

Lecture Notes in Computer Science 6528
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Bernhard Beckert Claude Marché (Eds.)

Formal Verification
of Object-Oriented
Software
International Conference, FoVeOOS 2010
Paris, France, June 28-30, 2010
Revised Selected Papers

13

Volume Editors

Bernhard Beckert
Institute for Theoretical Informatics
Am Fasanengarten 5, 76131 Karlsruhe, Germany
E-mail: beckert@kit.edu

Claude Marché
INRIA Saclay – Île-de-France, Parc Orsay Université
4 rue Jacques Monod, 91893 Orsay Cedex, France
E-mail: Claude.Marche@inria.fr

Library of Congress Control Number: 2010941559

CR Subject Classification (1998): D.2.4, D.2, D.1.5, F.3, D.3, K.6, F.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-18069-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-18069-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2011
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

Formal software verification has outgrown the area of academic case studies,
and industry is showing serious interest. The logical next goal is the verification
of industrial software products. Most programming languages used in industrial
practice are object-oriented, e.g., Java, C++, or C#. The International Confer-
ence on Formal Verification of Object-Oriented Software (FoVeOOS 2010) aimed
to foster collaboration and interaction among researchers in this area. It was held
during June 28–30, 2010 in Paris, France.

FoVeOOS was organized by COST Action IC0701 (www.cost-ic0701.org),
but it went beyond the framework of this action. The conference was open to the
whole scientific community. All submitted papers were peer-reviewed, and of the
35 submissions, the Program Committee selected 23 for presentation at the con-
ference. In addition to the contributed papers, the program of FoVeOOS 2010 in-
cluded three excellent keynote talks. We are grateful to June Andronick (NICTA,
Sydney, Australia), Kim G. Larsen (Aalborg University, Denmark), Francesco
Logozzo (Microsoft Research, Redmond, USA) for accepting the invitation to
address the conference.

This volume contains a selection of research papers and system descriptions
presented at FoVeOOS 2010. Authors of the 23 papers presented at the confer-
ence1 were invited to submit improved versions, to be reviewed a second time.
Twenty-one submissions were received, and the Program Committee selected 11
of them. Additionally, two of the invited speakers provided papers, which were
reviewed by the Program Committee and included in this volume.

We wish to sincerely thank all the authors who submitted their work for
consideration. We also thank the Program Committee members as well as the
additional referees for their great effort and professional work in the review and
selection process. Their names are listed on the following pages.

It was a team effort that made the conference so successful. We partic-
ularly thank Sarah Grebing, Vladimir Klebanov, and Emmanuelle Perrot for
their hard work and help in making the conference a success. In addition, we
gratefully acknowledge the generous support of COST Action IC0701, Microsoft
Research Redmond, the Institut National de Recherche en Informatique et Au-
tomatique (INRIA), and the Karlsruhe Institute of Technology

October 2010 Bernhard Beckert
Claude Marché

1 Proceedings containing all papers presented at the conference are available at
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000019083.

Organization

Program Committee

Gilles Barthe IMDEA Software, Madrid, Spain
Bernhard Beckert Karlsruhe Institute of Technology, Germany
Einar Broch Johnsen University of Oslo, Norway
Gabriel Ciobanu University Alexandru Ioan Cuza, Romania
Dave Clarke Katholieke University Leuven, Belgium
Mads Dam KTH Stockholm, Sweden
Ferruccio Damiani University of Turin, Italy
Sophia Drossopoulou Imperial College, UK
Paola Giannini University Piemonte Orientale, Italy
Dilian Gurov KTH Stockholm, Sweden
Reiner Hähnle Chalmers University of Technology,

Gothenburg, Sweden
Marieke Huisman University of Twente, The Netherlands
Thomas Jensen IRISA/CNRS, France
Joe Kiniry ITU Copenhagen, Denmark
Viktor Kuncak EPF Lausanne, Switzerland
Dorel Lucanu University Alexandru Ioan Cuza, Romania
Maŕıa del Mar Gallardo University of Malaga, Spain
Claude Marché INRIA Saclay-̂Ile-de-France, France
Julio Mariño Universidad Politecnica de Madrid, Spain
Marius Minea “Politehnica” University of Timisoara,

Romania
Anders Møller University of Aarhus, Denmark
Rosemary Monahan NUI Maynooth, Ireland
Wojciech Mostowski University of Nijmegen, The Netherlands
Peter Müller ETH Zürich, Switzerland
James Noble Victoria University of Wellington, New Zealand
Olaf Owe University of Oslo, Norway
Ernesto Pimentel Sánchez University of Málaga, Spain
Arnd Poetzsch-Heffter University of Kaiserslautern, Germany
Erik Poll University of Nijmegen, The Netherlands
António Ravara New University of Lisbon, Portugal
Wolfgang Reif University of Augsburg, Germany
René Rydhof Hansen University of Aalborg, Denmark

VIII Organization

Peter H. Schmitt Karlsruhe Institute of Technology, Germany
Aleksy Schubert University of Warsaw, Poland
Gheorghe Stefanescu University of Bucharest, Romania
Bent Thomsen University of Aalborg, Denmark
Shmuel Tyszberowicz University of Tel Aviv, Israel
Tarmo Uustalu Institute of Cybernetics, Tallinn, Estonia
Burkhart Wolff University Paris-Sud (Orsay), France
Elena Zucca University of Genova, Italy

Program Co-chairs

Bernhard Beckert Karlsruhe Institute of Technology, Germany
Claude Marché INRIA Saclay-̂Ile-de-France, France

Organizing Committee

Claude Marché (Chair) INRIA Saclay-̂Ile-de-France, France
Bernhard Beckert Karlsruhe Institute of Technology, Germany
Vladimir Klebanov Karlsruhe Institute of Technology, Germany
Emmanuelle Perrot INRIA Saclay-̂Ile-de-France, France

Sponsoring Institutions

COST Action IC0701 “Formal Verification of Object-Oriented Software”
Institut National de Recherche en Informatique et Automatique (INRIA)
Karlsruhe Institute of Technology
Microsoft Research

Additional Referees

Davide Ancona
Mohamed Faouzi Atig
Viviana Bono
Daniel Bruns
Richard Bubel
Jacek Chrzaszcz
João Costa Seco
Delphine Demange
Johan Dovland
David Faitelson

Christoph Feller
Pietro Ferrara
Kathrin Geilmann
Christoph Gladisch
Clément Hurlin
Ioannis Kassios
Ilham Kurnia
Laurent Mauborgne
Ruben Monjaraz
Keiko Nakata

Mads Chr. Olesen
Gerhard Schellhorn
Martin Steffen
Kurt Stenzel
Volker Stolz
Cristian Prisacariu
Bogdan Tofan
Varmo Vene
Amiram Yehudai
Greta Yorsh

Table of Contents

From a Proven Correct Microkernel to Trustworthy Large Systems 1
June Andronick

Static Contract Checking with Abstract Interpretation 10
Manuel Fähndrich and Francesco Logozzo

Abstract Compilation of Object-Oriented Languages into Coinductive
CLP(X): Can Type Inference Meet Verification? . 31

Davide Ancona, Andrea Corradi, Giovanni Lagorio, and
Ferruccio Damiani

Validating Timed Models of Deployment Components with Parametric
Concurrency . 46

Einar Broch Johnsen, Olaf Owe, Rudolf Schlatte, and
Silvia Lizeth Tapia Tarifa

Verification of Software Product Lines with Delta-Oriented Slicing 61
Daniel Bruns, Vladimir Klebanov, and Ina Schaefer

Satisfiability Solving and Model Generation for Quantified First-Order
Logic Formulas . 76

Christoph D. Gladisch

Sawja: Static Analysis Workshop for Java . 92
Laurent Hubert, Nicolas Barré, Frédéric Besson,
Delphine Demange, Thomas Jensen, Vincent Monfort,
David Pichardie, and Tiphaine Turpin

CVPP: A Tool Set for Compositional Verification of Control–Flow
Safety Properties . 107

Marieke Huisman and Dilian Gurov

Specifying Imperative ML-Like Programs Using Dynamic Logic 122
Séverine Maingaud, Vincent Balat, Richard Bubel,
Reiner Hähnle, and Alexandre Miquel

Dynamic Frames in Java Dynamic Logic . 138
Peter H. Schmitt, Mattias Ulbrich, and Benjamin Weiß

A Refinement Methodology for Object-Oriented Programs 153
Asma Tafat, Sylvain Boulmé, and Claude Marché

X Table of Contents

A Dynamic Logic for Unstructured Programs with Embedded
Assertions . 168

Mattias Ulbrich

JMLUnit: The Next Generation . 183
Daniel M. Zimmerman and Rinkesh Nagmoti

Author Index . 199

From a Proven Correct Microkernel to
Trustworthy Large Systems

June Andronick

NICTA�, UNSW
june.andronick@nicta.com.au

Abstract. The seL4 microkernel was the world’s first general-purpose
operating system kernel with a formal, machine-checked proof of correct-
ness. The next big step in the challenge of building truly trustworthy
systems is to provide a framework for developing secure systems on top
of seL4. This paper first gives an overview of seL4’s correctness proof,
together with its main implications and assumptions, and then describes
our approach to provide formal security guarantees for large, complex
systems.

1 Introduction

The work presented here aims to tackle the general challenge of building truly
trustworthy systems. The motivation is classic: software is ubiquitous and in use
in systems that are more and more critical. This issue being well-accepted does
not prevent the observation [4] that we routinely trust systems which again and
again demonstrate their lack of trustworthiness.

The approach taken here follows the idea [10] of minimising the amount of code
that need to be trusted, known as the trusted computing base (TCB), i.e. the part
of the system that can potentially bypass security. What is added here is then
to prove that this TCB can actually be trusted, prove that it is implemented in
such a way that it does not bypass security. And by proving, we mean providing
a formal, mathematical proof.

The first step in taking up this challenge has been to concentrate on the un-
avoidable part of the TCB: the operating system’s core, its kernel. The kernel of
a system is defined as the software that executes in the privileged mode of the
hardware, meaning that there can be no protection from faults occurring in the
kernel, and every single bug can potentially cause arbitrary damage. The idea of
minimising the TCB applied to kernels led to the concept of microkernels. A mi-
crokernel, as opposed to the more traditional monolithic design of contemporary
mainstream OS kernels, is reduced to just the bare minimum of code wrapping
hardware mechanisms and needing to run in privileged mode. All OS services are
then implemented as normal programs, running entirely in (unprivileged) user
� NICTA is funded by the Australian Government as represented by the Department of

Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

B. Beckert and C. Marché (Eds.): FoVeOOS 2010, LNCS 6528, pp. 1–9, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 J. Andronick

mode, and therefore can potentially be excluded from the TCB. A well-designed
high-performance microkernel, such as the various representatives of the L4 mi-
crokernel family [8], consists of the order of 10 000 lines of code, making the
trustworthiness problem more tractable. The L4.verified project produced, in
August 2009, the world’s first general-purpose microkernel whose functional cor-
rectness has been formally proved: seL4 [6]. Section 2 gives an overview of this
proof, its assumptions, results and implications, and overall effort.

Given this trustworthy foundation, we are now looking at designing and build-
ing large, complex systems, for which formal guarantees can be provided about
their safety, security and reliability. Our vision, together with our on-going and
future work, are described in Section 3.

2 A Proven Correct OS Kernel

The challenges in providing a “formally proven correct, general-purpose micro-
kernel” are multiple, but all mainly come down to building a system that is both
verifiable and suitable for real use. From the formal verification point of view,
complexity is the enemy. From the kernel point of view, performance is the target.
These two diverging objectives have been met by designing and implementing
a new kernel, from scratch, with two teams working together and in parallel on
formalisation and optimisations.

This kernel, called seL4, is a microkernel of the L4 family designed for prac-
tical deployment in embedded systems with high trustworthiness requirements.
As a microkernel, seL4 provides a minimal number of services to applications: ab-
stractions for virtual address spaces, threads, inter-process communication (IPC).
One of seL4’s key differentiators is its fine-grained access control, enforced using
the hardware’s memory management unit (MMU). All memory, devices, and
microkernel-provided services require an associated capability [3], i.e. an access
right, to utilise them. The set of capabilities a component possesses determines
what a component can directly access.

The formal verification work aimed at proving the kernel’s functional correct-
ness, i.e. proving that the kernel’s implementation is correct with respect to a for-
mal specification of its expected behaviour. Formally, we are showing refinement :
all possible behaviours of the C implementation are a subset of the behaviours
of the abstract specification. For this, we use interactive, machine-assisted and
machine-checked proof, namely the theorem prover Isabelle/HOL [9].

In practice, this was done is several steps, as shown in Figure 1. First, in-
creasingly complete prototypes of the kernel were developed in the functional
language Haskell. On one hand, low-level design evaluation was enabled by a
realistic execution environment that is binary-compatible with the real kernel.
On the other hand, the Haskell prototype could be automatically translated in
the theorem prover as the formal design specification, where the refinement to
the abstract specification could be started. This first refinement step represents
a proof that the design is correct with respect to the specification. Since the
Haskell prototype did not satisfy our high-performance requirement, we then

From a Proven Correct Microkernel to Trustworthy Large Systems 3

Isabelle/HOL

Haskell
Prototype

Formal C implementation

High-Performance C ImplementationUser Programs

Hardware
Simulator

Manual
Implementation

+

Formal Design

Formal Abstract Specification

Refinement Proof

Refinement Proof

Automatic
Translation

Automatic
Translation

Fig. 1. The seL4 design process and refinement layers

manually translated it into high-performance C code, giving opportunities for
micro-optimisations. The C code was then translated into Isabelle, using a very
precise and faithful formal semantics for a large subset of the C programming
language [6,11,12]. A second refinement step then proved that the C code, trans-
lated in Isabelle, was correct with respect to the formal design [13].

The refinement being transitive, the two refinement steps give us a formal
proof that the C implementation of seL4 refines its formal specification.

The main assumptions of the proof are correctness of the C compiler and
linker, assembly code, hardware, and boot code. The verification target was
the ARM11 uniprocessor version of seL4 (there is also an unverified x86 port
of seL4). Under those assumptions, the functional correctness proof also gives
us mathematical proof that the seL4 kernel is free of buffer overflows, NULL
pointer dereferences, memory leaks, and undefined execution. The verification
revealed around 460 bugs, both on the design and implementation. The total
effort amounted to 2.5 person years (py) to develop the kernel and 20 py for the
verification, including 9 py invested in formal language frameworks, proof tools,
proof automation, theorem prover extensions and libraries. More details about
the assumptions, implications and effort can be found in [6,5].

The overall key benefit of a functional correctness proof is that proofs about
the C implementation of the kernel can now be reduced to proofs about the spec-
ification for properties preserved by refinement. The correspondence established
by the refinement proof ensures that all Hoare logic properties of the abstract
model also hold for the refined model. This means that if a security property
is proved in Hoare logic about the abstract model (not all security properties

4 J. Andronick

can be), our refinement guarantees that the same property holds for the kernel
source code.

3 Trustworthy, Large Systems

The L4.verified project has demonstrated that with modern techniques and care-
ful design, an OS microkernel is entirely within the realm of full formal verifica-
tion. Although verifying programs with sizes approaching 10 000 lines of code is
a significant improvement in what formal methods were previously able to verify
with reasonable effort, it still represents a significant limit on the verification of
modern software systems, frequently consisting of millions of lines of code.

Our vision to verify such large and complex systems comes from the observa-
tion [1] that not all software in a large system necessarily contributes to a given
property of interest. For instance, the user interface of a medical device might
represent a large amount of code, and ideally, the safe delivery of medicine should
not have to rely on it. Similarly, the entertainment system implementation in a
car should not have any impact on the safety of the braking system.

The idea is thus again to minimise the TCB, minimise the amount of code
which the desirable property relies on, to a size where formally verifying its
exact behaviour is still possible. Formally proving that the property holds for the
overall system then consists in proving that it holds for the trusted components,
modelled by their expected behaviours, and proving that the untrusted parts are
isolated, i.e. that nothing needs to be verified about them. The key here is to use
seL4’s access control mechanisms to enforce this isolation between the trusted
and the untrusted parts: what untrusted components can access is determined by
the set of capabilities they hold. Careful choice of initial capabilities distribution
can thus isolate large parts of software to exclude them from the TCB.

Our approach is to develop methodologies and tools that enable developers
to systematically (i) isolate the software parts that are not critical to a targeted
property, and prove that nothing more needs to be verified about them for the
specific property; and (ii) formally prove that the remaining critical parts satisfy
the targeted property.

More precisely, Figure 2 illustrates the different steps our approach proposes.
First, the architecture of the system defines the components needed for the sys-
tem, and the capabilities they need to hold. This initial capabilities distribution
defines the partition between trusted and untrusted components, with respect
to a desired property for the system. We have defined a capability distribution
language, called capDL [7], with a formal semantics that enables us to formally
describe what the exact initial distribution is expected to be.

The next step is to prove that, given this initial capability distribution and
the identified partition between trusted and untrusted components, the targeted
property holds on the entire system. To avoid having to reason on the complex,
detailed and low-level capDL description, we first abstract the architecture de-
scription into a simpler, high level security architecture. The aim is to have the
abstraction done automatically, together with a formal proof of refinement. The

From a Proven Correct Microkernel to Trustworthy Large Systems 5

Fig. 2. Full-system verification approach for seL4-based system

property is then proved at this abstract level. The trusted components’ behaviour
is modelled as the sequence of kernel instructions they are expected to perform.
At this abstract level, the kernel instructions are described in a high level security
model of the kernel. The untrusted components’ behaviour is modelled as any
instruction authorized by the set of capabilities they hold. The concurrent exe-
cution of all components is modelled as all possible interleavings of instructions
from any component in the system.

The proof of the property implicitly validates the identified partition between
trusted and untrusted components: if the proof succeeds, it means that the
property indeed does not depend on the untrusted components’ behaviours, and
that they will be correctly implemented by any concrete program code. In some
cases, the property may not be proved, revealing some issues in the design that
need to be fixed.

Inspired by seL4’s successful “design for verification” process, we believe that
the design and implementation of the components should be done in parallel in
an iterative process. Although the implementation of the untrusted components
is not constrained, the proof does depend on the trusted components’ behaviour.
Therefore, for the property to hold not only on the abstract level but on the ac-
tual implementation, the trusted components’ code has to be shown correct with
respect to the expected formal behaviour used for the proof. This would follow
and use the refinement approach and framework developed for seL4 verification.
Similarly, we need to prove that the initial boot code leads to a state satisfying
the expected formal initial capability distribution. This is ongoing work. Finally,
we need to prove that the kernel’s code refines its security model used to model
the trusted components instructions. Building on existing seL4 refinement layers
(Figure 1), this comes down to adding a layer on the top of the stack and proving
that the formal abstract specification refines the security model (with additional
work to prove that seL4’s access control mechanism indeed ensures isolation).
All of this is ongoing work.

6 J. Andronick

Fig. 3. The SAC routes between a user’s terminal and 1 of n classified networks

The main gain in this vision is that formal guarantees can be made for a large
complex system’s implementation, while ignoring the identified large untrusted
components, leaving only the trusted components to be formally verified.

The first steps of the approach have been demonstrated on a concrete example
system, namely a multilevel secure access controller (SAC) aiming to isolate
networked services of different classification levels, as illustrated in Figure 3.
In this case study the user only needs to access one network at a time, and
selects the network through a web interface provided by the SAC on a control
network interface. The property the SAC must ensure is that all data from
one network is isolated from each of the other networks. While we assume that
the user’s terminal is trusted to not leak previously received information back
to another network, we otherwise assume that all networks connected to the
SAC are malicious and will collude. The SAC is representative of systems with
simple requirements, but involving large, complex components, here a secure
web interface, network card drivers, a TCP/IP stack for the web server, and
IP routing code, any one individually consisting of tens of thousands of lines of
non-trivial code.

The architecture that has been designed for the SAC is represented in Figure 4,
where the user’s terminal is connected to NIC-D, while the SAC is controlled
through a web interface provided on NIC-C, and for simplicity of explanation,
we assume that the SAC only needs to multiplex two classified networks, NIC-A
and NIC-B. The system’s security architecture has been designed to minimise
the TCB to a single trusted component (in addition to the underlying kernel):
the router manager. The router manager is the only component with simultane-
ous access to both NIC-A and NIC-B. The aim is that it does never use those
accesses (capabilities) to access NIC-A or NIC-B, but only holds them to grant
one or the other to an untrusted router component in charge of routing between
one network and the user terminal. Another untrusted component, the SAC con-
troller, provides a web interface to the control network on NIC-C. When the
SAC needs to switch between networks, the SAC controller informs the router
manager, which deletes the running router component and sanitises the hard-
ware registers and buffers of NIC-D (to prevent any residual information from
inadvertently being stored in it). The router manager then recreates the router,

From a Proven Correct Microkernel to Trustworthy Large Systems 7

Fig. 4. High-level component breakdown of the SAC design. The router manager is
the only trusted component in the system, as no other component has simultaneous
access to both NIC-A and NIC-B.

and grant it access to NIC-D and either NIC-A or NIC-B as required. This al-
lows the router to switch between NIC-A and NIC-B without being capable of
leaking data between the two.

We therefore only need to trust the router manager’s implementation (approx-
imately 1500 lines of code) not to violate the isolating security policy, but can
ignore the two other large untrusted components, that we implement as Linux
instances, comprising millions lines of code. At least this is what we expect, we
now have to prove it.

For this case study, we first formalised the low level design in capDL, leading
to a detailed description of the initial capability distribution in terms of kernel
objects, as shown in Figure 5. Then we manually abstracted this design into
an abstract security architecture between high level components, as the one in
Figure 4. Doing this step automatically, together with a proof of refinement, is
part of our future work. Finally we have formally shown that with this security
architecture, information cannot flow from one back-end network to another.
Details of the proof can be found in [2].

What remains to be done for this case study is to prove that (1) the router
manager’s code refines its formal behaviour used for the proof; (2) the booting
code leads to the state illustrated in Figure 5. We also need to prove the kernel’s
security model refinement to the code, which in this case would also involve
extending our existing functional correctness proof to the x86 version of seL4
used for the case study.

This case study illustrates our vision of how large software systems consisting
of millions of lines of code can still have formal guarantees about certain targeted
properties. This is achieved by building upon the access control guarantees pro-
vided by the verified seL4 microkernel and using it to isolate components such
that their implementation need not be reasoned about.

8 J. Andronick

Fig. 5. Low-level Design

Acknowledgments. The proof of the SAC mentioned above was conducted almost
entirely by David Greenaway with minor contributions from Xin Gao, Gerwin
Klein, and myself. The following people have contributed to the verification and/or
design and implementation of seL4 (in alphabetical order): June Andronick,
Timothy Bourke, Andrew Boyton, David Cock, Jeremy Dawson, Philip Derrin
Dhammika Elkaduwe, Kevin Elphinstone, Kai Engelhardt, Gernot Heiser,
Gerwin Klein, Rafal Kolanski, Jia Meng, Catherine Menon, Michael Norrish,
Thomas Sewell, David Tsai, Harvey Tuch, and Simon Winwood.

From a Proven Correct Microkernel to Trustworthy Large Systems 9

References

1. Alves-Foss, J., Oman, P.W., Taylor, C., Harrison, S.: The MILS architecture for
high-assurance embedded systems. Int. J. Emb. Syst. 2, 239–247 (2006)

2. Andronick, J., Greenaway, D., Elphinstone, K.: Towards proving security in the
presence of large untrusted components. In: Klein, G., Huuck, R., Schlich, B. (eds.)
5th SSV, Vancouver, Canada, USENIX (October 2010)

3. Dennis, J.B., Van Horn, E.C.: Programming semantics for multiprogrammed com-
putations. CACM 9, 143–155 (1966)

4. Heiser, G., Andronick, J., Elphinstone, K., Klein, G., Kuz, I., Ryzhyk, L.: The road
to trustworthy systems. In: 5th WS Scalable Trusted Comput., Chicago, IL, USA
(October 2010)

5. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: Formal verification of an OS kernel. CACM 53(6), 107–115
(2010)

6. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: Formal verification of an OS kernel. In: 22nd SOSP, Big Sky,
MT, USA, pp. 207–220. ACM, New York (October 2009)

7. Kuz, I., Klein, G., Lewis, C., Walker, A.: capDL: A language for describing
capability-based systems. In: 1st APSys, New Delhi, India (to appear, August
2010)

8. Liedtke, J.: Towards real microkernels. CACM 39(9), 70–77 (1996)
9. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-

Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)
10. Saltzer, J.H., Schroeder, M.D.: The protection of information in computer systems.

Proc. IEEE 63, 1278–1308 (1975)
11. Tuch, H.: Formal Memory Models for Verifying C Systems Code. PhD thesis, School

Comp. Sci. & Engin., University NSW, Sydney 2052, Australia (August 2008)
12. Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: Hofmann,

M., Felleisen, M. (eds.) 34th POPL, Nice, France, pp. 97–108 (January 2007)
13. Winwood, S., Klein, G., Sewell, T., Andronick, J., Cock, D., Norrish, M.: Mind the

gap: A verification framework for low-level C. In: Berghofer, S., Nipkow, T., Urban,
C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 500–515. Springer,
Heidelberg (2009)

Static Contract Checking with Abstract
Interpretation

Manuel Fähndrich and Francesco Logozzo

Microsoft Research, Redmond, WA (USA)
{maf,logozzo}@microsoft.com

Abstract. We present an overview of Clousot, our current tool to
statically check CodeContracts. CodeContracts enable a compiler and
language-independent specification of Contracts (precondition, postcon-
ditions and object invariants).

Clousot checks every method in isolation using an assume/guarantee
reasoning: For each method under analysis Clousot assumes its precondi-
tion and asserts the postcondition. For each invoked method, Clousot as-
serts its precondition and assumes the postcondition. Clousot also checks
the absence of common runtime errors, such as null-pointer errors, buffer
or array overruns, divisions by zero, as well as less common ones such as
checked integer overflows or floating point precision mismatches in com-
parisons. At the core of Clousot there is an abstract interpretation en-
gine which infers program facts. Facts are used to discharge the assertions.
The use of abstract interpretation (vs usual weakest precondition-based
checkers) has two main advantages: (i) the checker automatically infers
loop invariants letting the user focus only on boundary specifications; (ii)
the checker is deterministic in its behavior (which abstractly mimics the
flow of the program) and it can be tuned for precision and cost. Clousot em-
bodies other techniques, such as iterative domain refinement, goal-directed
backward propagation, precondition and postcondition inference, and
message prioritization.

1 Introduction

A limiting factor to the adoption of formal methods in everyday programming
practice is that tools do not integrate well into the existing programmingworkflow.
Often, the price programmers have to pay to enjoy the benefits of formal methods
include the use of non-mainstream languages or non-standard compilers.

The CodeContracts project [16] at Microsoft Research aims at bridging the
gap between practice and formal specification and verification using the princi-
ple of least interference in the programmer’s existing workflow. The main insight
of CodeContracts is that program specifications can be authored as code [17].
Contracts take the form of method calls to a standard library. Therefore Code-
Contracts enable the programmer to write down specifications as Boolean ex-
pressions in their favorite. Net language (C#, F#, VB . . .). This has several

B. Beckert and C. Marché (Eds.): FoVeOOS 2010, LNCS 6528, pp. 10–30, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Static Contract Checking with Abstract Interpretation 11

advantages: the semantics of contracts is given by the IL produced by the com-
piler, no compiler modification is required, contracts are serialized and persisted
as code (no need for separate parsing, type-checking . . .), all the IDE support
(intellisense, code refactoring . . .) the programmer is used to is automatically
leveraged.

CodeContracts provide a standard and uniform way to describe contracts
which can then be consumed by several tools. At Microsoft Research, we have
developed tools to automatically generate the documentation (ccdoc), to perform
runtime checking (ccrewrite) and to perform static checking (cccheck, internally
called Clousot). The tools are available for download at

http : //msdn.microsoft.com/es− ar/devlabs/dd491992(en− us).aspx

A main difference of our static contract checker, with respect to similar and exist-
ing ones is that it is based on abstract interpretation [9] instead of solely relying on
a theorem prover (automatic [20,2,19] or semiautomatic [3]). The use of abstract
interpretation allows the checker to focus on some properties of interest, as for
instance non-nullness, linear arithmetic or array invariants while forgetting more
complex or unusual ones such as existentially quantified or arbitrarily universally
quantified properties. An abstract interpretation-based static checker has the ad-
vantage of being more automatic and tunable than theorem prover-based ones.
For instance, it can automatically compute loop invariants, which frees the pro-
grammer from the burden of specifying (often self-evident) loop invariants. The
built-in abstract domains are optimized for the properties of interest, so that the
precision/cost ratio can be finely set. Furthermore, the analysis is deterministic,
in that it does not depend on internals of theorem provers such as random seeding,
quantifier instantiation, or matching loops.

A number of automated verification tools based on separation logic essentially
also use a fixpoint computation based on abstract interpretation [23,40,14]. Our
approach is very similar to theirs in that our optimistic heap abstraction
(Section 4) effectively uses an implicit form of separation logic, where all heap loca-
tions are assumed to be joined by separating conjunctions. The optimistic aspect
of our heap abstraction arises in the fact that we don’t ever try to prove the sepa-
ration itself, we only assume it. This approach works well for program parts that
do not depend on complicated aliasing or data structure invariants. Therefore our
approach is not suited for proving properties about pointer relations themselves.

2 CodeContracts by Example

The class in Fig. 1 in an example of a C# class annotated with CodeContracts
specifications. Contracts are defined by means of calls to static methods of a
Contract class, part of .Net since v4.0. The class implements a simple stack of
non-null objects. Externally, one can create a stack, can push or pop elements,
can inquire about the number of stack elements and whether the stack is empty
or not. Internally, the stack is backed-up by two fields: a growing array of objects
containing the stack elements and a pointer to the next free position in the stack.

12 M. Fähndrich and F. Logozzo

public class NonNullStack<T> where T : class

{

private T[] arr;

private int nextFree;

[ContractInvariantMethod] /* Define the object invariant */

void ObjectInvariant()

{

Contract.Invariant(arr !=null);

Contract.Invariant(nextFree >= 0);

Contract.Invariant(nextFree <= arr.Length);

Contract.Invariant(Contract.ForAll(0, nextFree, i => arr[i] != null));

}

public NonNullStack(int len)

{

Contract.Requires(len >= 0); /* Method precondition */

this.arr = new T[len];

this.nextFree = 0;

}

public void Push(T x)

{

Contract.Requires(x != null);

if (nextFree == arr.Length)

{

var newArr = new T[arr.Length * 2]; /* bug here */

for (int i = 0; i < nextFree; i++) newArr[i] = arr[i];

arr = newArr;

}

this.arr[nextFree++] = x;

}

public T Pop()

{

Contract.Requires(!this.IsEmpty);

Contract.Ensures(Contract.Result<T>() != null); /* Method postcondition */

return this.arr[--nextFree];

}

public bool IsEmpty { get { return this.nextFree == 0; } }

public int Count { get { return this.nextFree; } }

}

Fig. 1. A (buggy) implementation of a stack of non-null values annotated with Code-
Contracts. Contract.Requires specifies the precondition, Contract.Ensures specify the
postcondition, Contract.Result denotes the return value (not expressible in C#). The
attribute ContractInvariantMethod tags the method containing the object invariant
(specified with the Contract.Invariant).

Static Contract Checking with Abstract Interpretation 13

As a programmer, one would like to express some simple properties about
those fields. The first property is that the array is never null and that the pointer
can never be negative. Furthermore, the stack pointer can never be larger than
the array length (it can be equal when the stack is full). Finally, all the elements
in the interval a[0] . . . a[nextFree− 1] should be not-null.

2.1 Specification

The formal specification with CodeContracts of those invariants is given by the
method ObjectInvariant if Fig. 1. CodeContracts require the object invari-
ant to be specified in a void method annotated with the attribute Contract-
InvariantMethod. The object invariant method body can only contain calls
to Contract.Invariant, which specify the object invariant. Valid conditions for
contracts are language expressions, including those containing method calls (pro-
vided the callee is marked with the [Pure] attribute) augmented with dummy
methods to specify limited universal (Contract.ForAll) and existential quan-
tification (Contract.Exists).

Preconditions are expressed via Contract.Requires. In the example, the pre-
condition of the NonNullStack constructor requires the caller to pass a non-
negative initial size for the stack.

Postconditions are expressed via Contract.Ensures. In the example, the post-
condition of the method Pop ensures that the returned value is not-null. The
void method call Contract.Result 〈T〉() is used to denote the return value of
the method, which is not directly expressible in the source language.

CodeContracts, being simple method calls, are totally transparent to the com-
piler, and thanks to the shared type system in .Net, also to the different lan-
guages. Programmers can author Contracts in their favorite .Net language (C#,
VB, F# . . .). The compiler compiles contracts to straight CIL (Common Inter-
mediate Language [15]). Our tool extracts the contracts from the CIL and use
them for multiple purposes: Documentation generation, Runtime checking and
Static checking (Clousot).

2.2 Static Checking

Clousot analyzes every method in isolation, using the usual assume/guarantee
reasoning. The precondition of the method is turned into an assumption and
the postcondition into an assertion. For public methods, the object invariant is
assumed at the method entry and asserted at the exit point. For each method
call, its precondition is asserted, and the postcondition assumed.

From a user-perspective, Clousot makes the distinction between explicit and
implicit assertions (or proof obligations). Explicit proof obligations are those
provided by the user as specifications or as an explicit assertion. In the running
example, the object invariant and the postcondition of Pop are the assertions
to be proved. Implicit proof obligations are those defined by the CIL language
semantics, to avoid runtime errors such as null deference, index out of range for
arrays or overflows for checked arithmetic expressions, but also buffer overruns

14 M. Fähndrich and F. Logozzo

which do not cause an exception to be thrown, but may compromise the stability
(and security) of the program. In the default configuration, Clousot only checks
the explicit proof obligations, to avoid overwhelming the user with too many
warning messages. At first, we want the user to focus on boundary specifications.
Once those are resolved (possibly going to zero warnings), the programmer can
(selectively) enable the checking of the implicit proof obligations.

The analysis proceeds by performing some abstract interpretations of the
method body, where all the contracts are turned into asserts or assumes. Clousot
contains abstract domains tailored to specific properties of interest, such as heap
location equalities, non-nullness, linear arithmetic, disjunctions and simple uni-
versally quantified facts. Those properties are enough to analyze and verify the
example of Fig. 1.

Static Contract Checking. To prove the object invariant for NonNullStack,
one must be able to track nonnullness (to prove that arr! =null), linear arith-
metic relationships (to prove that 0 ≤ nextFree ≤ arr.Length) and quantified
facts (to prove that ∀i ∈ [0, arr.Length).arr[i]! =null). The most interesting
case is the implementation of Push. First it checks if the backing array is full. If
it is, it allocates an array twice as large and copies all the original elements into
it. Finally it updates the array with x and increments the stack pointer.

The nonnull analysis infers that in both if-branches arr ! = null, so it con-
cludes that the first conjunct of the invariant is satisfied.

The numerical analysis infers in one case (array full) that 0 ≤ nextFree ≤
arr.Length and in the other that 0 ≤ nextFree < arr.Length, so that 0 ≤
nextFree ≤ arr.Length holds before the array store. The method exit point is
reached only if the store was successful, i.e., the index was inbounds, so that
the abstract element can be refined to 0 ≤ nextFree < arr.Length, and hence
prove the other two conjuncts of the object invariant.

The universally quantified component of the object invariant is a little bit
trickier. We know that the elements arr[0] . . . arr[nextFree− 1] are not null
(from the object invariant), and that the element to be pushed is not null (from
the precondition). When there is still space, we can easily conclude that the el-
ements arr[0] . . . arr[nextFree− 1], arr[nextFree] are all not null. When there
is no more space, a new array is allocated and all the elements are copied into it.
Proving that newArr[0] . . .newArr[nextFree− 1] are all not null requires infer-
ring the quantified loop invariant ∀j ∈ [0, i]. arr[j]! =null. In Clousot we have
new abstract domains to infer such invariants efficiently (Sect. 5.4).

Static Runtime-Error Checking. Once all the boundary contracts are proved,
the user can opt-in to prove the absence of common runtime errors in the imple-
mentations. For instance, the user can turn on the non-null and array bounds
checking. Then every time a field, an array, and in general a reference is ac-
cessed, Clousot will try to prove that such a reference is not null. In our exam-
ple, Clousot will prove the absence of null references in the class. As for array
bounds checking, every time an array is created, read or written, Clousot will
try to prove that the access is in-bounds. For instance for an array store a[exp]

Static Contract Checking with Abstract Interpretation 15

Clousot will emit the condition 0 ≤ exp (underflow) and exp < a.Length (over-
flow). In our example the most interesting case is Push. When the stack is full,
then a new array is allocated and all the elements are copied into it. To prove
the array accesses correct, Clousot infers the loop invariant 0 ≤ i ≤ nextFree,
which combined with the guard nextFree == arr.Length, the array creation
postcondition newArr.Length = 2 ∗ arr.Length and the loop guard, allows prov-
ing the safety of the newArr store and arr read inside the loop. At the end
of the loop, one only knows that 0 ≤ nextFree ≤ newArr.Length, which is
not enough to prove the safety of the next store instruction. In fact, when
a.Length = 0, then 0 = nextFree = newArr.Length and the store is in-
deed causing an overrun. The programmer can fix it by changing the alloca-
tion expression to arr.Length ∗ 2 + 1, in which case Clousot will discover that
nextFree < newArr.Length, and hence validating the store.

The programmer can be more picky, and may want to prove more things about
the program. He/she can turn on the arithmetic obligations switch in Clousot
to check for common arithmetic errors such as division by zero or the overflow
of checked expressions. In the particular example Clousot discovers that the
array allocation newint[arr.Length∗ 2 + 1] may cause an overflow exception.
The expression arr.Length ∗ 2 + 1 may overflow to a negative Int32, that when
converted into a UInt32will cause an overflow. Inserting an explicit check against
overflow will remove the warning.

Finally, Clousot helps to reduce the annotation burden by inferring some
“easy” postconditions. In the default settings, Clousot infers postconditions only
for: (i) properties and (ii) methods that return a non-null value. For the get-
ter IsEmpty in our example, Clousot infers the postcondition Contract.Result
〈bool〉() == (this.nextFree == 0). The postcondition is then propagated to
all the call sites, so that for instance one can prove the safety of the array load
in the Pop method.

3 The Analysis

Target Language. Clousot works at the bytecode level (CIL, Common In-
termediate Language [15]). This is different from many other static analyzers,
which work at the source level. There are several advantages of working at the
bytecode level. First, the analysis is language independent: Clousot can analyze
code produced by any compiler generating CIL (C#, VB, F# . . .). Second, the
analysis leverages the compiler to give semantics to complex constructs. For in-
stance C# 3.0 introduced type inference for locals. The type inference algorithm
is quite complicated, but once the compiler inferred all the types, then it gen-
erates straight IL. A source level analyzer for C# 3.0 would have to replicate
the compiler type inference algorithm. A bytecode level analyzer can simply an-
alyze the compiled IL. Third, the analysis is stable among different versions of
the same language: languages change, CIL stays the same. For instance, C# 4.0
added many features over C# 3.0, such as the dynamic keyword or named pa-
rameters. A source level analyzer would have required (at least) a new parser to

16 M. Fähndrich and F. Logozzo

adapt to the new syntax. To the bytecode level analyzer the upgrade is totally
transparent. Fourth, Contracts (serialized and persisted as CIL) do not need to
be decompiled to some high level description.

Bytecode analysis has drawbacks too [31]. The main one is that high-level
structure is lost, so that some additional analysis must be carried out to
recover some of the information. Furthermore classical static analysis refinement
techniques such as loop unrolling are harder to implement.

Phases. Clousot has three main phases: Inference, Checking and Propagation.
During the inference phase, the methods of the assemblies to analyze are sorted,
so that callees are analyzed before their callers when possible. If there is a cyclic
dependency between methods, it is broken by picking one method in the chain.
For each method under analysis, its IL is read from the disk and its contracts
are extracted. Then the method is analyzed. By analysis we mean a fixpoint
computation with widening over a suitable abstract domain. First, aliasing is
resolved (under some optimistic hypotheses) and the method code is abstracted
into a scalar program. Then further analyses are run on the top of it to infer
facts on the program. In the checking phase, the (explicit and implicit) proof
obligations are collected, and the inferred facts are used to discharge them. If a
proof obligation cannot be discharged, then the analysis is refined. If the more
refined analysis fails, then a warning is reported to the user. Eventually, the
inferred facts are used to materialize method postconditions that are attached
to the method under analysis, and hence automatically propagated to the call
sites.

4 Basic Framework

The inference phase is in its turn divided into two phases: (i) the scalar program
construction and expression recovery; and (ii) the fact discovery. The first phase
takes care of building the control flow graph (CFG), extracting the contracts and
inserting them at the right spots, get rid of the stack, perform a heap analysis,
and reconstruct larger expressions lost during compilation. The output of this
phase is a program in scalar form. The second phase takes as input the scalar
program, and performs a series of value analyses to infer facts for each program
point in the method body.

Contract Extraction and CFG Construction. The code to be analyzed
is factored into subroutines: one subroutine per method body, one subroutine
for a method’s preconditions, and one subroutine for a method’s postconditions.
The actual code to be analyzed is then formed by inserting calls to appropriate
contract subroutines in the method body. Additionally, at each method call-site,
we insert a call to the precondition subroutine of the called method just prior
to the actual call, and a call to the corresponding postcondition subroutine im-
mediately following the call. The actual contract calls to Contract.Requires or
Contract.Ensures turn into either assert or assume statements depending on
their context. Requires on entry of a method turn into assume and Ensures on

Static Contract Checking with Abstract Interpretation 17

exit of a method turn into assert. Conversely, at call-sites, Requires turn into
assert, and Ensures turn into assume. Conditional branches are expanded into
non-deterministic branches with assume statements on the outgoing edges. In
this manner, all conditions are simply sequences of CIL instructions, no different
than ordinary method body code, and all assumptions are assume statements,
and all explicit proof-obligations are assert statements.

Heap Abstraction. The heap is abstracted by a graph, the Heap-graph, which
maintains equalities between access paths (rooted in a local or a method param-
eter). Nodes in the graph denote symbolic values or heap locations, and edges
denote containment or field selection. The intuitive meaning is that if two paths
in the graph lead to the same node, then: (i) in the concrete executions they
always represent the same value; and (ii) this value is symbolically denoted by
the same symbolic value sv. The heap graph abstraction is optimistic in that it
makes certain assumptions about non-aliasing of data structures that may not be
correct in all executions. It is the only place in Clousot where such assumptions
are made. Namely we assume that memory locations not explicitly aliased by the
code under analysis are non-aliasing. This is clearly an optimistic assumption,
but works very well in practice. Second, we guess the set of heap locations that
are modified at call-sites (we do not require programmers to write heap modifi-
cation clauses). Our guesses are often conservative, but may be optimistic if our
non-aliasing assumptions are wrong. These assumptions allow us to compute a
value numbering for all values accessed by the code, including heap accessing ex-
pressions. We also introduce names for uninterpreted functions marked as [Pure]
by the programmer. This provides reasoning over abstract predicates. Finally,
abstracting the heap also removes old-expressions in postconditions that refer to
the state of an expression at the beginning of the method.

To compute the value numbering, we break the control flow of the analyzed
code into maximal tree fragments. The root of each tree fragment is a join point
(or the method entry point) and is connected by edges to predecessor leafs of
other tree fragments. The set of names used by the value numbering is unique
in each tree fragment. Edges connecting tree leafs to tree roots contain a set of
assignments effectively rebinding value names from one fragment to the names
of the next. The resulting code is in mostly passive form, where each instruction
simply relates a set of value names. The assignments on rebinding edges between
tree fragments provide a way to transform abstract domain knowledge prior to
the join from one set of value names to the next, so that the join can operate
on a common set of value names. The rebinding acts as a generalization of
φ-nodes. In contrast to φ-nodes which provide a join for each value separately,
our rebindings form a join for the entire state simultaneously, which is crucial
to maintain relational properties.

Example 1. Consider the code snippet in Fig. Fig. 2. The heap analysis captures
the fact that p.b and a.b are aliases starting from program point (∗).

18 M. Fähndrich and F. Logozzo

void HeapExample(bool b, A a, P p)

{

p.b = a.b; // (*)

if (b)

a.b.x = 12;

else

p.b.x = 4;

Contract.Assert(a.b.x >= 4);

}

a

b

���
��

��
��

� p

b

����
��

��
��

sv1

x

��
sv2

Fig. 2. A simple program and the corresponding Heap abstraction

The heap graph looks like the one in Fig. 2 (intermediate address nodes for
locals and fields have been omitted for brevity) where symbols on edges denote
the fields being selected, and sv1 is the symbolic value of a.b, and sv2 is the
symbolic value of a.b.x. �	

In the following we let sv(p) denote the symbolic value assigned by the heap
analysis to the path p.

Expression Reconstruction. The expression reconstruction analysis allows
to recover some of the structure of Boolean and Arithmetic expressions that
may have been lost during the compilation. The analysis is similar in many
aspects to the symbolic abstract domain of [36]. A main difference is that the
depth of exploration for the expression reconstruction is dynamically chosen by
the particular analysis (essentially performing a widening). A comprehensive
discussion of the pros and the cons of a bytecode level analysis is in [31].

5 Fact Inference

5.1 NonNull Analysis

The NonNull analysis discovers those references which are definitely not-null or
definitely null. Given a reference r, the analysis assigns r a value in the flat
lattice ⊥ � N, NN � �, with N meaning that the reference is always null and NN
meaning that the reference is never null.

5.2 Numerical Analysis

The numerical analysis discovers ranges and linear arithmetic relationships be-
tween symbolic values. Those relationships are then used to discharge proof
obligations containing numerical conditions. The numerical analysis is a usual
forward fixpoint computation with widening [7] parametrized by a numerical
abstract domain.

Transfer functions corresponding to CIL instructions are parametrized by the
underlying abstract domain. For instance, when an array store ldelem a[exp]

Static Contract Checking with Abstract Interpretation 19

is encountered, two numerical constraints are pushed to the numerical abstract
domain: 0 ≤ sv(exp) and sv(exp) < sv(a.Length).

Example 2. Let us consider the example in Fig. 2. A simple numerical domain
infers that sv2 = 12 at the end of the true branch of the conditional, and sv2 =
4 at the end of the false branch. As a consequence, at the exit point of the
conditional 4 ≤ sv2 ≤ 12, which is sufficient to prove the assertion. �	

Thresholds are used to improve the precision of the widening (as in [4]). The
thresholds are collected from the constants appearing in assumptions and as-
sertions in the method. The numerical analysis assumes the common case that
arithmetic expressions do not overflow, but it explicitly checks it in presence
of checked operations 1. Therefore our assumption can be easily checked by in-
structing the compiler to threat all the operations as checked. Clousot will then
try to prove that they do not overflow.

Numerical Abstract Domains. They abstract the values of numerical pro-
gram variables. In the literature many numerical abstract domains have been
developed with different precision/cost tradeoffs. Intervals [9] infer properties in
the form x ∈ [a, b], where a, b ∈ Z ∪ {−∞, +∞}. Intervals are very efficient yet
unsuitable for symbolic reasoning as they do not keep track of relations among
different variables. At the opposite end of the precision spectrum Polyhedra [13]
capture arbitrary linear inequalities in the form of

∑
ai · xi ≤ b. Polyhedra are

very precise yet expensive (the worst case, easily attained in practice is expo-
nential). In between these two domains, other domains (weakly relational) have
been developed to tune the precision/cost ratio. Examples include Octagons [35]
(±x ± y ≤ b), TVPI [39] (a1x + a2y ≤ b) or Octahedra [6] (

∑
±xi ≤ b). In

Clousot, we first tried using some of these domains, but we found them unfit
for our purposes. For instance, Octagons introduce a non-negligible slowdown
(the complexity is cubic in the number of variables, with a large multiplicative
constant). A known technique to have Octagons scale up is bucketing (or pack-
ing), where buckets are restricted to a certain fixed number, and some weak
relations are kept by using pivot variables. We rejected buckets, as they make
the analysis result dependent on the order in which the heap analysis generates
the variables, introducing a degree of non-determinism in our analysis which we
prefer to avoid. We also tried Polyhedra, but early results turned out to be very
bad [18]. As a consequence we developed a series of new numerical abstract
domains, refining and combining existing ones. They are mainly validated by
empirical experimenting and tuning.

DisIntervals. DisIntervals are a simple extensions of Intervals to a finite dis-
junction. Formally they are an abstraction of the disjunctive completion of In-
tervals [8]. Elements of Disintervals are normalized sequences of non-overlapping
intervals: [a0, b0], . . . [ai, bi], [ai+1, bi+1] . . . [an, bn] with the property that only a0
can be −∞; only bn can be +∞ and that ∀i ∈ [0, n − 1].bi < ai+1. Usual
1 The CIL instruction set has checked counterparts for all the arithmetic operations

which cause an exception to be thrown if an overflow has occurred.

20 M. Fähndrich and F. Logozzo

operations on Intervals can be easily lifted to Disintervals (only the widen-
ing needs some care). DisIntervals present a very cheap way to represent non-
relational disjunction as well as common “negative” information. For instance x ∈
[−∞,−1], [1, 5], [50, +∞] is a compact representation for x �= 0∧x �= 6∧. . . x �= 49.
This kind of information is needed for instance when dealing with enumerations.

In early versions of Clousot we had one abstract domain for Intervals and one
for simple disequalities. It turned out that combining the two into the Disinter-
val abstract domain improves the precision, simplifies the implementation, and
produces no observable slow-down in our tests and experiments.

Zones. DisIntervals, or Intervals are non-relational domains which are useful in
many situations. However, in modular static analysis one needs to perform some
form of symbolic reasoning. The easiest one involves simple upper bounds.

Example 3. Let us consider the method AllZero in Fig. 3. (Dis)Intervals infer
the loop invariant sv(i) ∈ [0, +∞], which is enough to prove that the array store
will not cause an underflow. To prove no overflow will ever occur, one needs to
propagate the constraint sv(i) < sv(a.Length). To prove the assertion at the end
of the loop, one needs to infer the loop invariant sv(i) ≤ sv(a.Length), which
together with the loop exit condition is exactly the assertion. �	

void AllZero(int[] a)

{

Contract.Requires(a != null);

int i;

for(i = 0; i < a.Length; i++) a[i] = 0;

Contract.Assert(i == a.Length);

}

Fig. 3. Example requiring a numerical abstract
domain able to perform symbolical reasoning

In Clousot, WeakUpperBounds
capture strict upper-bounds x <
y0, . . . yi and WeakUpperBound-
sEqual capture upper-bounds x ≤
y0, . . . yi. They enable very effi-
cient implementations in terms of
maps. We call Disintervals com-
bined with WeakUpperBounds
and WeakUpperBoundsEqual
Pentagons [32]. Pentagons are es-

sentially a weak form of the zones abstract domains [33]. The major difference
is that Pentagons avoid performing the costly closure operation, relying instead
on hint operators to keep acceptable precision at join points [29].

Linear Equalities. We use the abstract domain of linear equalities [26] to
infer and propagate relations in the form

∑
ai · xi = b. The linear equalities

domain enables a very efficient implementation in terms of sparse arrays which
largely compensates for the cubic cost. When combined with Pentagons, Linear
Equalities can produce very powerful analyses at a moderate cost.

Example 4. Let us consider the example in Fig. 4 (taken from [38]): At loop
exit, (Dis)intervals infer sv(i) ∈ [1, +∞], sv(j) ∈ [−∞, +∞], sv(x) ∈ [0, 0], sv(y) ∈
[−∞, +∞] and Linear Equalities infer sv(x)−sv(y) = sv(i)−sv(j). At the assertion
we can then conclude that sv(i) = sv(j). �	

Static Contract Checking with Abstract Interpretation 21

void Foo(int i, int j)

{

var x = i, y = j;

if(x <= 0) return;

while(x > 0)

{ x--; y--; }

if(y == 0)

Contract.Assert(i == j);

}

Fig. 4. Example needing the
inference of the loop invariant
〈x − y = i − j, x ∈ [0, +∞]〉,
easily obtained by combining
Linear Equalities and Intervals

Please note that even if the assertion has a shape
that would fit other weak relational domains,
proving it require inferring a relation involving
four variables, which is out of reach of those do-
mains. This an extremely common case that we
found over and over.

Combination of Domains. Every single ab-
stract domain sketched above is weak by itself,
but their combination can produce very power-
ful analyses [10]. The basis of the combination of
numerical abstract domains in Clousot is the re-
duced product [9]. Given two abstract domains A1
and A2, the cartesian product A1 × A2 is equiv-
alent to running the two analyses separately, so
that no precision gain is obtained by the com-
position (worse, in general it can slow down the

analysis). If the two domains are allowed to communicate, by either pulling or
pushing information, then the analysis precision can be dramatically improved.
The example of the previous section is an example of pushing: By pushing the
information that sv(x) = 0 at the end of the loop, the abstract state for linear
equalities is refined to sv(x) − sv(y) = sv(i) − sv(j) ∧ sv(x) = 0. Please note that
linear equalities alone cannot infer that sv(x) = 0, as this is a consequence of
the loop invariant sv(x) ≥ 0, which is not a linear equality. Pulling is mainly
used during the fixpoint computation when transfer functions may explictly ask
other domains to refine some information, or if some relation holds. For instance
suppose that we have to evaluate the expression sv(u) − sv(w) in an interval
environment where sv(u) ∈ [0, +∞], sv(w) ∈ [0, +∞]. With no additional infor-
mation the result can be any Int32. Intervals can pull information from other
domains (oracles), for instance asking if sv(w) < sv(u). The oracle can return
four possible outcomes: �, meaning “I do not know”; ⊥ meaning this program
point is unreachable, so the evaluation simply returns ⊥; true so that the result
can be refined to [1, +∞]; false meaning that sv(w) ≥ sv(u) holds, so that the
result can be refined to [−∞, 0]. To avoid computing a fixpoint computation
among the different abstract domains at every single step of the analysis, the
domains are ordered according to a tree structure (as in [10]) where the most
precise yet expensive domains are at the root, and the less precise yet cheaper
are towards the leafs. Every domain is allowed to pull information from every
domain, but only higher-rank domains can push information to lower-rank ones.

Subpolyhedra. In the general setting of contract checking, arbitrary linear
inequalities are needed for effective symbolic reasoning. For instance in the ex-
ample in Fig. 5, one needs to infer the loop invariant 0 ≤ sv(i) + sv(index) ≤
sv(output.Length).

Using the classical Polyhedra turned out to be far too expensive [18]. We are
aware that many advances have been made to optimize them [1,24], but we are

22 M. Fähndrich and F. Logozzo

void ArrayCopy(int[] input, int[] output, int index)

{

Contract.Requires(index >= 0);

Contract.Requires(output.Length - index >= input.Length);

for (var i = 0; i < input.Length; i++) output[i+index] = input[i];

}

Fig. 5. Simple example where fully fledged relational numerical domains are needed

still skeptical that they can scale up to the needs of Clousot’s customers. Clas-
sical Polyhedra have a double representation for an abstract state: geometrical
(where the Polyhedra is expressed as a set of points and generators) and algebraic
(maintaining the tableau of equations defining the polyhedron). Some abstract
operations are very efficient in one form, some in another. Converting from one
form to its dual is very expensive (exponential) and it has been shown that it
cannot be done faster [27]. Hence we developed a new abstract domain, Supoly-
hedra, which is as expressive as Polyhedra, but which gives away some of the
inference power. The main, simple idea, is to split a linear inequality

∑
ai ·xi ≤ b

into an equality and an interval via a slack variable β:
∑

ai ·xi = β∧β ∈ [−∞, b].
Each of the two conjuncts is handled by a separate abstract domain, i.e., linear
equalities and intervals. There are two main challenges here. The first one is to
have a precise enough join, the pairwise join being simply to rough. The second
one is to have an effective reduction algorithm to get the tightest bounds on the
intervals. We have defined in [29] a join (and widening) operator which allow
fine tuning the two points above, de facto defining a family of abstract domains,
where the precision/cost ratio can be adjusted: more precise domains are ob-
tained by improving the hints [28] at join/widening points and the reduction
subroutine. In our tests Subpolyhedra scales to hundreds of variables, going well
beyond the current state of the art of Polyhedra implementations.

5.3 Floating Point Values

We have an implementation of Intervals supporting the IEEE 754 standard. We
have not yet extended this support to relational domains, as for instance [34,5], so
that the amount of reasoning that can be done on floats is very limited. We have an
analysis to figure out possible precision mismatches in double comparisons caused
by implicit conversions between 80 and 64 bits of precision. Such conversions may
introduce subtle bugs. This is best illustrated by the example in Fig. 6.

One may expect the postcondition to trivially hold. However, using an au-
tomatic test generation tool as e.g. PEX [41] one can easily find counterexam-
ples to the postconditions! The ECMA standard [15] allows locals (including
parameters) to be passed with the full precision of the architecture, whereas
fields should always be truncated to 64 bit doubles. In an x86 architecture,
double registers are 80 bits long. As a consequence, amount is passed as an
80 bit value, the result of this.balance+ amount is stored in a CPU register

Static Contract Checking with Abstract Interpretation 23

private double balance;

public void Deposit(double amount)

{

Contract.Requires(amount >= 0.0);

Contract.Ensures(this.balance == Contract.OldValue(balance) + amount);

balance = balance + amount;

}

Fig. 6. Example showing problems induced by the extra-precision for doubles allowed
by the ECMA standard. The field balance is stored into a 64 bits memory location
whereas the result of balance + amount is stored into a 80 register.

(80 bits), but when written back to memory, it gets truncated to 64 bits. As
a consequence the postcondition may be violated at runtime for specific val-
ues of amount. Clousot tracks floating point types of a symbolic values accord-
ing to the flat lattice ⊥ � Float, CPUFloat � �, Float �= CPUFloat. In the
example, Clousot infers balance+ amount : CPUFloat and balance : Float,
and hence issues a warning for a possible precision mismatch. An explicit cast
forces the truncation: the correct postcondition is hence balance == (double)
(Contract.OldValue(balance)+amount).

5.4 Arrays and Collections

The abstract domains for scalar values are lifted to sequences (like arrays or collec-
tions) via a parametric segmentation functor [12]. The functor automatically and
semantically divides (e.g.) arrays into sequences of consecutive non-overlapping
possibly empty segments. Segments are delimited by sets of boundary expressions
and abstracted uniformly. The overhead of the analysis is very low (around 1% on
large framework libraries). Once again we developed a new (functor) abstract do-
main as existing solutions turned out either to require too much extra-assistance
from the user [25] or to be inherently not-scalable [21,22].

Example 5. At the end of the for loop of the (incorrect version of the) method
Push, the array analysis associates the following two abstract elements to the

arrays:
arr �→ {0}NN{sv(i), sv(nextFree), sv(arrLen)}?

newArr �→ {0}NN{sv(i), sv(nextFree)}?N{sv(newArrLen)?}

stating that all the elements of newArr up to nextFree are not-null, but also
that sv(i) = sv(nextFree) (expressions in bounds are equal) and that it may be
the case 0 = sv(nextFree) = sv(newArrLen), in which case the newArr is empty
(? denotes the fact that successive segments may be equal). �	

Example 6. For the method AllZero of Fig. 3, at loop exit the analysis dis-
cover the invariant a �→ {0}[0, 0]{sv(i), sv(a.Length)}? which compactly repre-

sents ∀j ∈ [0, a.Length).a[j] = 0 ∧ sv(i) = sv(a.Length) ∧ 0 ≤ sv(i).

24 M. Fähndrich and F. Logozzo

6 Checking

Assertion Crawling. The code of the method under analysis is crawled to
collect a set of proof obligations P. Proof obligations are either explicit or im-
plicit. Explicit proof obligations are either: (i) preconditions at call sites; (ii)
explicit assertions; or (iii) postcondition for the current method. Checking of ex-
plicit proof obligations is always on. Implicit proof obligations are induced by the
CIL semantics. For a reference access r, a non null proof obligation r �= null is
emitted. For an array creation with size exp, a proof obligation 0 ≤ exp is emit-
ted. For an array load or store with index exp, the two proof obligations 0 ≤ exp
and exp < svLen are emitted. Similarly for buffer accesses, divisions, negation
of minint, overflow checking and floating type mismatches. The checks for im-
plicit proof obligations (such as non-null dereferencing and array bound checks)
can be individually activated by the user. The rationale is to avoid drowning the
user with too many warnings and instead have him/her first focus on the
contracts.

Direct Checking. For each proof obligation 〈pc, c〉 ∈ P Clousot individually
asks each of the analyses if at program point pc the condition c holds. Each
analysis implements a specialized decision procedure (in the numerical and the
array analysis those specialized decision procedures are also invoked during the
fixpoint computation to refine the analysis itself). The analysis fetches the ab-
stract state at program point pc, and checks if it implies c. Fetching may cause
a re-run of a part of the analysis, as for performance and memory considerations
we only save abstract states at some specific program points (e.g. loop heads as
in [4]). There are four possible check outcomes: true, meaning that c holds for
all the possible executions reaching pc; false, meaning that there is no execution
reaching pc such that c holds; ⊥, meaning that the program point pc is un-
reached (dead code); and � meaning that the analysis does not have a definite
answer. Direct checking 〈pc, c〉 is aborted as soon as an outcome different from �
is reported. This approach may fail to report the most precise answer, produced
by the meet of all the analyses outcomes. We do so mainly for performance
reasons (projects typically contain tenths of thousands of proof obligations to
discharge).

Domain Refinement. If all the analyses had � as outcome, then Clousot
refines the analysis. One first way of refining the analysis is to re-analyze the
method body with a more precise abstract domain. Clousot implements an it-
erative strategy in which first less precise abstract domains are used (e.g. the
numerical analysis instantiated with Pentagons) then moving to more precise
yet expensive domains. In the worst case, one may always resort to the most ex-
pensive domain (e.g Subpolyhedra with all the hints on and the Simplex-based
reduction [29]). Empirically we noticed that refinement pays off since the number
of cases where one needs the most expensive domains is relatively small.

Static Contract Checking with Abstract Interpretation 25

string Nums(int a)

{

Contract.Requires(a > 0);

string s = null;

var i = 0

/* 1 */

for (; i < a; i++) { s += i.ToString(); /* 2 */}

/* 3 */

Contract.Assert(s != null);

return s;

}

Fig. 7. Example showing the combination of analyses via backward goal propaga-
tion. The NonNull analysis discovers that s! = null at 2, and the Numerical analysis
discovers that the path 1 → 3 is unfeasible.

Goal Directed Backwards Analysis. If domain refinement is not good enough
to discharge a proof obligation, we propagate the condition backwards. Essen-
tially, the condition c is turned into an obligation for all the predecessor program
points using weakest preconditions. We attempt to use the abstract state at those
points to discharge the condition. This approach is good at handling disjunctive
invariants which our abstract domains typically do not represent precisely. E.g.,
an assert after a join point may not be provable due to loss of precision at the
join. However, the abstract states at the program points just prior to the join
may be strong enough to discharge the obligation. This backwards analysis dis-
charges an obligation if it can be discharged on all the paths leading to the
assertion. It thus acts as a form of on-demand trace partitioning [37]. Further-
more, it also provide: (i) another way of modularly combining different analyses,
as for instance one branch may be discharged by the non-null analysis and the
other by the numerical analysis (the common case for implication-like conditions
such as a == null || a.Length > 0); and (ii) to lazily perform loop unrolling.

Example 7. Let us consider the code in Fig.7. Intuitively the assertion holds
because the loop is executed at least once. At program point 3, the NonNull
analysis infers sv(s) = N 	 NN = �, and the numerical analysis infers sv(i) =
sv(a) ∧ sv(i) ∈ [1, +∞]. So the direct check cannot prove the assertion. The
condition is pushed back to the predecessor program points, 1 corresponding to
0 executions of the loop, and 2 corresponding to > 0 loop iterations. At 2, we
know that sv(s) = NN from the forward analysis, so this path can be discharged.
At 1, we know that sv(i) = 0, but sv(i) > 0 at 3 from the forward analysis,
hence a contradiction, so the path 1→ 3 is unfeasible, and the condition can be
discharged. �	

26 M. Fähndrich and F. Logozzo

7 Contract Inference

To help the programmer get started with the CodeContracts, Clousot performs
some amount of inference, which is either suggested to the user as missing con-
tracts or silently propagated.

Precondition Inference. When a proof obligation cannot be discharged with
any of the methods sketched above, Clousot checks if all the variables appear-
ing in the condition: (i) existed in the pre-state of the method; and (ii) are
unmodified. In this case it suggests a possible precondition. For instance in the
example of Fig. 5, Clousot will suggest the two preconditions input! = null and
output! = null. The precondition is only suggested and not inferred as it may
be wrong. In the same example, suppose that the code

if(input == null) return;

was added before the loop, then Clousotwould still have suggested output! = null
as precondition, but it would be incorrect, as output can perfectly be null when
input is null. We have a better and correct solution for the precondition inference
problem [11], but have yet to implement it at the time of writing.

Postcondition Inference. Theoretically the postcondition inference problem
is simply the projection of the abstract state(s) at the method return point.
In practice one must also consider two facts: (i) avoid repeating postconditions
already provided by the user; and (ii) produce a minimal set of postconditions.
Our postcondition inference algorithm works as follows. First, ask all the analyses
to provide known facts at the method return point. Facts should be serialized
as Boolean expressions. Second, sort the Boolean expressions according to some
heuristic (e.g. equalities are more interesting than inequalities). Call the result S.
Third, create a product abstract state R abstracting the method postcondition.
Fourth, for each fact s ∈ S, check if it is implied by R. If it is not, output s as a
postcondition, and assume s in R. The algorithm produces a set of postconditions
which fulfills the two requirements above.

Readonly Field Invariant Inference. We have prototyped a static analysis
to infer object invariants on readonly fields based on [30].

8 Practical Considerations

To make Clousot practical, we have engineered several solution to improve the
user experience.

Adaptive Analysis, Timeouts. We spent a considerable amount of time pro-
filing and optimizing Clousot. However, there are corner cases in which a method
analysis can take too long. Single methods can present complex control flow with
a lot of join points (several thousands for a single method) or several nested loops

Static Contract Checking with Abstract Interpretation 27

var str = ThirdPartyLibrary.GetSomeString();

Contract.Assume(str != null);

/* Without the assumption, Clousot complains str may be null */

if(str.Length > 10) { ... }

Fig. 8. Example of using Assume to shut off a warning caused by a missing postcondi-
tion on third-party code

causing the fixpoint computation to converge too slowly, in particular with re-
lational domains. We have implemented an adaptive analysis, which tries to
figure out if the method to analyze is too complex, in which case it analyzes it
with cheaper abstract domains. Orthogonally, the fixpoint computation can be
aborted when a certain timeout is reached (by default 10 seconds).

Message Prioritization. Clousot has heuristics for sorting the warning mes-
sages, trying to report the more relevant ones first. The heuristics assign an initial
score IP to each warning depending on the proof obligation (P ∈ {Precondition,
Postcondition, Invariant, Assert, NonNullobligation . . .). The initial score
is corrected with a reward ρ for the outcome (ρ(False) > ρ(⊥) > ρ(�) ≥ 1, and
a penalty δ on the variables in the condition (δ(Param) > δ(Field) > δ(Local) ≥
1). Intuitively, a warning on a condition with only locals (where all the infor-
mation should be known to Clousot) is more likely to be a bug than one on a
condition containing only references to parameters (for instance, the code may be
missing a precondition). Eventually, a proof obligation of type P , with condition
C and outcome O is prioritized according the formula IP ·ρ(O)/(

∑
v∈Vars(C) δ(v)).

Dealing with False Positives. There are two main reasons for which Clousot
reports a false warning: (i) it does not know some external fact (for instance
some third-party library methods returns a non-null value); (ii) it is incomplete
(as all the static analyses). The user can help Clousot by adding an explicit
assumption via Contract.Assume.

Clousot will simply believe the condition, and it will not try to check it stati-
cally. The condition can be checked at runtime (it behaves as a normal assertion).
With the time, assumptions may grow very large in the codebase. Clousot can
be instructed to find duplicated assumptions (essentially Clousot tries to prove
the assumption, and if it succeeds reports it to the user, otherwise it silently
moves on).

Example 8. Let us consider the code snippet if Fig. 8, abstracting the common
case of an application using a third-party library without contracts (yet). With-
out any contract on GetSomeString, Clousot will issue a warning for a possible
null deference. The programmer, after reading the documentation, convinced
himself that the method will never return null, and hence decided to add the
assumption, hence documenting the fact that the warning has been reviewed,
and classified as a false warning. Clousot will then assume it, and it will not

28 M. Fähndrich and F. Logozzo

issue the warning anymore. When the author of ThirdPartyLibrary releases a
new version of its library with contracts, then Clousot will inform the user that
the assumption is no longer needed. �	

If the assumption is not enough to shut off the warning, then the user can
mask it via the SuppressMessage attribute. This is normally the case when a
contract is far beyond what Clousot can understand (for instance it involves
several quantifiers). Furthermore, the user can focus the analysis on a particular
type or method via the ContractVerification attribute.

Visual Studio Integration and Analysis Caching. Clousot is fully inte-
grated into Visual Studio. In a normal run, it runs as a post-build step. Running
synchronously the whole analysis at every build may decrease the user experi-
ence. As a consequence we have implemented a caching mechanism to re-analyze
a small subset of the code that changed between two builds. Orthogonally, the
user can make the verification process more interactive by using the “analyze
this” feature, which runs the analysis only on the particular method or class
under the mouse pointer.

9 Conclusions

We presented an overview of Clousot, a static checked for CodeContracts. Clousot
analyzes annotated programs to infer facts (including loop invariants), and it
uses this information to discharge proof obligations. Unlike similar tools, it is
based on abstract interpretation and focused on specific properties of interest.
Advantages include more determinism, (tunable) performance and automation.
Clousot is distributed with the CodeContracts tools, available for downloading
with academic license at http://research.microsoft.com/en-us/projects/
contracts/. So far, we have had positive feedback from our users. Still there is
much work to do, like increasing the expressivity of the heap analysis, adding ab-
stract domains for strings and bit vectors, improving the inter-method inference,
and facilitating the annotation process of legacy codebases.

Acknowledgments. We’d like to thank Mike Barnett and all those who con-
tributed to Clousot: Patrick and Radhia Cousot, Pietro Ferrara, Matthias
Perron, Jacques-Henri Jourdan, Vincent Laviron, and Michäel Monerau.

References

1. Bagnara, R., Hill, P.M., Zaffanella, E.: Applications of polyhedral computations to
the analysis and verification of hardware and software systems. Theor. Comput.
Sci. 410(46) (2009)

2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie:
A Modular Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 364–387. Springer, Heidelberg (2006)

Static Contract Checking with Abstract Interpretation 29

3. Barthe, G., Burdy, L., Charles, J., Grégoire, B., Huisman, M., Lanet, J.-L., Pavlova,
M., Requet, A.: JACK — A Tool for Validation of Security and Behaviour of Java
Applications. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2006. LNCS, vol. 4709, pp. 152–174. Springer, Heidelberg (2007)

4. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI 2003
(2003)

5. Chen, L., Miné, A., Cousot, P.: A Sound Floating-Point Polyhedra Abstract Do-
main. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 3–18. Springer,
Heidelberg (2008)

6. Clarisó, R., Cortadella, J.: The Octahedron Abstract Domain. In: Giacobazzi, R.
(ed.) SAS 2004. LNCS, vol. 3148, pp. 312–327. Springer, Heidelberg (2004)

7. Cousot, P., Cousot, R.: Comparing the galois connection and widening/narrow-
ing approaches to abstract interpretation. In: Bruynooghe, M., Wirsing, M. (eds.)
PLILP 1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992)

8. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
ACM POPL 1979 (1979)

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: 4th POPL,
pp. 238–252. ACM Press, New York (1977)

10. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: Combination of Abstractions in the ASTRÉE Static Analyzer. In: Okada, M.,
Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 272–300. Springer, Heidelberg
(2008)

11. Cousot, P., Cousot, R., Logozzo, F.: Contract precondition inference from inter-
mittent assertions on collections. In: VMCAI 2011 (2011)

12. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: Proceeding of the 38th ACM
Symposium on Principles of Programming Languages (POPL 2011). ACM Press,
New York (January 2011)

13. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: ACM POPL 1978 (1978)

14. Distefano, D., Matthew, J., Parkinson, J.: jStar: Towards practical verification for
Java. In: OOPSLA 2008: Proceedings of the 23rd ACM SIGPLAN Conference on
Object-Oriented Programming Systems Languages and Applications, pp. 213–226.
ACM, New York (2008)

15. ECMA. Standard ECMA-355, Common Language Infrastructure (June 2006)
16. Fähndrich, M., Barnett, M., Logozzo, F.: Code Contracts (March 2009)
17. Fähndrich, M., Barnett, M., Logozzo, F.: Embedded contract languages. In: ACM

SAC 2010 (2010)
18. Ferrara, P., Logozzo, F., Fähndrich, M.: Safer unsafe code in.NET. In: OOPSLA

2008. ACM Press, New York (2008)
19. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus Platform for Deduc-

tive Program Verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173–177. Springer, Heidelberg (2007)

20. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for java. In: PLDI 2002 (2002)

21. Gopan, D., Reps, T.W., Sagiv, S.: A framework for numeric analysis of array
operations. In: 32nd POPL, pp. 338–350. ACM Press, New York (2005)

22. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified
logical domains. In: 35th POPL, pp. 235–246. ACM Press, New York (2008)

30 M. Fähndrich and F. Logozzo

23. Jacobs, B., Smans, J., Piessens, F.: A quick tour of the veriFast program verifier. In:
Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg
(2010)

24. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009)

25. Jhala, R., McMillan, K.L.: Array Abstractions from Proofs. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg
(2007)

26. Karr, M.: Affine relationships among variables of a program. Acta Inf. 6 (1976)
27. Khachiyan, L., Boros, E., Borys, E., Elbassioni, K.M., Gurvich, V.: Generating

all vertices of a polyhedron is hard. Discrete & Computational Geometry 39(1-3),
174–190 (2008)

28. Laviron, V., Logozzo, F.: Refining Abstract Interpretation-Based Static Analyses
with Hints. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 343–358. Springer,
Heidelberg (2009)

29. Laviron, V., Logozzo, F.: SubPolyhedra: A (More) Scalable Approach to Infer
Linear Inequalities. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS,
vol. 5403, pp. 229–244. Springer, Heidelberg (2009)

30. Logozzo, F.: Modular static analysis of object-oriented languages. Thèse de doc-
torat en informatique, École polytechnique (2004)

31. Logozzo, F., Fähndrich, M.: On the Relative Completeness of Bytecode Analysis
Versus Source Code Analysis. In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp.
197–212. Springer, Heidelberg (2008)

32. F. Logozzo and M. Fähndrich. Pentagons: a weakly relational abstract domain for
the efficient validation of array accesses. In: ACM SAC 2008 (2008)

33. Miné, A.: A few graph-based relational numerical abstract domains. In:
Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, p. 117. Springer,
Heidelberg (2002)

34. Miné, A.: Relational Abstract Domains for the Detection of Floating-Point Run-
Time Errors. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer,
Heidelberg (2004)

35. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computa-
tion 19, 31–100 (2006)

36. Miné, A.: Symbolic Methods to Enhance the Precision of Numerical Abstract Do-
mains. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855,
pp. 348–363. Springer, Heidelberg (2005)

37. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans.
Program. Lang. Syst. 29(5) (2007)

38. Sankaranarayanan, S., Ivančić, F., Gupta, A.: Program Analysis Using Symbolic
Ranges. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 366–
383. Springer, Heidelberg (2007)

39. Simon, A., King, A., Howe, J.M.: Two variables per linear inequality as an ab-
stract domain. In: Leuschel, M. (ed.) LOPSTR 2002. LNCS, vol. 2664. Springer,
Heidelberg (2003)

40. Smans, J., Jacobs, B., Piessens, F.: VeriCool: An Automatic Verifier for a Con-
current Object-Oriented Language. In: Barthe, G., de Boer, F.S. (eds.) FMOODS
2008. LNCS, vol. 5051, pp. 220–239. Springer, Heidelberg (2008)

41. Tillmann, N., de Halleux, J.: Pex–White Box Test Generation for.NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008)

Abstract Compilation of Object-Oriented
Languages into Coinductive CLP(X): Can Type

Inference Meet Verification?�

Davide Ancona1, Andrea Corradi1, Giovanni Lagorio1, and Ferruccio Damiani2

1 DISI, University of Genova, Italy
{davide,lagorio}@disi.unige.it, andreac@unstable.it
2 Dipartimento di Informatica, University of Torino, Italy

damiani@di.unito.it

Abstract. This paper further investigates the potential and practical
applicability of abstract compilation in two different directions. First,
we formally define an abstract compilation scheme for precise predic-
tion of uncaught exceptions for a simple Java-like language; besides
the usual user declared checked exceptions, the analysis covers the run-
time ClassCastException. Second, we present a general implementation
schema for abstract compilation based on coinductive CLP with variance
annotation of user-defined predicates, and propose an implementation
based on a Prolog prototype meta-interpreter, parametric in the solver
for the subtyping constraints.

1 Introduction

Mapping type checking and type inference algorithms to inductive constraint
logic programming (CLP) is not a novel idea. Sulzmann and Stuckey [22] have
shown that the generalized Hindley/Milner type inference problem HM(X) [19]
can be mapped to inductive CLP(X): type inference of a program can be ob-
tained by first translating it in a set of CLP(X) clauses, and then by resolving
a certain goal w.r.t. such clauses. This result is not purely theoretical, indeed it
has also some important practical advantages: maintaining a strict distinction
between the translation phase and the logical inference one, when the goal and
the constraints are solved, enhances clarity and modularity of the specification
of type inference, since different type inference algorithms can be obtained by
just modifying the translation phase, while reusing the same engine defined in
the logical inference phase.

Recent work has shown how coinductive logic programming [21] and coin-
ductive CLP can be fruitfully applied to a handful of applications ranging
over type inference of object-oriented languages [6,2,3], verification of real time
systems [18], model checking, and SAT solvers [17].

� This work has been partially supported by MIUR DISCO - Distribution, Interaction,
Specification, Composition for Object Systems.

B. Beckert and C. Marché (Eds.): FoVeOOS 2010, LNCS 6528, pp. 31–45, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

32 D. Ancona et al.

Type inference can be defined in terms of abstract compilation [6,2,3] into a
Horn formula of the program to be analyzed, and of resolution of an appropriate
goal in coinductive CLP with subtyping constraints. In contrast to conventional
inductive CLP, coinductive CLP allows the specification of much more expressive
type systems and, therefore, of more precise forms of type analysis able to better
detect the malfunctioning of a program.

We recently discovered that the phrase “abstract compilation” has been in-
troduced to describe a technique for enhancing the performance of abstract in-
terpretation for global flow analysis of logic programs [12], by transforming a
program into another program that when executed yields the desired informa-
tion about the original program. Such a technique is not based on coinductive
CLP and was not conceived for type analysis of object-oriented languages.

Abstract compilation is particularly interesting for type inference of object-
oriented languages when coinduction, union and object types are combined to-
gether. A formal definition of abstract compilation [6,2] has been already given
for a purely functional object-oriented language similar to Featherweight Java
(FJ) [14] with optional nominal type annotations, generalized explicit construc-
tor declarations and primitive types, but no type casts. The proposed abstract
compilation scheme supports precise type inference based on coinductive union
and object types, and smoothly integrates it with nominal type annotations,
which are managed as additional constraints imposed by the user.

To further investigate the scalability of the approach, we have studied an ab-
stract compilation scheme [5] for a simple Java-like language with imperative
features such as variable and field assignment and iterative constructs, by con-
sidering as source to abstract compilation an SSA [9] intermediate form. The
existence of a natural encoding of ϕ functions (a notion specific of SSA) with
union types is an evidence of how SSA intermediate forms can be fruitfully
exploited by abstract compilation.

Though these results show that abstract compilation is attractive and promis-
ing, its full potential has not been completely explored yet, and more efforts are
required before the approach can be applied to realistic object-oriented lan-
guages. In this paper we add a further step towards the long way to real appli-
cability of abstract compilation, in two different directions. First, we consider
an important feature in modern mainstream object-oriented language, namely
exception handling, and show an abstract compilation scheme allowing precise
prediction of uncaught exceptions for a simple Java-like language. Second, we
present a general implementation schema for abstract compilation based on
coinductive CLP, and propose an implementation based on a Prolog prototype
meta-interpreter, parametric in the solver for the subtyping constraints. The
implementation exploits variance annotations of user-defined predicates to use
subsumption instead of simple term unification when the coinductive hypothesis
rule is applied.

The paper is organized as follows. Section 2 provides some minimal back-
ground on coinductive LP and on inductive CLP. Section 3 introduces abstract
compilation with some examples, whereas Section 4 formally defines abstract

Abstract Compilation of Object-Oriented Languages 33

compilation for a simple Java-like language with exceptions. Section 5 presents
a general implementation schema for abstract compilation and is devoted to the
semantics and implementation of coinductive CLP; this section can be read inde-
pendently from Section 4. Finally, Section 6 draws some conclusions and outlines
some directions for further investigation. The formal definition of the abstract
compilation and of the main auxiliary predicates can be found in the extended
version of this paper [1].

2 Background: Coinductive LP/SLD and CLP(X)

Simon et al [21] have introduced coinductive-LP, or simply co-LP. Its declarative
semantics is given in terms of co-Herbrand universe, infinitary Herbrand base
and maximal models, computed using greatest fixed-points. While in traditional
LP this semantics corresponds to build finite proof trees, co-LP allows infinite
terms and proofs as well, which in general are not finitely representable and, for
this reason, are called idealized. The operational semantics, defined in a manner
similar to SLD, is called co-SLD. For an obvious reason, co-SLD is restricted to
regular terms and proofs, that is, to trees which may be infinite, but can only
contain a finite number of different subtrees (and, hence, can be finitely repre-
sented). To correctly deal with infinite regular derivations an implicit coinductive
hypothesis rule is introduced. This rule allows a predicate call to succeed if it
unifies with one of its ancestor calls.

CLP introduces constraints in the body of the clauses of a logic program,
specifying conditions under which the clauses hold, and allow external constraint
solvers interpret/simplify these constraints. For instance, the clause p(X) ←
{X > 3}, q(X) expresses that p(X) holds when q(X) holds and the value of X
is greater than three. Furthermore, constraints serve also as answers returned
by derivations. For instance, if we add q(X) ← {X > 5} to the clause above,
then the goal p(X) succeeds with answer {X > 5}. Of course, the standard
resolution has to be extended in order to embed calls to the external solvers.
At each resolution step new constraints are generated and collected, and the
solver checks that the whole set of collected constraints is still satisfiable before
execution can proceed further.

3 Abstract Compilation by Example

This section shows how abstract compilation allows accurate analysis of un-
caught exceptions, and informally introduces the main concepts which will be
used in the formalization given in Section 4.

The terms of our type domain are class, method and field names (represented
by constants), and types coinductively defined over integer, boolean, object,
union, and exception types.

bt ::= int | bool (basic types)
vt ::= bt | obj (c, [f1:vt1, . . . , fn:vtn]) | vt1 ∨ vt2 (value types)
t ::= vt | t1 ∨ t2 | ex (c) (types)

34 D. Ancona et al.

An object type obj (c, [f1:vt1, . . . , fn:vtn]) specifies the class c to which the object
belongs, together with the set of available fields with their corresponding value
types. A value type does not contain exception types, and represents a set of
values. Exception types are inferred for expressions whose evaluation throws
an exception, hence cannot be associated with a field or with the parameter
of a method. The class name of the object type is needed for typing method
invocations. We assume that fields in an object type are finite, distinct and that
their order is immaterial. Union types t1 ∨ t2 have the standard meaning [7,13].
Finally, if an expression has type ex (c), then it means that its evaluation throws
an exception of class c. In general we expect the type of an expression to be
the union of value and exception types; for instance, if an expression has type
ex (c) ∨ int , then it means that its evaluation may either throw an exception of
class c, or return an integer value. However, if the type of an expression is the
union of sole exception types, then it means that the evaluation of that expression
will always throw an exception, thus revealing a problem in the program. This
accurate analysis is not possible in the approach of Jo et al. [16].

As pointed out in Section 2, in coinductive logic programming terms and
derivations can correspond to arbitrary infinite trees [8], hence not all the terms
and derivations can be represented in a finite way, therefore the corresponding
type systems are called idealized. However, an implementable sound approxi-
mation of an idealized type system can be obtained by restricting terms and
derivations to regular ones. A regular tree can be infinite, but can only contain
a finite number of subtrees or, equivalently, can be represented as the solution
of a unification problem, that is, a finite set of syntactic equations of the form
Xi = ei, where all variables Xi are distinct and expressions ei may only contain
variables Xi [8,21,20].

A type domain D is a constraint domain which defines two predicates: strong
equivalence and subtyping. In this example strong equivalence corresponds to
syntactic equality (restricted forms of the equivalence induced by the subtyp-
ing relation could be considered as well) and is interpreted in the coinductive
Herbrand universe, whereas subtyping is interpreted as set inclusion between
sets of values: t1 ≤ t2 iff �t1� ⊆ �t2�, where �t� depends on the considered type
language. For space limitation, we have omitted the definition of interpretation
for our types; however, the definition given by Ancona and Lagorio [3,4] can be
extended in a straightforward way to deal with exception types too.

An Accurate Analysis of Uncaught Exceptions. We show by a simple
example how abstract compilation allows accurate uncaught exceptions in Java-
like languages. We share the same motivations as in the work by Jo et al. [16]:
an analysis of uncaught exceptions independent of declared thrown exceptions is
a valuable tool for avoiding unnecessary or too broad declarations, and, hence,
unnecessary try statements or too general error handling. Last but not least,
reporting some kinds of unchecked exceptions, as ClassCastException, would
allow static detection of typical run-time errors. This last feature is supported
in the language defined in Section 4.

Abstract Compilation of Object-Oriented Languages 35

Consider the following example of Java code (for clarity we use full Java, even
though this example could be easily recast in the language defined in Section 4).

c lass Exc extends Exception {

}

interface Node {Node next () throws Exc; // linked nodes

}

c lass TNode implements Node { // terminal nodes

public Node next () throws Exc {throw new Exc ();}

}

c lass NTNode implements Node { // non terminal nodes

private Node next;

public NTNode(Node n){ this .next=n;}
public Node next () {return this .next ;}

}

c lass Test {// Exc must be declared but will not been thrown

void m() throws Exc {

new NTNode(new NTNode(new TNode())). next (). next ();}

}

In order to be correctly compiled, method m must declare Exc in its throws

clause, or its body must be wrapped by a dummy try statement, even though
such a method will never throw an exception of type Exc. The throws clause can
be safely removed, if a type more precise than Node is inferred for the expression
new NTNode(new NTNode(new TNode())).next(); indeed, by abstract compila-
tion it is possible to infer the type obj (ntnode, [next:obj (tnode, [])]) and, hence,
deduce that the second call to next() cannot throw an exception.

To compile the program shown above into a Horn formula, we introduce a
predicate for each language construct; for instance, invoke for method invo-
cation, new for constructor invocation, field acc for field access, and cond for
conditional expressions. Furthermore, auxiliary predicates are introduced for ex-
pressing the semantics of the language; for instance, predicate has meth corre-
sponds to method look-up. Each method declaration is abstractly compiled into
a Horn clause: the compilation of method next() of classes TNode and NTNode

generates the following two clauses, respectively.

has_meth(tnode ,next ,[This],ex(exc)).

has_meth(ntnode ,next ,[This],N) ← field_acc (This ,next ,N).

Predicate has meth has four arguments: the class where the method is declared,
the name of the method, the types of the arguments, and the type of the returned
value. If a method has n arguments, then its argument type is a list of n + 1
types, where the first type always corresponds to the target object this. The
first clause is a fact specifying that method next() declared in class TNode always
throws an exception. The second clause has a non empty body corresponding
to the abstract compilation of the body of the method: field_acc(This,next,N)
means that accessing field next of the object This returns a value of type N.

Each method declaration is compiled into a clause defining predicate has meth,
and, analogously, each constructor declaration is compiled into a clause defining

36 D. Ancona et al.

predicate has constr . Furthermore, other program independent clauses are gen-
erated to specify the behavior of the various constructs w.r.t. the available types
(see Section 4).

Coinductive Derivations and Subtyping. To see an example of coinductive
derivation and to explain the importance of subtyping constraints, let us add
the following factory method to class Test (this is just a simple example in
our functional Java-like language; in Java the method would be static and tail
recursion would be replaced with a loop).

Node addNodes (int i, Node n) { // adds i nodes before n

i f (i<=0) return n;

e l se return addNodes (i-1,new NTNode(n));}

Let us assume now that we would like to infer the type of the expression
new Test().addNodes(5,new TNode()); the inferred type can be obtained by
resolving the goal invoke(obj (test , []), addNodes , [int , obj (tnode, [])], R0) w.r.t.
the Horn formula obtained from the abstract compilation of our example classes.

If we consider unification with no subtyping constraints, then we can only get
an infinite derivation containing the following sequence of atoms:

at0 = invoke(obj (test , []), addNodes , [int , t0], R0)
at1 = invoke(obj (test , []), addNodes , [int , t1], R1)

...
atk = invoke(obj (test , []), addNodes , [int , tk], Rk)

...

with answer R0 = t0∨R1, . . . , Rk = tk∨Rk+1, . . ., where t0 = obj (tnode, []), and
tk+1 = obj (ntnode, [n:tk]) for all k ≥ 0; hence, the solution is a non regular term
obtained from a non regular derivation. The main problem is that for all k, atom
atk does not unify with atoms at0, . . . , atk−1, hence no coinductive hypothesis
can be used to build a regular proof.

If we consider subtyping and observe that method invocation is contravariant
in the argument type and covariant in the returned type, then we have that our
initial goal succeeds if the atom at = invoke(obj (test , []), addNodes , [int , T], R0)
succeeds, and t0 ≤ T holds (the resolution steps have been slightly simplified for
the sake of clarity). To resolve at , the following atom at ′ needs to be resolved,
under the constraint R0 ≥ T ∨R1:

invoke(obj (test , []), addNodes , [int , obj (ntnode, [n:T])], R1)

To derive at ′ we can use the coinductive hypothesis at if the additional con-
straints R1 ≥ R0 and obj (ntnode, [n:T]) ≤ T hold. Hence, the initial goal can be
resolved if the following set of constraints is satisfiable:

t0 ≤ T, R0 ≥ T ∨R1, R1 ≥ R0, obj (ntnode, [n:T]) ≤ T.

A possible solution is given by R0 = R1 = T, T = t , where t is the regular term t
s.t. t = t0 ∨ obj (ntnode, [n:t]). Therefore, by exploiting the subtyping constraint

Abstract Compilation of Object-Oriented Languages 37

≤, we can resolve our goal with a regular derivation and a regular solution
(other interesting examples of regular derivations, which can be computed by
considering the subtyping constraint, can be found in related papers [2,3,4]).

The derivation sketched above follows the rules of coinductive CLP to be
defined in Section 5, where user-defined predicates are associated with variance
annotations.

The key point is that each predicate is expected to behave in a specific way
w.r.t. subtyping. If p is a predicate with only one argument (the definition can
be straightforwardly generalized for an arbitrary number of arguments), we have
the following four possibilities:

– p is covariant in its argument: if p(t1) and t1 ≤ t2 hold, then p(t2) holds as
well (we say that p(t1) subsumes p(t2)).

– p is contravariant in its argument: if t2 ≤ t1 holds, then p(t1) subsumes p(t2).
– p is weakly invariant in its argument: if t1 ≤ t2, t1 ≥ t2 holds, then p(t1)

subsumes p(t2). In this case we abbreviate t1 ≤ t2, t1 ≥ t2 with t1 ∼= t2, and
we call ∼= weak equivalence.

– p is strongly invariant in its argument: if t1 ≡ t2 holds, then p(t1) subsumes
p(t2). We call ≡ strong equivalence since it is expected to be stronger than
∼=, that is t1 ≡ t2 ⇒ t1 ∼= t2, but not conversely. In most cases ≡ coincides
with syntactic equality.

For instance, invoke is strongly invariant w.r.t. its first and second arguments,
contravariant in its third argument, and covariant in its fourth argument. Note
that, in contrast with what intuition may suggest, weak invariance in the first
argument of invoke is unsound.

4 Formalization

In this section we formally define abstract compilation for a simple functional
Java-like language supporting exceptions (Fig. 1). Syntactic assumptions listed in
the figure have to be verified before abstract compilation is performed. Notation
as cd

n
denote sequences of n items.

prog ::= cd
n

e

cd ::= class c1 extends c2 { fd
n

cn md
k } (c1 	= Object ,Throwable,ClassCastExc)

fd ::= τ f ;
cn ::= c(τ xn) {super(ek); f = e ′;

h}
md ::= τ0 m(τ xn) {e}

e ::= new c(en) | x | e.f | e0.m(en) | if (e) e1 else e2 | false | true | i | e1 op e2

throw c | try e1 catch(c) e2 | (c) e

op ::= relOp | boolOp | intOp

τ ::= c | bool | int
Assumptions: n, k, h ≥ 0, inheritance is acyclic, names of declared classes in a program,
methods and fields in a class, and parameters in a method are distinct.

Fig. 1. Syntax of the language

38 D. Ancona et al.

A program consists of a sequence of class declarations and a main expression.
Type annotations in all declarations can be either primitive types bool or int , or
class names. We assume that the language supports boxing conversions, hence
bool and int are both subtypes of Object . Hence Object is the top type annotation
which, in fact, does not impose any restriction on the type of fields, parameters
and returned values.

A class declaration contains field and method declarations, and a single con-
structor declaration. We assume predefined classes Object , Throwable and
ClassCastExc: the first is the root of the inheritance tree, the second extends
Object and is the most general type for exceptions, the third extends Throwable
and is the class of the unchecked exceptions thrown when a runtime type check
fails; for simplicity, we assume that all three classes contain no fields and methods
and have a constructor without parameters. The body of a constructor consists
of an invocation of the superclass constructor and a sequence of field initializa-
tions, one for each field declared in the class. Method declarations are standard;
note however that they do not include throws clause, since our analysis is inde-
pendent of the declared thrown exceptions.

Expressions deserve few comments: i denotes integer literals, relOp, boolOp
and intOp denotes the usual relational, boolean and integer binary operators;
for simplicity, we consider == and != monomorphic operators over integers; an
extension allowing == and != to be polymorphic is straightforward. Expressions
for exception handling have been deliberately simplified to make the presentation
lighter: when an exception is thrown, no instance is created, but only the type
of the exception (which is required to be a subtypes of Throwable) is specified;
consequently, catch clauses do not have any formal parameter. Furthermore try

expressions can have only one catch clause.
For space reasons we have omitted the quite standard operational semantics of

the language. The abstract compilation for programs, declarations, and expres-
sions can be found in the extended version of this paper [1]. Abstract compilation
of a program generates a pair (Hf |B), where Hf is a Horn formula and B is a
goal (a sequence of atoms). Abstract compilation of a class, field, constructor,
and method declaration yields two clauses (for classes and methods) or one (for
fields and constructors).

For simplicity class, field, method and variable names are not affected by
abstract compilation, even though in practice appropriate bijections (different
from the identity) have to be considered. This is due to the fact that in logic
programming names beginning with an upper case letter denote logical variables,
while those beginning with a lower case letter denote constant, function and
predicate symbols.

For any expression e, the abstract compilation of e generates a pair (t |B),
where t is the term corresponding to the type of e, and B is the sequence
of atoms whose satisfaction ensures that e is well-typed. The compilation is
straightforward and is based on a set of predicates which specify the behavior
of each construct. For instance, predicate invoke is defined as follows:

Abstract Compilation of Object-Oriented Languages 39

invoke(obj(C,R),M,A1,RT∨ET) ← val_types (A1,A2),

exc_types (A1 ,ET),has_meth (C,M,[obj(C,R)|A2],RT).

invoke(obj(C,R),M,A,ET) ← no_val_types (A), exc_types (A,ET).

invoke(T1∨T2,M,A,RT1∨RT2) ← invoke(T1,M,A,RT1),

invoke(T2 ,M,A,RT2).

invoke(ex(C),M,A,ex(C)).

The first two clauses specify the behavior of method calls when the target is
an object type. The predicates val_types, exc_types, and no_val_types (whose
definition can be found in the extended version of this paper [1]) control excep-
tion propagation during argument evaluation. The atom val_types(l,l ′) succeeds
only if type list l corresponds to an expression sequence whose evaluation may
be completed normally (see Section 14.1, [11]) with type list l ′ (which necessarily
contains no exception types). For instance, val_types([ex (c1) ∨ vt1,ex (c2) ∨ vt2],

[vt1,vt2]) succeeds, whereas val_types([ex(c1),ex (c2) ∨ vt2],X) fails. The atom
exc_types(l,t) succeeds if l corresponds to an expression sequence whose evalua-
tion may be completed abruptly with type t (which necessarily does not contain
value types). For instance, exc_types([ex(c1) ∨ vt1,ex (c2) ∨ vt2],ex(c1) ∨ ex (c2))
succeeds; note that exc_types succeeds also when no exceptions are thrown:
exc_types([vt1,vt2],X) succeeds with X=⊥ (that is, the empty type, which can
be simply represented by the type t s.t. t = t ∨ t [3,4]). Finally, no_val_types(l)
succeeds iff val_types(l,X) fails.

The first clause of invoke deals with cases where argument expressions may
evaluate normally. Method look-up is started (predicate has_meth) from the class
of the target object, and its type is added as first argument to correctly deal
with this. Note that this case does not prevent argument expressions to evaluate
abruptly: ET represents all thrown exceptions. The second clause is used when
argument expressions never evaluate normally: in this case no method look-up is
performed1; this clause allows exact propagation of union types containing sole
exception types, thus inferring that the evaluation of the method invocation will
always throw an exception, and, hence, that something is wrong in the source
code.

The third clause of invoke deals with union types: if invoking method M on a
target of type T1 (resp. T2) yields a result of type RT1 (resp. RT2), then invoking
M on a target of type T1 ∨ T2 yields a result of type RT1 ∨ RT2.

Finally, the last clause deals with the case when the expression correspond-
ing to the target evaluates abruptly by throwing an exception exc(C) which,
therefore, is propagated.

Let us focus now on the predicates corresponding to the throw and try con-
structs. The clause for throw is pretty straightforward:

throw(C,ex(C)) ← subtype(C,throwable).

The type of the expression throw(c) is ex(c), providing that c is a subtype of
Throwable , otherwise the expression is not well-typed.
1 This allows typechecking of an invocation of any method M with any arguments
A, though the method will never be actually invoked, since the evaluation of its
arguments will always throw an exception.

40 D. Ancona et al.

Since the behavior of the try expression is more involved, let us consider
first some examples. If e1 and e2 have type t1 = ex (c1) ∨ ex (c2) ∨ vt and t2,
respectively, and if c1 is a subclass of c, while c2 is not, then the type inferred
for try e1 catch(c) e2 is ex (c2) ∨ vt ∨ t2. On the other hand, if both c1 and c2
are not subclasses of c, then the inferred type is just t1. Indeed, expression e2
is evaluated only if e1 throws an exception which is a subclass of c, hence the
type of the try expression includes t2 only when t1 contains an exception type
handled by the catch clause. Furthermore, all exception types in t1 handled by
the catch clause have to be removed from t1 to infer the most precise type.

try(T1,C,T2 ,T3∨T2) ← remove_handled (T1,C,T3).

try(T1,C,T2 ,T1) ← unhandled (T1,C).

The auxiliary predicate remove_handled(T1,C,T3) succeeds if T1 contains at least
an exception type covered by C, and the type T3 is obtained from T1 by remov-
ing all exception types covered by C; the auxiliary predicate unhandled(T1,C)

succeeds if T1 does not contain an exception type covered by C. The complete
definition of all main and auxiliary predicates can be found in the extended
version of this paper [1].

5 A Prototype Implementation of Coinductive CLP(X)

In this section we show a prototype implementation of the inference engine for
coinductive CLP, which is an essential component for supporting abstract com-
pilation, as depicted in Fig. 2. The input is represented by the source program
to be analyzed and by a query defined by the user in a high level language.
Then the abstract compiler and the goal generator, which is a subcomponent
of the abstract compiler, generate a Horn formula and a goal. The generated
clauses can be optionally augmented by user-defined clauses defining auxiliary
predicates. Finally, type inference is performed by the coinductive CLP engine.
The red (or dark) components are those depending on the type system under
consideration: the abstract compiler (if the source language is unchanged only
the back-end will be modified) and the solver for the specific type domain.

The engine supports variance annotations, which are more than a convenient
syntactic notation for avoiding explicit insertion of constraints in the body of

Fig. 2. General schema for abstract compilation based on coinductive CLP(X)

Abstract Compilation of Object-Oriented Languages 41

clauses; indeed, by associating constraints with predicates, expressive power is
enhanced since it is possible to exploit subsumption, instead of plain unification,
when applying the coinductive hypothesis rule. To our knowledge, this is a novel
feature not previously considered in CLP.

We first provide the fixed-point and operational semantics of coinductive CLP.

Fixed-Point Semantics. For simplicity, all following definitions use a fixed
coinductive Herbrand universe and base and type domain D.

We write pαn to mean that predicate symbol p has arity n and variance
annotation αn, where each αi may be one of the constraint predicates {≤,≥,∼=
,≡}, as defined in Sect. 3.

Definition 1. If pαn is a predicate symbol, then the ground atom pαn(t1, . . . , tn)
subsumes the ground atom pαn(t ′1, . . . , t ′n) iff {t1α1t ′1, . . . , tnαnt ′n} is satisfiable,
that is, D |= {t1α1t ′1, . . . , tnαnt ′n}.

The one-step consequence function THf ,D, induced by a Horn formula Hf where
all predicates are associated with a variance annotation, is the function over sets
of ground atoms contained in the coinductive Herbrand base, defined as follows:

THf ,D(S) = {A′ | A ← A1 , . . . , An ground instance of a clause in Hf ,
Ai ∈ S for all i = 1, . . . , n, A subsumes A′}

The coinductive Herbrand model of Hf w.r.t. the type domain D is the great-
est fixed-point of THf ,D. Equivalently, the fixed-point semantics of Hf can be
expressed by translating Hf into a formula Hf ′ where constraints are explicitly
introduced in the clauses of Hf , and then by considering the greatest fixed-point
of TCLP

Hf ′,D, where TCLP
Hf ′,D is the standard one-step consequence function defined

for CLP [15]:

TCLP
Hf ,D(S) = {A | A ← C ,A1 , . . . ,An ground instance of a clause in Hf ,

Ai ∈ S for all i = 1, . . . , n, D |= C}

A clause having general shape pαn (tn) ← A
k

is translated in the CLP clause
pαn (X

n
) ← gen(tn , αn ,X

n
),A

k
, where X

n
are distinct and fresh variables and

constraints are generated by the function gen defined as follows:

gen(ε, ε, ε) = ∅
gen((t , tn−1), (α, αn−1), (u, un−1)) = {t α u} ∪ gen(tn−1

, αn−1, un−1)

The function gen simply takes three tuples of the same length n, t1, . . . , tn,
α1, . . . , αn, and u1, . . . , un, and generates the set of constraints {t1α1u1, . . . ,
tnαnun}. This function is used in the next section for expressing the operational
semantics of a Horn formula, where the meta-variables ui may be instantiated
with general terms and not only with variables.

42 D. Ancona et al.

(empty) Hf | H � true � ∅

(co-hyp)
Hf | H � G1,G2 � C1 � C1 ∪ C2 → C ′

Hf | H � G1, pαn(un),G2 � C ′
C2 = gen(tn

, αn, un)
H = H1, pαn(tn),H2

(cls)
Hf | H , pαn(tn) � G1,G, G2 � C1 � C1 ∪ C2 → C ′

Hf | H � G1, pαn(un),G2 � C ′

pαn (tn) ← G fresh
instance of a
clause of Hf

C2 = gen(tn
, αn, un)

Fig. 3. Operational semantics

Operational Semantics. The operational semantics of a Horn formula Hf is
inductively defined in Fig. 3.

In the judgment Hf | H � G � C , meta-variables Hf , H , and G represent the
input of the judgment, whereas C is the only output; if the judgment is deriv-
able, then the goal G succeeds w.r.t. the Horn formula Hf and the coinductive
hypotheses H , with the satisfiable set of constraints C as solution.

The coinductive hypotheses H (a stack of atoms) are needed for building
regular derivations; for doing that, we have to keep track of all atoms that have
been already resolved with a standard SLD step (see rule (cls) below).

The rules are parametric in the judgment � C → C ′, which corresponds to
the abstract specification of the constraint solver for the specific type domain
under consideration, hence if the judgment is derivable then D |= C holds (hence,
C represents the input of the solver) and returns an equivalent but simplified
version C ′ (which, therefore, represents the output of the solver).

Rule (empty) deals with the empty goal (represented by true) which always
succeeds; in this case the returned solution is the empty set of constraints.

Coinduction is managed by rule (co-hyp), where the atom pαn(un) (non deter-
ministically selected from the goal) is resolved by using a coinductive hypothesis
(non deterministically selected from H). This happens when H contains an atom
pαn(tn) (that is, with the same predicate symbol p and arity n of the atom se-
lected from the goal) subsuming the atom pαn(un) of the goal for a certain
assignment of values to variables. Such an assignment is determined by the set
of constraints C2 generated by gen(tn

, αn, un) and the set of constraints C1 cor-
responding to the solution of the remaining atoms G1,G2 of the goal. Hence, if
C1 ∪ C2 is satisfiable, then the rule is applicable. The returned solution is the
simplification C ′ of C1 ∪ C2 computed by the solver. Note that the rule uses
subsumption instead of simple term unification, thanks to variance annotations.
This would not be possible in standard CLP where constraints are associated
with clauses and not with predicates.

Rule (cls) non deterministically selects an atom pαn(un) from the goal, and a
clause from Hf s.t. its head has the same predicate symbol p and arity n of the
atom selected from the goal. Then, an instance pαn (tn)← G of the clause where
all variables are bijectively renamed with fresh variables is considered, and the
new goal G1,G,G2, obtained by replacing the atom pαn(un) with the body G
of the clause, is resolved w.r.t. the coinductive hypotheses augmented with the

Abstract Compilation of Object-Oriented Languages 43

head pαn(tn) of the clause. If resolution of G1,G,G2 succeeds with constraints
C1, and C2 is the set of constraints generated from the head of the clause and the
atom selected from the goal, then the solver checks whether C1∪C2 is satisfiable.
If it so, then the clause is applicable, and resolution of the initial goal succeeds
with the constraint set C ′ obtained by simplifying C1 ∪ C2.

Prototype Implementation. We have implemented the operational semantics
defined in Fig. 3 with a meta-interpreter2 written in SWI Prolog. The imple-
mentation performs a depth first search of the tree of all possible derivations,
by selecting the atoms of the goal and the applicable clauses in the usual or-
der (left to right and top to bottom, respectively). Furthermore, rule (co-hyp)
takes the precedence over (cls), and coinductive hypotheses are selected starting
from the top of the stack (that is, the most recent coinductive hypothesis is
selected first). The basic structure of the meta-interpreter can be specified by
the following pseudo-code.

coCLP(Goal , Solver , Solution) ←
coCLP(Goal , Solver , [], [], Solution).

% (empty)

coCLP(true , _Solver , _CoHyp , Solution , Solution).

% (co-hyp)

coCLP ((pαn(un), Goal), Solver , CoHyp , C1, Solution) ←
fresh_atom(p, n, pαn(X

n
)),member(pαn(X

n
), CoHyp),

gen(X
n
, αn, un, C2), union(C1, C2, C3), call(Solver , C3, C4),

coCLP(Goal , Solver , CoHyp , C4 , Solution).

% (cls)

coCLP ((pαn(un), Goal), Solver , CoHyp , C1, Solution) ←
fresh_atom(p, n, pαn(X

n
)), clause(pαn(X

n
), Body),

gen(X
n
, αn, un, C2), union(C1, C2, C3), call(Solver , C3, C4),

append_goal(Body , Goal , NewGoal),

coCLP(NewGoal , Solver , [pαn(X
n
)|CoHyp], C4 , Solution).

The main predicate (we assume that the goal is always terminated by true) coCLP/3
(not specified in Fig. 3) is defined in terms of the auxiliary predicate coCLP/5 which
implements the judgment Hf | H � G � C . The definition is parametric in
the predicate corresponding to the constraint solver, which is represented by the
variable Solver. The two additional arguments of coCLP/5 (when compared with
coCLP/3) are the coinductive hypotheses and the accumulated constraints, which
are both initially empty. The use of an accumulator for the generated constraints
allows a more efficient implementation: coCLP/5 is tail-recursive, hence its execu-
tion can be optimized; furthermore, the constraints generated from the applica-
tion of a coinductive hypothesis or of a clause are checked before proceeding with
the resolution of the remaining atoms of the goal.

The search of an applicable coinductive hypothesis is performed by first creat-
ing an atom with the same predicate symbol and arity of the atom selected from
the goal, where all arguments are fresh distinct variables (predicate fresh_atom,
directly implementable with the standard meta-predicate functor), then such
2 Available at ftp://ftp.disi.unige.it/person/AnconaD/coCLP.zip

44 D. Ancona et al.

atom is searched in the list of coinductive hypotheses with the standard member

predicate. Predicate gen corresponds to the function gen defined at the beginning
of this section, whereas union performs union of sets of constraints.

Further details of the implementation are available in an technical report [1].

6 Conclusion

This paper provides a further step towards applicability of abstract compilation
to realistic object-oriented languages in two directions.

We have defined a formal abstract compilation scheme allowing precise predic-
tion of uncaught exceptions for a simple Java-like language. The analysis covers
both user declared checked exceptions, and the unchecked predefined runtime
exception ClassCastException. Furthermore, we have presented a general im-
plementation schema for abstract compilation based on coinductive CLP with
variance annotation of user-defined predicates, and proposed an implementation
based on a Prolog prototype meta-interpreter, parametric in the solver for the
subtyping constraints.

Our approach seems particularly promising in the context of object-oriented
programming, when the type domain contains union and object types. More
efforts are required to obtain results for realistic object-oriented languages. De-
vising a constraint solver for subtyping on regular union and object types is
of paramount importance. We have already investigated several sound but not
complete axiomatizations of subtyping [3,4], but we still do not know whether
subtyping on regular union and object types is decidable; currently, we are devel-
oping a CHR [10] based implementation of a sound but not complete constraint
solver for the abstract compilation scheme presented in this paper. Although scal-
ability of the approach in the presence of imperative features has been already
investigated [5], much work should be accomplished in this direction; for in-
stance, it would be interesting to investigate whether abstract compilation could
be integrated with other kinds of analysis to detect reference aliasing, or other
runtime exceptions as NullPointerException or IndexOutOfBoundsException.

Acknowledgments. We warmly thank the anonymous FoVeOOS 2010 referees
for their useful comments and suggestions.

References

1. Ancona, D., Corradi, A., Lagorio, G., Damiani, F.: Abstract compilation of object-
oriented languages into coinductive CLP(X): can type inference meet verification
(extended version). Technical report, DISI (August 2010),
ftp://ftp.disi.unige.it/person/AnconaD/ACLD10ext.pdf

2. Ancona, D., Lagorio, G.: Coinductive type systems for object-oriented languages.
In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 2–26. Springer,
Heidelberg (2009); Best paper prize

3. Ancona, D., Lagorio, G.: Coinductive subtyping for abstract compilation of object-
oriented languages into Horn formulas. In: GandALF 2010. Electronic Proceedings
in Theoretical Computer Science (2010)

ftp://ftp.disi.unige.it/person/AnconaD/ACLD10ext.pdf

Abstract Compilation of Object-Oriented Languages 45

4. Ancona, D., Lagorio, G.: Complete coinductive subtyping for abstract compilation
of object-oriented languages. In: 12th Intl. Workshop on Formal Techniques for
Java-like Programs, ACM Digital Library (2010)

5. Ancona, D., Lagorio, G.: Idealized coinductive type systems for imperative object-
oriented programs. Technical report, DISI, Submitted for journal publication
(January 2010)

6. Ancona, D., Lagorio, G., Zucca, E.: Type inference by coinductive logic program-
ming. In: Berardi, S., Damiani, F., de’Liguoro, U. (eds.) TYPES 2008. LNCS,
vol. 5497, pp. 1–18. Springer, Heidelberg (2009)

7. Barbanera, F., Dezani-Cincaglini, M., de Liguoro, U.: Intersection and union types:
Syntax and semantics. Information and Computation 119(2), 202–230 (1995)

8. Courcelle, B.: Fundamental properties of infinite trees. TCS 25, 95–169 (1983)
9. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently

computing static single assignment form and the control dependence graph. ACM
TOPLAS 13, 451–490 (1991)

10. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press, Cambridge
(2009)

11. Gosling, J., Joy, B., Steele, G.L., Bracha, G.: The Java language specification, 3rd
edn. The Java series. Addison-Wesley, Reading (2005)

12. Hermenegildo, M., Warren, R., Debray, K.: Global flow analysis as a practical
compilation tool. J. Log. Program. 13(4), 349–366 (1992)

13. Igarashi, A., Nagira, H.: Union types for object-oriented programming. Journ. of
Object Technology 6(2), 47–68 (2007)

14. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM TOPLAS 23(3), 396–450 (2001)

15. Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. J. Log. Pro-
gram. 19(20), 503–581 (1994)

16. Jo, J., Chang, B., Yi, K., Choe, K.: An uncaught exception analysis for Java.
Journal of Systems and Software 72(1), 59–69 (2004)

17. Min, R., Gupta, G.: Coinductive logic programming and its application to boolean
sat. In: FLAIRS Conference (2009)

18. Saeedloei, N., Gupta, G.: Verifying complex continuous real-time systems with
coinductive CLP(R). In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA
2010. LNCS, vol. 6031, pp. 536–548. Springer, Heidelberg (2010)

19. Odersky, M., Sulzmann, M., Wehr, M.: Type inference with constrained types.
Theory and Practice of Object Systems 5(1), 35–55 (1999)

20. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-logic programming: Extend-
ing logic programming with coinduction. In: Arge, L., Cachin, C., Jurdziński, T.,
Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 472–483. Springer, Heidelberg
(2007)

21. Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive logic programming.
In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 330–345.
Springer, Heidelberg (2006)

22. Sulzmann, M., Stuckey, P.J.: HM(X) type inference is CLP(X) solving. Journ. of
Functional Programming 18(2), 251–283 (2008)

Validating Timed Models of Deployment
Components with Parametric Concurrency�

Einar Broch Johnsen, Olaf Owe, Rudolf Schlatte,
and Silvia Lizeth Tapia Tarifa

Department of Informatics, University of Oslo, Norway
{einarj,olaf,rudi,sltarifa}@ifi.uio.no

Abstract. Many software systems today are designed without assuming
a fixed underlying architecture, and may be adapted for sequential, mul-
ticore, or distributed deployment. Examples of such systems are found
in, e.g., software product lines, service-oriented computing, information
systems, embedded systems, operating systems, and telephony. Models
of such systems need to capture and range over relevant deployment sce-
narios, so it is interesting to lift aspects of low-level deployment concerns
to the abstraction level of the modeling language. This paper proposes
an abstract model of deployment components for concurrent objects, ex-
tending the Creol modeling language. The deployment components are
parametric in the amount of concurrency they provide; i.e., they vary
in processing resources. We give a formal semantics of deployment com-
ponents and characterize equivalence between deployment components
which differ in concurrent resources in terms of test suites. Our semantics
is executable on Maude, which allows simulations and test suites to be
applied to a deployment component with different concurrent resources.

1 Introduction

Software systems today are increasingly developed to be highly configurable. A
development method which attempts to systematize this variability is software
product line engineering [25]; in a product line, different software systems (or
products) may be instantiated with different features. To illustrate this approach
to software development, consider software for cell phones. Products for different
cell phones and service subscriptions are produced by selecting among features
such as call forwarding, answering machine, text messaging, etc. In addition to
this software variability, products often need to be adapted to different hardware
or deployment scenarios. Examples of such variability are found in operating sys-
tems, which can be adapted to specific hardware and even to the different num-
bers of available cores; web shops, which are deployed on a varying number of
servers and may even dynamically perform load balancing between these servers;
and information systems within, e.g., healthcare or finance, which may run on

� Partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trust-
worthy Software using Formal Models (http://www.hats-project.eu).

B. Beckert and C. Marché (Eds.): FoVeOOS 2010, LNCS 6528, pp. 46–60, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Validating Timed Models of Deployment Components 47

a single computer, in a distributed set-up, or even on the cloud. Software prod-
uct lines raise new challenges for the performance analysis of component-based
applications [29]. In this paper, we apply performance analysis to formal models
of object-oriented components or systems in deployment scenarios which vary in
the amount of concurrent resources they can provide to the given component.

This work is based on Creol [11,19], a modeling language for distributed con-
current objects which communicate by asynchronous method calls and futures.
Creol’s operational semantics is given in rewriting logic [21] and is executable on
Maude [10]. Concurrent objects are reminiscent of Actors [1] and Erlang [4]: Ob-
jects are inherently concurrent, conceptually each object has a dedicated proces-
sor, and there is at most one activity in an object at any time. This concurrency
model has attracted attention as an alternative to multi-thread concurrency
in object-orientation (e.g., [7]), and been integrated with, e.g., Java [28] and
Scala [14]. Concurrent objects support compositional verification of concurrent
software [2, 11], in contrast to multi-threading. A particular feature of Creol is
its cooperative scheduling of method activations inside concurrent objects. Re-
cently, Creol’s notion of cooperative scheduling and asynchronous method calls
has been integrated in Java by means of concurrent object groups [26].

This paper generalizes the idea of concurrent object groups to deployment
components which are parametric in the amount of concurrent activity they allow
within a time interval. Creol is extended with notions of timed execution and
deployment components, which are integrated into Creol’s operational semantics.
This integration is non-trivial in that it must capture parametric concurrent
activities within time intervals in terms of an interleaving semantics in order
to execute the models in Maude. We characterize the equivalence of different
deployment scenarios, varying in the concurrency resources of the deployment
components, in terms of test suites of timed observable behavior and use Maude
to run tests for our models. This allows the timed behavior of concurrent object
models under restricted concurrency assumptions to be validated and compared.

Paper Overview. Sect. 2 presents a timed version of Creol, and Sect. 3 the
deployment components with parametric concurrency. Sect. 4 illustrates the
language by an example. Sect. 5 explains the operational semantics of Creol
extended with time and deployment components. Sect. 6 presents testing and
simulation results in the context of the example, Sect. 7 discusses related work,
and Sect. 8 concludes the paper.

2 Concurrent Objects in Creol

Creol is an abstract behavioral modeling language for distributed active ob-
jects, based on asynchronous method calls and processor release points. In Creol,
objects conceptually have dedicated processors and live in a distributed environ-
ment with asynchronous and unordered communication between objects. Com-
munication is between named objects by means of asynchronous method calls;
these may be seen as triggers of concurrent activity, resulting in new activities
(processes) in the called object. This section briefly introduces Creol (for further

48 E.B. Johnsen et al.

Syntactic categories.
C, I, m in Names
g in Guard
s in Stmt
x in Var
e in Expr
b in BoolExpr

Definitions.
IF ::= interface I { [Sg] }
CL ::= classC [(I x)] [implements I] { [I x;] M}
Sg ::= I m ([I x])
M ::= Sg == [I x;] { s }
g ::= b | x? | g ∧ g
s ::= s; s | x := rhs | release | await g | return e

| if b then { s } [else { s }] | while b { s } | skip
e ::= x | b | this | now | null

rhs ::= e | new C (e) | [e]!m(e) | [e.]m(e) | x.get

Fig. 1. The syntax of core Timed Creol. Terms such as e and x denote lists over the
corresponding syntactic categories, square brackets [] denote optional elements.

details see, e.g., [11, 19]). Objects are dynamically created instances of classes,
their declared attributes are initialized to some arbitrary type-correct values. An
optional init method may be used to redefine the attributes. Active behavior,
triggered by an optional run method, is interleaved with passive behavior, trig-
gered by method calls. Thus, an object has a set of processes to be executed,
which stem from method activations. Among these, at most one process is active
and the others are suspended on a process queue. The scheduling of processes
is by default non-deterministic, but controlled by processor release points in a
cooperative way. Creol is strongly typed: for well-typed programs, invoked meth-
ods are supported by the called object (when not null), such that formal and
actual parameters match. This paper assumes that programs are well-typed.

Figure 1 gives the syntax for a core subset of timed Creol (omitting, e.g.,
inheritance). A program consists of interface and class definitions and a main
method to configure the initial state. IF defines an interface with name I and
method signatures Sg. A class implements a list I of interfaces, specifying types
for its instances. CL defines a class with name C, interfaces I, class parameters
and state variables x (of type I), and methods M . (The attributes of the class
are both its parameters and declared fields.) A method signature Sg declares
the return type I of a method with name m and formal parameters x of types I.
M defines a method with signature Sg and a list of local variable declarations
x of types I and a statement s. Statements may access class attributes, locally
defined variables, and the method’s formal parameters.

Statements. Assignment x := rhs, sequential composition s1; s2, skip, if,
while, and return e constructs are standard. The statement release uncon-
ditionally releases the processor by suspending the active process. In contrast,
the guard g controls processor release in the statement await g, and consists
of Boolean expressions b over attributes and return tests x? (see below). If g
evaluates to false, the current process is suspended and the active process be-
comes idle. In this case, any enabled process may be chosen from the pool of
suspended processes. The scheduling of processes is cooperative in the sense that
processes explicitly yield control and execution in one process may enable the
further execution in another. Explicit signaling is redundant.

Validating Timed Models of Deployment Components 49

Expressions rhs include declared variables x, Boolean expressions b, and ob-
ject creation new C(e). The reserved read-only variable this refers to the object
identifier and now to the current clock value (explained below). Note that pure
expressions are denoted by e and that remote access to attributes is not allowed.
(The full language includes a functional expression language with standard oper-
ators for data types such as strings, integers, lists, sets, maps, and tuples. These
are omitted here, and explained when used in the examples.)

Communication in Creol is based on asynchronous method calls, denoted
e!m(e), and future variables. (Local calls are written !m(e).) After making an
asynchronous call x := e!m(e), the caller may proceed with its execution with-
out blocking on the method reply. Here x is a future variable, and e and e are
expressions. A future variable refers to a return value which may still need to be
computed. There are two operations on future variables, which control synchro-
nization in Creol. First, the guard await x? suspends the active process unless
a return to the call associated with x has arrived. This suspends execution of the
process, but allows other processes to run. Second, the return value is retrieved
by the expression x.get, which blocks all execution in the object until the return
value is available. The statement sequence x := o!m(e); v := x.get encodes a
blocking call, abbreviated v := o.m(e) (often referred to as a synchronous call),
whereas the statement sequence x := o!m(e); await x?; v := x.get encodes a
non-blocking, preemptable call.

Time. In this paper we work with an extended version of the Creol language
which includes an implicit time model [6], comparable to a system clock which
updates every n milliseconds (representing a time interval). In this extension
the expression now returns the present time, i.e., the global clock’s value in
the current state. Time values are totally ordered by the less-than operator;
comparing two time values result in a Boolean value suitable for guards in await
statements. From an object’s local perspective, the passage of time is indirectly
observable via await statements in this model of timed behavior, and time is
advanced when no other activity may occur. In this paper this model of time is
used to handle the amount of concurrent activity allowed within a time interval
in order to model resource constrains for different deployment scenarios.

3 Deployment Components with Parametric Concurrency

Creol’s object model is inherently concurrent, which means that for the actual
deployment of a program it is necessary to map the logical concurrency of the
model to physical computing resources. For this purpose, we introduce a notion
of deployment component into the modeling language, which abstracts from the
number and speed of the physical processors available to the component by a
notion of concurrent resource. The granularity of the global time model defines
the points in time when the executing system is observable. Concurrent resources
may be consumed in parallel or in sequential order, which reflects the number
of processors and their speeds relative to the granularity of the time intervals
of the model. Thus, the logical concurrency model of the concurrent objects is

50 E.B. Johnsen et al.

controlled by their associated deployment component. A deployment component
is parametric in the computational resources it offers to a group of dynamically
created objects, which allows easy configuration of concurrent resources.

The execution inside a deployment component can be understood as follows.
Let n be a natural number. Resources are modelled by a data type Resource
which extends the natural numbers with an “unlimited resource” ω. Resource
consumption is captured by subtraction, where ω−n = ω. Within a time interval,
a deployment component with r concurrent resources is able to execute up to n
execution steps in parallel, where n ≤ r. Consider a deployment component D
instantiated with r resources and let G be the set of concurrent objects which
currently reside in the deployment component. Let A ⊆ G be a subset of the
concurrent objects on the component, such that objects in A are able to perform
an execution step in their current state. Provided |A| ≤ r, every object in A may
consume a resource, leaving r′ = r − |A| resources available on the component.
If there are remaining resources (r′ > 0), another cycle of execution steps may
be performed for r′ within the time interval by repeating this procedure.

In the modeling language, a deployment component D is declared by associ-
ating a name to a given quantity of concurrent resources r, capturing the actual
processing capacity of D. For simplicity in this paper, a deployment compo-
nent is a static entity, in contrast to class declarations which act as templates
for the dynamic generation of objects. A component is introduced by the syn-
tax component D(r), where D is the name of the component and r, of sort
Resource, represents the concurrent resources of the component. The set of
concurrent objects residing on the components, representing the logically con-
current activities, may grow dynamically. Thus, when objects are created, they
must reside inside a deployment component. The syntax for object creation is
extended with an optional clause to specify the targeted deployment component:
new C(e) in D. This expresses that the C object will reside in component D.
Objects generated by a parent object residing in a component D will also reside
in D unless otherwise specified by an in clause. Thus the behavior of a Creol
model which does not statically declare additional deployment components, can
be captured by a main deployment component with ω resources.

4 Example: A Distributed Shopping Service

We consider a simple model of a web shop (see Fig. 2). Clients connect to the
shop by calling the getSession method of an Agent object. An Agent hands
out Session objects from a dynamically growing pool. Clients call the order
method of their Session instance, which in turn calls the makeOrder method
of a Database object that is shared across all sessions. After completing the
order, the session object is added to the agent’s pool again. This scenario models
the architecture and control flow of a database-backed website, while abstracting
from many details (load-balancing thread pools, data model, sessions spanning
multiple requests, etc.), which can be added to the model should the need arise.

Validating Timed Models of Deployment Components 51

1 interface Agent { Session getSession(); Void free(Session session);}
2 interface Session { Bool order(); }
3 interface Database { Bool makeOrder(); }
4

5 class Database(Nat min, Nat max) implements Database {
6 Bool makeOrder () {
7 Time t:=now;
8 await now >= t + min;
9 return now <= t + max; }

10 }
11 class Agent(Database db, Set[Session] available) implements Agent{
12 Session getSession() {
13 if isempty(available) {
14 return new Session(this, db); }
15 else { session:=choose(available);
16 available:=remove(session,available);return session;}}
17 Void free(Session session){available:=add(available,session);}
18 }
19 class Session(Agent agent, Database db) implements Session {
20 Bool order() {return db.makeOrder(); agent.free(this); }
21 }

Fig. 2. A web shop model in Creol

In the implementation of the Database class, an order takes a minimum
amount of time, and should be completed within a maximum amount of time.
The timing behavior of the database is configurable via the class parameters
min and max. Line 8 implements the delay while processing the order, Line 9
calculates and returns the success status of the order (i.e., whether a timeout
occurred). Note that a component with unlimited resources, will complete all
orders in the minimum amount of time, just as expected. In the Agent class, the
attribute available stores a set of Session objects. (Creol has a datatype for
sets, with operations isempty to check for the empty set, denoted {}, choose
to select an element of a non-empty set, and remove and add to remove or add
an element to a set.) When a customer requests a Session, the Agent takes
a session from the available sessions if possible (Line 15), otherwise it creates a
new session (Line 14). The method free inserts a session in the available
sessions of the Agent, and is called by the session itself upon completion of an
order. Section 6 will show how to run this example on a deployment component.

5 Operational Semantics

The operational semantics of timed Creol with deployment components is pre-
sented as a transition system in an SOS style [24]. Transition rules apply to
subsets of configurations (the standard context rules are not listed). For sim-
plicity we assume that configurations can be reordered to match the left hand
side of the rules (i.e., matching is modulo associativity and commutativity as in
rewriting logic [21]). A run of the system is a possibly nonterminating sequence
of rule applications. When auxiliary functions are used in the semantics, these
are evaluated in between the application of transition rules in a run.

52 E.B. Johnsen et al.

cn ::= ε | comp | object | msg tcn ::= clock cn

| future | cn cn comp ::= dc(n, r, u)
object ::= ob(o, C, a, p, q) msg ::= invoc(o, f, m, v)

q ::= ∅ | p | q\p | enqueue(p, q) future ::= fut(f, v)
p ::= {l|s} | select(q, a, cn , t) | idle clock ::= cl(t)
v ::= o | f | null | b | t

Fig. 3. The syntax for timed runtime configurations

Timed runtime timed configurations tcn, given in Fig. 3, include one global
clock and an untimed configuration cn; i.e., a set which consists of deployment
components, objects, invocation messages, and futures. The associative and com-
mutative union operator on configurations is denoted by whitespace and the
empty configuration by ε. These configurations live inside curly brackets; in the
term {tcn}, tcn captures the entire configuration. The global clock is a term cl(t)
where t is the current time. A deployment component is a term dc(n, r, u) where
n is the identifier of the component, r the (non-negative) number of available
computing resources, and u the maximum number of resources which can be
consumed before the clock advances. An object is a term ob(o, C, a, p, q) where o
is the object’s identifier and C its class, a is an attribute mapping representing
the object’s fields, p is an active process, and q is a queue of suspended processes.
In the fields a of an object o, the reserved field ‘mycomp’ is bound to the de-
ployment component associated with o. A process p consists of a mapping l of
local variable bindings and a list s of statements, and will be written as {l|s}
when convenient. An invocation message is a term invoc(o, f, m, v) where o is
the callee, f the future to which the call’s result shall be returned, m the method
name, and v lists the call’s actual parameter values. A future is a term fut(f, v)
with identifier f and reply value v (which is ⊥ when the future’s reply value has
not been received). Values are object and future identifiers, Boolean expressions,
clock values, and null (as well as expressions in the functional language).

Evaluating Expressions. Given a substitution σ, a time t, and a configuration
cn, denote by [[e]]cn

σ,t a confluent and terminating reduction system which reduces
expressions e to data values. Let [[now]]cn

σ,t = t. Let [[x?]]cn
σ,t = true if [[x]]cn

σ,t = f and
fut(f, v) ∈ cn for some value v �= ⊥, otherwise [[x?]]cn

σ,t = false. The remaining
cases are fairly straightforward, looking up values for declared variables in σ.
The reduction of an expression always happens in the context of a given process,
object state, and configuration. Thus, σ = a ◦ l (the composition of the fields a
and the local variable bindings l), t is the current global time, and cn the current
untimed configuration of the system (ignoring the object itself).

The Rules. The rewrite rules of the operational semantics transform state config-
urations into new configurations, and are given in Fig. 4. If a and l are mappings,
denote by dom(a) the domain of a; by a(x) the value bound to x in a (assuming
that x ∈ dom(a)); by a[x �→ v] the extension of a in which x is bound to v (and
a[x �→ v](x′) = a(x′) if x �= x′); and by a ◦ l the composed mapping in which
a ◦ l(x) = l(x) if x ∈ dom(l) (and a ◦ l(x) = a(x) if x �∈ dom(l)). For simplicity,
classes are not represented explicitly in the semantics, but may be seen as static

Validating Timed Models of Deployment Components 53

(skip)

a(mycomp) = n r > 0
ob(o, C, a, {l|skip; s}, q) dc(n, r, u)
→ ob(o, C, a, {l|s}, q) dc(n, r − 1, u)

(Bind-Mtd)

p′ = bind(o, f, m, v, C)
ob(o, C, a, p, q) invoc(o, f, m, v)
→ ob(o, C, a, p, enqueue(p′, q))

(assign1)

x ∈ dom(l) v = [[e]]ε(a◦l),t

a(mycomp) = n r > 0
ob(o, C, a, {l|x := e; s}, q)

dc(n, r, u) cl(t)
→ ob(o, C, a, {l[x �→ v]|s}, q)

dc(n, r − 1, u) cl(t)

(Async-Call)

o′ = [[e]]ε(a◦l),t v = [[e]]ε(a◦l),t

fresh(f) a(mycomp) = n r > 0
ob(o, C, a, {l|x := e!m(e); s}, q)

dc(n, r, u) cl(t)
→ ob(o, C, a, {l|x := f ; s}, q) dc(n, r − 1, u)

cl(t) invoc(o′, f, m, v) fut(f,⊥)

(assign2)

x ∈ dom(a) v = [[e]]ε(a◦l),t

a(mycomp) = n r > 0
ob(o, C, a, {l|x := e; s}, q)

dc(n, r, u) cl(t)
→ ob(o, C, a[x �→ v], {l|s}, q)

dc(n, r − 1, u) cl(t)

(return)

v = [[e]]ε(a◦l),t r > 0
a(mycomp) = n l(destiny) = f

ob(o, C, a, {l|return e; s}, q) cl(t)
fut(f,⊥) dc(n, r, u)

→ ob(o, C, a, {l|s}, q) cl(t)
fut(f, v) dc(n, r − 1, u)

(cond1)

[[e]]ε(a◦l),t

ob(o, C, a, {l|if e then s1

else s2 fi; s}, q) cl(t)
→ ob(o, C, a, {l|s1; s}, q) cl(t)

(await1)

[[g]]cn
(a◦l),t

{ob(o, C, a, {l|await g; s}, q) cl(t) cn}
→ {ob(o, C, a, {l|s}, q) cl(t) cn}

(cond2)

¬[[e]]ε(a◦l),t

ob(o, C, a, {l|if e then s1

else s2 fi; s}, q) cl(t)
→ ob(o, C, a, {l|s2; s}, q) cl(t)

(await2)

¬[[g]]cn
(a◦l),t

{ob(o, C, a, {l|await g; s}, q) cl(t) cn}
→ {ob(o, C, a, {l|release; await g; s}, q)

cl(t) cn}

(Read-Fut)

v 	= ⊥ f = [[e]]ε(a◦l),t

a(mycomp) = n r > 0
ob(o, C, a, {l|x := e.get; s}, q)

fut(f, v) dc(n, r, u) cl(t)
→ ob(o, C, a, {l|x := v; s}, q)
fut(f, v) dc(n, r − 1, u) cl(t)

(New-Object)

fresh(o′) a(mycomp) = n r > 0
p = init(B) a′ = atts(B, v, o′, n)
ob(o, C, a, {l|x := new B(e); s}, q)

cl(t) dc(n, r, u)
→ ob(o, C, a, {l|x := o′; s}, q) cl(t)

ob(o′, B, a′, p, ∅) dc(n, r − 1, u)

(progress)

canAdv(cn, t)
{cn cl(t)}

→ {Adv(cn) cl(t + 1)}

(release)

ob(o, C, a, {l|release; s}, q)
→ ob(o, C, a, idle,

enqueue({l|s}, q))

(activate)

p = select(q, a, cn, t)
{ob(o, C, a, idle, q) cl(t) cn}

→ {ob(o, C, a, p, q\p) cl(t) cn}
Fig. 4. Semantics for timed Creol

tables. Assume given functions bind(o, f, m, v, C) which returns a process result-
ing from the method activation of m in a class C with actual parameters v, callee
o and associated future f ; init(C) which returns a process initializing instances
of class C; and atts(C, v, o, n) which returns the initial state of an instance of
class C with class parameters v, identity o, and deployment component n. The

54 E.B. Johnsen et al.

predicate fresh(n) asserts that a name n is globally unique (where n may be an
identifier for an object or a future). Let ‘idle’ denote any process {l|s} where
s is an empty statement list. Finally, we define different assignment rules for
side effect free expressions (assign1 and assign2), object creation (new-object),
method calls (async-call), and future dereferencing (read-fut).

Rule skip consumes a skip in the active process and a resource in the object’s
deployment component. Here and in the sequel, the variable s will match any
(possibly empty) statement list, the object’s deployment component is given
by a(mycomp), and r > 0 asserts that the deployment component has available
resources. Rules assign1 and assign2 assign the value of expression e to a variable
x in the local variables l or in the fields a, respectively, consuming a resource
in the deployment component of the object. Rules cond1 and cond2 branch the
execution depending on the value obtained by evaluating the expression e. (We
omit the rule for while, which unfolds the while loop using an if-expression.)

Process Suspension and Activation. Three operations are used to manipulate
a process queue q: enqueue(p, q) adds a process p to q, q\p removes the process p
from q, and select(q, a, cn, t) selects a process from q (if q is empty, this is the idle
process or no process is ready [19]). The actual definitions of these operations are
left undefined; different definitions correspond to different scheduling policies for
processes. Let ∅ denote the empty queue. Rule release suspends the active process
to the process queue, leaving the active process idle. Rule await1 consumes the
await statement if the guard evaluates to true in the current state of the object,
rule await2 adds a release statement in order to suspend the process if the
guard evaluates to false. Rule activate selects a process from the process queue
for execution if this process is ready to execute, i.e., if it would not directly be
resuspended or block the processor [19].

Communication and Object Creation. Rule async-call sends an invocation
message to o′ with the unique identity f (by the condition fresh(f)) of a new fu-
ture, the method name m, and actual parameters v. Note that the return value of
the new future f is undefined (i.e., ⊥). This operation consumes a resource. Rule
bind-mtd consumes an invocation method and places the process corresponding
to the method activation in the process queue of the callee. Note that a reserved
local variable ‘destiny’ is used to store the identity of the future associated with
the call. Rule return places the return value into the call’s associated future.
This operation consumes a resource. Rule read-fut dereferences the future f in
the case where v �= ⊥. This operation consumes a resource. Note that if this
attribute is ⊥ the reduction in this object is blocked. Finally, new-object creates
a new object with a unique identifier o′. The object’s fields are given default
values by atts(B, v, o′, n), extended with the actual values v for the class pa-
rameters, o′ for this, and n for mycomp. In order to instantiate the remaining
attributes, the process p is loaded (we assume that this process reduces to idle
if init(B) is unspecified in the class definition, and that it asynchronously calls
run if the latter is specified). This operation consumes a resource. Note that
the new object inherits the deployment component of its creator. The rule for

Validating Timed Models of Deployment Components 55

canAdv(cn′, t) = true cn’ contains no objects or messages
canAdv(msg cn, t) = false messages are instantaneous
canAdv(ob(o, C, a, p, q) dc(n, 0, u) cn, t) no more resources

= canAdv(dc(n, 0, u) cn, t) ∧ a(mycomp) == n
canAdv(ob(o, C, a, {l|x := f.get; s}, q) fut(f,⊥) cn, t) o is blocked and

= canAdv(fut(f,⊥) cn, t) no value is available
canAdv(ob(o, C, a, idle, q) cn, t) no ready processes

= canAdv(cn, t) ∧ select(q, a, cn, t) == idle
canAdv(ob(o, C, a, p, q) cn, t) = false otherwise

Adv(dc(n, r, u) cn) = dc(n, u, u) Adv(cn)
Adv(cn) = cn otherwise

Fig. 5. Auxiliary functions controlling time advance. Here, msg denotes a message and
cn′ ranges over message- and object-free configurations.

object creation in a named deployment component differs from new-object only
on this point, and is omitted from the presentation.

Advancing Time. We capture a run-to-completion semantics for concurrent ex-
ecution within the resource bounds of deployment components: all objects must
finish their actions as soon as possible if resources are available. In order to
reflect timed concurrent execution with an interleaving semantics, time cannot
advance freely. Time advance is regulated by a predicate canAdv, ranging over
configurations and time (see Fig. 5), which can be explained as follows:

– For simplicity, we assume that invocation messages do not take time. There-
fore, time may not advance when a message is on its way.

– Time may not advance if any deployment component has remaining resources
and any of the component’s objects o may perform an action. There are three
cases:
1. the active process in o is blocked on a value that has become available,
2. the active process in o is idle, but a suspended process can be activated.
3. the active process in o is not blocked.

– If all deployment components have run out of resources or none of their
objects can proceed, then time can advance.

If there can be no activity in any object and no messages are in transit, then time
may advance. (A timed model of communication may be obtained by introducing
explicit delays in the model, associated with specific method calls, see Sect. 4.)
Time advance is captured by the rewrite rule progress in Fig. 4, which updates
the global clock. Once time has advanced, the deployment components get their
resources refreshed for the next cycle of computation. This is done by an auxiliary
function Adv defined in Fig. 5, which updates a configuration by resetting the free
resources of each deployment component to the specified limit. Observe that for
simplicity we here advance time with a single unit. It is of course straightforward
to add an attribute delta which allows larger increments. However, this may lead
to incompleteness for search in the timed models [22].

56 E.B. Johnsen et al.

6 Simulating and Testing the Example

The operational semantics presented in Section 5 can be directly represented in
rewriting logic [21], which allows models to be analyzed using the rewrite tool
Maude [10]. Given an initial configuration, Maude supports simulation and
breadth-first search through reachable states and model checking of finite reach-
able states for desired properties. In this paper, Maude is used as an interpreter for
Creol’s operational semantics in order to simulate and test Creol models. The web
shop example of Section 4 is now extended by specifying a deployment component
and an environment in order to obtain testing and simulation results.
Figure 6 shows how the web shop may be deployed: a deployment component shop
is declared with 10 resources available for objects executing inside shop. The ini-
tial system state is given by the main method, which creates a single database,
with 5 and 10 as its minimum and maximum time for orders, an Agent instance,
and (in this example) one client outside of shop. The classes SyncClient and
PeriodicClient model customers of the shop. PeriodicClient initiates a
session and periodically calls order every c time intervals; SyncClient sends
an order c time intervals after the last call returned.

Figure 7 displays the results of two sets of simulation runs over 100 clock
cycles. For synchronous clients, 10 to 50 clients and 10 to 50 resources on the
shop deployment unit were used. Starting with 20 clients, the number of requests
goes up linearly with the number of resources, indicating that the system is
running at full capacity. Moreover, the number of successful requests decreases
somewhat with increasing clients since communication costs also increase. For
the periodic case, the system gets overloaded much more quickly since clients will
have several pending requests; hence, only 2 to 10 periodic clients were simulated.
It can be seen that the system becomes completely unresponsive quickly when
flooded with requests.

Testing Timed Observable Behavior. In software testing, a formal model can
be used both for test case generation and as a test oracle to judge test out-
comes [17]. For example, test case generation from formal models of communi-
cation protocols can ensure that all possible sequences of interactions specified
by the protocol are actually exercised while testing a real system. Using formal
models for testing is most widely used in functionality testing (as opposed to

class SyncClient(Agent a,Nat c){
Void run {
Time t := now;
Session s := a.getsession();
Bool result := s.order();
await now >= t + c; !run(); } }

class PeriodicClient(Agent a,Nat c){
Void run {
Time t := now;
Session s := a.getsession();
Fut(Bool) rc:= s!order();
await now >= t + c;
!run();
await rc?; Bool r := rc.get; } }

component shop(10)
Void main() {

Database db := new Database(5, 10) in shop;
Agent a := new Agent(db, {}) in shop;
PeriodicClient c := new PeriodicClient(a, 5); }

Fig. 6. Deployment environment and client models of the web shop example

Validating Timed Models of Deployment Components 57

Fig. 7. Number of total and successful requests, depending on the number of clients
and resources, for synchronous (left) and periodic (right) clients

e.g. load testing, where stability and timing performance of the system under
test is evaluated), but the approaches from that area are applicable to formally
specifying and testing timing behavior of software systems as well [16].

In this paper, we model and investigate the effects of specific deployment com-
ponent configurations on the timing behavior of timed software models. The test
purpose in this scenario is to reach a conclusion on whether redeployment on a
different configuration leads to an observable difference in timing behavior. Both
model and system under test are Creol models of the same system, but running
under different deployment configurations. In our example, the client object(s)
model the expected usage scenario; results about test success or failure are rel-
ative to the expected usage. As conformance relation we use trace equivalence.
This simple relation is sufficient since model and system under test have the same
internal structure, hence we do not need to test for input enabledness, invalid
responses etc. In our case, traces are sequences of communication events, i.e.
method invocations and responses annotated with the time of occurrence, which
are recorded on both the model and the system under test and then compared
after the fact (off-line testing).

Running the model with five SyncClients (see Fig. 6) but with unlimited
resources in the component results in a trace 〈10, t〉, 〈15, t〉, 〈20, t〉, . . . (where
each tuple contains 〈response time, success〉). Deploying with 50 resources results
in the same trace, whereas running with 20 resources results in a trace 〈12, t〉,
〈17, t〉, 〈22, t〉, . . . If the model and system under test have identical untimed
behavior, we conclude that a system without resource limits and a deployment
component with 50 resources behave equivalently under the assumed workload,
whereas deploying with 20 resources will lead to observably different behavior.

7 Related Work

The concurrency model provided by concurrent objects and Actor-based com-
putation, in which software units with encapsulated processors communicate
asynchronously, is increasingly attracting attention due to its intuitive and com-
positional nature (e.g., [1, 2, 4, 7, 11, 14, 28]). A distinguishing feature of Creol is
the cooperative scheduling between asynchronously called methods [19], which

58 E.B. Johnsen et al.

allows active and reactive behavior to be combined within objects as well as com-
positional verification of partial correctness properties [2, 11]. Creol’s model of
cooperative scheduling has recently been generalized to concurrent object groups
in Java [26] by restricting to a single activity within the group. Our paper gen-
eralizes concurrent object groups to a resource-constrained deployment compo-
nents, in which the allowed activity per time interval is parametric in concurrent
resources, using a time version of Creol [6]. This allows us to abstractly model
the effect of deploying concurrent object groups on deployment components with
different amounts of processing capacity. A companion paper considers deploy-
ment components and resources as first-class citizens of the language [20], which
allows load balancing strategies to be modeled in Creol.

Techniques and methodologies for predictions or analysis of non-functional
properties are based on either measurement and modeling. Measurement-based
approaches apply to existing implementations, using dedicated profiling or trac-
ing tools like, e.g., JMeter or LoadRunner. Model-based approaches allow ab-
straction from specific system intricacies, but depend on parameters provided by
domain experts [12]. A survey of model-based performance analysis techniques is
given in [5]. Formal systems using process algebra, Petri Nets, game theory, and
timed automata (e.g., [8, 9, 13, 15]) have been applied in the embedded software
domain, but also to the schedulability of processes in concurrent objects [18].
The latter work complements ours as it does not consider resource restrictions
on the concurrency model, but associates deadlines with method calls.

Work on modeling object-oriented systems with resource constraints is more
scarce. Using the UML SPT profile for schedulability, performance and time,
Petriu and Woodside [23] informally define the Core Scenario Model (CSM) to
solve questions that arise in performance model building. CSM has a notion
of resource context, which reflects an operation’s set of resources. CSM aims to
bridge the gap between UML and techniques to generate performance models [5].
Closer to our work is M. Verhoef’s extension of VDM++ for simulation of embed-
ded real-time systems [27], in which architectures are explicitly modelled using
CPUs and buses, and resources are bound to the CPUs. However, the underlying
object models and operational semantics differ. VDM++ has multi-thread con-
currency, preemptive scheduling, and a strict separation of synchronous method
calls and asynchronous signals, in contrast to our work with concurrent objects,
cooperative scheduling, and caller decided synchronization. In contrast to our
fairly succinct semantics, the extension to VDM++ is embedded into VDM++
itself and defined in terms of 100 pages of VDM++ specifications [27].

8 Conclusions and Future Work

This paper proposes a formal model of concurrent processing resources for the
deployment of timed object-oriented components. We extend Creol with a no-
tion of deployment component which is parametric in its concurrent resources
per time interval and formalize the operational semantics of object execution on

Validating Timed Models of Deployment Components 59

deployment components. Based on this formalization, we use the rewriting logic
tool Maude to validate resource requirements that are needed to maintain the
timed behavior of concurrent objects deployed with restricted resources.

The proposed model of deployment components is simple and flexible. The time
granularity is defined implicitly by the use of time outs, allowing several state-
ments to be executed in one time interval. In contrast, the execution cost of basic
statements is fixed (abstracting from the evaluation of expressions). With a single
resource, at most one basic statement can be executed in a deployment component
within a time interval. With multiple resources, all resources are used within the
time interval if possible. This proposed resource model does not describe compo-
nent scheduling policies, and abstracts from the cost of processor swapping and in-
ternal control flow. The model may be refined by associating deadlines to method
calls and by defining explicit scheduling policies [18]; by computing worst-case
costs for the evaluation of expressions [3] and internal control flow; by reconfig-
uration in terms of object mobility; as well as stronger analysis methods such as,
e.g., static analysis and bisimulation techniques.

The abstract notion of resource proposed in this paper reflects computational
limitations of concurrent or interleaved activity. Combined with a flexible time
model, this resource model can express interesting non-functional system proper-
ties, as illustrated by the example. Whereas most work on performance analysis
assumes a fixed underlying architecture, approaches such as the one presented in
this paper address a need in formal methods, in order to capture models which
vary over underlying architectures, for example in software product lines.

References

1. Agha, G.A.: ACTORS: A Model of Concurrent Computations in Distributed Sys-
tems. MIT Press, Cambridge (1986)

2. Ahrendt, W., Dylla, M.: A system for compositional verification of asynchronous
objects. Science of Computer Programming (2010) (in press)

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: COSTA: Design and
implementation of a cost and termination analyzer for java bytecode. In: de Boer,
F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS,
vol. 5382, pp. 113–132. Springer, Heidelberg (2008)

4. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

5. Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: A survey. IEEE Transactions on Software En-
gineering 30(5), 295–310 (2004)

6. Bjørk, J., Johnsen, E.B., Owe, O., Schlatte, R.: Lightweight time modeling in
Timed Creol. In: Electronic Proc. in Theoretical Computer Science, vol. 36, pp. 67–
81 (2010); Proc. Intl. Workshop on Rewriting Techniques for Real-Time Systems
(RTRTS 2010)

7. Caromel,D.,Henrio, L.:ATheory ofDistributedObject. Springer,Heidelberg (2005)
8. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces.

In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer,
Heidelberg (2003)

60 E.B. Johnsen et al.

9. Chen, X., Hsieh, H., Balarin, F.: Verification approach of Metropolis design frame-
work for embedded systems. Intl. J. of Parallel Prog. 34(1), 3–27 (2006)

10. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Que-
sada, J.F.: Maude: Specification and programming in rewriting logic. Theoretical
Computer Science 285, 187–243 (2002)

11. deBoer, F.S.,Clarke,D., Johnsen,E.B.:A complete guide to the future. In:DeNicola,
R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg (2007)

12. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-time
parameter adaptation. In: Proc. ICSE 2009, pp. 111–121. IEEE, Los Alamitos (2009)

13. Fersman, E., Krcál, P., Pettersson, P., Yi, W.: Task automata: Schedulability, de-
cidability and undecidability. Inf. and Comp. 205(8), 1149–1172 (2007)

14. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theoretical Computer Science 410(2-3), 202–220 (2009)

15. Hennessy, M., Riely, J.: Information flow vs. resource access in the asynchronous
pi-calculus. ACM TOPLAS 24(5), 566–591 (2002)

16. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
Testing real-time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman,
M. (eds.) FORTEST. LNCS, vol. 4949, pp. 77–117. Springer, Heidelberg (2008)

17. Hierons, R.M., Bogdanov, K., Bowen, J.P., Cleaveland, R., Derrick, J., Dick, J.,
Gheorghe, M., Harman, M., Kapoor, K., Krause, P., Lüttgen, G., Simons, A.J.H.,
Vilkomir, S.A., Woodward, M.R., Zedan, H.: Using formal specifications to support
testing. ACM Computing Surveys 41(2) (2009)

18. Jaghoori, M.M., de Boer, F.S., Chothia, T., Sirjani, M.: Schedulability of asyn-
chronous real-time concurrent objects. Journal of Logic and Algebraic Program-
ming 78(5), 402–416 (2009)

19. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)

20. Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Dynamic resource real-
location between deployment components. In: Zhu, H. (ed.) ICFEM 2010. LNCS,
vol. 6447, pp. 646–661. Springer, Heidelberg (2010)

21. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96, 73–155 (1992)

22. Ölveczky, P.C., Meseguer, J.: Abstraction and completeness for Real-Time Maude.
In: Proc. WRLA. ENTCS, vol. 176, pp. 5–27. Elsevier, Amsterdam (2007)

23. Petriu, D.B., Woodside, C.M.: An intermediate metamodel with scenarios and re-
sources for generating performance models from UML designs. Software and Sys-
tem Modeling 6(2), 163–184 (2007)

24. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 61, 17–139 (2004)

25. Pohl, K., Böckle, G., Van Der Linden, F.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, Heidelberg (2005)

26. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing active objects to concurrent
components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299.
Springer, Heidelberg (2010)

27. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and validating distributed em-
bedded real-time systems with VDM++. In: Misra, J., Nipkow, T., Karakostas, G.
(eds.) FM 2006. LNCS, vol. 4085, pp. 147–162. Springer, Heidelberg (2006)

28. Welc, A., Jagannathan, S., Hosking, A.: Safe futures for Java. In: Proc. OOPSLA
2005, pp. 439–453. ACM Press, New York (2005)

29. Yacoub, S.M.: Performance analysis of component-based applications. In: Chastek,
G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 299–315. Springer, Heidelberg (2002)

Verification of Software Product Lines with
Delta-Oriented Slicing

Daniel Bruns1, Vladimir Klebanov1, and Ina Schaefer2,�

1 Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
{bruns,klebanov}@kit.edu

2 Chalmers University of Technology, 421 96 Gothenburg, Sweden
schaefer@chalmers.se

Abstract. Software product line (SPL) engineering is a well-known
approach to develop industry-size adaptable software systems. SPL are
often used in domains where high-quality software is desirable; the over-
whelming product diversity, however, remains a challenge for assuring
correctness. In this paper, we present delta-oriented slicing, an approach
to reduce the deductive verification effort across an SPL where individual
products are Java programs and their relations are described by deltas.
On the specification side, we extend the delta language to deal with for-
mal specifications. On the verification side, we combine proof slicing and
similarity-guided proof reuse to ease the verification process.

1 Introduction

A software product line (SPL) [18] is a set of software systems (called products)
with well-defined commonalities and variabilities. SPL are often used in domains
(e.g., communications, medical, transportation) where high-quality software is
desirable; the overwhelming product diversity, however, remains a challenge for
assuring correctness by any method.

Even without formal verification, the dimensions and complexity of product
lines make it essential to model the relationships between products explicitly.
One of the authors has been working on the software engineering aspects of
SPL [22,23,21]. This has resulted in a modeling approach called delta-oriented
programming (Sect. 2). Our current effort aims to exploit the structural infor-
mation available in an SPL model to reuse verification results obtained from
verifying one product when considering another product. Where necessary, we
enrich the model with semantical information (such as formal specifications,
Sect. 3). Considering other possibilities to verify SPL that are more meta-level
(like generic or partial proofs) and require more semantical information, we de-
cided to go on with a more light-weight approach first.

� This author has been supported by Deutsche Forschungsgemeinschaft (DFG) and
by the EU project FP7-ICT-2007-3 HATS.

B. Beckert and C. Marché (Eds.): FoVeOOS 2010, LNCS 6528, pp. 61–75, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

62 D. Bruns, V. Klebanov, and I. Schaefer

The technology that we are using to illustrate our approach is Java for
programming single products, JML [13] for formal specifications and the KeY
system [4] for deductive verification. However, we only make the following as-
sumptions about the verification system:

– We concentrate on systems that manipulate an explicit proof object in the
proof assistant style, but do discuss systems operating in the verifying com-
piler style (a verification condition-generating tool chain with an SMT solver
at its end).

– We support both ways in which verification systems can treat method calls:
using the method contract or inlining the implementation. Using the contract
is inherently modular while inlining is not, but it still has its advantages. It
is simple, does not force the developer to write “trivial” contracts for helper
methods, and reduces the number of commitments that need to be updated
as the code evolves.

– Our method is also parametric on how a verification system treats invariants.
In the worst case, all methods in the program have to be verified to preserve
every invariant, as the invariant vocabulary is (in general) unrestricted. In
practice, verification systems use criteria such as visibility, syntax and typing,
assignable clauses or ownership to reduce the workload. We simply limit
ourselves to requiring that all relevant invariants must be checked.

In our approach we analyze the SPL model to determine which parts of the
original product are unchanged in the new product and also do not have to be
verified again. This analysis constitutes proof slicing (Sect. 4).

For the modified or otherwise affected product parts, we apply a previously-
developed proof reuse technique based on the assumption of similarity between
the two implementation variants. (Sect. 5).

We present related work in Sect. 6 and draw conclusions in Sect. 7.

2 Delta-Oriented Programming of Software Product
Lines

Delta-oriented programming (DOP) [22,23,21] is a novel approach for imple-
menting software product lines. Delta-oriented programming offers an expres-
sive and flexible “programming meta-language” for specifying a set of products.
Its aim is to relax the restrictions of currently established SPL description for-
malisms such as feature-oriented programming (FOP) [3] by adding the explicit
possibility to remove parts of a program. For a more detailed comparison be-
tween delta-oriented and feature-oriented programming, the reader is referred
to [22].

In delta-oriented programming, an SPL is implemented as a core module to-
gether with a set of delta modules. The core module contains a complete product
implementation for some valid feature configuration, which can be developed by
conventional single-application engineering techniques. Delta modules specify
changes to be applied to the core module in order to implement other products.

Verification of Software Product Lines with Delta-Oriented Slicing 63

The notation we use for Java programs constituting individual products is the
following:

Definition 1. A program is a set of class declarations (further called classes)
and a binary inheritance relation on this set. We are primarily interested in the
transitive closure of this relation � and the transitive reflexive closure �. A � B
means that the class A is below class B in the inheritance hierarchy. Abstract
classes and interfaces are omitted in this paper for brevity.

A class is a set of field and method declarations (which are built up of names,
types, parameters, bodies, etc., as appropriate in Java). If C is a class declaring
a method with signature m, then we will refer to this particular implementation
as C::m.1 Vice versa, we identify the method signature m with a set of classes
in a product that declare a method with that signature: C ∈ m if C::m ∈ C.

core Base {
class Account extends Object {

int balance ;
int bonus;
void addBonus (int x){}
void update(int x) {

balance += x;
}

}
}

(a) Core module with Account class

de l t a DInvestment when Investment {
mod i f i e s class Account {

removes void addBonus (int x);
adds void addBonus (int x) {

bonus += x;
}
removes void update(int x);
adds void update(int x){

balance += x;
if (x > 0) addBonus (x/2);

}
}

}

(b) Delta module for feature Investment

class Account extends Object {
int balance ;
int bonus;
void addBonus (int x){

bonus += x;
}
void update(int x) {

balance += x;
if (x > 0) addBonus (x/2);

}
}

(c) Result of delta module application

Fig. 1. Example of a delta-oriented product line

Modification operations used in delta modules that we consider in this paper
are the following:

– adding/removing a class declaration C: adds(C), removes(C)
– modifying class C by

1 For simplicity, we assume the absence of method overloading. In Java, a class may
contain several method implementations with the same identifier and compatible
parameter types. This renders the lookup procedure far more complicated; c.f. [8,
Sect. 15.12.2].

64 D. Bruns, V. Klebanov, and I. Schaefer

• adding/removing a field f : adds(C::f), removes(C::f)
• adding/removing a method declaration m: adds(C::m), removes(C::m)
• changing the direct superclass of C to C′: reparents(C, C′)

On an abstract level, the variability of an SPL is defined by the feature set F .
Valid member products of an SPL are given by the feature model F ⊆ 2F .
Each product uniquely corresponds to a combination of features, also called
feature configuration. In the following, we identify products and feature config-
urations in F . Each delta module d contains an application condition ϕd (the
when clause in concrete syntax), which is a propositional formula over the fea-
ture set F . The application conditions specify which delta modules are neces-
sary for which features. For every pair of valid products P1, P2 ∈ F , Δ(P1, P2)
is the set of delta modules that have to be applied to the product P1 in or-
der to obtain a product P2 with a different feature configuration.2 The original
delta language proposal [22] demands a partial order on deltas to guarantee
that the result of applying Δ(P1, P2) is unique, as well as certain other syn-
tactical well-formedness conditions, which we are not concerned with in this
paper.

Example 1. Our running example in this paper is a delta-oriented product line
of bank accounts inspired by [7]. Figure 1a shows the core module of this SPL
with the basic Account class. Figure 1b shows the delta module DInvestment for
activating the Investment feature, which accumulates a bonus for each deposit
made. Figure 1c contains the result of applying the delta module to the core,
which is, again, a conventional Java class. Later on, in Example 3, we will also
see the Paycheck feature adding the class Employer as a client of Account. ♦

3 Delta-Oriented Formal Specification of Software
Product Lines

We use the Java Modeling Language (JML) [13] for the formal specification of
product properties. In this work, we concentrate on class invariants and method
contracts with pre- and post-conditions. As JML specifications are written di-
rectly into Java source files as comments, it is possible to include them in the
delta language introduced in Sect. 2. A core module is specified just as a con-
ventional program. An example of a core module with JML specifications can
be seen in the first listing of Example 3.

For delta modules, we extend the delta language with the following operations
to manipulate specifications:

– adding an invariant to a class: adds(C, I)
– removing an invariant from a class: removes(C, I)

2 This is a slight generalization of the original delta approach, where deltas could only
be applied to the core product.

Verification of Software Product Lines with Delta-Oriented Slicing 65

– adding a contract (pre-/post-condition pair) to a method: adds(C::m, ct)
– removing a contract from a method: removes(C::m, ct)

Note that we only consider pairs of exactly one pre- and post-condition to be
added or removed together. In case one of them is trivial (i.e., true), it is omitted.

Example 2. Figure 2 shows the delta module DInvestmentSpec changing the
specifications in class Account. It is applied for the same configurations as the
code delta DInvestment, since it has the same application condition.3 ♦

In general, there is no concordance between code deltas and specification deltas
for one product. It is perfectly conceivable to change the code without chang-
ing the specification or the other way round. However, there are (at least) the
following exceptions where code changes influence the specification:

– Removing a class or a method induces the removal of attached specifications.
– JML enforces behavioral subtyping, i.e., subclasses inherit the specifications

of the superclass. Changing the inheritance hierarchy, thus, also changes the
specification.

– JML by default enforces non-nullness of fields, variables, etc. Adding a field
of reference type to a class automatically creates an implicit invariant about
this field.

– Changing a (pure) method changes the semantics of specifications using this
method.

de l t a DInvestmentSpec when Investment {

mod i f i e s class Account {

removes //@ ensures bonus == \old (bonus);

from void addBonus (int x);

adds //@ requires x >= 0;

//@ ensures bonus == \old (bonus) + x;

to void addBonus (int x);

}

Fig. 2. A specification delta adds and removes pre- and post-conditions from a method

4 Delta-Oriented Slicing

When a new product is derived by delta application, in general, both the imple-
mentation as well as the specification change. However, from the structural in-
formation available in the used delta modules, we are able to conservatively infer
which specifications of the new product remain valid (i.e., the proofs done for the
old product are not affected by the change) and which parts have to be (re-)proven
in order to establish the specified properties. We call the latter delta-oriented slice.
3 It is possible to specify code and specification changes in the same delta module.

The separation at this point is for presentation reasons.

66 D. Bruns, V. Klebanov, and I. Schaefer

Slicing originated as a program analysis technique answering the question of which
program statements influence the value of a given variable. Our algorithm answers
the question of which proofs are influenced by a delta module.

Of course, the simplest and safest way to achieve assurance for a changed
product is to redo all proofs. However, at the current state of hardware and
deduction technology, this approach is too slow for any product of non-trivial
size. Our approach is much less computationally expensive as it only involves
a deterministic static analysis of different artifacts. This way, proof slicing can
quickly provide feedback to the engineer on what impact a certain change to the
product will have.

Proof Modularity

The key to obtaining a sound slicing algorithm is identifying non-modular proof
steps. The issue of proof non-modularity arises if the validity of certain proof
steps in a verification proof is lost when the program that is to be verified is
changed or extended.

The change may be explicit, i.e., concerning the source code of the very
method being verified, or implicit, i.e., concerning program entities that are
only referenced (e.g., other methods called). Explicit changes are easy to detect,
and if they are benign, they can be treated by proof reuse (Sect. 5). Implicit
changes are more involved, and their impact depends both on the semantics of
the programming language, as well as on the particular verification calculus.
Implicit change is the case that we concentrate on in the following.

Proof modularity has been recognized as an issue for quite some time, focus-
ing, naturally, on adding/removing classes and overriding methods. Particularly
relevant to our effort are a previous account for the KeY system [20, Sect. 6.2] as
well as a comprehensive survey for the KIV system [24, Chap. 6]. As our change
vocabulary is larger, we have to address this issue anew. In the KeY system, iden-
tifying rules resulting in non-modular proof steps is made easier by the fact that
the class declarations and the class hierarchy are not part of the original proof
obligation. This information is available in the background (i.e., in the prover im-
plementation) and can be introduced into a logical sequent by rules containing
metaconstructs (functions that are not logically specified, but programmed in the
prover). These functions make non-modular rules easily identifiable syntactically,
which we have done for the KeY rule base. In the KeY calculus, we discern rules
giving rise to proof steps whose validity is:

(A) not affected by implicit program changes (rewriting, propositional, and the
like, but also many symbolic execution rules, e.g., for conditionals, loops,
etc.);

(B) affected by presence or absence of classes regardless of their content;4

4 The rules of this type are rare and the KeY system has only two of them:
typeAbstract and arrayStoreStaticAnalyse. The former allows deducing the
dynamic type of an object pointed to by an expression with an abstract static type
(this rule produces a disjunction over all subclasses). The latter uses a simple static
analysis to check whether an array assignment can throw an ArrayStoreException.

Verification of Software Product Lines with Delta-Oriented Slicing 67

(C) affected by methods declared in classes; these rules are the non-modular
method invocation rules inlining the method implementations and simulat-
ing dynamic binding;

(D) affected by fields declared in classes regardless whether these fields are used
in the program; these are the instance creation rules assigning default values
to fields;

(E) affected by inheritance relationship between classes; these are the rules for
tackling the inheritance predicate �.

The slicing algorithm is based on these findings.
Other systems encode the class hierarchy as axioms that are part of the proof

obligation from the start. Here, it is necessary to analyze the proofs constructed
by the prover for occurrence of particular axioms. This may be difficult if there
is no explicit proof object, but, for instance, the popular SMT prover Z3 often
used in verifying compilers provides this information.

The Algorithm

In the following, we present the delta-oriented slicing algorithm. As the first step
of the algorithm, we copy all finished proofs from product P1 into product P2
regardless of their validity for P2. In the resulting set of proofs for the new
product, our algorithm identifies the proofs that do not hold in the new context
and marks them as invalid. These proofs have to be redone. The algorithm also
identifies new proof obligations that have to be discharged in order to obtain a
full set of proofs for the specifications of P2.

Input: A set of proofs for a product P1, and the delta Δ(P1, P2)5

Output: A set of valid proofs for the product P2 = P1 + Δ(P1, P2)

1. Copy all proofs from P1 to P2 (regardless of validity). Weed out all proofs
where the vocabulary involved (code or specification) is no longer present.

The following steps refer to the content of the delta module Δ(P1, P2). The
algorithm currently considers only the structural change information available in
the delta and does not take the content of the modified methods or specifications
into account.

2. For each adds(C):
(a) do adds(C::f) for each f ∈ C
(b) do adds(C::m) for each m ∈ C
(c) invalidate all proofs with proof steps by non-modular rules of type (B)

where C or any of its superclasses appear in the rule conclusion

5 For the sake of the algorithm, we assume that Δ(P1, P2) contains exactly one delta
module (i.e., we assume delta module composition).

68 D. Bruns, V. Klebanov, and I. Schaefer

3. For each removes(C):
(a) do removes(C::f) for each f ∈ C
(b) do removes(C::m) for each m ∈ C
(c) invalidate all proofs with proof steps by non-modular rules of type (B)

where C or any of its superclasses appear in the rule conclusion

Adding and removing methods. When adding methods, we have to distinguish
if their invocation is treated by inlining and contract application. If an altered
implementation is inlined, the proof, of course, will be invalidated. For a contract,
this is different since the altered implementation is expected to fulfill the old
contract. Contracts are also not affected by method removal. Even though an
implementation has been removed, the contract still applies to some overriding
implementation in a subclass.

4. For each adds(C::m):
(a) invalidate all pre-existing proofs where m was inlined and C::m would

have been among potentially referenced implementations (see Fig. 3)
(b) proofs using the contracts for m remain valid
(c) prove that C::m satisfies all specifications of C (either stated directly or

inherited), as well as all other invariants

5. For each removes(C::m):
(a) invalidate all pre-existing proofs where m was inlined and C::m would

have been among potentially referenced implementations (Fig. 3)
(b) proofs using the contracts for m remain valid

Adding and removing fields. In steps 6–7, it might not be immediately clear why
adding or removing a field can invalidate a proof. Consider the following code
snippet:

class A { Object f; }

class B extends A { /*@ invariant f == ((A)this).f; @*/ }

The invariant in class B holds if and only if no field f is added to class B.
Otherwise, the left occurrence of f would refer to B::f, while the right one
would continue referring to A::f as fields are bound statically in Java.

Adding or removing fields also invalidates proofs containing instance creation,
as this process must assign all fields a default value, resulting in varying inter-
mediate states.

6. For each adds(C::f):
(a) find the set of method implementations M referring to C::f in P2
(b) invalidate all pre-existing proofs about any C′::m ∈M
(c) invalidate all pre-existing proofs inlining any C′::m ∈M
(d) invalidate all pre-existing proofs of specifications referring to C::f in P2
(e) invalidate all pre-existing proofs with proof steps assigning default values

(during instance creation) to fields of an object with type A � C

Verification of Software Product Lines with Delta-Oriented Slicing 69

7. For each removes(C::f): same as step 6, but look for C::f in P1

Class reparenting. Reparenting is an invasive operation, which is illustrated in
Fig. 4. reparents(C, C′) moves C from under its old direct supertype C̃ and
beneath C′, and with it movedPart = {K | K � C}. As Ĉ we then denote the
least common supertype of C̃ and C′.

Reparenting class C makes C and its subclasses lose features (implementations
and specifications) inherited from oldBranch = {K | C̃ � K � Ĉ} and inherit
new features from newBranch = {K | C′ � K � Ĉ}.

8. For each reparents(C, C′):
(a) invalidate all pre-existing proofs inlining method bodies for any virtual

method call e.m() with S as the static type of e and
i. S ∈ newBranch
ii. Ĉ � S

or, if at least one method body K::m was inlined such that
iii. S ∈ movedPart and K ∈ oldBranch
iv. S ∈ oldBranch and K ∈ movedPart
This step reacts to changes in the big case distinction simulating dynamic
binding.

(b) invalidate all pre-existing proofs about/inlining any method implemen-
tation C::m containing a method call of the form super.m′() (as the
superclass will change)

(c) invalidate all pre-existing proofs about/inlining any method implemen-
tation K::m, K ∈ movedPart that references a field K ′::f declared in
oldPart (as this reference would change its meaning after the move)

(d) contracts for methods in reparented classes remain valid unless the con-
tract no longer exists (i.e., it was inherited from oldBranch)

(e) invalidate proofs for specifications inherited from any class in oldBranch
(f) prove that all classes K ∈ movedPart satisfy the specifications inherited

from new superclasses in newBranch
(g) invalidate all proofs containing a proof step deciding the predicate A � B

if A � C and B ∈ oldBranch

Adding and removing specifications.

9. For each adds(C::m, ct)
(a) prove that the contract ct is fulfilled by all C′::m with C′ � C

10. For each removes(C::m, ct)
(a) invalidate all pre-existing proofs that use the contract ct

11. For each adds(C, I)
(a) prove that the invariant I is fulfilled by all relevant implementations

12. For each removes(C, I)
(a) invalidate all pre-existing proofs that assume the invariant I

70 D. Bruns, V. Klebanov, and I. Schaefer

For some of the algorithm steps, we need to determine whether an implementa-
tion C::m is potentially referenced by the method invocation expression e.m().
We consider the three different method invocation modes available in Java, defining
for each mode a starting point class S of method lookup. The relation of S and C
determines the answer:

Instance or “virtual” mode. This is the most common mode. The target expres-
sion e (of type S) references an object (it may be an implicit this reference),
and the method is not declared static or private. This invocation mode requires
dynamic binding.
– The implementation is in S or one of its subclasses: If C � S, then “yes”
– The implementation is in a superclass of S, but it is inherited by S or one

of its subclasses (i.e., it is not overridden between C and S): If S � C such
that for all K with S � K � C holds K 	∈ m, then “yes” (cf. Fig. 5).

– Otherwise, “no”.
Static mode (m is declared static or private). In this case, no dynamic bind-

ing is performed. The implementation to invoke is determined in accordance with
the declared static type S of e. If C = S then “yes”, otherwise “no”.

Super mode (e is the keyword super). This mode is used to access the meth-
ods of the immediate superclass S (of the class containing the invocation expres-
sion super.m()).
– If S � C and for all K with S � K � C holds K 	∈ m, then “yes”.
– Otherwise, “no”.

Fig. 3. Subroutine: When is a method implementation potentially referenced?

Ĉ

C̃ C′

C

C′′

C

C′′

ol
dB

ra
nc

h
new

B
ranch

movedPart

reparents

Fig. 4. Illustration of reparents(C, C′). Solid
lines represent the direct subtype relation, dot-
ted lines its transitive closure, and dashed lines
show relations of the previous product.

C C::m()

S inherits C::m()

S′ inherits C::m()

S′′ S′′::m()

Fig. 5. Virtual method
invocation mode and
method overriding

Verification of Software Product Lines with Delta-Oriented Slicing 71

An Example

Example 3. (i) We return to the bank account example introduced in Sect. 2.
The core product with the basic Account class now contains specifications (see
below). It can easily be proven that both methods satisfy their contracts and
the class invariant.

core Base {

class Account extends Object {

//@ invariant bonus >= 0;

int balance;

int bonus;

//@ ensures bonus == \old(bonus);

void addBonus (int x){}

/*@ ensures balance == \old(balance) + x;

@ && bonus >= \old(bonus); @*/

void update(int x) {

balance += x;

}

}

}

(ii) Next, we apply the delta module shown below in order to generate a new
product with the additional feature Paycheck. This module adds an Employer
class with a reference to the account and a payday() method with a correspond-
ing specification. In order to determine which proofs for the basic bank account
are still valid, we use the delta-oriented slicing algorithm. We perform step 2 for
the added class, leading to step 4 for the added method, step 6 for the added
field and step 9 for the added contract. Only step 4c is non-trivial, since the
method payday() did not exist before. The method can be verified easily – ei-
ther by inlining the implementation of addBonus() and update() or by applying
their contracts. There is no existing proof to reuse. Step 6 is trivial (the set M is

de l t a DPaycheck when Paycheck {

adds class Employer extends Object {

Account a;

/*@ requires x >= 0 && bonus >= 0;

@ ensures a.balance == \old(a.balance) + x

@ && a.bonus >= \old(a.bonus);

@*/

void payday(int x, int bonus) {

a.addBonus (bonus);

a.update(x);

}

}

}

72 D. Bruns, V. Klebanov, and I. Schaefer

empty) as the field a did not exist previously. Step 9 is subsumed by step 4 as
Employer has no subclasses. No proofs are invalidated.

(iii) If we now want to incorporate the Investment feature as well, we apply
the deltas DInvestment (Fig. 1b) and DInvestmentSpec (Fig. 2) to the lat-
est product. These two deltas modify the implementation and specification of
the method addBonus() and the implementation of the method update() in
the class Account. The slicing steps to take to determine which proofs from the
previous product are still valid are: step 4 for the added methods, step 5 for the
removed methods, step 9 for the added contract and step 10 for the removed
contract.

Steps 4c and 9 dictate that both update() and addBonus() have to be re-
proven for conformance with the class invariant and their respective (modified)
contracts. Proof reuse is feasible here (see Sect. 5). In contrast, payday() has
not changed (neither code nor specification), but the proof that it satisfies its
contract is now invalid. The proof has been invalidated by step 4a or 10, since it
(the proof) depends on either the implementation or the contract of addBonus().
The proof reuse mechanism may be applied here to find a new proof efficiently.
The contract of update() has not changed, and all proofs using it remain valid
(step 4b). ♦

5 Proof Reuse for Changed Methods

In this section, we point to the existing technique of proof reuse [11] as a natural
complement to delta-oriented proof slicing. This part of our approach is tailored
to interactive verification systems like KeY, where the user provides hints to
the prover by manipulating an explicit proof object. In practice (although not in
our illustrating example), proofs contain proof steps which cannot be (efficiently)
found automatically. Users have to instantiate quantifiers, provide lemmas, loop
invariants, and guide proof search in other ways. These efforts can be recycled
through proof reuse.

The proof reuse technique has been originally developed for KeY by one of
the authors to save verification effort during incremental development (i.e., after
fixing a bug). Since then, the method has been applied to a number of differ-
ent change management scenarios. It uses a similarity measure that determines
which proof steps from proofs for the original product can be used to establish
the proof obligations for the new product. It is a light-weight technique based on
proof replay rather than on proof generation. For a full account of proof reuse
in KeY we refer the reader to [11].

In the delta-oriented slicing step, we have identified which proofs have to be
redone for the newly generated product. However, some of the changed method
bodies may still have considerable similarities to the ones in the already verified
product. The correctness proofs of such modified methods are likely to resem-
ble the old proofs. Here proof reuse can help. Reuse can also be used in case
of changed specifications but much less effectively. Specifications are less struc-
tured than programs, and proof shapes adhere to implementations rather than
specifications, which makes finding reusable subproofs much harder.

Verification of Software Product Lines with Delta-Oriented Slicing 73

6 Related Work

Formal methods are used in the context of software product lines for a variety
of applications. A large body of work is concerned with the formal analysis of
feature models [1] or product models [14]. Further approaches (e.g., [6]) verify
that the variability specified by a feature model is correctly implemented in
code. Efficient verification of product behavior, however, is not well established.
In testing [15,17] or model checking [12,5] there is work to make validation of
product lines more efficient, though.

In [2], a case study for the product line development of a compiler is con-
sidered. The compiler is developed by stepwise refinement or extension of the
compiler functionality. The correctness proof of the compiler is extended and
refined in line with the functional extensions by introduction or adaptation of
invariants and the addition of case distinctions. This approach relies on a fixed
structure of the induction proof for compiler correctness that allows determining
in advance which modifications of the proof are required by functional changes.

Reuse of verification artifacts is also related to a whole plethora of work
which is impossible to survey here, such as slicing for debugging [25,27] or model
checking [9], reuse of refined specifications [26], change management in theory
development [16,10], incremental compilation, refactoring, and software change
impact analysis.

An interesting and closely related result from change impact analysis is the
tool Chianti [19], which determines whether the results of a test are affected
by changes to the source code. Changes to the program are decomposed into
“atomic operations”, which are similar to our delta operations. These are then
analyzed for their impact on the program’s call graph.

Of course, deriving a new product in a product line is also closely related
to evolving a single product. Most verification systems implement some kind of
proof management for this case. Alas, system developers apparently–and unjus-
tifiedly, we think–tend to consider this important component an implementation
detail, as published accounts on this subject are rare.

7 Conclusions

Working on verification of SPL, we have identified several interesting lines of
future research. Most of them regard the transition from a syntactic modeling
of SPL as in the current delta-oriented programming approach [22] to a more
semantic-based modeling of SPL.

In order to define delta operations on specifications in a meaningful way, it
is necessary to uniquely identify class invariants and method contracts (e.g., for
removal or modification). This could be handled by introducing labels (as most
tools probably already do internally).

So far the operations we have defined for specification deltas are rather basic.
One reason for this is simplicity. Another reason is that at least with the current
calculi, the shape of a proof follows rather closely the shape of the program,
but it is much less related to the shape of a specification. It remains to be seen

74 D. Bruns, V. Klebanov, and I. Schaefer

whether adding more fine-grained change information in the specification deltas
helps obtaining new proofs more efficiently. Additional operators that appear
promising to us are case distinctions and redundant specifications (lemmas).

Until now, the delta module operations (for code) and their applicability con-
ditions are mostly syntactical. Greater power and precision can be achieved by
adding more semantical information. For instance, such a description might dic-
tate that a certain feature is only compatible with another if the base product
preserves certain data invariants. New tools could be devised to assist in deriving
consistent products with desired behavior based on semantical information.

Finally, getting the formal specification of a product right is difficult, but
deriving a correct product from another also has its pitfalls. Even if two prod-
ucts P1 and P2 fulfill the specification I (as ensured by our approach), it is
still only syntactically the same specification I. The product derivation process
may seduce one to believe that I is still an adequate specification for the new
product, which might not be the case. In the simplest case I might contain pure
methods, which have changed between products. The issue is aggravated by the
complicated and sometimes unclear semantics of modern specification languages
and requires further investigation.

References

1. Batory, D.S., Benavides, D., Ruiz-Cortés, A.: Automated analysis of feature mod-
els: Challenges ahead. Communications of the ACM 49(12) (2006)

2. Batory, D.S., Börger, E.: Modularizing theorems for software product lines: The
Jbook case study. Journal of Universal Computer Science 14(12) (2008)

3. Batory, D.S., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. IEEE
Trans. Software Eng. 30(6), 355–371 (2004)

4. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

5. Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A., Raskin, J.-F.: Model check-
ing lots of systems: Efficient verification of temporal properties in software product
lines. In: 32nd International Conference on Software Engineering, ICSE 2010, Cape
Town, South Africa, May 2-8. IEEE, Los Alamitos (2010) (to appear)

6. Czarnecki, K., Pietroszek, K.: Verifying feature-based model templates against
well-formedness OCL constraints. In: Conf. on Generative Programming and Com-
ponent Engineering (GPCE) (2006)

7. Delaware, B., Cook, W., Batory, D.: A Machine-Checked Model of Safe Compo-
sition. In: Foundations of Aspect-Oriented Languages (FOAL), pp. 31–35. ACM,
New York (2009)

8. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd
edn. Addison-Wesley Longman, Amsterdam (2005)

9. Hatcliff, J., Dwyer, M.B., Zheng, H.: Slicing software for model construction.
Higher-Order and Symbolic Computation 13(4), 315–353 (2000)

10. Hutter, D.: Management of change in structured verification. In: Automated Soft-
ware Engineering (ASE), p. 23 (2000)

11. Klebanov, V.: Proof reuse. In: Beckert et al. [4]
12. Lauenroth, K., Pohl, K., Toehning, S.: Model checking of domain artifacts in prod-

uct line engineering. In: Automated Software Engineering (ASE), pp. 269–280.
IEEE Computer Society, Los Alamitos (2009)

Verification of Software Product Lines with Delta-Oriented Slicing 75

13. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for Java. SIGSOFT Softw. Eng. Notes 31(3), 1–38
(2006)

14. Mannion, M.: Using First-Order Logic for Product Line Model Validation. In:
Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 176–187. Springer, Heidelberg
(2002)

15. McGregor, J.D.: Testing a software product line. Technical Report CMU/SEI-2001-
TR-022, Software Engineering Institute, Carnegie Mellon University (December
2001)

16. Mossakowski, T.: Heterogeneous theories and the heterogeneous tool set. In:
Kalfoglou, Y., Schorlemmer, W.M., Sheth, A.P., Staab, S., Uschold, M. (eds.) Se-
mantic Interoperability and Integration. Dagstuhl Seminar Proceedings, vol. 04391,
IBFI, Schloss Dagstuhl (2005)

17. Muccini, H., van der Hoek, A.: Towards testing product line architectures. Electr.
Notes Theor. Comput. Sci 82(6) (2003)

18. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations, Principles, and Techniques. Springer, Heidelberg (2005)

19. Ren, X., Shah, F., Tip, F., Ryder, B.G., Chesley, O.: Chianti: A tool for change
impact analysis of Java programs. In: Vlissides, J.M., Schmidt, D.C. (eds.) Pro-
ceedings of the 19th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2004, Vancouver, BC,
Canada, October 24-28, pp. 432–448. ACM, New York (2004)

20. Roth, A.: Specification and Verification of Object-oriented Software Components.
PhD thesis, Universität Karlsruhe (2006)

21. Schaefer, I.: Variability modelling for model-driven development of software prod-
uct lines. In: 4th Int. Workshop on Variability Modelling of Software-intensive
Systems (VaMoS), Linz, Austria (January 2010)

22. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-Oriented
Programming of Software Product Lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010.
LNCS, vol. 6287, pp. 77–91. Springer, Heidelberg (2010)

23. Schaefer, I., Worret, A., Poetzsch-Heffter, A.: A model-based framework for auto-
mated product derivation. In: Model-driven Approaches in Software Product Line
Engineering (MAPLE 2009) (2009)

24. Stenzel, K.: Verification of Java Card Programs. PhD thesis, Fakultät fur ange-
wandte Informatik, University of Augsburg (2005)

25. Tip, F.: A survey of program slicing techniques. Journal of Programming Lan-
guages 3(3) (1995)

26. Wehrheim, H.: Slicing techniques for verification re-use. Theor. Comput. Sci.
343(3), 509–528 (2005)

27. Weiser, M.: Program slicing. IEEE Transactions on Software Engineering 10(4),
352–357 (1984)

Satisfiability Solving and Model Generation for
Quantified First-Order Logic Formulas

Christoph D. Gladisch

Karlsruhe Institute of Technology (KIT)
Institute for Theoretical Informatics

Germany
gladisch@uni-koblenz.de

Abstract. The generation of models, i.e. interpretations, that satisfy
first-order logic (FOL) formulas is an important problem in different ap-
plication domains, such as, e.g., formal software verification, testing, and
artificial intelligence. Satisfiability modulo theory (SMT) solvers are the
state-of-the-art techniques for handling this problem. A major bottleneck
is, however, the handling of quantified formulas.

Our contribution is a model generation technique for quantified for-
mulas that is powered by a verification technique. The model generation
technique can be used either stand-alone for model generation, or as a
precomputation step for SMT solvers to eliminate quantifiers. Quantifier
elimination in this sense is sound for showing satisfiability but not for refu-
tational or validity proofs. A prototype of this technique is implemented.

1 Introduction

Showing the satisfiability of a first-order logic (FOL) formula means to show
the existence of an interpretation in which the formula evaluates to true. This
is an important and long studied problem in different application domains such
as formal software verification, software testing, and artificial intelligence. In
software verification and testing the models, i.e. interpretations, are used as
counter examples to debug programs and specifications and to generate test
data respectively.

Satisfiability modulo theory (SMT) solvers are the state-of-the-art techniques
for showing satisfiability of FOL formulas and to generate models for FOL for-
mulas. A major bottleneck is, however, the handling of quantifiers (see, e.g.,
[10,23,13,24]). Quantifiers often lead to problems that are not in the decidable
fragments of SMT solvers. In such cases an SMT solver returns the result un-
known, which means that the solver cannot determine if the formula is satisfiable
or not.

We propose a model generation technique that is not explicitly restricted to a
specific class of formulas. Consequently, the technique is not a decision procedure,
i.e. it may not terminate. However, it can solve more general formulas than SMT

B. Beckert and C. Marché (Eds.): FoVeOOS 2010, LNCS 6528, pp. 76–91, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Satisfiability Solving and Model Generation 77

solvers can solve in cases where it terminates. As a motivating example, assume
we want to show the satisfiability of the formula φ1 which we define as

∀x.(x � 0→ prev(next(x)) = x) (1)

where prev and next are uninterpreted function symbols. Some state-of-the-art
SMT solvers— concretely we have tested Z3 [9], CVC3 [1], Yices [12] — are in
contrast to the proposed technique not capable to solve this formula. The reason
is that this formula is not in the decidable fragment of the solvers because it
combines arithmetics, uninterpreted functions, and quantification.

The proposed technique is also capable of generating only partial interpreta-
tions that satisfy only the quantified formulas, and return a residue of ground
formulas that is to be shown satisfiable. In this mode the technique acts as a
precomputation step for SMT solvers to eliminate quantifiers. Quantifier elimi-
nation in this sense is sound for showing satisfiability but not for refutational or
validity proofs. However, for handling of quantifiers in refutational and validity
proofs powerful instantiation based techniques already exist.

While model generation is not a new idea, the novelty of our approach are (1)
the choice of language to syntactically represent (partial) interpretations, (2) the
technique for construction of models, and (3) the means to evaluate (quanti-
fied) formulas under these interpretations. Since satisfiability solving and model
generation for ground formulas is already well studied, we concentrate on the
handling of quantified formulas.

We experience that in software verification much time is spend with fix-
ing and adjusting the programs, specifications, and annotations. For instance,
Figure 2 shows an unprovable verification condition with subformulas similar to
formula φ1. It is invaluable to detect if such verification conditions have counter
examples. Once a program is correct and annotations are strong enough a veri-
fication tool can afterwards prove the correctness of the program usually auto-
matically. The generation of counter examples is further important in counter
example guided abstraction refinement (CEGAR) [7] and for checking the con-
sistency, i.e. contradiction-freeness, of axiomatizations and of preconditions in
specifications.

This paper is based on the technical report [17] where we propose our ap-
proach for the first time. In [18], which is a paper following this paper, we
describe an algorithm that implements our approach. While in [18] we describe
the application of the algorithm to test data generation and its evaluation, the
contributions of this paper are the description of the theory of our approach and
a soundness proof.

1.1 Background and Related Work

One has to distinguish between different quantifiers in different contexts, namely
between those that can be skolemized and those that cannot be skolemized. For
instance, in an attempt to show the validity of the formula ∀x.ϕ(x), the variable
x can be skolemized, i.e. replaced by a fresh constant, because all symbols of the
signature are implicitly universally quantified in this context. When showing the

78 C.D. Gladisch

validity of ∃x.ϕ(x), then skolemization is not possible. In contrast, when show-
ing satisfiability, then skolemization is allowed for ∃x.ϕ(x) but not for ∀x.ϕ(x).
Thus, assuming the formulas being in prenex form, the tricky cases are the han-
dling of (a) existential quantification when showing validity and (b) universal
quantification when showing satisfiability. In order to handle case (a) some in-
stantiation(s) of the quantified formulas can be created hoping to complete the
proof. Soundness is preserved by any instantiation. The situation in case (b) is,
however, worse when using instantiation-based methods, because these methods
are sound only if a complete instantiation of the quantified formula is guaranteed.

A popular instantiation heuristic is E-matching [23] which was first used in the
theorem prover Simplify [11]. E-matching is, however, not complete in general.
In general a quantified formula ∀x.ϕ(x) cannot be substituted by a satisfiability
preserving conjunction ϕ(t0)∧ . . .∧ϕ(tn) where t0 . . . tn are terms computed via
E-matching. For this reason Simplify may produce unsound answers (see also
[21]) as shown in the following example.

∀h.∀i.∀v.rd(wr(h, i, v), i) = v (2)

∀h.∀j.0 � rd(h, j) ∧ rd(h, j) � 232 − 1 (3)

Formula (2) is an axiom of the theory of arrays and (3) specifies that all array el-
ements of all arrays have values between 0 and 232 − 1. The first axiom is used
to specify heap memory in [22]. Formula (3) seems like a useful axiom to spec-
ify that all values in the heap memory have lower and upper bounds, as it is the
case in computer systems. However, the conjunction (2) ∧ (3) is inconsistent, i.e.
it is false, which can be easily seen when considering the following instantiation
[h := wr(h0, k, 232), j := k], (see [22]). Simplify, however, produces a counter
example for ¬((2) ∧ (3)), which means that it satisfies the false formula (2) ∧
(3). E-matching may be used for sound satisfiability solving when a complete in-
stantiation of quantifiers is ensured. For instance, completeness of instantiation
via E-matching has been shown for the Bernays-Schönfinkel class in [14]. An im-
portant fragment of FOL for program specification which allows a complete
instantiation is the Array Property Fragment [6]. E-matching is used in state-
of-the-art SMT solvers such as Z3 [9], CVC3 [1], Yices [12], and others (see [8]).
Formula φ1 which is solvable with our technique is, however, neither in the
Bernays-Schönfinkel class nor in the Array Property Fragment.

Another set of approaches for finding instantiations of quantified formulas
is based on free-variables (see e.g. [16]). These approaches focus, however, on
validity or respectively unsatisfiability proofs and not on satisfiability solving.
More precisely, they do not guarantee a complete instantiation of quantifiers in
general case.

Satisfiability of a formula can be shown by weakening the formula with ex-
istential quantifiers and then showing its validity, instead of satisfiability. This
idea is followed in [27] for proving the existence of a state that reveals a software
bug. The approach uses free variables in order to compute instantiations of the
existentially quantified variables.

Satisfiability Solving and Model Generation 79

Model generation theorem provers (MGTP) are similar to SMT solvers as
their underlying technique is DPLL lifted to FOL. For instance, the theorem
prover Darwin [2] is an instantiation-based prover which is sound and complete
for the unsatisfiability of FOL, i.e. without theories. For the satisfiability part it
decides Bernays-Schönfinkel formulas.

Quantifier elimination techniques, in the traditional sense, replace quantified
formulas by equivalent ground formulas, i.e. without quantifiers. Popular meth-
ods are, e.g., the Fourier-Motzkin quantifier elimination procedure for linear ra-
tional arithmetic and Cooper’s quantifier elimination procedure for Presburger
arithmetic (see, e.g., [15] for more examples). These techniques are, in contrast
to the proposed technique, not capable of eliminating the quantifier in, e.g., φ1.
Since first-order logic is only semi-decidable, equivalence preserving quantifier
elimination is possible only in special cases. The transformation of formulas by
our technique is not equivalence preserving. The advantage of our approach is,
however, that it is not restricted to a certain class of formulas.

Quantified constraint satisfaction problem (QCSP) solvers primarily regard
the finite version of the satisfiability problem, whereas our approach handles
infinite domains. Some of the work, e.g. [4], also considers continues domains,
however, these techniques do not handle uninterpreted function symbols other
than constants.

Finite and infinite model building techniques are described in [25]. The authors
distinguish between enumeration-based methods corresponding to the above
mentioned instantiation techniques and deduction-base methods which are in
the main focus of the book. Deductive methods produce syntactic representa-
tions of models in some logical language. Nitpik which is the counter example
generator of Isabel/HOL uses first-order relational logic (FORL) [5]. FORL ex-
tends FOL with relational calculus operators and the transitive closure. The
approach we propose is a deduction-based method which differs from existing
approaches in the representation and generation of models.
Structure of the paper. In Section 2 the basic idea of our approach is ex-
plained. In Section 3 the underlying formalism of our approach is introduced.
The main sections are Section 4 and 5 where the approach is described in more
detail and where we identify the crucial problems that have to be solved. The
solution to the problems described in Section 4 is given in form of a theorem
and the soundness of the theorem is proved. In Section 6 we report on our pre-
liminary experiments with our approach and provide conclusions and further
research plans.

2 The Basic Idea of Our Approach

The basic idea of our approach is to generate a partial FOL model, i.e. a partial
interpretation, in which a quantified formula that we want to eliminate evaluates
to true. A set of quantified formulas can be eliminated, i.e. evaluated to true,
by successive extensions of the partial model. This approach can be continued
also on ground formulas to generate complete models. While this basic idea is

80 C.D. Gladisch

simple, the interesting questions are: how to represent the interpretations, how
to generate (partial) models, and what calculus is suitable in order to evaluate
formulas under those (partial) interpretations.

The approach that we suggest is to use programs to represent partial models
and to use weakest precondition computation in order to evaluate the quanti-
fied formulas to true. Weakest precondition is a well-known concept in formal
software verification and symbolic execution based test generation. A weakest
precondition wp(p, ϕ), where p is a program and ϕ is a formula, expresses all
states such that execution of p in any of these states results in states in which ϕ
evaluates to true. Here, program states and FOL interpretations are understood
as the same concept. Our approach is to generate for a given quantified formula
ϕ a program p such that the final states of p satisfy ϕ. Thus a technique for
program generation is one of our contributions.

For example, in order to solve φ1, we could generate the following program
(assuming, e.g., JAVA-like syntax and semantics):

for(i=0;true;i++){ next[i]=new T(); next[i].prev=i; } (4)

and compute the weakest precondition of φ1 with respect to this program, i.e.
wp((4), φ1). Using a verification calculus the weakest precondition of the quanti-
fied subformula can be evaluated to true. Thus, effectively the quantified formula
is eliminated and a partial interpretation represented in form of a program is
obtained.

A typical programming language such as JAVA is, however, not directly suit-
able for this task because function and predicate symbols are usually not repre-
sentable in such languages. A verification calculus may also require extensions
because loops are usually handled by the loop invariant rule and the loop invari-
ant may introduce new quantified formulas.

A language and a calculus that are suitable for our purpose exist, however,
in the verification system KeY. The language consists of so-called updates . In
the following sections we introduce this language and describe our technique for
construction of updates that evaluate quantified formulas to true while reducing
the chance of introducing new quantified formulas.

3 KeY’s Dynamic Logic with Updates

The KeY system [3,20] is a verification and test generation system for a subset
of JAVA. The system is based on the logic JAVA CARD DL, which is an instance
of Dynamic Logic (DL) [19]. Dynamic Logic is an extension of first-order logic
with modal operators. The ingredients of the KeY system that are needed in this
paper are first-order logic (FOL) extended by the modal operators updates [26].

Notation. We use the following abbreviations for syntactic entities: V is the
set of (logic) variables; Σf is the set of function symbols; Σf

r ⊂ Σf is the
set of rigid function symbols, i.e. functions with a fixed interpretation such as,
e.g., ’0’, ’succ’, ’+’; Σf

nr ⊂ Σf is the set of non-rigid function symbols, i.e.
uninterpreted functions; Σp is the set of predicate symbols; Σ is the signature

Satisfiability Solving and Model Generation 81

consisting of Σf ∪ Σp; TrmFOL is the set of FOL terms; Trm is the set of DL
terms; FmlFOL is the set of FOL formulas; Fml is the set of DL formulas; U is
the set of updates; .= is the equality predicate; and = is syntactic equivalence.
The following abbreviations describe semantic sets: D is the FOL domain or
universe; S is the set of states or equivalently the set of FOL interpretations. To
describe semantic properties we use the following abbreviations: vals(t) ∈ D is
the valuation of t ∈ Trm and vals(u) ∈ S is the valuation of u ∈ U in s ∈ S;
s � ϕ means that ϕ is true in state s ∈ S; � ϕ means that ϕ is valid, i.e. for all
s ∈ S, s � ϕ; and ≡ is semantic equivalence.

Updates capture the essence of programs, namely the state change computed
by a program execution. States and FOL interpretations are the same concept.
An update is a modality which moves the interpretation to a new Kripke state
and we say an update changes an interpretation. The states differ in the in-
terpretation of symbols Σf

nr such as uninterpreted functions. Updates represent
partial states and can be used to represent (partial) models of formulas. The
set Σf

r represents rigid functions whose interpretation is fixed and cannot be
changed by an update.

For instance, the formula ({a := b}a .= c) ∈ Fml , where a ∈ Σf
nr and b, c ∈ Σf

consists of the (function) update a := b and the application of the update modal
operator {a := b} on the formula a

.= c. The meaning of this update application is
the same as that of the weakest precondition wp(a := b, a

.= c), i.e. it represents
all states such that after the assignment a := b the formula a

.= c is true — which
is equivalent to b

.= c.

Definition 1. Syntax. The sets U, T rm and Fml are inductively defined as the
smallest sets satisfying the following conditions. Let x ∈ V ; u, u1, u2 ∈ U ; f ∈
Σf

nr; t, t1, t2 ∈ Trm; ϕ ∈ Fml.

• Updates. The set U of updates consists of: neutral update ε; function updates
(f(t1, . . . , tn) := t), where f(t1, . . . , tn) is called the location term and t is
the value term; parallel updates (u1 ||u2); conditional updates (if ϕ; u); and
quantified updates (for x; ϕ; u).

• Terms. The set of Dynamic Logic terms includes all FOL terms, i.e. Trm ⊃
TrmFOL; and {u}t ∈ Trm for all u ∈ U with no free variables and t ∈ Trm.

• Formulas. The set of Dynamic Logic formulas includes all FOL formulas,
i.e. Fml ⊃ FmlFOL; {u}ϕ ∈ Fml for all u ∈ U with no free variables and
ϕ ∈ Fml; sequents Γ =⇒ Δ ∈ Fml, where Γ, Δ ⊂ Fml; and all ϕ ∈ Fml are
closed by quantifiers, i.e. ϕ has no free variables, if not stated otherwise.

A sequent Γ =⇒ Δ is equivalent to the formula (γ1 ∧ . . .∧ γn)→ (δ1 ∨ . . .∨ δm),
where γ1, . . . , γn ∈ Γ and δ1, . . . , δm ∈ Δ are closed formulas. Sequents are
normally, e.g. in [3], not included in the set of formulas. However, in this work
it is convenient to include them to the set of formulas as syntactic sugar .

Definition 2. Semantics. We use the notation from Def. 1, further let s, s′ ∈ S;
v, v1, v2 ∈ D; x, xi, xj ∈ V ; and ϕ(x) and u(x) denote a formula resp. an update
with a free occurrence of x.

Terms and Formulas

82 C.D. Gladisch

• vals({u}t) ≡ vals′(t), where s′ ≡ vals(u)
• vals({u}ϕ) ≡ vals′(ϕ), where s′ ≡ vals(u)

Updates

• vals(ε) ≡ s
• vals(f(t1, . . . , tn) := t) ≡ s′, where s′ is the same as s except the interpreta-

tion of f is changed such that vals′(f(t1, . . . , tn)) ≡ vals(t).
• vals(u1; u2) ≡ s′, there is s′′ with s′′ ≡ vals(u1) and s′ ≡ vals′′ (u2)
• vals(u1 ||u2) ≡ s′. We define s′ by the interpretation of terms t.

Let v0 ≡ vals(t), v1 ≡ vals({u1}t), and v2 ≡ vals({u2}t).

If v0 ≡/ v2 then vals′(t) ≡ v2 else vals′(t) ≡ v1.

• vals(if ϕ; u) ≡ s′, if vals(ϕ) ≡ true then s′ ≡ vals(u), otherwise s′ ≡ s.
• Intuitively, a quantified update (for x; ϕ(x); u(x)) is equivalent to the infi-

nite composition of parallel updates (parallel updates are associative):

. . . || (if ϕ(xi); u(xi)) || (if ϕ(xj); u(xj)) || . . .

satisfying a well-ordering such that β(xi) β(xj), where β : V → D.

A complete and formal definition of quantified updates cannot be given in the
scope of this paper; we refer the reader to [26,3] for a complete definition of
the language and the simplification calculus. In the following some examples are
shown of how updates, terms, and formulas are evaluated in KeY respecting the
given semantics in Def 2.

• {f(1) := a}f(2) .= f(1) simplifies to f(2) .= a.
• {f(b) := a}P (f(c)) simplifies to (b .= c → P (a)) ∧ (¬b

.= c → P (f(c))).
• {f(a) := a}f(f(f(a))) simplifies to a.
• {u; f(t1, . . . , tn) := t} is equivalent to {u || f({u}t1, . . . , {u}tn) := {u}t}.
• {f(1) := a || f(2) := b}f(2) .= f(1) simplifies to b

.= a.
• {f(1) := a || f(1) := b}f(2) .= f(1) simplifies to f(2) .= b, i.e. the last update

wins in case of a conflict.
• {if ϕ; f(b) := a}P (f(c)) simplifies to ϕ → {f(b) := a}P (f(c)).
• {for x; 0 � x ∧ x � 1; f(x) := x} is equivalent to {f(1) := 1 || f(0) := 0}.

4 Model Generation by Iterative Update Construction

In order to show the satisfiability of a formula φin, our approach is to generate
an update u, such that � {u}φin. If such an update exists, then φin is satisfiable
and the update represents a set of models of φin.

Our main contribution is a technique for generating (partial) models for quan-
tified formulas. As this work was developed in the context of KeY which is based
on a sequent calculus, we consider the model generation problem of a quantified
formula ∀x.φ(x) in a sequent ϕ = (Γ, ∀x.φ(x) =⇒ Δ). Such sequents occur fre-
quently as open branches of failed proof attempts. The reason for proof failure
is often unclear and it is desired to determine if ϕ has a counter example, i.e.
if a model exists for ¬ϕ. The goal is therefore given by the following problem
description.

Satisfiability Solving and Model Generation 83

Definition 3. Problem Description. Given a sequent (Γ, ∀x.φ(x) =⇒ Δ) the goal
is to generate an update u such that:

({u}(Γ, ∀x.φ(x) =⇒ Δ)) ≡ ({u}(Γ, true =⇒ Δ)) (5)

If this problem is solved by a technique, then this technique can be applied
iteratively to all quantified formulas occurring in Γ and Δ resulting in a sequent
Γ ′ =⇒ Δ′ that consists only of ground formulas. Note that non-skolemizable
quantified formulas occurring in Δ are those with existential quantifiers and
they can be moved to Γ using the following equivalence: (Γ =⇒ ∃x.φ(x), Δ) ≡
(Γ, ∀x.¬φ(x) =⇒ Δ).

We have implemented different algorithms that follow this approach. Unfor-
tunately, only in rare cases the problem formulated in Def. 3 was solved by early
algorithms. Based on experiments with early algorithms we have identified two
important problems that we state in form of the following informal proposition.

Proposition 1. The following description follows the notation of Def. 3.

a) In general cases of ∀x.φ(x), it is not feasible to construct an update u such
that � {u}∀x.φ(x), without analysing the semantic properties of the matrix
φ(x).

b) The theorem prover defined in [3] is not sufficiently powerful to simplify
(Γ, {u}∀x.φ(x) =⇒ Δ) to (Γ, true =⇒ Δ) if � {u}∀x.φ(x) and u is a quantified
update.

Some possibilities to analyse the semantic properties of φ(x) are to test instances
of φ(x) or to use free variables (see, e.g., [16]). We have experimented with the
latter approach and could solve problem (a) in several cases but we describe
a better approach in this paper. The reason for problem (b) is that in order
to simplify the matrix φ(x) the sequent calculus requires semantic information
about φ(x) to be available on the sequent level, i.e. in the formulas Γ ∪Δ.

We have implemented an algorithm that solves both problems of Proposi-
tion 1. The algorithm is described and evaluated in [18] but without a soundness
proof. In this section we provide a theorem that formalizes only the crucial
problem simplification technique of the algorithm and prove it.

For the construction of the updates it is sometimes necessary to introduce and
axiomatize fresh function symbols. For instance, it may be desired to introduce
a fresh function notZero ∈ Σf with the axiom ¬(notZero

.= 0). With this axiom
it is, e.g., possible to write an update a := b + notZero, with a, b ∈ TrmFOL,
expressing a general assignment to a with a value different from b. Each update
ui is therefore associated with an axiom αi.

Definition 4. Given a sequent ϕ = (Γ, ∀x.φ(x) =⇒ Δ), where Γ, Δ ⊂ Fml and
φ(x) is an arbitrary formula with an occurrence of x ∈ V , i.e. φ is not restricted
to φ ∈ Σp. Let u0, . . . , um ∈ U ; α0, . . . , αm ∈ Fml, with m ∈ �, be closed by
quantifiers. The formulas ψm, ϕ′

m, ϕm ∈ Fml, are defined recursively as:
• ϕ0 = (Γ, ∀x.φ(x) =⇒ Δ) ϕm+1 = {um}(αm → ϕm)
• ϕ′

0 = (Γ, true =⇒ Δ) ϕ′
m+1 = {um}(αm → ϕ′

m)
• ψ0 = (Γ =⇒ ∀x.φ(x), Δ) ψm+1 = {um}(αm → ψm)

84 C.D. Gladisch

Definition 4 describes an abstract search technique for a sequence of updates
um ; . . . ; u0, m ∈ �, for solving the problem of Def. 3. The updates um ; . . . ; u0
constitute the update u in Def. 3 and ϕ0 ≡ ϕ is the original sequent that is to
be shown falsifiable. In the following theorem we assume γ = ∀x.φ(x).

Theorem 1. Let ϕ = (Γ, γ =⇒ Δ) and ψm, ϕ′
m, ϕm ∈ Fml, with m ∈ �, be

defined according to Def. 4, then

i. � ψm ↔ (ϕ′
m ↔ ϕm)

ii. If there is sm ∈ S such that sm � ¬ϕm, then there exists s ∈ S with
s = valsm(um; . . . ; u1; ε) and s � ¬ϕ.

The theorem describes under what condition a sequence (not sequent) of update
and axiom pairs (u0, α0), . . . , (um, αm) evaluates a quantified formula to true;
and the theorem describes how this sequence represents a partial model.

Formula ¬ϕ is the formula for which a model shall be generated. Statement
(ii) of Theorem 1 states that if there is a model sm ∈ S for a formula ¬ϕm,
according to Def. 4, then from sm a model for ¬ϕ can be derived by evaluation
of the updates u0, . . . , um. Hence, ¬ϕm can be used to show the satisfiability
of ¬ϕ.

For instance, let ϕ ≡ (¬a = b), then a suitable pair (u0, α0) to construct ϕ1 is,
e.g. (a := b, true). In this case ϕ1 has the form {a := b}(true→ (¬a = b)) which
can be simplified to false. Hence, any state s1 ∈ S satisfies s1 � ¬ϕ1 which
implies that ¬ϕ is satisfiable and a model s ∈ S for ¬ϕ is s = vals1(a := b).
Note, that choosing an update is a heuristic, e.g. the pair (b := a, true) or the
pair (a := 1 || b := 1, true) are also suitable candidates.

An important property of the statement for the construction of an update
search procedure is that soundness of the statement is preserved by any pair
(u, α). For instance, consider the pair (a := 1 || b := 2, true) or the pair (a :=
b, false). In both cases ϕ1 evaluates to true. Hence, there is no s1 ∈ S such that
s1 � ¬ϕ1 and therefore no implication is made regarding the satisfiability of ϕ.

Based on statement (i) an algorithm can be constructed for the generation of
models for ground formulas. The challenge is to generate a model that satisfies
a quantified formula that cannot be skolemized. If ψm is valid, then the model
generation problem for ¬ϕm can be replaced by the model generation problem
for ¬ϕ′

m because ϕm and ϕ′
m are equivalent. Considering Def. 4, the statement is

interesting because in ϕ′
m the quantified formula is eliminated, i.e. it is replaced

by true. Together with Statement (ii), ¬ϕ′
m can be used to generate a model for

¬ϕ.
The problem is to check if ϕm ≡ ϕ′

m, which is a generalization of the problem
in Def. 3. Theorem 1 states that the problem ϕm ≡ ϕ′

m can be solved by a
validity proof of ψm. This allows solving the problems described in Proposition 1
because the quantified formula in ψm occurs negated wrt. ϕm and can therefore
be skolemized— note that (Γ, ∀x.φ(x) =⇒ Δ) ≡ (Γ =⇒ ¬∀x.φ(x), Δ). When
ψm is skolemized, then it is (a) easy to analyse the semantics of φ(sk), where
sk ∈ Σf is the skolem function, and (b) the propositional structure of φ(sk)

Satisfiability Solving and Model Generation 85

can be flattened to the sequent level which is necessary to simplify quantified
updates. In this way both problems described in Proposition 1 are solved.

The approach can be generalized for the generation of models for ground
formulas by using the more general Def. 5 instead of Def. 4 in Theorem 1.

Definition 5. Given a sequent ϕ = (Γ, γ =⇒ Δ), where Γ, Δ ⊂ Fml and
γ ∈ Fml. Let u0, . . . , um ∈ U ; α0, . . . , αm ∈ Fml, with m ∈ �, be closed by
quantifiers. The formulas ψm, ϕ′

m, ϕm ∈ Fml are defined recursively as follows:
• ψ0 = (Γ =⇒ γ, Δ) ψm+1 = {um}(αm → ψm)
• ϕ′

0 = (Γ, true =⇒ Δ) ϕ′
m+1 = {um}(αm → ϕ′

m)
• ϕ0 = (Γ, γ =⇒ Δ) ϕm+1 = {um}(αm → ϕm)

In the proof of Theorem 1 we use the following lemma.

Lemma 1. Weakening Update. Let u ∈ U and ϕ ∈ Fml. If � ϕ, then � {u}ϕ.

Proof of Lemma 1. Since for any s ∈ S, holds s � ϕ, it is also the case for
s′ = vals(u) that s′ � ϕ because s′ ∈ S. �

Proof of Theorem 1. The proof of Theorem 1 is based on induction on m.
Induction Base (m = 0). (i) Validity of

(Γ =⇒ ∀x.φ(x), Δ︸ ︷︷ ︸
ψ0

) ↔ ((Γ, true =⇒ Δ︸ ︷︷ ︸
ϕ′

0

)↔ (Γ, ∀x.φ(x) =⇒ Δ︸ ︷︷ ︸
ϕ0

))

can be shown by using propositional transformation rules. In the following we
simplify ϕ′

0 ↔ ϕ0 and derive by equivalence transformations ψ0.

((Γ ∧ true) → Δ)↔ ((Γ ∧ ∀x.φ(x)) → Δ)
(Γ → Δ) ↔ ((Γ ∧ ∀x.φ(x)) → Δ)

(Γ → Δ)→ ((Γ ∧ ∀x.φ(x)) → Δ) ((Γ ∧ ∀x.φ(x)) → Δ) → (Γ → Δ)
((Γ → Δ) ∧ Γ ∧ ∀x.φ(x)) → Δ (((Γ ∧ ∀x.φ(x)) → Δ) ∧ Γ)→ Δ

(Δ ∧ Γ ∧ ∀x.φ(x)) → Δ ((∀x.φ(x) → Δ) ∧ Γ)→ Δ
(Δ ∧ Γ)→ Δ ((∀x.φ(x) → Δ) ∧ Γ)→ Δ

Δ→ Δ ((¬∀x.φ(x) ∧ Γ)→ Δ) ∧ ((Δ ∧ Γ)→ Δ)
true (¬∀x.φ(x) ∧ Γ)→ Δ

Γ → (∀x.φ(x) ∨Δ)

Since ϕ0 = ϕ and s = vals0(ε) = s0 statement (ii) is trivially true.
Induction Step (m � 0). (i) Assuming � ψm ↔ (ϕ′

m ↔ ϕm), we want to show
� ψm+1 ↔ (ϕ′

m+1 ↔ ϕm+1). If � ψm ↔ (ϕ′
m ↔ ϕm), then

� αm → (ψm ↔ (ϕ′
m ↔ ϕm)) (6)

for any αm ∈ Fml . We use the equivalence

(A → (B ↔ C)) ↔ ((A → B) ↔ (A → C))

86 C.D. Gladisch

to derive the following statement that is equivalent to (6)

� ((αm → ψm) ↔ ((αm → ϕ′
m)↔ (αm → ϕm))) (7)

Due to Lemma 1, (7) implies

� {um}((αm → ψm)↔ ((αm → ϕ′
m)↔ (αm → ϕm))) (8)

that can be simplified by to (for all operators ◦: {u}(A ◦B) ≡ {u}A ◦ {u}B)

� ({um}(αm → ψm) ↔ ({um}(αm → ϕ′
m)↔ {um}(αm → ϕm))) (9)

Statement 9 is equivalent to � ψm+1 ↔ (ϕ′
m+1 ↔ ϕm+1).

(ii) Assume there is sm+1 ∈ S such that sm+1 � ¬ϕm+1. By propagating the
negation of ¬ϕm+1 to the inside of the formula, loosely speaking, we obtain the
equivalent formula ϕ¬

m ∈ Fml that can be recursively defined as

ϕ¬
0 = ¬(Γ, true =⇒ Δ) ϕ¬

m+1 = {um}(αm ∧ ϕ¬
m)

Hence, sm+1 � ¬ϕm+1 is equivalent to sm+1 � ϕ¬
m+1 which is equivalent to

sm+1 � {um}(αm ∧ ϕ¬
m). There is sm ∈ S with sm = valsm+1(um) such that

sm � αm ∧ ϕ¬
m and therefore sm � ϕ¬

m. Since ϕ¬
m is equivalent to ¬ϕm we have

sm � ¬ϕm. According to the induction hypothesis there exists s ∈ S with s =
valsm(um; . . . ; u1; ε) such that s � ¬ϕ. Because of sm = valsm+1(um), we con-
clude that if sm+1 � ¬ϕm+1, then there exists s ∈ S with s = valsm+1(um+1; um;
. . . ; u1; ε) such that s � ¬ϕ. �

5 Heuristics for Update Construction from Formulas

While Section 4 describes a general sound framework for model generation, in
this section we shortly describe some heuristics that we have implemented to
construct concrete updates. In particular we give an intuition of how quantified
updates can be constructed in order to satisfy quantified formulas. Important
to note is that soundness of Theorem 1 is preserved by any sequence of updates
with axioms. Hence, unsoundness cannot be introduced by any of the heuristics.

Definition 6. Update Construction. Let γ ∈ FmlFOL be the currently selected
formula for which a partial model is to be created and which is a subformula in
a sequent ϕ = (Γ, γ =⇒ Δ). Let ψ = (Γ =⇒ γ, Δ) and ϕ′ = (Γ =⇒ Δ).

The goal of update construction from the formula γ is to create a pair (u, α),
with u ∈ U and α ∈ Fml, such that

• � {u}(α→ ψ), and
• there is some s ∈ S with s � ¬{u}(α→ ϕ′)

The sequent ψ is equivalent to ψ0 and ϕ′ is equivalent to ϕ′
0, according to

Def. 5. In a model search algorithm each time a pair (um, αm) is constructed,
new formulas ϕ′

m+1, ϕ
′
m+1, and ψm+1 are generated according to Def. 5. These

formulas must be simplified to ϕ, ψ and, ϕ′, respectively, such that a new formula
γ ∈ FmlFOL can be selected for update construction according to Def. 6. In the
following subsections, case distinctions are made on the structure of γ.

Satisfiability Solving and Model Generation 87

5.1 Update Construction from Ground Formulas

Handling of Equalities . Assume t1, t2 ∈ TrmFOL are location terms (see Def. 1).
If γ is of the form t1 = l or l = t1, where l is a literal, then the pair (t1 := l, true)
should be created because � {t1 := l}(true → (t1

.= l ∧ l
.= t1)). If γ is of the

form t1 = t2, a choice has to be made between the pairs (t1 := t2, true) and
(t2 := t1, true). Equality between terms can in some cases also be established,
if the terms share the same top-level function symbol and have location terms
as arguments. For instance, let f(t1), f(t2) ∈ TrmFOL and f ∈ Σf , then �
{u}(α → f(t1) = f(t2)) can be satisfied by the pair (t1 := t2, true) or by
(t2 := t1, true).

Handling of Arithmetic Expressions . Let t1, t2 ∈ TrmFOL be arithmetic expres-
sions composed of rigid and non-rigid function symbols. Several solutions exist
to satisfy � {u}(α→ t1

.= t2). Consider for instance the polynomial equation

2 ∗ a + b ∗ c = d− e

where a, b, c, d, e ∈ Σf
nr are location terms. There are five most general updates

evaluating this equation to true. These can be obtained by solving the polynomial
equation for one of the location terms at a time. Our implementation enumerates
those solutions during update search. An example for one of the solutions is
((a := (d− e− b ∗ c)/2, true).

Handling of Inequalities. Let t1, t2 ∈ TrmFOL where t1 is a location term. An
inequation t1 �= t2 can be satisfied, e.g., by the pair (t1 := t2 + 1, true). A
more general update is, however, t1 := t2 + notZero, where notZero ∈ Σf is
a fresh-symbol representing a value different from 0. This is where the axiom
part of a pair comes into play. A general solution for the formula t1 �= t2 is
the pair (t1 := t2 + notZero,¬(notZero = 0)). Inequations of the form t1 < t2
can be handled by introducing a fresh symbol gtZero ∈ Σf

nr with the axiom
gtZero > 0.

5.2 Update Construction from Quantified Formulas

Our approach to create models for quantified formulas is to generate quantified
updates. For example, the quantified formula φ10:

∀x.x > a→ f(x) = g(x) + x (10)

is satisfiable in any state after execution of the quantified update u11:

for x; x > a; f(x) := g(x) + x (11)

i.e. � {φ10}u11. Notice the similar syntactical structure between φ10 and u11.
Another solution is u12:

for x; x > a; g(x) := f(x)− x (12)

88 C.D. Gladisch

for which � {u12}φ10 holds. It is easy to see that a translation can be general-
ized for other simple quantified formulas. Furthermore, the heuristics and case
distinctions described in Section 5.1 can be reused to handle different arithmetic
expressions and relations. For instance the formula ∀x.f(x) � x→ (g(x) < f(x))
evaluates to true after execution of any of the following updates (with axioms)

(for x; f(x) � x; g(x) := f(x) + gtZero , gtZero > 0)
(for x; ¬(g(x) < f(x)); f(x) := x− gtZero , gtZero > 0)

The KeY tool implements a powerful update simplification calculus for quanti-
fied updates. The calculus may in some cases introduce new quantified formulas.
In such cases our approach has to be applied either recursively on the new quan-
tified formulas or use backtracking when new quantified formulas are introduced.
A limitation is the handling of recursively defined functions. For instance, the
following update application, as well as any other, does not eliminate the quan-
tified subformula of the following formula:

{for x; x > 0; h(x) := h(x− 1) + 1}∀x.x > 0 → h(x) = h(x− 1) + 1

Finally, the initial example of the paper, i.e. Formula φ1, can be solved by the
following quantified update application which KeY simplifies to true.

{(for x1; x1 � 0; next(x1) := x1); (for x2; x2 � 0; prev(next(x2)) := x2)}φ1

6 Experiments, Conclusions, and Future Work

We have proposed a model generation approach for quantified first-order logic
(FOL) formulas that is based on weakest-precondition computation. The lan-
guage we propose for representing models is KeY’s update language. The advan-
tage of using updates is the possibility to express models for quantified formulas

JAVA + JML

1 /*@ ������ ��	
���������	

2 @ 	���	� next!=���� && prev!=���� && next!=prev

3 @ && (���	��� ��� k; �	� ; 0<=next[k] && next[k] < prev.length)

4 @ && (���	��� ��� l; 0<=l && l<next.length; next[l]==l);

5 @ ���	� (���	��� ��� j; 0<=j && j<next.length; prev[next[j]]==j);

6 @ ��������� prev[*]; */

7 ������ ���� link(){

8 /*@ ���������	���� (���	��� ��� x; 0<=x && x <= i; prev[next[x]]==x)

9 && (0<=i && i<=next.length) ;
������ prev[*],i; @*/

10 ��	(��� i=0;i<next.length;i++){ prev[next[i]]=i; }

11 }

JAVA + JML

Fig. 1. An example of a JAVA method (of class MyCls) with a Jml specification that is
not verifiable because the underlined formula should be x < i instead of x � i

Satisfiability Solving and Model Generation 89

∀x : int.(x � −1 ∨ x � 1 + i0 ∨ get0(prev(self), acc[](next(self), x) .= x),
∀x : MyCls.(prevAtPre(x) .= prev(x)),
∀x : MyCls.(x .= null ∨ ¬created(x) ∨ ¬a(x) .= null),
∀x : MyCls.(x .= null ∨ ¬created(x) ∨ ¬next(x) .= null),
∀x : MyCls.(x .= null ∨ ¬created(x) ∨ ¬prev(x) .= null),
∀x : int.acc[](next(self), x) � 0),
∀x : int.acc[](next(self), x) � −1 + length(prev(self))),
∀x : int.(l � −1 ∨ l � length(next(self)) ∨ acc[](next(self), x) .= x),
. . . =⇒ . . .

Fig. 2. Quantified formulas in a sequent resulting from a failed verification attempt of
the code in Figure 1; 21 additional ground formulas are abbreviated by ’. . .’

. . .
{for x : MyCls; (next(x) .= null ∧ ¬a(x) .= null ∧ . . .); created(x) := false}
{for x : MyCls; (a(x) .= 0 ∧ ¬x

.= null); created(x) := false}
{for x : int; (b � 1 + x ∧ x � −1); acc[](next(self)) := −1 + c2}
{for x : int; x � −1; i := acc[](next(self)) − c0 ∗ −1 + c1}
{for x : int; (x � 0 ∧ x � 1 + i0); acc[](next(self)) := length(prev(self)) + c0}
{for x : int; (acc[](next(self), x) = x ∧ x � i0 ∧ . . .); get0(prev(self), x) := x}

Fig. 3. A subset of generated updates satisfying the quantified formulas in Figure 2

via quantified updates, and the availability of a powerful calculus for simplifying
formulas with updates to FOL formulas. In particular, no loop invariants have
to be generated in order to simplify quantified updates.

We have identified problems (Proposition 1) that occur, when the approach is
implemented according to the basic description. Theorem 1 provides a solution to
these problems. The theorem allows us to reformulate the basic model generation
approach for quantified formulas into a semantically equivalent approach without
the problems described in Proposition 1.

Based on Theorem 1 and Definitions 4 and 5 an algorithm for model genera-
tion can be derived. The technique can be used in two ways. On the one hand,
it can be used as a precomputation step to SMT solvers by restricting the com-
putation of the formulas ψm, ϕ′

m, and ϕm to Def 4. In this case the technique
eliminates quantified formulas and leaves a residue of ground formulas or alterna-
tive quantified formulas to be solved by a different method, e.g. an SMT solver.
On the other hand, the technique can be used stand-alone for model generation
by using the general Def. 5.

The approach was developed in the context of a formal software verification
and test generation project. Verification attempts often fail, i.e., they are inter-
rupted by a timeout. For instance, Figure 1 shows a JAVA method with a Jml
specification. A verification attempt of the method results in a set of open proof
obligations. One of them is shown in Figure 2 that we abbreviate as ϕ. For a
verification engineer it is important to know if the open proof obligation has
a counter example or not. State-of-the-art approaches use SMT solvers to try
answering such questions. These are, however, not powerful enough to solve for-
mulas such as ϕ. Our experiments show that our method can generate counter

90 C.D. Gladisch

examples for formulas such as ϕ that SMT solvers cannot solve [18]. For instance,
Figure 3 shows a part of an iterative update application that describes a model
for ¬ϕ and was generated by an implementation of our approach.

What formulas can be solved by our general approach depends on the chosen
language for model representation, the theorem prover in use, and the heuristics
for model construction. Quantified formulas are suitable to represent models
for certain kinds of quantified formulas. They are, however, not sufficient to
represent models of inductively defined functions. This problem can be probably
solved by an extension of updates which is future work.

References

1. Barrett, C.W., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

2. Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the model evolution calculus.
International Journal on Artificial Intelligence Tools 15(1), 21–52 (2006)

3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

4. Benhamou, F., Goualard, F.: Universally quantified interval constraints. In:
Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 67–82. Springer, Heidelberg (2000)

5. Blanchette, J.C.: Relational analysis of (co)inductive predicates (co)algebraic
datatypes, and (co)recursive functions. In: Fraser, G., Gargantini, A. (eds.) TAP
2010. LNCS, vol. 6143, pp. 117–134. Springer, Heidelberg (2010)

6. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In:
Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–
442. Springer, Heidelberg (2005)

7. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

8. de Moura, L., Bjørner, N.S.: Efficient E-matching for SMT solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007)

9. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

10. Déharbe, D., Ranise, S.: Satisfiability solving for software verification. STTT 11(3),
255–260 (2009)

11. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. Technical Report. J. ACM (2003)

12. Dutertre, B., de Moura, L.: The YICES SMT solver. Technical report, Computer
Science Laboratory, SRI International (2006)

13. Ge, Y., Barrett, C.W., Tinelli, C.: Solving quantified verification conditions using
satisfiability modulo theories. Ann. Math. Artif. Intell. 55(1-2), 101–122 (2009)

14. Ge, Y., de Moura, L.M.: Complete instantiation for quantified formulas in satis-
fiabiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009)

15. Ghilardi, S.: Quantifier elimination and provers integration. Electr. Notes Theor.
Comput. Sci. 86(1) (2003)

Satisfiability Solving and Model Generation 91

16. Giese, M.: Incremental closure of free variable tableaux. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 545–560. Springer,
Heidelberg (2001)

17. Gladisch, C.: Satisfiability solving and model generation for quantified first-order
logic formulas. Karlsruhe Reports in Informatics, Fakultät für Informatik Institut
für Theoretische Informatik, ITI (2010) ISSN: 2190-4782

18. Gladisch, C.: Test data generation for programs with quantified first-order logic
specifications. In: Petrenko, A., Simão, A., Maldonado, J.C. (eds.) ICTSS 2010.
LNCS, vol. 6435, pp. 158–173. Springer, Heidelberg (2010)

19. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press, London (2000)
20. KeY project homepage, http://www.key-project.org/
21. Kiniry, J.R., Morkan, A.E., Denby, B.: Soundness and completeness warnings

in ESC/Java2. In: Proc. Fifth Int. Workshop Specification and Verification of
Component-Based Systems, pp. 19–24 (2006)

22. Moskal, M.: Satisfiability Modulo Software. PhD thesis, University of Wroc�law
(2009)

23. Moskal, M., Lopuszanski, J., Kiniry, J.R.: E-matching for fun and profit. Electr.
Notes Theor. Comput. Sci. 198(2), 19–35 (2008)

24. Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Challenges in
satisfiability modulo theories. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp.
2–18. Springer, Heidelberg (2007)

25. Ricardo, C., Alexander, L., Nicolas, P.: Automated Model Building. Applied Logic
Series, vol. 31. Springer, Heidelberg (2004)

26. Rümmer, P.: Sequential, parallel, and quantified updates of first-order structures.
In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp.
422–436. Springer, Heidelberg (2006)

27. Rümmer, P., Shah, M.A.: Proving programs incorrect using a sequent calculus for
java dynamic logic. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454,
pp. 41–60. Springer, Heidelberg (2007)

http://www.key-project.org/

Sawja: Static Analysis Workshop for Java

Laurent Hubert1, Nicolas Barré2, Frédéric Besson2, Delphine Demange3,
Thomas Jensen2, Vincent Monfort2, David Pichardie2, and Tiphaine Turpin2

1 CNRS/IRISA, France
2 INRIA Rennes - Bretagne Atlantique, France

3 ENS Cachan - Antenne de Bretagne/IRISA, France

Abstract. Static analysis is a powerful technique for automatic veri-
fication of programs but raises major engineering challenges when de-
veloping a full-fledged analyzer for a realistic language such as Java.
Efficiency and precision of such a tool rely partly on low level components
which only depend on the syntactic structure of the language and there-
fore should not be redesigned for each implementation of a new static
analysis. This paper describes the Sawja library: a static analysis work-
shop fully compliant with Java 6 which provides OCaml modules for
efficiently manipulating Java bytecode programs. We present the main
features of the library, including i) efficient functional data-structures
for representing a program with implicit sharing and lazy parsing, ii) an
intermediate stack-less representation, and iii) fast computation and ma-
nipulation of complete programs. We provide experimental evaluations
of the different features with respect to time, memory and precision.

Introduction

Static analysis is a powerful technique that enables automatic verification of
programs with respect to various properties such as type safety or resource con-
sumption. One particular well-known example of static analysis is given by the
Java Bytecode Verifier (BCV), which verifies at loading time that a given Java
class (in bytecode form) is type safe. Developing an analysis for a realistic lan-
guage such as Java is a major engineering task, challenging both the companies
that want to build robust commercial tools and the research scientists who want
to quickly develop prototypes for demonstrating new ideas. The efficiency and
the precision of any static analysis depend on the low-level components which
manipulate the class hierarchy, the call graph, the intermediate representation
(IR), etc. These components are not specific to one particular analysis, but they
are far too often re-implemented in an ad hoc fashion, resulting in analyzers
whose overall behaviour is sub-optimal (in terms of efficiency or precision). We
argue that it is an integral part of automated software verification to address the
issue of how to program a static analysis platform that is at the same time effi-
cient, precise and generic, and that can facilitate the subsequent implementation
of specific analyzers.

This paper describes the Sawja library—and its sub-component Javalib—
which provides OCaml modules for efficiently manipulating Java bytecode

B. Beckert and C. Marché (Eds.): FoVeOOS 2010, LNCS 6528, pp. 92–106, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Sawja: Static Analysis Workshop for Java 93

programs, and building bytecode static analyses. The library is developed un-
der the GNU Lesser General Public License and is freely available at http://
sawja.inria.fr/.

Sawja is implemented in OCaml [17], a strongly typed functional language
whose automatic memory management (garbage collector), strong typing and
pattern-matching facilities make particularly well suited for implementing pro-
gram processing tools. In particular, it has been successfully used for program-
ming compilers (e.g., Esterel [24]) and static analyzers (e.g., Astrée [3]).

The main contribution of the Sawja library is to provide, in a unified frame-
work, several features that allow rapid prototyping of efficient static analyses
while handling all the subtleties of the Java Virtual Machine (JVM) specifica-
tion [20]. The main features of Sawja are:

– parsing of .class files into OCaml structures and unparsing of those struc-
tures back into .class files;

– decompilation of the bytecode into a high-level stack-less IR;
– sharing of complex objects both for memory saving and efficiency purpose

(structural equality becomes equivalent to pointer equality and indexation
allows fast access to tables indexed by class, field or method signatures, etc.);

– the determination of the set of classes constituting a complete program (using
several algorithms, including Rapid Type Analysis (RTA) [1]);

– a careful translation of many common definitions of the JVM specification,
e.g., about the class hierarchy, field and method resolution and look-up, and
intra- and inter-procedural control flow graphs.

This paper describes the main features of Sawja and their experimental eval-
uation. Sect. 1 gives an overview of existing libraries for manipulating Java
bytecode. Sect. 2 describes the representation of classes, Sect. 3 presents the in-
termediate representation of Sawja and Sect. 4 presents the parsing of complete
programs.

1 Existing Libraries for Manipulating Java Bytecode

Several similar libraries have already been developed so far and some of them
provide features similar to some of Sawja’s. All of them, except Barista, are
written in Java.

The Byte Code Engineering Library1(BCEL) and ASM2 are open source
Java libraries for generating, transforming and analysing Java bytecode classes.
These libraries can be used to manipulate classes at compile-time but also at run-
time, e.g., for dynamic class generation and transformation. ASM is particularly
optimised for this latter case: it provides a visitor pattern which makes possible
local class transformations without even building an intermediate parse-tree.
Those libraries are well adapted to instrument Java classes but lack important
features essential for the design of static analyses. For instance, unlike Sawja,
1 http://jakarta.apache.org/bcel/
2 http://asm.ow2.org/

http://sawja.inria.fr/
http://sawja.inria.fr/
http://jakarta.apache.org/bcel/
http://asm.ow2.org/

94 L. Hubert et al.

neither BCEL nor ASM propose a high-level intermediate representation (IR)
of bytecode instructions. Moreover, there is no support for building the class
hierarchy and analysing complete programs. The data structures of Javalib
and Sawja are also optimized to manipulate large programs.

The Jalapeño Optimizing Compiler [6] which is now part of the Jikes RVM
relies on two IR (low and high-level IR) in order to optimize bytecode. The high-
level IR is a 3-address code. It is generated using a symbolic evaluation technique
described in [30]. The algorithm we use to generate our IR is similar. Our algo-
rithm works on a fixed number of passes on the bytecode while their algorithm
is iterative. The Jalapeño high-level IR language provides explicit check in-
structions for common run-time exceptions (e.g., null_check, bound_check),
so that they can be easily moved or eliminated by optimizations. We use similar
explicit checks but to another end: static analyses definitely benefit from them
as they ensure expressions are error-free.

Soot [29] is a Java bytecode optimization framework providing three IR: Baf,
Jimple and Grimp. Optimizing Java bytecode consists in successively translat-
ing bytecode into Baf, Jimple, and Grimp, and then back to bytecode, while
performing diverse optimizations on each IR. Baf is a fully typed, stack-based
language. Jimple is a typed stack-less 3-address code and Grimp is a stack-less
representation with tree expressions, obtained by collapsing Jimple instructions.
The IR in Sawja and Soot are very similar but are obtained by different trans-
formation techniques. They are experimentally compared in Sect. 3. Sawja only
targets static analysis tools and does not propose inverse transformations from
IR to bytecode. Several state-of-the-art control-flow analyses, based on points-to
analyses, are available in Soot through Spark [18] and Paddle [19]. Such libraries
represent a coding effort of several man-years. To this respect, Sawja is less
mature and only proposes simple (but efficient) control-flow analyses.

Wala [15] is a Java library dedicated to static analysis of Java bytecode.
The framework is very complete and provides several modules like control flow
analyses, slicing analyses, an inter-procedural dataflow solver and a IR in SSA
form. Wala also includes a front-end for other languages like Java source and
JavaScript. Wala and its IBM predecessor DOMO have been widely used in
research prototypes. It is the product of the long experience of IBM in the area.
Compared to it, Sawja is a more recent library with less components, especially
in terms of static analyses examples. Nevertheless, the results presented in Sect. 4
show that Sawja loads programs faster and uses less memory than Wala. For
the moment, no SSA IR is available in Sawja but this is foreseen for the future
releases.

Julia [26] is a generic static analysis tool for Java bytecode based on the
theory of abstract interpretation. It favors a particular style of static analysis
specified with respect to a denotational fixpoint semantics of Java bytecode.
Initially free software, Julia is not available anymore.

Barista [7] is an OCaml library used in the OCaml-Java project. It is
designed to load, construct, manipulate and save Java class files. Barista also
features a Java API to access the library directly from Java. There are two

Sawja: Static Analysis Workshop for Java 95

representations: a low-level representation, structurally equivalent to the class
file format as defined by Sun, and a higher level representation in which the
constant pool indices are replaced by the actual data and the flags are replaced
by enumerated types. Both representations are less factorized than in Javalib
and, unlike Javalib, Barista does not encode the structural constraints into the
OCaml structures. Moreover, it is mainly designed to manipulate single classes
and does not offer the optimizations required to manipulate sets of classes (lazy
parsing, hash-consing, etc).

2 High-Level Representation of Classes

Sawja is built on top of Javalib, a Java bytecode parser providing basic ser-
vices for manipulating class files, i.e., an optimised high-level representation
of class files, pretty printing and unparsing of class files.3 Javalib handles all
aspects of class files, including stackmaps (J2ME and Java 6) and Java 5 anno-
tation attributes. It is made of three modules: Javalib , JBasics , and JCode 4.

Representing class files constitutes the low-level part of a bytecode manip-
ulation library. Our design choices are driven by a set of principles which are
explained below.

Strong typing. We use the OCaml type system to make explicit as much as pos-
sible the structural constraints of the class file format. For example, interfaces
are only signaled by a flag in the Java class file format and this requires to check
several consistency constraints between this flag and the content of the class (in-
terface methods must be abstract, the super-class must be java.lang.Object,
etc.). Our representation distinguishes classes and interfaces and these con-
straints are therefore expressed and enforced at the type level. This has two
advantages. First, this lets the user concentrate on admissible class files, by
reducing the burden of handling illegal cases. Second, for the generation (or
transformation) of class files, this provides good support for creating correct
class files.

Factorization. Strong typing sometimes lacks flexibility and can lead to un-
wanted code duplication. An example is the use of several, distinct notions of
types in class files at different places (JVM types, Java types, and JVM ar-
ray types). We factorize common elements as much as possible, sometimes by
a compromise on strong typing, and by relying on specific language features
such as polymorphic variants5. Fig. 1 describes the hierarchy formed by these

3 Javalib is a sub-component of Sawja, which, while being tightly integrated in
Sawja, can also be used as an independent library. It was initiated by Nicolas
Cannasse before 2004 but, since 2007, we have largely extended the library. We are
the current maintainers of the library.

4 In the following, we use boxes around Javalib and Sawja module names to make
clickable links to the on-line API documentation.

5 Polymorphic variants are a particular notion of enumeration which allows the sharing
of constructors between types.

http://javalib.gforge.inria.fr/doc/javalib-api/Javalib.html
http://javalib.gforge.inria.fr/doc/javalib-api/JBasics.html
http://javalib.gforge.inria.fr/doc/javalib-api/JCode.html

96 L. Hubert et al.

`Long|`Float|`Double
other_num

`Int2Bool|other_num
jvm_basic_type

`Object|jvm_basic_type
jvm_type

`Int|`Short|`Char|
`ByteBool|`Object|

other_num

jvm_array_type

`Void|jvm_type
jvm_return_type

`Int|`Short|`Char|
`Byte|`Bool|`Object|

other_num

java_basic_type

Fig. 1. Hierarchy of Java bytecode types. Links represent the subtyping relation
enforced by polymorphic variants (for example, the type jvm_type is defined by
type jvm_type = [|‘Object |jvm_basic_type]).

types. This factorization principle applies in particular to the representation of
op-codes: many instructions exist whose name only differ in the JVM type of
their operand, and variants exist for particular immediate values (e.g., iload,
aload, aload_n, etc.). In our representation they are grouped into families
with the type given as a parameter (OpLoad of jvm_type * int).

Lazy Parsing. To minimise the memory footprint, method bodies are parsed on
demand when their code is first accessed. This is almost transparent to the user
thanks to the Lazy OCaml library but is important when dealing with very
large programs. It follows that dead code (or method bodies not needed for a
particular analysis) does not cause any time or space penalty.

Hash-consing of the Constant Pool. For a Java class file, the constant pool is
a table which gathers all sorts of data elements appearing in the class, such as
Unicode strings, field and method signatures, and primitive values. Using the
constant pool indices instead of actual data reduces the class files size. This
low-level aspect is abstracted away by the Javalib library, but the sharing is
retained and actually strengthened by the use of hash-consing. Hash-consing [11]
is a general technique for ensuring maximal sharing of data-structures by storing
all data in a hash table. It ensures unicity in memory of each piece of data and
allows to replace structural equality tests by tests on pointers. In Javalib, it is
used for constant pool items that are likely to occur in several class files, i.e.,
class names, and field and method signatures. Hash-consing is global: a class
name like java.lang.Object is therefore shared across all the parsed class
files. For Javalib, our experience shows that hash-consing is always a winning
strategy; it reduces the memory footprint and is almost unnoticeable in terms
of running time6. We implement a variant which assigns hash-consed values a
unique (integer) identifier. It enables optimised algorithms and data-structures.
In particular, the Javalib API features sets and maps of hash-consed values
based on Patricia trees [23], which are a type of prefix tree. Patricia trees are
an efficient purely functional data-structure for representing sets and maps of

6 The indexing time is compensated by a reduced stress on the garbage collector.

Sawja: Static Analysis Workshop for Java 97

integers, i.e., identifiers of hash-consed values. They exhibit good sharing prop-
erties that make them very space efficient. Patricia trees have been proved very
efficient for implementing flow-sensitive static analyses where sharing between
different maps at different program points is crucial. On a very small benchmark
computing the transitive closure of a call graph, the indexing makes the com-
putation time four times smaller. Similar data-structures have been used with
success in the Astrée analyzer [3].

Visualization. Sawja includes functions to print the content of a class into
different formats. A first one is simply raw text, very close to the bytecode
format as output by the javap command (provided with Sun’s JDK).

A second format is compatible with Jasmin [22], a Java bytecode assembler.
This format can be used to generate incorrect class files (e.g., during a Java
virtual machine testing), which are difficult to generate with our framework.
The idea is then, using a simple text editor, to manually modify the Jasmin files
output by Sawja and then to assemble them with Jasmin, which does not check
classes for structural constraints.

Finally, Sawja provides an HTML output. It allows displaying class files
where the method code can be folded and unfolded simply by clicking next to
the method name. It also makes it possible to open the declaration of a method
by clicking on its signature in a method call, and to know which method a method
overrides, or by which methods a method is overridden, etc. User information
can also be displayed along with the code, such as the result of a static analysis.
From our experience, it allows a faster debugging of static analyses.

3 Intermediate Representation

The JVM is a stack-based virtual machine and the intensive use of the operand
stack makes it difficult to adapt standard static analysis techniques that have
been first designed for more classic variable-based codes. Hence, several bytecode
optimization and analysis tools work on a bytecode intermediate representation
(IR) that makes analyses simpler [6,29]. Surprisingly, the semantic foundations
of these transformations have received little attention. The transformation that
is informally presented here has been formally studied and proved semantics-
preserving in [10].

3.1 Overview of the IR Language

Fig. 2 gives the bytecode and IR versions of the simple method

B f(int x, int y) { return (x==0)?(new B(x/y, new A())):null;}

The bytecode version reads as follows : the value of the first argument x is pushed
on the stack at program point 0. At point 1, depending on whether x is zero or not,
the control flow jumps to point 4 or 24 (in which case the value null is returned).

98 L. Hubert et al.

 0: if (x:I != 0) goto 8

 1: mayinit B

 2: notzero y:I

 3: mayinit A

 4: $irvar0 := new A()

 5: $irvar1 := new B(x:I/y:I,$irvar0:O)

 6: $T0_25 := $irvar1:O

 7: goto 9

 8: $T0_25 := null

 9: return $T0_25:O

 0: iload_1

 1: ifne 24

 4: new#2;//class B

 7: dup

 8: iload_1

 9: iload_2

 10: idiv

 11: new#3;//class A

 14: dup

 15: invokespecial #4;//Method A."<init>":()V

 18: invokespecial #5;//Method B."<init>":(ILA;)V

 21: goto 25

 24: aconst_null

 25: areturn

Fig. 2. Example of bytecode (left) (obtained with javap -c) and its corresponding
IR (right). Colors make explicit the boundaries of related code fragments.

At point 4, a new object of class B is allocated in the heap and its reference is
pushed on top of the operand stack. Its address is then duplicated on the stack at
point 7. Note the object is not initialized yet. Before the constructor of class B is
called (at point 18), its arguments must be computed: lines 8 to 10 compute the
division of x by y, lines 11 to 15 construct an object of class A. At point 18, the
non-virtual method B is called, consuming the three top elements of the stack. The
remaining reference of the B object is left on the top of the stack and represents
from now on an initialized object.

The right side of Fig. 2 illustrates the main features of the IR language.7 First,
it is stack-less and manipulates structured expressions, where variables are an-
notated with types. For instance, at point 0, the branching instruction contains
the expression x:I, where I denotes the type of Java integers. Another example
of recovered structured expression is x:I/y:I (at point 5). Second, expressions
are error-free thanks to explicit checks: the instruction notzero y:I at point 2
ensures that evaluating x:I/y:I will not raise any error. Explicit checks addi-
tionally guarantee that the order in which exceptions are raised in the bytecode
is preserved in the IR. Next, the object creation process is syntactically simpler
in the IR because the two distinct phases of (i) allocation and (ii) constructor
call are merged by folding them into a single IR instruction (see point 4). In
order to simplify the design of static analyses on the IR, we forbid side-effects in
expressions. Hence, the nested object creation at source level is decomposed into
two assignments ($irvar0 and $irvar1 are temporary variables introduced by
the transformation). Notice that because of side-effect free expressions, the order
in which the A and B objects are allocated must be reversed. Still, the IR code
is able to preserve the class initialization order using the dedicated instruction
mayinit that calls the static class initializer whenever it is required.

7 For a complete description of the IR language syntax, please refer to the API
documentation of the JBir module. A 3-address representation called A3Bir is
also available where each expression is of height at most 1.

http://javalib.gforge.inria.fr/doc/sawja-api/JBir.html
http://javalib.gforge.inria.fr/doc/sawja-api/A3Bir.html

Sawja: Static Analysis Workshop for Java 99

3.2 IR Generation

The purpose of the Sawja library is not only static analysis but also lightweight
verification [25]: the verification of the result of a static analysis, i.e., checking
that it is indeed a fixpoint, in a single pass over the method code. To this end,
our transforming algorithm operates in a fixed number of passes on the bytecode,
i.e., without performing fixpoint iteration.

Java subroutines (bytecodes jsr/ret) are inlined. Subroutines have been
pointed out by the research community as raising major static analysis difficul-
ties [27]. Our restricted inlining algorithm cannot handle nested subroutines but
is sufficient to inline all subroutines from Sun’s Java 7 JRE.

The IR generation is based on a symbolic execution of the bytecode: each
bytecode modifies a stack of symbolic expressions, and potentially gives rise
to the generation of IR instructions. For instance, bytecodes at lines 8 and 9
(left part of Fig. 2) respectively push the expressions x and y on the symbolic
stack (and do not generate IR instructions). At point 10, both expressions are
consumed to build both the IR explicit check instruction and the expression
x/y which is then pushed, as a result, on the symbolic stack. The non-iterative
nature of our algorithm makes the transformation of jumping instructions non-
trivial. Indeed, during the transformation, the output symbolic stack of a given
bytecode is used as the entry symbolic stack of all its successors. At a join point,
we thus must ensure that the entry symbolic stack is the same regardless of
its predecessors. The idea is here to empty the stack at branching points and
restore it at join points, using dedicated temporary variables. More details can be
found in [10]. IR expression types are computed using a standard type inference
algorithm similar to what is done by the BCV. It only differs in the type domain
we used, which is less precise, but does not require iterating. This additionally
allows us interleaving expression typing with the IR generation, thus resulting
in a gain in efficiency. This lack of precision could be easily filled in using the
stackmaps proposed in the Java 6 specification.

3.3 Experiments

We validate the Sawja IR with respect to two criteria. We first evaluate the
time efficiency of the IR generation from Java bytecode. Then, we show that
the generated code contains a reasonable number of local variables. We addi-
tionally compare our tool with the Soot framework. Our benchmark libraries
are real-size Java code available in .jar format. This includes Javacc 4.0 (Java
Compiler Compiler), JScience 4.3 (a comprehensive Java library for the scientific
community), the Java runtime library 1.5.0 12 and Soot 2.2.3.

IR Generation Time. In order to be usable for lightweight verification, the
bytecode transformation must be efficient. This is mainly why we avoid itera-
tive techniques in our algorithm. We compare the transformation time of our
tool with the one of Soot. The results are given in Fig. 3. For each bench-
mark library8, we compare our running time for transforming all classes with
8 For scale reason, the Java runtime library measures are not shown here.

100 L. Hubert et al.

Fig. 3. Sawja and Soot IR generation
times

Fig. 4. Sawja: local variable increase

the running time of Soot. Here, we choose to generate with Soot the Grimp
representation of classes9, the closest IR to ours that Soot provides. Grimp
allows expressions with side-effects, hence expressions are somewhat more ag-
gregated than in our IR. However, this does not inverse the trend of results. We
rely on the time measures provided by Soot, from which we only keep three
phases: generation of naive Jimple 3-address code (P1), local def/use analysis
used to simplify this naive code (P2), and aggregation of expressions to build
Grimp syntax (P3). (Other phases, like typing, are not directly relevant.) Unlike
Java code, OCaml code is usually executed in native form. For the comparison
not to be biaised, we compare execution times of both tools in bytecode form
and also give the execution time of Sawja in native form. These experiments
show that Sawja (both in bytecode and native mode) is very competitive with
respect to Soot, in terms of computation efficiency. This is mainly due to the
fact that, contrary to Soot, our algorithm is non-iterative.

Compactness of the Obtained Code. Intermediate representations rely on
temporary variables in order to remove the use of operand stack and generate
side-effect free expressions. The major risk here is an explosion in the number
of new variables when transforming large programs.

In practice our tool stays below doubling the number of local variables, ex-
cept for very large methods (> 800 bytecodes). Fig. 4 presents the percentage
of local variable increase induced by our transformation, for each method of
our benchmarks, and sorting results according to the method size (indicated by
numbers in brackets). The number of new variables stays manageable and we
believe it could be further reduced using standard optimization techniques, as
those employed by Soot, but this would require to iterate on each method.

We have made a direct comparison with Soot in terms of the local variable
increase. Fig. 5 presents two measures. For each method of our benchmarks we
count the number NSawja of local variables in our IR code and the number NSoot

of local variables in the code generated by Soot. A direct comparison of our
IR against Grimp code is difficult because it allows expressions with side-effects,
9 The Soot transformation is without any optimisation option.

Sawja: Static Analysis Workshop for Java 101

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

identity
benchmarks

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

identity
benchmarks

N
S
a
w

ja

NSootNSoot

N
S
a
w

ja

Fig. 5. Local variable increase ratio between Sawja and Soot

thus reducing the amount of required variables. Hence, in this experiment, the
comparison is made between Soot’s 3-address IR (Jimple) and our 3-address
IR. For each method we draw a point of coordinate (NSoot , NSawja) and see
how the points are spread out around the first bisector. For the left diagram,
Soot has been launched with default options. For the right diagram, we added
to the Soot transformation the local packer that reallocates local variables
using use/def information (and hence increases the transformation time). Our
transformation competes well, even when Soot uses this last optimization. We
could probably improve this ratio using a similar packing, but this would require
to iterate on the code.

4 Complete Programs

Whole program analyses require a model of the global control-flow graph of
an entire Java program. For those, Sawja proposes the notion of complete pro-
grams. Complete programs are equipped with a high-level API for navigating the
control-flow graph and are constructed by a preliminary control-flow analysis.

4.1 API of Complete Programs

Sawja represents a complete program by a record. The field classes maps a
class name to a class node in the class hierarchy. The class hierarchy is such that
any class referenced in the program is present. The field parsed_methods maps
a fully qualified method name to the class node declaring the method and the
implementation of the method. The field static_lookup_method returns the
set of target methods of a given field. As it is computed statically, the target
methods are an over-approximation.

The API allows navigating the intra-procedural graph of a method taking
into account jumps, conditionals and exceptions. Although conceptually simple,

102 L. Hubert et al.

field and method resolution and the different method look-up algorithms (corre-
sponding to the instructions invokespecial, invokestatic, invokevirtual,
invokeinterface) are critical for the soundness of inter-procedural static anal-
yses. In Sawja, great care has been taken to ensure an implementation fully
compliant with the JVM specification.

4.2 Construction of Complete Programs

Computing the exact control-flow graph of a Java application is undecidable and
computing a precise (over-)approximation of it is still computationally challeng-
ing. It is a field of active research (see for instance [19,4]). A complete program
is computed by: (1) initializing the set of reachable code to the entry points of
the program, (2) computing the new call graph, and (3) if a (new) edge of the
call graph points to a new node, adding the node to the set of reachable code
and repeating from step (2). The set of code obtained when this iteration stops
is an over-approximation of the complete program.

Computing the call graph is done by resolving all reachable method calls.
Here, we use the functions provided in the Sawja API presented in Sect. 4.1.
While invokespecial and invokestatic instructions do not depend on the
data of the program, the function used to compute the result of invokevirtual
and invokeinterface need to be given the set of object types on which the
virtual method may be called. The analysis needs to have an over-approximation
of the types (classes) of the objects that may be referenced by the variable on
which the method is invoked.

There exists a rich hierarchy of control-flow analyses trading time for preci-
sion [28,12]. Sawja implements the fastest and most cost-effective control-flow
analyses, namely Rapid Type Analysis (RTA) [1], XTA [28] and Class Reacha-
bility Analysis (CRA), a variant of Class Hierarchy Analysis [9].

Soundness. Our implementation is subject to the usual caveats with respect
to reflection and native methods. As these methods are not written in Java,
their code is not available for analysis and their control-flow graph cannot be
safely abstracted. Note that our analyses are always correct for programs that
use neither native methods nor reflection. Moreover, to alleviate the problem,
our RTA implementation can be parametrised by a user-provided abstraction
of native methods specifying the classes it may instantiate and the methods it
may call. A better account of reflection would require an inter-procedural string
analysis [21] that is currently not implemented.

Implemented Class Analyses

RTA. An object is abstracted by its class and all program variables by the single
set of the classes that may have been instantiated, i.e., this set abstracts all the
objects accessible in the program. When a virtual call needs to be resolved, this
set is taken as an approximation of the set of objects that may be referenced by
the variable on which the method is called. This set grows as the set of reachable
methods grows.

Sawja: Static Analysis Workshop for Java 103

Sawja’s implementation of RTA is highly optimized. While static analyses
are often implemented in two steps (a first step in which constraints are built,
and a second step for computing a fixpoint), here, the program is unknown at
the beginning and constraints are added on-the-fly. For a faster resolution, we
cache all reachable virtual method calls, the result of their resolution and inter-
mediate results. When needed, these caches are updated at every computation
step. The cached results of method resolutions can then be reused afterwards,
when analyzing the program.

XTA. As in RTA, an object is abstracted by its class and to every method
and field is attached a set of classes representing the set of objects that may be
accessible from the method or field. An object is accessible from a method if:
(i) it is accessible from its caller and it is of a sub-type of a parameter, or (ii) it
is accessible from a static field which is read by the method, (iii) it is accessible
from an instance field which is read by the method and there an object of a sub-
type of the class in which the instance fields is declared is already accessible, or
(iv) it is returned by a method which may be called from the current method.

To facilitate the implementation, we built this analysis on top of another
analysis to refine a previously computed complete program. This allows us using
the aforementioned standard technique (build then solve constraints). For the
implementation, we need to represent many class sets. As classes are indexed,
these sets can be implemented as sets of integers. We need to compute fast union
and intersection of sets and we rarely look for a class in a set. For those reasons,
the implementation of sets available in the standard library in OCaml, based
on balanced trees, was not well adapted. Instead we used a purely functional set
representation based on Patricia trees [23], and another based on BDDs [5] (using
the external library BuDDy available at http://buddy.sourceforge.net).

CRA. This algorithm computes the complete program without actually comput-
ing the call graph or resolving methods: it considers a class as accessible if it is
referenced in another class of the program, and considers all methods in reach-
able classes as also reachable. When a class references another class, the first
one contains in its constant pool the name of the later one. Combining the lazy
parsing of our library with the use of the constant pool allows quickly returning
a complete program without even parsing the content of the methods. When an
actual method resolution, or a call graph, is needed, the Class Hierarchy Anal-
ysis (CHA) [9] is used. Although parts of the program returned by CRA will be
parsed during the overlying analysis, dead code will never by parsed.

Experimental Evaluation. We evaluate the precision and performances of the
class analyses implemented in Sawja on several pieces of Java software10 and
present our results in Table 1. We compared the precision of the 3 algorithms
used to compute complete programs (CRA, RTA and XTA) with respect to the

10 Soot (2.3.0), Jess (7.1p1), JML (5.5), TightVNC Java Viewer (1.3.9), ESC/Java
(2.0b0), Eclipse JDT Core (3.3.0), Javacc (4.0) and JLex (1.2.6).

http://buddy.sourceforge.net

104 L. Hubert et al.

Table 1. Comparison of algorithms generating a program call graph (with Sawja
and Wala): the algorithms of Sawja (CRA,RTA and XTA) are compared to Wala
(W-RTA and W-0CFA) w.r.t the number of loaded classes (C), reachable methods (M)
and number of edges (E) in the call graph, their execution time (T) in seconds and
memory used (S) in megabytes. Question marks (?) indicate clearly invalid results.

Soot Jess Jml VNC ESC/Java JDTCore Javacc JLex

C
CRA 5,198 5,576 2,943 5,192 2,656 2,455 2,172 2,131
RTA 4,116 2,222 1,641 1,736 1,388 1,163 792 752

M

CRA 49,810 47,122 26,906 44,678 23,229 23,579 19,389 18,485
W-RTA 32,652 4,303 17,740 ? 9,560 7,378 3,247 1,419
RTA 32,800 12,561 11,697 9,218 8,305 9,137 4,029 3,157
XTA 14,251 10,043 9,408 6,534 7,039 8,186 3,250 2,392
W-0CFA 37,768 9,927 15,414 ? 9,088 6,830 3,009 1,186

E

CRA 2,159,590 799,081 418,951 694,451 354,234 347,388 258,674 244,071
W-RTA 2,788,533 78,444 614,216 ? 279,232 146,119 34,192 13,256
RTA 1,400,958 141,910 149,209 79,029 101,257 114,454 35,727 23,209
XTA 297,754 94,189 103,126 48,817 74,007 86,794 26,844 15,456
W-0CFA 856,180 183,191 187,177 ? 87,163 77,875 21,475 4,360

T

CRA 8 8 4 7 4 5 4 4
W-RTA 74 7 23 ? 12 12 7 5
RTA 13 4 4 3 3 4 2 2
XTA 187 18 16 11 10 14 5 4
W-0CFA 2,303 209 40 ? 27 26 16 7

S

CRA 87 83 51 80 45 47 36 35
W-RTA 248 44 128 ? 84 101 42 8
RTA 132 60 54 51 43 52 26 20
XTA 810 198 184 153 147 157 112 107
W-0CFA 708 238 215 ? 132 134 125 26

number of reachable methods in the call graph and its number of edges. We
also give the number of classes loaded by CRA and RTA. We provide some
results obtained with Wala (r3767). Although precision is hard to compare11,
it indicates that, on average, Sawja uses half the memory and time used by
Wala per reachable method with RTA.

Conclusion

We have presented the Sawja library, the first OCaml library providing state-
of-the-art components for writing Java static analyzers in OCaml.

The library represents an effort of 1.5 man-year and approximately 22000
lines of OCaml (including comments) of which 4500 are for the interfaces. Many
design choices are based on our earlier work with the NIT analyzer [13]. It is a
quite efficient tool, able to analyze a complete program of more than 3000 classes
and 26000 methods to infer nullness annotations for fields, method signatures
11 Because both tools are unsound, a greater number of method in the call graph either

mean there is a precision loss or that native methods are better handled.

Sawja: Static Analysis Workshop for Java 105

and local variables to prove the safety of 84% of dereferences in less than 2
minutes. Using our experience from the NIT development, we designed Sawja
as a generic framework to allow every new static analysis prototype to share the
same efficient components as NIT. Indeed, Sawja has already been used in two
implementations for the ANSSI (The French Network and Information Security
Agency) [16,14]; Nit has been ported to the current version of Sawja, improving
its performances by 30% in our first tests; while being integrated in Sawja, the
class analyses presented in Section 4.2 rely on the underlying features and can be
seen as use cases of Sawja; and other small analyses (liveness, interval analyses,
etc.) are also available on Sawja’s web site.

Several extensions are planned for the library. Displaying static analysis re-
sults is a first challenge that we would like to tackle. We would like to facilitate
the transfer of annotations from Java source to Java bytecode and then to IR,
and the transfer of analysis results in the opposite direction. We already provide
HTML outputs but ideally the result at source level would be integrated in an
IDE such as Eclipse. This manipulation has been already experimented in one of
our earlier work for the NIT static analyzer and we plan to integrate it as a new
generic Sawja component. To ensure correctness, we would like to replace some
components of Sawja by certified extracted code from Coq [8] formalizations.
A challenging candidate would be the IR generation that relies on optimized al-
gorithms to transform in at most three passes each bytecode method. We would
build such a work on top of the Bicolano [2] JVM formalization that has been
developed by some of the authors during the European Mobius project.

References

1. Bacon, D.F., Sweeney, P.F.: Fast static analysis of C++ virtual function calls. In:
Proc. of OOPSLA 1996, pp. 324–341 (1996)

2. Bicolano - web home, http://mobius.inria.fr/bicolano
3. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,

D., Rival, X.: A static analyzer for large safety-critical software. In: Proc. of PLDI
2003, San Diego, California, USA, June 7–14, pp. 196–207. ACM Press, New York
(2003)

4. Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisticated
points-to analyses. SIGPLAN Not. 44(10), 243–262 (2009)

5. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Survey 24(3), 293–318 (1992)

6. Burke, M.G., Choi, J., Fink, S., Grove, D., Hind, M., Sarkar, V., Serrano, M.J.,
Sreedhar, V.C., Srinivasan, H., Whaley, J.: The Jalapeño dynamic optimizing com-
piler for Java. In: Proc. of JAVA 1999, pp. 129–141. ACM, New York (1999)

7. Clerc, X.: Barista, http://barista.x9c.fr/
8. The Coq Proof Assistant, http://coq.inria.fr/
9. Dean, J., Grove, D., Chambers, C.: Optimization of object-oriented programs using

static class hierarchy analysis. In: Olthoff, W. (ed.) ECOOP 1995. LNCS, vol. 952,
pp. 77–101. Springer, Heidelberg (1995)

10. Demange, D., Jensen, T., Pichardie, D.: A provably correct stackless intermediate
representation for Java bytecode. Research Report 7021, INRIA (2009), http://
www.irisa.fr/celtique/ext/bir/rr7021.pdf

http://mobius.inria.fr/bicolano
http://barista.x9c.fr/
http://coq.inria.fr/
http://www.irisa.fr/celtique/ext/bir/rr7021.pdf
http://www.irisa.fr/celtique/ext/bir/rr7021.pdf

106 L. Hubert et al.

11. Ershov, A.P.: On programming of arithmetic operations. Commun. ACM 1(8), 3–6
(1958)

12. Grove, D., Chambers, C.: A framework for call graph construction algorithms.
Toplas 23(6), 685–746 (2001)

13. Hubert, L.: A Non-Null annotation inferencer for Java bytecode. In: Proc. of
PASTE 2008, pp. 36–42. ACM, New York (November 2008)

14. Hubert, L., Jensen, T., Monfort, V., Pichardie, D.: Enforcing secure object initial-
ization in java. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 101–115. Springer, Heidelberg (2010)

15. IBM: The T.J. Watson Libraries for Analysis (Wala), http://wala.
sourceforge.net

16. Jensen, T., Pichardie, D.: Secure the clones: Static enforcement of policies for secure
object copying. Technical report, INRIA (June 2010); Presented at OWASP (2010)

17. Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vouillon, J.: The Objective Caml
system, Inria (May 2007), http://caml.inria.fr/ocaml/

18. Lhoták, O., Hendren, L.: Scaling java points-to analysis using SPARK. In: Wang,
H. (ed.) CC 2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003)

19. Lhoták, O., Hendren, L.: Evaluating the benefits of context-sensitive points-to anal-
ysis using a BDD-based implementation. ACM Trans. Softw. Eng. Methodol. 18(1)
(2008)

20. Lindholm, T., Yellin, F.: The JavaTM Virtual Machine Specification, 2nd edn.
Prentice Hall PTR, Englewood Cliffs (1999)

21. Livshits, V.B., Whaley, J., Lam, M.S.: Reflection analysis for java. In: Yi, K. (ed.)
APLAS 2005. LNCS, vol. 3780, pp. 139–160. Springer, Heidelberg (2005)

22. Meyer, J., Downing, T.: Java Virtual Machine. O’Reilly Associates, Sebastopol
(1997), http://jasmin.sourceforge.net

23. Morrison, D.R.: PATRICIA — Practical algorithm to retrieve information coded
in alphanumeric. J. ACM 15(4) (1968)

24. Pagano, B., Andrieu, O., Moniot, T., Canou, B., Chailloux, E., Wang, P., Manoury,
P., Colaço, J.L.: Experience report: using Objective Caml to develop safety-critical
embedded tools in a certification framework. In: Proc. of ICFP, pp. 215–220. ACM,
New York (2009)

25. Rose, E.: Lightweight bytecode verification. J. Autom. Reason. 31(3-4), 303–334
(2003)

26. Spoto, F.: Julia: A generic static analyser for the Java bytecode. In: Proc. of the
Workshop FTfJP (2005)

27. Stata, R., Abadi, M.: A type system for Java bytecode subroutines. In: Proc. of
POPL 1998, pp. 149–160. ACM Press, New York (1998)

28. Tip, F., Palsberg, J.: Scalable propagation-based call graph construction algo-
rithms. In: Proc. of OOPSLA 2000, pp. 281–293. ACM Press, New York (October
2000)

29. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot -
A Java bytecode optimization framework. In: Proc. of CASCON 1999 (1999)

30. Whaley, J.: Dynamic optimization through the use of automatic runtime special-
ization. Master’s thesis, Massachusetts Institute of Technology (May 1999)

http://wala.sourceforge.net
http://wala.sourceforge.net
http://caml.inria.fr/ocaml/
http://jasmin.sourceforge.net

CVPP: A Tool Set for Compositional Verification
of Control–Flow Safety Properties

Marieke Huisman1 and Dilian Gurov2,�

1 University of Twente, Netherlands
2 Royal Institute of Technology, Stockholm, Sweden

Abstract. This paper describes CVPP, a tool set for compositional ver-
ification of control–flow safety properties for programs with procedures.
The compositional verification principle that underlies CVPP is based
on maximal models constructed from component specifications. Max-
imal models replace the actual components when verifying the whole
program, either for the purposes of modularity of verification or due to
unavailability of the component implementations at verification time. A
characteristic feature of the principle and the tool set is the distinction
between program structure and behaviour. While behavioural properties
are more abstract and convenient for specification purposes, structural
ones are easier to manipulate, in particular when it comes to verifica-
tion or the construction of maximal models. Therefore, CVPP also con-
tains the means to characterise a given behavioural formula by a set of
structural formulae. The paper presents the underlying framework for
compositional verification and the components of the tool set. Several
verification scenarios are described, as well as wrapper tools that sup-
port the automatic execution of such scenarios, providing appropriate
pre– and post–processing to interface smoothly with the user and to
encapsulate the inner workings of the tool set.

1 Introduction

To enable verification of realistic software, verification techniques have to be
compositional and algorithmically decidable. Compositionality ensures that the
verification task can be split up in smaller pieces, while algorithmic decidability
ensures that verification can be done automatically, without any user interac-
tion. Moreover, for many application domains, compositionality and algorithmic
decidability are essential.

For example, in a dynamically reconfigurable distributed system, components
can join and leave the system at run–time dynamically. For such an open system,
appropriate verification techniques are necessary to support safe downloading,
i.e., to determine without any user interaction whether a newly arriving compo-
nent will not corrupt the well–functioning of the global system. These techniques
require the relativisation of the correctness of the system on the specifications
� Partially funded by the EU FET project FP7–ICT–2009–3 HATS.

B. Beckert and C. Marché (Eds.): FoVeOOS 2010, LNCS 6528, pp. 107–121, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

108 M. Huisman and D. Gurov

and the local correctness of its components. This relativisation can also be used
for the purposes of modularity. Modular verification is a means of controlling
the complexity of verifying large software. It allows an independent local evolu-
tion of the implementations of individual modules without affecting the global
correctness of the program.

The CVPP tool set is designed to tackle exactly this kind of verification
problems by supporting an algorithmic technique for compositional verification.
Its focus is on control–flow safety properties of programs with (possibly recur-
sive) procedures. Such properties typically describe sets of allowed sequences
of method invocations, and are conveniently expressed in temporal logic. The
underlying program model is that of flow graphs, abstracting completely from
program data to allow efficient algorithmic modular verification. However, the
model can be enhanced with exception information or multi–threading. Even
though the tool set is developed with compositionality in mind, it can also be
used for non–compositional control–flow verification problems of programs with
procedures. In particular, it allows to reduce infinite–state verification of be-
havioural properties to finite–state verification of structural properties.

Abstracting away from all data may seem like a severe restriction, but still
many useful properties can be expressed, such as:

– within atomic transactions, there are no calls to non–atomic methods;
– in a voting system, candidate selection has to be finished, before the vote

can be confirmed;
– a method that changes sensitive data is only called from within a dedicated

authentication method, i.e., unauthorized access is not possible;
– in a door access control system, the password has to be checked before the

door is unlocked, and it can only be changed when the door is unlocked.

Extending the technique with data over finite domains will allow for a wider
range of properties and possible applications, but needs to be combined with
abstraction techniques to control the complexity of verification. Such an exten-
sion will be investigated in future work.

The present paper describes CVPP, its underlying compositional verification
framework, and its implementation. We describe three important verification
scenarios: (i) open system verification, (ii) modular verification, and (iii) non–
compositional verification. We also discuss the encapsulation of the inner work-
ings of CVPP by means of wrapper tools that automate the various scenarios.

Previous work by the authors on tool support and case studies has been
reported in 2004 [16]. The current version of the tool set, discussed in this pa-
per, includes later extensions: (i) an inliner to abstract private methods [11],
(ii) more general program models concerning exceptions, threads and open flow
graphs [15,13], and (iii) a property translation from behavioural to structural
properties [12,13]. The last extension allows local assumptions to be behavioural,
whereas in the previous version they had to be structural. Further, we have uni-
fied the inputs and outputs to allow interoperability of the individual tools, and
have started work on wrapper tools, automating the verification scenarios.

CVPP: A Tool Set for Compositional Verification 109

Related Work. Maven is a modular verification tool addressing temporal proper-
ties of procedural languages in the context of aspects [9]. A non–compositional
verification method based on a program model closely related to ours is presented
by Alur and others [3]. It proposes a temporal logic CaRet for nested calls and
returns (generalised to a logic for nested words in [1]) that can be used to specify
regular properties of local paths within a procedure that skips over calls to other
procedures. Another example of a successful system for the non–compositional
verification of temporal safety properties, applied to C programs, is ESP [8].
This system combines a number of scalable program analyses to achieve precise
tracking (simulation) of a given property on multiple stateful values (such as file
handles), identified through user–defined source code patterns.

Most of the existing work on modular verification of safety properties is based
on Hoare logic. Müller was the first to propose a sound modular Hoare–style
verification technique for object–oriented languages [18]. A typical verification
tool within this line of work is Spec# [4].

Recent work by Alur and Chauhuri proposes a unification of Hoare–style
and Manna–Pnueli–style temporal reasoning for procedural programs, presenting
proof rules for procedure–modular temporal reasoning [2].

Organisation. Sections 2 and 3 sketch the tool set’s theoretical background and
underlying verification method. Section 4 describes the different tools that make
up CVPP, followed by a description of typical verification scenarios in Section 5.
Section 6 exemplifies some typical verification tasks when using CVPP. We con-
clude with possible extensions that would make CVPP applicable to a larger class
of problems (without changing the underlying methodology).

2 Program Model and Logic

This section summarises the program model and logic that underlies CVPP. For
a more detailed account, the reader is referred to [14].

As mentioned earlier, a characteristic feature of CVPP is the distinction be-
tween structural and behavioural properties. Usually, we are interested in prop-
erties of the behaviour of a program, while its structure is just a means for
accomplishing the desired behaviour. In particular, the same behaviour can be
produced by several structures. It is thus more natural and more abstract to
specify programs with behavioural properties than with structural ones.

However, algorithmic techniques for program analysis and verification are
computationally considerably more expensive on the level of program behaviour
than on the level of program structure. Program correctness problems are there-
fore often phrased in terms of the program structure rather than in terms of
its behaviour. Furthermore, many behavioural properties have natural struc-
tural counterparts, e.g., tail recursion, while other behavioural properties can
be characterised through finite sets of structural ones (see Section 3). Therefore,
CVPP is set up in such a way that structural properties can be used whenever
this is possible and meaningful.

110 M. Huisman and D. Gurov

2.1 Model and Logic

Our program model is control–flow based and thus over–approximates actual
program behaviour. It defines two different views on programs: a structural and
a behavioural one. Both views are instantiations of the general notions of model,
defined below. Notice in particular that these instantiations yield a structural
and a behavioural version of the logic, and that this enables a uniform treatment
of structure and behaviour whenever possible.

Definition 1. (Model) A model is a structure M = (S, L,→, A, λ), where S is
a set of states, L a set of labels, →⊆ S × L× S a labelled transition relation, A
a set of atomic propositions, λ : S → P(A) a valuation, assigning to each state
s the set of atomic propositions that hold in s. An initialised model is a pair
(M, E), with M a model and E ⊆ S a set of entry states.

As property specification language we the fragment of the modal μ-calculus [17]
with boxes and greatest fixed-points only is used. This temporal logic is capable
of characterising simulation (cf. [14]) and is thus suitable for expressing safety
properties. Throughout, we fix a set of labels L, a set of atomic propositions A,
and a set of propositional variables V .

Definition 2. (Logic) The formulae of our logic are inductively defined by:

φ ::= p | ¬p | X | φ1 ∧ φ2 | φ1 ∨ φ2 | [a] φ | νX.φ

where p ∈ A, a ∈ L and X ∈ V .

Satisfaction on states (M, s) |= φ is defined in the standard fashion [17]. For
instance, formula [a] φ holds of state s in model M if φ holds in all states
accessible from s via an edge labelled a. A model (M, E) satisfies a formula φ,
denoted (M, E) |= φ, if all its entry states E satisfy φ. The constant formulae
true (denoted tt) and false (ff) are definable. For convenience, we use p ⇒ φ to
abbreviate ¬p∨φ. We assume that formulae have pair–wise distinct fixed–point
binders, and unless stated otherwise, are closed and guarded (cf. [23]).

2.2 Control–Flow Structure and Behaviour

Control–Flow Structure. We abstract away from all data, therefore program
structure is defined as a collection of control–flow graphs (or flow graphs), one
for each of the program’s methods. Let Meth be a countably infinite set of method
names. A method graph is an instance of the general notion of model.

Definition 3. (Method graph) A method graph for m ∈ Meth over a finite set
M ⊆ Meth of method names is an initialised model (Mm, Em), where Mm =
(Vm, Lm,→m, Am, λm) is a finite model and Em ⊆ Vm a non–empty set of entry
points of m. Vm is the set of control nodes of m, Lm = M ∪ {ε}, Am = {m, r},
and λm : Vm → P(Am) is defined so that m ∈ λm(v) for all v ∈ Vm (i.e., each
node is tagged with its method name). The nodes v ∈ Vm with r ∈ λm(v) are
return points.

CVPP: A Tool Set for Compositional Verification 111

v5

v6

v7

v1

v3 v9

v0

v2

v4 v8

ε

ε

ε

ε

ε

ε

even

even

even

odd

odd

odd

even

even, r reven,rr odd, odd,

odd

 if (n == 0)
 public static boolean even(int n){

 return true;
 else
 return odd(n−1);
 }

 public static boolean odd(int n){
 if (n == 0)

 else
 return even(n−1);

 }}

 return false;

class Number {

Fig. 1. A simple Java class and its flow graph

Example 1. Figure 1 shows a simple Java class and the (simplified) flow graph
it induces. The flow graph consists of two method graphs - one for method even
and one for method odd. Entry nodes are depicted as edges without source.

Flow graph interfaces are defined as pairs I = (I+, I−), where I+, I− ⊆ Meth are
finite sets of names of provided and (externally) required methods, respectively1.
A flow graph G with interface I is denoted G : I. The flow graph of a program
is essentially the (disjoint) union " of its method graphs. Flow graphs can only
be composed if their interfaces match. A flow graph is closed if I− = ∅, i.e., it
does not require any external methods. Satisfaction, instantiated to flow graphs,
is called structural satisfaction |=s.

Example 2. Consider the flow graph in Example 1. The property “on every path
from a program entry node, the first encountered call edge goes to a return
node” is formalised by the structural formula νX. [even] r ∧ [odd] r ∧ [ε] X , in
effect specifying that the program is tail–recursive.

Control–Flow Behaviour. Next, we instantiate models on the behavioural level.
Transition label τ designates internal transfer of control, m1 call m2 invocation
of method m2 by method m1, and m2 ret m1 the corresponding return.

Definition 4. (Behaviour) Let G = (M, E) : I be a closed flow graph where
M = (V, L,→, A, λ). The behaviour of G is defined as the initialised model
b(G) = (Mb, Eb), where Mb = (Sb, Lb,→b, Ab, λb), such that Sb = V × V ∗,
i.e., states are pairs of control points v and stacks σ (also called configurations),
Lb = {m1 k m2 | k ∈ {call, ret}, m1, m2 ∈ I+}∪{τ}, Ab = A, λb((v, σ)) = λ(v),
and →b⊆ Sb × Lb × Sb is defined by the rules:

[transfer] (v, σ) τ−→b (v′, σ) if m ∈ I+, v
ε−→m v′, v |= ¬r

[call] (v1, σ) m1 call m2−−−−−−→b (v2, v
′
1 · σ) if m1, m2 ∈ I+, v1

m2−−→m1 v′1,
v1 |= ¬r, v2 |= m2, v2 ∈ E

[return] (v2, v1 · σ) m2 ret m1−−−−−−→b (v1, σ) if m1, m2 ∈ I+, v2 |= m2 ∧ r, v1 |= m1

1 We only require I− to contain methods that are not provided by I+. This is different
from our earlier work (e.g., [14]), but in line with the tool set implementation.

112 M. Huisman and D. Gurov

The set of initial configurations is defined by Eb = E × {ε}, where ε denotes the
empty sequence over V .

The definition is easily extended to open flow graphs (see [13]). Flow graph
behaviour can alternatively be defined via pushdown automata (PDA) [14, Def.
34] and approximated with the related notion of pushdown systems (PDS). We
exploit this by using PDS model checking for verification of behavioural prop-
erties (see [6]). Currently, our tool set relies on the external tool Moped [20];
however, this requires the properties to be presented in LTL.

Example 3. Consider the flow graph from Example 1. Because of possible un-
bounded recursion, it induces an infinite–state behaviour. One example execution
of the program is represented by the following path (in the branching structure)
from an initial to a final configuration:

(v0, ε)
τ−→b (v1, ε)

τ−→b (v2, ε)
even call odd−−−−−−−→b (v5, v3)

τ−→b (v6, v3)
τ−→b

(v7, v3)
odd call even−−−−−−−→b (v0, v9 · v3)

τ−→b (v1, v9 · v3)
τ−→b

(v4, v9 · v3)
even ret odd−−−−−−−→b (v9, v3)

odd ret even−−−−−−−→b (v3, ε)

Also on the behavioural level, we instantiate the definition of satisfaction: we
define G |=b φ as b(G) |= φ. The resulting behavioural logic is powerful enough to
express the class of security policies defined by finite state security automata [19].

Example 4. For the flow graph from Example 1, the behavioural formula even⇒
νX. [even call even] ff ∧ [τ] X expresses the property “in every program execution
starting in method even, the first call is not to method even itself”.

Extensions. This section presents the basic program model and logic, consid-
ering only normal, sequential control–flow. Extensions with exceptions and with
multi–threaded behaviour (with synchronisation on locks) exist [15], and are
supported in CVPP. The extension to open flow graphs mentioned above is also
supported. In ongoing work we address further extensions to Boolean programs,
as well as to richer fragments of the μ–calculus; this is not incorporated in CVPP
yet.

3 Framework for Compositional Verification

The compositional verification method underlying our tool set is based on the
computation of maximal models from component specifications and the instan-
tiation of components with these models when model checking global system
properties. For finite–state systems, this approach was introduced by Grumberg
and Long [10] and since then it has become a standard technique for reducing
the verification of correctness of property decompositions to model checking.

Maximal Models for Compositional Verification. A model is said to be maximal
for a given property φ, if it satisfies φ and simulates (w.r.t. a suitable property-
preserving simulation relation ≤) all models satisfying φ. For models in the sense

CVPP: A Tool Set for Compositional Verification 113

of Definition 1 and formulae in the logic of Definition 2, maximal models exist
and are unique up to isomorphism (see [14]). To compute a maximal model for a
property φ, we present the formula as a modal equation system (see [5]), which
is then transformed into a canonical form, the so–called simulation normal form.
A formula φ in simulation normal form can be directly mapped into a (finite)
modelM that simulates all models that satisfy φ; i.e., for every modelM′,M′ ≤
M iffM′ |= φ. Due to this close connection between simulation and satisfaction,
we obtain the following sound and complete verification principle [14]:

Compositional verification principle for models: to show M1 "M2 |= ψ,
it suffices to show M1 |= φ (i.e., component M1 satisfies a suitably
chosen local assumption φ) and Mφ "M2 |= ψ (i.e., component M2,
when composed with the maximal model Mφ for φ, satisfies the global
guarantee ψ).

Completeness of the principle guarantees that no false negatives exist: if Mφ "
M2 |= ψ fails, then there is a model M such that M |= φ but M"M2 �|= ψ.

Adaptation of this principle to flow graphs (as models) and structural and
behavioural properties presents us with certain difficulties. Given a structural
or behavioural flow graph property φ, there is no guarantee that the maximal
model of φ is a legal flow graph structure or behaviour.

Maximal Flow Graphs from Structural Specifications. For structural properties
this problem can be solved for a given flow graph interface I, because we can
characterise precisely the flow graphs having interface I as models through a
structural formula θI in our logic. Let I = {m1, m2} be a closed flow graph in-
terface. A model is a flow graph with this interface exactly when it satisfies the
formula θI = (νX.m1∧ [m1, m2, ε]X)∨ (νY.m2∧ [m1, m2, ε]Y), which essentially
expresses that edges in the flow graph do not cross method boundaries. Then,
for every structural formula φ, the maximal model of the formula φ ∧ θI is a
flow graph Gφ,I that simulates structurally all flow graphs with interface I that
satisfy φ. We term this flow graph the maximal flow graph for formula φ and
interface I. The above compositional verification principle can then be adapted
to structural properties of flow graphs, yielding the following sound and com-
plete compositional verification principle, presented as a proof rule (see [14] for
technical details):

(struct− comp)
G1 |=s φ Gφ,IG1

" G2 |=s ψ

G1 " G2 |=s ψ
G1 : IG1

Maximal Flow Graphs from Behavioural Specifications. In the case of behavioural
flow graph properties, however, there is no such way to characterise in our logic
all models that constitute behaviours of flow graphs with a given interface (in-
tuitively, this is because the logic is not capable of expressing context–free prop-
erties). Furthermore, these models are infinite–state and cannot be constructed
explicitly; what we actually need is a way to construct the maximal flow graph
for a given behavioural formula φ and interface I. It turns out, however, that in

114 M. Huisman and D. Gurov

− structure
− behaviour
− eqsys

− Moped
− CWB

Model MaxMod

− CCS/PDA
− inline

Graph
− compose

AnalyserProgram

ModCheck
− simplify
− convert

Formula

− CWB/LTL
− Beh2Struct

Formula

Fig. 2. The CVPP tool set architecture

general there is no such single flow graph, but rather a set of flow graphs having
the property that every flow graph satisfying φ is simulated by some flow graph in
the set. To compute such a set, we have developed a translation from behavioural
flow graph properties φ to equivalent sets of structural properties ΠI(φ) for a
given interface I. The translation is based on a tableau construction that con-
ceptually amounts to symbolic execution of the behavioural formula, collecting
structural constraints along the way. By keeping track of the subformulae that
have been examined, recursion in the structural constraints is identified and cap-
tured by fixed–point formulae (for details see [12]). Combining this translation
with maximal flow graph generation for structural properties yields the follow-
ing sound and complete compositional verification principle for flow graphs and
behavioural properties, presented as a proof rule:

(beh− comp)
G1 |=b φ

{
Gχ,IG1

" G2 |=b ψ
}

χ∈ΠIG1
(φ)

G1 " G2 |=b ψ
G1 : IG1

In addition, we have also developed a “mixed” rule [14], where local structural
assumptions are combined with global behavioural guarantees.

The presented proof rules are flexible, allowing reasoning about a combination
of concrete components (i.e., given through their implementation) and abstract
components (i.e., given though their specification), both at the structural and
the behavioural levels. Section 5 shows typical verification scenarios, where these
proof rules are applied for open system and modular verification. A possible
instantiation of this approach is to choose individual methods as components.
The proof rules then give rise to a procedure–modular verification technique for
temporal properties (see [21]).

4 Tool Support for Compositional Verification

This section describes the different internal data formats and tools within the
CVPP tool set. It also exemplifies the different input formats used. A high–level
overview of CVPP’s architecture is shown in Figure 2 (where rounded boxes
denote data formats, squared boxes tool components, and dashed lines denote
external formats or tools).

CVPP: A Tool Set for Compositional Verification 115

As program input format, currently the Java bytecode format is used. Inter-
nally, there are three important data formats:

– Model : the program model representation, containing nodes, edges, a valua-
tion and a set of entry points.

– Formula: the property representation. We support behavioural and struc-
tural formulae in our logic, both in recursive and in equation system form.

– Interface: the interface representation, containing lists of provided and of
externally required methods. Interfaces are used as auxiliary information
by almost all tool components, and are therefore not included explicitly in
Figure 2.

The components of the tool set are the following:

– Analyser: from Java classes to flow graphs. Java bytecode classes are ab-
stracted into flow graphs. The tool is build on top of the Soot framework [22].

– Graph: transformations on the program model representations. The main
operations supported are flow graph composition, pretty printing in different
formats (in particular as CCS process terms and as PDS of the induced
behaviour), and inlining of private methods. The use of the latter operation,
called Graph Inliner, is briefly explained in Section 5.1 (see also [11]).

– Formula: transformations on the property representations. The main opera-
tions supported are the simplification of formulae, the conversion from one
property format to another (such as the translation of our logic from re-
cursive to equation system form, needed for maximal model construction),
pretty printing as a CWB or LTL formula (as input for Moped), as well as
the characterisation of behavioural formulae by structural ones. The latter
operation is referred to as Beh2Struct. In addition, we allow properties to be
expressed using so–called patterns. Patterns provide abbreviations for com-
monly used specification constructs. They increase readability and make the
property more independent of the interface. The Formula component trans-
lates patterns into our logic.

– MaxMod: the maximal model construction as described in Section 3. This
component uses formulae expressed as equation systems.

– ModCheck: model checking, using external tools: for structural properties we
use CWB, the Edinburgh Concurrency Workbench [7], while for behavioural
properties we rely on Moped, a PDS model checker for LTL [20].

To conclude this section, we show how the examples from Section 2 are writ-
ten in CVPP’s input formats. Consider again the flow graph from Figure 1. The
method graph of method even is written as follows:

node 0 meth(even) entry edge 0 1 eps
node 1 meth(even) edge 1 2 eps
node 2 meth(even) edge 1 4 eps
node 3 meth(even) ret edge 2 3 odd
node 4 meth(even) ret

116 M. Huisman and D. Gurov

The interface and structural and behaviour properties are written as follows in
CVPP’s input format:

interface for Number: provided even, odd
struct. formula Ex. 2: nu X.(([even] r) /\ ([odd] r) /\ ([eps] X))

beh. formula Ex. 4: meth(even) => nu X.(([even call even] ff) /\
([tau] X))

5 Typical Verification Scenarios

Section 3 presented two compositional verification principles; this section de-
scribes in detail some typical scenarios supported by CVPP and these veri-
fication principles. In addition, we also describe how CVPP can be used for
non–compositional verification. This is in particular interesting for behavioural
properties: by means of the translation of behavioural properties into structural
ones, CVPP provides an effective way to reduce the verification problem for be-
havioural properties to the computationally simpler problem for structural ones.

5.1 Open System Verification

The most general application of the proof rules presented in Section 3 is to open
system verification, where some components are given by an implementation
(referred to here as concrete components), while others are only given by a
specification (abstract components). This can typically happen with dynamically
reconfigurable or evolving software, where some components are either not known
or simply not statically fixed at verification time.

Thus, verification of a global property of an open system has to be rela-
tivised on the local specifications of the abstract components. For instance,
if all specifications are behavioural, this is achieved by consecutively applying
rule (beh− comp) on every abstract component. The implementations of the ab-
stract components, once available, are checked against their local specifications.

An additional complexity stems from the detail of information in the concrete
components. Typically, these contain information about private methods. In con-
trast, the abstract components and global properties are described in terms of the
public interface. Therefore, the implementation details in the concrete compo-
nents are abstracted away, by the Graph Inliner, to the publicly visible behaviour,
before composing the components.

The overall verification task thus divides into two independent tasks, sup-
ported by our tool set as follows:

1. Local correctness : Check whether the implementation, once available, of ev-
ery abstract component meets its local specification as described below in
Section 5.3.

2. Global correctness:
(a) for every concrete component, from its implementation, extract a flow

graph using the Analyser, and use the Graph Inliner to construct its pub-
licly visible behaviour;

CVPP: A Tool Set for Compositional Verification 117

(b) for every abstract component, if its local specification is behavioural,
translate the property to an equivalent set of structural ones using Beh-
2Struct;

(c) for every structural property, being either a local specification of an
abstract component itself or resulting from step 2(b), compute a maximal
flow graph using MaxMod;

(d) for all instantiations of abstract components by corresponding con-
structed maximal flow graphs, and instantiations of concrete compo-
nents by their extracted flow graphs, compose the graphs using Graph to
produce a global flow graph of the system, and model check the latter
against the global specification as described below in Section 5.3.

5.2 Modular Verification

In the modular software design paradigm the goal is to verify the modules of a
software system locally, i.e., independently of each other, and then to combine
the local correctness arguments into a global correctness proof of the whole sys-
tem. In our verification framework, modular verification is simply an instance of
the more general case of open system verification described above, with modules
as components and where all components are abstract. This eliminates task 2(a)
and simplifies conceptually task 2(d).

One can view the notion of module on different levels of granularity. One
(rather extreme) case in procedural programming languages is when every pro-
cedure itself is considered a module and is equipped with a specification. In this
case we obtain procedure–modular verification, similar to many Hoare logic based
verification approaches. We have recently shown on a case study that it is indeed
possible and convenient to reason at this level of granularity about control–flow
safety properties of an application [21].

5.3 Non–compositional Verification

The open system and modular verification scenarios above give rise to several
non-modular verification tasks. In fact, CVPP can also be applied in a non-
compositional setting. This is in particular useful when reasoning about be-
havioural properties. Due to unbounded recursion, verification of behavioural
properties for procedural programs is infinite–state, even when all data is ab-
stracted away as in our case. On the other hand, verification of structural prop-
erties is finite–state. Thus, by applying our translation from behavioural to sets
of structural properties, one can reduce verification of behavioural properties to
a finite number of finite–state verification tasks. Given a Java application and a
property specification (either behavioural or structural), this is done as follows:

1. extract the flow graph of the application using the Analyser (and if necessary,
use the Graph Inliner to abstract away from implementation details);

2. if the property is structural, cast the flow graph as a CCS term using Graph,
and model check the term against the property using the CWB;

118 M. Huisman and D. Gurov

3. if the property is behavioural, there are two alternatives: either
(a) cast the flow graph as a pushdown system using Graph, and model check

it against the property using Moped; or
(b) translate the property to an equivalent set of structural ones using Beh-

2Struct, and perform step 2 for each one of these.

Step 3(b) is particularly meaningful in settings where the behavioural specifica-
tions are known in advance (such as the security policies of mobile platforms)
and are relatively stable; the property translation can then be applied prior to
the verification task itself.

5.4 Wrapper Tools for Standard Verification Scenarios

The different scenarios described above require the use of several of the tools of
CVPP in a particular pre–defined order. To make CVPP easier to use, and to hide
away the internal formats and translations within the tool set, wrapper tools are
being developed that perform the typical verification scenarios automatically.
A wrapper implements a pre– and a post–processor that translates input and
output of the tool set, and performs the different verification steps automatically.
The post–processor appropriately handles feedback from the model checkers:
when a structural property is violated, it is indicated where in the program this
violation occurs; when a behavioural property is violated the model checking
counter example is translated back into a program trace.

The first wrapper tool that we developed is ProMoVer [21]. It automates
procedure–modular verification of Java programs annotated with global and
method–local specifications. ProMoVer was evaluated on a small but realistic
case study: we verified the absence of calls to non–atomic methods within Java
Card transactions for a Java Card electronic purse application2. In the near
future, we plan to develop wrapper tools for the other scenarios.

6 Executing the Verification Scenarios

To illustrate how CVPP is used, this section discusses how parts of the different
verification scenarios described in the previous section are applied on concrete
examples. For a larger example discussing our experiences with ProMoVer for
the verification of the safe use of the Java Card transaction mechanism in an
e-commerce application for smart cards, we again refer the reader to [21].

6.1 Generating Maximal Flow Graphs for a Behavioural Property

One important subtask in the compositional verification scenarios discussed in
the previous section is the construction of maximal flow graphs from a be-
havioural specification of a component; see steps 2(b,c) of the open system

2 A web–based interface to ProMoVer is available from:
http://www.csc.kth.se/~{}siavashs/ProMoVer/promover.php

http://www.csc.kth.se/~{}siavashs/ProMoVer/promover.php

CVPP: A Tool Set for Compositional Verification 119

Fig. 3. Maximal flow graph for “the first call is not to method even itself”

verification scenario. As explained in Section 3, this is achieved by translat-
ing the behavioural property into an equivalent set of structural ones, and by
constructing a maximal flow graph for each of the latter.

For example, consider a component specified by an interface where meth-
ods even and odd are provided and no external methods are required, and
by the behavioural property “in every program execution starting in method
even, the first call is not to method even itself” formalised in Example 4.
Providing this interface and formula to Beh2Struct, and optimising the result
with the simplification facility of Formula, we obtain one structural formula:
even ⇒ νX. [even] ff ∧ [ε]X . To compute a maximal flow graph, we first apply
the conversion facilities of Formula to transform the formula into a modal equa-
tion system, which is then passed on, together with the original interface, to
MaxMod. The resulting maximal flow graph is shown in Figure 3. Notice that
the method graphs for even and odd are isomorphic, but the graph of method
even has two entry nodes while the graph of method odd has four; as a result,
the former restricts the behaviour in that, once called, method even can only
call method odd as a first method call, while the latter makes no restrictions on
the behaviour whatsoever. This maximal flow graph can now be substituted for
the given component when model checking global system properties.

6.2 Closed System Model Checking of a Behavioural Property

Consider again the component of the previous subsection, described by the in-
terface where methods even and odd are provided and no external methods are
required, and by the behavioural property in Example 4. We want to show that
the class Number defined in Example 1 is an appropriate implementation of this
component. This is an instance of the non-compositional verification scenario in
Section 5.3. Thus, using the Analyser, we first extract the flow graph, resulting in
the flow graph as in Figure 1. For this application, there is no difference between
public and private interface, thus there is no need to use the Graph Inliner.

The property is behavioural, thus we have a choice (cf. step 3, Section 5.3).
(a) We can model check the behavioural property directly. We use Graph to
produce the PDS from the flow graph, and Formula to transform the property to
an LTL formula. Then Moped is used to verify that class Number indeed respects
this property. (b) As in the previous subsection, we can compute the structural

120 M. Huisman and D. Gurov

formula that characterises the behavioural formula by using Beh2Struct. We use
Graph to pretty print the flow graph as CCS term and Formula to pretty print the
formula in CWB’s input format. Then CWB is used to verify that class Number
indeed respects this structural property.

7 Conclusion

CVPP is a tool set for compositional verification of control–flow safety prop-
erties of procedural programs. It supports a completely automatic verification
method based on maximal models. The underlying general compositional ver-
ification principle instantiates to two important verification scenarios, namely
open system verification and modular verification. By means of an algorithmic
translation of behavioural into structural properties, the tool is also applicable
to non–compositional verification, allowing infinite–state PDA model checking
to be reduced to standard finite–state model checking. The various scenarios can
be supported by wrapper tools, such as ProMoVer, that encapsulate the inner
workings of the tool set and provide a smooth interface to the user.

The largest CVPP case study so far is the verification of absence of illicit ap-
plet interactions in a smart card application [14,6]. This has been redone with
the later extensions of the tool set. It is future work to develop more case stud-
ies, similar in size and complexity, but taking advantage of the different wrapper
tools. For all three verification scenarios appropriate wrappers will be developed.
Further, we will provide support for other property specification formalisms, in
particular security automata. Support for flow graph extraction from source code
will be improved, developing a modular and extensible tool. Other extensions
concern the program model, where we plan to add data to flow graphs to repre-
sent Boolean programs faithfully, and to develop a solution for multi–threaded
programs. Finally, we plan to extend the logic to include liveness properties;
these become meaningful when the flow graphs model program behaviour faith-
fully, or at least provide under–approximations of the guaranteed behaviour.

Acknowledgements. We thank everybody who contributed to CVPP: Irem
Aktug (Analyser), Christoph Sprenger (MaxMod), Siavash Soleimanifard
(ProMoVer), and Afshin Amighi (property simplification). We are also indebted
to Stefan Schwoon, who extended the input language of Moped to serve our needs.

References

1. Alur,R.,Arenas,M.,Barcelo,P.,Etessami,K., Immerman,N., Libkin, L.: First-order
and temporal logics for nested words. In: Logic in Computer Science (LICS 2007),
Washington, DC, USA, pp. 151–160. IEEE Computer Society, Los Alamitos (2007)

2. Alur, R., Chaudhuri, S.: Temporal reasoning for procedural programs. In: Barthe,
G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 45–60. Springer,
Heidelberg (2010)

3. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467–481. Springer, Heidelberg (2004)

CVPP: A Tool Set for Compositional Verification 121

4. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An
Overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

5. Boudol, G., Larsen, K.: Graphical versus logical specifications. Theoretical Com-
puter Science 106, 3–20 (1992)

6. Chugunov, G., Fredlund, L.-Å., Gurov, D.: Model checking of multi-applet Java-
Card applications. In: Smart Card Research and Advanced Application Conference
(CARDIS 2002), pp. 87–95. USENIX Publications (2002)

7. Cleaveland, R., Parrow, J., Steffen, B.: A semantics based verification tool for finite
state systems. In: International Symposium on Protocol Specification, Testing and
Verification, pp. 287–302. North-Holland Publishing Co., Amsterdam (1990)

8. Das, M., Lerner, S., Seigle, M.: ESP: Path–sensitive program verification in poly-
nomial time. In: Programming Language Design and Implementation (PLDI 2002),
pp. 57–68. ACM, New York (2002)

9. Goldman, M., Katz, S.: MAVEN: Modular aspect verification. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 308–322. Springer, Heidelberg
(2007)

10. Grumberg, O., Long, D.: Model checking and modular verification. ACM
TOPLAS 16(3), 843–871 (1994)

11. Gurov, D., Huisman, M.: Interface abstraction for compositional verification. In:
Software Engineering and Formal Methods (SEFM 2005), pp. 414–423 (2005)

12. Gurov, D., Huisman, M.: Reducing behavioural to structural properties of programs
with procedures. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS,
vol. 5403, pp. 136–150. Springer, Heidelberg (2009)

13. Gurov, D., Huisman, M.: Reducing behavioural to structural properties of programs
with procedures (2010); Full version, available upon request

14. Gurov, D., Huisman, M., Sprenger, C.: Compositional verification of sequential
programs with procedures. Information and Computation 206(7), 840–868 (2008)

15. Huisman, M., Aktug, I., Gurov, D.: Program models for compositional verification.
In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 147–166. Springer,
Heidelberg (2008)

16. Huisman, M., Gurov, D., Sprenger, C., Chugunov, G.: Checking absence of illicit
applet interactions: A case study. In: Wermelinger, M., Margaria-Steffen, T. (eds.)
FASE 2004. LNCS, vol. 2984, pp. 84–98. Springer, Heidelberg (2004)

17. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Sci-
ence 27, 333–354 (1983)

18. Müller, P.: Modular Specification and Verification of Object-Oriented Programs.
LNCS, vol. 2262. Springer, Heidelberg (2002)

19. Schneider, F.B.: Enforceable security policies. ACM Trans. Infinite Systems Secu-
rity 3(1), 30–50 (2000)

20. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, Technische Univer-
sität München (2002)

21. Soleimanifard, S., Gurov, D., Huisman, M.: Procedure–modular verification of con-
trol flow safety properties. In: Workshop on Formal Techniques for Java Programs
(FTfJP 2010) (2010)

22. Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot -
a Java Optimization Framework. In: CASCON 1999, pp. 125–135 (1999)

23. Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional mu-
calculus. In: Logic in Computer Science (LICS 1995), pp. 14–24. IEEE, Los Alami-
tos (1995)

Specifying Imperative ML-Like Programs
Using Dynamic Logic�

Séverine Maingaud1, Vincent Balat1, Richard Bubel2,
Reiner Hähnle2, and Alexandre Miquel3

1 Laboratoire Preuves, Programmes et Systèmes

CNRS and Université Paris Diderot – Paris 7
2 Department of Computer Science and Engineering

Chalmers University, Gothenburg
3 ENS Lyon, Université de Lyon,

LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA)

Abstract. We present a logical system suited for specification and veri-
fication of imperative ML programs. The specification language combines
dynamic logic (DL), explicit state updates and second-order functional
arithmetic. Its proof system is based on a Gentzen-style sequent calcu-
lus (adapted to modal logic) with facilities for symbolic evaluation. We
illustrate the system with some example, and give a full Kripke-style
semantics in order to prove its correctness.

Keywords: ML, dynamic logic, program specification, program verifi-
cation, KeY, AF2.

1 Introduction

We present a logical system suited for specification and verification of imperative
ML programs. Verification systems for functional programming languages have
been traditionally investigated in the context of higher-order logical frameworks
(e.g., Coq, Isabelle, HOL, ACL2, VeriFun, Elf), where structural induction is the
central proof paradigm. To employ dynamic logic and symbolic execution con-
stitutes a new departure which is motivated by the presence of reference types
whose treatment is well understood in Hoare-style program logics. In our paper
we show that dynamic logic is a suitable framework also for ML with references.
Our specification language combines a generalisation of Hoare logics called dy-
namic logic (DL), explicit state updates, and second-order functional arithmetic
(AF2) [9]. Its proof system is based on a Gentzen-style sequent calculus (adapted
to modal logic) with facilities for symbolic evaluation.

ML with references is a higher-order imperative programming language that
can be seen as an object-oriented language. Functions and references can be

� This work has partially been supported by the EU COST Action IC0701: Formal
Verification of Object-Oriented Software.

B. Beckert and C. Marché (Eds.): FoVeOOS 2010, LNCS 6528, pp. 122–137, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Specifying Imperative ML-Like Programs Using Dynamic Logic 123

translated by objects1 For this reason, the work presented in this paper could
be adapted to a real object-oriented programming language.

Related Work. State-of-the-art verification systems based on dynamic logic are
KIV [1] and KeY [3]. The idea of using updates to represent state changes in a
dynamic logic setting originated also from KeY. We depart from KeY’s program
logic, however, in two main aspects: (i) we use second-order dynamic logic to be
able to deal with a functional language, thus bridging the gap between DL and
AF2; (ii) memory allocation extends the domain of the store in contrast to the
constant-domain assumption employed by KeY.

The proof assistant PAF! [2] is also a verification system for ML programs
based on AF2 with symbolic evaluation, but it does not support verification of
imperative ML. The verification tool WHY [5] for first-order imperative pro-
grams is a verification condition generator based on Dijkstra’s weakest precon-
dition calculus. WHY is being adapted to higher-order programs [8] through
the integration of effect polymorphism to previous work [10] on Hoare logics for
call-by-value functional programs without states. In this setting the generated
verification conditions are passed on to automatic theorem provers such as SMT
solvers or to interactive proof systems like Coq or PVS. The Ynot system [4]
uses Coq both as a theorem prover and as an imperative functional language
thanks to a monadic formulation of separation logic.

2 Dynamic Logic

Dynamic logic [6] can be seen as a class of modal logics suited for reasoning about
imperative programs. Like Hoare logic it uses a specification language where the
current program state is implicit. States are explicit only in the semantics, where
they play the role of worlds of a Kripke frame, in the sense of modal logic.

The central idea is to introduce for each program p a separate modality (read
‘box p’) [p] whose accessibility relation in a Kripke frame corresponds exactly
to the operational semantics of p: the formula [p] B holds in a state s if the
formula B holds in all states reachable by any execution of the program p. If p
is deterministic (which we assume from now on) then there is at most one final
state. Under this semantics the formula

A→ [p] B (1)

expresses partial correctness of program p with respect to precondition A and
postcondition B. Whenever A and B are first-order formulas (1) corresponds to
the Hoare triple {A} p {B} [7]. In contrast to Hoare logic, however, in dynamic
logic modal operators with programs inside and propositional connectives can
be arbitrarily nested which makes dynamic logic more expressive than Hoare
logic. In addition to the partial correctness modality there is a dual operator

1 Use a field for each argument and a unique application method for functions; use
fields to represent the content and getter/setter methods for references.

124 S. Maingaud et al.

(read “diamond p”) 〈 p 〉 defined as 〈 p 〉B ↔ ¬[p]¬B. Using the diamond oper-
ator we can express total correctness of program p in dynamic logic: A → 〈 p 〉B.

In contrast to higher-order logics, imperative programs are first-class citizens
in dynamic logic and not modelled by (inductively defined) formulas. In conse-
quence, the syntax and semantics of the underlying programs is fixed and one
must define a specific dynamic logic for a given programming language. One ad-
vantage is that the programming language semantics is defined at the meta-level
(as a property of Kripke frames) and needs not to be defined on the formula
level. Likewise, programs can have any concrete syntax and need not follow a
formula structure. This leads to a low formalization overhead and good readabil-
ity when constructing proof obligations for program correctness which in turn is
important for (i) handling complex target languages, (ii) achieving a high degree
of automation, (iii) usability in interactive proofs.

Proof systems for dynamic logic do not proceed mainly via induction over the
syntactic structure of programs, but by decomposition of programs and record-
ing of intermediate (symbolic) states. If the application of decomposition rules
follows the evaluation strategy of an interpreter of the underlying programming
language, then this amounts to symbolic execution. The program-free part of
dynamic logic is usually a standard first-order logic with sorts and interpreted
symbols for arithmetic, arrays, etc. There is relatively strong automated rea-
soning support available for such logics. Two state-of-art software verification
systems (KeY [3] and KIV [1]) with a very high degree of automation are based
on dynamic logic and symbolic execution.

Functional Programs with References. Our programming language is an untyped
version of imperative ML (IML). Imperative ML adds references (locations) with
mutable content to the functional world. References are pointers to a fixed mem-
ory location. The value stored at that particular location can be accessed and
changed by programs. Let r denote a reference: The IML fragment r := 3; !r
consists of two (sequentially connected) expressions: the first expression r := 3
changes the content stored at the memory location referred to by r to 3; the
second expression !r looks up and evaluates to the value stored in r. Expressions
composed by the semicolon operator are evaluated from left-to-right. The result-
ing value is the one of the last expression; the above IML fragment evaluates
always to 3. More details are in Sect. 3.

When extending a functional language with references (and thus with a no-
tion of state) one has to deal with phenomena such as side-effects, aliasing, or
sensitivity to evaluation order for functional correctness. For instance, the IML
λ-expression

f := λx, y. ((x := !x + 2; !x) + (y := !y ∗ 5; !y))
(applied to arguments) has not only global visible side-effects (contents of refer-
ences passed to x, y changed), but is also affected by aliasing and the evaluation
order: let r, s denote distinct references with equal content (say 3), then (!f) r s
evaluates to 20 and (!f) r r evaluates to 30 (under left-to-right evaluation).

The specification language (logic) for IML programs needs not only to model
the additional concepts faithfully, but must also ensure that the properties to be

Specifying Imperative ML-Like Programs Using Dynamic Logic 125

specified are actually expressible. For example, in a pure functional setting the
formula ∀x.(f x ≤ g x) specifies that function g is an upper approximation of
the program (function) f , but more thought is required in presence of side-effects
where executing f might influence the evaluation of g.

Dynamic Logic. We sketch the basic concepts and ideas behind dynamic logic.
A rigorous introduction of second-order dynamic logic for IML program is given
in Sect. 4. Signature and syntax of dynamic logic are defined on top of an
existing non-modal base logic (e.g., first-order or second-order logic). An im-
portant feature of first-order modal logics is the distinction between rigid and
non-rigid function/predicate symbols. Rigid symbols are interpreted independent
of a state, while the interpretation of non-rigid symbols is state-dependent. For
instance, the interpretation of the IML dereferencing operator ! must obviously
be state-dependent.

The inductive definition of DL syntax is fairly standard. Any formula of the
underlying non-modal base logic is also a formula of its dynamic logic variant.
Modalities are added to the syntax as follows: let p be an IML program, φ denote
a DL formula then [p] φ and 〈 p 〉φ are DL formulas. An important restriction is
that ML programs occuring as logical terms (i.e., outside a modality) must be
state-independent and pure (side-effect free).

States in dynamic logic are not represented by an explicit datastructure passed
as an extra argument to functions (predicates), but live solely on the semantical
level. Formulas and terms are evaluated relative to a Kripke structure K. Besides
the elementary data domain and an interpretation for the rigid symbols the
Kripke structure fixes also a set of states St, giving meaning to non-rigid symbols
such as !, and a state transition relation τ : ΠIML × St × St that defines the
semantics of IML programs. The cardinality of τ(π, s) = {s′ | τ(π, s, s′)} is at
most 1, because IML is deterministic.

Example 1 (DL formula over IML program)
The DL formula [if a > b then max := a else max := b] ([!max as x] x ≥ a)
specifies that if the program inside the first box modality terminates then in the
final state the value stored at max is at least as large as the value of a. The
construct “as x”, introduced in Sect. 4, is a binder to recover the returned value.

Proof systems for DL typically use a sequent style calculus and follow the sym-
bolic evaluation paradigma by realising a symbolic interpreter. The rule that
handles assignment is often one of the most tricky ones and crucial for the effi-
ciency of the verification process. Even for simple imperative languages the stan-
dard assignment rule requires renaming of locations and, in presence of aliasing,
the introduction of several case distinctions. The update mechanism sketched in
the following provides an elegant way to deal with this.

Update Mechanism. Influenced by abstract state machines and generalized sub-
stitutions (B method), the KeY verification system [3] introduced updates as a
syntactical notion to represent symbolic state changes in dynamic logic.

An (elementary) update is an expression of the form location := value. By
sequential composition of updates u1; u2 new (sequential) updates can be built.

126 S. Maingaud et al.

More complex update combinators are described in [11], but for our purposes
elementary updates plus sequential composition is sufficient.

Let ξ denote a formula or term and u an update: then {u}ξ is again a for-
mula/term. The semantics of an elementary update is that of an assignment.
In this paper we restrict the kind of term that may occur as location or as an
assigned value to so-called symbolic values. Simply expressed, a symbolic value
is a logical term or a program that has no side-effects and that is not state-
dependent.

Example 2. 1. In the formula {l := v}φ, the subformula φ is evaluated in a
state where !l has the value v.

2. The formula {l := v1; l := v2}φ is equivalent to {l := v2}φ, because the
second update overwrites the effect of the first one.

3. The update in {l1 := 3; l2 :=!l1}φ is syntactically incorrect as the right side
of the second update is state dependent and not a symbolic value according
to the definition above.

During a sequent proof the updates accumulate in front of a symbolically exe-
cuted program until execution terminates. Upon termination, the updates are
applied to terms and formulas much like substitutions. This lazy application of
updates helps efficiency, because automatic first-order simplification steps are
applied eagerly before updates are substituted into formulas. This is particularly
important in presence of aliasing, see Sect. 4.

3 Programming Language

We present the syntax and evaluation rules of a small untyped functional lan-
guage with references. In this framework, we consider static typing as an at-
tribute of the logic, and we ignore it when defining the operational semantics.
Typing can be introduced in the logic as predicates using the expressivity of
higher-order logic. This allows to reason about programs independently of any
typing account.

3.1 Syntax

Constants. The language provides two kinds of constants: integer constants
n ∈ � and location constants � ∈ L, where L is an infinite set of symbols
disjoint from �. Boolean values “true” and “false” are represented by the inte-
ger constants 1 and 0. In conditionals, we shall more generally consider that any
value different from 0 represents the Boolean value “true”.

Primitive functions. We assume a finite set of function symbols (notation: f, f′,
f1, etc.) representing elementary operations on data. Every function symbol f
comes with an arity k ≥ 1 and a total function f̃ : �k → � defining the corre-
sponding operation. We assume that these primitives contain at least the usual
arithmetic operations (+, −, ∗, /, etc).

Specifying Imperative ML-Like Programs Using Dynamic Logic 127

Programs and values. The syntactic category of programs (notation: p, p′, p1,
etc.) is defined by

p ::= x | n | � | f(p1, . . . , pn) | p = p′

| λx. p | p p′ | (p1, p2) | fst(p) | snd(p)
| if p then p1 else p2 | ref p | p := p′ | !p

The set of free variables of a program p is written FV (p), and the set of locations
occurring in p is written loc(p). We also use the shorthand let x = p in p′ (local
definition) for (λx. p′) p, the same program being more simply written p; p′

(sequence) in the case where x /∈ FV (p′). The fixpoint combinator for call-by-
value strategy can also be encoded as fix ≡λf. (λx. f (λy. xxy)) λx. f (λy. xxy).

We call a value (notation: v, v′, v1, etc.) any closed program that is generated
from the following grammar:

v ::= n | � | (v1, v2) | λx. p (FV (p) ⊆ {x})

The set of all values is written V . This set is equipped with an equivalence
relation, written v ∼ v′, that is used to implement the structural equality test.
The definition of this relation will be given in Section 5.

3.2 Operational Semantics

Stores. We call a store any partial function s : L ⇀ V whose domain, writ-
ten dom(s), is finite. A store may either represent the contents of the memory,
or simply a set of local modifications (a ‘patch’). In this spirit, we define an
operation of asymmetric merge between stores, written s1 � s2 and defined by

dom(s1 � s2) = dom(s1) ∪ dom(s2)
(s1 � s2)(�) = s2(�) if � ∈ dom(s2)
(s1 � s2)(�) = s1(�) otherwise

Intuitively, s1 � s2 is the store obtained by applying the ‘patch’ s2 to s1. This
operation will be used in the semantics of the update mechanism in Sect. 5.

In what follows, we assume given an allocation function alloc that associates
to every store s a new location alloc(s) ∈ L such that alloc(s) /∈ dom(s).

Evaluation contexts. Evaluation contexts specify the strategy of evaluation. They
are defined from the BNF:

C ::= () | f(v1, . . . , vn, C, p1, . . . , pm) | C = p | v = C
| (C, p) | (v, C) | fst(C) | snd(C) | C p | v C
| if C then p1 else p2 | ref C | !C | C := p | v := C

We assume programs p, p1, p2 occurring in the above definition are closed, so
evaluation contexts are closed objects. Similarly, we assume that the function
symbols f are totally applied.2 We write C(p) for the (closed) program obtained
by substituting the (closed) program p to the hole () in the evaluation context C.
2 According to this definition, arguments of functions are thus evaluated from the left

to the right, as well as members of equalities, components of pairs, etc.

128 S. Maingaud et al.

Evaluation. An evaluation state is a pair p�s formed by a closed program p and
a store s. The relation of one-step evaluation, written p�s p′ �s′, is the binary
relation over evaluation states that is defined from the axioms of Figure 1, plus
the ‘context’ rule p � s p′ � s′

C(p) � s C(p′) � s′

We denote with ∗ the reflexive-transitive closure of the relation .

(λx. p) v � s � [v/x] p � s
fst(v1, v2) � s � v1 � s

snd(v1, v2) � s � v2 � s

f(n1, . . . , nk) � s � f̃(n1, . . . , nk) � s
if n then p1 else p2 � s � p1 � s (if n �= 0)
if 0 then p1 else p2 � s � p2 � s

v = v′ � s �
{

1 � s if v ∼ v′

0 � s if v �∼ v′
ref v � s � � (s � ← v) (if = alloc(s))

 := v � s � 0 � s � ← v (if ∈ dom(s))
! � s � s() � s (if ∈ dom(s))

v1 v2 � s � 0 � s (if v1 is not an abstration)
f(v1, . . . , vk) � s � 0 � s (if vi /∈ � for some i ∈ [1..k])

if v then p1 else p2 � s � 0 � s (if v /∈ �)

fst(v) � s � 0 � s (if v is not a pair)
snd(v) � s � 0 � s (if v is not a pair)

v := v′ � s � 0 � s (if v /∈ dom(s))
!v � s � 0 � s (if v /∈ dom(s))

Fig. 1. One step evaluation rules

Note that the evaluation rules given above (that are clearly deterministic) ex-
plicitly deal with ‘runtime errors’ (such as applying a value that is not a function,
etc.) and return the arbitrary value 0 in this case. This leads to the following
lemma which guarantees correctness of logical rules (in particular box-ncs rule
of section 4.5).

Lemma 1 (Determinism and progression). For all evaluation states p � s,
there is at most one evaluation state p′ � s′ such that p � s p′ � s′. Moreover,
this evaluation state p′ � s′ exists if and only if p is a not a value.

3.3 Well-Formedness of Stores

Let s be a store. A program (or a value) p is well-formed in the store s when
loc(p) ⊆ dom(s). The set of well-formed values in s is written Vs. A well-formed
store is a store s such that s(�) ∈ Vs for all � ∈ dom(s). The set of well-formed
stores is written �. Finally, an evaluation state p�s is said to be well-formed when
s is a well-formed store and p is well-formed in s. Well-formedness of evaluation
states is preserved by evaluation:

Lemma 2. If p � s is a well-formed evaluation state and p � s p′ � s′, then
p′ � s′ is a well-formed evaluation state too.

4 Logical System

We present the syntax and the rules of a proof language designed to specify
programs such as defined in Sect. 3. This proof language is based on an extension

Specifying Imperative ML-Like Programs Using Dynamic Logic 129

of Dynamic Logic (DL) with second-order quantifications, so that the language
includes second-order functional arithmetic (AF2) [9] as well as the modalities
of DL. The individuals manipulated by this logic are symbolic values that are
formally defined below. Programs (actually: symbolic programs) may also appear
inside formulas but restricted to specific positions as we shall see.

4.1 Symbolic Expressions

Location Names. To reason efficiently about locations without mentioning
them explicitly in the specification language, we introduce a new category of
names, called location names and written α, β, γ, etc. Semantically, location
names are characterized by three invariants:

1. A location name always refers to a concrete location.
2. The location referred to by a name is always allocated in the current store.
3. Two distinct location names refer to two distinct locations.

These invariants are essential to deal with problems of freshness and aliasing,
and to ensure the absence of memory faults during evaluation (see Sect. 5).

Symbolic Programs. Symbolic programs are defined in the same way as the
programs introduced in Sect. 3. The only difference is that concrete locations
are replaced by location names in the BNF. In this section p, q, p′, etc., denote
symbolic programs instead of concrete programs.

The (capture-preserving) implicit substitution operation is defined as in the λ-
calculus, and its result is written [p

′
/x]p. Note that in presence of side effects, this

operation is not semantically sound, since the programs [p
′
/x]p and let x = p′ in p

do not generally have the same operational semantics. A counter-example is given
by the program [!r/y](λx. y) ≡ λx. !r, that does not behave the same way as the
program let y = !r in λx. y. For this reason, we shall put severe restrictions on
the use of this form of substitution in the logic.

Symbolic Values. Symbolic values form a sub-class of the syntactic category
of symbolic programs, that is defined from the following BNF:

v ::= x | α | n | f(v1, . . . , vn) | v1 = v2 | λx. p
| (v1, v2) | fst(v) | snd(v) | if v then v1 else v2

(Unlike concrete ML-values, symbolic values may be open as well as closed.)
Intuitively, symbolic values correspond to the programs that do not access the

store, and whose form is simple enough to ensure termination. For this reason,
every symbolic value unambiguously refers to a concrete value (provided we
assign a value to every variable and a location to every location name).

Substitution of symbolic values v is thus a safe operation, since the program
[v/x] p has the same semantics as let x = v in p.

130 S. Maingaud et al.

Symbolic Evaluation of Symbolic Programs. The class of symbolic pro-
grams comes with a congruence written p ∼= p′ that expresses that the two
programs p and p′ are equivalent modulo zero, one or several steps of symbolic
evaluation. This congruence is defined from the following rules:

f(n1, . . . , nk) ∼= f̃(n1, . . . , nk)

(λx. p) v ∼= [v/x] p

fst((v1, v2)) ∼= v1
snd((v1, v2)) ∼= v2

if n then p else p′ ∼= p (n �= 0)
if 0 then p else p′ ∼= p′

v = v ∼= 1
n = m ∼= 0 (n �= m)
α = β ∼= 0 (α �= β)

Note that these rules can be applied in any context, even under λ-abstractions.
In particular, we have λx. 1 + 1 ∼= λx. 2 even though both members are values
that are not further evaluated.3 The main reason for this design choice is that
it makes the definition of the logical system conceptually and technically much
more simple. (However, we shall see in Sect. 5.1 that this choice has subtle
consequences on the semantics.)

4.2 Updates

We employ a simplified form of update as compared to the general definition
in [11]. Formally, updates (notation: u, u′, u1, etc.) are defined as finite lists of
pairs of symbolic values of the form v := v′:

u ::= ∅ | u ; v := v′

(Note that ∅ acts a neutral element, hence ∅ ; u ≡ u.) The application of an
update u to a symbolic program of the form !v (where v is a symbolic value) is
written {u}!v and defined by

{∅}!v = !v
{u ; v1 := v2}!v = if v = v1 then v2 else {u}!v

Note that the result of this operation is a symbolic program that can be simplified
using the congruence rules of symbolic evaluation.

4.3 Formulas

Formulas (notation: A, B, C, etc.) are built from second-order variables
(notation: X , Y , Z, etc.) that represent k-ary relations. We assume that ev-
ery second-order variable comes with an arity which we indicate as a superscript
when we introduce the variable. The syntax of formulas is the following:

A ::= X(v1, . . . , vk) | A→ B | ∀x. A | ∀Xk. A
| I(v) | να. A | [p as x] A | {u}A

3 Integer addition as well as all standard arithmetic operations are included in the set
of primitive functions (see Sect. 3.1).

Specifying Imperative ML-Like Programs Using Dynamic Logic 131

(For simplicity, we consider a language based on implication and first- and
second-order universal quantification, from which we easily recover other con-
nectives and quantifiers.) We also provide the following constructs:

– A predicate constant I that transforms any symbolic value v into a formula
I(v) that is true if the concrete value denoted by v is a value different from 0.

– A construct [p as x] A that means: ‘if p evaluates to a value x, then A holds
in the store affected by all the side effects performed by p’. This construction
is nothing but the box modality of DL that we transformed into a binder to
recover the value computed by the program p. In particular, when A does
not depend on x, we simply write [p]A.

– A construct {u}A that means: ‘after updating the current store with the
assignments in u, A holds’.

– A construct να.A (ν-binder) that means: ‘after the allocation of a fresh
address named α, A holds’.

The set of free variables (free names) of a formula A is written FV (A) (FN (A)).

4.4 Symbolic Evaluation

The congruence defined in Sect. 4.1 over symbolic programs is extended to for-
mulas which, together with a contextual closure, occur within formulas and with
specific rules for decomposing boxes as well as for propagating updates and νs
throughout the structure of formulas (Fig. 2).

I(0) ∼= ⊥ (≡ ∀X.X)
I(n) ∼= (≡ ∀X.X → X) n �= 0

Decomposition of boxes

[Cse(p) as x] A ∼= [p as y] [Cse(y) as x]A y /∈ FV (Cse(p), A, x)
[ref v as x] A ∼= να.{α := v}[α/x] A α /∈ FN (A, v)

[v1 := v2]A ∼= {v1 := v2}A
[v as x] A ∼= [v/x] A

Propagation of updates

{u}I(v) ∼= I(v)
{u}(A → B) ∼= {u}A → {u}B

{u}∀x.A ∼= ∀x.{u}A x /∈ FV (u)
{u}∀X.A ∼= ∀X.{u}A
{u}να.A ∼= να.{u}A α /∈ FN (u)

{u}{u′}A ∼= {u ; u′}A
{u}[!v as x] A ∼= [{u}!v as x] {u}A x /∈ FV (u)

Propagation of νs

∀Xn. να.A ∼= να.∀Xn. A
[p as x] να.A ∼= να.[p as x]A α /∈ FN (p)

να.νβ.A ∼= νβ.να.A

Fig. 2. Symbolic evaluation of formulas

132 S. Maingaud et al.

Decomposition of boxes. The decomposition of boxes has to take care of the
evaluation order. The first rule splits a program inside a box in two pieces ac-
cording to a given symbolic evaluation context Cse. (Symbolic evaluation contexts
are defined as for evaluation contexts, replacing explicit locations with location
names and explicit values with symbolic values.) Note that the enclosing sym-
bolic evaluation context is not uniquely determined by the program within the
box, and this rule can be used to decompose the very same box in many different
ways. The next two rules deal with the creation of a reference (that introduces a
ν-binder and an update) and with an assignment (that introduces an update).
The last rule simply removes a box when the inner program is a symbolic value.

Propagation of updates. Updates go down through the structure of formulas until
they reach a box. An update can go through a box only when the inner program
is of the form !v (access to the contents of a reference), in which case the program
is updated using the construction {u}!v defined in Section 4.2. In all the other
cases, the update is stuck in front of the box until this box is decomposed into
smaller boxes using symbolic evaluation.

Propagation of νs. The ν-binder comes with quite standard propagation rules
(we do not give them all). Note that there is a rule for commuting a ν-binder with
second-order quantification, but no analogous rule for first-order quantification.
The reason is that, semantically, the domain of first-order quantification depends
on the set of currently allocated locations, so that ∀x.να.A �→ να.∀x.A in
general. We shall come back to this point in Sect. 5. Note also that in general a
ν-binder cannot be dropped even when the name it binds does not occur in its
scope, so we have να.A �→ A even if α /∈ FN (A).

4.5 Deduction Rules

The language is equipped with a Gentzen-style sequent calculus. This system in-
cludes the standard rules for second-order logic: structural rules (weakening and
contraction), axiom, cut, plus the standard left and right rules for implication,
first- and second-order universal quantification.

Γ, A
′ � Δ A ∼= A

′

Γ, A � Δ
rwG

Γ � A
′
, Δ A ∼= A

′

Γ � A, Δ
rwD

Γ � Δ

να. Γ � να. Δ
νncs

Γ � Δ

{u}Γ � {u}Δ
upd-ncs

Δ�=∅
Γ � Δ

[p as x] Γ � [p as x] Δ
box-ncs

Fig. 3. Specific deduction rules

Specifying Imperative ML-Like Programs Using Dynamic Logic 133

The specific rules of our system (see Fig. 3) include:

– Left and right rules for symbolic evaluation, expressing that computationally
equivalent formulas (via symbolic evaluation) are logically equivalent.4

– Necessitation rules for all modalities (ν-binder, updates, and boxes).

Note that the generalized forms of the standard necessitation rules are allowed in
our case because the programing language is deterministic and because values are
normal forms (Lemma 1), so that the frame relation underlying each modality
(including updates) is functional. The side condition of box-ncs is necessary
because the evaluation of the inner program might not terminate. In this case,
the hypothesis [p as x] Γ becomes vacuously valid (as we shall see in Sect. 5)
while the empty conclusion is obviously not.

5 Semantics

We now build a Kripke model of the language where worlds are well-formed
stores (simply called stores from now on). In this setting, each symbolic value
is interpreted as a concrete value whereas each formula is interpreted as the set
of stores in which the formula is true. The construction is standard, with some
subtleties that will be explained in Sect. 5.1. The main feature of the model is
that the domain of interpretation of the individuals (i.e. symbolic values) has to
depend on the current store, because the values which make sense in a store s
are those which are well-formed in s. (In particular, this property explains why
we cannot commute first-order quantification with ν-binders.)

5.1 Invariance Properties

Equivalence of values. Both in IML and in the logical framework, two functional
values λx. p and λx. p′ are observationally equivalent when p ∼= p′. To identify
such values in the model, we introduce the relation of equivalence of values,
written v ∼ v′, as the least equivalence relation such that:

– If p ∼= p′, then λx. p ∼ λx. p′.
– If v1 ∼ v′1 and v2 ∼ v′2, then (v1, v2) ∼ (v′1, v

′
2).

Invariance under automorphisms. Similarly, the allocation order of locations is
indistinguishable both for IML programs and for the logical framework. In order
to ensure that the model is not sensitive to the allocation order either, we need
to introduce the notion of invariance under all automorphisms.

An automorphism (of locations) is any bijection σ over the set L of loca-
tions. An automorphism σ can be applied to a location, but also to a value
(by applying σ to all the locations inside the value) as well as to a store. The
store σ(s) is defined by dom(σ(s)) = σ(dom(s)) and σ(s)(�) = σ(s(σ−1(�))) for
� ∈ dom(σ(s)).
4 For general programs the application of these rules leads to undecidable premisses.

In a concrete implementation one would use heuristics that, for example, limit the
number of evaluation steps.

134 S. Maingaud et al.

Propositional functions. Let f : Vk → P(�) be a function from k-tuples of values
to sets of (well-formed) stores. We say that f is:

– compatible with the equivalence of values when for all v1, . . . , vk, v′1, . . . , v
′
k

such that v1 ∼ v′1, · · · , vk ∼ v′k: f(v1, . . . , vk) = f(v′1, . . . , v′k).
– invariant under all automorphisms when for all v1, . . . vk ∈ V , s ∈ � and for

all automorphisms σ: s ∈ f(v1, . . . , vk) iff σ(s) ∈ f(σ(v1), . . . , σ(vk)).

The set of all functions f : Vk → P(�) that are both compatible with the
equivalence of values and invariant under all automorphisms is written Fk

P . In
what follows, we shall interpret predicates variables of arity k (and formulas
depending on k first-order variables) as elements of Fk

P .

5.2 Interpreting Symbolic Values and Updates

Valuations. A valuation is a function ρ that maps each

– first-order variable x to a value ρ(x) ∈ V ;
– k-ary second-order variable X to a propositional function ρ(x) ∈ Fk

P ;
– location name α to a location ρ(α) ∈ L.

Moreover, we require that ρ is injective on location names: distinct location
names are mapped to distinct locations. A valuation ρ is well-formed in a store s
when ρ(x) ∈ Vs for all x ∈ dom(ρ) and ρ(α) ∈ dom(s) for all α ∈ dom(ρ). This
notion is clearly preserved by store extension.

Interpreting symbolic values. Given a symbolic value v and a valuation ρ, we
denote by �v�ρ the unique value v such that v[ρ] � s ∗ v � s, where s is an
arbitrary store. Note that such a value always exists—due to the restricted form
of symbolic values—and that it is unique since evaluation is deterministic. More-
over, the value v does not depend on s, and the evaluation of the program v[ρ]
that computes the value v does not modify the store.

Interpreting updates. Updates are interpreted as stores (intuitively: as ‘patches’
to the global memory). Given an update u and a valuation ρ, we define �u�ρ by:

�∅�ρ = ∅ and �u ; v1 := v2�ρ = �u�ρ � �v1�ρ ← �v2�ρ

5.3 Interpreting Formulas and Sequents

The relation of satisfiability of formulas (where s is a well-formed store and ρ a
valuation that is well-formed in s) is defined in Fig. 4:

The interpretation immediately extends to sequents (notation: s |= (Γ � Δ)[ρ]),
reading left hand-side commas as conjunctions, right hand-side commas as dis-
junctions and the symbol ‘�’ as implication. Note that the formula [p as x] A is
always valid when p does not terminate.

Specifying Imperative ML-Like Programs Using Dynamic Logic 135

s |= X(v1, . . . , vk)[ρ] iff s ∈ ρ(X)(�v1�ρ, . . . , �vk�ρ)

s |= I(v)[ρ] iff �v�ρ �= 0

s |= (A → B)[ρ] iff s |= A[ρ] implies s |= B[ρ]

s |= (∀x.A)[ρ] iff for all v ∈ Vs, s |= A[ρ ; x �→ v]

s |= (∀Xk. A)[ρ] iff for all f ∈ Fk
P , s |= A[ρ ; X �→ f]

s |= (να.A)[ρ] iff (s � alloc(s) ← 0) |= A[ρ ; α �→ alloc(s)]

s |= ({u}A)[ρ] iff s � �u�ρ |= A[ρ]

s |= ([p as x] A)[ρ] iff for all s′ ∈ � and v ∈ Vs′ ,
p[ρ] � s �∗ v � s′ implies s′ |= A[ρ ; x �→ v]

Fig. 4. Satisfiability of formulas

Theorem 1 (Correctness of the system). If the sequent Γ � Δ is derivable
in the system, then for all well-formed stores s ∈ � and for all valuations ρ that
are well-formed in s, we have s |= (Γ � Δ)[ρ].

Theorem 1 relies on many intermediate lemmas that are not given here. Basically,
these lemmas express that all the constructions of the programming language
and of the logical framework are compatible with the equivalence of values and
preserve the property of invariance under all automorphisms.

It is easy to check that s �|= ⊥. Hence, the formula ⊥ cannot be proved within
our system, which is thus consistent.

6 Specification and Verification of a Recursive Function

We illustrate how to specify and verify a recursive function along a small exam-
ple. Let us now consider the program cc defined by

cc ≡ λn. let c = (let r = ref 0 in λx. r :=!r + 1 ; !r) in
let aux = fix (λfn. if n = 0 then c 0 else (c 0 ; f (n− 1))) in
aux n

This program takes a natural number n as an argument and calls n + 1 times
the sub-program c that contains a local reference, before returning the result of
the last call of c. (Here the argument 0 in c 0 plays the role of () in ML.)

We intend to prove that for all natural numbers n, the result of cc n is n + 1.
Therefore, we need first to characterise natural numbers among all the possible
values. For the characterisation we use their well-known second-order definition
as given in [9]: Nat(x) ≡ ∀X. (∀y.(X(y)→ X(y + 1))→ X(0)→ X(x))

For readability, we introduce the notation ∀x : Nat. A (relativized quantifica-
tion) for ∀x.(Nat(x) → A). The property of interest can be expressed by:

∀n : Nat. [cc n = n + 1 as b] I(b) .

A derivation (Π1) is shown in Fig. 5. We use the obvious rules that can be
derived from the definition of Nat(x) as well as the (derived) induction rule:

� A(0) Nat(n), A(n) � A(n + 1)
Ind� ∀n : Nat. A(n)

136 S. Maingaud et al.

To simplify Π1, we denote by aux and aux′ (of Fig. 6) the functional values these
programs reduce to. The specification is proved using an auxiliary lemma (L)
stating that the property holds for any content of the reference: this lemma is
proved (left premise of the Cut rule in Π1) by induction. Note that this lemma
can be used only in a context in which the inner reference is visible. The bottom
part of the proof partially evaluates the program cc n to make the inner reference
visible at the top level.

Ax� I(1) ∼=� {α := k + 1}I(1) ∼= ×2� {α := k + 1}[k + 1 = k + 1 as b] I(b) ∼=� {α := k + 1}[!α = k + 1 as b] I(b) ∼=� {α := k}[(α := k + 1; !α) = k + 1 as b] I(b) ∼=� {α := k}[(α :=!α + 1; !α) = k + 1 as b] I(b) ∼=� {α := k}[aux′ 0 = k + 1 as b] I(b)
∀R� ∀k. {α := k}[aux′ 0 = k + 1 as b] I(b)

[Π3]

...

RH � RS
Ind� ∀n : Nat. ∀k. {α := k}[aux′ n = n + k + 1 as b] I(b)

[Π2]

...

L, Nat(n) � C
Cut

Nat(n) � {α := 0}[aux′ n = n + 1 as b] I(b)
νR

Nat(n) � να.{α := 0}[aux′ n = n + 1 as b] I(b) ∼=
Nat(n) � να.{α := 0}[λx. α :=!α + 1; !α as c] [aux n = n + 1 as b] I(b) ∼=
Nat(n) � [ref 0 as r] [λx. r :=!r + 1; !r as c] [aux n = n + 1 as b] I(b)

Let + ∼=
Nat(n) � [c as c] [aux as aux] [aux n = n + 1 as b] I(b)

Let × 2 + ∼=
Nat(n) � [let c = c in let aux = aux in aux n = n + 1 as b] I(b) ∼=

Nat(n) � [cc n = n + 1 as b] I(b)
∀R� ∀n : Nat. [cc n = n + 1 as b] I(b)

where RS ≡ ∀k.{α := k}[aux′(n + 1) = n + k + 2 as b] I(b)
RH ≡ Nat(n), ∀k.{α := k}[aux′ n = n + k + 1 as b] I(b)
L ≡ ∀n : Nat. ∀k. {α := k}[aux′ n = n + k + 1 as b] I(b)
C ≡ {α := 0}[aux′ n = n + 1 as b] I(b)

Fig. 5. Π1: Derivation of the specification

The proof of the recursive step (Π3) is done using only ∼=, ∀R, ∀L. The sequent
L, Nat(n) � C is trivially proved (Π2) with instances of the ∀L rule.

c ≡ let r = ref 0 in λx. r :=!r + 1 ; !r

aux ≡ fix (λfn. if n = 0 then c 0 else (c 0 ; f (n − 1)))

cc ≡ λn. let c = c in let aux = aux in aux n

aux′ ≡ fix (λfn. if n = 0 then (λx. α :=!α + 1 ; !α) 0
else (λx. α :=!α + 1 ; !α) 0 ; f (n − 1))

Fig. 6. Shortcuts

Specifying Imperative ML-Like Programs Using Dynamic Logic 137

7 Conclusion

We have presented a system for specifying and verifying imperative ML pro-
grams, whose specification language combines dynamic logic with second-order
logic à la AF2. This combination illustrates the flexibility of DL, that can be
adapted to many programming languages (here: imperative ML) and to many
logical frameworks (here: second-order logic), thus making them benefit of the
strength of symbolic evaluation and of its deep impact in proof automation.

The next step is to test our system by implementing it, for instance as a com-
ponent of KeY or within another logical framework. Another natural research
direction would be the integration of a static type system at the level of the
logic, following the spirit of the system of strong typing in PAF!

Acknowledgements. Many thanks are due to Yann Régis-Gianas for stimu-
lating discussions and valuable advices.

References

1. Balser, M., Reif, W., Schellhorn, G., Stenzel, K., Thums, A.: Formal system de-
velopment with KIV. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, pp.
363–366. Springer, Heidelberg (2000)

2. Baro, S.: Introduction to PAF!, a proof assistant for ML programs verification. In:
Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp.
51–65. Springer, Heidelberg (2004)

3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

4. Chlipala, A., Malecha, G., Morrisett, G., Shinnar, A., Wisnesky, R.: Effective in-
teractive proofs for higher-order imperative programs. In: ICFP 2009: Proceedings
of the 14th ACM SIGPLAN International Conference on Functional Programming
(September 2009)

5. Filliâtre, J.-C.: Why: a multi-language multi-prover verification tool. Research Re-
port 1366, LRI, Université Paris Sud (March 2003)

6. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. In: Foundations of Computing.
MIT Press, Cambridge (October 2000)

7. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (1969)

8. Kanig, J., Filliâtre, J.-C.: Who: A Verifier for Effectful Higher-order Programs. In:
ACM SIGPLAN Workshop on ML, Edinburgh, Scotland (August 2009)

9. Krivine, J.L.: Lambda-calculus, types and models. Masson (1993)
10. Régis-Gianas, Y., Pottier, F.: A hoare logic for call-by-value functional programs.

In: Audebaud, P., Paulin-Mohring, C. (eds.) MPC 2008. LNCS, vol. 5133, pp.
305–335. Springer, Heidelberg (2008)

11. Rümmer, P.: Sequential, parallel, and quantified updates of first-order structures.
In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp.
422–436. Springer, Heidelberg (2006)

Dynamic Frames in Java Dynamic Logic

Peter H. Schmitt, Mattias Ulbrich, and Benjamin Weiß

Karlsruhe Institute of Technology
Institute for Theoretical Computer Science

D-76128 Karlsruhe, Germany
{pschmitt,mulbrich,bweiss}@ira.uka.de

Abstract. In this paper we present a realisation of the concept of dy-
namic frames in a dynamic logic for verifying Java programs. This is
achieved by treating sets of heap locations as first class citizens in the
logic. Syntax and formal semantics of the logic are presented, along with
sound proof rules for modularly reasoning about method calls and heap
dependent symbols using specification contracts.

1 Introduction

To successfully support modular verification of object-oriented software, it is es-
sential to be able to define relevant portions of memory and reason about the
effects of method execution on them. Portions of memory, i.e., sets of heap loca-
tions, are called frames in this context or—since they themselves are subject to
change during program execution—dynamic frames. The theoretical concept of
dynamic frames was introduced in [7] and first implemented in [21] and later in
[10]. Specification with dynamic frames is related to the use of data groups [11],
separation logic [16,20], and to approaches based on ownership types [1,15].

In this paper we investigate the integration of the dynamic frames specifica-
tion style into the verification of sequential Java programs based on dynamic
logic [5]. In many verification methods, the task of verifying that a property ϕ
holds after execution of a program p is solved by successively computing weakest
preconditions [4] in first-order predicate logic of parts of the program starting
from its end. In dynamic logic, the weakest precondition can be directly written,
thanks to the modal operator [·], as the formula [p]ϕ. Dynamic logic can be aug-
mented with a symbolic representation of state changes called updates [18]. This
extension allows giving inference rules for dynamic logic that compute (first-
order) weakest preconditions by performing a forward symbolic execution of the
program p starting from the beginning. The proof tree that unfolds by successive
applications of these rules will eventually contain only first-order proof subgoals.
This form of verification is the foundation of the KeY system [2]. Dynamic logic
is also used for Java verification in the KIV system [22].

An issue in program verification to be addressed no matter how proof obli-
gations at the program level are transformed to first-order proof goals is the
representation of the heap. In a closed-world setting, where the entire program
is known at verification time, an explicit heap representation can be dispensed

B. Beckert and C. Marché (Eds.): FoVeOOS 2010, LNCS 6528, pp. 138–152, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

{pschmitt,mulbrich,bweiss}@ira.uka.de

Dynamic Frames in Java Dynamic Logic 139

with, saving some complexity. This was e.g. realised in the KeY system. In a
modular setting, where one strives for abstract specification of interfaces and
local reasoning, the situation is different: here, reasoning about which frame is
changed by a program, or about which frame the execution of a program de-
pends on, becomes crucial. In this setting, the flexibility provided by an explicit
representation of the heap seems to offer decisive advantages.

In Sect. 2 we motivate the use of dynamic frames with a simple example. The
dynamic logic to be presented will explicitly represent dynamic frames as sets of
locations. Syntax and semantics and some exemplary proof rules of this logic are
given in Sect. 3. Contract-based proof obligations and proof rules for verifying
dynamic frames specifications are defined in Sect. 4. Conclusions in Sect. 5 wrap
up the paper.

2 Motivating Example

As an example, we consider the Java program shown in Fig. 1. The intention
behind the List interface is that objects of this type represent lists of objects.
The interface provides methods for querying the size of the list, retrieving an
element out of the list at a given index, and appending an element to the end
of the list. Class ArrayList implements the interface with the help of an array,
and class Client is an artificial snippet of client code using the interface.

Our goal is to specify this program following the design by contract paradigm
[14]. That is, we are interested in providing pre- and postconditions for the
methods of the program, where we refer to a pair of a pre- and a postcondition
as a method contract. Furthermore, the goal is to verify the correctness of these
contracts using dynamic logic, and to do so in a modular (or local) fashion: the
verification of a given method should not make use of implementational details
that are not visible in this method. For example, when verifying m in Client,
we do not want to make use of the fact that there is only one implementation of

Java

��������� List { �	�

 ArrayList ���	�����
 List {

��� size(); ������ ��� n = 0;

Object get(��� i); ������ Object[] a = ��� Object[10];

��� add(Object o); ���	�� ��� size() {

} ������ n;

�	�

 Client { }

���	�� ��� x; ���	�� Object get(��� i) {

Object m(List l) { ��(0 <= i && i < n) ������ a[i];

x++; �	
� ������ ��		;

������ l.get(0); }

} //method "add" omitted

} }

Java

Fig. 1. Example program

140 P.H. Schmitt, M. Ulbrich, and B. Weiß

List, nor of the internals of this particular implementation. Instead, reasoning
about the dynamically bound call to get should be based only on the contract
for get in the interface. For subtypes of the interface, we only require that all
overriding method bodies satisfy the contracts given at the level of the interface;
this means that we enforce behavioural subtyping [12].

A main difficulty in specifying an interface such as List is that we do not have
access to any implementational data structures for writing our specifications.
The general solution is to use data abstraction [6]: we specify the interface in
a more abstract fashion, using either some form of abstract fields (sometimes
called model fields [3]), or side-effect free methods present in the program. Here,
we choose to specify get with the help of the size method, and with the help
of an abstract Boolean field inv :

pre: this.inv ∧ 0 ≤ i ∧ i < this.size() post : res � .= null

We use a dot to distinguish some syntactic operators of the logic (such as .=)
from meta-level operators (such as =). Java’s == operator translates to .= in the
logic. The identifier res refers to the method’s return value.

In class ArrayList, the meaning of the symbol size is defined by the method
body for size. Similarly, we need to give a definition for the abstract field inv ,
which we do with the following axiom:

exactInstanceArrayList(this)

→
(
this.inv ↔ this.a � .= null∧ this.n < this.a.length (1)

∧ ∀Int i; (0 ≤ i ∧ i < this.n→ this.a[i] � .= null)
)

For a type A and an expression e, the formula exactInstanceA(e) evaluates to
true in a state if the dynamic type of e is A. Intuitively, inv represents an “object
invariant” for List, i.e., a consistency property on its objects, where the exact
nature of this property is defined privately in subclasses of the interface. With
the definition for ArrayList in (1), the implementation of get in ArrayList
satisfies the method contract for get.

For method m in Client, we give the following method contract:

pre: l � .= null∧ l.inv ∧ 0 < l.size() post : res � .= null

Can we verify that m complies with this contract, provided that all implementa-
tions of get satisfy the contract for get? Unfortunately, the answer is no. The
problem is that even though the precondition guarantees properties about the
initial values of l.inv and l.size(), this does not imply that these properties
still hold when get is called at the end of m, because of the intervening change
to x. This is an instance of a general problem when using data abstraction in
specifications [8, Challenge 3]: without further measures, any change to the heap
can affect the value of an abstract field or of a method in an unknown way.

As a solution, we introduce dependency contracts (also known as depends
clauses [9]) into our specifications. A dependency contract restricts the set of

Dynamic Frames in Java Dynamic Logic 141

memory locations that are allowed to influence the value of an abstract field or
of a method, provided that some precondition holds. An example for a correct
dependency contract for method size in ArrayList is one which states that the
method result is allowed to depend only on {(this, n)}, where the expression
{(this, n)} refers to the set consisting of the single memory location given by
the field n for the object represented by the expression this.

How can we express a useful dependency contract for inv or size in List,
even though here we do not have access to the locations implementing the list?
We see that the need for data abstraction also extends to location sets. Our
solution is to use dynamic frames [7], i.e., abstract fields that evaluate to sets
of memory locations. For the specification of List, we declare a dynamic frame
locs . In ArrayList, we define locs via the following axiom:

exactInstanceArrayList(this) → this.locs .= (this.* ∪̇ this.a.*) (2)

The expression o.* refers to the set of all fields of the object represented by the
expression o. If o has an array type, then o.* denotes all components of the array.

We use the dynamic frame locs to give dependency contracts for both inv
and size: both are supposed to depend at most on the locations in locs . These
dependency contracts are satisfied in ArrayList, because both this.inv (as
defined by (1)) and this.size() (as defined by the method body in Fig. 1)
read only locations that are members of this.locs as defined by (2).

Finally, we modify the precondition of m in Client to be as follows:

pre: l � .= null ∧ l.inv ∧ 0 < l.size() ∧ (this, x) /̇∈ l.locs
Now, when reasoning about the correctness of m, we know that the location
(this, x) is not a member of the (unknown) set of locations l.locs on which l.inv
and l.size() may depend. Thus, changing the value of this location cannot have
an effect on the values of l.inv and l.size(), and so l.inv ∧ 0 < l.size()
must still be true when method get is called at the end of m. Together with the
method contract for get, this guarantees that the return value of get is different
from null, and thus that the postcondition of m is satisfied.

In general, we also need modifies clauses in method contracts, which fix a
set of locations that may at most be modified by a method, provided that the
precondition of the contract holds upon method entry. In the example, get and
size are supposed to not have side effects, so we can use modifies clauses of ∅̇
(an empty set of locations). For add, this.locs can serve as a modifies clause.

Also, as the value of the dynamic frame this.locs is itself state-dependent,
specifications of the behaviour of locs itself are needed in order to make the
specification fully useful for modular verification. We can give a dependency
contract for this.locs stating that its value depends at most on the locations in
this.locs itself; this is satisfied by the definition (2), because the only location it
reads is (this, a), which itself is defined to be a member of this.locs . We may
also want to specify (via method contracts) that after the construction of an
ArrayList object, the set this.locs contains only freshly allocated locations,
and that method add can add to the set only freshly allocated locations (the
latter is sometimes called the “swinging pivots property” [11,7]).

142 P.H. Schmitt, M. Ulbrich, and B. Weiß

3 Java Dynamic Logic with an Explicit Heap Model

In this section, we present a dynamic logic and a sequent calculus for the modular
verification of Java source code wrt. dynamic frames style specifications. It is
a variation of the dynamic logic underlying the KeY verification tool [2]. The
main difference is in the logical modelling of heap memory. For complete formal
definitions please see the technical report [19], which accompanies this paper.

3.1 Syntax and Semantics

The syntax of the logic is based on a signature Σ, which comprises a set T of
types, a partial order � called the subtype relation, and disjoint sets of (logical)
variables V , program variables PV, function symbols F , and predicate symbols P .
All variables and symbols are typed. We use the notation x : A to indicate that
the type of x is A, the notation f : A1, . . . , An → B to indicate that the func-
tion symbol f maps arguments of types A1, . . . , An to type B, and the notation
p :A1, . . . , An to indicate that the predicate symbol p represents a relation on the
types A1, . . . , An. The signature Σ is specific to a Java program to be verified.
All types of this program also appear as types in T , and all local variables appear
as program variables in PV. In contrast to program variables, logical variables
may not appear in programs, but may be quantified. The type Any ∈ T is a
supertype of all types of the program.

The set FmaΣ of formulas and the set TrmΣ of terms are defined mostly as
in classical typed first-order logic. For any type A ∈ T , we have the set TrmA

Σ ⊆
TrmΣ of terms of type A. In addition to the operators of first-order logic, Java
dynamic logic includes modal operators [p] and 〈p〉 for every executable Java
program fragment p. If ϕ ∈ FmaΣ is a formula, then both [p]ϕ and 〈p〉ϕ are
also formulas. Our version of dynamic logic also includes another kind of modal
operator, called updates [18]. An update is denoted as a1 := t1 ‖ . . . ‖ an := tn,
where a1, . . . , an ∈ PV, and where t1, . . . , tn are terms such that the type of ti is
a subtype of the type of ai. The set of updates is called UpdΣ . If u is an update
and t is a term or formula, then {u}t is also a term or formula, respectively.

The semantics of a term or formula is given by an interpretation which maps
all function symbols to functions and all predicate symbols to relations, and by a
state which maps all program variables to values. First-order terms and formulas
are evaluated as usual. The formula [p]ϕ holds in a state s if the execution of
p started in s either does not terminate, or terminates in a state s′ such that
ϕ holds in s′ (partial correctness). The formula 〈p〉ϕ holds if [p]ϕ holds, and
if additionally p does indeed terminate (total correctness). Like a program p,
an update u changes the state: executing the update a1 := t1 ‖ . . . ‖ an := tn
in a state s leads to an updated state s′ which is identical to s, except that
the program variables ai have been assigned the values of the terms ti in paral-
lel. Evaluating {u}t in s is the same as evaluating t in the updated state s′. A
formula is called logically valid if it holds for all interpretations and all states.

Dynamic Frames in Java Dynamic Logic 143

3.2 Sequent Calculus

The calculus we use to reason about logical validity of formulas is a sequent
calculus. A proof in the sequent calculus is a tree of so-called sequents Γ ⇒ Δ, in
which Γ (called the antecedent) and Δ (the succedent) are finite sets of formulas.
A sequent Γ ⇒ Δ has the same semantic truth value as the formula

∧
Γ →

∨
Δ.

An inference rule of the sequent calculus has a number of sequents as its
premisses and a single sequent as its conclusion; it is sound if logical validity of
all premisses implies logical validity of the conclusion. In addition to inference
rules, our calculus contains rewrite rules, which allow rewriting a term or formula
at an arbitrary position in a sequent. A rewrite rule is sound if the original and
the rewritten term or formula are equal resp. logically equivalent. We formulate
both sequent and rewrite rules schematically to achieve a finite representation
of the calculus. For example, in the following two (sound) rule schemata, the
schema formulas ϕ and ψ can be instantiated with arbitrary formulas, and Γ
and Δ with arbitrary sets of formulas:

(andRight)
Γ ⇒ ϕ, Δ Γ ⇒ ψ, Δ

Γ ⇒ ϕ ∧ ψ, Δ (andIdem) ψ ∧ ψ � ψ

Starting with the sequent to prove as root, a proof tree is constructed by applying
sequent and rewrite rules. For the application of a sequent rule to a leaf in the
proof tree, this sequent must be identical to the conclusion of the rule. The
rule’s premisses are then added as new children to the former leaf. A rewrite
rule t1 � t2 can be applied to a leaf by replacing one occurrence of t1 in its
sequent by t2. Provided that all applied rules are sound, it is guaranteed that
at any time during this process, validity of all the leaves implies validity of the
root sequent. If one arrives at a tree whose leaves are all obviously valid, one has
proven the validity of the original proof obligation.

3.3 Heap Model

In contrast to [2,18], where the Java heap is modelled via a non-rigid function
symbol f : A → B for every Java field f of type B declared in class A, here we
follow [17,22,1,21] in modelling the heap using the theory of arrays [13]. The fields
of our Java program are represented as constant symbols of a type Field ∈ T ,
which are axiomatised to have distinct values. Heaps now occur “explicitly” in
formulas, as terms of a type Heap ∈ T . The values of this type are arrays indexed
by locations, i.e., by pairs of (Object , Field) values. Reading from and writing to a
heap is done with the help of the function symbols selectA :Heap,Object ,Field →
A and store :Heap,Object ,Field ,Any → Heap. These are standard, except that
for convenience we use a separate symbol selectA for every type A ∈ T , which
implicitly casts the retrieved value to a desired type A. A global program variable
heap :Heap ∈ PV holds the current heap of the program. We will in the following
often use the more concise notation o.f instead of selectA(heap, o, f).

The axiom of the theory of arrays manifests itself in the rewrite rule
selectOfStore depicted in Fig. 2: The value selectA(store(h, o, f, t), o′, f ′) of a lo-
cation (o, f) retrieved from a modified heap store(h, o, f, t) depends on whether

144 P.H. Schmitt, M. Ulbrich, and B. Weiß

selectA(store(h, o, f, t), o′, f ′) � (selectOfStore)

if (o .= o′ ∧ f
.= f ′)then(castA(t))else(selectA(h, o′, f ′))

selectA(anon(h, s, h′), o, f) � (selectOfAnon)

if
(
((o, f) ∈̇ s ∧ f 	 .= created) ∨ (o, f) ∈̇ freshLocs(h)

)
then(selectA(h′, o, f))
else(selectA(h, o, f))

castA(t) � t for t ∈ TrmA′
Σ and A′ � A (cast)

(o, f) ∈̇ freshLocs(h) � (inFreshLocs)

o 	 .= null ∧ selectBoolean (h, o, created) .= FALSE

[a = t; . . .]ϕ � {a := t}[. . .]ϕ (assignLocal)

[o.f = t; . . .]ϕ � {heap := store(heap, o, f, t)}[. . .]ϕ (assignField)

Fig. 2. A selection of rewrite rules for heap modifications and location sets

the retrieved location is the previously modified one, i.e., whether (o′, f ′) .= (o, f)
holds. If so, the assigned value t is read, otherwise the retrieval is delegated to
the embedded heap h as selectA(h, o′, f ′). The type coercion operation castA(t)
can later be removed using the rule cast if the heap has been used consistently.

In our logic, all states share a common semantic domain (this is known as the
constant domain assumption). Therefore, we need a means to explicitly distin-
guish between already-created and not-yet-created objects in the sense of Java.
We use an implicit (“ghost”) field created :Field for this purpose: we consider
an object o to be created in a state if and only if o.created evaluates to true in
this state. Allocating an object via Java’s new operator implicitly sets its created
field to true.

Dynamic frames are supported via a type LocSet ∈ T . Terms of type LocSet
evaluate to sets of memory locations. Our signatures contain the symbols ∅̇, ∪̇,
∩̇, \̇, ∈̇, ⊆̇, disjoint and allLocs , which are pre-defined to have their expected
set-theoretical semantics. The function symbol freshLocs :Heap → LocSet yields
for every heap the set of locations (o, f) for which the object o is not yet created
in this heap. The corresponding rule inFreshLocs is shown in Fig. 2.

When dispatching a method call in a proof with the help of a contract
for the called method (Sect. 4), we use a special heap modification function
anon :Heap,LocSet ,Heap → Heap. Roughly, the heap anon(h, s, h′) is identical
to h′ in the locations of s, and it is identical to the “original” heap h in all
other locations. The exact semantics of anon is described by the rewrite rule
selectOfAnon in Fig. 2: independently of the set s, going from h to anon(h, s, h′)
for some unknown h′ (a process which we call an “anonymisation” of the heap h
wrt. the set s) never leads to deallocating existing objects, but always implicitly
allows for the allocation of new objects. This resembles the behaviour of method
calls in Java.

Dynamic Frames in Java Dynamic Logic 145

We also introduce a unary predicate symbol wellFormed :Heap, which can be
axiomatised as

∀Heap h;
(
wellFormed (h) ↔ ∀Object o, p; ∀Field f ;

(selectAny (h, o, f) .= p → (p .= null ∨ selectBoolean(h, p, created) .= TRUE))
)

,

i.e., a heap h is considered well-formed if any object p which is referenced by
some location (o, f) is either the null object or an object which has already
been created. The semantics of Java guarantees that wellFormed (heap) holds
for all states occurring during the execution of a Java program.

3.4 Symbolic Execution

A central component of our calculus is a set of rule schemata that allow us to
transform formulas with program modalities and updates into formulas without.
This process is called symbolic execution. Programs are systematically processed
in a forward manner: whenever we encounter a formula [p;q]ϕ, we handle the
statement p first, and leave the formula [q]ϕ to be treated later. This forward
treatment of programs is based on the concept of updates. There is also a set
of rules which handle the simplification and application of updates to terms and
formulas. The theory of rule-based update treatment has been elaborated in [18].

Two rules for symbolic execution, namely assignLocal and assignField, are
shown in Fig. 2. The corresponding rules for the modality 〈·〉 read accordingly.
Both rules are used to execute assignment statements, either for a local variable
a or for a field reference o.f . Let t be a side-effect free Java expression which
(after some syntactic adaptions like == to .=, && to ∧, etc.) can be read as a
term in our logic. An assignment statement a = t; which assigns to a the value
of the expression t, describes then the same state modification as the update
a := t. This is captured in the symbolic execution rule assignLocal. An assign-
ment to a location o.f is treated differently: it corresponds to a modification of
the global program variable heap. We do not show the rules for other language
features here, as they are numerous and largely orthogonal to the focus of this
paper. We also ignore Java exceptions throughout the paper, which allows for a
more readable presentation of rules and proof obligations. For a more complete
treatment of Java language features, please refer to [2].

Fig. 3 depicts a small example proof. Therein, o ∈ PV is a local variable of a
reference type, f :Field ∈ F is a constant symbol, and a : Int ∈ PV is a local vari-
able. Symbolic execution first converts the two Java assignments into correspond-
ing updates. The updates are then simplified into a single update that performs
both state changes in parallel. The left sub-update heap := store(heap, o, f) can
be simplified away, because the variable heap does not occur in the scope of
the update any more, and thus its value is irrelevant. The rule selectOfStore is
applied inside the remaining update, followed by an obvious simplification of the
resulting if-then-else-term. The type cast operator can be removed with the cast
rule, because 0 is of type Int . Finally, the update is applied to the sub-formula
a

.= 0 as a substitution, resulting in an obviously valid formula. Hence, we have
proven that the original formula is valid as well.

146 P.H. Schmitt, M. Ulbrich, and B. Weiß

[o.f = 0; a = o.f;](a .= 0)
assignField� {heap := store(heap, o, f, 0)}[a = o.f;](a .= 0)
assignLocal� {heap := store(heap, o, f, 0)}{a := select Int(heap, o, f)}(a .= 0)
upd. simpl.� {heap := store(heap, o, f, 0) ‖ a := select Int(store(heap, o, f, 0), o, f)}(a .= 0)
upd. simpl.� {a := select Int(store(heap, o, f, 0), o, f)}(a .= 0)
selectOfStore� {a := if (o .= o ∧ f

.= f)then(cast Int(0))else(select Int (heap, o, f))}(a .= 0)
simpl.� {a := cast Int(0)}(a .= 0)
cast� {a := 0}(a .= 0)

upd. appl.� 0 .= 0

Fig. 3. Example proof

4 Contracts and Proof Obligations

Both abstract fields, such as inv and locs in Sect. 2, and side-effect free methods
such as size are represented in the logic as so-called observer symbols.

Definition 1 (Observer symbols). An observer symbol for type A with ar-
gument types B1, . . . , Bn is either a function symbol obs :Heap, A, B1, . . . , Bn →
B ∈ F or a predicate symbol obs :Heap, A, B1, . . . , Bn ∈ P, where A � Object.

As syntactic sugar, we sometimes write o.obs(p1, . . . , pn) to denote the term or
formula obs(heap, o, p1, . . . , pn). This (deliberately) resembles the notation o.f
for field access terms selectA(heap, o, f). Nevertheless, an observer symbol does
not give rise to a memory location; instead, it “observes” (i.e., it depends on) the
values of memory locations. For an observer symbol m representing a side-effect
free method without parameters, we sometimes write o.m() instead of o.m.

We have seen in Sect. 2 that the value of abstract fields is defined via axioms
such as (1) and (2). Similarly, observer symbols representing methods are defined
via axioms such as the following (where this and r are fresh program variables):

exactInstanceArrayList(this) (3)

→ ∀Int i;
(
this.size()

.= i ↔ 〈r = this.size();〉r .= i
)

The axiom uses the modal operator 〈·〉 to connect the observer symbol size
with a call to method size in class ArrayList.

Axioms (1), (2), (3) are supposed to hold for all values of the program variables
this and heap. The corresponding universally quantified versions of the axioms
can be used as assumptions in proofs for the correctness of ArrayList. We
could also allow using them in other proofs, but this is undesirable for reasons of
modularity: the axioms are implementational secrets of ArrayList, and should
not be exposed to other classes.

Besides observer symbols and axioms, a specification in our setting consists
of a set of method contracts constraining the behaviour of methods, and of a
set of dependency contracts constraining the dependencies of observer symbols.

Dynamic Frames in Java Dynamic Logic 147

Both kinds of contract give rise to proof obligations, i.e., formulas whose validity
must be proven in order for the program to be considered correct. On the other
hand, both kinds of contract can also be used as assumptions in the proofs
of other contracts, via special rules. Subsect. 4.1 defines method contracts, the
corresponding proof obligation, and the corresponding rule; Subsect. 4.2 does the
same for dependency contracts. Note that for simplicity of presentation, we omit
the treatment of void methods, static methods, static fields, and constructors.

4.1 Method Contracts

Definition 2 (Method contracts). A method contract mct is a tuple

mct =
(
m, this, (p1, . . . , pn), res, hPre, pre, post ,mod , τ

)
where m is a Java method; where this : A ∈ PV such that m is defined for receiver
objects of type A; where p1, . . . , pn, res ∈ PV such that their types correspond
to the declared signature of m; where hPre :Heap ∈ PV; and where pre, post ∈
FmaΣ, mod ∈ TrmLocSet

Σ , and τ ∈ {partial , total}.

The program variables this and p1, . . . , pn may be used in the precondition pre,
in the postcondition post and in the modifies clause mod to represent the receiver
object of m and the arguments to m, respectively. The variables res and hPre can
be used in post to refer to the method’s return value and to the value of heap
in the pre-state. The “termination marker” τ indicates whether the contract
demands partial or total correctness.

Definition 3 (Proof obligation for method contracts). Given a method
contract mct =

(
m, this, (p1, . . . , pn), res, hPre, pre, post ,mod , τ

)
with this : A,

and given a type B � A, the proof obligation CorrectMethodContract(mct , B) ∈
FmaΣ is defined as

pre ∧ reachableState ∧ exactInstanceB(this)
→ {hPre := heap}�res = this.m(p1, . . . , pn);�(post ∧ frame),

where �·� stands for [·] if τ = partial and for 〈·〉 if τ = total , and where

– reachableState is the formula

wellFormed(heap) ∧ this � .= null ∧ this.created .= TRUE

∧
∧

i∈{1,...,n}, pi:A for some A�Object

(pi
.= null ∨ pi.created

.= TRUE)

– frame is the formula

∀Object o; ∀Field f ;
(
(o, f) ∈̇ {heap := hPre}

(
mod ∪̇ freshLocs(heap)

)
∨ o.f

.= {heap := hPre}o.f
)

148 P.H. Schmitt, M. Ulbrich, and B. Weiß

The reachableState property is guaranteed by Java itself: the heap is well-formed,
the receiver object is created, and all objects passed as arguments are either
null or created. The formula frame is the frame condition generated from the
modifies clause mod : after executing m, only locations in mod (interpreted in the
pre-state) and “fresh” locations may have changed compared to the pre-state.

For method getwith pre and post from Sect. 2, τ = total , and B = ArrayList,
we get the following instance of CorrectMethodContract :

this.inv ∧ 0 ≤ i ∧ i < this.size() ∧ wellFormed(heap)
∧ this � .= null ∧ this.created .= TRUE ∧ exactInstanceArrayList(this)
→ {hPre := heap}〈res = this.get(i);〉(res � .= null ∧ frame)

where frame with a modifies clause mod = ∅̇ states that only fresh locations
may have been changed by m. The formula is valid under the assumption of (the
universally quantified versions of) axioms (1) and (3). When proving this, one
of the first steps is to inline the body of method get, which is possible because
we know the exact type of this and, hence, do not have to consider dynamic
dispatch.

The following rule allows using a method contract as an assumption:

Definition 4 (Rule useMethodContract)

Γ ⇒ {u}{w}(pre ∧ reachableState), Δ
Γ ⇒ {u}{w}{hPre := heap}{v}(post ∧ reachableState ′ → �. . .�ϕ), Δ

Γ ⇒ {u}�r = o.m(p′1, . . . , p
′
n); . . .�ϕ, Δ

where:

– o ∈ TrmA
Σ for some A ∈ T such that there is a method contract

mct = (m, this, (p1, . . . , pn), res, hPre, pre, post ,mod , τ)

where this : A; where τ = total if the modality �·� is 〈·〉, and where τ does
not matter otherwise; and where this, p1, . . . , pn, res and hPre do not occur
in the formula �r = o.m(p′1, . . . , p

′
n); . . .�ϕ

– p′1, . . . , p
′
n are terms

– reachableState ∈ FmaΣ is as in Def. 3, and reachableState ′ is the formula

wellFormed(heap) ∧ (res .= null ∨ res.created .= TRUE)

if res : B for some B � Object, and the formula wellFormed(heap) otherwise
– v =

(
heap := anon(heap,mod , h) ‖ r := r′ ‖ res := r′

)
– w =

(
this := o ‖ p1 := p′1 ‖ . . . ‖ pn := p′n

)
– h :Heap ∈ F and r′ ∈ F are fresh symbols, i.e., they do not yet occur

anywhere in the proof when applying the rule

Like reachableState , reachableState ′ is a property guaranteed by Java. The up-
date v “anonymises” the locations that may be changed by the call to m, namely
the members of the modifies clause mod , by setting them to unknown values with

Dynamic Frames in Java Dynamic Logic 149

the help of the new symbol h. It also sets the result variable r, and its counter-
part res, to an unknown value r′. The update w instantiates the variables used
in the contract with the corresponding terms in the method call.

Instead of using anon, we could also anonymise (or “havoc” [10]) the entire
heap, and use a framing formula like frame in Def. 3 to express that some
locations do not change. The advantage of our approach is that it avoids the
universal quantifiers of frame in applications of useMethodContract.

The useMethodContract rule is sound, provided that for all subtypes B � A of
the static receiver type A, the proof obligation CorrectMethodContract (mct , B)
is logically valid. A proof of this theorem is contained in [19]. We forbid “circular”
applications of the rule, such as applying the rule on a call to the method which
is itself being verified in the current proof. An extension to support recursion is
possible, but beyond the scope of this paper.

4.2 Dependency Contracts

Definition 5 (Dependency contracts). A dependency contract is a tuple
depct = (obs , this, (p1, . . . , pn), pre, dep)

where obs is an observer symbol for type A′ with argument sorts B1, . . . , Bn;
where this :A ∈ PV such that A � A′; where p1 :B1, . . . , pn : Bn ∈ PV; and
where pre ∈ FmaΣ, dep ∈ TrmLocSet

Σ .

The program variables this and p1, . . . , pn can be used in the precondition pre
and the depends clause dep to stand for the receiver object and the parameters
of obs , respectively. An example for a dependency contract in the context of the
program of Sect. 2 is (inv , this, (), this.inv , this.locs), which demands that
the value of this.inv should depend only on locations in this.locs , provided
that this.inv is true at the time.

Definition 6 (Proof obligation for dependency contracts). For a depen-
dency contract depct = (obs , this, (p1, . . . , pn), pre, dep) with this : A, and for a
type B � A, the proof obligation CorrectDependencyContract(depct , B) ∈ FmaΣ

is defined as follows:
pre ∧ reachableState ∧ exactInstanceB(this)
→ this.obs(p1, . . . , pn)

≡ {heap := anon(heap, allLocs \̇ dep, h)}
(
this.obs(p1, . . . , pn)

)
where reachableState ∈ FmaΣ is as in Def. 3, where h :Heap ∈ F is fresh, and
where ≡ stands for .= if obs ∈ F and for ↔ if obs ∈ P.

The proof obligation formalises the notion of obs “depending” only on the loca-
tions in dep: if we change all locations except for dep in an unknown way, then
this must not affect obs . For the dependency contract for inv above, and for
B = ArrayList, we get the following instance of CorrectDependencyContract :
this.inv ∧ wellFormed(heap) ∧ this � .= null∧ this.created .= TRUE
∧ exactInstanceArrayList(this)

→
(
this.inv ↔ {heap := anon(heap, allLocs \̇ this.locs , h)}(this.inv)

)

150 P.H. Schmitt, M. Ulbrich, and B. Weiß

The formula is valid under the assumption of axioms (1) and (2), because all
locations read by (1) are defined to be a part of this.locs by (2). Analogously, (3)
defines this.size() such that it also depends only on the locations in this.locs
as defined by (2).

Definition 7 (Rule useDependencyContract)

Γ, guard → equal ⇒ Δ
Γ ⇒ Δ

where:

– the term or formula obs(hnew , o, p′1, . . . , p
′
n) occurs in Γ or Δ, where hnew =

f1(f2(. . . (fm(hbase , . . .)))) with f1, . . . , fm ∈ {store, anon}, hbase ∈ TrmHeap
Σ

– o ∈ TrmA
Σ for some A ∈ T such that there is a dependency contract depct =

(obs , this, (p1, . . . , pn), pre, dep), where this :A, and where both this and
p1, . . . , pn do not occur in Γ or Δ

– hPre :Heap ∈ PV is fresh, mod = allLocs \̇dep
– reachableState , frame ∈ FmaΣ are as in Def. 3, w ∈ UpdΣ is as in Def. 4
– noDeallocs ∈ FmaΣ is the formula

freshLocs(heap) ⊆̇ freshLocs(hPre)
∧ null.created .= {heap := hPre}null.created

– guard is the formula

{w}
(
{heap := hbase}(pre ∧ reachableState)

∧ {hPre := hbase ‖ heap := hnew}(frame ∧ noDeallocs)
)

– equal is the formula obs(hnew , o, p′1, . . . , p
′
n) ≡ obs(hbase , o, p′1, . . . , p

′
n),

where ≡ stands for .= if obs ∈ F and for ↔ if obs ∈ P

The useDependencyContract rule adds an assumption guard → equal to the se-
quent, which relates the value of obs in the heaps hbase and hnew . Property
noDeallocs holds for all heap changes occurring in Java programs, where ob-
jects can be created but this process cannot be undone (we do not consider
garbage collection). Property frame expresses that the locations in dep have not
changed when going from hbase to hnew . If guard holds, then the dependency
contract guarantees that obs has the same value for both heaps. The rule is
sound if for all subtypes B � A of the static receiver type A the proof obligation
CorrectDependencyContract(depct , B) is logically valid; this is proven in [19].
Like for method contracts, we do not allow “circular” applications of the rule.

Automatic application of this rule is not as straightforward as for useMethod-
Contract, because the rule is nondeterministic in the choice of hbase , and because
it can be applied repeatedly, which could lead to non-termination of automatic
proof search. However, we can avoid non-termination by avoiding duplicate ap-
plications of the rule for the same pair of heap terms. To avoid a finite, but large
number of “unsuccessful” applications where guard cannot be proven, a strategy

Dynamic Frames in Java Dynamic Logic 151

that seems to work well in practice is to apply the rule only for choices of hbase

for which obs(hbase , o, p′1, . . . , p
′
n) already occurs somewhere in the sequent.

We conclude our treatment of dependency contracts by returning to the ex-
ample of verifying method m from Sect. 2. The precondition of m guarantees that
the invariant of l holds initially, i.e., that inv(heap, l) is true. To establish the
precondition of the method call l.get(0) in the body of m, we need to establish
that inv(store(heap, this, x, t), l) also holds (for some term t). Modularity de-
ters us from using (1) to deduce this. Instead, we apply useDependencyContract,
with obs = inv and hbase = heap. We get the following instantiation for guard
(already slightly simplified):

inv(heap, l) ∧ wellFormed(heap) ∧ l � .= null∧ l.created .= TRUE

∧ ∀Object o; ∀Field f ;
(
(o, f) ∈̇

(
(allLocs \̇ locs(heap, l)) ∪̇ freshLocs(heap)

)
∨ selectAny (store(heap, this, x, t), o, f)

.= selectAny (heap, o, f)
)
∧ noDeallocs

As the only location changed between the two heaps is (this, x), and as the
precondition of m guarantees that (this, x) /̇∈ locs(heap, l) holds, we can prove
that the instantiation of guard is satisfied. This allows us to use the instantia-
tion of equal , namely inv (store(heap, this, x, t), l)↔ inv (heap, l), to prove that
inv(store(heap, this, x, t), l) holds. After an analogous derivation about the de-
pendencies of size, we can establish that the precondition of get holds, and then
conclude with the help of useMethodContract that the postcondition of m holds.

5 Conclusions

We have presented an extension of Harel’s dynamic logic from [5] that includes
explicit representations of sets of heap locations and we have demonstrated how
this logic can be used to support reasoning about dynamic frames style specifica-
tions. We have focused on the details of the logic and completely ignored issues
of the specification interface and the implementation of the generation of proof
obligations. Suffice it to say here that the whole approach has been implemented
in a variant of the KeY system1 and successfully tested on some simple examples.
The implemented system in particular comprises an extension and modification
of the Java Modeling Language, JML, for dynamic frames style specifications
using model fields.

References

1. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verifica-
tion of object-oriented programs with invariants. Journal of Object Technology
(JOT) 3(6), 27–56 (2004)

2. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

1 Available at http://i12www.ira.uka.de/~bweiss/keyheap/

http://i12www.ira.uka.de/~bweiss/keyheap/

152 P.H. Schmitt, M. Ulbrich, and B. Weiß

3. Cheon, Y., Leavens, G.T., Sitaraman, M., Edwards, S.H.: Model variables: cleanly
supporting abstraction in design by contract. Software—Practice and Experi-
ence 35(6), 583–599 (2005)

4. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the ACM 18(8), 453–457 (1975)

5. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
6. Hoare, C.A.R.: Proof of correctness of data representations. Acta Informatica 1,

271–281 (1972)
7. Kassios, I.T.: Dynamic frames: Support for framing, dependencies and sharing

without restrictions. In: Misra, J., Nipkow, T., Karakostas, G. (eds.) FM 2006.
LNCS, vol. 4085, pp. 268–283. Springer, Heidelberg (2006)

8. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges
for sequential object-oriented programs. Formal Aspects of Computing 19(2), 159–
189 (2007)

9. Leino, K.R.M.: Toward Reliable Modular Programs. PhD thesis, California Insti-
tute of Technology (1995)

10. Leino, K.R.M.: Specification and verification of object-oriented software. Lecture
Notes, Marktoberdorf International Summer School (2008)

11. Leino, K.R.M., Poetzsch-Heffter, A., Zhou, Y.: Using data groups to specify and
check side effects. In: PLDI 2002, pp. 246–257. ACM Press, New York (2002)

12. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems 16(6), 1811–1841 (1994)

13. McCarthy, J.: Towards a mathematical science of computation. In: Information
Processing 1962, pp. 21–28 (1963)

14. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992)
15. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular invariants for layered

object structures. Science of Computer Programming 62(3), 253–286 (2006)
16. Parkinson, M.J., Bierman, G.M.: Separation logic and abstraction. In: POPL 2005,

pp. 247–258. ACM Press, New York (2005)
17. Poetzsch-Heffter, A.: Specification and verification of object-oriented programs.

Habilitationsschrift, Technische Universität München (1997)
18. Rümmer, P.: Sequential, parallel, and quantified updates of first-order structures.

In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp.
422–436. Springer, Heidelberg (2006)

19. Schmitt, P.H., Ulbrich, M., Weiß, B.: Dynamic frames in Java dynamic logic: For-
malisation and proofs. Technical Report 2010-11, Department of Computer Science,
Karlsruhe Institute of Technology (2010)

20. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: Combining dynamic
frames and separation logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 148–172. Springer, Heidelberg (2009)

21. Smans, J., Jacobs, B., Piessens, F., Schulte, W.: An automatic verifier for java-like
programs based on dynamic frames. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE
2008. LNCS, vol. 4961, pp. 261–275. Springer, Heidelberg (2008)

22. Stenzel, K.: A formally verified calculus for full java card. In: Rattray, C., Maharaj,
S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp. 491–505. Springer,
Heidelberg (2004)

A Refinement Methodology for
Object-Oriented Programs�

Asma Tafat1, Sylvain Boulmé2, and Claude Marché1,3

1 Lab. de Recherche en Informatique, Univ Paris-Sud, CNRS, Orsay, F-91405
2 Institut Polytechnique de Grenoble, VERIMAG, Gières, F-38610

3 INRIA Saclay - Île-de-France, F-91893

Abstract. Refinement is a well-known approach for developing correct-by-
construction software. It has been very successful for producing high quality
code e.g., as implemented in the B tool. Yet, such refinement techniques are
restricted in the sense that they forbid aliasing (and more generally sharing of
data-structures), which often happens in usual programming languages.

We propose a sound approach for refinement in presence of aliases. Suitable
abstractions of programs are defined by algebraic data types and the so-called
model fields. These are related to concrete program data using coupling invari-
ants. The soundness of the approach relies on methodologies for (1) controlling
aliases and (2) checking side-effects, both in a modular way.

1 Introduction

Design-by-contract is a methodology for specifying programs by attaching pre- and
post-conditions to functions, methods and such. In recent years, significant progress
has been made in the field of deductive verification of programs, which aims at building
mathematical proofs that such a program satisfies its contracts. Some widely used pro-
gramming languages, like JAVA, C# or C have been equipped with formal specification
languages and tools for deductive verification, e.g., JML [11] for Java, Spec# [6] for
C#, ACSL [7] for C. The assertions written in the contracts are close to the syntax of
the underlying programming language, and directly express properties of the variables
of the program. However, for code of large size the need for data abstractions arises,
both for writing advanced specifications and for hiding implementation details.

Leavens et al. [18] have listed some specification and verification challenges for se-
quential object-oriented programs that still have to be addressed. One of these issues
deals with data abstraction in specification, and more specifically the specification of
modeling types. The task to be done is summed up as follows: Develop a technique for
formally specifying modeling types in a way that is useful for verification. In particular,
there are many efforts to design a notion of behavioral subtyping constraining the sub-
typing relation of the programming language such that Liskov substitution principle is
satisfied [23]: Let φ(x) be a property provable about objects x of type T . Then φ(y)

� This work is partly supported by INRIA Collaborative Research Action (ARC) “CeProMi”,
http://www.lri.fr/cepromi/

B. Beckert and C. Marché (Eds.): FoVeOOS 2010, LNCS 6528, pp. 153–167, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

154 A. Tafat, S. Boulmé, and C. Marché

should be true for objects y of type S where S is a subtype of T . Of course, such a no-
tion of behavioral subtyping must also be expressive enough to allow the usual patterns
of OO programming. This paper proposes a notion of behavioral subtyping, allowing
sharing of objects, like in the observer pattern.

Actually, Liskov’s substitution principle is very similar to the substitutability prop-
erty of refinement approaches. Hence our proposal has strong connections with the no-
tion of program refinement of the B method [1] for developing correct-by-construction
programs. In a first step, abstract views of objects are specified with so-called model
fields as an abstract representation of their state. Unlike the standard model fields of
JML, our model fields are described as algebraic data types instead of immutable ob-
jects. The refinement of such an abstract view is a concrete object together with a cou-
pling invariant that connects its concrete fields with model fields of the abstract view.
The substitutability property ensures that reasoning on the abstract view in a client code
does not allow establishing properties that are falsified at runtime. Hence, in the pres-
ence of arbitrary pointers or references (and thus data sharing), the verification of these
coupling invariants requires a strict policy on assignment, for controlling where a given
invariant is potentially broken.

This paper is based on the ownership policy of the Boogie methodology [4]. In
Section 3 we propose a variant of ownership to support model fields. The main result
(Theorem 1) states that class invariants, including coupling invariants, are preserved
during execution. Section 4 then proposes a refinement approach for object-oriented
programs, where subclasses are refined programs for abstract classes. An additional
ingredient needed is a technique for controlling side effects in subclasses: in this pa-
per we use datagroups [22]. We illustrate the methodology on two examples: first, the
calculator example of Morgan [24], and second, an instance of the observer pattern.

2 Preliminaries

2.1 Deductive Verification of Contracts

We consider object-oriented programs equipped with a Behavioral Interface Specifica-
tion Language (BISL) such as JML [11] for Java, Spec# [6] for C#, etc. Methods are
equipped with contracts: pre- and postconditions, frame clauses to specify write effects,
etc; and objects are equipped with class invariants. Our goal is to verify that a program
satisfies its specification using proof methods. A general approach for that purpose is the
generation of verification conditions (VCs), which are logical formulas whose validity
implies the correctness of the program with respect to the specification. To automatize
this process, a popular method is the calculus of weakest preconditions, as available in
ESC/Java [14], Spec# [6], and the Why platform [17]. In a slightly different context but
for similar purposes, weakest preconditions are used in the B method [1] for developing
correct-by-construction programs.

The primary application of BISL is runtime assertion checking. For this reason, as-
sertions used in annotations are boolean expressions. However, it has been noted by sev-
eral authors [12,16] that for deductive verification purposes, the language of assertions
should be instead based on classical first-order logic. In particular, it allows calling SMT
provers to discharge VCs. This is the setting we assume in this paper. More generally,

A Refinement Methodology for Object-Oriented Programs 155

we assume that the specification language allows user-defined algebraic datatypes, such
as in B [1], ACSL [7] or Why [17]. Multisets, or bags, are typically a useful algebraic
datatype for specifying programs, that we need later. Here is a (partial) user-defined
axiomatization of bags (See [27] for a full one)

type bag<X>;
constant emptybag: bag<X>;
function singleton: X −> bag<X>;
function union: bag<X>, bag<X> −> bag<X>;
axiom union_empty: \forall b:bag<X>, union(b,emptybag) = b;
axiom union_assoc: \forall b1,b2,b3:bag<X>,

union(b1,union(b2,b3)) = union(union(b1,b2),b3);
function card: bag<X> −> integer;
function sumbag: bag<real> −> real;
...

2.2 Refinement

Refinement calculus [24,2] is a program logic which promotes an incremental approach
to the formal development of programs: from very abstract specifications down to
implementations. The B method [1] has successfully mechanized this logic in some
industrial developments [8]. In the B method, an abstract component introduces ab-
stract variables and defines each procedure by an abstract behavior on these variables.
A refined component is then given using other variables, a coupling invariant which
relates them to abstract variables, and refined definitions of procedures. A component
may be refined several times in this way, until all behaviors of procedures are given as
programs.

Example 1. Morgan’s calculator [24] is a typical and simple example of refinement.
Such a calculator is aimed at recording a sequence of real numbers, and providing their
arithmetic mean on demand. Below, on the left, is an abstract view of a calculator,
whereas the right part presents a refinement expressing that two numbers are sufficient
to encode the required informations on the whole sequence:

var values : bag(R)
init values← ∅;
op add(x : R):void =

values← values ∪ {x};
op mean():R =

pre values �= ∅;
result← sumbag(values)

card(values)
;

var count : N

var sum : R

invariant sum = sumbag(values)∧
count = card(values);

init sum← 0; count ← 0;
op add(x : R):void =

sum← sum + x;
count← count + 1 ;

op mean():R = result ← sum/count;

This paper investigates how to adapt this approach to reasoning on object-oriented pro-
grams. However, we consider the simpler case with only one abstract level, where be-
haviors are given as pre/post-conditions together with frame clauses, and one concrete
level, the implementations in the underlying programming language. Technically, re-
finement corresponds to the condition below, verified for each operator, where x are the

156 A. Tafat, S. Boulmé, and C. Marché

input parameters, a the abstract variables, c the concrete ones, P the abstract precondi-
tion, I the coupling invariant, Q the abstract postcondition, S the body of the concrete
operation: ∀c, x, a; (P ∧ I) ⇒ ∃a′;wp(S, (Q ∧ I)[a �→ a′]). Let us explain this VC
from a clients point of view. For any reachable state c, a satisfying I in the execution
of a given client code, there exist abstract values a′ such that I is still satisfied. For
instance, in client code, we can safely replace an execution of the concrete sequence S,
by a non-deterministic update of variable a that chooses an arbitrary value a′ satisfying
both Q and I . The VC on any operation call ensures that the remaining of the client
code is correct for all possible choices of this non-deterministic update.

Example 2 (Calculator continued). The VC for the add operation is

∀count, sum, values, x; (sum = sumbag(values) ∧ count = card(values))⇒
∃values′; values′ = values ∪ {x}∧

(sum + x = sumbag(values′) ∧ count + 1 = card(values′))

which is a logical consequence of our axiomatization of bags.

2.3 Model Fields

Model fields have been introduced by Leino [19] as abstract representations of object
states. Syntactically, a model field [13] is used only for specification purpose and re-
mains invisible from the actual code. Clients can refer to its successive values in their
assertions, without knowing how this abstract state is implemented.

We adopt the JML syntax for model fields, but the JML represents clauses are re-
placed by coupling invariants, which are more general since they do not enforce a model
field to be deterministically determined from concrete fields. Notice that model fields
differ from ghost fields [13] : the latter can be directly assigned in implementations.

Example 3. In the following, we declare a public view of class Euros to compute
addition and subtraction on euros. In this public view, the model field value represents
the state of the object as a real number.

class Euros {
//@ model real value = 0.0;
//@ invariant this.value >= 0.0;

/*@ requires a.value >= 0;
@ assigns this.value;
@ ensures this.value == \old(this.value + a.value); */

void add(Euros a);
}

In the corresponding implementation below, the real number is coded as two integers:
in particular, the fractional part of the real is coded as a byte less than 100.

class Euros {
private int euros=0;
private byte cents=0;

A Refinement Methodology for Object-Oriented Programs 157

//@ invariant 0 <= euros && 0 <= cents < 100;
//@ invariant coupling: value == euros + cents / 100.0;

void add(Euros a) {
euros += a.euros; cents += a.cents;
if (cents >= 100) { euros++; cents −= 100; }

}
}

Giving a semantics to model fields leads to several issues [10,13,20] that we will discuss
further in Section 5: as model fields are not directly assigned in the code, at which
program points the values of model fields are changed? At which program points is the
coupling invariant, relating the concrete fields (like euros and cents above) to the
model field (value above), ensured? Also, the public view above says that only model
field value is modified; is it sound to ignore the change on private fields (like euros
and cents) in clients?

2.4 Ownership

Checking preservation of class invariants is known to be a difficult problem because
of aliasing and thus sharing of references [18]. The ownernhip approach proposed by
Barnett et. al in 2004 [4] is suitable for deductive verification, and implemented in the
Boogie VC generator [5]. Informally, ownership views objects as boxes which can be
opened or closed. A closed object ensures that its invariant is satisfied. Conversely, the
contents of an object can be updated only when this object is open. The status, open
or closed, of an object is represented by some specific boolean field inv similar to a
model field (that is only accessible in specifications). Concretely, opening and closing
an object is performed by using special statements unpack and pack. Hence, closing
an object generates a VC that the invariant of this object holds.

Updating an object’s field must not break the invariant of an other closed object.
This crucial property is ensured by a strict discipline. First, the invariant of an object
o can constrain only objects accessible via dedicated fields called “rep fields”. More
precisely, the invariant of o may refer to o.f1 . . . fn.g only if f1, . . . , fn are declared
as rep. Hence, a rep field f declares that whenever o is closed, then o.f must also
be closed: in this case, we say that o owns o.f . Moreover, a given closed object can
only have at most one owner. Technically, another model boolean field committed
represents whether an object has a owner or not. This field acts as a lock that is only
modified by applying unpack and pack statements to its owner. This ensures that an
object can not be modified without opening its owner first.

With inheritance, this approach is generalized by transforming the inv field into a
class name: “o.inv = C” means that object o satisfies invariant of all superclasses of C
(C included). Packing and unpacking are made relative to a class name: “pack o asC”
means “close the box o with respect to class C”; whereas “unpack o from C” means
“open the box o out of C”, i.e set its inv to the superclass of C.

This informal description is formalized in the next section (see also [27]), together
with our proposed extension adding a specific support of model fields.

158 A. Tafat, S. Boulmé, and C. Marché

3 Ownership and Model Fields

3.1 Language Setting

We consider a core object-oriented language [4] extended with model fields. A
hierarchy of classes is defined together with specifications. First there is a base class
Object which contains only the two special model fields: inv denoting a class name
and committed denoting a boolean. Each class is given by:

– its (unique) name
– the name of its superclass, Object by default
– a set of model fields, whose types are logic datatypes
– a set of concrete fields, some of them might be marked as rep
– an invariant, that is a logical assertion syntactically limited to mention well-typed

locations (according to Java static typing) of the form “this.f1 . . . fn.g” where fi

are rep concrete fields and g is either a model or a concrete field.
– a set of method definitions that consists of a profile “τ m(x1 : τ1, . . . , xn : τn)”, a

body, and a contract defined as:

• a pre-condition Prem(this, x1, . . . , xn)
• a post-condition, Postm(this, x1, . . . , xn, result) which might refer to the

pre-state using old and to the return value using result

• a frame clause Assigns(locs) specifying the side-effects: it states that any
memory locations, allocated in the pre-state, that do not belong to locs, is un-
changed in the post-state.

– a set of constructors with a signature C(x1 : τ1, . . . , xn : τn), a body, and a con-
tract similar to those of methods, except that precondition cannot refer to this and
postcondition cannot not refer to result, but can refer to this to denote the con-
structed object.

Pre- and postconditions must be purely logic expressions, in particular we forbid con-
structor or method calls in them. A class inherits fields of its superclass, in particular
it has an inv and a committed field. We denote by <: reflexive-transitive closure of
subclass relation. We denote by CompT the set of rep fields declared in class T. More
precisely, CompT contains only rep fields declared in T but not the rep fields declared
in a strict superclass of T . A field update o.f := E where f is a concrete field declared
in superclass T of o static type, has the precondition ¬(o.inv <: T), meaning that
o.inv must be a strict superclass of T . Field update o.f := E where f is a model field
is syntactically forbidden. Using pack (see below) is the only way to update model
fields. Bodies of methods are verified in a context where type(this) is the current class:
inherited methods are rechecked according to the context of the subclass.

3.2 Pack/Unpack for Model Fields

We define two statements for opening and closing an object. Opening an object o is
done via the following statement, whose semantics is given by the contract:

A Refinement Methodology for Object-Oriented Programs 159

unpack o from T :
pre: o �= null ∧ o.inv = T ∧ ¬o.committed
assigns: o.inv, o.f.committed | f ∈ CompT

post: o.inv = S ∧
∧

f∈CompT
o.f.committed = false

where T is a class identifier (using type(o) instead of T is forbidden, hence CompT is
statically known by VC generator), and S is the direct superclass of T .

The pack statement is significantly more complex than the original in Boogie’s own-
ership, because it performs a non-deterministic update of model fields. We adopt here a
syntax inspired by the unbound choice operator of B:

pack o as T with M0 := v0, . . . , Mn := vn such that P

where o is the object to close, Mi is a model field to update, vi is a fresh variable
denoting the desired new value for o.Mi, and P is a proposition which can mention
both vi and the current values of the model fields or the concrete fields. Syntactically, T
is a class identifier and Mi must belong to model fields declared in T (updating model
fields of a superclass is forbidden). The semantics is given by the contract:

pack o as T with M0 := v0, . . . Mn := vn such that P :
pre: o �= null ∧ o.inv = S ∧

(∃v0, . . . , vn, InvT [this.Mi �→ vi][this �→ o] ∧ P) ∧∧
f∈CompT

o.f = null ∨ (o.f.inv = type(o.f) ∧ ¬o.f.committed)
assigns: o.M0, . . . , o.Mn, o.inv, o.f.committed | f ∈ CompT

post: o.inv = T ∧ InvT [this �→ o] ∧ (old(P))[vi �→ o.Mi] ∧∧
f∈CompT

o.f �= null ⇒ o.f.committed

where S is the superclass of T , type(e) denotes the dynamic type of expression e and
InvT [this.Mi �→ vi][this �→ o] is the coupling invariant in which model fields Mi

mentioned in the clause with are substituted by vi.

Example 4. Figure 1 is a variant of Morgan’s calculator equipped with pack/unpack
statements and pre- and postconditions to state the values of inv and committed
fields. The VC generated from the precondition of pack statement in method add is:

this �= null ∧ this.inv = Object ∧
∃v, this.sum = sumbag(v) ∧ this.count = card(v)∧

v = union(this.values, singleton(x))

Hence, notice that the weakest precondition of add is thus very similar formula to the
VC of the refinement given in Example 2.

3.3 Invariant Preservation

We state below our main result. The first proposition means that committed objects must
be fully packed. The second states the most important property: invariants are valid for
packed objects. The third states that components of a closed object are committed. The
fourth expresses that a committed component can have only one owner.

160 A. Tafat, S. Boulmé, and C. Marché

class SimpleCalc {
//@ model bag<real> values;
private int count;
private double sum;
//@ invariant sum == sumbag(values) && count == card(values);

/*@ assigns \nothing;
@ ensures inv == v \type(this) && !committed
@ && values == empty_bag; */

SimpleCalc() {
sum = 0.0; count = 0;
/*@ pack this \as SimpleCalc \with values := v

@ \such_that v == empty_bag; */
}

/*@ requires inv == \type(this) && !committed;
@ assigns values, count, sum;
@ ensures values == union(\old(values),singleton(x)); */

void add(double x) {
//@ unpack this \from SimpleCalc;
sum += x; count++;
/*@ pack this \as SimpleCalc \with values := v

@ \such_that v == union(values,singleton(x)); */
}

/*@ requires inv == \type(this) && values != empty_bag;
@ assigns \nothing;
@ ensures \result == sum_bag(values)/card(values); */

double mean() { return sum/count; }
}

Fig. 1. Morgan’s calculator with pack/unpack

Theorem 1 (invariant preservation). The following properties hold during any pro-
gram execution.

∀o; o.committed ⇒ o.inv = type(o) (1)
∀o, T ; o.inv <: T ⇒ InvT (o) (2)
∀o, T ; o.inv <: T ⇒

∧
f∈CompT

o.f = null ∨ o.f.committed (3)
∀o, T, o′, T ′;

∧
f∈CompT ,f ′∈CompT ′

(o.inv <: T ∧ o′.inv <: T ′ ∧ o.f �= null ∧ o.f = o′.f ′) ⇒ (o = o′ ∧ T = T ′) (4)

where quantifications over references range over allocated objects.

See [27] for the proof. It is similar to the one of [4]. Differences come from the presence
of model fields, coupling invariants and our extended pack statement.

4 A Refinement Methodology

We have a notion of model fields with a proper nondeterministic semantics, similar to
abstract variables as they are used in the B method. To go further, we now describe a

A Refinement Methodology for Object-Oriented Programs 161

abstract class Calc {
//@ datagroup Gvalues;
//@ model bag<real> values \in Gvalues;

/*@ requires this.inv == \type(this) && !this.committed;
@ assigns Gvalues;
@ ensures values == union(\old(this.values),singleton(x));
@*/

abstract void add(double x);

/*@ requires inv == \type(this) && values != empty_bag;
@ assigns \nothing;
@ ensures \result == sum_bag(values)/card(values); */

abstract double mean();
}

Fig. 2. Morgan’s Calculator, abstract class

methodology for the development of OO programs which mimics the refinement ap-
proach. This methodology is simply a combination of our notion of model fields with
datagroups as proposed by [19,22]. We introduce this methodology below on Morgan’s
Calculator before considering a more complex example.

4.1 Hiding Effects Using Datagroups in Assigns Clauses

Let us consider Morgan’s Calculator of Example 1. We would like to mimic this exam-
ple in Java by splitting class SimpleCalc of Fig. 1 into two classes: first, an abstract
class Calc (Fig. 2) mentioning only the model field and contracts for methods; second,
an implementation SmartCalc (Fig. 3) using concrete fields count and sum. Two
successive unpack or pack statements are needed to open or close an object from
class SmartCalc to Calc then to Object. A key issue arises here, about the spec-
ification of side effects: the abstract class is not supposed to mention count and sum
in assigns clauses, since those fields are not even known.

In the B method [1], a simple encapsulation mechanism of private fields ensures
that their modifications can not be observed from clients. Hence, in B, it is safe to
simply ignore modifications on private fields in clients, since clients cannot access them.
Unfortunately, such a simple approach is not sound for OO programs. Indeed, a given
object can be indirectly a client of itself via a reentrant call, and observes modifications
made by this reentrant call on its own private fields. Alternatively, [19,22] proposes
to abstract such modifications using datagroups. We use this approach in this paper
since it smoothly integrates into any VC generator using classical logic (see Section 5
for further discussion). Roughly, a datagroup is a name for a set of memory locations
and used in assigns clauses to express that all its memory locations may have been
modified. The main feature of datagroups is that they can be extended in subclasses with
new fields (public or private). The inclusion of a field to a datagroup must appear in the
declaration of that field and is defined all over its scope. Datagroups may also include
other datagroups (hence, we may have nested datagroups) and a field may belong to
several datagroups.

162 A. Tafat, S. Boulmé, and C. Marché

class SmartCalc extends Calc {
private int count; //@ \in Gvalues;
private double sum; //@ \in Gvalues;
/*@ invariant this.sum == sumbag(this.values)
@ && this.count == card(this.values); */

/*@ assigns \nothing;
@ ensures this.values == empty_bag;
@ ensures this.inv == \type(this) && !this.committed; */

SmartCalc() {
sum = 0.0; count = 0;
/*@ pack this \as Calc \with values := c

@ \such_that c == empty_bag;
@ pack this \as SmartCalc; */

}

void add(double x) {
//@ unpack this \from SmartCalc;
//@ unpack this \from Calc;
sum += x; count++;
/*@ pack this \as Calc \with values := c

@ \such_that c == union(values,singleton(x));
@ pack this \as SmartCalc; */

}

double mean() { return sum/count; }
}

Fig. 3. Morgan’s Calculator, implementation class

Hence, coming back to Morgan’s calculator, we introduce a datagroup called
Gvalues that consists of model field values in abstract class Calc of Fig. 2,
and which is extended with concrete fields count and sum in its implementation
SmartCalc of Fig. 3. Of course, on this example, it would be more user-friendly
to identify syntactically the datagroup Gvalues and the model field values. How-
ever, in this paper, we prefer to keep a clear distinction between the two notions, since
in other examples, a datagroup may contain several model fields.

4.2 Modular Reasoning on Shared State: The Observer Pattern Example

In the literature (see for instance [25]), ownership discipline is often considered as in-
compatible with modular reasoning on a shared state between objects. Indeed, at first
sight, ownership discipline forbids objects constraining simultaneously a given substate
through an invariant. A contribution of our work is to show that this common belief is
wrong. Ownership extended with nondeterministic refinement of model fields allows
some modular reasoning on a shared state between objects.

We illustrate this claim with the observer pattern, a generic implementation of event
programming in OO languages. In this pattern, an object, called Subject, maintains a list
of its dependents, called observers, and notifies them automatically of any state changes,

A Refinement Methodology for Object-Oriented Programs 163

by calling their notify methods. When notified, observers update their own state
according to the new state of Subject, usually by calling back some accessor of Subject.
Hence, Subject is shared between observers. Moreover, observers are themselves shared
between Subject and some clients of the whole pattern.

Here, we instantiate this pattern to define observers of a Morgan’s calculator (exam-
ple fully detailed in [27]). The key idea, that makes this example work with ownership
discipline, is the following: in observers, we clone an abstraction of their shared state
using model fields (below size and mean). Thus, these clones exist only in assertions,
not at runtime:

abstract class CalcObs {
SubjectCalc sub;

//@ datagroup Gsubject;
//@ model int size \in Gsubject;
//@ model real mean \in Gsubject;

/*@ requires this.inv == \type(this) && !this.committed;
@ requires sub != null && sub.mc != null
@ && sub.mc.inv == \type(sub.mc);
@ assigns this.Gsubject;
@ ensures size == card(sub.mc.values)
@ && size * mean == sumbag(sub.mc.values);
@*/

abstract void notify();
}

A given object (here Subject) glues the actual shared state with its clones through
an invariant. Here is an excerpt of its specification, where the important part is the
observers_notified invariant:
class SubjectCalc {

int obs_nb;
rep CalcObs[] obs;
//@ invariant obs_size: obs != null && 0 <= obs_nb < obs.length;

rep Calc mc;
/*@ invariant observers_notified: mc != null &&

@ \forall integer i; 0 <= i < obs_nb ==>
@ obs[i] != null && obs[i].sub == this
@ && obs[i].size == card(mc.values)
@ && obs[i].size * obs[i].mean == sumbag(mc.values); */

/*@ requires inv == \type(this) && !committed;
@ assigns obs[0..obs_nb−1].Gsubject, mc.Gvalues ;
@ ensures mc.values == union(\old(mc.values),singleton(x)); */

void update(double x){
//@ unpack this \from SubjectCalc;
mc.add(x) ;
for (int i = 0; i < obs_nb; i++) obs[i].notify();
//@ pack this \as SubjectCalc ;

}
}

164 A. Tafat, S. Boulmé, and C. Marché

The observers can then be implemented independently by refining their own clone of the
shared state: they can introduce a coupling invariant relating their own actual state to the
clone. For observers, the possibility to update their model fields non-deterministically
is crucial here. Indeed, observers update their clone when notified by Subject which has
been modified in a undetermined way from their point of view. Here is an example of
such an observer:

class Success extends CalcObs {
boolean passed;
//@ invariant coupling: passed==(size>=4 && mean>=10.0) ;

void notify(){
//@ unpack this \from Success ;
//@ unpack this \from CalcObs ;
/*@ pack this \as CalcObs \with size := s, mean := m

@ \such_that s == card(sub.mc.values) &&
@ s * m == sumbag(sub.mc.values); */

passed = (sub.size() >= 4 && sub.mean() >= 10.0);
/*@ pack this \as Success; */

}
}

In conclusion, this cloning technique through model fields offers some freedom in the
design of an architecture that is both compatible with ownership discipline and that
fits the particular needs of the application. However, this example reveals the need for
several improvements in our approach:

– We would like a more abstract interface for Subject. First, a more abstract repre-
sentation of the set of observers is desirable. Second, it would be more convenient
to include all internal states of observers in one datagroup of Subject. However,
the datagroups discipline (with the use of pivot fields [22,27]) would then prevent
access to observers from outside of Subject, which is not desirable.

– This architecture would be more elegant if Subject was allowed to unpack ob-
servers:notifymethod of observers could hence be used to (re)pack them.1 How-
ever, if we want to allow a given object o to be an unknown instance of a given
class, we can not unpack o, because this would produce an uncontrolled side-effect
on the committed field of o rep fields (which are not fully known).

5 Conclusions, Related Work and Perspectives

In 2003, Cheon et al. [13] propose foundations for the model fields in JML, presented
as a way to achieve abstraction. Their main concern is the runtime assertion checker of
JML, hence they naturally propose that model fields are Java objects as any other field
(although immutable objects for obvious reasons), and not logical datatypes. Moreover,

1 Indeed, method register of Subject, that registers a new observer, could be called on a
open observer before to pack it via notify. Thus, inside their constructor, observers would
not be obliged to be packed in a dummy state before the call to register.

A Refinement Methodology for Object-Oriented Programs 165

a model field is related to concrete fields by a represents clause which amounts to giving
a function from concrete fields to the associated model field. Consequently, they cannot
support non-deterministic updates of model fields as in Morgan’s calculator: there is
more than one bag having a given cardinal and a given sum of its elements.

In the context of deductive verification instead, JML also provides non-deterministic
coupling relations via \such_that clauses. In 2003, Breunesse and Poll [10] explore
four different interpretations of these clauses. The first one, which indeed originates
from Leino and Nelson [21], amounts to assume that the coupling invariant holds at any
program point. This is impracticable and indeed unsound since it does not check for
existence of a model. Two other approaches amount to systematically replacing each
predicate refering to a model field by a complex formula with proper quantifiers, these
are impracticable too. The last approach replaces the model fields by an underspecified
function which returns any possible value for it. In some sense it is similar to our pack
with but clearly less flexible.

In 2006, Leino and Müller [20] proposed a technique to deal with model fields via
ownership. This work was the main inspiration of ours: we wanted to remove a lim-
itation of their approach which prevent them from dealing with Morgan’s calculator.
Precisely, the post-condition of their pack statement for the add method is just the
coupling invariant

this.sum = sumbag(this.values)∧ this.count = card(this.values)

from which it is not possible to prove the postcondition

this.values = union(old(this.values), singleton(x))

because the latter is not the only bag b which has the given sum and cardinal. In other
words, the Leino-Müller approach [20] can only deal with deterministic coupling in-
variants, which impose only one possible value for model fields from the values of the
concrete fields.

Our methodology for refinement has several original aspects: unlike previous ap-
proaches, it allows non-deterministic refinement, as it exists classically in refinement
paradigm; it permits to safely hide the side-effects on private data from the public spec-
ification of classes, which is a very important property for modularity of reasoning on
programs.

More recently, the Jahob verification system [30] also uses algebraic data types to
model programs. However, again the relation from concrete data to abstract is done by
logic functions, hence as previous approaches they are deterministic and not amenable
to refinement in general.

The other way around, there have been attempts to apply ownership systems to
refinement-based techniques as in B. Boulmé and Potet [9] have shown that the own-
ership policy of Boogie is a strict generalization of the verification of invariants in B.
More precisely, they have encoded the component language of B (without refinement)
in a pseudo-Boogie language, and have shown that the VCs induced by this encod-
ing imply those of B. Moreover, syntactic restrictions of B that limit data-sharing be-
tween components can be safely relaxed using a Boogie approach. However they have
only considered B without refinement. By extending their encoding using a pack with

166 A. Tafat, S. Boulmé, and C. Marché

statement, we can also derive the VCs of B for a subset of B limited at one level of
refinement. However, extending this to several levels of refinements is not obvious.

Our refinement methodology combines modular techniques for (1) ensuring invariant
preservation (ownership) and (2) checking side effects. Although such a combination
was already said possible in the past [20], it seems strange that to the best of our knowl-
edge, no tool currently propose both, e.g., Spec# has ownership but no datagroups,
whereas ESC/Java2 has datagroups but no ownership (more precisely, ownership con-
structs are parsed and typechecked by ESC/Java2, but are not taken into account in the
VC generation).

Datagroups provide quite a simple technique to check side-effects, in particular be-
cause it naturally fits in a standard weakest precondition calculus in classical first-order
logic. It is clearly interesting to investigate more recent approaches like separation
logic [26], dynamic frames, or region-based access control [28,29,3].

In this paper we choose that model fields are algebraic data types because it is handy
for deductive verification. However our refinement technique is certainly usable with
immutable objets as models, more suitable for runtime verification; such as by ap-
proaches of Darvas [15] which map model classes to algebraic theories.

Acknowledgments. We thank Marie-Laure Potet, Wendi Urribarrì, Christine Paulin and
others CeProMi members for their fruitful discussions on this work.

References

1. Abrial, J.-R.: The B-Book, assigning programs to meaning. Cambridge University Press,
Cambridge (1996)

2. Back, R.-J., von Wright, J.: Refinement Calculus: A Systematic Introduction. Springer,
Heidelberg (1998)

3. Banerjee, A., Naumann, D.A., Rosenberg, S.: Regional logic for local reasoning about global
invariants. In: Ryan, M. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 387–411. Springer,
Heidelberg (2008)

4. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification of object-
oriented programs with invariants. Journal of Object Technology 3(6), 27–56 (2004)

5. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A Modular
Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg
(2006)

6. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An Overview. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

7. Baudin, P., Filliâtre, J.-C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL: ANSI/ISO
C Specification Language (2008), http://frama-c.cea.fr/acsl.html

8. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: A successful application of B
in a large project. In: Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp.
369–387. Springer, Heidelberg (1999)

9. Boulmé, S., Potet, M.-L.: Interpreting invariant composition in the B method using the spec#
ownership relation: A way to explain and relax B restrictions. In: Julliand, J., Kouchnarenko,
O. (eds.) B 2007. LNCS, vol. 4355, pp. 4–18. Springer, Heidelberg (2006)

http://frama-c.cea.fr/acsl.html

A Refinement Methodology for Object-Oriented Programs 167

10. Breunesse, C.-B., Poll, E.: Verifying JML specifications with model fields. In: FTfJP 2003
(2003)

11. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M., Poll,
E.: An overview of JML tools and applications. International Journal on Software Tools for
Technology Transfer (2004)

12. Charles, J.: Adding native specifications to JML. In: FTfJP 2006 (2006)
13. Cheon, Y., Leavens, G., Sitaraman, M., Edwards, S.: Model variables: cleanly supporting

abstraction in design by contract. Softw. Pract. Exper. 35(6), 583–599 (2005)
14. Cok, D.R., Kiniry, J.R.: ESC/Java2: Uniting eSC/Java and JML. In: Barthe, G., Burdy, L.,

Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362, pp. 108–128.
Springer, Heidelberg (2005)

15. Darvas, A.P.: Reasoning About Data Abstraction in Contract Languages. PhD thesis, ETH
Zurich (2009)

16. Filliâtre, J.-C., Marché, C.: Multi-prover verification of C programs. In: Davies, J., Schulte,
W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 15–29. Springer, Heidelberg
(2004)

17. Filliâtre, J.-C., Marché, C.: The why/Krakatoa/Caduceus platform for deductive program
verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 173–177.
Springer, Heidelberg (2007)

18. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges for se-
quential object-oriented programs. In: Formal Aspects of Computing (2007)

19. Leino, K.R.M.: Data groups: Specifying the modification of extended state. In: OOPSLA
1998, pp. 144–153 (1998)

20. Leino, K.R.M., Müller, P.: A verification methodology for model fields. In: Sestoft, P. (ed.)
ESOP 2006. LNCS, vol. 3924, pp. 115–130. Springer, Heidelberg (2006)

21. Leino, K.R.M., Nelson, G.: Data abstraction and information hiding. ACM Trans. Prog.
Lang. Syst. 24(5), 491–553 (2002)

22. Leino, K.R.M., Poetzsch-Heffter, A., Zhou, Y.: Using data groups to specify and check side
effects. In: PLDI 2002. ACM, New York (2002)

23. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program. Lang.
Syst. 16(6), 1811–1841 (1994)

24. Morgan, C.: Programming from specifications, 2nd edn. Prentice Hall International (UK)
Ltd., Englewood Cliffs (1994)

25. Parkinson, M.: Class invariants: The end of the road. In: IWACO 2007 (2007),
http://www.cs.purdue.edu/homes/wrigstad/iwaco/

26. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: 17h Annual
IEEE Symposium on Logic in Computer Science. IEEE Comp. Soc. Press, Los Alamitos
(2002)

27. Tafat, A., Boulmé, S., Marché, C.: A refinement approach for correct-by-construction object-
oriented programs. Technical Report RR-7310, INRIA (2010)

28. Talpin, J.-P., Jouvelot, P.: Polymorphic type, region and effect inference. Journal of Func-
tional Programming 2(3), 245–271 (1992)

29. Tofte, M., Talpin, J.-P.: Region-based memory management. Information and Computa-
tion 132(2), 109–176 (1997)

30. Zee, K., Kuncak, V., Rinard, M.: Full functional verification of linked data structures. In:
PLDI 2008, pp. 349–361. ACM Press, New York (2008)

http://www.cs.purdue.edu/homes/wrigstad/iwaco/

A Dynamic Logic for Unstructured Programs
with Embedded Assertions

Mattias Ulbrich

Karlsruhe Institute of Technology
Institute for Theoretical Computer Science

D-76128 Karlsruhe, Germany
ulbrich@kit.edu

Abstract. We present a program logic for an intermediate verification
programming language and provide formal definitions of its syntax and
semantics. The language is unstructured, indeterministic, and has em-
bedded assertions. A set of sound rewrite rules which allow symbolic
execution of programs is given. We prove the soundness of three infer-
ence rules using invariants which can be used to deal with loops during
the verification.

1 Introduction

The purpose of deductive software verification is to formally prove that a piece
of code in a particular programming language behaves as specified. This can
be done on the level of the programming language or after a translation to an
intermediate verification language. In this paper, we will consider a minimalistic,
general intermediate verification language that covers the essential features of
established intermediate languages and is close to Boogie [10]. We present a
program logic in the style of first-order dynamic logic (DL).

DL is a program logic which embeds pieces of code within formulas. In its
original presentation [9] by Harel et al., a code fragment π in a structural lan-
guage gives rise to a modality [π] which can be used as a prefix to a formula φ.
The result is the formula [π]φ which is true if and only if φ holds in every state
in which the execution of π terminates. The Hoare triple {ψ}π{φ} can hence be
written as ψ → [π]φ in DL. Since every intermediate step of a symbolic execu-
tion in DL is a formula itself, this type of verification allows the alternation of
symbolic execution and the application of deductive inference rules. Therefore,
symbolically stepping through a program provides further insight into a process
which usually happens hidden in the verification condition generator. This is
not only helpful for finding mismatches between specification and implementa-
tion, but also particularily valuable when experimenting with new modelling or
translation techniques. Other approaches use weakest precondition (wp) calculi
to automatically generate first order verification conditions. In the end, auto-
matic generation and proving of first-order verification conditions as done by
these approaches is certainly preferable, but we believe that, in the present state
of research, the possibility of interaction is a valuable factor.

B. Beckert and C. Marché (Eds.): FoVeOOS 2010, LNCS 6528, pp. 168–182, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Dynamic Logic for Unstructured Programs with Embedded Assertions 169

An intermediate verification language provides – like the intermediate rep-
resentation for compilers – a common verification platform for different pro-
gramming languages and specification techniques. If it is general enough, many
programming languages can be translated to it, thereby decoupling the semantics
of the source language from the actual verification process.

The design of the present intermediate language requires considerable adap-
tations of the original DL. Moreover, we give a set of sound rewrite rules which
allow symbolic execution of programs, and prove the soundness of three inference
rules which can be used to deal with loops using invariants.

We present the dynamic logic in Sect. 2. The rewrite rules used to symboli-
cally execute programs in formulas are given in Sect. 3. Gentzen-style inference
rules for the treatment of loops are presented and proved correct in Sect. 4. An
overview of related work in Sect. 5 and conclusions in Sect. 6 wrap up the paper.

2 Syntax and Semantics

In this section, we present the syntax and semantics of unstructured dynamic
logic (USDL). It is built around a minimalistic intermediate verification language
which is unstructured, indeterministic and contains embedded assertions. The
logic extends untyped first-order predicate logic, but the approach can easily
be transferred to sorted logics, the issue of types is orthogonal to the novelties
presented here. For instance, the polymorphic type system presented in [11] could
be used.

Unlike in DL where a program π can be used as a prefix [π] to a formula, in
USDL π and a natural number n induce an atomic program formula [n; π] which
is not prefix to another formula but a formula on its own. The number n is an
explicitly denoted program pointer referring to the currently active statement
in π. The conditions that we want to check are embedded within π. This is
done because it is not always the case that we only need to examine whether
properties hold after the execution, but often want to ensure that properties
hold at certain points during the execution of a program.

For instance, if a program contains a division expression 1/x, we need to
verify that x is different from 0 to ensure its correctness. This check cannot be
postponed to the after state of the entire code, but needs to performed in the
state in which the expression is evaluated. This can be addressed by inserting
an assertion at the appropriate place into the intermediate code.

2.1 Syntax

USDL is an extension of first order logic with two additional modal opera-
tors. Besides the atomic program formulas, we introduce the concept of updates
which are explicitly denoted value assignments to record the effect of assignment
statements.

Definition 1 (Signature). A USDL-signature Σ = (Var, Fct, PVar, Prd, α) is
a 5-tuple with

170 M. Ulbrich

Formula ::= Formula
(∧ ∣∣ ∨ ∣∣ →)

Formula
| ¬ Formula | true | false
| (∀ | ∃)Var . Formula
| Prd | Prd (TermList) (*)
| { Update } Formula
| [NaturalNumber ; Program]
| [[NaturalNumber ; Program]]

Term ::= Var | Fct | Fct (TermList) (*)
| { Update } Term

TermList ::= Term | TermList , TermList

Update ::= PVar := Term | Update ‖ Update

Program ::= Statement | Program , Program

Statement ::= PVar := Term
| assert Formula | assume Formula
| havoc PVar | goto NaturalNumber

| goto NaturalNumber NaturalNumber

(*) if the length of the term list coincides with the arity of the symbol

Fig. 1. Formulas, Terms and Programs

– Var: the set of logical variable symbols
– Fct: the non-empty set of function symbols
– PVar ⊆ Fct: the set of program variables
– Prd: the set of predicate symbols
– α : Fct∪Prd→ N: the arity mapping
– α(pv) = 0 for any program variable pv ∈ PVar

The syntax of terms, formulas and programs is given by the grammar in Fig. 1.
For predicate and function application expressions, we additionally insist on a
correct number of argument terms. If a predicate or function symbol s has no
arguments, we write s instead of s(). Terminal symbols are set in italics and
terminal literals in bold.

Definition 2 (Terms and Formulas). The set TermΣ of all terms in the
signature Σ is the set of expressions which can be produced from the non-terminal
“Term” in Fig. 1.

The set FormΣ of all formulas in the signature Σ is the set of expressions
which can be produced from the non-terminal “Formula” in Fig. 1.

Let us for an example consider a USDL-signature Σ which contains a program
variable x ∈ PVar, a unary predicate symbol pos ∈ Prd and a unary function
symbol suc ∈ Fct. The expression

[0; goto 1 4, assume ¬pos(x), x := suc(x), goto 0,

assume pos(x), assert pos(x)] (1)

is then a valid atomic program formula in FormΣ . In Ex. 1 we show how this
formula can be used for the symbolic execution of the contained program.

A Dynamic Logic for Unstructured Programs with Embedded Assertions 171

Definition 3 (Unstructured programs). The set of all unstructured pro-
grams ΠΣ is the set of expressions that can be produced from the non-terminal
“Program” in Fig. 1. Terms and formulas that are embedded in unstructured
programs must not have free variables.

For a given program π ∈ ΠΣ, len(π) ∈ N denotes the length (i.e., the number
of statements) of π. For a natural number i ∈ N, the selection π[i] refers to the
i-th statement in π if i < len(π) and refers to the statement “assume false” if
i ≥ len(π).

Unlike in dynamic logic for structured programs, we need to include statements
located before the active statement in the modalities. This is because goto state-
ments may refer to any position in the program, before or after the current one.
We employ an explicit program counter indicating current statement.

2.2 Semantics

We start the definition of our model-theoretic semantics by repeating the defi-
nition of first order structures.

Definition 4 (Domain, Interpretation, Variable assignment). A domain
D is a non-empty set. For a given domain D and a signature Σ an interpretation
I is a mapping assigning a meaning to every predicate and function symbol in
Σ, such that

– I(f) : Dα(f) → D for any f ∈ Fct
– I(p) ⊆ Dα(p) for any f ∈ Prd

A variable assignment β : V ar → D is a mapping from the logical variables to
elements in the domain.

The set of all interpretation functions for a given D and Σ is denoted by IΣ,D.

For the notion of the state of an execution of an unstructured program, we need
a way to refer to the current position within the sequence of statements, i.e. a
program counter pointing to the active statement.

Definition 5 (State). For a signature Σ and a domain D, the set of states
SΣ,D := IΣ,D × N is the Cartesian product of interpretations (current variable
state) and natural numbers (current position in the program).

We explicitly encode the current statement number within the execution state
as it simplifies the definition of state transitions considerably if the execution
environment includes a reference to the statement to be executed next.

Definition 6 (Function overriding). Given a function f : A → B and values
a ∈ A and b ∈ B the function overriding f b

a : A→ B is the function with

f b
a(x) =

{
b if x = a

f(x) otherwise
.

172 M. Ulbrich

An update syntactically describes a change of the evaluation state. Applying an
update to an evaluation context overrides the interpretation function. Therefore,
in the upcoming definition and for an update c1 := t1‖ . . . ‖cn := tn and an
interpretation I we use the notation

Ic1:=t1‖...‖cn:=tn := ((IvalI,β(t1)
c1) . . .)valI,β(tn)

cn

to denote the interpretation in which the symbols c1, . . . , cn have their values
updated.

Definition 7 (Term evaluation). For a given signature Σ, a domain D, an
interpretation I and a variable assigment β, the term valuation valI,β : TermΣ →
D is defined by:

– valI,β(x) = β(x) if x ∈ Var,
– valI,β(f(t1, . . . , tk)) = I(f)(valI,β(t1), . . . , valI,β(tk))

if f ∈ Fct with α(f) = k and t1, . . . , tk ∈ TermΣ,
– valI,β({U}t) = valIU ,β(t)

For the definition of the semantics of atomic program formulas, the semantics of
programs has to be defined. The next two definitions for programs and formulas
(Def. 8 and 9) depend on each other and have to be read as one. It may appear
counter-intuitive that in Def. 8, the semantics of assert and assume statements
seem identical. The difference is that a trace is considered successful if it fails at
an assumption but unsuccessful for a failed assertion.

Definition 8 (Program execution, Traces). The program execution func-
tion Rπ : SΣ,D → P(SΣ,D) is a mapping that for a program π ∈ ΠΣ assigns to
every state a set of successor states. Its result depends on the currently active
statement.

Let s = (I, n) ∈ SΣ,D be a state and β a variable assignment. Then the value
of Rπ(s) is according to the following table:

If π[n] matches and then Rπ(s) =
c := t {(IvalI,β(t)

c , n + 1)}
assert φ I, β |= φ {(I, n + 1)}
assert φ I, β �|= φ ∅
assume φ I, β |= φ {(I, n + 1)}
assume φ I, β �|= φ ∅
goto m {(I, m)}
goto m k {(I, m), (I, k)}
havoc c {d ∈ D • (Id

c , n + 1)}

– We call a sequence (s0, s1, . . . , sr) (or (s0, s1, . . .) resp.) with si ∈ S and
si+1 ∈ Rπ(si) for i ∈ {0, ..., r− 1} (resp. i ∈ N) a finite (infinite) trace of π
starting in s0.

– We call a finite trace maximal if Rπ(sr) = ∅.
– A maximal finite trace (s0, s1, . . . , sr) with sr = (Ir, nr) is called successful

if π[nr] is not an “assert ...” statement.

A Dynamic Logic for Unstructured Programs with Embedded Assertions 173

Unstructured programs are indeterministic, hence, there may be no, one or many
successor states in Rπ(s) to a state s. Two types of indeterminism can be distin-
guished: control indeterminism (induced by goto statements with two targets)
and data indeterminism (induced by havoc statements which take many possible
assignments into account).

Definition 9 (Formula evaluation). For given Σ, I, β, π and D, the validity
of a formula φ ∈ FormΣ under the given parameters is defined as:

– I, β |= true and I, β �|= false
– I, β |= φ (∧| ∨ |→)ψ iff I, β |= φ and/or/implies I, β |= ψ.
– I, β |= (∀|∃)x.φ iff I, βd

x |= φ for every/some d ∈ D.
– I, β |= p(t1, . . . , tk) iff (valI,β(t1), . . . , valI,β(tk)) ∈ I(p) for a predicate

symbol p ∈ Prd with α(p) = k and t1, . . . , tk ∈ TermΣ.
– I, β |= {U}φ iff IU , β |= φ
– I, β |= [n; π] iff every maximal finite trace (I, n), . . . , (Ik, nk) is successful.
– I, β |= [[n; π]] iff I, β |= [n; π] and there is no infinite trace of π starting in

(I, n).

Let us revisit example (1) considering an interpretation with the domain D = Z,
I(succ)(n) = n + 1 and I(pos) = N. If I(x) = −1, we have the maximal trace
(I, 0), (I, 4) which is successful since the last considered statement π[4] was not
an assertion but an assumption. We are not interested in a further execution of
this trace and regard it as “not relevant” since an assumption has proved to be
false.

USDL possesses expressive means to model both partial and total correctness
of code pieces using the operators [·] and [[·]]. Please note that they are not dual
to another like 	 and ♦ in modal logics or [·] and 〈·〉 in classical dynamic logic
are.

The programming language of USDL has a number of points in common
with regular programs upon which the while-language in dynamic logic has been
defined in [9]. The program operators ∪ (nondeterministic choice) and ∗ (nonde-
terministic repetition) are closely related to the indeterministic goto statement.
The statement assume φ has the same semantics as the regular program φ?. Harel
et al. also propose an extension with wildcard assignments like x :=? which is
the same as the statement havoc x.

Hence, we can use the kinds of statement defined in this document to define
compound structures as macros like Harel did using regular programs. Formula
(1) could then be reformulated as

[0; while ¬pos(x) do x := suc(x) end; assert pos(x)] (2)

using such a macro for the while-do-end loop. This formula embeds in a formula
the meaning of the Hoare triple {true}while ¬pos(x) do x := suc(x) end{pos(x)}.

3 Symbolic Execution

We now present a set of rewriting rules which allow us to symbolically execute
an unstructured program step by step, either interactively or in an automatic

174 M. Ulbrich

proof process. Unlike wp-calculi which traverse programs from back to front, we
process programs in the order of an execution, beginning at the first statement.
The update mechanism allows us to record the state changes we collect during
the execution. This forward treatment is particularly helpful if the execution is
part of an interactive verification process since the verifier can then track more
conveniently what has happened.

A rewrite rule l� r allows the calculus to replace any occurrence of l within
a formula with r to obtain an equivalent formula. Such a rule is sound if the
formula l ↔ r is valid. A rule schema of the form C(X) =⇒ l(X)� r(X) with
a set of schematic variables X is an abbreviation for the set {l(x)� r(x) | C(x)}
of all instances for which the (meta) condition C holds.

Theorem 1 (Symbolic execution). The following rules are sound rewrite
rules for the symbolic execution of unstructured programs.

π[n] = c := v =⇒ [n; π]� {c := v}[n + 1; π] (3)
π[n] = havoc c =⇒ [n; π]� ∀x.{c := x}[n + 1; π] (4)
π[n] = goto m =⇒ [n; π]� [m; π] (5)

π[n] = goto m k =⇒ [n; π]� [m, π] ∧ [k; π] (6)
π[n] = assume φ =⇒ [n; π]� φ → [n + 1; π] (7)
π[n] = assert φ =⇒ [n; π]� φ ∧ [n + 1; π] (8)

Proof. The soundness proofs for these rules are straightforward. We exemplarily
provide them for (7) and (8). The basic argument is the same for all cases: We
reduce the case that all finite traces starting in (I, n) must be successful to the
case that all finite traces from (I ′, n′) ∈ Rπ(I, n) are successful and encode the
knowledge on I ′ either into an update, an implication or conjunction. The state
successor relation Rπ of assert and assume are identical, but their semantics differ
due to the definition of successful traces.

assume: If I, β �|= φ, then Rπ(I, n) = ∅ and the only trace beginning in (I, n)
ends in an assume statement and, hence, is successful. If I, β |= φ, the truth
value depends entirely on the traces starting in (I, n + 1), therefore, on
[n + 1; π].

I, β |= [n; π]
⇐⇒ every finite trace beginning in (I, n) is successful
⇐⇒ I, β �|= φ or

I, β |= φ and every finite trace beginning in (I, n + 1) is successful
⇐⇒ I, β �|= φ or every finite trace beginning in (I, n + 1) is successful
⇐⇒ I, β |= φ → [n + 1; π]

assert: If I, β �|= φ, the only trace beginning in (I, n) ends in an assert statement
and, hence, is not successful. The other case depends again on the traces from
(I, n + 1):

A Dynamic Logic for Unstructured Programs with Embedded Assertions 175

I, β |= [n; π]
⇐⇒ every finite trace beginning in (I, n) is successful
⇐⇒ I, β |= φ and every finite trace beginning in (I, n + 1) is successful
⇐⇒ I, β |= φ ∧ [n + 1; π] �	

The presented rules execute one single step and reduce a formula to one encoding
all possible follow-up traces. This implies that the traces of the atomic program
formulas on the left-hand-side are finite if and only if all traces of all modalities
on the right-hand-side are finite. This observation leads to

Corollary 1. We obtain sound rewrite rules if we replace every occurrence of a
modality [n; π] by the corresponding terminating counterpart [[n; π]] in (3)–(8).

Example 1. Let us now reconsider formula (1) which is [0, π] for the program

π =
(
goto 1 4; assume ¬pos(x); x := suc(x); goto 0; assume pos(x); assert pos(x)

)
.

By repeatedly applying the calculus rules (3)–(8), we can execute the program,
statement by statement resulting in the following chain of equivalent formulas.

[0; π] � [1; π] ∧ [4; π]
2×� (¬pos(x) → [2; π]) ∧ (pos(x) → [5; π])
2×� (¬pos(x) → {x := suc(x)}[3; π]) ∧ (pos(x) → (pos(x) ∧ [6; π]))
2×� (¬pos(x) → {x := suc(x)}[0; π]) ∧ (pos(x) → (pos(x) ∧ false → [7; π]))

Since in the last step, the index 6 is outside the index range of π, [6, π] is
equivalent to false → [7, π] which is obviously true. [3, π] is the same as [0, π]
and a loop is entered. The next section covers how we deal with such situations.
This is a very simple example. In larger, more complex programs, one can learn
more about the verification condition if one can interact during its generation.

4 Invariant Rules

The rewrite rules in Thm. 1 and Cor. 1 allow the symbolic execution of an un-
structured program in a stepwise manner. If a program contains no loops, sym-
bolic execution eventually results in a formula free of atomic program formulas.
However, as soon as the program flow allows a statement to be executed more
than once during the run of a program, these rules can no longer remove atomic
program formulas entirely. A calculus for symbolic execution requires rules using
loop invariants to resolve programs with loops. Such rules will, naturally, closely
resemble invariant rules which are used to resolve loops in structured programs.

First, we give the simple version of an invariant rule. Then, a rule involving
termination is defined and, finally, a rule which preserves more context informa-
tion. The latter two can canonically be combined to a rule with termination and
context preservation.

176 M. Ulbrich

0: goto 2
1: y := x
2: goto 1

π

0: assert φ
1: assume φ

τ
=⇒

0: goto 4
1: assert φ
2: assume φ
3: y := x
4: goto 1
π � (τ, 1)

Fig. 2. Example of a program insertion

4.1 Program Modifications

In classic dynamic logic, the invariant rule introduces new proof goals on the
loop body, i.e. on a program which is a strict subprogram of the original code.
We are not able to reduce the code to a subset of statements in USDL since no
restriction is imposed on the targets of goto statements and any statement, also
outside the loop body, may be addressed.

We need, however, a means to reduce the number of traces of a loop body
to one. This is achieved by inserting new statements into the program under
inspection. The insertion is problematic, however, since index changes may make
goto statements point to wrong targets afterwards. To compensate for this effect,
we introduce an offset correction function off k

m which increments the target
indices by k if they lie above the insertion point m.

off k
m(a) =

{
a if a ≤ m

a + k otherwise

We also apply off k
m to statements. Here, it operates only on the target indices of

goto statements and behaves like the identity function on all other statements.

Definition 10 (Statement insertion). For programs π, τ ∈ Π and an arbi-
trary index m ∈ N, the insertion π � (τ, m) ∈ Π of τ into π at position m is
defined as

(
π � (τ, m)

)
[i] =

⎧⎪⎨⎪⎩
off len(τ)

m (π[i]) for i < m

τ [i−m] for m ≤ i < m + len(τ)
off len(τ)

m (π[i− len(τ)]) for m + len(τ) ≤ i

.

τ is not subject to an offset correction since the programs we use for insertion
here will not contain goto statements.

Fig. 2 shows a sample program insertion. The program τ = (assert φ; assume φ)
is inserted into the program π = (goto 2; y := x; goto 1) at position 1. Please note
that in statement 4 : goto 1 of the resulting program, the target has not been
incremented and still refers to the insertion point even though the statement to
which it points has been changed.

Due to the index adaption off k
m, a trace for π which does not pass through the

insertion point m induces a trace for the program after insertion (of course with

A Dynamic Logic for Unstructured Programs with Embedded Assertions 177

possibly adapted statement indices). The only way to enter the inserted state-
ment sequence is to reach statement m, either as a goto target or by “walking”
into it. Hence, if m is not part of the trace, we can observe:

Property 1. For any trace (I0, k0), . . . , (Ir, kr) with ki �= n for 0 < i ≤ r, the
sequence (I0, k

′
0), . . . , (Ir , k

′
r) with k′

i = off len(τ)
n is a trace for π � (τ, n).

The rules we develop in this section are inference rules for a sequent calculus. A
sequent is of the form Γ � Δ with antecedent Γ and the succedent Δ finite sets of
formulas. The sequent has the same truth value as the formula (

∧
Γ)→ (

∨
Δ).

One problem that is not present in structured dynamic logic but with which
we have to cope here, is the detection of loops. In classic dynamic logic, a loop
can be identified syntactically as a statement initiated with the keyword “while”.
We do not have such landmarks in an unstructured program. A loop becomes a
loop because of a goto statement targeting backward. Not every such statement,
however, is necessarily an indicator for a loop. Therefore, we formulate our in-
variant rules in such a manner that they can be applied to every statement. Of
course, the application is not equally expedient for all execution states, and it is
the task of either a static analysis or the translation mechanism to identify (and
to mark) the points at which an invariant rule should be applied.

4.2 Simple Invariant Rule

The general idea in the upcoming invariant rules is to change a program in such
a way that a loop becomes dissected. At the beginning of the loop, an invariant
is assumed which has to be asserted whenever the initial statement is reached
again during symbolic execution. For that purpose we insert the statements
(assert φ; assume false) at the current position.

Theorem 2. The rule

Γ � {U}ψ, Δ ψ � [n + 2; ρ1]

Γ � {U}[n; π], Δ

with ρ1 = π � ((assert ψ; assume false), n) is a sound rule for any formula ψ.

This rule has two premisses: The first provides evidence that the invariant ψ
holds initially when arriving in the current state. The second premiss requires
that in a state in which the invariant holds, the execution of the changed program
is successful. Please note that the antecedent and succedent contexts Γ and Δ
are not present in the second premiss. We will address this issue in Thm. 4.

This rule is similar to the invariant rule for a dynamic logic for a simple ‘while’-
language. One difference is that, here, we have two rather than three premisses
to establish. This is due to the fact that multiple assertions are embedded into
the program ρ1 and the second premiss [n + 2; ρ1] plays two roles: It proves the
absence of assertion violations after the loop (the ’use case’ of ψ), and it ensures
that the loop body preserves ψ establishing it as an invariant.

178 M. Ulbrich

Ik0
n

· · · Ik1−1
sk1−1

Ik1
n

· · · Ikr−1−1
skr−1−1

Ikr−1
n

· · · Ikr
skr

Fig. 3. Chopping a trace into subtraces

Proof. We can without loss of generality1 assume that Δ = ∅. Moreover, we may
assume that (A)

∧
Γ → {U}ψ and (B) ψ → [n + 2; ρ1] are valid formulas. For

an arbitrary interpretation2 I, we need to show that I |=
∧

Γ → {U}[n; π]. If
I �|=

∧
Γ , the proof is completed. Thus, let I |=

∧
Γ . It remains to be shown that

I |= {U}[n; π]. Setting Ik0 := IU yields, equivalently, Ik0 |= [n; π].
Let us look at an arbitrary maximal finite trace now. We can divide this

trace in “loops to n”, i.e., we split the trace into r subsequences such that every
occurrence of n starts a new subtrace. For any 0 ≤ i < r, the state (Iki , n)
initiates a subtrace. The last trace ends in state (Ikr , skr). See Fig. 3 for an
illustration.

We now claim that for every first state (Iki , n) of a subtrace, Iki |= ψ holds and
show this by induction on 0 ≤ i < r. For Ik0(= IU), this is a simple consequence
of the validity of (A). Now, we assume that Iki |= ψ for some 0 ≤ i < r − 1.

For the trace (Iki , n), . . . , (Iki+1−1, ski+1−1), apart from the first state, no state
is in statement n: it matches the requirements of Prop. 1, and, thus, we know
that (I0, n + 2), . . . , (Iki+1−1, off 2

n(ski+1−1)) is a trace for program ρ1. From the
original trace we know that (Iki+1 , n) is a successor state to the last state of this
trace. Furthermore, ρ1[n] = assert ψ and every maximal finite trace for ρ1 is
successful by assumption (B). This implies directly that the assert-condition is
true, i.e. that Iki+1 |= ψ.

We have seen now that every subtrace begins in an interpretation in which ψ
holds. In particular, we have Ikr−1 |= ψ. The last subtrace (Ikr−1 , n), . . . , (Ikr , skr)
is maximal (since the entire trace was chosen maximal). Statement n does not
appear after the first state of this trace. We can therefore apply Prop. 1 again
and obtain a trace (Ikr−1 , n + 2), . . . , (Ikr , off 2

n(skr)) which is maximal again.
Due to assumption (B), this trace must be successful, implying that the entire
trace is successful. �	

4.3 Invariant Rule with Termination

Thm. 2 is not sufficient if we want to incorporate the question of termination into
the verification process. The rule for the terminating modality [[·]] introduces a
variant term whose value strictly decreases from iteration to iteration. We assume
there is a binary predicate symbol ≺∈ Prd whose interpretation is a well-founded

1 There are first order inference rules that allow us to move the negation of all formulas
in Δ to the antecedent Γ .

2 For the sake of readability, we leave variable assignments aside in this section.

A Dynamic Logic for Unstructured Programs with Embedded Assertions 179

relation. With the aid of this predicate symbol, we can formulate an invariant
rule which includes termination.

Theorem 3. The rule

Γ � {U}ψ, Δ ψ � {nc := var}[[n + 2; ρ2]]

Γ � {U}[[n; π]], Δ

with ρ2 = π � ((assert ψ ∧ var ≺ nc; assume false), n) is a sound rule for any
formula ψ, any term var, and a program variable nc which does not yet appear
elsewhere on the sequent.

Proof. Partial correctness [n; π] is a direct consequence of Thm. 2 since we made
the program modification stronger requiring ψ ∧ var ≺ nc to hold instead of
only ψ.

Like in the proof above, we fix an interpretation I with I |=
∧

Γ and set
Ik0 := IU . It remains to be shown that there is no infinite trace for π starting
in (Ik0 , n). Assuming there is such an infinite trace, we could subdivide it into
subtraces such that every occurrence of the statement n initiates a new subtrace
like in the previous proof. We can use the induction from the proof of Thm. 2
to establish that for every first state (Iki , n) of a subtrace we have Iki |= ψ.

In case there are finitely many subtraces, the last subtrace
(
(Ikr−1 , n), . . .

)
must be infinitely long and does not pass through n. We have Ikr−1 |= ψ which
already contradicts the second premiss which forbids an infinite trace for π start-
ing in (Ikr−1 , n) (because it uses the operator for total modality).

In case of infinitely many subtraces, every subtrace is finite. For the first
states of the subtraces, we define vi := valIki

(var). If we take one beginning
state (Iki , n) with i > 0, we know that (*) Iki |= var ≺ nc since this formula
is part of the asserted loop invariant. As nc does not occur elsewhere on the
sequents and because of the semantics of the update nc := var, we get that nc
holds the value of var of the previous iteration, i.e. Iki(nc) = vi−1. This and
(*) imply that (vi−1, vi) ∈ I(≺). The sequence (v1, v2, . . .) would therefore be
an infinitely descending chain for I(≺) which cannot be since ≺ was chosen as
a well-founded relation. �	

4.4 Improved Invariant Rule

The major disadvantage of the rules in Thms. 2 and 3 is that the information
contained in Γ and Δ of the conclusion is not available in the second premiss.
There invariant ψ is the only formula in the antecedent of the sequent. If any of
the information encoded in Γ ∪Δ was needed to close the proof, it would have
to be implied by ψ and one would need to proof its validity.

We will provide an invariant rule which keeps the context Γ and Δ but sub-
jects those program variables which are touched during a loop iteration to a
generalisation. We can use the havoc statement to do this generalisation because
of (4).

180 M. Ulbrich

The rule follows the ideas of [3] where a context preserving invariant rule is
defined for a structured dynamic logic. The advantage is that more informa-
tion on the sequent remains available and does not need to be encoded in the
invariant.

Definition 11 (loop-reachable). A statement m is called loop-reachable from
n within a program π if there is a trace (Io, k0), (I1, k1), . . . such that

1. ko = n,
2. there is an index r ≥ 1 with kr = m, and
3. there is an index s > r with ks = n.

We denote this as reach(n, m, π).

We use the notion of reachability to define the set of possibly modified program
variables as

mod(n, π) :=
{

c

∣∣∣∣ there are m, c and t s.t. reach(n, m, π) and
(π[m] = havoc c or π[m] = c := t)

}
⊆ PVar .

Loop reachability can, in general, not be computed. The reachability of a state-
ment may depend on the satisfiability of an assumption statement earlier in the
execution path and this is undecidable. However, a static analysis can be used
to over-approximate mod(n, π).

The modified program ρ3 is now more complex. The first two statements have
the same intention as in Thm. 2 and the concluding assumption corresponds to
the formula ψ in the antecedent of the second premiss in Thm. 2. The remaining
statements need to be added to anonymise the values of those program variables
that are possibly changed by the execution of the loop body.

Theorem 4. The rule

Γ � {U}ψ, Δ Γ � [n + 2; ρ3], Δ

Γ � {U}[n; π], Δ

with

ρ3 = π � ((assert ψ; assume false; havoc r1; . . . ; havoc rb; assume ψ), n)

is a sound rule for any formula ψ and any finite set {r1, . . . , rb} with mod(n; π) ⊆
{r1, . . . , rb} ⊆ PVar.

Proof. Again, let Δ = ∅. We observe that the second premiss is (after a number
of steps of symbolic execution and simplification) equivalent to

Γ � ∀x1. . . . ∀xb.{r1 := x1‖ . . . ‖rb := xb}(ψ → [n + 2 + b + 1; ρ3])

which by construction (the inserted havoc and following assume statements can-
not be executed again) is equivalent to

Γ � ∀x1. . . .∀xb.{r1 := x1‖ . . . ‖rb := xb}(ψ → [n + 2; ρ1]) . (9)

A Dynamic Logic for Unstructured Programs with Embedded Assertions 181

For an interpretation I with I |=
∧

Γ , we know, because of the validity of the
premiss, that I makes the formula in (9) true. If an interpretation I ′ differs from
I at most on the values of the program variables r1, . . . , rb, then we have due to
the semantics of the quantifier and the updates that also

I ′ |= (ψ → [n + 2; ρ1]) .

For a trace for [n; π] (cf. Fig. 3) we observe that every statement before (Ikr−1 , n)
is loop-reachable from n. The program variables which are changed over this
trace are, hence, in mod(n, π) and, therefore, also among the {r1, . . . , rb}. This
implies that for all 0 ≤ i < r, the interpretation Iki coincides with I on the
required program variables and we obtain Iki |= (ψ → [n + 2; ρ1]) and, hence,
Iki |= [n + 2; ρ1] by induction from the proof of Thm. 2.

In particular we have Ikr−1 |= [n + 2; ρ1] for which we saw in the proof of
Thm. 2 that it implies that the entire trace is successful. �	

5 Related Work

While some verification tools (e.g., [2], [14]) take advantage of the greater trans-
parency of source code verification, most employ a special-purpose intermediate
language. The Why language [8] and the Forge Intermediate Representation
(FIR) [7], for instance, are used as the target languages by various tools. Also,
verification using the low level virtual machine (LLVM) format is a topic of on-
going research [13]. Boogie [6,10] is the most popular intermediate language and
is used as target language for various object-oriented and imperative source code
languages (incl. C#, Java, Dafny, Eiffel, . . .). Barnett and Leino [1] describe how
the Boogie verification condition generator breaks up loops using invariants in
a fashion similar to this work. In [12], Quigley defines a Hoare-style calculus for
Java bytecode. It includes a loop rule which is similar to the inference rules of
Sect. 4, but is more evolved due to the higher complexity of the Java bytecode.
Burdy and Pavlova describe a wp-calculus for Java bytecode in [5]. Therein,
loops are resolved by a code modification rendering the control flow acyclic prior
to the wp-calculation. HOL/Boogie [4], like this work, aims for a combination
of intermediate language and interactive verification. There, the generated ver-
ification conditions can be interactively proved; their generation, however, (i.e.,
the symbolic execution) remains inaccessible.

6 Conclusion

In this paper, we have presented a dynamic logic USDL for an unstructured
verification language. The logic differs from Harel’s logic as presented in [9]
as it contains the formulas to be verified embedded in the program code. We
have provided a model-theoretic semantics for USDL and calculus rules for the
symbolic execution of programs within USDL formulas. For the treatment of
loops, we have proved the soundness of three invariant rules.

182 M. Ulbrich

The presented calculus has been implemented in an interactive, rule-based
proof-of-concept tool which has been used to successfully conduct first experi-
ments on the benefits of interaction in verification with intermediate languages.

Acknowledgements. The author would like to thank Peter H. Schmitt for his
constructive comments which helped improve this paper.

References

1. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In:
Ernst, M.D., Jensen, T.P. (eds.) PASTE 2005, pp. 82–87. ACM Press, New York
(2005)

2. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

3. Beckert, B., Schlager, S., Schmitt, P.H.: An improved rule for while loops in deduc-
tive program verification. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS,
vol. 3785, pp. 315–329. Springer, Heidelberg (2005)

4. Böhme, S., Leino, K.R.M., Wolff, B.: HOL-boogie — an interactive prover for the
boogie program-verifier. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs
2008. LNCS, vol. 5170, pp. 150–166. Springer, Heidelberg (2008)

5. Burdy, L., Pavlova, M.: Java bytecode specification and verification. In: Liebrock,
L.M. (ed.) SAC 2006. ACM, New York (2006)

6. DeLine, R., Leino, K.R.M.: BoogiePL: A typed procedural language for checking
object-oriented programs. Technical Report MSR-TR-2005-70, Microsoft Research,
Redmond (2005)

7. Dennis, G., Chang, F.S.-H., Jackson, D.: Modular verification of code with SAT.
In: Pollock, L.L., Pezzè, M. (eds.) ISSTA 2006, pp. 109–120. ACM Press, New York
(2006)

8. Filliâtre, J.-C., Marché, C.: The why/Krakatoa/Caduceus platform for deduc-
tive program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173–177. Springer, Heidelberg (2007)

9. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
10. Leino, K.R.M.: This is Boogie 2 (2008), Manuscript KRML 178,

http://research.microsoft.com/~leino/papers.html

11. Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language:
Design and logical encoding. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 312–327. Springer, Heidelberg (2010)

12. Quigley, C.L.: A programming logic for java bytecode programs. In: Basin, D.,
Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 41–54. Springer, Heidelberg
(2003)

13. Sinz, C., Falke, S., Merz, F.: A precise memory model for low-level bounded model
checking. In: Huuck, R., Klein, G., Schlich, B. (eds.) SSV 2010 (2010)

14. Stenzel, K.: Verification of Java Card Programs. PhD thesis, University of Augs-
burg (2005)

http://research.microsoft.com/~leino/papers.html

JMLUnit: The Next Generation

Daniel M. Zimmerman and Rinkesh Nagmoti

Institute of Technology
University of Washington Tacoma
Tacoma, Washington 98402, USA

dmz@acm.org, rinkeshn@u.washington.edu

Abstract. Designing unit test suites for object-oriented systems is a
painstaking, repetitive, and error-prone task, and significant research has
been devoted to the automatic generation of test suites. One method for
generating unit tests is to use formal class and method specifications as
test oracles and automatically run them with developer-provided data
values; for Java code with formal specifications written in the Java Mod-
eling Language, this method is embodied in the JMLUnit tool and the
JUnit testing framework on which it is based. While JMLUnit can pro-
vide reasonable test coverage when used by a skilled developer, it suffers
from several shortcomings including excessive memory utilization dur-
ing testing and the need to manually write significant amounts of code
to generate non-primitive test data objects. In this paper we describe
JMLUnitNG, a TestNG-based successor to JMLUnit that can automat-
ically generate and execute millions of tests, using supplied test data of
only primitive types, without consuming excessive amounts of memory.
We also present a comparison of test coverage between JMLUnitNG and
the original JMLUnit.

1 Introduction

Unit testing has been an important validation technique in software development
processes for many years. In a typical unit testing process, a developer designs a
set (or suite) of unit tests and runs them on the system under test (SUT). Each
individual unit test is designed to demonstrate that some subset of the software
(the unit being tested) performs appropriate actions and generates appropriate
outputs given particular inputs and a particular starting state. The existence
of a comprehensive unit test suite provides evidence for the stability, reliability,
and security of the system, though it cannot guarantee the system’s correctness.

Unfortunately, designing test suites is a painstaking, repetitive, and error-
prone task, especially for large, complex software systems. Test developers can
easily overlook critical situations that need testing or develop a test suite with
poor coverage—that is, one that tests an insufficient fraction of a system’s code
or functionality. Moreover, the manual development and maintenance of test
suites (regardless of quality) represents a significant portion of the development
and maintenance costs for a complex software project.

B. Beckert and C. Marché (Eds.): FoVeOOS 2010, LNCS 6528, pp. 183–197, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

184 D.M. Zimmerman and R. Nagmoti

To address both the coverage and cost issues, there has been significant re-
search effort devoted to the automatic generation of high-coverage unit test suites
using techniques ranging from purely random test generation to the use of sym-
bolic execution to find critical execution paths. While some of these techniques
can provide reasonable test coverage at low cost, they all have various limitations
and have seen little adoption by software developers.

This work focuses on improving one particular unit test generation technique
that has been adopted by developers who use the Java Modeling Language (JML)
to specify their software systems, namely the specification-based test genera-
tion embodied in the JMLUnit tool and the JUnit testing framework on which
it is based. After providing some background information about unit testing,
JML, and JMLUnit, we describe the limitations of JMLUnit for testing complex
systems. We then address these limitations with JMLUnitNG, a successor to
JMLUnit based on the TestNG testing framework. Finally, we demonstrate our
improvements using coverage results from tests generated by both JMLUnit and
JMLUnitNG. The goals of this work are to make automated unit test generation
for JML-annotated Java programs more effective and easier for developers and,
more importantly, to provide a platform upon which to conduct experiments
with new test data generation techniques that are currently under development.

2 Background

2.1 Unit Testing

Unit testing is, essentially, the execution of individual components of a system
(the units) in specific contexts to see whether they generate expected results. A
single unit test has two main parts: the test data, which are the actual values
for software entities such as method parameters that will be used to set up the
state of the unit under test, and the test oracle, which is a piece of code that
determines whether the behavior of the unit is “correct” when it is set up with
the test data and executed. A given SUT typically requires many unit tests,
which are collectively called a test suite. The quality, or coverage, of a particular
test suite can be measured in several ways [16]; for example, code coverage is the
percentage of the executable code in the SUT that is actually executed when
running the test suite.

The simplest way to create unit tests is to rely on human judgment: a devel-
oper sits down with a piece of software, decides what test data should be used
and how to determine whether each test has passed or failed, and encodes this
information manually. Despite the fact that many techniques for automated test
data and test oracle generation have been developed over the last several years,
most unit test generation is still done by hand, even in large systems. For exam-
ple, the open-source Eclipse Development Platform1 contains several thousand
hand-written unit tests.

1 http://www.eclipse.org/

http://www.eclipse.org/

JMLUnit: The Next Generation 185

There are several ways to generate both test data and test oracles automat-
ically. One such way, the focus of this work, is embodied in the JMLUnit tool
(described in Section 2.3); we will briefly describe some others in Section 6.

2.2 The Java Modeling Language

The Java Modeling Language (JML) [13] is a specification language for Java
programs. It supports class and method contracts in a Design by Contract [14]
style, as well as more sophisticated properties up to and including full math-
ematical models of program behavior. Several tools work with JML, including
compilers, static checkers, test generators, and specification generators [6].

The Common JML tool suite is the original, and still most widely used, set
of JML tools. It supports Java language versions up to 1.4 and includes a type
checker (jml), a compiler (jmlc) that compiles JML annotations into runtime
checks, a runtime assertion checker (jmlrac), a version of Javadoc (jmldoc)
that generates documentation including JML specifications, and a unit testing
framework (JMLUnit, described below).

Support for modern Java (1.5 and later) syntax in JML—including generic
types, enhanced for loops, and annotations—is currently being developed in
OpenJML,2 based on the current OpenJDK3 codebase, and JMLEclipse,4 based
on the Eclipse Development Platform.

2.3 JMLUnit

JMLUnit [7] is a unit testing framework for JML-annotated code. It takes
advantage of JML runtime assertion checking (hereafter, RAC) to enable the
automatic construction of test oracles that classify tests into three categories:
successful (or passed), unsuccessful (or failed), and meaningless. Successful and
unsuccessful tests are familiar concepts to developers experienced in unit testing.
In the JMLUnit context, a successful test is one where a method is called and no
RAC errors occur; this means that the method conforms to its specification with
respect to that call. An unsuccessful test is one where a method is called with its
precondition satisfied and a RAC error occurs; this means that the method does
not conform to its specification, because once its precondition has been satisfied
it must execute correctly without violating any assertions.

Meaningless tests, on the other hand, are not likely to be familiar to most
unit testing practitioners. In the context of JMLUnit, a meaningless test is one
where a method is called without its precondition satisfied, causing a RAC error
before the method is executed. In JML (and other Design by Contract-based
specification techniques), a method call is explicitly permitted to generate any
result whatsoever when it is called without its precondition satisfied, ranging
from an unchanged system state to a catastrophic system failure. Since any

2 http://jmlspecs.svn.sourceforge.net/viewvc/jmlspecs/OpenJML/
3 http://openjdk.java.net/
4 http://jmlspecs.svn.sourceforge.net/viewvc/jmlspecs/JmlEclipse/

http://jmlspecs.svn.sourceforge.net/viewvc/jmlspecs/OpenJML/
http://openjdk.java.net/
http://jmlspecs.svn.sourceforge.net/viewvc/jmlspecs/JmlEclipse/

186 D.M. Zimmerman and R. Nagmoti

result of such a test must be acceptable by definition, there is no way for such
a test to fail; a test that cannot fail gives no useful information and is therefore
meaningless.

Of course, test oracles generated from the JML specifications present in the
SUT are necessarily limited by the scope of those specifications. Some JML spec-
ifications are not executable, so the runtime checker cannot catch all possible
specification violations (though the range of violations it can catch is extensive).
The more detailed and precise executable specifications exist for a method, the
better the ability of the generated test oracles to discern the correctness of that
method. Methods or classes with no executable specifications—that is, with only
informal specifications or with formal specifications that cannot be checked at
runtime—cannot be effectively tested using such test oracles. However, the prob-
lem of writing good executable class and method specifications, while extremely
important, is beyond the scope of this work; we proceed under the assumption
that good executable specifications are present in at least a reasonable fraction
of any system we intend to test.

In addition to constructing a test oracle for every method in the SUT, JML-
Unit also constructs a limited set of test data for each method. It uses a default
set of values for each primitive type in the Java language as well as the String
type, which it treats as a primitive type for testing purposes. For example, the
default set of values for the int type is {-1, 0, 1} and the default set of values
for the String type is {null, ""} ("" is the empty string). JMLUnit allows the
developer to augment these default sets with additional values; the test code it
generates has a clearly delineated “test data supply section” where the devel-
oper can specify data values to be used in addition to the defaults. Typically,
JMLUnit generates two test classes (one containing the test oracles and one con-
taining the test data) per class under test; however, there is also an option to
relegate the test data for all classes under test to a single “test data generator”
class. JMLUnit does no automatic test data generation for non-primitive types,
relying solely on the developer to write the code that generates such test data.

The tests generated by JMLUnit are executable by JUnit,5 one of the first and
most widely used automated test execution frameworks for Java-based systems.
They exhaustively use all combinations of the generated test data as parameters
to each method under test. For example, consider method m in Figure 1, which
takes one int parameter and one String parameter. JMLUnit has 3 default int
values and 2 default String values, so m will be called 6 times during testing if
only default values are used. If the default values are augmented with i additional
int values and s additional String values, m will be called (3 + i)(2 + s) times.

JMLUnit includes a custom JUnit test runner (jml-junit) that provides
detailed reporting of test results and correctly handles meaningless tests; JUnit
itself has no integrated concept of meaningless tests. The JUnit framework is
also integrated into the Eclipse IDE and JMLUnit tests can be run directly from
inside Eclipse, though doing so causes meaningless tests to be reported as passed
tests and the test results to be reported with less detail.

5 http://www.junit.org/

http://www.junit.org/

JMLUnit: The Next Generation 187

public class Exemplar {

public Exemplar(String s0, String s1, String s2, String s3,

byte b, char c, Other o, Thing t) {

// constructor body omitted

}

public int m(int one, String two) {

// method body omitted

}

}

Fig. 1. An exemplar of a Java class skeleton

3 Shortcomings of JMLUnit

In the hands of a skilled developer, JMLUnit can generate tests with good cov-
erage; however, it has several limitations that make it somewhat impractical to
use for large, complex systems. One of these is that it does not attempt to au-
tomatically generate non-primitive test data, leaving that task entirely to the
developer. This requires the developer to manually write methods that return
specific test objects in response to specific requests. In its generated test classes,
JMLUnit provides skeletons for these methods, which are intended to return
specific test data objects indexed by integers.

Consider class Exemplar in Figure 1, which has a constructor with the same
signature as one we used in our experiments. When JMLUnit generates tests
for the Exemplar constructor, it creates a method to provide objects of class
Thing for the last constructor parameter. The developer must fill in the body of
that method so that, whenever JMLUnit requests the Thing with index n, the
method returns whatever the developer has decided the nth Thing should be. In
most cases, it is important that the test object be a fresh copy, because the order
in which tests are run is not known a priori and reuse of test objects can cause
test results to unintentionally depend on the order in which the tests are run.
Similarly, it is important that the test objects be constructed deterministically,
because otherwise the test results might vary across test runs even if nothing
in the SUT has changed. This leads to an implementation style where data
generation methods are large switch statements, with the developer writing
code in each case of the switch statement to generate a single test object; in
fact, the skeleton code generated by JMLUnit is exactly such a switch statement
with a default case that generates no test data. Such code requires considerable
developer effort both to write and to maintain.

In addition to requiring data generation methods as above, JMLUnit does not
provide a reasonable way to specify distinct test data sets for distinct contexts.
For the Exemplar above, JMLUnit generates and provides extension points for
String, char and byte data sets, as well as providing extension points for the
developer to generate data for Other and Thing; however, it only provides one
such data set and extension point for each type. Thus, if the 4 String parame-
ters s0 . . . s3 have significantly different requirements (e.g., s0 must be parsable

188 D.M. Zimmerman and R. Nagmoti

as a number while s2 must be a capitalized last name with certain length re-
strictions), the developer must add test data to the single String data set that
satisfies all these requirements. This results in many meaningless tests where
numeric strings are used as names and vice-versa.

The most critical shortcoming of JMLUnit, however, is its memory utilization.
Since it relies on JUnit as its execution engine, JMLUnit must construct an entire
JUnit test suite in memory, including all the test data to be used, before a single
test is run. As described above, JMLUnit exhaustively tests all combinations of
the generated test data for each method under test; thus, a single method that
takes multiple parameters can result in extremely large numbers of tests. For
the Exemplar constructor, if the developer gives no additional values beyond
the default sets for the primitive types and String and generates 2 test objects
for each of the Other and Thing types, JMLUnit generates a total of 384 tests.
However, in a more realistic scenario where the developer adds, e.g., 3 char
values, 2 byte values, and 2 String values to the default sets and generates 4
test objects for each of the object types, JMLUnit generates 102,400 tests.

The combinatorial explosion caused by adding additional test values is not
problematic in itself; each of those 102,400 tests would execute quite quickly on
any modern machine. However, the fact that JMLUnit is forced to construct
the entire test suite in memory before executing the tests is a serious problem,
because it makes such test suites completely impractical to execute even on
extremely capable hardware. We attempted to run such a test suite for a case
study (described in Section 5) on our test machine, an Apple Xserve with two
3.0GHz quad-core Xeon processors and 18GB of memory; even allowing the Java
virtual machine to use 16GB of heap space, we found that it exhausted available
memory before giving the results of a single test.

4 JMLUnitNG: Improvements to JMLUnit

In order to test more complex systems with less developer intervention, we have
created a new tool called JMLUnitNG. The new tool addresses the shortcomings
described in the previous section while preserving most of the basic operating
principles of the original JMLUnit.

4.1 Test Data Generation

The first shortcoming we address is the lack of non-primitive test data gener-
ation. To test Exemplar, we need test data of class Thing. Thing has at least
one constructor, either the default no-argument constructor provided by Java in
the absence of any constructor code or an explicit constructor that takes zero or
more parameters.

If Thing has a default constructor, we can construct Things by using that
default constructor. If Thing has explicit constructors, tests will be generated for
each of them when we generate tests for class Thing itself; thus, construction of a
number of Things will necessarily be attempted as part of the testing process. We

JMLUnit: The Next Generation 189

can use the Thing constructors and their test data to generate Things for use as
test data in other contexts; if there are k tests generated for Thing constructors,
that gives us at most k Things for testing other (non-constructor) methods of
Thing and methods of other classes under test that take Thing parameters. We
have at most k instances, rather than exactly k instances, because some of the
constructor tests may be meaningless or may fail; such tests do not result in the
creation of Things suitable for further testing.

We use Java reflection to generate these instances. Like JMLUnit, JMLUnitNG
generates two classes—one containing test oracles and another containing test
data—per class under test. In each test data class, JMLUnitNG creates an in-
ner class that iterates over the instances that are successfully created during con-
structor tests. When we run JMLUnitNG on class Exemplar, which takes a Thing
as a constructor parameter, JMLUnitNG inserts code into the test data class for
Exemplar that uses Java reflection to search for the test data class for Thing.
Later, when running the tests on Exemplar, JMLUnitNG can then find the test
data class for Thing (if it exists on the classpath) and use it to obtain Things for
testing. The developer can also directly specify Things, as in the original
JMLUnit. If JMLUnitNG finds the test data class for Thing when the tests are
run, and reflective test object generation is enabled, the generated Things are used
in addition to the developer-specified Things; if not, only the developer-specified
Things are used.

There are three main issues that arise when using reflection and constructor
test cases to generate test data. The first issue is that it is possible to have cyclic
dependencies; for example, a constructor (not necessarily the only constructor) of
class X takes a parameter of class Y and a constructor (again, not necessarily the
only one) of class Y takes a parameter of class X. This issue can be addressed in a
straightforward, though perhaps not optimal, way: use cycle detection flags when
instantiating objects, such that if an instance of X is requested when another
instance of X is already in the process of being generated, the cycle is detected
and stopped by providing a default (that is, generated by a default constructor)
or developer-specified instance of X instead of dynamically constructing one from
test data.

The second issue is that constructing test data using reflection does not take
polymorphism into account. For example, given a method on a chessboard class
that takes a Piece as a parameter, JMLUnitNG will attempt to generate Piece
objects but will not attempt to generate, e.g., Bishop or Knight objects even if
those classes extend Piece and have test data generators. This issue is difficult to
address in the general case, such as when determining what types to generate for
a method that takes an Object as a parameter. It can be addressed for certain
classes, e.g., the Java Collections Framework, with simple test data generation
rules (such as “generate an ArrayList where a List is required”). It can also be
addressed for specific test scenarios by analyzing the inheritance relationships
during test generation for only the classes under test; then, given a method with
a parameter of type Piece, the subtypes of Piece that are explicitly under test

190 D.M. Zimmerman and R. Nagmoti

would be generated as test data for the method while the subtypes of Piece
that are not under test would not be.

The third issue is that constructing test data reflectively does not account
for interrelationships among classes under test. For example, Exemplar takes
instances of Other and Thing as parameters; suppose it requires that the Other
and Thing passed to it be related to each other in a specific way (such as shar-
ing an identification number or other such attribute). In that case, reflectively
constructing the Other and Thing to pass to the Exemplar constructor will not
establish that relationship. However, this is an issue that is also encountered in
developer-designed test data, where complicated setup operations may be neces-
sary; therefore, we accept it as a limitation of the reflective test data generation
approach.

We will show in Section 5 that, despite these issues, the use of reflection to
generate test data objects from primitive types provides a significant improve-
ment in automatic test coverage over the original JMLUnit.

4.2 Context-Dependent Test Data

The second shortcoming we address is the lack of context-dependent test data.
As previously mentioned, JMLUnit provides default sets of data for primitive
types, and extension points for the developer to specify additional data values
for primitive types as well as data for non-primitive types. However, it only
provides one such extension point per type, per class under test. Though the
extension points do allow some flexibility—they take a parameter to designate
how far nested a loop is in which a type is being used, for example—they do not
allow a developer to specify specific sets of data to be used in specific contexts.

The main reason to specify sets of data for specific contexts is to help contain
the combinatorial explosion of tests. If two of the String parameters to the
Exemplar constructor are names, and the other two must be parsed as numbers
or other reference codes, using the same set of Strings for all 4 parameters will
result in many meaningless tests. Specifying a set of Strings for the names and
another set of Strings for the numbers/reference codes allows the developer to
reduce the number of meaningless tests, and thus reduce the time it takes to run
the test suite.

JMLUnitNG provides extension points for the developer to specify an indi-
vidual set of test data for each parameter of each method under test. These ex-
tension points have data types and method signatures embedded in their names
to uniquely associate each with a context; for example, method Exemplar.m(),
declared as int m(int one, String two), would have extension points with
names like int one m int String (int data to be used for the one parameter
of the method with signature m(int, String)) in the generated test class. For
non-primitive types, these extension points invoke the reflective data generation
code described earlier by default.

In addition to these extension points, JMLUnitNG also provides “global”
extension points that allow the developer to add test data for all occurrences
of a given type, as in the original JMLUnit; such global extension points have

JMLUnit: The Next Generation 191

names like char for all. The test data that is actually used at runtime for
a given method parameter consists of the default test data set generated by
JMLUnitNG, the global test data set associated with the data type, and the
test data set associated specifically with that method parameter.

The addition of custom test data sets for individual method parameters allows
developers to fine-tune their test suites and to easily integrate data from external
test data generators into the system.

4.3 Iterators and Lazy Test Generation

The third shortcoming we address is JMLUnit’s excessive memory utilization.
There are two main causes of memory utilization when running automated tests:
the need to generate all the tests in a test suite before executing the suite, and the
recording of information about executed tests using in-memory data structures.

Since the tests generated by JMLUnit are extremely repetitive—each method
is called many times, with parameter lists generated by taking the cross product
of the test data sets for its parameter types—an ideal way to execute them
would be to lazily generate the parameter lists as they are needed, rather than
marshaling the parameter lists for all the individual method calls in memory
as part of setting up the test suite. Unfortunately, the JUnit test execution
engine does not support lazy parameter list generation. While it does have the
ability to run parameterized tests, where a single test method is run repeatedly
with multiple parameter lists, it requires the parameter lists to be stored in a
two-dimensional array in memory; this makes it impossible to save memory by
parameterizing the tests.

In order to enable lazy parameter list generation, we replace the underlying
JUnit engine used by JMLUnit with TestNG,6 a Java-based test execution en-
gine that is similar in concept to JUnit but has a different feature set. Like
JUnit, TestNG supports the use of arrays as data sources for parameterized test
methods; however, it also supports the use of iterators for this purpose. When
it encounters a test method that uses an iterator as a data source, it executes
the test method with parameter lists provided by the iterator until the iterator
is empty. This allows us to implement lazy parameter list generation; by us-
ing iterators over primitive test data sets and the previously-discussed iterators
that generate test objects of non-primitive types, we can create combined itera-
tors that generate parameter lists for test methods while only keeping a single
parameter list in memory at a time.

TestNG also supports another critical feature that helps to avoid excessive
memory utilization: it allows the use of custom test listeners to record detailed
information about executed tests, including the parameters used for testing and
the exception, if any, that caused the test to fail or be skipped. Thus, instead of
recording every test result in memory and processing that information at the end
of a test suite’s execution, as the previous version of JMLUnit does, we can record
test results to disk in a streaming fashion as the tests are executed, with as much

6 http://www.testng.org/

http://www.testng.org/

192 D.M. Zimmerman and R. Nagmoti

detail as we choose. As distributed, TestNG does record every test execution in
memory—even if the default test listeners are disabled—in order to present a
basic test report at the end of execution. However, with only minor changes to
the TestNG source code, we were able to eliminate this in-memory recording
while maintaining the ability to use other desirable TestNG features. With our
modified version of TestNG, we can run test suites of essentially arbitrary size
in a reasonable amount of memory, provided that there is sufficient disk space
to log their results; we have successfully run hundreds of millions of tests using
less than 1 GB of Java heap space.

The switch from JUnit to TestNG as a test execution environment therefore
allows us to eliminate all the memory issues associated with JMLUnit. It also
removes the need for a custom test runner that understands meaningless tests,
because TestNG natively supports the concept of a skipped test; we simply record
the meaningless tests as skipped, by intercepting the appropriate JML assertion
errors and wrapping them in TestNG SkipExceptions. In addition, because
TestNG supports functionality such as dependencies among tests and multiple
forms of parallel testing, it provides a robust platform upon which to perform
future automated test generation experiments.

5 Comparison of JMLUnit and JMLUnitNG

We have run our current version of JMLUnitNG on two different sets of Java
classes. Both are relatively small; one is a small set of classes that implements
chess pieces and the other is a set of core classes from the Kiezen op Afstand
(KOA) Internet-based remote voting system [12] constructed for the Dutch gov-
ernment by the Security of Software group at Radboud University Nijmegen.

The chess piece classes are largely testable in isolation, though they have
a dependency on a Team class7 that is used to indicate whether each piece is
black or white and to enable the pieces to determine their legal directions of
movement. The piece classes, which are named for the pieces whose movements
they model, have methods that take no more than 3 parameters; the majority of
their methods take fewer than 2 parameters. The piece classes tested here share
a common interface (Piece) but do not take advantage of inheritance to factor
out the common functionality of chess pieces into a shared parent class; thus,
they all have similar structure.

The KOA classes, by contrast, are highly interrelated, with some taking in-
stances of multiple others as constructor and method parameters. They also
have a significantly greater number of method parameters on average, making
the combinatorial explosion of test method calls more pronounced. The classes
in the KOA system model components of the Dutch election system: District
represents a voting district; KiesKring represents a kieskring, which is a region
containing a collection of voting districts that are counted together for the pur-
pose of proportional representation in the lower house of the Dutch parliament;
7 This is a class in the chess code tested here, because we are working with a version

of JML that only handles Java 1.4 constructs; it would be an enum in modern Java.

JMLUnit: The Next Generation 193

Table 1. Results for KOA classes with JMLUnit (Orig) and JMLUnitNG (New)

Covered Blocks % Covered
Class Total Blocks Orig New Orig New

Candidate 197 0 0 0 0
CandidateList 659 0 0 0 0
District 98 13 74 13.3 75.5
KiesKring 299 29 207 9.7 69.2
KiesLijst 431 45 173 10.4 40.1
VoteSet 745 0 0 0 0

Total 2429 87 454 3.6 18.7

Table 2. Results for Chess classes with JMLUnit (Orig) and JMLUnitNG (New)

Covered Blocks % Covered
Class Total Blocks Orig New Orig New

Bishop 367 0 247 0 67.3
King 390 0 270 0 69.2
Knight 362 0 242 0 66.9
Pawn 403 0 273 0 67.7
Queen 368 0 248 0 67.4
Rook 360 0 240 0 66.7
Team 10 1 8 9.1 80

Total 2260 1 1528 0 67.6

Candidate stores information about a single candidate for office; KiesLijst
stores a list of candidates for a particular kieskring; and CandidateList stores
information about the entire set of candidates, across all regions, for a single
election.

We use EMMA,8 a code coverage tool for Java, to measure the coverage of
the tests generated by JMLUnit and JMLUnitNG. EMMA measures coverage
in terms of basic blocks, which are sequences of bytecode instructions without
any jumps or jump targets, rather than in terms of lines of source code. When a
Java program is run under EMMA, it generates a report that lists all the classes
loaded by the virtual machine, their methods, the number of basic blocks in each
method, and the number of those blocks that were executed during the run.

Tables 1 and 2 show the block coverage provided by JMLUnit and JMLUnitNG,
based on the data in the EMMA reports. Both sets of generated tests were run with
default settings and without modifying the generated code. For the chess classes,
165 tests were automatically generated by JMLUnit and 7,108 were automati-
cally generated by JMLUnitNG; for the KOA classes, 686 tests were automatically
generated by JMLUnit and 3,017 were automatically generated by JMLUnitNG.
The disparity—JMLUnitNG generates fewer tests for the KOA classes than for
8 http://emma.sourceforge.net

http://emma.sourceforge.net

194 D.M. Zimmerman and R. Nagmoti

Table 3. Results for KOA classes with JMLUnitNG and provided primitive data values

Class Total Blocks Covered Blocks % Covered

Candidate 197 118 59.9
CandidateList 659 74 11.23
District 98 75 76.5
KiesKring 299 239 79.9
KiesLijst 431 266 61.7
VoteSet 745 167 22.4

Total 2429 939 38.7

the chess classes, while JMLUnit does the opposite—is due to the fact that the
constructors for the chess classes have significantly less restrictive preconditions;
while the default test data generate many possible parameter lists for construct-
ing test objects, significantly fewer of those satisfy the constructor preconditions
for the KOA tests than for the chess tests.

Since JMLUnit has no way to construct objects on which to call test methods,
it fails to provide any test coverage other than for object constructors that take
only primitive values (or accept null, which JMLUnit uses as a default). By
contrast, JMLUnitNG covers significant fractions of the systems under test with
no developer intervention.

Adding primitive and String data to the JMLUnit tests, for either set of
classes, does not improve their coverage because JMLUnit still does not con-
struct test objects. Adding primitive and String data to the JMLUnitNG chess
tests does not improve the coverage significantly, because the default values for
the primitive types are sufficient to test nearly everything that can be tested by
JMLUnitNG; the polymorphism limitation mentioned in Section 4.1 prevents
JMLUnitNG from automatically generating useful tests for the methods that
handle capturing of pieces, which take parameters of type Piece (an interface
shared by all the pieces), or for methods like equals. However, adding primitive
and String data for the JMLUnitNG KOA tests has a significant impact, as the
added data can be chosen to satisfy constructor preconditions that are not sat-
isfied by the default data. Table 3 shows that block coverage more than doubled
when a few carefully-selected primitive and String data values were added to
the test data set; JMLUnitNG generated 1,351,351 tests for that run.

The test runs with default data ran in less than 10 seconds each; however,
the JMLUnitNG test run with added data required approximately 3 hours to
complete the 1,351,351 tests. We believe that the execution time can be dra-
matically improved through optimization of the reflective test data generation
process, as well as by parallelizing the test executions. However, the completion
of a million-test run is itself a dramatic improvement over the original JMLUnit
tool; it would have exhausted the available 16 GB of Java heap space during the
attempt and generated no results, while JMLUnitNG used less than 768 MB of
heap space and reported that all the tests passed.

JMLUnit: The Next Generation 195

6 Related Work

As previously mentioned, considerable research has been (and continues to be)
devoted to automatic test generation, most of it to the generation of test data
rather than test oracles. We have insufficient space here to give even a complete
overview of the current state of the art. We thus describe only the most closely
related of the existing automated test generation systems.

Test oracles can be derived from a behavioral specification of the SUT, such as
structured documentation [15], a formal model [9], or inline specification state-
ments written in languages such as JML (as we have used here). Regardless of
the type of behavioral specification, the basic idea is the same as we have em-
ployed: a test oracle is generated for each unit based on the specification of that
unit; tests that are run with data that would violate the unit’s requirements
(preconditions, assumptions) are ignored, and a test is considered to pass if the
unit’s specification is not violated by the test execution.

Most automated test data generation falls into one or more of the following
categories: randomness-based, where test data are generated randomly; optimi-
zation-based, where test data are optimized over multiple test runs based on
coverage observations; code-driven symbolic execution-based, where symbolic ex-
ecution [11] is used to compute test data that will exercise particular execution
paths of the SUT; specification- or model-based, where constraint solving is used
to generate test data based on a logical analysis of a specification or model of
the SUT; and verification-based, where test cases are generated from attempts to
formally verify the SUT. The latter two are most closely related to our approach.

Specification- and model-based test data generation methods, implemented
in tools such as BZ-TT [1], JML-Testing-Tools [3] and UniTesK [4], use a log-
ical analysis to compute partitions of the variables that fulfill the explicit case
distinctions present in a formal specification or model of the SUT. Once the
partitions have been computed, constraint solving or model finding is used to
find concrete test data in each partition.

Verification-based test data generation (hereafter, VBT) is a recent develop-
ment, based on the idea of generating test cases from attempts to verify systems
with formal specifications [10]. VBT uses symbolic execution, with termination
being enforced by a bound on the number of times loops and recursions are
unwound; it differs from code-driven symbolic execution-based methods by gen-
erating test data from path condition formulae encountered at termination nodes
in the symbolic execution tree. The VBT approach works well for code with sim-
ple branching statements (if...then, switch/case, constant-bounded loops) but
not as well for code with generalized loops or recursion, because only a lim-
ited number of loop iterations and only a limited recursion depth can be dealt
with. VBT has been implemented in the KeY verification system [2] and in
Kiasan/KUnit [8]. A uniform framework for verification and testing has been
formalized in HOL/Isabelle for a small target language [5].

JMLUnitNG is complementary to, not competitive with, the test generation
methods and tools described above. While these methods and tools are relatively
heavyweight, using automated theorem provers, constraint solvers and symbolic

196 D.M. Zimmerman and R. Nagmoti

execution engines, JMLUnitNG is extremely lightweight, using only the TestNG
framework and Java’s reflection mechanism. It is an instant replacement (and im-
provement) for developers who already use JMLUnit, and a one-step addition to
the software build process for developers who use JML but have not yet adopted
JMLUnit. It is easy to use, and the principles underlying its operation are easy for
typical software developers and students to understand regardless of their level of
experience with JML specifications and tools. For more advanced developers, it
can also be used in conjunction with more heavyweightmethods; rather than man-
ually creating context-dependent test data sets for the JMLUnitNG test oracles,
or relying solely on the default data sets and reflective data generation, developers
can create their data sets using one or more other test data generation tools.

7 Conclusion

We have presented JMLUnitNG, a new unit test generation and execution frame-
work inspired by the original JMLUnit tool and based on a modified version of
the TestNG unit testing framework for Java. The current implementation has
some shortcomings; as a proof of concept, it was directly evolved from the origi-
nal JMLUnit and is based on the Common JML tool suite, so it cannot be used
on code that contains modern Java constructs such as generic types. It does not
contain solutions for two of the issues—cyclic dependencies and polymorphism—
discussed in Section 4.1. When generating test data, it cannot reflectively con-
struct instances of classes that have no public constructors, such as those that
rely on factory methods. We have already designed and partially implemented a
new version of the tool, independent of the Common JML tool suite, to address
all these issues.

Despite these shortcomings, we consider our initial experiments with JML-
UnitNG to be quite successful; the ability to generate and rapidly execute mil-
lions of tests and the automatic generation of test data of non-primitive types
are substantial improvements over the functionality provided by the original
JMLUnit, and the resulting benefits can be easily realized in any project that
currently uses JMLUnit for specification-based testing. Moreover, JMLUnitNG
provides significant new developer flexibility, including the ability to specify
context-dependent test data. As such, it is not only an improvement over the
original JMLUnit, but also a sound foundation for future test data generation
experiments.

Acknowledgements

A portion of this work was funded by a 2008–09 award from the University of
Washington Tacoma Chancellor’s Fund for Research & Scholarship. In addition,
the authors would like to thank Dr. Joseph R. Kiniry for his role in initial discus-
sions about JMLUnitNG and his useful comments during both its development
and the writing of this paper.

JMLUnit: The Next Generation 197

References

1. Ambert, F., Bouquet, F., Chemin, S., Guenaud, S., Legeard, B., Peureux, F.,
Vacelet, N.: BZ-TT: A tool-set for test generation from Z and B using constraint
logic programming. In: Formal Approaches to Testing of Software (FATES) 2002,
Workshop of CONCUR 2002, Brno, Czech Republic (August 2002)

2. Beckert, B., Hähnle, R., Schmitt, P.H.: Verification of Object-Oriented Software.
The KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

3. Bouquet, F., Dadeau, F., Legeard, B., Utting, M.: JML-testing-tools: A symbolic
animator for JML specifications using CLP. In: Halbwachs, N., Zuck, L.D. (eds.)
TACAS 2005. LNCS, vol. 3440, pp. 551–556. Springer, Heidelberg (2005)

4. Bourdonov, I.B., Kossatchev, A.S., Kuliamin, V.V., Petrenko, A.K.: UniTesK test
suite architecture. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS,
vol. 2391, p. 77. Springer, Heidelberg (2002)

5. Brucker, A.D., Wolff, B.: Interactive testing with HOL-testGen. In: Grieskamp, W.,
Weise, C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 87–102. Springer, Heidelberg
(2006)

6. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K., Poll,
E.: An overview of JML tools and applications. International Journal on Software
Tools for Technology Transfer (February 2005)

7. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: The
JML and jUnit way. In: Deng, T. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 231–255.
Springer, Heidelberg (2002)

8. Deng, X., Robby, H.J.: Kiasan/KUnit: Automatic test case generation and analysis
feedback for open object-oriented systems. In: Testing: Academic and Industrial
Conference Practice and Research Techniques (TAICPART), Windsor, UK, pp.
3–12 (September 2007)

9. El-Far, I.K., Whittaker, J.A.: Model-based software testing. Encyclopedia on Soft-
ware Engineering (2001)

10. Engel, C., Hähnle, R.: Generating unit tests from formal proofs. In: Tests and
Proofs, First International Conference (TAP), Switzerland (February 2007)

11. King, J.C.: Symbolic execution and program testing. Communications of the
ACM 19(7), 385–394 (1976)

12. Kiniry, J.R., Morkan, A.E., Cochran, D., Fairmichael, F., Chalin, P., Oostdijk, M.,
Hubbers, E.: The KOA remote voting system: A summary of work to date. In:
Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS, vol. 4661, pp.
244–262. Springer, Heidelberg (2007)

13. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of
JML accommodates both runtime assertion checking and formal verification. In:
de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2002.
LNCS, vol. 2852, pp. 262–284. Springer, Heidelberg (2003)

14. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Engle-
wood Cliffs (1988)

15. Peters, D.K., Parnas, D.L.: Using test oracles generated from program documen-
tation. IEEE Transactions on Software Engineering 24(3), 161–173 (1998)

16. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM
Computing Surveys 29(4), 366–427 (1997)

Author Index

Ancona, Davide 31
Andronick, June 1

Balat, Vincent 122
Barré, Nicolas 92
Besson, Frédéric 92
Boulmé, Sylvain 153
Broch Johnsen, Einar 46
Bruns, Daniel 61
Bubel, Richard 122

Corradi, Andrea 31

Damiani, Ferruccio 31
Demange, Delphine 92

Fähndrich, Manuel 10

Gladisch, Christoph D. 76
Gurov, Dilian 107

Hähnle, Reiner 122
Hubert, Laurent 92
Huisman, Marieke 107

Jensen, Thomas 92

Klebanov, Vladimir 61

Lagorio, Giovanni 31
Logozzo, Francesco 10

Maingaud, Séverine 122
Marché, Claude 153
Miquel, Alexandre 122
Monfort, Vincent 92

Nagmoti, Rinkesh 183

Owe, Olaf 46

Pichardie, David 92

Schaefer, Ina 61
Schlatte, Rudolf 46
Schmitt, Peter H. 138

Tafat, Asma 153
Tapia Tarifa, Silvia Lizeth 46
Turpin, Tiphaine 92

Ulbrich, Mattias 138, 168

Weiß, Benjamin 138

Zimmerman, Daniel M. 183

	Title
	Preface
	Organization
	Table of Contents
	From a Proven Correct Microkernel to Trustworthy Large Systems
	Introduction
	A Proven Correct OS Kernel
	Trustworthy, Large Systems
	References

	Static Contract Checking with Abstract Interpretation
	Introduction
	CodeContracts by Example
	Specification
	Static Checking

	The Analysis
	Basic Framework
	Fact Inference
	NonNull Analysis
	Numerical Analysis
	Floating Point Values
	Arrays and Collections

	Checking
	Contract Inference
	Practical Considerations
	Conclusions
	References

	Abstract Compilation of Object-Oriented Languages into Coinductive CLP(X): Can Type Inference Meet Verification?
	Introduction
	Background: Coinductive LP/SLD and CLP(X)
	Abstract Compilation by Example
	Formalization
	A Prototype Implementation of Coinductive CLP(X)
	Conclusion
	References

	Validating Timed Models of Deployment Components with Parametric Concurrency
	Introduction
	Concurrent Objects in Creol
	Deployment Components with Parametric Concurrency
	Example: A Distributed Shopping Service
	Operational Semantics
	Simulating and Testing the Example
	Related Work
	Conclusions and Future Work
	References

	Verification of Software Product Lines with Delta-Oriented Slicing
	Introduction
	Delta-Oriented Programming of Software Product Lines
	Delta-Oriented Formal Specification of Software Product Lines
	Delta-Oriented Slicing
	Proof Reuse for Changed Methods
	Related Work
	Conclusions
	References

	Satisfiability Solving and Model Generation for Quantified First-Order Logic Formulas
	Introduction
	Background and Related Work

	The Basic Idea of Our Approach
	KeY's Dynamic Logic with Updates
	Model Generation by Iterative Update Construction
	Heuristics for Update Construction from Formulas
	Update Construction from Ground Formulas
	Update Construction from Quantified Formulas

	Experiments, Conclusions, and Future Work
	References

	Sawja: Static Analysis Workshop for Java
	Existing Libraries for Manipulating Java Bytecode
	High-Level Representation of Classes
	Intermediate Representation
	Overview of the IR Language
	IR Generation
	Experiments

	Complete Programs
	API of Complete Programs
	Construction of Complete Programs

	References

	CVPP: A Tool Set for Compositional Verification of Control–Flow Safety Properties
	Introduction
	Program Model and Logic
	Model and Logic
	Control–Flow Structure and Behaviour

	Framework for Compositional Verification
	Tool Support for Compositional Verification
	Typical Verification Scenarios
	Open System Verification
	Modular Verification
	Non–compositional Verification
	Wrapper Tools for Standard Verification Scenarios

	Executing the Verification Scenarios
	Generating Maximal Flow Graphs for a Behavioural Property
	Closed System Model Checking of a Behavioural Property

	Conclusion
	References

	Specifying Imperative ML-Like Programs Using Dynamic Logic
	Introduction
	Dynamic Logic
	Programming Language
	Syntax
	Operational Semantics
	Well-Formedness of Stores

	Logical System
	Symbolic Expressions
	Updates
	Formulas
	Symbolic Evaluation
	Deduction Rules

	Semantics
	Invariance Properties
	Interpreting Symbolic Values and Updates
	Interpreting Formulas and Sequents

	Specification and Verification of a Recursive Function
	Conclusion
	References

	Dynamic Frames in Java Dynamic Logic
	Introduction
	Motivating Example
	Java Dynamic Logic with an Explicit Heap Model
	Syntax and Semantics
	Sequent Calculus
	Heap Model
	Symbolic Execution

	Contracts and Proof Obligations
	Method Contracts
	Dependency Contracts

	Conclusions
	References

	A Refinement Methodology for Object-Oriented Programs
	Introduction
	Preliminaries
	Deductive Verification of Contracts
	Refinement
	Model Fields
	Ownership

	Ownership and Model Fields
	Language Setting
	Pack/Unpack forModel Fields
	Invariant Preservation

	A Refinement Methodology
	Hiding Effects Using Datagroups in Assigns Clauses
	Modular Reasoning on Shared State: The Observer Pattern Example

	Conclusions, RelatedWork and Perspectives
	References

	A Dynamic Logic for Unstructured Programs with Embedded Assertions
	Introduction
	Syntax and Semantics
	Syntax
	Semantics

	Symbolic Execution
	Invariant Rules
	Program Modifications
	Simple Invariant Rule
	Invariant Rule with Termination
	Improved Invariant Rule

	Related Work
	Conclusion
	References

	JMLUnit: The Next Generation
	Introduction
	Background
	Unit Testing
	The Java Modeling Language
	JMLUnit

	Shortcomings of JMLUnit
	JMLUnitNG: Improvements to JMLUnit
	Test Data Generation
	Context-Dependent Test Data
	Iterators and Lazy Test Generation

	Comparison of JMLUnit and JMLUnitNG
	Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

