−−−−→
ti1 . . . tin ∈ S, where the arrow indicates the order in which the

generator elements are multiplied and emphasizes that is a mapping.
For transformations, we either use the usual 2-line notation for mappings,

or if it would become too space consuming we apply the linear notation sug-
gested in [5]. This is a natural extension of the cyclic notation of permuta-
tions. Considering the mappings as digraphs, each transformation consists of
one or more components. Each component contains a cycle (possibly a trivial
cycle). Unlike the permutation case, the points in the cycle can have incom-
ing edges, denoted by [source1, . . . , sourcem ; target] where target is the point
in the cycle. If a source point also has incoming edges from other points the
same square bracket structure is applied again recursively. We can say that the
points in the cycle are sinks of trees. Parentheses indicate the existence of a
nontrivial permutation of the sink elements of the trees, but not of their sources:(
[sources1; target1], . . . , [sourcesk; targetk]

)
. This corresponds to the cycle

(target1, . . . , targetk) but at the same time it contains information on tran-
sient states. The order is arbitrary if there are more than one component. (See
below for examples.)1

2 Straight Words

If the goal is to generate a transformation s ∈ S as quickly as possible without
any digression, then in each step of the generation a new transformation should
appear. Also, if a prefix generates the identity map, so strictly speaking we did
nothing so far, then the prefix can be discarded. More precisely,

Definition 1 (Straight Words). Let s ∈ S be a transformation generated by
the word ti1 . . . tim ∈ T +, so s =

−−−−−−→
ti1 . . . tim , then this word is straight if

−−−−−→
ti1 . . . tik

�= ε, k ∈ {1, . . . , m− 1} (1)

−−−−−→
ti1 . . . tik

=
−−−−−→
ti1 . . . til

⇒ k = l (1 ≤ k, l ≤ m). (2)

Example 1 (Cyclic (monogenic) semigroup). LetX = {1, 2, 3, 4} and t=(1 2 3 4
2 4 1 2),

or, in the alternative notation, t = ([[3; 1]; 2], 4). The semigroup generated by t is

〈t〉 = {t = (1 2 3 4
2 4 1 2), t2 = (1 2 3 4

4 2 2 4), t3 = (1 2 3 4
2 4 4 2)}.

t, t2 and t3 are straight words, but these are the only ones. Higher powers, like
t4 = t2, already repeatedly visit transformations. This example shows that being
straight is not necessarily connected to the formal notion of containing repeated
subwords.
1 Our notation is slightly different from [5] as we do not use square brackets for a

singleton source.

On Straight Words and Minimal Permutators 117

Example 2 (Cyclic group). Let g = (1, 2, 3) be a permutation, then g3 = ε is a
straight word producing the identity map. This example justifies condition 1 in
Definition 1, as we allow the identity transformation at the end of a word, but
not inside.

Definition 2 (Trajectory). Let s1, . . . , sn be a sequence of semigroup ele-
ments, sj ∈ S. Then the sequence is a trajectory if for all sj , 1 ≤ j < n there is
a generator ti ∈ T such that sj · ti = sj+1.

A trajectory is a path in the Cayley graph of the semigroup starting at the trivial
transformation. We can associate a trajectory with a word.

Definition 3 (Trajectory of a word). Given a word ti1 . . . tim , its trajectory
is calculated by taking the products of prefixes: ε,

−→
ti1 ,
−−−→
ti1ti2 , . . . ,

−−−−−−→
ti1 . . . tim .

Now we can give an alternative definition of straight words.

Alternative Definition (Straight Words). A word is straight if all the el-
ements of its trajectory are distinct, except the case of loops when the first and
the last element coincide (and equal ε).

Straight Words and Transformations. From finiteness it follows that the
straight words cannot be extended beyond some finite length, since there are
finitely many elements of the semigroup and each prefix should realize a distinct
semigroup element. An obvious bound on the length of the straight words is
|S|. This bound is reached in Example 2. We also observe that all semigroup
elements can be realized by a straight word.

Lemma 1. Let (X, S) be a transformation semigroup with states X and semi-
group S generated by T . Each semigroup element s ∈ S can be realized by a
straight word in the letters of T .

Proof. Let s =
−−−−−−→
ti1 . . . tim . If ti1 . . . tim is not straight then there is k �= l such that−−−−−→

ti1 . . . tik
=
−−−−−→
ti1 . . . til

. Suppose that k < l. Then the product
−−−−−−−−−−−−−−→
ti1 . . . tik

til+1 . . . tim

still generates s, after we cut out tik+1 . . . til
.

Similarly, in case an identity appears at some position (not the final one) in a
trajectory then the whole prefix can be ignored up to that point. If the reduced
word is not straight then we can repeat either processes. Due to finiteness this
method will stop, and thus produce a straight word generating s. ��
Another way to see that there is at least one straight word for each transforma-
tion is to observe that the first occurrences of transformations in a breadth-first
generation of S by T are produced by straight words.

Corollary 1. Any minimal length word generating s ∈ S is a straight word.

We have seen that for each semigroup element we can give at least one straight
generator word. The following example shows that there can be more straight
words for a mapping.

118 A. Egri-Nagy and C.L. Nehaniv

Example 3 (Constant Maps). Let t1 = (1 2
1 1) and t2 = (1 2

2 2) be two generators,
then t1 and t2t1 are each straight words for

−→
t1 , while t2 and t1t2 are straight

and both realize
−→
t2 . Constant maps render the transformations before them

negligible.

Synonym Straight Words. Different straight words may represent the same
transformation. For example, if we add a second generator, r = (1 2 3 4

4 2 2 4) to
Example 1, then clearly r and t2 are words with this property. Moreover, two
different words may have the same trajectories.

Generalization: Straight Paths. We can study straight words in a more
general settings, we look for straight words w = ti1 . . . tim such that s · −→w = r,
where r, s ∈ S. Actually these arise as labels of ‘straight paths’ in the Cayley
graph of the semigroup between nodes s and r, i.e. simple paths that do not
cross themselves but go directly from s to r. We get the special case of straight
words when s = ε.

Computational Implementation. Computational enumeration of straight
words can easily be done with a backtrack algorithm. We implemented the search
algorithm in the SgpDec software package [4] in the GAP computer algebra sys-
tem [6].

3 Minimal Straight Words and Permutations of Subsets

From now on we focus on straight words that induce permutations on a subset
of the state set. The full permutator semigroup Perm(Y) for a subset Y ⊆ X in
(X, S) is

Perm(Y) = {s ∈ S : Y · s = Y }.
Elements of Perm(Y) are called also permutators of Y . Perm(Y) is closed under
products, so by finiteness it restricts to a group of permutations acting on Y .
The restrictions of elements of Perm(Y) to Y thus comprise a permutation
group or ‘pool of reversibility’ or ‘natural subsystem’ within the transformation
semigroup (X, S). However, while any s ∈ Perm(Y) is also defined on all of X it
is not generally a permutation of X . Elements of Perm(Y) may agree on Y but
disagree on X \Y , so Perm(Y) may not itself be a group nor act faithfully on Y .
We also call a word a permutator word if it realizes a permutator transformation.

Example 4 (Cyclic uniquelly labelled digraph as an automaton). The genera-
tor set consists of 3 elementary collapsings, T = {a = 1 �→ 2, b = 2 �→ 3,
c = 3 �→ 1}. The generated semigroup has 21 elements and, in the notation
introduced above, the straight words of the semigroup elements are: [3; 1] = c,
[2; 3] = b, [1; 2] = a, [[2; 3]; 1] = cb, [[1; 2]; 3] = ba, [[3; 1]; 2] = ac, ([1; 2], 3) = cba,
([3; 1], 2) = bac, (1, [2; 3]) = acb, (1, [3; 2]) = cbac, ([2; 1], 3) = bacb, ([1; 3], 2) =
acba, [[2; 1]; 3] = cbacb, [[1; 3]; 2] = bacba, [[3; 2]; 1] = acbac, [1; 3] = cbacba,

On Straight Words and Minimal Permutators 119

[3; 2] = bacbac, [2; 1] = acbacb, plus the constant maps that are represented by a
lot more straight words:
[1, 3; 2]:abca,aca, acbabca,acbaca,acbacbca,acbca, babca, baca, bacbabca, bacbaca,
bacbca, bca, ca, cbabca, cbaca, cbacbabca, cbacbca, cbca
[2, 3; 1]:abc,acabc,acbabc,acbacabc,acbacbc,acbc, babc, bacabc, bacbabc, bacbacabc,
bacbc, bc, cabc, cbabc, cbacabc, cbacbabc, cbacbc, cbc
[1, 2; 3]: ab, acab, acbab, acbacab, acbacbcab, acbcab, bab, bacab, bacbab, bacbacab,
bacbcab, bcab, cab, cbab, cbacab, cbacbab, cbacbcab, cbcab.
Now let Y = {1, 2}. There are exactly 4 straight words permuting Y , bac and
cbac realizing the transposition (1, 2), and c and bacbac realizing the identity,
thus {−→c ,

−→
bac,
−−→
cbac,

−−−−→
bacbac} = Perm(Y). These words happen to give 4 distinct

transformations of {1, 2, 3}. Note that two of these words are products of two
of the others. There are also many permutator words that not straight, e.g.−−→
baac =

−−→
bbac = ([3; 1], 2), which is

−→
bac.

A word w is a minimal permutator of Y if w represents an element of Perm(Y)
and w is not a product of two or more words permuting Y . That is, w �= w1w2

for any words w1 and w2 representing elements of Perm(Y). The set of minimal
permutators is not necessarily finite, as we can use idempotents to “pump in the
middle” like banc in Example 4. Therefore we turn our attention to the set of
straight, minimal permutator words of Y , denoted by MS(Y).

Fact 1. The set MS(Y) of straight minimal permutator words for Y is finite.

Proof. The assertion easily follows from the fact that straight words are bounded
in length. ��
Now we need to show that we do not lose anything by discarding the words that
are not straight, i.e. we can still generate the full permutator semigroup. We will
use the following obvious fact.

Fact 2. If w = uv permutes Y and u permutes Y , then v permutes Y .

Theorem 1. In the free semigroup T + on the generators of S, the minimal
permutator words M(Y) of Y generate the subsemigroup of all words realizing
elements of Perm(Y). That is,

〈M(Y)〉 = all words representing elements of Perm(Y).

Moreover, the straight minimal permutators MS(Y) of Y generate a subsemi-
group of words realizing all elements of Perm(Y).

Proof. Let p = t1 . . . tk represent an element of Perm(Y). We show p is a product
of minimal permutators by induction on k. Either p is a minimal permutator or
there is a least j strictly less than k so that t1 . . . tj permutes Y . Now t1 . . . tj
is a minimal permutator of Y and p = (t1 . . . tj)(tj+1 . . . tk) with each of the ex-
pressions in parentheses permuting Y . The length of the second word is strictly
less than k, so by induction hypothesis, it too can be written as a product of

120 A. Egri-Nagy and C.L. Nehaniv

minimal permutators of Y . This proves that an arbitrary word p representing
an element of Perm(Y) can be factored as a product of minimal permutators
of Y . Each minimal permutator factor can be shortened by removing letters if
necessary to a straight word. The result follows. ��
Theorem 2. Any word w representing a permutator of Y can be factored uniquely
into a product of minimal permutators of Y .

Proof. By the previous theorem, we can write w = w1 · · ·wk, where each wi is a
minimal permutator word of Y . Suppose w can also be written as w = w′

1 . . . w′
�,

where again each w′
i represents is a minimal permutator word for Y . We show

� = k and wj = w′
j for all j (1 ≤ j ≤ �). If this were not the case, then let i be the

least index such that wi �= w′
i. Without loss of generality, assume |wi| ≤ |w′

i|. It
follows then that w′

i = wiv for some nonempty word v. By Fact 2, v represents a
permutator of Y . But we have then written w′

i as a product of permutator words,
this contradicts the choice of w′

i as a minimal permutator. It follows wi = w′
i for

all i, and, since the two factorizations are of the same word, that � = k. ��
Corollary 2. The minimal permutator words are a code.

Corollary 3. The straight minimal permutator words are a finite code.

The last corollary shows the usefulness of straight words, when looking for per-
mutators instead of an infinite search space we can restrict the search to a finite
set of words.

Fact 3. For a minimal permutator word w, there is a (in general non-unique)
straight minimal permutator word red(w) obtained from w by removing some
letters such that −→w =

−−−−→
red(w).

Proof. Considering the Cayley graph of the transformation semigroup (X, S) with
generators T . This has vertices S1 = S∪{ε}, where ε denotes the identity mapping
on X , and edges s

t−→ s′, where s′ = s
−→
t with t ∈ T , s, s′ ∈ S1. Now, by the

alternative definition of straight words, it is clear that a word is straight if and
only if the path it labels starting at ε and has no loop (does not enter any node
more than once). Noting that adding or removing loops to the path corresponding
to a product does not change its endpoint, we conclude that removing contiguous
subwords from the word w corresponding to loops, iteratively if necessary, results
in a path with no loops (or a simple loop at ε), corresponding to a straight word
w′ representing the same transformation as w. ��
Theorem 3. There is a well-defined homomorphism φ : M(Y)+ � MS(Y)+

from the semigroup of permutator words onto the semigroup generated by mini-
mal straight permutator words, where for each minimal permutator w ∈ M(Y),
φ(w) is a straight word having the same trajectory as w except for the removal
of loops. Furthermore, φ is a retraction, i.e. φ(w) = w for all words w in MS(Y)
(and hence is the identity on MS(Y)+). For all permutator words w ∈M(Y)+, w
and φ(w) act by the same permutation of Y , and moreover by the same mapping
on X.

On Straight Words and Minimal Permutators 121

M

t 4

t 5

C

t 8

P

t 2

t 6

R

t 7

t 9

t 1

t 3

Fig. 1. Petri net for the p53-Mdm2 regulatory pathway. P = p53, M = Mdm2, C =

p53-Mdm2, R = p53*.

Proof. To get a well-defined homomorphism from the minimal permutator code
to the straight word minimal permutator code, one only needs to choose some
reduction for each minimal permutator (any reduction at all would work). The
reason why one gets a homomorphism is due to that fact the minimal permuta-
tors are a code, hence free generators of a free semigroup, so we need only say
where each generator goes and extend uniquely by freeness. ��

The reduction of a minimal permutator to a straight word need not be unique.
This comes from the fact that synonym straight words do exist. Thus the ho-
momorphism of the theorem need not be unique. One natural way to choose
the reduction red(w) is the following: given a minimal permutator word w that
is not straight, find the first node (along its trajectory) that is later repeated.
Start deleting letters after the letter that first takes us into this node. Find the
last time this node occurs. Delete all letters from there up to and including the
one taking us into the node for the last time. This process removes at least one
letter since the word was not straight. Repeat the procedure until the resulting
word is straight. This necessarily terminates with a reduced form for w, realizing
the same transformation by a straight word obtained from w by excising some
subwords (‘removing loops’ in the trajectory as described).

4 A Biological Example

It seems that in constructing interesting examples the human mind is somewhat
constrained and reverts back to special cases. Therefore studying “naturally
occurring” transformation semigroups can be useful, so here we investigate a

122 A. Egri-Nagy and C.L. Nehaniv

biological example. We should also mention that in exchange semigroup and
automata theory can also provide useful tools for other sciences [9].

The p53-Mdm2 Regulatory Pathway. Biological networks are frequently
modelled by Petri nets and thus it is not difficult to convert such a model to
a transformation semigroup [3]. Figure 1 shows such a model of the p53-Mdm2
regulatory pathway, which is important in the cellular response to ionizing radi-
ation and can trigger self-repair or, in extreme cases, the onset of programmed
cell-death (apoptosis). This pathway is involved in ameliorating DNA damage
and preventing cancer [7]. Figure 2 shows the corresponding finite automata
with 16 states in which two levels of each of the 4 molecular species involved are
distinguished. Corresponding to the transitions we have the following generator
transformations:

t1 = [1; 2][3; 4][5; 6][7; 9][8; 10][11; 12][13; 14][15; 16]
t2 = [2; 1][4; 3][6; 5][9; 7][10; 8][12; 11][14; 13][16; 15]
t3 = [1; 3][2; 4][5; 7][6; 9][8; 11][10; 12][13; 15][14; 16]
t4 = [3; 1][4; 2][7; 5][9; 6][11; 8][12; 10][15; 13][16; 14]
t5 = [4, 12; 8][9, 16; 13]
t6 = [2, 6; 5][4, 9; 7][10, 14; 13][12, 16; 15]
t7 = [5, 6; 2][7, 9; 4][13, 14; 10][15, 16; 12]
t8 = [8, 11; 3][10, 12; 4][13, 15; 7][14, 16; 9]
t9 = [5; 1][6; 2][7; 3][9; 4][13; 8][14; 10][15; 11][16; 12]

Analysis of a Permutator Subsemigroup. None of the above generators
contain a cycle, so the existence of a nontrivial permutation group cannot be
simply read off. The generated semigroup has 316,665 elements. The decompo-
sition of the semigroup shows that it has (several copies of) the following group
components: cyclic group C2 acting on 4, symmetric group S3 acting on 3 and
C2 acting on 2 states.

We pick the set {3, 5, 8} (there are many 3-element subsets that are mutually
reachable from each other under the action of the semigroup, therefore they have
isomorphic permutator groups). Computer calculation shows |Perm({3, 5, 8})| =
549. Consider the following words of length 13 and 15, found by a breadth-first
search, a = t1t5t3t8t5t1t4t8t5t7t8t5t6, b = t1t4t8t5t3t8t5t1t4t8t5t7t8t5t6 realizing
transformations

−→a =([1, 2, 10;3], [4, 7, 9, 11, 12, 15, 16;5], [6, 13, 14;8])
−→
b =[1, 2, 4; 3]([10, 11, 12, 13, 14, 15, 16;5], [6, 7, 9;8]).

As highlighted, these are clearly permutator words for the set {3, 5, 8} and gen-
erate S3. It is easy to verify that these two words are straight. Moreover, a and b
can be checked to be minimal permutators (i.e. they cannot be properly factored

On Straight Words and Minimal Permutators 123

into permutators of {3, 5, 8}). However, the idempotent powers of these words−→
bb and −−→aaa are not equal, so the transformations do not lie in the same subgroup
of the semigroup of the automaton.

1 0 0 0

1 0 1 0t 1

0 0 0 0

t 4

0 0 0 1

0 0 1 0

t 7

0 0 1 1

t 1
1 0 0 1

t 3

t 9

0 1 0 0
t 8

1 1 0 0

t 3

0 1 1 0

t 1

t 8

t 4

1 1 1 0

t 1

t 5

t 2

1 1 0 1

t 6

t 4

t 8

t 6

t 3
t 2

1 1 1 1

t 7 , t 9

t 2 , t 6

1 0 1 1

t 8

0 1 0 1
t 5

0 1 1 1
t 4

t 9
t 7

t 1

t 8

t 4

t 4
t 2 , t 6

t 7 , t 9

t 5

t 2 , t 6

t 7 , t 9

t 3

t 9

t 4

t 1
t 7

t 2

t 3

t 8

t 6

t 2

t 5

t 4

t 6

t 9

t 3

t 8

t 7

t 1

t 3

t 1

t 3

t 8

t 7 , t 9

t 2 , t 6

Fig. 2. Automaton derived from 2-level Petri net of the p53 system (16 states). The

labels on the nodes encode the possible configurations for M, C, P and R (in this

order). 0 denotes the absence (or presence below a threshold), 1 the presence (above

the threshold) of the given type of molecule. For instance, 0101 means that C and R are

present. The shaded states correspond to the state set {3 = 1000, 5 = 0001, 8 = 0100}.

We derive from these words, x = bbabb (a word with 73 letters), which reduces
to straight word: bba, (with only 43 letters), giving the transformation −→x =
([1, 2, 4; 5], [6, 7, 9; 8], [10, 11, 12, 13, 14, 15, 16; 3]) and y = aaabaaa, (another long
word with 93 letters), which reduces to straight word aaab (with 54 letters),
giving the transformation −→y = ([1, 2, 10; 5], [6, 13, 14; 8])[4, 7, 9, 11, 12, 15, 16; 3].

These words (a,b, aaab, bba) are all straight permutator words, but obviously
aaab and bba are not minimal permutators since they are products of (straight)
minimal permutators a and b.

We have two copies of the symmetric group S3 each faithfully acting on
{3, 5, 8} = {M, R, C}: one S3 is generated by a and y, and another isomor-
phic copy of S3 by b and x with idempotents (the identity elements of these two

groups):
−→
a3 =

−→
y2 = [1, 2, 10; 8][4, 7, 9, 11, 12, 15, 16; 3][6, 13, 14; 5] and

−→
b2 =

−→
x3 =

[1, 2, 4; 3][6, 7, 9; 5][10, 11, 12, 13, 14, 15, 16; 8], respectively.
Together the elements −→a and

−→
b generate a 12 element semigroup which is

just the union of these two groups. This is to some extent counterintuitive, as one

124 A. Egri-Nagy and C.L. Nehaniv

would expect one copy of the permutator group for one particular subset of the
state set; furthermore as mentioned above the permutator semigroup Perm(Y)
has, not just these 12, but 549 elements, and this is but one of many instances
of sets of states in this biological model acted on by the symmetric group S3.

5 Conclusion

Based on algorithmic efficiency considerations we studied straight words that
encode loop-free paths in the Cayley graph of a transformation semigroup. We
focused on straight words generating transformations that permute a given sub-
set of the state set. We found that these minimal permutator straight words form
a finite code, and also the minimal permutator words form a code, although, as
easy examples show, the latter is generally an infinite code. The minimal permu-
tator straight words generate the corresponding subgroup of the transformation
semigroup. These can be exploited in the calculations of hierarchical decomposi-
tions. These findings show that there may be a lot more ways within a semigroup
to generate a subgroup than one might think, but for finding the subgroup it is
enough to consider a subset of them.

References

1. Egri-Nagy, A., Nehaniv, C.L.: Algebraic hierarchical decomposition of finite state au-

tomata: Comparison of implementations for Krohn-Rhodes Theory. In: Domaratzki,

M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 315–

316. Springer, Heidelberg (2005)

2. Egri-Nagy, A., Nehaniv, C.L.: Cycle structure in automata and the holonomy de-

composition. Acta Cybernetica 17, 199–211 (2005) ISSN: 0324-721X

3. Egri-Nagy, A., Nehaniv, C.L.: Algebraic properties of automata associated to Petri

nets and applications to computation in biological systems. BioSystems 94(1-2),

135–144 (2008)

4. Egri-Nagy, A., Nehaniv, C.L.: SgpDec – software package for hierarchical coordinati-

zation of groups and semigroups, implemented in the GAP computer algebra system,

Version 0.5.24+ (2010), http://sgpdec.sf.net

5. Ganyushkin, O., Mazorchuk, V.: Classical Transformation Semigroups. Algebra and

Applications. Springer, Heidelberg (2009)

6. The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.4 (2006),

http://www.gap-system.org

7. Kastan, M.B., Kuerbitz, S.J.: Control of G1 arrest after DNA damage. Environ.

Health Perspect. 101(Suppl. 5), 55–58 (1993)

8. Krohn, K., Rhodes, J.L., Tilson, B.R.: The prime decomposition theorem of the

algebraic theory of machines. In: Arbib, M.A. (ed.) Algebraic Theory of Machines,

Languages, and Semigroups, ch. 5, pp. 81–125. Academic Press, London (1968)

9. Rhodes, J.: Applications of Automata Theory and Algebra via the Mathemati-

cal Theory of Complexity to Biology, Physics, Psychology, Philosophy and Games.

World Scientific Press, Singapore (2009)

http://sgpdec.sf.net
http://www.gap-system.org

On Lazy Representations and Sturmian Graphs�

Chiara Epifanio1, Christiane Frougny2, Alessandra Gabriele1,
Filippo Mignosi3, and Jeffrey Shallit4

1 Dipartimento di Matematica e Informatica, Università di Palermo, Italy

{epifanio,sandra}@math.unipa.it
2 LIAFA, CNRS & Université Paris 7, and Université Paris 8, France

Christiane.Frougny@liafa.jussieu.fr
3 Dipartimento di Informatica, Università di L’Aquila, Italy

mignosi@di.univaq.it
4 School of Computer Science, University of Waterloo, Ontario, Canada

shallit@graceland.math.uwaterloo.ca

Abstract. In this paper we establish a strong relationship between the

set of lazy representations and the set of paths in a Sturmian graph asso-

ciated with a real number α. We prove that for any non-negative integer

i the unique path weighted i in the Sturmian graph associated with α
represents the lazy representation of i in the Ostrowski numeration sys-

tem associated with α. Moreover, we provide several properties of the

representations of the natural integers in this numeration system.

Keywords: numeration systems, Sturmian graphs, continued fractions.

1 Introduction

In [6] the authors have defined a new structure, the Sturmian graph associated
with the continued fraction expansion of a real number α. They have also proved
that Sturmian graphs have a counting property. In particular, given an infinite
Sturmian graph, it can “count” from 0 up to infinity, which means that, for any
i ∈ N, there exists in this Sturmian graph a unique path starting in the initial
state having weight i. Recent results on Sturmian graphs and Sturmian words
and their generalizations can be found in [2]. The counting property proved in [6]
has suggested us to introduce a continued fraction expansion-based numbering, a
kind of numeration system that has strong relationships with Sturmian graphs.
Despite this link, the new theory that we will introduce in this paper can be
described in an independent way. Anyway, we will prove that it is well describable
even through Sturmian graphs. We show that there exists a relation between the
set of paths in a Sturmian graph and the set of lazy representations. In particular,
we prove that for any number i the unique path weighted i in the Sturmian graph
associated with α represents the lazy representation in the Ostrowski numeration
system associated with α.
� Partially supported by MIUR National Project PRIN “Aspetti matematici e appli-

cazioni emergenti degli automi e dei linguaggi formali”.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 125–134, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

126 C. Epifanio et al.

The paper is organized as follows. In the next section, we recall some basic
notation on continued fraction expansions of a real number α and introduce Stur-
mian graphs. In the third section we focus on the representations of the natural
integers in numeration systems defined by a basis. In the fourth section we focus
on the relationship between the continued fraction expansion of a real number
α and numeration systems. In the fifth section we explicit the link between a
set of representations, called lazy, and Sturmian graphs. Finally, the last section
contains some conclusions.

2 Continued Fraction Expansions, Sturmian Words and
Sturmian Graphs

If α is a real number, we can expand α as a simple continued fraction

α = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

,

which is usually abbreviated as α = [a0, a1, a2, a3, . . .], where a0 is some integer
(a0 ∈ Z) and all the other numbers ai are positive integers. The integers in the
continued fraction expansion of a real number are called partial quotients. The
expansion may or may not terminate. If α is irrational, this representation is
infinite and unique. If α is rational, there are two possible finite representations.
Indeed, it is well known that [a0, . . . , as−1, as, 1] = [a0, . . . , as−1, as + 1]. For
references to continued fractions, see [4], [8, Chap. 10], [12], and [13]. In this
paper, we only discuss the case where ai is a positive integer for i ≥ 0, i.e., α is
greater than or equal to 1. Moreover, we will focus on infinite continued fraction
expansions. Hence, in our paper α will be an irrational number.

Given the continued fraction expansion of α, it is possible to construct a
sequence of rationals Pi(α)

Qi(α) , called “convergents”, that converges to α, as well as
a sequence of natural numbers Uα = (li)i≥0 such that li+1 = Pi + Qi, for any
i ≥ 0. They are defined by the following rules, with Pi = Pi(α) and Qi = Qi(α)

P0 = a0 Q0 = 1 l0 = 1
P1 = a1a0 + 1 Q1 = a1 l1 = a0 + 1
Pi+1 = ai+1Pi + Pi−1 Qi+1 = ai+1Qi + Qi−1 li+1 = aili + li−1 i ≥ 1

(1)
Notice that for i ≥ 0, Pi/Qi = [a0, . . . , ai] and that under our assumptions ai is
a positive integer for i ≥ 0 and hence the sequence Uα = (li)i≥0 is increasing.

As well-known, simple continued fractions play a leading role in the construc-
tion of Sturmian words. Indeed, among the different definitions of Sturmian
words, one is obtained by applying the standard method. For references on Stur-
mian words and their geometric representation see [5], [9], [11, Chap. 2].

In [6] authors have defined a new structure, the Sturmian graph associated
with the continued fraction expansion of a real number, and proved that these

On Lazy Representations and Sturmian Graphs 127

graphs turn out to be the underlying graphs of compact directed acyclic word
graphs of central Sturmian words (see [6] for further details). In this paper
we want to deepen the structure of Sturmian graphs in order to establish a
connection between them and a particular set of representations of non-negative
integers. In order to be self-contained, we give in this paper a direct definition of
the semi-normalized infinite Sturmian graph G′(α) associated with a real number
α, that can be easily derived from definitions in [6].

Definition 1. The semi-normalized infinite Sturmian graph associated with a
real number α, G′(α), is a weighted semi-normalized infinite graph where each
state has outgoing degree 2. Moreover if we number each state, the initial one
having number 0, the arcs are defined in the following way.

For any s ≥ 0, let bs =
∑s

h=0 ah and, for any i ≥ 0, let s(i) be the small-
est integer such that i < bs(i). Then the state numbered i has an outgoing arc
weighted ls(i) to state numbered i + 1 and an outgoing arc weighted ls(i)+1 to
state numbered 1 + bs(i).

Example 1. Let us consider the irrational number α = [1, 1, 2, 1, 2, 1, 2, . . .] =
√

3.
Sequences (li)i≥0, (s(i))i≥0, (bs(i))i≥0 associated with this sequence are described
in the following table.

i 0 1 2 3 4 5 6 7 · · ·
ai 1 1 2 1 2 1 2 1 · · ·
bi 1 2 4 5 7 8 10 11 · · ·
li 1 2 3 8 11 30 41 112 · · ·

s(i) 0 1 2 2 3 4 4 5 · · ·
bs(i) 1 2 4 4 5 7 7 8 · · ·

Hence, the semi-normalized infinite Sturmian graph G′(α) is the following one

3 8

8

2 3

2 3 11

1 1111

30

30
. . .0 1 2 3 4 5 6 7 8

8 30

Fig. 1. The semi-normalized infinite Sturmian graph G′([1, 1, 2, 1, 2, 1, 2, . . .])

Remark 1. Notice that the graphs of Definition 1 are exactly the semi-normalized
infinite Sturmian graphs defined in [6]. Indeed, given a real number α, both
definitions lead to the same graph G′(α) that is the limit graph of the sequence
G′(Pn

Qn
), n ∈ N, where Pn

Qn
is the sequence of convergents of α and G′(Pn

Qn
) is

defined in [6, Remark 6].

Let us analyze the structure of the semi-normalized infinite Sturmian graphs
G′(α). We start with a proposition that characterizes the weights of arcs ingoing
a given state.

128 C. Epifanio et al.

Proposition 1. For any h ≥ 1, every arc ingoing the states in the set Sh =
{bh−1 + 1, bh−1 + 2, . . . , bh} has weight lh and they are the unique arcs having
this weight. If h = 0 then arcs ingoing the states in the set S0 = {1, . . . , bh} have
weight lh and they are the unique arcs having this weight.

Remark 2. For any h ≥ 0 the cardinality of the set Sh is obviously ah.

Next propositions, as well as being interesting in themselves, are important as
they will also be useful in the final section where we will show the strong re-
lationship between a particular set of representations of non-negative integers,
called lazy representations, and the Sturmian graphs.

Proposition 2. Let us consider an arc (i, j). If there exists a number h ≥ 0
such that i is smaller than bh−1 + 1 and j is greater than bh then i = bh−1 and
j = bh + 1.

b b
l l

a

l

l

l

l

l

l

h

h

h h

h+1

h+1
h+1

h+1h−1

h

lh

l

states

lh+2

h−1 h
hl

Fig. 2. The local structure of G′(α)

Proposition 3. For any h ≥ 0 there exist no paths in the graph having more
than ah arcs weighted by lh. Moreover, if a path from the initial state reaches
state bh then it contains exactly ah arcs weighted by lh.

Definition 2. Let us suppose we have an infinite graph G where the states are
labeled by the integers greater than or equal to 0. Graph G can be weighted or
non-weighted. We say that G is eventually periodic if there exist integer p > 0,
called the period, and n̂ ≥ 0 such that for any n ≥ n̂ one has that (n, j) is an
arc of G if and only if (n + p, j + p) is an arc of G.

Remark 3. Def. 2 states a property that leaves weights out of consideration.

Proposition 4. G′(α) is eventually periodic if and only if the continued fraction
expansion of α is eventually periodic.

3 Numeration Systems and Lazy Representations of
Integers

This section is devoted to the representations of non-negative integers in numer-
ation systems defined by an increasing basis. In particular, we focus on greedy

On Lazy Representations and Sturmian Graphs 129

and lazy representations and we give a new algorithm for finding the lazy rep-
resentation of a non-negative integer N .

The definitions we use are not the standard ones. Indeed our definitions are
chosen among all possible “classical” ones because of our new point of view that
let lazy representations be linked with Sturmian graphs.

Classically speaking, a numeration system is defined by a pair composed of
either a base or a basis, which is an increasing sequence of numbers, and of an
alphabet of digits. Standard numeration systems, such as the binary and the
decimal ones, are represented in the first manner, i.e., through a base, while we
are interested in the second one, i.e., through a basis. The reader may consult
the survey [11, Chapt. 7]. More formally, we give the following definitions.

Definition 3. Let U = (ui)i≥0 be a increasing sequence of integers with u0 = 1,
the basis. A U -representation of a non-negative integer N is a word dk · · ·d0

where the digits di, 0 ≤ i ≤ k, are integers, such that N =
∑k

i=0 diui.
Set ci = �ui+1

ui
� − 1. The U -representation dk · · · d0 is said to be legal if for

any i, 0 ≤ i ≤ k, one has that 0 ≤ di ≤ ci. The set A = {c ∈ N | ∃i, 0 ≤ c ≤ ci}
is the canonical alphabet. By convention, the representation of 0 is ε.

Even if it is a very natural concept, the definition of legal U -representation
is new. The concept of legal U -representation represents an essential requisite
of our theory, because it allows us to link lazy representations with Sturmian
graphs. In the following we will prove several properties of this representations.

Example 2. Let F = (Fn)n≥0 = 1, 2, 3, 5, 8, 13, 21, 34, . . . be the sequence of
Fibonacci numbers obtained inductively in the following way: F0 = 1, F1 =
2, Fn+1 = Fn + Fn−1, n ≥ 1. The canonical alphabet is equal to A = {0, 1}.
It is the well-known Fibonacci numeration system. An F -representation of the
number 31 is 1010010. Another representation is 1001110. By definition, every
F -representation of a non-negative integer N over A = {0, 1} is legal.

Among all possible U -representations of a given non-negative integer N , one is
known as the greedy (or normal) U -representation of N . It is the largest one in
the lexicographic order.

Definition 4. A greedy (or normal) U -representation of a given non-negative
integer N is the word dk · · · d0, where the most significant digit dk > 0 and dj ≥ 0
for 0 ≤ j < k, and satisfying for each i, 0 ≤ i ≤ k, diui + · · ·+ d0u0 < ui+1.

Now we consider another peculiar U -representation, linked to greedy represen-
tations, that is called the lazy U -representation of a natural number N .

Definition 5. A word ek · · · e0, with the most significant digit ek > 0, is the lazy
U -representation of a natural number N if it is the smallest legal U -representation
of N in the radix order.

Example 3. If we consider the Fibonacci numeration system of previous exam-
ples, the lazy F -representation of the number 31 is 111110.

130 C. Epifanio et al.

Definition 6. Let w = dk · · ·d0 be a U -representation. Denote di = ci−di, and
by extension, w = dk · · · d0 the complement of w.

By using the previous definition, we can link the greedy and lazy U -representa-
tions of a natural number N . For k ≥ 0 set Ck =

∑k
i=0 ciui.

Proposition 5. A U -representation w of a number N , uk ≤ N < uk+1, is
greedy if and only if its complement w is the lazy U -representation of the number
N ′ = Ck −N , up to eliminating all the initial zeros.

Proposition 5 allows us to characterize the lazy U -representation of N .

Corollary 1. A U -representation ek · · · e0 of a number N is lazy if and only if
for each i, 0 ≤ i ≤ k, eiui + · · ·+ e0u0 > Ci − ui+1.

Let us denote by mi the greatest in the radix order of greedy U -representations
of length i. Clearly mi is the greedy representation of the integer ui − 1. Recall
that m0 = ε. Denote by M(U) = {mi | i ≥ 0}.
Proposition 6. 1. A U -representation w = dk · · · d0 of a natural number N

is greedy if and only if for any i, 0 ≤ i ≤ k, di · · · d0 ≤ mi+1 (in the radix
order).

2. A U -representation w = dk · · · d0 of a natural number N is lazy if and only
if for any i, 0 ≤ i ≤ k, di · · · d0 ≤ mi+1 (in the radix order).

A direct consequence of Proposition 6 is the following result.

Corollary 2. For each i ≥ 0 the numberui−1 has a unique legalU -representation.

Now we are ready to give an algorithm computing lazy U -representations.

Lazy algorithm
Let k = k(N) be the integer such that Ck−1 < N ≤ Ck. This ensures that the
length of the lazy U -representation of N is k + 1.

Compute a U -representation dk · · · d0 of N ′ = Ck − N by the following
algorithm: let dk = q(N ′, uk) and rk = r(N ′, uk), and, for i = k − 1, . . . , 0,
di = q(ri+1, ui) and ri = r(ri+1 , ui). Then dk · · ·d0 is a greedy U -representation
of N ′ with possibly initial zeros.

By Proposition 5, the lazy U -representation of N is dk · · · d0.
Denote by Greedy(U) and by Lazy(U) the sets of greedy and lazy U -representa-

tions of the non-negative integers. The regularity of the set Greedy(U) has been
extensively studied. The following result is in [7, Prop. 2.3.51, Prop. 2.6.4].

Proposition 7. The set Greedy(U) is regular if and only if the set M(U) of
greatest U -representations in the radix order is regular.

Then by Proposition 6 Item 2 follows the following result.

Proposition 8. The set Lazy(U) is regular if and only if the set Greedy(U) is
regular if and only if the set M(U) of greatest U -representations in the radix
order is regular.

On Lazy Representations and Sturmian Graphs 131

4 Ostrowski Numeration System and Lazy
Representations

In this section we are interested in the relationship between the continued frac-
tion expansion of a real number α and numeration systems. Let us go into de-
tails by first recalling a numeration system, originally due to Ostrowski, which
is based on continued fractions, see [1, p. 106] and [3]. This numeration system,
called Ostrowski numeration system, can be viewed as a generalization of the
Fibonacci numeration system.

Definition 7. The sequence (Qi(α))i≥0, defined in (1), of the denominators of
the convergents of the infinite simple continued fraction of the irrational α =
[a0, a1, a2, . . .] > 0 forms the basis of the Ostrowski numeration system based
on α.

Proposition 9. Let α = [a0, a1, a2, . . .] > 0. The sequence Uα = (li)i≥0 associ-
ated in (1) with α is identical to the sequence (Qi)i≥0 = (Qi(β))i≥0 defined in
(1) for the number β = [b0, b1, b2, b3, . . .] = [0, a0 + 1, a1, a2, . . .].

It is easy to verify that there exists a relation between β and α.

Proposition 10. If α is greater than or equal to 1 then β = 1
α+1 .

In what follows, α = [a0, a1, . . .] is greater than 1 and thus the sequence Uα =
(li)i≥0 is increasing. In view of Definition 7 and Proposition 9, the Ostrowski
numeration system based on β = 1

α+1 and the numeration system with basis
Uα, in the sense of Definition 3, coincide. So we call the numeration system with
basis Uα the Ostrowski numeration system associated with α.

By Definition 3, a Uα-representation dk · · · d0 is legal if di ≤ ai, for any i
such that 0 ≤ i ≤ k, since in this case ci = ai = � li+1

li
� − 1, thus the canonical

alphabet is A = {a ∈ N | ∃i, 0 ≤ a ≤ ai}.
The Ostrowski numeration system associated with the golden ratio ϕ is the

Fibonacci numeration system defined in Example 2. It is folklore that a Uϕ-
representation of an integer is greedy if and only if it does not contain any factor
of the form 11, and is lazy if and only if it does not contain any factor of the
form 00. We now extend this property to Uα-representations for any α > 1. The
greedy case is classical, see [1].

Proposition 11. 1. A Uα-representation w = dk · · · d0 is greedy if and only if
it contains no factor didi−1, 1 ≤ i ≤ k, with di = ai and di−1 > 0.

2. A Uα-representation w = dk · · · d0 is lazy if and only if it contains no factor
didi−1, 1 ≤ i ≤ k, with di = 0 and di−1 < ai−1.

Now we give a characterization of mi+1, the greatest in the radix order of greedy
Uα-representations of length i + 1.

Lemma 1. For any i ≥ 0, mi+1 = ai0ai−20 · · ·a20a0 if i is even, and mi+1 =
ai0ai−20 · · ·a10 if i is odd.

132 C. Epifanio et al.

The sequence (ai)i≥0 is eventually periodic if there exist integers m ≥ 0 and
p ≥ 1 such that ai+p = ai for i ≥ m. It is a classical result that the sequence
(ai)i≥0 is eventually periodic if and only if α is a quadratic irrational.

The regularity of the set of the greedy Uα-representations has been already
studied. In particular, it is proved in Shallit [14] and Loraud [10] that the set of
greedy expansions in the Ostrowski numeration system associated with α > 1 is
regular if and only if the sequence (ai)i≥0 is eventually periodic.

Lemma 2. The set M(Uα) is regular if and only if the sequence (ai)i≥0 is even-
tually periodic.

Next Proposition follows from Proposition 8 and Lemma 2.

Proposition 12. The sets of greedy expansions and of lazy expansions in the
Ostrowski numeration system associated with α > 1 are regular if and only if the
sequence (ai)i≥0 is eventually periodic if and only if α is a quadratic irrational.

5 Sturmian Graphs and Lazy Representations

The goal of this section is to establish a deep connection between the set of lazy
representations and the set of paths in a well defined Sturmian graph.

We start by recalling a classical definition.

Definition 8. Let G be a weighted graph, the weight of a path in G is the sum
of the weights of all arcs in the path.

Epifanio et al. [6] have proved several properties on finite and infinite Sturmian
graphs. Among them, an important result regards a counting property. Concern-
ing infinite Directed Acyclic Graphs (DAGs), this property can be stated in the
following way.

Definition 9. An infinite semi-normalized weighted DAG G′ has the (h, +∞)-
counting property, or, in short, counts from h to +∞, if any non-empty path
starting in the initial state has weight in the range h · · ·+∞ and for any i, i ≥ h,
there exists a unique path that starts in the initial state and has weight i.

Starting from this definition, at the end of the proof of Proposition 35 in [6] it
has been proved the following result concerning the counting property of infinite
Sturmian graphs, that is very useful in the next.

Theorem 1. For any positive irrational α, G′(α) can count from 0 up to infinity.

Moreover, we can prove the following result that characterizes the path weights
of states in G′(α).

Proposition 13. For any state i > 1 in G′(α) let bs be the maximum non-
negative integer such that i > bs (cf. Def. 1). The maximum weight of the paths
from the initial state ending in i is g(i) =

∑s
j=0 ajlj + (i − bs)ls+1. The only

paths from the initial state ending in state i = 0 (i = 1 resp.) have weights 0 (1
resp.).

On Lazy Representations and Sturmian Graphs 133

Corollary 3. For any state i in G′(α), all paths from the initial state ending in
i are weighted N , where N is such that g(i− 1)+ 1 ≤ N ≤ g(i) and, conversely,
if N is such that g(i− 1) + 1 ≤ N ≤ g(i) then N is the weight of a path ending
in i.

Example 4. Let us consider the irrational number α = [1, 1, 2, 1, 2, 1, 2, . . .] and
its semi-normalized infinite Sturmian graph G′(α) represented in Figure 1. The
following table represents, for any state i in G′(α), values bs and s of Proposi-
tion 13, as well as the minimum, mini, and the maximum, maxi, non-negative
integers among the weights of all paths from the initial state ingoing in i.

i 0 1 2 3 4 5 6 7 · · ·
bs 1 2 2 4 5 5 · · ·
s 0 1 1 2 3 3 · · ·

mini 0 1 2 4 7 10 18 29 · · ·
maxi 0 1 3 6 9 17 28 39 · · ·

Before coming to the main result of the paper, we define the correspondence
between paths and representations.

Definition 10. Let G′(α) be the semi-normalized Sturmian graph associated to
α and Uα be the Ostrowsky numeration system associated with α. For any N ∈ N,
we say that the Uα representation dk · · · d0 of N corresponds to the unique path
weighted N in G′(α) if, for any i ≥ 0, di represents the number of consecutive
arcs labeled Qi in the path.

Theorem 2. Let N be a non-negative integer. A Uα-representation of N is lazy
if and only if it corresponds to the unique path weighted N in the semi-normalized
Sturmian graph G′(α).

More precisely, the importance of this result lies on the fact that for any number
i, we can connect the unique path weighted i in the Sturmian graph associated
with α and the lazy representation of i in the Ostrowski numeration system
associated with α.

Example 5. For α = [1, 1, 2, 1, 2, 1, 2, . . .] the lazy Uα-representation of 7 is equal
to 201. Recall that in this case Uα = {1, 2, 3, 8, 11, 30, 41, 112, . . .}. Then 201
gives the decomposition 7 = 1 + 2 · 3.

On the other hand, given the graph G′(α) of Figure 1, there exists a unique
path starting from 0 with weight 7. It is labelled 1, 3, 3, that exactly corresponds
to the lazy Uα-representation of 7 = 1 + 2 · 3.

Next corollary is an immediate consequence of previous theorem, of Proposition
4 and of Proposition 12.

Corollary 4. The set of all the Uα-representations that correspond to paths in
G′(α) is regular if and only if G′(α) is eventually periodic.

134 C. Epifanio et al.

6 Conclusions

This paper contains a neat and natural theory on lazy representations in Os-
trowski numeration system based on the continued fraction expansion of a real
number α. This theory provides a natural understanding of the Sturmian graph
associated with α, even better the study of Sturmian graphs gave us the idea
to formalize and to develop this theory. Indeed, the set of lazy representations
is naturally linked with the set of paths in the Sturmian graph associated with
α. It would be interesting to deepen this theory in order to prove other prop-
erties of the representations in the Ostrowski numeration system based on the
continued fraction expansion of a real number α through the Sturmian graph
associated with α. Moreover, it would be nice to find algorithms for performing
the elementary arithmetic operations.

References

1. Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, General-

izations. Cambridge University Press, Cambridge (2003)

2. Berstel, J.: Sturmian and episturmian words (a survey of some recent results). In:

Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4728, pp. 23–47. Springer,

Heidelberg (2007)

3. Berthé, V.: Autour du système de numération d’Ostrowski. Bull. Belg. Math. Soc.

Simon Stevin 8, 209–239 (2001)

4. Brezinski, C.: History of continued fractions and Padé approximants. Springer Se-

ries in Computational Mathematics, vol. 12. Springer, Heidelberg (1991)

5. de Luca, A., Mignosi, F.: Some combinatorial properties of Sturmian words.

TCS 136, 361–385 (1994)

6. Epifanio, C., Mignosi, F., Shallit, J., Venturini, I.: On Sturmian graphs. DAM155(8),

1014–1030 (2007)

7. Frougny, C., Sakarovitch, J.: Number representation and finite automata. In:

Berthé, V., Rigo, M. (eds.) Combinatorics, Automata and Number Theory Encycl.

of Math. and its Appl., ch. 2, vol. 135, Cambridge University Press, Cambridge

(2010)

8. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn.

Oxford University Press, Oxford (1989)

9. Klette, R., Rosenfeld, A.: Digital straightness – a review. DAM 139(1-3), 197–230

(2004)

10. Loraud, N.: β-shift, systèmes de numération et automates. Journal de Théorie des

Nombres de Bordeaux 7, 473–498 (1995)

11. Lothaire, M.: Algebraic Combinatorics on Words. In: Encycl. of Math. and its

Appl., vol. 90, Cambridge University Press, Cambridge (2002)

12. Perron, O.: Die Lehre von den Kettenbrüchen. B. G. Teubner, Stuttgart (1954)

13. Shallit, J.: Real numbers with bounded partial quotients. Ens. Math. 38, 151–187

(1992)

14. Shallit, J.: Numeration systems, linear recurrences, and regular sets. Inform. and

Comput. 113, 331–347 (1994)

Symbolic Dynamics, Flower Automata and
Infinite Traces

Wit Foryś1, Piotr Oprocha2,3, and Slawomir Bakalarski4

1 Jagiellonian University, Institute of Computer Science, �Lojasiewicza 6,

30-348 Kraków, Poland

forysw@ii.uj.edu.pl
2 Departamento de Matemáticas Universidad de Murcia Campus de Espinardo,

30100 Murcia, Spain
3 Faculty of Applied Mathematics, AGH University of Science and Technology,

al. Mickiewicza 30, 30-059 Kraków, Poland

oprocha@agh.edu.pl
4 Jagiellonian University, Institute of Computer Science, �Lojasiewicza 6,

30-348 Kraków, Poland

slawomir.bakalarski@ii.uj.edu.pl

Abstract. Considering a finite alphabet as a set of allowed instructions,

we can identify finite words with basic actions or programs. Hence in-

finite paths on a flower automaton can represent order in which these

programs are executed and a flower shift related with it represents list

of instructions to be executed at some mid-point of the computation.

Each such list could be converted into an infinite real trace when

an additional information is given, namely which instructions can be

executed simultaneously (so that way we obtain a schedule for a process

of parallel computation). In this paper we investigate when obtained in

such a way objects (sets of infinite real traces) are well defined from the

dynamical point of view and to what extent they share properties of

underlying flower shifts.

1 Introduction

One of the methods of representation of parallel computing it to convert a word
into a trace. This approach originated from the fundamental papers by Cartier
and Foata [2] and Mazurkiewicz [11]. Later, these concepts attracted a lot of
attention of researchers investigating traces from different points of view like
e.g. combinatorics [3], parallel computing [8] or topology [10].

In [5] we introduced a framework, joining the main ideas of symbolic dynamics
and theory of traces. We proved there some basic facts connecting the dynamics
of a given shift with trace shift formed as its counter part representing a parallel
computation. In [6] we investigated properties of sets of traces generated by min-
imal shifts (shifts having no proper subshifts). In [7] we extended the framework
to obtain a similar model to bi-infinite sequences in symbolic dynamics, that is
we defined and investigated shifts on bi-infinite traces.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 135–142, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

136 W. Foryś, P. Oprocha, and S. Bakalarski

Many problems appear to be quite complex and remain open. Even in the
case of small alphabet it is rather hard to provide a full characterization of the
dynamical properties of induced t-shift.

In the present paper we focus our attention on flower automata and flower
shifts. The motivation is two-fold. First of all, flower automaton provides a quite
nice interpretation of recognized words. Namely, each word can be viewed as
a separate program and so each (finite) word accepted by flower automaton
provides an order of execution of these programs (with repetitions of course).
This description can be easily extended onto infinite paths on the automaton.
Second motivation is that flower shifts are probably the simplest cases of sofic
shifts. Then proper understanding on the situation within the class of flower
shift can be the first step towards understanding of the structure of sets of
traces arising from sofic systems.

2 Definitions and Notations

We assume that all basic concepts of combinatorics on words, automata and
trace theory and symbolic dynamics are known. A more extensive treatment
may be found in [1,4,9].

2.1 Words and Traces

Let Σ∗ denote the set of all finite words over alphabet Σ. Σ∗ with the concate-
nation of words forms a free monoid (the empty word is denoted 1). The set
of nonempty words is denoted by Σ+. Σω denotes the set of all infinite words
(sequences) over Σ.

Let us denote I ⊂ Σ × Σ a symmetric and irreflexive relation defined on Σ
and call it independence relation. Its complement is denoted by D and called
dependence relation. The relation I is extended to a congruence ∼I on Σ∗ by
putting u ∼I v if it is possible to transform u to v (equivalently v to u) by a
finite number of swaps ab → ba of independent letters. A trace is any element
of the quotient space M(Σ, I) = Σ∗/ ∼I . If t ∈ Σ∗ or t ∈ M(Σ, I) then by | t |a
and alph(t) we denote the number of occurrences of the symbols a ∈ Σ in t and
the set of all symbols which occur in t, respectively.

A word w ∈ Σ∗ is in Foata normal form, if it is the empty word or if there
exist an integer n > 0 and nonempty words v1, ..., vn ∈ Σ+ (called Foata steps)
such that w = v1.....vn and any word vi is composed of pairwise independent
letters and vi is minimal with respect to the lexicographic ordering. Additionally
for any i = 1, ..., n− 1 and for any letter a ∈ alph(vi+1) there must exist a letter
b ∈ alph(vi) such that (a, b) ∈ D. The above mentioned lexicographical ordering
on Σ∗ refers to an ordering on Σ which must be fixed. It can be proved that for
any x ∈ Σ∗ there exists the unique w ∈ [x]∼I in the Foata normal form.

2.2 Subshifts

To introduce symbolic dynamical systems (called shift or subshifts) we endow Σω

with the following metric d. If x = y then d(x, y) = 0 and otherwise d(x, y) = 2−j

Symbolic Dynamics, Flower Automata and Infinite Traces 137

when j is the number of symbols in the longest common prefix of x and y. The
metric space (Σ, d) is compact which means that every sequence has a convergent
subsequence. Now, define a shift map σ : Σω → Σω by (σ(x))i = xi+1 where (·)i

denotes the i-th letter of a sequence. It is easy to observe that σ is continuous.
Any closed and σ-invariant (i.e. σ(X) ⊂ X) set X ⊂ Σ is called shift or

subshift. By the full shift over Σ we mean Σω together with the map σ.

2.3 Infinite Traces and T-Shifts

For w = (wi)i∈N ∈ Σω the dependence graph ϕG(w) = [V, E, λ] is defined as
follows. We put V = N and λ(i) = wi for any i ∈ N. There exists an arrow
(i, j) ∈ E, if and only if i < j and (wi, wj) ∈ D. Let us denote the set of all
possible dependence graphs (up to isomorphism of graphs) by Rω(Σ, I) and let
ϕG : Σω → Rω(Σ, I) be a natural projection. We call elements of Rω(Σ, I) infi-
nite (real) traces. Each dependence graph is acyclic and it induces well-founded
ordering on N. Then for any v ∈ V the function h : V → N is well defined:

P(v) = {n ∈ N : ∃v1, ..., vn ∈ V, vn = v, (vi, vi+1) ∈ E for i = 1, ..., n − 1}
h(v) = maxP(v).

By Fn(t) we denote a word w ∈ Σ∗ consisting of all the letters from the n-th
level of infinite trace t ∈ Rω(Σ, I), that is from the set {λ(v) : v ∈ V, h(v) = n}.
It follows from the definition of dependence graph that for any infinite trace
t ∈ Rω(Σ, I) the word w = F1(t) . . . Fn(t) is in Foata normal form with Foata
steps given by Fi(t) and t = ϕG(F1(t)F2(t) . . .). Then in the same way as it was
done for Σω we may endow Rω(Σ, I) with a metric dR(s, t) where dR(s, t) = 0 if
s = t and if s 	= t then dR(s, t) = 2−j+1 where j is the maximal integer such that
Fi(t) = Fi(s) for 1 ≤ i ≤ j. It is known that the metric space (Rω(Σ, I), dR) is
compact [10].

By a full t-shift we mean the metric space (Rω(Σ, I), dR) together with con-
tinuous map Φ : Rω(Σ, I) → Rω(Σ, I) defined for any t ∈ Rω(Σ, I), by the
formula

Φ(t) = ϕG(F2(t)F3(t) . . .)

Similarly, as for shifts, a t-shift is referred to any compact and Φ-invariant subset
of Rω(Σ, I). It was proved in [5] that from the dynamical systems point of view
(Rω(Σ, I), Φ) is equivalent to a shift of finite type (which means that dynamics
of (Rω(Σ, I), Φ) and (Σω, σ) is to some extent similar). However, it usually
happens that the ϕG image of a shift is not a t-shift and there are also t-shifts
which cannot be obtained as images of shifts [5].

3 Flower Shifts

The simplest step from minimal (having no proper subshifts [6]) to non-minimal
shifts is via flower shifts (they have dense sets of periodic orbits and a very clear
mechanism behind the construction of all other elements of the shift).

138 W. Foryś, P. Oprocha, and S. Bakalarski

The notion of a flower shift is closely connected with a flower automaton
which is a universal construction of automaton recognizing a submonoid W ∗ of
Σ∗ where W = {w1, w2, . . . , wn} ⊂ Σ+. The main feature of a flower automaton
is that the set of its edges is the disjoint union of cycles, all starting and ending
in a common state and labelled by words from W (for a more formal definition,
e.g. see [1]).

Basing on the notion of a flower automaton the notion of a flower shift is
defined as follows. Let W = {w1, w2, . . . , wn} ⊂ Σ+ and M = maxj=1,...,n |wj |.
Define

Y =
M⋃

k=0

σk({w1w2 . . . : wi ∈ W for all i}).

The set Y together with shift function σ is said to be the flower shift generated
by words w1, . . . , wn.

Note that flower shifts are also known under the name renewal systems [13]
or finitely generated systems [12].

Generally, a transformation of a shift X to the set of traces via ϕG results in a
set of traces ϕG(X) which may be not closed nor invariant. As we will see, even
if we restrict our attention to the class of flower shifts there is no any simple
solution for the above problem. Consider the following example. In this example
and latter on w∞ denotes infinite iteration of the word w, that is a infinite word
(sequence) ww . . .w

Example 1. Let Σ = {a, b, c, d} and I = {(a, b), (b, a), (a, c), (c, a)}. We put
w1 = bad, w2 = cb, w3 = bcd and w4 = acd and denote by X the flower shift
generated by w1, w2, w3, w4. Observe that

ϕG((cb)n(bad)(cb)∞) = ϕG(a(cb)nbd(cb)∞) −→ ϕG(a(cb)∞)

which implies that ϕG(X) is not closed.

We may generalize the above example to the following

Theorem 2. Let X be a flower shift generated by words w1, . . . , wn. Denote by
r(wj) the rightmost letter of wj. If there exists a ∈ Σ such that:

1. w1 ∼ au for some u ∈ Σ∗

2. a 	∈ alph(w2) ⊂ I(a)
3. for all j 	= 2 either alph(wj) ⊂ alph(w2) or

r(wj) /∈ alph(w2), r(wj) × alph(w2) ∩ D 	= ∅ for some letter r(wj) ∈
alph(wj)

then ϕG(X) is not closed.

Proof. Let xn = wn
2 w1w

∞
2 , tn = ϕG(xn) and q = limn→∞ tn (it is easy to see

that this limit exists). We claim that q 	∈ ϕG(X). Suppose that there exists x ∈ X
such that ϕG(x) = q. There exists a sequence {ji}∞i=1 such that x = zwj1wj2 . . .
where z is a suffix of some word wj .

Symbolic Dynamics, Flower Automata and Infinite Traces 139

Consider wj such that alph(wj)\alph(w2) 	= ∅. From 3. r(wj) /∈ alph(w2) and
r(wj) × alph(w2) ∩ D 	= ∅.

First, observe that r(wj) does not occur in q for any j such that alph(wj) \
alph(w2) 	= ∅. It implies that the letter r(wj) is pushed to the righthand side if
n → ∞. Hence alph(z) ⊂ alph(w2) and a does not occur in z.

Now, let k be the smallest integer such that jk 	= 2. If alph(wjk
) \ alph(w2) 	=

∅, then, exactly as in the above, a does not occur in wjk
and consequently

alph(q) 	= alph(x) which contradicts the assumptions. In the opposite case, that
is if alph(wjk

) ⊂ alph(w2) then a does not occur in the prefix of x equal to
zw2...w2wjk

. Repeating this reasoning we exclude the latter a from the sequence
x - a contradiction.

Let (Σ, D) be a dependence alphabet and X ⊂ Σω be a shift. If for any positive
integer i there exists j such that the following implication holds for any x, y ∈ X

x[0,j] = y[0,j] ⇒ Fi(ϕG(x)) = Fi(ϕG(y))

then X is said to have a bounded Foata step horizon.
In [5] we prove that the condition of bounded Foata step horizon is sufficient

for ϕG(X) to be closed. However even for flower shifts it is not necessary. Let us
consider the following example.

Example 3. Let Σ = {a, b, c} and I = {(a, b), (b, a), (a, c), (c, a)}. We put w1 =
a, w2 = cb and denote by X the flower shift generated by w1, w2. Observe that
ϕG(X) consists of traces: ϕG(a∞), ϕG((cb)∞), ϕG((bc)∞) and ϕG(ak(cb)∞) for
any k ∈ N. Hence ϕG(X) is closed. However sequences (cb)na(cb)∞ and (cb)na∞

forms a counterexample for bounded Foata horizon property for X.

Theorem 4. Let X be a flower shift and let w1, . . . , wn be words generating X.
If there exist letters a, b ∈ alph(X) such that for any j = 1, ..., n the following
conditions hold:

1. b /∈ alph(wj) ⊂ I(a) or
2. there exist u, v ∈ Σ∗ such that wj = uav, alph(u) ⊂ I(a), alph(v)\ I(a) 	= ∅,

|u|a = 0, |v|b = 0 and additionally |u|b > |v|a + 1 for some j = 1..., n

then ϕG(X) is not invariant.

Proof. For any t ∈ ϕG(X) the following implication follows from the assumptions
about words wj .

b ∈ alph(F1(t)) =⇒ a ∈ alph(F1(t)).
Let us consider some wj = uav with |u|b > |v|a + 1. Denote s = ϕG(w∞

j). There
exists an integer m such that
a /∈ Fm(s) , b ∈ Fm(s). Finally observe that F1(Φm−1(s)) = Fm(s) and so
Φm−1(s) /∈ ϕG(X).

The following theorem is presented without a proof.

Theorem 5. Let X be a flower shift generated by w1, w2 ∈ Σ+. If alph(w1) ×
alph(w2) ⊂ I, then ϕG(X) is closed.

140 W. Foryś, P. Oprocha, and S. Bakalarski

Remark 6. Suppose that w = us and F1(w) . . . Fk(w) is a Foata normal form
of w. If F1(s) . . . Fk−1(s) is a Foata normal form of s such that Fi(s) = Fi+1(w),
then u is a permutation of F1(w).

Proof. It is enough to note that us ∼I uF1(s) . . . Fk−1(s) ∼I uF2(w) . . . Fk(w).
Namely alph(u) = alph(F1(w)) and so u ∼I F1(w).

In the following lemma we use, in a very restrictive form, catenation of a finite
trace with an infinite one. We assume, that a finite trace s has the Foata normal
form such that the last Foata step is a one letter and that this letter is dependent
on all letters from the alphabet. Taking any infinite trace t the concatenation st
could be characterized and defined for our purpose, as represented by an infinite
sequence of Foata steps in which steps of s are followed by steps of t.

Lemma 7. Let us assume that a word w ∈ Σ+ is such that (r(w), a) ∈ D for
all a ∈ Σ. Then for all suffixes s of w the mapping γs : Rω(Σ, I) → Rω(Σ, I),
γs(t) := ϕG(s)t is continuous.

Proof. For simplicity identify s with the trace ϕG(s). Let F1(s)F2(s) . . . Fm(s)
be the Foata normal form of s. Then Fm(s) = r(w) and so

Fk(st) =

{
Fk(s) k ≤ m

Fm−k(t) k > m

It implies continuity of γs.

Theorem 8. Let X be a flower shift generated by words w1, . . . , wm ∈ Σ+ such
that (r(wi), x) ∈ D for i = 1, . . . , m and for all x ∈ Σ. Put U = {u1u2 . . . | ui ∈
{w1, . . . , wm}}. Then ϕG(X) is closed provided that ϕG(U) is closed.

Proof. Let tn = ϕG(xn) be a sequence in ϕG(X) convergent to some t. Every
xn is of the form xn = snun, un ∈ U and sn is a suffix of some wi. Since the
number of suffixes is finite (going to a subsequence if necessary) we may assume
that xn = sun and thus tn can be considered as a sequence in γs(ϕG(U)). Since
ϕG(U) is compact, then by Lemma 7, also γs(ϕG(U)) is compact. It immediately
implies that t ∈ γs(ϕG(U)) ⊂ ϕG(X) and so the proof is completed.

Now we show that the case of Σ = {a, b} is completely different than the case of
alphabets with more than two elements. Hence assume Σ = {a, b}. If I is empty
then ϕG(X) = X for any flower shift X over Σ (in fact this obvious observation
is generally true, for any shift X).

If (a, b) ∈ I then ϕG(X) consists of a single fixed point, provided X is a flower
shift generated by the unique word w ∈ {a, b}+. A flower shift generated by a
one word over any finite alphabet is of course a minimal shift; namely it is a
single orbit. When there are more words available, then the situation changes a
little, however still a t-shift is generated.

Symbolic Dynamics, Flower Automata and Infinite Traces 141

Theorem 9. If X is a flower shift generated by words w1, w2, . . . , wn ⊂ {a, b}+,
n > 0 then ϕG(X) contains at most three fixed points and at most countable
family of points eventually fixed (i.e. limn→∞ Φ(tn) exists and is a fixed point).
In particular ϕG(X) is closed.

Proof. The case of n = 1 is obvious. The case w1, w2 is covered by Theorem 5.
For n > 2 the proof follows the same lines. Namely, for a sequence x = swi1wi2 . . .
we have the following three possibilities:

1. x ∼I (ab)∞

2. x ∼I (ab)kb∞ for some k ≥ 0,
3. x ∼I (ab)ka∞ for some k ≥ 0,

and so the proof easily follows.

Theorem 10. Let Σ = {a, b}, (a, b) ∈ I and let w1, . . . , wn ∈ Σ+. If X is a
flower shift generated by words w1, . . . , wn ∈ Σ+, then ϕG(X) is invariant.

Proof. For t ∈ ϕG(X) there exists x ∈ X such that t = ϕG(x). We have to
consider the following three cases.

1. if F1(t) = a, then w = a∞ and Φ(t) = t ∈ ϕG(X),
2. if F1(t) = b then w = b∞ and Φ(t) = t ∈ ϕG(X),
3. if F1(t) = ab then, denoting M = max{i| Fi(t) = ab} let us consider two

possibilities.

If M is infinite (among words wi there exist w1, w2 such that w1 = ak, w2 = bl

or w1 ∼I akbl) then the equality Φ(t) = t is obvious.
If M < ∞ then exactly M letters a occur in x. There exists the minimal

number n such that x[0,n] contains exactly M letters a (it means that x[n+1,∞) =
b∞.) Let m be a positive integer such that x[0,m] contains exactly one a. Of course
x[m+1,∞) ∈ X and

Φ(t) = Φ(ϕG(x)) = Φ(ϕG(x[0,m]x[m+1,n]b
∞))

= ϕG(x[m+1,n]b
∞) ∈ ϕG(X).

Example 11. Suppose that Σ = {a, b, c} and (a, b) 	∈ I, (a, c) ∈ I. Let w1 = a,
w2 = cb. Denote by X a flower shift generated by these words. Let us consider
xk = akcba∞ ∈ X. Then

lim
k→∞

ϕG(xk) = lim
k→∞

ϕG((ac)ak−1ba∞) = ϕG((ac)a∞) 	∈ ϕG(X)

and so ϕG(X) is not closed.

Example 12. Suppose that Σ = {a, b, c} and I contains all possible pairs of
letters. Put w1 = cbbaa and w2 = a. Notice that ϕG(X) is not invariant, where
X is a flower shift generated by w1, w2. For this consider x = w1w

∞
2 . ϕG(x) has

the following Foata normal form abcaba∞ and ϕG(abcaba∞) is not in ϕG(X).

142 W. Foryś, P. Oprocha, and S. Bakalarski

Acknowledgements

This research was supported by the Polish Ministry of Science and Higher Ed-
ucation (2010). The research of P. Oprocha leading to results included in the
paper has received funding from the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement No. 219212, belong-
ing to a Marie Curie Intra-European Fellowship for Career Development. He was
also supported and MICINN (Ministerio de Ciencia e Innovacion) and FEDER
(Fondo Europeo de Desarrollo Regional), grant MTM2008-03679/MTM.

The financial support of these institutions is hereby gratefully acknowledged.

References

1. Berstel, J., Perrin, D.: Theory of codes, Pure and Applied Mathematics, vol. 117.

Academic Press Inc., Orlando (1985)

2. Cartier, P., Foata, D.: Problèmes combinatories de commutation et réarrangements.

Lecture Notes in Mathematics. Springer, Heidelberg (1969)

3. Diekert, V. (ed.): Combinatorics on Traces. LNCS, vol. 454. Springer, Heidelberg

(1990)

4. Diekert, V., Rozenberg, G. (eds.): The book of traces. World Scientific Publishing

Co. Inc., River Edge (1995)

5. Foryś, W., Oprocha, P.: Infinite Traces and Symbolic Dynamics. Theory Comput.

Syst. 45, 133–149 (2009)

6. Foryś, W., Oprocha, P.: Infinite Traces and Symbolic Dynamics - Minimal Shift

Case. Fundamenta Informatica (to appear)

7. Garcia Guirao, J.L., Foryś, W., Oprocha, P.: A dynamical model of parallel com-

putation on bi-infinite time-scale. J.Comput. Appl. Math. (to appear)

8. Kaldewaij, A.: Trace theory and the specification of concurrent systems. In: Denvir,

B.T., Jackson, M.I., Harwood, W.T., Wray, M.J. (eds.) ACS 1985. LNCS, vol. 207,

pp. 211–221. Springer, Heidelberg (1985)

9. Kůrka, P.: Topological and Symbolic Dynamics. Cours Spécialisés [Specialized

Courses] 11. Société Mathématique de France, Paris (2003)

10. Kwiatkowska, M.: A metric for traces. Inform. Process. Lett. 35, 129–135 (1990)

11. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI

Rep. Aarhus University 78, 1–45 (1977)

12. Restivo, A.: Finitely generated sofic systems. Theoret. Comput. Sci. 65, 265–270

(1989)

13. Williams, S.: Notes on renewal systems. Proc. Amer. Math. Soc. 110, 851–853

(1990)

The Cayley-Hamilton Theorem for
Noncommutative Semirings

Radu Grosu

Department of Computer Science, Stony Brook University

Stony Brook, NY 11794-4400, USA

Abstract. The Cayley-Hamilton theorem (CHT) is a classic result in

linear algebra over fields which states that a matrix satisfies its own

characteristic polynomial. CHT has been extended from fields to com-

mutative semirings by Rutherford in 1964. However, to the best of our

knowledge, no result is known for noncommutative semirings. This is a

serious limitation, as the class of regular languages, with finite automata

as their recognizers, is a noncommutative idempotent semiring. In this

paper we extend the CHT to noncommutative semirings. We also provide

a simpler version of CHT for noncommutative idempotent semirings.

1 Introduction

The continuous dynamics of each mode of a linear hybrid automaton (HA) [2,7]
is a linear system, as is the discrete switching logic among modes [5]. However,
the former operates on a vector space, whereas the latter operates on a semi-
module [4]. As a consequence, understanding which properties of linear systems
hold in both vector spaces and semimodules, and which do not, is essential for
developing a formal foundation and associated analysis tools for HAs.

Vector spaces (VSs) have a long history and consequently a large variety of
analysis techniques. A defining aspect of a VS is the associated field of scalars, a
structure possessing two operations, addition and multiplication, together with
their identities and their inverses. Both are associative and commutative and
multiplication distributes over addition. For example, R and C are fields.

Finding the fixpoint of the equation x= Ax+B in a VS seems to be routine:
x= (I −A)−1B. However, this is far from being true. For large systems, comput-
ing the inverse of a matrix is expensive, and one often uses iterative Gauss-Seidel
or Jacobi techniques [8]. Both are based on the identity (I − A)−1 = A∗, where
A∗ =

∑
n∈N

An, and converge if the eigenvalues of A are in the unit disc of C.
The above solution for x leads to an amazing conclusion: fixpoint computa-

tion does not require inverses or commutativity of multiplication. Hence, one
may consider a weaker structure, that lacks subtraction and division, and whose
multiplication is not necessarily commutative. Such a structure is called a semir-
ing, and it admits fixpoints of the form x = a∗b for x= ax+ b. A vector space
where the field is replaced with a semiring is called a semimodule.

In general a semiring may admit many fixpoints, and a∗b is the least one.
But to single out the least, one needs a partial order, which may be defined
canonically as follows: a≤ b if there is a c such that b = a + c. This is possible for
example in N but not in Z, as for any a, b∈Z, a +(−a+ b)= b. Hence, a semiring

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 143–153, 2011.
� Springer-Verlag Berlin Heidelberg 2011

144 R. Grosu

cannot have both a canonical order and an inverse. This is where classic and
discrete mathematics diverge [4]. So what else does (not) hold in both settings?

In [5] we have shown that minimization of nondeterministic finite automata
(NFA) can be advantageously cast as reachability and observability reductions
of linear systems. This also allowed us to show that minimal NFA are linear
transformations of each other. This result is noteworthy, as no reasonable way
of relating minimal NFA was previously known (see for example [1]).

In this paper we continue the above line of work, by investigating the classic
Cayley Hamilton theorem (CHT), in the context of noncommutative semirings.
The class of regular languages, with NFA as their recognizers, is an important
and strongly motivating subclass of these semirings.

For a matrix A with entries in a field, CHT states that A satisfies its own
characteristic polynomial, that is cpA(A)= 0 where cpA(s)= det(sI−A). Hence,
any extension of CHT to noncommutative semirings has to solve two orthogonal
problems: 1) The lack of subtraction; and 2) The lack of commutativity. They
are both critical ingredients in the computation of the determinant det(sI−A).

The lack of subtraction was addressed in 1964 by Rutherford [10]. The main
idea is to define subtraction in terms of addition by replacing terms a−b with
pairs (a, b). Consequently, det(sI−A) becomes (det+(sI−A), det−(sI−A)), a
bideterminant, and CHT becomes cp+

A(A)= cp−
A(A). This allowed Rutherford

to extend CHT to matrices with entries in a commutative semiring.
The lack of commutativity is addressed in this paper. The main idea is to de-

fine a commutative multiplication in terms of multiplication and addition by re-
placing products ab with their permutation closure [[ab]]= ab +ba. Consequently,
det(sI−A) becomes [[det(sI−A)]], what we call a pideterminant, and CHT be-
comes [[cpA(A)]] = 0. This allows us to extend CHT to any noncommutative
structure, and in particular to noncommutative rings.

Combining Rutherford’s solution with our own solution, allows us to extend
CHT to noncommutative semirings as [[cp+

A(A)]] = [[cp−
A(A)]]. We argue that

both solutions are also canonical, in the sense that det(A)= det+(A)−det−(A)
and that det(A)= (1/n!)[[det(A)]] in any field.

Interpreting matrix A as a process, we also observe that the power An occur-
ring in CHT can be understood in two ways: 1) As n copies of process A that
interleave a single move; 2) As one copy of process A that performs n moves.
This observation gives a computational justification for permutation closure,
and paves the way to two different forms of CHT. Finally, considering addition
idempotent, as in the class of languages, leads to a simpler form of CHT.

The rest of the paper is organized as follows. Sections 2 and 3 review semirings,
fields and permutations. Section 4 reviews (bi)determinants, and introduces our
new notion of pideterminant. Section 5 follows the same pattern for characteris-
tic (bi)polynomials and pipolynomials. Sections 6 and 7 extend CHT by allowing
or disallowing interleaving, respectively, and prove the validity of these exten-
sions in noncommutative semirings. Section 8 particularizes the second version
of CHT to idempotent noncommutative semirings. Finally, Section 9 contains
our concluding remarks and directions for future work.

The Cayley-Hamilton Theorem for Noncommutative Semirings 145

2 Semirings and Fields

A semiring S =(S, +,×) is a set S possessing two binary operations, addition
and multiplication together with their identities 0 and 1, respectively. Addition
is required to be associative and commutative and multiplication is required to
be associative. Multiplication distributes over addition and 0 is an absorbing
element for multiplication, that is, for all a∈S, a× 0 = 0× a =0.

A semiring where multiplication is commutative is called a commutative semir-
ing, and a semiring where addition is idempotent (for all a∈S, a + a = a) is
called an idempotent semiring. For example, the natural numbers N with the
usual meaning of + and ×, form a commutative semiring.

The class of languages over a finite alphabet A is an idempotent semiring
A =(℘(A∗), +,×), where the elements in A∗ are words (sequences) over A, the
elements in ℘(A∗) are sets of words (languages), + is interpreted as union and
× is interpreted as concatenation. A language is regular, if it is accepted by a
finite automaton. For example, {a} and {b}∑

n∈N
{a}n are regular languages.

A field F =(F, +,×) is a commutative semiring where + and × have inverses.
For example, R and C are fields, with the usual meaning of + and ×.

3 Permutations

A permutation π is a bijection of the finite set {1,. . .,n} onto itself. It has asso-
ciated a directed graph G(π)= (V, E), with set of vertices V = {1. . . n}, and set
of edges E, consisting of pairs (i, π(i)), one for each for i∈V . For example:

π = {(1, 2), (2, 3), (3, 4), (4, 1), (5, 7), (6, 6), (7, 5)}
is a permutation of the set {1,. . ., 7}. Its associated graph G(π), which is shown
in Figure 1, illustrates an important property of the graph of any permutation:
it decomposes into elementary disjoint cycles, the partial rotations of π.

1 2

34

5 7 6

Fig. 1. The graph G(π) of permutation π

If G(π) has an even (odd) number of cycles with even number of edges, then
π is said to have positive (negative) sign. For example, the graph G(π) above,
has two cycles of even length, so π has positive sign. Denote by P (n) be the set
of all permutations of the set {1. . . n}, and by P+(n) and P−(n), its positive
and negative subsets, respectively.

A partial permutation π of the finite set V = {1,. . .,n} is a permutation of a
subset S of V . For example, if V ={1. . .7} and π is defined as follows:

π = {(1, 2), (2, 1), (3, 4), (4, 6), (6, 3)}

146 R. Grosu

A =
[

a11 a12

a21 a22

]
a22a11

a21

a12

1 2
A A

Fig. 2. (a) Matrix A. (b) G(A). (c) [[A2]].

then π is a permutation of its domain dom(π)= {1, 2, 3, 4, 6}, and a partial per-
mutation of V . Every partial permutation π of V can be extended to a permu-
tation π̂ of V by letting π̂(i)=π(i) if i∈dom(π) and π̂(i)= i, otherwise.

Given a permutation π ∈P (n), we write π for the sequence (1, π(1)). . .(n, π(n)).
We extend permutations π ∈P (n) to sequences w = w1. . .wn in a componentwise
fashion: π(w)= wπ(1). . .wπ(n). For example, if w = abcdefg and π is the permu-
tation shown in Figure 1, then π(w)= dabcgfe. Similarly, if σ is another permu-
tation of the set {1, . . .7} then π(σ) is equal to:

(4, σ(4))(1, σ(1))(2, σ(2))(3, σ(3))(7, σ(7))(6, σ(6))(5, σ(5))

4 The Determinant in Noncommutative Semirings

A square matrix A of order n with entries in a field F is an element of Fn× n.
One says that A has n rows and n columns. For example, a matrix A of order 2
(a 2 by 2 matrix) is shown in Figure 2(a). Row 1 is (a11, a12), row 2 is (a21, a22),
column 1 is (a11, a21) and column 2 is (a21, a22).

A square matrix A of order n has associated a weighted directed graph G(A) =
(V, E, A), where V = {1,. . .,n} is the set of vertices and E = {(i, j)∈V 2 |Aij 	= 0}
is the set of edges (i, j) with weight Aij . For example, the graph G(A) of the
above matrix A of order 2 is shown in Figure 2(b).

A generalized path p in G(A) is a sequence of edges p1. . . pn in E. This is called
a path if head(pi)= tail(pi+1) for each i <n.1 The product p(A)= Ap1 . . . Apn is
called the weight of p. For example, (1, 1)(1, 2)(2, 1)(A)=A11A12A21. A path
that starts and ends with same vertex is called a cycle. This is called simple if
it has no other repeated vertices.

Using permutations, generalized paths and associated path weights, one can
explicitly define the determinant of a square matrix A of order n, as follows:

det (A) = (
∑

π∈P+(n) π − ∑
π∈P−(n) π) (A)

where each term of det is applied to A. We denote by det+ and det− the positive
and the negative parts of the determinant operator det, respectively.

Since the determinant is an n-linear function, its value is typically computed
iteratively, by expanding it along one of the rows (or columns) of its argument
matrix, and then repeating the process for each remaining submatrix, until the
argument matrix has only one entry (Laplace expansion).

1 This definition of paths is more convenient in our setting.

The Cayley-Hamilton Theorem for Noncommutative Semirings 147

Rutherford has transfered the determinant’s computation from a commutative
semirings to a ring-like structure by defining subtraction in terms of addition of
tuples. Hence, the determinant has become a tuple, called a bideterminant :

bdt(A) = (det+, det−)(A) = (det+(A), det−(A))

The bideterminant can be computed by linear expansion, as discussed above,
by pretending first that negation was available to compute det(A), and then
separating the positive and the negative parts of the result.

For example, consider the matrix A of Figure 2(a). The set P (2) has only two
permutations, which are also rotations: π1 and π2:

π1 = {(1,1), (2,2)} ∈ P+(2), π2 = {(1,2), (2,1)} ∈ P−(2)

Using the Laplace expansion, first for row 1 and then for row 2 of A, and first
for row 2 and then for row 1, one obtains the following bideterminants:

bdt12(A) = (a11a22, a12a21), bdt21(A) = (a22a11, a21a12)

In commutative semirings bdt12(A) = bdt21(A). In noncommutative semirings,
however, this is generally not true, i.e., bdt12(A) 	= bdt21(A).

For example, in regular languages, the graph G(A) corresponds to a finite
automaton, and F is a finite set, called the input alphabet. As a consequence, the
sequence (word) of inputs a11a22 is different from a22a11, unless a11 = a22.

While extensive work has been devoted to determinants of matrices with en-
tries in noncommutative rings [3], the author is not aware of any definition
of determinants for matrices with entries in noncommutative semirings. More-
over, the definitions of determinants in noncommutative rings, for example the
quasideterminants of [3], do not have determinants as a particular case, and
involve division. This operation, however, is not available in semirings.

Inspired by Rutherford, we transfer the determinant’s computation to a struc-
ture possesing a commutative multiplication defined in terms of addition and
multiplication. This is equivalent to extending the notion of determinant to a
pideterminant which is the sum of all row (or column) expansions. Hence:

pdt(A) = (a11a22 + a22a11, a12a21 + a21a12)

Note that if the semiring is commutative, pdt(A) = 2! bdt(A). Let π(bdt12) be
defined as (π(bdt+12), π(bdt−12)), the π-permutation of bdt12. Then:

bdt12(A)= π1(bdt12)(A), bdt21(A)= π2(bdt12)(A)

In general, the expansion of a determinant for rows r1, . . ., rn, in this order, re-
sults in a permutation π of bdt12...n, where π = {(1, r1), . . ., (n, rn)}. Moreover,
expanding recursively all rows of a matrix results in all possible permutations,
and the positive (negative) sign of the arguments is preserved.

Hence, given a matrix A of order n with entries in a noncommutative semiring,
one obtains the following explicit representation of a pideterminant:

pdt (A) = (
∑

π ∈P+(n)

σ ∈P (n)

σ(π),
∑

π ∈P−(n)

σ ∈P (n)

σ(π)) (A)

148 R. Grosu

For notational simplicity we denote the permutation closure
∑

π ∈P (n) π(w) of
w as [[w]]. Using this notation we can write pdt = ([[det+]], [[det−]]). To further
simplify the notation we will write when convenient [[det+(A)]] for [[det+]](A),
and pretend that we worked in a free (permutation closed) semiring.

5 The Characteristic Polynomial in Noncomm. Semirings

The characteristic polynomial cpA(s) in indeterminate s, associated to a matrix
A of order n with entries in a field, is defined as det(sI −A). For example, for
the second order matrix A of Figure 2(a) one has:

cpA(s) = det(
[
s− a11 −a12

−a21 s− a22

]
) = s2 − (a11 + a22)s + (a11a22 − a12a21)

The characteristic polynomial is used to compute the eigenvalues of a matrix
A with entries in a real field by finding the roots of the equation cpA(s) = 0.
Eigenvalues and their associated eigenvectors are essential tools for computing
the explicit solution of systems of linear difference and differential equations.

The characteristic polynomial was generalized by Rutherford to a character-
istic bipolynomial cbpA(s) for matrices with entries in a commutative semiring:

cbpA(s) = (cp+
A(s), cp−

A(s))

This polynomial can be computed by first pretending one works in a field, and
then separating the positive and the negative terms. For matrix A of Figure 2(a):

cbpA(s) = (s2 + a11a22, (a11 + a22)s + a12a21)

We define the characteristic pipolynomial cppA(s) of a matrix A with entries in
a noncommutative semiring as follows:

cppA(s) = ([[cp+
A(s)]], [[cp−

A(s)]]) = (cpp+
A(s), cpp−

A(s))

To compute cppA(s) one can pretend to work in a free semiring when computing
the closure of cbpA(s). For example, for matrix A matrix of Figure 2(a):

cppA(s) = ([[s2 + a11a22]], [[(a11 + a22)s + a12a21]])

6 Multi-process CHT for Noncommutative Semirings

The Cayley-Hamilton theorem (CHT) is a classic result in linear algebra over fields
stating that a matrix satisfies its own characteristic polynomial: cpA(A)= 0.

One of the applications of CHT is to compute the dimension of the A-cyclic
vector space VA = {An | n∈N}. This vector space is fundamental in the study
of observability and controllability of linear systems.

For example, if the state-space description of a linear system is given by the
following difference equations:

x(n + 1) = Ax(n) + Bu(n), y(n) = Cx(n), x(0) = x0

The Cayley-Hamilton Theorem for Noncommutative Semirings 149

and VA has dimension k, then the observability and controllability matrices of
the system are defined as follows: O = [C CA. . .CAk−1]t, K = [B AB. . .Ak−1B].

In [5] we have shown that these matrices are also relevant in the minimiza-
tion of nondeterministic finite automata (NFA). Moreover, we have proved that
minimal NFA are linear transformations of each other. Relating minimal NFAs
is a problem that was addressed, but not properly solved, before (see e.g. [1]).

Since cpA(A) is a matrix equation, the following conventions are used: s is
replaced with A, as is replaced with aA and every constant k is replaced with
kA0. For example, for the matrix A of Figure 2(a) one obtains:

cpA(A) = A2 − (a11 + a22)A+ (a11a22 − a12a21)I = 0

This result has been extended to commutative semirings by Rutherford in [10],
and a combinatorial proof was given later by Straubing in [11]. The generalized
Cayley-Hamilton theorem states that: cbp+

A(A)= cbp−
A(A).

It is easy to show that CHT does not hold in noncommutative semirings. For
example, consider the matrix A of Figure 2(a). Then one would require that:

A2 + a11a22I = (a11 + a22)A+ a12a21I

Now compute the LHS and the RHS of the above equation:

LHS =
[
a11a11 + a12a21 + a11a22 a11a12 + a12a22

a21a11 + a22a21 a21a12 + a22a22 + a11a22

]

RHS =
[
a11a11 + a12a21 + a22a11 a11a12 + a22a12

a11a21 + a22a21 a12a21 + a22a22 + a11a22

]

They are obviously different because of the lack of commutativity of the entries
in A. One of the main results of this paper is that a matrix A satisfies its own
characteristic pipolynomial: cpp+

A(A)= cpp−
A(A).

Theorem 1. (Multi-process cht for noncommutative semirings) A ma-
trix A with entries in a noncommutative (semi)ring satisfies its own characteristic
pipolynomial. That is, cpp+

A(A)= cpp−
A(A).

Consider the CHT equation of the example above. Two offending weights are
a11a22 of (LHS)11 and a22a11 of (RHS)11. These weights may be not equal in a
noncommutative semiring. However, their permutation closure is the same:

[[a11a22]] = [[a22a11]] = a11a22 + a22a11

CHT can be intuitively understood as an incremental construction of [[cbp+
A(A)]]

and [[cbp−
A(A)]] such that at the end [[cbp+

A(A)]] = [[cbp−
A(A)]]. The construction

is justified with the help of the graph G(A) associated with A.
For illustration purpose, we will use the matrix A of order 2 shown in Figure 2

with correponding CHT [[A2 + a11a22I]] = [[(a11 + a22)A+ a12a21I]].
Start with LHS0 =A2. Each entry (A2)ij is a sum of weights of length 2, each

weight being associated to a path from i to j in G(A). For example, the path
(1,2)(2,1) has associated the weight a12a21. Since G(A) has only 2 vertices, all
these paths must have at least one simple cycle.

150 R. Grosu

Suppose we first want to add to RHS the weights of the simple cycles of length
2 in G(A). For example, (1,2)(2,1) and (2,1)(1,2), with the associated weights
a12a21 and a21a12, respectively. They are all contained in the diagonal diag(A2)
of A2. However, since the diagonal of A2 may also contain products of cycles
with length less then 2, we denote by diags(A2) the restriction of diag(A2) to
simple cycles only. Similarly, we denote by traces(A2), the sum of the simple
cycles in diags(A

2). Consequently, we start with: RHS0 = traces(A2)I.
All the cycle weights in traces(A2) are permutations (in fact rotations) of

the simple-cycle weights of vertex 1. There are 2 such permutations (including
identity) which we denote by π1 and π2. Now we can write:

RHS0 =
∑2

i=1 πi(a12a21)I

Multiplying these permutations with the identity matrix I has unfortunately
undesired consequences: it introduces spurious weights in each entry of RHS0.
For example entry (RHS0)11 also contains weights such as a21a12.

To balance out spurious weights in RHS0 we have to add the corresponding
permutations of A2 to the LHS. Hence, the LHS becomes LHS1 =

∑2
i=1 πi(A2).

Obviously, this introduces many more spurious weights on the LHS.
The construction now continues by adding and balancing out cycles of length

1 on the RHS, which we omit for space limitations.

Discussion. In the above construction, most of the effort is devoted to fixing
“spurious” weights. One may therefore wonder whether such weights make any
sense, and if not, whether there was a way of getting rid of them.

Consider matrix A of order n and regard G(A) as a process which either acts
as an acceptor or as a generator of words over a given alphabet. The power An

can be interpreted in two distinct ways: 1) As the interleaving of n copies of A,
each starting in an arbitrary state and performing one move; 2) As one copy of
A that performs n moves. In each case, one can ask what is the sum, if counting
is important, of the words accepted (or generated) by An?

In the interleaving interpretation of An, cycle weights s.a. a11a22a33 make
sense: the word is generated by letting the first copy of A start in vertex 1 and
make one move to generate a11, then the second start in vertex 2 and make one
move to generate a22 and finally the third start in vertex 3 and make one move
to generate a33. Since every copy of A can make any move before or after the
other copy made one move, one has to consider all permutations.

In conclusion, Theorem 1 explicitly defines the behavior of the process re-
sulting from the interleaving (shuffling) of n copies of process A. For example,
Figure 2(c) shows the interleaving of two copies of matrix A of order 2.

In process algebra, commutativity of inputs is equivalent with their inde-
pendence: one obtains the same result no matter in what order one processes
them. Hence, matrices with entries in a commutative semiring correspond to
processes over a set of independent inputs. For general processes, independence
might hold for some subsets of the input alphabet, but not for the entire alpha-
bet. The knowledge of an independence relation over the input alphabet is still
very useful, because it allows to partition matrix A into commutative blocks.

The Cayley-Hamilton Theorem for Noncommutative Semirings 151

Considering only one version of the commutative products, then corresponds to
the partial-order reduction technique used in computer-aided verification.

7 Single-Process CHT for Noncommutative Semirings

In the second interpretation of An in the CHT, as one copy of A performing n
moves, “spurious” cycle weights such as a11a22a33 or a11a23a32 make no sense.
We would therefore like to find a way to get rid of them.

An acceptor algorithm that cleans up “wrong” weights, is to: 1) First compute
cppA(A) as before, and 2) Then remove all generalized path-weights in cppA(A)ij

that either do not correspond to paths, or they are are misplaced, that is their
corresponding starting vertex is not i or their ending vertex is not j.

For example, the weight of the generalized path (1, 1)(2, 2) is removed because
it is not a path. The wight of (1, 2)(2, 1) is removed if it appears in cppA(A)22.

Theorem 2. (1st single-process cht for nc semirings) A matrix A with
entries in a noncommutative semiring satisfies its own characteristic pipolyno-
mial, when clean up is added at the end of the permutation closure.

One may avoid introducing “spurious” weights by treating cycles as diagonal
matrices. If p is a cycle, then let <p> be the diagonal matrix with <p>ii = p if
p belongs to (A|p|)ii and <p>ii = 0, otherwise. If c is a sum of cycles of same
length, then let <c> denotes the sum of their corresponding matrices.

A generator algorithm for cppA(A) can now be defined as follows: 1) Take
the rotation closure of all cycles. 2) Consider cycles atomic and take the rota-
tion closure of the entire terms. 3) Keep the cycles fixed, and take the partial-
permutation closure. We denote by ((cbpA(A))) steps 1–3.

For example, let <c> =<a12a21 + a21a12> be the rotation closure of cycle
matrix <a12a21>. Then:

((<a12a21>A2)) = <c>A2 + A<c>A + A2<c>+
π1(<c>A2)+π2(A<c>A)+ π3(A2<c>)

where π1, π2 and π3 swap positions 2 and 3, 1 and 3, and 1 and 2, in <c>A2

A<c>A and A2<c>, respectively.

Theorem 3. (2nd single-process cht for noncommutative semirings)

In a noncommutative semiring ((cbp+
A(A))) = ((cbp−

A)) for any matrix A if each
cycle c is interpreted as the (diagonal) matrix <c>.

For example, the CHT for matrix A of order 2 simplifies to:

((A2)) = <a11+ a22>A + A<a11+ a22> + <a12a21+ a21a12>

8 The CHT for Noncommutative Idempotent Semirings

Suppose now that the entries of matrix A belong to a noncommutative idem-
potent semiring. Recall that a semiring S is called idempotent, if its additive

152 R. Grosu

operation is idempotent, that is, for any element a of the semiring, a + a = a.
Noncommutative idempotent semirings are important, as they contain as a par-
ticular case the class of regular languages.

Although counting is not important in such semirings, it is not obvious (at
least to the author) how the multi-process CHT could be further simplified. One
still needs the permutation closure [[cbpA(A)]], but addition simplifies.

The single-process version of the CHT can be however, further simplified
in idempotent semirings. Let us denote by ((cbpA(A))) the closure operation
discussed in the previous section, where the last step, the partial-permutation
closure, is discarded. Then we have the following theorem.

Theorem 4. (Single-process cht for nc idempotent semirings) Let A
be a matrix of order n with entries in a noncommutative idempotent semiring.
If each cycle c in cbpA(A) is interpreted as the (diagonal) matrix <ck>, then its
Cayley-Hamilton theorem simplifies to An = ((cbp−

A(A))).

For example, consider matrix A of Figure 2(a), and assume its entries are distinct
and belong to a noncommutative idempotent semiring. Then the CHT of this
matrix simplifies to the following form:

A2 = <a11+ a22>A+A<a11+ a22>+<a12a21+ a21a12>

9 Conclusions

We have extended the Cayley-Hamilton theorem (CHT), a classic result in linear
algebra over fields which states that a matrix satisfies its own characteristic
polynomial, to noncommutative semirings.

The pideterminant and the pipolynomial we have defined for this purpose
could have also been inferred by using the shuffle product of [9] and an evaluation
function eval. Given a noncommutative ring R one can define a commutative ring
S = (R∗, +, ‖) where R∗ consists of sequences in R and s‖t is the shuffle product
of s, t∈R∗, defined in terms of addition and concatenation.

Since S is commutative, the computation of det(A) is well defined and so is
the Cayley-Hamilton theorem. As a consequence, pdt(A)= eval(det(A)) where
eval replaces concatenation with the product in R and evaluates the result.

In S the power An is the n-shuffle (interleaving) of A, and it can be ex-
pressed as a linear combination of I, A, . . .An−1. This observation suggests a
generalization of linear dependence for a set of vectors x1, . . ., xn in a noncom-
mutative module as follows: there are scalars a1, . . ., an such that the shuffle
product a1‖x1 + . . . + an‖xn = 0. Such extensions are the focus of future work.

References

1. Nivat, M., Arnold, A., Dicky, A.: A note about minimal nondeterministic automata.

EATCS 45, 166–169 (1992)

2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicolin, X.,

Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.

Theoretical Comp. Sci. 138, 3–34 (1995)

The Cayley-Hamilton Theorem for Noncommutative Semirings 153

3. Gelfand, I., Gelfand, S., Retakh, V., Wilson, R.L.: Quasideterminants. Adv.

Math. 193, 1–82 (2005)

4. Gondran, M., Minoux, M.: Graphs, Dioids and Semirings. Springer, Heidelberg

(2008)

5. Grosu, R.: Finite automata as time-invariant linear systems: Observability, reach-

ability and more. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS,

vol. 5469, pp. 194–208. Springer, Heidelberg (2009)

6. Kildall, G.A.: A unified approach to global program optimization. In: Proceedings

of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Program-

ming Languages POPL 1973, pp. 194–206. ACM, New York (1973)

7. Lynch, N., Segala, R., Vaandrager, F.: Hybrid I/O automata. Inf. and Comp. 185(1),

103–157 (2003)

8. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes

in C: The Art of Scientific Computing. Cambridge University Press, New York

(1992)

9. Ree, R.: Lie elements and an algebra associated with shuffles. Anals of Mathemat-

ics 67(2), 210–220 (1958)

10. Rutherford, D.E.: The Cayley-Hamilton theorem for semi-rings. Proc. Roy. Soc.

Edinburgh Sect. A 66, 211–215 (1964)

11. Straubing, H.: A combinatorial proof of the Cayley-Hamilton theorem. Discrete

Maths. 43, 273–279 (1983)

Approximating Minimum Reset Sequences

Michael Gerbush1 and Brent Heeringa2

1 Department of Computer Science, The University of Texas at Austin, Taylor Hall 2.124,
Austin, TX 78712

mgerbush@cs.utexas.edu
2 Department of Computer Science, Williams College, 47 Lab Campus Drive, Williamstown,

MA 01267
heeringa@cs.williams.edu

Abstract. We consider the problem of finding minimum reset sequences in syn-
chronizing automata. The well-known Černý conjecture states that every n-state
synchronizing automaton has a reset sequence with length at most (n − 1)2.
While this conjecture gives an upper bound on the length of every reset se-
quence, it does not directly address the problem of finding the shortest reset se-
quence. We call this the MINIMUM RESET SEQUENCE (MRS) problem. We give
an O(kmnk + n4/k)-time �n−1

k−1
�-approximation for the MRS problem for any

k ≥ 2. We also show that our analysis is tight. When k = 2 our algorithm re-
duces to Eppstein’s algorithm and yields an (n−1)-approximation. When k = n
our algorithm is the familiar exponential-time, exact algorithm. We define a non-
trivial class of MRS which we call STACK COVER. We show that STACK COVER

naturally generalizes two classic optimization problems: MIN SET COVER and
SHORTEST COMMON SUPERSEQUENCE. Both these problems are known to be
hard to approximate, although at present, SET COVER has a slightly stronger lower
bound. In particular, it is NP-hard to approximate SET COVER to within a factor
of c · log n for some c > 0. Thus, the MINIMUM RESET SEQUENCE problem is
as least as hard to approximate as SET COVER. This improves the previous best
lower bound which showed that it was NP-hard to approximate the MRS on bi-
nary alphabets to within any constant factor. Our result requires an alphabet of
arbitrary size.

1 Introduction

In the part orienteering problem [1], a part drops onto a pan which is moving along a
conveyor belt. The part is in some unknown orientation. The goal is to move the part
into a known orientation through a sequence of pan tilts. The sequence of tilts should
be universal in the sense that, regardless of its initial position, the tilts always bring
the part back to the some known orientation. If Q is a finite set of n possible states
that the part can occupy, Σ is a finite alphabet of m symbols representing the types of
tilts, and δ : Q × Σ → Q is a state transition function mapping states to states based
on the action of a tilt from Σ, then A = (Q, Σ, δ) forms a simple deterministic finite
automaton (omitting start and accept states).

We extend δ to sequences δ : Q × Σ∗ → Q in the natural way: δ(q, ε) = q and
δ(q, xw) = δ(δ(q, x), w) where q ∈ Q, ε is the empty sequence, x ∈ Σ and w ∈ Σ∗.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 154–162, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Approximating Minimum Reset Sequences 155

(a) A synchronizing automa-
ton

(b) A non-synchronizing
automaton

Fig. 1. An example of a synchronizing and a non-synchronizing automata. Notice that the au-
tomaton in (a) admits the reset sequence BAAABAAAB while the automaton in (b) has no reset
sequence.

We also let δ operate on sets of states instead of a single state. That is, if Q′ ⊆ Q and
z ∈ Σ∗ then δ(Q′, z) = {δ(q, z) | q ∈ Q′}.

Given an automaton A = (Q, Σ, δ), a sequence w ∈ Σ∗ is a reset sequence for A
if and only if |δ(Q, w)| = 1. We call w a reset sequence because it resets the state of
a finite automaton back to some known state. Given the automaton formulation of the
part orienteering problem above, it is easy to see that finding an orienting sequence of
tilts is equivalent to finding a reset sequence in an automaton.

Some automata have reset sequences and some do not (see Figure 1). If an automaton
has a reset sequence, then we say it is synchronizing. Checking if an automaton is syn-
chronizing can be done in polynomial time using dynamic programming [2], however
finding the shortest reset sequence is NP-hard [3]. We call finding the shortest reset
sequence of an automaton the MINIMUM RESET SEQUENCE (MRS) problem. Since it is
unlikely that efficient algorithms exist for the MRS problem, we consider approximating
the shortest reset sequence.

1.1 Prior and Related Work

Arguably the most well-known open problem in automata theory today is a conjecture
on the length of the minimum reset sequence. Posed in 1964, Černý conjectured that any
n-state, synchronizing automaton has a reset sequence with length at most (n− 1)2 [4].
Over 40 years later, this problem remains open and continues to draw considerable at-
tention. The current best upper bound on the MRS is (n3 − n)/6 [5,6]. For large classes
of automata, Černý’s conjecture holds [3,7,8]. In particular, Eppstein [3] gives a polyno-
mial time algorithm for finding reset sequences with length at most (n−1)2 for automata
where the transition function has certain monotonicity properties and Kari [8] shows that
Černý’s conjecture holds when the graph underlying the automaton is Eulerian.

While Černý’s conjecture claims an upper bound on the length of the shortest reset
sequence, it does not directly address the problem of finding the shortest reset sequence.
For example, in the part orienteering problem, when an O(log n) reset sequence exists,

156 M. Gerbush and B. Heeringa

improving from an O(n2) solution to an O(n log n) solution may provide an enormous
savings in production costs. Berlinkov recently showed that it NP-hard to approxi-
mate the MRS problem to within any constant factor [9]. This result holds for binary
alphabets. In addition, Olschewski and Ummels showed that finding the minimum reset
sequence and determining the length of the minimum reset sequence are in FPNP and
FPNP[log] respectively [10].

1.2 Results

We begin in Section 2 by giving a simple O(kmnk +n4/k)-time �n−1
k−1 �-approximation

for MINIMUM RESET SEQUENCE for any k ≥ 2. Here n is the number of states in the
automaton and m is the size of the alphabet. When k = 2, this algorithm reduces to
Eppstein’s algorithm [3] so our analysis shows that his algorithm produces an (n − 1)-
approximation. When k = n our algorithm becomes the standard exponential-time,
exact algorithm. We also show that our analysis is tight. In Section 3 we define a non-
trivial class of MRS which we call STACK COVER. We show that STACK COVER is a
natural generalization of two classic optimization problems: SET COVER and SHORT-
EST COMMON SUPERSEQUENCE. Under the assumption that P 	= NP, SHORTEST

COMMON SUPERSEQUENCE has no α-approximation for any constant α > 0 [11].
This matches the lower bound given by Berlinkov, albeit for alphabets of arbitrary,
instead of constant size. However, assuming P 	= NP, SET COVER has no c · log n-
approximation for some constant c > 0 [12]. This offers a significant improvement
over the previous best lower bound. We conclude in Section 4 with some conjectures
and open problems. In particular, we offer a roadmap for combining the hardness of ap-
proximating SHORTEST COMMON SUPERSEQUENCE and SET COVER to achieve even
stronger lower bounds for MINIMUM RESET SEQUENCE.

2 A Simple Approximation Algorithm

Our algorithm relies on the following property.

Property 1. Let A = (Q, Σ, δ) be a finite automaton. For every k ≥ 2, A is synchro-
nizing if and only if for every Q′ ⊆ Q such that |Q′| ≤ k there exists x ∈ Σ∗ such that
|δ(Q′, x)| = 1.

Proof. When k = 2, the property reduces to a well-known necessary and sufficient con-
dition for synchronization [2]. It is easy to see that since the property holds for k = 2 then
it holds in general since any synchronizing sequence x ∈ Σ∗ for {δ(p, y), δ(s, y)} ⊆ Q
can be appended to a synchronizing sequence y ∈ Σ∗ for {p, q} ⊆ Q to form a syn-
chronizing sequence yx for {p, q, s}. ��
Given some k ≥ 2 we create a k-dimensional dynamic programming table D such that,
for all subsets Q′ ⊆ Q where 2 ≤ |Q′| ≤ k if x = ay is an MRS for Q′ where a ∈ Σ
and y ∈ Σ∗ then D(Q′) = (a, δ(Q′, a)). That is, D yields the first letter in the MRS

for Q′ as well as pointer to the next subset of states in the MRS. The base case is when
|Q′| = 1. In this case we simply return the empty sequence. The following lemma
establishes an upper bound on the time required to construct D.

Approximating Minimum Reset Sequences 157

Lemma 1. Given k ≥ 2, constructing D takes times O(mnk).

Proof. Given an automaton A = (Q, Σ, δ), define an edge-labelled, directed multi-
graph G = (V, E) such that V = {Q′ ⊆ Q | 1 ≤ |Q′| ≤ k} and for every U, W ∈ V
we have (U, W) ∈ E labelled with a ∈ Σ if and only if δ(W, a) = U . That is, if
a brings W to U then there is an edge from U to W labelled with a. We perform a
breadth-first search on G, starting with all the singleton sets of Q. That is, we begin by
considering all sets Q′ such that |Q′| = 1. Whenever we encounter a node R ∈ V for
the first time we let D(R) = (a, R′) where R′ is the parent of R in the breadth-first
search and (R′, R) is labelled with a. We let D(Q′) = ε if |Q′| = 1. If the breadth-
first search fails to reach every node in V then, by Property 1, A is not synchronizing.
Correctness of the construction follows from the fact that we are always considering
the shortest sequences that take a singleton node to a non-singleton node (and, by way
of reversing the edge orientations, the shortest reset sequences). Since the graph has
O(nk) nodes and O(mnk) edges and we are performing a simple BFS, constructing
the table takes time O(mnk). ��

Algorithm 1. APPROX-MRS(A, k) where A = (Q, Σ, δ)

1: X ← Q
2: z ← ε
3: Let D be the dynamic programming table given by Lemma 1.
4: while |X| > 1 do
5: α ← min{|X|, k}
6: Choose an arbitrary subset Q′ ⊆ X such that |Q′| = α.
7: while |Q′| > 1 do
8: (a, Q′) ← D(Q′)
9: z ← z · a

10: X ← δ(X,a)

11: end while
12: end while
13: return z

Algorithm 1 uses D to successively synchronize k states until only one state remains.
The correctness of the algorithm follows from Property 1.

Theorem 1. Algorithm 1 is an O(kmnk + n4/k)-time �n−1
k−1 �-approximation for the

MINIMUM RESET SEQUENCE problem for any k ≥ 2.

Proof. Let k ≥ 2 be given and let z be the MRS for A with length OPT . For any Q′ ⊆
Q such that |Q′| ≤ k, if y is the sequence given for Q′ by D then |y| ≤ OPT . This
follows by construction since D gives us a method to find the shortest reset sequence for
all Q′ ⊆ Q such that |Q′| ≤ k. If OPT < |y| then z would be a shorter synchronizing
sequence for Q′, a contradiction.

Notice that in each iteration of line 4 (other than the final iteration) we decrease the
size of X by k − 1 (once |X | < k we perform at most one additional iteration). Thus,
after at most �n−1

k−1 � iterations X contains a single state. Since each iteration of line 4

158 M. Gerbush and B. Heeringa

Fig. 2. A tight example for the case n = 9 and k = 3. All transitions not shown are self-
transitions. The optimal solution is z, but Algorithm 1 could return the solution a1a2a3a4.

appends a sequence of length at most OPT to z, Algorithm 1 yields a sequence with
length at most �n−1

k−1 � · OPT which yields the desired approximation ratio.
Constructing the dynamic programming table takes time O(kmnk). The inner loop

in line 7 executes at most O(n4/k) times since O(n3) is an upper bound on the reset
sequence. Since the outer loop in line 4 executes at most n times, Algorithm 1 takes
time at most O(kmnk + n4/k). ��
When k = 2, Algorithm 1 reduces to Eppstein’s algorithm. Thus, this algorithm yields
an (n − 1)-approximation for the MINIMUM RESET SEQUENCE problem. When k = n
the dynamic programming table becomes the power-set automata and a breadth-first
search yields the standard exponential-time exact algorithm [13]. It also turns out that
the analysis of Algorithm 1 is tight.

Theorem 2. The analysis of Algorithm 1 is tight.

Proof. We construct an instance of the MRS problem such that Algorithm 1 gives a so-
lution that is �n−1

k−1 � times larger than the optimal solution. Let n and k be given. Choose
j = �n−1

k−1 � and take Q = {q1, q2, ..., qn} as the set of states and Σ = {z, a1, a2, ..., aj}
as the alphabet. We define the transition function δ as

δ(qi, ah) =

⎧⎪⎨
⎪⎩

q
 i
k−1 �(k−1)+1 if h = � i

k−1�
qn if ah = z

qi otherwise.

The optimal solution to an instance of this form is the string z which has length 1. How-
ever, Algorithm 1 chooses to merge k arbitrary states. If the sequence of k-states are
(q1, . . . , qk), (qk, . . . , q2(k−1)+1), (q2(k−1)+1, . . . , q3(k−1)+1)...,(q(j−1)(k−1)+1,. . . ,qn),

Approximating Minimum Reset Sequences 159

and if for each tuple the algorithm chooses ai instead of z to merge the states, then only k
states are merged at a time. In this case, the solution that Algorithm 1 gives is a1a2 . . . aj

which has length j = �n−1
k−1 �. Thus, our analysis is tight. Figure 2 gives an example for

n = 9 and k = 3.

3 The STACK COVER Problem

Here we define a non-trivial class of MINIMUM RESET SEQUENCE problems which
we call STACK COVER. Our primary purpose in introducing this class is to show that
MINIMUM RESET SEQUENCE is hard to approximate, however, STACK COVER may
have independent appeal.

Imagine you have n stacks of cards where each card is painted with multiple colors.
You can peek at any card in any stack at any time. Selecting a color removes the top card
of each stack provided that card is painted with the selected color. The goal is to select
the shortest sequence of colors that empties all the stacks. This is the STACK COVER

problem. When each stack has a single card, then the colors represent sets and STACK

COVER becomes the SET COVER problem. When the stacks have varying heights but
each card is painted with a single color then a stack of cards is a string and STACK

COVER becomes the SHORTEST COMMON SUPERSEQUENCE problem. Below we re-
view the definitions of SET COVER and SHORTEST COMMON SUPERSEQUENCE and
formally show how STACK COVER generalizes both problems.

We now define STACK COVER within the MINIMUM RESET SEQUENCE framework.
We treat the symbols in Σ as colors and then impose some structure on the transition
function. Figure 3 shows the general form of STACK COVER instances. We partition the
set of states Q into n stacks Q1 ∪Q2 ∪ · · · ∪Qn plus a single sink state q̂. Furthermore,
we linearly order each stack Qi as qi1, qi2, . . . , qili , qi(li+1) where each qij is a state in
Qi, and for convenience, qi(li+1) = q̂. That is, we assume the final state in every stack
is the sink state. The transition function must obey this order, so for each 1 ≤ i ≤ n and
for each x ∈ Σ, either δ(qij , x) = qij or δ(qij , x) = qi(j+1) for all 1 ≤ j ≤ li. Finally,
we have δ(q̂, x) = q̂ for all x ∈ Σ. If A = (Q, Σ, δ) is a STACK COVER instance, then
let OPT(A) be the length of the MINIMUM RESET SEQUENCE for A.

SHORTEST COMMON SUPERSEQUENCE as STACK COVER. An instance of SHORT-
EST COMMON SUPERSEQUENCE (SCS) is a set of strings R = {t1, . . . , tn} over an
alphabet Σ of size m. That is, each ti is a string in Σ∗. The goal is to find the shortest
string w ∈ Σ∗ such that each string ti is a subsequence of w. We can reduce an SCS

instance to a STACK COVER instance as follows. Refer to the jth character in the string
ti as tij . Given a set of strings R, construct A = (Q, Σ, δ), such that

Q = {qij | 1 ≤ i ≤ n, 1 ≤ j ≤ |ti|} ∪ {q̂}
and for all qij ∈ Q \ {q̂} and a ∈ Σ

δ(qij , a) =

⎧⎪⎨
⎪⎩

q̂ if a = tij and j = |ti|
qi(j+1) if a = tij and j < |ti|
qij otherwise.

and δ(q̂, a) = q̂ for all a ∈ Σ.

160 M. Gerbush and B. Heeringa

Fig. 3. An instance of STACK COVER

From the definition, notice that we have created a single state for each character in
R and a transition symbol for each character in Σ. Also, we have added one additional
state q̂, which acts as a single sink node attached to each stack. Every transition from q̂
is a self transition. The transition function δ guarantees that each state has only a single
transition symbol to the next state in the stack. Notice that w ∈ Σ∗ is a reset sequence
for A if and only if w is a supersequence for R.

Jiang and Li [11] showed that SCS has no α-approximation for any α > 0 unless
P = NP. Here n is the number of strings. This hardness result holds even when the
strings have constant length, so given the reduction above, it applies to the MINIMUM

RESET SEQUENCE problem where n is the number of states.

SET COVER as STACK COVER. An instance of SET COVER is a base set X = {x1, . . . ,
xn} and a collection S = {S1, . . . , Sm} of subsets of X . The goal is to find the smallest
subset S′ ⊆ S such that ∪Si∈S′Si = X . We can reduce SET COVER to STACK COVER

as follows. Given a SET COVER instance (X, S), construct A = (Q, Σ, δ) such that

Q = X ∪ {q̂}
Σ = {1, . . . , m}

δ(x, j) =

{
q̂ if x ∈ Sj

x otherwise.

In our automaton, we have a single state for each element of X and a single transition
symbol for each subset in S. Again, we add a sink node, q̂, that is connected to every
stack and has only self transitions. We define the transition function so that a node can
be brought to q̂ if and only if a subset containing that character is selected. Notice that
w1 · · ·wl ∈ Σ∗ is a reset sequence for A if and only if

⋃
1≤i≤l Swi is a cover for X .

SET COVER has no c log n-approximation for some constant c > 0 unless P =
NP [12]. Thus, this lower bound also extends to STACK COVER.

Approximating Minimum Reset Sequences 161

4 Open Problems and Conjectures

The lowers bounds in Section 3 require alphabets of finite, yet arbitrary size. It is an
open problem to determine if these results extend to the case where the alphabet has
constant size.

In addition, the gap between the upper bound on the approximation ratio offered by
Algorithm 1 and the lower bound offered by SET COVER is quite large. One line of
attack in closing this gap is to combine an instance of SHORTEST COMMON SUPER-
SEQUENCE with an instance of SET COVER to produce an instance of STACK COVER

that is harder to approximate than either problem on its own. For example, given A =
(QA, ΣA, δA) and B = (QB, ΣB, δB), where A represents an SCS problem and B
represents a SET COVER problem, we define the natural cross product A × B =

Q = (QA \ {q̂A}) × (QB \ {q̂B}) ∪ {q̂}
Σ = ΣA × ΣB

δ((qij , q), (a, s)) =

⎧⎪⎨
⎪⎩

q̂ if a = tij and j = |ti| and δB(q, s) = q̂B

(qi(j+1), q) if a = tij and j < |ti| and δB(q, s) = q̂B

(qij , q) if a 	= tij or δB(q, s) 	= q̂B

where q̂A is the sink state of A and q̂B is the sink state of B.
Each state in the SCS automaton A is now paired with a state from the SET COVER

automaton B, creating n stacks for each stack in the original SCS instance, where n is
the number of elements in the SET COVER instance. Likewise, each transition in the SCS

automaton is now paired with a transition from the SET COVER automaton, creating m
transitions for each transition in the original SCS instance. Here m is the number of
subsets in the SET COVER instance. The transition function has become more complex,
but the general concept is straightforward: we can only move downward in a stack if we
select a symbol that corresponds to both the current node’s symbol in the SCS instance
and to one of its subsets in the SET COVER instance.

Assuming OPT(·) gives the length of an optimal solution, it’s clear that OPT(A ×
B) ≤ OPT(A) · OPT(B). However, if we can show that OPT(A) · OPT(B) ≤ τ ·
OPT(A × B) for some constant τ then the following conjecture holds:

Conjecture 1. For any α > 0, the MINIMUM RESET SEQUENCE problem has no
polynomial-time algorithm with approximation ratio α log n, where n is the total number
of states, unless P = NP.

This lower bound is stronger than the lower bounds for both SET COVER and SHORTEST

COMMON SUPERSEQUENCE. However, showing that OPT(A)·OPT(B) ≤ τ ·OPT(A×
B) for some constant τ seems challenging because of the interaction between A and B.
More specifically, it is tempting to think that OPT(A) · OPT(B) = OPT(A × B), but
this is not the case. Consider an SCS instance A = {ab, ba} and a SET COVER instance
B = (X, C) where X = {1, 2, 3, 4} and C = {{2, 3}, {1, 2, 4}, {1, 3, 4}}. An optimal
solution to A × B uses only fives symbols:

(B, {1, 2, 4}), (A, {2, 3}), (B, {1, 3, 4}), (A, {1, 3, 4}), (B, {1, 2, 4})

162 M. Gerbush and B. Heeringa

however OPT(A) = 3 (either aba or bab) and OPT(B) = 2 (since no subset contains
all 4 elements).

Acknowledgements

The authors wish to thank the anonymous reviewers for their helpful comments. This
material is based upon work supported by the National Science Foundation under Grant
No. 0812514.

References

1. Natarajan, B.K.: An algorithmic approach to the automated design of parts orienters. In:
FOCS, pp. 132–142 (1986)

2. Salomaa, A.: Generation of constants and synchronization of finite automata. J. UCS 8(2),
332–347 (2002)

3. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Computing 19(3), 500–510
(1990)

4. Černý, J.: Poznamka k homogenym eksperimentom s konechnymi automatami. Math.-Fyz.
Čas 14, 208–215 (1964)

5. Pin, J.E.: On two combinatorial problems arising from automata theory. Annals of Discrete
Mathematics 17, 535–548 (1983)

6. Klyachko, A.A., Rystsov, I.K., Spivak, M.A.: In extremal combinatorial problem associated
with the length of a synchronizing word in an automaton. Cybernetics and Systems Analy-
sis 23(2), 165–171 (1987)

7. Ananichev, D., Volkov, M.: Synchronizing generalized monotonic automata. Theoretical
Computer Science 330(1), 3–13 (2005)

8. Kari, J.: Synchronizing finite automata on eulerian digraphs. Theoretical Computer Sci-
ence 295(1-3), 223–232 (2003)

9. Berlinkov, M.V.: On calculating length of minimal synchronizing words. In: Ablayev,
F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, Springer, Heidelberg (2010); CoRR
abs/0909.3787

10. Olschewski, J., Ummels, M.: The Complexity of Finding Reset Words in Finite Automata.
CoRR abs/1004.3246v1 (April 2010)

11. Jiang, T., Li, M.: On the approximation of shortest common supersequences and longest
common subsequences. SIAM J. Comput. 24(5), 1122–1139 (1995)

12. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-restrictions. ACM
Trans. Algorithms 2, 153–177 (2006)

13. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martı́n-Vide, C.,
Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg
(2008)

Transductions Computed by PC-Systems of
Monotone Deterministic Restarting Automata

Norbert Hundeshagen, Friedrich Otto, and Marcel Vollweiler

Fachbereich Elektrotechnik/Informatik, Universität Kassel

34109 Kassel, Germany

{hundeshagen,otto,vollweiler}@theory.informatik.uni-kassel.de

Abstract. We associate a transduction (that is, a binary relation) with

the characteristic language of a restarting automaton, and we prove that

in this way monotone deterministic restarting automata yield a character-

ization of pushdown transductions. Then we study the class of transduc-

tions that are computed by parallel communicating systems (PC-systems)

of monotone deterministic restarting automata. We will see that this class

includes all transductions that are computable.

1 Introduction

Automata with a restart operation were introduced originally to describe a
method of grammar-checking for the Czech language (see, e.g., [5]). These auto-
mata started the investigation of restarting automata as a suitable tool for mod-
eling the so-called analysis by reduction, which is a technique that is often used
(implicitly) for developing formal descriptions of natural languages based on the
notion of dependency [6,11]. In particular, the Functional Generative Description
(FGD) for the Czech language (see, e.g., [7]) is based on this method.

FGD is a dependency based system, which translates given sentences into their
underlying tectogrammatical representations, which are (at least in principle)
disambiguated. Thus, the real goal of performing analysis by reduction on (the
enriched form of) an input sentence is not simply to accept or reject this sentence,
but to extract information from that sentence and to translate it into another
form (be it in another natural language or a formal representation). Therefore,
we are interested in transductions (that is, binary relations) and in ways to
compute them by certain types of restarting automata.

Here we study two different approaches. First we associate a binary relation
with the characteristic language of a restarting automaton, motivated by the way
in which the so-called proper language of a restarting automaton is defined. In
this way we obtain a characterization for the class of pushdown transductions in
terms of monotone deterministic restarting automata. Then we introduce parallel
communicating systems (PC-systems, for short) that consist of two monotone
deterministic restarting automata, using them to compute transductions. In this
way we obtain a characterization for the class of all computable transductions.
In addition we consider the input-output transductions computed by these two
types of restarting automata.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 163–172, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

164 N. Hundeshagen, F. Otto, and M. Vollweiler

This paper is structured as follows. In Section 2 we establish basic notions
concerning languages and transductions, and in Section 3 we describe in short
the type of restarting automaton we use and define the associated classes of
transductions. Finally, in Section 4 we introduce the announced PC-systems and
establish our main results on the various classes of transductions considered. The
paper closes with a short summary and some open problems.

2 Basic Notions and Definitions

Throughout the paper we will use λ to denote the empty word. Further, |w|
will denote the length of the word w, and if a is an element of the underlying
alphabet, then |w|a denotes the a-length of w, that is, the number of occurrences
of the letter a in w. Further, N+ will denote the set of all positive integers. By
(D)CFL we denote the class of (deterministic) context-free languages.

If Σ is a subalphabet of an alphabet Γ , then by PrΣ we denote the projection
from Γ ∗ onto Σ∗. For a language L ⊆ Γ ∗, PrΣ(L) = {PrΣ(w) | w ∈ L }.

If Σ and Δ are two finite alphabets, then each set R ⊆ Σ∗ × Δ∗ is called a
transduction. For u ∈ Σ∗ and v ∈ Δ∗, R(u) = { y ∈ Δ∗ | (u, y) ∈ R } is the
image of u, and R−1(v) = { x ∈ Σ∗ | (x, v) ∈ R } is the preimage of v under R.
A particular class of transductions are the pushdown transductions. A pushdown
transducer (PDT for short) is defined as T = (Q, Σ, Δ, X, q0, Z0, F, E), where
Q is a finite set of internal states, Σ, Δ, and X are the finite input, output,
and pushdown alphabet, respectively, q0 ∈ Q is the initial state, Z0 ∈ X is
the initial symbol on the pushdown store, F ⊆ Q is the set of final states, and
E ⊂ Q × (Σ ∪ {λ}) × X × Q × X∗ × Δ∗ is a finite set of transitions [1]. A
configuration of T is written as (q, u, α, v), where q ∈ Q is a state, u ∈ Σ∗

is the still unread part of the input, α ∈ X∗ is the contents of the pushdown
store with the first letter of α at the bottom and the last letter at the top,
and v ∈ Δ∗ is the output produced so far. If (q, au, αx, v) is a configuration,
where a ∈ Σ ∪ {λ} and x ∈ X , and (q, a, x, p, y, z) ∈ E, then T can perform the
transition step (q, au, αx, v) �T (p, u, αy, vz). The transduction Rel(T) computed
by T is defined as

Rel(T) = { (u, v) ∈ Σ∗ × Δ∗ | ∃q ∈ F, α ∈ X∗ : (q0, u, Z0, λ) �∗
T (q, λ, α, v) },

where �∗
T denotes the reflexive transitive closure of the relation �T . A relation

R ⊆ Σ∗ ×Δ∗ is a pushdown transduction if R = Rel(T) holds for some PDT T .
By PDR(Σ, Δ) we denote the class of all pushdown transductions over Σ∗×Δ∗.

3 Transductions Computed by Restarting Automata

A large variety of types of restarting automata has been developed over the
years. Here we are only interested in the deterministic RRWW-automaton. Such
an automaton consists of a finite-state control, a single flexible tape with end
markers, and a read/write window of fixed size. Formally, it is described by an

Transductions Computed by PC-Systems 165

8-tuple M = (Q, Σ, Γ, c, $, q0, k, δ), where Q is a finite set of states, Σ is a finite
input alphabet, Γ is a finite tape alphabet containing Σ, the symbols c, $ �∈ Γ
are used as markers for the left and right border of the work space, respectively,
q0 ∈ Q is the initial state, k ≥ 1 is the size of the read/write window, and δ is the
transition function that associates transition steps to pairs (q, u) consisting of a
state q and a possible content u of the read/write window. There are four types
of transition steps: move-right steps (MVR) that shift the read/write window
one position to the right and change the state; rewrite steps that cause M to
replace the contents u of its read/write window by a shorter string v, thereby
reducing the length of the tape, and to change the state; restart steps (Restart)
that cause M to place its read/write window over the left end of the tape and
to reenter the initial state q0; and accept steps that cause M to halt and accept.
If δ(q, u) = ∅ for some pair (q, u), then M necessarily halts, and we say that M
rejects in this situation. We use the prefix det- to denote deterministic types of
restarting automata.

A configuration of M is a string αqβ, where q ∈ Q, and either α = λ and β ∈
{c}·Γ ∗·{$} or α ∈ {c}·Γ ∗ and β ∈ Γ ∗·{$}; here q represents the current state, αβ
is the current content of the tape, and it is understood that the window contains
the first k symbols of β or all of β when |β| ≤ k. A restarting configuration is of
the form q0cw$. If w ∈ Σ∗, then q0cw$ is an initial configuration.

Any computation of M consists of certain phases. A phase, called a cycle,
starts in a restarting configuration, the head moves along the tape performing
move-right steps and a single rewrite operation until a restart operation is per-
formed and thus a new restarting configuration is reached. If no further restart
operation is performed, the computation necessarily finishes in a halting con-
figuration – such a phase is called a tail. It is required that in each cycle M
performs exactly one rewrite step – thus each cycle strictly reduces the length of
the tape. We use the notation w �c

M z to denote a cycle of M that begins with
the restarting configuration q0cw$ and ends with the restarting configuration
q0cz$; the relation �c∗

M is the reflexive and transitive closure of �c
M . Also it is

required that in a tail M executes at most one rewrite step.
Let C = αqβ be a rewrite configuration of an RRWW-automaton M , that is,

a configuration in which a rewrite step is to be applied. Then the right distance
Dr(C) of C is |β|. A sequence of rewrite configurations S = (C1, C2, . . . , Cn)
is called monotone if Dr(C1) ≥ Dr(C2) ≥ . . . ≥ Dr(Cn). A computation of an
RRWW-automaton M is called monotone if the sequence of rewrite configura-
tions that is obtained from the cycles of that computation is monotone. Observe
that here the rewrite configuration that corresponds to a rewrite step that is
executed in the tail of a computation is not taken into account. Finally, the
RRWW-automaton M is called monotone if each of its computations is mono-
tone. We use the prefix mon- to denote monotone types of RRWW-automata.

A sentential form w ∈ Γ ∗ is accepted by M , if there is an accepting com-
putation which starts from the restarting configuration q0cw$. By LC(M) we
denote the language consisting of all sentential forms accepted by M ; LC(M)
is the characteristic language of M , while the set L(M) = LC(M) ∩ Σ∗ of all

166 N. Hundeshagen, F. Otto, and M. Vollweiler

input sentences accepted by M is the input language recognized by M . Further,
LP(M) = PrΣ(LC(M)) is the proper language of M .

For any class A of automata, L(A) will denote the class of input languages
recognizable by automata from A, and LP(A) will denote the class of proper
languages of automata from A.

We want to study transductions that are computed by RRWW-automata.
Let M = (Q, Σ, Γ, c, $, q0, k, δ) be an RRWW-automaton with tape alphabet Γ ,
which contains the input alphabet Σ and the output alphabet Δ. Here we as-
sume that Σ and Δ are disjoint. With M we associate two transductions, where
sh(u, v) denotes the shuffle of the words u and v:

Rio(M) = { (u, v) ∈ Σ∗ × Δ∗ | LC(M) ∩ sh(u, v) �= ∅ },
RP(M) = { (u, v) ∈ Σ∗ × Δ∗ | ∃w ∈ LC(M) : u = PrΣ(w) and v = PrΔ(w) }.

Here Rio(M) is the input-output transduction of M , and RP(M) is the proper
transduction of M . By Relio(RRWW) (RelP(RRWW)) we denote the class of
input-output transductions (proper transductions) of RRWW-automata.

Theorem 1. RelP(det-mon-RRWW) =
⋃

{Σ,Δ|Σ∩Δ=∅} PDR(Σ, Δ).

Proof. Let Σ and Δ be disjoint alphabets. According to [10], a relation R ⊆
Σ∗ × Δ∗ is a pushdown transduction if and only if there exists a determin-
istic pushdown automaton (DPDA) P = (Q, Γ, X, q0,⊥, F, δ) such that R =
{ (PrΣ(w), PrΔ(w)) | w ∈ L(P) }. A language L ⊆ Γ ∗ is deterministic context-
free if and only if there exists a monotone deterministic RRWW-automaton M =
(QM , Γ, Γ, c, $, qM

0 , k, δM) such that L = L(M) = LC(M). Thus, R ⊆ Σ∗ × Δ∗

is a pushdown transduction if and only if R = RP(M) for some deterministic
RRWW-automaton M that is monotone. �
Thus, the proper transductions of monotone deterministic RRWW-automata just
describe the pushdown transductions. Next we consider the class of input-output
transductions of monotone deterministic RRWW-automata.

Proposition 1. Relio(det-mon-RRWW) � RelP(det-mon-RRWW).

Proof. Let M = (Q, Σ, Θ, c, $, qM
0 , k, δ) be a monotone deterministic RRWW-

automaton, where Δ ⊆ Θ � Σ is an output alphabet. If we interpret Σ ∪ Δ
as input alphabet of M , then L(M) ⊆ (Σ ∪ Δ)∗ is a deterministic context-
free language. Thus, there exists a monotone deterministic RRWW-automaton
M ′ with tape alphabet Σ ∪ Δ that accepts this language [3], that is, L(M ′) =
LC(M ′) = L(M). It follows that

RP(M ′) = { (PrΣ(w), PrΔ(w)) | w ∈ LC(M ′) }
= { (PrΣ(w), PrΔ(w)) | w ∈ LC(M) ∩ (Σ ∪ Δ)∗ } = Rio(M).

Next consider the relation R = { (anbn, λ), (anbm, λ) | n ≥ 1, m > 2n }, which
is easily seen to be a pushdown transduction. If M is an RRWW-automaton
such that R = Rio(M), then L(M) = { anbn, anbm | n ≥ 1, m > 2n }. As this

Transductions Computed by PC-Systems 167

language is not accepted by any monotone deterministic RRWW-automaton [3],
it follows that M is not a monotone deterministic RRWW-automaton. �
For Σ ∩ Δ = ∅, each rational transduction R ⊆ Σ∗ × Δ∗ [2] is obviously the
input-output transduction of some monotone deterministic RRWW-automaton.

4 Transformations Computed by PC-Systems of
Monotone Deterministic RRWW-Automata

Instead of computing a transduction R by a single restarting automaton, we
propose to compute it by a pair of restarting automata that have the ability to
communicate with each other. To formalize this idea, we introduce the so-called
parallel communicating system of restarting automata (or PC-RRWW-system,
for short). A PC-RRWW-system consists of a pair M = (M1, M2) of RRWW-
automata Mi = (Qi, Σi, Γi, c, $, q

(i)
0 , k, δi), i = 1, 2. Here it is required that, for

each i ∈ {1, 2}, the set of states Qi of Mi contains finite subsets Qreq
i of request

states of the form (q, req), Qres
i of response states of the form (q, res(l)), Qrec

i of
receive states of the form (q, rec(l)), and Qack

i of acknowledge states of the form
(q, ack(l)). Further, in addition to the move-right, rewrite and restart steps, M1

and M2 have so-called communication steps.
A configuration of M consists of a pair K = (k1, k2), where ki is a configura-

tion of Mi, i = 1, 2. For w1 ∈ Γ ∗
1 and w2 ∈ Γ ∗

2 , the initial configuration on input
(w1, w2) is Kin(w1, w2) = (q(1)

0 cw1$, q
(2)
0 cw2$). The single-step computation re-

lation (k1, k2) �M (k′
1, k

′
2) consists of local steps and communication steps :

(Communication 1) if k1 = u1(q1, res(l))v1 and k2 = u2(q2, req)v2, then
k′
1 = u1(q1, ack(l))v1 and k′

2 = u2(q2, rec(l))v2;
(Communication 2) if k1 = u1(q1, req)v1 and k2 = u2(q2, res(l))v2, then

k′
1 = u1(q1, rec(l))v1 and k′

2 = u2(q2, ack(l))v2.

In all other cases M1 and M2 just perform local computation steps, independent
of each other. If one of them is in a request or response state, but the other
is not (yet) in the corresponding response or request state, respectively, then
the latter automaton keeps on performing local steps until a communication
step is enabled. Should this never happen, then the computation of M fails.
Once one of M1 and M2 has accepted, the other automaton keeps on performing
local steps until it either gets stuck, in which case the computation fails, or
until it also accepts, in which case the computation of M succeeds. Hence,
RC(M) = { (w1, w2) ∈ Γ ∗

1 × Γ ∗
2 | Kin(w1, w2) �∗

M (Accept, Accept) } is the
characteristic transduction of M, Rio(M) = RC(M) ∩ (Σ∗

1 × Σ∗
2) is the input-

output transduction of M, and RP(M) = { (PrΣ1(w1), PrΣ2(w2)) | (w1, w2) ∈
RC(M) } is the proper transduction of M.

Example 1. Consider the transduction Rsort = { ((abc)n, dnenfn) | n ≥ 1 }.
We describe a PC-RRWW-system M = (M1, M2) satisfying Rio(M) = Rsort.
Let M1 = (Q1, Σ1, Σ1, c, $, p0, 1, δ1) and M2 = (Q2, Σ2, Σ2, c, $, q0, 1, δ2), where

168 N. Hundeshagen, F. Otto, and M. Vollweiler

Σ1 = {a, b, c}, Σ2 = {d, e, f}, and the sets Q1 and Q2 are given implicitly by
the following description of the transition functions δ1 and δ2:

M1 : δ1(p0, c) = (p0, MVR), δ1(pb,2, b) = (p′b, req),
δ1(p0, a) = (pa, req), δ1((p′b, rec(b)), b) = (pb,3, MVR),
δ1((pa, rec(a)), a) = (pa,1, λ), δ1(pb,1, $) = Restart,
δ1(pa,1, b) = (pa,2, MVR), δ1(p0, c) = (pc, req),
δ1(pa,2, c) = (pa,3, MVR), δ1((pc, rec(c)), c) = (pc,1, λ),
δ1(pa,3, a) = (p′a, req), δ1(pc,1, a) = (pc,2, MVR),
δ1((p′a, rec(a)), a) = (pa,1, MVR), δ1(pc,2, b) = (pc,3, MVR),
δ1(pa,3, $) = Restart, δ1(pc,3, c) = (p′c, req),
δ1(p0, b) = (pb, req), δ1((p′c, rec(c)), c) = (pc,1, MVR),
δ1((pb, rec(b)), b) = (pb,3, λ), δ1(pc,1, $) = (p$, req),
δ1(pb,3, c) = (pb,1, MVR), δ1((p$, rec($)), $) = Accept;
δ1(pb,1, a) = (pb,2, MVR),

M2 : δ2(q0, c) = (q0, MVR), δ2(qe, e) = (qe, res(b)),
δ2(q0, d) = (qd, res(a)), δ2(qe, f) = (qf , res(c)),
δ2((qd, ack(a)), d) = (qd, MVR), δ2((qf , ack(c)), f) = (qf , MVR),
δ2(qd, d) = (qd, res(a)), δ2(qf , f) = (qf , res(c)),
δ2(qd, e) = (qe, res(b)), δ2(qf , $) = (qf , res($)),
δ2((qe, ack(b)), e) = (qe, MVR), δ2((qf , ack($)), $) = Accept.

Given (w1, w2) = ((abc)2, d2e2f2) as input, M executes the computation
(p0c(abc)2$, q0cd2e2f2$) �∗

M (Accept, Accept). Internally M1 and M2 check whe-
ther their inputs have the required structure, while the work of comparing the
input of M1 to the input of M2 is completely done by communications. As M1

and M2 are deterministic and monotone, Rsort ∈ Relio(det-mon-PC-RRWW).

On the other hand, Rsort is not the proper transduction of any monotone de-
terministic RRWW-automaton. Indeed, assume that M = (Q, Σ1, Γ, c, $, q0, k, δ)
is a monotone deterministic RRWW-automaton such that RP(M) = Rsort. As
M is monotone, it follows that the characteristic language LC(M) is context-
free. Now Rsort = RP(M) = { (PrΣ1(w), PrΣ2(w)) | w ∈ LC(M) }, and hence,
PrΣ2(LC(M)) = { dnenfn | n ≥ 1 }, which is not context-free. This, however,
contradicts the above observation that LC(M) is context-free, as the class of
context-free languages is closed under morphisms. Thus, we see that

Rsort ∈ Relio(det-mon-PC-RRWW) � RelP(det-mon-RRWW). (1)

The transduction Rpal = { (wwR, c) | w ∈ {a, b}∗ } is obviously a pushdown
transduction. Actually a monotone deterministic RRWW-automatonM satisfying
Rio(M) = Rpal is easily constructed. Just take the obvious RRWW-automaton
with the characteristic language LC(M) = {wcwR | w ∈ {a, b}∗ }. However, the
following negative result holds for this transduction.

Proposition 2. Rpal �∈ Relio(det-mon-PC-RRWW).

Transductions Computed by PC-Systems 169

Proof. Assume that M = (M1, M2) is a PC-RRWW-system such that M1 and
M2 are monotone and deterministic, and Rio(M) = Rpal. In an accepting com-
putation of M, the automaton M2 starts with tape contents cc$. Thus, there are
only finitely many different configurations that M2 can reach. Accordingly a non-
forgetting RRWW-automaton M (see, e.g., [9]) can be designed that simulates
M as follows. Here a non-forgetting RRWW-automaton is a generalization of an
RRWW-automaton that is obtained by combining each restart operation with a
change of the internal state just like the move-right and rewrite operations. In
this way some information can be carried from one cycle to the next.

The non-forgetting RRWW-automaton M proceeds as follows. Using its tape
M simulates M1 step-by-step, while it simulates M2 and all communication steps
of M in its finite control. As M executes the exact cycles of M1, it is monotone
and deterministic, and it accepts the language L(M) = {wwR | w ∈ {a, b}∗ }.
The class L(det-mon-nf-RRWW) of languages accepted by non-forgetting mono-
tone deterministic RRWW-automata coincides with the class of left-to-right reg-
ular languages [9], which is a proper subclass of the class CRL of Church-Rosser
languages. Thus, Lpal = {wwR | w ∈ {a, b}∗ } ∈ CRL follows, contradicting the
fact that Lpal is not a Church-Rosser language [4]. �
Together with (1), this proposition shows the following.

Corollary 1. The class of transductions Relio(det-mon-PC-RRWW) is incom-
parable to the classes Relio(det-mon-RRWW) and RelP(det-mon-RRWW) with
respect to inclusion.

It remains to compare the classes of transductions Relio(det-mon-PC-RRWW)
and RelP(det-mon-RRWW) to the class RelP(det-mon-PC-RRWW). For doing so
we will make use of the following technical result. Recall from above the notion
of non-forgetting restarting automaton. A PC-RRWW-system M = (M1, M2)
is called non-forgetting if the RRWW-automata M1 and M2 are non-forgetting.
The following technical result shows that deterministic PC-RRWW-systems are
already as expressive as deterministic non-forgetting PC-RRWW-systems in con-
trast to the situation for deterministic RRWW-automata (see, e.g., [8]).

Proposition 3. For each non-forgetting deterministic PC-RRWW-system M,
there exists a deterministic PC-RRWW-system M′ such that RC(M′) = RC(M).
In addition, if M is monotone, then so is M′.

Proof outline. Let M = (M1, M2) be a non-forgetting deterministic PC-
RRWW-system. From M a deterministic PC-RRWW-system M′ = (M ′

1, M
′
2) can

be constructed such that M ′
1 and M ′

2 simulate M1 and M2, respectively, cycle
by cycle. However, as M ′

1 and M ′
2 are reset to their respective initial state each

time they execute a restart operation, they must determine the corresponding
restart state of M1 and M2, respectively, by communicating with each other. In
fact, whenever M ′

1 is about to simulate a restart step of M1, then it determines
the restart state of M1 and sends this information to M ′

2. Then, after having
performed the corresponding restart step, M ′

1 requests the information about
the correct restart state from M ′

2, and M ′
2 works similarly. There is, however,

170 N. Hundeshagen, F. Otto, and M. Vollweiler

a serious problem with this approach. At the time when M ′
1 sends the informa-

tion about the new restart state of M1 to M ′
2, the automaton M ′

2 may already
be waiting for a communication with M ′

1 that simulates a communication be-
tween M2 and M1. Then the communication newly initiated by M ′

1 will not
correspond to the communication expected by M ′

2, and consequently the system
M′ may come to a deadlock. Thus, M ′

1 must make sure that M ′
2 has not yet

entered a communication before it attempts to send the information on the new
restart state of M1. Fortunately, these problems can be overcome by executing
a two-way communication between M ′

1 and M ′
2 each time before a step of the

computation of M is being simulated. This two-way communication is to ensure
that both, M ′

1 and M ′
2, know the next step of both, M1 and M2, that they have

to simulate. �
Based on Proposition 3 we obtain the following characterization.

Theorem 2. Let R ⊆ Σ∗ × Δ∗ be a transduction. Then R belongs to the class
RelP(det-mon-PC-RRWW) if and only if it is computable.

Proof. Certainly a PC-RRWW-system can be simulated by a Turing machine.
Thus, given a pair (u, v) ∈ RP(M), where M is a monotone deterministic PC-
RRWW-system, a Turing machine T can nondeterministically guess words x ∈ Γ ∗

1

and y ∈ Γ ∗
2 satisfying PrΣ(x) = u and PrΔ(y) = v, and then it can simulate M

starting from the initial configuration Kin(x, y). Thus, the transduction RP(M)
is computable.

Conversely, let R ⊆ Σ∗×Δ∗ be a transduction that is computable. Thus, there
exists a Turing machine T0 that, given (u, v) as input, has an accepting computa-
tion if and only if (u, v) ∈ R holds. Actually from T0 we obtain a nondeterministic
Turing machine T1 that, given u ∈ Σ∗ as input, has an accepting computation
producing the result v ∈ Δ∗ if and only if the pair (u, v) belongs to R. From
T1 we obtain a nondeterministic Turing machine T2 = (QT , ΓT , q

(T)
0 , q

(T)
+ , δT) by

replacing the input alphabet Σ by a new alphabet Σ̄ = { ā | a ∈ Σ } and by
replacing the output alphabet Δ by a new alphabet Δ̄ = { c̄ | c ∈ Δ } such that
Σ and Δ are disjoint from ΓT . Here we assume that q

(T)
+ is the only final state

of T2, that each accepting computation of T2 consists of an odd number of steps,
and that the tape just contains the result v (encoded as v̄ ∈ Δ̄∗) when T2 halts
and accepts.

From this Turing machine we now construct a monotone deterministic PC-
RRWW-system M = (M1, M2) such that RP(M) = R. Because of Proposition 3
we can describe M as a non-forgetting PC-RRWW-system. Let Γ1 = Σ ∪ QT ∪
ΓT ∪ {#} and Γ2 = Δ ∪ QT ∪ ΓT ∪ {#} be the tape alphabets of M1 and M2,
respectively. The characteristic transduction RC(M) of M will consist of all
pairs of words (x, y) ∈ Γ ∗

1 × Γ ∗
2 satisfying the following conditions:

∃u ∈ Σ∗ ∃v ∈ Δ∗ ∃ an accepting computation of T2 of the form
q
(T)
0 ū �T2 x1q1y1 �T2 · · · �T2 xn−2qn−2yn−2 �T2 xn−1qn−1yn−1 �T2 q+v̄ :

(i) x = #u##x1q1y1##x3q3y3## . . . ##xn−2qn−2yn−2##q+v̄, and
(ii) y = ##q

(T)
0 ū##x2q2y2## . . . ##xn−1qn−1yn−1#v.

Transductions Computed by PC-Systems 171

⋃
{Σ,Δ|Σ∩Δ=∅} PDR(Σ, Δ) Computable Transductions

RelP(det-mon-RRWW) �� RelP(det-mon-PC-RRWW)

Relio(det-mon-RRWW)

��

Relio(det-mon-PC-RRWW)

��

RatRel

�����������
�����������

Fig. 1. Taxonomy of classes of transductions computed by various types of monotone de-

terministic restarting automata. Here RatRel denotes the class of rational transductions.

The non-forgetting restarting automata M1 and M2 behave as follows:
1. Starting from its initial state M1 expects to have a tape contents x from the
regular set E1 = #·Σ∗·(##·Γ ∗

T ·QT ·Γ ∗
T)∗·##·q(T)

+ ·Δ̄∗, and M2 expects to have a
tape contents y from the regular set E2 = ##·q(T)

0 ·Σ̄∗ ·(##·Γ ∗
T ·QT ·Γ ∗

T)∗ ·#·Δ∗.
During its first cycle M1 erases the first occurrence of the symbol # from its tape,
it checks that the factor u ∈ Σ∗ on its tape corresponds to the factor from Σ̄∗ on
M2’s tape using communications, and it verifies that its tape contents belongs
to the regular language E1. Analogously, M2 also erases the first occurrence of
the symbol # from its tape, and it verifies that its tape contents belongs to the
regular set E2. If all these tests are successful, then both M1 and M2 restart in
particular non-initial states; otherwise, the computation fails.
2. In the next cycle M1 and M2 check by communication that the first factor
marked by ## on M1’s tape is an immediate successor configuration of the factor
marked by a single symbol # on M2’s tape with respect to the computation
relation of the Turing machine T2. During this process each of M1 and M2 erase
the leftmost occurrence of the symbol # from their tape. In the affirmative, both
M1 and M2 restart in non-initial states; otherwise, the computation fails.
3. In the next cycle the roles of M1 and M2 are interchanged.
4. Steps 2 and 3 are repeated until the syllable q+v̄ on M1’s tape is reached. In
this case the words x and y do indeed describe an accepting computation of T2

that produces the result v̄ starting from ū. Now in a tail computation M1 and
M2 compare the factor v̄ on M1’s tape to the suffix v′ ∈ Δ∗ on M2’s tape by
communications. If v′ = v, then both M1 and M2 accept, as in this case x and
y satisfy all the conditions stated above; otherwise, the computation fails.

It follows from this description that RC(M) is indeed the transduction defined
above, which in turn yields that RP(M) = R holds. As M1 and M2 are both
monotone and deterministic, this completes the proof of Theorem 2. �
Together with Corollary 1 this result yields the following proper inclusions.

Corollary 2
(a) RelP(det-mon-RRWW) � RelP(det-mon-PC-RRWW).
(b) Relio(det-mon-PC-RRWW) � RelP(det-mon-PC-RRWW).

172 N. Hundeshagen, F. Otto, and M. Vollweiler

We summarize the relationships between the various classes of transductions con-
sidered by the diagram in Figure 1, where an arrow denotes a proper inclusion,
and classes that are not connected are incomparable under inclusion.

5 Concluding Remarks

It remains to investigate the classes of input-output transductions of monotone
deterministic RRWW-automata and PC-RRWW-systems in more detail. Can they
be characterized by other types of transducers or through certain closure prop-
erties? The unlimited usage of auxiliary symbols to annotate the input of mono-
tone deterministic PC-RRWW-systems in combination with the unrestricted use
of communication steps gives a large computational power to these otherwise
rather restricted models of automata. What class of proper transductions are
computed by these very systems when we restrict the use of auxiliary symbols
by a linear function in the length of the combined inputs?

References

1. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Compiling.

Parsing, vol. I. Prentice-Hall, Englewood Cliffs (1972)

2. Berstel, J.: Transductions and Context-free Languages. Teubner Studienbücher,

Teubner, Stuttgart (1979)

3. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On monotonic automata with a restart

operation. J. Autom.Lang. Comb. 4, 283–292 (1999)

4. Jurdziński, T., Loryś, K.: Church-Rosser Languages vs. UCFL. In: Widmayer, P.,

Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP

2002. LNCS, vol. 2380, pp. 147–158. Springer, Heidelberg (2002)

5. Kuboň, V., Plátek, M.: A grammar based approach to a grammar checking of free

word order languages. In: COLING 1994, Proc., Kyoto, Japan, vol. II, pp. 906–910

(1994)

6. Lopatková, M., Plátek, M., Kuboň, V.: Modeling syntax of free word-order lan-

guages: Dependency analysis by reduction. In: Matoušek, V., Mautner, P., Pavelka,

T. (eds.) TSD 2005. LNCS (LNAI), vol. 3658, pp. 140–147. Springer, Heidelberg

(2005)

7. Lopatková, M., Plátek, M., Sgall, P.: Towards a formal model for functional gen-

erative description: Analysis by reduction and restarting automata. The Prague

Bulletin of Mathematical Linguistics 87, 7–26 (2007)

8. Messerschmidt, H., Otto, F.: On deterministic CD-systems of restarting automata.

Intern. J. Found. Comput. Sci. 20, 185–209 (2009)

9. Messerschmidt, H., Otto, F.: A hierarchy of monotone deterministic non-

forgetting restarting automata. Theory of Coputing Systems (November 21, 2009),

doi:10.1007/s00224-009-9247-x

10. Otto, F.: On proper languages and transformations of lexicalized types of automata.

In: Ito, M., Kobayashi, Y., Shoji, K. (eds.) Automata, Formal Languages and Alge-

braic Systems, AFLAS 2008, Proc. World Scientific, Singapore (2008) (to appear)

11. Sgall, P., Hajičová, E., Panevová, J.: The Meaning of the Sentence in Its Semantic

and Pragmatic Aspects. Reidel Publishing Company, Dordrecht (1986)

Uniformizing Rational Relations for Natural
Language Applications Using Weighted

Determinization

J. Howard Johnson

Institute for Information Technology,

National Research Council Canada,

Ottawa, Canada

Howard.Johnson@nrc-cnrc.gc.ca

Abstract. Rational functions have many applications in natural lan-

guage processing. Specifying them can be difficult since many of the

techniques over-generalize and incorrect transformations need to be re-

moved or avoided. Uniformization is the process of restricting a rational

relation to make it single-valued while preserving its domain. One way

of doing this is to use weighted determinization with an appropriate

semiring to produce a subsequential transducer when this is possible. A

basic algorithm using the genealogical minimum as the selection process

is discussed with a motivating example.

1 Introduction

Rational functions (single-valued finite state transductions) have many applica-
tions in the computer processing of natural language as demonstrated but the
use of the Xerox finite state toolkit [2] and similar systems for morphological
and phonological analysis and synthesis of many natural languages. Such toolk-
its have numerous techniques to help the user stay within the constraint of a
functional transformation but the inherent non-determinism in many rational
operators and processes leads to situations where ambiguities creep in.

A particular context where the need for such a mechanism arises is the spec-
ification of de-tokenizers for statistical machine translation (SMT). SMT works
with appropriately tokenized text in a source language, translating it to tok-
enized text in the target language. A tokenizer is needed for the source language
and a de-tokenizer for the target language.

Since it is more natural to work in terms of tokenization, de-tokenization
should be expressed as the inverse operation. Furthermore, the developer of
the de-tokenizer would prefer a systematic process that can be steered in an
understandable manner. Choosing the shortest de-tokenized stream is often the
desired output or can be easily cleaned up by a post-edit transducer. Since
choosing the shortest output does not completely disambiguate the output, we
will break ties by taking the lexicographic (dictionary order) minimum of the
shortest output. This total order on strings is called the genealogical or radix

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 173–180, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

174 J. Howard Johnson

order and the first element in a sequence ordered in such a manner is called the
genealogical or radix minimum.

Johnson [6] discusses a method of disambiguating a transduction when it is
being used to transform a text. This often does not provide sufficient flexibility
to the programmer since it would be preferable to do the disambiguation as part
of the programming process rather than once at the end.

Sakarovitch [13] discusses this process of uniformization but points out that
the radix uniformization might not be achievable with a rational transducer.
This is bad news for applications because it means that any algorithm will fail
in the general case.

Suppose the programmer is willing to accept an algorithm that sometimes
fails. Many tokenizers are inherently subsequential in execution since they do
not remember more than a finite amount of left context and can manage without
any lookahead. A de-tokenizer based on such a tokenizer might also be reason-
ably expected to be subsequential. We would like to construct a subsequential
transducer that outputs the genealogical minimum of the possible outputs from
a rational relation. Although it cannot be done in general, with an appropriate
implementation that fails gracefully, this could be a useful tool.

Section 2 introduces some definitions and background to help make the follow-
ing discussion more precise. Section 3 discusses how weighted determinization
with a specially crafted semiring can be used to partially address the problem.
To help clarify ideas, section 4 provides an example of the approach. Section 5
provides some concluding remarks.

2 Some Definitions and Background

Definition 1. A ∗-semiring S is a set with operations ⊕, ⊗, �, 0 and 1 where:

x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z
x ⊕ 0 = 0⊕ x = x x ⊗ 1 = 1⊗ x = x

x ⊕ y = y ⊕ x x ⊗ 0 = 0⊗ x = 0
x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z) (x ⊕ y) ⊗ z = (x ⊗ z) ⊕ (y ⊗ z)

(w ⊗ w�) ⊕ 1 = (w� ⊗ w) ⊕ 1 = w�

∀x, y, z ∈ S, ∀w ∈ S − {1}
Definition 2. A Conway ∗-semiring S is a ∗-semiring with:

(x ⊕ y)� = (x� ⊗ y)� ⊗ x�

(x ⊗ y)� = 1⊕ (x ⊗ (y ⊗ x)� ⊗ y) ∀x, y ∈ S

when the appropriate � operations are defined [4].

Definition 3. An idempotent ∗-semiring S is a ∗-semiring with:

x ⊕ x = x ∀x ∈ S

Note that the set of regular languages Reg(Σ∗) over an alphabet Σ is an idem-
potent Conway ∗-semiring.

Uniformizing Rational Relations for Natural Language Applications 175

Definition 4. A totally �-ordered alphabet Δ is a finite set where ∀a, b, c ∈ Δ:
a � b, b � a =⇒ a = b, a � b, b � c =⇒ a � c, and a � b or b � a. We
write a ≺ b if a � b and a �= b.

Definition 5. The genealogical order relation � over Δ∗ where Δ is a totally
ordered alphabet is defined as:

x ≺ y =

{
x if |x| < |y| or (|x| = |y| and x = uax1, y = uby1)
y if |y| < |x| or (|x| = |y| and x = ubx1, y = uay1)

where x, y, u, x1, y1 ∈ Δ∗, a, b ∈ Δ, and a ≺ b. x � y if x ≺ y or x = y.

Definition 6. GM(Δ∗) for an alphabet Δ is the set Δ∗∪⊥ with the operations
⊕, ⊗, �, 0, 1:

x ⊕ y =

{
x if x � y or y = ⊥
y if y � x or x = ⊥ x ⊗ y =

{
xy if x, y ∈ Δ∗

⊥ if x = ⊥ or y = ⊥
x� = ε 0 = ⊥ 1 = ε

GM(Δ∗) can easily be shown to be an idempotent Conway ∗-semiring since it is
the homomorphic image of Reg(Δ∗) where the ∅ maps to ⊥ and other languages
are mapped to their genealogical minimal element [6].

Definition 7. The GCLD x ∧ y = z of two elements of a ∗-semiring is a left
divisor that is maximal. That is x = z ⊗ x1, y = z ⊗ y1, and if there is a v such
that x = v ⊗ x2, y = v ⊗ y2 then z = v ⊗ z1. Here x1, y1, x2, y2, and z1 are all
from the ∗-semiring.

We will refer to a ∗-semiring where ∧ is defined for any two pair of elements as
a GCLD ∗-semiring.

Definition 8. A weighted finite automaton A over alphabet Σ and weight space
S is a 7-tuple:

A = 〈Q, Σ, S, I, F, E, λ, ρ〉
where Q is a finite set of states, Σ is a finite alphabet, S is a ∗-semiring, I ⊆ Q
is set of initial states, F ⊆ Q is set of final states, E ⊆ Q × (Σ ∪ ε) × S × Q is
a set of transitions, λ is a function from initial states to S, and ρ is a function
from final states to S.

Definition 9. A finite state transducer T with input alphabet Σ and output
alphabet Δ is

T = 〈Q, Σ,Reg(Δ∗), I, F, E, λ, ρ〉
where Q is a finite set of states, Σ and Δ are finite alphabets, and I, F, E, λ,
and ρ are as above with S = Reg(Δ∗).

Although standard definitions of finite state transducers choose output transitions
from Δ∗ without loss of expressive power, this characterization is equivalent to the
usual ones [3] and opens the door to weighted finite automata with weights chosen
from GM(Δ∗). Furthermore, any transducer can be converted to such a weighted
automaton by applying the necessary homomorphic mapping to the weights.

176 J. Howard Johnson

3 Algorithm

The GM(Δ∗) ∗-semiring is combined with the implementation of weighted de-
terminization as discussed by Mohri [12] to yield a method that uniformizes
rational relations to (not necessarily finite) subsequential transducers. Note that
there are cases where the result of the process is subsequential but a finite trans-
ducer is not found without further modification to the algorithm.

For now we will live with the fact that weighted determinization is a semi-
algorithm that either computes a subsequential transducer or runs forever ex-
ploring more and more of the infinite machine until computing resources are
exhausted. We can live with the nice terminating cases that cover many prac-
tical situations, or follow Mohri by treating weighted determinization as a lazy
algorithm that only expands states that are used by a particular application that
only visits a finite part of the infinite state-space.

First of all our rational relation must be expressed in the form of a transducer
(Definition 10). Each weight is replaced by its natural homomorphic image in
GM(Δ∗).

Before applying the weighted determinization algorithm, the automaton must
be cleaned up a bit. It must be trim, ε-free, and accelerated through the appli-
cation of weight pushing.

For a weighted automaton to be trim, any states that are not reachable by
a path from a start state are removed together with any transitions they carry.
Next, any states from which a final state cannot be reached are removed together
with any transitions they carry. Requiring accessibility of states is not important
for us except to reduce the sizes of data structures; however, the presence of non
co-accessible states can drastically affect the result leading to infinite machines
where the algorithm would otherwise converge to a finite solution.

To be ε-free, we must first recognize that any transition with only an out-
put is an ε-transition and its ‘weight’ must be aggregated into preceding non-
ε-transitions using semiring operations. We are helped here by the fact that
GM(Δ∗) is a k-closed semiring with k = 0. Effectively, this means that any
ε-loops evaluate to a weight of ε, the multiplicative identity and can be sim-
ply deleted. There are no further problems with ε-removal. The easiest general
algorithms work in an obvious way.

To accelerate the automaton through weight pushing there are some more
fundamental changes that need to be made. We will paraphrase Mohri with
appropriate modifications:

Let A be a weighted automaton over a semiring S. Assume that S is a
GCLD ∗-semiring. (This can be weakened further if necessary.) For any
state q ∈ Q, assume that the following sum is defined and in S:

d[q] =
⊕

π∈P (q,F)

(w[π] ⊗ ρ(n[π])).

d[q] is the weighted distance from q to F including the final weight and
is well defined for all q ∈ Q when S is a k-closed semiring. The weight

Uniformizing Rational Relations for Natural Language Applications 177

pushing algorithm consists of computing each weighted distance d[q] and
of re-weighting the transition weights, initial weights, and final weights
in the following way:

∀e ∈ E s.t. d[p[e]] = 0, w[e] ← d[p[e]]\(w[e] ⊗ d[n[e]],
∀q ∈ I, λ(q) ← λ(q) ⊗ d[q],

∀q ∈ F, s.t. d[q] �= 0, ρ(q) ← d[q]\ρ(q).

Here p[e], n[e], w[e] are the source, destination, weight respectively of e.

We are now ready to do weighted determinization using a suitably modified
version of Mohri’s presented as Algorithm 1. Note that the same changes made
above are again necessary. Line 11 requires that the Greatest Common Left Divi-
sor of the considered weights must be calculated. In Mohri’s case, he can choose
divisors more freely and chooses a sum. Here we must ensure left divisibility and
choose the maximal element that still left divides. The change in line 12 involves
replacing a left multiplication of an inverse by a straightforward left division.
Left division is defined in this case where an inverse doesn’t exist.

There are also a couple of less important differences in the calculation of I ′ and
λ′ in lines 3 to 6. This is a small nicety that factors out as much output as can
be emitted before any input is read. This bizarre idea of writing output before
reading anything usually doesn’t occur in practical applications but results in a
small reduction in the size of the resulting machine.

Note that, following Mohri, the notation Q[p′] means the states in p′, E[Q[p′]]
are the transitions have a tail in a state of p′, i[E[Q[p′]]] are the labels form
Σ in transitions have have a tail in a state of p′, i[e] is the label form Σ from
transition e, and n[e] is the destination state from transition e.

There remains one more step in the usual determinization suite. There often
is a benefit in minimizing the resulting machine by combining states that have
equivalent right context. The generalization of the conventional minimization
algorithm for unweighted finite state machines works correctly if the pair of
letter and weight from each transition is treated as an element of an expanded
alphabet Σ × S. Mohri says that weight pushing should be performed before
minimization. In the situation described here this will be unnecessary because
we applied weight pushing before determinization and the algorithm preserves
the effect.

4 An Example

Suppose that we have text that contains four types of information: (1) Words
made up of upper and lower case letters. We will restrict our alphabet to ’a’
and its upper case form ’A’. (2) Numbers are a sequence of digits starting with
a non-zero digit. We will restrict our digits to ’0’ and ’1’. (3) Punctuation are
individual punctuation marks. Each punctuation mark will be a separate token.
We will restrict ourselves to ’,’ and ’.’. (4) White space is a sequence of blanks.

178 J. Howard Johnson

Algorithm 1. Weighted-Determinization(A)
1 A ≡ 〈Q, Σ, S, I, F, E, λ, ρ〉
2 Q′ ← ∅, F ′ ← ∅, E′ ← ∅, λ′ ← ∅, ρ′ ← ∅, Z ← empty Queue

3 w′ ← ∧{λ(q) : q ∈ I}
4 q′ ← {(q, w′\λ(q)) : q ∈ I}
5 I ′ ← {q′}
6 λ′(q′) ← w′

7 Z ← Enqueue(Z, q′)
8 while NotEmpty(Z) do
9 p′ ← Dequeue(Z)

10 for each x ∈ i[E[Q[p′]]] do
11 w′ ← ∧{v ⊗ w : (p, v) ∈ p′, (p, x,w, q) ∈ E}
12 q′ ← {(q,⊕{w′\(v ⊗ w) : (p, v) ∈ p′, (p, x, w, q) ∈ E})

: q = n[e], i[e] = x, e ∈ E[Q[p′]]}
13 E′ ← E′ ∪ {(p′, x, w′, q′)}
14 if q′ /∈ Q′ then
15 Q′ ← Q′ ∪ {q′}
16 if Q[q′] ∩ F �= ∅ then
17 F ′ ← F ′ ∪ {q′}
18 ρ′(q′) ← ⊕{v ⊗ ρ(q) : (q, v) ∈ q′, q ∈ F}
19 Enqueue(Z, q′)
20 return A′ ≡ 〈Q′, Σ, S, I ′, F ′, E′, λ′, ρ′〉

We wish to construct a subsequential transducer that tokenizes the text in the
following way: (1) Words are converted to lower case. (2) Numbers are copied.
(3) Punctuation marks are copied. (4) White space is converted to a single blank.
Every token in the tokenized text is separated by exactly one blank, whether
there is white space occurring in the input or not. Extra blanks are inserted
appropriately. Word and number tokens must be maximal. We also will produce
a de-tokenizer from our specification that produces the genealogical minimum
as output. An INR specification for the required transducer follows:

Upper = { A }; Lower = { a }; PosDigit = { 1 };

Digit = { 0, 1 }; Punct = { ’,’, ’.’ }; Blank = ’ ’;

Token = (Upper | Lower)+; Number = PosDigit Digit*;

White = Blank+; ToLower = { (A, a), (a, a) }*;

TCopy = (Token @@ ToLower) [[T]];

NCopy = (Number $ (0, 0)) [[N]];

PCopy = (Punct $ (0, 0)) [[P]];

WCopy = (White, Blank) [[W]];

Binst = (, Blank) [[B]];

Copy = [[S]] (TCopy | NCopy | PCopy | WCopy | Binst)* [[E]];

ZAlph = { T, N, P, W, B, S, E };

Invalid = { T, N, P } { T, N, P };

PreTokenize = Copy @ (ZAlph* Invalid ZAlph* :acomp);

Tokenize = PreTokenize :GMsseq;

DeTokenize = Tokenize $ (1, 0) :GMsseq;

Uniformizing Rational Relations for Natural Language Applications 179

S

W

P

T

N

|

,| ,
. | .

1 |1

A |a
a |a

|

,| ,
. | .

1 |1

A |a
a |a

|

,| ,
. | .

1 | 1

A | a
a | a

|

,| ,
. | .

0 |0
1 |1

A | a
a | a

|

,| ,
. | .

1 | 1

A |a
a |a

Fig. 1. Tokenizer

S W1 P

N

T

W2

W4

W3

|

,| ,
. | .

1 |1

a |A

,| ,
. | .

1 |1

a |A

|

|

0 |0
1 |1

|

a |A

|

,| ,
. | .

1 |1

a |A

|

,| ,
. | .

1 | 1

a |A

|
,| ,
. | .

1 |1

a | A

Fig. 2. De-tokenizer

Some of the techniques used by INR are unusual. A three-tape transducer
with the third tape used for control is used here. Letters T, N, P, W, B, C, E (in
double brackets to select tape 3) are tokens that appear on the control tape. The
composition operator (denoted by ’@’) causes the control tape to be removed
after the constraint of disallowing ‘Invalid’ sequences. Figure 1 shows the result
of the application of Algorithm 1 and Figure 2 shows a de-tokenizer that results
from applying Algorithm 1 to the inverse relation from Figure 1.

Finally, here is an example where the result of weighted determinization is
subsequential but Algorithm 1 does not terminate. Suppose that in the above
example, we insist that a word can be either all upper-case or all lower case and
mixed case is disallowed. The de-tokenizer, faced with a word token of arbitrary
length in lower case, would have to decide whether to output the upper case
form or the lower case form. Of course the answer would be upper case since

180 J. Howard Johnson

the ASCII letter ordering is being used. However, the decision about output is
deferred until the token is complete, and with arbitrarily long input, will be
deferred forever.

5 Conclusion and Future Work

A useful tool for uniformizing finite state transductions can be implemented
using a variation of weighted determinization over a novel ∗-semiring.

Practically and theoretically speaking it is unsatisfying to have a procedure
that fails by running until resources are exhausted. It would be definitely su-
perior to terminate if the computation is not possible, provide some diagnostic
information, and give a result that is still usable though with some flaws. In
addition the case where the expected result is subsequential but the algorithm
fails should be addressed.

References

1. Abdali, S.K., Saunders, B.D.: Transitive closure and related semiring properties

via eliminants. Theoretical Computer Science 40, 257–274 (1985)

2. Beesley, K.R., Karttunen, L.: Finite State Morphology. CSLI Publications, Stan-

ford (2003), http://www.fsmbook.com

3. Berstel, J.: Transductions and context-free languages. Teubner, Stuttgart (1979)

4. Conway, J.H.: Regular algebra and finite machines. Chapman and Hall, London

(1971)

5. Johnson, J.H.: INR—a program for computing finite state automata. INR manual

(1988), http://ginr.org

6. Johnson, J.H.: A unified framework for disambiguating finite transductions. The-

oretical Computer Science 63, 91–111 (1989)

7. Lehmann, D.J.: Algebraic structures for transitive closure. Theoretical Computer

Science 4(1), 59–76 (1977)

8. Mohri, M.: Finite-state transducers in language and speech processing. Computa-

tional Linguistics 23(2), 269–312 (1997)

9. Mohri, M.: Generic ε-removal algorithm for weighted automata. In: Yu, S., Păun,

A. (eds.) CIAA 2000. LNCS, vol. 2088, pp. 230–242. Springer, Heidelberg (2001)

10. Mohri, M., Pereira, F., Riley, M.: The design principles of a weighted finite-state

transducer library. Theoretical Computer Science 231(1), 17–32 (2000)

11. Mohri, M.: Generic ε-removal and input ε-normalization algorithms for weighted

transducers. International Journal of Foundations of Computer Science (2002)

12. Mohri, M.: Weighted automata algorithms. In: Droste, M., Kuich, W., Vogler, H.

(eds.) Handbook of Weighted Automata, ch. 6, pp. 213–254. Springer, Berlin (2009)

13. Sakarovitch, J.: Elements of automata theory. Cambridge University Press, Cam-

bridge (2009)

http://www.fsmbook.com
http://ginr.org

Partially Ordered Two-Way Büchi Automata�

Manfred Kufleitner and Alexander Lauser

FMI, Universität Stuttgart, Germany
{kufleitner,lauser}@fmi.uni-stuttgart.de

Abstract. We introduce partially ordered two-way Büchi automata over
infinite words. As for finite words, the nondeterministic variant recognizes
the fragment Σ2 of first-order logic FO[<] and the deterministic version
yields the Δ2-definable ω-languages. As a byproduct of our results, we
show that deterministic partially ordered two-way Büchi automata are
effectively closed under Boolean operations.

In addition, we have coNP-completeness results for the emptiness
problem and the inclusion problem over deterministic partially ordered
two-way Büchi automata.

1 Introduction

Büchi automata have been introduced in order to decide monadic second-order
logic over infinite words [2]. Today, they have become one of the most impor-
tant tools in model-checking sequential finite state systems, see e.g. [1,3]. Büchi
automata are nondeterministic finite automata, accepting infinite words if there
exists an infinite run such that some final state occurs infinitely often. A gen-
eralization are two-way Büchi automata; Pécuchet showed that they have the
same expressive power as ordinary Büchi automata [10]. Alternating two-way
Büchi automata have been used for model checking of temporal logic formulas
with past modalities [7,16]. These automata, too, can recognize nothing but reg-
ular ω-languages. With the usual padding technique, the succinctness result for
two-way automata over finite words [5] immediately yields an exponential lower
bound for the succinctness of two-way Büchi automata.

We introduce partially ordered two-way (po2) Büchi automata and we char-
acterize their expressive power in terms of fragments of first-order logic FO[<].
The fragment Σ2 consists of all FO[<]-sentences in prenex normal form with
one block of existential quantifiers followed by one block of universal quantifiers
followed by a propositional formula. The fragment Π2 contains the negations
of Σ2-formulas. By abuse of notation, we identify logical fragments with the
classes of ω-languages they define. Hence, it makes sense to define Δ2 = Σ2∩Π2,
i.e., an ω-language is Δ2-definable if it is both Σ2-definable and Π2-definable.
Therefore, Δ2 is the largest subclass of Σ2 (or Π2) which is closed under com-
plementation. Various characterizations of Σ2 and of Δ2 over infinite words are
� This work was supported by the German Research Foundation (DFG), grant

DI 435/5-1.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 181–190, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

182 M. Kufleitner and A. Lauser

known [15,4]. Requiring that a Σ2-formula and a Π2-formula agree on all infinite
words is in some sense more restrictive than requiring that they agree on all finite
words. For example over finite words, Δ2 has the same expressive power as first-
order logic with only two variables [14], whereas over infinite words, Δ2 is weaker
than first-order logic with two variables [4]. Moreover, Δ2 over finite words co-
incides with a language class called unambiguous polynomials [11], whereas over
infinite words, only some restricted variant of unambiguous polynomials is de-
finable in Δ2 [4].

Schwentick, Thérien, and Vollmer introduced the po2-automaton model over
finite words [12]; cf. [8] for further characterizations of such automata. A po2-
automaton is a two-way automaton with the property that once a state is left,
it is never entered again. Every such automaton admits a partial order on its
states such that transitions are non-decreasing. In fact, one could use a linear
order on the states, but this would distort the length of a longest chain, which
in some cases is a useful parameter. Nondeterministic po2-automata recognize
exactly the Σ2-definable languages over finite words whereas deterministic po2-
automata correspond to Δ2-definable languages [12].

In this paper, we present analog results over infinite words. More precisely,
for L ⊆ Γ ω we show that

– L is recognized by some nondeterministic partially ordered two-way Büchi
automaton if and only if L is definable in Σ2 (Theorem 1),

– L is recognized by some deterministic partially ordered two-way Büchi au-
tomaton if and only if L is definable in Δ2 (Theorem 3).

In particular, nondeterministic po2-Büchi automata are more powerful than de-
terministic po2-Büchi automata, and nondeterministic po2-Büchi automata are
not closed under complementation. The proof of Theorem 1 is a straightforward
generalization of the respective result for finite words. It is presented here for
the sake of completeness. The proof of Theorem 3 is new. It is based on a lan-
guage description from [4] rather than on so called turtle languages as in [12].
The main step in our proof is to show that deterministic po2-Büchi automata
are effectively closed under Boolean operations (Theorem 2). This is non-trivial,
since the approach of starting a second automaton after the first one has com-
pleted its computation does not work for Büchi automata. To this end, we sim-
ulate two deterministic po2-Büchi automata simultaneously, and we have to do
some bookkeeping of positions if the two automata walk in different directions.
Based on a small model property of po2-Büchi automata, we show in Theorem 4
that various decision problems over po2-Büchi automata are coNP-complete:
the emptiness problem for deterministic and for nondeterministic po2-Büchi au-
tomata; and the universality, the inclusion, and the equivalence problem for
deterministic po2-Büchi automata. Note that for (non-partially-ordered) one-
way Büchi automata, both the inclusion problem and the equivalence problem
are PSPACE-complete [13].

Due to lack of space, some proofs are omitted. For complete proofs, we refer
to the full version of this paper [6].

Partially Ordered Two-Way Büchi Automata 183

2 Preliminaries

Throughout this paper, Γ denotes a finite alphabet. The set of finite words over
A ⊆ Γ is A∗ and the set of infinite words over A is Aω . If we want to emphasize
that α ∈ Γ ω is an infinite word, then we say that α is an ω-word. The empty
word is ε. We have ∅∗ = {ε} and ∅ω = ∅. The length of a finite word w ∈ Γ ∗

is denoted by |w|, i.e., |w| = n if w = a1 · · · an with ai ∈ Γ . We set |α| = ∞ if
α ∈ Γ ω. The alphabet of a word α = a1a2 · · · ∈ Γ ∗∪Γ ω is denoted by alph(α). It
is the set of letters occurring in α. We say that a position i of α is an a-position
of α if ai = a.

A language is a subset of Γ ∗ or a subset of Γ ω. We emphasize that L ⊆ Γ ω con-
tains only infinite words by saying that L is an ω-language. A monomial (of degree
k) is a language of the form P = A∗

1a1 · · ·A∗
kakA∗

k+1. It is unambiguous if each
word w ∈ P has a unique factorization w = u1a1 · · ·ukakuk+1 with ui ∈ A∗

i . Sim-
ilarly, an ω-monomial is an ω-language of the form Q = A∗

1a1 · · ·A∗
kakAω

k+1 and
it is unambiguous if each word α ∈ Q has a unique factorization u1a1 · · ·ukakβ
with ui ∈ A∗

i and β ∈ Aω
k+1. A restricted unambiguous ω-monomial is an un-

ambiguous ω-monomial A∗
1a1 · · ·A∗

kakAω
k+1 such that {ai, . . . , ak} � Ai for all

1 ≤ i ≤ k. A polynomial is a finite union of monomials and an ω-polynomial is a
finite union of ω-monomials. A restricted unambiguous ω-polynomial is a finite
union of restricted unambiguous ω-monomials.

By FO[<] we denote the first-order logic over words interpreted as labeled
linear orders. As atomic formulas, FO[<] comprises 	 (for true) and ⊥ (for
false), the unary predicate λ(x)= a for a ∈ Γ , and the binary predicate x < y
for variables x and y. The idea is that variables range over the linearly ordered
positions of a word and λ(x)= a means that x is an a-position. Apart from
the Boolean connectives, we allow quantifications over position variables, i.e.,
existential quantifications ∃x : ϕ and universal quantifications ∀x : ϕ for ϕ ∈
FO[<]. The semantics is as usual.

Every formula in FO[<] can be converted into a semantically equivalent for-
mula in prenex normal form by renaming variables and moving quantifiers to
the front. This gives rise to the fragment Σ2 (resp. Π2) consisting of all FO[<]-
formulas in prenex normal form with only two blocks of quantifiers, starting
with a block of existential quantifiers (resp. universal quantifiers). Note that the
negation of a formula in Σ2 is equivalent to a formula in Π2 and vice versa. The
fragments Σ2 and Π2 are both closed under conjunction and disjunction.

A sentence in FO[<] is a formula without free variables. Since there are no
free variables in a sentence ϕ, the truth value of α |= ϕ is well-defined. The ω-
language defined by ϕ is L(ϕ) = {α ∈ Γ ω | α |= ϕ}. We frequently identify logical
fragments with the respective classes of languages. For example, Δ2 = Σ2 ∩ Π2

consist of all languages L such that L = L(ϕ) = L(ψ) for some ϕ ∈ Σ2 and
ψ ∈ Π2, i.e., a language L is Δ2-definable if there are equivalent formulas in Σ2

and in Π2 defining L. The notion of equivalence depends on the models and it
turns out to be a difference whether we use finite or infinite words as models,
cf. [4,14]. Unless stated otherwise, we shall only use infinite word models. In
particular, for the remainder of this paper Δ2 is a class of ω-languages.

184 M. Kufleitner and A. Lauser

2.1 Partially Ordered Two-Way Büchi Automata

In the following, we give the Büchi automaton pendant of a two-way automaton.
This is basically a Büchi automaton that may change the direction in which it
reads the input. A two-way Büchi automaton A = (Z, Γ, δ, X0, F) is given by:

– a finite set of states Z = X ∪̇ Y ,
– a finite input alphabet Γ ; the tape alphabet is Γ ∪̇ {�}, where the left end

marker � is a new symbol,
– a transition relation δ ⊆ (Z × Γ × Z) ∪ (Y × {�} × X),
– a set of initial states X0 ⊆ X , and
– a set of final states F ⊆ Z.

The states Z are partitioned into “neXt-states” X and “Yesterday-states” Y .
The idea is that states in X are entered with a right-move of the head while
states in Y are entered with a left-move. For (z, a, z′) ∈ δ we frequently use the
notation z a z′. On input α = a1a2 · · · ∈ Γ ω the tape is labeled by � α, i.e.,
positions i ≥ 1 are labeled by ai and position 0 is labeled by �. A configuration
of the automaton is given by a pair (z, i) where z ∈ Z is a state and i ∈ N is the
current position of the head. A transition (z, i) � (z′, j) on configurations (z, i)
and (z′, j) exists, if

– z a z′ for some a ∈ Γ ∪ {�} such that i is an a-position, and
– j = i + 1 if z′ ∈ X , and j = i − 1 if z′ ∈ Y .

The �-position can only be encountered in a state from Y and left via a state from
X . In particular, A can never overrun the left end marker �. Due to the partition
of the states Z, we can never have a change in direction without changing the
state. A configuration (z, i) is initial, if z ∈ X0 and i = 1. A computation of A
on input α is an infinite sequence of transitions

(z0, i0) � (z1, i1) � (z2, i2) � · · ·

such that (z0, i0) is initial. It is accepting, if there exists some final state which
occurs infinitely often in this computation. Now, A accepts an input α if there
is an accepting computation of A on input α. As usual, the language recognized
by A is L(A) = {α ∈ Γ ω | A accepts α}.

A two-way Büchi automaton is deterministic if |X0| = 1 and if for every
state z ∈ Z and every symbol a ∈ Γ ∪ {�} there is at most one z′ ∈ Z with
z a z′. A two-way Büchi automaton is complete if for every state z ∈ Z and
every symbol a ∈ Γ there is at least one z′ ∈ Z with z a z′, and for every z ∈ Y
there is at least one z′ ∈ X with z � z′.

We are now ready to define partially ordered two-way Büchi automata. We
use the abbreviation “po2” for “partially ordered two-way”. A two-way Büchi
automaton A is a po2-Büchi automaton, if there is a partial order � on the
set of states Z such that every transition is non-descending, i.e., if z a z′

then z � z′. In po2-Büchi automata, every computation enters a state at most
once and it defines a non-decreasing sequence of states. Since there can be no

Partially Ordered Two-Way Büchi Automata 185

infinite chain of states, every computation has a unique state z ∈ Z which occurs
infinitely often and this state is maximal among all states in the computation.
Moreover, z ∈ X since the automaton cannot loop in a left-moving state forever.
We call this state z stationary. A computation is accepting if and only if its
stationary state z is a final state. In particular, we can always assume F ⊆ X in
po2-Büchi automata.

3 Nondeterministic po2-Büchi Automata

In this section, we show that nondeterministic po2-Büchi automata recognize
exactly the class of Σ2-definable languages. Moreover, it turns out that nonde-
terministic po2-Büchi automata and nondeterministic partially ordered one-way
Büchi automata (i.e., Y = ∅ in our definition of nondeterministic po2-Büchi
automata) have the same expressive power. The proof is a straightforward ex-
tension of the respective result for finite words [12]. It is presented here only for
the sake of completeness.

Theorem 1. Let L ⊆ Γ ω. The following assertions are equivalent:

1. L is recognized by a nondeterministic po2-Büchi automaton.
2. L is Σ2-definable.
3. L is recognized by a nondeterministic partially ordered Büchi automaton.

Proof. “1 ⇒ 2”: Let A be a partially ordered two-way Büchi automaton. It
suffices to show that L(A) is an ω-polynomial, since every ω-polynomial is Σ2-
definable. This follows from Lemma 1 below (with A = B). “2 ⇒ 3”: Every Σ2-
definable ω-language is an ω-polynomial [15]. The following Büchi automaton
recognizes the ω-monomial A∗

1a1 · · ·A∗
kakAω

k+1:

x1 · · · xk xk+1

A1

a1 ak−1

Ak

ak

Ak+1

Now, every ω-polynomial can be recognized by a finite union of such automata.
“3 ⇒ 1”: Every partially ordered one-way Büchi automaton is a special case of a
po2-Büchi automaton. ��
Lemma 1. Let A and B be complete po2-Büchi automata and let nA and nB be
the lengths of the longest chains in the state sets of A and B, respectively. Then
for every α ∈ L(A) ∩ L(B) there exists an ω-monomial Pα of degree at most
nA + nB − 2 such that α ∈ Pα ⊆ L(A) ∩ L(B). In particular,

L(A) ∩ L(B) =
⋃

α∈L(A)∩L(B)

Pα

is an ω-polynomial, since there are only finitely many ω-monomials of degree at
most nA + nB − 2.

186 M. Kufleitner and A. Lauser

4 Deterministic po2-Büchi Automata

This section contains the main contribution of our paper, namely that the class
of languages recognizable by deterministic po2-Büchi automata is exactly the
fragment Δ2 of first-order logic. Our proof relies on a characterization of Δ2 in
terms of restricted unambiguous ω-polynomials [4]. As an intermediate step, we
show in Theorem 2 that deterministic po2-Büchi automata are effectively closed
under Boolean operations. Closure under complementation is surprising in the
sense that for general deterministic one-way Büchi automata (not necessarily
partially ordered), the same result does not hold.

Theorem 2. The class of languages recognized by deterministic po2-Büchi au-
tomata is effectively closed under complementation, union, and intersection.

Proof. For the effective closure under complementation we observe that the
unique stationary state determines the acceptance of the input word. Therefore,
complementation is achieved by complementing the set of final states. Effective
closure under positive Boolean combinations is Proposition 1. ��
Proposition 1. The class of languages recognized by deterministic po2-Büchi
automata is effectively closed under union and intersection.

Proof. Let A1 and A2 be complete deterministic po2-Büchi automata. We give a
product automaton construction A recognizing L(A1)∩L(A2). With a different
choice of the final states, the same automaton also recognizes L(A1) ∪ L(A2).
We start with a description of the general idea of our construction. Details
are given below. The automaton A operates in two modes: the synchronous
mode and the asynchronous mode. In the synchronous mode A executes both
automata at the same time until at least one of them changes to a left-moving
state. Then A changes to the asynchronous mode by activating a left-moving
automaton and suspending the other one. The position where this divergence
happens is called the synchronization point. We stay in the asynchronous mode
until the synchronization point is reached again. In a complete partially ordered
automaton this must happen eventually. If the two automata now agree on going
to the right, we switch back to the synchronous mode; else the process is repeated.

In order to recognize the synchronization point while executing the active
automaton in the asynchronous mode, A administers a stack of letters and a
pointer on this stack. The stack records the letters which led to a state change
during synchronous mode in at least one of the automata. The corresponding
positions of the word are called marker positions and its labels are markers. Let
a1 · · · am be the sequence of markers encountered during the computation and let
p1 < · · · < pm be the respective marker positions. Changing from synchronous
mode to asynchronous mode involves a state change of one of the automata A1

and A2. In particular, if A is in the asynchronous mode, then am is the label of
the synchronization point pm. Since both automata are deterministic, we have
that for every 1 ≤ k ≤ m the prefix of the input of length pk is the shortest prefix
admitting a1 · · · ak as a (scattered) subword. Our construction takes advantage

Partially Ordered Two-Way Büchi Automata 187

of this observation for detecting the synchronization point and in order to keep
the pointer up to date while simulating the active automaton. The semantics of
the pointer is as follows: If it points to a marker ak in an X-state (i.e., the current
state was entered with a right-move of the head) then the current position q of
A is in the left-open interval (pk−1; pm] and ak · · · am is a scattered subword of
the factor induced by the interval [q; pm]. If it points to ak in a Y -state then
q ∈ [pk−1; pm) and ak · · ·am is a scattered subword of (q; pm]. Here, we set p0 = 0
to be the position of the left end marker � for convenience. If the automaton is in
an X-state, scans am and the pointer points to the top of the stack, then we can
deduce q = pm, i.e., that we have reached the synchronization point. Now, if A is
in a Y -state at an ak−1-position and moves to the left afterward, then it is quite
possible that we are to the left of pk−1. But we cannot be to the left of pk−2 and
we know that now the subword ak−1 · · ·am appears in [q; pm]. Thus we adjust the
pointer to ak−1 in this case. On the other hand, if we scan ak in an X-state, then
we know that we are at a position ≥ pk since ak cannot appear in the interval
(pk−1; pk). Moreover, the subword ak+1 · · · am still appears in (q; pm]. Therefore,
we adjust the pointer to ak+1, if after reading ak the automaton moves to the
right.

What follows are the technical details of this construction. For i ∈ {1, 2} let
Ai = (Zi, Γ, δi, x

0
i , Fi) with Zi = Xi ∪̇ Yi. We construct A = (Z, Γ, δ, x0, F) with

Z = X ∪̇ Y satisfying the following constraints:

– Z ⊆ (Γ ∗ ×X1 ×X2)∪ (Γ ∗ ×Z1 ×Z2 ×N×{A1,A2}). The states of the first
term in the union are for the synchronous mode. The first component is the
stack of markers. Its size is bounded by |X1| + |X2|. For the asynchronous
states, the fourth component is the pointer to the stack of markers and the
fifth component specifies the active automaton.

– Y = Z ∩ (
(Γ ∗×Y1×Z2×N×{A1})∪(Γ ∗×Z1×Y2×N×{A2})

)
and X = Z\Y .

So the left-moving states of A are exactly those where in asynchronous mode
the active component is left-moving.

– x0 = (ε, x0
1, x

0
2), i.e., at the beginning A is in the synchronous mode, the

stack of markers is empty, and both automata are in their initial state.
– For recognizing the intersection we set F = Z ∩ (Γ ∗ × F1 × F2). For recog-

nizing the union we set F = Z ∩ (
(Γ ∗ × F1 × X2) ∪ (Γ ∗ × X1 × F2)

)
.

Next, we describe the transitions z a z′ of A. Let z = (w, z1, z2) when A is in
synchronous mode, and z = (w, z1, z2, k, C) otherwise. Furthermore, let z1

a z′1
in A1 and let z2

a z′2 in A2. Suppose that A is in synchronous mode, i.e.,
z ∈ Γ ∗ × X1 × X2. Let w′ = w if z′1 = z1 and z′2 = z2, and w′ = wa otherwise,
i.e., push the symbol to the stack if the state of at least one automaton changes
its state. We set

(w, z1, z2) a

⎧⎪⎨
⎪⎩

(w′, z′1, z
′
2) if z′1 ∈ X1 and z′2 ∈ X2,

(w′, z′1, z2, |w′|,A1) if z′1 ∈ Y1,
(w′, z1, z

′
2, |w′|,A2) else,

i.e., we stay in synchronous mode if both automata agree on moving right for
the next step, we suspend the second automaton if A1 wants to move to the left

188 M. Kufleitner and A. Lauser

(independent of the direction of A2), and we suspend the first automaton when
it wants to move to the right but A2 wants to move to the left. Consider now
an asynchronous state z ∈ Γ ∗ × Z1 ×Z2 × N ×{A1,A2}. First we deal with the
special case of which may lead to a synchronization. Let z ∈ X be scanning the
top letter of the stack, i.e., a is the last letter of w and the pointer is |w|:

(w, z1, z2, |w|, C) a

⎧⎪⎨
⎪⎩

(w, z′1, z′2) if z′1 ∈ X1 and z′2 ∈ X2,
(w, z′1, z2, |w|,A1) if z′1 ∈ Y1,
(w, z1, z

′
2, |w|,A2) else.

The first case is that both automata now agree on the direction of moving to
the right and then we change to synchronous mode. If not, the right-moving
automaton is suspended. If both are left-moving, then A2 is suspended. For the
other situations we only consider the case of C = A1 being active. The case
C = A2 is similar.

(w, z1, z2, k,A1) a

⎧⎪⎨
⎪⎩

(w, z′1, z2, k − 1,A1) if z1, z
′
1 ∈ Y1 and ak−1 = a,

(w, z′1, z2, k + 1,A1) if z1, z
′
1 ∈ X1 and ak = a,

(w, z′1, z2, k ,A1) else.

Since A1 is active, we simulate this automaton. The fourth component never
gets greater than |w|, since scanning the last remaining symbol in an X-state is
treated differently.

One can verify that A is partially ordered. The main idea is that between any
increase and any decrease of the pointer (and also between any decrease and any
increase), the state of the active automaton changes.

Let n1 and n2 be the length of a maximal chain of states in X1 and X2,
respectively. The size of the stack in the first component is bounded by n =
n1 + n2 − 2. Therefore, the construction can be realized by an automaton with
at most |Γ |n|Z1||Z2|(1 + 2n) states. Moreover, the construction is effective. ��
Proposition 2. Every restricted unambiguous ω-monomial is recognized by a
deterministic po2-Büchi automaton.

Lemma 2. Let A be a deterministic po2-Büchi automaton. Then L(A) is a
restricted unambiguous ω-polynomial.

Theorem 3. Let L ⊆ Γ ω. The following assertions are equivalent:
1. L is recognized by a deterministic po2-Büchi automaton.
2. L is Δ2-definable.

Proof. An ω-language L is Δ2-definable if and only if L is a restricted unam-
biguous ω-polynomial [4]. The implication “1 ⇒ 2” is Lemma 2, and “2 ⇒ 1”
follows from Proposition 1 and Proposition 2. ��
Example 1. The ω-language {a, b}∗ a ∅∗c {c}ω is recognizable by a deterministic
po2-Büchi automaton, but it is not recognizable by a deterministic partially
ordered one-way Büchi automaton. Hence, the class of ω-languages recognizable
by deterministic partially ordered one-way Büchi automata is a strict subclass
of the class recognizable by deterministic po2-Büchi automata. ♦

Partially Ordered Two-Way Büchi Automata 189

5 Complexity Results

In this section, we prove some complexity bounds for the following decision
problems (given po2-Büchi automata A and B):

– Inclusion: Decide whether L(A) ⊆ L(B).
– Equivalence: Decide whether L(A) = L(B).
– Emptiness: Decide whether L(A) = ∅.
– Universality: Decide whether L(A) = Γ ω.

Lemma 3. Inclusion is in coNP for nondeterministic A and deterministic B.

Lemma 4. Emptiness is coNP-hard for deterministic po2-Büchi automata.

Theorem 4. Emptiness is coNP-complete for both nondeterministic and de-
terministic po2-Büchi automata. Inclusion, Equivalence and Universality
are coNP-complete for deterministic po2-Büchi automata; for Inclusion this
still holds for nondeterministic A.

Proof. Taking L(B) = ∅, Lemma 3 yields that Emptiness is in coNP for nonde-
terministic po2-Büchi automata. Lemma 4 shows that Emptiness is coNP-hard
even for deterministic po2-Büchi automata.

From Inclusion ∈ coNP for deterministic po2-Büchi automata, we imme-
diately get that Equivalence and Universality are in coNP. Moreover, the
trivial reductions from Emptiness to Universality to Equivalence and from
Emptiness to Inclusion show that all problems under consideration are coNP-
hard for deterministic po2-Büchi automata.

For nondeterministic A and deterministic B, Lemma 3 shows that Inclusion
is in coNP and of course it is coNP-hard since this is already true if both au-
tomata are deterministic. ��

6 Conclusion

In this paper, we introduced partially ordered two-way Büchi automata (po2-
Büchi automata). The nondeterministic variant corresponds to the fragment Σ2

of first-order logic, whereas the deterministic variant is characterized by the
fragment Δ2 = Σ2 ∩ Π2. The characterization of nondeterministic automata
uses similar techniques as for finite words [12]. For deterministic automata, our
proof uses new techniques and it relies on a novel language description of Δ2

involving restricted unambiguous ω-polynomials [4]. As an intermediate step it
turns out that the class of ω-languages recognized by deterministic po2-Büchi
automata is effectively closed under Boolean operations.

The complexity of the Emptiness problem for both deterministic and nonde-
terministic po2-Büchi automata is coNP-complete. For deterministic po2-Büchi
automata the decision problems Inclusion, Equivalence, and Universality
are coNP-complete. To date, no non-trivial upper bounds are known for these
decision problems over nondeterministic automata. Moreover, the complexity of
the decision problems for general two-way Büchi automata as well as the suc-
cinctness of this model have not yet been considered in the literature.

190 M. Kufleitner and A. Lauser

Considering fragments with successor would be a natural extension of our
results. An automaton model for the fragment Δ2 with successor over finite
words has been given by Lodaya, Pandya, and Shah [9] in terms of deterministic
partially ordered two-way automata with look-around. We conjecture that extend-
ing such automata with a Büchi acceptance condition yields a characterization
of Δ2 with successor over infinite words.

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

2. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Proc.
Int. Congr. for Logic, Methodology, and Philosophy of Science, pp. 1–11. Stanford
Univ. Press, Stanford (1962)

3. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press,
Cambridge (1999)

4. Diekert, V., Kufleitner, M.: Fragments of first-order logic over infinite words. In:
STACS 2009. Dagstuhl Seminar Proceedings, vol. 09001, pp. 325–336 (2009)

5. Kapoutsis, C.A.: Removing bidirectionality from nondeterministic finite automata.
In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 544–
555. Springer, Heidelberg (2005)

6. Kufleitner, M., Lauser, A.: Partially ordered two-way Büchi automata. Technical
report no. 2010/03, Universität Stuttgart, Informatik (2010)

7. Kupferman, O., Piterman, N., Vardi, M.Y.: Extended temporal logic revisited. In:
Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 519–535.
Springer, Heidelberg (2001)

8. Lodaya, K., Pandya, P.K., Shah, S.S.: Marking the chops: An unambiguous tem-
poral logic. IFIP TCS 273, 461–476 (2008)

9. Lodaya, K., Pandya, P.K., Shah, S.S.: Around dot depth two. In: Gao, Y., Lu,
H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 305–316. Springer,
Heidelberg (2010)

10. Pécuchet, J.-P.: Automates boustrophédon et mots infinis. Theoretical Computer
Science 35, 115–122 (1985)

11. Pin, J.-É., Weil, P.: Polynomial closure and unambiguous product. Theory of Com-
puting Systems 30(4), 383–422 (1997)

12. Schwentick, T., Thérien, D., Vollmer, H.: Partially-ordered two-way automata: A
new characterization of DA. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT
2001. LNCS, vol. 2295, pp. 239–250. Springer, Heidelberg (2002)

13. Sistla, A.P., Vardi, M.Y., Wolper, P.L.: The complementation problem for Büchi
automata with applications to temporal logic. Theoretical Computer Science 49(2-
3), 217–237 (1987)

14. Thérien, D., Wilke, T.: Over words, two variables are as powerful as one quantifier
alternation. In: STOC 1998, pp. 234–240 (1998)

15. Thomas, W.: Classifying regular events in symbolic logic. Journal of Computer and
System Sciences 25, 360–376 (1982)

16. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer,
Heidelberg (1998)

Two-Party Watson-Crick Computations

Martin Kutrib and Andreas Malcher

Institut für Informatik, Universität Giessen

Arndtstr. 2, 35392 Giessen, Germany

{kutrib,malcher}@informatik.uni-giessen.de

Abstract. We investigate synchronous systems consisting of two finite

automata running in opposite directions on a shared read-only input.

The automata communicate by sending messages. The communication

is quantitatively measured by the number of messages sent during a

computation. It is shown that even the weakest non-trivial devices in

question, that is, systems that are allowed to communicate constantly

often only, accept non-context-free languages. We investigate the com-

putational capacity of the devices in question and prove a strict four-level

hierarchy depending on the number of messages sent. The strictness of

the hierarchy is shown by means of Kolmogorov complexity. For systems

with unlimited communication several properties are known to be unde-

cidable. A question is to what extent communication has to be reduced

in order to regain decidability. Here, we derive that the problems remain

non-semidecidable even if the communication is reduced to a limit close

to the logarithm of the length of the input. Furthermore, we show that

the border between decidability and undecidability is crossed when the

communication is reduced to be constant. In this case only semilinear

languages can be accepted.

1 Introduction

Watson-Crick automata were introduced in [3] as a formal model for DNA com-
puting. Their definition has been inspired by processes observed in nature and
laboratories. The idea is to have an automaton with two reading heads running
on either strand of a double stranded DNA-molecule. Since in nature enzymes
that actually move along DNA strands may obey the biochemical direction of the
single strands of the DNA sequence, so-called 5′ → 3′ Watson-Crick automata
have been introduced in [12] after an idea presented in [13]. Basically, these sys-
tems are two-head finite automata where the heads start at opposite ends of a
strand and move in opposite physical directions. If the complementarity relation
of the double stranded sequence is known to be one-to-one, no additional infor-
mation is encoded in the second strand. Then 5′ → 3′ Watson-Crick automata
share a common input sequence.

Whenever several heads of a device are controlled by a common finite-state
control, one may suppose that the heads are synchronous and autonomous finite
automata that communicate their states in every time step. Here, we add a new
feature to 5′ → 3′ Watson-Crick automata. It seems to be unlikely that in reality

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 191–200, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

192 M. Kutrib and A. Malcher

enzymes moving along and acting on DNA molecules communicate in every time
step. So, we consider 5′ → 3′ Watson-Crick systems where the components may
but don’t need to communicate by broadcasting messages. We are interested in
the impact of communication in such devices, where the communication is quan-
titatively measured by the total number of messages sent during a computation.
The role of message complexity in conventional one-way and two-way multi-head
finite automata has been studied in [6,7], where deep results have been obtained.
According to the notations given there and in order to differentiate the nota-
tion from ‘conventional’ 5′ → 3′ Watson-Crick automata we call the devices in
question two-party Watson-Crick systems. Recently, deterministic Watson-Crick
automata have been studied from a descriptional complexity point of view in [2].

The idea of another related approach is based on so-called parallel communi-
cating finite automata systems which were introduced in [10]. In this model, the
input is read and processed in parallel by several one-way (left-to-right) finite
automata. The communication is defined in such a way that an automaton can
request the current state from another automaton, and is set to that state after
receiving it whereby its former state is lost. One can distinguish whether each
automaton which sends its current state is reset to its initial state or not. The
degree of communication in such devices was studied in [11]. Without consider-
ing the message complexity, the concept of one-way parallel communicating fi-
nite automata systems was investigated for conventional Watson-Crick automata
in [1].

In this paper, we study the computational capacity and decidability questions
for deterministic two-party Watson-Crick systems whose message complexity is
bounded. It is shown that devices allowed to send just one message during a com-
putation can accept non-regular languages. For at most two messages we obtain
a non-context-free language. More general, we prove a strict four-level hierarchy
depending on the number of messages sent, where the levels are given by O(1),
O(log(n)), O(

√
n), and O(n) messages allowed. The strictness of the hierarchy is

shown by arguments of Kolmogorov complexity. For systems with unlimited com-
munication several properties are known to be undecidable [8]. Here, we prove
that problems such as emptiness, finiteness, infiniteness, inclusion, equivalence,
regularity, and context-freeness are non-semidecidable, that is, not recursively
enumerable even if the communication is reduced to a limit O(log(n)·log log(n)).
However, we show that problems become decidable when the communication is
reduced to be constant. In this case only semilinear languages can be accepted.
The proof is based on a simulation of deterministic two-party Watson-Crick
systems by deterministic reversal-bounded multi-counter machines.

2 Preliminaries and Definitions

We denote the set of nonnegative integers by N. We write Σ∗ for the set of
all words over the finite alphabet Σ. The empty word is denoted by λ, and
Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted by wR and for the length
of w we write |w|. We use ⊆ for inclusions and ⊂ for strict inclusions.

Two-Party Watson-Crick Computations 193

A two-party Watson-Crick system is a device of two finite automata working
independently and in opposite directions on a common read-only input data.
The automata communicate by broadcasting messages. The transition function
of a single automaton depends on its current state, the currently scanned input
symbol, and the message currently received from the other automaton. Both au-
tomata work synchronously and the messages are delivered instantly. Whenever
the transition function of (at least) one of the single automata is undefined the
whole systems halts. The input is accepted if at least one of the automata is in
an accepting state. A formal definition is as follows.

Definition 1. A deterministic two-party Watson-Crick system (DPWK) is a
construct A = 〈Σ, M, �, �, A1, A2, 〉, where Σ is the finite set of input sym-
bols, M is the set of possible messages, � /∈ Σ and � /∈ Σ are the left and
right endmarkers, and each Ai = 〈Qi, Σ, δi, μi, q0,i, Fi〉, i ∈ {1, 2}, is basically
a deterministic finite automaton with state set Qi, initial state q0,i ∈ Qi, and
set of accepting states Fi ⊆ Qi. Additionally, each Ai has a broadcast func-
tion μi : Qi × (Σ ∪ {�, �}) → M ∪ {⊥} which determines the message to be
sent, where ⊥ /∈ M means nothing to send, and a (partial) transition function
δi : Qi × (Σ ∪ {�, �}) × (M ∪ {⊥}) → Qi × {0, 1}, where 1 means to move the
head one square and 0 means to keep the head on the current square.

The automata A1 and A2 are called components of the system A, where the so-
called upper component A1 starts at the left end of the input and moves from left to
right, and the lower component A2 starts at the right end of the input and moves
from right to left. A configuration ofA is represented by a string �v1

−→p xv2y q←−v3�,
where v1xv2yv3 is the input and it is understood that component A1 is in state p
with its head scanning symbol x, and component A2 is in state q with its head
scanning symbol y. System A starts with component A1 in its initial state scan-
ning the left endmarker and component A2 in its initial state scanning the right
endmarker. So, for input w ∈ Σ∗, the initial configuration is −→q0,1�w�q0,2←−. A com-

putation of A is a sequence of configurations beginning with an initial configu-
ration. One step from a configuration to its successor configuration is denoted
by �. Let w = a1a2 · · · an be the input, a0 = �, and an+1 = �, then we set
a0 · · · ai−1

−→p ai · · · aj q←−aj+1 · · ·an+1 � a0 · · · ai′−1
−→p1ai′ · · ·aj′ q1←−aj′+1 · · · an+1, for

0 ≤ i ≤ j ≤ n + 1, and a0 · · · aj q←−aj+1 · · · ai−1
−→p ai · · · an+1 � a0 · · ·aj′ q←−aj′+1 · · ·

ai′−1
−→p ai′ · · ·an+1, for 0 ≤ j ≤ i ≤ n + 1, iff δ1(p, ai, μ(q, aj)) = (p1, d1) and

δ2(q, aj , μ(p, ai)) = (q1, d2), i′ = i + d1 and j′ = j − d2. As usual we define the
reflexive, transitive closure of � by �∗.

A computation halts when the successor configuration is not defined for the
current configuration. This may happen when the transition function of one
component is not defined. The language L(A) accepted by a DPWK A is the
set of inputs w ∈ Σ∗ such that there is some computation beginning with the
initial configuration for w and halting with at least one component being in an
accepting state.

194 M. Kutrib and A. Malcher

In the following, we study the impact of communication in deterministic two-
party Watson-Crick systems. The communication is measured by the total num-
ber of messages sent during a computation, where it is understood that ⊥ means
no message and, thus, is not counted.

Let f : N → N be a mapping. If all w ∈ L(A) are accepted with computations
where the total number of messages sent is bounded by f(|w|), then A is said
to be communication bounded by f . We denote the class of DPWKs that are
communication bounded by f by DPWK(f).

In general, the family of languages accepted by devices of type X is denoted
by L (X). To illustrate the definitions we start with a result giving an example.

Lemma 2. The language { anbncn | n ≥ 1 } belongs to L (DPWK(2)).

Proof. The principal idea of the construction is that both components move their
heads with different speeds from left to right and from right to left, respectively.
The lower component sends a message when the borders between b’s and c’s
and between a’s and b’s have been crossed, whereas the upper component checks
whether it receives both messages at the correct time. More detailed, on input of
the form aibjck the upper component starts to move across the a-block, while the
lower component moves across the c-block. When the lower component reaches
a symbol b for the first time it sends a message and continues to move to the left
with half speed, that is, one square at every other time step. When it arrives at
a symbol a for the first time it sends a second message. After receiving the first
message exactly at the first symbol b, the upper component continues to move
to the right one square in each time step. It accepts the input if and only if it
receives the second message exactly when it reaches the right endmarker. In this
case we know i = k by the first message. The second message ensures 2j = j + k
and, thus, j = k. ��

3 Computational Capacity

First we note that any DPWK can be simulated by a two-way two-head finite
automaton in a straightforward manner. Therefore, the family L (DPWK) is a
proper subclass of the complexity class L. From Lemma 2 we can immediately
derive the construction of a DPWK(1) that accepts the non-regular language
{ anbn | n ≥ 1 }. Together with the obvious inclusion of the regular languages
in L (DPWK(1)) we obtain that just one communication suffices to accept all
regular languages and, additionally, also some non-regular languages, whereas
two communications allow to accept non-context-free languages. However, the
witness languages are semilinear. In [8] it has been shown that DPWKs that
communicate in every time step accept non-semilinear languages. So, the ques-
tion arises how much communication is necessary to accept a non-semilinear
language. The next lemma gives an upper bound. A lower bound will be derived
later.

Lemma 3. Language Lexpo = { a20
ba22

b · · · ba22m

ca22m+1
b · · · ba23

ba21 | m ≥ 1 }
belongs to L (DPWK(O(log(n)))).

Two-Party Watson-Crick Computations 195

Proof. Roughly, the idea of the construction is that in a first phase the compo-
nents compare the lengths 20 with 21, 22 with 23, . . . , and 22m with 22m+1. After
the first phase both components have reached the center symbol c. Next, a sec-
ond phase is used to compare the length 22m with 22m−1, 22m−2 with 22m−3,. . . ,
and 22 with 21. To this end, the lower component A2 waits on the c until the up-
per component A1 has moved across the block a22m+1

. For the comparisons, A1

moves across its a-blocks with half speed, while A2 moves across its a-blocks one
square in each step. The lengths of the first and second phase are checked by
communicating when a b or c is reached which must happen synchronously.

The length of an accepted input is n = 22m+2+2m. There is a communication
on every symbol b and on symbol c as well as on the right endmarker, so there
are 2m + 2 communications. This is of order O(log(n)). ��
By a similar construction as for Lemma 3 the next lemma can be shown.

Lemma 4. The language Lpoly = { aba5ba9b · · · ba4m+1ca4m+3b · · · ba11ba7ba3 |
m ≥ 0 } belongs to L (DPWK(O(

√
n))).

As another important example we consider the language {wcwR | w ∈ {0, 1}∗ }.
As already mentioned in [8], it is accepted by a DPWK with unlimited commu-
nication, that is, by a DPWK(O(n)).

Lemma 5. The language {wcwR | w ∈ {0, 1}∗ } belongs to L (DPWK(O(n))).

By definition we have a finite hierarchy of language classes as follows.

L (DPWK(O(1))) ⊂ L (DPWK(O(log(n)))) ⊂
L (DPWK(O(

√
n))) ⊂ L (DPWK(O(n)))

Next, we turn to separate the levels of the hierarchy, that is, we show that
the inclusions are, in fact, strict. For the proof of the following theorem we use
an incompressibility argument. General information on Kolmogorov complexity
and the incompressibility method may be found in [9]. Let w ∈ {0, 1}+ be an
arbitrary binary string of length n. Then the Kolmogorov complexity C(w|n) of
w denotes the minimal size of a program describing w and knowing the length
n. It is well known that there exist binary strings w of arbitrary length n such
that C(w|n) ≥ n (cf. [9]).

Theorem 6. If f ∈ n
ω(log(n)) , then L = {wcwR | w ∈ {0, 1}∗ } does not belong

to L (DPWK(f)).

Proof. By way of contradiction, we assume that L is accepted by some DPWK(f)
A = 〈Σ, M, �, �, A1, A2, 〉 with f(n) ∈ n

ω(log(n)) . Let z = wcwR for some w ∈
{0, 1}+ and K0 � · · · � Kacc be the accepting computation on input z where K0

is the initial configuration and Kacc is an accepting configuration.
Next, we make snapshots of configurations at every time step a communication

takes place. For every such configuration, we remember the time step ti, the

196 M. Kutrib and A. Malcher

current states q
(i)
1 , q

(i)
2 and head positions p

(i)
1 , p

(i)
2 of the components, and

both messages sent (m(i)
1 , m

(i)
2). Thus, the ith snapshot is denoted by the tuple

(ti, q
(i)
1 , p

(i)
1 , m

(i)
1 , q

(i)
2 , p

(i)
2 , m

(i)
2). Since there are altogether at most f(2|w| + 1)

communications, the list of snapshots Λ contains at most f(2|w| + 1) entries.
We claim that each snapshot can be represented by at most O(log(|w|)) bits.

It can be shown that acceptance is in linear time and, therefore, each time
step can be represented by at most O(log(|w|)) bits. Each position can also be
represented by at most O(log(|w|)) bits. Finally, each state and message obtained
can be represented by a constant number of bits. Altogether, each snapshot can
be represented by O(log(|w|)) bits. So, the list Λ can be represented by at most
f(2|w| + 1) · O(log(|w|)) = |w|

ω(log(|w|)) · O(log(|w|)) = o(|w|) bits.
Next, we claim that the list Λ of snapshots together with snapshots of K0

and Kacc and the knowledge of A and |w| is sufficient to reconstruct w. This
reconstruction is described by the following program P which may be realized,
e.g., by some Turing machine. First, P sequentially simulates A on all 2|w| in-
puts xcxR where |x| = |w|. Additionally, it is checked whether the computation
simulated has the same snapshots of the initial configuration, all communication
configurations, and the accepting configuration. In this way, the string w can
be identified. We have to show that there is no other string w′ �= w which can
be identified in this way as well. Let us assume that such a w′ exists. Then all
snapshots of accepting computations on input wcwR and w′cw′R are identical.
This means that both computations start and end at the same time steps and
both components are in the same state and position. Additionally, in both com-
putations communications take place at the same time steps, both components
are in the same state and position at that moment and obtain the same mes-
sages. Then both computations are also accepting on input wcw′R which is a
contradiction.

Thus, w can be reconstructed given the above program P , the list of snap-
shots Λ, snapshots of the initial and accepting configuration, A, and |w|. Since
the size of P and A is bounded by a constant, the size of Λ is bounded by o(|w|),
and |w| as well as the size of both remaining snapshots is bounded by O(log(|w|))
each, we can reconstruct w from a description of total size o(|w|). Hence, the Kol-
mogorov complexity C(w||w|), that is, the minimal size of a program describing w
is bounded by the size of the above description, and we obtain C(w||w|) ∈ o(|w|).
On the other hand, we know that there are binary strings w of arbitrary length
such that C(w||w|) ≥ |w|. This is a contradiction for w being long enough. ��
The previous theorem separates the language classes L (DPWK(O(

√
n))) and

L (DPWK(O(n))) by the witness language {wcwR | w ∈ {0, 1}∗ }. The next
theorem separates the classes L (DPWK(O(log(n)))) and L (DPWK(O(

√
n)))

by the witness language L̂poly = { ax1a
5x2 · · ·xma4m+1ca4m+3xm · · ·x2a

7x1a
3 |

m ≥ 0 and xi ∈ {0, 1}, 1 ≤ i ≤ m } which can be shown to belong to the language
class L (DPWK(O(

√
n))). This proof and the proof the next theorem is omitted

owing to space constraints. The remaining two levels are separated at the end
of Section 4.

Two-Party Watson-Crick Computations 197

Theorem 7. If f ∈ O(log(n)), then L̂poly does not belong to L (DPWK(f)).

4 Decidability Problems

For DPWKs with unlimited communication, that is for DPWK(O(n))s, empti-
ness, finiteness, equivalence, and inclusion are shown to be undecidable in [8].
This section is devoted to investigating decidability problems of DPWKs with
sparse communication. The question is to what extent communication has to
be reduced in order to regain the decidability of certain problems. Here, we de-
rive that the problems remain undecidable even if the communication is reduced
to a limit close to the logarithm of the length of the input. Furthermore we
show that the border between decidability and undecidability is crossed when
the communication is reduced to be constant.

To prove our non-semidecidability results we use the technique of valid com-
putations of Turing machines [4]. Here, a decidability problem is said to be
semidecidable if the set of all instances for which the answer is “yes” is recur-
sively enumerable. It suffices to consider deterministic Turing machines with one
single read-write head and one single tape whose space is fixed by the length of
the input, that is, so-called linear bounded automata (LBA).

Basically, it has been shown in [8] that, given a Turing machine M the set
of valid computations VALC(M) is accepted by some DPWK with unlimited
communication, that is, by some DPWK(O(n)). We omit the details of the
definition of the slightly modified set VALCex which can be shown to be accepted
by some DPWK(log(n) · log log(n)).

Theorem 8. The problems of testing emptiness, finiteness, and infiniteness are
not semidecidable for DPWK(log(n) · log log(n)).

Proof. We prove the theorem by reduction of the decidability problems for LBAs.
To this end, let M be an arbitrary LBA as it has been used for the definition of
the valid computations. First, M is modified to accept not before time step 2n,
where n is the length of the input. To this end, any halting transition is replaced
by a procedure that establishes a binary counter on an extra track of the tape.
The counter is increased successively. When it overflows, LBA M has counted
up to 2n and halts. The properties emptiness, finiteness, and infiniteness are not
affected by this modification. Moreover, VALCex(M) is empty, infinite or finite if
and only if the language accepted by LBA M is. Therefore, since VALCex(M) is
accepted by some DPWK(log(n) · log log(n)), the non-semidecidability for LBAs
implies the assertion.

Let k be the number of steps that are performed by the unmodified LBA.
Then the modified LBA runs through 2n + k configurations each of length n.
Therefore n(2n + k) communications are necessary to accept the corresponding
valid computation from VALC(M) and, thus, from VALCex(M). On the other
hand, the length of the valid computation from VALCex(M) is at least n22n+k.
Since log(n22n+k) > 2n + k and log log(n22n+k) > n, the number n(2n + k)
of communications allowed exceeds the number of communications necessary,
which completes the construction and the proof. ��

198 M. Kutrib and A. Malcher

By reduction of the non-semidecidable problems shown in the previous theorem,
we obtain further non-semidecidable properties.

Theorem 9. The problems of testing inclusion, equivalence, regularity, and con-
text-freeness are not semidecidable for DPWK(log(n) · log log(n)).

Lemma 2 revealed that even two communications suffice to accept non-context-
free languages. Moreover, with one single communication non-regular languages
can be accepted. However, next we cross the border between decidability and
undecidability by considering DPWKs whose communication is bounded by ar-
bitrary constants. In order to prove the results we establish a simulation of a
given DPWK(O(1)) by reversal-bounded two-way multi-counter machines.

Basically, a two-way k-counter machine is a device with a finite-state control,
a two-way read-only input head which operates on an input tape delimited by
endmarkers, and k counters, each capable of storing any nonnegative integer. At
the start of the computation the device is set to a specified initial state with the
input head on the left endmarker and all counters set to 0. A move consists of
moving the input head a position to the right, to the left, or to keep it at its
current position, adding −1, 0, or +1 to each counter, and changing the state.
The machine can test the counters for zero. The input is accepted if the device
eventually halts in an accepting state. A two-way k-counter machine is said to be
(r, s)-reversal bounded if there are nonnegative integers r and s so that in every
accepting computation the input head reverses its direction at most r times and
the content in each counter alternately increases and decreases by at most s
times. In [5] these machines are formally defined and studied. In particular, it is
shown that many properties are decidable and, thus, reversal-bounded two-way
multi-counter machines are of tangible advantage for our purposes.

Theorem 10. For all k ≥ 0 there are constants r and s such that any DPWK(k)
can effectively be simulated by a deterministic (r, s)-reversal bounded two-way 4-
counter machine.

Proof. Let A be a DPWK(k). We construct an equivalent deterministic two-way
4-counter machine M . Three of the counters, say pos1, pos2, and pos3 are used
to position the head of M to the current positions of the components of A. The
fourth counter, say run, is used to count a number of steps during the simulations
of the components.

The simulation is implemented in at most k + 1 phases, where a phase ends
when a component communicates or halts. Assume that at the beginning of a
phase the head (of M) is on the left endmarker, counter run is 0, counter posi

contains the current position from the left of the upper component A1, counter
posj contains the current position from the right of the lower component A2,
and M has stored the current states of the components in its finite control. This
configuration is given at the outset of the simulation and, thus, at the beginning
of the first phase. During a phase the following tasks are performed.

1. The head is moved to the current position of component A1. This can be
done by decreasing counter posi to 0, whereby the head is moved to the
right. In addition, the content of posi is successively copied to counter posk.

Two-Party Watson-Crick Computations 199

2. The component A1 is directly simulated until it communicates, halts, or
loops without moving (which can be detected by the finite control). In each
simulation step the counter run is increased by 1.

3. The head is moved to the right endmarker. Then it is moved to the left to
the current position of component A2 with the help of counter posj . The
content of posj is successively copied to counter posi.

4. Now component A2 is directly simulated. If the preceding simulation of A1

ends with A1 looping, then A2 is simulated until it communicates, halts,
or loops without moving, and counter run is decreased to 0. Else A2 is
simulated whereby the counter run is decreased in every step. In this case
the simulation stops when A2 communicates, halts, loops without moving,
or when run is decreased to 0.

If M detects that both components run through loops, it rejects the
input. If exactly one of the components loops, the other one is considered
for the next task. If none of the components loops, the component with
fewer simulation steps is considered for the next task. The component can
be determined by inspecting counter run. If the simulation of A2 stops due
to an empty counter, A1 is considered, otherwise A2.

5. The head is moved to the left endmarker if A1 is considered, otherwise to
the right endmarker. Then it is moved again to the current position of the
component considered, whereby the corresponding position counter is copied
to posj .

6. Then theprevious simulationof the component considered is restarted,whereby
the corresponding position counter is kept up-to-date. Again, the number of
simulation steps performed is stored in counter run. If the simulation stops
with the component communicating, M remembers the message sent.

7. The head is moved to the opposite endmarker in order to initialize the restart
of the simulation of the other component. Again, the head is positioned with
the help of the position counter and the position counter which is currently
empty. Then the simulation is performed for the number of steps given by
the content of counter run, that is, the number of steps the first component
has been simulated.

8. Finally, if one of the components halted, M can decide whether A accepts or
rejects and can do the same. If the simulation ended by a communication, M
can internally update the states of A1 and A2, move the head back on the
left endmarker, and start a new phase.

The effective construction shows that M accepts the language L(A) with four
counters. Since in every task at most a constant number of head and counter
reversals are performed, it suffices to add these constants in order to compute
the numbers r and s. This shows that M is reversal-bounded and concludes the
proof. ��
It has been shown in [5] that the properties of the following theorem are decidable
for deterministic reversal-bounded two-way finite-counter machines. Due to the
effectiveness in the construction of Theorem 10 they are decidable for DPWK(k),
too.

200 M. Kutrib and A. Malcher

Theorem 11. Let k ≥ 0 be a constant. Then emptiness, finiteness, inclusion,
and equivalence are decidable for DPWK(k).

Another result in [5] says that any language which is accepted by a deterministic
reversal-bounded two-way finite-counter machine has a semilinear Parikh image.
Thus, the next corollary separates the language classes L (DPWK(O(1))) and
L (DPWK(O(log(n)))) by the witness language Lexpo.

Corollary 12. Let k ≥ 0 be a constant. Every unary language accepted by some
DPWK(k) is regular. The languages { anb2n | n ≥ 0 }, { anbn2 | n ≥ 0 } etc.
cannot be accepted by any DPWK(k). The languages Lpoly and Lexpo cannot be
accepted by any DPWK(k).

References

1. Czeizler, E., Czeizler, E.: On the power of parallel communicating Watson-Crick

automata systems. Theoret. Comput. Sci. 358, 142–147 (2006)

2. Czeizler, E., Czeizler, E., Kari, L., Salomaa, K.: On the descriptional complexity

of Watson-Crick automata. Theoret. Comput. Sci. 410, 3250–3260 (2009)

3. Freund, R., Păun, G., Rozenberg, G., Salomaa, A.: Watson-Crick finite automata.

In: DIMACS Workshop on DNA Based Computers, University of Pennsylvania,

pp. 305–317 (1997)

4. Hartmanis, J.: Context-free languages and Turing machine computations. Proc.

Symposia in Applied Mathematics 19, 42–51 (1967)

5. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-

lems. J. ACM 25, 116–133 (1978)

6. Jurdziński, T., Kuty�lowski, M.: Communication gap for finite memory devices. In:

Yu, Y., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp.

1052–1064. Springer, Heidelberg (2001)

7. Jurdziński, T., Kuty�lowski, M., Loryś, K.: Multi-party finite computations. In:

Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON

1999. LNCS, vol. 1627, pp. 318–329. Springer, Heidelberg (1999)

8. Leupold, P., Nagy, B.: 5′ → 3′ Watson-Crick automata with several runs. In:

Non-Classical Models of Automata and Applications (NCMA 2009). books@ocg.at,

vol. 256, pp. 167–180. Austrian Computer Society (2009)

9. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-

tions. Springer, Heidelberg (1993)

10. Mart́ın-Vide, C., Mateescu, A., Mitrana, V.: Parallel finite automata systems com-

municating by states. Int. J. Found. Comput. Sci. 13, 733–749 (2002)

11. Mitrana, V.: On the degree of communication in parallel communicating finite

automata systems. J. Autom. Lang. Comb. 5, 301–314 (2000)

12. Nagy, B.: On 5′ → 3′ sensing Watson-Crick finite automata. In: Garzon, M.H., Yan,

H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 256–262. Springer, Heidelberg (2008)

13. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing

Paradigms. Texts in Theoretical Computer Science. Springer, Heidelberg (1998)

Better Hyper-minimization
Not as Fast, But Fewer Errors

Andreas Maletti�

Departament de Filologies Romàniques, Universitat Rovira i Virgili
Avinguda de Catalunya 35, 43002 Tarragona, Spain

andreas.maletti@urv.cat

Abstract. Hyper-minimization aims to compute a minimal determinis-
tic finite automaton (dfa) that recognizes the same language as a given
dfa up to a finite number of errors. Algorithms for hyper-minimization
that run in time O(n log n), where n is the number of states of the given
dfa, have been reported recently in [Gawrychowski and Jeż: Hyper-
minimisation made efficient. Proc. Mfcs, Lncs 5734, 2009] and [Holzer

and Maletti: An n log n algorithm for hyper-minimizing a (minimized)
deterministic automaton. Theor. Comput. Sci. 411, 2010]. These algo-
rithms are improved to return a hyper-minimal dfa that commits the
least number of errors. This closes another open problem of [Badr, Gef-

fert, and Shipman: Hyper-minimizing minimized deterministic finite
state automata. Rairo Theor. Inf. Appl. 43, 2009]. Unfortunately, the
time complexity for the obtained algorithm increases to O(n2).

1 Introduction

Although nondeterministic and deterministic finite automata (nfa and dfa, re-
spectively) are equally expressive [15], nfa can be exponentially smaller than
dfa [12, 14], where the size is measured by the number of states. Nfa and dfa are
used in a vast number of applications that require huge automata like speech pro-
cessing [13] or linguistic analysis [11]. Consequently, minimization of automata
was studied early on. The minimization problem for dfa (nfa) is the computa-
tion of an equivalent dfa (nfa) that has the minimal size (i.e., number of states)
of all equivalent dfa (nfa). On the bright side, it was shown that dfa can be
efficiently minimized in time O(n log n) [9], where n is the size of the given dfa.
However, minimization for nfa is Pspace-complete [10] and thus impractical.

Here we focus on dfa. Although, they can be efficiently minimized, it is often
desirable (or even necessary) to sacrifice correctness to minimize further. This
leads to the area of lossy compression, in which certain errors are tolerated in
order to allow even smaller dfa. A particularly simple error profile is studied
in hyper-minimization [1–3, 5–7], where any finite number of errors is allowed.
The algorithms of [5–7] run in time O(n log n), and thus, are asymptotically as
efficient as classical minimization. Given a dfa M , they both return a dfa that
� The author was supported by the Ministerio de Educación y Ciencia (MEC) grants

JDCI-2007-760 and MTM-2007-63422.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 201–210, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

202 A. Maletti

– recognizes the same language as M up to a finite number of errors, and
– is minimal among all dfa with the former property (hyper-minimal).

Further, Gawrychowski and Jeż [5] report an algorithm that disallows errors
on strings exceeding a specified length. This restriction yields a slightly stricter
error profile, but their minimization algorithm still runs in time O(n log n).

In this paper, we extend the basic hyper-minimization algorithms such that,
in addition, the returned dfa commits the least number of errors among all dfa
with the two, already mentioned properties. A dfa with those three properties is
called ‘hyper-optimal’. Note that hyper-optimality depends on the input dfa (or
better: its recognized language). Moreover, we return the number of committed
errors as a quality measure. It allows a user to disregard the returned dfa if
the number of errors is unacceptably large. Our result is based essentially on a
syntactic characterization [3, Theorems 3.8 and 3.9] of hyper-minimal dfa. Two
dfa are almost-equivalent if their recognized languages differ on only finitely
many strings (note that this corresponds to the first item mentioned earlier).
A preamble state is a state that can be reached by only finitely many strings
from the initial state of the dfa. All remaining states are kernel states. The
characterization [3, Theorems 3.8 and 3.9] states that the kernels (i.e., the part
of the automaton consisting of the kernel states) of all hyper-minimal, almost-
equivalent dfa are isomorphic. Moreover, the preambles are almost-isomorphic,
which means that they are isomorphic up to the finality of the states. This yields,
as already pointed out in [3], that two hyper-minimal, almost-equivalent dfa dif-
fer in only three aspects: (i) the finality of preamble states, (ii) the transitions
from preamble states to kernel states, and (iii) the initial state. Thus, the charac-
terization allows us to easily consider all hyper-minimal, almost-equivalent dfa
to find a hyper-optimal one. We thus solve an open problem stated in [3]. Un-
fortunately, the time complexity for the obtained algorithm is O(n2). Whether
it can be improved to O(n log n) remains an open problem.

2 Preliminaries

The integers and nonnegative integers are denoted by ZZ and IN, respectively. If
the symmetric difference (S\T)∪(T \S) is finite, then S and T are almost-equal.
For finite sets Σ, also called alphabets, the set of all strings over Σ is Σ∗, of which
the empty string is ε ∈ Σ∗. Concatenation of strings is denoted by juxtaposition
and the length of the word w ∈ Σ∗ is |w|. A language L over Σ is a subset of Σ∗.
A deterministic finite automaton (for short: dfa) is a tuple M = (Q, Σ, q0, δ, F),
in which Q is a finite set of states, Σ is an alphabet of input symbols, q0 ∈ Q
is an initial state, δ : Q × Σ → Q is a transition function, and F ⊆ Q is a set
of final states. The transition function δ extends to a mapping δ : Q × Σ∗ → Q
as follows: δ(q, ε) = q and δ(q, σw) = δ(δ(q, σ), w) for every q ∈ Q, σ ∈ Σ, and
w ∈ Σ∗. For every q ∈ Q, let L(M)q = {w ∈ Σ∗ | δ(q0, w) = q}. The dfa M
recognizes the language L(M) =

⋃
q∈F L(M)q.

Two states p, q ∈ Q are equivalent, denoted by p ≡ q, if δ(p, w) ∈ F if and
only if δ(q, w) ∈ F for every word w ∈ Σ∗. The dfa M is minimal if it does not

Better Hyper-minimization 203

Algorithm 1. Structure of the hyper-minimization algorithm [6, 7]
Require: a dfa M

M ← Minimize(M) // Hopcroft’s algorithm; O(m log n)
2. K ← ComputeKernel(M) // compute the kernel states; O(m)

∼ ← AEquivalentStates(M) // compute almost-equivalence; O(m log n)
4. M ← MergeStates(M, K,∼) // merge almost-equivalent states; O(m)

return M

have equivalent states (i.e., p ≡ q implies p = q). The name ‘minimal’ is justified
by the fact that no dfa with (strictly) fewer states recognizes the same language
as a minimal dfa. For every dfa M = (Q, Σ, q0, δ, F) an equivalent minimal
dfa can be computed efficiently using Hopcroft’s algorithm [8], which runs in
time O(m log n) where m = |Q × Σ| and n = |Q|.

3 Hyper-minimization

Let us quickly recall hyper-minimization from [1–3, 6, 7]. We will follow the
presentation of [6, 7]. Hyper-minimization is a form of lossy compression with
the goal of compressing minimal dfa further at the expense of a finite number of
errors. Two dfa M1 and M2 such that L(M1) and L(M2) are almost-equal are
almost-equivalent. Moreover, a dfa M that admits no almost-equivalent dfa with
(strictly) fewer states is hyper-minimal. Consequently, hyper-minimization [1–3]
aims to find an almost-equivalent, hyper-minimal dfa.

In the following, let M = (Q, Σ, q0, δ, F) be a minimal dfa. Let m = |Q × Σ|
be the number of its transitions and n = |Q| be the number of its states.

Definition 1 (cf. [3, Definition 2.2]). Two states p, q ∈ Q are k-equivalent
with k ∈ IN, denoted by p ∼k q, if δ(p, w) = δ(q, w) for every w ∈ Σ∗ such that
|w| ≥ k. The almost-equivalence ∼ ⊆ Q × Q is ∼ =

⋃
k∈IN ∼k.

Both k- and almost-equivalence are equivalence relations. The set Pre(M) of
preamble states is {q ∈ Q | L(M)q is finite}, and Ker(M) = Q\Pre(M) is the set
of kernel states. The contributions [5–7] report hyper-minimization algorithms
that run in time O(m log n). The overall structure of the hyper-minimization
algorithm [6, 7] is displayed in Algorithm 1, and MergeStates is displayed in
Algorithm 2. The merge of p ∈ Q into q ∈ Q redirects all incoming transitions
of p to q. If p = q0 then q is the new initial state. The finality of q is not changed
even if p is final. Clearly, the state p can be deleted after the merge if p �= q.

Theorem 2 ([3, Section 4] and [7, Theorem 13]). In time O(m log n) Al-
gorithm 1 returns a hyper-minimal dfa that is almost-equivalent to M .

4 An Example

In this section, we illustrate the problem that we address in this contribu-
tion. Namely, we propose an algorithm that not only returns a hyper-minimal,

204 A. Maletti

Algorithm 2. MergeStates: Merge almost-equivalent states [6, 7]
Require: a minimal dfa M , its kernel states K, and its almost-equivalent states ∼

for all B ∈ (Q/∼) do
2. select q ∈ B with q ∈ K if B ∩ K �= ∅ // select q ∈ B, preferably a kernel state

for all p ∈ B \ K do
4. merge p into q // merge all preamble states of the block into q

return M

almost-equivalent dfa, but rather one that commits the minimal number of er-
rors among all hyper-minimal, almost-equivalent dfa. Moreover, we return the
exact number of errors, and we could also return the error strings (at the expense
of an increased run-time). We thus solve an open problem of [3].

Throughout this section, we consider the minimal dfa M of Fig. 1, which
is essentially the minimal dfa of [3, Fig. 2] with two new states 0 and 2. We
added those states because all hyper-minimal dfa that are almost-equivalent
to the original dfa of [3] commit exactly 9 errors. Consequently, the existing
algorithms already yield dfa with the minimal number of errors. The two new
states 0 and 2, of which 0 is the new initial state, change the situation.

The kernel states of M are Ker(M) = {E, F, I, J, L, M, P, Q, R} and the
almost-equivalence (represented as a partition) is

{{0}, {2}, {A}, {B}, {C, D}, {E}, {F}, {G, H, I, J}, {L, M}, {P, Q}, {R}} .

BothKer(M)and∼ canbe computedwith the existing algorithmsof [2, 3, 5–7].The
hyper-minimization algorithm of [6, 7] might return the hyper-minimal dfa M1 of
Fig. 2 (left),which is almost-equivalent toM .Another suchhyper-minimal, almost-
equivalent dfa M2 is presented in Fig. 2 (right). To the author’s knowledge there
is no hyper-minimization algorithm that can produce M2. All known algorithms
merge both G and H into one of the almost-equivalent kernel states I and J (see
Algorithm 2). For example, M1 is obtained by merging G and H into I. However,
M2 is obtained by merging H into J and G into I. Now, let us look at the errors
that M1 and M2 make in comparison to M . The following display lists those errors
for M1 (left) and M2 (right), of which the specific errors of one of the two dfa are
underlined.

{aa, aaa, aaaaa, aaabaa, {aaa, aaabaa

aabb, aabbbaa, abb, abbbaa, aabb, aabbbaa, abb, abbbaa,

babb, babbaa, babbbaa, bbaaa, bab, babaaa, babb, babbaa, babbbaa,

bb, bba, bbabaa, bbbb, bbbbbaa} bba, bbabaa, bbbb, bbbbbaa}
We observe that M1 commits 17 errors, whereas M2 commits only 15 errors.
Consequently, there is a qualitative difference in different hyper-minimal, almost-
equivalent dfa. To be more precise, the quality of the obtained hyper-minimal
dfa depends significantly on how the merges are performed.

Let us take a closer look at the cause of the errors. Since the final state C is
merged into the non-final state D to obtain M1, the combined state D of M1 is

Better Hyper-minimization 205

F J M

B E I L Q

A D H R P

0 C G

2

Fig. 1. An example dfa with a-transitions (straight lines) and b-transitions (dashed
lines). The initial state is 0.

non-final. Consequently, all strings of L(M)C = {aa, bb}, which were accepted
in M , are now rejected in M1. Analogously, the error bab of M2 is caused by
the merge of D into C. The number of those errors can easily be computed
with a folklore algorithm (see Algorithm 3 and [4, Lemma 4]) that computes the
number of paths from q0 to each preamble state. Mind that the graph of a dfa
restricted to its preamble states is acyclic.

Theorem 3 (see [4, Lemma 4]). Algorithm 3 computes the number of paths
to each preamble state in time O(m).

Example 4. Algorithm 3 computes the following for M .

w(0) = w(2) = w(A) = w(B) = w(D) = 1 w(C) = 2 w(G) = 3 w(H) = 6

The remaining errors of M1 are caused by the merges of G and H into the almost-
equivalent kernel state I. Let us denote by Ep,q the number of errors made
between almost-equivalent states p ∼ q. More formally, this is the number of
strings in the symmetric difference of L(Mp) and L(Mq), where for every q′ ∈ Q,
the dfa Mq′ is (Q, Σ, q′, δ, F). In other words, Mq′ is the same dfa as M with
initial state q′. Clearly, Eq,q = 0 and Ep,q = Eq,p for every p, q ∈ Q. For example,
EG,I = 2 and EH,I = 3 and the corresponding error strings are {b, bbaa} and
{ε, aa, baa}, respectively. Actually, we only need to consider transitions of M1

that connect preamble to kernel states due to a characterization result of [3]. For

206 A. Maletti

F J M

B E I L Q

A D R P

0 2

F J M

B E I L Q

A C R P

0 2

Fig. 2. Two resulting hyper-minimal dfa with a-transitions (straight lines) and b-
transitions (dashed lines). The initial state is 0 in both cases.

Algorithm 3. CompAccess: Compute the number of paths to preamble states
Require: a minimal dfa M = (Q,Σ, q0, δ, F), its preamble states P , and a topological

sorting o : IN → P of the preamble states
w(o(0)) ← 1 // the path ε leads to q0 = o(0)

2. for i = 1 to |P | do
w(o(i)) ←

∑
q∈Q,σ∈Σ

δ(q,σ)=o(i)

w(q) // for each transition (q, σ) leading to o(i) add w(q)

4. return w

example, for the transition D
a−→ I of M1, we first identify the states of M that

were merged into D of M1. These are C and D of M . Next, we compute the
number of paths (in M) to them for each such state q and multiply it with the
number of errors made between δ(q, a) and I. The such obtained error counts
are summed up for the total error count. For the three relevant transitions in M1

we obtain:
D

a−→ I D
b��	 I 2

b��	 I
w(C) · Eδ(C,a),I = 6 w(C) · Eδ(C,b),I = 4 w(2) · Eδ(2,b),I = 2
w(D) · Eδ(D,a),I = 0 w(D) · Eδ(D,b),I = 3

Sum = 6 Sum = 7 Sum = 2

Thus, we identified 6 + 7 + 2 = 15 errors. Together with the 2 errors that were
caused by the non-finality of D we obtained all 17 errors committed by M1.

5 Optimal State Merging

The approach presented in the previous section suggests how to compute a hyper-
optimal dfa for a given minimal dfa M = (Q, Σ, q0, δ, F) with m = |Q×Σ| and
n = |Q|. We can simply compute the number of errors for all hyper-minimal,
almost-equivalent dfa and select a dfa with a minimal error count. We have

Better Hyper-minimization 207

Algorithm 4. CompErrors: Compute the number of errors made between
almost-equivalent states
Require: minimal dfa M = (Q, Σ, q0, δ, F) and states p ∼ q
Global: error matrix E ∈ ZZQ×Q initially 0 on the diagonal and −1 everywhere else

if Ep,q �= −1 then
2. return Ep,q // if already computed, then return stored value

c ← ((p ∈ F) xor (q ∈ F)) // set errors to 1 if p and q differ on finality

4. Ep,q ← c +
∑
σ∈Σ

CompErrors(M, δ(p, σ), δ(q, σ)) // add errors from follow-states

return Ep,q // return the computed value

already seen that different parts (finality and merges) are responsible for the
errors. The different parts do not affect each other, which yields that we can
compute the number of errors for each choice and greedily select the best one.

First, let us address how to compute the values Ep,q for p ∼ q. Our algorithm
is presented in Algorithm 4. It inspects the global matrix E whether the value
was already computed. If not, then it checks whether p and q differ on finality
(i.e., whether ε is in the symmetric difference of L(Mp) and L(Mq)) and adds
the error counts Eδ(p,σ),δ(q,σ) for each σ ∈ Σ.

Theorem 5. Algorithm 4 computes all Ep,q with p ∼ q in time O(mn).

Proof. Clearly, the initialization and the recursion for Ep,q are correct because
each error string w is either the empty string ε or it starts with a letter σ ∈ Σ.
In the latter case, w′ ∈ Σ∗ with w = σw′ is an error string for Eδ(p,σ),δ(q,σ). For
every p ∼ q there exists k ∈ IN such that p ∼k q and thus δ(p, w) = δ(q, w) for
every w ∈ Σ∗ with |w| ≥ k. Consequently, at most k nested recursive calls can
occur in the computation of Ep,q, which proves that the recursion terminates. It
remains to prove the time bound. Obviously, if Ep,q was already computed, then
the algorithm returns immediately. Thus, it makes at most n2 calls because then
all values Ep,q are computed. Moreover, there are at most |Σ|+ 1 summands in
line 7. Consequently, each call executes in time O(|Σ|) apart from the recursive
calls, which yields that the algorithm runs in time O(|Σ|n2) = O(mn). ��

Example 6. Let us illustrate Algorithm 4 on the example dfa of Fig. 1 and
the almost-equivalence ∼. We list some error matrix entries together with the
corresponding error strings. Note that the error strings are not computed by the
algorithm, but are presented for illustrative purposes only.

EQ,P = 1 {ε} EH,J = 2 {ε, baa} EG,J = 3 {aa, b, bbaa}
EL,M = 1 {a} EH,I = 3 {ε, aa, baa} EG,I = 2 {b, bbaa}
EI,J = 1 {aa} EG,H = 5 {ε, aa, b, baa, bbaa}

Next, we need to shortly discuss the structural similarities between hyper-minimal,
almost-equivalentdfa. It was shown in [3, Theorems 3.8 and 3.9] that two suchdfa

208 A. Maletti

Algorithm 5. CompFinality: Determine finality of a block of preamble states
Require: a minimal dfa M = (Q, Σ, q0, δ, F), a block of preamble states B, and the

number w(p) of access paths for each preamble state p
Global: error count e

(f, f) ←
(∑

q∈B∩F

w(q),
∑

q∈B\F

w(q)
)

// errors for non-final and final state

2. e ← e +min(f, f) // add smaller value to global error count
select q ∈ B such that q ∈ F if f > f // select final state if fewer errors for finality

4. return q // return selected state

have isomorphic kernels and almost-isomorphic (by an isomorphism not necessar-
ily respecting finality) preambles. This yields that those dfa only differ on three
aspects, which were already identified in [3]:

– the finality of preamble states,
– transitions from preamble states to kernel states, and
– the initial state.

All of the following algorithms will use a global variable e, which will keep track
of the number of errors. Initially, it will be set to 0 and each discovered error
will increase it. First, we discuss ComputeFinality. For the given block B of
almost-equivalent preamble states it computes the number of access paths to final
and non-final states in B. Each such path represents a string of

⋃
q∈B L(M)q.

After the merge all those strings will take the hyper-minimal dfa into the same
state. Thus, making this state final, will cause the number f of errors computed
in the algorithm because each access path to a non-final state of B will now
access a final state after the merge.

Lemma 7. ComputeFinality(M, B, w) adds the number of errors made in
state p when merging all states of the block B of almost-equivalent preamble
states into the state p that is returned by the call.

Next, we discuss the full merging algorithm (see Algorithm 6). We assume that
all values Ep,q with p ∼ q are already computed. In lines 5–7 we first handle
the already discussed decision for the finality of blocks B of preamble states
and perform the best merge into state q. In lines 8–11 we investigate the second
structural difference between hyper-minimal, almost-equivalent dfa: transitions
from preamble to kernel states. Clearly, the preamble state represents a set of
exclusively preamble states in the input dfa M and the kernel state represents
a set of almost-equivalent states of M that contains at least one kernel state.
Consequently, we can simply check whether δ(q, σ) is almost-equivalent to a
kernel state. We then consider all almost-equivalent kernel states q′ ∼ δ(q, σ)
and compute the error-count for rerouting the transition to q′. This error count
is simply obtained by multiplying the number of paths to a state p in the current
block B with the number Eδ(p,σ),q′ of errors performed between the designated
kernel state and the follow-state of the current state. Mind that δ(p, σ) was not

Better Hyper-minimization 209

Algorithm 6. OptMerge: Optimal merging of almost-equivalent states
Require: a minimal dfa M = (Q, Σ, q0, δ, F), its kernel states K, and its almost-

equivalent states ∼
Global: error count e; initially 0

P ← Q \ K // set P to preamble states
2. o ← TopoSort(P) // topological sorting of preamble states; o : IN → P

w ← CompAccess(M, P, o) // compute the number of access paths for preamble
4. for all B ∈ (Q/∼) such that B ⊆ P do

q ← CompFinality(M, B, w) // determine finality of merged state
6. for all p ∈ B do

merge p into q // perform the merges
8. for all σ ∈ Σ do

if B′ = {q′ ∈ K | q′ ∼ δ(q, σ)} �= ∅ then
10. e ← e + min

q′∈B′

(∑
p∈B

w(p) · Eδ(p,σ),q′
)

// add best error count

δ(q, σ) ← argmin
q′∈B′

(∑
p∈B

w(p) · Eδ(p,σ),q′
)

// update follow state

12. if B′ = {q′ ∈ K | q′ ∼ q0} �= ∅ then
e ← e + min

q′∈B′ Eq0,q′ // add best error count

14. q0 ← argmin
q′∈B′

Eq0,q′ // set best initial state

return (M, e)

affected by the merge in lines 6–7 because the merge only reroutes incoming
transitions to p. If there are several states in the current block B, then we sum
the obtained error counts. The smallest such error count is then added to the
global error count in line 10 and the corresponding designated kernel state is
selected as the new target of the transition in line 11. This makes all preamble
states that are almost-equivalent to a kernel state unreachable, so they could be
removed. Finally, if the initial state is almost-equivalent to a kernel state, then
we perform the same steps as previously mentioned to determine the new initial
state (i.e., we consider the transition from “nowhere” to the initial state).

A dfa M ′ is hyper-optimal for L(M) if it is hyper-minimal and the cardinal-
ity of the symmetric difference between L(M) and L(M ′) is minimal among
all hyper-minimal dfa. Note that a hyper-optimal dfa for L(M) is almost-
equivalent to M .

Theorem 8. Algorithm 6 runs in time O(mn) and returns a hyper-optimal dfa
for L(M). In addition, the number of errors committed is returned.

Proof. The time complexity is easy to check, so we leave it as an exercise.
Since the choices (finality, transition target, initial state) are independent, all
hyper-minimal, almost-equivalent dfa are considered in Algorithm 6 by [3, The-
orems 3.8 and 3.9]. Consequently, we can always select the local optimum for each
choice to obtain a global optimum, which proves that the returned number is the

210 A. Maletti

minimal number of errors among all hyper-minimal dfa. Mind that the number
of errors would be infinite for a hyper-minimal dfa that is not almost-equivalent
to M . Moreover, it is obviously the number of errors committed by the returned
dfa, which proves that the returned dfa is hyper-optimal for L(M). ��
Corollary 9 (of Theorem 8). For every dfa M we can obtain a hyper-optimal
dfa for L(M) in time O(mn).

References

1. Badr, A.: Hyper-minimization in O(n2). In: Ibarra, O.H., Ravikumar, B. (eds.)
CIAA 2008. LNCS, vol. 5148, pp. 223–231. Springer, Heidelberg (2008)

2. Badr, A.: Hyper-minimization in O(n2). Int. J. Found. Comput. Sci. 20(4), 735–746
(2009)

3. Badr, A., Geffert, V., Shipman, I.: Hyper-minimizing minimized deterministic finite
state automata. RAIRO Theor. Inf. Appl. 43(1), 69–94 (2009)

4. Eppstein, D.: Finding common ancestors and disjoint paths in DAGs. Tech. Rep.
95-52, University of California, Irvine (1995)

5. Gawrychowski, P., Jeż, A.: Hyper-minimisation made efficient. In: Královič, R.,
Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 356–368. Springer, Heidelberg
(2009)

6. Holzer, M., Maletti, A.: An n log n algorithm for hyper-minimizing states in a
(minimized) deterministic automaton. In: Maneth, S. (ed.) CIAA 2009. LNCS,
vol. 5642, pp. 4–13. Springer, Heidelberg (2009)

7. Holzer, M., Maletti, A.: An n log n algorithm for hyper-minimizing a (minimized)
deterministic automaton. Theor. Comput. Sci. 411(38–39), 3404–3413 (2010)

8. Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton.
In: Theory of Machines and Computations, pp. 189–196. Academic Press, London
(1971)

9. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison Wesley, Reading (2007)

10. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Com-
put. 22(6), 1117–1141 (1993)

11. Johnson, C.D.: Formal Aspects of Phonological Description. Monographs on Lin-
guistic Analysis, vol. 3. Mouton, The Hague (1972)

12. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Proc. 12th IEEE Annual Symp. Switching and Automata The-
ory, pp. 188–191. IEEE Computer Society Press, Los Alamitos (1971)

13. Mohri, M.: Finite-state transducers in language and speech processing. Comput.
Linguist. 23(2), 269–311 (1997)

14. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence be-
tween deterministic, nondeterministic, and two-way finite automata. IEEE Trans.
Computers 20(10), 1211–1214 (1971)

15. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3(2), 115–125 (1959)

Regular Expressions on Average and in the Long Run

Manfred Droste and Ingmar Meinecke

Institut für Informatik, Universität Leipzig,
04109 Leipzig, Germany

{droste,meinecke}@informatik.uni-leipzig.de

Abstract. Quantitative aspects of systems like consumption of resources, output
of goods, or reliability can be modeled by weighted automata. Recently, objec-
tives like the average cost or the longtime peak power consumption of a system
have been modeled by weighted automata which are not semiring weighted any-
more. Instead, operations like limit superior, limit average, or discounting are
used to determine the behavior of these automata. Here, we introduce a new class
of weight structures subsuming a range of these models as well as semirings. Our
main result shows that such weighted automata and Kleene-type regular expres-
sions are expressively equivalent both for finite and infinite words.

1 Introduction

Recently, a new kind of weighted automata was established by Chatterjee, Doyen, and
Henzinger [3,4,5,6] which compute objectives like the long-run average cost or long-
run maximal reward. These models enrich the automata toolbox for the modeling of
quantitative aspects of systems which may be the consumption of some resource like
time, power, or memory, or the production of some output like goods or pollution.
Objectives like average or longtime peaks cannot be modeled by classical semiring
weighted automata [1,7,15,16,20] or lattice automata [17]. Therefore, the theory of
semiring weighted automata does not carry over to those new weighted automata.

Finite automata and regular expressions describe the same class of languages [14].
This result by Kleene was transfered by Schützenberger [21] to the semiring-weighted
setting over finite words. For infinite words, the respective equivalence for ω-languages
was shown by Büchi [2] and for the weighted setting by Ésik and Kuich [12,13] for
semiring-semimodule pairs, by Droste and Kuske [8] for discounting, and by Droste and
Vogler [10] for bounded lattices. In this paper, we will establish that regular weighted
expressions are expressively equivalent to the new kind of weighted automata comput-
ing average and longtime behavior.

In the weighted automata considered here, the weight of a run is calculated in a
global way by means of a valuation function. For finite runs, examples of valuation
functions are the average, the supremum, or the last value. For infinite runs, we may
consider the limit superior of the weights, the limit average, i.e., the longrun average
weight, or a discounted sum. As usual, non-determinism is resolved by a monoid op-
eration which is written as a sum. Our automata model has features of classical finite
automata and of the weighted automata from [3]. The use of a valuation function is due
to [3]. But, moreover, we allow acceptance conditions like final states in the case of

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 211–221, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

212 M. Droste and I. Meinecke

finite words and a Büchi condition for non-terminating behavior. The computation of
the weight of an infinite run is realized by three ingredients: (i) the Büchi condition,
(ii) a valuation function for finite sequences, and (iii) an ω-indexed valuation function
for infinite sequences. Hereby, the finite sequences of weights between two consecutive
acceptance states are evaluated by the valuation function and then these infinitely many
intermediate results are combined by the ω-indexed valuation function. This procedure
guarantees the necessary link between finite and ω-automata in order to establish a
Kleene-like result also for infinite words.

Our main results are as follows. For finite words we show in Theorem 4.2 that
weighted automata and regular weighted expressions are expressively equivalent. The
weights are taken from Cauchy valuation monoids D which have, besides the sum and
the valuation function, a family of products. Such a product is parameterized by two
natural numbers representing the length of two words to be concatenated. By these
products we can define the Cauchy product and the iteration of functions S : Σ+ → D.
Cauchy valuation monoids generalize the valuation functions considered in [3], semi-
rings, and more. For infinite words, we present by Cauchy ω-indexed valuation monoids
also a unified setting for the weight structure. They comprise a sum operation, a valua-
tion and an ω-indexed valuation function, as well as a family of parameterized products.
Now we have also products where the first parameter is a positive integer but the second
one is ω which will be used for the concatenation of a finite and an infinite word. More-
over, we have to impose more restrictions on the interaction of the different operations.
This is not surprising because one has to do so also in other settings, cf. [13]. However,
instantiations of Cauchy ω-indexed valuation monoids are the structures with limit su-
perior, limit average, or discounting as considered in [3] as well as the complete star-
omega-semirings [12,13] or the semirings used in [9,19]. We show that over Cauchy
ω-indexed valuation monoids, every ω-regular weighted expression can be translated
into an equivalent weighted Büchi automaton, see Theorem 5.4(a). Conversely, under
an additional assumption called the partition property, which governs the computa-
tion of an infinite sequence by using different partitions of the sequence, the behavior
of every weighted Büchi automaton can be described by an ω-regular expression, cf.
Theorem 5.4(b).

Our setting for infinite words owes some ideas to the case of discounting [8]. The
main difference to the setting of Ésik and Kuich [12,13] is the absence of an infinitary
associativity for the ω-indexed valuation function which leads to a range of complica-
tions. But we have to drop this property in order to include the new models like limit
superior or limit average [3]. Nevertheless, we succeed in proving a Kleene-like result
in a unified framework.

2 Weighted Automata on Finite and Infinite Words

Let � denote the set of positive integers and let Σ be an alphabet. By Σ+ we denote
the set of non-empty finite words and by Σω the set of infinite words.

A monoid (D, +, �) is complete [11] if it has infinitary sum operations
∑

I : DI →
D for any index set I such that

∑
i∈Ø di = �,

∑
i∈{k} di = dk,

∑
i∈{j,k} di = dj + dk

for j �= k,
∑

j∈J

(∑
i∈Ij

di

)
=

∑
i∈I di if

⋃
j∈J Ij = I and Ij ∩ Ik = Ø for j �= k.

Regular Expressions on Average and in the Long Run 213

For a set D, let (�× D)ω = {(ni, di)i∈� | ∀i ∈ � : ni ∈ �, di ∈ D}.

Definition 2.1. A valuation monoid (D, +, val, �) consists of a commutative monoid
(D, +, �) and a valuation function val : D+ → D with val(d) = d and
val(d1, . . . , dn) = � whenever di = � for some i ∈ {1, . . . , n}.

An ω-indexed valuation monoid (D, +, val, valω, �) is a complete valuation monoid
(D, +, val, �) equipped with an ω-indexed valuation function valω : (� × D)ω → D
such that valω(nk, dk)k∈� = � whenever dk = � for some k ∈ �.

Definition 2.2. A weighted (finite) automaton A = (Q, I, T, F, γ) over the alphabet Σ
and a valuation monoid (D, +, val, �) consists of a finite state set Q, a set I ⊆ Q of
initial states, a set F ⊆ Q of final states, a set T ⊆ Q × Σ × Q of transitions, and a
weight function γ : T → D.

A weighted Büchi automaton A = (Q, I, T, F, γ) over the alphabet Σ and an ω-
indexed valuation monoid (D, +, val, valω, �) is defined as a weighted finite automaton.

A weighted automaton is a usual finite automaton equipped with weights for the transi-
tions. Moreover, the automaton can be assumed to be total as in [3], i.e., for every q ∈ Q
and every a ∈ Σ there is some q′ ∈ Q with (q, a, q′) ∈ T , by adding transitions with
weight �. Runs R = (ti)1≤i≤n are defined as finite sequences of matching transitions
ti = (qi−1, ai, qi) where |R| = n is the length of R. We call the word w = �(R) =
a1a2 . . . an the label of the run R and R a run on w. Moreover, γ(R) =

(
γ(ti)

)
1≤i≤n

is the sequence of the transition weights of R and wgt(R) = val(γ(R)) is the weight of
R. A run is successful if it starts in an initial state from I and ends in a final state from
F . We denote the set of successful runs of A by succ(A).

The behavior of A is the function ‖A‖ : Σ+ → D, defined by ‖A‖(w) =∑(
val(γ(R)) | R ∈ succ(A) and �(R) = w

)
for w ∈ Σ+; if there is no successful

run on w, then ‖A‖(w) = �. Any function S : Σ+ → D is called a series (or a quan-
titative language as in [3]) over Σ+. If S is the behavior of some weighted automaton,
then S is called recognizable. For reasons of technical simplicity, we do not consider
initial or final weights of a weighted automaton and, thus, also not the empty word ε.

Similarly, we define the behavior of weighted Büchi automata A = (Q, I, T, F, γ).
Now a run R = (ti)i∈� is an infinite sequence of matching transitions ti = (qi−1, ai, qi)
with label w = �(R) = a1a2 · · · ∈ Σω. Let F (R) = {j ∈ � | qj ∈ F}. Note that
F (R) can be finite or infinite. If F (R) is infinite, we enumerate F (R) by j1 < j2 <
j3 < . . . and put j0 = 0. Let Rk = (ti)jk−1≤i<jk

be the finite sub-run of R starting in
qjk−1 and terminating in the k-th acceptance state qjk

. Let γ(Rk) = (γ(ti))jk−1≤i<jk

be the finite sequence of weights from Rk. Now the weight of R is defined as wgt(R) =
valω

(|Rk|, val(γ(Rk))
)

k∈� if F (R) is infinite, and wgt(R) = � otherwise. The run R

is successful if q0 ∈ I and F (R) is infinite, i.e., R starts in an initial state and satisfies
a Büchi condition with regard to the acceptance set F . The set of successful runs of A
is denoted by succ(A).

Now the behavior of A is the function ‖A‖ : Σω → D given by ‖A‖(w) =∑(
wgt(R) | R ∈ succ(A) and �(R) = w

)
for w ∈ Σω; if w has no successful run

in A, then ‖A‖(w) = �. Any function S : Σω → D is called an ω-series. S is ω-
recognizable if there is a weighted Büchi automaton A with ‖A‖ = S.

Let � = � ∪ {−∞,∞}, the extended real line.

214 M. Droste and I. Meinecke

Example 2.3. (�∪{−∞}, sup, avg,−∞) with avg(d1, . . . , dn) = 1
n

∑n
i=1 di is a val-

uation monoid. A weighted automaton over this valuation monoid takes the arithmetic
mean of the weights of the transitions and resolves non-determinism by sup. More-
over, (�, sup, avg, lim sup avg,−∞) is an ω-indexed valuation monoid when we put
for (ni, di)i∈� ∈ (�× �)ω :

lim sup avg(ni, di)i∈� = lim sup
k

(
n1 · d1 + . . . + nk · dk

n1 + . . . + nk

)

with the exception that lim sup avg(ni, di)i∈� = −∞ whenever there is a j ∈ � such
that di �= ∞ for all i ≥ j and lim supk≥j

(
(njdj +. . .+nkdk)/(nj +. . .+nk)

)
= −∞.

The weight along an infinite run is the limit superior of the means of the weights of the
finite prefixes of the run which end in an acceptance state.

Similarly, (� ∪ {∞}, inf, avg,∞) and (�, inf, avg, lim inf avg,∞) are a valuation
and an ω-indexed valuation monoid, respectively, with a dual definition of lim inf avg.

Example 2.4. (�, sup, sup�, lim sup,−∞) is an ω-indexed valuation monoid with
sup�(d1, . . . , dm) = sup(d1, . . . , dm) if di �= −∞ for all i = 1, . . . , m and
sup�(d1, . . . , dm) = −∞ otherwise, and lim sup(ni, di)i∈� = lim supi(di)i∈� if
di �= −∞ for all i ∈ � and lim sup(ni, di)i∈� = −∞ otherwise. A weighted Büchi
automaton over this structure computes the limit superior of the weights along a run.

Whereas the last ω-indexed valuation monoids were considered in [3], the next one is a
variation of the lim sup-ω-indexed valuation monoid.

Example 2.5. Consider (�∪{−∞}, sup, last,−∞) with last(d1, . . . , dn) = dn if di �=
−∞ for all i = 1, . . . , n and last(d1, . . . , dn) = −∞ otherwise. This structure yields
a valuation monoid where the weight of the last transition determines the weight of
the whole run. The structure (�, sup, last, lim sup,−∞) yields an ω-indexed valuation
monoid where the weight of a run is the limit superior of the weights of the transitions
entering acceptance states.

Example 2.6 (discounting [3,8]). Let λ > 0. Then (� ∪ {−∞}, sup, discλ,−∞) with
discλ(d0, . . . , dn) =

∑n
i=0 λidi is a valuation monoid. Moreover, if 0 < λ < 1 and

�+ = {r ∈ � | r ≥ 0}∪{−∞,∞}, then the structure (�+, sup, discλ, lim discλ,−∞)
is an ω-indexed valuation monoid where the ω-indexed valuation function
lim discλ(ni, di)i∈� equals

lim
k→∞

(
λ0d1 + λn1d2 + . . . + λn1+...+nk−1dk

)
.

Remark 2.7. Classical weighted automata are defined over semirings, cf. [7]. There,
weights are multiplied along a run and summed up over all possible runs. This set-
ting fits into our framework: Let � = (K, +, ·, �, �) be a semiring. Now we define
val(d1, . . . , dn) = d1 · . . . · dn. Then (K, +, val, �) is a valuation monoid. Examples
for such semirings are the natural numbers with addition and multiplication or the reals
together with sup as the sum operation and inf , sup, or addition as multiplication.

Regular Expressions on Average and in the Long Run 215

3 Cauchy Valuation Monoids, Cauchy Products, and Iterations

Our goal is to provide a characterization of the behaviors of weighted automata by
means of regular expressions. For this, we need a product modeling the concatenation
of runs of weighted automata. For semiring-weighted automata over a semiring � this
can be modeled by the Cauchy product of two formal power series S, S′ : Σ+ → � ,
defined by S · S′(w) =

∑
w=uv S(u) · S′(v). In the setting considered here, such a

definition turns out to be more difficult because the valuation function evaluates runs in
a global way. Here, we use a parameterized product which considers, besides the values
to be multiplied, also two natural numbers representing the lengths of the sequences to
be combined.

Definition 3.1. The structure
(
D, +, val, (·m,n | m, n ∈ �), �

)
is a Cauchy valuation

monoid if (D, +, val, �) is a valuation monoid and ·m,n : D × D → D with m, n ∈ �

is a family of products such that for all d, di, d
′
j ∈ D and all finite subsets A, B ⊆fin D:

� ·m,n d = d ·m,n � = �, (1)

val(d1, . . . , dm, d′1, . . . , d
′
n) = val(d1, . . . , dm) ·m,n val(d′1, . . . , d

′
n), (2)∑

(d | d ∈ A) ·m,n

∑
(d′ | d′ ∈ B) =

∑
(d ·m,n d′ | d ∈ A, d′ ∈ B) . (3)

Remark 3.2. Whenever the valuation monoid (D, +, val, �) is derived from a semiring
(D, +, ·, �, �) where val(d1, . . . , dm) = d1 · . . . · dm, then we can choose the products
just as semiring multiplication, i.e., ·m,n := · for all m, n ∈ �. Then Equation (2)
follows immediately and Equation (3) is just the distributivity of the semiring. Hence,
all valuation monoids derived from semirings are Cauchy.

Definition 3.3. The structure
(
D, +, val, valω, (·m,n | m ∈ �, n ∈ � ∪ {ω}), �) is a

Cauchy ω-indexed valuation monoid if
(
D, +, val, (·m,n | m, n ∈ �), �

)
is a Cauchy

valuation monoid,
(
D, +, val, valω, �

)
is an ω-indexed valuation monoid, and ·m,ω :

D×D → D for every m ∈ � such that for all d, d′, di ∈ D, all finite subsets A ⊆fin D
and all subsets B ⊆ D

� ·m,ω d = d ·m,ω � = � (4)

valω
(
ni, di

)
i≥1

= d1 ·n1,ω valω
(
ni, di

)
i≥2

(5)∑
(d | d ∈ A) ·m,ω

∑
(d′ | d′ ∈ B) =

∑
(d ·m,ω d′ | d ∈ A, d′ ∈ B), (6)

and for every C ⊆fin D, nk ∈ �, finite index sets Ik , and all dik
∈ C (ik ∈ Ik)

valω
(
nk,

∑
ik∈Ik

dik

)
k∈�

=
∑

(ik)k∈I1×I2×...

valω
(
nk, dik

)
k∈� . (7)

Definition 3.4. A Cauchy ω-indexed valuation monoid D has the partition property if
the following holds: For every (di)i∈� ∈ (D+

fin)ω =
⋃

C⊆finD(C+)ω and every parti-

tion (Ij)j=1,...,m of � into finitely many sets Ij = {kj
1, k

j
2, . . .} with kj

1 < kj
2 < . . .,

216 M. Droste and I. Meinecke

we put ej
i = dkj

i−1
+1 . . .dkj

i
for all i ∈ � (with kj

0 = 0), i.e., (ej
i)i∈� is the same

sequence of values from D as (di)i∈� but in a coarser partition. Then

valω
(|di|, val(di)

)
i∈� =

∑
j∈{1,...,m}
|Ij |=ω

valω
(|ej

i |, val(ej
i)
)
i∈� (8)

For the interpretation of these conditions, it is useful to consider valω as a parameterized
(by ω-sequences over �) infinitary product on D. Properties (2) and (5) are a kind of
finitary associativity for val and valω. Distributivity of the parameterized products over
sum is given by properties (3) and (6) whereas property (7) states distributivity of valω

over finite sums. The partition property (8) is more subtle: in automata-theoretic terms
it guarantees that we can compute the weight of an accepting run (with m acceptance
states) as the sum of the weights of the same run but now with only one acceptance
state (we choose one of the m accepting states), see Theorem 5.4(b). Under certain
conditions property (8) is always satisfied:

Proposition 3.5. Let (D, +, val, valω, �) be a Cauchy ω-indexed valuation monoid such
that addition is idempotent, i.e., d + d = d for all d ∈ D. Let, moreover,
valω(|di|, val(di))i∈� = valω(|d′

i|, val(d′
i))i∈� for all (di)i∈�, (d′

i)i∈� ∈ (D+
fin)ω

with d1d2 . . . = d′
1d′

2 . . . ∈ Dω (i.e., the concatenation of all finite sequences yields
the same infinite sequence).

Then (D, +, val, valω, �) has the partition property (8).

Remark 3.6. The complete star-omega-semirings of [12,13] or the semirings of [9] al-
low for infinite sums

∑
and products

∏
and fit into the setting of Cauchy ω-indexed

valuation monoids. We define valω by valω(ni, di)i∈� =
∏

i∈� di. The parameterized
products are just semiring multiplication. If the semiring is idempotent, then the asso-
ciated Cauchy ω-indexed valuation monoid satisfies the conditions in Proposition 3.5.
Hence, these structures have the partition property (8).

However, the kind of infinitary associativity described in Proposition 3.5 is not sat-
isfied for ω-indexed valuation functions like limit superior (together with last) or limit
average which we are especially interested in.

For notational simplicity, we will not always write down the products ·m,n as part of
the structure when dealing with Cauchy valuation monoids (D, +, val, �). Next we give
examples of Cauchy ω-indexed valuation monoids. Recall that we defined last(d, d′) =
d′ if d �= � and last(�, d′) = �.

Lemma 3.7. The following ω-indexed valuation monoids are Cauchy ω-indexed valu-
ation monoids satisfying the partition property (8):

1. (�, sup, avg, lim sup avg,−∞) from Example 2.3 with the products

d ·m,n d′ =
m · d + n · d′

m + n
, d ·m,ω d′ =

{
d′ if d /∈ {−∞,∞} or d′ = −∞,

d otherwise,

2. (�, sup, sup�, lim sup,−∞) from Example 2.4 with the products d ·m,n d′ =
sup�(d, d′) and d ·m,ω d′ = last(d, d′),

Regular Expressions on Average and in the Long Run 217

3. (�, sup, last, lim sup,−∞) from Example 2.5 with the products d ·m,n d′ =
d ·m,ω d′ = last(d, d′),

4. (�+, sup, discλ, lim discλ,−∞) with 0 < λ < 1 from Example 2.6 with the prod-
ucts d ·m,n d′ = d ·m,ω d′ = d + λmd′.

The ω-indexed valuation monoid with discounting was already explored in [8].
Now we are ready to define sums, concatenations, and iterations of series.

Definition 3.8. (a) Let (D, +, val, �) be a Cauchy valuation monoid and let S, S′ :
Σ+ → D be two series. Then we define the sum S + S′ and the Cauchy product S · S′

of S and S′ by (S + S′)(w) = S(w) + S′(w) and

(S · S′)(w) =
∑

(S(u) ·|u|,|v| S′(v) | u, v ∈ Σ+, w = uv)

for every w ∈ Σ+ where we sum up over all factorizations of w into u, v ∈ Σ+. We put
S1 = S and Sn+1 = S · Sn for all n ≥ 1.

The iteration S+ is defined by S+(w) =
∑|w|

i=1 Si(w).
(b) Let (D, +, val, valω, �) be a Cauchy ω-indexed valuation monoid, S : Σ+ → D,

and S′, S′′ : Σω → D. The sum S′ + S′′ and the Cauchy product S ·S′ are defined for
all w ∈ Σω by (S′ + S′′)(w) = S′(w) + S′′(w) and

(S · S′)(w) =
∑

(S(u) ·|u|,ω S′(v) | u ∈ Σ+, v ∈ Σω, w = uv).

The ω-iteration Sω of S : Σ+ → D is defined for every w ∈ Σω by

Sω(w) =
∑(

valω
(|uk|, S(uk)

)
k∈� | w = u1u2 . . . for uk ∈ Σ+

)
where the sum is taken over all infinite factorizations u1u2 . . . of w.

For semirings, the definitions of Cauchy products, iteration, and ω-iteration coincide
with the classical definitions, cf. Remarks 3.2 and 3.6.

Proposition 3.9. (a) Let (D, +, val, �) be a Cauchy valuation monoid and S, S1, S2 :
Σ+ → D. Then S · (S1 + S2) = S · S1 + S · S2 and (S1 + S2) · S = S1 · S + S2 · S.

(b) Let (D, +, val, valω, �) be a Cauchy ω-indexed valuation monoid, S : Σ+ → D,
and S1, S2 : Σω → D. Then S · (S1 + S2) = S · S1 + S · S2.

The class of regular weighted expressions over an alphabet Σ and a Cauchy valuation
monoid (D, +, val, �) is given by the grammar E ::= d.a | E + E | E · E | E+

where d ∈ D and a ∈ Σ, cf. [21,7]. Let d.a denote the series which maps a to d and
all w ∈ Σ+ \ {a} to �. The semantics of E is defined inductively by [[d.a]] = d.a,
[[E1 + E2]] = [[E1]] + [[E2]], [[E1 · E2]] = [[E1]] · [[E2]], and [[E+]] = [[E]]+.

The class of ω-regular weighted expressions over Σ and a Cauchy ω-indexed val-
uation monoid (D, +, val, valω, �) is given by the grammar E ::= E + E | F · E |
Fω where F is any regular weighted expression. The semantics of E is the ω-series
[[E]] : Σω → D defined by [[E1 + E2]] = [[E1]] + [[E2]], [[F · E]] = [[F]] · [[E]],
[[Fω]] = [[F]]ω.

Considering the limit average, cf. Example 2.3, E = (1.a + −1.b)ω describes the
long-run average difference between occurences of a and of b in some w ∈ {a, b}ω,
e.g., [[E]](aaaababab . . .) = 0 and [[E]](abbabbabb . . .) = − 1

3 .

218 M. Droste and I. Meinecke

4 Weighted Finite Automata and Regular Expressions

Proposition 4.1. Let (D, +, val, �) be a Cauchy valuation monoid. Let E and F be
regular weighted expressions such that [[E]] and [[F]] are recognizable. Then [[E+F]],
[[E · F]], and [[E+]] are recognizable.

Proof idea. The disjoint union of the weighted automata recognizing [[E]] and [[F]],
respectively, recognizes [[E + F]]. Concerning E · F , the respective automata AE and
AF are concatenated consecutively where we introduce new intermediate states, given
by pairs of final states from AE and initial states of AF . Using conditions (2) and (3),
we can show that the new automaton has the behavior [[E · F]]. Similarly, we proceed
for E+. Here, the weighted automaton AE recognizing E is looped. ��
Theorem 4.2. Let (D, +, val, �) be a Cauchy valuation monoid and S : Σ+ → D.
Then S is recognizable if and only if S = [[E]] for some regular weighted expression E.

Proof sketch. Let S = [[E]]. If E = d.a with d ∈ D and a ∈ Σ, then [[d.a]] = d.a is
recognizable by the weighted automaton ({p, q}, {p}, {(p, a, q)}, {q}, (p, a, q) �→ d).
By Proposition 4.1 and induction on E, S = [[E]] is recognizable. Vice versa, let
A be a weighted automaton. Then we build an expression E with [[E]] = ‖A‖ by
induction on the set of states used along a run. Here, we have to use the properties of
Cauchy valuation monoids to ensure the correctness of the regular weighted expression
constructed inductively. ��

5 Weighted Büchi Automata and ω-Regular Expressions

We will show that for every ω-regular weighted expression E, the series [[E]] is ω-
recognizable provided the underlying ω-indexed valuation monoid is Cauchy. If D sat-
isfies additionally the partition property, then also the converse holds true.

By building the disjoint union of two Büchi automata, we can show

Proposition 5.1. Let (D, +, val, valω , �) be an ω-indexed valuation monoid and let
S, S′ : Σω → D be ω-recognizable. Then S + S′ is ω-recognizable.

Proposition 5.2. Let (D, +, val, valω, �) be a Cauchy ω-indexed valuation monoid. Let
S : Σ+ → D be recognizable and S′ : Σω → D be ω-recognizable. Then S · S′ :
Σω → D is ω-recognizable.

Proof sketch. Let A = (Q, I, T, F, γ) be a weighted automaton recognizing S and let
A′ = (Q′, I ′, T ′, F ′, γ′) be a weighted Büchi automaton recognizing S′. Let Q, Q′, and
Q×Q′ be pairwise disjoint. We build a weighted Büchi automaton Â = (Q̂, Î, T̂ , F̂ , γ̂)
with Q̂ = Q ∪ Q′ ∪ (F × I ′), Î = I , and F̂ = (F × I ′) ∪ F ′. The transitions from T̂
are those of T and T ′ together with copies (p, a, (r, q)) of (p, a, r) ∈ T for r ∈ F and
copies ((r, q), a, p) of (q, a, p) ∈ T ′ for q ∈ I ′. The weights carry over, respectively.
Here, not only the states from F ′ but also from F×I ′ are accepting, and a successful run
passes a state from F × I ′ exactly once. This choice ensures the correct decomposition
of every successful run R̂ of Â by accepting states. Using this and properties (5) and
(6), we can show that ‖Â‖ = S · S′. ��

Regular Expressions on Average and in the Long Run 219

Proposition 5.3. Let D be a Cauchy ω-indexed valuation monoid and S : Σ+ → D
be a recognizable series. Then Sω is ω-recognizable.

Proof idea. Let S = ‖A‖ for A = (Q, I, T, F, γ). We loop A by means of new in-
termediate states (r, q) with r ∈ F and q ∈ I which are as well the acceptance states
of the constructed weighted Büchi automaton Â. Now, any run R̂ ∈ succ(Â) can be
decomposed by the acceptance states such that the emerging finite sub-runs of R̂ are
copies of successful runs from A. By property (7), we conclude that ‖Â‖ = Sω. ��
Theorem 5.4. Let D be a Cauchy ω-indexed valuation monoid.

(a) For any ω-regular weighted expression E, the ω-series [[E]] is ω-recognizable.
(b) Let D satisfy the partition property (8). Let A be a weighted Büchi automaton

over D. Then there is an ω-regular weighted expression E with [[E]] = ‖A‖.

Proof sketch. (a) This follows by Theorem 4.2 and Propositions 5.1, 5.2, and 5.3.
(b) Constructing an equivalent ω-regular weighted expression from a weighted Büchi
automaton is more involved than in the unweighted case. Let A = (Q, I, T, F, γ) be
a weighted Büchi automaton. We define for s, t ∈ Q the weighted Büchi automaton
Ast = (Q, {s}, T, {t}, γ). First we show ‖A‖ =

∑
s∈I,t∈F ‖Ast‖. Let succs(A) be

the set of all successful runs of A starting in s. For R ∈ succs(A), we have by definition

wgtA(R) = valω
(|Rk|, val

(
γ(Rk)

))
k∈�

where the Rk are the finite sub-runs of R

running from one acceptance state to the next one (or from s to the first acceptance state
if k = 1). We choose a partition (It)t∈F of � as follows: It = {k | Rk terminates in t}.
For t ∈ F , let (Rt

k)k∈It be the sequence of finite sub-runs of R such that Rt
1 starts in

s and ends in t and Rt
k for k > 1 starts and ends in t such that t does not appear in

between. Now we conclude by the partition property (8) that ‖A‖ =
∑

s∈I,t∈F ‖Ast‖.
Next we show that ‖Ast‖ can be described by an ω-regular expression. Using the

analysis of runs in the proofs of Propositions 5.2 and 5.3 and properties (5) and (7), we
can show that for suitable weighted finite automata Bst (to come from s to t) and Ct (to
loop from t to t) we have ‖Ast‖ = ‖Bst‖ · ‖Ct‖ω whenever s �= t and ‖Ast‖ = ‖Ct‖ω

if s = t. Due to Theorem 4.2 there are regular weighted expressions Gst and Ht with
[[Gst]] = ‖Bst‖ and [[Ht]] = ‖Ct‖ and, thus, ‖A‖ = [[E]] for the ω-regular weighted
expression E =

∑
t∈I∩F (Ht)ω +

∑
s∈I,t∈F,s=t Gst · (Ht)ω. ��

Remark 5.5. Our Theorem 5.4 generalizes previous results for discounting [8], for
o-complete, infinitely distributive semirings [9], and for idempotent complete star-
omega-semirings [12,13]. Ésik and Kuich give in [12,13] a general Kleene-like result
even for non-idempotent semiring-semimodule pairs. However, this notion comprises
an infinitary associativity for the product. Since we do not require this property and
consider such valuation functions like limit superior or limit average, we have followed
a combinatorial approach in our automaton model.

6 Conclusion

We have shown the equivalence of weighted automata and regular weighted expressions
both for finite and infinite words in a new unified framework for the weighted struc-
tures. Our notion of Cauchy ω-indexed valuation monoid comprises such new weight

220 M. Droste and I. Meinecke

models like long-run peaks or long-run average. In another paper, we have developed
also a characterization of weighted automata using valuation functions by fragments of
weighted MSO logic. Thus, the main concepts to characterize the behavior of automata
can be established also for these new weighted automata. Concerning expressions, the
construction of small automata for a given expression is a vital topic. In this context, the
method of partial derivatives was also transferred recently to the weighted setting [18].
Can we develop such methods also for this new kind of weighted automata?

References

1. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. Springer, Heidelberg (1988)
2. Büchi, J.R.: On a decision method in restricted second order arithmetics. In: Proc. Intern.

Congress on Logic, Methodology and Philosophy of Science, pp. 1–11. Stanford University
Press, Stanford (1962)

3. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kaminski, M., Mar-
tini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg (2008)

4. Chatterjee, K., Doyen, L., Henzinger, T.A.: Alternating weighted automata. In: Kutyłowski,
M., Charatonik, W., G ↪ebala, M. (eds.) FCT 2009. LNCS, vol. 5699, pp. 3–13. Springer,
Heidelberg (2009)

5. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties for quan-
titative languages. In: 24th LICS 2009, pp. 199–208. IEEE Comp. Soc. Press, Los Alamitos
(2009)

6. Chatterjee, K., Doyen, L., Henzinger, T.A.: Probabilistic weighted automata. In: Bravetti, M.,
Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 244–258. Springer, Heidelberg
(2009)

7. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. EATCS Mono-
graphs in Theoretical Computer Science. Springer, Heidelberg (2009)

8. Droste, M., Kuske, D.: Skew and infinitary formal power series. Theoretical Computer Sci-
ence 366, 199–227 (2006)

9. Droste, M., Püschmann, U.: Weighted Büchi automata with order-complete weights. Int. J.
of Algebra and Computation 17(2), 235–260 (2007)

10. Droste, M., Vogler, H.: Kleene and Büchi theorems for weighted automata and multi-valued
logics over arbitrary bounded lattices. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010.
LNCS, vol. 6224, pp. 160–172. Springer, Heidelberg (2010)

11. Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press, London (1974)
12. Ésik, Z., Kuich, W.: A semiring-semimodule generalization of ω-regular languages I+II.

Journal of Automata, Languages and Combinatorics 10, 203–242 & 243–264 (2005)
13. Ésik, Z., Kuich, W.: Finite automata. In: Droste, et al. (eds.) [7], ch. 3
14. Kleene, S.: Representations of events in nerve nets and finite automata. In: Shannon, C.,

McCarthy, J. (eds.) Automata Studies, pp. 3–42. Princeton University Press, Princeton (1956)
15. Kuich, W.: Semirings and formal power series: their relevance to formal languages and au-

tomata. In: New Trends in Formal Languages, vol. 1, ch.9. Springer, Heidelberg (1997)
16. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs in Theoret-

ical Computer Science. Springer, Heidelberg (1986)
17. Kupferman, O., Lustig, Y.: Lattice automata. In: Cook, B., Podelski, A. (eds.) VMCAI 2007.

LNCS, vol. 4349, pp. 199–213. Springer, Heidelberg (2007)

Regular Expressions on Average and in the Long Run 221

18. Lombardy, S., Sakarovitch, J.: Derivatives of rational expressions with multiplicity. Theoret-
ical Computer Science 332, 141–177 (2005)

19. Rahonis, G.: Infinite fuzzy computations. Fuzzy Sets and Systems 153, 275–288 (2005)
20. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Texts and

Monographs in Computer Science. Springer, Heidelberg (1978)
21. Schützenberger, M.: On the definition of a family of automata. Information and Control 4,

245–270 (1961)

Reachability Games on Automatic Graphs

Daniel Neider

Lehrstuhl für Informatik 7, RWTH Aachen University, Germany

Abstract. In this work we study two-person reachability games on finite

and infinite automatic graphs. For the finite case we empirically show

that automatic game encodings are competitive to well-known symbolic

techniques such as BDDs, SAT and QBF formulas. For the infinite case

we present a novel algorithm utilizing algorithmic learning techniques,

which allows to solve huge classes of automatic reachability games.

1 Introduction

Infinite games on graphs are a general modeling tool in the analysis and synthesis
of (reactive) systems. Their roots go back to Church’s synthesis problem where
he described the task of automatically synthesizing circuits from given specifi-
cations. Since then much research has been done, especially in using games for
model checking and formal verification (e.g. for the μ-calculus [1]).

Surprisingly, algorithmic learning has not been considered in the original con-
text of infinite games so far, although it has been successfully applied to model
checking (e.g. in [2] and [3]). The purpose of this paper is to study where known
algorithms can benefit from learning techniques as a first step towards filling
this gap.

In order to apply learning techniques for regular languages, games have to be
encoded by means of finite automata in an appropriate way. For this purpose
we introduce automatic games, i.e. infinite games that are played on automatic
graphs. Thereby, an automatic graph is a directed (finite or infinite) graph, whose
vertices form a regular set and whose edges are an automatic relation accepted
by a finite state transducer (cf. [4]).

In this paper we focus on two player reachability games since this type of
games is the most fundamental one. The objective is to compute a winning
strategy for the first player that forces each play to eventually visit a “good”
state no matter how his opponent plays. Reachability games typically occur when
verifying guarantee and safety properties, but most solutions for more complex
games computationally rely on them.

The first part of this work is dedicated to reachability games on finite graphs.
We present an algorithm, based on computing fixed points (but not yet using
learning) for such games. A framework introduced in [5] makes it possible to
compare this approach to other symbolic techniques such as binary decision
diagrams (BDDs) and transformations into propositional logic (SAT) and quan-
tified Boolean formulas (QBF). We implemented our algorithm and the results
are very promising showing that automatic encodings are competitive to the
methods benchmarked in [5].

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 222–230, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Reachability Games on Automatic Graphs 223

In the second part we consider reachability games on infinite graphs. In this
scenario fixed-point computations do not necessarily converge within finitely
many steps. In the context of model checking various acceleration techniques
have been developed an applied successfully to overcome this problem. Perhaps
the most important example in this context is widening (used e.g. in [6]).

However, we present a novel, complementary approach adapted from [3], which
applies techniques known from algorithmic learning. The idea is to learn a fixed
point (provided that it can be represented as a regular set) instead of computing
it iteratively. This has the advantage that termination and the runtime does
not depend on how long it takes to compute the fixed point, and, hence, this
procedure also works when the fixed point does not converge within a finite
bound. Moreover, since our algorithm also works on finite game graphs, this
procedure can be applied to a wide range of automatic reachability games.

This paper is organized as follows. In Section 2 we introduce our notation
of infinite games and define automatic games. In Section 3 we describe a fixed-
point-based algorithm to solve automatic reachability games on finite graphs and
compare it with other symbolic techniques. Next, in Section 4 we present our
learning based algorithm that solves automatic reachability games on infinite
graphs. Finally, Section 5 concludes and presents future work.

2 Preliminaries

An infinite game G = (A, Win) is composed of an arena A = (V0, V1, E) and a
winning condition Win ⊆ (V0 ∪ V1)ω. The underlying arena is a graph with two
disjoint sets of vertices V0, V1—the set of all vertices is denoted by V = V0∪V1—
and an edge-relation E ⊆ V ×V . We assume that each vertex has at least one and
at most finitely many successors. The first requirement is to ease the notation
only and, therefore, no restriction. The latter requirement, however, restricts the
considered class of graphs, but is necessary to guarantee the termination of our
learning algorithm.

A game is played by two players, player 0 and player 1, who move a token
along the edges forming a play. Formally, a play π = v0v1 . . . ⊆ V ω is an infinite
sequence of vertices that respects the edge relation. Player 0 wins a play if
π ∈ Win; then, the play is called winning for player 0. Conversely, a play is
winning for player 1 if π �∈ Win.

In the analysis of games one is interested in strategies f : V ∗Vσ → V for a
player σ ∈ {0, 1} that maps a play prefix v0v1 . . . vn to a successor vertex vn+1

with (vn, vn+1) ∈ E. A strategy is winning for player σ from vertex v if every
play starting in v and conforming with f is winning for him. The winning region
Wσ is the set of vertices from which player σ has a winning strategy. The term
solving a game here refers to computing winning strategies and winning regions.

In a reachability game the winning condition is given as a set F ⊆ V and a
play is winning for player 0 if it eventually reaches a vertex in F ; otherwise it is
winning for player 1. As an abbreviation we write G = (A, F) when referring to
reachability games.

224 D. Neider

To encode infinite graphs symbolically, regular sets are a popular means, e.g.
as in regular model checking [7]. The idea is to label each vertex uniquely with
a finite string over some alphabet Σ and to represent sets of vertices and edges
as regular sets. The resulting graphs are called automatic (cf. [4]).

Formally, an automatic game G = (A, Win) is an infinite game played on
an automatic graph. More precisely, the sets V0, V1 are regular sets of vertex
labels and the edge relation E is an automatic relation given as a finite state
transducer τ . This transducer reads pairs of vertex labels synchronously letter-
by-letter and accepts if there is an edge between them. Thereby, a special ⊥-
symbol not contained in Σ is used to equalize the length of two labels if the label
of one vertex is longer then the other (i.e. τ works over the alphabet (Σ∪{⊥})2).
Figure 1 and 2 show an example of an automatic game arena.

ε I II III . . .

Fig. 1. A simple game arena. Player 0 vertices are

depicted as circles, player 1 vertices as squares.

The alphabet used to label the vertices is Σ = {I}.

(
I
I

)

(
I
⊥

)

(
I
I

)

(
I
⊥

)

(
I
⊥

)

Fig. 2. A finite state transducer

encoding the edge-relation of the

arena shown in Figure 1

Additionally, the winning condition must also be represented by means of
finite automata. In the case of reachability games we simply require that F ⊆ V
is a regular set of vertex labels.

For the rest of this paper we do no longer distinguish between a vertex and its
label since we require a one-to-one relation; simply think of the set of all vertices
as a language over some alphabet Σ, i.e. V ⊆ Σ∗. Moreover, whenever we refer
to regular sets we assume that they are represented as finite automata.

3 Automatic Reachability Games on Finite Arenas

In this section we concentrate on reachability games where the arena is finite, i.e.
|V | is finite. Madhusudan, Nam and Alur [5] provided a common framework to
compare different symbolic techniques for this scenario and already benchmarked
algorithms relying on BDD representations as well as SAT and QBF formulas.
In the following we show how we solve automatic reachability games on finite
arenas, then introduce our proof-of-concept implementation, and compare our
results to the findings in [5].

Solving Automatic Reachability Games on Finite Arenas. To solve an
automatic reachability game (A, F), we use the standard fixed-point algorithm
to compute attractor sets: for X ⊆ V and i ∈ N let Attr0σ(X) = X and

Attri
σ(X) = Attri−1

σ (X) ∪ {v′ ∈ Vσ | ∃v ∈ V : (v′, v) ∈ E ∧ v ∈ Attri−1
σ (X)}

∪{v′ ∈ V1−σ | ∀v ∈ V : (v′, v) ∈ E → v ∈ Attri−1
σ (X)}.

Reachability Games on Automatic Graphs 225

The σ-attractor of X , i.e. the set of vertices from which player σ can force a
visit of a vertex in X , is the infinite union Attrσ(X) =

⋃
i∈N

Attri
σ(X).

The winning region W0 (respectively W1) is then given by the set Attr0(F)
(respectively W1 = V \ W0). Moreover, using the attractor of player σ it is easy
to extract a corresponding winning strategy: from a vertex v ∈ Attri

σ(F) ∩ Vσ

for all i ≥ 0 move to a vertex v′ such that (v, v′) ∈ E and v′ ∈ Attri−1
σ (F).

We compute the attractor of a regular set X of vertices iteratively for increas-
ing values of i. Each such step can be performed symbolically: to compute all
vertices of player σ belonging to Attri+1

σ (X), we first compute all predecessors of
vertices in Attri

σ(X). Thereto, we apply cylindrification to the set Attri
σ(X), i.e.

we extend the alphabet to match the one of the transducer τ , obtaining the set
(Σ ∪ {⊥})∗ × Attri

σ(X) and compute the intersection with τ . Then, we project
the result on its first component and intersect it with the vertices of player σ.
To compute the corresponding vertices of player 1 − σ, we repeat the same op-
erations for the set V \ Attri

σ(X) and complement the result with respect to V .
Finally, we compute the union of both sets and Attri

σ(X).
The exact construction is a bit tedious and can be done using standard au-

tomata operations including Boolean operations, projection and determinization.
As result we obtain that for every (regular) set X ⊆ V the set Attri

σ(X) is also
regular for all i ∈ N. Moreover, since we deal with finite arenas, the attrac-
tor computation becomes stationary after at most |V | steps. This means that
Attrσ(F) = Attr|V |

σ (F) is a regular set and can be computed as described above.

Experiments and Results. The framework presented in [5] covers two reach-
ability games: the peruser-evader game and the swap game. Originally, these
games involve concurrent interaction between both players (so-called concurrent
reachability games) and the players typically play randomized strategies, which
win with a certain probability. However, if one is interested in strategies that win
every play (not only with probability 1), then one can easily adapt the games to
match our setting (cf. [8]).

We implemented the symbolic algorithm described above in the Java program-
ming language using the dk.brics.automaton automaton library. All experiments
were done on a PC using a 2.5 GHz Pentium E5200 processor (only one core was
used), 1.5 GB RAM, and running Linux. Note that our experimental setting is
different from [5] w.r.t. to computational power, but we are more interested in
the size of the instances that can be handled than in the runtime.

We encoded each game in three different ways. For the first two encodings
we choose a unary (respective binary) representation to model these games. For
the third encoding we used the symbols of the alphabet itself to model positions
in a game. This results in much smaller arenas but requires a bigger alphabet.
Our goal was to see whether there is a trade-off between the number of states
necessary to encode an automatic game and the alphabet size. Note that the
alphabet size |Σ| of the first two encodings is independent of the size of the
game arena while it grows in the latter encoding.

Tables 1 and 2 show the results of our implementation for the pursuer-evader
and the swap game. The column labeled with “Steps” displays the number of

226 D. Neider

iterations until the the attractor computation became stationary. (Note that the
number of steps depends on how the game is modeled as a game graph.) The
figures in the “States” column show how many states the resulting automaton
for the attractor contains. A “–” indicates either that Java ran out of memory
or that the computation did not finish within 10 hours (which is the limit in [5]).

Table 1. Results pursuer-evader game

Encoding Grid size Time Steps States |Σ|
(in sec.)

Unary
16 × 16 284 46 18286 3
32 × 32 25551 94 131486 3
64 × 64 – – – –

Binary
16 × 16 29 46 3895 3
32 × 32 663 94 17624 3
64 × 64 32613 190 75283 3

Alphabet
16 × 16 24 46 1004 17
32 × 32 601 94 3868 33
64 × 64 – – – –

Table 2. Results swap game

Encoding Grid size Time Steps States |Σ|
(in sec.)

Unary
6 612 8 1173 3
7 11139 10 2881 3
8 – – – –

Binary
6 405 8 1077 3
7 2740 10 1288 3
8 – – – –

Alphabet
6 11 8 126 8
7 464 10 254 9
8 10275 12 510 10

In the case of the pursuer-evader game we were able to solve games up to a
grid of size 32 × 32 (for binary encoding up to 64 × 64). On the other hand,
the swap game could be solved for arrays of size 7 (respectively 8 when using
the alphabet encoding). However, using different ways to encode games seems
to have no significant influence on the viable size of the game arenas.

The benchmark in [5] shows similar results. BDD methods were able to solve
the pursuer-evader game up to a grid-size of 32 × 32 (only the Mucke tool
performed significantly better up to 512 × 512) and arrays up to a length of 9
for the swap game. The SAT and BQF encodings, on the other hand, could not
match the result of our implementation. Both methods could do at most 15 steps
in the pursuer-evader game and 7 steps in the swap game (depending on the size
of the arena). Both figures, however, are significantly worse than our results.

As the main result we obtain that automatic encodings are competitive to the
symbolic methods studied in [5]. However, let us emphasize that our implemen-
tation is just a prototype and not as optimized as the tools used in [5].

4 Automatic Reachability Games on Infinite Arenas

In this section we consider automatic reachability games on infinite game arenas,
which typically occur when analyzing systems that have access to auxiliary mem-
ory. Unfortunately, fixed-point computations, as used in Section 3, do no longer
guarantee to converge and terminate in finite time. To overcome this problem,
we introduce a learning based algorithm that actively learns the desired fixed
point in interaction with a teacher.

It seems that there is no satisfactory way to learn the attractor directly.
Therefore, we introduce an alternative characterization of the attractor, using a
special functional Γσ, that can be learned. The main task here is to construct a

Reachability Games on Automatic Graphs 227

teacher that can answer the queries asked by a learning algorithm. Finally, we
plug in our preferred learning algorithm and compute the attractor.

Learning from a Minimally Adequate Teacher. A suitable setting for
our purpose was introduced by Angluin in [9]. There, a learner learns a regular
language L ⊆ Σ∗ over an a priory fixed alphabet Σ from a minimally ade-
quate teacher. This teacher is capable of answering membership and equivalence
queries. On a membership query the teacher is provided with a word w ∈ Σ∗

and has to answer whether w ∈ L. On an equivalence query a hypothesis is
given, typically as an automaton A, and the teacher has to check whether A is
an equivalent description of L. If so, he returns “yes”. Otherwise, the teacher is
required to return a counter-example w ∈ L(A) � L = (L \ L(A)) ∪ (L(A) \ L),
i.e. a witness that L and L(A) are different.

In [9] Angluin showed that for every regular language L the smallest determin-
istic automaton accepting L can be learned from a minimally adequate teacher
in polynomial time. In the following, it is therefore enough to construct a teacher
that can answer membership and equivalence queries regarding the fixed point
we want to learn.

Fixed-Point Characterization of the Attractor. Learning the set Attrσ(F)
itself is problematic. Already answering membership queries “w ∈ Attrσ(F)?” is
intricate and there seems to be no satisfactory way to do so. Thus, the main idea,
adapted from [3], is to add additional information to the fixed point: instead of
learning Attrσ(F), we learn a set of pairs (v, i) where v ∈ V is a vertex and
i ∈ N is a natural number. The meaning of such a pair is that player σ can force
to visit a vertex in F in at most i moves, i.e. v ∈ Attri

σ(F).
Formally, let G = (A, F) be an automatic reachability game and X ⊆ V × N

be a set containing pairs of the form (v, i) where v ∈ V is a vertex and i ∈ N
is a natural number. Moreover, let σ ∈ {0, 1} denote either player 0 or player 1.
We define a functional Γσ : 2V ×N → 2V ×N (depending on the game G) such that
Γσ(X) = F × N ∪ γσ(X) ∪ γ1−σ(X) where

γσ(X) =
{
(v, i + 1) | v ∈ Vσ and ∃v′ ∈ V with (v, v′) ∈ E : (v′, i) ∈ X

}
,

γ1−σ(X) =
{
(v, i + 1) | v ∈ V1−σ and ∀v′ ∈ V with (v, v′) ∈ E : (v′, i) ∈ X

}
.

Intuitively, Γσ “simulates” one step in the attractor computation of player σ
for an arbitrary set X taking the distance information into account. Thereby,
the computation of Γσ can be done symbolically similar to the construction in
Section 3. This means that if X is a regular set, then Γσ(X) is also regular.

Note that Γσ is monotone and, hence, has a fixed point. As Lemma 1 shows, a
fixed point of Γσ is a slightly different but complete characterization of Attrσ(F)
and, thus, unique. This fixed point is what we are going to learn. The lemma
itself is proved by induction over i.

Lemma 1. If X is a fixed point of Γσ, then (v, i) ∈ X ⇔ v ∈ Attri
σ(F) holds.

228 D. Neider

A Fixed Point Teacher. Next, we describe how a teacher capable of answering
membership and equivalence queries regarding the (unique) fixed point X of
Γσ works. Unfortunately, it is not guaranteed that this fixed point actually is
a regular set since regular languages are not closed under infinite union. We
discuss this restriction later on and assume here that the fixed point is regular.

Answering Membership Queries. Answering membership queries “(v, i) ∈ X?”
is easy: perform a forward-search for i steps starting at the vertex v and check
whether player σ can force to visit a vertex v′ ∈ F .

Answering Equivalence Queries. On an equivalence query, we are given a reg-
ular set Y and have to check whether Y is the desired fixed point X of Γσ. For
this we compute Γσ(Y). Since Γσ has a unique fixed point, we can return “yes”
if Y = Γσ(Y) holds. In any other case, we have to compute a counter-example
in the symmetric difference X � Y , which is done as follows.

1. case. Let Γσ(Y) \ Y �= ∅ and (v, i) ∈ Γσ(Y) \ Y . If i = 0, then we know by
definition of Γσ that v ∈ F and, hence, (v, i) ∈ X . Thus, (v, i) ∈ X �Y . If i > 0,
we ask a membership query on (v, i). If (v, i) ∈ X , then clearly (v, i) ∈ X � Y .
Otherwise we distinguish whether v ∈ Vσ or v ∈ V1−σ. In the first case, for every
v′ ∈ V with (v, v′) ∈ E and (v′, i−1) ∈ Y we know that (v′, i−1) �∈ X (otherwise
(v, i) ∈ X). Thus, (v′, i − 1) ∈ X � Y . In the second case, there is at least one
v′ ∈ V with (v, v′) ∈ E and (v′, i−1) ∈ Y such that (v′, i−1) �∈ X . We find such
a (v′, i − 1) by asking membership queries. Note that this procedure terminates
since we required every node to have only finitely many outgoing edges.

2. case. Let Γσ(Y) � Y . Then, Y is a so-called pre-fixed point. From fixed-
point theory we know that the intersection of all pre-fixed points yields again
a fixed point, which is in this case the set X . Since Γσ is monotone, we deduce
that Γσ(Γσ(Y)) ⊆ Γσ(Y) and, hence, Γσ(Y) is also a pre-fixed point. This means
that every element (v, i) ∈ Y \ Γσ(Y) is not in the intersection of all pre-fixed
points and, therefore, (v, i) �∈ X , i.e. (v, i) ∈ X � Y .

Note that answering membership and equivalence queries can be done symboli-
cally for automatic reachability games using standard automata operations.

Solving Automatic Reachability Games on Infinite Arenas. Computing
the winning regions and the winning strategy in automatic reachability games
on finite and infinite arenas is done as follows. We construct a teacher for the
fixed point X of Γσ and plug in our preferred learning algorithm (e.g. Angluin’s
L∗ algorithm [9]). After learning X , we obtain Attrσ(F) by projecting X on the
first component. The attractor can now be used to extract the winning regions
and the winning strategy for player σ. Altogether, we obtain our main result.

Theorem 1. Let G be an automatic reachability game. Then, the winning re-
gions W0, W1 and winning strategies for both players can be computed by learning
the fixed point of Γσ if the fixed point can be represented as a regular set.

Unfortunately, the decision problem “Given an automatic reachability game. Is
the fixed point of Γσ regular?” is undecidable. This result is due to the fact that
it is possible to encode computations of Turing machines in automatic graphs.

Reachability Games on Automatic Graphs 229

The time and space complexity of our approach depends on the number of
queries the chosen learning algorithm asks (this number is polynomial when
using the L∗ algorithm). Answering an equivalence query requires to construct
at most d automata of size 2O(n·t) where n is the number of states of the fixed
point X , t the number of states of the transducer τ and d is a bound for the
number of outgoing edges per vertex. Moreover, the length m of a counter-
example can also be bound by 2O(n·t), and during an equivalence query at most
d + 1 membership queries are asked. Membership queries can be answered by a
forward-search in the game graph, which requires d2O(n·t)

steps. Altogether we
obtain a doubly-exponential algorithm in the size of the automatic game.

An extension of our proof-of-concept from Section 3 using the libalf learning
framework [10] shows good results on many infinite arenas. A speed-up for the
finite case (on the examples from Section 3), however, could not be observed.

5 Conclusion

The contributions of this paper are twofold. First, we showed using a proof-of-
concept implementation of the fixed-point algorithm that automatic encodings
are a competitive means for solving reachability games on finite arenas. Second,
we introduced a learning based algorithm suitable to solve automatic reachability
games. An extension of our proof-of-concept proves that the algorithm works for
many infinite arenas. To the best of our knowledge this work is the first in which
learning techniques have been applied to solve infinite games.

The latter result is of special interest as it offers a general framework. First, it
allows to solve reachability games for every suitable symbolic representation in
which sets of pairs (v, i) can be represented, Γσ can be computed and a learning
algorithm is available. Second, adding further information to the fixed point
allows to solve more complex games, e.g. games with Büchi winning conditions
(cf. [3]). For further research we want to extend this work to more expressive
representations, e.g. (visibly) pushdown automata, and more general winning
conditions such as parity or Muller conditions.

References

1. Thomas, W.: Infinite games and verification. In: Brinksma, E., Larsen, K.G. (eds.)

CAV 2002. LNCS, vol. 2404, pp. 58–64. Springer, Heidelberg (2002)

2. Habermehl, P., Vojnar, T.: Regular model checking using inference of regular lan-

guages. Electr. Notes Theor. Comput. Sci. 138(3), 21–36 (2005)

3. Vardhan, A., Sen, K., Viswanathan, M., Agha, G.: Using language inference to

verify omega-regular properties. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005.

LNCS, vol. 3440, pp. 45–60. Springer, Heidelberg (2005)

4. Blumensath, A., Grädel, E.: Finite presentations of infinite structures: Automata

and interpretations. Theory Comput. Syst. 37(6), 641–674 (2004)

5. Alur, R., Madhusudan, P., Nam, W.: Symbolic computational techniques for solv-

ing games. STTT 7(2), 118–128 (2005)

230 D. Neider

6. Touili, T.: Regular model checking using widening techniques. Electr. Notes Theor.

Comput. Sci. 50(4) (2001)

7. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:

Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.

Springer, Heidelberg (2000)

8. de Alfaro, L., Henzinger, T.A., Kupferman, O.: Concurrent reachability games.

Theor. Comput. Sci. 386(3), 188–217 (2007)

9. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Com-

put. 75(2), 87–106 (1987)

10. Bollig, B., Katoen, J.P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: libalf:

The Automata Learning Framework. In: Touili, T., Cook, B., Jackson, P. (eds.)

CAV 2010. LNCS, vol. 6174, pp. 360–364. Springer, Heidelberg (2010)

Disambiguation in Regular Expression Matching via
Position Automata with Augmented Transitions�

Satoshi Okui1 and Taro Suzuki2

1 Department of Computer Science, Chubu University, Japan
okui@cs.chubu.ac.jp

2 School of Computer Science and Engineering, The University of Aizu, Japan
taro@u-aizu.ac.jp

Abstract. This paper offers a new efficient regular expression matching
algorithm which follows the POSIX-type leftmost-longest rule. The algorithm
basically emulates the subset construction without backtracking, so that its com-
putational cost even in the worst case does not explode exponentially; the time
complexity of the algorithm is O(mn(n+c)), where m is the length of a given input
string, n the number of occurrences of the most frequently used letter in a given
regular expression and c the number of subexpressions to be used for capturing
substrings. A formalization of the leftmost-longest semantics by using parse trees
is also discussed.

1 Introduction

Disambiguation in regular expression matching is crucial for many applications such
as string replacement in document processing. POSIX 1003.2 standard requires that the
ambiguity of regular expressions to be resolved by following the leftmost-longest rule.

For implementations that rely on backtrack, strictly following the leftmost-longest
rule forces loss of efficiency; the greedy, or the first match, policy [6] is easier for
such systems to follow. For this problem, some recent implementations, e.g., [9,8], take
approaches based on automata, realising the leftmost-longest semantics efficiently.

This paper presents a new regular expression matching algorithm which follows the
leftmost-longest semantics. The time complexity of our algorithm is O(mn(n+c)) where
m is the length of a given input string, n the number of occurrences of the most fre-
quently used letter in a given regular expression and c the number of subexpressions to
be used for capturing portions of the input string.

Our discussion for achieving that algorithm proceeds in three steps as follows. First,
in Section 2, we formalize the leftmost-longest rule based on parse trees. A parse tree
for a given input string represents a way of accepting that string; e.g., which alternative
is selected or how many times each iteration is performed, and so forth. Imposing a
priority order on parse trees results in a straightforward interpretation of the leftmost-
longest rule, which serves as a basis for our later discussion. We restrict ourselves to
consider canonical parse trees for avoiding the matches which is unacceptable in the

� This work is supported by Japan Society for Promotion of Science, Basic Research (C)
No.22500019.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 231–240, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

232 S. Okui and T. Suzuki

leftmost-longest semantics. Next, Section 3 introduces a slight extension of traditional
position automata [10,7] in order to enumerate canonical parse trees. In Section 4, we
introduce the regular expression matching algorithm, which basically performs subset
construction at runtime. This algorithm incrementally compares, in each step, the pri-
ority of any two paths to eliminate unnecessary ones. Finally, Section 5 is devoted to a
brief comparison with other studies.

Due to limitations of space, correctness issues of our algorithm are not discussed
here. These are found in an extended version of this paper (http://www.scl.cs.
chubu.ac.jp/reg2010/).

2 Formalizing the Leftmost-Longest Semantics

A regular expression is an expression of the form: r ::= 1 | a | r·r | r+r | r∗ where 1 is
the null string, a a letter in the alphabet Σ and r1·r2 the concatenation of r1 and r2. Our
definition does not include the regular expression for the empty language. We think of
the regular expressions as abstract syntax trees (AST). For strings accepted by a regular
expression r, we consider the set PT(r) of parse trees:

PT(1) = {1} PT(a) = {a} PT(r1·r2) = {t1·t2 | ti ∈ PT(ri), i = 1, 2}
PT(r1+r2) = {L(t) | t ∈ PT(r1)} ∪ {R(t) | t ∈ PT(r2)}
PT(r∗) = {I(t1, . . . , tn) | t1, . . . , tn ∈ PT(r), n ≥ 0}

Note that parse trees are unranked in the sense that an I-node has an arbitrary number
of children (possibly none). Parse trees for strings should not be confused with the AST
of the regular expression; basically, parse trees are obtained from the AST of a regular
expression by horizontally expanding children of ∗-nodes and choosing the left or right
alternatives for +-nodes.

A position (also called a path string) is a sequence of natural numbers. The root
position is the empty string and denoted as Λ. The child of the R-node has a position
ending with 2 rather than 1. For other kind of nodes, the first sibling always has a
position ending with 1, the next sibling has a position ending with 2 and so forth. The
length of a position p (as string) is denoted by |p|. The subterm of t at position p is
denoted as t|p. We write p1 � p2 iff p1 precedes p2 in lexicographic order.

Let t be a parse tree. The norm of t at p ∈ Pos(t), written ‖ t ‖p, is the number of
letters (of Σ) in t|p (Note: we do not count 1-nodes). For p not in Pos(t), we define
‖ t ‖p = −1. The subscript of ‖ t ‖Λ is omitted.

According to the POSIX specification [1], “a subexpression repeated by ’*’ shall not
match a null expression unless this is the only match for the repetition.” For example,
for a regular expression, a∗∗, I(I()) satisfies this requirement while I(I(), I()), I(I(), a)
or I(a, I()) does not. This leads us to the notion of canonical parse tree:

Definition 1. (canonical parse tree) A parse tree t is called canonical if any subterm of
t such as I(t1, . . . , tn), n ≥ 2, satisfies ‖ ti ‖ > 0 for any 1 ≤ i ≤ n.

Obviously, a leaf of a parse tree is either 1 or a letter in Σ. Reading those letters in Σ
from left to right, we obtain the string derived from that parse tree. We write CPT(r,w)
for the set of canonical parse trees deriving w.

http://www.scl.cs.chubu.ac.jp/reg2010/
http://www.scl.cs.chubu.ac.jp/reg2010/

Disambiguation in Regular Expression Matching 233

The specification [1] also describes that “consistent with the whole match being the
longest of the leftmost matches, each subpattern, from left to right, shall match the
longest possible string.” This leads the following definition of priority:

Definition 2. For any t1, t2 ∈ CPT(r), we say t1 is prior to t2, written t1 � t2, if the
following conditions are satisfied for some p ∈ Pos(t1) ∪ Pos(t2):

1. ‖ t1 ‖p > ‖ t2 ‖p
2. ‖ t1 ‖q = ‖ t2 ‖q for any position q ∈ Pos(t1) ∪ Pos(t2) such that q � p.

Recall that we define ‖ t ‖p = −1 for p � Pos(t). That corresponds to the require-
ment [1]: “a null string shall be considered to be longer than no match at all.” The
specification also states that “the search for a matching sequence starts at the begin-
ning of a string and stops when the first sequence matching the expression is found”
and that “if the pattern permits a variable number of matching characters and thus
there is more than one such sequence starting at that point, the longest such sequence
is matched,” which we formalize as follows.

Given a regular expression r and a string w, we define the set PC(r,w) of parse config-
urations for r and w as {〈u, t, v〉 | t ∈ CPT(r,w′), uw′v = w}. For 〈u1, t1, v1〉 and 〈u2, t2, v2〉
in PC(r,w), we write 〈u1, t1, v1〉 � 〈u2, t2, v2〉 if either |u1| < |u2| or else |u1| = |u2| and
t1 � t2.

Theorem 1. PC(r,w) is a finite and strict total order set.

The finiteness ensures that PC(r,w) has the least (that is, the most prior) parse configu-
ration, which we think of as representing the leftmost-longest matching. Notice that the
least element may not exist for arbitrary (non-canonical) parse trees; e.g., for 1∗ and the
empty string, we would have an infinite decreasing sequence: I() � I(1) � I(11) �

3 Enumerating Parse Trees via Position Automata

3.1 Correctly Nested Parenthesis Expressions

A parenthesis expression means a sequence consisting of parentheses, each of which
is indexed by a position, or letters in Σ. A parenthesis expression α is called correctly
nested if all parentheses in α are correctly nested. For each t in CPT(r), we assign, as its
string representation, a correctly nested parenthesis expression Φ(t, p):

Φ(1, p) = (p)p Φ(R(t), p) = (pΦ(t, p.2))p
Φ(a, p) = (pa)p (a ∈ Σ) Φ(t1·t2, p) = (pΦ(t1, p.1) Φ(t2, p.2))p
Φ(L(t), p) = (pΦ(t, p.1))p Φ(I(t1, . . . , tn), p) = (pΦ(t1, p.1) . . .Φ(tn, p.1))p

For a parse configuration 〈u, t, v〉, we define Φ(〈u, t, v〉) = u Φ(t, Λ) v. Note that the
indexes in Φ(t, Λ) do not come from the parse tree t but from the AST of the underlying
regular expression.
Φ is not injective in general; e.g., bothΦ(I(a), p) and Φ(L(a), p) are (p(p.1a)p.1)p. It

is, however, injective if the domain is restricted to each PC(r,w). We refer to the image
of PC(r,w) by Φ, i.e., {Φ(c) | c ∈ PC(r,w)}, as PCΦ(r,w).

234 S. Okui and T. Suzuki

Any expression in PCΦ(r) has a bounded nesting depth, which does not exceed the
height of (the AST of) r indeed. This means that PCΦ(r) is a regular language, thereby,
recognizable (or equivalently, enumerable) by an automaton. We will construct such
automata in the next section.

Let α be an arbitrary parenthesis expression that is not necessarily in the range of
the functionΦ. Parenthesis expressions are sometimes “packetized” with regarding the
occurrences of letters as separators. For any parenthesis expression α, which is always
written in the form β0a1β1a2 . . . βn−1anβn where a1 . . . an are letters and β0 . . . βn pos-
sibly empty sequences of parentheses, we call βi (0 ≤ i ≤ n) the i-th frame of α. Let
α0, . . . , αn and β0, . . . , βn be the sequences of frames of α and β respectively. If αk and
βk make the first distinction (that is, k is the greatest index such that αi = βi for any
0 ≤ i < k), then the index k is called the fork of α and β.

3.2 Position NFAs with Augmented Transitions

A position automaton with augmented transitions (PAT, in short) is a 6-tuple which
consists of (1) a finite set Σ of letters, (2) a finite set Q of states, (3) a finite set T of
tags, (4) a subset Δ of Q×Σ ×Q× T ∗, (5) an initial state q∧ in Q and (6) a final state q$

in Q. For a ∈ Σ, Qa denotes {q ∈ Q | 〈p, a, q, τ〉 for some p and τ}. We call an element
of Δ a transition.

For an input string a0 . . .an−1, a sequence q0τ0 . . . τn−1qn where q0 = q∧ is called a
path if for any 0 ≤ i < n we have 〈qi, ai, qi+1, τi〉 ∈ Δ; qiτiqi+1 (0 ≤ i < n) is called the
i-th step of the path. For a PAT 〈Σ,Q, T, Δ, q∧, q$〉 and an input string w, a configuration
is a triple 〈u, p, α〉 where u is a suffix of w, p a state in Q, and α a sequence of tags. For
a transition δ = 〈p1, a, p2, τ〉 in Δ, we write 〈u1, p1, α1〉 δ 〈u2, p2, α2〉 if u1 = au2 and
α2 = α1τa. The initial configuration is 〈w, q∧, ε〉 (where ε denotes the empty sequence),
while a finial configuration is of the form 〈ε, q$, α〉 for some α. We say a PAT M accepts
an input string w, yielding a sequence α if there exists a sequence of configurations:
〈w, q∧, ε〉 · · · 〈ε, q$, α〉.

It might help to see a PAT as a sequential transducer. However, a PAT emits paren-
thesis expressions only for the sake of deciding priority of paths. Hence, a PAT has
more similarity with Lurikari’s NFA with tagged transitions (TNFA) [9] although the
formulations are rather different; in a PAT, a transition is augmented with a sequence
of tags, while TNFA allows at most one tag for each transition. Another difference is
that a PAT is ε-transition free; indeed, a PAT is based on a position NFA, while a TNFA
primary assumes a Thompson NFA as its basis, so that it has ε-transitions.

Let r be a regular expression, and p a position of (the AST of) r. The PAT M(r, p) for
r with respect to p is recursively constructed according to the structure of r as follows:

1. M(1, p) is 〈Σ, {q∧, q$}, {(p,)p}, {〈q∧, a, q$, (p)p〉 | a ∈ Σ}, q∧, q$〉.
2. For a ∈ Σ, M(a, p) is 〈Σ, {q∧, p, q$}, {(p,)p}, Δ, q∧, q$〉 where Δ consists of the tran-

sitions 〈q∧, a, p, (p〉 and 〈p, b, q$,)p〉 for any b ∈ Σ.

3. If M(ri, p.i) is 〈Σ,Qi, Ti, Δi, q∧, q$〉 for i = 1, 2, then M(r1+r2, p) is

〈Σ,Q1 ∪ Q2, T1 ∪ T2 ∪ {(p,)p}, [Δ1 ∪ Δ2]p, q∧, q$〉.

Disambiguation in Regular Expression Matching 235

4. If M(ri, p.i) is 〈Σ,Qi, Ti, Δi, q∧, q$〉 for i = 1, 2, then M(r1·r2, p) is

〈Σ,Q1 ∪ Q2, T1 ∪ T2 ∪ {(p,)p}, [Δ1 · Δ2]p, q∧, q$〉.
5. If M(r, p.1) is 〈Σ,Q, T, Δ, q∧, q$〉, then M(r∗, p) is 〈Σ,Q, T ∪{(p,)p}, [Δ∗]p, q∧, q$〉.

Finally, for M(r, Λ) = 〈Σ,Q, T, Δ, q∧, q$〉, we define the PAT M(r) for a regular expres-
sion r as 〈Σ,Q, T, Δ ∪ Δ0, q∧, q$〉 where Δ0 consists of the transitions 〈q∧, a, q∧, ε〉 for
any a ∈ Σ and 〈q$, a, q$, ε〉 for any a ∈ Σ.

In the above construction, [Δ]p, Δ1 · Δ2 and Δ∗ are respectively given as follows:

[Δ]p = {〈q1, a, q2, τ〉 ∈ Δ | q1 � q∧, q2 � q$} ∪ {〈q∧, a, q$, (pτ)p〉 | 〈q∧, a, q$, τ〉 ∈ Δ}
∪ {〈q∧, a, q, (pτ〉 | 〈q∧, a, q, τ〉 ∈ Δ, q � q$}
∪ {〈q, a, q$, τ)p〉 | 〈q, a, q$, τ〉 ∈ Δ, q � q∧}

Δ1 · Δ2 = {〈q1, a, q2, τ〉 ∈ Δ1 | q2 � q$} ∪ {〈q1, a, q2, τ〉 ∈ Δ2 | q1 � q∧}
∪ {〈q1, a, q2, τ1τ2〉 | 〈q1, , q$, τ1〉 ∈ Δ1, 〈q∧, a, q2, τ2〉 ∈ Δ2}

Δ∗ = Δ ∪ {〈q∧, a, q$, ε〉 | a ∈ Σ}
∪ {〈q1, a, q2, τ1τ2〉 | 〈q1, , q$, τ1〉 ∈ Δ, 〈q∧, a, q2, τ2〉 ∈ Δ, q1 � q∧, q2 � q$}

Fig. 1 shows the PAT M((ab+a*)*) obtained by our construction, where the symbol �
stands for arbitrary letters in Σ; that is, a transition with � actually represents several
transitions obtained by replacing � with a letter in Σ.

Notice that the PATs constructed above requires a look-ahead symbol. We assume
that Σ includes an extra symbol $ for indicating the “end of string,” and that any string
given to a PAT M(r) only has a trailing $.

Let PE(M,w) = {α | M accepts w$ yielding α$ }. The following theorem states that
a PAT is capable of exactly enumerating any, and only canonical parse configurations:

Theorem 2. PCΦ(r,w) = PE(M(r),w).

4 Developing a Matching Algorithm

4.1 Basic Idea for Choosing the Most Prior Path

As mentioned before, our matching algorithm basically emulates the subset construc-
tion on the fly. The only but crucial difference is that we need to choose, in each step,
the most prior one when paths converge on the same state. To spell out how to do this,
consider imaginary stacks, one for each path. Along each path, opening parentheses
are pushed on the stack in order of occurrence, and are eventually removed when the
corresponding closing parentheses are encountered.

Consider two paths and the first step at which they are branching. At that moment,
the stacks for these paths store exactly the same content, which, since opening parenthe-
ses occur in order of priority, corresponds to the closing parentheses that contribute to
decide which path is prior to the other. To distinguish this content, we prepare a bottom
pointer for each stack, which initially designates the top of the content (equivalently, the

236 S. Okui and T. Suzuki

Λ

Fig. 1. The position automata with augmented transitions generated from the regular expression
(a·b+a*)*

bottom of the forthcoming parentheses) and decreases when the corresponding closing
parentheses are found. Comparing the bottom pointers at each step allows us to know
exactly when the corresponding closing parentheses appear.

Actually, the particular content of each stack does not matter since we already know
that parentheses are correctly nested; what’s really important is the minimum record of
each bottom pointer that have ever achieved within the steps from the beginning to the
current step. Moreover, since the index of a parenthesis indicates the value of the stack
pointer when it is pushed, we no longer need the stack pointers.

This consideration allows us to develop a rather simple way of comparing the priority
of paths only based on operations of the bottom pointers, without concerning each of
particular parentheses at runtime. This idea is formalized in Section 4.2 below.

4.2 Formalization

First, we define the height of an opening parenthesis (p as |p| + 1 while the height of
a closing parenthesis)p as p. Intuitively, the height of a parenthesis is the value of the
(imaginary) stack pointer we discussed above.

For any sequences α and β of parentheses, α � β denotes the longest common prefix
of α and β. For any sequence α of parentheses and a prefix α′ of α, α\α′ denotes the
remaining sequence obtained by removing α′ from α. In case α\(α � β) is non-empty,
we denote the first element of α\(α � β) as α/β.

Disambiguation in Regular Expression Matching 237

Algorithm 1. Match a string w against a regular expression r
1: K := {q∧}
2: P[q][t] := −1 for any state q and tag t in the set Tcap of tags for captured subexpressions
3: for all n := 0, . . . , |w| do
4: Read the next letter a in w$ (left to right)
5: trans := effective transitions(a) // Choose transitions available for this step
6: proceed one step(n, trans) // Update D, P, K and B accordingly
7: if K contains the final state q$ then
8: From K drop all q such that P[q][(Λ] > P[q$][(Λ] or P[q][(Λ] = −1
9: break if K contains only q$

10: end if
11: end for
12: if K contains the final state q$ then
13: Report SUCCESS and output P[q$][t] for each t ∈ Tcap

14: else
15: Report FAILURE
16: end if

Algorithm 2. effective transitions(a)
1: trans := ∅
2: for all state q ∈ Qa such that tag(p, q) � ⊥ for some p ∈ K do
3: K′ := K\{p}
4: for all state p′ ∈ K′ such that tag(p′, q) � ⊥ do
5: 〈ρ, ρ′〉 := B[p][p′]
6: ρ := min{ρ, minsp(tag(p, q))}; ρ′ := min{ρ′, minsp(tag(p′, q))};
7: p := p′ if ρ < ρ′ or ρ = ρ′ and D[p′][p] = 1
8: end for
9: Add 〈p, q, tag(p, q)〉 to trans

10: end for
11: return trans

Let α and β be parenthesis expressions whose frames are α0, . . . , αn and β0, . . . , βn

respectively. Suppose that k is the fork (i.e., the index of the first different frames) of
α and β. We define the trace of α with respect to β, written trβ(α), as a sequence
ρ0, . . . , ρn of integers as follows:

ρi =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1 (i < k)

min{lastsp(αk � βk), minsp(αk\(αk � βk))}
min{ρi−1, minsp(αi)} (i > k)

where lastsp(γ) denotes the height of the last (the rightmost) parenthesis in γ or else
0 if γ is empty, while minsp(γ) is the minimal height of the parentheses in γ or else 0
if γ is empty. Intuitively, The i-th value ρi of trβ(α) (i > k where k is the fork) means
the minimal record of the bottom pointer for α within the steps from the fork to the
i-th step. The negative number −1 just means that the bottom pointer is not yet set. We
denote the initial value min{lastsp(α � β), minsp(α\(α � β))} as bp0β(α).

238 S. Okui and T. Suzuki

Algorithm 3. proceed one step(n, trans)
1: K := {q | 〈 , q, 〉 ∈ trans}
2: D′ := D; P′ := P; B′ := B
3: for all 〈p, q, α〉, 〈p′, q′, α′〉 ∈ trans such that q � q′ do
4: if p = p′ then
5: D[q][q′] := 1 if α � α′; D[q][q′] := −1 if α′ � α
6: ρ := bp0α′ (α); ρ′ := bp0α(α′)
7: else
8: D[q][q′] := D′[p][p′]
9: 〈ρ, ρ′〉 := B′[p][p′]

10: ρ := min{ρ, minsp(α)}; ρ′ := min{ρ′, minsp(α′)};
11: end if
12: D[q][q′] := 1 if ρ > ρ′; D[q][q′] := −1 if ρ < ρ′; D[q′][q] := −D[q][q′]
13: B[q][q′] := 〈ρ, ρ′〉; B[q′][q] := 〈ρ′, ρ〉
14: end for
15: for all 〈p, q, α〉 ∈ trans do
16: P[q] := P′[p]
17: P[q][t] := n for all t ∈ Tcap ∩ α
18: end for

For trα′ (α) = ρ0, . . . , ρn and trα(α′) = ρ′0, . . . , ρ
′
n, we write trα′ (α) � trα(α′) if

ρi > ρ
′
i for the least i such that ρ j = ρ

′
j for any j > i. For frames α and α′, we write

α � α′, if the following conditions, (1) and (2), hold for some position p; (1) there
exists α/α′ = (p; (2) if there exists α′/α = (q for some q then p � q.

Definition 3. Let α and β be parenthesis expressions. We say α is prior to β, written
α � β, if either trβ(α) � trα(β) or else trβ(α) = trα(β) and α′ � β′ where α′ and β′
are the k-th frames of α and β respectively and k is the fork of α and β.

The order we have just defined above is essentially the same as the priority order on
parse configurations:

Theorem 3. 〈PCΦ(r,w),�〉 is an order set isomorphic to 〈PC(r,w),�〉.

4.3 Algorithm

Based on the above discussion, we provide a regular expression matching algorithm.
Algorithm 1 is the main routine of the algorithm, which takes, apart from a PAT M(r)
built from a regular expression r, an input string w$ then answers whether w matches
r or not. If the matching succeeds, the algorithm tells us the positions of substrings
captured by subexpressions.

Throughout the entire algorithm, a couple of global variables are maintained: K, B,
D and P. K stores the set of current states. Let α and β be the paths getting to states p
and q respectively. Then, B[p][q] stores the minimal record of the bottom pointer for α
and β. D[p][q] remembers which path is currently prior to the other; this decision might
be overridden later. P[p][t], where t is a tag (i.e., a parenthesis), is the last step number
in α at which t occurs.

Disambiguation in Regular Expression Matching 239

The main routine invokes two other subroutines; Algorithm 2 takes a letter a of the
input string then returns a set of transitions actually used for that step, pruning less
prior, thus ineffective, transitions, while Algorithm 3 updates the values of the global
variables for the next step of computation.

Algorithm 2 assumes that a given automaton has been preprocessed so that we have
at most one transition 〈p, q, a, τ〉 for any triple 〈p, q, a〉 such that p, q ∈ Q and a ∈ Σ by
removing some (less prior) transitions. The following proposition, which immediately
follows by Def. 3, justifies this:

Proposition 1. Let α and β be parenthesis expressions whose frames are the same ex-
cept for the k-th frames, say α′ and β′, for some k. We have α � β if either bp0β′(α

′) >
bp0α′ (β

′) or else bp0β′(α
′) = bp0α′ (β′) and α′ � β′.

For the automaton in Fig. 1, the prepossessing removes the transitions with A3 and A9

drawn in dashed lines. In Alg. 2, tag(p, q) denotes the sequence α of tags such that
〈p, a, q, α〉 ∈ Δ for some a ∈ Σ, or ⊥ if such a transition does not exist (such α is
determined uniquely if it exists).

Our algorithm answers the latest positions of captured substrings1 consistent with
those given by the most prior parenthesis expression:

Theorem 4. Let α be the least parenthesis expression in PCΦ(r,w) and α0, . . . , αn its
frames. When the algorithm terminates, P[q$][t] gives the greatest i (≤ n) such that αi

contains t for any t ∈ Tcap that occur in α; P[q$][t] = −1 for the other t ∈ Tcap.

We now consider the runtime cost of our algorithm. We need not count the computa-
tional cost for bp(α), bp0β(α) and α � β because they can computed, in advance, at
compile time (before a particular input string is given). The number of transitions to
be examined in effective transitions(a) does not exceed |K| · |Qa| and we have
|K| ≤ |Qa′ | for the letter a′ processed in the previous iteration in Alg. 1. Since |Qa|
(resp. |Qa′ |) is the number of occurrences of the letter a (resp. a′) in the given regular
expression plus 2, the time complexity of Alg. 2 is O(n2), where n is the number of
occurrences of the most frequently used letter in the given regular expression and, like-
wise, we obtain O(n(n + c)) for Alg. 3, where c is the number of subexpressions with
which we want to capture substrings. Therefore, for the length m of a input string, the
time complexity of the whole algorithm is given as follows:

Theorem 5. The time complexity of the algorithm at runtime is O(mn(n + c)).

5 Related Work

The idea of realizing regular expression matching by emulating subset construction
at runtime goes back to early days; see [2] for the history. For the idea of using tags in
automata we are indebted to the study [9], in which Laurikari have introduced NFA with

1 In [5], capturing within a previous iteration should be reset once; e.g, the matching aba to
(a(b)∗)∗ should result in P[q$][(121] = P[q$][)121] = −1, while our algorithm currently reports
P[q$][(121] = 1, P[q$][)121] = 2. This subtle gap could be resolved without affecting the order
of the computational cost by replacing P with more appropriate data structures: e.g., trees.

240 S. Okui and T. Suzuki

tagged transitions (TNFA), the basis of TRE library, in order to formulate the priority
of paths. Unfortunately, it is somewhat incompatible with today’s interpretation [5] as
for the treatment of repetition.

Dubé and Feeley have given a way of generating the entire set of parse trees from
regular expressions [4] by using a grammatical representation. Frisch and Cardelli have
also considered an ordering on parse trees [6], which is completely different from
ours since they focus on the greedy, or first match, semantics. Their notion of “non-
problematic value” is similar to, but stronger than, our canonical parse trees. They also
focus on a problem of ε-transition loop, which does not occur in our case since we
are based on position automata. Vansummeren [11] have also given a stable theoretical
framework for the leftmost-longest matching, although capturing inside repetitions is
not considered.

An implementation taking a similar approach to ours is Kuklewicz’s Haskell TDFA
library [8]. Although it is also based on position automata, the idea of using orbit tags
for the comparison of paths is completely different from our approach. Another similar
one is Google’s new regular expression library called RE2 [3] which has come out just
before we finish the preparation of this paper. Unlike ours, RE2 follows the greedy se-
mantics rather than the leftmost-longest semantics. TRE, TDFA, RE2 and our algorithm
are all based on automata, so that, while their scope is limited to regular expressions
without back references, they all enable of avoiding the computational explosion.

Acknowledgments. The authors are grateful to anonymous reviewers for valuable
comments.

References

1. The Open Group Base Specification Issue 6 IEEE Std 1003.1 2004 Edition (2004), http://
www.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html

2. Cox, R.: Regular Expression Matching Can Be Simple and Fast (2007), http://swtch.
com/˜rsc/regexp/regexp1.html

3. Cox, R.: Regular Expression Matching in the Wild (2010), http://swtch.com/˜rsc/
regexp/regexp3.html

4. Dubé, D., Feeley, M.: Efficiently Building a Parse Tree from a Regular Expression. Acta
Infomatica 37(2), 121–144 (2000)

5. Fowler, G.: An Iterpretation of the POSIX Regex Standard (2003), http://www2.
research.att.com/˜gsf/testregex/re-interpretation.html

6. Frisch, A., Cardelli, L.: Greedy Regular Expression Matching. In: Dı́az, J., Karhumäki, J.,
Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 618–629. Springer, Hei-
delberg (2004)

7. Glushkov, V.M.: The Abstract Theory of Automata. Russian Mathematical Surveys 16(5),
1–53 (1961)

8. Kuklewicz, C.: Regular Expressions: Bounded Space Proposal (2007), http://www.
haskell.org/haskellwiki/Regular_expressions/Bounded_space_proposal

9. Laurikari, V.: Efficient Submatch Addressing for Regular Expressions. Master’s thesis,
Helsinki University of Technology (2001)

10. McNaughton, R., Yamada, H.: Regular Expressions and State Graphs for Automata. IEEE
Transactions on Electronic Computers 9, 39–47 (1960)

11. Vansummeren, S.: Type Inference for Unique Pattern Matching. ACM Transactions on Pro-
gramming Languages and Systems 28(3), 389–428 (2006)

http://www.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
http://www.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
http://swtch.com/~rsc/regexp/regexp1.html
http://swtch.com/~rsc/regexp/regexp1.html
http://swtch.com/~rsc/regexp/regexp3.html
http://swtch.com/~rsc/regexp/regexp3.html
http://www2.research.att.com/~gsf/testregex/re-interpretation.html
http://www2.research.att.com/~gsf/testregex/re-interpretation.html
http://www.haskell.org/haskellwiki/Regular_expressions/Bounded_space_proposal
http://www.haskell.org/haskellwiki/Regular_expressions/Bounded_space_proposal

A Polynomial Time Match Test for Large Classes
of Extended Regular Expressions

Daniel Reidenbach and Markus L. Schmid�

Department of Computer Science, Loughborough University,

Loughborough, Leicestershire, LE11 3TU, United Kingdom

{D.Reidenbach,M.Schmid}@lboro.ac.uk

Abstract. In the present paper, we study the match test for extended

regular expressions. We approach this NP-complete problem by intro-

ducing a novel variant of two-way multihead automata, which reveals

that the complexity of the match test is determined by a hidden com-

binatorial property of extended regular expressions, and it shows that

a restriction of the corresponding parameter leads to rich classes with

a polynomial time match test. For presentational reasons, we use the

concept of pattern languages in order to specify extended regular ex-

pressions. While this decision, formally, slightly narrows the scope of our

results, an extension of our concepts and results to more general notions

of extended regular expressions is straightforward.

1 Introduction

Regular expressions are compact and convenient devices that are widely used
to specify regular languages, e. g., when searching for a pattern in a string.
In order to overcome their limited expressive power while, at the same time,
preserving their desirable compactness, their definition has undergone various
modifications and extensions in the past decades. These amendments have led
to several competing definitions, which are collectively referred to as extended
regular expressions (or: REGEX for short). Hence, today’s text editors and pro-
gramming languages (such as Java and Perl) use individual notions of (extended)
regular expressions, and they all provide so-called REGEX engines to conduct
a match test, i. e., to compute the solution to the membership problem for any
language given by a REGEX and an arbitrary string. While the introduction of
new features of extended regular expressions have frequently not been guided by
theoretically sound analyses, recent studies have led to a deeper understanding
of their properties (see, e. g., Câmpeanu et al. [3]).

A common feature of extended regular expressions not to be found in the
original definition is the option to postulate that each word covered by a specific
REGEX must contain a variable substring at several recurrent positions (so-
called backreferences). Thus, they can be used to specify a variety of non-regular
languages (such as the language of all words w that satisfy w = xx for arbitrary

� Corresponding author.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 241–250, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

242 D. Reidenbach and M.L. Schmid

words x), and this has severe consequences on the complexity of their basic
decision problems. In particular, their vital membership problem (i. e., in other
words, the match test) is NP-complete (see Aho [1]). REGEX engines commonly
use more or less sophisticated backtracking algorithms over extensions of NFA
in order to perform the match test (see Friedl [5]), often leading even for rather
small inputs to a practically unbearable runtime. Therefore, it is a worthwhile
task to investigate alternative approaches to this important problem and to
establish large classes of extended regular expressions with a polynomial-time
match test.

It is the purpose of this paper to propose and study such an alternative
method. In order to keep the technical details reasonably concise we do not
directly use a particular REGEX definition, but we consider a well-established
type of formal languages that, firstly, is defined in a similar yet simpler manner,
secondly, is a proper subclass of the languages generated by REGEX and, thirdly,
shows the same properties with regard to the membership problem: the pattern
languages as introduced by Angluin [2]; our results on pattern languages can then
directly be transferred to the corresponding class of REGEX. In this context, a
pattern α is a finite string that consists of variables and terminal symbols (taken
from a fixed alphabet Σ), and its language is the set of all words that can be
derived from α when substituting arbitrary words over Σ for the variables. For
example, the language L generated by the pattern α := x1ax2bx1 (with variables
x1, x2 and terminal symbols a, b) consists of all words with an arbitrary prefix
u, followed by the letter a, an arbitrary word v, the letter b and a suffix that
equals u. Thus, w1 := aaabbaa is contained in L, whereas w2 := baaba is not.

In the definition of pattern languages, the option of using several occurrences
of a variable exactly corresponds to the backreferences in extended regular ex-
pressions, and therefore the membership problem for pattern languages captures
the essence of what is computationally complex in the match test for REGEX.
Thus, it is not surprising that the membership problem for pattern languages
is also known to be NP-complete (see Angluin [2] and Jiang et al. [10]). Fur-
thermore, Ibarra et al. [9] point out that the membership problem for pattern
languages is closely related to the solvability problem for certain Diophantine
equations. More precisely, for any word w and for any pattern α with m termi-
nal symbols and n different variables, w can only be contained in the language
generated by α if there are numbers si (representing the lengths of the substitu-
tion words for the variables xi) such that |w| = m +

∑n
i=1 aisi (where ai is the

number of occurrences of xi in α and |w| stands for the length of w). Thus, the
membership test needs to implicitly solve this NP-complete problem, which is
related to Integer Linear Programming problems (see the references in [9]) and
the Money-Changing Problem (see Guy [6]). All these insights into the complex-
ity of the membership problem do not depend on the question of whether the
pattern contains any terminal symbols. Therefore, we can safely restrict our con-
siderations to so-called terminal-free pattern languages (generated by patterns
that consist of variables only); for this case, NP-completeness of the membership
problem has indirectly been established by Ehrenfeucht and Rozenberg [4]. This

Polynomial Time Match Test for Large Classes of REGEX 243

restriction again improves the accessibility of our technical concepts, without
causing a loss of generality.

As stated above, these results on the complexity of the problem (and the fact
that probabilistic solutions might often be deemed inappropriate for it) motivate
the search for large subclasses with efficiently solvable membership problem and
for suitable concepts realising the respective algorithms. Rather few such classes
are known to date. They either restrict the number of different variables in the
patterns to a fixed number k (see Angluin [2], Ibarra et al. [9]), which is an
obvious option and leads to a time complexity of O(nk), or they restrict the
number of occurrences of each variable to 1 (see Shinohara [11]), which turns
the resulting pattern languages into regular languages.

In the present paper, motivated by Shinohara’s [12] non-cross pattern lan-
guages, we introduce major classes of pattern languages (and, hence, of extended
regular expressions) with a polynomial-time membership problem that do not
show any of the above limitations. Thus, the corresponding patterns can have
any number of variables with any number of occurrences; instead, we consider a
rather subtle parameter, namely the distance several occurrences of any variable
x may have in a pattern (i. e., the maximum number of different variables sepa-
rating any two consecutive occurrences of x). We call this parameter the variable
distance vd of a pattern, and we demonstrate that, for the class of all patterns
with vd ≤ k, the membership problem is solvable in time O(nk+4). Referring to
the proximity between the subject of our paper and the solvability problem of
the equation |w| = m+

∑n
i=1 aisi described above (which does not depend on the

order of variables in the patterns, but merely on their numbers of occurrences),
we consider this insight quite remarkable, and it is only possible since this solv-
ability problem is weakly NP-complete (i. e. there exist pseudo-polynomial time
algorithms). We also wish to point out that, in terms of our concept, Shinohara’s
non-cross patterns correspond to those patterns with vd = 0.

We prove our main result by introducing the concept of a Janus automaton,
which is a variant of a two-way two-head automaton (see Ibarra [7]), amended
by the addition of a number of counters. Janus automata are algorithmic de-
vices that are tailored to performing the match test for pattern languages, and
we present a systematic way of constructing them. While an intuitive use of a
Janus automaton assigns a distinct counter to each variable in the corresponding
pattern α, we show that in our advanced construction the number of different
counters can be limited by the variable distance of α. Since the number of coun-
ters is the main element determining the complexity of a Janus automaton, this
yields our main result. An additional effect of the strictness of our approach is
that we can easily discuss its quality in a formal manner, and we can show that,
based on a natural assumption on how Janus automata operate, our method
leads to an automaton with the smallest possible number of counters. Further-
more, it is straightforward to couple our Janus automata with ordinary finite
automata in order to expand our results to more general classes of extended
regular expressions, e. g., those containing terminal symbols or imposing regular
restrictions to the sets of words variables can be substituted with.

244 D. Reidenbach and M.L. Schmid

In order to validate our claim that the variable distance is a crucial parameter
contributing to the complexity of the match test, and to examine whether our
work – besides its theoretical value – might have any practical relevance, some
instructive tests have been performed.1 They compare a very basic Java imple-
mentation of our Janus automata with the original REGEX engine included in
Java. With regard to the former objective, the test results suggest that our novel
notion of a variable distance is indeed a crucial (and, as briefly mentioned above,
rather counter-intuitive) parameter affecting the complexity of the match test
for both our Janus-based algorithm and the established backtracking method.
Concerning the latter goal, we can observe that our non-optimised implementa-
tion, on average, considerably outperforms Java’s REGEX engine. We therefore
conclude that our approach might also be practically worthwhile.

2 Definitions

Let N := {0, 1, 2, 3, . . .}. For an arbitrary alphabet A, a string (over A) is a finite
sequence of symbols from A, and ε stands for the empty string. The symbol A+

denotes the set of all nonempty strings over A, and A∗ := A+ ∪ {ε}. For the
concatenation of two strings w1, w2 we write w1 · w2 or simply w1w2. We say
that a string v ∈ A∗ is a factor of a string w ∈ A∗ if there are u1, u2 ∈ A∗ such
that w = u1 · v ·u2. The notation |K| stands for the size of a set K or the length
of a string K; the term |w|a refers to the number of occurrences of the symbol
a in the string w.

For any alphabets A, B, a morphism is a function h : A∗ → B∗ that satisfies
h(vw) = h(v)h(w) for all v, w ∈ A∗. Let Σ be a (finite) alphabet of so-called
terminal symbols and X an infinite set of variables with Σ∩X = ∅. We normally
assume X := {x1, x2, x3, . . .}. A pattern is a nonempty string over Σ ∪ X , a
terminal-free pattern is a nonempty string over X and a word is a string over Σ.
For any pattern α, we refer to the set of variables in α as var(α). We shall often
consider a terminal-free pattern in its variable factorisation, i. e. α = y1 ·y2 ·. . .·yn

with yi ∈ {x1, x2, . . . , xm}, 1 ≤ i ≤ n and m = | var(α)|. A morphism σ :
(Σ ∪ X)∗ → Σ∗ is called a substitution if σ(a) = a for every a ∈ Σ.

We define the pattern language of a terminal-free pattern α by LΣ(α) :=
{σ(α) | σ : X∗ → Σ∗ is a substitution}. Note, that these languages, technically,
are terminal-free E-pattern languages (see Jiang et al. [10]). We ignore the case
where a variable occurs just once, as then LΣ(α) = Σ∗.

The problem to decide for a given pattern α and a given word w ∈ Σ∗ whether
w ∈ LΣ(α) is called the membership problem.

3 Janus Automata

In the present section we introduce a novel type of automata, the so-called Janus
automata, that are tailored to solving the membership problem for pattern lan-
guages. To this end, we combine elements of two-way multihead finite automata
(see, e. g., Ibarra [7]) and counter machines (see, e. g., Ibarra [8]).
1 Tests and source code are available at http://www-staff.lboro.ac.uk/~coms10/

http://www-staff.lboro.ac.uk/~coms10/

Polynomial Time Match Test for Large Classes of REGEX 245

A Janus automaton (or JFA(k) for short) is a two-way 2-head automaton with
k restricted counters, k ∈ N. More precisely, it is a tuple M := (k, Q, Σ, δ, q0, F),
where Σ is an input alphabet, δ is a transition function, Q is a set of states,
F ⊆ Q is a set of final states, and q0 ∈ Q is the initial state. In each step of
the computation the automaton M provides a distinct counter bound for each
counter. The counter values can only be incremented or left unchanged and
they count strictly modulo their counter bound, i. e. once a counter value has
reached its counter bound, a further incrementation forces the counter to start
at counter value 1 again. Depending on the current state, the currently scanned
input symbols and on whether the counters have reached their bounds, the tran-
sition function determines the next state, the input head movements and the
counter instructions. In addition to the counter instructions of incrementing and
leaving the counter unchanged it is also possible to reset a counter. In this case,
the counter value is set to 0 and a new counter bound is nondeterministically
guessed. Furthermore, we require the first input head to be always positioned to
the left of the second input head, so there are a well-defined left and right head.
Therefore, we call this automata model a “Janus” automaton. Any string &w$,
where w ∈ Σ∗ and the symbols &, $ (referred to as left and right endmarker,
respectively) are not in Σ, is an input to M . Initially, the input tape stores some
input, M is in state q0, all counter bounds and counter values are 0 and both
input heads scan &. The word w is accepted by M if and only if it is possible for
M to reach an accepting state by succesively applying the transition function.
For any Janus automaton M let L(M) denote the set of words accepted by M .

JFA(k) are nondeterministic automata, but their nondeterminism differs from
that of common nondeterministic finite automata. The only nondeterministic
step a Janus automaton is able to perform consists in guessing a new counter
bound for some counter. Once a new counter bound is guessed, the previous
one is lost. Apart from that, each transition, i. e. entering a new state, moving
the input heads and giving instructions to the counters, is defined completely
deterministically by δ.

The vital point of a JFA(k) computation is then, of course, that the automaton
is only able to save exactly k (a constant number, not depending on the input
word) different numbers at a time. For a JFA(k) M , the number k shall be the
crucial number for the complexity of the acceptance problem (for M), i. e. to
decide, for a given word w, whether w ∈ L(M).

4 Janus Automata for Pattern Languages

In this chapter, we demonstrate how Janus automata can be used for recognising
pattern languages. More precisely, for an arbitrary terminal-free pattern α, we
construct a JFA(k) M satisfying L(M) = LΣ(α). Before we move on to a formal
analysis of this task, we discuss the problem of deciding whether w ∈ LΣ(α) for
given α and w, i. e. the membership problem, in an informal way.

Let α = y1 · y2 · . . . · yn be a terminal-free pattern with m := | var(α)|, and let
w ∈ Σ∗ be a word. The word w is an element of LΣ(α) if and only if there exists

246 D. Reidenbach and M.L. Schmid

a factorisation w = u1 ·u2 · . . . ·un such that uj = uj′ for all j, j′ ∈ {1, 2, . . . , |α|}
with yj = yj′ . Thus, a way to solve the membership problem is to initially guess
m numbers {l1, l2, . . . , lm}, then, if possible, to factorise w = u1 ·. . .·un such that
|uj| = li for all j with yj = xi and, finally, to check whether uj = uj′ is satisfied
for all j, j′ ∈ {1, 2, . . . , |α|} with yj = yj′ . A JFA(m) can perform this task by
initially guessing m counter bounds, which can be interpreted as the lengths of
the factors. The two input heads can be used to check if this factorisation has
the above described properties. However, the number of counters that are then
required directly depends on the number of variables, and the question arises if
this is always necessary. The next step is to formalise and generalise the way of
constructing a JFA(k) for arbitrary pattern languages.

Definition 1. Let α := y1 · y2 · . . . · yn be a terminal-free pattern, and let
ni := |α|xi for each xi ∈ var(α). The set varposi(α) is the set of all positions
j satisfying yj = xi. Let furthermore Γi := ((l1, r1), (l2, r2), . . . , (lni−1, rni−1))
with (lj , rj) ∈ varposi(α)2 and lj < rj , 1 ≤ j ≤ ni − 1. The sequence Γi is a
matching order for xi in α if and only if the graph (varposi(α), Γ ′

i) is connected,
where Γ ′

i := {(l1, r1), (l2, r2), . . . , (lni−1, rni−1)}. The elements mj ∈ varposi(α)2

of a matching order (m1, m2, . . . , mk) are called matching positions.

We illustrate Definition 1 by the example pattern β := x1 ·x2 ·x1 ·x2 ·x3 ·x2 ·x3.
Possible matching orders for x1, x2 and x3 in β are given by ((1, 3)), ((2, 4), (4, 6))
and ((5, 7)), respectively. To obtain a matching order for a pattern α we simply
combine matching orders for all x ∈ var(α):

Definition 2. Let α be a terminal-free pattern with m := | var(α)| and, for all i
with 1 ≤ i ≤ m, ni := |α|xi and let (mi,1, mi,2, . . . , mi,ni−1) be a matching order
for xi in α. The tuple (m1, m2, . . . , mk) is a complete matching order for α if
and only if k =

∑m
i=1 ni − 1 and, for all i, ji, 1 ≤ i ≤ m, 1 ≤ ji ≤ ni − 1, there

is a j′, 1 ≤ j′ ≤ k, with mj′ = mi,ji .

With respect to our example pattern β this means that any sequence of the
matching positions in {(1, 3), (2, 4), (4, 6), (5, 7)} is a complete matching order for
β. As pointed out by the following lemma, the concept of a complete matching
order can be used to solve the membership problem.

Lemma 1. Let α = y1 ·y2 ·. . .·yn be a terminal-free pattern and ((l1, r1), (l2, r2),
. . . , (lk, rk)) a complete matching order for α. Let w be an arbitrary word in some
factorisation w = u1 · u2 · . . . · un. If ulj = urj for each j with 1 ≤ j ≤ k, then
uj = uj′ for all j, j′ ∈ {1, 2, . . . , |α|} with yj = yj′ .

Let α = y1 ·y2 · . . . ·yn be a terminal-free pattern and let w be an arbitrary word
in some factorisation w = u1 · u2 · . . . · un. According to the previous lemma,
we may interpret a complete matching order as a list of instructions specifying
how the factors ui, 1 ≤ i ≤ n, can be compared in order to check if uj = uj′ for
all j, j′ ∈ {1, 2, . . . , |α|} with yj = yj′ , which is of course characteristic for w ∈
LΣ(α). With respect to the complete matching order ((4, 6), (1, 3), (2, 4), (5, 7))
for the example pattern β, we apply Lemma 1 in the following way. If a word

Polynomial Time Match Test for Large Classes of REGEX 247

w ∈ Σ∗ can be factorised into w = u1 · u2 · . . . · u7 such that u4 = u6, u1 = u3,
u2 = u4 and u5 = u7 then w ∈ LΣ(β). These matching instructions given by
a complete matching order can be carried out by using two pointers, or input
heads, moving over the word w.

Let (l′, r′) and (l, r) be two consecutive matching positions. It is possible to
perform the comparison of factors ul′ and ur′ by positioning the left head on the
first symbol of ul′ , the right head on the first symbol of ur′ and then moving them
simultaneously over these factors from left to right, checking symbol by symbol
if these factors are identical. Now the left head, located at the first symbol of
factor ul′+1, has to be moved to the first symbol of factor ul. If l′ < l, then
it is sufficient to move it over all the factors ul′+1, ul′+2, . . . , ul−1. If, on the
other hand, l < l′, then the left head has to be moved to the left, thus over the
factors ul′ and ul as well. Furthermore, as we want to apply these ideas to Janus
automata, the heads must be moved in a way that the left head is always located
to the left of the right head. The following definition shall formalise these ideas.

Definition 3. Let ((l1, r1), (l2, r2), . . . , (lk, rk)) be a complete matching order
for a terminal-free pattern α and let l0 := r0 := 0. For all j, j′, 1 ≤ j <
j′ ≤ |α| we define g(j, j′) := (j + 1, j + 2, . . . , j′ − 1) and g(j′, j) := (j′, j′ −
1, . . . , j). For each i with 1 ≤ i ≤ k we define Dλ

i := ((p1, λ), (p2, λ), . . . , (pk1 , λ))
and Dρ

i := ((p′1, ρ), (p′2, ρ), . . . , (p′k2
, ρ)), where (p1, p2, . . . , pk1) := g(li−1, li),

(p′1, p′2, . . . , p′k2
) := g(ri−1, ri) and λ, ρ are constant markers. Now let D′

i :=
((s1, μ1), (s2, μ2), . . . , (sk1+k2 , μk1+k2)), with sj ∈ {p1, . . . , pk1 , p

′
1, . . . , p

′
k2
}, μj ∈

{λ, ρ}, 1 ≤ j ≤ k1 + k2, be a tuple containing exactly the elements of Dλ
i and

Dρ
i such that the relative orders of the elements in Dλ

i and Dρ
i are preserved.

Furthermore, for each j, 1 ≤ j ≤ k1 + k2, qj ≤ q′j needs to be satisfied, where
qj := li−1 if μj′ = ρ, 1 ≤ j′ ≤ j, and qj := max{j′ | 1 ≤ j′ ≤ j, μj′ = λ}
else, analogously, q′j := ri−1 if μj′ = λ, 1 ≤ j′ ≤ j, and q′j := max{j′ | 1 ≤
j′ ≤ j, μj′ = ρ} else. Now we append the two elements (ri, ρ), (li, λ) in exactly
this order to the end of D′

i and obtain Di. Finally, the tuple (D1, D2, . . . , Dk)
is called a Janus operating mode for α (derived from the complete matching
order ((l1, r1), (l2, r2), . . . , (lk, rk))). By Di, we denote the tuple Di without the
markers, i. e., if Di = ((p1, μ1), . . . , (pn, μn)) with μj ∈ {λ, ρ}, 1 ≤ j ≤ n, then
Di := (p1, p2, . . . , pn).

We recall once again the example β := x1 · x2 · x1 · x2 · x3 · x2 · x3. According
to Definition 3 we consider the tuples Dλ

i and Dρ
i with respect to the complete

matching order ((4, 6), (1, 3), (2, 4), (5, 7)) for β. We omit the markers λ and ρ for
a better presentation. The tuples Dλ

i are given by Dλ
1 = (1, 2, 3), Dλ

2 = (4, 3, 2, 1),
Dλ

3 = () and Dλ
4 = (3, 4). The tuples Dρ

i are given by Dρ
1 = (1, 2, . . . , 5), Dρ

2 =
(6, 5, 4, 3), Dρ

3 = () and Dρ
4 = (5, 6). Therefore, Δβ := (D1, D2, D3, D4) is a

possible Janus operating mode for β derived from ((4, 6), (1, 3), (2, 4), (5, 7)),
where D1 = ((1, ρ), (1, λ), (2, ρ), (2, λ), (3, ρ), (3, λ), (4, ρ), (5, ρ), (6, ρ), (4, λ)),
D2 = ((4, λ), (3, λ), . . . , (1, λ), (6, ρ), (5, ρ), . . . , (3, ρ), (3, ρ), (1, λ)), D3 =
((4, ρ), (2, λ)), D4 = ((3, λ), (4, λ), (5, ρ), (6, ρ), (7, ρ), (5, λ)).

We shall see that it is possible to transform a Janus operating mode for any
pattern directly into a Janus automaton recognising the corresponding pattern

248 D. Reidenbach and M.L. Schmid

language. As we are particularly interested in the number of counters a Janus
automaton needs, we introduce an instrument to determine the quality of Janus
operating modes with respect to the number of counters that are required to
actually construct a Janus automaton.

Definition 4. Let (D1, D2, . . . , Dk) be a Janus operating mode for a terminal-
free pattern α := y1 · y2 · . . . · yn. Let D = (d′1, d

′
2, . . . , d

′
k′) with k′ =

∑k
i=1 |Di| be

the tuple obtained from concatenating all tuples Dj, 1 ≤ j ≤ k, in the order given
by the Janus operating mode. For each i, 1 ≤ i ≤ k′, let si := |{x | ∃ j, j′ with 1 ≤
j < i < j′ ≤ k′, yd′

j
= yd′

j′
= x �= yd′

i
}|. Finally let the counter number of

(D1, D2, . . . , Dk) (denoted by cn(D1, D2, . . . , Dk)) be max{si | 1 ≤ i ≤ k′}.
With regard to our example β, it can be easily verified that cn(Δβ) = 2. The
counter number of a Janus operating mode of a pattern α is an upper bound for
the number of counters needed by a Janus automaton recognising LΣ(α):

Theorem 1. Let α be a terminal-free pattern and (D1, D2, . . . , Dk) be an arbi-
trary Janus operating mode for α. There exists a JFA(cn(D1, . . . , Dk) + 1) M
satisfying L(M) = LΣ(α).

Hence, the task of finding an optimal Janus automaton for a pattern is equivalent
to finding an optimal Janus operating mode for this pattern. We shall investigate
this problem in the subsequent section.

5 Patterns with Restricted Variable Distance

We now introduce a certain combinatorial property of terminal-free patterns,
the so-called variable distance. The variable distance of a terminal-free pattern
is the maximum number of different variables separating any two consecutive
occurrences of a variable:

Definition 5. The variable distance of a terminal-free pattern α is the smallest
number k ≥ 0 such that, for each x ∈ var(α), every factorisation α = β ·x ·γ ·x ·δ
with β, γ, δ ∈ X∗ and |γ|x = 0 satisfies | var(γ)| ≤ k. We denote the variable
distance of a terminal-free pattern α by vd(α).

Obviously, vd(α) ≤ var(α) − 1 for all terminal-free patterns α. To illustrate the
concept of the variable distance, we consider the slightly more involved pattern
α := x1 ·x2 ·x1 ·x3 ·x2 ·x2 ·x2 ·x4 ·x4 ·x5 ·x5 ·x3. In α, there are no variables between
occurrences of variables x4 or x5 and one occurrence of x2 between the two oc-
currences of x1. Furthermore, the variables x1 and x3 occur between occurrences
of x2 and the variables x2, x4 and x5 occur between the two occurrences of x3.
Thus, the variable distance of this pattern is 3.

The following vital result demonstrates the relevance of the variable distance,
which is a lower bound for the counter number of Janus operating modes.

Theorem 2. Let (D1, D2, . . . , Dk) be an arbitrary Janus operating mode for a
terminal-free pattern α. Then cn(D1, . . . , Dk) ≥ vd(α).

Polynomial Time Match Test for Large Classes of REGEX 249

In order to define a Janus operating mode satisfying cn(D1, . . . , Dk) = vd(α),
we now consider a particular matching order:

Definition 6. Let α := y1 · y2 · . . . · yn be a terminal-free pattern with p :=
| var(α)|. For each xi ∈ var(α), let varposi(α) := {ji,1, ji,2, . . . , ji,ni} with ni :=
|α|xi , ji,l < ji,l+1, 1 ≤ l ≤ ni − 1. Let (m1, m2, . . . , mk), k =

∑p
i=1 ni − 1, be

an enumeration of the set {(ji,l, ji,l+1) | 1 ≤ i ≤ p, 1 ≤ l ≤ ni − 1} such that,
for every i′, 1 ≤ i′ < k, the left element of the pair mi′ is smaller than the left
element of mi′+1. We call (m1, m2, . . . , mk) the canonical matching order for α.

Proposition 1. Let α be a terminal-free pattern. The canonical matching order
for α is a complete matching order.

For instance, the canonical matching order for the example pattern β introduced
in Section 4 is ((1, 3), (2, 4), (4, 6), (5, 7)). We proceed with the definition of a
Janus operating mode that is derived from the canonical matching order. It is
vital for the correctness of our results, that we first move the left head and then
the right head. This is easily possible if for two consecutive matching positions
(l′, r′), (l, r), l < r′. If this condition is not satisfied, then the left head may
pass the right one, which conflicts with the definition of Janus operating modes.
Therefore, in this case, we move the left head and right head alternately.

Definition 7. Let (m1, m2, . . . , mk) be the canonical matching order for a ter-
minal-free pattern α. For any mi := (j1, j2) and mi−1 := (j′1, j′2), 2 ≤ i ≤ k,
let (p1, p2, . . . , pk1) := g(j′1, j1) and (p′1, p

′
2, . . . , p

′
k2

) := g(j′2, j2), where g is the
function introduced in Definition 3. If j1 ≤ j′2, then we define

Di := ((p1, λ), (p2, λ), . . . , (pk1 , λ), (p′1, ρ), (p′2, ρ), . . . , (p′k2
, ρ), (j2, ρ), (j1, λ)) .

If, on the other hand, j′2 < j1, we define Di in three parts

Di := ((p1, λ), (p2, λ), . . . , (j′2, λ),
(j′2 + 1, ρ), (j′2 + 1, λ), (j′2 + 2, ρ), (j′2 + 2, λ), . . . , (j1 − 1, ρ), (j1 − 1, λ),
(j1, ρ), (j1 + 1, ρ), . . . , (j2 − 1, ρ), (j2, ρ), (j1, λ)) .

Finally, D1 := ((1, ρ), (2, ρ), . . . , (j − 1, ρ), (j, ρ), (1, λ)), where m1 = (1, j). The
tuple (D1, D2, . . . , Dk) is called the canonical Janus operating mode.

If we derive a Janus operating mode from the canonical matching order for β as
described in Definition 7 we obtain the canonical Janus operating mode (((1, ρ),
(2, ρ), (3, ρ), (1, λ)), ((4, ρ), (2, λ)), ((3, λ), (5, ρ), (6, ρ), (4, λ)), ((7, ρ), (5, λ))).
This canonical Janus operating mode has a counter number of 1, so its counter
number is smaller than the counter number of the example Janus operating
mode Δβ given in Section 4 and, furthermore, equals the variable distance of β.
With Theorem 2 we conclude that the canonical Janus operating mode for β is
optimal. The next lemma shows that this holds for every pattern and, together
with Theorem 1, we deduce our first main result, namely that for arbitrary
patterns α, there exists a JFA(vd(α) + 1) exactly accepting LΣ(α).

250 D. Reidenbach and M.L. Schmid

Lemma 2. Let α be a terminal-free pattern and let (D1, D2, . . . , Dk) be the
canonical Janus operating mode for α. Then cn(D1, . . . , Dk) = vd(α).

Theorem 3. Let α be a terminal-free pattern. There exists a JFA(vd(α) + 1)
M such that L(M) = LΣ(α).

The Janus automaton obtained from the canonical Janus operating mode for
a pattern α is called the canonical Janus automaton. Theorem 3 shows the
optimality of the canonical automaton. However, this optimality is subject to a
vital assumption: we assume that the automaton needs to know the length of a
factor in order to move an input head over this factor.

As stated above, the variable distance is the crucial parameter when construct-
ing canonical Janus automata for pattern languages. We obtain a polynomial
time match test for any class of patterns with a restricted variable distance:

Theorem 4. There is a computable function that, given any terminal-free pat-
tern α and w ∈ Σ∗, decides on whether w ∈ LΣ(α) in time O(|α|3 |w|(vd(α)+4)).

As mentioned in the introduction, this main result also holds for more general
classes of extended regular expressions. We anticipate, though, that the necessary
amendments to our definitions involve some technical hassle.

References

1. Aho, A.: Algorithms for finding patterns in strings. In: van Leeuwen, J. (ed.) Hand-

book of Theoretical Computer Science. Algorithms and Complexity, vol. A, pp.

255–300. MIT Press, Cambridge (1990)

2. Angluin, D.: Finding patterns common to a set of strings. Journal of Computer

and System Sciences 21, 46–62 (1980)

3. Câmpeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions.

International Journal of Foundations of Computer Science 14, 1007–1018 (2003)

4. Ehrenfeucht, A., Rozenberg, G.: Finding a homomorphism between two words is

NP-complete. Information Processing Letters 9, 86–88 (1979)

5. Friedl, J.E.F.: Mastering Regular Expressions, 3rd edn. O’Reilly, Sebastopol (2006)

6. Guy, R.K.: The money changing problem. In: Unsolved Problems in Number The-

ory, 3rd edn., ch. C7, pp. 171–173. Springer, New York (2004)

7. Ibarra, O.: On two-way multihead automata. Journal of Computer and System

Sciences 7, 28–36 (1973)

8. Ibarra, O.: Reversal-bounded multicounter machines and their decision problems.

Journal of the ACM 25, 116–133 (1978)

9. Ibarra, O., Pong, T.-C., Sohn, S.: A note on parsing pattern languages. Pattern

Recognition Letters 16, 179–182 (1995)

10. Jiang, T., Kinber, E., Salomaa, A., Salomaa, K., Yu, S.: Pattern languages with

and without erasing. International Journal of Computer Mathematics 50, 147–163

(1994)

11. Shinohara, T.: Polynomial time inference of extended regular pattern languages.

In: Goto, E., Furukawa, K., Nakajima, R., Nakata, I., Yonezawa, A. (eds.) RIMS

1982. LNCS, vol. 147, pp. 115–127. Springer, Heidelberg (1983)

12. Shinohara, T.: Polynomial time inference of pattern languages and its application.

In: Proc. 7th IBM MFCS, pp. 191–209 (1982)

A Challenging Family of Automata for Classical
Minimization Algorithms�

Giusi Castiglione1, Cyril Nicaud2, and Marinella Sciortino1

1 DMI, Università di Palermo, via Archirafi, 34 - 90123 Palermo, Italy

{giusi,mari}@math.unipa.it
2 LIGM, Université Paris Est, 77454 Marne-la-Vallee Cedex 2, France

nicaud@univ-mlv.fr

Abstract. In this paper a particular family of deterministic automata

that was built to reach the worst case complexity of Hopcroft’s state

minimization algorithm is considered. This family is also challenging for

the two other classical minimization algorithms: it achieves the worst

case for Moore’s algorithm, as a consequence of a result by Berstel et

al., and is of at least quadratic complexity for Brzozowski’s solution,

which is our main contribution. It therefore constitutes an interesting

family, which can be useful to measure the efficiency of implementations

of well-known or new minimization algorithms.

1 Introduction

Regular languages are possibly infinite sets of words that can be finitely repre-
sented in many ways, as stated by Kleene’s theorem, such as finite semigroups,
regular expressions, finite state automata, etc. Amongst them, deterministic fi-
nite state automata (DFA) are of particular interest, since they describe simple
and deterministic machines that characterize regular languages, often leading to
efficient algorithms for basic tests such as membership problem, testing empti-
ness, and so on.

Amongst all DFA’s recognizing a regular language L only one is of minimal
size and is called the minimal automaton of L. Representing a regular language
through its minimal automaton is an advantageous strategy in many applications
including compilers and text searching: it is both a compact and efficient way to
encode a regular language, and the uniqueness can be used to test whether two
regular languages are equal.

Some of the best known and most popular algorithmic strategies for com-
puting the minimal automaton of a language given by an automaton are due
to Moore [14], Hopcroft [13] and Brzozowski [7]. Moore’s and Hopcroft’s algo-
rithms operate on DFA’s and use successive refinements of a partition of the
set of states. Starting from an automaton with n states over an alphabet of size
k, Moore’s algorithm computes the minimal automaton in time Θ(kn2). The

� Partially supported by MIUR Project Mathematical aspects and emerging applica-
tions of automata and formal languages.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 251–260, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

252 G. Castiglione, C. Nicaud, and M. Sciortino

running time of Hopcroft’s algorithm is Θ(kn log n), which represents the fastest
known solution to the automata minimization problem in the worst case. Brzo-
zowski’s method [7] operates by reversal and determinization repeated twice and
it can be also applied to a non-deterministic finite state automaton. A detailed
description of the algorithm can be found in [10]. The complexity is exponential
in the worst case, though it has proven to be efficient in some particular situ-
ations [1], and is empirically better than other solutions when starting with a
non-deterministic finite state automaton [16].

The importance of minimization algorithms has motivated many works in
various ways. One one hand, new efficient algorithms for specific families of
automata have been developed: for instance for acyclic automata [15,11], local
automata [4], or Aho-Corasick automata [1]. On the other hand, efforts have
been made to understand the three basic algorithms better. Several articles deal
with the worst cases of Hopcroft’s algorithms [5,9], the average complexity of
Moore’s algorithm has been analyzed [3] and various experimentations have been
realized [2] to compare the performance of minimization algorithms on particular
classes of automata and to construct a taxonomy [17].

In [8,9] two authors of this article, together with Antonio Restivo, exhibited a
family of DFA’s that reaches the worst case of Hopcroft’s algorithm for a unary
or a binary alphabet. In both cases, the automata are constructed starting from
the well-known finite Fibonacci words and the time complexity is computed by
using some combinatorial properties of such words.

This raises the natural question of the complexity of minimizing automata
of this family using the two other algorithms. Answering this question is the
purpose of this paper, and we show that this family, built for Hopcroft’s solution,
is challenging for Moore’s algorithm and Brzozowski’s algorithms too, being in
Ω(n2) for both. In particular, the time complexity of Moore’s algorithm is here
easily deduced from the literature, the result for Brzozowski’s algorithm is the
original contribution of the paper. Considering other well-known algorithms as an
alternative strategy when Hopcroft’s algorithm reaches its worst case is therefore
not a good solution in this case.

The paper is organized as follows. In the first section we give some basic defi-
nitions and results about automata minimization. We define the Nerode equiva-
lence that defines the minimal automaton equivalent to a given DFA. We describe
how this equivalence relation is computed by Moore’s algorithm and the time
complexity of this algorithm with respect to the number of states of the initial
DFA. Then, in the Section 3 we describe Brzozowski’s algorithm. In Section 4
we introduce some combinatorial properties of Fibonacci words that are used in
the computation of the time complexity of Brzozowski’s algorithm on the word
automata defined in Section 5.

2 Preliminaries on Automata and Moore’s Minimization

A finite state automaton is a 5-tuple A = (Q, Σ, δ, I, F) where Q is a finite set
of states, Σ is a finite alphabet, I ⊆ Q is the set of initial states, F ⊆ Q is the
set of final states and δ is the transition function from Q × Σ to 2Q.

A Challenging Family of Automata for Classical Minimization Algorithms 253

The finite state automaton is deterministic iff it has a unique initial state
and δ is a mapping from Q × Σ to Q. By (p, x, q), with x ∈ Σ, we denote the
transition from the state p to q = δ(p, x). The automaton A is complete if the
map δ is defined for each pair (p, x) ∈ Q×Σ. A path of A labeled by the word v =
x1x2...xn ∈ Σ∗ is a sequence (qi, xi, qi+1), i = 1, ..., n of consecutive transitions.
In such a case we write δ(q1, v) = qn+1. In the case q1 ∈ I and qn+1 ∈ F we say
that the word v is recognized by A. The language L(A) recognized by A is the
set of all words recognized by A.

An automaton is minimal if it has the minimum number of states among
all its equivalent deterministic finite state automata (i.e. recognizing the same
language). For each regular language there exists a unique minimal DFA. It can
be computed using the Nerode equivalence. Given a state p ∈ Q, we define the
language

Lp(A) = {v ∈ Σ∗ | δ(p, v) ∈ F}.
The Nerode equivalence on Q, denoted by ∼, is defined as follows: for p, q ∈ Q,
p ∼ q if Lp(A) = Lq(A). It is known that ∼ is a congruence of A, i.e. for
any a ∈ Σ, p ∼ q implies δ(p, a) ∼ δ(q, a). It is also known that the Nerode
equivalence is the coarsest congruence of A that saturates F , i.e. such that F is
a union of classes of the congruence.

The Nerode equivalence is, effectively, computed by the Moore construction.
For any integer k ≥ 0, the Moore equivalence ∼k is defined the following way:

Lk
p(A) = {v ∈ Lp(A) | |v| ≤ k}; p ∼k q ⇔ Lk

p(A) = Lk
q (A), ∀p, q ∈ Q.

The depth of the finite automaton A is the smallest k such that the Moore
equivalence ∼k equals the Nerode equivalence ∼. It is also the smallest k such
that ∼k equals ∼k+1.

Theorem 1 (Moore). The depth of the deterministic finite state automaton
A = (Q, Σ, δ, q0, F) is at most |Q| − 2.

Let P = {Q1, Q2, ..., Qm} be the partition corresponding to the Nerode equiv-
alence. For q ∈ Qi, the class Qi is denoted by [q]. Then the minimal au-
tomaton that recognizes L(A) is MA = (QM , Σ, δM , q0M , FM), where: QM =
{Q1, Q2, ..., Qm}, q0M = [q0], δM ([q], a) = [δ(q, a)], ∀ q ∈ Q, ∀ a ∈ Σ and
FM = {[q] | q ∈ F}.

Moore’s minimization algorithm computes the minimal automaton and it is
described in Figure 1. It starts from the partition P = {F, F c} (where F c denotes
the complement of F) which corresponds to the equivalence ∼0. For each a ∈
Σ we denote by a−1P the partition in which each class the inverse image of
δ (with respect to a) of a classe of P . Then, at each iteration, the partition
corresponding to the equivalence ∼i+1 is computed from the one corresponding
to the equivalence ∼i, using the fact that p ∼k+1 q iff p ∼k q and for all a ∈ Σ,
δ(p, a) ∼k δ(q, a). The algorithm halts when no new partition refinement is
obtained, and the result is the Nerode equivalence. Each iteration is performed
in time Θ(|Q|) using a radix sort. The time complexity of Moore’ s algorithm
applied to A is therefore Θ(d |Q|), where d is the depth of A.

254 G. Castiglione, C. Nicaud, and M. Sciortino

Algorithm 1: Moore’s algorithm on (Q, Σ, δ, q0, F)
P = {F, F c}1

repeat2

W ← P3

for a ∈ Σ do4

Pa ← a−1P5

P ← P ∩⋂
a∈Σ Pa6

until W = P7

return (QM , Σ, δM , q0M , FM)8

Fig. 1. Moore’s algorithm that computes the minimal DFA equivalent to a given de-

terministic finite state automaton

3 Subset Construction and Brzozowski’s Algorithm

In this section we study the time complexity of Brzozowski’s minimization. First,
we give some preliminary definitions and notations.

Let A = (Q, Σ, δ, I, F) be a finite state automaton. We say that a state of Q
is accessible (resp. coaccessible) if there exists a path from an initial state to this
state (resp. from this state to a final state). By d(A) we denote the deterministic
finite state automaton equivalent to A, d(A) = (Qd, Σ, δd,�0, Fd), where:

– Qd is the set of subsets � of Q
– �0 = I
– δd(�, a) = {δ(p, a) | p ∈ �}, ∀�∈ Qd, a ∈ Σ
– Fd = {� | �∩ F �= ∅}.

We call a singleton state any �∈ Q such that |�| = 1. The mechanism of building
d(A) (resp. the accessible part of d(A)) from A is called the subset construction
(resp. the accessible subset construction).

The reverse of the automaton A = (Q, Σ, δ, I, F) is the automaton r(A) =
(Qr, Σ, δr, Ir, Fr) = (Q, Σ, δr, F, I), where for each a ∈ Σ and q ∈ Qr, δr(q, a) =
{p ∈ Q | q ∈ δ(p, a)}. Observe that when we consider the reverse r(A) of a
deterministic and complete automaton A, for every state p and every letter x in
the alphabet, there is exactly one transition labeled by x ending in p in r(A).
Hence, for every state � of d(r(A)), either p ∈ δr(�, x) or p ∈ δr(�c, x). The
following proposition is a consequence of this argument.

Proposition 1. Let A be a deterministic and complete finite state automaton.
For every x ∈ Σ, (�, x,�) is a transition in d(r(A)) if and only if (�c, x,�c) is a
transition in d(r(A)).

Brzozowski’s algorithm is based on the fact that if A is a codeterministic and
coaccessible finite automaton recognizing L, then the accessible part of d(A) is
the minimal automaton of L [7]. Given an automaton A, let B be the accessible
part of r(A), the reverse of A; the automaton r(B) recognizes the same language

A Challenging Family of Automata for Classical Minimization Algorithms 255

Algorithm 2: Accessible Subset Construction of (Q, Σ, δ, I, F)
S = Qd = {I}1

Fd = ∅2

while S �= ∅ do3

�← Extract from S4

if �∩ F �= ∅ then Add � in Fd5

for a ∈ Σ do6

�= ∅7

for p ∈ � do �← �∪ δ(p, a)8

if � /∈ Qd then9

Add � in Qd10

Add � in S11

δd(�,a) ← �12

return (Qd, Σ, δd, {I}, Fd)13

Fig. 2. Algorithm that computes the accessible part of the subset construction of an

automaton

as A and by construction, it is both codeterministic and coaccessible. Hence the
accessible part of r(B) is the minimal automaton of A.

The algorithm therefore consists of computing two reversals and performing
two subset constructions. Since the reverse of an automaton can easily be com-
puted in linear time with respect to its size (number of states and transitions),
the critical part is the subset construction, or more precisely the accessible subset
construction. The accessible subset construction can be performed as described
in Fig. 2. In the process, all accessible states of d(A) are extracted exactly once
from S. Moreover, considering Line 8 only, at least |�| iterations are necessary
to compute δd(�, a). Hence,

∑
�
|�|, where � ranges over all accessible states, is

a lower bound of the time complexity of the accessible subset construction.
Note that different data structures can be considered for S and for Qd, this is

important especially for Lines 9, 10 and 12. We do not develop this discussion
further here since the stated lower bound is enough for our purpose.

Since the reverse operation can be applied also to non-deterministic finite
state automata this algorithm is able to minimize both deterministic and non-
deterministic finite state automata. Because of the determinization the worst-
case running time complexity of the algorithm is exponential. However in [16,2]
it is experimentally verified that in practice Brzozowski’s algorithm has a good
performance and usually outperforms the other algorithms when applied on non-
deterministic finite state automata.

4 Circular Factors of Fibonacci Words

In this section we present some combinatorial properties of finite Fibonacci words
in order to show their connections with the computation of the running time of

256 G. Castiglione, C. Nicaud, and M. Sciortino

Brzozowski’s algorithm on a particular class of automata defined in next section.
In particular, the following results are useful to compute the size of subsets of
states in the determinization of word automata.

Let A be a finite alphabet and v, u be two words in A∗. We say that v and
u are conjugate if for some words z, w ∈ A∗ one has that v = zw and u = wz.
It is easy to see that conjugation is an equivalence relation. Note that many
combinatorial properties of words in A∗ can be thought as properties of the
respective conjugacy classes.

We say that a word v ∈ A∗ is a circular factor of a word w if v is a factor
of some conjugate of w. Equivalently, a circular factor of w is a factor of ww of
length not greater than |w|. Note that, while each factor of w is also a circular
factor of w, there exist circular factors of a word w that are not factors of w.
For instance, ca is a circular factor of abc without being factor of abc.

In this paper we take into consideration finite Fibonacci words and their
circular factors. We denote by fn the n-th finite Fibonacci word and Fn = |fn|.
Fibonacci words are defined by the recurrence relation fn = fn−1fn−2, with
f0 = b, f1 = a. Note that if n > 1 is odd (resp. even) then fn ends by ba (resp.
ab). We now state some combinatorial properties of the finite Fibonacci words
used in next section.

Proposition 2. Let fn be the n-th Fibonacci word, with n ≥ 3. If n is odd then
the circular factor afn−1 has a unique occurrence, at position Fn. If n is even
then the circular factor afn−2 has a unique occurrence, at position Fn−1.

Proof. We prove the statement by induction on n. For n = 3 and n = 4 it is
trivial. Let us consider an odd n, since fn = fn−1fn−2 we have that the circular
factor afn−1 trivially occurs in fn at position Fn. Suppose that afn−1 occurs
in another position i < Fn. Note that afn−1 = afn−3uafn−3, with u ∈ A∗

and |u| = |fn−4| − 1. If 1 ≤ i ≤ Fn−1 we consider the factorization fnfn =
fn−1fn−1fn−4fn−3fn−2 . We conclude that afn−3 has two different occurrences
in fn−1fn−1 i.e. two different circular occurrences in fn−1. This fact contradicts
the inductive hypothesis. In the case Fn−1 < i < Fn we consider the factorization
fnfn = fn−1fn−2fn−2fn−3fn−2, and afn−3 occurs in fn−2fn−2 in a position that
is not Fn−2, which also contradicts the hypothesis. ��
Proposition 3. Let fn be the n-th Fibonacci word, with n ≥ 2, and let u be a
suffix of fn that is also a prefix of fn. Then u is equal to fn−2i, for some i > 0.

Proof. It follows by definition of fn that fn−2i is both a prefix and a suffix of
fn, for i > 0. Suppose that u is different from fn−2i for all i > 0. Without loss of
generality we can suppose that Fn−2 < |u| < Fn−1. Let v be the prefix of fn of
length Fn −2. If u is a prefix and a suffix, then it is easy to see that Fn −|u| is a
period of fn and v. Note that Fn−2 < Fn −|u| < Fn−1. So, since Fn−2 and Fn−1

are coprime and Fn−1/Fn−2 < 2, it follows that Fn−2 and Fn − |u| are coprime.
It is known that (cf. [12]) if Fn−2 and Fn−1 are both period of v, then Fn−2 and
Fn − |u| are two coprime periods of v and |v| = Fn − 2 > Fn − |u| + Fn−2 − 2.
So, by Fine and Wilf’s theorem, v should be a power of a letter. ��

A Challenging Family of Automata for Classical Minimization Algorithms 257

5 The Two Algorithms on Word Automata

In [9] the behaviour of Hopcroft’s algorithm on binary automata associated to
finite sturmian words has been analyzed. One of the results states that when such
automata are associated to Fibonacci words Hopcroft’s algorithm runs in time
Θ(n log n), where n is the size of the automaton. Here we focus our attention on
the same family of automata.

Let w = a1a2...an be a word of length n over the binary alphabet A = {a, b}.
The word automaton associated to w, denoted by Aw, is the DFA (Q, A, δ, 1, F)
such that Q = {1, 2, · · · , n}, F = {i ∈ Q | ai = b}, and with, for every i ∈ Q
and every x ∈ A,

δ(i, x) =

{
i + 1 if i �= n and x = ai

1 otherwise

Note that we choose to consider a binary alphabet but such definitions and
results hold for automata over an alphabet with a generic size. The automata
Af5 and r(Af5) are depicted in Fig. 3.

When w is a finite Fibonacci word, both Moore’s algorithm and Brzozowski’s
algorithm run in time Ω(|Q|2) on Aw. In regards to Moore’s algorithm, this fact
can be easily deduced by some propositions proved in [6]. An automaton with
|Q| states is slow iff each Moore equivalence ∼h, for h ≤ |Q|−2, has h+2 classes.
By using results in [6,9] one can infer that word automata associated to finite
Fibonacci words are slow. From these results one can directly conclude that the
number of steps of Moore’s algorithm, in this case, is exactly |Q| − 1, i.e. the
depth is |Q| − 1. Then one can easily deduce the following theorem.

Theorem 2. Let cM (Fn) be the time complexity of Moore’s algorithm on the
word automaton, with Fn states, Afn corresponding to the n-th Fibonacci word
fn. Then

cM (Fn) = Θ(F 2
n).

The analysis of Brzozowski’s algorithm on word automata is much less intuitive,
and it will be the goal of the rest of this section. In order to compute a lower
bound for this algorithm we need to make explicit some properties of the paths
in r(Afn) closely related with the properties of some factors of Fibonacci words.

Remark 1. If u = vx , with x ∈ A, is a circular factor of the word fn then there
exists a path in r(Afn) labeled by vr. In particular, if u = vb then there exists
in r(Afn) starting from an initial state and labeled with vr.

Lemma 1. Let fn be the n-th fibonacci word with odd n (resp. even). A word
w = x1x2 . . . xk is a circular factor of fn that occurs at position i if and only
if there exists a path (p1, xk, p2)(p2, xk−1, p3) · · · (pk, x1, i) in r(Afn) such that
either pj �= 1, ∀ 1 ≤ j ≤ k or, if pj = 1 for some j then xjxj+1 = ab (resp.
xjxj + 1 = ba).

258 G. Castiglione, C. Nicaud, and M. Sciortino

1
2

3

4
5

6

7

8

b

a

b

a

a

b

a

b

b

a

a
b

b a

a

b

1
2

3

4
5

6

7

8

b

a

b

a

a

b

a

b

b

a

a
b

b a

b

a

Fig. 3. The word automaton Af5 associated to the word f5 = abaababa and r(Af5)

At this point of the paper it is clear that one can find in d(r(Afn)) some paths
closely related with the properties of the circular factors that label them. In par-
ticular, occurrences of some factors determine the cardinality of subsets reached
by the corresponding paths. This connection between paths in d(r(Afn)) and
factors in fn is highlighted by the fact that proofs of the following results use
properties proved in Section 4.

Theorem 3. Let Afn be the word automaton associated to the n-th Fibonacci
word fn. If n is odd, then in the automaton d(r(Afn)) the singleton state {Fn−1}
is accessible. If n is even, then in the automaton d(r(Afn)) the singleton state
{Fn−1 − 1} is accessible.

Proof. Let us suppose that n is odd. Since, by definition of Fibonacci words,
fn = fn−1fn−2 and fn−2 ends by ba then by Proposition 2 the word bafn−1

is a circular factor of fn having a unique occurrence at position Fn − 1. Let
us observe that (bafn−1)r = bafn−1. It follows by Lemma 1 that there exists
a path in r(Afn) labeled by afn−1 starting from the initial state Fn − 1 and
passing through the state 1. Let � ∈ Qd the state reached by such a path.
From the fact described above, it follows that Fn − 1 ∈ �. In order to prove the
thesis we prove that � = {Fn − 1}. Let us suppose that there exists another
path P in r(Afn) labeled by afn−1 starting from an initial state. If it does not
pass through the state 1 then it ends at the state i �= Fn − 1. By Lemma 1
it follows that afn−1 occurs in fn at position i �= Fn − 1. This fact contra-
dicts Proposition 2. If the path P passes through the state 1 we can write P =
(p1, x1, p2)(p2, x2, p3) · · · (pr, xr , 1)(1, xr+1, pr+2) · · · (pFn−1+1, xFn−1+1, pFn−1+2),
where afn−1 = x1x2 · · ·xrxr+1xFn−1+1 and pi �= 1 for all 1 ≤ i ≤ r. Hence we
have that x1 . . . xr is a prefix of fn−1 that is a prefix of fn, i.e. x1 . . . xr is both a
prefix and a suffix of fn−1. By using Proposition 3, x1 . . . xr is the palindromic
prefix of a Fibonacci word fk of length Fk −2 ending by ab, then xr+1xr+2 = ab.
By Lemma 1 and by uniqueness of occurrences of afn−1 proved in Proposition 2,
this path corresponds to a circular occurrence of afn−1 in fn, i.e. the considered
path ends at Fn − 1. The even case can be analogously proved. ��

A Challenging Family of Automata for Classical Minimization Algorithms 259

Corollary 1. If n is odd (resp. even) then in the automaton d(r(Afn)) the sin-
gleton state {Fn} is not accessible (resp. the singleton states {k}, with Fn−1 ≤
k ≤ Fn are not accessible) and the singleton states {k}, with 1 ≤ k ≤ Fn − 1
(resp. with 1 ≤ k ≤ Fn−1 − 1) are accessible.

Note that since Afn is a complete DFA, Proposition 1 holds. We use this fact
in the sequel, together with the following theorem, in order to estimate the
accessible part of the automaton d(r(Afn)).

Theorem 4. Let Afn be the word automaton corresponding to the n-th Fi-
bonacci word fn. If n is odd, then in the automaton d(r(Afn)) the state {Fn−1}c

is accessible. If n is even, then in the automaton d(r(Afn)) the state {Fn−1−1}c

is accessible.

The main ingredient of the proof, that we do not report for brevity, is the fact
that the complement of the set of the initial states is accessible in case of n odd.
In the even case we can prove that the state {Fn−1 − 1}c is accessible by using
the path labeled by fn−2.

From Proposition 1 and Theorem 4 one can deduce the following corollaries.

Corollary 2. If n is odd then in the automaton d(r(Afn)) the states {k}c, with
1 ≤ k ≤ Fn − 1, are accessible.

Corollary 3. If n is even then in the automaton d(r(Afn)) the states {k}c, with
1 ≤ k ≤ Fn−1 − 1, are accessible.

Theorem 5. Let cB(Fn) be the time complexity of Brzozowski’s algorithm on
the word automaton, with Fn states, Afn corresponding to the n-th Fibonacci
word fn. Then

cB(Fn) = Ω(F 2
n).

Proof. By the previous theorem and corollaries it follows that Qd of d(r(Afn)),
with odd n, contains Fn − 1 singletons and then Fn − 1 subsets of cardinality
Fn − 1. In the same way for even n, it contains Fn−1 − 1 singletons and then
Fn−1 − 1 subsets of cardinality Fn−1 − 1. Hence the thesis. ��

6 Further Work

Recall that finite Fibonacci words are particular finite sturmian words. We be-
lieve that the techniques used in the proofs can be applied also to word automata
defined by sturmian words. In [5] the authors define a family of unary cyclic
automata associated to words and characterize sturmian words for which the as-
sociated automata represent the worst-case of Hopcroft’s algorithm. Fibonacci
word, for instance, is one of those. Hence, it would be interesting to characterize
those sturmian words for which Brzozowski’s algorithm on the associated word
automata is at least quadratic. Furthermore, we want to analyze the question
whether there are minimization algorithms that work better on the automata
representing the extremal cases for Hopcroft’s algorithm.

260 G. Castiglione, C. Nicaud, and M. Sciortino

References

1. AitMous, O., Bassino, F., Nicaud, C.: Building the minimal automaton of A*X in

linear time, when X is of bounded cardinality. In: Amir, A., Parida, L. (eds.) CPM

2010. LNCS, vol. 6129, pp. 275–287. Springer, Heidelberg (2010)

2. Almeida, M., Moreira, N., Reis, R.: On the performance of automata minimization

algorithms. Technical Report DCC-2007-03, Universidade do Porto (2007)

3. Bassino, F., David, J., Nicaud, C.: On the average complexity of Moore’s state

minimization algorithm. In: STACS, pp. 123–134 (2009)

4. Béal, M.-P., Crochemore, M.: Minimizing local automata. In: IEEE International

Symposium on Information Theory (ISIT 2007), pp. 1376–1380 (2007)

5. Berstel, J., Boasson, L., Carton, O.: Continuant polynomials and worst-case be-

havior of Hopcroft’s minimization algorithm. TCS 410, 2811–2822 (2009)

6. Berstel, J., Boasson, L., Carton, O., Fagnot, I.: Sturmian trees. Theory of Com-

puting Systems 46(3), 443–478 (2010)

7. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for def-

inite events. Mathematical Theory of Automata 12, 529–561 (1962)

8. Castiglione, G., Restivo, A., Sciortino, M.: Circular sturmian words and Hopcroft’s

algorithm. TCS 410, 4372–4381 (2009)

9. Castiglione, G., Restivo, A., Sciortino, M.: On extremal cases of Hopcroft’s algo-

rithm. TCS 411(38-39), 3414–3422 (2010)

10. Champarnaud, J.-M., Khorsi, A., Paranthoën, T.: Split and join for minimizing:

Brzozowski’s algorithm. In: PSC 2002, pp. 96–104 (2002)

11. Daciuk, J., Watson, R.E., Watson, B.W.: Incremental construction of acyclic finite-

state automata and transducers. In: Finite State Methods in Natural Language

Processing, Bilkent University, Ankara, Turkey (1998)

12. de Luca, A., Mignosi, F.: Some combinatorial properties of Sturmian words.

TCS 136(2), 361–385 (1994)

13. Hopcroft, J.E.: An n log n algorithm for mimimizing the states in a finite automa-

ton. In: Theory of Machines and Computations, Proc. Internat. Sympos. Technion,

Haifa, pp. 189–196. Academic Press, New York (1971)

14. Moore, E.F.: Gedaken experiments on sequential machines, pp. 129–153. Princeton

University Press, Princeton (1956)

15. Revuz, D.: Minimisation of acyclic deterministic automata in linear time. TCS 92(1),

181–189 (1992)

16. Tabakov, D., Vardi, M.: Experimental evaluation of classical automata construc-

tions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,

pp. 396–411. Springer, Heidelberg (2005)

17. Watson, B.: A taxonomy of finite automata minimization algorithms. Technical

Report 93/44, Eindhoven Univ. of Tech., Faculty of Math. and Comp. Sc. (1994)

State of Büchi Complementation�

Ming-Hsien Tsai1, Seth Fogarty2, Moshe Y. Vardi2, and Yih-Kuen Tsay1

1 National Taiwan University
2 Rice University

Abstract. Büchi complementation has been studied for five decades

since the formalism was introduced in 1960. Known complementation

constructions can be classified into Ramsey-based, determinization-based,

rank-based, and slice-based approaches. For the performance of these

approaches, there have been several complexity analyses but very few

experimental results. What especially lacks is a comparative experiment

on all the four approaches to see how they perform in practice. In this

paper, we review the state of Büchi complementation, propose several op-

timization heuristics, and perform comparative experimentation on the

four approaches. The experimental results show that the determinization-

based Safra-Piterman construction outperforms the other three and our

heuristics substantially improve the Safra-Piterman construction and the

slice-based construction.

1 Introduction

Büchi automata are nondeterministic finite automata on infinite words that rec-
ognize ω-regular languages. It is known that Büchi automata are closed under
Boolean operations, namely union, intersection, and complementation. Com-
plementation was first studied by Büchi in 1960 for a decision procedure for
second-order logic [3]. Complementation of Büchi automata is significantly more
complicated than that of nondeterministic finite automata on finite words. Given
a nondeterministic finite automaton on finite words with n states, complementa-
tion yields an automaton with 2n states through the subset construction. Indeed,
for nondeterministic Büchi automata, the subset construction is insufficient for
complementation. In fact, Michel showed in 1988 that blow-up of Büchi comple-
mentation is at least n! (approximately (n/e)n or (0.36n)n), which is much higher
than 2n [17]. This lower bound was later sharpened by Yan to (0.76n)n [31],
which was matched by an upper bound by Schewe [21].

There are several applications of Büchi complementation in formal verifica-
tion, for example, verifying whether a system satisfies a property by checking if
the intersection of the system automaton and the complement of the property
automaton is empty [27], testing the correctness of an LTL translation algorithm
without a reference algorithm, etc. [9]. Although recently many works focus on

� Work supported in part by the National Science Council, Taiwan (R.O.C.) un-

der grant NSC97-2221-E-002-074-MY3, by NSF grants CCF-0613889, ANI-0216467,

CCF-0728882, and OISE-0913807, by BSF grant 9800096, and by gift from Intel.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 261–271, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

262 M.-H. Tsai et al.

universality and containment testing without going explicitly through comple-
mentation [5,6,4], it is still unavoidable in some cases [16].

Known complementation constructions can be classified into four approaches:
Ramsey-basedapproach [3,22], determinization-basedapproach [20,18,2,19], rank-
based approach [24,15,13], and slice-based approach [10,30]. The first three
approaches were reviewed in [29]. Due to the high complexity of Büchi comple-
mentaton, optimization heuristics are critical to good performance [9,7,21,11,14].
Unlike the rich theoretical development, empirical studies of Büchi complemen-
tation have been rather few [14,9,11,26], as much recent emphasis has shifted to
universality and containment. A comprehensive empirical study would allow us to
evaluate the performance of these complementation approaches.

In this paper, we review the four complementation approaches and perform
comparative experimentation on the best construction in each approach. Al-
though the conventional wisdom is that the nondeterministic constructions are
better than the deterministic construction, due to better worse-case bounds,
the experimental results show that the deterministic construction is the best
for complementation in general. At the same time, the Ramsey-based approach,
which is competitive in universality and containment testing [1,5,6], performs
rather poorly in our complementation experiments. We also propose optimization
heuristics for the determinization-based construction, the rank-based construc-
tion, and the slice-based construction. The experiment shows that the optimiza-
tion heuristics substantially improve the three constructions. Overall, our work
confirms the importance of experimentation and heuristics in studying Büchi
complementation, as worst-case bounds are poor guides to actual performance.

This paper is organized as follows. Some preliminaries are given in Section 2.
In Section 3, we review the four complementation approaches. We discuss the
results of our comparative experimentation on the four approaches in Section 4.
Section 5 describes our optimization heuristics and Section 6 shows the im-
provement made by our heuristics. We conclude in Section 7. More results of the
experiments in Section 4 and Section 6 and further technical details regarding
some of the heuristics can be found in [25].

2 Preliminaries

A nondeterministic ω-automaton A is a tuple (Σ, Q, q0, δ,F), where Σ is the
finite alphabet, Q is the finite state set, q0 ∈ Q is the initial state, δ : Q×Σ → 2Q

is the transition function, and F is the acceptance condition, to be described
subsequently. A is deterministic if |δ(q, a)| = 1 for all q ∈ Q and a ∈ Σ.

Given an ω-automaton A = (Σ, Q, q0, δ,F) and an infinite word w = a0a1 · · · ∈
Σω, a run ρ of A on w is a sequence q0q1 · · · ∈ Qω satisfying ∀i : qi+1 ∈ δ(qi, ai).
A run is accepting if it satisfies the acceptance condition. A word is accepted if
there is an accepting run on it. The language of an ω-automaton A, denoted
by L(A), is the set of words accepted by A. An ω-automaton A is universal if
L(A) = Σω. A state is live if it occurs in an accepting run on some word, and is
dead otherwise. Dead states can be discovered using a nonemptiness algorithm,
cf. [28], and can be pruned off without affecting the language of the automaton.

State of Büchi Complementation 263

Let ρ be a run and inf (ρ) be the set of states that occur infinitely often in ρ.
Various ω-automata can be defined by assigning different acceptance conditions:
Büchi condition where F ⊆ Q and ρ satisfies the condition iff inf (ρ) ∩ F �= ∅;
Rabin condition where F ⊆ 2Q × 2Q and ρ satisfies the condition iff there exists
(E, F) ∈ F such that inf (ρ)∩E = ∅ and inf (ρ)∩F �= ∅; parity condition where
F : Q → {0, 1, . . . , 2r} and ρ satisfies the condition iff min{F(q) | q ∈ inf (ρ)} is
even. F(q) is called the parity of a state q.

We use a system of three-letter acronyms to denote these ω-automata. The
first letter indicates whether the automaton is nondeterministic or deterministic.
The second letter indicates whether the acceptance condition is Büchi, Rabin,
or parity. The third letter is always a “W” indicating the automaton accepts
words. For example, NBW stands for a nondeterministic Büchi automaton and
DPW stands for a deterministic parity automaton.

Given an ω-automaton A and an infinite word w, the run tree of A on w is
a tree where the vertices of a (full) branch form a run of A on w and there is a
corresponding branch for every run of A on w. The split tree of A on w is a binary
tree that abstracts the run tree by grouping accepting successors and nonaccepting
successors of states in a vertex respectively into the left child and the right child.
The reduced split tree of A on w is a binary tree obtained from the split tree of A on
w by removing a state from a vertex if it also occurs in a vertex to the left on the
same level and removing a vertex if it contains no state. An NBW accepts a word
if there is a left-recurring branch in the reduced split tree. A slice is a sequence
of state sets representing all vertices on a same level of a reduced split tree in an
order from left to right.

3 Historical Review

Ramsey-based approach. The very first complementation construction intro-
duced by Büchi in 1960 involves a Ramsey-based combinatorial argument and
results in a 22O(n)

blow-up in the state size [3]. This construction was later im-
proved by Sistla, Vardi, and Wolper to reach a single-exponential complexity
2O(n2) [22]. In the improved construction, referred to as Ramsey in this paper,
the complement is obtained by composing certain automata among a set of Büchi
automata which form a partition of Σω, based on Ramsey’s Theorem. Various
optimization heuristics for the Ramsey-based approach are described in [1,6],
but the focus in these works is on universality and containment. In spite of the
quadratic exponent of the Ramsey-based approach, it is shown in [1,5,6] to be
quite competitive for universality and containment.

Determinization-based approach. Safra’s 2O(n log n) construction is the first com-
plementation construction that matches the Ω(n!) lower bound [20]. Later on,
Muller and Schupp introduced a similar determinization construction which
records more information and yields larger complements in most cases, but can
be understood more easily [18,2]. In [19], Piterman improved Safra’s construction
by using a more compact structure and using parity automata as the interme-
diate deterministic automata, which yields an upper bound of n2n. Piterman’s

264 M.-H. Tsai et al.

construction, referred to as Safra-Piterman in this paper, performs comple-
mentation in stages: from NBW to DPW, from DPW to complement DPW, and
finally from complement DPW to complement NBW. The idea is the use of (1)
a compact Safra tree to capture the history of all runs on a word and (2) marks
to indicate whether a run passes an accepting state again or dies.

Since the determinization-based approachperforms complementation in stages,
different optimization techniques can be applied separately to the different stages.
For instance, several optimization heuristics on Safra’s determinization and on
simplifying the intermediate DRW were proposed by Klein and Baier [14].

Rank-based approach. The rank-based approach, proposed by Kupferman and
Vardi, uses rank functions to measure the progress made by a node of a run tree
towards fair termination [15]. The basic idea of this approach may be traced back
to Klarlund’s construction with a more complex measure [13]. Both construc-
tions have complexity 2O(n log n). There were also several optimization techniques
proposed in [9,7,11]. A final improvement was proposed recently by Schewe [21]
to the construction in [7]. The later construction performs a subset construction
in the first phase. In the second phase, it continually guesses ranks from some
point and verifies the guesses. Schewe proposed doing this verification in a piece-
meal fashion. This yields a complement with O((0.76n)n) states, which matches
the known lower bound modulo an O(n2) factor. We refer to the construction
with Schewe’s improvement as Rank in this paper.

Unlike the determinization-based approach that collects information from the
history, the rank-based approach guesses ranks bounded by 2(n−|F|) and results
in many nondeterministic choices. This nondeterminism means that the rank-
based construction often creates more useless states because many guesses may
be verified later to be incorrect.

Slice-based approach. The slice-based construction was proposed by Kähler and
Wilke in 2008 [10]. The blow-up of the construction is 4(3n)n while its prelim-
inary version in [30], referred to as Slice here, has a (3n)n blow-up1. Unlike
the previous two approaches that analyze run trees, the slice-based approach
analyzes reduced split trees. The construction Slice uses slices as states of the
complement and performs a construction based on the evolution of reduced split
trees in the first phase. By decorating vertices in slices at some point, it guesses
whether a vertex belongs to an infinite branch of a reduced split tree or the
vertex has a finite number of descendants. In the second phase, it verifies the
guesses and enforces that accepting states will not occur infinitely often.

The first phase of Slice in general creates more states than the first phase
of Rank because of an ordering of vertices in the reduced split trees. Similar to
Rank, Slice also introduces nondeterministic choices in guessing the decorations.
While Rank guesses ranks bounded by 2(n − |F|) and continually guesses ranks
in the second phase, Slice guesses only once the decorations from a fixed set of
size 3 at some point.
1 The construction in [10] has a higher complexity than its preliminary version because

it treats complementation and disambiguation in a uniform way.

State of Büchi Complementation 265

4 Comparison of Complementation Approaches

We choose four representative constructions, namely Ramsey, Safra-Piterman,
Rank, and Slice, that are considered the most efficient construction in each
approach. These constructions are implemented in the GOAL tool [26]. We ran-
domly generate 11,000 automata with an alphabet of size 2 and a state set of
size 15 from combinations of 11 transition densities and 10 acceptance densi-
ties. For each automaton A = (Σ, Q, q0, δ,F) with a given state size n, symbol
a ∈ Σ, transition density r, and acceptance density f , we make t ∈ δ(s, a) for
 rn! pairs of states (s, t) ∈ Q2 uniformly chosen at random and add fn! states
to F uniformly at random. Our parameters were chosen to generate a large set
of complementation problems, ranging from easy to hard. The experiment was
run in a cluster at Rice University (http://rcsg.rice.edu/sugar/int/). For each
complementation task, we allocate one 2.83 GHz CPU and 1 GB memory. The
timeout of a complementation task is 10 minutes.

Table 1. The results of comparing the four representative constructions

Constructions Eff. Samples SR (Win) SL (Win) SL/SR T M

Ramsey - - - - 11,000 0

Safra-Piterman 3,826 65.01 (2,797.0) 22.63 (1,066.17) 0.35 5 0

Rank 310.52 (1,025.5) 33.81 (1,998.67) 0.11 5,303 0

Slice 887.43 (3.5) 54.58 (761.17) 0.06 3,131 3,213

We only collect state-size information from effective samples, which are tasks
finished successfully by all constructions. Otherwise, a construction may be con-
sidered to be worse in producing more states because it is better in finishing
more tasks. The experimental results are listed in Table 1 where SR is the aver-
age number of reachable states created in an effective sample, SL is the average
number of live states created in an effective sample, T is the total number of
timed-out tasks, and M is the total number of tasks that run out-of-memory.
The Win column of SR (resp., SL) is the share of effective samples where one
construction produces smallest complements in terms of reachable states (resp.,
live states). Ramsey is not competitive at all in complementation and is sepa-
rated from the other three in Table 1 because it failed to finish any task, even
though it is competitive in universality and containment, as shown in [1,5,6].

The SR, SL, and T columns show that the Safra-Piterman is the best both in
average state size and in running time. The low SL/SR ratio shows that Rank and
Slice create more dead states that can be easily pruned off. The Win columns
show that although Rank generates more dead states, it produces more com-
plements that are the smallest after pruning dead states. Slice becomes much
closer to Safra-Piterman in the Win column of SL because more than one half
of the 3,826 effective samples are universal automata. Except Ramsey, Slice has
the most unfinished tasks and produces many more states than Safra-Piterman
and Rank. As we show later, we can improve the performance of Slice signifi-
cantly by employing various optimization heuristics.

266 M.-H. Tsai et al.

5 Optimization Techniques

5.1 For Safra-Piterman

Safra-Pitermanperforms complementationvia several intermediate stages: start-
ing with the given NBW, it computes first an equivalent DPW, then the comple-
ment DPW, and finally the complement NBW. We address (1) the simplification
of the complement DPW, which results in an NPW, and (2) the conversion from
an NPW to an equivalent NBW.

Simplifying DPW by simulation. (+S). For the simplification of the complement
DPW, we borrow from the ideas of Somenzi and Bloem [23]. The direct and re-
verse simulation relations they introduced are useful in removing transitions and
possibly states of an NBW while retaining its language. We define the simulation
relations for an NPW in order to apply the same simplification technique. Given
an NPW (Σ, Q, q0, δ,F) and two states qi, qj ∈ Q, qj directly simulates qi iff (1)
for all q′i ∈ δ(qi, a), there is q′j ∈ δ(qj , a) such that q′j directly simulates q′i, and (2)
F(qi) = F(qj). Similarly, qj reversely simulates qi iff (1) for all q′i ∈ δ−1(qi, a),
there is q′j ∈ δ−1(qj , a) such that q′j reversely simulates q′i, (2) F(qi) = F(qj),
and (3) qi = q0 implies qj = q0. After simplification using simulation relations,
as in [23], a DPW may become nondeterministic. Therefore, the simplification
by simulation can only be applied to the complement DPW.

Merging equivalent states. (+E). As for the conversion from an NPW to an NBW,
a typical way in the literature is to go via an NRW [12,8]. We propose to go
from NPW directly to NBW. Similar to the conversion from an NRW to an
NBW in [12], we can nondeterministically guess the minimal even parity passed
infinitely often in a run starting from some state. Once a run is guessed to pass
a minimal even parity 2k infinitely often starting from a state s, every state t
after s should have a parity greater than or equal to 2k and t is designated as an
accepting state in the resulting NBW if it has parity 2k. Moreover, we can make
the resulting NBW smaller by merging states, with respect to an even parity 2k,
that have the same successors and have parities either all smaller than 2k, all
equal to 2k, or all greater than 2k. We can also start to guess the minimal even
parity 2k starting from a state which has that parity.

5.2 For Rank

Maximizing Büchi acceptance set. (+A). As stated in Section 3, the ranks for
the rank-based approach are bounded by 2(n − |F|). The larger the F is, the
fewer the ranks are. Thus, we propose to maximize the acceptance set of the
input NBW without changing its language, states, or transition function. Given
an NBW A = (Σ, Q, q0, δ,F), we construct A′ = (Σ, Q, q0, δ,F ′) with a larger
acceptance set F ′ ⊇ F such that q ∈ F ′ iff every elementary cycle containing q
also contains at least one state in F . Clearly the language of A′ is the same as
the language of A and we can take the complement of A′ instead of A.

State of Büchi Complementation 267

This heuristic can also be applied to other complementation approaches as it
maximizes the acceptance set of the input NBW before complementation. We
will show the improvement made by this heuristic for Safra-Piterman, Rank,
and Slice later in Section 6.

5.3 For Slice

Slice constructs a complement with slices as states based on the evolution of a
reduced split tree in the first phase, guesses the decoration for every vertex in a
slice at some point, and verifies the guesses in the second phase. Intuitively, the
decoration 1 indicates that a vertex must be in an infinite branch of a reduced
split tree. The decoration 0 indicates that the descendants of a vertex must
die out eventually before the next checkpoint. The decoration ∗ has the same
meaning as 0 but the check is put on hold. In the second phase, Slice verifies
two conditions: (1) a vertex decorated by 1 must have a right child decorated by
1, and (2) the left child of a vertex decorated by 1 and the children of a vertex
decorated by 0 or ∗ must have a finite number of descendants.

Deterministic decoration. (+D). The first heuristic uses 1 to label vertices that
may (rather than must) be in an infinite branch of a reduced split tree and
only verifies the second condition in the second phase. All vertices could be
decorated by 1 in the guesses. However, since the first evolution of the second
phase always labels a left (accepting) child by 0 and a right (nonaccepting) child
by 1, we actually decorate accepting vertices by 0 and nonaccepting vertices by
1 in the guesses. This heuristic will result in deterministic decoration. The only
nondeterminism comes from choosing when to start decorating.

Reducing transitions. (+R). The second heuristic relies on the observation that if
a run ends up in the empty sequence, a special slice denoted by ⊥, the run will
stay in ⊥ forever and we never need to decorate the run because it can reach ⊥
without any decoration. Thus we do not allow transitions from decorated slices
other than ⊥ to ⊥ or from any slice to doomed slices; a slice is doomed if it is
not ⊥ and has no vertex labeled by 1, i.e., every run through a doomed slice is
expected to reach ⊥.

Merging adjacent vertices. (+M). The third heuristic recursively merges adjacent
vertices decorated all by 0 or all by ∗. The observation is that they are all guessed
to have a finite number of descendants and their successors will have the same
decoration, either 0 or ∗.

6 Experimental Results

The heuristics proposed in Section 5 are also implemented in the GOAL tool. We
use the same 11,000 automata as in Section 4 as the test bench. Since we do not
propose any optimization heuristic for Ramsey, it is omitted in this experiment.
The results showing the improvement made by the heuristics are listed in Table 2
where the Ratio columns are ratios with respect to the original construction and
the other columns have the same meaning as they have in Section 4.

268 M.-H. Tsai et al.

Compared with the original version for each construction, the experimental
results in Table 2 show that (1) Safra-Piterman+ASE has 15 more unfinished
tasks but creates almost one half of reachable states and live states, (2) the
improvement made by +A is limited for Safra-Piterman and Slice but it is
substantial for Rank in finishing 1,376 more tasks and avoiding the creation
of around 2/3 dead states, (3) the heuristic +D is quite useful in reducing the
reachable states down to 1/4 for Slice but makes more live states, and (4)
Slice+ADRM finishes 6,116 more tasks and significantly reduces the reachable
states to 1/10 and live states to one half.

Table 2. The results of comparing each construction with its improved versions

Constructions Eff. Samples SR (Ratio) SL (Ratio) SL/SR T M

Safra-Piterman 10,977 256.25 (1.00) 58.72 (1.00) 0.23 5 0

Safra-Piterman+A 228.40 (0.89) 54.33 (0.93) 0.24 5 0

Safra-Piterman+S 179.82 (0.70) 47.35 (0.81) 0.26 12 9

Safra-Piterman+E 194.95 (0.76) 45.47 (0.77) 0.23 11 0

Safra-Piterman+ASE 138.97 (0.54) 37.47 (0.64) 0.27 13 7

Rank 5,697 569.51 (1.00) 33.96 (1.00) 0.06 5,303 0

Rank+A 181.05 (0.32) 28.41 (0.84) 0.16 3,927 0

Slice 4,514 1,088.72 (1.00) 70.67 (1.00) 0.06 3,131 3,213

Slice+A 684.07 (0.63) 64.94 (0.92) 0.09 2,611 2,402

Slice+D 276.11 (0.25) 117.32 (1.66) 0.42 1,119 0

Slice+R 1,028.42 (0.94) 49.58 (0.70) 0.05 3,081 3,250

Slice+M 978.01 (0.90) 57.85 (0.82) 0.06 2,813 3,360

Slice+ADRM 102.57 (0.09) 36.11 (0.51) 0.35 228 0

Table 3. The results of comparing the three improved complementation constructions

Constructions Eff. Samples SR (Win) SL (Win) SL/SR T M

Safra-Piterman+ASE 7,045 49.94 (6,928.67) 21.38 (3,411.5) 0.43 13 7

Rank+A 428.61 (35.67) 41.80 (1,916.5) 0.10 3,927 0

Slice+ADRM 316.70 (80.67) 62.46 (1,717.0) 0.20 228 0

Safra-Piterman+PASE 7,593 44.84 (5,748.33) 19.50 (3,224) 0.43 4 0

Rank+PA 309.68 (910.33) 35.39 (2,340) 0.11 3,383 0

Slice+PADRM 270.68 (934.33) 53.67 (2,029) 0.20 216 0

We also compare the three constructions with all optimization heuristics in
Section 5 based on 7,045 effective samples and list the results on the top of
Table 3. The table shows that Safra-Piterman+ASE still outperforms the other
two in the average state size and in running time. Table 3 also shows the follow-
ing changes made by our heuristics in the comparison: (1) Safra-Piterman+ASE
outperforms Rank+A in the number of smallest complements after pruning dead
states, and (2) Slice+ADRM creates fewer reachable states than Rank+A in aver-
age, and finishes more tasks than Rank+A. As the heuristic of preminimization

State of Büchi Complementation 269

applied to the input automata, denoted by +P, is considered to help the non-
deterministic constructions more than the deterministic construction, we also
compare the three constructions with preminimization and list the results in
the bottom of Table 3. We only apply the preminimization implemented in the
GOAL tool, namely the simplification by simulation in [23]. According to our
experimental results, the preminimization does improve Rank and Slice more
than Safra-Piterman in the complementation but does not close the gap too
much between them in the comparison, though there are other preminimization
techniques that we didn’t implement and apply in the experiment.

7 Conclusion

We reviewed the state of Büchi complementation and examined the performance
of the four complementation approaches by an experiment with a test set of
11,000 automata. We also proposed various optimization heuristics for three of
the approaches and performed an experiment with the same test set to show the
improvement. The experimental results show that the Safra-Piterman construc-
tion performs better than the other three in most cases in terms of time and
state size. This is surprising and goes against the conventional wisdom that the
nondeterministic approaches are better. The Ramsey-based construction is not
competitive at all in complementation though it is competitive in universality
and containment. The results also show that our heuristics substantially improve
the Safra-Piterman construction and the slice-based construction in creating far
fewer states. The rank-based construction and especially the slice-based con-
struction can finish more complementation tasks with our heuristics. How the
constructions scale with a growing state size, alphabet size, transition density,
or other factors is not studied in this paper and is left as the future work.

References

1. Abdulla, P.A., Chen, Y.-F., Hoĺık, L., Mayr, R., Vojnar, T.: When simulation meets

antichains. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,

pp. 158–174. Springer, Heidelberg (2010)

2. Althoff, C.S., Thomas, W., Wallmeier, N.: Observations on determinization of

Büchi automata. Theoretical Computer Science 363(2), 224–233 (2006)

3. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Pro-

ceedings of the International Congress on Logic, Method, and Philosophy of Science

1960, pp. 1–12. Stanford University Press, Stanford (1962)

4. Doyen, L., Raskin, J.-F.: Antichains for the automata-based approach to model-

checking. Logical Methods in Computer Science 5(1:5), 1–20 (2009)

5. Fogarty, S., Vardi, M.Y.: Büchi complementation and size-change termination. In:

Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 16–30.

Springer, Heidelberg (2009)

6. Fogarty, S., Vardi, M.Y.: Efficient Büchi universality checking. In: Esparza, J., Ma-

jumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 205–220. Springer, Heidelberg

(2010)

270 M.-H. Tsai et al.

7. Friedgut, E., Kupferman, O., Vardi, M.Y.: Büchi complementation made tighter.

International Journal of Foundations of Computer Science 17(4), 851–868 (2006)

8. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.

LNCS, vol. 2500. Springer, Heidelberg (2002)

9. Gurumurthy, S., Kupferman, O., Somenzi, F., Vardi, M.Y.: On complementing

nondeterministic Büchi automata. In: Geist, D., Tronci, E. (eds.) CHARME 2003.

LNCS, vol. 2860, pp. 96–110. Springer, Heidelberg (2003)

10. Kähler, D., Wilke, T.: Complementation, disambiguation, and determinization of

Büchi automata unified. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,

M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS,

vol. 5125, pp. 724–735. Springer, Heidelberg (2008)

11. Karmarkar, H., Chakraborty, S.: On minimal odd rankings for Büchi complemen-

tation. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 228–243.

Springer, Heidelberg (2009)

12. King, V., Kupferman, O., Vardi, M.Y.: On the complexity of parity word automata.

In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 276–286.

Springer, Heidelberg (2001)

13. Klarlund, N.: Progress measures for complementation of omega-automata with

applications to temporal logic. In: FOCS, pp. 358–367. IEEE, Los Alamitos (1991)

14. Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of

linear temporal logic. Theoretical Computer Science 363(2), 182–195 (2006)

15. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM

Transactions on Computational Logic 2(3), 408–429 (2001)

16. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS, pp. 531–540.

IEEE Computer Society, Los Alamitos (2005)

17. Michel, M.: Complementation is more difficult with automata on infinite words.

Manuscript CNET, Paris (1988)

18. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondetermin-

istic automata: New results and new proofs of the theorems of Rabin, McNaughton

and Safra. Theoretical Computer Science 141(1&2), 69–107 (1995)

19. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic

parity automata. Logical Methods in Computer Science 3(3:5), 1–21 (2007)

20. Safra, S.: On the complexity of ω-automata. In: FOCS, pp. 319–327. IEEE, Los

Alamitos (1988)

21. Schewe, S.: Büchi complementation made tight. In: STACS. LIPIcs, vol. 3, pp.

661–672. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2009)

22. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi

automata with appplications to temporal logic. TCS 49, 217–237 (1987)

23. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emer-

son, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer,

Heidelberg (2000)

24. Thomas, W.: Complementation of Büchi automata revisited. In: Jewels are Forever,

pp. 109–120. Springer, Heidelberg (1999)

25. Tsai, M.-H., Fogarty, S., Vardi, M.Y., Tsay, Y.-K.: State of Büchi complementation

(full version), http://goal.im.ntu.edu.tw
26. Tsay, Y.-K., Chen, Y.-F., Tsai, M.-H., Chan, W.-C., Luo, C.-J.: GOAL extended:

Towards a research tool for omega automata and temporal logic. In: Ramakrish-

nan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 346–350. Springer,

Heidelberg (2008)

27. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,

F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.

Springer, Heidelberg (1996)

http://goal.im.ntu.edu.tw

State of Büchi Complementation 271

28. Vardi, M.Y.: Automata-theoretic model checking revisited. In: Cook, B., Podelski,

A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 137–150. Springer, Heidelberg (2007)

29. Vardi, M.Y.: The Büchi complementation saga. In: Thomas, W., Weil, P. (eds.)

STACS 2007. LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg (2007)

30. Vardi, M.Y., Wilke, T.: Automata: from logics to algorithms. In: Logic and Au-

tomata: History and Perspective. Texts in Logic and Games, vol. 2, pp. 629–736.

Amsterdam University Press, Amsterdam (2007)

31. Yan, Q.: Lower bounds for complementation of omega-automata via the full au-

tomata technique. Logical Methods in Computer Science 4(1:5), 1–20 (2008)

Types of Trusted Information That Make DFA
Identification with Correction Queries Feasible�

Cristina Tı̂rnăucă1 and Cătălin Ionuţ Tı̂rnăucă2

1 Departamento de Matemáticas, Estad́ıstica y Computación,

Universidad de Cantabria

Avda. de los Castros s/n, 39005 Santander, Spain

cristina.tirnauca@unican.es
2 Research Group on Mathematical Linguistics, Universitat Rovira i Virgili

Av. Catalunya 35, 43002 Tarragona, Spain

catalinionut.tirnauca@estudiants.urv.cat

Abstract. In the query learning model, the problem of efficiently iden-

tifying a deterministic finite automaton (DFA) has been widely inves-

tigated. While DFAs are known to be polynomial time learnable with

a combination of membership queries (MQs) and equivalence queries

(EQs), each of these types of queries alone are not enough to provide

sufficient information for the learner. Therefore, the possibility of having

some extra-information shared between the learner and the teacher has

been discussed. In this paper, the problem of efficient DFA identification

with correction queries (CQs) - an extension of MQs - when additional

information is provided to the learner is addressed. We show that know-

ing the number of states of the target DFA does not help (similar to the

case of MQs or EQs), but other parameters such as the reversibility or

injectivity degree are useful.

Keywords: deterministic finite automaton, correction query, injectiv-

ity degree.

1 Introduction

The problem of deterministic finite automaton (DFA) identification has a long
history and dates back to E.M. Gold’s pioneering paper [9]. There, he shows
that in the framework of learning in the limit, regular languages are identifiable
from informant but not from text. This is due to the fact that no superfinite
class is learnable from text in the limit. Later on, Gold [10] and D. Angluin

[1] proved that finding the smallest automaton consistent with a set of accepted
and rejected strings is NP-complete.

The above-mentioned results make efficient DFA identification from given
data a hard task. Therefore, the setting we are going to address in this pa-
per is learning from requested data, the so-called query learning model. Typical
� This work was financially supported by Ministerio de Educación y Ciencia de España
(MEC) grants JCDI-2009-04626 and MTM-2007-63422.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 272–281, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Trusted Information That Makes DFA Identification with CQs Feasible 273

types of queries are membership, equivalence, subset, superset, disjointness and
exhaustiveness queries (see [6] for further details and references).

In [5], a polynomial time algorithm that identifies any minimal complete DFA
after asking a finite number of membership and equivalence queries is given.
Later it is shown that neither membership queries (MQs) nor equivalence queries
(EQs) alone are sufficient because even if the number of states of the DFA is
given to the learner, one may still need, in the worst case, an exponential number
of each of the two types of queries [6].

Actually, the idea of having extra-information provided by the teacher opens
another whole research area:

“For many of the classes that can be taught efficiently, it is necessary
in previous models to allow the teacher and learner to share a small
amount of “trusted information”, such as the size of the target function,
since there is no other way to eliminate concepts from the given class
that are more “complicated” than the target” [11].

In the case of regular languages, if we denote by n the number of states of
the minimal DFA and by k its reversibility degree (any regular language is k-
reversible for some k), then neither n nor k can help in the DFA identification
with MQs [2,15] or EQs [6,7]. On the other hand, if the auxiliary information
consists of a set of strings guaranteed to reach every live state of the minimal
DFA for the language, then the upper and lower bounds for the number of MQs
needed are polynomial in n and the size of the given set of strings [2].

Other results addressing the same idea of additional information useful (or
not) for polynomial identification with several types of queries concern k-term
DNF formulas [4], context-free grammars [5], k-bounded context-free grammars
[3], k-reversible languages [15], pattern languages [6] and singleton languages [6].

The main thrust of this paper is to analyze what kind of information helps the
efficient identification of DFAs when data is requested in the form of correction
queries (CQs) - an extension of the traditional MQs introduced in [8]. The main
difference between CQs and MQs consists in the type of information revealed
by the teacher for strings that do not belong to the target language. That is,
instead of simply returning a “no”, as in the case of MQs, the teacher’s answer
to a CQ provides the learner with some sort of “correction”. Several types of
corrections have been introduced so far (see [13] for a complete overview), but
in the present contribution only the definition given in [8] is used: the correction
is the smallest string in lex-length order that can be concatenated at the end of
the queried datum to form a string in the target language.

The paper is organized as follows. Section 2 lists some basic notions about
strings and automata extensively used through this article. Section 3 recalls the
three concepts forming the core of the present work: the query learning model,
the correction query and the injectivity degree. In Section 4 useful parameters
for language learning with CQs are investigated. First of all, we argue why the
number of states of the minimal DFA is a useless parameter. Next, we show
that the injectivity degree is leading to correct polynomial time identification
with CQs (Theorem 1). This is done by providing Algorithm 1 together with its

274 C. T̂ırnăucă and C.I. T̂ırnăucă

correctness and termination. In addition, the running time and query complexity
is presented, and finally, a running example is described for a better understand-
ing. Section 5 contains several concluding remarks and a short discussion on the
optimality of Algorithm 1 and its further improvements.

2 Preliminaries

It is assumed the reader knows the basic facts about formal languages and au-
tomata, but we shall review the various basic notions and fix some of the general
notation to be used throughout the paper. Expositions of the theory of automata
and regular languages, as well as further references, can be found in [12] or [16],
for example.

In what follows Σ is a finite alphabet of symbols. The set of all finite strings
of symbols from Σ is denoted by Σ∗, and let λ be the empty string (i.e., the
unique string of length 0). Subsets of Σ∗ are called languages. For any finite
set S, SΣ = {ua | u ∈ S, a ∈ Σ} , and |S| denotes the cardinality of S, i.e.,
its number of elements. The length of a string w is denoted by |w|, and the
concatenation of two strings u and v by uv. If w = uv for some u, v ∈ Σ∗, then
u is a prefix of w and v a suffix of w. If Σ is a totally ordered set, then u is
smaller than v in lex-length order if either |u| < |v|, or |u| = |v| and u is smaller
than v lexicographically.

Let Σ≤k = {w ∈ Σ∗ | |w| ≤ k} and Σk = {w ∈ Σ∗ | |w| = k}. For every
L ⊆ Σ∗ and u ∈ Σ∗, the set of all prefixes of L is Pref (L) = {w | ∃v ∈
Σ∗ such that wv ∈ L}, and the left-quotient of L and u is the set TailL(u) =
{v | uv ∈ L}. Note that TailL(u) �= ∅ if and only if u ∈ Pref (L).

A deterministic finite automaton (DFA) is a device A = (Q, Σ, δ, q0, F), where
Q is a finite set of states, Σ is a finite alphabet, q0 ∈ Q is the initial state, F ⊆ Q
is the set of final states, and δ is a partial function, called transition function, that
maps Q×Σ to Q. This function can be extended to strings by setting δ(q, λ) = q
for all q ∈ Q, and δ(q, ua) = δ(δ(q, u), a) for all q ∈ Q, u ∈ Σ∗ and a ∈ Σ. The
language accepted by A is the set L(A) = {u ∈ Σ∗ | δ(q0, u) ∈ F}. Such a DFA
A is complete if for every q ∈ Q and a ∈ Σ, δ(q, a) is defined, i.e., δ is a total
function. For any two DFAs A = (Q, Σ, δ, q0, F) and A′ = (Q′, Σ, δ′, q′0, F

′),
ϕ : Q → Q′ is an automata morphism if ϕ is a (well-defined) function such
that ϕ(q0) = q′0, ϕ(F) ⊆ F ′ and ϕ(δ(q, a)) = δ′(ϕ(q), a) for all q ∈ Q and
a ∈ Σ. Moreover, ϕ is said to be an automata isomorphism if it is a bijection
and ϕ(F) = F ′.

A language L ⊆ Σ∗ is regular if L = L(A) for some DFA A = (Q, Σ, δ, q0, F).
Recall that for every regular language L, there exists a minimum state DFA AL

such that L(AL) = L (cf. [12, pp. 65–71]).
Given a language L ⊆ Σ∗, the relation ≡L⊆ Σ∗ × Σ∗ is defined by: u1 ≡L

u2 if and only if for all u in Σ∗, u1u ∈ L ⇔ u2u ∈ L. Obviously, ≡L is an
equivalence relation, and thus it divides the set of all finite strings into one or
more equivalence classes. The Myhill-Nerode Theorem states that the number of
equivalence classes of ≡L (also called the index of L and denoted by index (L))

Trusted Information That Makes DFA Identification with CQs Feasible 275

is equal to the number of states of AL. As a direct consequence, a language L is
regular if and only if the index of L is finite.

3 Query Learning

In the query learning model [5] a learner has access to an oracle that truthfully
answers queries of a specified kind. A query learner M is an algorithmic device
that, depending on the reply to the previous queries, either computes a new
query, or returns a hypothesis and halts. Given an indexable class C = (Li)i≥1

and a language L in C, we say that M learns L if, after asking a finite number
of queries, it outputs an index i such that Li = L. Moreover, M learns C using
some type of queries if it learns every L ∈ C using queries of the specified type.

Various types of queries have been introduced so far, but the first and most
investigated ones are MQs (is this string in the target language?) and EQs (is
this the target language?). As we already mentioned in the Introduction, our
paper is about learning with CQs. In the case of a CQ for the target language L,
the input is a string w and the answer is the smallest string (in lex-length order)
of the set TailL(w) if w ∈ Pref (L), and the special symbol θ �∈ Σ otherwise. We
denote the correction of a string w with respect to the language L by CL(w).

Cf. [14], the injectivity degree of a regular language L ⊆ Σ∗ is

InjDeg(L) := index (L) − |{CL(u) | u ∈ Σ∗}| .

We say that L is k-injective if InjDeg(L) = k. The class of all regular languages
having injectivity degree k is denoted by kInj .

For all languages L ⊆ Σ∗ with index (L) ≥ 2, InjDeg(L) can take values
between 0 and index (L)−2. We give two examples of classes with extreme values
of the injectivity degree. Let Sk = (Lw)w∈Σk with Lw = {w} and S̄k = (L̄w)w∈Σk

with L̄w = Σ∗\{w}. It is easy to check that for every language L = Lw in Sk,
the automaton AL has n = k + 2 states and the set {CL(u) | u ∈ Σ∗} has
exactly n elements (if w = a1a2 . . . ak then the set of possible corrections is
{λ, ak, ak−1ak, . . . , a1a2 . . . ak, θ}). That means InjDeg(L) = 0. On the other
hand, for every L = L̄w in S̄k, AL has n = k + 2 states as well, but the set
{CL(u) | u ∈ Σ∗} contains only 2 elements: λ and a, where a is the smallest
letter of Σ. Therefore, InjDeg(L) in this case is n − 2.

In [14] it was shown that 0-injective languages are learnable with CQs in
polynomial time. In the next section we generalize this result: the algorithm in
[14] is basically our Algorithm 1 for the case k = 0.

4 Useful Parameters for Language Learning with CQs

First, we should mention that the number of states of the minimal DFA is a
useless parameter [13, p.72]. The argument used by Angluin for the case of
MQs and EQs [6] cannot be employed for CQs, because in order to learn the
class Sk of singleton languages of fixed length, one CQ is enough to disclose the

276 C. T̂ırnăucă and C.I. T̂ırnăucă

target. However, one may still need an exponential number of CQs to learn a
given DFA even when we know its number of states. Indeed, consider the class
S̄ defined above. Any consistent teacher would provide the same answer λ to all
but one element of the set Σk. Therefore, no matter what learning strategy we
choose, we might need to ask |Σ| + . . . + |Σ|k CQs in the worst case.

On the other hand, the degree of reversibility does help the learning process: in
[15], a polynomial time algorithm for learning the class of k-reversible languages
with CQs is provided.

In the sequel, we show that once we know the degree of injectivity k, we can
efficiently identify the class kInj using a linear number of CQs. Note that kInj
is not polynomial time learnable with MQs: an exponential number of MQs is
needed, in the worst case, to learn the class Sk of all singleton languages of fixed
length [2].

4.1 Learning k-Injective Languages with CQs

The algorithm we present for learning the class kInj is based on the following
result, given without proof due to space restrictions.

Proposition 1. Let L ⊆ Σ∗ be a regular language of injectivity degree k. Then
for every u, v ∈ Σ∗ with u �≡L v, there exists w in Σ≤k such that CL(uw) �=
CL(vw).

The algorithm follows the lines of L∗ [5]. We have an observation table, denoted
(S, E, C), where lines are indexed by the elements of a finite set S∪SΣ, columns
are indexed by the elements of the set E, which in our case equals Σ≤k, and the
entry of the table at row u and column v is CL(uv). One important difference
between our algorithm and the original one is that in L∗, E contains only one
element in the beginning, and it is gradually enlarged whenever an equivalence
query is answered with a counterexample. We start with S = {λ}.

For every u in S ∪ SΣ, we define the function row (u) : E → Σ∗ ∪ {θ} by
setting row(u)(v) = CL(uv). Then, row (S) = {row(u) | u ∈ S}. The observation
table (S, E, C) is called closed if for all u ∈ S and a ∈ Σ, there exists u′ ∈ S such
that row (u′) = row(ua), and consistent if for all u1, u2 ∈ S, row(u1) �= row(u2).
We will see that, as opposed to L∗, our tables are always consistent.

Algorithm 1. An algorithm for learning the class kInj with CQs
1: S := {λ}, E := Σ≤k

2: update the table by asking CQs for all strings in (S ∪ SΣ)E
3: while (S, E,C) is not closed do
4: find u ∈ S and a ∈ Σ such that row (ua) �∈ row (S)
5: add ua to S
6: update the table by asking CQs for all strings in {uaa′v | a′ ∈ Σ, v ∈ E}
7: end while
8: output A(S, E, C) and halt.

Trusted Information That Makes DFA Identification with CQs Feasible 277

For any closed and consistent observation table (S, E, C), one can construct
the automaton A(S, E, C) = (Q, Σ, δ, q0, F), where Q = {row(u) | u ∈ S},
q0 = row(λ), F = {row(u) | u ∈ S and CL(u) = λ}, and δ(row (u), a) = row (ua)
for all u ∈ S and a ∈ Σ. Note that A(S, E, C) is well defined because for every
u ∈ S and a ∈ Σ, there exists a unique u′ in S such that row (ua) = row(u′).
For every u ∈ S ∪ SΣ, it can be easily shown by induction on the length of the
string u that δ(q0, u) = row(u).

Since Algorithm 1 adds to S only elements with distinct row values, the table
(S, E, C) is always consistent. The following lemma witnesses that as long as
the cardinality of the set S is smaller than the number of states of the target
automaton, (S, E, C) is not closed.

Lemma 1. Let n be the number of states of the automaton AL. If |S| < n, then
(S, E, C) is not closed.

Proof. We assume there exists m < n such that |S| = m and the table (S, E, C)
is closed. Let A(S, E, C) = (Q, Σ, δ, q0, F), and let AL = (Q′, Σ, δ′, q′0, F

′) be
the minimal complete automaton accepting L.

We define the function ϕ : Q → Q′ by setting ϕ(row (u)) := δ′(q′0, u).
Clearly, ϕ is well defined because there are no two strings u1, u2 in S such that
row(u1) = row(u2). Moreover, it is injective since ϕ(row (u1)) = ϕ(row (u2)) im-
plies δ′(q′0, u1) = δ′(q′0, u2), that is, u1 ≡L u2, which entails row(u1) = row(u2).
Next, we show that ϕ is an automata morphism from A(S, E, C) to AL. Clearly,
ϕ(q0) = q′0 and ϕ(F) ⊆ F ′.

It remains to prove ϕ(δ(row (u), a)) = δ′(ϕ(row (u)), a) for all u ∈ S and
a ∈ Σ. To this end, we have ϕ(δ(row (u), a)) = ϕ(row (ua)) = ϕ(row (v)) =
δ′(q′0, v) for some v in S such that row(ua) = row(v) (the table is closed).
Moreover, δ′(ϕ(row (u)), a) = δ′(δ′(q′0, u), a) = δ′(q′0, ua). To conclude the proof,
it is enough to see that δ′(q′0, v) = δ′(q′0, ua) (since row(v) = row(ua) implies,
by Proposition 1, that v ≡L ua).

Hence, we have constructed an injective automata morphism from A(S, E, C)
to AL such that |Q| = m < n = |Q|. Since both A(S, E, C) and AL are complete
automata, we get a contradiction. ��
Next we show that the algorithm runs in polynomial time, and it terminates
with the minimal automaton for the target language as its output, therefore
justifying the following theorem.

Theorem 1. The class kInj is polynomial time learnable with CQs.

Note that when k is given, the learner no longer needs to ask EQs.

Correctness and Termination. We have seen that as long as |S| < n, the
table is not closed, so there will always be an u in S and a symbol a in Σ such that
row(ua) �∈ row(S). Since the cardinality of the set S is initially 1 and increases by
1 within each “while” loop (lines 3–7 of Algorithm 1), it will eventually be n, and
hence the algorithm is guaranteed to terminate. The correctness of Algorithm 1
is given by the following lemma.

278 C. T̂ırnăucă and C.I. T̂ırnăucă

Lemma 2. Let n be the number of states of the automaton AL. If |S| = n, then
(S, E, C) is closed and A(S, E, C) is isomorphic to AL.

Proof. Indeed, if |S| = n, then the set {row(u) | u ∈ S} has cardinality n because
the elements of S have distinct row values. Thus, for every u ∈ S and a ∈ Σ,
row(ua) ∈ row(S) (otherwise row(ua) would be the (n + 1)th equivalence class
of the set of all equivalence classes induced by ≡L on Σ∗), and hence the table
is closed.

To see that A(S, E, C) and AL are isomorphic, let us take A(S, E, C) =
(Q, Σ, δ, q0, F), AL = (Q′, Σ, δ′, q′0, F

′), and the function ϕ : Q → Q′ defined as
in the proof of Lemma 1. Using the same arguments, it can be shown that ϕ is
a well-defined and injective automata morphism. Since the two automata have
the same number of states, ϕ is also surjective, and hence bijective. It is quite
easy to check that ϕ(F) = F ′, and hence A(S, E, C) and AL are isomorphic. ��

Time Analysis and Query Complexity. Let us now discuss the time com-
plexity of Algorithm 1. While the cardinality of S is smaller than n, where n
represents the number of states of AL, the algorithm searches for a string u
in S and a symbol a in Σ such that row (ua) is distinct from all row(v) with
v ∈ S. This can be done using at most |S|2 · |Σ| · |E| operations: there are
|S| possibilities for choosing u (and the same number for v), |Σ| for choosing
a, and |E| operations to compare row(ua) with row(v). For |Σ| = l, |E| =
1 + l + l2 + . . . + lk and thus the total running time of the “while” loop can be
bounded by (12 + 22 + . . . + (n − 1)2) · l · (1 + l + l2 + . . . + lk). Note that by
“operations” we mean string comparisons, since they are generally acknowledged
as being the most costly tasks.

On the other hand, to construct A(S, E, C) we need n comparisons for deter-
mining the final states, and another n2 · |Σ| · |E| operations for constructing the
transition function. This means that the total running time of Algorithm 1 is
bounded by n + l · lk+1−1

l−1 · n(n+1)(2n+1)
6 , that is O(n3), since k is a constant for

the class to be learned.

Fig. 1. Minimal complete DFA for the language L = (ab∗a + ba + bb(a + b))(a + b)∗

Trusted Information That Makes DFA Identification with CQs Feasible 279

As for the number of queries asked by the algorithm, it can be bounded by
|S ∪ SΣ| · |E| (i.e., by the size of the final observation table), so the query
complexity of the algorithm is O(n).

Running Example. Firstly, let L = (ab∗a + ba + bb(a + b))(a + b)∗ ⊆ {a, b}∗
be the target language. The minimal DFA AL is depicted in Fig. 1.

The algorithm starts with S = {λ}, E = {λ, a, b, aa, ab, ba, bb} and the obser-
vation table illustrated in Table 1. Since the value of row(a) is distinct from the
value of row(λ), this table is not closed. Consequently, the algorithm proceeds
by adding the string a to S, updating Table 1 and obtaining Table 2.

Table 1. S = {λ}

First Table
E

λ a b aa ab ba bb

S λ aa a a λ a λ a

SΣ\S a a λ a λ λ λ a

b a λ a λ λ λ λ

Table 2. S = {λ, a}

Second Table
E

λ a b aa ab ba bb

S λ aa a a λ a λ a

a a λ a λ λ λ a

SΣ\S b a λ a λ λ λ λ
aa λ λ λ λ λ λ λ
ab a λ a λ λ λ a

Table 2 is not closed because the value of row(b) is different from the value
of row(a). Next, the algorithm adds the string b to S and updates the table. We
get Table 3, which is not closed (e.g., row(aa) �= row(a)). Repeating analogous
steps, the string aa is set to be in S and the table is updated to Table 4.

Table 3. S = {λ, a, b}

Third Table
E

λ a b aa ab ba bb

λ aa a a λ a λ a

S a a λ a λ λ λ a

b a λ a λ λ λ λ

aa λ λ λ λ λ λ λ

SΣ\S ab a λ a λ λ λ a

ba λ λ λ λ λ λ λ
bb a λ λ λ λ λ λ

Table 4. S = {λ, a, b, aa}

Fourth Table
E

λ a b aa ab ba bb

λ aa a a λ a λ a

a a λ a λ λ λ a

S b a λ a λ λ λ λ
aa λ λ λ λ λ λ λ

ab a λ a λ λ λ a

ba λ λ λ λ λ λ λ

SΣ\S bb a λ λ λ λ λ λ
aaa λ λ λ λ λ λ λ
aab λ λ λ λ λ λ λ

But row(bb) �= row(λ), so the algorithm adds bb to S and updates Table 4,
getting this way Table 5, which is both closed and consistent.

Finally, the algorithm outputs the automaton A(S, E, C), which is precisely
the one represented in Fig. 1, and halts.

280 C. T̂ırnăucă and C.I. T̂ırnăucă

Table 5. S = {λ, a, b, aa, bb}

Fifth Table
E

State
λ a b aa ab ba bb

λ aa a a λ a λ a q0

a a λ a λ λ λ a q1

S
b a λ a λ λ λ λ q2

aa λ λ λ λ λ λ λ q3

bb a λ λ λ λ λ λ q4

ab a λ a λ λ λ a q1

ba λ λ λ λ λ λ λ q3

SΣ\S aaa λ λ λ λ λ λ λ q3

aab λ λ λ λ λ λ λ q3

bba λ λ λ λ λ λ λ q3

bbb λ λ λ λ λ λ λ q3

5 Concluding Remarks

We have addressed the problem of polynomial time identification of DFAs in
the query learning model where the requested data is in the form of correction
queries. Although at a first glance CQs seem to be just a finite collection of
MQs, this is not exactly the case as indicated by various arguments (see [13]
for a detailed discussion). In this paper we have seen yet another case in which
some extra-information provided to a CQ learner does help the learning process
whereas the same information is useless for an MQ learner or an EQ learner.

Please note that Algorithm 1 provided here is not intended to be optimal.
One can easily find smarter implementations. For example, instead of having
the whole set Σ≤k as experiments, the algorithm could start with E = {λ} and
then gradually add, in lex-length order, only those w in Σ≤k that would create in
SΣ\S a string with different row values. As for the stopping condition, one may
count the number of elements in |S|−|{CL(u) | u ∈ S}| (which is initially 0) and
halt whenever this number reaches k and the table becomes closed again. Also
observe that although this new algorithm would work better on numerous DFAs,
it still shares the same worst case complexity due to the fact that sometimes, in
order to distinguish two states, the shortest string needed is of maximal length
(see the strings a and b in the DFA depicted in Fig. 1). Of course, for any other
strategy of choosing how elements in Σ≤k should be added to E, one can always
find an adversary example.

Another possible improvement consists of using an ordered container or a
hash map to store the set of lines in the observation table (the searching time
becomes |E| log(|S|) instead of |E||S|).

Acknowledgments. The authors are grateful to the anonymous reviewers for
their remarks and suggestions, which significantly improved the quality of the
exposition.

Trusted Information That Makes DFA Identification with CQs Feasible 281

References

1. Angluin, D.: On the complexity of minimum inference of regular sets. Information

and Control 39(3), 337–350 (1978)

2. Angluin, D.: A note on the number of queries needed to identify regular languages.

Information and Control 51(1), 76–87 (1981)

3. Angluin, D.: Learning k-bounded context-free grammars. Technical Report TR-

557, Yale University, New Haven, Conn. (1987)

4. Angluin, D.: Learning k-term DNF formulas using queries and counter-examples.

Technical Report TR-559, Yale University, New Haven, Conn. (1987)

5. Angluin, D.: Learning regular sets from queries and counterexamples. Information

and Computation 75(2), 87–106 (1987)

6. Angluin, D.: Queries and concept learning. Machine Learning 2(4), 319–342 (1988)

7. Angluin, D.: Negative results for equivalence queries. Machine Learning 5(2), 121–

150 (1990)

8. Becerra-Bonache, L., Dediu, A.H., T̂ırnăucă, C.: Learning DFA from correction

and equivalence queries. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T.,

Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 281–292. Springer,

Heidelberg (2006)

9. Gold, E.M.: Language identification in the limit. Information and Control 10(5),

447–474 (1967)

10. Gold, E.M.: Complexity of automaton identification from given data. Information

and Control 37(3), 302–320 (1978)

11. Goldman, S.A., Mathias, H.D.: Teaching a smarter learner. Journal of Computer

and System Sciences 52(2), 255–267 (1996)

12. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Reading (1979)

13. T̂ırnăucă, C.: Language Learning with Correction Queries. Ph.D. thesis, Universi-

tat Rovira i Virgili, Tarragona, Spain (2009)

14. T̂ırnăucă, C., Knuutila, T.: Efficient language learning with correction queries.

Technical Report 822, Turku Center for Computer Science (2007)

15. T̂ırnăucă, C., Knuutila, T.: Polynomial time algorithms for learning k-reversible

languages and pattern languages with correction queries. In: Hutter, M., Serve-

dio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 264–276.

Springer, Heidelberg (2007)

16. Yu, S.: Regular languages. In: Salomaa, A., Rozenberg, G. (eds.) Handbook of

Formal Languages. Word, Language, Grammar, vol. 1, ch. 2, pp. 41–110. Springer,

Berlin (1997)

Compressing Regular Expressions’ DFA Table
by Matrix Decomposition

Yanbing Liu1,2,3, Li Guo1,3, Ping Liu1,3, and Jianlong Tan1,3

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190
2 Graduate School of Chinese Academy of Sciences, Beijing, 100049

3 National Engineering Laboratory for Information Security Technologies, 100190

liuyanbing@software.ict.ac.cn,

{guoli,liuping,tjl}@ict.ac.cn

Abstract. Recently regular expression matching has become a research

focus as a result of the urgent demand for Deep Packet Inspection (DPI) in

many network security systems. Deterministic Finite Automaton (DFA),

which recognizes a set of regular expressions, is usually adopted to cater

to the need for real-time processing of network traffic. However, the huge

memory usage of DFA prevents it from being applied even on a medium-

sized pattern set. In this article,wepropose amatrix decompositionmethod

for DFA table compression. The basic idea of the method is to decompose

a DFA table into the sum of a row vector, a column vector and a sparse

matrix, all of which cost very little space. Experiments on typical rule sets

show that the proposed method significantly reduces the memory usage

and still runs at fast searching speed.

1 Introduction

Recent years, regular expression matching has become a research focus in net-
work security community. This interest is motivated by the demand for Deep
Packet Inspection (DPI), which inspects not only the headers of network packets
but also the payloads. In network security systems, signatures are represented
as either exact strings or complicated regular expressions, and the number of
signatures is quite large. Considering the requirement on real-time processing
of network traffic in such systems, Deterministic Finite Automaton (DFA) is
usually adopted to recognize a set of regular expressions. However, the com-
bined DFA for regular expressions might suffer from the problem of exponential
blow-up, and the huge memory usage prevents it from being applied even on a
medium-sized pattern set. Therefore it’s necessary to devise compression meth-
ods to reduce DFA’s space so that it can reside in memory or high speed CPU
caches.

In this article, we propose a matrix decomposition method for DFA table
compression. Matrix decomposition has been widely studied and used in many
fields, but it has not yet been considered for DFA table compression. We treat
the state transition table of DFA as a matrix, and formulate a scheme for DFA
table compression from the angle of matrix decomposition. The basic idea of our

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 282–289, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Compressing Regular Expressions’ DFA Table by Matrix Decomposition 283

method is to decompose a DFA table into three parts: a row vector, a column
vector and a residual sparse matrix, all of which cost very little space. We test
our method on typical regular expression rule sets and the results show that the
proposed method significantly reduces the memory usage and still runs at fast
searching speed comparable to that of the original DFA.

The rest of this paper is organized as follows. We first summarize related work
in DFA compression area in section 2. And then we formulate a matrix decom-
position problem for DFA compression in section 3.1. After that, we propose an
iterative algorithm for matrix decomposition and DFA compression in section
3.2. Finally, we carry out experiments with the proposed method and report the
results in section 4. Section 5 concludes the paper.

2 Related Work

Lots of theoretic and algorithmic results on regular expression matching have
been achieved since 1960s [1–6]. To bridge the gap between theory and practice,
recent years there are great interests in implementing fast regular expression
matching in real-life systems [7–14]. The large memory usage and potential state
explosion of DFA are the common concerns of many researchers.

Yu et al.[7] exploit rewrite rules to simplify regular expressions, and develop
a grouping method that divides a set of regular expressions into several groups
so that they can be compiled into medium-sized DFAs. The rewrite rules work
only if the non-overlapping condition is satisfied.

Kumar et al. [8] propose Delayed Input DFA which uses default transition
to eliminate redundant transitions, but the time of state switching per text
character increases proportionally.

Becchi et al. [9] propose a compression method that results in at most 2N
state traversals when processing an input text of length N . It takes advantage of
state distance to achieve high compressibility comparable to that of the Delayed
Input DFA method.

Ficara et al. [10] devise the method δFA to eliminate redundant transitions in
DFA. The idea is based on the observation that adjacent states in DFA travers-
ing share the majority of the next-hop states associated with the same input
characters, therefore the transitions of current state can be retrieved from its
predecessor’s transition table dynamically. However, the update of a local state
transition table is time-consuming.

Simth et al. [11] introduce XFA to handle two special classes of regular ex-
pressions that suffer from the exponential explosion problem. XFA augments
DFA by attaching counters to DFA states to memorize additional information.
This method needs to update a set of counters associated with each state during
traversing, and therefore it is not practical for software implementation.

In short, most of the above methods make use of space-time tradeoff: reducing
space usage at the cost of increasing running time. Though these methods are
efficient in particular environments, better space-time tradeoff techniques are
still need to be studied.

284 Y. Liu et al.

3 A Matrix Decomposition Method for DFA Compression

In this section, we first formulate a matrix decomposition problem: Additive
Matrix Decomposition. And then we propose an iterative algorithm to solve the
stated problem. Based on the matrix decomposition, a DFA compression scheme
is naturally followed.

3.1 Problem Formulation: Additive Matrix Decomposition

The state transition table of a DFA can be treated as an m×n matrix A, where
m is the number of states and n is the cardinality of alphabet Σ. Matrix element
A[i, j] (or Ai,j) defines the state switching from current state i to the next state
through character label j.

The basic idea of our method is approaching the DFA matrix A by a special
matrix D (that can be stored with little space) so that the residual matrix
R = A−D is as sparse as possible. By replacing the original DFA matrix with the
special matrix D and the residual sparse matrix R, a space compression scheme
sounds plausible. We formulate our idea as the following matrix decomposition
problem:

Additive Matrix Decomposition. Let X be a column vector of size m and
Y be a row vector of size n. Let D be the m × n matrix induced by X and Y
with D[i, j] = X [i] + Y [j] (1 ≤ i ≤ m, 1 ≤ j ≤ n). Now given an m × n matrix
A, find X and Y such that the number of zero elements in the residual matrix
R = A − D = [A[i, j] − X [i] − Y [j]] is maximized.

According to above matrix decomposition, DFA matrix A can be represented
with a column vector X , a row vector Y , and a residual matrix R. Since A[i, j] =
X [i] + Y [j] + R[i, j], state switching in DFA is still O(1) as long as accessing an
element in the residual sparse matrix R is accomplished in O(1) time.

For the purpose of high compressibility and fast access time, the residual
matrix R should be as sparse as possible. Space usage of the proposed scheme
consists of the size of X , the size of Y , and the number of nonzero elements in the
residual matrix R = A − D, resulting in the compression ratio m+n+nonzero(R)

mn .
This metric is used to evaluate our method’s compression efficiency in section 4.

3.2 Iterative Algorithm for Additive Matrix Decomposition

We present here an iterative algorithm to find the vectors X and Y that maximize
the number of zero elements in the residual matrix R.

We start with the observation that if vectors X and Y are the optimal vec-
tors to the additive matrix decomposition problem, then the following necessary
constraints must be satisfied:

1. For any 1 ≤ i ≤ m, X [i] is the most frequent element in multiset Di. =
{A[i, j] − Y [j] | 1 ≤ j ≤ n}.

2. For any 1 ≤ j ≤ n, Y [j] is the most frequent element in multiset D.j =
{A[i, j] − X [i] | 1 ≤ i ≤ m}.

Compressing Regular Expressions’ DFA Table by Matrix Decomposition 285

The above constrains are easy to obtain. For fixed Y [j], if X [i] is not the most
frequent element in Di., then we can increase the number of zero elements in R
by simply replacing X [i] with the most frequent element in Di.. Constrains hold
for Y likewise.

We devise an iterative algorithm based on the above constraints to compute
X and Y . The elements of X and Y are firstly initialized to random seeds.
Then we iteratively compute X from current Y and compute Y from current
X until the above constraints are all satisfied. The number of zero elements in
R is increasing during each iteration, and therefore the algorithm terminates in
finite steps. In practice this algorithm usually terminates in 2 or 3 iterations.
Since the constraints are not sufficient conditions, our iterative algorithm might
not converge to a global optimal solution. Fortunately, the algorithm usually
produces fairly good results.

The iterative procedure for computing X and Y is described in algorithm 1.

4 Experiment and Evaluation

We carry out experiments on several regular expression rule sets and compare
our method (CRD, Column-Row Decomposition) with the original DFA as well
as the δFA method[10] in terms of compression efficiency and searching time. The
CHAR-STATE technique in δFA is not implemented because it is not practical
for software implementation.

The experiments are carried out on regular expression signatures obtained
from several open-source systems, including: L7-filter[16], Snort[17], BRO[18].
We also generate 6 groups of synthetic rules according to the classification pro-
posed by Fang et.al[7], who categorize regular expressions into several classes
with different space complexity.

Since the DFA for a set of regular expressions usually suffers from the state
blow-up problem, it is usually hard to generate a combined DFA for a whole
large rule set. We use the regex-tool [19] to partition a large rule set into several
parts and to generate a moderate-sized DFA for each subset. In experiments the
L7-filter rule set is divided into 8 subsets, and the Snort rule set is divided into
3 parts. Details of the rule sets are described in table 1.

4.1 Compression Efficiency Comparison

This section compares the space usage of our method CRD with that of the
original DFA and the δFA. We also compare our method CRD with its two sim-
plified versions: DefaultROW and DefaultCOL. DefaultROW (or DefaultCOL)
corresponds to set the vector Y (or X) in CRD to zero, and to extract the most
frequent element in each row (or column) as a default state.

We use the term compression ratio to evaluate the methods’ compression
efficiency. For the original DFA, its compression ratio is always 1.0. For δFA, its
compression ratio is the percent of nonzero elements in the final residual sparse
matrix. For our method CRD, its compression ratio is defined as m+n+nonzero(R)

mn .

286 Y. Liu et al.

Algorithm 1. Decompose an m × n matrix A into a column vector X with
size m, a row vector Y with size n, and an m × n sparse matrix R. A[i, j] =
X [i] + Y [j] + R[i, j]. Let n(x, S) denote the number of occurrences of x in a
multiset S.
1: procedure MatrixDecomposition(A, m, n)
2: for i ← 1, m do
3: X[i] ←rand()

4: end for
5: for j ← 1, n do
6: Y [j] ←rand()

7: end for
8: repeat
9: changed ←FALSE

10: for i ← 1, m do
11: x ← the most frequent element in multiset Di. = {A[i, j] − Y [j] | 1 ≤

j ≤ n}
12: if n(x, Di.) > n(X[i], Di.) then
13: X[i] ← x
14: changed ←TRUE

15: end if
16: end for
17: for j ← 1, n do
18: y ← the most frequent element in multiset D.j = {A[i, j] − X[i] | 1 ≤

i ≤ m}
19: if n(y, D.j) > n(Y [j], D.j) then
20: Y [j] ← y
21: changed ←TRUE

22: end if
23: end for
24: until changed =FALSE

25: R ← [A[i, j]− X[i]− Y [j]]m×n

26: return (X, Y, R)

27: end procedure

Algorithm 2. State switching in our DFA table compression scheme
1: procedure NextState(s, c)
2: t ← X[s] + Y [c]
3: if BloomFilter. test(s, c) = 1 then
4: t ← t + SparseMatrix. get(s, c)
5: end if
6: return t
7: end procedure

Compressing Regular Expressions’ DFA Table by Matrix Decomposition 287

Table 1 presents the compression ratio of the algorithms on typical rule sets.
We can see that our method achieves better compressibility on L7-filter, BRO
and synthetic rules, whereas δFA performs better on Snort rules. Of all the 18
groups of rules, CRD outperforms δFA on 14 rule sets. We can also see that
CRD combines the merits of both DefaultROW and DefaultCOL, and performs
better than these two simplified versions except on the rule set Synthetic 1.

Table 1. Compression ratio of the algorithms on L7-filter, Snort, BRO and synthetic

rule sets

Rule set # of rules # of states δFA CRD DefaultROW DefaultCOL

L7 1 26 3172 0.634964 0.226984 0.232905 0.817074

L7 2 7 42711 0.918592 0.240451 0.243461 0.968942

L7 3 6 30135 0.960985 0.356182 0.356860 0.968619

L7 4 13 22608 0.097177 0.379325 0.381078 0.832390

L7 5 13 8344 0.820768 0.198944 0.203315 0.961631

L7 6 13 12896 0.827021 0.053005 0.055044 0.974603

L7 7 13 3473 0.912125 0.054519 0.059149 0.928100

L7 8 13 28476 0.804303 0.231228 0.231309 0.985363

Snort24 24 13882 0.037515 0.103243 0.108468 0.957364

Snort31 31 19522 0.053581 0.058584 0.061309 0.915806

Snort34 34 13834 0.032259 0.058067 0.060473 0.947866

BRO217 217 6533 0.061814 0.035062 0.224820 0.514522

Synthetic 1 50 248 0.111281 0.011656 0.186697 0.007749

Synthetic 2 10 78337 0.099659 0.026233 0.030254 0.998601

Synthetic 3 50 8338 0.948123 0.014934 0.018575 0.335646

Synthetic 4 10 5290 0.990808 0.042752 0.046357 0.958690

Synthetic 5 50 7828 0.947048 0.016112 0.019762 0.326956

Synthetic 6 50 14496 0.973929 0.048839 0.173284 0.478337

4.2 Searching Time Comparison

This section compares the searching time of our method CRD with that of the
original DFA and the δFA. We generate a random text of size 10MB to search
against with the synthetic rule sets.

Both the δFA and our method need to store a residual sparse matrix using
compact data structure. To represent the sparse matrix, we store the nonempty
elements in each row in a sorted array, and accessing an element is accomplished
by doing binary searching on it. To avoid unnecessary probes into the sparse
table, we use the bloom filter[15] technique to indicate whether a position in the
sparse matrix is empty or not (See Algorithm 2). This simple but efficient trick
eliminates most of the probes into the sparse matrix.

Searching time of the algorithms on synthetic rule sets is listed in table 2.
Despite its high compressibility, our method CRD still runs at fast speed com-
parable to that of the original DFA. The searching time increase of our method
is limited within 20%∼25%. The δFA method, which is designed for hardware

288 Y. Liu et al.

Table 2. Searching time (in seconds) of the algorithms on synthetic rule sets

Rule set Original DFA CRD δFA

Synthetic 1 0.1250 0.1516 103.813

Synthetic 2 0.1218 0.1485 48.094

Synthetic 3 0.1204 0.1500 211.734

Synthetic 4 0.1204 0.1500 224.672

Synthetic 5 0.1203 0.1484 188.937

Synthetic 6 0.1250 0.1500 200.735

implementation, is significantly slower than the original DFA and our method.
State switching in δFA costs O(|Σ|) resulting in poor performance.

5 Conclusion

The huge memory usage of regular expressions’ DFA prevents it from being
applied on large rule sets. To deal with this problem, we proposed a matrix
decomposition-based method for DFA table compression. The basic idea of our
method is to decompose a DFA table into the sum of a row vector, a column
vector and a sparse matrix, all of which cost very little space. Experiments on
typical rule sets show that the proposed method significantly reduces the memory
usage and still runs at fast searching speed.

Acknowledgment

This work is supported by the National Basic Research Program of China (973)
under grant No. 2007CB311100 and the National Information Security Research
Program of China (242) under grant No. 2009A43. We would like to thank
Michela Becchi for providing her useful regex-tool to us for evaluation. We are
also grateful to the anonymous referees for their insightful comments.

References

1. Thompson, K.: Programming Techniques: Regular expression search algorithm.

Communications of the ACM 11(6), 419–422 (1968)

2. Myers, E.W.: A four Russians algorithm for regular expression pattern matching.

Journal of the ACM 39(2), 430–448 (1992)

3. Baeza-Yates, R.A., Gonnet, G.H.: Fast text searching for regular expressions or

automaton searching on tries. Journal of the ACM 43(6), 915–936 (1996)

4. Navarro, G., Raffinot, M.: Compact DFA representation for fast regular expression

search. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A. (eds.) WAE 2001.

LNCS, vol. 2141, pp. 1–12. Springer, Heidelberg (2001)

5. Navarro, G., Raffinot, M.: Fast and simple character classes and bounded gaps

pattern matching, with application to protein searching. In: Proceedings of the

5th Annual International Conference on Computational Molecular Biology, pp.

231–240 (2001)

Compressing Regular Expressions’ DFA Table by Matrix Decomposition 289

6. Champarnaud, J.-M., Coulon, F., Paranthoen, T.: Compact and Fast Algorithms

for Regular Expression Search. Intern. J. of Computer. Math. 81(4) (2004)

7. Yu, F., Chen, Z., Diao, Y.: Fast and memory-efficient regular expression matching

for deep packet inspection. In: Proceedings of the 2006 ACM/IEEE symposium on

Architecture for Networking and Communications Systems, pp. 93–102 (2006)

8. Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J.: Algorithms to

accelerate multiple regular expressions matching for deep packet inspection. ACM

SIGCOMM Computer Communication Review 36(4), 339–350 (2006)

9. Becchi, M., Crowley, P.: An improved algorithm to accelerate regular expression

evaluation. In: Proceedings of the 3rd ACM/IEEE Symposium on Architecture for

Networking and Communications Systems, pp. 145–154 (2007)

10. Ficara, D., Giordano, S., Procissi, G., Vitucci, F., Antichi, G., Pietro, A.D.: An

improved DFA for fast regular expression matching. ACM SIGCOMM Computer

Communication Review 38(5), 29–40 (2008)

11. Smith, R., Estan, C., Jha, S.: XFA: Faster signature matching with extended au-

tomata. In: IEEE Symposium on Security and Privacy, Oakland, pp. 187–201 (May

2008)

12. Kumar, S., Chandrasekaran, B., Turner, J., Varghese, G.: Curing regular expres-

sions matching algorithms from insomnia, amnesia, and acalculia. In: Proceedings

of the 3rd ACM/IEEE Symposium on Architecture for Networking and Commu-

nications Systems, pp. 155–164 (2007)

13. Becchi, M., Cadambi, S.: Memory-efficient regular expression search using state

merging. In: 26th IEEE International Conference on Computer Communications,

pp. 1064–1072 (2007)

14. Majumder, A., Rastogi, R., Vanama, S.: Scalable regular expression matching on

data streams. In: Proceedings of the 2008 ACM SIGMOD International Conference

on Management of Data, Vancouver, Canada, pp. 161–172 (2008)

15. Bloom, B.H.: Spacetime Trade-offs in Hash Coding with Allowable Errors. Com-

munications of the ACM 13(7), 422–426 (1970)

16. http://l7-filter.sourceforge.net/

17. http://www.snort.org/

18. http://www.bro-ids.org/

19. http://regex.wustl.edu/

http://l7-filter.sourceforge.net/
http://www.snort.org/
http://www.bro-ids.org/
http://regex.wustl.edu/

Relational String Verification Using Multi-track
Automata�

Fang Yu1, Tevfik Bultan2, and Oscar H. Ibarra2

1 National Chengchi University, Taipei, Taiwan
yuf@nccu.edu.tw

2 University of California, Santa Barbara, CA, USA
{bultan,ibarra}@cs.ucsb.edu

Abstract. Verification of string manipulation operations is a crucial problem in
computer security. In this paper, we present a new relational string verification
technique based on multi-track automata. Our approach is capable of verifying
properties that depend on relations among string variables. This enables us to prove
that vulnerabilities that result from improper string manipulation do not exist in a
given program. Our main contributions in this paper can be summarized as fol-
lows: (1) We formally characterize the string verification problem as the reacha-
bility analysis of string systems and show decidability/undecidability results for
several string analysis problems. (2) We develop a sound symbolic analysis tech-
nique for string verification that over-approximates the reachable states of a given
string system using multi-track automata and summarization. (3) We evaluate the
presented techniques with respect to several string analysis benchmarks extracted
from real web applications.

1 Introduction

The most important Web application vulnerabilities are due to inadequate manipulation
of string variables [10]. In this paper we investigate the string verification problem:
Given a program that manipulates strings, we want to verify assertions about string
variables. For example, we may want to check that at a certain program point a string
variable cannot contain a specific set of characters. This type of checks can be used
to prevent SQL injection attacks where a malicious user includes special characters in
the input string to inject unintended commands to the queries that the Web application
constructs (using the input provided by the user) and sends to a backend database. As
another example, we may want to check that at a certain program point a string variable
should be prefix or suffix of another string variable. This type of checks can be used
to prevent Malicious File Execution (MFE) attacks where Web application developers
concatenate potentially hostile user input with file functions that lead to inclusion or
execution of untrusted files by the Web server.

We formalize the string verification problem as reachability analysis of string sys-
tems (Section 2). After demonstrating that the string analysis problem is undecidable

� This work is supported by NSF grants CCF-0916112, CCF-0716095, and CCF-0524136.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 290–299, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Relational String Verification Using Multi-track Automata 291

in general, we present and implement a forward symbolic reachability analysis tech-
nique that computes an over-approximation of the reachable states of a string system
using widening and summarization (Section 4). We use multi-track deterministic finite
automata (DFAs) as a symbolic representation to encode the set of possible values that
string variables can take at a given program point. Unlike prior string analysis tech-
niques, our analysis is relational, i.e., it is able to keep track of the relationships among
the string variables, improving the precision of the string analysis and enabling ver-
ification of invariants such as X1 = X2 where X1 and X2 are string variables. We
develop the precise construction of multi-track DFAs for linear word equations, such
as c1X1c2 = c′1X2c

′
2 and show that non-linear word equations (such as X1 = X2X3)

cannot be characterized precisely as a multi-track DFA (Section 3). We propose a reg-
ular approximation for non-linear equations and show how these constructions can be
used to compute the post-condition of branch conditions and assignment statements that
involve concatenation. We use summarization for inter-procedural analysis by generat-
ing a multi-track automaton (transducer) characterizing the relationship between the
input parameters and the return values of each procedure (Section 4). To be able to use
procedure summaries during our reachability analysis we align multi-track automata
so that normalized automata are closed under intersection. We implemented these al-
gorithms using the MONA automata package [5] and analyzed several PHP programs
demonstrating the effectiveness of our string analysis techniques (Section 5).

Related Work. The use of automata as a symbolic representation for verification has
been investigated in other contexts [4]. In this paper, we focus on verification of string
manipulation operations, which is essential to detect and prevent crucial web vulnera-
bilities. Due to its importance in security, string analysis has been widely studied. One
influential approach has been grammar-based string analysis that statically computes
an over-approximation of the values of string expressions in Java programs [6] which
has also been used to check for various types of errors in Web applications [8, 9, 12].
In [9, 12], multi-track DFAs, known as transducers, are used to model replacement
operations. There are also several recent string analysis tools that use symbolic string
analysis based on DFA encodings [7, 11, 14, 15]. Some of them are based on symbolic
execution and use a DFA representation to model and verify the string manipulation
operations in Java programs [7, 11]. In our earlier work, we have used a DFA based
symbolic reachability analysis to verify the correctness of string sanitization operations
in PHP programs [13–15]. Unlike the approach we proposed in this paper, all of the re-
sults mentioned above use single track DFA and encode the reachable configurations of
each string variable separately. Our multi-track automata encoding not only improves
the precision of the string analysis but also enables verification of properties that cannot
be verified with the previous approaches. We have also investigated the boundary of
decidability for the string verification problem. Bjørner et al. [2] show the undecidabil-
ity result with replacement operation. In this paper we consider only concatenation and
show that string verification problem is undecidable even for deterministic string sys-
tems with only three unary string variables and non-deterministic string systems with
only two string variables if the comparison of two variables are allowed.

292 F. Yu, T. Bultan, and O.H. Ibarra

prog ::= decl∗ func∗

decl ::= decl id+;
func ::= id (id∗) begin decl∗ lstmt+ end
lstmt ::= l:stmt
stmt ::= seqstmt | if exp then goto l; | goto L; where L is a set of labels

| input id; | output exp; | assert exp;
seqstmt::=id := sexp; | id := call id (sexp∗);
exp ::= bexp | exp ∧ exp | ¬ exp
bexp ::= atom = sexp
sexp ::= sexp.atom | atom | suffix(id) | prefix(id)
atom ::= id | c, where c is a string constant

Fig. 1. The syntax of string systems

2 String Systems

We define the syntax of string systems in Figure 1. We only consider string variables
and hence variable declarations need not specify a type. All statements are labeled. We
only consider one string operation (concatenation) in our formal model; however, our
symbolic string analysis techniques can be extended to handle complex string opera-
tions (such as replacement [14]). Function calls use call-by-value parameter passing.
We allow goto statements to be non-deterministic (if a goto statement has multiple tar-
get labels, then one of them is chosen non-deterministically). If a string system contains
a non-deterministic goto statement it is called a non-deterministic string system, other-
wise, it is called a deterministic string system.

There are several attributes we can use to classify string systems such as deter-
ministic (D) or non-deterministic (N) string systems, the number of variables in the
string systems, and the alphabet used by the string variables, e.g., unary (U), binary
(B), or arbitrary (K) alphabet. Finally, we can restrict the set of string expressions
that can be used in the assignment and conditional branch instructions. As an instance,
NB(X1, X2)Xi:=Xic

X1=X2
denotes a non-deterministic string system with a binary alphabet

and two string variables (X1 and X2) where variables can only concatenate constant
strings from the right and compared to each other. We use a to denote a single symbol,
and c, d to denote constant strings. c = prefix(Xi) evaluates to true if c is a prefix of
Xi, and c = suffix(Xi) evaluates to true if c is a suffix of Xi. We define the reachability
problem for string systems is the problem of deciding, given a string system and a con-
figuration (i.e., the instruction label and the values of the variables), whether at some
point during a computation, the configuration will be reached. We have the following
results:

Theorem 1. The reachability problem for:

1. NB(X1, X2)Xi:=Xic
X1=X2

is undecidable,

2. DU(X1, X2, X3)Xi:=Xic
X1=X3,X2=X3

is undecidable,

3. DU(X1, X2, X3, X4)Xi:=Xic
X1=X3,X2=X4

is undecidable,

4. NU(X1, X2)Xi:=Xic
X1=X2,c=Xi,c=prefix(Xi),c=suffix(Xi)

is decidable,

Relational String Verification Using Multi-track Automata 293

5. NK(X1, X2, . . . , Xk)Xi:=dXic
c=Xi,c=prefix(Xi),c=suffix(Xi)

is decidable, and

6. DK(X1, X2, , . . . , Xk)Xi:=Xia,Xi:=aXi

X1=X2,c=Xi,c=prefix(Xi),c=suffix(Xi)
is decidable.

Theorem 1 demonstrates the complexity boundaries for verification of string systems.
Theorem 1.1, 1.2 and 1.3 show that the string verification problem can be undecidable
even when we restrict a non-deterministic string system to two binary variables, or a de-
terministic string system to three unary variables or four unary variables with specific
comparisons. Theorem 1.4 shows that the three variables in Theorem 1.2 are necessary
in the sense that when there are only two variables, reachability is decidable, even when
the string system is nondeterministic. Theorem 1.5 and 1.6, on the other hand, demon-
strate that there are non-trivial string verification problems that are decidable. Since
the general string verification problem is undecidable, it is necessary to develop con-
servative approximation techniques for verification of string systems. In this paper we
propose a sound string verification approach based on symbolic reachability analysis
with conservative approximations where multi-track automata are used as a symbolic
representation. Some examples of string systems that can be verified using our analysis
are given in [16].

3 Regular Approximation of Word Equations

Our string analysis is based on the following observations: (1) The transitions and the
configurations of a string system can be symbolically represented using word equations
with existential quantification, (2) word equations can be represented/approximated us-
ing multi-track DFAs, which are closed under intersection, union, complement, and
projection, and (3) the operations required during reachability analysis (such as equiv-
alence checking) can be computed on DFAs.

Multi-track DFAs. A multi-track DFA is a DFA but over the alphabet that consists of
many tracks. An n-track alphabet is defined as (Σ ∪ {λ})n, where λ �∈ Σ is a special
symbol for padding. We use w[i] (1 ≤ i ≤ n) to denote the ith track of w ∈ (Σ∪{λ})n.
An aligned multi-track DFA is a multi-track DFA where all tracks are left justified (i.e.,
λ’s are right justified). That is, if w is accepted by an aligned n-track DFA M , then for
1 ≤ i ≤ n, w[i] ∈ Σ∗λ∗. We also use ŵ[i] ∈ Σ∗ to denote the longest λ-free prefix
of w[i]. It is clear that aligned multi-track DFA languages are closed under intersection,
union, and homomorphism. Let Mu be the aligned n-track DFA that accepts the (aligned)
universe, i.e., {w | ∀i.w[i] ∈ Σ∗λ∗}. The complement of the language accepted by an
aligned n-track DFA M is defined by complement modulo alignment, i.e., the intersection
of the complement of L(M) with L(Mu). For the following descriptions, a multi-track
DFA is an aligned multi-track DFA unless we explicitly state otherwise.

Word Equations. A word equation is an equality relation of two words that concate-
nate variables from a finite set X and words from a finite set of constants C. The general
form of word equations is defined as v1 . . . vn = v′1 . . . v′m, where ∀i, vi, v

′
i ∈ X ∪ C.

The following theorem identifies the basic forms of word equations. For example, a
word equation f : X1 = X2dX3X4 is equivalent to ∃Xk1 , Xk2 .X1 = X2Xk1 ∧Xk1 =
dXk2 ∧ Xk2 = X3X4.

294 F. Yu, T. Bultan, and O.H. Ibarra

Theorem 2. Word equations and Boolean combinations (¬, ∧ and ∨) of these equa-
tions can be expressed using equations of the form X1 = X2c, X1 = cX2, c = X1X2,
X1 = X2X3, Boolean combinations of such equations and existential quantification.

Let f be a word equation over X= {X1, X2, . . . , Xn} and f [c/X] denote a new
equation where X is replaced with c for all X that appears in f . We say that an n-
track DFA M under-approximates f if for all w ∈ L(M), f [ŵ[1]/X1, . . . , ŵ[n]/Xn]
holds. We say that an n-track DFA M over-approximates f if for any s1, . . . , sn ∈ Σ∗

where f [s1/X1, . . . , sn/Xn] holds, there exists w ∈ L(M) such that for all 1 ≤ i ≤
n, ŵ[i] = si. We call M precise with respect to f if M both under-approximates and
over-approximates f .

Definition 1. A word equation f is regularly expressible if and only if there exists a
multi-track DFA M such that M is precise with respect to f .

Theorem 3. 1. X1 = X2c, X1 = cX2, and c = X1X2 are regularly expressible, as
well as their Boolean combinations.

2. X1 = cX2 is regularly expressible but the corresponding M has exponential num-
ber of states in the length of c.

3. X1 = X2X3 is not regularly expressible.

We are able to compute multi-track DFAs that are precise with respect to word equa-
tions: X1 = X2c, X1 = cX2, and c = X1X2. Since X1 = X2X3 is not regularly ex-
pressible, below, we describe how to compute DFAs that approximate such non-linear
word equations. Using the DFA constructions for these four basic forms we can con-
struct multi-track DFAs for all word equations and their Boolean combinations (if the
word equation contains a non-linear term then the constructed DFA will approximate
the equation, otherwise it will be precise). The Boolean operations conjunction, dis-
junction and negation can be handled with intersection, union, and complement mod-
ulo alignment of the multi-track DFAs, respectively. Existential quantification on the
other hand, can be handled using homomorphism, where given a word equation f and a
multi-track automaton M such that M is precise with respect to f , then the multi-track
automaton M
i is precise with respect to ∃Xi.f where M
i denotes the result of
erasing the ith track (by homomorphism) of M .

Construction of X1 = X2X3. Since Theorem 3 shows that X1 = X2X3 is not
regularly expressible, it is necessary to construct a conservative (over or under) ap-
proximation of X1 = X2X3. We first propose an over approximation construction for
X1 = X2X3. Let M1 = 〈Q1, Σ, δ1, I1, F1〉, M2 = 〈Q2, Σ, δ2, I2, F2〉, and M3 =
〈Q3, Σ, δ3, I3, F3〉 accept values of X1, X2, and X3, respectively. M = 〈Q, (Σ ∪
{λ})3, δ, I, F 〉 is constructed as follows.

– Q ⊆ Q1 × Q2 × Q3 × Q3,
– I = (I1, I2, I3, I3),
– ∀a, b ∈ Σ, δ((r, p, s, s′), (a, a, b)) = (δ1(r, a), δ2(p, a), δ3(s, b), s′),
– ∀a, b∈ Σ, p ∈F2, s �∈ F3, δ((r, p, s, s′), (a, λ, b))=(δ1(r, a), p, δ3(s, b), δ3(s′, a)),
– ∀a ∈ Σ, p ∈ F2, s ∈ F3, δ((r, p, s, s′), (a, λ, λ)) = (δ1(r, a), p, s, δ3(s′, a)),
– ∀a ∈ Σ, p �∈ F2, s ∈ F3, δ((r, p, s, s′), (a, a, λ)) = (δ1(r, a), δ2(p, a), s, s′),
– F = {(r, p, s, s′) | r ∈ F1, p ∈ F2, s ∈ F3, s

′ ∈ F3}.

Relational String Verification Using Multi-track Automata 295

The intuition is as follows: M traces M1, M2 and M3 on the first, second and third
tracks, respectively, and makes sure that the first and second tracks match each other.
After reaching an accepting state in M2, M enforces the second track to be λ and
starts to trace M3 on the first track to ensure the rest (suffix) is accepted by M3. |Q| is
O(|Q1| × |Q2| × |Q3| + |Q1| × |Q3| × |Q3|). For all w ∈ L(M), the following hold:

– ŵ[1] ∈ L(M1), ŵ[2] ∈ L(M2), ŵ[3] ∈ L(M3),
– ŵ[1] = ŵ[2]w′ and w′ ∈ L(M3),

Note that w′ may not be equal to ŵ[3], i.e., there exists w ∈ L(M), ŵ[1] �= ŵ[2]ŵ[3],
and hence M is not precise with respect to X1 = X2X3. On the other hand, for
any w such that ŵ[1] = ŵ[2]ŵ[3], we have w ∈ L(M), hence M is a regular over-
approximation of X1 = X2X3.

Below, we describe how to construct a regular under-approximation of X1 = X2X3

(which is necessary for conservative approximation of its complement set). We use the
idea that if L(M2) is a finite set language, one can construct the DFA M that satisfies
X1 = X2X3 by explicitly taking the union of the construction of X1 = cX3 for
all c ∈ L(M2). If L(M2) is an infinite set language, we construct a regular under-
approximation of X1 = X2X3 by considering a (finite) subset of L(M2) where the
length is bounded. Formally speaking, for each k ≥ 0 we can construct Mk, so that
w ∈ L(Mk), ŵ[1] = ŵ[2]ŵ[3], ŵ[1] ∈ L(M1), ŵ[3] ∈ L(M3), ŵ[2] ∈ L(M2) and
|ŵ[2]| ≤ k. It follows that Mk is a regular under-approximation of X1 = X2X3.
If L(M2) is a finite set language, there exists k (the length of the longest accepted
word) where L(Mk) is precise with respect to X1 = X2X3. If L(M2) is an infinite set
language, there does not exist such k so that L(Mk) is precise with respect to X1 =
X2X3, as we have proven non-regularity of X1 = X2X3.

4 Symbolic Reachability Analysis

Our symbolic reachability analysis involves two main steps: forward fixpoint computa-
tion and summarization.

Forward Fixpoint Computation. The first phase of our analysis is a standard forward
fixpoint computation on multi-track DFAs. Each program point is associated with a
single multi-track DFA, where each track is associated with a single string variable
X ∈ X. We use M [l] to denote the multi-track automaton at the program label l. The
forward fixpoint computation algorithm is a standard work-queue algorithm. Initially,
for all labels l, L(M [l]) = ∅. We iteratively compute the post-images of the statements
and join the results to the corresponding automata. For a stmt in the form: X := sexp,
the post-image is computed as:

POST(M, stmt) ≡ (∃X.M ∩ CONSTRUCT(X ′ = sexp, +))[X/X ′].

CONSTRUCT(exp, b) returns the DFA that accepts a regular approximation of exp, where
b ∈ {+,−} indicates the direction (over or under, respectively) of approximation if
needed. During the construction, we recursively push the negations (¬) (and flip the di-
rection) inside to the basic expressions (bexp), and use the corresponding construction

296 F. Yu, T. Bultan, and O.H. Ibarra

f(X)
begin
1: goto 2, 3;
2: X: = call f(X.a);
3: return X;
end

Fig. 2. A function and its summary DFA

of multi-track DFAs discussed in the previous section. We use function summaries to
handle function calls. Each function f is summarized as a finite state transducer, de-
noted as Mf , which captures the relations among input variables (parameters), denoted
as Xp, and return values. The return values are tracked in the output track, denoted as
Xo. We discuss the generation of the transducer Mf below. For a stmt in the form X :=
call f(e1, . . . , en), the post-image is computed as:

POST(M, stmt) ≡ (∃X, Xp1 , . . .Xpn .M ∩ MI ∩ Mf)[X/Xo],

where MI = CONSTRUCT(
∧

i Xpi = ei, +). The process terminates when we reach
a fixpoint. To accelerate the fixpoint computation, we extend our automata widening
operator [14], denoted as ∇, to multi-track automata. We identify equivalence classes
according to specific equivalence conditions and merge states in the same equivalence
class [1, 3]. The following lemma shows that the equality relations among tracks are
preserved while widening multi-track automata.

Lemma 1. if L(M) ⊆ L(x = y) and L(M ′) ⊆ L(x = y), L(M∇M ′) ⊆ L(x = y).

Summarization. We compute procedure summaries in order to handle procedure calls.
We assume parameter-passing with call-by-value semantics and we are able to handle
recursion. Each function f is summarized as a multi-track DFA, denoted as Mf , that
captures the relation among its input variables and return values.

Consider the recursive function f shown in Figure 2 with one parameter. f non-
deterministically returns its input (goto 3) or makes a self call (goto 2) by concatenating
its input and a constant a. The generated summary for this function is also shown in
Figure 2. Mf is a 2-track DFA, where the first track is associated with its parameter
Xp1 , and the second track is associated with Xo representing the return values. The
edge (Σ, Σ) represents a set of identity edges. In other words, δ(q, (Σ, Σ)) = q′ means
∀a ∈ Σ, δ(q, (a, a)) = q′. The summary DFA Mf precisely captures the relation Xo =
Xp1 .a

∗ between the input variable and the return values.
During the summarization phase, (possibly recursive) functions are summarized as

unaligned multi-track DFAs that specify the relations among their inputs and return
values. We first build (possibly cyclic) dependency graphs to specify how the inputs
flow to the return values. Each node in the dependency graph is associated with an
unaligned multi-track DFA that traces the relation among inputs and the value of that
node. An unaligned multi-track DFA is a multi-track DFA where λs might not be right
justified. Return values of a function are represented with an auxiliary output track.
Given a function f with n parameters, Mf is an unaligned (n + 1)-track DFA, where n
tracks represent the n input parameters and one track Xo is the output track representing

Relational String Verification Using Multi-track Automata 297

the return values. We iteratively compute post images of reachable relations and join
the results until we reach a fixpoint. Upon termination, the summary is the union of the
unaligned DFAs associated with the return nodes. To compose these summaries at the
call site, we also propose an alignment algorithm to align (so that λ’s are right justified)
an unaligned multi-track DFA.

Once the summary DFA Mf has been computed, it is not necessary to reanalyze the
body of f . To compute the post-image of a call to f we intersect the values of input
parameters with Mf and use existential quantification to obtain the return values. Let
M be a one-track DFA associated with X where L(M) = {b}. POST(M , X := call
f(X)) returns M ′ where L(M ′) = ba∗ for the example function shown above. As
another example, let M be a 2-track DFA associated with X, Y that is precise with
respect to X = Y . Then POST(M , X := call f(X)) returns M ′ which is precise
with respect to X = Y.a∗ precisely capturing the relation between X and Y after the
execution of the function call. As discussed above, M ′ is computed by (∃X, Xp1 .M ∩
MI ∩ Mf)[X/Xo], where L(MI) = CONSTRUCT(Xp1 = X , +).

5 Experiments

We evaluate our approach against three kinds of benchmarks: 1) Basic benchmarks, 2)
XSS/SQLI benchmarks, and 3) MFE benchmarks. These benchmarks represent typi-
cal string manipulating programs along with string properties that address severe web
vulnerabilities.

In the first set, we demonstrate that our approach can prove implicit equality proper-
ties of string systems. We wrote two small programs. CheckBranch (B1) has if branch
(X1 = X2) and else branch (X1 �= X2). In the else branch, we assign a constant string
c to X1 and then assign the same constant string to X2. We check at the merge point
whether X1 = X2. In CheckLoop (B2) we assign variables X1 and X2 the same con-
stant string at the beginning, and iteratively append another constant string to both in
an infinite loop. We check whether X1 = X2 at the loop exit. Let M accept the values
of X1 and X2 upon termination. The equality assertion holds when L(M) ⊆ L(Ma),
where Ma is CONSTRUCT(X1 = X2, −). We use ”−” to construct (under approxima-
tion) automata for assertions to ensure the soundness of our analysis. Using multi-track
DFAs, we prove the equality property (result “true”) whereas we are unable to prove it
using single-track DFAs (result “false”) as shown in Table 1 (B1 and B2). Though these
benchmark examples are simple, to the best of our knowledge, there are no other string
analysis tools that can prove equality properties in these benchmarks.

In the second set, we check existence of Cross-Site Scripting (XSS) and SQL Injec-
tion (SQLI) vulnerabilities in Web applications with known vulnerabilities. We check
whether at a specific program point, a sensitive function may take an attack string as
its input. If so, we say that the program is vulnerable (result “vul”) with respect to the
given attack pattern. To identify XSS/SQLI attacks, we check intersection emptiness
against all possible input values that reach a sensitive function at a given program point
and the attack strings specified as a regular language. Though one can check such vul-
nerabilities using single-track DFAs [14], using multi-track automata, we can precisely
interpret branch conditions, such as $www=$url, that cannot be precisely expressed

298 F. Yu, T. Bultan, and O.H. Ibarra

Table 1. Experimental results. DFA(s): the minimized DFA(s) associated with the checked
program point. state: number of states. bdd: number of bdd nodes. Benchmark: Applica-
tion, script (line number). S1: MyEasyMarket-4.1, trans.php (218). S2: PBLguestbook-1.32,
pblguestbook.php (1210), S3:Aphpkb-0.71, saa.php (87), and S4: BloggIT 1.0, admin.php
(23). M1: PBLguestbook-1.32, pblguestbook.php (536). M2: MyEasyMarket-4.1, prod.php (94).
M3: MyEasyMarket-4.1, prod.php (189). M4: php-fusion-6.01, db backup.php (111). M5: php-
fusion-6.01, forums prune.php (28).

Single-track Multi-track
Result DFAs/ Composed DFA Time Mem Result DFA Time Mem

Ben state(bdd) user+sys(sec) (kb) state(bdd) user+sys(sec) (kb)

B1 false 15(107), 15(107) /33(477) 0.027 + 0.006 410 true 14(193) 0.070 + 0.009 918
B2 false 6(40), 6(40) / 9(120) 0.022+0.008 484 true 5(60) 0.025+0.006 293

S1 vul 2(20), 9(64), 17(148) 0.010+0.002 444 vul 65(1629) 0.195+0.150 1231
S2 vul 9(65), 42(376) 0.017+0.003 626 vul 49(1205) 0.059+0.006 4232
S3 vul 11(106), 27(226) 0.032+0.003 838 vul 47(2714) 0.153+0.008 2684
S4 vul 53(423), 79(633) 0.062+0.005 1696 vul 79(1900) 0.226+0.003 2826

M1 vul 2(8), 28(208) / 56(801) 0.027+0.003 621 no 50(3551) 0.059+0.002 1294
M2 vul 2(20), 11(89) / 22(495) 0.013+0.004 555 no 21(604) 0.040+0.004 996
M3 vul 2(20), 2(20) / 5(113) 0.008+0.002 417 no 3(276) 0.018+0.001 465
M4 vul 24(181), 2(8), 25(188) / 1201(25949) 0.226+0.025 9495 no 181(9893) 0.784+0.07 19322
M5 vul 2(8), 14(101), 15(108) / 211(3195) 0.049+0.008 1676 no 62(2423) 0.097+0.005 1756

using single-track automata, and obtain more accurate characterization of inputs of the
sensitive functions. For the vulnerabilities identified in these benchmarks (S1 to S4), we
did not observe false alarms that result from the approximation of the branch conditions.

The last set of benchmarks show that the precision that is obtained using multi-track
DFAs can help us in removing false alarms generated by single-track automata based
string analysis. These benchmarks represent malicious file execution (MFE) attacks. Such
vulnerabilities are caused because developers directly use or concatenate potentially hos-
tile input with file or stream functions, or improperly trust input files. We systemati-
cally searched web applications for program points that execute file functions, such as
include and fopen, whose arguments may be influenced by external inputs. At these
program points, we check whether the retrieved files and the external inputs are consis-
tent with what the developers intend. We manually generate a multi-track DFA Mvul that
accepts a set of possible violations for each benchmark, and apply our analysis on the
sliced program segments. Upon termination, we report that the file function is vulnerable
(result “vul”) if L(M)∩L(Mvul) �= ∅. M is the composed DFA of the listed single-track
DFAs in the single-track analysis. As shown in Table 1 (M1 to M5), using multi-track
DFAs we are able to verify that MFE vulnerabilities do not exist (result “no”) whereas
string analysis using single-track DFAs raises false alarms for all these examples.

We have shown that multi-track DFAs can handle problems that cannot be handled
by multiple single-track DFAs, but at the same time, they use more time and mem-
ory. For these benchmarks, the cost seems affordable. As shown in Table 1, in all tests,
the multi-track DFAs that we computed (even for the composed ones) are smaller than
the product of the corresponding single-track DFAs. One advantage of our implemen-
tation is symbolic DFA representation (provided by the MONA DFA library [5]), in
which transition relations of the DFA are represented as Multi-terminal Binary Decision
Diagrams (MBDDs). Using the symbolic DFA representation we avoid the potential

Relational String Verification Using Multi-track Automata 299

exponential blow-up that can be caused by the product alphabet. However, in the worst
case the size of the MBDD can still be exponential in the number of tracks.

6 Conclusion

In this paper, we presented a formal characterization of the string verification problem,
investigated the decidability boundary for string systems, and presented a novel veri-
fication technique for string systems. Our verification technique is based on forward
symbolic reachability analysis with multi-track automata, conservative approximations
of word equations and summarization. We demonstrated the effectiveness of our ap-
proach on several benchmarks.

References

1. Bartzis, C., Bultan, T.: Widening arithmetic automata. In: Alur, R., Peled, D.A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 321–333. Springer, Heidelberg (2004)

2. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-manipulating
programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 307–
321. Springer, Heidelberg (2009)

3. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In: Alur, R., Peled,
D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer, Heidelberg (2004)

4. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Emerson, E.A.,
Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418. Springer, Heidelberg (2000)

5. BRICS. The MONA project, http://www.brics.dk/mona/
6. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string expressions. In:

Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer, Heidelberg (2003)
7. Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, K., Tao, L.: A static analysis framework for

detecting sql injection vulnerabilities. In: COMPSAC, pp. 87–96 (2007)
8. Gould, C., Su, Z., Devanbu, P.: Static checking of dynamically generated queries in database

applications. In: ICSE, pp. 645–654 (2004)
9. Minamide, Y.: Static approximation of dynamically generated web pages. In: WWW 2005,

pp. 432–441 (2005)
10. Open Web Application Security Project (OWASP). Top ten project (May 2007),

http://www.owasp.org/
11. Shannon, D., Hajra, S., Lee, A., Zhan, D., Khurshid, S.: Abstracting symbolic execution with

string analysis. In: TAICPART-MUTATION, DC, USA, pp. 13–22 (2007)
12. Wassermann, G., Su, Z.: Static detection of cross-site scripting vulnerabilities. In: ICSE, pp.

171–180 (2008)
13. Yu, F., Alkhalaf, M., Bultan, T.: Stranger: An automata-based string analysis tool for php.

In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 154–157. Springer,
Heidelberg (2010)

14. Yu, F., Bultan, T., Cova, M., Ibarra, O.H.: Symbolic string verification: An automata-based
approach. In: Havelund, K., Majumdar, R. (eds.) SPIN 2008. LNCS, vol. 5156, pp. 306–324.
Springer, Heidelberg (2008)

15. Yu, F., Bultan, T., Ibarra, O.H.: Symbolic string verification: Combining string analysis and
size analysis. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp.
322–336. Springer, Heidelberg (2009)

16. Yu, F., Bultan, T., Ibarra, O.H.: Verification of string manipulating programs using multi-
track automata. Technical Report 2009-14, Computer Science Department, University of
California, Santa Barbara (August 2009)

http://www.brics.dk/mona/
http://www.owasp.org/

A Note on a Tree-Based 2D Indexing�

Jan Žd’́arek and Bořivoj Melichar

Department of Theoretical Computer Science,

Faculty of Information Technology, Czech Technical University in Prague,

Kolejńı 550/2, 160 00 Praha 6, Czech Republic

{melichar,zdarekj}@fit.cvut.cz

Abstract. A new approach to the 2D pattern matching and specifically

to 2D text indexing is proposed. We present the transformation of 2D

structures into the form of a tree, preserving the context of each element

of the structure. The tree can be linearised using the prefix notation into

the form of a text (a string) and we do the pattern matching in this text.

Over this representation pushdown automata indexing the 2D text are

constructed. They allow to search for 2D prefixes, suffixes, or factors of

the 2D text in time proportional to the size of the representation of a

2D pattern. This result achieves the properties analogous to the results

obtained in tree pattern matching and string indexing.

1 Introduction

In the area of string matching, there are many methods to preprocess the text
to obtain some kind of its index. Then the pattern is to be searched in the index.
Text indexing is commonly used in situation where many patterns shall be tested
against a fixed text (e.g. in biological or other database oriented applications).

This paper presents pushdown automata that serve as a pattern matching and
indexing tool for linearised 2D text (pictures). We present the transformation of
2D structures into the form of a tree, preserving the context of each element of
the structure. The tree can be linearised using the prefix notation into the form
of a string and we do the pattern matching in this text. Pushdown automata
indexing the 2D text allow to search for 2D prefixes, suffixes, or factors of the
2D text in time proportional to the size of the 2D pattern representation. This
result achieves the properties analogous to the results obtained in tree pattern
matching and string indexing.
Organisation
First, we present a short list of useful notions and notations and an overview of
the previous works. Then we present a vertex splitting method for representation
of a 2D text and in the following chapter the matching in such a representation
is described. The next chapter shows construction methods of 2D indexing push-
down automata for 2D prefix, suffix and factor matching. The last chapter is the
conclusion. All proofs and some examples, removed due to strict space limita-
tions, can be found in [19, Chapter 5].
� Partially supported by Czech Science Foundation project No. 201/09/0807, and by

MŠMT of the Czech Republic under research program No. MSM6840770014.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 300–309, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Note on a Tree-Based 2D Indexing 301

2 Basic Notions

Let A be a finite alphabet and its elements be called symbols. A set of strings
over A is denoted by A∗. The empty string is denoted by ε. Language L is any
subset of A∗, L ⊆ A∗.

A picture (2D string) is a rectangular arrangement of symbols taken from a
finite alphabet. The set of all pictures over alphabet A is denoted by A∗∗ and
a 2D language over A is thus any subset of A∗∗. The set of all pictures of size
(n×n′) over A, where n, n′ > 0, is denoted by A(n×n′). Let the empty picture of
size (0× 0) be denoted by λ. (Giammarresi and Restivo [1] discuss the theory of
2D languages in detail.) The size of a picture, say P , is the size of its rectangular
shape, denoted by |P | or (x × y), and its numerical value is the product of its x
and y components, |P | = xy. The origin of P is the element P [1, 1].

Let R ∈ A(n×n′) be a picture of size (n×n′) and P ∈ A(m×m′) be a picture of
size (m×m′). P is a sub-picture of R if and only if m ≤ n ∧ m′ ≤ n′ (|P | ≤ |R|)
and every element of P occurs on the appropriate position in R. Let this relation
be denoted by P & R, and P � R if |P | < |R|.

2D exact occurrence: P occurs at position (i, j) in T , P ∈ A(m×m′), T ∈
A(n×n′), if and only if P [1..m; 1..m′] = T [i..i + m − 1; j..j + m′ − 1].

A 2D factor of picture T is picture F such that F & T . A 2D prefix of picture T
is picture Fp, Fp & T and Fp occurs in T at position (1, 1). A 2D suffix of picture
T is picture Fs, Fs & T , and Fs occurs in T at position (n−m +1, n′ −m′ + 1).

The following definitions introduce pushdown automata and related notions.
A (nondeterministic) pushdown automaton (PDA) M , is a septuple M = (Q, A,
G, δ, q0, Z0, F), where Q is a finite set of states, A is a finite input alphabet,
G is a finite pushdown store alphabet, δ is a mapping Q × (A ∪ {ε}) × G �→
P(Q × G∗), q0 ∈ Q is an initial state, Z0 ∈ G is the initial pushdown store
symbol, F ⊆ Q is a set of final states. A pushdown store operation of PDA
M , M = (Q, A, G, δ, q0, Z0, F), is a relation (A ∪ {ε}) × G �→ G∗. A pushdown
store operation produces new contents on the top of the pushdown store by
taking one input symbol or the empty string from the input and the current
contents on the top of the pushdown store. The pushdown store grows to the
right if written as string x, x ∈ G∗. A transition of PDA M is the relation
�M⊆ (Q × A∗ × G) × (Q × A∗ × G∗). It holds that (q, aw, αβ) �M (p, w, γβ) if
(p, γ) ∈ δ(q, a, α). The k-th power, transitive closure, and transitive and reflexive
closure of the relation �M is denoted �k

M , �+
M , �∗

M , respectively.
A PDA is a deterministic PDA if it holds:

1. |δ(q, a, γ)| ≤ 1 for all q ∈ Q, a ∈ A ∪ {ε}, γ ∈ G.
2. For all α ∈ G, q ∈ Q, if δ(q, ε, α) �= ∅, then δ(q, a, α) = ∅ for all a ∈ A.

A language L accepted by PDA M is a set of words over finite alphabet A.
It is defined in two distinct ways: L(M) = {x; δ(q0, x, Z0) �∗

M (q, ε, γ), x ∈
A∗, γ ∈ G∗, q ∈ F} (Acceptance by final state), and Lε(M) = {x; (q0, x, Z0) �∗

M

(q, ε, ε), x ∈ A∗, q ∈ Q} (Acceptance by empty pushdown store). If the PDA
accepts the language by empty pushdown store then the set F of its final states
is the empty set.

302 J. Žd’́arek and B. Melichar

3 Representation of Multidimensional Arrays for
Indexing

As noted e.g. in Giancarlo and Grossi [2], the first indexing data structure for
arrays has been proposed by Gonnet [3]. He first introduced a notion of suffix
trees for a 2D text (a PAT-tree) using a decomposition into a spiral string.
Giancarlo [4] presented the L-suffix tree as a generalization of the suffix tree
to square pictures and obtained a 2D suffix array from L-suffix trees. L-string
equivalent notion has been described independently by Amir and Farach [5].
The time complexity of the construction is O(n2 log n), using O(n2) space for a
picture of (n × n). The same time complexity is reached also in Kim, Kim and
Park [6]. Na, Giancarlo and Park [7] presented on-line version with the same
construction time complexity, O(n2 log n), optimal for unbounded alphabets.

Kim, Kim and Park [8,6] presented an indexing structure for pictures (I-
suffix), extensible to higher dimensions. They used a Z-suffix structure for in-
dexing in three dimensional space. The only limitation is the pictures must be
square and cubic, respectively, i.e. (n×n) and (n×n×n), respectively. The pre-
sented O(n2 log n) time construction algorithm for direct construction of I-suffix
arrays and O(n3 log n) time construction algorithm for Z-suffix arrays. This is
the first algorithm for three-dimensional index data structure.

Giancarlo and Grossi [9,2], besides they gave an expected linear-time construc-
tion algorithm for square pictures, presented the general framework of 2D suffix
tree families. E.g. [2, Def. 10.18] defines an index for a picture as a rooted tree
whose arcs are labeled by block characters. A block character is in general some
sub-picture of the given picture, its shape need not be rectangular. Similarly to
tries used in string processing, these three conditions hold for such an index:

1. No two arcs leaving the same node are labeled by equal block characters.
2. For each sub-picture P there exists at least one node on the path from the
root and concatenated labels on this path form this sub-picture P .
3. For any two nodes u and v, v being the ancestor of u, and P (u), P (v) being
the sub-pictures made of concatenated labels from the root to u, v, respectively,
P (v) � P (u).

A suffix tree for pictures is then made of this index so that maximal paths of
one-child nodes are compressed into single arcs.

Moreover, they proved the lower bound on the number of nodes of the suffix
tree for 2D pictures: Ω(n2n′), where (n×n′) is the size of a picture, and n ≤ n′.
These suffix trees can be built in O(n2n′ log n′) time and stored in optimal
O(n2n′) space [2, Theorem 10.22]. It means the construction of suffix tree for a
square picture is easier than for an arbitrary sized picture. These results, used
in [2], originated in Giancarlo [10].

The generalized index for structures of d dimensions is due to Giancarlo and
Grossi [11]. They present raw and heterogeneous index that differ in work op-
timality of algorithms searching in them. Additionally, their method allows di-
mensional wildcards, that is, the 2D pattern may have less dimensions than is
the number of dimensions of the indexed 2D text.

A Note on a Tree-Based 2D Indexing 303

4 Tree-Based Decomposition of a Picture

Let us describe basic principles which our method is built upon. Our method
uses vertex splitting to build a tree representing the picture. Vertex splitting is
our informal name for a technique, where (some) nodes of a picture or a tree
may appear multiple times in resulting data structure. Such a technique is not
new, however. As an example, let us recall the construction of Kim, Kim and
Park [8], recursively dividing picture into sub-pictures, starting at the origin and
taking bottom and right sub-picture with the respect to the current vertex. We
use the same principle.

Let us have a picture over alphabet A. First of all, we extend this picture
with a special border symbol #, # �∈ A. Let us denote the alphabet of pictures
extended this way by A#, A# = A ∪ {#}. This technique is commonly used in
several other methods, namely as an input for two-dimensional on-line tessella-
tion acceptors [12,1]. We use this special symbol to detect the end of a column
and end of a row of a picture.

In Alg. 1, a picture is extended only with minimum required additional sym-
bols #. Since our method has no use for the top or left border made of symbol
#, we avoid to augment the picture with unneeded borders.

Algorithm 1: Construction of an extended 2D picture
Input: Let P be a picture, P ∈ A(n×n′). Let A# = A ∪ {#} be the ranked alphabet,

where arity(#) = 0, arity(a) = 2 for all symbols a, a ∈ A#, a �= #.

Output: Picture P ′ extended on its right and bottom border with symbol #, P ′ ∈
A

((n+1)×(n′+1))
. (Element [n + 1, n′ + 1] is left undefined, it is never used.)

Method:
P ′[n + 1, y] = # for all y, where 1 ≤ y ≤ n′ ,
P ′[x, n′ + 1] = # for all x, where 1 ≤ x ≤ n .

Next, Alg. 2 for transformation of a picture into a tree is presented, its appli-
cation to picture P will be denoted by tree(P).

Algorithm 2: Construction of a tree representation of a two-dimensional picture
Input: Picture P extended with symbol # (Alg. 1), P ∈ A∗∗

, P �= λ.
Output: Ordered labeled binary tree t, each node of t be labeled by a symbol s,
s ∈ A#.

Description: Label, left and right children of node v are assigned as a triplet: (label,

left child, right child). The algorithm starts at the origin of P . The application of the

algorithm with P being its input will be denoted by tree(P).

Method:

newnode(x, y) =

{
(P [x, y],newnode(x, y + 1), newnode(x + 1, y)) , if P [x, y] �=′#′,
(P [x, y],nil ,nil) , otherwise,

x = 1, y = 1,
t = (P [x, y],newnode(x, y + 1),newnode(x + 1, y)) .

304 J. Žd’́arek and B. Melichar

Algorithm 2 is correct: it starts at the picture origin and recursively traverses
the bottom and the right sub-pictures. Since the bottom row and the rightmost
column are filled with symbols #, the recursion ends right at the leaves of the
tree being constructed.

Lemma 1. Let t be a tree constructed by Alg. 2. The maximal depth of any node
in t, depth(t), is depth(t) = n + n′ − 1.

Lemma 2. The asymptotical time complexity of Alg. 2 for construction of the
tree representation of a picture is O(2depth(t)).

In Janoušek [13], there are mentioned important properties of trees in the prefix
notation.

Lemma 3 ([13], Theorem 4). Given an ordered tree t and its prefix notation
pref(t), all subtrees of t in the prefix notation are substrings of pref(t).

Not every substring of a tree in the prefix notation is a prefix notation of its
subtree. This can be seen from the fact that for a given tree with n nodes there
can be O(n2) distinct substrings, but there are just n subtrees. Each node of
the tree is the root of just one subtree. Only those substrings which themselves
are trees in the prefix notation are those which are the subtrees in the prefix
notation. This property is formalised in [13, Theorem 6].

Let us define the arity checksum of a string over a ranked alphabet first: Let
w = a1a2 · · · am, m ≥ 1, be a string over ranked alphabet A. The arity checksum
ac(w) of string w is then ac(w) = arity(a1)+arity(a2)+ · · ·+arity(am)−m+1 =∑m

i=1 arity(ai) − m + 1 .

Lemma 4 ([13], Theorem 6). Let pref(t) be the prefix notation of tree t, w
be a substring of pref(t). Then, w is the prefix notation of a subtree of t if and
only if ac(w) = 0, and ac(w1) ≥ 1 for each w1 where w = w1x, x �= ε.

In tree pattern and subtree pushdown automata the arity checksum is com-
puted by pushdown operations. The content of the pushdown store represents
the corresponding arity checksum. The empty pushdown store means that the
corresponding arity checksum is equal to zero.

Let us extend these results to our representation of pictures in the prefix
notation. For the following three theorems: Let T be a picture and T ′ be T
extended by Alg. 1. Let t be a tree constructed by Alg. 2, such that t = tree(T ′).
Let P be a sub-picture of T , s be a tree made over extended P .

Theorem 5. For every P & T , such that P is a 2D prefix of T , it holds that
pref(s) is a subsequence of pref(t) in general and its first symbol is the first
symbol of pref(t).

Theorem 6. For every P & T , such that P is a 2D suffix of T , it holds that
pref(s) is a substring of pref(t).

Theorem 7. For every P & T , such that P is a 2D factor of T , it holds that
pref(s) is a subsequence of pref(t).

A Note on a Tree-Based 2D Indexing 305

5 Two-Dimensional Pattern Matching in Pictures in the
Tree Representation

We have seen the representation of a picture based on the prefix notation of a
tree allows to use tree matching algorithms to locate two-dimensional pattern
transformed into the same representation. There are numerous methods for var-
ious kinds of matching in trees, they are described in Comon et al. [14] and
Cleophas [15].

Another possibility is to use the prefix notation of the tree transformed pic-
tures. This variant allows to use some of the methods developed in [13]. Specifi-
cally for trees in prefix notation, the tree pattern pushdown automata (from [13])
are analogous to factor automata used in string matching, they make an index
from the tree (in our case a 2D text is transformed into a tree) in the prefix
notation and then the pattern in the prefix notation is searched in it. The tree
pattern pushdown automaton finds the rightmost leaves of all occurrences of a
tree pattern in the subject tree. The searching for a 2D prefix, 2D suffix, and
a 2D factor in our tree representation is equivalent to a treetop matching, a
subtree matching, and a tree template matching, respectively.

The most significant advantage over other tree algorithms is that for given
input tree pattern of size m, the tree pattern PDA performs its searching in time
linear in m, independently of the size n of the subject tree. This is faster than
the time that could be theoretically achieved by any standard tree automaton,
because the standard deterministic tree automaton runs on the subject tree. As
a consequence, the searching performed by the tree automaton can be linear in
n at best.

The tree pattern PDA is by construction nondeterministic input-driven PDA.
Any input-driven PDA can be determinised [18]. However, there exists a method
constructing deterministic tree pattern pushdown automata directly from tree
patterns [16].

Using some tree algorithm or tree matching pushdown automaton, in either
case the size of the tree representation of a picture will be prohibitive. In the
former case, it will influence the time of matching, in the latter, the pushdown
automaton becomes large. The redundancy in the PDA is caused by repeated
subtrees in the tree representation.

In the following, we will show a pushdown automata based model for picture
indexing, addressing some of these problems.

6 Pushdown Automata for Picture Indexing

In this section, a pushdown automata based picture index will be presented.
It reuses its own parts in a manner resembling the lateral gene transfer links
of Newick notation [17]. This means some part of a genome of some species is
reused in the genome of some other species, non-related in terms of the standard
line of ancestry.

306 J. Žd’́arek and B. Melichar

The high number of redundant subtrees, induced by the picture-to-tree trans-
formation, can be eliminated by redundant subtree removal and by addition of
edges leading to roots of appropriate subtrees. These additional transitions make
a directed acyclic graph (DAG) from the tree, however.

Another interesting property is that the pushdown automaton construction
does not need the tree representation of a picture constructed and available.
The pushdown automaton can be constructed from the picture directly. Since
the tree representation of a 2D pattern can also be generated on the fly, the only
significant extra data structure in memory will be the indexing pushdown au-
tomaton. On the other hand, we pay for the reusability of pushdown automata
components by increase in the number of pushdown store symbols. This con-
verts the category of the PDA from input-driven to nondeterministic PDA. It
is not known yet if it is possible to transform these nondeterministic pushdown
automata to deterministic pushdown automata.

6.1 Two-Dimensional Pattern Matching Using Pushdown Automata

In this section, a construction of picture indexing automata will be discussed.
These automata allow to accept all 2D prefixes, 2D factors and 2D suffixes of
a given 2D text in the prefix notation. The deterministic indexing pushdown
automaton accepts the prefix notation of a tree made of 2D prefix, 2D factor,
or 2D suffix, in time linear to the number of nodes of the tree. The type of 2D
pattern accepted is given by construction of the pushdown automaton.

The construction of a pushdown automaton for 2D text indexing is based on
linearisation of a picture with adjacency relation among array elements
preserved.

First algorithm in this section constructs a base for three variants of pushdown
automata presented later.

Algorithm 3: Pushdown automaton accepting the picture in prefix notation
Input: Picture T extended with symbol #, T ∈ A

((n+1)×(n′+1))
.

Output: Automaton M , M = (Q, A#, G, δ, q1,1, S, ∅), accepting language Lε(M),

Lε(M) = {pref(tree(T))}.
Method:
G = {S} , Q = ∅ , δ(q, a, z) = ∅ for all a ∈ A# ∪ {ε}, z ∈ G ,

G = G ∪ {Sx+1,y} for all x, y, where 1 ≤ x < n, 1 ≤ y < n′ ,
Q = Q ∪ {qx,y} for all x, y, where 1 ≤ x ≤ n + 1, 1 ≤ y ≤ n′ + 1 and y < n′ ∨ x < n ,

δ(qx,y, T [x, y], S) = δ(qx,y, T [x, y], S)∪{(qx,y+1, Sx+1,yS)} for all x, y, where 1 ≤ x < n,
1 ≤ y < n′ ,
δ(qn,y ,#, S) = δ(qn,y ,#, S) ∪ {(qn+1,y , ε)} for all y, where 1 ≤ y < n′ ,
δ(qx,n′ ,#, S) = δ(qx,n′ ,#, S) ∪ {(qx,n′+1, ε)} for all x, where 1 ≤ x ≤ n ,

δ(qx,n′+1, ε, Sx+1,y) = δ(qx,n′+1, ε, Sx+1,y)∪ {(qx+1,y , S)} for all x, y, where 1 ≤ x < n,
1 ≤ y < n′ ,
δ(qn+1,y , ε, Sx,y−1) = δ(qn+1,y, ε, Sx,y−1) ∪ {(qx,y−1, S)} for all x, y, where 2 ≤ x ≤ n,
2 ≤ y < n′ .

A Note on a Tree-Based 2D Indexing 307

The following algorithms add transitions allowing the automaton M to accept
the prefix notation of trees representing 2D suffixes and 2D prefixes.

Algorithm 4: Suffix transitions
Input: Picture T extended with symbol #, T ∈ A

((n+1)×(n′+1))
. Pushdown automaton

M , M = (Q,A, G, δ, q1,1, S, ∅), constructed by Alg. 3.

Output: Modified pushdown automaton M .

Method:
δ(q1,1, T [x, y], S) = δ(q1,1, T [x, y], S)∪{(qx,y+1, Sx+1,yS)} for all x, y, where 1 ≤ x < n,
1 ≤ y < n′ and x > 1 ∨ y > 1 .

Algorithm 5: Prefix end transitions
Input: Picture T extended with symbol #, T ∈ A

((n+1)×(n′+1))
. Pushdown automaton

M , M = (Q,A, G, δ, q1,1, S, ∅), constructed by Alg. 3.

Output: Modified pushdown automaton M .

Method:
δ(qx,y,#, S) = δ(qx,y,#, S) ∪ {(qn+1,y , ε)} for all x, y, where 1 ≤ x < n, 1 ≤ y < n′

and x �= 1 ∨ y �= 1 .

Algorithm 6: Construction of pushdown automaton accepting all 2D factors
Input: Picture T extended with symbol #, T ∈ A

((n+1)×(n′+1))
.

Output: Automaton M , M = (Q, A#, G, δ, q1,1, S, ∅), accepting language Lε(M),

Lε(M) = {w;w = pref(tree(2D factor of T))}.
Method:
Create pushdown automaton M using Alg. 3.

Add suffix transitions to its δ using Alg. 4.

Add prefix transitions to its δ using Alg. 5.

Algorithm 7: Construction of pushdown automaton accepting all 2D prefixes
Input: Picture T extended with symbol #, T ∈ A

((n+1)×(n′+1))
.

Output: Automaton M , M = (Q, A#, G, δ, q1,1, S, ∅), accepting language Lε(M),

Lε(M) = {w;w = pref(tree(2D prefix of T))}.
Method:
Create pushdown automaton M using Alg. 3.

Add prefix transitions to its δ using Alg. 5.

Construction of Pushdown Automata for 2D Text Indexing. The cor-
rectness of the 2D factor pushdown automaton, constructed by Alg. 6 and ac-
cepting 2D factors of a picture in prefix notation, is established by the following
theorem.

Theorem 8. Let T be a picture extended with symbol #, T ∈ A
((n+1)×(n′+1))
,

pushdown automaton M , M = (Q, A, G, δ, q1,1, S, ∅), be constructed by Alg. 6
over T . Pushdown automaton M accepts prefix notation of any 2D factor of
T by the empty pushdown store. That is, M accepts the prefix notation of any
T [i..k, j..l], 1 ≤ i < k ≤ n, 1 ≤ j < l ≤ n′.

The correctness of the 2D prefix pushdown automaton, constructed by Alg. 7
and accepting 2D prefixes of a picture in prefix notation, is established by the
following theorem.

308 J. Žd’́arek and B. Melichar

Algorithm 8: Construction of pushdown automaton accepting all 2D suffixes
Input: Picture T extended with symbol #, T ∈ A

((n+1)×(n′+1))
.

Output: Automaton M , M = (Q, A#, G, δ, q1,1, S, ∅), accepting language Lε(M),

Lε(M) = {w;w = pref(tree(2D suffix of T))}.
Method:
Create pushdown automaton M using Alg. 3.

Add suffix transitions to its δ using Alg. 4.

Theorem 9. Let T be a picture extended with symbol #, T ∈ A
((n+1)×(n′+1))
,

pushdown automaton M , M = (Q, A, G, δ, q1,1, S, ∅), be constructed by Alg. 7
over T . Pushdown automaton M accepts prefix notation of any 2D prefix of T
by the empty pushdown store. That is, M accepts the prefix notation of any
T [1..k, 1..l], 1 ≤ k ≤ n, 1 ≤ l ≤ n′.

The correctness of the 2D suffix pushdown automaton, constructed by Alg. 8 and
accepting 2D suffixes of a picture in the prefix notation, is established by the
following theorem.

Theorem 10. Let T be a picture extended with symbol #, T ∈ A
((n+1)×(n′+1))
,

pushdown automaton M , M = (Q, A, G, δ, q1,1, S, ∅), be constructed by Alg. 8
over T . Pushdown automaton M accepts the prefix notation of any 2D suffix of
T by the empty pushdown store. That is, M accepts the prefix notation of any
T [i..n, j..n′], 1 ≤ i ≤ n, 1 ≤ j ≤ n′.

Lemma 11. Let T be a picture extended with symbol #, T ∈ A
((n+1)×(n′+1))
,

2D prefix pushdown automaton M , M = (Q, A, G, δ, q1,1, S, ∅), be constructed by
Alg. 7 over T . Pushdown automaton M is the deterministic PDA.

7 Conclusion

In this paper, a method of 2D exact pattern matching using pushdown automata
has been presented. We have shown how a picture can be transformed into a tree,
where the context of each element of the picture is preserved. The tree can be
linearised into its prefix notation and a pattern matching can be performed over
this representation.

All presented pushdown automata are indexing the 2D text and allow to
search for the 2D pattern in time proportional to the size of the pattern itself,
independently of the size of the text. 2D factor and suffix automata are nonde-
terministic. However, 2D prefix automaton is deterministic and optimal in size,
since its size is proportional to the size of a 2D text. The lower bound for storing
nodes of the suffix tree for pictures is Ω(n|T |), the best construction algorithm
runs in O(|T | log n) for square pictures. Our algorithm for construction of 2D
prefix automaton runs in O(|T |) time for a bounded alphabet and the automaton
has O(|T |) states.

Acknowledgements. The authors wish to acknowledge the helpful comments
of Jan Lahoda and anonymous referees.

A Note on a Tree-Based 2D Indexing 309

References

1. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Handbook of Formal

Languages, vol. III, pp. 216–267. Springer, Heidelberg (1997)

2. Giancarlo, R., Grossi, R.: Suffix tree data structures for matrices. In: Apostolico,

A., Galil, Z. (eds.) Pattern Matching Algorithms, pp. 293–340. Oxford University

Press, Oxford (1997)

3. Gonnet, G.H.: Efficient searching of text and pictures. Report OED-88-02, Univer-

sity of Waterloo (1988)

4. Giancarlo, R.: A generalization of the suffix tree to square matrices, with applica-

tions. SIAM J. Comput. 24(3), 520–562 (1995)

5. Amir, A., Farach, M.: Two-dimensional dictionary matching. Inf. Process.

Lett. 44(5), 233–239 (1992)

6. Kim, D.K., Kim, Y.A., Park, K.: Generalizations of suffix arrays to multi-

dimensional matrices. Theor. Comput. Sci. 302(1-3), 401–416 (2003)

7. Na, J.C., Giancarlo, R., Park, K.: On-line construction of two-dimensional suffix

tree in O(n2 log n) time. Algorithmica 48, 173–186 (2007)

8. Kim, D.K., Kim, Y.A., Park, K.: Constructing suffix arrays for multi-dimensional

matrices. In: Farach-Colton, M. (ed.) CPM 1998. LNCS, vol. 1448, pp. 126–139.

Springer, Heidelberg (1998)

9. Giancarlo, R., Grossi, R.: On the construction of classes of suffix trees for square

matrices: Algorithms and applications. Inf. Comput. 130(2), 151–182 (1996)

10. Giancarlo, R.: An index data structure for matrices, with applications to fast two-

dimensional pattern matching. In: Dehne, F., et al. (eds.) WADS 1993. LNCS,

vol. 709, pp. 337–348. Springer, Heidelberg (1993)

11. Giancarlo, R., Grossi, R.: Multi-dimensional pattern matching with dimen-

sional wildcards: Data structures and optimal on-line search algorithms. J. Algo-

rithms 24(2), 223–265 (1997)

12. Inoue, K., Nakamura, A.: Some properties of two-dimensional on-line tessellation

acceptors. Inf. Sci. 13(2), 95–121 (1977)

13. Janoušek, J.: String suffix automata and subtree pushdown automata. In: Holub,

J., Žd’árek, J. (eds.) Proc. PSC 2009, CTU in Prague, Czech Republic, pp. 160–172

(2009)

14. Comon, H., et al.: Tree automata techniques and applications (2007),

http://www.grappa.univ-lille3.fr/tata (release October 12, 2007)

15. Cleophas, L.: Tree Algorithms. Two Taxonomies and a Toolkit. PhD thesis, Tech-

nische Universiteit Eindhoven, Eindhoven (2008)

16. Flouri, T., Janoušek, J., Melichar, B.: Tree pattern matching by deterministic

pushdown automata. In: Ganzha, M., Paprzycki, M. (eds.) Proc. IMCSIT, vol. 4,

pp. 659–666. IEEE Computer Society Press, Los Alamitos (2009)

17. Olsen, G.: “Newick’s 8:45” tree format standard (August 1990),

http://evolution.genetics.washington.edu/phylip/newick_doc.html

18. Wagner, K., Wechsung, G.: Computational Complexity. Springer, Heidelberg

(2001)

19. Žd’árek, J.: Two-dimensional Pattern Matching Using Automata Approach. PhD

thesis, Czech Technical University in Prague (2010),

http://www.stringology.org/papers/Zdarek-PhD_thesis-2010.pdf

http://www.grappa.univ-lille3.fr/tata
http://evolution.genetics.washington.edu/phylip/newick_doc.html
http://www.stringology.org/papers/Zdarek-PhD_thesis-2010.pdf

Regular Expressions at Their Best: A Case for
Rational Design

Vincent Le Maout

Exalead SA, 10 place de la Madeleine, 75008 Paris, France

vincent.le-maout@exalead.com

http://www.exalead.com

Abstract. Regular expressions are often an integral part of program

customization and many algorithms have been proposed for transforming

them into suitable data structures. These algorithms can be divided into

two main classes: backtracking or automaton-based algorithms. Surpris-

ingly, the latter class draws less attention than the former, even though

automaton-based algorithms represent the oldest and by far the fastest

solutions when carefully designed. Only two open-source automaton-

based implementations stand out: PCRE and the recent RE2 from Google.

We have developed, and present here, a competitive automaton-based

regular expression engine on top of the LGPL C++ Automata Standard

Template Library (ASTL), whose efficiency and scalability remain un-

matched and which distinguishes itself through a unique and rigorous

STL-like design.

Keywords: regular expression, automata, C++, ASTL, generic pro-

gramming, efficiency, scalability.

1 Introduction

There are many real-life areas in which data grows at the same rate as or faster
than computing power. Textual data processing of web pages is one such exam-
ple. In these areas, implementation efficiency of basic algorithms still remains a
major concern. One basic processing step in many text processing tasks involves
using regular expressions to recognize a sub language. For example, in a web
search engine, some type of implementation of regular expressions or transduc-
ers [2] are used at document indexing time or at query processing time to perform
a variety of natural language processing functions: tokenization, named-entity
detection, acronym, URL, email address detection, sentence detection, input
detection for rule base systems, etc. Regular expressions are used extensively
in search engines: search engine developers use regular expressions on a daily
basis; administrators might tune the engine behavior by writing regular expres-
sion based rules that exclude uninteresting parts of documents during indexing;
and some search engines, such as Exalead’s, even allow users to perform search
queries involving regular expressions. As search continues to evolve with more
added functionality and greater breadth, with constant expectations of rapid

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 310–320, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.exalead.com

Regular Expressions at Their Best: A Case for Rational Design 311

system response time, there is a sustained need to improve the efficiency and
scalable treatment of more and more complex regular expressions.

Since regular expressions are used in so many response-time dependent tasks,
processing time is an important constraint on the complexity of features that
can be implemented with them. After unsuccessful trials during our search for a
versatile, efficient, scalable implementation supporting all well-known features,
we had to conclude that none of the available libraries met our requirements.
We tested Boost::regex [17], Boost::xpressive [18], PCRE1 [19], and Microsoft’s
GRETA [20]. Their implementations are all based on backtracking algorithms
which seem to constitute the main problem with their performance. We decided
to explore whether the neglected classical approach to regular expression im-
plementation, based on seminal work by Thompson [9], might offer a way to
overcome the difficulties in a simple manner.

2 Backtracking vs. Automaton-Based Implementations

Algorithms for implementing a regular expression matcher fall into two main
categories, differing the treatment of non-deterministic automata (NFA). One
technique for NFA performs depth-first iteration, trying every possible path from
an initial state to a final state. This solution stores positions in a stack when
a fork is reached in the automaton and backtracks to the latest position on the
stack when a path does not lead to an accepting state. The other technique for
NFA performs breadth-first iteration, maintaining a list of positions initialized
with the set of initial states and finding a path to a set that contains at least
one accepting state. This solution maintains sets of states in some appropriate
data structure; these sets are then mapped to unique states in a deterministic
automaton (DFA) whose transition accesses are highly optimized (the subset
construction, [1], pp 118-120). The advantages of the latter DFA-based imple-
mentations, as opposed to the former backtracking option, are so numerous and
drawbacks so few that one wonders why so few open-source libraries for this
technique are available. Consider:

– DFA algorithms and data structures involved have been studied and theo-
retically explored since the 60’s ([13], [9], [2], [1]).

– DFAs can find all matches in one pass, which makes them adapted to stream-
based data processing.

– Most pathological cases of backtracking are avoided [10].
– They provide more freedom of use via incremental match and tunable match-

ing policies.
– Greater efficiency and scalability with respect to the expression size are

achieved.

Backtracking solutions mainly offer the advantage of ease of implementation,
sparing the developer theoretical considerations (and the need for clean design):
1 PCRE has two running modes, backtracking or automaton-based but the latter does

not provide capturing and exhibits poor performances.

312 V. Le Maout

– Some functionalities are more easily implemented via backtracking: sub-
matching, laziness (greediness) of quantifiers and backreferences.

– They avoid constructing intermediate NFA with epsilon transitions (these
allow the automaton to change state without consuming an input character,
matching the empty word ε).

– DFA-based implementations also require lazy determinization, especially
when dealing with multi-byte Unicode, which may be tricky to implement
without sound design principles.

Our non-backtracking implementation, described below, uses the simplest al-
gorithms known, avoiding stumbling blocks that are usually used as spurious
excuses for using backtracking architectures.

2.1 Avoiding the Construction of NFA

The construction of a deterministic automaton from a regular pattern has two
main stages: first, building a NFA with epsilon transitions, then, building from
this NFA, a DFA in which each state corresponds to a subset of the NFA states.
Actually, we can avoid the NFA construction with the algorithm described in
[1], pp 135-141, leading to a simpler implementation: during the pattern pars-
ing, each node of the produced tree is decorated with pointers that link to the
next positions in the pattern when an input character is matched. Sets of these
pointers constitute the DFA transitions, and eliminate the need for an extra data
structure and its associated algorithms (the so-called Thompson’s construction
requires a NFA with epsilon transitions and the epsilon-closure, [1], pp 118-120).

2.2 Lazy Determinization

The DFA acts as a cache of transitions, eliminating the need for repeated and
inefficient accesses to the non-deterministic data structure: transitions are added
when needed, and computed once and for all, dramatically improving speed
when most of them are constructed. This technique can also avoid huge memory
consumption: for example, a match-all dot will only expand to a few dozens
transitions when scanning an English text instead of tens of thousands when
the DFA is entirely constructed to handle Unicode. (This lazy aspect is briefly
addressed in ([1], p 128) but, then, most of the texts were encoded in ASCII
and the issue was not so crucial.) This technique also improves response time
since computation of construction is spread over the matching time, reducing
initialization time to nearly zero.

It should be noted that GNU egrep implements a lazy construction algorithm
and shows impressive performances on ASCII text. It is however quite inefficient
in UTF-8 mode: simple tests have shown that it is up to 700 times slower, even
if the input actually contains only ASCII characters.

2.3 Pathological Cases Avoided

Pathological cases arise when depth-first iteration in a NFA has to try so many
paths that the time required is exponential, which may occur with very simple

Regular Expressions at Their Best: A Case for Rational Design 313

expressions [10]. With a lazily constructed DFA, since matching is done in one
pass, in linear time, for a pathological case to occur a combination of both a
pathological expression and pathological text must occur, which is very rare
in practice. In this case, the size of the DFA can grow unreasonably, up to 2n

transitions where n is the number of transitions in the NFA. Simply discarding
parts of the DFA can limit its size and because at worst one transition is added
for each input character, the processing time remains linear in the size of the text.
Removing transitions slows things down since they may need to be computed
again later but as this processing does not create a practically infinite loop, the
DFA size is strictly bounded and the result of the algorithm is well-defined.

In addition, a DFA-based implementation does not use a stack, so one avoids
the risk of backtrack stack overflow, which can lead to undefined behavior in
Perl (depending on the version, either a segmentation fault or an unpredictable
result when the algorithm aborts) and which may represent a risk if memory
consumption is not bounded.

2.4 More Freedom of Use

Commonly used backtracking algorithms impose some limitations that are easily
overcome with a DFA-based processing:
– Matching a pattern in a data stream requires a one-pass algorithm which is

not possible with backtracking.
– “Interrupted matching”, i.e. the need for processing to start on one buffer

and to continue on another one cannot be easily implemented. This case
arises when dealing with huge texts that do not fit entirely in RAM or when
matching is performed on a stream of tokens.

– DFA design allows easy matching against trees or automata since the algo-
rithm may be incrementally applied (see Sect. 3.1).

– It is easy to let the user choose a matching policy (shortest/longest matches
or all matches, overlapping or not) which is not possible with backtracking2.

2.5 Submatching

Submatches are more easily implemented in backtracking algorithms and
constitute the tricky part in an automaton-based processing, especially during de-
terminization. This may explain why so many developers willing to provide sub-
matching functionality choose backtracking and why the DFA mode of PCRE does
not support it. Submatching with an automaton-based data structure was not se-
riously addressed, either theoretically and practically, until 2000 [15,14].

2.6 Efficiency and Scalability

Efficiency is clearly the most important criterium for judging of the interest of a
regular-expression engine, and when it comes to speed, backtracking algorithms
are no match for DFA-based ones (see Sect. 4 for a speed comparison). A DFA-
based implementation is insensitive to expression size because its deterministic
2 Backtracking has, however, the notion of greediness for quantifiers.

314 V. Le Maout

data structure provides constant-time access to transitions, thus making their
number irrelevant to the computation time (see Sect. 4 about run time with
respect to expression complexity).

3 Design and Implementation

The Automaton Standard Template Library (ASTL) [6], [8], [7] is the basis of
our code because (i) it targets efficiency and reusability and (ii) the concepts
it provides are well-defined and well-tested. Several automaton data structures
are included and lazy construction is automatically provided. Recently, Google
released RE2 [21] which tackles the problem with a virtual machine executing
byte-code ([11], [12]), much like Thompson’s original algorithms. Our imple-
mentation differs in that it does not involve code generation and execution by a
machine (virtual or not) and may be considered as an abstraction of it. However,
both of these libraries end up building a DFA lazily and consequently exhibit
the same behavior and characteristics.

3.1 ASTL, Cursors and Incrementality

ASTL’s design eases reusability and adaptability. Inspired by the three-layer
model of generic programming [3] (algorithm, iterator, container), and the C++
Standard Template Library (STL, [5], [4]), it defines an abstract accessor, called
a cursor, to automata containers. ASTL algorithms communicate only with the
cursors, which uncouples processing from the data structures it operates on. By
organizing algorithms into layers, with each layer responsible for a part of the
algorithm performed on-the-fly, and by stacking cursors either through inheri-
tance or aggregation, a generic architecture is achieved, providing powerful lazy
construction automatically. Fig. 1 shows the architecture of the engine.

Fig. 1. ASTL-based architecture of regular expression matcher

Regular Expressions at Their Best: A Case for Rational Design 315

A cursor is a pointer to a state of a DFA and can move along defined transitions
in a very simple manner. Here is the abstract interface:

bool forward(char c) try to move along the transition labelled with c
bool final() tell if current state is an accepting state
int state() retrieve the current state identifier
void operator=(int s) set the cursor on the state s

Following is a simple example of use: the match function returns true when an
input string matches a pattern.

bool match(cursor c, const char *first, const char *last) {

while (first != last && c.forward(*first)) {

if (c.final()) return true;

++first;

}

return false;

}

Note that this algorithm makes no assumptions on how the cursor c is imple-
mented; there are no references to any kind of automaton or regular expressions.

Another real-world example is given by Exalead’s query language which allows
query matching by specifying regular expression patterns enclosed in slashes as
well as mere character strings. In the following query:

/[ND]FA/ NEAR /implementations?/

[ND]FA and implementations? are expanded by a matching between a cursor
and the trie of the index dictionary. A handful of code lines added to the depth-
first traversal of the trie does the trick: the cursor simply signals the algorithm
when the last call to forward failed and that is must pop the stack because the
current branch is not in the language defined by the pattern.
Here is a sketch of the algorithm:

void search(node n, cursor c, vector<string> &results) {

int s = c.state(); // save cursor position

// for each son of node n:

for(node::iterator son = n.begin(); son != n.end(); ++son) {

if (c.forward(son->letter())) { // try move on the DFA

results.back().push(son->letter()); // push current letter

if (c.final()) // accepting state?

results.push_back(results.back()); // store matching word

search(*son, c, results); // search deeper

results.back().pop(); // pop current letter

}

c = s; // set to saved position

}

}

This incremental aspect constitutes an advantage of the ASTL API over RE2.

316 V. Le Maout

3.2 Encapsulation, Lazy Determinization, Submatches,
Thread-Safety

As mentioned in Sect. 2.1, no NFA is built in the ASTL design, and this is
hidden from rest of the code by a cursor interface. Should the need for a real
NFA implementation arise, switching to a classical non-deterministic automaton
construction with epsilon transitions would have no impact on other components.

Lazy determinization avoids the explosion of the data structure size when
handling Unicode and when dealing with huge patterns. Whatever the encod-
ing of input, a DFA works on bytes (no semantics at this level) which permits
the use of a matrix structure with an optimal constant-time access to transi-
tions, irrespective of their number: an array of fixed size is allocated per state,
containing 256 state identifiers with the undefined transitions set to null, result-
ing in a run time proportional solely to the input data byte count. This makes
matching slower over UTF16 or UCS2-encoded text and on several-byte UTF-8
characters but still faster than using an automaton container that would store
up to thousands transitions per state in a hash table or a logarithmic-time access
structure like a balanced tree. To handle different encodings, a cursor layer con-
verts the input to the internal UCS2 representation and the lazy construction is
provided by the ASTL framework under the form of a cursor with only 20 lines
of code.

Capturing submatches requires maintaining a matrix of positions in the input
text, with two lines per sub-expression (one for the left parenthesis, one for the
right) and one column per position where values are added when crossing the
corresponding parenthesis in the pattern or removed by disambiguation along
the way [14]. The decision to add and/or remove values in this matrix is encoded
in the DFA transitions, which makes it look more like a transducer than a pure
automaton, though there is no notion of output language here.

The non-deterministic layer is a read-only structure, so it can be shared be-
tween threads without danger. The deterministic automaton however is thread-
specific because it is dynamically constructed and locking the data structure for
each input character constitutes an unacceptable overhead. This ASTL design
avoids the use of any synchronization mechanics, which enhances portability
since there is no standard mutexes or locks in C++.

4 Performance

The following tests compare libraries performance for speed and scalability. The
results of PCRE in DFA mode are not reported because its performances were
disapointing, well below the average, so pcre in the tests denotes its use in
backtracking mode. Full details are available in [16].

Speed was measured for a variety of use-cases: matching small and big patterns
on short strings or big texts. The times are reported relative to the fastest one,

Regular Expressions at Their Best: A Case for Rational Design 317

which gets a 1, to show results independent from the hardware. Here is an extract
from the tests for short match:

astl re2 regex xpressive greta pcre text pattern

2.40 1.91 2.54 1.35 1 1.10 100- this is... ^([0-9]+)(\-| |$)(.*)$

1 1.61 3.03 1.92 1.96 1.53 1234-5678-... ([0-9]{4}[-]){3}[0-9]{3,4}

1 4.37 8 3 2.12 3.5 123 ^[-+]?[0-9]*\.?[0-9]*$

1 2.46 5.4 1.66 1.33 2 +3.14159 ^[-+]?[0-9]*\.?[0-9]*$

Patterns starting with literal strings are of particular interest since there are
many simple ways to greatly enhance the speed in these cases: our implemen-
tation is optimized with the trivial Horspool variant of Boyer-Moore algorithm
on UCS2 ([22,23,24]) and the standard C function memchr over UTF-8, thus
achieving up to several gigabytes per seconds. Input (complete works of Mark
Twain):

astl re2 regex xpressive greta pcre pattern

1 1.5 8.5 7 7 6 Twain
1 1 8 7 7 5.5 Huck[[:alpha:]]+
1 6.71 3.28 3.57 15.42 4.28 Tom|Sawyer|Huckleberry|Finn

We then calculated the average score over all tests for each library. An average
value of 1 means that an implementation is the fastest in all tests:

library overall average
astl 1.34041
re2 1.89456

boost::xpressive 2.80061
greta 3.65633
pcre 4.00644

boost::regex 4.16841

The scalability test evaluates the behavior of the compared libraries when the
complexity of the expression increases. Starting from a simple expression, at
each step, a new expression is concatenated as an alternative and the time to
find all matches in roughly 200Mb of English text is measured. Figure 2 shows
the behavior of backtracking implementations. Figure 3 shows that for DFA-
based implementations, the size of the pattern is irrelevant, provided that the
transition cache is given enough time to warm-up3. This is due to the constant-
time access to the transitions. The scale has been preserved between those two
graphs to highlight the huge difference in the run time behavior.

3 Most of the time, only a few hundred bytes are needed to reach a stable size for the

DFA.

318 V. Le Maout

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 6 8 10 12 14 16 18 20

tim
e

alternative count

boost
xpressive

greta
pcre

Fig. 2. Matching time for backtracking implementations with respect to expression

complexity

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 6 8 10 12 14 16 18 20

tim
e

alternative count

astl
re2

Fig. 3. Matching time for DFA-based implementations with respect to expression

complexity

Regular Expressions at Their Best: A Case for Rational Design 319

5 Conclusion

DFA-based implementations for regular expression matching demonstrate a clear
superiority over backtracking implementations. The use of a lazy DFA construc-
tion, whose data structure has optimal transition access, bounded size, and that
works on bytes in linear time, whatever the pattern, allows us to cope with
present-day constraints on ever-growing sizes of data and expressions, Unicode
support, variety of text encodings, providing predictability and robustness of
the processing. Their recent availability in open-source code (a recency which
is quite surprising given that the algorithms involved have been well-known for
years) should move developers to adopt them in their first implementation of
regular expression processing, or prompt them to switch from backtrack-based
implementations. This work shows that, through clean software design rooted in
solid theroretical and technical considerations, most of the crippling obstacles
may be overcome with simple solutions, leading to optimal and sustainable code,
viable in real-world and highly-constrained environments.

Acknowledgments

This work was partly realized as part of the Quaero Programme, funded by
OSEO, French State agency for innovation.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers - Principles, Techniques and Tools.

Addison-Wesley, Reading (1986)

2. Hopcroft, J.E., Ullman, J.D.: Introduction to automata, languages and computa-

tion. Addison-Wesley, Reading (1979)

3. Musser, D.R., Stepanov, A.: Generic Programming. In: Gianni, P. (ed.) ISSAC

1988. LNCS, vol. 358. Springer, Heidelberg (1989)

4. Standard Template Library Programmer’s Guide, Silicon Graphics Computer Sys-

tems (1999), http://www.sgi.com/Technology/STL

5. Stepanov, A., Lee, M.: The Standard Template Library. HP Laboratories Technical

Report 95-11(R.1) (1995)

6. Le Maout, V.: Tools to Implement Automata, a first step: ASTL. In: Wood, D.,

Yu, S. (eds.) WIA 1997. LNCS, vol. 1436, pp. 104–108. Springer, Heidelberg (1998)

7. Le Maout, V.: PhD Thesis: Expérience de programmation générique sur des struc-

tures non-séquentielles: les automates, Université de Marne-La-Vallée (2003)

8. Le Maout, V.: Cursors. In: Yu, S., Păun, A. (eds.) CIAA 2000. LNCS, vol. 2088,

pp. 195–207. Springer, Heidelberg (2001)

9. Thompson, K.: Regular expression search algorithm. CACM 11(6) (1968)

10. Cox, R.: Regular Expression Matching Can Be Simple And Fast (2007), http://

swtch.com/~rsc/regexp/regexp1.html

11. Cox, R.: Regular Expression Matching: the Virtual Machine Approach (2009),

http://swtch.com/~rsc/regexp/regexp2.html

12. Cox, R.: Regular Expression Matching in the Wild (2010), http://swtch.com/

~rsc/regexp/regexp3.html

http://www.sgi.com/Technology/STL
http://swtch.com/~rsc/regexp/regexp1.html
http://swtch.com/~rsc/regexp/regexp1.html
http://swtch.com/~rsc/regexp/regexp2.html
http://swtch.com/~rsc/regexp/regexp3.html
http://swtch.com/~rsc/regexp/regexp3.html

320 V. Le Maout

13. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.

IRE Transactions on Electronic Computers EC-9(1), 39–47 (1960)

14. Laurikari, V.: Efficient Submatch Addressing for Regular Expressions (2001)

15. Laurikari, V.: NFAs with Tagged Transitions, their Conversion to Deterministic

Automata and Application to Regular Expressions (2000)

16. Le Maout, V.: Regular Expression Performance Comparison (2010), http://astl.

sourceforge.net/bench.7.html

17. Maddock, J.: Boost Regex (2007), http://www.boost.org/doc/libs/1_42_0/

libs/regex/doc/html/index.html

18. Niebler, E.: Boost Xpressive (2007), http://boost-sandbox.sourceforge.net/

libs/xpressive/doc/html/index.html

19. PCRE. Univ. Cambridge (2009), http://sourceforge.net/projects/pcre/

20. Niebler, E.: GRETA. Microsoft (2003), http://research.microsoft.com/en-us/

downloads/BD99F343-4FF4-4041-8293-34C054EFE749/default.aspx

21. Cox, R.: RE2, Google (2010), http://code.google.com/p/re2/

22. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. CACM 20(10), 762–772

(1977)

23. Horspool, R.N.: Practical fast searching in strings. Software - Practice & Experi-

ence 10, 501–506 (1980)

24. Baeza-Yates, R.A., Régnier, M.: Average running time of the Boyer-Moore-

Horspool algorithm. Theoretical Computer Science 92(1), 19–31 (1992)

http://astl.sourceforge.net/bench.7.html
http://astl.sourceforge.net/bench.7.html
http://www.boost.org/doc/libs/1_42_0/libs/regex/doc/html/index.html
http://www.boost.org/doc/libs/1_42_0/libs/regex/doc/html/index.html
http://boost-sandbox.sourceforge.net/libs/xpressive/doc/html/index.html
http://boost-sandbox.sourceforge.net/libs/xpressive/doc/html/index.html
http://sourceforge.net/projects/pcre/
http://research.microsoft.com/en-us/downloads/BD99F343-4FF4-4041-8293-34C054EFE749/default.aspx
http://research.microsoft.com/en-us/downloads/BD99F343-4FF4-4041-8293-34C054EFE749/default.aspx
http://code.google.com/p/re2/

Simulations of Weighted Tree Automata

Zoltán Ésik1,� and Andreas Maletti2,��

1 University of Szeged, Department of Computer Science

Árpád tér 2, 6720 Szeged, Hungary

ze@inf.u-szeged.hu
2 Universitat Rovira i Virgili, Departament de Filologies Romàniques

Avinguda de Catalunya 35, 43002 Tarragona, Spain

andreas.maletti@urv.cat

Abstract. Simulations of weighted tree automata (wta) are considered.

It is shown how such simulations can be decomposed into simpler func-

tional and dual functional simulations also called forward and backward

simulations. In addition, it is shown in several cases (fields, commuta-

tive rings, Noetherian semirings, semiring of natural numbers) that all

equivalent wta M and N can be joined by a finite chain of simulations.

More precisely, in all mentioned cases there is a single wta that simulates

both M and N . Those results immediately yield decidability of equiv-

alence provided that the semiring is finitely (and effectively) presented.

1 Introduction

Weighted tree automata are widely used in applications such as model check-
ing [1] and natural language processing [21]. They finitely represent mappings,
called tree series, that assign a weight to each tree. For example, a probabilistic
parser would return a tree series that assigns to each parse tree its likelihood.
Consequently, several toolkits [20,24,10] implement weighted tree automata.

The notion of simulation that is used in this paper is a generalization of the
simulations for unweighted and weighted (finite) string automata of [6,15]. The
aim is to relate structurally equivalent automata. The results of [6, Section 9.7]
and [22] show that two unweighted string automata (i.e., potentially nondeter-
ministic string automata over the Boolean semiring) are equivalent if and only
if they can be connected by a finite chain of relational simulations, and that
in fact functional and dual functional simulations are sufficient. Simulations for
weighted string automata (wsa) are called conjugacies in [3,4], where it is shown
that for all fields, many rings including the ring ZZ of integers, and the semi-
ring IN of natural numbers, two wsa are equivalent if and only if they can be
connected by a finite chain of simulations. It is also shown that even a finite
� Partially supported by grant no. K 75249 from the National Foundation of Hungary

for Scientific Research and by the TÁMOP-4.2.2/08/1/2008-0008 program of the

Hungarian National Development Agency.
�� Financially supported by the Ministerio de Educación y Ciencia grants JDCI-

2007-760 and MTM-2007-63422 and the European Science Foundation short-visit

grant 2978 in the activity “Automata: from Mathematics to Applications”.

M. Domaratzki and K. Salomaa (Eds.): CIAA 2010, LNCS 6482, pp. 321–330, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

322 Z. Ésik and A. Maletti

chain of functional (covering) and dual functional (co-covering) simulations is
sufficient. The origin of those results can be traced back to the pioneering work
of Schützenberger in the early 60’s, who proved that every wsa over a field is
equivalent to a minimal wsa that is simulated by every trim equivalent wsa [5].
Relational simulations of wsa are also studied in [9], where they are used to
reduce the size of wsa. The relationship between functional simulations and the
Milner-Park notion of bisimulation [25,26] is discussed in [6,9].

In this contribution, we investigate simulations for weighted (finite) tree au-
tomata (wta). Schützenberger’s minimization method was extended to wta
over fields in [2,8]. In addition, relational and functional simulations for wta are
probably first used in [12,13,18]. Moreover, simulations can be generalized to
presentations in algebraic theories [6], which seems to cover all mentioned in-
stances. Here, we extend and improve the results of [3,4] to wta. In particular,
we show that two wta over a commutative ring, Noetherian semiring, or the
semiring IN are equivalent if and only if they are connected by a finite chain
of simulations. Moreover, we discuss when the simulations can be replaced by
functional and dual functional simulations, which are efficiently computable [18].
Such results are important because they immediately yield the decidability of
equivalence provided that the semiring is finitely and effectively presented.

2 Preliminaries

The set of nonnegative integers is IN. For every k ∈ IN, the set {i ∈ IN | 1 ≤ i ≤ k}
is simply denoted by [k]. We write |A| for the cardinality of the set A. A semiring
is an algebraic structure A = (A, +, ·, 0, 1) such that (A, +, 0) and (A, ·, 1) are
monoids, of which the former is commutative, and · distributes both-sided over
finite sums (i.e., a · 0 = 0 = 0 · a for every a ∈ A and a · (b + c) = ab + ac and
(b+c)·a = ba+ca for every a, b, c ∈ A). The semiring A is commutative if (A, ·, 1)
is commutative. It is a ring if there exists an element −1 ∈ A such that 1+(−1) =
0. The set U is the set {a ∈ A | ∃b ∈ A : ab = 1 = ba} of (multiplicative) units.
The semiring A is a semifield if U = A \ {0}; i.e., for every a ∈ A there exists a
multiplicative inverse a−1 ∈ A such that aa−1 = 1 = a−1a. A field is a semifield
that is also a ring. Let 〈B〉+ = {b1 + · · · + bn | n ∈ IN, b1, . . . , bn ∈ B} for every
B ⊆ A. If A = 〈B〉+, then A is additively generated by B. The semiring A is
equisubtractive if for every a1, a2, b1, b2 ∈ A with a1 + b1 = a2 + b2 there exist
c1, c2, d1, d2 ∈ A such that (i) a1 = c1+d1, (ii) b1 = c2+d2, (iii) a2 = c1+c2, and
(iv) b2 = d1 + d2. It is zero-sum free (zero-divisor free, respectively) if a + b = 0
(a · b = 0, respectively) implies 0 ∈ {a, b} for every a, b ∈ A. Finally, it is positive
if it is both zero-sum and zero-divisor free. Clearly, any nontrivial (i.e., 0 �= 1)
ring is not zero-sum free, and any semifield is zero-divisor free. An infinitary
sum operation

∑
is a family (

∑
I)I such that

∑
I : AI → A. We generally write∑

i∈I ai instead of
∑

I(ai)i∈I . The semiring A together with the infinitary sum
operation

∑
is complete [11,17,19] if for all index sets I and (ai)i∈I ∈ AI

–
∑

i∈I ai = aj1 + aj2 if I = {j1, j2} with j1 �= j2,
–

∑
i∈I ai =

∑
j∈J

(∑
i∈Ij

ai

)
for every partition (Ij)j∈J of I, and

Simulations of Weighted Tree Automata 323

– a · (∑i∈I ai

)
=

∑
i∈I aai and

(∑
i∈I ai

) · a =
∑

i∈I aia for every a ∈ A.

An A-semimodule is a commutative monoid (B, +, 0) together with an action
· : A×B → B, written as juxtaposition, such that for every a, a′ ∈ A and b, b′ ∈ B
we have (i) (a + a′)b = ab + a′b, (ii) a(b + b′) = ab + ab′, (iii) 0b = 0, (iv) 1b = b,
and (v) (a · a′)b = a(a′b). The semiring A is Noetherian if all subsemimodules
of every finitely-generated A-semimodule are again finitely-generated.

In the following, we identify index sets of equal cardinality. Let X ∈ AI1×J1

and Y ∈ AI2×J2 for finite sets I1, I2, J1, J2. We use upper-case letters (like C,
D, E, X , Y) for matrices and the corresponding lower-case letters for their
entries. The matrix X is relational if X ∈ {0, 1}I1×J1 . Clearly, a relational X
corresponds to a relation ρX ⊆ I1×J1 (and vice versa) by (i, j) ∈ ρX if and only
if xij = 1. Moreover, a relational matrix X is functional, surjective, or injective
if ρX has this property. As usual, we denote the transpose of X by XT, and we
call X nondegenerate if it has no rows or columns of entirely zeroes. A diagonal
matrix X is such that xij = 0 for every i �= j. Finally, the matrix X is invertible
if there exists a matrix X−1 such that XX−1 = I = X−1X where I is the
unit matrix. The Kronecker product X ⊗ Y ∈ A(I1×I2)×(J1×J2) is such that
(X ⊗ Y)i1i2,j1j2 = xi1j1yi2j2 for every i1 ∈ I1, i2 ∈ I2, j1 ∈ J1, and j2 ∈ J2. We
let X0,⊗ = (1) and X i+1,⊗ = X i,⊗ ⊗ X for every i ∈ IN.

Finally, let us move to trees. A ranked alphabet is a finite set Σ together with
a mapping rk: Σ → IN. We often just write Σ for a ranked alphabet and assume
that the mapping rk is implicit. We write Σk = {σ ∈ Σ | rk(σ) = k} for the
set of all k-ary symbols. The set of Σ-trees is the smallest set TΣ such that
σ(t1, . . . , tk) ∈ TΣ for all σ ∈ Σk and t1, . . . , tk ∈ TΣ . A tree series is a mapping
ϕ : TΣ → A. The set of all such tree series is denoted by A〈〈TΣ〉〉. For every
ϕ ∈ A〈〈TΣ〉〉 and t ∈ TΣ , we often write (ϕ, t) instead of ϕ(t).

A weighted tree automaton (over A),
μk(σ)

νk(σ)

Xk,⊗ X

F

G

Fig. 1. Illustration of simulation

for short: wta, is a system (Σ, Q, μ, F)
with an input ranked alphabet Σ, a finite
set Q of states, transitions μ = (μk)k∈IN

such that μk : Σk → AQk×Q for every
k ∈ IN, and a final weight vector F ∈ AQ.
Next, let us introduce the semantics ‖M‖
of the wta M . We first define the map-
ping hμ : TΣ → AQ for every σ ∈ Σk and
t1, . . . , tk ∈ TΣ by hμ(σ(t1, . . . , tk)) =

(
hμ(t1) ⊗ · · · ⊗ hμ(tk)

) · μk(σ), where the
final product · is the classical matrix product. Then (‖M‖, t) = hμ(t)F for every
t ∈ TΣ , where the product is the usual inner (dot) product. The wta M is trim
if every state is accessible and co-accessible in the Boolean wta obtained by
replacing every nonzero weight by 1.

3 Simulation

Let us introduce the main notion of the paper. From now on, let M = (Σ, Q, μ, F)
and N = (Σ, P, ν, G) be wta. Then M simulates N (cf., [6,15], [3, Def. 1], and

324 Z. Ésik and A. Maletti

[12, Def. 35]) if there is X ∈ AQ×P such that F = XG and μk(σ)X = Xk,⊗·νk(σ)
for every σ ∈ Σk. The matrix X is called transfer matrix, and we write M →X N
if M simulates N with transfer matrix X . Note that Xk,⊗

i1···ik,j1···jk
=

∏k
�=1 xi�,j�

.
We illustrate the notion of simulation in Fig. 1. If M →X M ′ and M ′ →Y N ,
then M →XY N . Moreover, if M →X N , then M and N are equivalent.

Theorem 1. If M simulates N , then M and N are equivalent.

Next, we prepare the result for functional simulations. To this end, we first need
to prove in which cases the transfer matrix is nondegenerate.

Lemma 2. Let M and N be trim and M →X N . If (i) X is functional or (ii) A
is positive, then X is nondegenerate.

Now we relate functional simulation to forward simulation [18, Def. 1]. A surjec-
tive mapping ρ : Q → P is a forward simulation from M to N if (i) Fq = Gρ(q)

for every q ∈ Q and (ii)
∑

q∈ρ−1(p) μk(σ)q1···qk,q = νk(σ)ρ(q1)···ρ(qk),p for every
p ∈ P , σ ∈ Σk, and q1, . . . , qk ∈ Q. We say that M forward simulates N , written
M � N , if there exists a forward simulation from M to N . Similarly, we can re-
late backward simulation [18, Def. 16] to dual functional simulation. A surjective
function ρ : Q → P is a backward simulation from M to N if

∑
q∈ρ−1(p) Fq = Gp

for every p ∈ P and
∑

q1∈ρ−1(p1),...,qk∈ρ−1(pk) μk(σ)q1···qk,q = νk(σ)p1···pk,ρ(q) for
every q ∈ Q, σ ∈ Σk, and p1, . . . , pk ∈ P . We say that M backward simulates N ,
written M � N , if there exists a backward simulation from M to N . Using
Lemma 2 we obtain the following statement.

Lemma 3. Let N be trim. Then M � N if and only if there exists a functional
transfer matrix X such that M →X N . Moreover, M � N if and only if there
exists a transfer matrix X such that XT is functional and N →X M .

Next, we recall two important matrix decomposition results of [3].

Lemma 4. If A = 〈U〉+, then for every X ∈ AQ×P there exist matrices C, E, D
such that (i) X = CED, (ii) CT and D are functional, and (iii) E is an in-
vertible diagonal matrix. If (a) X is nondegenerate or (b) A has (nontrivial)
zero-sums, then CT and D can be chosen to be surjective.

Lemma 5. Let A be equisubtractive. Moreover, let R ∈ AQ and C ∈ AP be
such that

∑
q∈Q rq =

∑
p∈P cp. Then there exists a matrix X ∈ AQ×P with row

sums R and column sums C.

Using all the previous results, we can now obtain the main result of this sec-
tion, which shows how we can decompose simulation into functional and dual
functional simulation (or: forward and backward simulation, respectively).

Theorem 6. Let A be equisubtractive with A = 〈U〉+. Then M →X N if
and only if there exist two wta M ′ and N ′ such that (i) M →C M ′ where
CT is functional, (ii) M ′ →E N ′ where E is an invertible diagonal matrix, and
(iii) N ′ →D N where D is functional. If M and N are trim, then M ′ � M and
N ′ � N .

Simulations of Weighted Tree Automata 325

Proof. Clearly, M →C M ′ →E N ′ →D N , which proves that M →CED N .
For the converse, Lemma 4 shows that there exist matrices C, E, and D such
that X = CED, CT and D are functional matrices, and E ∈ AI×I is an invertible
diagonal matrix. Finally, let ϕ : I → Q and ψ : I → P be the functions associated
to CT and D.

It remains to determine the wta M ′ and N ′. μk(σ)

νk(σ)

μ′
k(σ)

ν′
k(σ)

Ck,⊗ C

Ek,⊗ E

Dk,⊗ D

Y

Fig. 2. Relations between the

matrices

Let M ′ = (Σ, I, μ′, F ′) and N ′ = (Σ, I, ν′, G′)
with G′ = DG and F ′ = EDG. Then we have
CF ′ = CEDG = XG = F . Thus, it remains
to specify μ′

k(σ) and ν′
k(σ) for every σ ∈ Σk.

To this end, we determine a matrix Y ∈ AIk×I

such that we have (1) Ck,⊗ · Y = μk(σ)CE and
(2) Y D = Ek,⊗ ·Dk,⊗ · νk(σ). Let μ′

k(σ) = Y E−1

and ν′
k(σ) = (Ek,⊗)−1 ·Y . Consequently, we have

μk(σ)C = Ck,⊗ · μ′
k(σ), μ′

k(σ)E = Ek,⊗ · ν′
k(σ),

and ν′
k(σ)D = Dk,⊗ · νk(σ). These equalities are

displayed in Fig. 2 (right).
Finally, we need to specify the matrix Y . For

every q ∈ Q and p ∈ P , let Iq = ϕ−1(q) and
Jp = ψ−1(p). Obviously, Y can be decomposed
into disjoint (not necessarily contiguous) subma-
trices Yq1···qk,p ∈ A(Iq1×···×Iqk

)×Jp with q1, . . . , qk ∈ Q and p ∈ P . Then prop-
erties (1) and (2) hold if and only if for every q1, . . . , qk ∈ Q and p ∈ P the
following two conditions hold:

1. For every i ∈ I such that ψ(i) = p, the sum of the i-column of Yq1···qk,p is
μk(σ)q1···qk,ϕ(i) · ei,i.

2. For all i1, . . . , ik ∈ I such that ϕ(ij) = qj for every j ∈ [k], the sum of the
(i1, . . . , ik)-row of Yq1···qk,p is

∏k
j=1 eij ,ij · νk(σ)ψ(i1)···ψ(ik),p.

Those two conditions are compatible because∑
i∈I

ψ(i)=p

μk(σ)q1···qk,ϕ(i) · ei,i =
(
μk(σ)CED

)
q1···qk,p

=
(
μk(σ)X

)
q1···qk,p

=
(
Xk,⊗ · νk(σ)

)
q1···qk,p

=
(
Ck,⊗ · Ek,⊗ · Dk,⊗ · νk(σ)

)
q1···qk,p

=
∑

i1,...,ik∈I
∀j∈[k] : ϕ(ij)=qj

(k∏
j=1

eij ,ij

)
· νk(σ)ψ(i1)···ψ(ik),p .

Consequently, the row and column sums of the submatrices Yq1···qk,p are con-
sistent, which yields that we can determine all the submatrices (and thus the
whole matrix) by Lemma 5. If M and N are trim, then either (a) A is zero-sum
free (and thus positive because it is additively generated by its units), in which
case X is nondegenerate by Lemma 2, or (b) A has nontrivial zero-sums. In both
cases, Lemma 4 shows that the matrices CT and D are surjective, which yields
the additional statement by Lemma 3. ��

326 Z. Ésik and A. Maletti

The decomposition of simulations into forward and backward simulation is
effective and has computational benefits because it is shown in [18] that forward
and backward simulation can be efficiently computed. To keep the presentation
simple, we will continue to deal with simulation in the following. However, in
many of the following cases they can be decomposed.

4 Category of Simulations

In this section our aim is to show that several well-known constructions of wta
are functorial : they may be extended to simulations in a functorial way. Below we
will only deal with the sum, Hadamard product, σ0-product, and σ0-iteration
(cf. [14]). Scalar OI-substition, † (the dagger operation) [7], homomorphism,
quotient, and top-concatenation [14] may be covered in a similar fashion.

In this section, let A be commutative. Moreover, let M = (Σ, Q, μ, F), M ′ =
(Σ, Q′, μ′, F ′), and M ′′ = (Σ, Q′′, μ′′, F ′′) be wta. We already remarked that, if
M →X M ′ and M ′ →Y M ′′, then M →XY M ′′. Moreover, M →I M with the
unit matrix I ∈ AQ×Q. Thus, wta over the alphabet Σ form a category SimΣ .

In the following, let M = (Σ, Q, μ, F) and N = (Σ, P, ν, G) be wta such that
Q ∩ P = ∅. The sum M + N of M and N is the wta (Σ, Q ∪ P, κ, H) where
H = 〈F, G〉 and

κk(σ)q1···qk,q = (μk(σ) + νk(σ))q1 ···qk,q =

⎧⎪⎨
⎪⎩

μk(σ)q1···qk,q if q, q1, . . . , qk ∈ Q

νk(σ)q1···qk,q if q, q1, . . . , qk ∈ P

0 otherwise.

for all σ ∈ Σk and q, q1, . . . , qk ∈ Q∪P . It is known that ‖M +N‖ = ‖M‖+‖N‖.
Next, we extend the sum construction to simulations. To this end, let M →X M ′

and N →Y N ′ with N ′ = (Σ, P ′, ν′, G′). The sum X+Y ∈ A(Q∪P)×(Q′∪P ′) of the
transfer matrices X and Y is X +Y = (X 0

0 Y). Then (M +N) →X+Y (M ′+N ′).

Proposition 7. The function +, which is defined on wta and transfer matrices,
is a functor Sim2

Σ → SimΣ.

Next, we treat the remaining operations. Let σ0 be a distinguished symbol in
Σ0. The σ0-product M ·σ0 N of M with N is the wta (Σ, Q∪P, κ, H) such that
H = 〈F, 0〉 and for each σ ∈ Σk with σ �= σ0,

κk(σ)q1···qk,q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μk(σ)q1···qk,q if q, q1, . . . , qk ∈ Q

μ0(σ0)q ·∑p∈P νk(σ)q1···qk,pGp if q ∈ Q and q1, . . . , qk ∈ P

νk(σ)q1···qk,q if q, q1, . . . , qk ∈ P

0 otherwise.

Moreover,

κ0(σ0)q =

{
μ0(σ0)q ·∑p∈P ν0(σ0)pGp if q ∈ Q

ν0(σ0)q if q ∈ P.

Simulations of Weighted Tree Automata 327

It is known that ‖M ·σ0 N‖ = ‖M‖ ·σ0 ‖N‖. Let M →X M ′ and N →Y N ′.
We define X ·σ0 Y = X + Y . The Hadamard product M ·H N is the wta
(Σ, Q × P, κ, H) where H = F ⊗ G and κk(σ) = μk(σ) ⊗ νk(σ) for all σ ∈ Σk.
If M →X M ′ and N →Y N ′, then we define X ·H Y = X ⊗ Y . Finally, let A be
complete. Thus, A allows the definition of the star operation a∗ =

∑
n∈IN an for

every a ∈ A. The σ0-iteration M∗σ0 of M is the wta (Σ, Q, κ, F) where

κk(σ)q1···qk,q = μk(σ)q1···qk,q + ‖M‖(σ0)∗ ·
∑
p∈Q

μk(σ)q1···qk,pFp

for all σ ∈ Σk \ {σ0} and κ0(σ0) = μ0(σ0). If M →X M ′, then we define
X∗σ0 = X .

Proposition 8. The functions ·σ0 and ·H, which are defined on wta and trans-
fer matrices, are functors Sim2

Σ → SimΣ. Moreover, σ0-iteration is a functor
SimΣ → SimΣ if A is complete.

5 Joint Reduction

In this section, we will establish equivalence results using an improved version
of the approach called joint reduction in [4]. Let V ⊆ AI be a set of vectors for
a finite set I. The A-semimodule generated by V is denoted by 〈V 〉. Given two
wta M = (Σ, Q, μ, F) and N = (Σ, P, ν, G) with Q ∩ P = ∅, we first compute
M + N = (Σ, Q ∪ P, μ′, F ′) as defined in Section 4. The aim is to compute a
finite set V ⊆ AQ∪P such that

(i) (v1 ⊗ · · · ⊗ vk) · μ′
k(σ) ∈ 〈V 〉 for every σ ∈ Σk and v1, . . . , vk ∈ V , and

(ii) v1F = v2G for every (v1, v2) ∈ V such that v1 ∈ AQ and v2 ∈ AP .

With such a finite set V we can now construct a wta M ′ = (Σ, V, ν′, G′) with
G′

v = vF ′ for every v ∈ V and
∑

v∈V ν′
k(σ)v1···vk,v · v = (v1 ⊗ · · ·⊗ vk) ·μ′

k(σ) for
every σ ∈ Σk and v1, . . . , vk ∈ V . It remains to prove that M ′ simulates M +N .
To this end, let X = (v)v∈V where each v ∈ V is a row vector. Then for every
σ ∈ Σk, v1, . . . , vk ∈ V , and q ∈ Q ∪ P , we have

(ν′
k(σ)X)v1···vk,q =

∑
v∈V

ν′
k(σ)v1···vk,v · vq =

(∑
v∈V

ν′
k(σ)v1···vk,v · v

)
q

=
(
(v1 ⊗ · · · ⊗ vk) · μ′

k(σ)
)

q
=

∑
q1,...,qk∈Q∪P

(v1)q1 · . . . · (vk)qk
· μ′

k(σ)q1···qk,q

=
(
Xk,⊗ · μ′

k(σ)
)

v1···vk,q
.

Moreover, if we let X1 and X2 be the restrictions of X to the entries of Q and P ,
respectively, then we have ν′

k(σ)X1 = Xk,⊗
1 ·μk(σ) and ν′

k(σ)X2 = Xk,⊗
2 · νk(σ).

In addition, G′
v = vF ′ =

∑
q∈Q∪P vqF

′
q = (XF ′)v for every v ∈ V , which

proves that M ′ →X (M + N). Since v1F = v2G for every (v1, v2) ∈ V , we

328 Z. Ésik and A. Maletti

have G′
(v1,v2) = (v1, v2)F ′ = v1F + v2G = (1 + 1)v1F = (1 + 1)v2G. Now, let

G′′
(v1,v2)

= v1F = v2G for every (v1, v2) ∈ V . Then

(X2G)v =
∑
p∈P

vpGp = v2G = G′′
v = v1F =

∑
q∈Q

vqFq = (X1F)v

for every v = (v1, v2) ∈ V . Consequently, M ′′ →X1 M and M ′′ →X2 N , where
M ′′ = (Σ, V, ν′, G′′). This proves the next theorem.

Theorem 9. Let M and N be equivalent. If there exists a finite set V ⊆ AQ∪P

with properties (i) and (ii), then a finite chain of simulations joins M and N .
In fact, there exists a single wta that simulates both M and N .

Let us first recall a known result [2] for fields. Note that, in comparison to our
results, the single wta can be chosen to be a minimal wta.

Theorem 10 (see [2, p. 453]). Every two equivalent trim wta M and N over
a field A can be joined by a finite chain of simulations. Moreover, there exists a
minimal wta that simulates both M and N .

We can obtain a similar theorem with the help of Theorem 9 as follows. Let A
be a Noetherian semiring. Let V0 = {μ′

0(α) | α ∈ Σ0} and

Vi+1 = Vi ∪
({(v1 ⊗ · · · ⊗ vk) · μ′

k(σ) | σ ∈ Σk, v1, . . . , vk ∈ Vi} \ 〈Vi〉
)

for every i ∈ IN. Then {0} ⊆ 〈V0〉 ⊆ 〈V1〉 ⊆ · · · ⊆ 〈Vk〉 ⊆ · · · is stationary
after finitely many steps because A is Noetherian. Thus, let V = Vk for some
k ∈ IN such that 〈Vk〉 = 〈Vk+1〉. Clearly, V is finite and has property (i). Trivially,
V ⊆ {hμ′(t) | t ∈ TΣ}, so let v ∈ V be such that v =

∑
i∈I(hμ(ti), hν(ti)) for

some finite index set I and ti ∈ TΣ for every i ∈ I. Then(∑
i∈I

hμ(ti)
)
F =

∑
i∈I

(‖M‖, ti) =
∑
i∈I

(‖N‖, ti) =
(∑

i∈I

hν(ti)
)
G

because ‖M‖ = ‖N‖, which proves property (ii).
In fact, since M+N uses only finitely many semiring coefficients, it is sufficient

that every finitely generated subsemiring of A is contained in a Noetherian

subsemiring of A. Then the following theorem follows from Theorem 9.

Theorem 11. Let A be such that every finitely generated subsemiring is con-
tained in a Noetherian subsemiring of A. For all equivalent wta M and N
over A, there exists a finite chain of simulations that join M and N . In fact,
there exists a single wta that simulates both M and N .

Note that ZZ is a Noetherian ring. More generally, every finitely generated
commutative ring is Noetherian [23, Cor. IV.2.4 & Prop. X.1.4].

Corollary 12 (of Theorem 11). For all equivalent wta M and N over a com-
mutative ring A, there exists a finite chain of simulations that join M and N .
In fact, there exists a single wta that simulates both M and N .

Simulations of Weighted Tree Automata 329

Finally, let A = IN be the semiring of natural numbers. We compute the finite
set V ⊆ INQ∪P as follows:

1. Let V0 = {μ′
0(α) | α ∈ Σ0} and i = 0.

2. For every v, v′ ∈ Vi such that v ≤ v′, replace v′ by v′ − v.
3. Set Vi+1 = Vi ∪

({(v1 ⊗ · · · ⊗ vk) · μ′
k(σ) | σ ∈ Σk, v1, . . . , vk ∈ Vi} \ 〈Vi〉

)
.

4. Until Vi+1 = Vi, increase i and repeat step 2.

Clearly, this algorithm terminates since every vector can only be replaced by a
smaller vector in step 2 and step 3 only adds a finite number of vectors, which
after the reduction in step 2 are pairwise incomparable. Moreover, property (i)
trivially holds because at termination Vi+1 = Vi after step 3. Consequently, we
only need to prove property (ii). To this end, we first prove that V ⊆ 〈{hμ′(t) |
t ∈ TΣ}〉+,−. This is trivially true after step 1 because μ′

0(α) = hμ′(α) for every
α ∈ Σ0. Clearly, the property is preserved in steps 2 and 3. Finally, property (ii)
can now be proved as follows. Let v ∈ V be such that v =

∑
i∈I1

(hμ(ti), hν(ti))−∑
i∈I2

(hμ(ti), hν(ti)) for some finite index sets I1 and I2 and ti ∈ TΣ for every
i ∈ I1 ∪ I2. Then by ‖M‖ = ‖N‖ we obtain(∑

i∈I1

hμ(ti) −
∑
i∈I2

hμ(ti)
)
F =

∑
i∈I1

hμ(ti)F −
∑
i∈I2

hμ(ti)F

=
∑
i∈I1

(‖M‖, ti) −
∑
i∈I2

(‖M‖, ti) =
∑
i∈I1

(‖N‖, ti) −
∑
i∈I2

(‖N‖, ti)

=
∑
i∈I1

hν(ti)G −
∑
i∈I2

hν(ti)G =
(∑

i∈I1

hν(ti) −
∑
i∈I2

hν(ti)
)
G .

Corollary 13 (of Theorem 9). For all equivalent wta M and N over IN, there
exists a finite chain of simulations that join M and N . In fact, there exists a
single wta that simulates both M and N .

For all finitely and effectively presented semirings, Theorems 10 and 11 and
Corollaries 12 and 13 also yield decidability of equivalence for M and N . Es-
sentially, we run the trivial semi-decidability test for inequality and a search for
the wta that simulates both M and N in parallel. We know that either test will
eventually return, thus deciding whether M and N are equivalent. Conversely,
if equivalence is undecidable, then simulation cannot capture equivalence [16].

References

1. Abdulla, P.A., Jonsson, B., Mahata, P., d’Orso, J.: Regular tree model checking.

In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 555–568.

Springer, Heidelberg (2002)

2. Alexandrakis, A., Bozapalidis, S.: Représentations matricielles des séries d’arbre

reconnaissables. Informatique Théorique et Applications 23(4), 449–459 (1989)

3. Béal, M.P., Lombardy, S., Sakarovitch, J.: On the equivalence of ZZ-automata. In:

Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP

2005. LNCS, vol. 3580, pp. 397–409. Springer, Heidelberg (2005)

330 Z. Ésik and A. Maletti

4. Béal, M.P., Lombardy, S., Sakarovitch, J.: Conjugacy and equivalence of weighted

automata and functional transducers. In: Grigoriev, D., Harrison, J., Hirsch, E.A.

(eds.) CSR 2006. LNCS, vol. 3967, pp. 58–69. Springer, Heidelberg (2006)

5. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Mono-

graphs on Theoret. Comput. Sci., vol. 12. Springer, Heidelberg (1984)

6. Bloom, S.L., Ésik, Z.: Iteration theories: The Equational Logic of Iterative Pro-

cesses. Springer, Heidelberg (1993)

7. Bloom, S.L., Ésik, Z.: An extension theorem with an application to formal tree

series. J. Autom. Lang. Combin. 8(2), 145–185 (2003)

8. Bozapalidis, S.: Effective construction of the syntactic algebra of a recognizable

series on trees. Acta Inform. 28(4), 351–363 (1991)

9. Buchholz, P.: Bisimulation relations for weighted automata. Theoret. Comput.

Sci. 393(1-3), 109–123 (2008)

10. Cleophas, L.: Forest FIRE and FIRE wood: Tools for tree automata and tree

algorithms. In: FSMNLP, pp. 191–198 (2008)

11. Eilenberg, S.: Automata, Languages, and Machines. Academic Press, London

(1974)

12. Ésik, Z.: Axiomatizing the equational theory of regular tree languages. In: Meinel,

C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 455–465. Springer, Hei-

delberg (1998)

13. Ésik, Z.: Axiomatizing the equational theory of regular tree languages. J. Log.

Algebr. Program. 79(2), 189–213 (2010)

14. Ésik, Z.: Fixed point theory. In: Handbook of Weighted Automata. EATCS Mono-

graphs on Theoret. Comput. Sci., pp. 29–66. Springer, Heidelberg (2010)

15. Ésik, Z., Kuich, W.: A generation of Kozen’s axiomatization of the equational

theory of the regular sets. In: Words, Semigroups, and Transductions, pp. 99–114.

World Scientific, Singapore (2001)

16. Ésik, Z., Maletti, A.: Simulation vs. equivalence. In: FCS, pp. 119–122. CSREA

Press (2010), preprint: http://arxiv.org/abs/1004.2426

17. Hebisch, U., Weinert, H.J.: Semirings—Algebraic Theory and Applications in Com-

puter Science. World Scientific, Singapore (1998)

18. Högberg, J., Maletti, A., May, J.: Bisimulation minimisation for weighted tree

automata. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS,

vol. 4588, pp. 229–241. Springer, Heidelberg (2007)

19. Karner, G.: Continuous monoids and semirings. Theoret. Comput. Sci. 318(3),

355–372 (2004)

20. Klarlund, N., Møller, A.: MONA Version 1.4 User Manual (2001)

21. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural

language processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp.

1–24. Springer, Heidelberg (2005)

22. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular

events. Inform. and Comput. 110(2), 366–390 (1994)

23. Lang, S.: Algebra, 2nd edn. Addison Wesley, Reading (1984)

24. May, J., Knight, K.: TIBURON: A weighted tree automata toolkit. In: Ibarra, O.H.,

Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 102–113. Springer, Heidelberg

(2006)

25. Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1980)

26. Park, D.M.R.: Concurrency and automata on infinite sequences. In: Deussen, P.

(ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

http://arxiv.org/abs/1004.2426

Author Index

Allauzen, Cyril 17, 28

Almeida, Marco 39

Antoš, Jan 49

Bacelar Almeida, José 59

Bakalarski, Slawomir 135

Bultan, Tevfik 290

Castiglione, Giusi 251

Champarnaud, Jean-Marc 69

Chmiel, Krzysztof 79

Cimatti, Alessandro 87

Cortes, Corinna 17

Cui, Bo 95

Diekert, Volker 105

Droste, Manfred 211

Dubernard, Jean-Philippe 69

Egri-Nagy, Attila 115

Epifanio, Chiara 125

Ésik, Zoltán 321

Fogarty, Seth 261

Foryś, Wit 135

Frougny, Christiane 125

Gabriele, Alessandra 125

Gao, Yuan 95

Gerbush, Michael 154

Grosu, Radu 143

Guo, Li 282

Heeringa, Brent 154

Hundeshagen, Norbert 163

Ibarra, Oscar H. 290

Jeanne, Hadrien 69

Johnson, J. Howard 173

Jonoska, Nataša 1

Kari, Lila 95

Kopecki, Steffen 105

Kufleitner, Manfred 181

Kutrib, Martin 191

Lauser, Alexander 181

Le Maout, Vincent 310

Liu, Ping 282

Liu, Yanbing 282

Malcher, Andreas 191

Maletti, Andreas 201, 321

Meinecke, Ingmar 211

Melichar, Bořivoj 49, 300

Melo de Sousa, Simão 59

Mignosi, Filippo 125

Mohri, Mehryar 17

Moreira, Nelma 39, 59

Mover, Sergio 87

Nehaniv, Chrystopher L. 115

Neider, Daniel 222

Nicaud, Cyril 251

Okui, Satoshi 231

Oprocha, Piotr 135

Otto, Friedrich 163

Pereira, David 59

Reidenbach, Daniel 241

Reis, Rogério 39

Riley, Michael 28

Roman, Adam 79

Roveri, Marco 87

Rudie, Karen 4

Schalkwyk, Johan 28

Schmid, Markus L. 241

Sciortino, Marinella 251

Shallit, Jeffrey 125

Suzuki, Taro 231

Tan, Jianlong 282

T̂ırnăucă, Cătălin Ionuţ 272

T̂ırnăucă, Cristina 272

Tonetta, Stefano 87

332 Author Index

Tsai, Ming-Hsien 261

Tsay, Yih-Kuen 261

Vardi, Moshe Y. 261

Vollweiler, Marcel 163

Yu, Fang 290

Yu, Sheng 95

Žd’árek, Jan 300

	Title Page
	Preface
	Organization
	Table of Contents
	Using Automata to Describe Self-Assembled Nanostructures
	A Summary of Some Discrete-Event System Control Problems
	Introduction
	Supervisory Control Problems
	Problems and Complexity
	Undecidable Problems

	Discussion
	References

	Large-Scale Training of SVMs with Automata Kernels
	Introduction
	Preliminaries
	Kernel Methods and SVM Optimization
	Overview of Kernel Methods
	Coordinate Descent Solution for SVM Optimization

	Coordinate Descent Solution for Rational Kernels
	Implementation and Analysis
	Experiments
	Conclusion
	References

	Filters for Efficient Composition of Weighted Finite-State Transducers
	Introduction
	Composition Algorithm
	Preliminaries
	Composition
	Elementary Composition Filters
	Look-Ahead Composition Filters
	Combining Filters

	Examples
	Implementation
	References

	Incremental DFA Minimisation
	Introduction
	Preliminaries
	The UNION-FIND Algorithm

	Related Work
	The Incremental Minimisation Algorithm
	Experimental Results
	Conclusions
	References

	Finite Automata for Generalized Approach to Backward Pattern Matching
	Introduction
	Historical Context
	Motivation

	Basic Definitions
	Background
	Backward Pattern Matching
	Classification of Pattern Matching Problems

	Backward Pattern Matching Machine
	Implementation Options
	Executor
	Constructor
	Construction of a Backward Pattern Matching Automaton
	Construction of a Reversed Projection Automaton
	Example: Construction of RPA for SFIERCO Problem
	Construction of Backward Pattern Matching Automaton
	Time and Space Complexity

	Conclusion
	References

	Partial Derivative Automata Formalized in Coq
	Introduction
	Regular Languages and Finite Automata
	Partial Derivative Automata
	The Coq Proof Assistant
	Formalization in Coq
	Formal Languages and Regular Expressions
	Correctness of Mirkin's Construction

	Related Work and Applications
	Concluding Remarks
	References

	Regular Geometrical Languages and Tiling the Plane
	Introduction
	Preliminaries
	Geometrical Languages
	Geometrical Languages and Tiling
	Tiling a Geometrical Figure
	Tiling the Figure of a Geometrical Language

	State Sequences Associated with the Levels of a Tiling
	Conclusion
	References

	COMPAS - A Computing Package for Synchronization
	Introduction and Motivation
	Synchronizing Automata and Synchronizing Algorithms
	COMPAS Architecture and Functionality
	References

	From Sequential Extended Regular Expressions to NFA with Symbolic Labels
	Introduction
	Regular Expressions for Property Specification
	Non-deterministic Finite Automata with Symbolic Labels
	Related Work
	Experimental Evaluation
	Conclusions and Future Work
	References

	State Complexity of Catenation Combined with Union and Intersection
	Introduction
	Preliminaries
	Catenation Combined with Union
	Catenation Combined with Intersection
	Conclusion
	References

	Complexity Results and the Growths of Hairpin Completions of Regular Languages (Extended Abstract)
	Introduction
	Preliminaries and Notation
	Main Results
	The NFA A
	Structure Theorem and Rational Growth
	Complexity for Testing the Regularity of Hk(L1, L2)

	References

	On Straight Words and Minimal Permutators in Finite Transformation Semigroups
	Introduction
	Straight Words
	Minimal Straight Words and Permutations of Subsets
	A Biological Example
	Conclusion
	References

	On Lazy Representations and Sturmian Graphs
	Introduction
	Continued Fraction Expansions, Sturmian Words and Sturmian Graphs
	Numeration Systems and Lazy Representations of Integers
	Ostrowski Numeration System and Lazy Representations
	Sturmian Graphs and Lazy Representations
	Conclusions
	References

	Symbolic Dynamics, Flower Automata and Infinite Traces
	Introduction
	Definitions and Notations
	Words and Traces
	Subshifts
	Infinite Traces and T-Shifts

	Flower Shifts
	References

	The Cayley-Hamilton Theorem for Noncommutative Semirings
	Introduction
	Semirings and Fields
	Permutations
	The Determinant in Noncommutative Semirings
	The Characteristic Polynomial in Noncomm. Semirings
	Multi-process CHT for Noncommutative Semirings
	Single-Process CHT for Noncommutative Semirings
	The CHT for Noncommutative Idempotent Semirings
	Conclusions
	References

	Approximating Minimum Reset Sequences
	Introduction
	Prior and Related Work
	Results

	A Simple Approximation Algorithm
	The stack cover Problem
	Open Problems and Conjectures
	References

	Transductions Computed by PC-Systems of Monotone Deterministic Restarting Automata
	Introduction
	Basic Notions and Definitions
	Transductions Computed by Restarting Automata
	Transformations Computed by PC-Systems of Monotone Deterministic RRWW-Automata
	Concluding Remarks
	References

	Uniformizing Rational Relations for Natural Language Applications Using Weighted Determinization
	Introduction
	Some Definitions and Background
	Algorithm
	An Example
	Conclusion and Future Work
	References

	Regular Expressions on Average and in the Long Run
	Introduction
	Weighted Automata on Finite and Infinite Words
	Cauchy Valuation Monoids, Cauchy Products, and Iterations
	Weighted Finite Automata and Regular Expressions
	Weighted Büchi Automata and -Regular Expressions
	Conclusion
	References

	Reachability Games on Automatic Graphs
	Introduction
	Preliminaries
	Automatic Reachability Games on Finite Arenas
	Automatic Reachability Games on Infinite Arenas
	Conclusion
	References

	Disambiguation in Regular Expression Matching via Position Automata with Augmented Transitions
	Introduction
	Formalizing the Leftmost-Longest Semantics
	Enumerating Parse Trees via Position Automata
	Correctly Nested Parenthesis Expressions
	Position NFAs with Augmented Transitions

	Developing a Matching Algorithm
	Basic Idea for Choosing the Most Prior Path
	Formalization
	Algorithm

	Related Work
	References

	A Polynomial Time Match Test for Large Classes of Extended Regular Expressions
	Introduction
	Definitions
	Janus Automata
	Janus Automata for Pattern Languages
	Patterns with Restricted Variable Distance
	References

	A Challenging Family of Automata for Classical Minimization Algorithms
	Introduction
	Preliminaries on Automata and Moore's Minimization
	Subset Construction and Brzozowski's Algorithm
	Circular Factors of Fibonacci Words
	The Two Algorithms on Word Automata
	Further Work
	References

	State of B¨uchi Complementation
	Introduction
	Preliminaries
	Historical Review
	Comparison of Complementation Approaches
	Optimization Techniques
	For Safra-Piterman
	For Rank
	For Slice

	Experimental Results
	Conclusion
	References

	Types of Trusted Information That Make DFA Identification with Correction Queries Feasible
	Introduction
	Preliminaries
	Query Learning
	Useful Parameters for Language Learning with CQs
	Learning k-Injective Languages with CQs

	Concluding Remarks
	References

	Compressing Regular Expressions’ DFA Table by Matrix Decomposition
	Introduction
	Related Work
	A Matrix Decomposition Method for DFA Compression
	Problem Formulation: Additive Matrix Decomposition
	Iterative Algorithm for Additive Matrix Decomposition

	Experiment and Evaluation
	Compression Efficiency Comparison
	Searching Time Comparison

	Conclusion
	References

	Relational String Verification Using Multi-track Automata
	Introduction
	String Systems
	Regular Approximation of Word Equations
	Symbolic Reachability Analysis
	Experiments
	Conclusion
	References

	A Note on a Tree-Based 2D Indexing
	Introduction
	Basic Notions
	Representation of Multidimensional Arrays for Indexing
	Tree-Based Decomposition of a Picture
	Two-Dimensional Pattern Matching in Pictures in the Tree Representation
	Pushdown Automata for Picture Indexing
	Two-Dimensional Pattern Matching Using Pushdown Automata

	Conclusion
	References

	Regular Expressions at Their Best: A Case for Rational Design
	Introduction
	Backtracking vs. Automaton-Based Implementations
	Avoiding the Construction of NFA
	Lazy Determinization
	Pathological Cases Avoided
	More Freedom of Use
	Submatching
	Efficiency and Scalability

	Design and Implementation
	ASTL, Cursors and Incrementality
	Encapsulation, Lazy Determinization, Submatches, Thread-Safety

	Performance
	Conclusion
	References

	Simulations of Weighted Tree Automata
	Introduction
	Preliminaries
	Simulation
	Category of Simulations
	Joint Reduction
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

