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Preface

This volume contains extended abstracts of some papers presented at ICLA 2011:
the 4th Indian Conference on Logic and Its Applications held during January
9–11, 2011, at Delhi University.

ICLA is a biennial conference organized under the auspices of the Association
for Logic in India. Its scope includes pure and applied formal logic as well as the
history of logic with emphasis on relations between traditional Indian systems
and modern logic.

In response to the call for papers for ICLA 2011, there were 34 submissions.
Each submission was reviewed by at least two, and on average three Programme
Committee (PC) members. Some PC members chose to consult external review-
ers whose names are listed herein. The committee decided to accept 14 papers
for presentation and publication in this volume and another ten papers for pre-
sentation only. The programme also included three invited talks.

We are grateful to the PC members for their efforts in reviewing and selecting
the papers. We also thank all the external reviewers for their help. Special thanks
are due to the invited speakers for contributing their papers to the proceedings
at a short notice. Finally, we thank all those who submitted their papers to
ICLA.

The EasyChair system was of great help in the submission stage, the PC
meeting and finally in preparing the proceedings. We also thank the Editorial
Board of the FoLLI series, and Ursula Barth of Springer for overseeing production
of the final volume.

November 2010 Mohua Banerjee
Anil Seth
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Semantics Based on Conceptual Spaces 

Peter Gärdenfors 

Lund University Cognitive Science, Kungshuset, S-22222 Lund, Sweden 
Peter.Gardenfors@lucs.lu.se 

Abstract. The overall goal is to show that conceptual spaces are more promis-
ing than other ways of modelling the semantics of natural language. In particu-
lar, I will show how they can be used to model actions and events. I will also 
outline how conceptual spaces provide a cognitive grounding for word classes, 
including nouns, adjectives, prepositions and verbs.  

1   Introduction 

Within traditional philosophy of language, semantics is seen as mapping between 
language and the world (or several “possible worlds”). This view has severe prob-
lems. For one thing, it does not involve the users of the language. In particular, it does 
not tell us anything about how individual users can grasp the meanings determined by 
such a mapping (Harnad 1990, Gärdenfors 1997).  

Another tradition, cognitive semantics, brings in the language user by focusing on 
the relations between linguistic expressions and the user’s mental representation of 
their meanings. According to cognitive semantics, the meanings of words are repre-
sented specifically as image schemas. These schemas are abstract mental pictures 
with an inherent spatial structure, constructed from elementary topological and geo-
metrical structures like “container,” “link”, and “source-path-goal.” Such schemas are 
commonly assumed to constitute the representational form common to perception, 
memory, and semantic meaning. 

Although there have been some attempts to construct computational models of im-
age schemas (e.g. Holmqvist 1993), they are not well suited for formal modelling. In 
particular, they are not well developed for handling dynamic entities, such as actions 
and events. In this article, I will model actions and events using conceptual spaces 
(Gärdenfors 2000). My goal is to show that conceptual spaces show more promise 
than other ways of modeling the semantics of natural language (see also Gärdenfors 
(1996)). I will further show how they can provide a cognitive grounding for word 
classes. In linguistics, word classes are defined by syntactic criteria. However, a the-
ory of cognitive semantics worthy of its name should at least be able to explain the 
main categories of words – i.e., nouns, adjectives, prepositions, and verbs -- in terms 
of cognitive mechanisms. I will outline such an account. 

2   Conceptual Spaces as a Semantic Framework 

A given conceptual space consists of a number of quality dimensions. Examples of 
quality dimensions are temperature, weight, brightness, pitch, and force, as well as the 
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three ordinary spatial dimensions of height, width, and depth. Some quality dimen-
sions are of an abstract non-sensory character. One aim of this article is to argue that 
force dimensions are essential for the analysis of actions and events. 

Quality dimensions correspond to the different ways stimuli can be judged similar 
or different. For example, one can judge tones by their pitch, and that will generate a 
certain ordering of the auditory perceptions. As a general assumption, the smaller the 
distance between the representations of two objects, the more similar they are. The 
coordinates of a point within a conceptual space represent particular instances along 
each dimension: for example, a particular temperature, a particular weight, etc. For 
simplicity, I assume that the dimensions have some metric, so that one can talk about 
distances in the conceptual space. Such distances indicate degrees of similarity be-
tween the objects represented in the space. 

It is further assumed that each of the quality dimensions can be described in terms 
of certain geometrical shapes. A psychologically interesting example is colour. Our 
cognitive representation of colour can be described along three dimensions. The first 
is hue, represented by the familiar colour circle going from red to yellow to green to 
blue, then back to red again. The topology of this dimension is thus different from the 
quality dimensions representing time or weight, which are isomorphic to the real 
number line. The second dimension is saturation, which ranges from grey at the one 
extreme, to increasingly greater intensities of colour at the other. This dimension is 
isomorphic to an interval of the real number line. The third dimension is brightness, 
which varies from white to black, and thus is also isomorphic to a bounded interval of 
the real number line. Together, these three dimensions---one circular, two linear---
constitute the colour domain as a subspace of our perceptual conceptual space. It is 
typically illustrated by the so-called colour spindle. 

The primary function of the dimensions is to represent various qualities of objects 
in different domains. Since the notion of a domain is central to the analysis, I should 
give it a more precise meaning. To do this, I will rely on the notions of separable and 
integral dimensions, which I take from cognitive psychology (Garner 1974, Maddox 
1992, Melara 1992). Certain quality dimensions are integral: one cannot assign  
an object a value on one dimension without giving it a value on the other(s). For  
example, an object cannot be given a hue without also giving it a brightness (and a 
saturation). Likewise the pitch of a sound always goes with a particular loudness. 
Dimensions that are not integral are separable: for example, the size and hue dimen-
sions. Using this distinction, a domain can now be defined as a set of integral dimen-
sions that are separable from all other dimensions. 

A conceptual space can then be defined as a collection of quality dimensions di-
vided into domains. However, the dimensions of a conceptual space should not be 
seen as fully independent entities. Rather, they are correlated in various ways, since 
the properties of those objects modelled in the space co-vary. For example, in the fruit 
domain, the ripeness and colour dimensions co-vary.  

It is impossible to provide any complete listing of the quality dimensions involved 
in the conceptual spaces of humans. Learning new concepts often means expanding 
one's conceptual space with new quality dimensions (Smith 1989). 
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3   Properties and Concepts 

Conceptual spaces theory will next be used to define a property. The following crite-
rion was proposed in Gärdenfors (1990, 2000), where the geometrical characteristics 
of the quality dimensions are used to introduce a spatial structure to properties: 
 

Criterion P: A natural property is a convex region in some domain. 
 
The motivation for Criterion P is that, if some objects located at x and y in relation to 
some quality dimension(s) are both examples of a concept, then any object that is 
located between x and y with respect to  the same quality dimension(s) will also be an 
example of the concept.  

Properties, as defined by criterion P, form a special case of concepts. I define this 
distinction in Gärdenfors (2000) by saying that a property is based on a single do-
main, while a concept is based on one or more domains. This distinction has been 
obliterated in both symbolic and connectionist accounts, which have dominated the 
discussions in cognitive science. So for example, both properties and concepts are 
represented by predicates in first-order logic. However, the predicates of first-order 
logic correspond to several different grammatical categories in natural language, most 
importantly those of adjectives, nouns, and verbs.  

A paradigm example of a concept that is represented in several domains is “apple” 
(compare Smith et al. 1988). One of the first problems when representing a concept is 
to decide which are the relevant domains. When we encounter apples as children, the 
first domains we learn about are, presumably, those of colour, shape, texture, and 
taste. Later, we learn about apples as fruits  (biology), about apples as things with 
nutritional value, etc.  

The next problem is to determine the geometric structure of the domains: i.e., 
which are the relevant quality dimensions. Taste space can be represented by the four 
dimensions of sweet, sour, salty, and bitter; the colour domain by hue, saturation, and 
brightness. Other domains are trickier. For example, it is difficult to say much about 
the topological structure of “fruit space”, in part because fruits (such as apples) can be 
described relative to several domains. Some ideas about how such “shape spaces” 
should be modelled have been discussed in e.g. Marr and Nishihara (1978), Edelman 
(1999), and Gärdenfors (2000). Instead of offering a detailed image of the structures 
of the different domains, let me represent the “apple” regions in the domains verbally, 
as follows: 

 
Domain  Region 
colour red-yellow-orange 
shape  roundish  
texture  smooth 
taste   regions of the sweet and sour dimensions  
nutrition  values of sugar content, fibre content, vitamins,  etc. 
fruit   specification of seed structure, fleshiness, peel type, etc. 

 
Concepts are not just bundles of properties. They are also correlations between  
regions from different domains that are associated with the concept. The “apple” 
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concept has a strong  positive correlation between sweetness in the taste domain and 
sugar content in the nutrition domain, and a weaker positive correlation between red-
ness and sweetness.  

Such considerations motivate the following definition for concepts. (For a more 
precise definition, see Chapter 4 in Gärdenfors 2000.) 

 
Criterion C: A concept is represented as a set of convex regions in a number of do-
mains, together with information about how the regions in different domains are cor-
related.  
 
Elements from theories in psychology and linguistics contribute to the analysis of 
concepts I present here. The kind of representation intended by Criterion C is, on the 
surface, similar to frames, with slots for different features (sometimes called slots, 
attributes, or roles; see for example Noy and McGuinness (2001)). Frames have been 
very popular within cognitive science as well as in linguistics and computer science. 
However, Criterion C is richer than frames, since it allows representing concepts as 
more or less similar to each other and  objects (instances) as more or less representa-
tive of a concept. Conceptual spaces theory can be seen as combining frame theory 
with prototype theory, although the geometry of the domains makes possible infer-
ences that cannot be made in either of those theories (Gärdenfors 1990, 2000). 

4   The Semantics of Adjectives, Nouns, and Prepositions 

Next I will outline how analysing properties and concepts in terms of conceptual 
spaces can provide a cognitive grounding for different word classes. In this section I 
discuss adjectives, nouns, and prepositions. I will discuss verbs later. 

The main semantic difference between adjectives and nouns is that adjectives (e.g., 
“red,” “tall,” “round”) normally refer to a single domain and represent properties; 
while nouns (e.g., “dog,” “apple”, “town”) normally relate to several domains. 
(Verbs, unlike nouns or adjectives, are characterized by their dynamic content, which 
I will analyze in terms of actions based on the force domain.) 

Most properties expressed by adjectives in natural languages are natural properties 
according to Criterion P. For instance, in Gärdenfors (2000) I conjectured that all 
colour terms in natural languages express natural properties with respect to the the 
colour dimensions of hue, saturation, and brightness. This means that there should be 
no language which has a single word for the colours denoted by “green” and “orange” 
in English (and which includes no other colours), since such a word would represent 
two disjoint areas in the colour space. Sivik and Taft (1994) and Jäger (2009)  
have provided strong support for this conjecture. Their studies follow up on the  
investigations of basic colour terms by Berlin and Kay (1969), who compared and 
systematized terms from a wide variety of languages. Jäger (2009) studied colour 
classification data from 110 languages and found a median value of 93.6% correct 
classifications in an optimally convex partitioning of the colour space. Given the 
statistical aberrations in the data, this is a very high figure, which gives strong support 
to Criterion P  at least within the domain of colours. 
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A paradigmatic example of the semantics for nouns is the analysis of “apple” from 
the previous section. Nouns do not only denote physical objects as located within a 
limited spatial region: consider, for example, “thunder”, “family”, and “language,” let 
alone more abstract nouns. A noun typically denotes a phenomenon with correlations 
across a number of domains: in other words, nouns are represented by clusters in the 
conceptual space. Not all potential such clusters will be named by nouns in a lan-
guage; an important factor is whether the correlations are pragmatically significant: 
that is, whether they are helpful in choosing the right actions. 

Prepositions have likewise been studied extensively within cognitive semantics 
(for example, Herskovits 1986, Lakoff 1987, Landau and Jackendoff 1993, Zwarts 
1995, Zwarts and Winter 2000, Zwarts to appear). A locative preposition (e.g., “in 
front of”) combines with a noun phrase (e.g., “the castle”) that refers to a spatially 
located object. The preposition maps the reference object to a region that is related to 
the object. (This criterion is put forward by e.g. Jackendoff 1983 and Landau and 
Jackendoff 1993, p. 223). Zwarts (1995) proposes to analyse this region as a set of 
vectors radiating from the reference object. 

The basic semantic function of prepositions is to express spatial relations; but they 
are also used in a number of metaphorical and metonymic ways. Landau and Jackend-
off (1993) offer a neuro-linguistic explanation. They propose two distinct cognitive 
systems: one for objects (the “what” system), and one for places (the “where” sys-
tem). These systems relate to two different pathways in the visual cortex. The separa-
tion of the systems results in the separation between the nominal and prepositional 
systems in language. Zwarts (to appear) argues that, in some contexts, the force do-
main is also necessary to analyse the meaning of prepositions, meaning that their 
semantics cannot be handled solely as spatial relations. To what extent one can find 
neuro-scientific support for the representation of force remains to be seen. 

5   Modelling Actions 

One idea for a model of actions comes from Marr and Vaina (1982) and is explored 
further in Vaina (1983). Marr and Vaina extend Marr and Nishihara’s (1978) cylinder 
models of objects to an analysis of actions. In Marr and Vaina’s model, an action – 
say, a person walking – is described via differential equations for the movements of 
the implicated body parts. 

It is clear that these equations can be derived, by application of Newtonian me-
chanics, from the forces that are applied to the legs, arms, and other moving body 
parts. Our cognitive apparatus is not precisely built for thinking in terms of Newto-
nian mechanics, but I hypothesize that, nevertheless, our brains successfully extract 
the forces that lie behind different kinds of movement-involving action. I will present 
some support for this hypothesis below. More precisely, I submit, building on 
Gärdenfors (2007), that the fundamental cognitive representation of any action con-
sists of the pattern of forces that generates it. I speak of patterns of forces, since, for 
bodily motions, several body parts are involved; and thus, several force vectors are 
interacting (in analogy with Marr and Vaina’s differential equations). It should be 
emphasized, however, that the “forces” represented by the brain are psychological and 
not the scientific construct introduced by Newton.  
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The patterns of forces can be represented in principally the same way as the pat-
terns of shapes discussed earlier. For example, the pattern of force of a person running 
is different from the pattern of a person walking; and the pattern for saluting is differ-
ent from that of throwing (Vaina and Bennour 1985). 

The best source of empirical support for my hypothesis comes from psychophysics. 
During the 1950’s, Gunnar Johansson developed his patch-light technique for analyz-
ing biological motion without any direct information about shape. (For a survey, see 
Johansson 1973.) He attached light bulbs to the joints of actors who were dressed in 
black and moved in a black room. The actors were filmed performing various actions, 
such as walking, running, and dancing. Subjects watching the films, in which only the 
dots of light could be seen, recognized the actions within tenths of a second. Further-
more, the movements of the dots were immediately interpreted as coming from the 
actions of a human being. Further experiments by Runesson and Frykholm (1981, 
1983) showed that subjects were able to extract subtle details about the actions, such 
as the gender of walkers or the weight of lifted objects (where the objects, like the 
actors themselves, were not visible). 

One lesson to be learned from the experiments by Johansson and his followers is 
that the kinematics of a movement contains sufficient information for identifying the 
underlying dynamic patterns of force. Runesson (1994, pp. 386-387) claims we can 
directly perceive the forces that control various kinds of motion. He calls this princi-
ple the kinematic specification of dynamics, according to which the kinematics of a 
movement contains sufficient information to identify the underlying dynamic patterns 
of force. It is obvious that his principle accords well with the representation of actions 
that is proposed here. (Note however that Runesson takes a Gibsonian perspective on 
the perceptual information available, which means he would find it methodologically 
unnecessary to consider such mental constructions as conceptual spaces.) 

Even though the empirical evidence is incomplete, my proposal is that, by adding 
force dimensions to a conceptual space, one obtains the basic tools for analyzing the 
dynamic properties of actions. The forces involved need not only be physical forces, 
but also emotional or social forces.  

To identify the structure of the action space, one should investigate similarities be-
tween actions. This can be done with basically the same methods as for investigating 
similarities between objects: e.g., “walking” is more similar to “running” than to 
“throwing”. Little is known about the geometrical structure of the action space. I 
make the weak assumption that the notion of betweenness remains meaningful. This 
allows me to formulate the following criterion, in analogy with Criterion C: 

 
Criterion A: An action category is represented as a convex region in action space. 

 
Of course, the more forces are involved, the more multi-dimensional the action space 
will be and the more complicated it will be to identify the relevant convex regions. One 
way to support the connection between Criterion C and Criterion A is to establish that 
action categories share a similar structure with object categories, as Hemeren (2008, p. 
25) has suggested. In a series of experiments (1996, 1997, 2008), he showed that action 
categories have a similar hierarchical structure and show similar typicality effects to 
object concepts. Overall, there are strong reasons to believe that actions exhibit many 
of the prototype effects that Rosch (1975) described for object categories. 
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6   A Two-Vector Model of Events 

In keeping with Gärdenfors and Warglien (submitted), I want briefly to present a 
model of events that is likewise based on conceptual spaces. Events are treated as 
complex structures that build on conceptual spaces, in particular the action space. The 
starting point is that all events involve an agent and a patient. 

Agents and patients are modelled as (material or non-material) objects, and can 
therefore be represented as points in conceptual spaces. The domains of the spaces 
determine the relevant properties of the agent and the patient. An agent is an animate 
or inanimate object. Even though I am not providing any analysis of causation here, 
the common understanding is that the agent is the one causing something to happen. 
(of course, one should allow that the action can be null, in the case of an event that is 
a state). An event is individuated by the further understanding that the agent causes 
the event to happen independently of other events. 

An agent is described by an agent space that at minimum contains a force domain 
in which the action performed by the agent can be represented (this is the assumption 
of agency). Following the analysis from the previous section, I will model an action 
as a force vector (or, more particularly, as a pattern of forces). The agent space may 
also contain a physical space domain that assigns the agent a location. In particular, in 
the special case when patient = agent -- i.e., the agent is doing something to itself -- 
the properties of the agent must be modelled. 

A patient is again an animate or inanimate object. The patient is described by a pa-
tient space that contains the domains needed to account for those properties of the 
patient relevant to the event that is modelled. The properties often include the location 
of the patient and sometimes its emotional state. A force vector is associated with the 
patient and represents the (counter-)force exerted by the patient in relation to the 
agent’s action. This can be an intentionless physical force, as when a door does not 
open when pushed; or it can be an intentionally generated force, as when a person 
pushes back upon being pushed. For many events, the representation of the patient’s 
force vector is unknown and can be left unspecified; or else it can be taken as proto-
typical, entailing that the consequences of the agent’s action are left open to various 
degrees. 

The force exerted by the agent’s action will change one or more properties of the 
patient. The elementary operations possible on vectors provide a reasonable account 
for how changes can result from compositions of forces from the agent and the pa-
tient. The resultant force vector is the r = f + c, where f is the force generated by the 
agent’s action and c is the counter-force of the patient.  We then define an event as a 
mapping between an action in an agent space and a resulting change in a patient space 
that is the result of applying r. Central to the event are the changes to properties in 
other domains of the patient space. For example, the location of the patient may 
change; or its colour may change, if the event involves the action of painting. 

This way of representing things makes an explicit difference between an action that 
is mapped into the patient space and the force exerted by such action. Two different 
actions (e.g. kicking and punching) might produce the same force vector r in the pa-
tient space. It might not be sufficient for characterizing an event to represent the force 
composition of f and c; the initiating action from the agent must also be represented. 
This will become even more relevant as event categories are introduced below.  
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As a simple example, consider the event of pushing a table. In such an event, the 
agent (a person) applies a physical force to a patient (a table). The result is a change 
in the location of the patient and thus a change in its properties (unless there are bal-
ancing counter-forces present, such that the resulting change vector is zero). The 
change vector depends on the properties of the patient and other aspects of the sur-
rounding world (for example, friction). Another example is an event of walking. In 
this case, the agent and the patient are identical, so the agent applies a force to itself. 

Some actions are ongoing: the agent exerts the force for an unbounded period of 
time, for example by walking or pushing an object, with the consequence that there 
may be no definite end point to the changes in the patient space. This is a special case 
of a more general type of event:  processes. In bounded events, the agent’s force vec-
tor is applied for a limited time period, and the change vector in patient space has a 
clear end point. In many languages, the difference between processes and bounded 
events is reflected in the syntax: for example, by various forms of aspect. The focus 
here is on bounded events, but most of the elements of the event representations will 
apply to corresponding representations of (unbounded) processes. 

In general, events should be represented not only as single spatiotemporally located 
instances, but also as event categories, like “climbing a mountain”. I will next provide 
a formal framework for analysing event categories, of which single events can be 
considered as instances. 

The earlier description of the change vector can be generalized to that of a change 
vector field.  The change vector field associates to each point in the patient space that 
vector change induced by a particular action, taking into account, if necessary, the 
(counter-)force exerted by the patient. An event category then represents how the 
agent space potentially affects the patient vector field. For example, the event cate-
gory of pushing a table should represent the effect of different, albeit similar, patterns 
of force on the different points in the table patient space. 

Event categories can be represented at different levels: there are subcategories of 
events just as there are of objects. For example, “pushing a door open” is a subcate-
gory of “pushing a door” where the agent force exceeds the counter-force of the pa-
tient. “Pushing but failing to open a door” is another subcategory, one where the 
counter-force cancels out the agent force. 

For many kinds of events where the focus is on the changes in the patient, the iden-
tity of the agent can be and often is ignored. For example, in the event of somebody 
falling ill, the cause of illness is often not considered. Similarly, if the force vector is 
null (i.e., the event is a state), the identity of the agent is irrelevant. 

This model of events and event categories is presented in greater detail in Gärden-
fors and Warglien (submitted). What is new here, apart from using conceptual spaces 
as the general supporting framework, is the introduction of the two vectors as forming 
the core of an event. 

7   The Role of Events in the Semantics of Verbs 

The fundamental connection between the semantics of natural language and events is 
that a simple sentence typically expresses an event. For this reason, events are central 
units in any theory of semantics. For this reason, a typical sentence contains the basic 



 Semantics Based on Conceptual Spaces 9 

building blocks of subject, object and verb, corresponding to the agent, patient and 
vectors of my model. A single verb can never completely describe an event, but only 
bring out one aspect of it. I propose that a verb represents one of the vectors in the 
model of an event. In linguistics, a distinction is often made between manner and 
result verbs. I suggest that if the verb focuses on the force vector of the agent, as for 
example in “push” or “hit”, then it is a manner verb; while if it focuses on the change 
vector of the patient, as for example in “move” or “stretch”, it is a result verb. 

In the cognitive semantics tradition of Lakoff (1987) and Langacker (1987), the fo-
cus has been on the spatial structure of the image schemas only (the very name sug-
gests this), with no attempt to represent the forces involved in the event. This is an 
essential departure from the way I have proposed modelling actions and events. 

Talmy (1988) presents an alternative model of action and interaction. Talmy em-
phasizes the role of forces and dynamic patterns in image schemas through what he 
calls force dynamics. He develops a schematic-based formalism that allows him to 
represent the difference of force patterns in expressions like “the ball kept rolling 
because of the wind blowing on it” and “the ball kept rolling despite the stiff grass”. 
Interactions between agent (what he calls the agonist) and Patient (the antagonist) are 
central to his framework as they are to the one presented here. However, some impor-
tant differences should be highlighted. First is the role that spaces and mappings be-
tween spaces play. While Talmy’s force dynamics are situated in generic spaces, I am 
grounding the semantics of events in a theory of conceptual spaces and of the map-
pings between them. This creates a more flexible and comprehensive framework, one 
that can take into account the qualitative dimensions of the agent’s actions and the 
changes in the patient. Second, my framework makes a natural distinction between 
single events and event categories, and is able to account for those events in which the 
reaction of the patient is not specified.  

Finally, an important advantage of the spatial representation of the event structure I 
have presented is that it allows one to map from one event type to another, comparing 
their structure and making it possible to address, for example, the metaphorical use of 
an action or event. In Warglien and Gärdenfors (submitted), we explore the use of 
topological tools to model such metaphorical mappings. 

8   Conclusion 

This paper has been of a programmatic nature, advocating an approach to the seman-
tics of natural languages based on conceptual spaces. I have outlined how properties, 
concepts, actions, and events can all be modelled and a cognitive semantics for differ-
ent word classes generated. 

The model of events combines the analysis of nouns, in terms of concepts for rep-
resenting agents and patients, with the analysis of actions. Such an analysis shows the 
intimate connection between how we cognitively represent actions and objects, One 
that is reflected in the linguistic tools we use for expressing actions and events. I pro-
pose that the force vector produced by the agent and the result vector induced in the 
patient reflect the distinction between manner and result verbs. More abstractly, 
events represent what philosophers call propositions: that is, the semantic contents of 
basic sentences.  
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I have tried to show how conceptual spaces in general, and their application to the 
force domain in particular, can be useful tools for sharpening cognitive semantics. 
With the aid of the topological and geometric structure of the various domains, a 
better foundation for the concept of image schemas is obtained. This applies in par-
ticular to dynamic schemas.  
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Abstract. In early Buddhist logic, it was standard to assume that for
any state of affairs there were four possibilities: that it held, that it did
not, both, or neither. This is the catuskoti. Classical logicians have had a
hard time making sense of this, but it makes perfectly good sense in the
semantics of various paraconsistent logics, such as First Degree Entail-
ment. Matters are more complicated for later Buddhist thinkers, such as
Nagarjuna, who appear to suggest that none or these options, or more
than one, may hold. These possibilities may also be accommodated with
contemporary logical techniques. The paper explains how.

Keywords: catuskoti, Buddhist logic, Nagarjuna, First Degree Entail-
ment, many-valued logic, relational semantics.

1 Introduction

Western Logic has been dominated by the Principles of Excluded Middle and
Non-Contradiction. Given any claim, there are two possibilities, true and false.
These are exhaustive and exclusive. Contemporary Western logic has come to
realise that this may be far too narrow-minded. There may well be situations
where we need to countenance things that are neither true nor false, or both
true and false.1 Indeed, these possibilities are built into the semantics of various
logics (many-valued, relevant, paraconsistent). The technology of deploying such
techniques is now relatively well understood.

Western logic might well have learned its lesson from India. Though the tra-
ditional schools of Indian logic never had the mathematical tools to articulate
their positions into anything like modern Western formal logics, a much more
open-minded attitude was present from the earliest years. According to a prin-
ciple of Buddhist logic clearly pre-dating the Buddha, given any claim, there are
four possibilities, true (only), false (only), both or neither. This was called the
catuskoti2 (literally: ‘four corners’). Western philosophers and logicians, armed
only with their knowledge of bivalent Western logic, have had a hard time of
making sense of the catuskoti, but by deploying the techniques of modern many-
valued logic, this is simple, as we will see.
1 See, e.g., Priest (2008), ch. 7.
2 Actually, catus.kot.i, but I ignore the diacriticals in writing Sanskrit words, except in

the bibliography.
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Matters became more complex as Buddhist thought developed in the early
centuries of the Common Era. Here we find the great philosopher Nagarjuna, and
those who followed him in the Madhyamaka school, appearing to say that none
of the four kotis (corners) may hold, or sometimes that more than one—even
all—of them may hold. How to accommodate this possibility with the techniques
of modern logic is less obvious. However, it also can be done, and we will see
this too.3

The following paper is therefore another illustration of the possibility of the
history of logic and contemporary logic informing each other, to their mutual
benefit—and one, moreover, that illustrates the fruitful interplay between East-
ern and Western thought.

2 A Little History

The catuskoti is illustrated at the very beginning of Buddhist thought, when some
of the Buddha’s followers asked him to answer various difficult metaphysical ques-
tions, such as what happens to an enlightened person after death. The Buddha is
explicitly presented with four possibilities, that the enlightened person exists, that
they do not exist, that they both exist and do not exist, that they neither exist
nor do not exist—the four corners of the catuskoti. The Buddha does not balk at
the way things are presented. True, he refuses to answer the question, but the nor-
mal reason given is that thinking about such things is a waste of time, time better
spent on matters more conducive to awakening. Just occasionally, there is a hint
that there is something else going on, possibly a false presupposition to all four
possibilities. This thought was perhaps to be taken up later, but nothing further
is made of the matter at this point in Buddhist thought. At this stage, then, the
catuskoti functions something like a principle of excluded fifth: there are exactly
four exclusive possibilities, quintum non datur.4

3 Making Sense of the Catuskoti

Philosophers who know only classical or traditional logic have a hard time mak-
ing sense of the catuskoti. The natural way for them to formulate the four pos-
sibilities concerning some claim, A, are:

(a) A
(b) ¬A
(c) A ∧ ¬A
(d) ¬(A ∨ ¬A)
3 It should be pointed out that not all Buddhists subscribed to the catuskoti. It was

not endorsed by the Dignaga-Dharmakirti school of Buddhist logic. Like the Nyaya,
this school of logic endorsed both the Principles of Non-Contradiction and Excluded
Middle. See Scherbatsky (1993), pt. 4, ch. 2.

4 For a more extended discussion of the history, including textual sources and quota-
tions, see Priest (2010). See also Ruegg (1977) and Tillemans (1999).
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(c) will wave red flags to anyone wedded to the Principle of Non-Contradiction—
but the texts seem pretty explicit that you might have to give this away. There
are worse problems. Notably, assuming De Morgan’s laws, (d) is equivalent to
(c), and so the two kotis collapse. Possibly, one might reject the Principle of
Double Negation, so that (d) would give us only ¬A∧¬¬A. But there are worse
problems. The four cases are supposed to be exclusive; yet case (c) entails both
cases (a) and (b). So the corners again collapse.

The obvious thought here is that we must understand (a) as saying that A is
true and not false. Similarly, one must understand (b) as saying that A is false
and not true. Corners (a) and (b) then become: A ∧ ¬¬A and ¬A ∧ ¬A (i.e.,
¬A). Even leaving aside problems about double negation, case (c) still entails
case (b). We are no better off.5

There is, however, a way of understanding the catuskoti that will jump out
at anyone with a passing acquaintance with the foundations of relevant logic.
First Degree Entailment (FDE) is a system of logic that can be set up in many
ways, but one of these is as a four-valued logic whose values are t (true only),
f (false only), b (both), and n (neither). The values are standardly depicted by
the following Hasse diagram:

t
↗ ↖

b n
↖ ↗

f

Negation maps t to f , vice versa, n to itself, and b to itself. Conjunction is
greatest lower bound, and disjunction is least upper bound. The set of designated
values, D, is {t, b}. Validity is defined in terms of the preservation of designated
values in all interpretations.6 The four corners of the catuskoti and the Hasse
diagram seem like a marriage made for each other in a Buddhist heaven.7

Proof theoretically, FDE can be characterised by the following rule system.
(A double line indicates a two-way rule, and overlining indicates discharging an
assumption.)8

A, B A ∧ B

A ∧ B A (B)

A (B)

A B
...

...
A ∨B C C

A ∨ B C

5 A full discussion of the unsuccessful ways that people have tried to get around these
problems within the confines of classical—or at least intuitionist—logic, can be found
in Priest (2010). See also Westerhoff (2009), ch. 4.

6 See Priest (2008), ch. 8.
7 As observed in Garfield and Priest (2009).
8 See Priest (2002), 4.6.
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¬(A ∧B) ¬(A ∨B) ¬¬A

¬A ∨ ¬B ¬A ∨ ¬B A

We see, then, how the four corners of the catuskoti can be accommodated in
ways very standard in contemporary non-classical logic.

4 Rejecting All the Kotis

So far so good. Things get more complicated when we look at the way that the
catuskoti is deployed in later developments in Buddhist philosophy—especially
in the way it appears to be deployed in the writings of Nagarjuna and his Mad-
hyamaka successors. We have taken the four corners of truth to be exhaustive
and mutually exclusive. A trouble is that we find Nagarjuna appearing to say
that sometimes none of the four corners may hold.9 Why he says this, and what
he means by it, are topics not appropriate for this occasion.10 The question here
is simply how to accommodate the possibility using the techniques of contem-
porary (non-classical) logic.

The easiest way of doing so is by taking there to be a fifth possibility:

(e) none of the above.

The most obvious way to proceed is now to take this possibility as a fifth semantic
value, and construct a five-valued logic. Thus, we add a new value, e, to our
existing four (t, f , b, and n).11 Since e is the value of things that are neither
true nor false (and so not true), it should obviously not be designated. Thus, we
still have that D = {t, b}. How are the connectives to behave with respect to e?
Both e and n are the values of things that are neither true nor false, but they
had better behave differently if the two are to represent distinct alternatives.
The simplest suggestion is to take e to be such that whenever any input has the
value e, so does the output: e-in/e-out.12

The logic that results by modifying FDE in this way is obviously a sub-logic
of it. It is a proper sub-logic. It is not difficult to check that all the rules of FDE
are designation-preserving except the rule for disjunction-introduction, which is
not, as an obvious counter-model shows. However, replace this with the rules:

ϕ(A) C

A ∨ C

ϕ(A) C

¬A ∨ C

ϕ(A) ψ(B) C

(A ∧B) ∨ C

9 Just to make matters confusing, some people refer to this denial (the ‘four-cornered
negation’) itself as the catuskoti. The Buddhist tradition is, in fact, not alone in
sometimes denying the four kotis. See Raju (1953).

10 Again, for a fuller discussion of the matter, together with textual sources and quota-
tions, see Priest (2010). See also the pages indexed under ‘Tetralemma’ in Garfield
(1995), and Garfield and Priest (2003).

11 As in Garfield and Priest (2009). Happily, e, there, gets interpreted as emptiness.
12 We will see that this behaviour of e falls out of a different semantics for the language

in section 6.
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where ϕ(A) and ψ(B) are any sentences containing A and B.13 Call these the ϕ
Rules, and call this system FDEϕ. FDEϕ is sound and complete with respect to
the semantics.14

5 Accepting More than One Koti

Again, so far so good. There is a harder challenge to be faced, though. Forget
the fifth possibility for the moment; we will return to it again later. The problem
is that Nagarjuna sometimes seems to say that more than one of the kotis may
hold—even all of them. Again, this is not the place to discuss what is going on
here philosophically.15 The question is how to accommodate the view in terms
of modern logic.

In classical logic, evaluations of formulas are functions which map sentences
to one of the values 1 and 0. In one semantics for FDE, evaluations are thought
of, not as functions, but as relations, which relate sentences to some number of
these values. This gives the four possibilities represented by the four values of
our many-valued logic.16

We may do exactly the same with the values t, b, n, and f themselves. So if
P is the set of propositional parameters, and V = {t, b, n, f}, an evaluation is a
relation, ρ, between P and V . In the case at hand, we want to insist that every
formula has at least one of these values, that is, the values are exhaustive:

Exh: for all p ∈ P , there is some v ∈ V , such that pρv.

If we denote the many-valued truth functions corresponding to the connectives
¬, ∨, and ∧ in FDE, by f¬, f∨, and f∧, then the most obvious extension of ρ to
all formulas is given by the clauses:

• ¬Aρv iff for some x such that Aρx, v = f¬(x)
• A ∨ Bρv iff for some x, y, such that Aρx and Bρy, v = f∨(x, y)
• A ∧ Bρv iff for some x, y, such that Aρx and Bρy, v = f∧(x, y)

One can show, by a simple induction, that for every A there is some v ∈ V such
that Aρv. I leave the details as an exercise.

Where, as before, D = {t, b}, we may simply define validity as follows: Σ � A
iff for all ρ:

• if for every B ∈ Σ, there is a v ∈ D such that Bρv, then there is a v ∈ D
such that Aρv

That is, an inference is valid if it preserves the property of relating to some
designated value.
13 Instead of ϕ(A) (etc.), one could have any sentence that contained all the proposi-

tional parameters in A.
14 Details of the proof may be found in Priest (2010).
15 A full discussion can be found in Priest (2010).
16 See Priest (2008), 8.2.
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Perhaps surprisingly, validity on this definition coincides with validity in
FDE.17 This is proved by showing that the rules of FDE are sound and complete
with respect to the semantics.18

6 None of the Kotis, Again

Let us, finally, return to the possibility that none of the kotis may hold. In
Section 4, we handled this possibility by adding a fifth value, e. The relational
semantics provides a different way of proceeding. We simply drop the exhaus-
tivity condition, Exh, so allowing the possibility that an evaluation may relate
a parameter (and so an arbitrary formula) to none of the four values. The logic
this gives is exactly FDEϕ.19

In fact, if we require that every formula relates to at most one value, then it
is easy to check that we simply have a reformulation of the 5-valued semantics,
since taking the value e in the many-valued semantics behaves in exactly the
same way as not relating to any value does in the relational semantics.

7 Conclusion

We have now seen how the ideas of the catuskoti and its developments can be
made sense of using the techniques of many-valued and relational semantics.
FDE does justice to the four possibilities. This has, as we have noted, a many-
valued and a relational semantics. If none of the four kotis may obtain, we have
FDEϕ. Again, this has a many-valued and a relational semantics, the second of
which allows for more that one of the kotis obtaining, as well as none.

Of course, there are important questions about what all this means. Some
of these questions are familiar from the contemporary philosophy of logic, such
as ones concerning the possibility of truth value gaps and gluts. Some of them
concern Buddhist philosophy, and specifically the metaphysical picture which
informs (and may be informed by) the technical machinery. This is obviously
not the place to discuss such matters. Suffice it for the present to have shown
some interesting connections between Buddhist thought and the techniques of
contemporary non-classical logic.
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Abstract. The problem of solvability of infinite games is closely con-
nected with the classical question of uniformization of relations by func-
tions of a given class. We work out this connection and discuss
recent results on infinite games that are motivated by the uniformization
problem.

The fundamental problem in the effective theory of infinite games was posed by
Church in 1957 (“Church’s Problem”; see [2,3]). It refers to two-player games
in the sense of Gale and Stewart [6] in which the two players 1 and 2 build
up two sequences α = a0a1 . . ., respectively β = b0b1 . . ., where ai, bi belong
to a finite alphabet Σ. Player 1 picks a0, then Player 2 picks b0, then Player
1 picks a1, and so forth in alternation. A play is an ω-word over Σ × Σ of
the form

(
a0
b0

)(
a1
b1

)(
a2
b2

)
. . .; we also write α�β. A game is specified by a relation

R ⊆ Σω × Σω, or equivalently by the ω-language LR = {α�β | (α, β) ∈ R}.
Player 2 wins the play α�β if (α, β) ∈ R.

Church’s Problem asks for a given relation R (“specified in some suitable lo-
gistic system” [2]) whether Player 2 has a winning strategy in the game defined
by R, i.e., whether there is a corresponding function f mapping finite play pre-
fixes

(
a0
b0

)(
a1
b1

)
. . .

(
an

∗
)

to the set Σ, providing the information which letter to pick
next (and – if there is a winning strategy f – to provide a definition of f). A
strategy f induces a function f ′ : Σω → Σω; for a winning strategy f we then
have (α, f ′(α)) ∈ R for all α ∈ Σω.

A prominent class of games is given by the regular (or equivalently: the
MSO-definable) relations R, which we identify here with the associated regu-
lar ω-languages LR. In this case a complete solution is known by the “Büchi-
Landweber Theorem” ([1]; see e.g. [7]): Given a regular game (specified, e.g., by
a Büchi automaton or an MSO-formula),

– either of the players has a winning strategy (the game is “determined”),
– one can decide who is the winner,
– and one can construct a finite-state strategy for the winner (i.e., a strategy

realizable by a Mealy automaton).

The extraction of a function f from a relation R such that for each argument
x we have (x, f(x)) ∈ R is called “uniformization”. More precisely, a class R of
binary relations R ⊆ D × D′ is uniformizable by functions in a class F if for
each R ∈ R there is a function f ∈ F such that the graph of f is contained in
R, and the domains of R and f coincide (see Fig. 1 for an illustration).
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D′

D

R

f

Fig. 1. Uniformization

Two well-known examples from recursion theory and from automata theory
are concerned with the recursively enumerable, respectively the rational rela-
tions; here we have the “ideal” case that the graphs of the required functions
are precisely of the type of the given relations.

For the first example, let us recall that a partial function from N to N is
recursive iff its graph is recursively enumerable. The Uniformization Theorem
of recursion theory says that a binary recursively enumerable relation R is uni-
formizable by a function whose graph is again recursively enumerable, i.e. by a
(partial) recursive function f . (A computation of f(x) works as follows: Enu-
merate R until a pair (y, z) is reached with x = y, and in this case produce z as
output.)

For the second example, recall that a binary rational word relation is defined
(for instance) in terms of a finite nondeterministic two-tape automaton that
scans a given word pair (u, v) asynchronously, i.e. with two reading heads that
move independently from left to right over u, respectively v. Rational relations
are uniformizable by rational functions, defined as the functions whose graph is
a rational relation (see e.g. [4,10]).

In the task of uniformization as it appears in Church’s Problem, there are two
special features: First, one looks for functions that are computed “online” (step
by step in terms of the argument). Secondly, determinacy results constitute a
very special situation where non-existence of a function f with (x, f(x)) ∈ R for
all x implies the existence of a function g such that (g(y), y) /∈ R for all y.

The first requirement can be weakened in the sense that the functions f used
for uniformization could use more information than just a0 . . .ai for producing
the letter bi. Different types of “look-ahead” can be studied, the extreme case
being that the whole sequence α = a0a1 . . . is given when β = b0b1 . . . is to be
formed. Finite look-ahead corresponds to the condition that the i-th letter bi

of β depends only on a finite prefix of α = a0a1 . . .; one calls such functions
“continuous” (in the Cantor topology over Σω). We discuss recent results of [8]
for regular games: If the uniformization of a regular relation R is possible with
a continuous function, then a function of bounded look-ahead k suffices, where,
for all i, the letter bi depends only on the prefix a0 . . .ai+k.
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The Büchi-Landweber Theorem can be phrased as saying that MSO-definable
strategies suffice for solving MSO-definable games, or – in other words – that
MSO-definable relations can be uniformized by MSO-definable functions. (Here
we use a notion of definability of functions in terms of arguments given as finite
words.)

This motivates a study of Church’s Problem for other classes of relations. We
start with relations that are first-order definable rather than MSO-definable.
There are two natural versions of first-order logic, denoted FO(+1) and FO(<),
where the items in brackets indicate the available arithmetical signature. We
recall results of [9] where it is shown that a determinacy theorem holds for
the FO(+1)-, respectively the FO(<)-definable relations, and that appropriate
winning strategies exist which are again FO(+1)-, respectively FO(<)-definable.
Continuing this track, we exhibit cases where this transfer fails (Presburger
arithmetic is an example), and then address corresponding results of Fridman [5]
for non-regular games that are defined by various types of ω-pushdown automata.

These investigations are small steps towards a more comprehensive under-
standing of uniformization problems in the context of infinite games. So far,
general conditions are missing that “explain” the known scattered results.
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Abstract. The category theoretic approach of Obtu�lowicz to Pawlak’s
rough sets has been reintroduced in a somewhat modified form. A gen-
eralization is rendered to this approach that has been motivated by the
notion of rough membership function. Thus, a link is established between
rough sets and L-fuzzy sets for some special lattices. It is shown that a
notion of indistinguishability lies at the root of vagueness. This obser-
vation in turn gives a common ground to the theories of rough sets and
fuzzy sets.

1 Introduction

Two mathematical theories viz., theory of fuzzy sets and theory of rough sets
have gained importance during the past few decades in addressing the issue of
vagueness be it in reality (i.e. ontological) or be it in perception (i.e. epistemolog-
ical). A good amount of mathematical-mass has gathered around both concepts.
Similarly, there are claims of major applications of both the theories. I am of the
opinion that some quite significant mathematical results have been developed
within the ambit of both theories. As mentioned at the outset, from the angle
of dealing with the issue of vagueness, both the theories have made important
contributions.

Right from the inception of rough set theory by Z. Pawlak in 1982 [19], there
had been efforts to compare it with the then existing fuzzy set theory [20, 30]
which came into being in 1965 through a paper by L. A. Zadeh [32]. Since that
time many research articles have been published dealing with the interconnection
of the two theories. One direction of research has been to combine the two
theories e.g. [4, 5, 25] and the other direction endeavours to explain one theory
in terms of the others e.g. [3, 17, 30, 31]. In [31], the author shows that from one
standpoint rough sets reduce to fuzzy sets, but from another these are different.
Yet in another direction of research many-valued extensions of classical rough
sets is sought [29], but in it there is no characterization of classical rough set.
Except in [17] and partially in [3], the comparative studies are not based on
category theory.
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In this paper we shall delve into some kind of comparison of the two theories
from the category theoretic angle and investigate into their interdependency. In
particular, we shall investigate whether one of the concepts may be reduced to
the other in some categorical sense. Secondly, it will also be investigated how the
theories address vagueness. It will be argued finally that for this purpose both
the theories depend on some notion of indistinguishability of the elements in the
universe of discourse and that is reflected in the identity arrows of the objects.

In the first part we shall take up the mathematical investigation while in the
second part the issue of vagueness shall be discussed.

2 Fuzzy Sets

A fuzzy subset
∼
A of a universe X is represented by a mapping (also denoted by

∼
A), from X to a suitable lattice L. The value

∼
A(x) for any x ∈ X is interpreted

as the degree of membership of x in the fuzzy subset
∼
A. Usually L is taken as the

unit interval [0, 1]. In this latter case the connection between a fuzzy subset and
a vague concept is almost immediate. A vague concept C may be represented
by a fuzzy subset

∼
A where

∼
A(x) denotes the extent to which x falls under the

concept C. C is vague if and only if there are some x ∈ X for which
∼
A(x)	=

0, 1. In other words, it is a borderline case of the vague concept C. But as is
clear, there may be varying degrees in the borderline instances relative to C. We
shall come to this issue in the second part. Sometimes, in the general case that
is when the value set is a lattice L, the fuzzy subset

∼
A is called an L-fuzzy set

[8] or L-valued set. Our ultimate interest in this paper is in L-fuzzy sets where
L is a finite linear lattice with certain other operators.

Higgs [10] introduced and studied Heyting algebra-valued sets in full detail in
an unpublished but celebrated paper in 1973. This seminal work is based on the
category theoretic approach. The n + 1-element linear lattice Ln+1 = {0 < 1 <
2 < 3 < . . . < n} is a complete Heyting algebra. So, for a fixed n, Ln-valued sets
on X form a subclass of all Heyting algebra valued sets over X . In particular,
L4-valued sets constitute one such subclass. Obtu�lowicz in 1987 [17] established
a connection between L4-valued sets over X and Pawlak’s rough sets over X . In
Section 3 we shall discuss this connection.

In this section we present Higgs’ category of Heyting algebra valued sets.
Let X be a universe and L a complete Heyting algebra. Let ε: X × X → L

be an L-valued fuzzy binary relation, satisfying the following conditions.
(H1) ε(x, y) = ε(y, x)
(H2) ε(x, y) ∧ ε(y, z) ≤ ε(x, z), x, y, z ∈ X .
It then follows that
(H0) ε(x, y) ≤ ε(x, x) for any x, y.

(H1)and (H2) are conditions that generalize the notions of symmetry and transi-
tivity properties of a binary relation in the fuzzy case. If, additionally, ε(x, x) > 0
for all x, (H0) may be taken as the generalization of the notion of reflexivity.



24 M.K. Chakraborty

So, with this additional condition ε may be interpreted as a fuzzy equivalence
relation on X . X endowed with an ε, satisfying (H1)and (H2) viz., (X, ε) is an
object of the category of Higgs that shall be denoted by Set(H).

Morphisms from the object (X, ε) to (Y, ε′) is an L-valued mapping f : X×Y
→ L satisfying conditions

(M1) ε(x, x′) ∧ f(x′, y) ≤ f(x, y).
f(x, y) ∧ ε′(y, y′) ≤ f(x, y′).

(M2) f(x, y) ∧ f(x, y′) ≤ ε′(y, y′).
(M3) Supy(x, y) = ε(x, x).

The identities of the category are the ε’s and the morphisms are composed as
follows:

if f : X × Y → L and g : Y × Z → L then f ◦ g : X × Z → L where f ◦ g(x, z)
= supy∈Y (f(x, y) ∧ g(y, z)).

One can notice that conditions (M1), (M2) and (M3) together constitute a gen-
eralization of the notion of function when the fuzzy identities on the universes
X and Y are ε and ε′ respectively.

An L-fuzzy subset “within” an object (X, ε) may then be defined as a mapping
μ : X → L given by μ(x) = ε(x, x).
It is immediate that μ(x) ∧ ε(x, y) ≤ ε(y, y) = μ(y).
μ(x) thus defined is (the description of) a sub-object of the object (X, ε).

It should be recalled that after the advent of fuzzy set theory there was a spurt
of category theoretic interpretation of vagueness [7, 24]. The work of Higgs,
though originating from a different motivation, has turned out to be one of
the most significant category theoretic studies of fuzzy sets. Subsequent most
significant studies of fuzzy sets in this direction include [7, 11–13]. For a brief
survey on the various categorical approaches and the interrelation among these
categories one may be referred to [1].

3 Rough Sets

The starting point of Pawlak’s rough set theory is a non-empty universe X
with an equivalence relation R arising out of an information system that shows
values of each object of the universe with respect to a prefixed set of attributes.
Two objects of the universe become indistinguishable (indiscernible) if they have
the same values with respect to each attribute. Thus an equivalence relation is
obtained. The pair (X, R) has been called an approximation space. There are
several attitudes of defining a rough set (in fact, a rough subset) (cf. [2]). But
for the present purpose, as a starter, we take the triple < X, R, A > where X is
the universe, R an equivalence relation on X and A, a subset of X , as a rough
set. Afterwards, we shall shift a bit away from this description.

The lower approximation A of the set A is defined as ∪{[x]R : [x]R ⊂ A}
and the upper approximation A by ∪{[x]R : [x]R ∩ A 	= φ}. A \ A is called the
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boundary of A in (X, R). Thus the universe is divided into three components,
the lower approximation or the interior (IA) of A, the boundary (BA) of A and
the exterior (EA) that is the set X \ (IA ∪ BA). The boundary may be empty,
but if it is not, the equivalence classes in BA must not be singleton sets. It may
be noted that this division of the space is not one to one with the subsets of X .
Two subsets A and A′ may give rise to the same interior, exterior and boundary.

Obtu�lowicz in [17] proposed a representation of rough sets in terms of L4-
valued sets in the following way.

Given a rough set < X, R, A >, an L4-fuzzy subset fA is defined by

fA(x) = 3 if x ∈ A = IA,
fA(x) = 2 if x ∈ A \ A = BA,
fA(x) = 1 if x ∈ X \ A = EA.

In order to see this L4-fuzzy subset as a sub-object of some object Obtu�lowicz
defines a fuzzy equivalence relation εA by

εA(x, x) = fA(x),
and if x 	= y,
εA(x, y) = 1 if xRy holds,

= 0 if xRy does not hold.

It is an easy exercise to check that εA satisfies all the axioms (H0), (H1), (H2),
and thus (X, εA) forms an object in Higgs’ category with respect to the Heyting
algebra L4. The function fA gives a subobject of (X, εA).

One can also check that εA satisfies the following conditions (so called rough-
ness conditions) too.

(R1) 1 ≤ εA(x, x).
(R2) If 2 ≤ εA(x, y) then x = y or, in other words, εA(x, y) = 1 or 0 for x 	= y.
(R3) If εA(x, y) = 1 then εA(x, x) = εA(y, y).
(R4) If εA(x, x) = 2 then εA(x, y) = 1 for some y.

Thus the rough set < X, R, A > carries with it a fuzzy identity relation εA such
that
(i) the degree of self-identity of x in X is greater than or equal to 1 (3 if x ∈ A,

2 if x ∈ A \ A and 1 if x ∈ (A)c),
(ii) for x 	= y, the fuzzy identity is either 1 or 0, and x, y belong to the same

equivalence class with respect to R if and only if εA(x, y) = 1,
(iii) if x, y are different and belong to the same class then their degrees of

self-identity are the same,
(iv) if x belongs to the boundary then there is at least another element y in

its class.
Obtu�lowicz also proved a converse theorem.
Let (X, ε) be an object of Higgs’ category on L4 with the additional conditions

(R1), (R2), (R3), (R4), then there exists an equivalence relation R on X and a
subset A ⊂ X such that ε = εA. Definitions of R and A are:
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– xRy if and only if ε(x, y) ≥ 1.
– A = {x : ε(x, x) = 3} ∪B, where B is the union of proper subsets taken one

from each equivalence class [x] such that ε(x, x) = 2. By condition (R4), it
is always possible to choose such a proper subset.

– the set {x : ε(x, x) = 3} and B are closed relative to the relation R.

From the construction it is clear that A is not uniquely determined. Any subset
A′ of X which is roughly equal to A, that is A = A′, A = A′, would be such
that εA = εA′ and conversely.

This non-uniqueness is quite justified since rough sets < X, R, A > and <
X, R, A′ > should be considered as the ‘same’ provided A is roughly equal to
A′. Subsets A and A′ are roughly equal in the context (X, R), but ‘rough sets’
< X, R, A > and < X, R, A′ > are equal. The unimportance of a particular A is
also evident from the following description of a rough set [19].

Given (X, R) let us denote by ≈, the rough equality of subsets A and A′.
Now ≈ being an equivalence relation in P (X), the power set of X , one gets the
quotient set P (X)/ ≈. An element of P (X)/ ≈ is also called a rough set. Thus
if A ≈ A′, the classes [A]≈ and [A′]≈ are the same rough sets. In this description
a particular A has no importance, its class matters.

From the standpoint of first order logic, one can see that one needs a 4-valued
linear lattice as the (truth-)value set viz., {0 < 1 < 2 < 3} not simply a three-
valued set {1 < 2 < 3}.

One needs 0-ary predicates 0,1, 2, unary predicate symbols p′1, p′2 . . .; and
binary predicate symbols ε1, ε2, . . . and equality. The interpretations of p′i’s are
L4-fuzzy subsets fA of a domain X and those of εi’s are fuzzy relations εA. The
values of fA lie in the ordered subset {1 < 2 < 3} of L4 and the values of εA

over the whole set. In fact, the monadic predicates are redundant as we will see
later while treating the general case in the next section. Although A appears in
the suffix, it is really unimportant for the interpretation.

4 Rough Membership Function

Given an approximation space (X, R) and subset A, in Pawlak’s rough set ap-
proach, all elements on the boundary are treated alike. But one equivalence class
of the boundary may have more overlap with A than the other. Thus, concep-
tually, one can visualize this feature as a notion of some object of the universe
being more near to the core (the interior) of the vague concept than the other.
This idea has an elegant mathematical representation.

Let μA be the function from X to [0, 1] defined by μA(x) = card([x]R∩A)
card([x]R) ,

where card denotes the cardinality. If X is assumed to be finite, we see that

μA(x) = 1 if x ∈ A = IA,
μA(x) = 0 if x ∈ EA,
0 < μA(x) < 1 if x ∈ A \ A = BA.

Thus all objects in the boundary are not treated equally. The more an object’s
class overlaps A, the more it is considered to be closer to the interior. All objects
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clustered in one equivalence class however share the same extent of closeness to
the core. From the perspective of intuition this seems to be quite natural if only
the extreme two-valued attitude is not adhered to. μA has been termed as rough
membership function in literature [23]. Clearly, two sets A, A′ may have the same
membership function. This notion may be extended to the case when X is not
finite by adopting a suitable measure function on the power set P (X).

For further development, it would be convenient to take only integral values
to denote the extent of closeness of an object to the core. So from the function
μA another function χA is defined by
χA = μA × (l.c.m. of the denominators of all μA(x) such that 0 < μA(x) < 1).
Thus, χA(x) = 0 if x ∈ EA.
χA(x) = the l.c.m. if x ∈ IA.
1 < χA(x) < l.c.m. if x ∈ BA.

For a finite set X , the power set of X is finite and hence the collection {μA(x) :
0 < χA(x) < 1, A ⊂ X} is also finite. One can take the l.c.m. of the denominators
of all such μA(x)’s and use this number as the multiplier to define χA(x) for all
A. Let this l.c.m. or multiplier be taken as n.

Example 1. Let X = {a, b, c, d, e, f, g, h} and the partition be given by {a, b},
{c, d, h}, {e, g}, {f}.
All possible membership values that lie between 0 and 1 are 1

2 , 1
3 , 2

3 . So, the l.c.m
is 6. Now, if A = {b, e, g}, B = {b, d, e, g, h}, C = {b, d, e, g}, the functions χA,
χB and χC are given by

a b c d e f g h
χA 3 3 0 0 6 0 6 0
χB 3 3 4 4 6 0 6 4
χC 3 3 2 2 6 0 6 2

We would now like to place this concept of gradation of boundary elements in
Obtu�lowicz’s framework by extending the value set to the set Ln+1 ≡ {0 < 1 <
2 < 3 < . . . < n}. A preliminary informal attempt in this direction was made
in [3].

Firstly one should observe that Ln+1 is a Heyting algebra. When a fuzzy
equivalence relation ε is defined from X×X to Ln+1 such that ε satisfies condition
(H1) and (H2) and hence (H0), (X, ε) is an object of the category of Higgs where
the Heyting algebra is taken to be Ln+1 for an arbitrary but fixed n.

Let the following procedure be adopted now.
For any A ⊂ X , define a function FA by

FA(x) =
{

1, χA(x) = 0;
χA(x), otherwise.

So, it follows that for each A ⊂ X ,

FA(x) = n if x ∈ A = IA.
FA(x) = 1 if x ∈ EA.
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The intermediate values are distributed between 2 to n − 1. The function FA

is constructed only to maintain Obtu�lowicz’s structure in the extended scenario
also. From such an FA(x), μA(x) can be retrieved. Thus the function FA can be
considered as codifying all the information of the rough membership function
μA.

We now state one half of the representation theorem in this general context.

Proposition 1. Let < X, R, A > be a rough set. Let n be determined as the
l.c.m. as mentioned before. Let a fuzzy relation εA: X×X → Ln+1 be defined by
εA(x, x) = FA(x), and for x 	= y,

εA(x, y) =
{

1, if xRy holds;
0, otherwise.

Then εA satisfies the conditions (H0),(H1), (H2), (R1), (R2), (R3), (R′
4) where

(R′
4) is the condition: if εA(x, x) ∈ {2, . . .n} then εA(x, y) = 1 for some y.

Proof. We first observe that εA(x, x) ∈ {1, 2, . . . , n} and εA(x, y) = 0 or 1. So,
εA(x, y) ≤ εA(x, x) for any x, y. Thus the condition (H0) holds.
(H1) follows from the symmetry of R.
(H2) follows from the transitivity of R.
Conditions (R1) and (R2) are immediate from the definition.

To establish (R3), let εA(x, y) = 1. Then two cases, x = y, or x 	= y. In the
first case εA(x, x) = 1 = εA(y, y). In the second case, xRy. So, [x]R = [y]R. So,
FA(x) = FA(y). Hence εA(x, x) = εA(y, y).

To establish (R′
4), let εA(x, x) ∈ {2, . . . , n− 1}. Then FA(x) ∈ {2, . . . , n− 1}.

So, x ∈ A \ A. So there is some y ∈ [x]R, x 	= y and FA(x) = FA(y). That is
εA(x, x) = εA(y, y). ��

Two points are to be noted here: firstly, condition (R′
4) takes care of the fact that

the blocks (equivalence classes) appearing on the boundary are now not treated
alike. Secondly, if the value of an object lies between 2 and n − 1, the object is
on the boundary and in its block there is more than one object. Thus, a rough
set (given by its rough membership value) can be treated as a Ln+1-valued fuzzy
set.

As two rough sets < X, R, A > and < X, R, A′ > may give rise to the same
rough membership function, they may be represented by the same Ln+1-valued
fuzzy set. The non-uniqueness of A stands in support of the presentation of a
rough set by giving a partition to the universe X and by colouring the blocks
in varying degrees of intensity representing the extent of belongingness of the
objects of a particular block to the concept.

To establish the converse, however, a further conceptual advance is to be
made.

The rough membership function is just one way of assigning values other
than the greatest and the least in the linear scale to the objects belonging to
the boundary. This should not be taken as the only way. One may not use the
cardinality measure but use other kind of measure or no measure function at all.
What is important here is that a block receives a grade for each element in it
and these grades are in some relationship with the grade of the fuzzy equivalence
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relation defined in the universe. Secondly the dependency on the subset A is to
be given up since after the blocks are formed, even in the classical case (Pawlak)
the blocks belonging to the lower approximation and the boundary of a set only
count. Also from the previous proposition viz., Proposition 1, we have noticed
that ultimately an Ln+1-valued fuzzy subset FA and an Ln+1-valued equivalence
relation εA satisfying some more conditions arise and A is then redundant in the
sense that it may be replaced by some other A′ roughly equal to A and giving
the same rough membership function.

So we propose to ignore A altogether and define a rough set by < X, R, I, B >
as was done by Obtu�lowicz in the case of classical rough set theory, I, a union
of blocks being the interior and B another union of blocks as the boundary.
It is to be marked that no mention of any subset A is there in this approach.
In Obtu�lowicz’s formulations elements in I receive the value 3, and those in B
receive 2. Accordingly in our general case we just wish to see the highest value
n being given to the objects in I, the value 1 given to the objects in E and
values between 2 to n−1 to the elements in the boundary. The boundary is now
layered as B = B2 ∪B3 ∪ · · · ∪Bn−1 where each Bi is the union of some blocks
and such that every element in Bi receives the value i. Some Bi may be empty.
If this modified definition is admitted we can obtain a converse of the earlier
proposition in the following form.

Proposition 2. Let X be a universe and ε be an {0, 1, . . . , n}-valued fuzzy rela-
tion satisfying conditions (H0),(H1), (H2), (R1), (R2), (R3), (R′

4). Then there
exists an equivalence relation R in X and sets I, B = B2∪B3∪· · ·∪Bn−1 form-
ing the interior and the layered boundary respectively of a rough set in < X, R >
such that I and B are disjoint and each subsets I, B2, . . . , Bn−1 are R closed.

Proof. We define a function F : X → Ln+1 by F (x) = ε(x, x) and a binary
relation R in X by xRy iff ε(x, y) ≥ 1.
Conditions (R1), (H1) and (H2) establish that R is an equivalence relation.
We then define sets

I = {x ∈ X : F (x) = n}
and Bi = {x ∈ X : F (x) = i, i = 2, . . . , n− 1}.
So, F (x) = 1 if x ∈ X \ I ∪ {Bi}.
Conditions (R2) and (R3) establish that I and each Bi are closed with respect
to R. (R′

4) shows that for each x ∈ Bi there exists a y ∈ Bi such that x 	= y and
xRy holds. ��

The above two propositions constitute a complete representation of rough sets
in terms of some Ln+1-valued fuzzy set. Since, at this final stage we are not
referring to a subset A of X to define a rough set, the number n may be taken
arbitrarily, the least being 2 when we get Obtu�lowicz’s lattice.

In the approach of Wygralak [30] and Yao [31] too, a rough set is shown to be
special types of fuzzy sets. But neither of these approaches has attempted to see
a rough set as a fuzzy equivalence relation that gives rise to a crisp partition of
the universe along with a fuzzy subset of the universe tied up with the partition.
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In the present approach, a collection of rough sets on an approximation space
(X, R) is given by (< X, {εi}i∈I), where εi is an Ln+1-fuzzy equivalence relation
satisfying the aforesaid conditions, εi(x, y) ≥ 1 if and only if εj(x, y) ≥ 1 for
each x, y ∈ X and i, j ∈ I, and xRy holds if and only if εi(x, y) ≥ 1. Such a
representation shall be called a rough set model.

To obtain a first order logic, the language should have the equality predicate
(=), and binary predicate symbols ε1, ε2, . . ., (as many as would be necessary),
and 0-ary predicates 0, 1, . . .n, depending upon the requirement / choice.

We shall need the following proper axioms to be accepted for each εi:

(H0) εi(x, y) → εi(x, x).
(H1) εi(x, y) ↔ εi(y, x).
(H2) (εi(x, y) ∧ εi(y, z)) → εi(x, z).
(R1) 1 → εi(x, x).
(R2) ∼ (x = y) → (εi(x, y) ↔ 0 ∨ εi(x, y) ↔ 1).

To accommodate (R3), (R′
4) we have to take the following rules of inference.

(R3)
� εi(x,y) ↔ 1

� εi(x,x) ↔ εi(y,y)
.

(R′
4)

� (εi(x,y) ↔ 2) ∨...∨ (εi(x,y) ↔ n−1)

� ∃y (εi(x,y) ↔ 1)
.

(R5)
� 1 → εi(x,y)

� 1 → εj(x,y)
.

εi’s are interpreted as Ln+1-valued fuzzy equivalence relations satisfying the
roughness conditions. Since the value set Ln+1 is a Heyting algebra the con-
junction (∧), the disjunction (∨) are computed by ‘min’ and ‘max’ operators
respectively. The implication → is computed by the operator ⇒ given by
a ⇒ b = n if a ≤ b.

= b otherwise.
The negation (∼) is computed by ¬ given by a ⇒ 0 i.e.
¬0 = n
¬x = 0 if x = 1, . . . , n.

Axioms (H0), (H1), (H2), (R1) and (R2) receive the value n for any valuation
and rules (R3), (R′

4) and (R5) are sound in any rough set model.
Thus a logic for rough sets is also defined. However we are not satisfied with

the negation operator. We would rather prefer the operator ·− given by ·−(x) =
n− x.

The set {0 < 1 < . . . < n < n} is obviously closed with respect to the operator
·−. In this value set ·− ·− x = x but x ∨ ·−(x) 	= n always. In this algebra ⇒ is the
residuation with respect to ‘min’ but ·−(x) 	= x ⇒ 0. We may call this algebra
Ln+1(·−). So the structure Ln+1(·−) with the operators min, max, ⇒, ·− now no
longer remains a Heyting algebra. But the claims made so far remain valid. Since
the objects, morphisms, identities and compositions of morphisms can be defined
as before, a category of Ln+1(·−)-valued sets is formed.
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We could also take ⇒ as
a ⇒ b = n if a ≤ b

= ·−a ∨ b if a > b.
By so doing ⇒ no longer remains a residuation with respect to min but ·−a =
a ⇒ 0. We may call this algebra L′

n+1(·−).
The reason for dissatisfaction with the Heyting (or intuitionistic) negation ∼

and hence with the operator ¬ is called for. The intuitionistic negation being
defined as ¬a = a ⇒ 0 and ⇒ being the residuum with respect to the lattice meet
∧, one gets a ∧ ¬a = 0 (although a ∨ ¬a 	= the top element always). But in the
case of the borderline instances of a vague predicate, we are not in favour of this
property. We are rather in support of Zadeh’s original idea regarding fuzziness,
viz. if “x is tall” is true to the extent .6 then “x is tall and x is not tall” is true to
the extent .6∧ (1− .6) = .4, which is not 0. We are aware of the fact that a huge
amount of literature on fuzzy sets has been produced taking an MV-algebra as
the truth set in which the truth value of the above conjunctive sentence would
be 0. We are also aware of the fact that among the philosophers of vagueness,
there is a strong group that thinks it proper to accept the above conjunction to
be crisply false even though the predicate ‘tall’ is vague and admits degree of
truth. We, however, wish to stick to Zadeh’s tradition in this respect and that
is why we prefer the operator ·− which is the counterpart of 1 − x, the standard
fuzzy set negation, in the present finite linear truth set. Keeping max, min and
·− for conjunction, disjunction and negation respectively, we have proposed two
different implications, the former one is the residuation with respect to ∧ and
the latter one defined in the usual way in terms of ·− and ∨. The main intention
is to stick to the philosophy that in a vague context, for borderline cases the law
of contradiction in general fails. Secondly, we have tried to deviate as little as
possible from Obtu�lowicz’s construction.

Thus we propose a little drift from Heyting algebra in order to obtain more
intuitively acceptable results with negation while retaining the major categorical
content of the approach of Obtu�lowicz.

In the following section we shall discuss the relation between vagueness, in-
discernibilities and categories formed out of the indiscernibilities.

5 Vagueness

Without entering the debate whether vagueness resides in ‘reality’ or not, ev-
erybody will, hopefully, accept that the language used for communication can
in no way avoid it. Parikh [18] rightly observed that vagueness is an essential
feature not only of ordinary languages but also of ‘precise’, ‘artificial’ languages
used in “physics and in fact, any science that attempts to correlate observation
with words and numbers”. Fuzzy sets and rough sets are two main mathematical
models to address vagueness. Early Pawlak in the introduction to his short com-
munication [20], declares, “we compare this concept (the concept of rough sets:
present author) with that of the fuzzy set and we show that these two concepts
are different”. At that period Pawlak was firm in his belief that rough set is
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properly addressing vagueness since it talks about ‘boundary’ of a set and the
property ‘rough’ is ascribed to a set. On the other hand, although the qualifier
‘fuzzy’ has been ascribed to set too, actually fuzzy set theory deals with degree
of membership of an object to a set and hence is dealing with some kind of
uncertainty of belongingness of objects. While vagueness is the property of sets
uncertainty is the property of an object. In later years however Pawlak changed
his position as is evident from his following remark, “Both fuzzy and rough
set theory represent two different approaches to vagueness. Fuzzy set theory
addresses gradualness of knowledge, expressed by fuzzy membership – whereas
rough set theory addresses granularity of knowledge expressed by indiscernibil-
ity relation” [21, 22]. This opinion, however, is not accepted by all important
researchers in this field. For example in [5] Dubois and Prade opine, “We argue
that fuzzy sets and rough sets aim to different purposes and that it is more
natural to try to combine the two models of uncertainty (vagueness for fuzzy
sets and coarseness for rough sets) in order to get a more accurate account of
imperfect information.”

In the opinion of the present author, the boundary of a set is fuzzy/vague,
since there are uncertainties in the case of some objects about their belonging-
ness to the set. At the root of vagueness lies an indiscernibility of some kind
or other. The gradualness in fuzzy set theory blurring belongingness and non-
belongingness in a concept or in other words allowing for borderline instances,
arises due to indiscernibility, be it epistemic or ontic. Similarly the indistinguisha-
bility arising out of initial information system within the universe generates the
thick boundary of a rough set – the elements in this region whether within A
or outside are all borderline instances of the vague concept whose one possible
extension is A. An interesting contribution of rough set theory in this regard lies
in the acceptance, in principle, that the set A is not the unique extension of the
concept. Any set A′ roughly equal to A may also be taken as another extension.
This variability of extension renders vagueness to the concept. In [27], Shapiro
enlists four reasons for the indeterminacy of a borderline case ‘a’ in a concept
P viz.

(i) a is either P or non-P , but it is not known which, or even not knowable.
(ii) a is actually neither P nor non-P .
(iii) a is partially P and partially non-P .
(iv) Dependency on the context (perspective), a is sometimes P and sometimes

non-P .

Fuzzy set theorists take the view-point (iii) and assign an intermediate ‘truth’
value to the sentence ‘a is P ’. On the other hand, a rough set theorist’s account
clearly indicates the borderline instances of a concept in a given context that is
the partioning of the universe. They are neither P nor non-P so that view-point
(ii) is adopted. But a change in the context may bring such an instance within P
or push it to non-P . Moreover, through rough membership functions, grades of
belongingness to the concept are assigned to these elements. Thus in the rough
set approach to vagueness, we find traces of the view-points (iii) and (iv) also. In
classical fuzzy set theory the degree of membership of an object is directly given
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– the indiscernibility hidden behind is not usually brought to the fore. However,
in the category theoretic studies explicit mention of the indiscernibility relation
is made by taking this relation as the identity morphism of the object. In Higgs’
category Set(H) the identity morphism on the object < X, ε > is the mapping
ε : X ×X → L itself. Similar is the case for other formulation of fuzzy sets with
truth-value sets different from the Heyting algebra L. A detailed study in this
respect is made in [1]. We present here a summary in the following diagram.

Set(E)

Set(EAp)

Set(ET )

Set(EZ)

Set(EC)

Set(EM ) Set(ER)

Set(Ef )

SET

Set(H)
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The diagram depicts categories, the lowest one being the category SET of
sets with the crisp identity. The arrows indicate that the category at the tail
is identifiable with some subcategory of that at its head. E’s with or without
suffixes and H within the braces denote the indiscernibility (or fuzzy equivalence
or approximate identity) involved in the making of the objects. The identity
arrows and the morphisms of the categories a prototype of which is the Higgs’
category Set(H), are to be defined as in Section 2. We now state below the other
equivalences and the objects therein.

Set(EC).
EC : X ×X → {0, 1} such that
(I)EC(< x, y >) ≤ EC(< x, x >).
(II)EC(< x, y >) = EC(< y, x >).
(III)EC(< x, y >) ∧ EC(< y, z >) ≤ EC(< x, z >).
The objects are of the form < X, EC , A > where A(x) = EC(< x, x >).

Set(EAp).
EAp : X×X → L (a residuated lattice [9] with ∗ as the product operation which
is commutative, 0, 1 being the lower and upper bounds) such that
(I)EAp(< x, y >) ≤ EAp(< x, x >), EAp(< x, x >) = 1 or 0.
(II)EAp(< x, y >) = EAp(< y, x >).
(III)EAp(< x, y >) ∗ EAp(< y, z >) ≤ EAp(< x, z >).
An object is of the form < X, EAp, A > where A(x) = EAp(< x, x >). EAp

stands for ‘approximate equality’.
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Set(ET ).
This category is obtained as a special case of Set(EAp) when L = [0, 1] and * is
taken to be any semi-continuous t-norm on [0, 1] [15].
Categories Set(EM ) (Menger, [16]), Set(EZ) (Zadeh, [8]) and Set(ER) (Ruspini,
[26]) are all obtained by taking particular instances of t-norms.
Set(Ef ) (Eytan, [7]).
Ef : X ×X → [0, 1] such that
(I)Ef (< x, y >) ≤ Ef (< x, x >).
(II)Ef (< x, y >) = 0 for x 	= y.
It follows that Ef (< x, y >) ∧ Ef (< y, z >) ≤ Ef (< x, z >).
The objects are < X, Ef , A > where A(x) = Ef (< x, x >).

Set(H) is Higg’s category which has been already defined in more detail.

Set(E).
Here E : X×X → L (a residuated lattice) has been defined in a slightly different
way.
(I) E(< x, y >) = E(< y, x >).
(II) E(< x, y >) ∗ E(< y, z >) ≤ E(< x, z >).
(III)E(< x, y >) ∗ E(< x, x >) = (< x, y >).
The objects are as before < X, E, A > where A(x) = E(< x, x >).

Most of the well known fuzzy sets are objects or sub-objects of objects in either
of the categories depicted in the figure or similar one.

The underlying philosophy in all the aforesaid examples of categorical objects
is the acceptance of the principle that the degree of belongingness of an element
to a concept (either crisp or vague) is the degree to which it is indiscernible with
itself relative to the underlying indiscernibility relation.

This point needs some clarification. It is a deep issue, but a rather simplistic
explanation is presented here. We know objects in terms of their properties. If
a property is vague, its applicability to an object may be partial or graded.
Hence the existence of the object relative to the property becomes graded too.
Extensionally, a property is represented by a set. When the property is vague,
the corresponding set is fuzzy and the belongingness or existence of the object
in the set becomes graded. We are in agreement with Dubois and Prade [6] in
that the converse is not always the case. A membership degree is not always the
representation of uncertainty or vagueness in a concept. Now, a property induces
an indiscernibility relation in the universe of objects. Two objects having the
same property are indistinguishable relative to that property. When the property
is vague, the indiscernibility induced by it is fuzzy. If P is a vague property and εP

is the indiscernibility induced then a measure of indiscernibility between objects
x and y may be given by

εP (x, y) = (P (x) → P (y)) ∧ (P (y) → P (x)),

P (x) and P (y) being grades of applicability of P to x and y respectively and
→ being a suitable implication. (It should, however, be mentioned that this is
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not the only way of measuring the indiscernibility. See for instance [24, 28].) So
εP (x, x) = P (x) → P (x). Usual implication operators give P (x) → P (x) the
highest value. But there are others for which the value may not be so. Examples
of such implications are plenty (Zadeh, Kleene-Dienes, Reichenbach, cf. [15]).
It would be, however, natural to assume that the degree of indiscernibility of
x with itself is greater than or equal to the degree of its indiscernibility with
other objects, i.e. εP (x, x) ≥ εP (x, y). This is precisely the reflexivity criterion
(cf. Section 2). In the cases of → by Zadeh and Kleene-Dienes, this inequality
holds for εP . But these should be taken only as instances. We can ignore the way
εP is defined, i.e. by using implication, and take it as a reflexive fuzzy relation
on the fuzzy set P . Hence, along with the above condition, it should also satisfy
the condition that εP (x, x) ≤ P (x) ∧ P (x) = P (x). In fact it is assumed to be
the same as P (x), i.e. εP (x, x) = P (x). The objects of the categories are formed
in this way in terms of the identity morphisms. In the logics, ε’s are taken as
primitives whose models satisfy this condition. Thus the degree of existence of
an object in a concept is taken to be the same as the degree of its indiscernibility
with itself or degree of self-identity relative to the concept. This philosophical
view-point gets support even from practical angle – for example in [14] the
authors state, “In the case E(x, x) < 1, the value E(x, x) would be interpreted
as the degree to which x exists in X or belongs to X , i.e E(x, x) reflects a
membership degree”.

Viewed as in this paper – that is by extending Obtu�lowicz’s approach from
4-valued to n + 1-valued Heyting algebra, rough sets turn out to be sub-objects
of the subcategories Set (Ln+1), n ≥ 1, of Higg’s category Set(H).

However, since we prefer to have negation defined in a different way and the
algebraic structure then being Ln+1(·−) or L′

n+1(·−), the corresponding categories
of rough sets will no longer be a subcategory of Set(H) generally, but will lie in
its ‘vicinity’.

It should be mentioned that in the paper [1], a category ROUGH having rough
sets < X, R, A > as objects and another kind of morphisms was defined. The
identity morphism in this category was taken to be the identity map from A
to A. In our present diagram this category is not depicted. It lies between two
topoi viz., category Set(EC) and category Set(H).

It should also be mentioned that in this diagram the categories presented in
[11–13] are not depicted. In fact, it would be an interesting and important project
to set up a general framework in which a proposed new category with fuzzy
equality as the identity within the objects may be placed appropriately.

6 Concluding Remarks

We are aware of the fact that the philosophical standpoint about the degree of
existence of an object in connection with its self-identity may be debated upon.
What we would like to stress here is that a nice mathematical framework has
been developed. Moreover, this framework gives some sort of foundation to both
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fuzzy set theory and rough set theory so far as representation of vagueness is
concerned. But even as a piece of mathematics, several points still remain open
for investigation:

(1) completeness theorem for the three different logics given by the truth struc-
tures Ln+1 (a Heyting algebra), Ln+1(·−) and L′

n+1(·−),
(2) location of the categories that have been proposed relative to the algebraic
structures Ln+1(·−) and L′

n+1(·−),
(3) generalization of the case when the universe is infinite.

We hope these issues may be taken up in the future. The interconnection be-
tween vague concepts and indiscernibility hopefully will become clearer as the
mathematical representation of these notions become more and more elegant. At
least history supports this viewpoint: a nice mathematical model reveals reality
better.

References

1. Banerjee, M., Chakraborty, M.K.: Foundations of vagueness: a category-theoretic
approach. Electronic Notes in Theoretical Computer Science 82(4) (2003)

2. Banerjee, M., Chakraborty, M.K.: Algebras from rough sets. In: Pal, S.K.,
Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing, pp. 157–184. Springer,
Heidelberg (2004)

3. Chakraborty, M.K.: Pawlak’s landscaping with rough sets. Transactions on Rough
Sets VI, 51–63 (2007)

4. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal
of General Systems 17, 191–209 (1990)

5. Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Slowiniski,
R. (ed.) Intelligent Decision Support, pp. 203–232. Kluwer, Dordrecht (1992)

6. Dubois, D., Prade, H.: The three semantics of fuzzy sets. Fuzzy Sets and Sys-
tems 90(2), 141–150 (1997)

7. Eytan, M.: Fuzzy sets: a topos-logical point of view. Fuzzy Sets and Systems 5,
47–67 (1981)

8. Goguen, J.: L-fuzzy sets. Journal of Math. Anal. Appl. 18, 145–174 (1967)
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Abstract. We consider a political candidate campaigning to be elected.
Her chances of being elected will depend on how various groups of vot-
ers perceive her, and how they perceive her will depend on what she
has said. Different groups of voters may have different preferences and a
statement preferred by one group of voters may be disliked by another.
Moreover, voters may be optimistic (willing to think the best of the
candidate), pessimistic (inclined to expect the worse), or expected value
voters, who average over various possibilities which may come about if
she is elected. Given these considerations, what should she say? We for-
malize this problem in propositional logic with certain utility values, and
certain intensities of preference for various groups of voters, and show
that if the voters are expected value voters, then she is best off being as
explicit as possible. Thus a reluctance to be explicit may come about as
a result of the presence of optimistic voters.

***

After Barack Obama’s comments last week about what he typically
eats for dinner were criticized by Hillary Clinton as being offensive to
both herself and the American voters, the number of acceptable phrases
presidential candidates can now say is officially down to four. “At the
beginning of 2007 there were 38 things candidates could mention in pub-
lic that wouldn’t be considered damaging to their campaigns, but now
they are mostly limited to ‘Thank you all for coming,’ and ‘God bless
America”’ [said] George Stephanopoulos.

The Onion, 1 May, 2008
NB: The Onion is a satirical weekly newspaper in the US.

1 Introduction

A very important part of elections is campaigning. In the US for instance, the
actual election takes only one day. However, preparations for the election tend
to begin about a year in advance, and campaigning and raising funds for access
to media are important stages in the weeks and months preceding the election
itself.
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This paper is at the very beginning stages of this important area – what
candidates should say in order to do better in the election.

Note that this paper is not about social choice theory. We will not speak about
Arrow’s theorem [Arrow], or the Gibbard Satterthwaite theorem [Gibbard, Sat-
ter], or approval voting, studied by Brams and Fishburn [BF]. These are of course
important topics about which a lot of research has been done. However, this pa-
per is entirely about campaigning and the effect of a candidate’s statements on
the voters.

2 The Formalism

When a candidate utters a sentence A, she is evaluating its effect on several
groups of voters, G1, ..., Gn, with one group, say G1 being her primary target at
the moment.

Thus when Clinton1 speaks in Indiana, the Indiana voters are her primary
target but she is well aware that other voters, perhaps in North Carolina, are
eavesdropping. Her goal is to increase the likelihood that a particular group of
voters will vote for her, but without undermining the support she enjoys or hopes
to enjoy from other groups. If she can increase their support at the same time as
wooing group G1, so much the better, but at the very least, she does not want
to undermine her support in G2 while appealing to G1. Nor does she want to be
caught in a blatant contradiction. She may not always succeed, as we all know,
but remaining consistent, or even truthful, is surely part of her strategy. Lies are
expensive.

We will represent a particular group of like minded voters as one formal voter,
but since the groups are of different sizes, these formal voters will not all have the
same influence. A formal voter who represents a larger group of actual voters
will have a larger size. We will assume that each voter has a preferred ideal
world – how that voter would like the world to be as a result of the candidate’s
policies, should she happen to be elected.

Thus suppose the main issues are represented by {p, q, r}, representing per-
haps, policies on the Afghan war, energy, and taxes. If the agent’s ideal world
is {p, q,¬r}, then that means that the voter wants p, q to be true, and r to be
false. But it may be that p is more important to the voter than q. Then the
world {¬p, q,¬r} which differs from the ideal world in just p will be worse for
the voter than the one, {p,¬q,¬r}, which differs in just q.

We represent this situation by assigning a utility of 1 to the ideal world, and
assigning weights to the various issues, adding up to at most 1. If the weights of
p, q, r are .4, .2, and .4 respectively and the ideal world is p, q,¬r, then a world
in which p, q, r are all true will differ from the ideal world in just r. It will thus
have a utility of (1 - .4), or .6.

1 Some of our examples are taken from the 2008 US election which seems suitable now
that the heat is gone.
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Each voter also has a theory Tc of the candidate, and in the first pass we will
assume that the theory is simply generated by things which the candidate has
said in the past. If the candidate has uttered (presumably consistent) assertions
A1, ..., A5, then Tc will be just the logical closure of A1, ..., A5. If the candidate
is truthful, then Tc will be a subtheory of Ta which is the candidate’s own theory
of the world.

The voter will assume that if the candidate is elected, then one of the worlds
which model Tc will come to pass. The voter’s utility for the candidate will be
obtained from the utilities of these worlds, perhaps by calculating the expected
utility over the (finitely many) models of Tc.

We are implicitly assuming that all the worlds are equally likely, something
which is not always true, but even such a simple setting turns out to be rich
enough for some insights. A different probability distribution will not change
the results for optimistic or pessimistic voters, who do not average but take the
best or the worst respectively. For those voters who average according to some
distribution other than the flat one, the result will still hold that the average of
some quantity α over two disjoint sets Y and Z lies in between the average over
Y and over Z respectively. Thus proposition 1, below, will still go through.

A similar consideration will apply if some worlds are considered impossible
by all voters. Say the truth assignment which assigns value 1 to all of p, q, r is
considered impossible by the candidate as well as the voters. Then we can just
take the formula ¬(p ∧ q ∧ r) to be in the theory Tc.

Suppose now that the candidate (who knows all this) is wondering what to say
next to some group of voters. She may utter some formula A, and the perceived
theory Tc will change to T ′

c = Tc + A (the logical closure of Tc and A) if A is
consistent with Tc, and Tc ∗A if not. Here the ∗ represents an AGM-like revision
operator [AGM].
(Note: The AGM operator ∗ accommodates the revision of a theory T by a
formula A which is inconsistent with T . For the most part we will assume here
that A is in fact something which the candidate believes and is consistent with
Tc which is a subtheory of Ta (her actual beliefs), and thus Tc ∗A really amounts
to Tc � A, i.e., the closure of Tc ∪ {A}.)

Thus the candidate’s utterance of A will change her perceived utility in the
minds of the voters and her goal is to choose that A which will maximize her
utility summed over all groups of voters. We can now calculate the utility to her
of the utterance of a particular formula A.

Each group of voters will revise their theory of the candidate by including the
formula A, and revising their utility evaluation of the candidate.

Let the old utility to group Gi calculated on the basis of Tc be Ui and the
new utility calculated on the basis of Tc ∗ A be U ′

i . Let wi be the weight of the
group Gi calculated on the basis of size, likelihood of listening to A which is
greater for the current target group, and the propensity to actually vote. Then
the change in utility – for group Gi will be wi(U ′

i −Ui). The total for all groups
on the basis of uttering A, or the value of A, will be
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val(A) = val(A, Tc) = Σwi(U ′
i − Ui)

The rational candidate should utter that A which will have the largest value for
val(A).

3 Some Examples

3.1 What Happens When Someone Says Something?

How does the information state of other people change?
We start with an informal example2

In the Coffee Shop
Three people, A, B, C walk into a coffee shop. One of them orders cappuccino,

one orders tea, and one orders icecream. The waiter goes away and after ten
minutes another waiter arrives with three cups. “Who has the cappuccino?” “I
do,” says A. “Who has the tea?” “I do,” says C.

Will the waiter ask a third question?”
Waiter’s Deduction
Consider the possible situations for waiter 2. They are

1) CTI 2) CIT
3) TCI 4) TIC
5) ICT 6) ITC

Here CTI indicates that A has cappuccino, B has tea, and C has icecream.
When A says that he has the cappuccino, 3,4,5,6 are eliminated. The waiter

now has,
1) CTI 2) CIT

When C says that he has the tea, 1 is eliminated.
Now 2 alone is left and the waiter knows that B has the icecream.
Thus the waiter need not ask a third question.

3.2 Learning from Communication

Observation: Suppose a group of people are commonly aware of a number
of possibilities (states) among which they are uncertain. They commonly know
some fact B if B is true of all these possibilities. Now, if a public announcement
of some true formula A is made, then the new situation is obtained by deleting
all states s where A is false. The coffee shop example illustrated this fact.

This moral is apparent in the sequels to Aumann’s “Agreeing to disagree” pa-
per [Aum]. The first such sequel is by Geanakoplos and Polemarchakis [GP], and
another one is due to Parikh and Krasucki [PK]. Of course there are many others.
A logic for dealing with such issues was initially developed by Jan Plaza [Pla],
and the book [DEL] deals entirely with this issue. See also, [Bacharach,Cave].

We shall be concerned in this paper with the change in knowledge (belief)
which comes about when a candidate for election says something and how her
statements affect the voters’ view of her.
2 Thanks to Johan van Benthem for this example which is a variant of one he used

with Dutch children.
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4 The Use of Language in Campaigning

4.1 Towards a Formal Model: Languages and Theories

– We begin by considering a single candidate C.
– C’s views about the issues are formulated in a propositional language L

containing finitely many atomic propositions At = {P1, . . . , Pn}. These
propositions indicate that certain actions will be or will not be taken.

– For instance:
• P1 = We should withdraw from Iraq.
• P2 = I will impose no new taxes.
• . . .
• Pn = We should bail out the banks.

– Ta = C’s actual theory (i.e. the entirety of her views)
– Tc = C’s current theory (i.e. what’s she’s said thus far)
– Typically (but not always) Tc ⊆ Ta.

Here we imagine the language L as obtained from the primitive statements
(members of At ) like Pi using truth functional symbols, perhaps ¬,∨,∧. When
truth values are assigned to the primitive statements, then the truth values of
compound statements can be easily computed using the appropriate truth tables.
Thus for instance the value of ¬A is true just in case the value of A is false, and
the value of A∧B is true just in case both the values of A and B are true. We use
the colorful word world as an alternative to the more prosaic truth assignment.
If w is a world, and A is a formula, then we write w |= A to mean that A is true
in w. If T is a theory (a logically closed set of formulas) then we write w |= T to
mean that all members of T are true in w. If the candidate’s current theory is
Tc then we will write Xc for the corresponding set of worlds Xc = {w|w |= Tc}.

4.2 Worlds and Preferences

– We conflate propositional valuations and worlds w ∈ 2At.

– We also define w[i] =

{
1 w |= Pi

−1 w 	|= Pi

– We initially consider a single group of voters V (think of this as a con-
stituency).

– The voters in V are characterized by their preference for a set of ideal
worlds.

– This is formalized via two functions pv, xv:

• pv(i) =

⎧⎪⎨⎪⎩
1 V would prefer Pi to be true
0 V is neutral about Pi

−1 V would prefer Pi to be false
• xv : At → [0, 1] the weight which V assigns to Pi s.t.

∑
wv(i) ≤ 1.

NB: We have used -1 rather than 0 for false since it makes the arithmetic
simpler.
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4.3 Utilities of Worlds and Theories

– The utility of a world for V is defined as

u(w) =
∑

1≤i≤n

pv(i) · xv(i) · w[i]

– Note that a candidate’s current theory Tc is likely to be incomplete – i.e.
she may not have expressed a view on some Pi.

– To calculate the utility of an arbitrary T we need to know how V will “fill in
the blanks,” i.e., extend the evaluation from single worlds to a set of worlds.

4.4 Voter Types

– We suggest that there are least three types of voters:
• Optimistic voters (who assume the best about C given Tc)
• Pessimistic voters (who assume the worst about C given Tc)
• Expected value voters (who average across possibilities compatible

with Tc).

We are using the flat probability distribution here, but another one would work
as well, provided that it is common knowledge.

Mathematically:

– optimistic voters: uto(T ) = max{u(w) : w |= T }
– pessimistic voters: utp(T ) = min{u(w) : w |= T }
– expected value voters: ute(T ) =

∑
w|=T u(w)

|{w:w|=T}|

4.5 The Value of a Message

– Suppose T is the logical closure C of Tc .
– What’s the best thing for her to say next?
– Roughly: val(A, T ) = ut(T ◦ A) − ut(T )

Here T ◦A indicates a revision of the theory T after the formula A is received.
– But the precise definition will depend on

• the kind of voter we’re assuming (i.e. o vs. p vs. e)
• the set from which A is selected

(Which will affect which is the best A.)
– Wrt the latter, consider A from

• Xa = Ta (i.e. only “true convictions”)
• Xt = L−{¬A : Ta � A} (i.e. anything consistent with “true convictions”

= tactical)
• Xm = L − {¬A : Tc � A} (i.e. anything consistent with the current

theory = Machiavellian)
• X� = L (i.e. any sentence in the language, allowing for contradictions

and deception)
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– Note: Xa ⊆ Xt ⊆ Xm ⊆ X�

– If we have X = X� then Tc may become inconsistent since a formula A in
X� might be inconsistent with Tc.

– In this case, ◦ = ∗ (i.e. an AGM-like update operation).
– In the other cases, ◦ = � (logical closure of T ∪ {A}).
– If X = Xa, Xt or Xm, then we let

val(A, T ) = ut(T � A) − ut(T )

where ut is one of uto, utp or ute.
– We can now define best statements for C given T from X as follows:

best(T, X) = argmaxAval(A, T ) : A ∈ X

Note: The paper [AGM] considered the issue of how a theory T is to be revised
when a formula A inconsistent with T is received. While we mention this case
as relevant, we do not carry out a detailed study of it.

Single voter

– Suppose Tc = {P1 ∨ P2, P1 → P3, P2 → ¬P3}
– There are two assignments satisfying Tc:

w = 〈1,−1, 1〉, w′ = 〈−1, 1, 1〉.
– Consider a single voter V1 with the following preferences:

• p1(1) = 1, p1(2) = −1, p1(3) = −1
• x1(1) = .5, x1(2) = 0, x1(3) = 0

– What should C say?
– (Note: she only needs to consider P1, P2.)

– ute1(T ) =
∑

w|=T u1(w)
|{w:w|=T}| = (.5 +−.5)/2 = 0

– ute1(T � P1) =
∑

w|=T�P1
u(w)

|{w:w|=T�P1}| = .5/1 = .5

– ute1(T � P2) =
∑

w|=T�P2
u(w)

|{w:w|=T�P}| = −.5/1 = −.5
– So best1(Tc, Xm) = P1.

Multiple voters

– Consider a second voter V2 with the following preferences:
• p2(1) = −1, p2(2) = 1, p2(3) = 1
• x2(1) = .5, x2(2) = .25, x2(3) = 0

– ute2(T ) =
∑

w|=T u(w)
|{w:w|=T}| = (−.75 + .75)/2 = 0

– ute2(T � P1) =
∑

w|=T�P1
u(w)

|{w:w|=T�P1}| = −.75/1 = −.75

– ute2(T � P2) =
∑

w|=T�P2
u(w)

|{w:w|=T�P2}| = .75/1 = .75
– So best2(Tc, Xt) = P2.
– Since .75 > .5, if V1 and V2 are the entire audience, C should say P2.
– In general, BestV(T, X) = argmaxA

∑
i∈V vali(A, T ) : A ∈ X.
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5 Complex Statements

Proposition 1. Assume e-voters. For all A, B s.t. A, B, A ∧ B ∈ Xm, (i.e.,
A, B, A ∧ B consistent with Tc) there exist a, ..., f ∈ [0, 1] s.t.

1) a · val(A, T ) + b · val(¬A, T ) = 0
2) val(A ∧ B, T ) = val(A, T ) + val(B, T � A) = val(B, T ) + val(A, T � B)
3) c · val(A ∨B, T ) + d · val(A ∧ B, T ) = e · val(A, T ) + f · val(B, T )

Proof: For 1), ut(T ) = a · ut(T + A) + (1 − a) · ut(T + ¬A)

where a = {w | w|=T�A}
{w | w|=T} Here we make use of the two facts that a) the (change

in) utility over the union of two disjoint sets must be an average of the change
in utility over each separately and b) the change in utility over the whole set (all
models of T ) is clearly 0 since things have been left as they are. �

5.1 Moving to Complete Theories

Proposition 2. If all voters are e-voters, then there is a complete T ⊇ Tc s.t.
ute(T ) ≥ ute(Tc).

Proof: From the above, we must have exactly one of

i) val(Pi, T ) = val(¬Pi, T ) = 0
ii) val(Pi, T ) > 0 and val(¬Pi, T ) < 0
iii) val(Pi, T ) < 0 and val(¬Pi, T ) > 0

Suppose Qi, . . . , Qk (k ≤ n) are all the atoms not in Tc.

Let T0 = Tc and Ti+1 =

{
Ti ∪ Qi val(Qi, Ti) ≥ 0
Ti ∪ ¬Qi else

Let T = Cn(Tk).
This T is complete and has a value at least as great as that of Tc. �

Note: The result will still hold if all voters are e-voters or p-voters. When a
statement is made to pessimistic voters, then their opinion will either improve or
remain the same. For e-voters, we saw that at least one of the formulas A and ¬A
will have non-negative value. Hence the formula a ·val(A, T )+ b ·val(¬A, T ) = 0
in proposition 1 will be replaced by a · val(A, T )+ b · val(¬A, T ) ≥ 0 for suitable
non-negative a, b. It is optimists who need to be kept in the dark.

Proposition 3. One of the best extensions of Tc is a complete theory T ⊇ Tc

Proof
Suppose T ′ is a best extension of Tc and T ′ is incomplete. By the previous
corollary, there is T ′′ ⊇ T ′ which is a complete extension of T ′ (and thus of Tc)
such that ute(T ′′) ≥ ute(T ′). �

The previous result suggests that if C assumes e-voters, then it will never be to
C’s disadvantage to move towards a complete theory. But why then do we have
the Onion phenomenon? I.e. why do candidates state vacuities like “God bless
America” or “9/11 was a tragedy.”
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– Conjecture: They might be assuming that there are at least some o-voters
(who ‘always assume the best’).

(For an optimistic voter, any additional information will either leave his
best world in or take it out, and so he can never feel better after additional
information. It is best to keep such voters in a state of uncertainty.)

– T ⊇ T ′ =⇒ max{u(w) | w |= T ′} ≤ max{u(w) | w |= T }
– I.e. T ⊇ T ′ =⇒ uto(T ′) ≤ uto(T )
– T ⊇ T ′ =⇒ min{u(w) | w |= T ′} ≥ min{u(w) | w |= T }
– I.e. T ⊇ T ′ =⇒ utp(T ′) ≥ utp(T )
– Another possibility is that when you remove one dollar from voter V and

give one dollar to voter V ′, then research shows that the anger which voter
V feels will exceed the pleasure which voter V ′ feels. This is a case of “mini-
mizing regret”. Thus it could be that a voter feels more passion about some
proposition which ‘goes wrong’ than about the same proposition which ‘goes
right’. In that case a candidate would be making a mistake being explicit
about it since her likely gain with some voters may well be less than her loss
with others.

The current election in the US (two years after the one on which we
are drawing for examples) is much richer than the last one since we have
some ‘fascinating’ candidates. Hopefully the current observations will lead
to greater insight for the next incarnation of this work.

5.2 Does Order Matter?

– Does the order in which C says A and B matter?
– Proposition 1.2 suggests “no” in the case A, B are consistent with Tc.
– This may seem like a counter-intuitive result:

• A = Read my lips: ‘no new taxes.’
• B = We must institute user fees.

– A; B allowed Bush senior to seem as if he favored low taxes and small gov-
ernment.

– B; A might have had the opposite result.
– Our current model doesn’t account for this.
– Planned extensions

• extend with a formal model of implicature
• type dynamics: after hearing A, maybe some voters change type from

expected value to optimistic

6 Independent Topics

– Suppose that A and B are in disjoint languages (and hence about unrelated
topics).

– e.g. A ∈ L1 is about abortion, B ∈ L2 is about Iraq.
– Our intuition is that order will not matter in this case.
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– Then we should have

val(A, T ) + val(B, T ∗ A) = val(B, T ) + val(A, T ∗ B)

even if any of A, B, A ∧ B are inconsistent with Tc.
– I.e. even if Tc � ¬A, then updating A; B should have the same effect as

update B; A.
– The next result addresses this point . . .

Definition 1. Let T be a theory in the language L, 〈L1, L2〉 a partition of L

into disjoint sublanguages.

– We say that L1, L2 split T if there are A ∈ L1, B ∈ L2 s.t. T = Cn(A, B).
– Similarly we say that pairwise disjoint languages L1, .., Ln split T if there

are Ai ∈ Li s.t. T = Cn(A1, ..., An).
– In such a case, we say that 〈L1, ..., Ln〉 is a T -splitting.

Proposition 4. ([Pa’99], [KM’07]) Every first order theory has a unique finest
splitting.

Thus a theory can be seen uniquely as consisting of a number of subtheories,
each about its own subject matter. A numerical notion of information can be
defined for the propositional case (Pa’09) and it can be shown that T splits
into T1 and T2 iff the information in T is no more than the information in T1
plus T2.

Example: Suppose T is generated by the two axioms, P, Q∨R. Then T splits into
T1 generated in the sublanguage {P} by P , and T2 generated in the sublanguage
{Q, R} by Q∨R. T cannot be split further. The information that one of Q, R is
true is shared between Q and R, and is not information about either separately.

Proposition 5. Suppose

– C’s current theory is T over language L.
– L can be split into L1, L2.
– Let A ∈ L1 and B ∈ L2 be any statements that the candidate could make.

Then val(A, T ) + val(B ∗ A) = val(B, T ) + val(A, T ∗ B) where ∗ is an update
operator satisfying T ∗ A ∗ B = T ∗ B ∗ A.

7 Implicature

Motorist: My car is out of gasoline.
Passerby: There is a gasoline station around the corner.

In this example from Paul Grice, the passerby has not said but has implicated
that as far as she knows, the gasoline station is open. As Savage and Austin have
pointed out, each statement made is also an action and is evaluated as a move
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in a game. In this case, the game is cooperative as the passerby (presumably)
only wants to help the motorist.

In other situations, there could be an element of opposition between a speaker
and a listener, and the listener will learn to read between the lines.

A candidate who is aware of the fact that her words are being interpreted will
speak in awareness of this fact.

Paul Grice [Grice] discusses the issue of extra information, technically called
implicature, which is conveyed when a person speaks to another. Grice assumed,
as in the gasoline station example, that the two parties have the same interest,
namely to get the motorist going. But the assumption of common interests can
be dropped and there is a whole line of research about cheap talk [CS, FR]
where the interests are no longer wholly shared but some information can still
be conveyed. For instance, Hillary Clinton, campaigning in Indiana, said that
she had once shot a duck as a child. This fact in itself did not express any
political action directly, but nonetheless there would be a Gricean effect and
a conservative voter could assume that she would not push gun control too
strongly.

We will pursue this line in subsequent research.

8 Future Work

– candidates address multiple groups of voters with partial knowledge of their
relative sizes

– multiple candidates (their statements can interact and they can speak about
or reply to each other)

– outside events (i.e. “nature” sequentially makes certain propositions true
with probabilities either known or unknown to the candidates – e.g. hurri-
canes, bank failures)

– enriching the language used by the candidates
– e.g. with a conditional operator to formalize

If Israel attacks Iran, then the US must . . .

– extend formal theory of implicature [after [Benz et al, [BJR] or Parikh &
Ramanjuan [PR’03]]
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Abstract. We propose a probabilistic interpretation of Propositional Dynamic
Logic (PDL). We show that logical and behavioral equivalence are equivalent
over general measurable spaces. Bisimilarity is also discussed and shown to be
equivalent to logical and behavioral equivalence, provided the base spaces are
Polish spaces. We adapt techniques from coalgebraic stochastic logic and point
out some connections to Souslin’s operation A from descriptive set theory.

1 Introduction

Propositional Dynamic Logic (PDL) is a modal logic originally proposed for modelling
program behavior. Its basic operators are of the form 〈π〉, where π is a non-deterministic
program; a formula 〈π〉ϕ holds in a state s iff some terminating execution of π in s
may lead to a state in which ϕ holds. Programs are composed from basic programs
by sequential composition, iteration, and by non-deterministic choice. Usually a test
operator is available as well: if ϕ is a formula, then program ϕ? tests whether ϕ is true;
if it is, the program continues, if not, it fails. This dynamic logic is interesting from an
application point of view, see [1] for an overview from a semantic perspective. It has
attracted attention as a possible model for two-person games, where the programs are
thought of as games for modelling the behavior of the players, see [9].

We are proposing an interpretation of PDL through stochastic Kripke models. This
appears to be new, it is motivated by two observations. First, games and economic be-
havior are successfully modelled through probabilistic models, and PDL permits cap-
turing games and their semantics, it might be interesting to know what probabilistic
properties are reflected by the logic. For example, the notion of bisimilarity is of some
interest in modelling the equivalence of games [9, Section 4], it has also been exten-
sively studied in the area of coalgebras, modal logics and their probabilistic interpreta-
tions [3,4], so it is worthwhile to dwell on this common interest. The second observation
addresses the dynamic nature of PDL. When interpreting modal or coalgebraic logics,
each modal operator is assigned a relation or a predicate lifting which is associated with
its interpretation. This property has to be addressed for a probabilistic interpretation of
PDL. Closely connected with the interpretation of logics is the question of expressivity
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of their models. This problem is addressed in the rest of the paper, performing some
transformations from one model class to others, for which the characterization of ex-
pressivity has been undertaken already.

After proposing a probabilistic interpretation – what do we do with it? First, we have
a look at the structure of the sets of states for which a formula holds. These set are
usually measurable in probabilistic interpretations of modal logics, but this is not auto-
matically the case in the present interpretation. We require the Souslin operation from
descriptive set theory in order to make sure that these sets are well-behaved. We then
show how different models for the logic do compare to each other. Logically equiva-
lent models are behaviorally equivalent, thus having the same theory is for two models
equivalent to finding a model onto which both can be mapped by a morphism. This re-
sult is well-known in “static” modal logics. Bisimulations are considered next, and here
we need to restrict the generality of the models under consideration to those working
over Polish spaces, i.e., over complete and separable metric spaces. A fair amount about
models for logics of the type FRAG over Polish spaces, so we transform the problem
again, solve it in the sphere of FRAG, and transform the solution back to PDL. We
show that bisimilarity is equivalent to logical and behavioral equivalence, provided the
models are defined over Polish spaces.

Organization. Section 2 collects some notions from probability. Section 3 defines the
set of programs we are working with, and defines some logics of interest. The inter-
pretation proposed in Section 4 is analyzed in terms of infinite well-founded trees, and
some results on measurability are derived. Morphisms for comparing models are intro-
duced in Section 5. Section 6 defines issues of expressivity formally and derives the
main result in two steps, isolating topological requirements from general questions of
measurability. Section 7 wraps it all up and proposes further research.

2 Preliminaries

The interpretation of logics through stochastic Kripke models requires some tools from
measure theory. For more information on these topics the reader is referred to Srivas-
tava’s treatise [12] on Borel sets, or to the tutorial Chapter 1 in [4].

Measurable Spaces. Let (X, C) be a measurable space, i.e., a set X with a σ-algebra C
of subsets; the elements of C are called C-measurable sets (or just measurable sets, if no
confusion arises). Denote by σ(C0) the smallest σ-algebra which contains the family C0
of sets. S (X, C) denotes the set of all subprobabilities on (X, C). Let (Y, D) be another
measurable space, a map f : X → Y is called C-D-measurable iff f−1 [D] ∈ C for
all D ∈ D. This implies that a real-valued map f on X is C-measurable iff the set
{x ∈ X | f(x) < r} is a member of C for each r ∈ R.

Let μ ∈ S (X, C) be a subprobability and f : X → Y be C-D-measurable. Put
μf (D) := μ(f−1 [D]) whenever D ∈ D, then μf is the image of measure μ under
f ; apparently μf ∈ S (Y, D). The integral with respect to an image measure can be
computed through the original measure, as the change of variables formula shows.

Lemma 1. Let (X, C) and (Y, D) be measurable spaces, f : X → Y be a C-D-
measurable map, and μ ∈ S (X, C). Then

∫
Y g(y) μf (dy) =

∫
X

(
g ◦ f

)
(x) μ(dx) for

each D-measurable and bounded g : Y → R. �
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Stochastic Relations. A stochastic relation K : (X, C) � (Y, D) between the measur-
able spaces (X, C) and (Y, D) is a map K : X → D → [0, 1] with these properties:
K(x) is for each x ∈ X a subprobability on (Y, D), and the map x �→ K(x)(D) is
C-measurable for each D ∈ D. In the parlance of probability theory, stochastic rela-
tions are called transition probabilities. We note in particular that K(x)(Y ) ≤ 1 for
x ∈ X , hence K(x)(Y ) < 1 may occur, so that mass may vanish. This caters for the
observation that, e.g., programs sometimes do not terminate.

If L : (Y, D) � (Z, E) is another stochastic relation, then the convolution L∗K of L
and K is defined through

(
L∗K

)
(x)(E) :=

∫
Y

L(y)(E) K(x)(dy) (x ∈ X, E ∈ E).
Standard arguments show that L∗K : (X, C) � (Z, E) is a stochastic relation be-
tween (X, C) and (Z, E). Note that the convolution has identities IX , IY with K∗IX =
IY ∗K = K: put IX(x)(C) := (x ∈ C?1 : 0) for x ∈ X, C ∈ C; this is the indicator
function for C ⊆ X .

Completion And Operation A. Given μ ∈ S (X, C), a set N ⊆ X is called a μ-null set
iff there exists N ⊆ N0 ∈ C with μ(N0) = 0; Nμ is the set of all μ-null sets. Define
the μ-completion Cμ of C as σ(C ∪ Nμ), thus M ∈ Cμ iff there exists M1 ⊆ M ⊆ M2
with M1, M2 ∈ C and μ(M2 \ M1) = 0. The universal completion C is defined as
C :=

⋂
{Cμ | μ ∈ S (X, C)}. A measurable space is called complete iff it coincides

with its completion.
V w denotes for a set V the set of all finite words with letters from V including the

empty string ε. Let {As | s ∈ Nw} be a collection of subsets of a set X indexed by
all finite sequences of natural numbers, then the Souslin operation A on this collection
is defined as A

(
{As | s ∈ Nw}

)
:=

⋃
α∈NN

⋂
n∈N

Aα|n, where α|n are just the first
n letters of the sequence α. This operation is intimately connected with the theory of
analytic sets [12].

Proposition 1. The completion Bμ of σ-algebra B is closed under the Souslin oper-
ation A whenever μ ∈ S (X, B). Thus a complete measurable space is closed under
this operation. �

3 The Logic

The logic under consideration is a modal logic, the modal operators of which are given
through a set of programs. The programs in turn are composed from a set of basic
statements, which cannot be decomposed further. This section defines programs and the
logic. We also give here a fragment of the logic which models straight line programs,
and we define for comparison, reference and motivation a classical variant of the logic
which is to be interpreted by set theoretic relations.

Programs. Let U be a set of ur-programs, i.e., of programs that cannot be decomposed
further. This set is fixed. Given U, we define the set P of programs through this grammar
π ::= υ | π1; π2 | π1 ∪ π2 | π∗

1 with υ ∈ U an ur-program. Thus a program is an ur-
program, the sequential composition π1; π2 which executes first π1 and then π2, the
nondeterministic choice π1 ∪ π2, which selects nondeterministically among π1 and π2
which one to execute, or the (indefinite) iteration π∗ of program π1 which executes π1
a finite number of times, possibly not at all.
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sPDL and the Fragment FRAG. A formula in sPDL is given through this grammar

ϕ ::= � | p | ϕ1 ∧ ϕ2 | [π]qϕ.

Here p is an atomic proposition, taken from a fixed set A of atomic propositions, π ∈ P

is a program, and q ∈ Q ∩ [0, 1] is a rational number from the interval [0, 1]. The
informal meaning of formula [π]qϕ being true in state s is that after executing program
π in state s, the probability of reaching a state in which formula ϕ holds is not greater
than q. Denote by FsPDL the set of all formulas of sPDL.

We will also consider the fragment FRAG of sPDL in which the set of programs is
restricted to members of Uw, hence to sequential compositions of ur-programs. Denote
the set of formulas of FRAG by FFRAG.

These logics do have only the bare minimum of logical operators, negation and dis-
junction are missing. It will turn out that for discussing expressivity of these logics,
negation or disjunction need not be present, but — strange enough — conjunction must
be there. The technical reasons for preferring conjunction over disjunction will be dis-
cussed after stating Proposition 9.

The second remark addresses the intended meaning of the modal operator [π]q which
specifies a probability at most q. Usually a modal operator of the form 〈a〉q is defined
with the intended meaning that 〈a〉qϕ holds in state s iff after executing action a in
state s the system will be brought into a state in which ϕ holds with probability at least
q, see [3,4]. Since we will recursively collect probabilities along different paths, it is
intuitively more satisfying to argue with an upper bound than with a lower bound.

Vanilla PDL. Propositional dynamic logic PDL is defined in modal logic through this
grammar

ϕ ::= � | p | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | 〈π〉ϕ.

with p ∈ A and π ∈ P. The set P of programs is unchanged [1, Example 1.15]. Note
that we admit as operations disjunction as well as negation to PDL, and that the modal
operator 〈π〉 associated with program π is not decorated with a numeric argument. The
intuitive interpretation of 〈π〉ϕ holding in a state s is that upon executing program π in
state s a state can be reached in which formula ϕ holds.

We remind the reader of this logic, because we will draw some motivation from its
interpretation when defining the interpretation of sPDL.

4 Interpretation of sPDL

sPDL will be interpreted through Kripke pre-models. Whereas a Kripke model assigns
to each modal operator a relation through which the operator is to be interpreted, or,
in coalgebraic logics, a predicate lifting, we cannot do that in the present context. This
is due to the fact that the programs, i.e., the modal operators, have a specific structure
which is not matched by the stochastic relations. This is possible, however, for Kripke
models of the fragment FRAG, and these models will be used for generating the in-
terpretation of the full logic. The correspondence of Kripke pre-models for sPDL and
Kripke models for FRAG will be observed further when investigating expressivity in
Section 6.
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Interpreting PDL. We recall the interpretation of Vanilla PDL first (see [1, Example
1.26]). Let R :=

(
S, {Rπ | π ∈ P}, (Vp)p∈A

)
be a Kripke model, i.e., S is a set of

possible worlds, Rπ is for each program π ∈ P a relation on S, and Vp is for each
atomic proposition p ∈ A a subset of S. The family of relations satisfies these condi-
tions: Rπ1;π2 = Rπ1 ◦ Rπ2 , Rπ1∪π2 = Rπ1 ∪ Rπ2 , Rπ∗ =

⋃
n∈N0

Rπn with A ◦ B
as the relational composition of relations A and B, and Rπ0 = ε, the identity rela-
tion. Thus the relational structures on R match the algebraic structure on the set of all
programs: sequential composition of programs corresponds to relational composition,
and nondeterministic choice of programs corresponds to the union of the corresponding
relations.

The interpretation of� and the Boolean operations in PDL is straightforward, and we
put R, s |= p ⇔ s ∈ Vp;R, s |= 〈π〉ϕ ⇔ ∃t ∈ S : 〈s, t〉 ∈ Rπ and finally R, t |= ϕ.
Hence we find, e.g., R, s |= 〈π∗〉ϕ ⇔ ∃n ∈ N0 : R, s |= 〈πn〉ϕ.

Stochastic Kripke Pre-Models. A stochastic Kripke pre-modelK =
(
(S, B), (Kπ)π∈U,

(Vp)p∈A

)
for the logic sPDL is a measurable space (S, B), the space of states, a family

of stochastic relations Kπ : (S, B) � (S, B), the transition law, indexed by the ur-
programs, and a family of measurable sets Vp ∈ B, indexed by the atomic propositions.
Kπ(s)(D) is the probability for the new state to be an element of D after executing
program π in state s.

We assume that we have transition laws for the programs’ building blocks only, and
not, as in the case of relational Kripke models, for each program, thus we use the term
“pre-model” rather than “model”. Whereas the algebraic structure of P can be modelled
in the set of relations, this is not the case for stochastic relations: there is a natural com-
position operator, given by the convolution, but there does not seem to be an intuitively
satisfying way of modelling the non-deterministic choice or the indefinite iteration.

All the same, the relational approach will be used as a source for guidelines for the
probabilistic approach. Fix a stochastic Kripke pre-model K. Let A ∈ B be a measur-
able set; we define recursively a set-valued map IA

q from the set of programs to the
subsets of S, indexed by the rationals on the interval [0, 1]. For the time being, the in-
formal interpretation of IA

q (π) is the characterization of all those states which through
executing program π bring the system into a state in A with probability less than q.

As auxiliary sets we define for q ∈ Q ∩ [0, 1] and n ∈ N

Q(n)(q) := {a ∈ (Q ∩ [0, 1])n | a1 + · · ·+ an ≤ q},
Q(∞)(q) := {a ∈ (Q ∩ [0, 1])∞ | a0 + a1 + · · · ≤ q}.

Put Kε := IS for simplicity and for uniformity: the empty program does not do any-
thing.

a. If π ∈ U ∪ {ε}, then IA
q (π) := {s ∈ S | Kπ(s)(A) < q}.This yields all states for

which the execution of program π leads to A with probability less that q.
b. Let s ∈ IA

q (π1; . . . ; πn) iff
(
Kπn∗Kπn−1∗ . . . ∗Kπ1

)
(s)(A) < q, for π1, π2, . . . ,

πn ∈ U, thus executing programs π1, . . . , πn sequentially is modelled through the
convolution of the corresponding transition probabilities, and we determine all states
for which the combined programs yield a probability less that q to be in set A.
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Consider the case n = 2. By the definition of the convolution,

(Kπ2∗Kπ1)(s)(A) < q iff
∫

S

Kπ2(t)(A) Kπ1(s)(dt) < q,

thus upon executing program π1 in state s the system goes into an intermediate state
t, and executing π2 in this intermediate state the probability of entering A is deter-
mined. Since the transitions happen at random, averaging through the corresponding
transition probability yields the desired probability, which is then tested against q.

c. Let π1, π2 ∈ P, then IA
q (π1 ∪ π2) :=

⋃{(
IA

a1
(π1) ∩ IA

a2
(π2)

)
| a ∈ Q(2)(q)

}
.

Selecting nondeterministically one of the programs π1 or π2, IA
a1

(π1) accounts for
all states which are lead by executing π1 to a state in the set A with probability at
most a1, similarly, IA

a2
(π2) for π2. Since we want to bound the probability from

above by q, we require a1 + a2 ≤ q.
d. Let π1, π2, π3 ∈ P, then IA

q

(
π1; (π2 ∪ π3)

)
:= IA

q (π1; π2 ∪ π1; π3), similarly,
IA

q

(
(π1 ∪ π2); π3

)
is defined. This corresponds to the distributive laws.

e. If π1, π2 ∈ P, define IA
q (π∗

1) :=
⋃{⋂

n∈N0
IA

an
(πn

1 ) | a ∈ Q(∞)(q)
}
, similarly,

IA
q (π1; π∗

2) and IA
q (π∗

1 ; π2) are defined. If executing program π1 exactly n times
results in a member of A with probability not exceeding an, then executing π1 a
finite number of times (including not executing it at all) results in a member of A
with probability at most a0 + a1 + . . . , which should be bounded above by q for the
resulting state to be a member of A with probability at least q.

The definition of IA
q (π) shows that the elementary building blocks from which these

sets are computed are the sets IA
q (π1; . . . ; πn) for ur-programs π1, . . . , πn. These build-

ing blocks are combined through elementary set operations, they in turn are deter-
mined by the stochastic relations which come with the Kripke pre-model, either directly
(n = 1) or through convolutions (n > 1).

The intuition says that executing π∗ is somewhat akin either doing nothing at all or
to execute π followed by executing π∗, hence to executing ε ∪ π; π∗.

Example 1. Let π ∈ P, then

IA
q (ε ∪ π; π∗) =

⋃
a∈Q(2)(q)

(
IA

a1
(ε) ∩ IA

a2
(π; π∗)

)
=

⋃
a∈Q(2)(q)

(
IA

a1
(π0) ∩

⋃
b∈Q(∞)(a2)

⋂
n∈N0

IA
bn

(πn+1)
)

=
⋃

c∈Q(∞)(q)

⋂
n∈N0

IA
cn

(πn) = IA
q (π∗).

�

Define the interpretation order on the set of programs through π1 ! π2 iff IA
q (π1) ⊆

IA
q (π2) for all q and all A, then ! is reflexive and transitive. Put ≡:=! ∩ " as the

associated equivalence relation, then π1 ≡ π2 iff π1 and π2 have the same interpretation.
We will consider programs rather than classes for convenience.
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Proposition 2. The interpretation order has the following properties:

a. π1 ! π2 iff π1 ∪ π2 ≡ π2, and π1 ! π2 implies π; π1 ! π; π2 for all π.
b. π∗ = supn∈N0

πn.
c. π∗ is the smallest fixed point of the monotone map τ �→ ε ∪ π; τ .

Proof. Property a. is trivial. For establishing property b. one proves first by induction
that πn ! π∗ for all n ∈ N0. Moreover, if πn ! π′ for all n ∈ N0, then it is not difficult
to see that π∗ ! π′. Thus π∗ is the smallest upper bound to {πn | n ∈ N0}. Finally, the
map τ �→ ε ∪ π; τ is monotone, and π∗ is a fixed point of τ �→ ε ∪ π; τ by Example 1.
If τ̃ is another fixed point of this map, then τ̃ ≡ ε∪ π1 ∪ · · · ∪ πn ∪ πn+1; τ̃ , so that by
part a. πn ! τ̃ for all n ∈ N0. Thus π∗ is in fact the smallest fixed point. �

Consequently, the semantics for the iteration construct defined through I uses actually a
fixed point with the order adapted to the programs’ effects. This appears to be a sensible
alternative to associating the set-theoretically smallest fixed point (in the fashion of the
μ-calculus) to this construct, see the approach proposed in, e.g., [9].

Associate with each program π ∈ P a tree T (π). We will be using the following for-
mat for writing down a tree with root node labelled ν and at most countable offsprings
σ0, σ1, . . . from left to right: # ν ‖ σ0 | σ1 | . . . %.

A. If π ∈ U, then T (π) := π, thus ur-programs constitute the leaves of the tree.
B. If π1, . . . , πn ∈ U (n > 1), then T (π1; . . . ; πn) := # comp ‖ π1 | · · · | πn%,thus

the tree associated with a finite sequence of ur-programs has the composition sym-
bol comp as the label of the root, and the ur-programs as offsprings.

C. Define recursively T (π1 ∪ π2) := # union ‖ T (π1) | T (π2)%, for the programs
π1, π2, π3 ∈ P, similarly, T (π1; (π2 ∪ π2)) and T ((π1 ∪ π2); π3) are defined. The
root has the label union, the left and right offspring correspond to the operands.

D. Given the programs π1, π2 ∈ P, define recursively T (π∗
1) := # star ‖ ε | T (π1) |

· · · | T (πn
1 ) | . . . %, the trees T (π1; π∗

2) and T (π∗
1 ; π2) are defined similarly. Thus

the root node is decorated with the annotation star, and it has countably many off-
springs, each corresponding to executing the program exactly n times. Note that ε
serves to indicate that the program is not executed at all.

Fig. 1 gives an impression what the partially expanded tree T ((π0 ∪ π1; π∗
2)∗) looks

like.

Lemma 2. The tree T (π) for each program π ∈ P is well-founded. �

The set operations for determining IA
q are not always countable, so one might suspect

that they go beyond what can be represented through a σ-algebra. If the underlying
state space is a measurable space which is closed under the Souslin operation, however,
we can establish that we stay within the realm of measurable sets. The proof of the
following Proposition proceeds by induction on the program tree T (π).

Proposition 3. Let (S, B) be a measurable space which is closed under the Souslin
operation A, then IA

q (π) ∈ B for each program π ∈ P, provided A ∈ B. �
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Fig. 1. Partially expanded tree for (π0 ∪ π1; π∗
2)∗

The Semantics for sPDL. The semantics for the formulas is defined now. For this, define
the extent [[ϕ]]K of formula ϕ as the set of all worlds {s ∈ S | K, s |= ϕ} of the Kripke
pre-model K in which formula ϕ is true. Define the semantics of formula ϕ through
K, s |= ϕ ⇔ s ∈ [[ϕ]]K,where [[ϕ]]K is defined recursively in this way.

[[�]]K := S,

[[p]]K := Vp, if p ∈ A,

[[ϕ1 ∧ ϕ2]]K := [[ϕ1]]K ∩ [[ϕ2]]K,

[[[π]qϕ]]K := I [[ϕ]]K
q (π), if π ∈ P, q ∈ Q ∩ [0, 1].

Concerning the structure of these sets, we state

Proposition 4. If the state space (S, B) of the Kripke pre-model K is closed under
operation A, then [[ϕ]]K ∈ B for all formulas ϕ. �

Thus if the state space (S, B) of the Kripke pre-model K equals the completion Cμ

for some μ ∈ S (S, C), or if it equals the universal completion C for some σ-algebra
C, then [[ϕ]]K ∈ B for all formulas ϕ, see Proposition 1. If, however, the state space
is not closed under operation A, then for some formulas ϕ the set [[ϕ]]K may not be
representable as an event.

The Semantics of Fragment FRAG. We cannot associate with each program a stochastic
relation for sPDL, but we are able to do this for fragment FRAG. A Kripke model
M =

(
(S, B), (Mπ)π∈Uw , (Vp)p∈A

)
for the fragment FRAG of sPDL is defined just as

a pre-models for sPDL, with the exception that Mπ : (S, B) � (S, B) is a stochastic
relation for each π ∈ Uw, hence for each finite sequence of ur-programs.

We define the semantics of formulas in FRAG in an obvious way, the interesting case
is the treatment of the modal operator[π]q: [[[π]qϕ]]M := {s ∈ S | Mπ(s)

(
[[ϕ]]M

)
<

q}. Structural induction establishes measurability of the formulas’ extension.
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Proposition 5. Let M =
(
(S, B), (Mπ)π∈Uw , (Vp)p∈A

)
be a Kripke model for FRAG,

then [[ϕ]]M ∈ B for all formulas ϕ of FRAG. �

Measurability of the sets [[ϕ]]M is easier to obtain for models than for pre-models, be-
cause the structure of the formulas is considerably simpler, in particular we may restrict
our attention to programs that have a predetermined number of components, in contrast
to iterations which are finite but of indefinite length.

Given a stochastic Kripke pre-model K over the state space (S, B) with stochastic
relations (Kπ)π∈U, we construct a stochastic Kripke model K† for the fragment FRAG
with stochastic relations (Mπ)π∈Uw such that Mπ1;...;πn := Kπn∗Kπn−1 ∗ . . . ∗Kπ1 ,
all other components are inherited from K. Conversely, a stochastic Kripke model M
for FRAG with relations (Mπ)π∈Uw yields a pre-model M‡ for sPDL with stochastic
relations (Kπ)π∈U upon setting Kπ := Mπ for the ur-program π ∈ U, again all other
components remaining the same. Then

(
K†)

‡ = K for each pre-model K. Structural
induction on the formula shows that

Lemma 3. Let K be a stochastic Kripke pre-model, then [[ϕ]]K = [[ϕ]]K† holds for each
formula ϕ ∈ FFRAG. �

The interplay of pre-modelK with model K†, and of model M with the pre-modelM‡
will be of considerable interest when investigating expressivity in Section 6.

5 Morphisms

Morphisms are used to relate pre-models to each other. A morphism preserves the struc-
ture of an interpretation: the states in which atomic propositions are true are related to
each other, and the probabilistic structure, i. e., the transition laws, are compared against
each other.

Let K =
(
(S, B), (Kπ)π∈U, (Vp)p∈A

)
and L =

(
(T, C), (Lπ)π∈U, (Wp)p∈A

)
be

stochastic Kripke pre-models. A C-D-measurable map f : S → T is called a pre-model
morphism f : K → L iff f−1 [Wp] = Vp for each atomic proposition p ∈ A, and Kf

π =
Lπ ◦ f for each ur-program π ∈ U. The first condition states that s ∈ Vp iff f(s) ∈
Wp for each atomic proposition. The second condition states that Lπ

(
f(s)

)
(D) =

Kπ(s)
(
f−1 [D]

)
for each s ∈ S, each measurable set D ∈ D, and each ur-program

π ∈ U. Thus the probability in L of bringing state f(s) into D through executing ur-
program π is the same as executing π in state s and ending up in f−1 [D] in K.

This property is preserved through sequential program composition.

Proposition 6. Let K and L be stochastic Kripke pre-models as above, and f : K → L
be a morphism. Then we have for each s ∈ S, D ∈ D and ur-programs π1, . . . , πn ∈ U(
Lπ1∗ . . . ∗Lπn

)
(f(s))(D) = (Kπ1∗ . . . ∗Kπn)(s)

(
f−1 [D]

)
. �

Comparing Morphisms. Dealing with Kripke models M and N , the definition of a
model morphism f : M → N remains essentially the same. To be specific, if the
stochastic relations (Mπ)π∈Uw and (Nπ)π∈Uw govern the probabilistic behavior, then
the first condition on atomic propositions remains as it is, and the second one is replaced
by Mf

π = Nπ ◦ f for each finite sequence π ∈ Uw of ur-programs. We obtain as an
immediate consequence.
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Corollary 1. Consider for a measurable map f : S → T these statements, where K
and L are pre-models, and M and N are models with state spaces S resp. T . Then
f : K → L is a pre-model morphism iff f : K† → L† is a model morphism, and if
f : M→N is a model morphism, then f : M‡ → N‡ is a pre-model morphism. �

Morphisms preserve and reflect the validity of formulas both in sPDL and in the frag-
ment FRAG.

Proposition 7. Let f : K → L be a pre-model morphism, then K, s |= ϕ ⇔ L, f(s) |=
ϕ for each state s in K and each formula ϕ ∈ FsPDL. If g : M → N a model mor-
phism, then M, s |= ϕ ⇔ N , g(s) |= ϕ for each state s in M and each formula
ϕ ∈ FFRAG. �

The Test Operator. The usual definition of PDL includes a test operator. With each
formula ϕ a program ϕ? is associated which tests whether ϕ holds. Intuitively, if the
test succeeds, then the program continues. Given a Kripke model R with S as the set of
possible worlds, the set of relations for the interpretation of the logic is extended by the
relation Rϕ? := {〈s, s〉 | s ∈ S,R, s |= ϕ}, see [1, p. 23].

The test operator is integrated into sPDL in this way. Given a Kripke pre-model K over
state space (S, B) and a formula ϕ, we define Kϕ?(s)(B) := IS(s)(B ∩ [[ϕ]]K), and
Kϕ?(s)(B) := IS(s)

(
B ∩ (S \ [[ϕ]]K)

)
for B ∈ B. Kϕ? is the relation associated with

testing for ϕ, and Kϕ? tests whether ϕ does not hold — recall that the logic is negation
free.

Lemma 4. Let K be a Kripke pre-model over state space (S, B) which is closed under
the Souslin operation A. Then both Kϕ? and Kϕ? are a stochastic relations for each
formula ϕ. �

Thus, if the set [[ϕ]]K is not measurable, the test operator associated with ϕ is not repre-
sentable within the framework of the Kripke model; consequently, we may not be able
to test within this model, e.g., whether an iteration has terminated. This emphasizes
again the importance of operation A.

Example 2. Let p ∈ A be an atomic proposition, π ∈ U an ur-program and ϕ a formula.
Then [[[p?; π]qϕ]]K = {s ∈ S | Kπ(s)(Vp ∩ [[ϕ]]K) < q}, and [[[π; p?]qϕ]]K =

(
S \Vp∩

[[[π]qϕ]]K
)
∪ Vp. �

Tests are compatible with morphisms.

Proposition 8. Let f : K → L be a morphism between pre-models. Then Kf
ϕ? =

Lϕ? ◦ f for every formula ϕ ∈ FsPDL. �

This is the reason why we are not interested in this operator when looking into the ex-
pressivity of Kripke pre-models is that these operators do not contribute to the relevant
properties of this problem.



60 E.-E. Doberkat

6 Expressivity

We are able to compare the behavior of two (pre-) models once we know that there exists
a morphism between then. This leads to the notion of behavioral equivalence: there exists
a reference system onto which the pre-models may be mapped. On the other hand, we
can compare pre-models through their theories: two pre-models are logically equivalent
iff for each state in one model there exists a state in the other model in which renders
exactly the same formulas are true. It will be shown that these notions of expressivity
are equivalent, and it is easy to see that behaviorally equivalent models are logically
equivalent. The proof for the other direction proceeds technically as follows: we show that
logically equivalent pre-models give rise to logically equivalent models, and we know for
models that logical and behavioral equivalence coincide. This result is then carried over
to the world of pre-models. There is a small catch, though: the equivalence mentioned
holds for models of another, albeit closely related, logic. This has to be taken care of.

Define for a state s in pre-model K the sPDL-theory ThK(s) of s as the set of all
formulas in FsPDL which are true in s, formally ThK(s) := {ϕ ∈ FsPDL | K, s |= ϕ}.
Similarly, the FRAG-theory ThM(s) of state s in model M is defined as all formulas
in the fragment FRAG which are true in s; we use the same notation for both logics,
trusting that no confusion arises. These sets are closely related. Just for the record:

Lemma 5. Let K be a pre-model, then ThK†(s) = ThK(s) ∩ FFRAG for each state s
in K. �

Logical vs. Behavioral Equivalence. The pre-models K and L are called logically
equivalent iff given a state in K, there exists a state in L which has the same the-
ory, and vice versa. This translates to {ThK(s) | s is a state in K} = {ThL(t) |
t is a state in L}. Logical equivalence for models is defined in the same way. We in-
fer from Lemma 5.

Corollary 2. If the pre-models K and L are logically equivalent, so are the models K†

and L†. �

The pre-models K and L are called behaviorally equivalent iff there exists a model Q

and surjective pre-model morphisms K
f 		 Q L

g

 . In fact, let s be a state in K
and ϕ be a formula, then there exists a state t in L such that f(s) = g(t), consequently
by Proposition 7 K, s |= ϕ ⇔ Q, f(s) |= ϕ ⇔ Q, g(t) |= ϕ ⇔ L, t |= ϕ.

This accounts for the name, and the argumentation shows

Lemma 6. Behaviorally equivalent pre-models are logically equivalent. �

Behavioral equivalence is defined for Kripke models in the same way through the exis-
tence of a pair of morphisms with the same target.

Lemma 7. Let K and L be behaviorally equivalent pre-models, then K† and L† are
behaviorally equivalent models. �

Logical equivalence and behavioral equivalence are closely related for Kripke models,
as the following proposition shows. We have to show that we can find a pre-model for
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logically equivalent models which serves as a target for morphisms which are defined
on the given models. This construction is technically somewhat involved, but we can
fortunately draw on the analogous results for another, closely related logic; this result
is massaged into being suitable for the present scenario.

Proposition 9. If the Kripke models M and N are logically equivalent, then they are
behaviorally equivalent as well.

Proof. 1.M =
(
(S, B), (Mπ)π∈Uw , (Vp)p∈A

)
andN =

(
(S, C), (Nπ)π∈Uw , (Wp)p∈A

)
are the Kripke models under consideration. Construct as in [4, Section 2.6] a measur-
able space (H, E) and surjective maps f : S → H and g : T → H together with
stochastic relations Hπ : (H, E) � (H, E) for π ∈ Uw with these properties:

i. f is B-E-measurable, g is C-E-measurable,
ii. f

[
[[ϕ]]M

]
= g

[
[[ϕ]]N

]
for all formulas ϕ ∈ FsPDL,

iii. [[ϕ]]M is f -invariant, [[ϕ]]N is g-invariant for all formulas ϕ ∈ FsPDL (thus, e.g.,
s ∈ [[ϕ]]M and f(s) = f(s′) implies s′ ∈ [[ϕ]]M),

iv. Hf
π = Mπ ◦ f and Hg

π = Nπ ◦ g for all π ∈ Uw,
v. E = σ

(
{f
[
[[ϕ]]M

]
| ϕ ∈ FsPDL}

)
= σ

(
{g
[
[[ϕ]]N

]
| ϕ ∈ FsPDL}

)
.

The actual construction in [4, Section 2.6] is carried out, however, for a logic given by
the grammar

ψ ::= � | ψ1 ∧ ψ2 | 〈a〉qψ,

where a is taken from an arbitrary non-empty set of actions, q ∈ Q ∩ [0, 1], and the
interpretation of formula 〈a〉qψ is that 〈a〉qψ is true in state s iff action a in s leads
the model to a state in which ψ holds with probability at least q. A careful anal-
ysis of the proofs in [4, Section 2.6] (in particular of, resp., Proposition 2.6.8 and
Lemma 2.6.15), however, shows that the latter condition may be replaced everywhere
by the definition of validity for [π]qϕ proposed in the present paper, without changing
the proofs’ substance.

2. Define Xp := f
[
Vp

](
= g

[
Wp

])
for the atomic proposition p ∈ A, then Xp ∈

E. Due to the invariance property of f resp., g, we conclude that both f−1 [Xp] =
Vp, g

−1 [Xp] = Wp. hold. In fact, if f(s) ∈ Xp = f
[
Vp

]
, there exists s′ ∈ Vp with

f(s) = f(s′). Since Vp is f -invariant, we conclude s ∈ Vp, so that f−1 [Xp] ⊆ Vp.
The inclusion f−1 [Xp] ⊇ Vp is obvious. 3. Consequently, H :=

(
(H, E), (Hπ)π∈Uw ,

(Xp)p∈A

)
is a Kripke model with morphisms M

f 		 H N .
g

 Thus the logi-

cally equivalent Kripke models M and N are behaviorally equivalent. �

Some remarks are in order. ❶ The proofs from [4, Section 2.6] are adapted, they require
the logical equivalence of the underlying Kripke models. They factor the Kripke models
according to the logic, saying that two states are equivalent iff they satisfy exactly the
same formulas in the respective models. The factor spaces are related to each other by
glueing the equivalence classes for s inM and for t inN iff ThM(s) = ThN (t); logical
equivalence renders this construction permissible. The combined space is essentially the
state space for modelH. A suitable σ-algebra onH is constructed, and suitable stochastic
relations are defined. For these constructions the underlying logic is required to be closed
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under conjunctions for measure theoretic reasons. ❷ The observation just made is the
technical reason for requiring the logic being closed under conjunctions; the alternative
of closing under disjunctions, however, is for measure theoretic purposes not equally
attractive. ❸ Incidentally, since we work in a σ-algebra, we do not need negation, which
tells us when a formula is not true. On the level of models we can state that formula ϕ
does not hold in state s iff s ∈ S\ [[ϕ]]M, which is a member of the σ-algebra over which
we are working, hence a member to our universe of discourse, provided [[ϕ]]M is. ❹ An
alternative to the proof presented would have been through a coalgebraic approach by
defining for each modal operator [π]q a suitable predicate lifting, and by investigating
the corresponding logic over a coalgebra, see [4, Section 4.4] or [5]. Balancing the —
considerable — effort of doing so against modifying a construction which works with
conventional methods resulted in the proof presented above.

We are ready to prove the first installment of our main result

Proposition 10. Let K and L be Kripke pre-models, then K and L are behaviorally
equivalent if and only if K and L are logically equivalent. �

It may be noted that the result above holds for any measurable space, independent of
whether or not the validity sets of the formulas are measurable (which require, by Propo-
sition 3, closedness under the Souslin operation A).

In contrast, relating bisimilarity to the logical and behavioral equivalence makes
fairly strong assumptions on the base space.

Bisimilarity. Call the stochastic Kripke pre-models K and L bisimilar iff there exists

a pre-model M such that K M
f

 g 		 L for suitable pre-model morphisms f

and g. Pre-model M is sometimes called mediating. Bisimilarity is a key concept in
modal logics as well as in the theory of coalgebras. The reader is referred to [1] and
to [10] for comprehensive discussions, where also the relationship to the coalgebraic
aspects of Milner’s original concept of bisimilar concurrent systems [7] is discussed.
An immediate observation is (cp. Proposition 7 and Lemma 6).

Lemma 8. Bisimilar pre-models are logically equivalent. �

We cannot show in general measurable spaces that logically equivalent models are
bisimilar; for this, we have to specialize the base spaces in which we are working to
Polish spaces. A topological space (X, τ) is called Polish iff it is second countable, and
there exists a metric for τ which is complete, see [12]. The σ-algebra B(X, τ) of Borel
sets for a topological space (X, τ) is the smallest σ-algebra on X which contains the
open sets, hence B(X) = σ(τ); as usual, we omit the Borel sets, when we talk about a
topological space. A map from a topological space (X, τ) to a measurable space (S, C)
is called Borel iff it is B(X)-C-measurable.

For Polish spaces we can establish the equivalence of all three notions of expressivity.

Theorem 1. Let K and L be Kripke pre-models, and consider these statements.

a. K and L are logically equivalent.
b. K and L are behaviorally equivalent.
c. K and L are bisimilar.
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Then (c) ⇒ (a) ⇔ (b), and if the state spaces of K and L are Polish spaces, then all
three statements are equivalent.

Proof. 1. The implications (c) ⇒ (a) ⇔ (b) are Proposition 10 together with Lemma 8.
Hence the implication b ⇒ c remains to be established.

2. Let K = (S, (Kπ)π∈U, (Vp)p∈A) and L = (T, (Lπ)π∈U, (Wp)p∈A) be be-
haviorally equivalent Kripke pre-models over the Polish spaces S and T . Then the
Kripke models K† and L† are behaviorally equivalent models by Lemma 7, so
there exists a model M =

(
(Q,H), (Mπ)π∈Uw , (Xp)p∈A

)
and model morphisms

K† M
f

 g 		 L†. We infer from [5, Proposition 6.18] that we may assume

Q to be a separable metric space with H = B(Q). Put Y := {〈s, t〉 | s ∈ S, t ∈
T, f(s) = g(t)}, and let β : Y → S, γ : Y → T be the projections. Since f and
g are surjective and Borel, β and γ are surjective and Borel. We infer from [6, Theo-
rem 3.8] that we can find for each π ∈ Uw a stochastic relation Nπ : Y � Y such
that K†

π ◦ β = Nβ
π , L†

π ◦ β = Nγ
π . Define Zp := Y ∩ Vp × Wp for the atomic

proposition p ∈ A, then N :=
(
Y, (Nπ)π∈Uw , (Zp)p∈A

)
is a Kripke model with

K† N
β

 γ 		 L†. Consequently, the pre-model N‡ is a mediating pre-model

for K and L. �

The crucial step in the proof is the existence of the stochastic relations Nπ for each π ∈
Uw. This actually requires some heavy machinery from measurable selection theory
which is available in Polish spaces, but not in general measurable spaces.

Thus we have carried over the result of the equivalence of logical equivalence, bisim-
ilarity and behavioral equivalence. It has been established for the logics mentioned in
the proof of Proposition 9 (they are sometimes called Hennessy-Milner logics) for the
case that the underlying space is Polish, and that there is a countable set of actions,
see [4, Section 2.3]. The latter assumption is made in order to make sure that the factor
spaces which are needed for the constructions are well-behaved. Note that by separat-
ing concerns we did not need an assumption on countability, and that bisimilarity only
required the assumption on a Polish base space.

7 Conclusion

We propose a probabilistic interpretation for sPDL, the modal operators of which are
given by [π]q for a program π with the intended meaning that [π]qϕ holds in a state s if a
terminating execution of program π in state s will reach a state in which formula ϕ holds
has a probability not greater than q. This deviates slightly from the usual probabilistic
interpretation of modal logics, see [3,4], because the proposed interpretation is more
adequate for the present logic. It is shown that behavioral and logical equivalence are the
same, they are equivalent to bisimilarity in the case of models based on Polish spaces.

The models we investigate do not show an interpretation for each modal operator. We
have to generate the interpretation from the model for a fragment. The technique seems
to be interesting in itself. The question arises whether it can be applied to dynamic coal-
gebraic logics, i.e., to dynamic logics in which the modal operators are given through
predicate liftings. Coalgebraic logic has recently attracted some interest [11,4,5] as a
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unifying and powerful generalization of modal logics. Another promising line is the
exploration of ideas pertaining to the probabilistic interpretations of games.

The interpretation proposed here shows some rough edges: First, the semantics of
formulas [π∗]qϕ is defined through an iterative fixed point rather than a smallest one,
cp. Example 1 and Proposition 2. This keeps it in line with the interpretation of sPDL
in modal logics [2, Sections 6.6, 6.7], but in contrast to a very similar approach in game
logics [9], see also the discussion of belief structures in [8]. This topic will have to
be investigated further. Second, we establish bisimulations only for Kripke models on
Polish spaces; on the other hand, the extent of formula [π∗]ϕ can only be shown to be
measurable if the underlying measurable space is closed under the Souslin operationA.
But non-discrete Polish spaces are never closed under this operation. This follows from
the observation that in such spaces there exist analytic sets which are not Borel measur-
able; the collection of analytic sets is closed under operationA, however [12, Theorems
4.1.5, 4.1.13]. Third, we propose an interpretation of FRAG through a stochastic Kripke
model, but then we continue in a nondeterministic fashion. We will investigate how this
nondeterminism can be replaced by a purely stochastic approach.
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is grateful for discussions with Ingo Battenfeld and Christoph Schubert.
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Abstract. The study of cooperation among agents is of central interest in multi-
agent systems research. A popular way to model cooperation is through coali-
tional game theory. Much research in this area has had limited practical applica-
bility as regards real-world multi-agent systems due to the fact that it assumes
deterministic payoffs to coalitions and in addition does not apply to multi-agent
environments that are stochastic in nature. In this paper, we propose a novel ap-
proach to modeling such scenarios where coalitional games will be contextual-
ized through the use of logical expressions representing environmental and other
state, and probability distributions will be placed on the space of contexts in order
to model the stochastic nature of the scenarios. More formally, we present a for-
mal representation language for representing contextualized coalitional games
embedded in stochastic environments and we define and show how to compute
expected Shapley values in such games in a computationally efficient manner. We
present the value of the approach through an example involving robotics assis-
tance in emergencies.

1 Introduction

The study of cooperation among agents is of central interest in multi-agent systems re-
search. The reason for this is that more often than not, agents working together perform
tasks more efficiently than agents that do not. Although our intuitions tell us this is so,
formal models provide a basis for actually proving when and when not this is the case,
in addition to providing a basis for efficient implementation of cooperative multi-agent
systems.

A popular way to model cooperation is through coalitional games. The key ques-
tions in coalitional game theory are related to division of payoff from cooperation so
that stability and/or fairness are achieved. Although many of these issues have already
been extensively studied in the AI/MAS context [12], most of the research has had lim-
ited practical applicability as regards real-world multi-agent systems. The reasons for
this, from the modeling point of view, are twofold. Firstly, most work to date assumes
deterministic payoffs to coalitions, which is clearly not achievable in many multi-agent
systems which are embedded in stochastic environments. Secondly, although some re-
cent work in AI has proposed game models that account for uncertainty, these new
developments are highly theoretical and do not take into account computational issues.
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Specifically, from the computational point of view, the paramount question is how to
concisely represent a coalitional game when the number of potential coalitions is ex-
ponential, precisely 2n − 1 where n is the number of agents. Important measures used
to asses representations are: expressiveness, i.e., does it allow representation of a broad
class of games, and efficiency, i.e., does it allow for efficient computing of solutions to
games from a considered class.

As a motivating example of a real-world multi-agent system, consider a scenario
in the emergency services application domain where, as support for rescue missions,
one wants to hire configurations of autonomous ground robots (UGVs) and Unmanned
Aerial Vehicles (UAVs) from a number of suppliers. Each of the robots, may take on
different roles, based on particular sensor capability. In addition, operational efficiency
may be affected by particular environmental characteristics which in turn influence the
payoffs to coalitions in a contextual manner. Since future environmental characteristics
are unknown, the contexts are stochastic in nature.

For instance, in cases where there is wind and rain in the catastrophe areas, it may be
the case that only one type of UAV can be used. When the wind is very strong such as
during a typhoon, UAVs are useless and one has to depend more on the use of UGVs or
other types of vehicles. Use of different configurations of UGVs and UAVs contribute
to different hiring costs and differences in resulting quality of usage. One also has to
pay a certain fixed fee for keeping equipment ready for immediate use. In cases such
as this, one of the main issues is how to distribute the total budget among different
suppliers, when a long term contract is being negotiated and many such missions are
expected to be carried out under various circumstances. The key factors involved here
are dynamic coalition formation, dynamic contexts in which coalitions form, and the
stochastic nature in which these contexts occur in the long run.

The research topic is to develop general and computationally efficient frameworks
to be able to model such scenarios. Although such scenarios can be modeled to some
extent by a number of existing theoretical frameworks that account for uncertainty [8],
even for a relatively small number of agents and states in the environment, these models
become impractical from a computational point of view and perhaps even a modeling
point of view. Thus simplicity is one of our important goals.

Therefore, in this paper we propose a novel approach to modeling such scenarios
where coalitional games will be contextualized through the use of logical expressions
representing environmental and other states. Probability distributions are placed on
the space of contexts in order to model the stochastic nature of the scenarios. More
specifically:

– we define contextual coalitional games embedded in stochastic environments and
show how to efficiently translate contextual coalitional games into linear combina-
tions of traditional coalitional games;

– we propose a family of formalisms for representing contextualized coalitional
games, where each specific formalism is obtained from the general pattern instan-
tiated by fixing a specific representation of traditional coalitional games and a spe-
cific logic;

– we define and show how to compute expected Shapley values in such games in
a computationally efficient manner; and
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– we instantiate our general representation and exemplify its use by modeling the
informal scenario involving UGVs and UAVs.

The paper is structured as follows. The first section contains notation and preliminary
definitions. In the second section we introduce and discuss contextual coalitional games
and the Shapley value for such games. In the third section we introduce and motivate
our representational viewpoint as well as demonstrate its flexibility and conciseness. We
also show that the new representation differs in complexity from conventional games by
a factor of the number of states. Next, we instantiate our general definition to Marginal
Contribution Nets [7]. Then, we consider computational aspects related to our repre-
sentation and discuss related work.

2 Preliminaries

A game-theoretical convention for modeling coalitional games is a characteristic func-
tion game (CFG) representation. In this approach values of all non-empty coalitions are
explicitly listed. Formally, a coalitional game is described by a tuple G = 〈A, v〉, where
A = {a1, . . . , an}, is a set of n = |A| agents, and a function v : 2A −→ R maps any
coalition, i.e., a set of agents, to a real value, where it is assumed that v(∅) = 0. The
coalition of all the agents in the game is called the grand coalition.

Example 2.1 (Characteristic function). For A = {a1, a2, a3}, a sample characteristic
function is:

v({a1}) = 0 v({a2}) = 0 v({a3}) = 1
v({a1, a2}) = 1 v({a1, a3}) = 1 v({a2, a3}) = 1
v({a1, a2, a3}) = 2. �

The majority of the best-known solution concepts used with coalitional games have
been developed building upon the above CFG representation. Arguably the most famous
normative solution concept is the Shapley value. Assuming that the grand coalition is
optimal and eventually will form, the Shapley value shows what is the fair division of
payoff between agents.1 Any agent is reimbursed, not only for its performance in the
grand coalition, but for its potential marginal contribution to every other coalition. It
is assumed that agents join the coalitions in random order and thus all permutations
of agents are equally likely. More formally, let Π(A) be the set of all permutations

of agents in A. For π ∈ Π(A) denote by Cπ(ai)
def= {aj | π(aj) < π(ai)}, where

π(aj) < π(ai) denotes the fact that agent aj occurs in π before agent ai. The Shapley
value of agent ai in a game G = 〈A, v〉, denoted by φG(ai), is given by the following
expression:

φG(ai) =
1
n!

∑
π∈Π(A)

[
v(Cπ(ai) ∪ {ai}) − v(Cπ(ai))

]
.

1 The grand coalition is optimal if its value is at least as large as the sum of the values of any
partition of agents into smaller coalition. This assumption ensures that it is a rational choice
to form the grand coalition, as is required by the Shapley value as well as many other solution
concepts. Nevertheless, the formal analysis is meaningful without the assumption.
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Example 2.2 (Shapley value). For the game G = 〈A, v〉 defined in Example 2.1, the
Shapley values of successive agents are φG(a1) = φG(a2) = 1

2 and φG(a3) = 1. �

The importance of the Shapley value comes from the fact that it is the only payoff
division scheme that satisfies the following natural “fairness” axioms:

1. efficiency: it fully distributes the total payoff available to the agents:∑
a∈A

φG(a) = v(A) (1)

2. symmetry: if agents ai and aj are interchangeable, then they have the same payoff:

if, for any C ⊆ A \ {ai, aj}, one has v(C ∪ {ai}) = v(C ∪ {aj})
then φG(ai) = φG(aj)

(2)

3. dummy: if an agent ai does not contribute to any coalition then its value is 0:

if, for any C ⊆ A \ {ai}, one has v(C) = v(C ∪ {ai}) then φG(ai) = 0 (3)

4. linearity: for any two coalitional games G = 〈A, v〉 and G′ = 〈A, v′〉:

φa∗G+b∗G′ (ai) = a ∗ φG(ai) + b ∗ φG′(ai) (4)

where a, b ∈ R and a ∗ G + b ∗ G′ def= 〈A, a ∗ v + b ∗ v′〉.

If a coalitional game is modeled using a CFG representation, computation of the Shap-
ley value as well as many other solution concepts becomes problematic. This is because
the number of feasible coalitions grows exponentially in the number of agents. It means
that the size of the input renders the computational insights regarding those solution
concepts meaningless for larger n.

We will say that a given representation of coalitional games is fully expressive iff it
allows to represent a characteristic function of any coalitional game. Clearly, the CFG
representation is fully expressive.

3 Formalization of Contextual Coalitional Games

In this section, we formally introduce coalitional games with stochastic contexts and
their representations.

Definition 3.1. A contextual coalitional game (CCG, in short) is a tuple: 〈A,S, ϑ,P〉,
where:

– A is a set of agents in the game;

– S def= {σ1, . . . , σk} is a finite set of states of the environment in which the game
is played; it is assumed that, in a given moment, the environment is in exactly one
state;

– ϑ : S × 2A −→ R is a mapping, which associates payoffs to coalitions in states;
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– P = {pσ | σ ∈ S} is a probability distribution on states, where pσ denotes the
probability that state σ materializes. �

As before, we assume the payoff 0 for the empty coalition, i.e., for all s ∈ S it holds
that ϑ(s, ∅) = 0.

Definition 3.2. Let G = 〈A,S, ϑ,P〉. The expected value vG(C) of a coalition C ⊆ A
in game G is defined by:2

vG(C) def=
∑
σ∈S

pσ ∗ ϑ(σ, C). �

The following example illustrates the idea of CCGs.

Example 3.3. A sample contextual coalitional game G can be given by setting A =
{a1, a2}, S = {σ1, σ2}, pσ1 = 0.4 and pσ2 = 0.6 and

ϑ(σ1, {a1}) = 2 ϑ(σ1, {a2}) = 3 ϑ(σ1, {a1, a2}) = 4
ϑ(σ2, {a1}) = 2 ϑ(σ2, {a2}) = 1 ϑ(σ2, {a1, a2}) = 3.

Consider coalitional games G1 = 〈A, v1〉,G2 = 〈A, v2〉, where:

v1({a1}) = 2 v1({a2}) = 3 v1({a1, a2}) = 4
v2({a1}) = 2 v2({a2}) = 1 v2({a1, a2}) = 3.

The intuition behind the contextual coalitional game G is that the coalitional game G1
takes place when the environment is in the state σ1 (with probability 0.4) and the coali-
tional game G2 takes place when the environment is in the state σ2 (with probability
0.6). �

We can generalize this in the following proposition, showing that contextual coalitional
games can be represented as linear combinations of traditional coalitional games. This
can be proved by a direct application of Definition 3.2.

Proposition 3.4. Let G = 〈A,S, ϑ,P〉 be a CCG. Then G =
∑
σ∈S

pσ ∗ Gσ , where

Gσ
def= 〈A, ϑσ〉 with ϑσ

def= ϑ(σ, C). �

We then have the following definition of the expected Shapley value for CCGs.

Definition 3.5. Let G = 〈A,S, ϑ,P〉 be a CCG. Then the expected Shapley value for
G is

ΦG(ai)
def= Φ∑

σ∈S pσ∗Gσ
(ai). �

2 Throughout the paper we omit the expectation symbol for notational convenience.
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4 Representations of Contextual Coalitional Games

A general representation for CCGs considered in this paper is composed of rules of the
form:

prerequisite (α) | coalitional game representation (�) (5)

where the prerequisite α is a formula expressed in some logical language L. We do not
fix any particular representation type used for �. CFG is one such conventional game
representation type, although in what follows, we will not restrict ourselves to only CFG
representations. Intuitively, rule (5) reads as

“in the states where the prerequisite α is true, the coalitional game is repre-
sented by �”.3

If multiple rules are true at the same time, then coalition values are to be computed
additively.

The game consisting of no rules is called the empty game. In the empty game the
payoff for all coalitions is 0.

This representation is intended to take into account influences or circumstances ex-
ternal to a coalitional game. Such influences are expressed by the “α parts” of rules (5).
The formal meaning of α formulas is given by states, where each state materializes
with a given probability. Such probability distributions are often given on the basis of
statistical data and from other sources (see, e.g., [14]).

Let us now formally define our representation.

Definition 4.1. A CCG representation is a tuple 〈A,S,P ,R,F〉, where:

– A, S and P are as in Definition 3.1;
– R is a finite set of rules of the form (5) such that for each (α|�) ∈ R, for the game
G = 〈A′, v〉 that � represents, it holds that A′ ⊆ A;

– F = {α | there is (α|�) ∈ R}, i.e., F is the set of formulas appearing as prereq-
uisites in rules of R . �

Definition 4.2. An interpretation of a CCG representation 〈A,S,P ,R,F〉 is a tuple
〈A,S,P ,R,F , f〉, where:

– A, S, P , R and F are as in Definition 4.1;
– f : F −→ 2S is a mapping, which associates to formulas sets of states where they

are TRUE. �

Remark 4.3. Observe that f appearing in Definition 4.2 should reflect the semantics of
a particular logic chosen for expressing prerequisites of rules.

Note also that f provides truth values of formulas in states. Namely, a formula α ∈ F
is TRUE in a state σ ∈ S iff σ ∈ f(α). �

Representations and their meanings are defined as follows.

3 For notational convenience, we assume that for an instance where the prerequisite α is omitted,
this rule should be treated as having α being TRUE.
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Definition 4.4. Given a state σ ∈ S and an interpretation I = 〈A,S,P ,R,F , f〉, the
meaning of a rule of R is defined by

(α|�)Iσ
def=

{
� if σ ∈ f(α)
∅ otherwise,

(6)

where ∅ is the game given by a representation consisting of no rules. �

Now we define the value of a coalition C and the Shapley value in a state σ ∈ S as
follows.

Definition 4.5. Let R = 〈A,S,P ,R,F〉 be a CCG representation with the set of rules
R = {α1|�1, . . . , αm|�m} and I = 〈A,S,P ,R,F , f〉 be an interpretation of R.

– For σ ∈ S, by the (σ, I)-reduct of R we understand game GI
σ represented by the

set of conventional rules {(αi|�i)Iσ | 1 ≤ i ≤ m}.
– The value of a coalition C ⊆ A in state σ ∈ S under interpretation I, is defined as

vGI
σ
(C).

– The Shapley value for ai over R, I and σ ∈ S, denoted as φI
R,σ(ai), is defined as

the Shapley value φGI
σ
(ai). �

Definition 4.6. We say that R = 〈A,S,P ,R,F〉 represents a CCG G = 〈A,S, ϑ,P〉
over an interpretation I = 〈A,S,P ,R,F , f〉 provided that for any coalition C ⊆ A
and σ ∈ S we have that vGI

σ
(C) = ϑ(σ, C), where GI

σ is the (σ, I)-reduct of R. �

We have the following lemma showing that CCGs can be represented as traditional
coalitional games.

Lemma 4.7. Let R = 〈A,S,P ,R,F〉 represent a CCG G = 〈A,S, ϑ,P〉 over an
interpretation I = 〈A,S,P ,R,F , f〉. Then:

G =
∑
σ∈S

pσGI
σ . (7)

Proof. According to Definition 3.2, vG(C) =
∑
σ∈S

pσ ∗ ϑ(σ, C). By Definition 4.5, for

any C ⊆ A and σ ∈ S we have that ϑ(σ, C) = vGI
σ
(C). Therefore,

vG(C) =
∑
σ∈S

pσ ∗ vGI
σ
(C),

which completes the proof. �

Similarly, in the broader contextual coalitional context, we compute the Shapley value
for players in state σ ∈ S using the additivity axiom met by the Shapley value.

Having defined the Shapley value for a game in state σ ∈ S, we are now interested
in the value for a contextual coalitional game as a whole. In our stochastic environment
this value will be a mapping which takes as input a tuple 〈I, R, ai〉, where I is an
interpretation, R is a CCG representation and ai ∈ A is an agent, and returns the
expected Shapley value of ai in the game represented by R over I. This value will be
denoted by ΦR,I(ai) and formalized as follows.
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Definition 4.8. The expected Shapley value of a contextual coalitional game repre-
sented by R = 〈A,S,P ,R,F〉 over an interpretation I = 〈A,S,P ,R,F , f〉 for
player ai ∈ A is given by:

ΦR,I(ai)
def=

∑
σ∈S

pσ ∗ φI
R,σ(ai). �

Our contextual coalitional game representation is intended to reflect games which are
repeated over a longer time period in order to make the stochastic nature of the expected
Shapley values practically acceptable. For example, rather then considering a single res-
cue mission relative to the generic scenario described in the introduction, we would con-
sider a time period where there might be many such missions. The equipment/services’
suppliers need to have equipment and staff ready on demand, so they have to know in
advance whether their income will be satisfactory. It is reasonable to assume that they
receive a fixed fee covering fixed costs such as equipment amortization, maintenance,
etc., independently of the number of missions actually carried out. For each mission
carried out they then receive additional fees covering resources used, e.g., gas, electric-
ity, repairing, etc. In such scenarios we mainly focus on the distribution of fixed fee,
which reflects the importance of equipment and services supplied.

Definition 4.9. Let P = 〈R, I〉, where R is a set of representations and I is a set of
interpretations. We say that P is fully expressive for CCGs iff for any CCG G there is
R ∈ R and I ∈ I such that R represents G over I. �

Remark 4.10. Recall that any rule of the form TRUE|� represents � itself. Therefore
P = 〈R, I〉 is fully expressive if the representation type used for righthand sides of rules
is fully expressive for conventional games. �

By Definition 4.8, the expected Shapley value ΦR,I(ai) is given by
∑
σ∈S

pσ ∗ φI
R,σ(ai).

An algorithm for computing ΦR,I(ai) directly from this formula provides the following
complexity result.

Theorem 4.11. The complexity of computing the expected Shapley value for the CCG
representation R = 〈A,S,P ,R,F〉 over an interpretation I = 〈A,S,P ,R,F , f〉 is

O

⎛⎝|S| ∗ max
ρ∈
{

(α|�)Iσ | (α|�)∈R
}{g(ρ), h(f)}

⎞⎠
where g(�) is the complexity of computing the Shapley value for the representation
� and h(f) is the complexity of checking whether a given formula is true in a given
state. �

5 Contextual Marginal Contribution Nets

The representation described in the previous section is general in the sense that the
context α in a rule can denote a formula of a given logic and � denotes a conventional
game representation CFG.
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6 Contextual Marginal Contribution Nets

In this section, we will instantiate the general representation in the following manner
by choosing propositional logic as the given logic for α and by using basic Marginal
Contribution Nets (abbreviated by MC-nets) of [7] for �. The choice of MC-Nets for �
is useful due to the computationally efficient manner in which Shapely values can be
computed and also due to the fact that the representation is in logical form.

Formally, given a set of agents, an MC-net is defined as a finite set � of rules of the
form

P → V alue

where V alue is a real number and pattern P is a Boolean expression with agents as
atoms. A coalition C of agents is said to meet the requirements of (or shortly meet)
a given P (denoted by C |= P) if P evaluates to TRUE when the values of all Boolean
variables that correspond to agents in C are set to TRUE, and the values of all Boolean
variables that correspond to agents not in C are set to FALSE. The value v(C) is equal to
the sum of all values from rules of which the requirements are met by C. More formally,

v(C) =
∑

P→V alue∈�: C|=P

V alue

Example 6.1 (MC-nets representation for Example 2.1). The coalitional game from Ex-
ample 2.1 can be represented with only two rules a3 → 1 and a1 ∧ a2 → 1. �

Such rules have an interesting interpretation, as they show the marginal contribution to
all the coalitions agents can form. The advantages of MC-nets are twofold. Firstly, they
allow for representing many important classes of games in a number of rules that is
polynomial in n. Secondly, they allow for computing the Shapley value in time linear
in the number of rules. However, although the definition of MC-nets is quite general,
this latter computational result, as discussed in [7], is limited only to patterns which are
conjunctions of literals. More formally, patterns taking the form:

ai1 ∧ . . . ∧ aim ∧ ¬aj1 ∧ . . . ∧ ¬ajk
(8)

Following [6] we will call them basic patterns and the representation basic MC-nets.4

It will be formally denoted 〈A, �〉 where � is the set of all the rules. Note, that all the
patterns in Example 6.1 are, in fact, basic.

MC-nets are fully expressive [7] even when limited to conjunctions of literals. The
linear method of computation of the Shapley value from rules of the form shown in (8)
is explained in Figure 1.

Let V0 = {p0, . . . , pl} be a finite set of propositional variables. Variables specify
atomic properties of a context by means of a mapping:

f0 : V0 −→ 2S (9)

where f0(p) is the set of states in which p is TRUE.

4 In the rest of the paper we will assume that every pattern has distinct literals, i.e.,
|{i1, . . . , im, j1, . . . , jk}| = m + k. It can be easily seen that if a conjunction of literals
cannot be normalized to this form, i.e., iu = jw for some u, w, then removing it does not
change the represented game.
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Due to the linearity of the Shapley value, every basic rule

ai1 ∧ . . . ∧ aim ∧ ¬aj1 ∧ . . . ∧ ¬ajk → V alue

can be considered as a separate game. The Shapley values for any
agent aiu and ajw are respectively:

V alue

m

(
m + k

k

) and
−V alue

k

(
m + k

m

) (10)

Fig. 1. Ieong and Shoham’s method for computing Shapley value

Propositional formulas over V0 are built using V0 and connectives ¬,∨,∧,→,≡. The
set of propositional formulas is denoted by F0. The mapping f0 is extended to F0 in
the standard way:

f0(¬α) def= S − f0(α)
f0(α ∨ β) def= f0(α) ∪ f0(β)
f0(α ∧ β) def= f0(α) ∩ f0(β)
f0(α → β) def= f0(¬α) ∪ f0(β)
f0(α ≡ β) def= f0(α → β) ∩ f0(β → α).

(11)

Consequently, the rule representation for contextual MC-nets consists of rules of the
form:

α|{p → Value} (12)

where α is a propositional formula over the set of propositional variables V0, p is a pat-
tern of the form (8) and Value is a real number.

Definition 6.2. By a contextual MC-net we understand any finite set of rules of the
form (12). �

Definition 6.3. An interpretation of contextual MC-nets is a tuple 〈A,S,P ,R,F , f0〉,
where

– A is a finite set of agents in the game;
– S,P are as in Definition 4.2;
– R is a finite set of rules of the form (12);
– F ⊆ F0 are propositional formulas over V0, appearing as prerequisites in R;
– f0 is defined by (9) and (11). �

Since MC-nets are fully expressive, we have the following corollary (cf. Remark 4.10).

Corollary 6.4. The representation of contextual MC-nets is fully expressive. �
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The complexity of computing the Shapley value for MC-nets is PTIME. Therefore, by
Theorem 4.11 we have the following corollary.

Corollary 6.5. The complexity of computing the expected Shapley value for contextual
MC-nets is in PTIME in the maximum of size of the representation and the number of
states. �

7 An Example Using Contextual MC-Nets

In the following example, we will show how contexts and uncertainty associated with
contexts can be used to model stochastic contextual coalitional games.

Example 7.1. Using the scenario considered in the introduction, one can assume that
there are states providing values for the propositional variables r, w, s standing for rain,
moderate wind and strong wind. Assume that for the rescue missions considered, there
is a probability distribution on weather conditions.

The CCG modeling our scenario is 〈A,S, ϑ,P〉, where

– A = {uav1, uav2, ugv1, ugv2};
– S = {σ1, σ2, σ3, σ4};
– ϑ(σ1, {uav1}) = 6, ϑ(σ1, {uav1, uav2}) = 13, etc.; 5

– P is provided in Table 1.

Table 1. Probability of various weather conditions

State Weather Literals true in the state Probability
σ1 rain and moderate wind r, w,¬s 0.20
σ2 rain without wind r,¬w,¬s 0.10
σ3 rain with strong wind r,¬w, s 0.35
σ4 no rain with strong wind ¬r,¬w, s 0.35

The following contextual MC-net rules are used to model our scenario:

| {uav1→6, uav2→7, ugv1→3, ugv2→2, ugv1 ∧ ugv2→1} (13)

r ∧ w | {uav1 → −6, ugv1 → 2, ugv2 → 2} (14)

¬r ∧ s | {uav1 → −6, uav2 → −7, ugv1 → 4, ugv2 → 3.5} (15)

The first rule defines the basic game which applies in all contexts. The values of this
game can be amended by other rules if specific weather condition contexts occur.
Specifically, in the case of rain and moderate wind, uav1 becomes useless and the im-
portance of ground robots, ugv1, ugv2 increases. If the wind becomes strong, both UAVs
are grounded and the importance of both ground robots increases even more.

5 We avoid here listing values for all 4∗15 = 60 state–coalition pairs. The values are actually
given by rules (13)–(15).
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Using formulas from Figure 1, it is easy to check that the Shapley values in the game
described by rules (13), (14) and (15) are respectively:

φ1(uav1) = 6 φ1(uav2) = 7 φ1(ugv1) = 3.5 φ1(ugv2) = 2.5
φ2(uav1) = −6 φ2(uav2) = 0 φ2(ugv1) = 2 φ2(ugv2) = 2
φ3(uav1) = −6 φ3(uav2) = −7 φ3(ugv1) = 4 φ3(ugv2) = 3.5.

By referring to prerequisites of the rules and Table 1, one observes that the rule (13)
always holds, the rule (14) holds with probability 0.20, whereas the rule (15) holds with
probability 0.35. Thus, the expected Shapley values for the entire game are:

φ(uav1) = 2.7, φ(uav2) = 4.55, φ(ugv1) = 5.3, φ(ugv2) = 4.125.

This means that ugv1 contributes most value to the coalitional game, while uav1 con-
tributes the least value. �

8 Related Work

Two main streams in the literature on coalitional games are relevant to the ideas con-
tained in this paper. Firstly, there is a body of research where uncertainty is modeled
probabilistically and secondly, there is a body of research which focuses on concise
representations of coalitional games which enhances computational efficiency in their
use.

Regarding the modeling of uncertainty in the context of coalitional games, a short
but informative literature review is provided in [8]. Important and relevant recent contri-
butions include [13], [9], [1,2,3] and [8] itself. We focus on [8], where Bayesian Coali-
tional Games are introduced as a tuple of agents, set of possible worlds (i.e., states),
common prior over these worlds, each agent’s information partition of the worlds, and
their preferences over the distribution of payoffs. An information partition is composed
of agents’ information sets — subsets of worlds that are undistinguishable from the
individual agent’s point of view, but where the real world actually resides.6 If the agent-
specific elements are added to our model, we will obtain Bayesian Coalitional Games.

Nevertheless, the crucial difference between our approach and the others is related to
the representation of a coalitional game. As all the other approaches build upon the con-
ventional game theoretical method of representing games (i.e., characteristic function),
the number of values to be defined is exponential in the number of agents. This pro-
hibits efficient computation of solution concepts even for a moderate number of agents.
Using our approach it is possible to represent many games in a polynomial number of
rules.

In this respect our work is related to the literature on alternative representations of
coalitional games. The aim of this research is to develop representations for coalitional
games that are compact, but still allow for the efficient computation of solution concepts
such as Shapley value and coalitional game cores [7], [6], [4], or for finding an optimal
arrangement of coalitions in a system [10].

6 For more details about the information partition method for modeling uncertainty in the non-
cooperative game area, see [11].
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For instance, [5,15] give the characteristic function a specific interpretation in terms
of combinatorial structures. The advantage of this method is that the representation
can always be guaranteed to be succinct. The disadvantage is that the representation
is not fully expressive being incapable of expressing the full space of characteristic
function game instances. Many of the other papers propose representations that are
fully expressive but are not always guaranteed to be succinct [7]. Our work falls under
this latter class.

9 Conclusions

In this paper, we proposed a representation for coalitional games which takes into ac-
count the stochastic nature of real-world multi-agent scenarios and which relaxes the
need for a deterministic payoff to coalitions. The representation is based on the idea
of contextualizing coalitional games through the use of logical expressions represent-
ing environmental and other state and placing probability distributions on the space
of contexts in order to model the stochastic nature of the scenarios. The representa-
tion is succinct and intuitive and takes advantage of representational features of logic
and its relation to probability. Additionally, we define and show how to compute ex-
pected Shapley values in such games in a computationally efficient manner. We show
the value of the approach through a generic example involving robotics assistance in
emergencies.
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On a Formal Feature of Meanings

Pietro Galliani
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Abstract. In [1] Cameron and Hodges proved, by means of a combina-
torial argument, that no compositional semantics for a logic of Imperfect
Information such as Independence Friendly Logic ([2]) or Dependence
Logic ([3]) may use sets of tuples of elements as meanings of formulas.

However, Cameron and Hodges’ theorem fails if the domain of the
semantics is restricted to infinite models only, and they conclude that1

Common sense suggests that there is no sensible semantics for
CS on infinite structures A, using subsets of the domain of A as
interpretations for formulas with one free variable. But we don’t
know a sensible theorem along these lines ([1]).

This work develops a formal, natural definition of “sensible semantics”
according to which the statement quoted above can be proved.

1 Introduction

1.1 Logics of Imperfect Information

Logics of imperfect information are generalizations of First Order Logic which
allow for more general patterns of dependence of independence between variables.

The study of these logics started with [5], which introduced the branching
quantifiers (

∀x ∃y
∀z ∃w

)
φ(x, y, z, w)

whose interpretation corresponds to that of ∃f∃g∀x∀zφ(x, f(x), z, g(z)). As men-
tioned in the same paper, Ehrenfeucht was able to prove that Branching Quanti-
fier Logic is strictly more expressive than First Order Logic: indeed, the sentence

∃p
(
∀x ∃y
∀z ∃w

)
(x = z ↔ y = w ∧ y 	= p)

� This work was supported by the European Science Foundation Eurocores programme
LogICCC [FP002 - Logic for Interaction (LINT)].

1 Here the acronym “CS” stands for CS-Logic, that is, for the variant of IF -Logic
introduced by Wilfrid Hodges in [4].
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holds in a model M if and only if there exists a function f : M → M that is
injective but not surjective, that is, if and only if M is an infinite model.

A significant progress in the study of logics of imperfect information was made
with the introduction of Independence-Friendly Logic ([6], [2], [7], [8]). This logic
simplifies the syntax of Branching Quantifier Logic by introducing the slashed
quantifiers ∃x/Wφ, interpreted as “there exists an x, chosen independently from
the values of the variables in W , such that φ” and proved itself especially useful
for the study of the game-theoretic interpretation of logics of imperfect informa-
tion ([2]).

Later, Väänänen ([3]) introduced Dependence-Friendly Logic, which takes de-
pendence (rather than independence) between quantifiers as the primary con-
cept, and Dependence Logic, which separates the notion of dependency from that
of quantification by introducing the dependence atomic formulas =(t1 . . . tn),
whose interpretation is “the value of the term tn is a function of the values of
the terms t1 . . . tn−1”.

The formal definition of the language of Dependence Logic can be given as
follows ([3]):

Definition 1 (Dependence Logic: Syntax). Let Σ be a First Order signa-
ture. Then a Dependence Logic formula with signature Σ is an expression built
according to the grammar

φ ::= Rt1 . . . tn | t = t′ | =(t1 . . . tn) | ¬φ | φ ∨ φ | ∃xφ

where n ranges over IN, R ranges over all n-ary relations in Σ, and t1 . . . tn, t
and t′ range over all terms2 with signatures included in Σ.

As usual, we will write φ ∧ ψ as a shorthand for ¬(¬φ ∨ ¬ψ) and ∀xφ as a
shorthand for ¬(∃x(¬φ)).

Given a Dependence Logic formula φ, the set FV (φ) of all free variables of φ
is defined inductively as follows:

– FV (Rt1 . . . tn) is the set of all variables occurring in t1 . . . tn;
– FV (t = t′) is the set of all variables occurring in t and t′;
– FV (=(t1 . . . tn)) is the set of all variables occurring in t1 . . . tn;
– FV (¬φ) = FV (φ);
– FV (φ ∨ ψ) = FV (φ) ∪ FV (ψ);
– FV (∃xφ) = FV (φ)\{x}.

A formula φ is said to be a sentence if and only if FV (φ) = ∅.

The semantics of Dependence Logic sentences can be defined in terms of semantic
games, which are imperfect information generalizations of the usual semantic
games for First Order Logic: in brief, for every First Order model M of signature
Σ and for every Dependence Logic formula φ of the same signature Väänänen
defined in [3] a two-player, zero-sum, finite, imperfect information game HM (φ),

2 IF -Logic terms are defined precisely as First Order Logic terms.
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whose main difference from the usual semantic games for First Order Logic ([9])
is the following uniformity condition3 over Player II’s strategies:

– Let τ be a strategy for Player II in HM (φ). Then τ is uniform if and only
if for any two plays p = p1 . . . pn, q = q1 . . . qn′ of HM (φ) such that
1. Player II follows τ in both p and q;
2. pn and qn′ correspond to the same occurrence of the same atomic de-

pendence formula =(t1 . . . tn);
3. Player II is the active player in both pn and qn′ ;
4. The current assignments in pn and qn′ are respectively s and s′;
5. The interpretations of the terms t1 . . . tn−1 in s coincide with the inter-

pretations of the same terms in s′,
the interpretation of tn in s coincides with the interpretation of tn in s′.

Then, as in the First Order case, one may define the truth conditions of IF -Logic
sentences in terms of the existence of winning strategies:

Definition 2 (Truth in Dependence Logic). Let M be a First Order model
of signature Σ and let φ ∈ D be a sentence in the same signature. Then we say
that φ is true in M , and we write M |= φ, if and only if Player II has a
winning strategy in HM (φ).

For some time, it was an open problem whether it was possible to develop a
natural compositional semantics which coincided with the usual Game Theoretic
Semantics for a logic of imperfect information: in particular, Hintikka stated in
[2] that

. . . there is no realistic hope of formulating compositional truth-conditions
for [IF -Logic], even though I have not given a strict impossibility proof
to that effect.

This conjecture was proved false in [4]: the elegant, compositional trump se-
mantics introduced by Wilfrid Hodges for a variant of IF -Logic gives the same
truth conditions for sentences than the Game Theoretic Semantics for the same
logic, and furthermore it is easily adaptable to other logics of imperfect infor-
mation. A complete definition of this semantics can be found in Hodges’ above
mentioned paper, and its adaptation to Dependence Logic is in [3]. Here we will
only mention that this semantics is obtained by defining two inductive satis-
faction relations |=+ and |=− between First Order models, Dependence Logic
formulas and teams, that is, sets of assignments4.
3 This condition is the reason why the HM(φ) are games of imperfect information,

whereas the corresponding games for First Order Logic are games of perfect infor-
mation. However, it must be stressed that not all game semantics for Dependence
Logic or any expressively equivalent logic need to be of imperfect information: for
example, in [3] Väänänen developed a perfect information game semantics for De-
pendence Logic which is equivalent to the usual imperfect information one, and it is
an easy exercise to adapt this semantics to the DF -Logic and IF -Logic cases.

4 This notion of team was introduced by Väänänen; Hodges talks instead of sets of
tuples of elements of the model.
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In particular, given a formula φ one may identify the meaning of φ according
to this semantics with the pair

‖φ‖M =({X : FV (X)=Dom(φ), M |=+
X φ}, {X : Dom(X)=FV (φ), M |=−

X φ}).

If we identify each team X with the corresponding set of tuples, we can say (after
Hodges) that the meaning of a Dependence Logic formula with k free variables
is a double k-suit, that is, a pair (A,B) of sets of sets of k-tuples such that

– A ∩ B = {∅};
– If X ∈ A then X ′ ∈ A for all X ′ ⊆ X ;
– If Y ∈ B then Y ′ ∈ B for all Y ′ ⊆ Y .

The following result, proved by Väänänen in [3], is the adaptation to Dependence
Logic of the corresponding result for IF -Logic proved by Hodges in [4]:

Theorem 1. Let M be a model with signature Σ and let φ be an Dependence
Logic sentence with the same signature. Then M |= φ according to the Game
Theoretic Semantics if and only if M |=+

{∅} φ according to the above defined
Team Semantics.

Corollary 1. Let M , Σ and φ be as above. Then M |= φ if and only if
‖φ‖M = ({∅, {∅}}, {∅}).

Proof. Follows at once from the above theorem, from the fact that both “sides”
of a double suit are downwards closed and from the fact that their intersection
is precisely {∅}.

Finally, it is worth mentioning that Hodges’ semantics is also fully abstract :5

Proposition 1. Let ψ and ψ′ be two Dependence Logic formulas with FV (ψ) =
FV (ψ′). Then the following are equivalent:

1. ‖ψ‖M = ‖ψ′‖M for all models M in which ψ may be interpreted;
2. For every sentence φ, if φ′ is obtained from φ by replacing an occurrence of

ψ as a subformula of φ with an occurrence of ψ′ then ‖φ‖M = ‖φ′‖M for all
models M in which φ may be interpreted.

1.2 The Combinatorics of Imperfect Information

As summarized in the previous subsections, Wilfrid Hodges developed a
compositional semantics for logics of imperfect information in which the meaning-
carrying objects of such semantics are Double Suits, that is, pairs of downward-
closed sets of sets of assignments which intersect only in the empty set of
assignment.

5 As for many of the previous results, the proof is in [4] and it refers to IF -Logic
rather than to Dependence Logic. Adapting the proof to the latter formalism poses
no difficulty whatsoever.
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As Hodges showed in [10], the choice of these kinds of objects comes, in a very
natural way, from a careful analysis of the Game Theoretic Semantics for IF -
Logic; but is it possible to find an equivalent semantics whose meaning-carrying
entities are simpler? In particular, is it possible to find such a semantics in which
meanings are sets of assignments, as in the case of Tarski’s semantics for First
Order Logic?

In [1], a negative answer to this question was found, and the corresponding
argument will now be briefly reported. In that paper, Cameron and Hodges
introduced the concept of “adequate semantics” for IF -Logic, which can be
easily adapted to Dependence Logic:

Definition 3 (Adequate semantics). An adequate semantics for Dependence
Logic is a function μ that associates to each pair (φ, M), where φ is a formula
and M is a model whose signature includes that of φ, a value μM (φ), and that
furthermore satisfies the following two properties:

1. There exists a value TRUE such that, for all sentences φ and all models M ,
μM (φ) = TRUE if and only if M |= φ (according to the Game Theoretic
Semantics);

2. For any two formulas φ, ψ and for any sentence χ and any model M such
that μM (φ) = μM (ψ), if χ′ is obtained from χ by substituting an occurrence
of φ in χ with one occurrence of ψ then

μM (χ) = TRUE ⇔ μM (χ′) = TRUE.

The first condition states that the semantics μ coincides with the game semantics
on sentences, and the second one is a very weak notion of compositionality (which
is easily verified to be implied by compositionality in the frameworks of both [11]
and [12], the latter of whom can be seen as a descendant of that of [13]).

They also proved the following result:

Proposition 2. Let g(n) be the number of double 1-suits with domain over a
model M with n elements. Then

g(n) ∈ Ω
(
22n/(

√
π�n/2�)

)
Cameron and Hodges then verified that there exist finite models in which ev-
ery double 1-suit corresponds to the interpretation of a formula with one free
variable, and hence that6

Proposition 3. Let μ be an adequate semantics for Dependence Logic, let x be
any variable, and let n ∈ IN. Then there exists a model An with n elements, such
that

|{μAn(φ(x)) : FV (φ) = {x}}| ≥ g(n).

Furthermore, the signature of An contains only relations.

From this and from the previous proposition, they were able to conclude at once
that, for any k ∈ IN, there exists no adequate semantics (and, as a consequence,
6 Again, Cameron and Hodges’ results refer to IF -Logic rather than to Dependence

Logic, but it is easy to see that their arguments are still valid in the Dependence
Logic case.
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no compositional semantics) μ such that μM (φ) is a set of k-tuples whenever
FV (φ) = {x}: indeed, the number of sets of k-tuples of assignments in a model
with n elements is 2(nk), and there exists a n0 ∈ IN such that g(n0) > 2(nk

0).
Then, since μ is adequate we must have that |{μAn0

(φ(x)) : FV (φ) = {x}}| ≥
g(n0) > 2nk

0 , and this contradicts the hypothesis that μ interprets formulas with
one free variables as k-tuples.

However, as Cameron and Hodges observe, this argument does not carry over
if we let M range only over infinite structures: indeed, in Dependence Logic (or in
IF -Logic) there only exist countably many classes of formulas modulo choice of
predicate symbols7, and therefore for every model A of cardinality κ ≥ ℵ0 there
exist at most ω · 2κ = 2κ distinct interpretations of IF -Logic formulas in A.
Hence, there exists an injective function from the equivalence classes of formulas
in A to 1-tuples of elements of A, and in conclusion there exists a semantics
which encodes each such congruence class as a 1-tuple.

Cameron and Hodges then conjectured that there exists no reasonable way to
turn this mapping into a semantics for IF -Logic:

Common sense suggests that there is no sensible semantics for [IF -Logic]
on infinite structures A, using subsets of the domain of A as interpreta-
tions for formulas with one free variable. But we don’t know a sensible
theorem along these lines.

What I will attempt to do in the rest of this work is to give a precise, natu-
ral definition of “sensible semantics” according to which Cameron and Hodges’
conjecture may be turned into a formal proof: even though, by the cardinality
argument described above, it is possible to find a compositional semantics for
IF -Logic assigning sets of elements to formulas with one free variable, it will be
proved that it is not possible for such a semantics to be also “sensible” according
to this definition.

Furthermore, we will also verify that this property is satisfied by Hodges’ Trump
Semantics, by Tarski’s Semantics for First Order Logic and by Kripke’s semantics
for Modal Logic: this, in addition to the naturalness (at least, according to the
author’s intuitions) of this condition, will go some way in suggesting that this is
a property that we may wish to require any formal semantics to satisfy.

2 Sensible Semantics

2.1 Sensible Semantics of Imperfect Information

Two striking features of Definition 3. are that

1. The class M of all First Order models is not used in any way other than
as an index class for the semantic relation: no matter what relation exists
between two models M and N , no relation is imposed between the functions

7 This is not the same of countably many formulas, of course, since the signature might
contain uncountably many relation symbols.
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μM and μN . Even if M and N were isomorphic, nothing could be said in
principle about the relationship between μM (φ) and μN (φ)!

2. The second part of the definition of adequate semantics does not describe
a property of the semantics μ itself, but rather a property of the synonymy
modulo models relation that it induces. This also holds for the notion of
compositionality of [11], albeit not for that of [12]; in any case, in neither
of these two formalisms morphisms between models are required to induce
morphisms between the corresponding “meaning sets”, and in particular
isomorphic models may well correspond to non-isomorphic meaning sets.

These observations justify the following definition:

Definition 4 (Sensible Semantics). Let L be a partial algebra representing
the syntax of our logic8 for some fixed signature9 and let M be the category of
the models of L for the same signature10. Then a sensible semantics for it is a
triple (S, Me, μ), where

– S is a subcategory of the category Set of all sets;
– Me is a functor from M to S;
– For every M ∈ M, μM is a function from L to SM = Me(M) ∈ S, called

the meaning set for L in S

and such that

1. For all φ, ψ, χ ∈ L and for all M ∈ M, if μM (φ) = μM (ψ) and χ′ is
obtained from χ by substituting an occurrence of φ as a subterm of χ with
an occurrence of ψ, then χ′ ∈ L and μM (χ) = μM (χ′);

2. If f : M → N is an isomorphism between two models M, N ∈ M, then
μN = μM ◦ Me(f) for all formulas φ ∈ L.

The first condition is, again, a weak variant of compositionality, plus a version
of the Husserl Property of [11]: if two formulas have the same interpretation in a
model M then the operation of substituting one for the other sends grammatical
expressions into grammatical expressions with the same interpretation in M .
One could strengthen this notion of compositionality after the fashion of [12],
by imposing an algebraic structure over each set SM with respect to the same
signature of L and by requiring each μM to be an homomorphism between L
and M , but as this is not necessary for the purpose of this work we will content
ourselves with this simpler statement.

The second condition, instead, tells us something about the way in which
isomorphisms between models induce isomorphisms between formula meanings,
that is, that the diagram of Figure 1. commutes whenever f is an isomorphism: if
8 That is, the objects of L are the well-formed formulas of our logic and the operations

of L are its formation rules.
9 If the notion of signature is applicable to the logic we are studying; otherwise, we

implicitly assume that all models and formulas have the same empty signature.
10 The choice of morphisms in M is supposed to be given, and to be part of our notion

of model for the semantics which is being considered.
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M

N

f

M

SM

SN

Me(f)

S

L

μM

μN

Me

Fig. 1. Diagram representation of Condition 2 of Definition 4 (Sensible Semantics): if
f : M → N is an isomorphism then μN (φ) = Me(f)(μN (φ)) for all formulas φ ∈ L

M and N are isomorphic through f then the interpretation μN (φ) of any formula
φ in the model N can be obtained by taking the interpretation μM (φ) ∈ SM of
φ in M and applying the “lifted isomorphism” Me(f) : SM → SN .

Before applying this definition to the case of Dependence Logic, let us verify its
naturality by checking that it applies to a couple of very well-known logics with
their usual semantics, as well as to Dependence Logic with Trump Semantics:

Proposition 4. Let FO be the language of First Order Logic (for some signa-
ture Σ which we presume fixed), and let M be the category of all First Order
models for the same signature.

Furthermore, for every M ∈ M let SM be the disjoint union, for k ranging
over IN, of all sets of k-tuples of elements of M11 and let Me be such that
Me(M) = SM for all M ∈ M and

Me(f)(H) = f↑(H) = {(f(m1) . . . f(mk)) : (m1 . . . mk) ∈ H} (1)

for all f : M → N and all H ∈ SM .
Now, let μ be the usual Tarski semantics, that is, for every model M and

formula φ(x1 . . . xk) with FV (φ) = {x1 . . .xk} let

μM (φ(x1 . . . xk)) = {(m1 . . . mk) ∈ MK : M |=(x1:m1...xk:mk) φ(x1 . . . xk)}.

Then (S, Me, μ) is a sensible semantics for the logic (FO,M).

Proof. The first condition is an obvious consequence of the compositionality of
Tarski’s semantics: if Φ[φ] is a well-formed formula, φ is equivalent to ψ in the
model M and FV (φ) = FV (ψ) then Φ[ψ] is also a well-formed formula and it is
equivalent to Φ[φ] in M .
11 In particular, this definition implies that SM contains distinct “empty sets of

k-tuples” for all k ∈ IN.
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For the second one, it suffices to observe that if f : M → N is an isomorphism
then

M |=s φ ⇔ N |=f◦s φ (2)

for all assignments s and all First Order formulas φ.

Mutatis mutandis, the same holds for Kripke’s Semantics for Modal Logic:

Proposition 5. Let ML be the language of modal logic and let M be the cate-
gory of all Kripke models M = (W, R, V ), where W is the set of possible worlds,
R is a binary relation over W and V is a valutation function from atomic propo-
sitions to subsets of W . Furthermore, for any M = (W, R, V ) ∈ M let SM be
the powerset P(W ) of W , and, for every f : M → N , let Me(f) : SM → SN be
such that

Me(f)(X) = {f(w) : w ∈ X}

for all X ⊆ W .
Finally, let μ be Kripke’s semantics choosing, for each model M = (W, R, V )

and each modal formula φ, the set μM (φ) = {w ∈ W : M |=w φ}: then (S, Me, μ)
is a sensible semantics for (ML,M).

Proof. Again, the first part of the definition is an easy consequence of the com-
positionality of μ. For the second part, it suffices to observe that, if f : M → N
is an isomorphism between Kripke models,

M |=w φ ⇔ N |=f(w) φ

for all w in the domain of M , as required.

Finally, Hodges’ trump semantics for Dependence Logic, whose meaning sets
are the disjoint unions over k ∈ IN of the sets of all double k-suits, is also sensible:
indeed, for all isomorphisms f : M → N , all sets of k-tuples X and all formulas
φ(x1 . . . xk), M |=X φ(x1 . . . xk) if12 and only if N |=f↑(X) φ(x1 . . . xk), where f↑
is defined as in Equation 1.

Let us now get to the main result of this work. First, we need a simple lemma:

Lemma 1. Let (S, Me, μ) be a sensible semantics for (D,M), where D is the
language of Dependence Logic (seen as a partial algebra) and M is the category
of all First Order models. Suppose, furthermore, that TRUE is a distinguished
value such that μM (φ) = TRUE if and only if M |= φ for all models M and
sentences φ. Then μ is an adequate semantics for Dependence Logic.

Proof. Obvious from Definition 3. and Definition 4.

12 Here we are committing a slight abuse of notation, since X is a set of tuples
rather than a set of assignments. The intended interpretation is that each tuple
(m1 . . . mk) ∈ X corresponds to the assignment s such that s(x1) = m1, . . . , s(xk) =
mk.
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Theorem 2. Let M be the class of all infinite models for a fixed signature, let
SM be the set of all sets of k-tuples of elements of M (for all k), and for every
f : M → N let Me(f) be defined as

Me(f)(X) = {f↑(s) : s ∈ X}.

for all sets of tuples X ∈ SM .
Then, for every k ∈ IN, there exists no function μ such that

1. For all models M and formulas φ(x) with only one free variable, μM (S) is
a set of k-tuples;

2. M |= φ ⇔ μM (φ) = TRUE for all M ∈ M, for all φ ∈ D and for some fixed
value TRUE;

3. (S, Me, μ) is a sensible semantics for Dependence Logic with respect to M.

Proof. Suppose that such a μ exists for some k ∈ IN: then, by Lemma 1, μ is an
adequate semantics for Dependence Logic.

Let g(n) be the number of double suits in a finite model M with n elements,
let h(n) = 22(nk)k

, and let n0 be the least number (whose existence follows from
Proposition 2.) such that g(n0) > h(n0). Furthermore, let An0 be the relational
model with n0 elements, defined as in Proposition 3., for which Cameron and
Hodges proved that any compositional semantics for Dependence Logic must
assign at least g(n0) distinct interpretations to formulas with exactly one free
variable x.

Now, let the infinite model Bn0 be obtained by adding countably many new
elements {bi : i ∈ IN} to An0 , by letting RBn0 = RAn0 for all relations R in
the signature of An0 and by introducing a new unary relation P with PBn0 =
Dom(An0).

It is then easy to see that, with respect to Bn0 , our semantics must assign at
least g(n0) different meanings to formulas φ with FV (φ) = {x}: indeed, if φ(P )

is the relativization of φ with respect to the predicate P we have that

μAn0
(φ) = μAn0

(ψ) ⇔ μBn0
(φ(P )) = μBn0

(ψ(P )),

and we already know that |{μAn0
(φ) : FV (φ) = {x}}| = g(n0).

Now, suppose that μ is sensible and μBn0
(φ) is a set of k-tuples for every

formula φ(x): then, since every permutation π : Bn0 → Bn0 that pointwise fixes
the element of An0 is an automorphism of Bn0 , we have that

Me(π)(μBn0
(φ)) = μBn0

(φ)

for all such π.
But then |μBn0

(φ) : FV (φ) = {x}| ≤ h(n0), since there exist at most 22(n0k)k

equivalence classes of tuples with respect to the relation

b ≡ b
′ ⇔ ∃f : Bn0 → Bn0 , f automorphism, s.t. f↑b = c.

Indeed, one may represent such an equivalence class by first specifying whether
it contains any element of An0 , then listing without repetition all elements of
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An0 occurring in b, padding this into a list m to a length of k by repeating the
last element, and finally encoding each item bi of b as an integer ti in 1 . . .k in
such a way that

– If bi ∈ An0 , mti = bi and mti−1 	= mti whenever ti > 0;
– If bi 	∈ An0 , mti = mti−1 whenever ti > 0;
– ti = tj if and only if bi = bj.

In total, this requires 1 + k log(n0) + k log(k) bits, and therefore there exist at
most 2(n0k)k such equivalence classes; and since each μBn0

(φ) is an union of
these equivalence classes, there are at most 22(n0k)k

possible interpretations of
formulas with one free variable.

But this contradicts the fact that g(n0) > h(n0), and hence no such semantics
exists.
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Abstract. We focus on modelling dual epistemic attitudes (belief-dis-
belief, knowledge-ignorance, like-dislike) of an agent. This provides an
interesting way to express different levels of uncertainties explicitly in the
logical language. After introducing a dual modal framework, we discuss
the different possibilities of an agent’s attitude towards a proposition
that can be expressed in this framework, and provide a preliminary look
at the dynamics of the situation.

1 Introduction

Real life is not boolean. Many of the situations, events and concepts that we
face in our everyday life cannot be classified in a simple binary hierarchy. When
we wake up, the morning may not be dark with thunder clouds hovering, but
it may not be sunny too (many-valuedness); we believe that our favorite team
will win tonight’s soccer match, but we still consider the possibility of a loss or
even a tie (modality); the dice which is about to be cast will result in any of
the six different outcomes (probabilistic); the director of the company seems to
be young, but we are not sure (fuzziness). Thus, uncertainty arises in various
forms and various connotations. What we will deal with here is not vagueness
or impreciseness of concepts (which leads to fuzzy logic, many-valued logic; see
[1]), but rather uncertainties in agent’s attitudes (e.g. beliefs).

The main aim of this paper is to deal with negative attitudes of agents on a
par with their positive attitudes; this will allow us to describe different levels of
uncertainties in a more classical framework. Though there are previous works
modelling these dual attitudes (e.g. [2,3]), the novelty of this paper lies in the
fact that we are expressing different levels of agent uncertainty explicitly in the
logical language.

We propose a bi-modal framework that allows us to express various kinds of
attitudes toward a formula ϕ. Our work is based on the following observations.
First, the modal operator � allows us to express what is true in all worlds
reachable by the accessibility relation. Such propositions, which are true in those
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accessible worlds, may be false elsewhere. The worlds where the propositions
are false should be considered, if we want to deal with attitudes like disbelief,
dislike or ignorance of agents. Secondly, every interpretation of the accessibility
relation (knowledge, belief, like) has its dual concept (ignorance, disbelief, dislike,
respectively), which is usually not represented in the framework1. The reason
that they are not expressed in the existing literature is that, usually it is assumed
that these two concepts are complementary (that is, representable by negations).
In general, this does not have to be the case: the fact that we dislike the rain
does not imply that we like when it is not raining. On the other hand, suppose
we believe that a horse will win a race if its rating is above certain number, and
disbelieve it if its below some other number. “Disbelieving” will not equate to
“not believing” in this case.

Let us consider a fair 100 ticket lottery. Though we do believe that exactly
one of the tickets will win the lottery, we have doubts regarding the possibility
of an individual ticket winning it. One can resolve this paradoxical situation by
replacing the classical negation (believing that the ticket number 99 will not
win) by the weaker notion of disbelief (disbelieving that the ticket number 99
will win). This applies to many practical situations as well. A crime has been
committed and two of your very good friends are the prime suspects. It is really
hard for you to believe that any one of them has committed the crime, yet the
circumstantial evidence forces you to believe that either of them did it.

From the perspective of belief merging, consider k sources of information
providing their opinions regarding a certain event p. Suppose that m of them
state that p holds, and n of them state that p does not hold. Some of the sources
may not have any opinion regarding p, but none of the sources are inconsistent
in the sense that they do not simultaneously state that p holds and does not
hold. So we have that m + n ≤ k. The fraction m/k can be seen as the degree
of certainty of the source that p holds and n/k that ¬p holds. Let cr(p) ∈ [0, 1]
denote the degree of certainty that p holds. We can think of threshold values t1
and t2 (0 < t1 ≤ t2 ≤ 1) for belief and disbelief, that is, p is believed if t2 ≤ cr(p),
and is disbelieved if cr(p) < t1. In the remaining cases p is neither believed nor
disbelieved. So, from the fact the p is not believed, we cannot say that p is
disbelieved. Also, from the fact that p is disbelieved, it does not necessarily
follow that ¬p is believed. 2

As exemplified above, considering the dual of positive notions of knowledge,
belief and others are important in their own right. Moreover, this also opens
the door for modeling different kinds of uncertain attitudes that arise, when the
agent is placed in decision making scenarios.

Consider the following decision-making scenario. Suppose Alice has to elect a
member of parliament from her constituency for the next five year term. Several
candidates are in the fray, say, A, B, C, D, E. Generally, these situations are
modelled by the notion of preference. But we feel that, while considering the
agent’s preference over candidates, the intricate feelings of uncertainties that

1 Here we do not refer to the dual of the modal operator �, which is �.
2 These examples are taken from [2,4].
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the agent may have regarding the candidates get lost. Let I denote that I is a
good candidate for the task at hand. Alice may be undecided about A and B,
has strong positive opinion about C, negative opinion about D, and have not
even heard of E. By introducing the dual framework (cf. Section 3), we will be
able to model all the intricate levels of Alice’s uncertainties.

2 Some Relevant Issues: A Prelude

In this section, we discuss different issues leading up to our proposal. We start by
providing a systematic sketch about the attitudes expressible by a single modal
operator. Then we give a brief overview of the relevant literature dealing with
positive and negative sides of information, and finally, we provide a brief sketch
about various approaches to uncertainty.

2.1 Attitudes Representable with a Single Modal Operator

Modal logic, one of the simplest intensional logics, allows us to express attitudes
by means of the modal operator �. Formulas of its language are built from a
set of atomic propositions P by closing it under negation ¬, conjunction ∧ and
the modal operator �. Formulas of the form �ϕ can be read as “the agent has
a positive attitude towards ϕ”, and �ϕ is an abbreviation for ¬�¬ϕ.

Such formulas are evaluated in Kripke models. Formulas of the form �ϕ and
�¬ϕ can be true or false, giving us four possible attitudes towards ϕ. These
possibilities can be ordered according to the amount of information about ϕ
each one provides, that is, the number of true formulas in the set {�ϕ, �¬ϕ}.
This yields the power set of a 2-element set ordered by inclusion:

�ϕ ∧ �¬ϕ

¬�ϕ ∧ ¬�¬ϕ

¬�ϕ ∧ �¬ϕ �ϕ ∧ ¬�¬ϕ

The case with �ϕ and �¬ϕ is undesirable under some interpretations (eg.
knowledge) of � since it represents having positive attitude towards both a
formula and its negation (what we will call �-inconsistency). To avoid this case,
it is usually asked for the accessibility relation in the Kripke model to be at least
serial (in knowledge interpretations, the stronger reflexivity is required), and
we are left with three possible attitudes which can also be ordered according to
the attitude of the agent about ϕ: from positive towards ¬ϕ to positive attitude
about ϕ (see the diagram below).

�ϕ ∧ ¬�¬ϕ

¬�ϕ ∧ ¬�¬ϕ

¬�ϕ ∧ �¬ϕ

Two of these three �-consistent cases express certainty (to-
wards ϕ or ¬ϕ), and we are left with just one attitude to
express uncertainty. This is not enough to differentiate be-
tween say, “not interested and having no opinion” or “in-
terested but indecisive” about ϕ.
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2.2 Bipolar Representation of Information

Prevalent modal approaches that deal with information and attitudes mostly
focus on representing only the positive information an agent has about a subject.
But there is also a complementary view: just as we have positive information
about a subject, we can also have (independent) negative information about it.

The idea of representing both positive and negative aspects of a subject is
not new. There are approaches with such proposals in many areas, like decision
theory [5], argumentation theory [6], and many others (see [7] for an overview).
The concept of bipolarity is precisely about this: an explicit handling of the
positive and negative aspects in information [8]. It is based on the fact that,
when taking a decision or weighing some possibilities, we consider not only the
positive aspects of the available options, but also the negative ones.

From this perspective, frameworks that consider only the positive aspect can
be seen as special situations in which the positive and the negative information
are mutually exclusive and mirror images of each other: I consider p as good if
and only if I consider ¬p as bad. But this does not need to be the case: we can
imagine a situation in which, though p is good, its negation ¬p is not necessarily
bad, and the notion of bipolarity allows us to deal with such cases. These are
precisely the kind of situations that we are interested in, and the framework
presented in Section 3 allows us to deal with them.

2.3 Approaches for Modeling Uncertainty

Considering such dual frameworks for positive and negative information paves
the way for an in-depth study of qualitative representation of uncertainty (cf.
Section 3). We now give a brief overview of the highly active research area
of uncertainty-modeling. The later half of the past century witnessed several
proposals for modeling uncertainty, with a focus to formalize human (common-
sense reasoning). To mention a few of the relevant approaches, we can refer to
fuzzy set theory [9], possibility theory [10], rough set theory [11], probabilistic
approaches [12], and Dempster-Shafer theory [13,14]. These comprise quantita-
tive ways of dealing with uncertainties, but there have been some qualitative
approaches based on ordered sets [12]. Different kinds of propositional and first-
order frameworks have also been proposed describing different interpretations of
uncertainty, e.g. probability logics [15], fuzzy logics [16], possibilistic logics, [17],
rough logics [18], and many-valued logics [19].

Evidently, there are varied approaches to deal with uncertainties, but mathe-
matical structures play a very important role in these formulations. The logical
languages describing the uncertainty concept generally remain the same, only
their interpretations change in the different theories. Some of these theories are
more suitable for describing vague or uncertain concepts, while others are more
appropriate for describing mental attitudes of agents. Our interests lie in describ-
ing diverse mental attitudes of agents more explicitly in the logical language. To
achieve such a goal, the following section presents a special kind of dual frame-
work, viz. a logical language talking about positive and negative attitudes of
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agents regarding events. This will give us a way to talk about uncertainties of
agents in a bi-modal framework.

3 A Language for Positive and Negative Attitudes

We now introduce an extension of the classical modal language that allows us
to express both positive and negative attitudes explicitly. After presenting the
language, models, and semantic interpretation, we show how, even by imposing
strong consistency requirements, we still can express more attitudes than the
classical modal framework.

3.1 The Basic System

Definition 3.1. Let P be a set of atomic propositions. Formulas ϕ of the lan-
guage L are given by

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [+]ϕ | [−]ϕ

with p ∈ P. Formulas of the form [+]ϕ ([−]ϕ) are read as “the agent has a
positive (negative) attitude towards ϕ”. The corresponding ‘diamond’ modalities
are defined as usual.

Having both the positive and the negative attitudes represented explicitly allow
us to express combinations of them. For example, in a discussion about pref-
erences, the notions can be read as like and dislike, and then we can express
situations like the agent is undecided whether she likes (that is, she likes and
dislikes) rainy day ([+]rd ∧ [−]rd). In a doxastic context the notions can be read
as belief and disbelief, and we can express ideas like the agent does not have any
opinion (neither believes nor disbelieves) regarding whether it will rain tomor-
row (¬[+]rt ∧ ¬[−]rt). We can even interpret them in terms of knowledge, and
express combinations of knowledge and ignorance.

Definition 3.2 (Dual model). Given a set of atomic propositions P, a dual
model is a tuple M = 〈W, R+, R−, V 〉 where W is a non-empty set of worlds, R+

and R− are binary relations on W and V : P → ℘(W ) is a valuation function.
We denote by M the class of all semantic models.

The difference between our system and an ordinary bi-modal framework relies
on the interpretation of negative attitude formulas [−]ϕ.

Definition 3.3. Let M = 〈W, R+, R−, V 〉 be a dual semantic model and let w
be a world in it. Atomic propositions, negation and conjunction are interpreted
as usual. For the modalities, we have

(M, w) |= [+]ϕ iff for all w′ such that R+ww′, (M, w′) |= ϕ
(M, w) |= [−]ϕ iff for all w′ such that R−ww′, (M, w′) |= ¬ϕ.

Among the class of all dual semantic models, we distinguish four of them.
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Definition 3.4. A dual model M is in

− the class of [+]-consistent models (M+) iff R+ is serial;
− the class of [−]-consistent models (M−) iff R− is serial;
− the class of [±]-consistent models (M±) iff R+ and R−

are serial;
− the class of dual-consistent models (Mc) iff for every

w ∈ W we have R+[w] ∩ R−[w] �= ∅.

M
+

M
−

M
±

M
c

It can be easily verified that in M+-models, the formula [+](ϕ ∧ ¬ϕ) is not
satisfiable, hence the name of the class. Similarly, [−](ϕ∨¬ϕ) is not satisfiable in
M−-models, and both formulas are not satisfiable in M±-models. The class Mc

is more restrictive than M± since, besides having both R+ and R− serial, their
intersection should be non-empty. In models of such class, the two mentioned
formulas are not satisfiable, and so is [+]ϕ ∧ [−]ϕ.

3.2 The New Attitudes

In a language with a single normal modality we can only express four attitudes
with respect to any given formula ϕ, as discussed earlier. With our new modality
[−] we have sixteen combinations of truth-values for the formulas [+]ϕ, [+]¬ϕ,
[−]ϕ and [−]¬ϕ, all of them satisfiable in M. To make a systematic analysis, we
consider all the cases.
1:

(
[+]ϕ ∧ [+]¬ϕ

)
∧
(
[−]ϕ ∧ [−]¬ϕ

)
2:

(
¬[+]ϕ ∧ [+]¬ϕ

)
∧
(
[−]ϕ ∧ [−]¬ϕ

)
3:

(
[+]ϕ ∧ ¬[+]¬ϕ

)
∧
(
[−]ϕ ∧ [−]¬ϕ

)
4:

(
[+]ϕ ∧ [+]¬ϕ

)
∧
(
¬[−]ϕ ∧ [−]¬ϕ

)
5:

(
[+]ϕ ∧ [+]¬ϕ

)
∧
(
[−]ϕ ∧ ¬[−]¬ϕ

)
6:

(
¬[+]ϕ ∧ ¬[+]¬ϕ

)
∧
(
[−]ϕ ∧ [−]¬ϕ

)
7:

(
¬[+]ϕ ∧ [+]¬ϕ

)
∧
(
¬[−]ϕ ∧ [−]¬ϕ

)
8:

(
¬[+]ϕ ∧ [+]¬ϕ

)
∧
(
[−]ϕ ∧ ¬[−]¬ϕ

)
9:

(
[+]ϕ ∧ ¬[+]¬ϕ

)
∧
(
¬[−]ϕ ∧ [−]¬ϕ

)
10:

(
[+]ϕ ∧ ¬[+]¬ϕ

)
∧
(
[−]ϕ ∧ ¬[−]¬ϕ

)
11:

(
[+]ϕ ∧ [+]¬ϕ

)
∧
(
¬[−]ϕ ∧ ¬[−]¬ϕ

)
12:

(
[+]ϕ ∧ ¬[+]¬ϕ

)
∧
(
¬[−]ϕ ∧ ¬[−]¬ϕ

)
13:

(
¬[+]ϕ ∧ [+]¬ϕ

)
∧
(
¬[−]ϕ ∧ ¬[−]¬ϕ

)
14:

(
¬[+]ϕ ∧ ¬[+]¬ϕ

)
∧
(
[−]ϕ ∧ ¬[−]¬ϕ

)
15:

(
¬[+]ϕ ∧ [+]¬ϕ

)
∧
(
¬[−]ϕ ∧ ¬[−]¬ϕ

)
16:

(
¬[+]ϕ ∧ ¬[+]¬ϕ

)
∧
(
¬[−]ϕ ∧ ¬[−]¬ϕ

)
We explain these cases in terms of the mental attitudes they describe. Case 1

represents an agent’s indecision about both ¬ϕ and ϕ. Cases 2 and 3 correspond
to the positive attitude towards ¬ϕ and ϕ, respectively, whereas cases 4 and
5 give the corresponding negative attitudes. Case 6 corresponds to having no
positive opinion whether ϕ holds, and case 11 to having no negative opinion.
Case 7 corresponds to being undecided about ¬ϕ, case 10 about ϕ. Case 8
corresponds to positive about ¬ϕ, and negative about ϕ (strengthening of ¬ϕ),
case 9 is just the opposite (strengthening of ϕ). Case 12 corresponds to having
no negative attitude but only positive attitude towards ϕ, case 13 corresponds to
having no negative attitude towards ϕ, and positive attitude towards ¬ϕ. Case
14 corresponds to having no positive attitude but only negative attitude towards
ϕ, case 15 corresponds to no positive attitude towards ϕ, but negative attitude
towards ¬ϕ. Case 16 corresponds to having no opinion whatsoever about ϕ.

We can order these 16 attitudes according to their informational content, just
like we did with the four attitudes that can be expressed with a single normal
modality (cf. Section 2.1). The order goes, again, from the case in which the four
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relevant formulas are false (case 16) to the case in which all of them are true
(case 1); we get the power set of a 4-element set ordered by inclusion:

Of course, not all these cases are satisfiable in all classes of models:

− In M+-models, cases in {1, 4, 5, 11} are not satisfiable.
− In M−-models, cases in {1, 2, 3, 6} are not satisfiable.
− In M±-models, cases in {1, 2, 3, 4, 5, 6, 11} are not satisfiable.
− In Mc-models, only cases in {8, 9, 12, 13, 14, 15, 16} are satisfiable.

In particular, the cases satisfiable in Mc can also be or-
dered according to the attitude towards a given formula,
just like we did with the three �-consistent cases of the
single normal modality (cf. Section 2.1). This time, the
order goes from a completely negative attitude towards
ϕ (case 8) to a completely positive attitude towards it
(case 9), as the diagram on the right shows.

9

15 12

16

14 13

8

Moreover, considering the M models and the set of uncertain attitudes to-
wards ϕ, viz. {1, 6, 7, 10, 11, 16}, we can have the following orderings of inde-
cision and no opinion, in terms of increasing degrees of uncertainty. Note that
these notions of uncertainty are independent of each other. The ordering for
indecision and no opinion are as follows:

1

7

��






10

��������

indecision

16

6

������
11

��						

no − opinion

We should note here that for all practical purposes, the above representations
are too long to comprehend. We consider their reduced versions corresponding
to the M± models:
1:
(
[+]ϕ ∧ [+]¬ϕ

)
∧
(
[−]ϕ ∧ [−]¬ϕ

)
2:
(
¬[+]ϕ ∧ [+]¬ϕ

)
3:
(
[+]ϕ ∧ ¬[+]¬ϕ

)
4:
(
¬[−]ϕ ∧ [−]¬ϕ

)
5:
(
[−]ϕ ∧ ¬[−]¬ϕ

)
6:
(
¬[+]ϕ ∧ ¬[+]¬ϕ

)
7: [+]¬ϕ ∧ [−]¬ϕ 8: [+]¬ϕ ∧ [−]ϕ 9: [+]ϕ ∧ [−]¬ϕ
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10: [+]ϕ ∧ [−]ϕ 11:
(
¬[−]ϕ ∧ ¬[−]¬ϕ

)
12:

(
[+]ϕ ∧ ¬[+]¬ϕ

)
∧
(
¬[−]ϕ ∧ ¬[−]¬ϕ

)
13:

(
¬[+]ϕ ∧ [+]¬ϕ

)
∧
(
¬[−]ϕ ∧ ¬[−]¬ϕ

)
14:

(
¬[+]ϕ ∧ ¬[+]¬ϕ

)
∧
(
[−]ϕ ∧ ¬[−]¬ϕ

)
15:

(
¬[+]ϕ ∧ [+]¬ϕ

)
∧
(
¬[−]ϕ ∧ ¬[−]¬ϕ

)
16:

(
¬[+]ϕ ∧ ¬[+]¬ϕ

)
∧
(
¬[−]ϕ ∧ ¬[−]¬ϕ

)
We will have 15 different cases (case 1 being not satisfiable), preserving the

corresponding attitudes they express. For our technical discussions we will con-
sider all types of models and subsequently, 16 different cases.

As the readers can easily apprehend, though some of the cases are redundant,
we have a plethora of notions of agent uncertainty like indecision, no opinion,
and others. If we refer back to our example in the introduction, all the attitudes
of Alice’s mental state can now be expressed in the present framework. We
consider the reduced versions. Alice is undecided about A and B: ([+]A∧[−]A)∧
([+]B ∧ [−]B), has strong positive opinion about C: [+]C ∧ [−]¬C, negative
opinion about D: [−]D ∧ ¬[−]¬D, have not heard about E:

(
¬[+]E ∧ ¬[+]¬E

)
∧
(
¬[−]E ∧ ¬[−]¬E

)
.

3.3 The K System as a Particular Case

Classical modal logic assumes that having a positive attitude towards ϕ is the
same as having a negative attitude towards ¬ϕ. A dual model in which the
positive and the negative relations coincide satisfy this property.

Proposition 3.1. Denote by M� the class of dual models in which the positive
and the negative relation are the same, that is, R+ = R−. in this class, the
following formula is valid:

[+]ϕ ↔ [−]¬ϕ

Consider now the previous sixteen cases.

Proposition 3.2. In the class M�, only cases 1, 8, 9 and 16 are satisfiable. In
fact, by using the mentioned equivalence [+]ϕ ↔ [−]¬ϕ, they become the four
attitudes we can express with a single normal modality, that is,

(1): [+]ϕ ∧ [+]¬ϕ (9): [+]ϕ ∧ ¬[+]¬ϕ
(8): ¬[+]ϕ ∧ [+]¬ϕ (16): ¬[+]ϕ ∧ ¬[+]¬ϕ

Proposition 3.3. The classical modal system K is a subsystem of the dual sys-
tem obtained by using � for [+] and by asking for the positive and the negative
relation to be the same.

4 Profile of the dual Framework

4.1 Decidability

We now show that, in general, we can always decide whether a given formula ϕ
is M-valid or not. This is the case because our system, just like standard modal
logic, has the strong finite model property.
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Fact 1. Let ϕ be a formula of L. If ϕ is satisfiable in an M-model, then it is
satisfiable in a finite M-model whose size is at most 2|ϕ |, where |ϕ| is the size
of the set of sub-formulas of ϕ closed under single negation.

Moreover, the logic L has the strong finite model property with respect to a
recursive set of M-models. So we have a method for deciding whether a formula
ϕ is satisfiable or not. All we have to do is to verify if it is satisfiable in some
pointed model of size up to |ϕ| and, since there are only finitely many such
models, we will eventually get an answer. If we find one such model, then ϕ is
satisfiable; if not, then it follows from Fact 1 that ϕ is not satisfiable.

But in our system negation behaves classically, so a formula is valid if and
only if its negation is not satisfiable. Hence, we can decide whether a formula ϕ
is valid by deciding whether ¬ϕ is satisfiable.

4.2 Complexity

We now provide complexity results for model checking and satisfiability problem
in the dual framework. First, we state the problems formally.

Definition 4.1. The model checking problem is, given a formula ϕ in L and a
pointed dual model (〈W, R+, R−, V 〉, w), decide whether ϕ is true at (M, w) or
not. The satisfiability problem is, given a formula ϕ in L and a class of models
C, decide whether ϕ is satisfiable in a model of the class C.

The next fact provides us with an efficient algorithm for checking whether a
formula is true in a pointed model. For the case of the satisfiability problem,
we have already discussed an algorithm that decides whether a given formula is
satisfiable in an M-model. The following gives a more efficient way to do it.

Fact 2. In a dual framework, the complexity of model checking is P, while the
complexity of satisfiability in the class of all dual models (M) is PSPACE.

4.3 Axiom Systems

We can decide whether a given L-formula is M-valid. Such formulas can also be
syntactically characterized, as the following theorem shows.

Theorem 4.1. The logic L, presented in the table below, is sound and complete
for the language L with respect to models in M.

P All propositional tautologies MP If 
 ϕ and 
 ϕ → ψ, then 
 ψ

K+ 
 [+](ϕ → ψ) → ([+]ϕ → [+]ψ) K- 
 [−](ϕ ∧ ψ) → ([−]¬ϕ → [−]ψ)
Gen+ If 
 ϕ, then 
 [+]ϕ Gen- If 
 ¬ϕ, then 
 [−]ϕ

For the cases of M+ and M−, their validities are characterized by the logic L
extended with the D+ axiom [+]ϕ → 〈+〉ϕ (the logic L+) and the D- axiom
[−]ϕ → 〈−〉ϕ (the logic L−), respectively. Naturally, validities for the class L±

are characterized by L extended with both D+ and D- (the logic L±).
The case of the class Mc is different.
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Theorem 4.2. The logic Lc, extending L with the axiom [−]ϕ → ¬[+]ϕ, is
sound and complete for the language L with respect to Mc-models.

Finally, the case of validities in M�-models.

Theorem 4.3. The logic L�, extending L with the axiom [+]ϕ ↔ [−]¬ϕ is sound
and complete for the language L with respect to models in M�.

5 Concrete Interpretations

We now consider a particular interpretation of the [+] and the [−] modalities:
belief and disbelief. Some intuitive ways to relate them are: “disbelieving ϕ” is
a stronger notion than “not believing in ϕ”, whereas, “believing in ¬ϕ” should
imply “disbelieving ϕ”. In fact, the reading of the different cases of dual expres-
sions that we have provided in Section 3.3 is motivated by our understanding of
[+] as belief and [−] as disbelief.

Consideration of disbelief as a separate epistemic category came to the fore
in the latter part of last decade [20,3]. Consideration of changing or revising
disbeliefs as a process analogous to belief revision was taken up by [4]. Belief-
disbelief pairs, i.e. simultaneous consideration of belief and disbelief sets, were
also taken up [2]. A more recent proposal can be found in [21], where ‘disbelieving
ϕ’ is modeled as ‘considering ¬ϕ to be plausible’.

5.1 Belief-Disbelief Logic

We now propose the model and axiom system of the belief-disbelief logic (LKD45 ).

Definition 5.1. We denote by MKD45 the class of models in M for which the
positive and negative relations, now denoted by RB and RD, are serial, reflexive
and Euclidean. Their respective universal modalities are given by B and D (with
B̂ and D̂ denoting the corresponding existential ones).

Theorem 5.1. The logic LKD45 given by the axiom system of Theorem 4.1 plus
the axioms below is sound and complete for L with respect to MKD45 .

D+ 
 B ϕ → B̂ϕ D- 
 Dϕ → D̂ϕ

4+ 
 B ϕ → BB ϕ 4- 
 Dϕ → D¬D ϕ

5+ 
 ¬B ϕ → B¬B ϕ 5- 
 ¬Dϕ → DD ϕ

What we have now is a minimal logic of belief and disbelief. To make things
more interesting and useful we should have inter-relations between the belief
and disbelief modalities. The table below lists interesting axioms and their cor-
responding characterizing-criteria in the MKD45 class of models.

C 
 D ϕ → ¬B ϕ Mc ∀w ∈ W , RB[w] ∩ RD[w] �= ∅
BD 
 B¬ϕ → D ϕ Mbd RD ⊆ RB

DB 
 D¬ϕ → B ϕ Mdb RB ⊆ RD

Intro1 
 D ϕ → B Dϕ MI-1 wRBw′ ∧ wRDw′′ ⇒ w′RDw′′

Intro2 
 B ϕ → D¬B ϕ MI-2 wRDw′ ∧ wRBw′′ ⇒ w′RBw′′
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5.2 Preference

There is a very close relationship between an agent’s beliefs and her prefer-
ences which has been extensively discussed in [22]. In fact, both objective and
subjective preferences over objects are described, along with preference over
propositions. The dual framework of belief-disbelief can also provide a way to
describe subjective preferences over propositions, taking into account agents’
uncertainties as well. For example, consider the following notion of preference.

Pref(ϕ, ψ) : (O3ϕ ∨ O9ϕ) ∧ (O5ψ ∨ O6ψ ∨ O10ψ ∨ O16ψ),

where Oiχ represents the i-th possibility of the 16 different attitudes described
earlier. The Pref relation defined above is transitive but neither reflexive nor
linear. This is a very weak notion of preference in the sense that it cannot
distinguish between longer preference orders, e.g., orders of length more than 3.
But, if we go back to the decision-making scenario described in the introduction,
we can still deduce from the known facts that Pref(C, X), for X = A, B, D, E.
We leave a more detailed discussion on stronger notions of preference as well as
their technical study for future work.

6 A Comparative Discussion

As mentioned in the introduction, there already have been past works modeling
these dual attitudes. In this section we provide a comparative discussion with
two such proposals which are very close in spirit to ours.

6.1 A Logic of Acceptance and Rejection

In [3], the authors present a nonmonotonic formalism AEL2 extending the frame-
work of Moore’s auto-epistemic logic [23] to deal with uncertainty of an agent.
The underlying logical framework is the same as that of LKD45 . In AEL2, ac-
cepted and rejected premises are separated to form a pair of sets of formulas
(I1, I2). Then, the AEL2-extensions (T1, T2) are defined, where T1 is expected
to contain all the accepted formulas with respect to I1 and T2 to contain all the
rejected formulas with respect to I2.

Definition 6.1. (T1, T2) is a stable AEL2 expansion of (I1, I2) if

T1 = Cn(I1 ∪ {Bϕ : ϕ ∈ T1} ∪ {¬Bϕ : ϕ �∈ T1} ∪ {Dϕ : ϕ ∈ T2} ∪ {¬Dϕ : ϕ �∈ T2})
T2 = Cn′(I2 ∪ {¬Bϕ : ϕ ∈ T1} ∪ {Bϕ : ϕ �∈ T1} ∪ {¬Dϕ : ϕ ∈ T2} ∪ {Dϕ : ϕ �∈ T2}).

Here, Cn is the classical propositional consequence operator, and Cn′ is the
corresponding consequence operator for the propositional logic of contradictions.

Definition 6.2. (T1, T2) is said to be a BD-dual extension of (I1, I2) if

T1 = {ψ | I1 ∪ {¬Bϕ : ϕ �∈ T1} ∪ {Dϕ : ϕ ∈ T2} ∪ {¬Dϕ : ϕ �∈ T2} 
L1 ψ}
T2 = {ψ | I2 ∪ {¬Bϕ : ϕ ∈ T1} ∪ {Bϕ : ϕ �∈ T1} ∪ {¬Dϕ : ϕ ∈ T2} 
L2 ψ}.
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Here, L1 is a fragment of LKD45 axiomatized by the propositional tautologies,
MP , modal axioms K+, 4+, and 5+, and rule Gen+ corresponding to the
modal operator B, and L2 is the logic axiomatized by the propositional contra-
dictions, Rej , modal axioms K-, D2, and D3, and rule Gen- corresponding to
the modal operator D, where D2, D3,and Rej are given below:

D2 : Dϕ → ¬DDϕ
D3 : ¬Dϕ → ¬D¬Dϕ

Rej :
β,¬(α → β)

α

It is a very well-known result that Moore’s auto-epistemic logic corresponds to
the non-monotonic modal logic weak S5, in particular the K45-logic (see [24]
for a detailed discussion). Similarly, it can be proved that,

Proposition 6.1. (T1, T2) is a consistent stable AEL2 expansion of (I1, I2) iff
(T1, T2) is a BD-dual extension of (I1, I2).

6.2 Some Logics of Belief and Disbelief

In [2], the authors present several logics for dealing with beliefs and disbeliefs
from a syntactic perspective, together with providing a neighbourhood-like se-
mantics for them. Given a set of atomic propositions P , denote by LB the set
of classical propositional logic formulas built from P , and define LD := {φ | φ ∈
LB}. The underlying language L is then given by LB ∪LD. Suppose Γ ⊆ L. The
agent believes every φ with φ ∈ Γ (denoted by ΓB), and disbelieves every φ with
φ ∈ Γ (denoted by ΓD). Based on specific closure properties of ΓB and ΓD, the
authors define four different logics, but all of them can be interpreted on WBD
models, tuples of the form 〈M,N〉 where M is a set of propositional valuations
and N ⊆ ℘(V ) is a set of sets of propositional valuations (the particular logics
are characterized by properties of the semantic model). Then,

〈M,N〉 |= φ iff φ is true under every valuation in M , and
〈M,N〉 |= φ iff ¬φ is true under every valuation of N for some N ∈ N .

We now provide a semantic comparison between these logics and our framework.
Consider a WBD model M = 〈M,N〉 in which N is finite, and denote by k its
number of elements. We will build an extension of our dual models in which the
domain consists of all the possible valuations for the given atomic propositions.

Definition 6.3. Let P be a set of atomic propositions and let M = 〈M,N〉
be a WBD model based on them, with N = {N1, . . . , Nk} (i.e, N is finite).
Denote by V the set of all propositional valuations over P , and denote by Vp the
set of propositional valuations in V that make p true. The extended dual model
MM = 〈W, RB, RB

s , RD, V 〉 has as domain the set of all valuations for P , that
is, W := V. Now select arbitrary k + 1 worlds w, w1, . . . , wk in W . Define RBwu
iff u ∈ M . For each i ∈ {1, . . . , k}, define RDwiu iff u ∈ Ni. Define RB

s wwi for
every i ∈ {1, . . . , k}, and for every atomic proposition p, define V (p) := Vp.

For this special dual model, we use the modalities B, Bs and D for the relations
RB, RB

s and RD, respectively. Then, for every world w ∈ W ,
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(MM, w) |= Bϕ iff for all w′ such that RBww′, (MM, w′) |= ϕ

(MM, w) |= Bsϕ iff for all w′ such that RB
s ww′, (MM, w′) |= ϕ

(MM, w) |= Dϕ iff for all w′ such that RDww′, (MM, w′) |= ¬ϕ

Proposition 6.2. Let M = 〈M,N〉 be a WBD with N finite. For every propo-
sitional formula γ, we have

M |= γ iff (MM, w) |= B γ M |= γ iff (MM, w) |= B̂s D γ

In other words, our formula B γ expresses the notion “the agent believes γ” of
[2], and our formula B̂s D γ expresses their “the agent disbelieves γ”.

In [25], the authors suggest combining universal and existential notions to de-
scribe knowledge. The above proposition puts us on similar track, but we leave
the detailed study for future work.

7 Dynamics

The system proposed in Section 3 allows us to represent positive and negative
attitudes by means of two modalities that allow us to build formulas of the
form [+]ϕ and [−]ϕ. While the first one is true at a world w iff ϕ is true in
all the worlds R+– reachable from w, the second is true at a world w iff ϕ is
false in all the worlds R−– reachable from w. We have also shown that, when
the two relations R+ and R− are the same, we get the validity [−]ϕ ↔ [+]¬ϕ
indicating that the agent has a negative attitude towards a formula iff she has a
positive attitude towards its negation. This actually says that, when R+ = R−,
the negative attitude collapses into classical negation, and therefore we get the
classical K-system.

But from a more dynamic perspective, the case in which R+ = R−, that is,
the K case can be thought of as not a particular case of the static system, but
a possible result of some dynamic extension. In other words, the ‘ideal’ system
K in which negative attitudes coincide with classical negation, can be seen not
as the state of an ideal static agent, but as the possible final state of a non-ideal
but dynamic one who can perform actions that make the two relations the same.
This section looks briefly at possible results of such actions.

There are various ways to generate a new relation from two others, and in
this case they represent the different policies through which the agent ‘merges’
her positive and negative attitudes. For example, she can be drastic in two
different ways: give up her negative attitude (R := R+) or give up the positive
one (R := R−). More reasonable are the policies that actually combine the two
relations, like R := R+ ∪ R−.

Definition 7.1 (Merging policies). Let M = 〈W, R+, R−, V 〉 be a dual model.
The relation R of a dual model 〈W, R, V 〉 that results from the agent’s merging
of her positive and negative attitudes can be defined in several forms.
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− R := R+ (the drastic positive policy; new model denoted by M+).

− R := R− (the drastic negative policy; new model denoted by M−).

− R := R+ ∪ R− (the liberal combining policy; new model denoted by M∪).

− R := α(R+, R−), where α(R+, R−) is a PDL-expression [26] based on R+ and

R− (the PDL policy; new model denoted by Mα).

− R := R+ ∩ R− (the skeptic combining policy; new model denoted by M∩).

− R := R+ \ R− (new model denoted by M±).

− R := R− \ R+ (new model denoted by M∓).

For each policy ◦, we define a modality [m◦] for building formulas of the form
〈m◦〉ϕ, read as “there is a way of merging attitudes with policy ◦ after which ϕ
is the case”. Their semantic interpretation is given by:

(M, w) |= 〈m◦〉ϕ iff (M◦, w) |= ϕ

Now, for an axiom system, we can provide reduction axioms for each policy. In
each case, the relevant ones are those describing the way the new relations are
created. Though they are the same, we will stick with + and − for representing
the positive and negative relations after the operation.

The drastic positive policy: 〈m+〉〈+〉ϕ ↔ 〈+〉〈m+〉ϕ
〈m+〉〈−〉ϕ ↔ 〈+〉〈m+〉¬ϕ

The drastic negative policy: 〈m−〉〈+〉ϕ ↔ 〈−〉〈m−〉¬ϕ

〈m−〉〈−〉ϕ ↔ 〈−〉〈m−〉ϕ

The liberal combining policy: 〈m∪〉〈+〉ϕ ↔ 〈+〉〈m∪〉ϕ ∨ 〈−〉〈m∪〉¬ϕ

〈m∪〉〈−〉ϕ ↔ 〈+〉〈m∪〉¬ϕ ∨ 〈−〉〈m∪〉ϕ

For ∗-free PDL policies, reduction axioms for each particular α(R+, R−) can
be obtained by following the technique introduced in [27]. To get sound and
complete reduction axioms for the policies involving ∩ and \, we may need to
extend the language with nominals.

But we do not only need to look at actions that create a single relation in one
shot. We can also look at procedures in which the single relation is a long-term
result of small operations that merge the two of them in a step-wise form. We
leave the detailed study on these dynamical aspects for future work.
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Abstract. Modern logic begins with Boole’s The Mathematical Analysis of 
Logic when the algebra of logic was developed so that classical logic 
syllogisms were proven as algebraic equations and the turn from the logic of 
classes to propositional logic was suggested. The emergence was incomplete as 
Boole algebraised classical logic. Frege in Begriffsschrift replaced Aristotelian 
subject–predicate propositions by function and argument and displaced 
syllogisms with an axiomatic propositional calculus using conditionals, modus 
ponens and the law of substitution. Further Frege provided the breakthrough to 
lay down the groundwork for the development of quantified logic as well as the 
logic of relations.  He achieved all of this through his innovative formal 
notations which have remained underrated. Frege hence completed the 
emergence of modern logic. Both Boole and Frege mathematised logic, but 
Frege’s goal was to logicise mathematics. However the emergence of modern 
logic in Frege should be detached from his logicism.  

Keywords: Boole, Frege, conditional, modus ponens, propositional calculus, 
quantifiers, function and argument, axioms.  

1   Introduction 

Can we pinpoint the moment when modern logic emerged? I propose that the 
emergence occurs in 1847 in Boole’s The Mathematical Analysis of Logic [1] and in 
1879 in Frege’s Begriffsschrift [2, 3]. However this is to be complemented by the 
metalogic developed by Hilbert. Boole mathematised logic; whereas Frege raised 
logic to its highest pedestal by attempting to logicise mathematics and for Hilbert both 
logic and mathematics as a unified enterprise reached a second order level never 
developed before.   

‘Modern logic’ may have various meanings such as (a) a fully developed first order 
propositional and predicate calculus, or (b) the development of higher order logics 
and metalogic including the relation of semantics to proof theory.1  If ‘modern’ means 
latest, then (b) would be more appropriate. However, if ‘modern’ is taken in an 
                                                           
1  I thank an anonymous referee for making this distinction clear and asking me to make clear 

in which sense I meant ‘modern logic’. 
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historical sense, then (a) may be the more important meaning.  ‘Modern philosophy’ 
is taken to begin with Descartes in the 17th century.  In this historical sense ‘Modern’ 
is a break from medieval philosophy. ‘Modern philosophy’ includes the span of 
philosophers from Descartes to the 21st century.  No crucial break from classical logic 
occurred in the 17th or 18th centuries, hence we mark the 19th century as when modern 
logic emerged.  Just as we say that Modern philosophy begins with Descartes, I want 
to claim that modern logic begins with Boole and Frege.  Hence, under ‘modern 
logic’ I include not only (a) and (b) but also the more recent developments such as 
modal logic, epistemic logic, deontic logic, quantum logic, multivalued logic, fuzzy 
logic and paraconsistent logic.  However, I use ‘emergence’ as being restricted to (a).  
Just as the emergence of Modern philosophy in Descartes does not include Kant’s 
critical philosophy, similarly, the emergence of modern logic does not include (b) and 
later developments.  Nonetheless just as Descartes is a necessary antecedent for 
Kant’s critical philosophy, so (a) is a necessary antecedent for (b).  Second order and 
higher order logics would not have emerged without the initial emergence of first 
order axiomatic propositional and predicate logic. 

When I pinpoint Boole (1815–1864) and Frege (1848–1925) as the founders of 
modern logic, by no means do I wish to marginalise the contributions made to the 
emergence of modern logic by great mathematicians and logicians such as DeMorgan 
(1806–1871), Lewis Carroll (1832–1898), MacColl (1837–1909), Peirce (1839–
1914), Schröder (1841–1902), Peano (1858–1932) and others.  Each of these may 
have made as great or greater contributions than Boole and Frege and their influence 
on Frege at least may also be of great significance as he may not have been able to 
develop the logic he did without them.  Rather, I have pinpointed one work of each 
and I wish to consider these works in themselves, in as much as possible, independent 
of their authors, as this makes it very convenient to understand when and how modern 
logic emerged.  Hence, even though Frege on the whole may not be sympathetic with 
Boole’s algebraisation of logic, I have attempted to show how the Begriffsschrift 
complements The Mathematical Analysis of Logic in the emergence of modern logic.  
I am open to alternative or complementary accounts which may for example consider 
DeMorgan and Peirce as the founders of modern logic.  I also make a heuristic 
distinction between the roots of modern logic, the emergence of modern logic and the 
development of modern logic.  The roots may go as far back as Aristotle, but the 
emergence occurs in the 19th century and most of what happens in modern logic in  
the 20th century may fall under the development of modern logic.  My concern in this 
paper is only with the emergence of modern logic.  As I have dealt extensively with 
Boole’s The Mathematical Analysis of Logic elsewhere [4], I will concentrate in this 
paper on Frege’s Begriffsschrift.   

The emergence of modern mathematics came in the golden age of mathematics 
from  mid 18th century to early 19th century led by Euler (1707–1783), Lagrange 
(1736–1813), Laplace (1749–1827) and Gauss (1777–1855). Non-Euclidean 
geometry and abstract algebra also emerged in this period. The delay in the 
emergence of modern logic was because of certain historical developments in algebra. 
Non-Euclidean geometries had already raised the possibility of a geometry that did 
not deal solely with measurement. With the development of symbolical algebra it 
became possible to have a purely abstract algebra that did not deal with quantity. 
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Hence, Boole could develop the algebra of logic which was completely symbolic and 
completely devoid of content. However, despite laying the groundwork of algebraic 
logic as well as a propositional calculus, Boole stuck to the Aristotelian limitation of 
subject–predicate propositions. So his logic was only partially modern. 

Frege put an end to subject–predicate propositions and syllogisms by considering 
propositions in terms of functions and arguments. So, he also mathematised logic, but 
his mathematisation was conceptual and this logic would serve all of mathematics. 
Frege hence displaced the portion of logic that had remained Aristotelian and modern 
logic emerged. Even though ‘Begriffsschrift’ translates as ‘conceptual content’, it was 
his innovative notations that finalised the revolution in logic and a comprehensive 
propositional and predicate symbolic logic could then be developed in 1910 by 
Whitehead and Russell in Principia Mathematica (PM) [5].  

2   The Beginning of Modern Logic in Boole’s The Mathematical 
Analysis of Logic 

Symbolic propositional and predicate calculus could not be developed because neither 
Aristotle nor any logician after Aristotle was able to mathematise logic. Leibniz 
anticipated the algebra of logic to be the art of combinations as Louis Couturat states: 

Leibniz had conceived the idea […] of all the operations of logic, 
[…] was acquainted with the fundamental relations of the two 
copulas […] found the correct algebraic translation of the four 
classical propositions, […] discovered the principal laws of the 
logical calculus, […] he possessed almost all the principles of the 
logic of Boole and Schröder, and on certain points he was more 
advanced than Boole himself. (my translation) [6, pp. 385–6] 

What Leibniz really needed was the development of symbolical algebra which 
occurred more than a century after his death. In 1830 George Peacock claimed that 
operations in symbolic algebra must be open to interpretations other than that in 
arithmetic: 

[…] in framing the definitions of algebraical operations, […] we 
must necessarily omit every condition which is in any way 
connected with their specific value or representation: […] the 
definitions of some operations must regard the laws of their 
combination only […] in order that such operations may possess an 
invariable meaning and character, […] [7, pp. viii–x] 

The primacy of combinations over what they combine is thereby established.  
Boole developed a quantity free algebra of logic in Mathematical Analysis of Logic. 
He began by laying down the foundations of the algebra of logic which is a logic of 

classes in which the three combinatory laws (1) x(y + z) = xy + xz (distributive), (2) xy 
= yx (commutative) and (3) x2 = x (index) (p. 15); when combined with the axiom that 
equivalent operations performed on equivalent subjects, produce equivalent results, 
constitute the axiomatic foundations for all of logic [1, p. 18]. First, Boole represents 
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Aristotelian categorical propositions as algebraic equations. Then, he captures valid 
syllogisms of classical logic by multiplying equations and eliminating y which 
represents the traditional middle term: 

 ay + b = 0 
          a′ y + b′ = 0   

When y is eliminated this reduces to: 

 ab′ – a′b = 0  [1, p. 32] 

Boole then makes the crucial turn to propositional logic in his account of conditionals. 
First he presents conditionals in terms of classes as in syllogistic logic:  

If A is B, then C is D, 
But A is B, therefore, C is D. 

But then he expresses it in terms of propositions without reference to classes:  

If X is true, then Y is true, 
But X is true, therefore, Y is true.   

[…] Thus, what we have to consider is not objects and classes of 
objects, but the truths of Propositions, namely, of those elementary 
Propositions which are embodied in the terms of our hypothetical 
premises [1, pp. 48–9].  

We can embalm page 48 as the long awaited turning point from classical to modern 
logic as a scheme to translate syllogisms into inferences involving conditionals is 
suggested and in the particular example, the rule of inference of modus ponens is 
given in its propositional conditional form as we know it today. 

Using 0 for false and 1 for true Boole now comes up with the possibilities for truth 
tables [1, pp. 50–51] and goes on to define conjunction, disjunction (both exclusive 
and inclusive), and conditional truth functionally [1, pp. 52–4]. As truth values are 
algebraised, mathematics can provide important insights into logic. These equations 
can be used for understanding truth functionality in a way that may not be understood 
without mathematics. The equation for the exclusive disjunction ‘Either x is true or y 
is true’ is x – 2xy + y = 1, which is acquired from the second and third row of the truth 
table: x(1 – y) + y(1 – x) = x – xy + y – xy = x – 2xy + y, and this must be true, so x – 
2xy + y = 1. Now, since x2 = x, we get:  x2 – 2xy + y2 = 1. Which reduces to (x – y)2 = 
1; x – y = ± 1. When x is true having the value of 1, then y must be false having the 
value 0 and when x is false, having the value 0, then y is true, having the value 1 to 
satisfy the equation [1, p. 55]. Hence, we see from the inside of Boolean algebra how 
a simple algebraic operation, but without regard to quantity, as the rule x2 = x is not a 
rule of ordinary algebra, leads to a clear definition of a logical operation like 
exclusive disjunction.  

Boole concludes: ‘The general doctrine of elective symbols and all the more 
characteristic applications are quite independent of any quantitative origin’ [1, p. 82]. 
Boole successfully developed the algebra of logic on the basis of symbolical algebra 
that divests itself of quantitative origin.  However, Aristotelian logic was sustained as 
is clear by the title ‘Aristotelian Logic and its Modern Extensions, Examined by the 
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Method of this Treatise’ of the culminating chapter of the logic part of his major work 
Laws of Thought in 1854. [8, pp. 174–86].  Clearly then, modern logic had not yet 
emerged in 1847 or in 1854.  

3   The Completion of the Emergence of Modern Logic in Frege’s 
Begriffsschrift 

Frege completed the emergence of modern logic: first, by his innovative notation for 
judgments where the content stroke represented the content of the judgment, he 
finally brought down the axe on subject–predicate propositions which Boole was 
unable to do; second, he introduced a formal notation for conditional statements 
which in turn led to the development of axiomatic logic as well as a rigorous proof 
technique using modus ponens that made Aristotelian syllogisms archaic; third, he 
introduced a perspicuous notation for the universal quantifier so that a predicate as 
well as propositional calculus could be developed; fourth, he imported from 
mathematics the notions of function and argument and placed them at the core of 
symbolic logic and there was no looking back. Frege made up for Leibniz’s failure to 
develop modern logic due to a lack of formalisation of relations and modern logic 
finally emerged. By no means was Frege a lone ranger in the emergence and 
development of modern logic.  Invaluable contributions, without which Frege would 
have been nowhere, were made by DeMorgan, Schröder, Peirce and others. Yet Frege 
perhaps put it all together better than anyone else. The master historians of logic, 
Kneale and Kneale, best capture Frege’s contribution: 

Frege’s Begriffsschrift is the first really comprehensive system of 
formal logic. Aristotle was interested chiefly in certain common 
varieties of general propositions. He did indeed formulate the 
principles of non-contradiction and excluded middle, which belong 
to a part of logic more fundamental than his theory of the syllogism; 
but he failed to recognize the need for a systematic account of 
primary logic. Such an account was supplied, at least in part, by 
Chrysippus; but neither he nor the medieval logicians who wrote 
about consequentiae succeeded in showing clearly the relation 
between primary and general logic. Leibniz and Boole, recognizing 
a parallelism between primary logic and certain propositions of 
general logic about attributes or classes, worked out in abstract 
fashion a calculus that seemed to cover both; but neither of these 
enlarged the traditional conception of logic to include the theory of 
relations. Working on some suggestions of De Morgan, Peirce 
explored this new field, and shortly after the publication of the 
Begriffsschrift he even produced independently a doctrine of 
functions with a notation adequate for expressing all the principles 
formulated by Frege; but he never reduced his thoughts to a system 
or set out a number of basic principles like those given in the last 
section. Frege’s work, on the other hand, contains all the essentials 
of modern logic, and it is not unfair either to his predecessors or to 
his successors to say that 1879 is the most important date in the 
history of the subject. [9, pp. 510–11] 
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Others have also expressed highest praises for the Begriffsschrift. von Heijenoort 
says ‘Modern logic began in 1879, the year in which Gottlob Frege (1848–1925) 
published his Begriffsschrift’ [10, p. 242]. According to Haaparanta ‘Still others 
argue that the beginning of modern logic was 1879, when Frege’s Begriffsschrift 
appeared’ [11, p. 5]. Christian Thiel states ‘If Frege has been regarded as the 
founder of modern mathematical logic, this characterization refers to his creation of 
classical quantificational logic in his Begriffsschrift of 1879 without any 
predecessor’ [12, p. 197]. 

I now proceed to capture Frege’s contributions in the Begriffsschrift. 
The Preface announces Frege’s motivation as he believes that pure logic gives the 

most reliable proof, and this depends solely on those laws on which all knowledge 
rests. Aristotle felt that his greatest achievement in logic was the discovery of the laws 
of thought. Boole appropriately entitled his later book as An Investigation into the 
Laws of Thought. There is a remarkable structural affinity among Aristotle, Boole and 
Frege, yet they are the greatest revolutionaries in logic. Frege, as a philosopher, made 
explicit what Boole as a mathematician left only as implicit. Boole algebraised logic 
by importing symbolical algebra into logic but at the same time, he set up formal 
logic that could become the basis of algebra as well.  In attempting to logicise 
arithmetic, that is, to make it bereft of facts, and thereby content, Frege wanted to 
express arithmetical sequences by representing the ordering of a sequence without 
bringing in intuition and the existing mathematical language made this a very difficult 
task. Hence, he created his own formula language, the central nerve of which is 
conceptual content (begrifflichen inhalt) [2, pp. iii–iv; 3, pp. 5–6]2. This formula 
language is modelled after the formula language of arithmetic, yet it is the ‘formula 
language for pure thought’ including arithmetic. Frege next announces that argument 
and function replaces subject and predicate of traditional logic and this will stand the 
test of time [2, p. vii; 3, p. 7]. And indeed it has stood the test of time. The Preface 
ends: 

As I remarked at the beginning, arithmetic was the point of 
departure for the train of thought that led me to my ideography. And 
that is why I intend to apply it first of all to that science, attempting 
to provide a more detailed analysis of the concepts of arithmetic and 
a deeper foundation for its theorems. [2, p. viii; 3, p. 8] 

This is a profound insight that arithmetic is begging for someone to build logic out of 
its language so that it (the new logic) can provide a sounder foundation for arithmetic 
itself.  

Part I is ‘I. DEFINITION OF THE SYMBOLS’. In #1 Frege begins with the 
distinction between two types of signs; letters, like a, b, c, etc., that represent 
variability in meaning and symbols like +, -, √ , and 1, 2, 3, which have determinate 
meaning: ‘I adopt this basic idea of distinguishing two types of signs, which 
unfortunately is not strictly observed in the theory of magnitudes, in order to apply it 

                                                           
2  Though my reading is of the English translation of the Begriffsschrift [3] and all except one 

of the quotations are from the English translation, nonetheless I also give the citation of page 
number from the German original first [2] so that the reader can refer to the original as well.  
Hence, the citations are given as here ‘[2, pp. iii–iv; 3, pp. 5–6]’.  If only the German is 
referred to than [3] is left out. 
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in the more comprehensive domain of pure thought in general’ [2, p. 1; 3, pp. 10–11]. 
Frege steals an important distinction from under the noses of mathematicians, which 
the mathematicians do not clearly see, and builds on it the new logic.  #2 introduces  
‘││––––––’ for expressing judgments. The horizontal stroke is the content stroke 
representing the thought of the proposition and the vertical stroke is the judgment 
stroke [2, pp. 1–2; 3, pp. 11–12]. #3 begins: ‘Eine Untersheidung von Subject und 
Prüdicat findet bei meiner Darstellung eines Urthiels nicht statt’ [2, pp. 2–3]. {‘The 
distinction between subject and predicate does not occur in my way of representing a 
judgment’ [3, p. 12]}. This marks the death of Aristotelian logic and the emergence of 
modern logic. ‘││––––––A’ does not represent a subject–predicate proposition such as (1) 
‘Archimedes perished at the capture of Syracuse’ but it represents the conceptual 
content of it, which is equally captured by a distinct subject–predicate proposition 
such as (2) ‘The capture of Syracuse led to the death of Archimedes’ or (3) ‘The 
violent death of Archimedes at the capture of Syracuse is a fact’. As in (3) all 
judgments may be thought of as having a propositional content as the subject and ‘is a 
fact’ as the common predicate that makes them true [2, pp. 2–3; 3, pp. 12–13].   

In #4 many distinctions of classical logic are dissolved such as that between 
universal and particular judgments which is now the distinction between universal and 
particular content and not of categorically different propositions. Negation is an 
adjunct to the content so that negative judgments are not categorically different from 
positive ones. Boole represented the four Aristotelian categorical propositions as 
algebraic equations hence dissolving the categorical distinction between particular 
and universal on the one hand and negative and affirmative on the other, since as 
algebraic equations they are not categorically distinct. Frege builds on this 
accomplishment; since, from this point on, there is no need to deal with Aristotelian 
categorical propositions [2, pp. 4–5; 3, p. 13]. #5 introduces the notation for 
conditional judgments as:  

 
We symbolise this today as B⊃A. The horizontal lines to the left of A and B up to 

the middle vertical line are the content strokes of A and B respectively, and the 
horizontal stroke to the left of the top node of the vertical line is the content stroke of 
the meaning of the conditional regardless of the contents of A and B. First Frege gives 
four possibilities: 

(1) A is affirmed and B is affirmed; (2) A is affirmed and B is 
denied; (3) A is denied and B is affirmed; (4) A is denied and B is 
denied. [2, p. 5; 3, p. 13]  

Then he defines the conditional as ‘the judgment that the third of these possibilities 
does not take place, but one of the three others does’ [2, p. 5; 3, p. 14]. This truth 
functional definition is the key that explains the axioms as laws of thought. Hugh 
MacColl had ‘argued that the basic relation in logic is not class inclusion but 
implication between two propositions’ [13, p. 373].  #6 develops modus ponens from 
the conditional as the only rule of inference:  
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Where (XX) represents ││––––––B and the ‘::’ indicates that B would have to be 
formulated and put into the inference [2, p. 8; 3, p.16]. Boole’s algebraised logic 
required disjunction and conjunction as the main connectives which are symbolised 
by addition and multiplication respectively. Boole also gave the example of modus 
ponens when he made the transition from Aristotelian syllogisms to modern 
propositional logic on page 48. However, Boole failed to develop or even set the 
ground for an axiomatic propositional calculus which is the task that Frege picks up. 
Frege truth functionally explains modus ponens; ││––––––B⊃A, ││––––––B, therefore ││––––––A as ‘Of 
the four cases enumerated above, the third is excluded by ││––––––B⊃A and the second and 
fourth by ││––––––B so that only the first remains’ [2, pp. 8–9; 3, pp. 15–16], that is, that 
both A and B are true. Hence, the truth of A is affirmed by this inference. The more 
general rule of modus ponens is given as: 

For, the truth contained in some other kind of inference can be 
stated in one judgment, of the form : if M holds and if N holds, then 
Λ holds also, or, in signs, 

 

From this judgment, together with ││––––––N and ││––––––M, there follow, as 
above, ││––––––Λ.  In this way an inference in accordance with any mode 
of inference can be reduced to our case. Since it is therefore 
possible to manage with a single mode of inference, it is a 
commandment of perspicuity to do so. [2, p. 9; 3, p. 17] 

Since Frege, in the axiomatic development of logic, it has become almost a 
commandment to use modus ponens as the only rule of inference along with the rule 
of substitution. Frege makes conditionals foundational to the development of 
propositional logic with his notation of the conditional which is also used here to 
represent the rule of inference of modus ponens. 

#7 introduces negation notationally as: 

 

The small vertical stroke in the middle is the negation stroke and this represents 
‘not A’ which means that the content of A does not take place. To the left of the 
negation stroke the horizontal line is the content stroke of the negation of A regardless 
of what A is, whereas the horizontal line to the right of the negation stroke is the 
content stroke of A [2, pp. 10–11; 3, pp. 17–18].  This seems to be a cumbersome way 
to represent negation.  Why could Frege not simply have used ‘–A’ or ‘~A’ as we use 
today? The significance here has to do more with the philosophy of logic than with 
logic proper.  With Frege’s notation we can read negation as either ‘not A is asserted’ 
or ‘the assertion of A is denied’.  In the representation ‘~A’ the literal reading when A 
is ‘The Statue of Liberty is in Delhi’ is ‘it is not the case that the Statue of Liberty is 
in Delhi’, since the negation sign is outside the sentence.  However, with Frege’s 
notation both ‘The Statue of Liberty is not in Delhi’ and ‘it is not the case that the 
Statue of Liberty is in Delhi’ are being expressed literally.  If we read the negation as 
first the denial of A (as the content) and then the assertion of the denial; then the 
literal reading is that of ‘The Statue of Liberty is not in Delhi’.  However, if we read 
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the negation stroke as the denial of the affirmation of A, then the literal reading is ‘It 
is not the case that the Statue of Liberty is in Delhi’.  Frege most probably would go 
for the first reading which is also the ordinary language reading.  Nonetheless, the 
possible ambiguity here is a virtue as we can have both the ordinary language reading 
and the formal reading of the negation stroke simultaneously.      

In #8 Frege defines ‘││––––––  (A≡B)’ as ‘the sign A and sign B have the same conceptual 
content’ [2, p. 15; 3, p. 21]. 

 #9 introduces the notions of function and argument: 

If in an expression, whose content need not be capable of becoming 
a judgment, a simple or a compound sign has one or more 
occurrences and if we regard the sign as replaceable in all or some 
of these occurrences by something else (but everywhere by the same 
thing), then we call the part that remains invariant in the expression 
a function, and the replaceable part the argument of the function. 
[2, p. 16; 3, p. 22] 

Whereas ‘the number 20’ is an independent idea, ‘every positive integer’ is an idea 
that depends on the context. Functions and arguments may be determinate or 
indeterminate, or more determinate and less determinate. Also, two different 
statements may be thought of as having the same function and two different 
arguments thought of as the same argument with two different functions. The 
definition of function and argument is not sufficient to claim that it can be 
implemented formally in logic. Hence, the symbolic representation in #10 is 
necessary to ground function and argument as foundational for modern logic: ││–––––– Ψ(A, 
B), i.e., ‘A stands in the relation Ψ to B’ [2, p. 18; 3, p. 23]. The logic of relations can 
now be developed. Whereas Boole algebraised logical propositions he could not make 
the distinction between propositional logic and the logic of relations. Frege finally 
makes this distinction as a statement in the form of function and argument is about 
conceptual content or formal content and not about subjects and predicates.  

#11 ‘Generality’ introduces the universal quantifier: 

 

The horizontal stroke to the left of the concavity is the content stroke of the 
circumstances that whatever we put in for the argument Φ(a) holds; and the horizontal 
stroke to the right of the concavity is the content stroke of Φ(a) where we must 
imagine something definite for the argument a [2, p. 19; 3, p. 24]. Frege provides the 
notational representation of a bound universal quantifier just 12 lines below his 
formal representation of function and argument. ‘…the use of quantifiers to bound 
variables was one of the greatest intellectual inventions of the nineteenth century’ [9, 
p. 511]. This use was developed from DeMorgan and Schröder to Peirce.   

Frege’s share of the emergence of modern logic begins on page 2 with the 
introduction of the notation that expresses the conceptual content and assertion in the 
judgment stroke and the declaration on pages 2 and 3 that his formalised 
representation of judgments no longer requires subject–predicate propositions; on 
page 16 with the definition of function and argument combined with the formal 
representation of functions within the judgment stroke on page 18; and on page 19 
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with the notational introduction of the universal quantifier. Complemented by Boole 
these pages of Begriffsschrift more or less complete the emergence of modern logic.  

In #12 Frege uses his fundamental notation to express universal propositions: 

 

i.e., ‘if something has the property Χ, then it also has the property Ρ’ [2, p. 23; 3, p. 
27]. Though this looks very different from the accepted notation today of 
‘(x)(Fx⊃Gx)’ we can clearly see how the ‘a’ in the dip binds the conditional so that 
the notion of bound variable is concretised.3  Is this the A statement of Aristotle? 
Boole had already suggested the transition from the propositions of terms to 
conditional propositions.  Frege with his notation of conditional and the universal 
quantifier could hence represent A statements in their proper conditional form.  This 
is how modern logic subsumes classical logic while eliminating subject–predicate 
propositions and syllogisms.  And all of this can be done because of the notational 
representation of Frege here.  Boole algebraised A propositions as: x(1– y) = 0, which 
means that either x = 0, or y = 1; that is, in ‘all humans are mortal’ either the 
antecedent ‘x is a human’ is false or the consequence ‘x is mortal’ is true. Frege 
replaces A propositions with: ‘if something, a, has the property of being human, then 
it also has the property of being mortal’, or ‘a is not mortal’ is denied. Frege is aware 
that in the Aristotelian A propositions the subject term must designate something 
existent so that ‘all unicorns are one-horned’ is false because unicorns don’t exist. In 
Fregean logic it is true as it is expressed in the above form, replacing Ρ with Ω and Χ 
with Ο, where Ω stands for ‘one-horned’ and Ο stands for ‘unicorns’. It is true 
because the case of Ο(a) holding, that is, being a unicorn, and Ω(a) not holding, that 
is, not being one-horned, does not occur precisely because there are no unicorns. 
What happens in the Boolean representation? Either ‘x is a unicorn’ is false or ‘x is 
one-horned’ is true. Since ‘x is a unicorn’ is never true, the A statement is always 
true. So Boole’s representation of A statements denies the Aristotelian prerequisite of 
existence, therefore it is not an A statement. Therefore Frege is correct in replacing 
classical A statements rather than representing them. Frege uses the Aristotelian 
methodological model of the square of opposition  

[2, p. 24; 3, p. 28] 
                                                           
3  I thank another anonymous referee who suggested that I incorporate a conceptual analysis of 

why and how Frege’s notations work.  I have attempted a beginning of such a conceptual 
analysis in my comments on the conditional, negation, the universal quantifier and on modus 
ponens below.  More detailed analyses of these will have to be undertaken in future in 
another paper. 
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but refuses to use the Aristotelian labels of A, E, I and O, because of their 
metaphysical commitment to existence. Hence we have here the desired emergence of 
modern predicate logic that transcends Aristotelian logic. 

Part II is entitled ‘REPRESENTATION AND DERIVATION OF SOME 
JUDGMENTS OF PURE THOUGHT’. Frege provides the axioms of first order 
propositional and predicate calculus and proves numerous theorems. In #13 Frege, 
like Aristotle, Leibniz and Boole, wants to find the minimum laws of thought on 
which all of logic can be built [2, pp. 25–26; 3, 28–29]. The method that follows 
pronounces this minimalist program. Most logic books today begin with a list of 
axioms and then, without questioning whether they are the correct axioms, derive 
theorems from these axioms. This is the classic model of Euclid’s Elements [14], 
beginning with 23 definitions, 5 postulates (axioms) and 5 common notions and the 
propositions (theorems) of geometry are then one by one proved from these 
foundations. In successive theorems previously proved theorems are used as 
justifications for steps in the proofs. Frege preserves this structure of the Euclidean 
proving procedure. However, he does not provide all the axioms at the beginning. 
Rather the axioms are spread out throughout part II, each being stated when its need 
occurs. The axioms themselves emerge, so that we can pause and critically examine 
each axiom and convince ourselves that it really is a law of thought. Euclidean 
geometry could also have followed this Fregean method, as for example, the 
notorious postulate 5 is not used until proposition 29 [14, pp. 311–312]. It may have 
been better to state the postulate when it was needed after proposition 28. If Euclid 
had followed the Fregean method, then he himself would have wondered whether this 
postulate was correct when he stated it, as he may not have found it to be a law of 
thought but rather conjectural.  Non-Euclidean geometry then would have begun with 
Euclid himself as the possibility of alternative postulates to postulate 5 or no postulate 
in place of it would have been entertained.  Frege avoids this deficiency of the 
Euclidean system as in his system the grounds for alternative axiomatic systems to his 
own are provided since in the progressive emergence of axioms, any axiom may be 
replaced by alternative ones that then would lead to alternative theorems. If there are 
alternative axioms to any of Frege’s axioms, then these would have to be tested to see 
whether they really are laws of thought.  Frege scholars seem to have overlooked this 
Fregean insight on method which is not to be passed over as an idiosyncrasy.   

 #14 provides the first axiom {A1}4: 

 [2, p. 26; 3, p. 29] 

q ⊃ (p ⊃ q)5. This is not an axiom of PM, but is prominent as it is listed as the first 
theorem:    

The most important propositions proved in the present number 
are the following :  

*2.02. ├:q.⊃.p⊃q. 

                                                           
4  All the labels for axioms, {A1} thorough {A9} are mine. 
5  Following each representation of an axiom in Fregean notation I immediately provide a 

symbolization of it in terms of notations that we are most familiar with.   
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 I.e. q implies that p implies q, i.e. a true proposition is 
implied by any proposition. [5, p. 103] 

The reason makes it sound like a law of thought, then why did they not consider it as 
an axiom? Many logicians since PM nonetheless have followed Frege in making his 
first axiom, the first of their sets of axioms: Church [15, p. 72], Imai and Iséki [16, p. 
19], Mendelson [17, p. 35]. Frege next gives the second axiom {A2}: 

  [2, p. 26; 3, p. 29] 

[p⊃(q⊃r)]⊃[(p⊃q)⊃(p⊃r)]. This is second axiom for Church [15, p.72] and 
Mendelson [17, p. 35].    

In #15 Frege proves the first theorem from {A1} and {A2}: 

[2, p. 30; 3, p. 32] 

(3) says ‘If b implies a, then any proposition c is such that “c implies that b implies 
a” implies that if “c implies b” then “c implies a”’. This may not be a law of thought, 
yet it is an immediate consequence of {A1} and {A2} which are laws of thought. 
Frege’s proof employs modus ponens and the rule of substitution. From the Fregean 
picture we can clearly see that 1 is obtained by substitutions in {A1}, the substitution 
table being given on the previous page [2, 29; 3, p. 31]. 2 is simply {A2}. Since 2 is 
the bottom part of 1, that is the antecedent, hence we can deduce the top part, that is, 
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the consequent, which is formula (3), the first theorem. We can formulate this 
derivation as follows: 

     1. {[p⊃(q⊃r)]⊃[(p⊃q)⊃(p⊃r)]}⊃{(q⊃r)⊃([p⊃(q⊃r)]⊃[(p⊃q)⊃(p⊃r)])}  
 <substituting in {A1} ‘q⊃r’ for ‘p’; and ‘[p⊃(q⊃r)]⊃[(p⊃q)⊃(p⊃r)]’  

for ‘q’>. 
     2. [p⊃(q⊃r)]⊃[(p⊃q)⊃(p⊃r)]      <A2> 
Therefore,  3. (q⊃r)⊃([p⊃(q⊃r)]⊃[(p⊃q)⊃(p⊃r)]) <1, 2, modus ponens>. 

Frege’s proof takes up much more space but it may actually be easier to follow as 
he provides a table for substitution as well. The diagram proof may be more easily 
understood by those whose right hemisphere is relatively more dominant, whereas the 
relatively more left hemisphered activity persons would see the three line proof as 
much more perspicuous and convenient and Frege’s proof as cumbersome, difficult to 
type and wasteful. It is surprising that great logicians and mathematicians actually 
saw this as a fault in Frege. In 1918 C. I. Lewis stated:  

Besides the precision of notation and analysis, Frege’s work is 
important as being the first in which the nature of rigorous 
demonstration is sufficiently understood. His proofs proceed almost 
exclusively by substitution for variables of values of those 
variables, and the substitution of defined equivalents. Frege’s 
notation, it must be admitted is against him: it is almost 
diagrammatic, occupying unnecessary space and carrying the eye 
here and there in a way which militates against easy understanding. 
It is probably this forbidding character of his medium, combined 
with the unprecedented demands upon the reader’s logical subtlety, 
which accounts for the neglect which his writings so long suffered. 
But for this, the revival of logistic proper might have taken place 
ten years earlier, and dated from Frege’s Grundlagen rather than 
Peano’s Formulaire. [18, p. 115] 

After high praise of Frege for providing proofs that proceed from axioms and the  
rule of substitution alone, bringing in modern logic proving techniques as replacement 
of syllogistic proofs; Lewis then criticises Frege for his space occupying notations. 
Why does his notation and proof procedure ‘militate against easy understanding’? 
Lewis does not explain. In 1914, Jourdain remarked: ‘[…] the using of FREGE’S 
symbolism as a calculus would be rather like using a three-legged stand-camera for 
what is called “snap-shot” photography [19, p. viii].’ Why are snap-shots to be 
preferred? Rather, Frege’s three-legged stand-camera photography is profound. The 
diagram of the full proof of (3) is an aesthetic marvel as it beautifully depicts how 
Frege moves naturally from conditionality to the first two axioms as laws of thought 
to the use of rule of substitution and modus ponens to derive the first theorem of his 
propositional calculus in formula (3). Modus ponens is appropriately often called the 
‘conditional elimination rule’ (‘⊃ elimination’ or ‘→ elimination’). When we look at 
the picture, we see the chunk of 2 as the bottom half of the chunk of 1 and eliminate it 
to end up with the top chunk of 1 as the conclusion, that is, formula (3). Modern 
logicians may not find this clarity of seeing very appealing and instead demand a 
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‘metamathematical demonstration’6.  Frege, being a philosopher, is closely connected 
to ordinary language and thought.  Since modus ponens is not stated as an axiom but a 
rule of inference, we may ask whether it too is a law of thought.  Frege might respond 
that it may not be an obvious law of thought as the axioms are, but it is a rule of 
inference that no one would deny, but everyone would accept, and that is why the 
visual mechanism used by him seems very convincing.  The Fregean notationalised 
proof is the perfect complement to Boole’s algebraisation of logic as there is a parallel 
here to Boole’s representation of inferences as elimination in simultaneous equations. 
The two procedures are quite distinct, but there is a structural similarity in that the 
conclusion is being reached from the premises by using some type of elimination.  
That is why I use ‘parallel’ instead of ‘similar’.  Pages 29–30, where the proof for 
formula (3) is diagrammed should be added to the stock of pages where modern logic 
emerges. With axiomatic proof procedure the emergence is now approximately 
complete since Boole’s algebra of logic was not an axiomatic system as both Peirce 
and Schröder realised [20, p. 59].  

 #16 provides the next axiom {A3}: 

[2, p. 35; 3, 36] 

[p⊃(r⊃s)]⊃[r⊃(p⊃s)]. Is this a clear law of thought? Frege says that the 
antecedent, the bottom conditional in his picture, amounts to ‘the case in which a is 
denied and b and d are affirmed does not take place’, and the antecedent conditional 
‘means the same’. It means the same because of the commutativity of conjunction, 
that ‘b and d’ is the same as ‘d and b’, which is a law of thought. We know that 
‘p⊃(r⊃s)’ is the same as ‘(p&r)⊃s’ and Frege also knows that but he has not 
introduced conjunction as a logical connective. Hence, his reading in terms of a 
conjunction is a purely truth functional reading from the truth table. Why does Frege 
pick ‘d’ instead of ‘c’ here? Surely it makes no difference which letter one picks, 
though normally one would pick ‘c’ which is in sequence after ‘a’ and ‘b’.  My sense 
is that Frege wants to make this stand out as an axiom, and as the third axiom.  The 
first axiom contained only ‘a’ and ‘b’, the second axiom contained ‘a’, ‘b’ and ‘c’, so 
let the third axiom contain ‘a’, ‘b’ and ‘d’ to make it stand out in comparison to the 
second axiom.  In the rest of the section where formulas (9) through (27) are proven 
(without any more axioms appearing) only letters in sequence appear, which seems to 
confirm that Frege uses ‘d’ here to make the axiom stand out as an axiom. In PM 
{A3} appears as proposition *2.04. ├:.p.⊃.q⊃r:⊃:q.⊃.p⊃r [5, p. 103]. However, this 
is an axiom neither for Church nor for Mendelson. 

 #17 provides the next axiom, {A4}:  

     [2, p. 43; 3, p. 44] 
 

                                                           
6 This point was again raised by the first anonymous referee. 
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(p⊃q)⊃(~q⊃~p). In PM this is *2.16. ├:p⊃q.⊃.~q⊃~p [5, p. 107].  In #18 we get 
{A5}: 

     [2, p. 44; 3, p. 45] 

~~p⊃p. In PM this is *2.14. ├.~(~p)⊃p [5, p. 106].  In #19 we get {A6}: 

    [2, p. 47; 3, p. 47] 

p⊃~~p. In PM this is *2.12. ├.p⊃~(~p) [5, p. 105].  In #20 we get {A7}: 

[2, 50; 3, p. 50] 

(c≡d)⊃[f(c)⊃f(d)],  i.e., whenever the content of c and d are the same then in any 
function we can substitute d for c. If all propositions can be expressed in terms of 
function and argument, then this also serves as the law of substitution which has been 
used all along.  #21 provides {A8}: 

  [2, 50; 3, 50] 

This is obviously a law of thought as it is the Aristotelian law of identity, except 
here it is in terms of the self identity of the content of a proposition.  #22 provides the 
final axiom {A9}: 

  [2, p. 51; 3, p. 51] 

(x)f(x)⊃f(c), which is universal instantiation. Is it a law of thought? Everyone 
would agree that if all humans are mortal then Socrates is mortal if he is a human. 
Whereas Boole demonstrated how the algebraisation of Aristotelian logic made a 
distinction between two types of invalid syllogisms that Aristotelian logic did not 
make [1, p. 41], Frege shows the reverse, that a distinction made between two types of 
valid syllogisms in Aristotelian logic, namely Felapton and Fesapo is not made here 
since their logical form is the same despite different placements of the subject and 
predicate in the first or major premise [2, pp. 51–2; 3, p. 52]. 

We come to the end of our trek of the emergence of modern logic in the 
Begriffsschrift. 

Part III begins with a definition and derives theorems by applying the axioms to the 
definition, so that a theory of sequences is put forth which uses only axioms of logic 
that are pure laws of thought, the definition is also purely logical, and no intuition is 
involved which may be involved in the mathematicians’ account of sequences. This is 
the beginning of the logicist program, that of reducing all of mathematics to logic. 
Most Frege scholars find a necessary link between Frege’s logicism and his 
development of logic. Peter Sullivan states: 

Frege’s major publications represent three stages in the project that 
occupied the core of his working life.  Subsequently termed ‘logicism’, 
[…] In Begriffsschrift (1879) Frege set out the system of logic without 
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which rigorous demonstration of the logicist thesis could not be so much 
as attempted, and illustrated the power of his system by establishing 
general results about sequences, including a generalization of the 
principle of mathematical induction. [21, p. 660]   

Peirce argued that though logic depends on mathematics, mathematics does not 
depend on logic [22, p. 96]. This is not inconsistent with Frege’s logicism for both 
Boole and he have shown the dependence of logic on mathematics as modern logic 
would not have emerged without the emergence of symbolical algebra and without 
the mathematical notion of function and argument. Modern logic once it emerges can 
be used to recapture mathematical theories solely by using laws of thought and logical 
inferences.  Mathematics however does not depend on this logic and mathematicians 
may develop new theories without framing them in terms of modern logic. The 
logicist’s task then is to track these theories down and reduce them to pure logic. 
Peirce also made a subtle distinction between mathematics as the science which draws 
necessary conclusions and logic as the science of drawing necessary conclusions [22, 
p. 95]. To the mathematician it does not matter how the necessary conclusions are 
drawn so intuition could well play a role, whereas for a logician conclusions must be 
drawn by using laws of thought and purely logical inferences. Frege’s contribution to 
the emergence of logic is therefore not necessarily tied to his logicism even though 
his motivation for developing it is logicism.  I differ from most Frege scholars in that 
I believe that whatever Frege’s motivation may have been, the first two parts of the 
Begriffsschrift are autonomous and self-sufficient and bring about the completion of 
the emergence of modern logic that began with Boole.  I stress this since in the 
development of logic since Frege mathematical logic is often linked with logicism 
whereas this need not be the case.  

One meaning of ‘modern logic’ as discussed earlier includes the development of 
higher order logics.  Part III does undertake this to some extent as Jose Ferreiros 
states: ‘Upon more careful reading it becomes clear that Frege’s system is higher-
order throughout, and that he actually deployed higher order tools (this is explicit in 
the theory of series in the last part of Begriffsschrift)’ [23, p. 444].  Using my heuristic 
distinction mentioned at the beginning of the paper, I would not go as far as to say 
that higher order logics emerged with Frege, but rather the roots of higher order logics 
are found in Frege, with the emergence and development of higher order logics to 
come later. 

4   Conclusion 

Mathematics and philosophy are the proper parents of logic as both are second order 
disciplines dealing with pure form without content and unlike the sciences they are 
not directly about the world. Adamson states: ‘The distinction of logic from the 
sciences, as dealing in the abstract with that which is concretely exemplified in each 
of them, […]’ [24, p. 9]. Hence, the biggest names in the origins, emergence and 
development of formal logic and the roots and emergence of modern symbolic logic 
are of philosophers like Aristotle, Leibniz, Peirce, Frege, Russell and C. I. Lewis; and 
mathematicians like Boole, DeMorgan, Schröder and Hilbert. I have pinpointed the 
emergence of modern logic from Boole’s Mathematical Analysis of Logic to Frege’s 
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Begriffsschrift. The emergence of modern logic begins with Booole’s book where 
logic was algebraised, and particularly on page 48 where the transition from the 
Aristotelian logic of classes to propositional calculus is strongly suggested. In Frege’s 
book we find the near completion of the emergence with his innovative notation of 
the judgment and content strokes that allows us to replace subject–predicate 
propositions of classical logic [2, pp. 1–3]; of providing a notational representation of 
the conditional along with a truth functional definition to be read out with the picture 
of the notation [2, p. 5]; of replacing subject–predicate propositions by function and 
argument [2, p. 16, 18]; of the symbolic representation of the universal quantifier (p. 
19); and the technique of proving theorems by using axioms, the sole inference rule of 
modus ponens, and the rule of substitution [2, p. 30]. The completion of the 
emergence of modern logic came with the development of metamathematics and 
metalogic in which the soundness, consistency and completeness of axiomatic 
propositional as well as predicate logic can be proven.  

I have argued that the emergence of modern logic in Boole is partial as he ends up 
algebraising Aristotelian syllogisms. Frege lays the grounds for the completion of the 
emergence as the classical pillar of subject–predicate propositions is replaced by 
functions and arguments, and that of syllogisms is replaced by axioms and axiomatic 
proofs. By making Aristotelian logic archaic and replacing it with symbolic axiomatic 
logic Frege completed the task that Boole began and for all intents and purposes from 
1847 to 1879 modern logic finally emerged. I say ‘finally’ because whereas modern 
science and modern philosophy are usually marked as having emerged in the 17th 
century and modern mathematics in the 18th century, modern logic did not emerge 
until the 19th century.  Whereas Boole algebraised logic borrowing from mathematics, 
specifically from symbolical algebra, the idea of combinations without regard to 
content; Frege borrowed from mathematics the notions of function and argument, but 
his real intention was to logicise arithmetic once modern logic itself had emerged. 
Some would argue that the completion did not take place until the beginning of the 
20th century until Russell and Whitehead’s Principia Mathematica and Hilbert’s 
metalogic.  I would label these as ‘the development of modern logic’ rather than the 
‘emergence of modern logic’. However, I will not push this distinction here within the 
scope of this paper and will concede to those who want to include these latter 
contributions as part and parcel of the emergence of modern logic.   

Frege’s contribution can best be assessed by highlighting an important distinction 
as stated by Jourdain: 

[…] the distinction pointed out by LEIBNIZ between a calculus 
ratiocinator and a […]  lingua characteristica. […]  The objects of a 
complete logical symbolism are: firstly, […] providing an ideography, in 
which the signs represent ideas and the relations between them directly 
[…], and secondly, […], from given premises, we can, in this 
ideography, draw all the logical conclusions which they imply by means 
of rules of transformation of formulas analogous to those of algebra,—in 
fact, in which we can replace reasoning by the almost mechanical process 
of calculation. This second requirement is the requirement of a calculus 
ratiocinator. It is essential that the ideography should be complete […] 
{and} concise. The merits of such an ideography are obvious: rigor of 
reasoning is ensured by the calculus character; we are sure of not 
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introducing unintentionally any premise; and we can see exactly on what 
propositions any demonstration depends. We can […] characterize the 
dual development of the theory of symbolic logic during the last sixty 
years as follows: The calculus ratiocinator aspect of symbolic logic was 
developed by BOOLE, DE MORGAN, JEVONS, VENN, C. S. PEIRCE, 
SCHRODER, Mrs. LADD FRANKLIN and others; the lingua 
characteristica aspect was developed by FREGE, PEANO and 
RUSSELL. […]  FREGE has remarked that his own symbolism is meant 
to be a calculus ratiocinator as well as a lingua characteristica […] [19, 
pp. vii–viii). 

Lingua characteristica provides an ideography in which the signs represent concepts 
and the relations among concepts and calculus ratiocinator is the rigorous proofs 
from axioms in this ideography. Frege, according to the findings of this paper, is right 
on the mark in claiming that his symbolism is both a calculus ratiocinator and a 
lingua characteristica because not only do his notations capture the relations among 
concepts but they themselves are conceptual inventions, and the understanding of the 
axioms as laws of thought as well as the proving techniques are totally dependent on 
the notations and formulations using these notations themselves, hence Frege also 
provides a calculus ratiocinator. The emergence of modern logic is incomplete in 
Boole who provides a rigorous calculus ratiocinator by using algebra to capture logic, 
but fails to create a new ideography to relate concepts, but more or less accepts the 
old ideography of Aristotle which is not a universal lingua characteristica. Frege 
creates this new ideography and also provides a rigorous calculus ratiocinator for his 
new lingua characteristica which is more universal than Aristotle’s, hence satisfying 
Leibniz’s dream, as it can be used not only for all of mathematics, but for science and 
philosophy as well. I began the discussion of Frege with how he stole an important 
distinction from under the noses of mathematicians. I end here with a distinction that I 
steal from the mathematician Jourdain to elevate Frege to the rank of the greatest 
logician, whereas Frege was mostly ignored by mathematicians for about three 
decades after the publication of the Begriffsschrift.   
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Abstract. Notions of lower and upper approximations are proposed for
multiple-source tolerance approximation spaces which consist of a num-
ber of tolerance relations over the same domain. A modal logic is pro-
posed for reasoning about the defined notions of approximations. A sound
and complete deductive system for the logic is presented. Decidability is
also proved.

1 Introduction

Pawlak’s rough set theory [15] deals with the approximations of sets using the
indiscernibility relations. Pawlak considers the indiscernibility relations to be
equivalence, but later it is observed that transitivity is not an obvious property
of indiscernibility relations. Thus, the notion of a tolerance approximation space
comes into the picture where the indiscernibility relation is taken to be a tol-
erance, that is, reflexive and symmetric relation (cf. [17,12,7]). The lower and
upper approximations in a tolerance approximation space (W, R) are defined in
a natural way as follows. Let R(x) := {y ∈ W : (x, y) ∈ R}. Then for X ⊆ W ,
XR := {x ∈ W : R(x) ⊆ X} and XR := {x ∈ W : R(x) ∩X �= ∅}. The elements
belonging to XR, W \XR and XR \XR are respectively called positive, negative
and boundary element of X .

In the current article, our interest is on the multiple-source extension of the
tolerance approximation spaces. Thus, the structures of the form (W, {Ri}i∈N)
are considered, where N is a proper initial segment of the set N of positive
integers representing the set of sources, and each Ri is a tolerance relation on
W . Such a structure will be called a multiple-source tolerance approximation
space (MTAS). For each i ∈ N , Ri represents the knowledge base of the ith

source of the system. Thus each source perceives the same domain differently
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depending on what information she has about the domain. In literature one can
find works on the multiple-source situation in rough set theory [13,16]. But our
aim is to propose suitable notions of approximations of sets for such a situation.
A natural requirement for such a notion should be that it takes into account the
information provided by each source of the system. Thus, we may have notions
based on either of the following principles.

1. It takes into account views of the sources of the system regarding the mem-
bership of the objects. That is, we take into account whether the source
considers the object positive, negative or boundary element of the set. So, in
that case, we use the approximations XR and XR corresponding to knowl-
edge base R of each source of the system.

2. It takes into account only the information that sources have about the ob-
jects, but it does not consider sources’ view regarding the membership. That
is, we only use the knowledge base R of the sources.

In [8,9,11,10], rough set is studied in multiple-source situation and the notions
of approximations are proposed based on the first principle. Although, the indis-
cernibility relations are taken to be equivalence, results of these articles can ob-
viously be reformulated for tolerance relations as well. In this article, we propose
notions of approximations based on the second principle. Furthermore, a modal
logic is presented where one can express properties of these approximations.

The remainder of this article is organized as follows. In Sect. 2, we propose
some notions of approximations of sets and their properties are explored. Then
we focus on a possible logic where one can express these notions. In Sect. 3,
we propose such a logic. Coalgebraic perspective of the proposed logic is given
in Sect. 3.3. A deductive system is proposed in Sect. 4 and the corresponding
soundness and completeness theorems are proved. Finally, decidability of the
logic is obtained in Sect. 5. Section 6 concludes the article.

2 Notion of Approximations in Multiple-Source Scenario

The notion of MTAS is defined in Sect. 1 to capture the multiple-source situ-
ation. But the notions of approximations that we are going to propose now, is
not directly based on it. In fact, we shall consider a particular type of tolerance
space [2] and fuzzy approximation space [3]. Let Q denote the set of rational
numbers.

Definition 1. A [0, 1] ∩ Q-fuzzy approximation space is a tuple G := (W, σ),
where W is a non-empty set of objects and σ : W ×W → [0, 1] ∩ Q.

A [0, 1]∩Q-fuzzy approximation space is called [0, 1]∩Q-tolerance space if it
satisfies the following additional conditions: for all x, y ∈ W ,

– (reflexivity) σ(x, x) = 1.
– (symmetry) σ(x, y) = σ(y, x).
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Let us see how the [0, 1] ∩ Q-fuzzy approximation spaces are related with the
MTASs. Given a MTAS F := (W, {Ri}i∈N ), we obtain a [0, 1] ∩ Q-tolerance
space GF := (W, σF), where σF(x, y) := |AgF(x,y)|

|N | . AgF(x, y) denotes the set
{i ∈ N : (x, y) ∈ Ri} consisting of all the sources of F which considers x and
y indiscernible. Let us call it standard [0, 1] ∩ Q-tolerance space generated by F
following Vakarelov [18]. Is every [0, 1] ∩Q-tolerance space standard? Answer is
no, but we have the following. For a function f : X → Y , we use the notation
f [X ] to denote the set {f(x) : x ∈ X}.

Proposition 1. A [0, 1]∩Q-tolerance space G := (W, σ) is standard if and only
if there exists a positive integer n such that σ[W ×W ] ⊆ { r

n : 0 ≤ r ≤ n}.

Proof. One direction is obvious. In fact, if G is generated by F := (W, {Ri}i∈N),
then |N | is the desired choice of n. For the converse part, consider the MTAS
F := (W, {Ri}1≤i≤n), where

(x, y) ∈ Ri if and only if i ≤ n× σ(x, y).

One can verify that GF = G. ��

Corollary 1. A [0, 1]∩Q-tolerance space (W, σ) with finite σ[W ×W ] is standard.

From the definition of standard [0, 1] ∩ Q-tolerance space, it is clear that the
function σ of the standard [0, 1]∩Q-tolerance space (W, σ) generated by a MTAS
(W, {Ri}i∈N ) gives the possibilities of indiscernibility of two objects keeping in
view the information provided by the sources of the system. In fact, σ(x, y) is the
ratio of the number of sources which considers x and y indiscernible to the total
number of sources of the system.

Next, we define the notions of approximations for [0, 1]∩Q-fuzzy approxima-
tion spaces. It is based on the following idea. Suppose we are given a number
of relations instead of just one, representing the knowledge base of the sources.
Now, for a given threshold λ ∈ (0, 1] ∩ Q, we consider a new indiscernibility
relation Rλ defined as follows.

(x, y) ∈ Rλ if and only if the ratio of the number of sources which considers
x and y indiscernible with the total number of sources of the system exceeds
λ.

Now, using this relation, one can define the approximations of the sets in the
usual way. Thus, we have the following. For a [0, 1] ∩ Q-fuzzy approximation
space G := (W, σ), x ∈ W and λ ∈ (0, 1] ∩ Q, we will write x ↑λ to denote the
set {y ∈ W : σ(x, y) ≥ λ}.

Definition 2. The lower approximation LG and upper approximation UG of X
of degree λ ∈ (0, 1] ∩ Q are defined as follows:

LG(X, λ) := {x ∈ U : x ↑λ⊆ X},
UG(X, λ) := {x ∈ U : x ↑λ ∩X �= ∅}.
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If there is no confusion, we shall omit G as the subscript in the above definition.
The tolerance approximation space F := (W, R) generates the [0, 1]∩Q-tolerance
space GF := (W, σF), where σF is the characteristic function of the relation
R. Moreover, for any λ ∈ (0, 1] ∩ Q, we obtain x ↑λ= R(x). Thus, we have
XR = L(X, λ) and XR = U(X, λ).

Let us recall the notion of fuzzy approximation space (W, R), R : W × W →
[0, 1], considered in [3]. The fuzzy upper approximation of a crisp set X is defined
as follows:

RX(x) := sup
y∈X

|R(x, y)|.

Note that [0, 1] ∩ Q-fuzzy approximation spaces are also fuzzy approximation
spaces. Moreover, for a standard [0, 1]∩Q-tolerance space (W, σ) and λ ∈ (0, 1]∩
Q, we obtain

x ∈ U(X, λ) if and only if σX(x) ≥ λ.

Example 1. Let us consider a MTAS F := (W, {Ri}i∈N ), where

– N := {1, 2, 3} and U := {O1, O2, . . . , O5},
– each Ri is an equivalence relation such that

• U |R1 := {{O1, O2}, {O4}, {O3}, {O5}},
• U |R2 := {{O1, O4}, {O2, O3}, {O5}},
• U |R3 := {{O2}, {O1, O4}, {O3, O5}}.

Then, we obtain the [0, 1] ∩Q-tolerance space GF := (W, σF), where

– σF(O1, O3) = σF(O1, O5) = σF(O2, O4) = σF(O2, O5) = σF(O3, O4) =
σF(O4, O5) = 0,

– σF(O1, O2) = σF(O2, O3) = σF(O3, O5) = 1
3 ,

– σF(O1, O4) = 2
3 .

Suppose it is decided that two objects will be considered indiscernible if it is
so for at least half of the sources of the system. In that case, we need to take
λ := 1

2 . Moreover, we obtain the corresponding lower and upper approximations
of the set X := {O2, O3, O4} as

L(X, 1
2 ) = {O2, O3} and U(X, 1

2 ) = {O1, O2, O3, O4}.

Similarly, if we want to consider two objects discernible if any source of the
system can distinguish them, then we need to take λ := 1. In that case we
obtain L(X, 1) = U(X, 1) = {O2, O3, O4}.

Observe that O4 is in the lower approximation of X with respect to the
knowledge base of source 1, but not in the lower approximation L(X, λ) when
λ := 1

2 . Moreover, O4 moves to the lower approximation when we relax the
restriction and consider λ := 1.

We end this section with the following proposition listing a few properties of the
notions of approximations. We write Xc to denote the set theoretic complement
of the set X .
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Proposition 2

1. The following holds in all [0, 1] ∩ Q-fuzzy approximation spaces.
(a) L(X, λ) = (U(Xc, λ))c.
(b) L(X ∩ Y, λ) = L(X, λ) ∩ L(Y, λ).
(c) L(X, λ) ∪ L(Y, λ) ⊆ L(X ∪ Y, λ).
(d) For X ⊆ Y , L(X, λ) ⊆ L(Y, λ).
(e) L(W, λ) = W , where W is the domain of the [0, 1]∩Q-fuzzy approxima-

tion space.
(f) L(X, λ1) ⊆ L(X, λ2) for λ1 ≤ λ2.

2. The following holds in all [0, 1] ∩ Q-tolerance spaces.
(a) L(X, λ) ⊆ X.
(b) X ⊆ L(U(X, λ), λ).

3. In the standard [0, 1] ∩ Q-tolerance space GF generated by a MTAS F :=
(W, {Ri}i∈N ), we have L(X, 1) = XRN

, where RN :=
⋂

i∈N Ri.

Item (1a) shows that U(X, λ) is the dual of L(X, λ).

3 Logic for [0, 1] ∩ Q-Fuzzy Approximation Space

In this section, we shall propose a logic for reasoning about the notions of approx-
imations based on [0, 1]∩Q-fuzzy approximation spaces proposed in Sect. 2. The
language L of the logic consists of a set Prop of propositional variables and a set
of unary modalities {♦λ : λ ∈ (0, 1]∩Q}. Using the Boolean logical connectives ¬
(negation) and ∧ (conjunction), well-formed formulae (wffs) of L are then defined
recursively as

α := ⊥ | � | p ∈ Prop | ¬α | α ∧ β | ♦λα,

where ⊥ and � are the logical constants for false and true respectively. The
connectives →, ↔, ∨ and �λ are defined in the usual way. We will use L also to
denote the set of all wffs.

3.1 Semantics

The semantics of L, as desired, is based on [0, 1]∩Q-fuzzy approximation spaces.
Thus, a model of L is a tuple M := (G, V ), where G := (W, σ) is a [0, 1]∩Q-fuzzy
approximation space and V : Prop → ℘(W ) is a valuation function.

Definition 3. The satisfiability of a wff α in a model M at x ∈ W , denoted as
M, x |= α, is defined inductively:

– For each propositional variable p, M, x |= p, if and only if x ∈ V (p);
– The standard definitions for the Boolean cases;
– M, x |= ♦λα if and only if there exists y with σ(x, y) ≥ λ and M, y |= α.
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For any wff α and model M, let [[α]]M := {x ∈ W : M, x |= α}. α is valid
in M, denoted M |= α, if and only if [[α]]M = W . α is said to be valid in a
[0, 1] ∩ Q-fuzzy approximation space G, if and only if M |= α for all models M
based on G.

α is valid in a given class C of [0, 1] ∩ Q-fuzzy approximation spaces if α is
valid in all [0, 1] ∩Q-fuzzy approximation spaces of the class C. Thus, α is valid
in the class of all [0, 1]∩Q-tolerance spaces, denoted as |=T α, if α is valid in all
[0, 1] ∩ Q-tolerance spaces.

A wff α is said to be satisfiable in a model M if [[α]]M �= ∅.

Remark 1. The above formal language and semantics appear to be similar to
that of standard graded model logic (GML) proposed by Kit Fine [6] and ex-
plored by some logicians in 1980s (e.g. [5,1]). But there are differences. In GML,
we have modal operators ♦n for each non-negative integer n. On the other hand,
L contains modal operators ♦λ for each λ ∈ (0, 1]∩Q. Moreover, the satisfiability
of a GML wff ♦nα at an object (world) x asks for at least n objects accessible
from x where α is true. This is obviously very different from the semantics given
in Definition 3.

Remark 2. The modal operators ♦λ are very closely related with the modal
operators ♦c

λ of [4]. The satisfiability condition for the operator ♦c
λ can be given

as:
M, x |= ♦c

λα if and only if sup{σ(x, y) : M, y |= α} ≥ λ.

In general, as observed in [4], the modal operators ♦λ and ♦c
λ are not semantically

equivalent, but we have the following relationship:

– M, x |= ♦c
λα implies M, x |= ♦λα.

– M, x |= ♦λ1α implies M, x |= ♦c
λ2

α for λ2 < λ1.

Moreover, satisfiability conditions for ♦λ and ♦c
λ coincide in a model based on

a [0, 1] ∩Q-fuzzy approximation space (W, σ) with finite σ[W ×W ].

The following illustrates how the modalities are used to express lower/upper
approximations.

Proposition 3. Given a model M and a wff α, we have

– [[�λα]]M = L([[α]]M, λ);
– [[♦λα]]M = U([[α]]M, λ).

Notation 1. In the remainder of the article, for any wff α, ♦0α will denote �.

Proposition 2 leads us to the following result.

Proposition 4

1. �λ(α∧β) ↔ �λα∧�λβ is valid in all [0, 1]∩Q-fuzzy approximation spaces.
2. For λ1 ≤ λ2, �λ1α → �λ2α is valid in all [0, 1] ∩ Q-fuzzy approximation

spaces.
3. |=T �λα → α.
4. |=T α → �λ♦λα.
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3.2 Relationship with Basic Modal Logic

We assume that the modal language and language L are based on the same set
of propositional variables, and adopt the following notations and definitions.

– Λ: the set of modal wffs with � as the modal operator for possibility;
– K: the class of all Kripke frames;
– KT : the class of all KTB-Kripke frames (i.e. Kripke frame (W, R), where R

is tolerance relation);

A logic L1 is embeddable into a logic L2, denoted as L1 ⇀ L2, provided there is
a translation � of wffs of L1 into L2, such that α ∈ L1 if and only if α� ∈ L2 for
any wff α of L1. We use the denotation L1 � L2 when L1 ⇀ L2 and L2 ⇀ L1.

Let KM (KM
T ) be the class of all [0, 1]∩Q-fuzzy approximation spaces ([0, 1]∩

Q-tolerance spaces) (W, σ) satisfying the additional condition σ[W×W ] ⊆ {0, 1}.
Moreover, we denote by L(KM ) and L(KM

T ), the logics containing all the wffs
valid in all [0, 1] ∩ Q-fuzzy approximation spaces belonging to KM and KM

T

respectively.
Consider the mapping η : K → KM which maps a Kripke frame (W, R) to

(W, σR), where σR is the characteristic function of R, that is, σR(x, y) = 1 if
and only if (x, y) ∈ R. Note that η(KT ) ⊆ KM

T . Moreover, it is not difficult to
see that η : K → KM and η|KT : KT → KM

T are bijections.
Let us consider the translations ∗ : Λ → L and + : L → Λ, which fixes

propositional variables and (� α)∗ := ♦1α
∗, (♦λα)+ :=� α+.

Proposition 5. Let F := (W, R) be a Kripke frame and V : Prop → ℘(W ).
Then for all x ∈ W , α ∈ Λ and β ∈ L, we have,

1. (F, V ), x |= α if and only if (η(F), V ), x |= α∗;
2. (F, V ), x |= β+ if and only if (η(F), V ), x |= β.

Proof. The proof is by simple induction on the complexity of α and β. ��

Using the fact that η : K → KM and η|KT : KT → KM
T are bijections, we obtain

the following as a direct consequence of Proposition 5.

Proposition 6. Let α ∈ Λ and β ∈ L. Consider the normal modal logic K and
KTB.

1. α ∈ K if and only if α∗ ∈ L(KM ).
2. α ∈ KTB if and only if α∗ ∈ L(KM

T ).
3. β+ ∈ K if and only if β ∈ L(KM ).
4. β+ ∈ KTB if and only if β ∈ L(KM

T ).

Thus, the translations ∗ and + gives us,

Proposition 7

1. K � L(KM ).
2. KTB � L(KM

T ).

Proposition 7 shows that the semantics proposed in this article is actually a
generalization of that of basic modal logic.
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3.3 Coalgebraic Perspective

In this section, we shall use some standard notations related with the general
theory of coalgebras. We refer to [19,14] for details. We will use XY

ω to denote
the set of all functions g : Y → X with finite g[Y ].

Recall that for a set functor T , a T -coalgebra is a tuple (A, ρ), where A is
a set and ρ : A → TA is a function. Let us consider the functor Ω which
maps a set X to ([0, 1] ∩ Q)X

ω and a function h : X → Y to the function
Ωh : ([0, 1] ∩ Q)X

ω → ([0, 1] ∩Q)Y
ω , where for g ∈ [0, 1] ∩ Q)X

ω and y ∈ Y ,

(Ωh(g))(y) :=
{

max g[h−1(y)], if h−1(y) �= ∅;
0, otherwise.

Note that given an Ω-coalgebra C := (W, ρ), we obtain a [0, 1]∩Q-fuzzy approx-
imation space GC := (W, σρ), where σρ(x, y) := (ρ(x))(y).

Once we observed that the Ω-coalgebras are instances of [0, 1] ∩ Q-fuzzy ap-
proximation spaces, one would like to see whether the semantics proposed in
Sect. 3.1 can be seen as a coalgebraic semantics. In fact, it is the case.

Let us associate with each modal operator �λ, a set-indexed family of func-
tions {[�λ]X})X∈Set, where [�λ]X : ℘(X) → ℘(ΩX) is defined as

[�λ]X(A) := {g ∈ ([0, 1] ∩Q)X
ω : {x ∈ X : g(x) ≥ λ} ⊆ A},

for A ⊆ X . One can verify that {[�λ]X})X∈Set is a predicate lifting for the
functor Ω [14].

Now, we define the satisfiability of a L wff α in a Ω-coalgebra C := (W, ρ)
under the valuation V : Prop → ℘(W ) at x ∈ W , denoted as C, V, x |=c α,
inductively as follows.

– Standard definitions for the propositional and Boolean cases.
– C, V, x |=c �λα if and only if ρ(x) ∈ [�λ]W (VC(α)),

where VC(α) := {y ∈ W : C, V, y |=c α}.

One can obtain the following proposition relating the two semantics of the
language L.

Proposition 8. Consider an Ω-coalgebra C := (W, ρ), a valuation V : Prop →
℘(W ) and [0, 1] ∩ Q-fuzzy approximation space GC. Then for all x ∈ W and all
wffs α, we have

(C, V ), x |= α if and only if GC , V, x |=c α.

4 Axiomatization and Completeness

In this section we present an axiomatic system Λ and prove the corresponding
soundness and completeness theorems.

Axiom schema:

1. All instances of propositional tautologies.
2. ♦λ1α → ♦λ2α for λ2 < λ1.
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3. ♦λ(α ∨ β) ↔ ♦λα ∨ ♦λβ.
4. ♦λ⊥ ↔ ⊥.
5. α → ♦1α.
6. α → �λ♦λα.

Rules of inference:

(MON) From α → β infer ♦λα → ♦λβ.
(GEN) From α infer �λα.
(MP) From α and α → β infer β.

The notion of theoremhood is defined in the usual way. We will write � α to
denote that α is a theorem of the above deductive system.

Remark 3. The deductive system given above is different from that of GML
given in [6,5]. The key observation is that axiom 3, which says that the modal-
ities ♦λ distributes over disjunction, is not sound in GML. On the other hand,
this axiom is valid in all [0, 1]∩Q-fuzzy approximation spaces. Moreover, the de-
ductive systems given in [6,5] use the derived connectives ♦!nα := ♦nα∧¬♦n+1α,
where n is a positive integer. But such derived connectives do not make sense in
the current frame work.

It is not difficult to obtain the following soundness theorem.

Theorem 1 (Soundness). If � α, then α is valid in all (standard) [0, 1] ∩ Q-
tolerance spaces.

Now, we prove the completeness theorem. Following the standard technique, we
obtain,

Proposition 9. Every consistent set of wffs has a maximally consistent exten-
sion.

Given a wff α, Iα denotes the set {λ ∈ (0, 1]∩Q : ♦λ occurs in α} ∪ {0, 1}. Note
that Iα is finite. Let L(Iα) be the set of all wffs which involves modalities only
from the set {♦λ : λ ∈ Iα}. Note that α ∈ L(Iα).
For maximal consistent sets Γ and Γ ′, let us consider the set

Δα(Γ, Γ ′) :=
⋃

β∈L(Iα)∩Γ ′{λ1 ∈ Iα : ♦λ1β ∈ Γ & ¬♦λ2β ∈ Γ

for all λ2 ∈ Iα with λ2 > λ1}.

We note the following fact about Δα(Γ, Γ ′).

Proposition 10. Δα(Γ, Γ ′) is non-empty.

Proof. Consider the set S :=
⋃

β∈L(Iα)∩Γ ′{λ ∈ Iα : λ > 0 & ♦λβ ∈ Γ}. If S is
empty, then we obtain 0 ∈ Δα(Γ, Γ ′). Otherwise, the largest integer belonging
to S will also belong to Δα(Γ, Γ ′). ��

Let us now describe the canonical model MΛ
α := (GΛ

α , V Λ), GΛ
α := (WΛ, σΛ

α ),
required for the proof of the completeness theorem.
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Definition 4 (Canonical model)

WΛ = {Γ : Γ is a maximally consistent set};
σΛ

α : WΛ ×WΛ → [0, 1] ∩ Q is such that σΛ
α (Γ, Γ ′) := min Δα(Γ, Γ ′);

V Λ : Prop → WΛ is such that V Λ(p) = {Γ ∈ WΛ : p ∈ Γ}.

Observe that due to Proposition 10, σΛ
α is well-defined.

In order to obtain the existence lemma, we will require the following.

Lemma 1. Let Γ and Γ ′ be maximal consistent sets and λ ∈ Iα. Then,

σΛ
α (Γ, Γ ′) ≥ λ if and only if ♦λβ ∈ Γ for all β ∈ Γ ′ ∩ L(Iα).

Proof. The result follows easily when λ = 0. So, let us consider the case when
λ > 0. First suppose ♦λβ ∈ Γ for all β ∈ Γ ′ ∩L(Iα). If possible, let σΛ

α (Γ, Γ ′) =
λ′ < λ. Then, we must have a β ∈ Γ ′ ∩ L(Iα) such that (i) ♦λ′β ∈ Γ and
(ii) ♦λ∗β /∈ Γ for all λ∗ ∈ Iα with λ∗ > λ′. But this will give us ♦λβ /∈ Γ , a
contradiction.

Conversely, suppose σΛ
α (Γ, Γ ′) ≥ λ. If possible, let β ∈ Γ ′∩L(Iα) be such that

♦λβ /∈ Γ . Let k := min{λ′ ∈ Iα : ♦λ′β /∈ Γ}. Then k ≤ λ and k �= 0 as ♦kβ /∈ Γ .
If k = min(Iα \ {0}), then we obtain 0 ∈ Δα(Γ, Γ ′) (using axiom 2) and hence
σΛ

α (Γ, Γ ′) = 0, a contradiction. So, we assume k �= min(Iα \ {0}). Choose the
largest λ1 ∈ Iα such that λ1 < k. Then ♦λ1β ∈ Γ and ♦λ2β �∈ Γ for all λ2 > λ1
and λ2 ∈ Iα. Thus, we obtain λ1 ∈ Δα(Γ, Γ ′). Therefore, λ1 ≥ min Δα(Γ, Γ ′) ≥
λ ≥ k. This contradicts that λ1 < k. ��

Lemma 2 (Existence Lemma). Let Γ be a maximal consistent set and λ ∈
Iα \ {0}. Suppose β ∈ L(Iα) is such that ♦λβ ∈ Γ . Then, there exists a maximal
consistent set Γ ′ such that σΛ

α (Γ, Γ ′) ≥ λ and β ∈ Γ ′.

Proof. Follows from Proposition 9, Lemma 1 and the fact that the set {β}∪{γ ∈
L(Iα) : �λγ ∈ Γ} is consistent. ��

Lemma 3 (Truth Lemma). For any wff β ∈ L(Iα) and Γ ∈ WΛ,

β ∈ Γ if and only if MΛ
α, Γ |= β.

We also note the following fact about the canonical [0, 1]∩Q-fuzzy approximation
space GΛ

α.

Proposition 11. GΛ
α is a standard [0, 1] ∩ Q-tolerance space.

Proof. It is not difficult to verify that GΛ
α is a [0, 1] ∩ Q-tolerance space using

Lemma 1. Also note that σΛ
α [WΛ ×WΛ] is a finite set containing 1. Thus, using

Corollary 1, we obtain GΛ
α as a standard [0, 1] ∩ Q-tolerance space. ��

As a direct consequence of Truth Lemma, we obtain the following completeness
theorem.

Theorem 2 (Completeness). If β is valid in the class of all standard [0, 1]∩Q-
tolerance spaces, then � β.
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Proof. If possible, let �� β. Then, ¬β is consistent and hence we obtain Γ ∈ WΛ

containing ¬β. Now consider the canonical model MΛ
β . As ¬β ∈ L(Iβ) ∩ Γ , by

Truth Lemma, we obtain MΛ
β , Γ |= ¬β. But this contradicts that β is valid in

all standard tolerance [0, 1]∩Q-fuzzy approximation spaces. Thus we obtain the
desired result. ��

Using soundness and completeness theorems, we also obtain the following propo-
sition showing that the logics for the [0, 1] ∩ Q-tolerance spaces and standard
[0, 1] ∩ Q-tolerance spaces are same.

Proposition 12. A wff α is valid in the class of all [0, 1] ∩ Q-tolerance spaces
if and only if it is valid in the class of all standard [0, 1] ∩ Q-tolerance spaces.

We end this section with the following observation. Let Λ1 be the deductive system
consisting of the axioms 1-4, and the inference rules (MON), (GEN) and (MP).
Following the technique given above, one can show the soundness and complete-
ness of Λ1 with respect to the class of [0, 1] ∩ Q-fuzzy approximation spaces.

5 Finite Model Property and Decidability

In this section, our aim is to prove the following result.

Theorem 3. Given a wff α, we can decide whether there exists a model M based
on a standard [0, 1] ∩ Q-tolerance space G such that α is satisfiable in M.

Observe that due to Proposition 12, this will also give us the decidability with
respect to the class of all [0, 1] ∩Q-tolerance spaces.

In order to prove Theorem 3, we shall show that the proposed logic has the
finite model property. For this, we shall use the technique similar to filtration.

Let Σ denote a finite sub-wff closed set of wffs. Let M := (G, V ) be a model
based on a standard tolerance [0, 1]∩Q-fuzzy approximation space G := (W, σ).
Note that σ[W ×W ] is finite.

We define an equivalence relation ≡Σ on W as follows:

x ≡Σ y, if and only if for all β ∈ Σ, M, x |= β if and only if M, y |= β.

Definition 5 (Filtration model). Given a model M = (W, σ, V ) and Σ as
above, we define a model Mf = (W f , σf , V f ), where

– W f := {[x] : x ∈ W}, [x] is the equivalence class of x with respect to the
equivalence relation ≡Σ;

– σf ([x], [y]) := max{σ(x′, y′) : x′ ∈ [x], y′ ∈ [y]}.
– V f (p) := {[x] : x ∈ V (p)}.

We note the following facts.

Proposition 13

1. σf [W f ×W f ] ⊆ σ[W ×W ].
2. Mf is a standard [0, 1] ∩ Q-tolerance space.
3. W f contains at most 2|Σ| elements.
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Proposition 14 (Filtration Theorem). For all wffs β ∈ Σ and all x ∈ W ,

M, x |= β if and only if Mf , [x] |= β.

Let us write Sub(α) to denote the set of all sub-wffs of α. Also recall that Iα

denotes the finite set {λ ∈ (0, 1] ∩ Q : ♦λ occurs in α} ∪ {0, 1}.

Theorem 4. If a wff α is satisfiable in a standard [0, 1] ∩ Q-tolerance space,
then it is also satisfiable in a standard [0, 1]∩Q-tolerance space G∗ := (W ∗, σ∗)
with |W ∗| ≤ 2|Sub(α)| and σ∗(W ∗ ×W ∗) ⊆ Iα.

Proof. If α is satisfiable in a standard [0, 1] ∩ Q-tolerance space, then using
soundness theorem, we obtain �� ¬α. This implies that α is satisfiable in the
canonical model MΛ

α . Now taking Σ := Sub(α) and using Propositions 13 and
14, we obtain the desired result. ��

Theorem 3 follows from Theorem 4.

6 Conclusions

Notions of [0, 1]∩Q-fuzzy approximation space and multiple-source tolerance ap-
proximation space are considered and relationship between them is determined.
Notions of lower and upper approximations for these structures are defined. A
modal logic is proposed which can express these notions of approximations. It
is observed that although the syntax and semantics of the proposed logic ap-
pears to be similar to that of the graded modal logic, but there are differences.
Questions of axiomatization and decidability of the logic are also addressed.

In this paper, we have considered indiscernibility relations to be tolerance. A
natural question would be about the extension of the current work to the case
where indiscernibility relations are equivalence. The situation will not remain
so simple in that case. In fact, one needs to come up with a suitable condition
on the [0, 1] ∩ Q-fuzzy approximation spaces which will give us the counterpart
of Proposition 1 when the tolerance relation is replaced with the equivalence
relation.
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Introduction

The motivation for this contribution comes from polyadic inductive logic
which is now a well studied area that could be viewed as a continuation of
Carnap’s program from the mid 20th century to formalize probabilistic reason-
ing and spell out its implications for induction. Carnap (see for example [1], [2],
[3], [4], [10]), and others investigated mainly the case involving unary proper-
ties whilst the more modern study also involves relations, binary or of higher
arities.

Our framework consists of a language L with constants a1, a2, . . . and predi-
cates {R1, . . . , Rq} (with arities r1, . . . , rq respectively), no function symbols or
equality.

A probability function on L is a function w from the set SL of sentences of L
into [0, 1] ⊂ R satisfying that for θ, φ, ∃xψ(x) ∈ SL :

(P1) If � θ then w(θ) = 1.

(P2) If � ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ).

(P3) w(∃xψ(x)) = limn→∞ w(
∨n

i=1 ψ(ai)).
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By a theorem of Gaifman [6], we know that such a probability function is
determined1 by its values on the state descriptions of L, that is the sentences of
the form Θ(b1, b2, . . . , bn),

Θ(b1, b2, . . . , bn) =
q∧

d=1

∧
i1,i2,...,ird

∈{1,...,n}
±Rd(bi1 , bi2 , . . . , bird

), (1)

where ±R stands for R or ¬R respectively and b1, b2, . . . , bn stand for some
distinct choices from the constants ai. Notice that the state descriptions Θ(b1,
b2, . . . , bn) for b1, b2, . . . , bn are disjoint and exhaustive.

The problem in its basic form is to determine which probability functions are
good candidates for rational inference: given some information on probabilities
of some sentences, what probabilities should a rational agent adopt for other
sentences? It can be argued (see [5] for a discussion of ”The Received View”
(TVR)) that via conditional probability the problem reduces to justifying a
choice of a probability function which is good for inference on the basis of no
information and this is the problem we deal with. (Carnap’s conclusion for the
unary case was that these priors should be from what is now called Carnap’s
Continuum of Inductive Methods.)

Many principles have been proposed to direct the quest for such a probability
distribution and narrow the possibilities. The most commonly accepted one is
the

Constant Exchangeability Principle, Ex
If θ(x1, . . . , xn) is a formula of L which does not mention any constants then

w(θ(b1, . . . , bn)) = w(θ(b′1, . . . , b
′
n) (2)

(where the b1, . . . , bn and b′1, . . . , b
′
n are some distinct choices from the ai). We

remark that an equivalent formulation of Ex can be obtained by requiring that
(2) holds merely for all state formulae

Θ(x1, . . . , xn) =
q∧

s=1

∧
i1,i2,...,irs∈{1,...,n}

±Rs(xi1 , . . . , xirs
).

Another well-studied principle useful in the polyadic context is the Principle of
Spectrum Exchangeability (see for example [9]). To formulate it, we need some

1 Conversely, any function f from the set of all state descriptions to nonnegative real
numbers satisfying f(∅) = 1 (where by convention ∅ is the state description for no
individuals understood to be a tautology) and∑

Φ(b1 ,...,bn,bn+1)�Θ(b1 ,...,bn)
Φ is a state description

f(Φ(b1, . . . , bn, bn+1)) = f(Θ(b1, . . . , bn))

whenever b1, . . . , bn, bn+1 are distinct constants and Θ(b1, . . . , bn) is a state descrip-
tion, extends uniquely to a probability function.
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notation. Given a state description Θ(b1, b2, . . . , bn) and i, j ∈ {1, . . . , n}, we say
that bi, bj are indistinguishable mod Θ, written bi ∼Θ bj , if Θ(b1, . . . , bn)& bi =
bj is consistent2. Clearly ∼Θ is an equivalence relation.

We define the spectrum of Θ, denoted S(Θ), to be the multiset of sizes of the
(non-empty) equivalence classes with respect to ∼Θ. By convention we list any
spectrum in a decreasing order.

We will use a simple example of L having a single binary predicate R to
illustrate our concepts throughout the paper. In this situation a state description
for b1, . . . , bn is a conjunction

∧
i,j∈{1,...,n}±R(bi, bj) and can be represented by

a n×n matrix with entries 0 and 1, where 1 or 0 respectively as the ij -th entry
means that the state description implies R(bi, bj) or ¬R(bi, bj) respectively. If a
state description Θ(b1, b2, b3, b4) is represented by

1 1 1 1
1 0 1 0
1 1 1 1
1 0 1 0

then b1 ∼Θ b3 and b2 ∼Θ b4, and S(Θ) = {2, 2}.

The Spectrum Exchangeability Principle, Sx
If Θ(b1, . . . , bn), Φ(b′1, . . . , b

′
n) are state description and S(Θ) = S(Φ) then

w(Θ(b1, . . . , bn)) = w(Φ(b′1, . . . , b
′
n))

(where again the b1, . . . , bn and b′1, . . . , b
′
n are some distinct choices from the ai).

Note that Sx clearly implies Ex. In the case that all the predicates are unary (call
them P1, . . . , Pq to emphasize that we consider a special case) state descriptions
are

n∧
i=1

αhi(bi
)

where the αh(x), h = 1, . . . , 2q are the atoms of L, that is formulae of the form

±P1(x) ∧±P2(x) ∧ . . . ∧ ±Pq(x).

Sx thus reduces to Atom Exchangeability, Ax, asserting that

w

(
n∧

i=1

αhi(bi)

)

depends only on the multiset of |{i |hi = j}| for j = 1, . . . , 2q.
2 Equivalently, for any Rd (d = 1, . . . , q) and any t1, . . . , trd ∈ {1, . . . , n} (not neces-

sarily distinct), the sentence Rd(bt1 , bt2 , . . . , btrd
) appears positively as a conjunct

in Θ(b1, b2, . . . , bn) if and only if Ri(bs1 , bs2 , . . . , bsrd
) also appears positively as a

conjunct in Θ(b1, b2, . . . , bn) where 〈s1, . . . , srd〉 is the result of replacing any number
of occurrences of i in 〈t1, . . . , trd〉 by j or vice-versa.



140 J.B. Paris and A.Vencovská

As a natural generalization of Ax, Sx inherits some respectability since Ax
(also called attribute symmetry) was endorsed by Carnap and other researchers
in the field (for a discussion see for example [13]), and it is satisfied by the
Carnap Continuum functions. [However, there are criticisms that can and have
been raised against Ax, in particular its denial of analogical support, as observed
already by Carnap himself in [4].]

The principle of Spectrum Exchangeability, likewise, has pleasing consequences.
It became considerably easier to understand the situation after some de Finetti
style representation theorems were proved (see [7], [8], [12]), which state that un-
der some fairly natural additional conditions, probability functions satisfying Sx
are continuous averages of some canonical relatively simple probability functions
satisfying Sx.

However, it may be the case that Spectrum Exchangeability is in some senses
too strong a generalization of Ax. A recent effort at clarifying precisely what
could be meant when principles are advocated on grounds of symmetry (involving
considering automorphisms of the underlying structures) sheds some light on
this: whilst Ax has a very good and clear justification along these lines, Sx
has so far remained unaccounted for, and a principle somewhat more delicate
than Sx appears to arise much more naturally from these considerations. A
detailed account of the motivation for this new principle, the so called Nathanial’s
Invariance Principle, is given in [11]. It derives from the requirement that a
rational probability function should be invariant under automorphisms of the
underlying structure, in particular that state descriptions that can be mapped
to each other via such an automorphism should receive the same probability.
A criterion for this to hold, and which in turn begets Nathanial’s Invariance
Principle, is the relation of similarity between state descriptions, a relation which
we now describe.

For σ a surjection from the set of (distinct) constants {b1, . . . , bs} onto the set
of (distinct) constants {b′1 . . . , b′t}, denoted σ : {b1, . . . , bs} 	 {b′1, . . . , b′t}, and
Φ(b′1, . . . , b′t) a state description, there is a unique state description Θ(b1, . . . , bs)
such that

Θ(σ(b1), . . . , σ(bs)) ≡ Φ(b′1, . . . , b
′
t)

(≡ stands for logical equivalence). We denote this state description Θ by

(Φ(b′1, . . . , b
′
t))σ(b1, . . . , bs)

or Φσ if the constants are clear from the context.
Thus Φσ as above is a state description for b1, . . . , bs, and all the bi mapped

by σ to the same b′j are indistinguishable in Φσ from each other. Their role in
Φσ is like that of b′j in Φ. Φ and Φσ in a sense share the same structure except
that in Φσ some constants have further ‘clones’.

Continuing our example with a single binary relation, let Φ be the state de-
scription for b′1, b

′
2 represented by the matrix

1 1
1 0
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If σ : {b1, b2, b3, b4} 	 {b′1, b′2} maps b1 and b3 to b′1, and b2 and b4 to b′2 then
Φσ is the state description Θ for b1, b2, b3, b4 (which we have considered before)
represented by the matrix

1 1 1 1
1 0 1 0
1 1 1 1
1 0 1 0

Now let Φ(b1, . . . , bn) be a state description and t1, . . . , tk some numbers
from {1, . . . , n}. We define Φ(b1, . . . , bn)[bt1 , . . . , btk

] to be the restriction of
Φ(b1, . . . , bn) to {bt1 , . . . , btk

}, that is, the conjunction of those ±Rd(i1, . . . , ird
)

implied by Φ(b1, . . . , bn) with all i1, . . . , ird
from amongst the t1, . . . , tk. We may

omit (b1, . . . , bn) from Φ(b1, . . . , bn)[bt1 , . . . , btk
] and write simply Φ[bt1 , . . . , btk

]
if it is clear in the context that Φ is a state description for b1, . . . , bn.

Using our example again, if Θ(b1, b2, b3, b4) is as above, then Θ[b1, b3] and
Θ[b1, b2] respectively are represented by

1 1 1 1
1 1 1 0

respectively. We say that the state descriptions Θ(b1, . . . , bn) and Φ(b1, . . . , bn)
are similar if for each t1, . . . , tm (distinct) and s1, . . . , sk (also distinct) from
{1, . . . , n} and σ : {s1, . . . , sk} 	 {t1, . . . , tm} we have

Θ[bs1 , . . . , bsk
] ≡ (Θ[bt1 , . . . , btm ])σ ⇐⇒ Φ[bs1 , . . . , bsk

] ≡ (Φ[bt1 , . . . , btm ])σ

In particular, with m = k and σ(si) = ti for each i ∈ {1, . . . , k} we obtain
that

Θ[bs1 , . . . , bsk
] ≡ (Θ[bt1 , . . . , btk

])(bs1/bt1, . . . , bsk
/btk

)

⇐⇒ Φ[bs1 , . . . , bsk
] ≡ (Φ[bt1 , . . . , btk

])(bs1/bt1 , . . . , bsk
/btk

)

where (Θ[bs1 , . . . bsk
])(bt1/bs1 , . . . , btk

/bsk
) results from Θ[bs1 , . . . bsk

] by re-
placing each bsi by bti , i ∈ {1, . . . , k} and similarly for Φ. This property also
holds when t1, . . . , tk and s1, . . . , sk are not necessarily distinct.

Also, if t1, . . . , tk, tk+1 are from {1, . . . , n} and btk
, btk+1 are indistinguishable

in Θ[bt1 , . . . , btk
, btk+1] then they must also be indistinguishable in Φ[bt1 , . . . , btk

,
btk+1 ] because btk

, btk+1 being indistinguishable in Θ[bt1 , . . . , btk
, btk+1] is equiva-

lent to
Θ[bt1 , . . . , btk

, btk+1 ] ≡ (Θ[bt1 , . . . , btk
])σ

where σ : {bt1 , . . . , btk+1} 	 {bt1 , . . . , btk
} maps btk+1 to btk

and bti to itself for
i ≤ k.
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For example, considering state descriptions Θ1, Θ2, Θ3 for b1, b2, b3 represented
by

1 1 1 1 1 1 1 1 1
1 0 1 1 0 0 1 0 1
1 0 0 1 1 0 1 1 0

respectively. With some effort Θ1 and Θ2 can be seen to be similar, but Θ3 is
not similar to them since Θ3[b2, b3] is logically equivalent to Θ3[b2, b3](b3/b2, b2/b3)
which is not the case for Θ1 and Θ2.

Considerations such as the above lead us to propose the following new principle:

Nathanial’s Invariance Principle, NIP. If the state descriptions Θ(b1, . . . ,
bn) and Φ(b1, . . . , bn) are similar then

w(Θ(b1, . . . , bn)) = w(Φ(b1, . . . , bn)).

Given how useful the representation theorems proved to be when studying Sx
we would naturally wish to have such powerful tools at our disposal in the case of
NIP. This contribution defines what appear to be the right canonical probability
functions for this case, and includes proofs that they do satisfy NIP and Ex, and
also the Principle of Language Invariance defined later. The technically more
difficult conjectured result about probability distributions satisfying NIP and
Ex being in some sense averages of these canonical probability distributions is
deferred to a forthcoming paper.

The NIP Representation Theorem

For each k ≥ 1 let Ek be the set of equivalence relations ≡k on {1, 2, . . .}.
Let E ⊆ E1 × E2 × E3 × . . . contain those sequences of equivalence relations

Ē = 〈≡1,≡2,≡3, . . .〉
such that the following condition hold:

If 〈c1, . . . , ck〉 ≡k 〈d1, . . . , dk〉 then for s1, . . . , sm ∈ {1, . . . , k} (not necessarily
distinct)

〈cs1 , . . . , csm〉 ≡m 〈ds1 , . . . , dsm〉;

Note that if Ē = 〈≡1,≡2,≡3, . . .〉 is in E then the following must hold:

• If 〈c1, . . . , ck〉 ≡k 〈d1, . . . , dk〉 and σ is a permutation of {1, 2, . . . , k} then

〈cσ(1), . . . , cσ(k)〉 ≡k 〈dσ(1) . . . , dσ(k)〉,
• If 〈c1, . . . , ck〉 ≡k 〈d1, . . . , dk〉 and ds = dt for some s < t then

〈c1, . . . , cs . . . , ct, . . . , ck〉 ≡k 〈c1, . . . , cs, . . . , cs, . . . , ck〉
(c is equivalent to c with ct replaced by cs).

Let B0 be the set of sequences of real numbers 〈p1, p2, . . .〉 such that 0 ≤ pi ≤ 1
for all i, Σ∞

i=1pi = 1, and p1 ≥ p2 ≥ p3 ≥ . . ..
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The probability functions up̄,Ē
L . For p̄ ∈ B0, 〈≡1,≡2,≡3, . . .〉 = Ē ∈ E and

Θ(b1, . . . , bn) a state description we define up̄,Ē
L (Θ) to be the probability that Θ

is arrived at by the process described below.
We take an urn containing balls with colours 1, 2, . . . in proportions p1, p2, . . ..
We choose a sequence 〈c1, . . . , cn〉 so that each ci is chosen independently to

be k with probability pk. We define a binary relation ∼c̄
m on {b1, . . . , bn}m for

each m as follows:

〈bi1 , . . . , bim〉 ∼c̄
m 〈bj1 , . . . , bjm〉 ⇐⇒ 〈ci1 , . . . , cim〉 ≡m 〈cj1 , . . . , cjm〉.

∼c̄
m is clearly an equivalence relation.

For each d = 1, . . . , q and each equivalence class A of ∼c̄
rd

we choose one of∧
〈bi1 ,...,bird

〉∈A

Rd(bi1 , . . . , bird
),

∧
〈bi1 ,...,bird

〉∈A

¬Rd(bi1 , . . . , bird
)

(each with probability 1
2 ). Given the sequence 〈c1, . . . , cn〉, there are 2g possible

state descriptions which we can thus obtain by taking the conjunction of these
choices, where g is the sum for d = 1, . . . q of the number of equivalence classes
associated with Rd in {b1, . . . , bn}rd with respect to the equivalence∼c̄

rd
, and each

of these state descriptions is obtained with probability 1
2g . up̄,Ē

L (Θ(b1, . . . , bn))
is the sum of the probabilities of choosing 〈c1, . . . , cn〉 and a state description
respecting the ∼c̄

rd
as above which equals Θ(b1, . . . , bn).

Note that due to the condition on Ē, for a sequence 〈c1, . . . , cn〉 to contribute
a non-zero factor to up̄,Ē

L (Θ(b1, . . . , bn)) it must be the case that for any natural
number m ≥ 1, if for some i1, . . . , im, j1, . . . , jm from {1, . . . , n}

〈ci1 , . . . , cim〉 ≡m 〈cj1 , . . . , cjm〉 (3)

then bi1 , . . . , bim and bj1 , . . . , bjm ‘behave’ the same as each other within Θ(b1, . . . ,
bn). I.e. for any d∈{1, . . . , q} and any k1, . . . , krd

∈ {1, . . . , m}, Rd(bik1
, . . . , bikrd

)
appears positively as a conjunct in Θ(b1, . . . , bn) if and only if Rd(bjk1

, . . . , bjkrd
)

also appears positively as a conjunct in Θ(b1, . . . , bn), which is perhaps better
expressed as

Θ[bi1 , . . . bim ] ≡ (Θ[bj1 , . . . bjm ])(bi1/bj1 , . . . , bim/bjm).

The same conclusion follows from

〈bi1 , . . . , bim〉 ∼c̄
m 〈bj1 , . . . , bjm〉

in place of (3).
Another important point to notice is that if 〈c1, . . . , cn〉 contributes a non-zero

factor to up̄,Ē
L (Θ(b1, . . . , bn)) and ci = cj for some i, j ∈ {1, . . . , n} then bi and

bj are indistinguishable in Θ(b1, . . . , bn). This is true since if d ∈ {1, . . . , q} and
〈t1, . . . , trd

〉 is an rd -tuple of numbers from {1, . . . , n} and 〈s1, . . . , srd
〉 obtains
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from 〈t1, . . . , trd
〉 by replacing any number of occurrences of i by j or vice-versa

then 〈bt1 , . . . , btrd
〉 ∼c̄

rd
〈bs1 , . . . , bsrd

〉.
Finally we remark that in the special case when Ē = 〈Id1, Id2, . . . , 〉 (with

Idk being the finest equivalence on Ek, that is, equality), up̄,Ē
L are the same as

the previously studied canonical functions satisfying Sx, up̄
L (with p0 = 0), see

[7], [8], [12].

Theorem 1. up̄,Ē
L defined above for state descriptions determines a probability

function satisfying Ex and NIP.

Proof. The process described above yields a state description for b1, . . . , bn with
probability 1 so the values that up̄,Ē

L gives to state descriptions for b1, . . . , bn

sum to 1 and are non-negative. The value given to a particular state descrip-
tion for b1, . . . , bn is the sum of the values given to all state descriptions for
b1, . . . , bn, bn+1 which extend it. To see this, notice that for c̄ = 〈c1, . . . , cn〉 and
c̄+ = 〈c1, . . . , cn, cn+1〉, ∼c̄+

rd
differs from ∼c̄

rd
by having possibly some additional

classes (hd of them) containing rd -tuples featuring bn+1, and by extending some
old classes by adding some rd -tuples featuring bn+1 to them. If c̄ = 〈c1, . . . , cn〉
contributes a non-zero factor (which must be equal to

(∏n
j=1 pcj

)
1
2g , where g is

the sum for d = 1, . . . q of the number of equivalence classes in {b1, . . . , bn}rd with
respect to the equivalence ∼c̄

rd
) to up̄,Ē

L (Θ(b1, . . . , bn)) then there are 2
∑ q

d=1 hd

extensions of Θ that c̄+ = 〈c1, . . . , cn, cn+1〉 contributes to, and the factor con-
tributed to each of them is

pcn+1 ×

⎛⎝ n∏
j=1

pcj

⎞⎠ 1
2g

1
2
∑q

d=1 hd
.

Hence the sum of all factors contributing to extensions of Θ is up̄,Ē
L (Θ). These

observations allow us to conclude that up̄,Ē
L determines a probability function.

Ex holds since it makes no difference in the process which particular constants
are involved. To show NIP, suppose that Θ(b1, . . . , bn) ∼ Φ(b1, . . . , bn) and let
c1, . . . , cn be a sequence of colours. If non-zero, then as above the contributions of
this sequence to up̄,Ē

L (Θ), up̄,Ē
L (Φ) must be the same3. Hence the contributions

could only differ if one was zero and the other one non-zero, so assume the
contribution of 〈c1, . . . , cn〉 to up̄,Ē

L (Θ) is 0, whilst its contribution to up̄,Ē
L (Φ) is

non-zero.
The contribution of 〈c1, . . . , cn〉 to up̄,Ē

L (Θ) being 0 means that there is some
d ∈ {1, . . . , q} and i1, . . . , ird

, j1, . . . , jrd
such that 〈bi1 , . . . , bir〉 ∼c̄

rd
〈bj1 , . . . , bjrd

〉
with Θ |= Rd(bi1 , . . . , bird

) and Θ |= ¬Rd(bj1 , . . . , bjrd
). However, c̄ contributing

a non-zero factor to up̄,Ē
L (Φ) also means that

Φ[bi1 , . . . bird
] ≡ (Φ[bj1 , . . . bjrd

])(bi1/bj1 , . . . , bird
/bjrd

)

3 Namely
(∏n

j=1 pcj

)
1
2g , where g is the sum for d = 1, . . . q of the number of equiva-

lence classes in {b1, . . . , bn}rd with respect to the equivalence ∼c̄
rd

.
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which by similarity implies

Θ[bi1 , . . . bird
] ≡ (Θ[bj1 , . . . bjrd

])(bi1/bj1 , . . . , bird
/bjrd

),

contradiction.

A principle which proved to be remarkably powerful in combination with Sx is
that of Language Invariance, see in particular [7]. The motivation behind this
principle is that whilst we may at any one time wish to consider only a certain
fixed collection of predicates and work with a probability function on this fixed
language, it should be possible to add other predicates and have probability
functions for such richer languages so that when considering sentences from the
original language we still get the original probabilities.

Language Invariance The probability function w on L satisfies Language In-
variance if there exists a class of probability functions wL for each finite predicate
language4 L such that whenever L′ is a sublanguage of L then w restricted to
SL′ equals wL′ and wL = w.

In this case we shall describe the wL as a language invariant family containing
w. If all the wL satisfy NIP then we refer to them as language invariant family
with NIP.

We conclude this paper with a proof that for a fixed p̄ ∈ B0 and Ē ∈ E the
functions up̄,Ē

L in fact provide such a family.

Theorem 2. Let p̄ ∈ B0 and Ē ∈ E. Then the probability functions up̄,Ē
L form

a language invariant family with NIP.

Proof. Let Θ(b1, . . . , bn) be a state description of L and let L′ = L∪ {R} where
R is a new, k-ary predicate. Assume that c = c1, . . . , cn contributes (

∏n
i=1 pci)

1
2g

to up̄,Ē
L (Θ(b1, . . . , bn)). Let h be the number of equivalence classes, with respect

to ∼c̄
k, in {b1, . . . , bn}k. Each state description in L′ that extends Θ and is con-

tributed to in up̄,Ē
L′ (Θ(b1, . . . , bn)) is determined by h choices, one for each of

these equivalence classes, and the contribution from c1, . . . , cn to such a state
description is (

∏n
i=1 pci)

1
2g+h . But since there are 2h of these extensions, the

overall contribution to Θ is the same using L′ as it was using L.
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Abstract. We introduce two different calculi for a first-order extension of inquis-
itive pair semantics (Groenendijk 2008): Hilbert-style calculus and Tree-sequent
calculus. These are first-order generalizations of (Mascarenhas 2009) and (Sano
2009), respectively. First, we show the strong completeness of our Hilbert-style
calculus via canonical models. Second, we establish the completeness and sound-
ness of our Tree-sequent calculus. As a corollary of the results, we semantically
establish that our Tree-sequent calculus enjoys a cut-elimination theorem.

1 Introduction

Groenendijk [1] first introduced the inquisitive pair semantics for a language of propo-
sitional logic to capture both classical and inquisitive meanings of a sentence. For exam-
ple, the classical meaning of p∨q is |p∨q| and the inquisitive meaning of it is { |p|, |q| },
where |A| is the set of all truth functions making A true. In the first logical study for
inquisitive pair semantics [2], Mascarenhas revealed that the corresponding inquisitive
pair logic is an axiomatic extension of intuitionistic logic (however, it is not closed
under uniform substitutions) and established the completeness of it. Independently, fol-
lowing the idea of [3], the author gave a complete and cut-free Gentzen-style sequent
calculus for inquisitive pair logic [4]. After these studies, Ciardelli and Roelofsen [5]
generalized inquisitive pair semantics within the propositional level and revealed that
their generalized inquisitive logic has various beautiful logical properties.

Disjunction ∨ allows us to formalize an English sentence containing ‘or’. However,
in order to handle the sentences containing quantifications as well as ‘which’, ‘who’,
etc., we need a first-order extension of inquisitive semantics. Ciardelli [6] studied how
to give a recursive definition of inquisitive meaning in a first-order setting. As far as the
author knows, however, there is no complete axiomatization of first-order inquisitive
logic, though there was a preliminary study toward this direction [7, Ch.6]. This paper
contributes to this point. In this paper, we focus on a first-order extension of the original
inquisitive pair semantics and give two different complete calculi for a first-order in-
quisitive pair logic: Hilbert-style calculus and Gentzen-style sequent calculus. We can
regard these as first-order generalizations of [2] and [4], respectively.

There are various ways of considering first-order extensions of intuitionistic logic for
Kripke semantics: e.g. by expanding the domain or keeping it constant. Following [7,
Ch.6], this paper also concerns the constant-domain semantics, which means that we
adopt CD: ∀ x. (A ∨ B(x)) → (A ∨ ∀ x. B(x)) (x is not free in A) as our logical axiom.
In the first part of this paper, we establish the correspondence between the first-order

M. Banerjee and A. Seth (Eds.): ICLA 2011, LNAI 6521, pp. 147–161, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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inquisitive models and a specific class of constant-domain Kripke models (Theorem 1).
After introducing the Hilbert-style axiomatization of first-order inquisitive pair logic,
we use the correspondence above and the canonical model method [8, Ch.7.2] to es-
tablish the strong completeness (Corollary 1). In the second part, we first extend the
sequent calculus of [4] to cover the quantifiers (CD gives us the simpler rule, cf. [3,9]),
and then, we establish the completeness (Theorem 3) and soundness (Theorem 5) of
our Tree-sequent calculus. By combining these with the results of the first part, we can
semantically establish the cut-elimination theorem of our sequent calculus.

In the propositional level, the generalized inquisitive logic is a ‘limit’ of a hierarchy
of inquisitive logics [7, Ch.6], one of which is the inquisitive pair logic. Therefore,
based on this study, the author hopes that we could also ‘approximate’ a generalized
first-order inquisitive logic by considering the corresponding first-order hierarchy.

2 Inquisitive Semantics and Constant-Domain Kripke Semantics

2.1 Inquisitive Pair Semantics

Our syntax L consists of a countable set VAR = { xi | i ∈ ω } of variables, a countable
set { ci | i ∈ ω } of constant symbols, a countable set of predicate symbols P, the propo-
sitional connectives: ⊥, ¬, →, ∧, ∨, the quantifiers: ∀, ∃, and the parentheses: (,). t is
a term if t is a variable or a constant symbol. Then, the formulas of L are defined as
usual. We use Γ and Δ, etc. to denote a (possibly infinite) set of formulas. For a finite
Γ,
∧
Γ (or,

∨
Γ) is defined as the conjunction (or, disjunction) of all formulas of Γ,

if Γ is non-empty; otherwise 	 (or, ⊥, respectively). A[t/x] denotes the result of the
simultaneous substitution of t for all free occurrences of x in A.

An (first-order) inquisitive modelM consists of a non-empty set W, a non-empty set
D, and a valuation V satisfying cV ∈ D and PV

w ⊆ Dn (w ∈ W), where n is the arity of
P1. Given any W � ∅, we say that s ⊆ W is pairwise if #s ≤ 2 and s � ∅. Given any
inquisitive modelM = 〈W,R,D 〉, any pairwise s ⊆ W, any assignment g : VAR → D,
and any formula A, the satisfaction relation s, g |=M A is defined by:

s, g |=M P(t1, . . . , tn) iff 〈 g(t1), . . . , g(tn) 〉 ∈ PV
w for any w ∈ s;

s, g |=M ⊥ Never ;
s, g |=M ¬A iff for any pairwise s′ ⊆ s: s′, g �|=M A;
s, g |=M A ∧ B iff s, g |=M A and s, g |=M B;
s, g |=M A ∨ B iff s, g |=M A or s, g |=M B;
s, g |=M A→ B iff for any pairwise s′ ⊆ s: s′, g |=M A implies s′, g |=M B;
s, g |=M ∀ x. A iff for any a ∈ D: s, g(x|a) |=M A;
s, g |=M ∃ x. A iff for some a ∈ D: s, g(x|a) |=M A,

where g(t) := g(x) (if t ≡ x); cV (if t ≡ c), and g(x|a) is the x-variant of g such that
g(x|a)(x) = a. We usually drop the subscriptM from |=M, if it is clear from the context.

Given anyM = 〈W,D,V 〉, A is valid inM (notation: |=M A) if for any pairwise s ⊆ W
and for any g : VAR → D, s, g |=M A. Let M be a class of inquisitive models. Γ |=M A
means that, for any M ∈ M, any assignment g and any pairwise s, if s, g |=M B for all

1 For a propositional variable p (i.e. 0-ary predicate symbol), we define pV
w ∈ { true, false }.
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B ∈ Γ then s, g |=M A. We say that A is valid in M (notation: M � A) if ∅ |=M A. Define
Mall as the class of all inquisitive models.

In [6] and [7, Ch.6], the following special class of inquisitive models are considered:
Let us fix D � ∅ and fix a mapping I : { ci | i ∈ ω } → D, i.e., an interpretation on
D of all the constant symbols. Let W(D,I ) be the collection of all first-order classical
structures for L such that the universe of A is D and, cA = I (c) for any A ∈ W(D,I ).
Define the valuation V of inquisitive model by: cV := cA for some fixed A and PV

A
= PA.

Then, 〈W(D,I ),D,V 〉 is an inquisitive model. Let us define that an intended inquisitive
model is such a tuple 〈W(D,I ),D,V 〉 for some D and I . Fix an assignment g. Remark
that we can rewrite the satisfaction clause for atoms as follows: s, g |= P(t1, . . . , tn)
iff A |= P(t1, . . . , tn)[g] for any A ∈ s, where A |= A[g] means the ordinary classical
satisfaction relation.

Definition 1. Mint =
{
〈W(D,I ),D,V 〉 |D � ∅ and I : { ci | i ∈ ω } → D

}
.

So, Mint is the class of all intended inquisitive models. We will show that there is no
difference between Mall and Mint with respect to the logical consequence (Theorem 1).

Let us explain why this paper studies first-order inquisitive pair semantics: While
inquisitive pair semantics shows a peculiar logical-phenomena in calculating the in-
quisitive meaning of p ∨ q ∨ r (i.e. all the possibilities (defined below) for p ∨ q ∨ r)
in the propositional level, it still forms a good starting point to investigate first-order
inquisitive logic, i.e, all valid formulas on Mint in first-order inquisitive semantics [7,
Ch.6] by Ciardelli. In what follows in this subsection, let us pay attention only to Mint.
Before explaining the detail above, we would like to introduce some terminology. De-
fine that s ⊆ W(D,I ) is n-tuplewise if 1 ≤ #s ≤ n. ‘2-tuplewise’ is the same notion as
‘pairwise’. If we replace ‘pairwise’ with ‘n-tuplewise’ or ‘non-empty’ in the satisfac-
tion clauses above, then we obtain first-order inquisitive n-tuple semantics or first-order
inquisitive semantics [7, Ch.6] by Ciardelli2, respectively.

Consider the propositional counterpart of our inquisitive pair semantics and define
that a possibility for a propositional formula A is a ⊇-maximal element s such that
s |= A (cf. [1]). Denote all the possibilities for A by [A]. Then, [p ∨ q] = { |p|, |q| }
holds, where |A| is all the truth functions making A true. Ciardelli, however, showed that
[p∨q∨r] � { |p|, |q|, |r| } in inquisitive pair semantics [7, Ch.5]). Inquisitive 3-tuplewise
semantics can fix this defeat for p ∨ q ∨ r. However, in order to avoid such peculiar
phenomena for any formula containing ∨, we should drop the cardinality restriction of
the upper bound of #s in the satisfaction clauses above. Such a consideration leads us
to (propositional) inquisitive semantics by Ciardelli and Roelofsen [5].

Let InqQLn (or, InqQL) be all the valid formulas on Mint in first-order inquisitive n-
tuplewise semantics (or, first-order inquisitive semantics, respectively). Let InqLn and
InqL be their propositional counterparts. Then,

⋂
2≤n InqLn = InqL holds [7, Corollary

4.1.6.], and so, InqL2 forms a starting point of approximating InqL. When we move
to the first-order level, we do not know whether

⋂
2≤n InqQLn = InqQL in this stage.

However, it is obvious that
⋂

2≤n InqQLn ⊆ InqQL. Therefore, first-order inquisitive
pair semantics still forms a good starting point to investigate InqQL.

2 Ciardelli also observed that the restriction #s ≤ 2 gives us the equivalent semantics to the
original inquisitive pair semantics by Groenendijk (see [7, Ch.5, pp.55-6]). In this sense, we
still call our semantics ‘(first-order) inquisitive pair semantics’.
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2.2 Constant-Domain Kripke Semantics

If we extend the first-order intuitionistic logic IQL with the axiom CD in Table 1 below,
then we can obtain the following simpler Kripke semantics [8, Ch.3.4]. A constant-
domain Kripke model (in short: cd-model) is a tuple 〈W,≤,D,V 〉, where W � ∅, ≤
on W is a pre-order, D � ∅, and V is a valuation satisfying cV ∈ D, PV

w ⊆ Dn, and
PV
w ⊆ PV

v if w ≤ v (the hereditary condition). Given any cd-model 〈W,≤,D,V 〉, any
g : VAR→ D, w ∈ W, and any A of L, the satisfaction relation � is defined by:

M, w, g � P(t1, . . . , tn) iff 〈 g(t1), . . . , g(tn) 〉 ∈ PV
w ;

M, w, g � ⊥ Never ;
M, w, g � ¬A iff for any w′ ≥ w:M, w′, g � A;
M, w, g � A ∧ B iff M, w, g � A andM, w, g � B;
M, w, g � A ∨ B iff M, w, g � A orM, w, g � B;
M, w, g � A→ B iff for any w′ ≥ w: w′, g � A implies w′, g � B;
M, w, g � ∀ x. A iff for any a ∈ D:M, w, g(x|a) � A;
M, w, g � ∃ x. A iff for some a ∈ D:M, w, g(x|a) � A.

Given any cd-model M = 〈W,≤,D,V 〉, A is valid in M (notation: M � A) if for any
w ∈ W and for any g : VAR → D, M, w, g � A. By the following procedure, we can

Table 1. All Additional Axioms for First-Order Inquisitive Pair Logic

CD ∀ x. (A ∨ B(x))→ (A ∨ ∀ x. B(x)), where x is not free in A.
H2 A ∨ (A→ B ∨ ¬B)
W2 (A→ B) ∨ (B→ A) ∨ ((A→ ¬B) ∧ (B→ ¬A))
ADN ¬¬P(t1, . . . , tn)→ P(t1, . . . , tn) for any atomic P(t1, . . . , tn)

regard any inquisitive model M = 〈W,D,V 〉 as a cd-model 〈W′,≤,D′,V ′ 〉 for first-
order intuitionistic logic with the axiom CD. Put W′ :=

{
s ⊆ W | s is pairwise

}
. Define

a pre-order ≤ on W′ by s ≤ t iff t ⊆ s. Define D′ := D. As for the valuation V ′,
we define cV ′ = cV and 〈 d1, . . . , dn 〉 ∈ PV ′

s iff 〈 d1, . . . , dn 〉 ∈ PV
w for any w ∈ s (s:

pairwise). It is easy to see that V satisfies the hereditary condition. Then, we can show
that s, g |=M A iff 〈W′,≤,D′,V ′ 〉, s, g � A, for any pairwise s ⊆ W and any A. This
observation allows us to say that all theorems of first-order intuitionistic logic as well
as CD are valid in any inquisitive model.

Moreover, we can specify the class of cd-models corresponding to Mall as Mascaren-
has [2] did for the propositional language. 〈W′,≤,D′ 〉 satisfies:

(h2) the maximum length of ≤-chains is 2 (or, it is of depth ≤ 2, simply);
(w2) each state can have no more than two distinct successors.

These observations tells us that both H2 and W2 in Table 1 are valid on any inquisitive
model 〈W,D,V 〉 by (h2) and (w2), respectively (see [2, Theorem 35]). There is one
more feature of the above 〈W′,≤,D′,V ′ 〉:

Definition 2. M = 〈W,≤,D,V 〉 has the intersection property if, for any w ∈ W, PV
w =⋂{

PV
v |w ≤ v and v is an endpoint

}
.
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This feature validates the axiom ADN in Table 1 on any inquisitive model:

Proposition 1. Let M = 〈W,≤,D,V 〉 be a Kripke model such that { v |w ≤ v } is finite
(w ∈ W) andM satisfies the intersection property. Then, ADN is valid inM.

Proof. Fix any w ∈ W and any assignment g. Assume M, w, g � ¬¬P(t1, . . . , tn). We
show M, w, g � P(t1, . . . , tn). By assumption, for any v ≥ w, we can find some u ≥ v
such that M, u, g � P(t1, . . . , tn). Since {w′ |w ≤ w′ } is finite, we can find u∗ ≥ w such
that u∗ is an endpoint. Then, M, u∗, g � P(t1, . . . , tn). By the intersection property, we
can conclude thatM, w, g � P(t1, . . . , tn), as desired. ��

Clearly, the above 〈W′,≤,D′,V ′ 〉 has the intersection property. Under (h2) and (w2),
{ v |w ≤ v } is always finite (w ∈ W). Therefore, ADN is valid in Mall.

Definition 3. Let VI be the class of all cd-models satisfying (w2), (h2) and the intersec-
tion property.

Γ �VI A means that for anyM ∈ VI, any assignment g and any state w inM, ifM, w, g |=
B for all B ∈ Γ then M, w, g |= A. We denote ∅ �VI A by VI � A. The following is a
generalization of [2, Theorem 36] to this setting.

Theorem 1. Γ |=Mall A iff Γ |=Mint A iff Γ �VI A.

Proof. Γ �VI A =⇒ Γ |=Mall A is clear from the above argument. By definition, Γ |=Mall

A =⇒ Γ |=Mint A. So, it suffices to show Γ |=Mint A =⇒ Γ �VI A. We establish the
contrapositive implication. Assume Γ �VI A, i.e., there exists some cd-modelM ∈ VI,
some w inM and some g such thatM, w, g � B (B ∈ Γ) andM, w, g � A. Take the point-
generated submodelMw by w ofM. It is easy to see thatM, w, g � C iff Mw, w, g � C
for any formula C. Thus, Mw, w, g � B (B ∈ Γ) and Mw, w, g � A. Since (w2), (h2)
(and the intersection property) still hold in Mw, we can state that Mw has one of the
following shapes: (i) one point reflexive model; (ii) ‘I’-shape; (iii) ‘V’-shape. Write
Mw := 〈W,≤,D,V 〉. First, consider the case (i). Define an interpretation I on D of
constants by I (c) = cV . Define a first-order classical structure A by: |A| = D, cA =
I (c), and PA = PV

w . Then, we can establish that Mw, w, g � C iff {A }, g |= C for
any formula C. Therefore, we have found A ∈ W(D,I ) such that {A }, g |= B (B ∈ Γ)
and {A }, g �|= A, i.e., Γ �|=Mint A, as required. Second, consider the case (ii). We can put
W = {w, v }. By the intersection property, however, PV

v are the same as PV
w . So, we can

reduce this case to the case (i). Third, let us consider (iii). Put W = {w, v, u }. We regard
v and u as the ‘leaves’ of the ‘V’-shape tree with the root w. Similarly to (i), define
an interpretation I on D of constants by I (c) = cV . In this case, however, we need to
define two first-order classical structuresA andB by: |A| = |B| = D, cA = cB=I (c), and
PA = PV

v and PB = PV
u . By induction, we can show thatMw, w, g � C iff {A,B }, g |= C

for any C. By the similar argument to (i), we can conclude that Γ �|=Mint A. ��

By this correspondence, we can easily show the following propositions (cf. [4]).

Proposition 2. Let s ⊆ W be pairwise and w, v ∈ W distinct. (i) If s, g |= A and s′ ⊆ s
is pairwise, then s′, g |= A; (ii) {w, v }, g |= ¬A iff {w }, g �|= A and { v }, g �|= A; (iii)
{w }, g |= ¬A iff {w }, g �|= A; (iv) {w }, g |= A→ B iff {w }, g |= A implies {w }, g |= B.

Let Mk := { 〈W,D,V 〉 | #W = k } (k = 1 or 2) and M≥2 := { 〈W,D,V 〉 | #W ≥ 2 }.
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Proposition 3. (i) Assume that #W ≥ 2. Then, A is valid in an inquisitive modelM iff
s, g |= A for any pairwise s with #s = 2 and any g inM. (ii) M1 |= A iff A is classically
valid. (iii) If M≥2 |= A, then A is classically valid. (iv) Mall |= A iff s, g |=〈W,D,V 〉 A for
any pairwise s ⊆ W with #s = 2, any g, and any 〈W,D,V 〉 ∈ M≥2.

3 A Complete Hilbert-Style Calculus for Inquisitive Pair Logic

Definition 4. Define QLV+ is IQL extended with all the axioms in Table 1.

The reader can find the axiomatization of the first-order intuitionistic logic IQL in [10].
Define Γ � A if �

∧
Γ′ → A for some finite Γ′ ⊆ Γ. If Γ = ∅, we write QLV+ � A

but we usually drop ‘QLV+’ from it and write � A, when no confusion arises. In order
to show the completeness of QLV+, we adopt the known canonical model method as
in [8]. We, however, include the detailed outline to make this section self-contained.

Remark 1. We have two different axiomatizations of the set InqL2 of all valid propo-
sitional formulas in inquisitive pair semantics. One proposed by Mascarenhas is the
propositional intuitionistic logic IL extended with W2, H2, and atomic double negations
(¬¬p→ p for any atom p). Another one proposed by Ciardelli and Roelofsen is IL ex-
tended with Kreisel-Putnam axiom KP: (¬A→ B ∨ C) → (¬A→ B) ∨ (¬A → C) and
H2, and atomic double negations. And, if we drop H2 from Ciardelli and Roelofsen’s
axiomatization, then we obtain the axiomatization of InqL, i.e., all valid propositional
formulas in (generalized) inquisitive semantics. However, if we consider the first-order
extension with CD of these logics, strong completeness of IQL extended with CD and
KP for constant-domain Kripke semantics seems an open problem (p.c. by Valentin
Shehtman and Silvio Ghilardi). Therefore, we choose Mascarenhas’ axiomatization as
a basis of our first-order inquisitive pair logic QLV+.

Let us expand our languageL with a countable set { ci | i ∈ ω } of new constant sym-
bols. Let L+ be this expanded language of L. We say that 〈Γ;Δ 〉 of L+ is consistent if
�

∨
Γ1 →

∧
Δ1 for any finite Γ1 ⊆ Γ and any finite Δ1 ⊆ Δ. 〈Γ;Δ 〉 of L+ is maximal

if A ∈ Γ or A ∈ Δ for any formula A. 〈Γ;Δ 〉 of L+ is ∃∀-maximally consistent if it
is consistent and maximal and satisfies the following: (L∃-property): For any formula
of the form ∃ x. A, if ∃ x. A ∈ Γ, then A[c/x] ∈ Γ for some c, and (R∀-property): For
any formula of the form ∀ x. A, if ∀ x. A ∈ Δ, then A[c/x] ∈ Δ for some c. By consis-
tency and maximality, it is obvious that Δ = Γc, the complement of Γ3. So, if 〈Γ;Δ 〉 is
∃∀-maximally consistent, then we usually say that Γ is an ∃∀-MCS.

Lemma 1. (i) If 〈Γ ∪ { ∃ x. A };Δ 〉 is consistent, then 〈Γ ∪ { ∃ x. A, A[c/x] };Δ 〉 is con-
sistent, where c is fresh in 〈Γ ∪ { ∃ x. A };Δ 〉. (ii) If 〈Γ;Δ ∪ { ∀ x. A } 〉 is consistent, then
〈Γ;Δ ∪ { ∀ x. A, A[c/x] } 〉 is consistent, where c is fresh in 〈Γ;Δ ∪ { ∀ x. A } 〉. (iii) If
〈Γ;Δ 〉 is consistent, then either 〈Γ ∪ { A };Δ 〉 or 〈Γ;Δ ∪ { A } 〉 is consistent.

Proof. We only establish (ii), since we need CD here. Suppose for contradiction that
there exists some Γ′ ⊆ Γ and some Δ′ ⊆ Δ such that �

∧
Γ′ →

∨
Δ′ ∨ ∀ x. A ∨ A[c/x].

Fix some fresh y in 〈Γ;Δ ∪ { ∀ x. A } 〉. It is clear that (A[y/x])[c/y] ≡ A[c/x]. Since y

3 Remark that we can easily derive from the consistency of 〈Γ;Δ 〉 that Γ ∩ Δ = ∅.
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and c are fresh, we obtain: �
∧
Γ′ → ∀ y. (

∨
Δ′ ∨ ∀ x. A ∨ A[y/x]). We deduce from

CD that �
∧
Γ′ → (

∨
Δ′ ∨ ∀ x. A) (remark that ∀ x. A and ∀ y. (A[y/x]) are equivalent),

which gives us the desired contradiction. ��

Lemma 2. If 〈Γ;Δ 〉 of L is consistent, then there exists 〈Γ+;Δ+ 〉 of L+ such that
Γ ⊆ Γ+, Δ ⊆ Δ+, and Γ+ is an ∃∀-MCS.

Proof. Let us enumerate all the formulas of L+ as (Fn)n∈ω. Recall that all the new
constant symbols { ci | i ∈ ω } are indexed by i ∈ ω. In what follows, we define a se-
quence (〈Γn;Δn 〉)n∈ω such that each 〈Γn;Δn 〉 is consistent, and obtain 〈Γ+;Δ+ 〉 :=
〈
⋃

n∈ω Γn;
⋃

n∈ω Δn 〉 as its limit. (Basis) Put Γ0 := Γ and Δ0 := Δ. (Inductive Step) Sup-
pose that we have defined a consistent 〈Γn;Δn 〉. We subdivide our argument into the
following three cases: (a) Fn ≡ ∃ x. A and 〈Γn ∪ { Fn };Δn 〉 is consistent; (b) Fn ≡ ∀ x. A
and 〈Γn;Δn ∪ { Fn } 〉 is consistent; (c) Otherwise. First, we show the case (c). Since ei-
ther 〈Γn ∪ { Fn };Δn 〉 or 〈Γn;Δn ∪ { Fn } 〉 is consistent by Lemma 1 (iii), choose a con-
sistent pair and define it as 〈Γn+1, Δn+1 〉. As for the case (a), let us choose a fresh c in
〈Γn ∪ { Fn };Δn 〉 by Lemma 1 (i) and define 〈Γn+1, Δn+1〉 :=〈Γn ∪ { ∃ x. A, A[c/x] };Δn 〉.
As for the case (b) (similarly to (a)), let us choose a fresh c in 〈Γn;Δn ∪ { Fn } 〉 by
Lemma 1 (ii) and define 〈Γn+1, Δn+1 〉 := 〈Γn;Δn ∪ { ∀ x. A, A[c/x] } 〉.

Finally, it is easy to see that 〈
⋃

n∈ω Γn;
⋃

n∈ω Δn 〉 is ∃∀-maximally consistent. ��

Γ is ω-closed if, for any formula of the form ∀ x. A inL+, if Γ � A[c/x] for all constants
c then Γ � ∀ x. A. 〈Γ;Δ 〉 is ω-closed-finite-consistent (in short, ω f c) if Γ is ω-closed
and Δ is finite and 〈Γ;Δ 〉 is consistent. We can easily show the following:

Lemma 3. If Γ is an ∃∀-MCS, then Γ is ω-closed.

Lemma 4. (i) If Γ is ω-closed, then Γ ∪ { A } is also ω-closed. (ii) If 〈Γ ∪ { ∃ x. A };Δ 〉
is ω f c, then there exists some c such that 〈Γ ∪ { ∃ x. A, A[c/x] };Δ 〉 is consistent. (iii)
If 〈Γ;Δ ∪ { ∀ x. A } 〉 is ω f c there exists some c such that 〈Γ;Δ ∪ { ∀ x. A, A[c/x] } 〉 is
consistent.

Proof. We only establish (iii), since we need CD here. Suppose that 〈Γ;Δ ∪ { ∀ x. A } 〉
is ω f c. Assume for contradiction that 〈Γ;Δ ∪ { ∀ x. A, A[c/x] } 〉 is inconsistent for all
constant symbol c. By finiteness of Δ, we can assume w.l.o.g. that x does not occur in Δ
(otherwise, it suffices to rename the bounded variable). Then, for all constant c, we have
Γ �
∨
Δ∨ (∀ x. A)∨A[c/x], i.e., Γ � (

∨
Δ∨ (∀ x. A)∨A)[c/x]. Since Γ is ω-closed, Γ �

∀ x. (
∨
Δ∨ (∀ x. A)∨A). By CD, � ∀ x. (

∨
Δ∨ (∀ x. A)∨A)→

∨
Δ∨ (∀ x. A). Therefore,

we get Γ �
∨
Δ ∨ (∀ x. A), which contradicts the consistency of 〈Γ;Δ ∪ { ∀ x. A } 〉. ��

Lemma 5. If 〈Γ;Δ 〉 of L+ is ω f c, then there exists 〈Γ+;Δ+ 〉 of L+ such that Γ ⊆ Γ+,
Δ ⊆ Δ+, and Γ+ is an ∃∀-MCS.

Proof. The proof is similar to the proof of Lemma 2. We, however, need to care about
the fact that 〈Γ;Δ 〉 is ω f c. Fix any enumeration (Fn)n∈ω of all the formulas of L+. In
what follows, we only describe the difference from the proof of Lemma 2. Below, we
define a sequence (〈Γn;Δn 〉)n∈ω such that each 〈Γn;Δn 〉 is ω f c, and obtain 〈Γ+;Δ+ 〉
:= 〈
⋃

n∈ω Γn;
⋃

n∈ω Δn 〉. The basis step is the same as before. As for the inductive step,



154 K. Sano

suppose that we have defined an ω f c 〈Γn;Δn 〉. We subdivide our argument into the
cases (a), (b), and (c) in the same way as in the proof of Lemma 2. The definition of
〈Γn+1;Δn+1 〉 for each case is exactly the same as before. However, we need to check
that we can find some constant c in both the cases (a) and (b) (the most important point
is: there is no need for c to be fresh) and that 〈Γn+1;Δn+1 〉 is also ω f c. We can ensure
these points by Lemma 4. ��

Lemma 6. Let Γ be an ∃∀-MCS. Then: (i) A ∧ B ∈ Γ iff (A ∈ Γ and B ∈ Γ), (ii)
A ∨ B ∈ Γ iff (A ∈ Γ or B ∈ Γ), (iii) ∀ x. A ∈ Γ iff A[t/x] ∈ Γ for any term t, (iv)
∃ x. A ∈ Γ iff A[t/x] ∈ Γ for some term t, (v) If A → B ∈ Γ and A ∈ Γ, then B ∈ Γ,
(vi) (¬A ∈ Γ and A ∈ Γ) fails.

Proof. Suppose 〈Γ;Δ 〉 is ∃∀-maximally consistent. We only show (iii). By � ∀ x. A→
A[t/x], we can establish the left-to-right direction. As for the right-to-left direction,
assume ∀ x. A � Γ. By maximality, ∀ x. A ∈ Δ. By R∀-property, A[c/x] ∈ Δ for some
constant c. So, there exists a term t such that A[t/x] � Γ by the consistency. ��

Definition 5. The canonical model for QLV+ M = 〈W,≤,D,V 〉 is defined by: (i) W =
{Γ |Γ is an ∃∀-MCS }4, (ii) Γ ≤ Π iff Γ ⊆ Π , (iii) D = { t | t is a term of L+ }, (vi) cV

= c for any constant symbol c in L+, (v) 〈 t1, . . . , tn 〉 ∈ PV
Γ iff P(t1, . . . , tn) ∈ Γ.

Lemma 7 (Truth Lemma). LetM = 〈W,≤,D,V 〉 be the canonical model for QLV+.
Define the canonical assignment g by g(x) = x. Then,M, Γ, g � A iff A ∈ Γ.

Proof. By induction on A. First, let us remark that g(t) = t for any term t of L+. By
Lemma 6 and the definition of the canonical model, we can easily establish the cases
where A ≡ P(t1, · · · , tn), B ∨C, B ∧C, ∃ x. B or ∀ x. B (if A ≡ ∃ x. B or ∀ x. B, we need
to use: M, Γ, g(x|t) � A iff M, Γ, g � A[t/x]). So, let us only show the case where
A ≡ B → C. In order to establish the left-to-right direction, assume B → C � Γ. By
maximality, B → C ∈ Δ, where Δ = Γc. By consistency of 〈Γ;Δ 〉, 〈Γ ∪ { B }; {C } 〉
is consistent. By Lemma 3 and Lemma 4 (i), 〈Γ ∪ { B }; {C } 〉 is ω f c. It follows from
Lemma 5 that there exists some 〈Γ+;Δ+ 〉 such that Γ+ is an ∃∀-MCS and Γ∪{ B } ⊆ Γ+
and C ∈ Δ+ (i.e., C � Γ+ by the consistency). By the induction hypothesis, we obtain:
M, Γ, g � B andM, Γ, g � C. Since Γ ⊆ Γ+, we conclude thatM, Γ, g � B→ C. Finally,
let us show the right-to-left direction. AssumeM, Γ, g � B → C, i.e., there exists some
∃∀-MCS Γ′ such that M, Γ′, g � B andM, Γ′, g � C. By the induction hypothesis, we
obtain: B ∈ Γ′ and C � Γ′. It follows from Lemma 6 (v) that B→ C � Γ′. ��

Lemma 8. LetM = 〈W,≤,D,V 〉 be the canonical model for QLV+. Then, (i)M satis-
fies (h2), (ii)M satisfies (w2), (iii)M has the intersection property.

Proof. We can show (i) and (ii) in the same way as in the propositional case [2, The-
orem 35] (for (i), the reader can also refer to [8, Lemma 7.3.3 (1)]). So, we only show
(iii). Let Γ be an ∃∀-MCS. It suffices to show that: P(t1, . . . , tn) ∈ Γ iff P(t1, . . . , tn) ∈

4 Remark that any MCS Γ is a QLV+-theory. This is shown as follows: Given any MCS Γ,
assume that ϕ ∈ Γ and ϕ � ψ. Suppose for contradiction that ψ � Γ. By maximality, ψ ∈ Δ. By
consistency, we get � ϕ→ ψ, which contradicts ϕ � ψ.
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⋂{
Γ′ |Γ ⊆ Γ′ and Γ′ is an endpoint

}
(remark that (w2) and (h2) assure us that, for any

Γ in M, there exists some endpoint Γ′ ⊇ Γ). We can easily show the left-to-right di-
rection. So, let us establish the right-to-left direction. Assume that P(t1, . . . , tn) ∈ Γ′ for
any Γ′ ⊇ Γ such that Γ′ is an endpoint. By (w2) and (h2), we can state that, for any
state Π ⊇ Γ, there exists an endpoint Θ ⊇ Π . Thus, we deduce from Truth Lemma
that M, Γ, g � ¬¬P(t1, . . . , tn), i.e., ¬¬P(t1, . . . , tn) ∈ Γ. Since � ¬¬P(t1, · · · , tn) →
P(t1, . . . , tn), we can conclude that P(t1, . . . , tn) ∈ Γ. ��

Theorem 2. Γ �VI A iff Γ � A.

Proof. We can easily show that Γ � A implies Γ �VI A. So, let us establish the left-to-
right direction. We show the contrapositive implication. Assume Γ � A (remark that Γ
might be infinite). Then, 〈Γ, A 〉 is consistent. By Lemma 2, there exists some 〈Γ+;Δ+ 〉
such that Γ ⊆ Γ+, A ∈ Δ+, and Γ+ is an ∃∀-MCS. By consistency of 〈Γ+;Δ+ 〉, A � Γ+.
It follows from Truth Lemma thatM, Γ+, g � B (B ∈ Γ) andM, Γ+, g � A. By Lemma
8, Γ �VI A, as desired. ��

Corollary 1. The following are all equivalent: (i) Γ �VI A; (ii) Γ |=Mall A; (iii) Γ |=Mint A;
(iv) Γ � A.

Proof. Theorem 1 gives us the equivalence among (i), (ii), and (iii). Theorem 2 ensures
the equivalence between (i) and (iv). ��

4 Tree-Sequent Calculus for First-Order Inquisitive Pair Logic

In this section, we first introduce a tree-sequent calculus for InqQL2 = { A |Mall |= A },
as a special form of Labelled Deductive Systems [11].

Let T = 〈 { 0, 1, 2 },≤ 〉 be the tree equipped with the order ≤ := { 〈 0, 1 〉, 〈 0, 2 〉 } ∪
{ 〈 x, x 〉 | x ∈ { 0, 1, 2 } }. A label is an element of { 0, 1, 2 }. We use letters α, β, etc. for
labels. A labelled formula is a pair α : A, where α is a label and A is a formula of the
language L. In what follows in this paper, we use Γ, Δ, etc. to denote a set of labelled
formulas. A tree-sequent is an expression Γ ⇒ Δ where Γ and Δ are finite sets of
labelled formulas.

Now, let us introduce the tree-sequent calculus TInqQL2 for first-order inquisitive
pair logic InqQL2. This system defines inference schemes which allow us to manipulate
tree-sequents. The axioms of TInqQL2 are of the following forms:

α : A, Γ ⇒ Δ, α : A (Ax) α : ⊥, Γ ⇒ Δ (⊥L).

The inference rules of TInqQL2 are the following:

0 : P(t1, . . . , tn), Γ ⇒ Δ

1 : P(t1, . . . , tn), 2 : P(t1, . . . , tn), Γ ⇒ Δ
(Atom L)

1 : A, 2 : A, Γ ⇒ Δ

0 : A, Γ ⇒ Δ
(Move)

α : A, α : B, Γ ⇒ Δ

α : A ∧ B, Γ ⇒ Δ
(∧L)

Γ ⇒ Δ, α : A Γ ⇒ Δ, α : B
Γ ⇒ Δ, α : A ∧ B

(∧R)

α : A, Γ ⇒ Δ α : B, Γ ⇒ Δ

α : A ∨ B, Γ ⇒ Δ
(∨L)

Γ ⇒ Δ, α : A, α : B
Γ ⇒ Δ, α : A ∨ B

(∨R)
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Γ ⇒ Δ, α : A
α : ¬A, Γ ⇒ Δ

(¬L)
α : A, Γ ⇒ Δ

Γ ⇒ Δ, α : ¬A
(¬R1,2) where α � 0

1 : A, Γ ⇒ Δ 2 : A, Γ ⇒ Δ

Γ ⇒ Δ, 0 : ¬A
(¬R0)

Γ ⇒ Δ, α : A α : B, Γ ⇒ Δ

α : A→ B, Γ ⇒ Δ
(→ L)

α : A, Γ ⇒ Δ, α : B
Γ ⇒ Δ, α : A→ B

(→ R1,2) where α � 0

0 : A, Γ ⇒ Δ, 0 : B 1 : A, Γ ⇒ Δ, 1 : B 2 : A, Γ ⇒ Δ, 2 : B
Γ ⇒ Δ, 0 : A→ B

(→ R0)

α : A[t/x], Γ ⇒ Δ

α : ∀ x. A, Γ ⇒ Δ
(∀L)

Γ ⇒ Δ, α : A[z/x]
Γ ⇒ Δ, α : ∀ x. A

(∀R)†

α : A[z/x], Γ ⇒ Δ

α : ∃ x. A, Γ ⇒ Δ
(∃L)†

Γ ⇒ Δ, α : A[t/x]
α : Γ ⇒ Δ,∃ x. A

(∃R)

Γ ⇒ Δ, α : A α : A, Γ ⇒ Δ

Γ ⇒ Δ
(Cut)

where † means the eigenvariable condition: z does not occur in the conclusion. The
tree-sequent calculus cutfreeTInqQL2 is obtained by dropping (Cut) from TInqQL2.
Whenever a tree-sequent Γ ⇒ Δ is provable in TInqQL2 (or, in cutfreeTInqQL2), we
write TInqQL2 � Γ ⇒ Δ (or, cutfreeTInqQL2 � Γ ⇒ Δ, respectively).

4.1 Completeness of Tree-Sequent Calculus

In this subsection, we show that the tree-sequent calculus cutfreeTInqQL2 is sufficient
to prove all formulas that are valid in Mall.

In the following, Γ, Δ are possibly infinite in the expression Γ ⇒ Δ of a tree-sequent.
In the case where Γ, Δ are all finite, the tree-sequentΓ ⇒ Δ said to be finite. A (possibly
infinite) tree-sequentΓ ⇒ Δ is provable in cutfreeTInqQL2, if cutfreeTInqQL2 � Γ′ ⇒
Δ′ for some finite tree-sequent Γ′ ⇒ Δ′ such that Γ′ ⊆ Γ and Δ′ ⊆ Δ. In what follows,
we extend our notation cutfreeTInqQL2 � Γ ⇒ Δ to cover any possibly infinite tree-
sequent in the sense explained above.

Definition 6. A tree-sequent Γ ⇒ Δ is saturated if it satisfies the following:

(consistency) (i) If α : A ∈ Γ, then α : A � Δ, (ii) α : ⊥ � Γ.
(persistence condition) If 0 : A ∈ Γ, then 1 : A ∈ Γ and 2 : A ∈ Γ.
(atom l) If 1 : P(t1, . . . , tn) ∈ Γ and 2 : P(t1, . . . , tn) ∈ Γ, then 0 : P(t1, . . . , tn) ∈ Γ.
(∧l) If α : A ∧ B ∈ Γ, then α : A ∈ Γ and α : B ∈ Γ.
(∧r) If α : A ∧ B ∈ Δ, then α : A ∈ Δ or α : B ∈ Δ.
(∨l) If α : A ∨ B ∈ Γ, then α : A ∈ Γ or α : B ∈ Γ.
(∨r) If α : A ∨ B ∈ Δ, then α : A ∈ Δ and α : B ∈ Δ.
(¬l) If α : ¬A ∈ Γ, then α : A ∈ Δ.
(¬r1,2) If α : ¬A ∈ Δ and α � 0, then α : A ∈ Γ.
(¬r0) If 0 : ¬A ∈ Δ, then 1 : A ∈ Γ or 2 : A ∈ Γ.
(→l) If α : A→ B ∈ Γ, then α : A ∈ Δ or α : B ∈ Γ.
(→r1,2) If α : A→ B ∈ Δ and α � 0, then α : A ∈ Γ and α : B ∈ Δ.
(→r0) If 0 : A→ B ∈ Δ, then (α : A ∈ Γ and α : B ∈ Δ) for some α ∈ { 0, 1, 2 }.
(∀l) If α : ∀ x. A ∈ Γ, then α : A[t/x] ∈ Γ for any term t.
(∀r) If α : ∀ x. A ∈ Δ, then α : A[z/x] ∈ Δ for some variable z.
(∃l) If α : ∃ x. A ∈ Γ, then α : A[z/x] ∈ Γ for some variable z.
(∃r) If α : ∃ x. A ∈ Δ, then α : A[t/x] ∈ Δ for any term t.
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Lemma 9. If a finite tree-sequent Γ ⇒ Δ is not provable in cutfreeTInqQL2, then there
exists a saturated tree-sequent Γ+ ⇒ Δ+ such that Γ ⊆ Γ+ and Δ ⊆ Δ+ and Γ+ ⇒ Δ+ is
not provable in cutfreeTInqQL2.

The proof of this lemma can be found in Appendix A. Each node α of a tree-sequent
Γ ⇒ Δ is associated with a sequent Γα ⇒ Δα where Γα (or, Δα) is the set of formulas
such that α : A ∈ Γ (or, α : A ∈ Δ, respectively). We define a translation of tree-sequents
into formulas of L. In the following definition, tree-sequents are all finite. Let Γ ⇒ Δ
be a tree-sequent and s, t be fresh propositional variables in Γ ⇒ Δ. The formulaic
translation �Γ ⇒ Δ� is defined as (note that the following formulaic translation depends
on the choice of s and t):

�Γ ⇒ Δ� ≡
∧
Γ0 →

(
(s ∨ t) ∨

∨
Δ0 ∨ �Γ ⇒ Δ�1 ∨ �Γ ⇒ Δ�2

)
where:

�Γ ⇒ Δ�1 ≡ s ∧
∧
Γ1 → t ∨

∨
Δ1; �Γ ⇒ Δ�2 ≡ t ∧

∧
Γ2 → s ∨

∨
Δ2.

An idea behind fresh s and t is to name three pairwise subsets (corresponding to 0,
1, 2 in our fixed tree) in an inquisitive model. Recall that Mint is the class of all intended
inquisitive models.

Theorem 3. If Mint |= �Γ ⇒ Δ�, then cutfreeTInqQL2 � Γ ⇒ Δ. Therefore, if Mall |=
�Γ ⇒ Δ�, then cutfreeTInqQL2 � Γ ⇒ Δ.

Proof. It suffices to establish the first part. We show the contrapositive implication of it.
Assume that Γ ⇒ Δ is unprovable in cutfreeTInqQL2. Then, by Lemma 9, there exists
some saturated tree-sequent Γ+ ⇒ Δ+ such that 0 : A ∈ Δ+ and cutfreeTInqQL2 �

Γ+ ⇒ Δ+. Define D = { t | t is a term of L }. We define an interpretation I of constant
symbols on D by I (c) := c and an assignment g by g(x) = x. Let us define the following
two first-order classical structure A1 and A2: |A1| = |A2| = D, cA1 = cA2 = I (c), PA1 =

{ 〈 t1, . . . , tn 〉 | 1 : P(t1, . . . , tn) ∈ Γ+ }, PA2 = { 〈 t1, . . . , tn 〉 | 2 : P(t1, . . . , tn) ∈ Γ+ }. Now
we show by induction on X of L that:

– (i) If 0 : X ∈ Γ+ then {A1,A2 }, g |= X; (ii) If 0 : X ∈ Δ+ then {A1,A2 }, g �|= X.
– (iii) If α : X ∈ Γ+ and α � 0, then {Aα }, g |= X; (iv) If α : X ∈ Δ+ and α � 0, then
{Aα }, g �|= X.

Here we consider only the cases where X is of the form P(t1, . . . , tn) and of the form
∀ x. B (for the cases X is of the form ¬B and of the form B→ C, the reader can find an
essential argument in the proof of [4, Theorem 1]).
(The case where X is of the form P(t1, . . . , tn)) We only show the cases (i) and (ii). (i)
Suppose that 0 : P(t1, . . . , tn) ∈ Γ+. Since Γ+ ⇒ Δ+ is saturated, 1 : P(t1, . . . , tn), 2 :
P(t1, . . . , tn) ∈ Γ+ by (persistence condition). So, 〈 t1, . . . , tn 〉 ∈ PA1 and 〈 t1, . . . , tn 〉 ∈
PA2 . Since g(t) = t, we can deduce that {A1,A2 }, g |= P(t1, . . . , tn). (ii) Suppose that
0 : P(t1, . . . , tn) ∈ Δ+. Since cutfreeTInqQL2 � Γ

+ ⇒ Δ+ and Γ+ ⇒ Δ+ is saturated, 0 :
P(t1, . . . , tn) � Γ+ by (consistency). 0 : P(t1, . . . , tn) � Γ+ means that 1 : P(t1, . . . , tn) �
Γ+ or 2 : P(t1, . . . , tn) � Γ+ by (atoml). So, 〈 t1, . . . , tn 〉 � PA1 or 〈 t1, . . . , tn 〉 � PA2 .
Therefore, by g(t) = t, {A1,A2 }, g |= P(t1, . . . , tn), as desired.
(The case where X is of the form ∀ x. B) We only show the cases (i) and (ii). (i)
Suppose that 0 : ∀ x. B ∈ Γ+. Since Γ+ ⇒ Δ+ is saturated, 0 : B[t/x] ∈ Γ+ for any
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term t by (∀l). By the induction hypothesis, we have: for any term t, {A1,A2 }, g |=
B[t/x], i.e., {A1,A2 }, g(x|t) |= B. Therefore, {A1,A2 }, g |= ∀ x. B. (ii) Suppose that
0 : ∀ x. B ∈ Δ+. Since Γ+ ⇒ Δ+ is saturated, 0 : B[z/x] ∈ Δ+ for any some variable z by
(∀r). By the induction hypothesis, we have: for some variable z, {A1,A2 }, g |= B[z/x],
i.e., {A1,A2 }, g(x|z) |= B. Therefore, {A1,A2 }, g �|= ∀ x. B.

Let us choose fresh s and t in Γ+ ⇒ Δ+ for �Γ ⇒ Δ� and expand our model above
so that s is true only under A1 and t is true only under A2. Then, we can conclude that
�Γ ⇒ Δ� is not valid in Mint by construction of our model and (i) - (iv) above. ��

4.2 Cut-Elimination Theorem and Soundness of Tree-Sequent Calculus

In this subsection, we establish that TInqQL2 (i.e., cutfreeTInqQL2 with (Cut)) enjoys
a cut-elimination theorem and that it is sound with respect to the class Mall of all inquis-
itive models.

Lemma 10. If TInqQL2 � Γ ⇒ Δ, then Mall |= �Γ ⇒ Δ�.

The proof of this lemma can be found in Appendix B.

Theorem 4. If TInqQL2 � Γ ⇒ Δ, then cutfreeTInqQL2 � Γ ⇒ Δ.

Proof. It follows from Lemma 10 and Theorem 3. ��

In order to establish the soundness through our formulaic translation with fresh vari-
ables, we need to show the following, which lets us use the fresh propositional variables
s and t to name three pairwise subsets (corresponding to 0, 1, 2 in our fixed tree) in an
inquisitive model.

Lemma 11. If Mall |= (s ∨ t) ∨ A ∨ (s→ t) ∨ (t→ s), then Mall |= A, where s and t are
fresh in A.

Proof. Assume Mall �|= A. By Proposition 3 (iv), there exists some inquisitive modelM
= 〈W,D,V 〉, some w, v ∈ W and some assignment g such that w � v and #W ≥ 2 and
{w, v }, g �|=M A. Let V ′ be the same valuation as V except that s is true only at w and t
is true only at v under V ′. WriteM′ = 〈W,D,V ′ 〉. Then, s, g |=M B iff s, g |=M′ B, for
any s ⊆ {w, v } and any subformula B of A. Thus, {w, v }, g �|=M′ A. By definition of V ′,
{w, v }, g �|=M′ (s ∨ t) ∨ A ∨ (s→ t) ∨ (t→ s), as required. ��

Theorem 5. If TInqQL2 �⇒ 0 : A, then Mall |= A.

Proof. By Lemma 10, �⇒ 0 : A� is valid in Mall, i.e., (s ∨ t) ∨ A ∨ (s→ t) ∨ (t → s) is
valid in Mall. It follows from Lemma 11 that A is valid in Mall. ��

5 Conclusion

Corollary 2. All of the following are equivalent: (i) cutfreeTInqQL2 � ⇒ 0 : A; (ii)
TInqQL2 � ⇒ 0 : A; (iii) Mall |= A; (iv) Mint |= A; (v) VI � A; (vi) QLV+ � A.
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Proof. By Corollary 1, we establish the equivalence among (iii), (iv), (v) and (vi) (put
Γ = ∅). By Theorem 3, (iii)⇒ (i). Trivially, (i)⇒ (ii). By Theorem 5, (ii)⇒ (iii). ��

Our proof process for Corollary 2 also reveals that TInqQL2 corresponds to QLV+

extended with the following non-standard proof rule: From (s∨t)∨A∨(s→ t)∨(t→ s),
we may infer A, where s and t are fresh propositional variables in A. One of the main
causes of such logical phenomena consists in the fact that we use the fixed tree T ,
unlike the previous studies [12,9] which employ ‘growing’ tree-sequents. Therefore,
this study also contributes to witness a logical connection between labelled deductive
systems with a fixed set of labels and Hilbert-style axiomatizations with non-standard
proof-rules5,6.
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A A Proof of Lemma 9

Proof. The idea of this proof is essentially the same as in the proof of [4, Lemma 1].
The difference is: we need to care about ∀ and ∃. So, we basically concentrate on stating
the difference from the proof of [4, Lemma 1] below. Suppose that a finite tree-sequent
Γ ⇒ Δ is not provable in cutfreeTInqQL2. In the following, we construct a sequence
(Γi ⇒ Δi)i∈ω of finite tree-sequents and obtain Γ+ ⇒ Δ+ as the union of them.

Let (αi : Fi)i>1 be an enumeration of all labelled formulas such that each formula of
L appears infinitely many times. We also enumerate all variables as (xi)i∈ω and all terms
as (ti)i∈ω. From now on, we construct (Γi ⇒ Δi)i∈ω such that cutfreeTInqQL2 � Γ

i ⇒ Δi.
(Basis) Let Γ0 ⇒ Δ0 ≡ Γ ⇒ Δ. By assumption, cutfreeTInqQL2 � Γ

0 ⇒ Δ0. (Inductive
step) Suppose that we have already defined Γk−1 ⇒ Δk−1 such that cutfreeTInqQL2 �

Γk−1 ⇒ Δk−1. In this k-th step, we define Γk ⇒ Δk so that unprovability of the tree-
sequent is preserved. The operations executed in the k-th step are as follows: First, for
any 0 : A ∈ Γk, we add 1 : A and 2 : A to Γk−1. Unprovability is preserved because of
the rule (Move). We denote the result of this step by (Γk−1)′ ⇒ Δk−1. Second, according
to the form of αk : Fk, one of the following operation is executed:

(1) The case where Fk ≡ P(t1, . . . , tn) and αk � 0 and αk : Fk ∈ (Γk−1)′. Define:

Γk ⇒ Δk ≡
⎧
⎪⎪⎨
⎪⎪⎩

0 : P(t1, . . . , tn), (Γk−1)′ ⇒ Δk−1 if (3 − αk) : P(t1, . . . , tn) ∈ (Γk−1)′;

(Γk−1)′ ⇒ Δk−1 o.w.

Unprovability is preserved because of (Atom L).
(2) The case where Fk ≡ A ∧ B and αk : Fk ∈ (Γk−1)′. See [4].
(3) The case where Fk ≡ A ∧ B and αk : Fk ∈ Δk−1. See [4].
(4) The case where Fk ≡ A ∨ B and αk : Fk ∈ (Γk−1)′. Similar to (3).
(5) The case where Fk ≡ A ∨ B and αk : Fk ∈ Δk−1. Similar to (2).
(6) The case where Fk ≡ ¬A and αk : Fk ∈ (Γk−1)′. See [4].
(7) The case where Fk ≡ ¬A and αk : Fk ∈ Δk−1. See [4].
(8) The case where Fk ≡ A→ B and αk : Fk ∈ (Γk−1)′. See [4].
(9) The case where Fk ≡ A→ B and αk : Fk ∈ Δk−1. See [4].

(10) The case where Fk ≡ ∀ x. A and αk : Fk ∈ (Γk−1)′. Define Γk ⇒ Δk ≡ αk : A[t0/x],
. . . , αk : A[tk−1/x], (Γk−1)′ ⇒ Δk. Unprovability is preserved because of (∀L).

(11) The case where Fk ≡ ∀ x. A and αk : Fk ∈ Δk−1. Take a fresh variable z, and define
Γk ⇒ Δk ≡ (Γk−1)′ ⇒ Δk, αk : A[z/x]. Unprovability is preserved because of (∀R).

(12) The case where Fk ≡ ∃ x. A and αk : Fk ∈ (Γk−1)′. Similar to (11).
(13) The case where Fk ≡ ∃ x. A and αk : Fk ∈ Δk−1. Similar to (10).
(14) Otherwise. It suffices to define Γk ⇒ Δk ≡ (Γk−1)′ ⇒ Δk−1.

Now let Γ+ ⇒ Δ+ be (
⋃

i∈ω Γ
i) ⇒ (

⋃
i∈ω Δ

i). It is easy to verify that the tree-sequent
Γ+ ⇒ Δ+ is saturated. ��
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B A Proof of Lemma 10

By induction on the derivation of Γ ⇒ Δ in TInqQL2. First, let us choose some fresh
propositional variables s, t not occurring in the derivation. We assume that all formulaic
translations in this proof depend on s and t. All cases in our induction immediately
follow from the following Lemmas 12 and 13. We can easily establish Lemma 12 by
definition of �Γ ⇒ Δ�.

Lemma 12. If Mall |= �Γ ⇒ Δ�α for some α ∈ { 1, 2 }, then Mall |= �Γ ⇒ Δ�.

Lemma 13. The following formulas are valid in Mall.
(ax) A ∧C → A ∨ D.
(⊥left) ⊥ ∧ C → D.
(atom left) X1 → X2, where:

X1 ≡ P(
−→
ti )→ (S ∨ T ) ∨ D ∨ (S ∧ E → T ∨ F) ∨ (T ∧G → S ∨ H);

X2 ≡ (S ∨ T ) ∨ D ∨ (P(−→ti ) ∧ S ∧ E → T ∨ F) ∨ (P(−→ti ) ∧ T ∧G → S ∨ H).
(move) ((E ∧ A→ F) ∨ (G ∧ A→ H))→ (A→ (E → F) ∨ (G → H)).
(∧right) (C → D ∨ A) ∧ (C → D ∨ B)→ (C → (D ∨ (A ∧ B))).
(∨left) (A ∧ C → D) ∧ (B ∧C → D)→ (((A ∨ B) ∧C)→ D).
(¬left) (C → D ∨ A)→ (¬A ∧C → D).
(¬right1,2) (C ∧ A→ D)→ (C → D ∨ ¬A).
(¬right0) X3 ∧ X4 → X5, where:

X3 ≡ (S ∨ T ) ∨ D ∨ (S ∧ E ∧ A→ F ∨ T ) ∨ (T ∧G → S ∨ H);
X4 ≡ (S ∨ T ) ∨ D ∨ (S ∧ E → F ∨ T ) ∨ (T ∧G ∧ A→ S ∨ H);
X5 ≡ (S ∨ T ) ∨ ¬A ∨ D ∨ (S ∧ E → F ∨ T ) ∨ (T ∧G → S ∨ H).

(→ left) (C → D ∨ A) ∧ (C ∧ B→ D)→ (C ∧ (A→ B)→ D).
(→ right1,2) (C ∧ A→ D ∨ B)→ (C → (D ∨ (A→ B))).
(→ right0) (X6 ∧ X7 ∧ X8)→ X9, where:

X6 ≡ A→ ((S ∨ T ) ∨ D ∨ B ∨ (S ∧ E → T ∨ F) ∨ (T ∧G → S ∨ H));
X7 ≡ (S ∨ T ) ∨ D ∨ (S ∧ E ∧ A→ T ∨ F) ∨ (T ∧G → S ∨ H);
X8 ≡ (S ∨ T ) ∨ D ∨ (S ∧ E → T ∨ F) ∨ (T ∧G ∧ A→ S ∨ H);
X9 ≡ (S ∨ T ) ∨ (A→ B) ∨ D ∨ (S ∧ E → T ∨ F) ∨ (T ∧G → S ∨ H).

(∀left) (C ∧ A[t/x]→ D)→ (C ∧ ∀ x. A→ D).
(∀right) (C → D ∨ A[z/x])→ (C → D ∨ ∀ x. A), where z is fresh in C, D and ∀ x. A.
(∃left) (C ∧ A[z/x]→ D)→ (C ∧ ∃ x. A→ D), where z is fresh in C, D and ∃ x. A.
(∃right) (C → D ∨ A[t/x])→ (C → D ∨ ∃ x. A).
(cut) (C → D ∨ A) ∧ (C ∧ A→ D)→ (C → D).

Proof. Formulas except (atom left), (¬ right0) and (→ right0) are all theorems of first-
order intuitionistic logic with CD (we need CD for (∀ right)). Therefore, they are all
valid in Mall. So, it suffices to check (atom left), (¬ right0) and (→ right0). The essential
arguments for these are the same as in the propositional case [4, p.373, Lemma 3]. ��
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Abstract. We show that any model A can be extended, in a canonical
way, to a model βA consisting of ultrafilters over it. The extension proce-
dure preserves homomorphisms: any homomorphism of A into B extends
to a continuous homomorphism of βA into βB. Moreover, if a model B

carries a compact Hausdorff topology which is (in a certain sense) com-
patible, then any homomorphism of A into B extends to a continuous
homomorphism of βA into B. This is also true for embeddings instead
of homomorphisms.

We present a result in general model theory. We show that any model can be
extended, in a canonical way, to the model (of the same language) consisting
of ultrafilters over it such that the extended model inherits the universality
property of the largest compactification.

Recall standard facts concerning topology of ultrafilters. The set βX of ultra-
filters over a set X carries a natural topology generated by elementary (cl)open
sets of form

S̃ = {u ∈ βX : S ∈ u}
for all S ⊆ X . The space βX is compact Hausdorff, extremally disconnected (the
closure of any open set is open), and in fact, the Stone–Čech (and also Wallman)
compactification of the discrete space X , i.e. its largest compactification. This
means that X is dense in βX (one lets X ⊆ βX by identifying each x ∈ X
with the principal ultrafilter x̂), and any continuous mapping h of X into any
compact space Y can be uniquely extended to a continuous mapping h̃ of βX
into Y . There is a one-to-one correspondence between filters over X and closed
subsets of βX (a filter D corresponds to {u ∈ βX : D ⊆ u} while a closed
C ⊆ βX corresponds to

⋂
C); in fact, the compactness of βX is equivalent to

the claim that {u ∈ βX : D ⊆ u} is nonempty for each D and thus unprovable
in ZF alone (see [5]).

We show that if F, . . . , P, . . . are operations and relations on X , there is a canon-
ical way to extend them to operations and relations F̃ , . . . , P̃ , . . . on βX , thus ex-
tending the model A = (X, F, . . . , P, . . .) to the model βA = (βX, F̃ , . . . ,
P̃ , . . .). We show that the extension procedure preserves homomorphisms: if h is
a homomorphism of A into B, then h̃ is a homomorphism of βA into βB. Moreover,
if B carries a compact Hausdorff topology which is compatible in a certain sense,
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and h is a homomorphism of A into B, then h̃ is a homomorphism of βA into B;
thus extended models inherit the universality property of the Stone–Čech (or Wall-
man) compactification. We note also that both facts remain true if one replaces
homomorphisms by embeddings or some other relationships between models.

The construction, although it looks old and should be known, did not ap-
pear before, except one very particular case when models are semigroups [1].1

The reader can also consult on semigroups of ultrafilters and their applications
in various areas (number theory, algebra, dynamics, ergodic theory) in [2]; an
analogous technique for non-associative groupoids and some infinitary general-
izations are discussed in [3].

Definition of extensions. The first main theorem

Here we define the extensions of models by ultrafilters. Then we establish our first
main result showing that the extension procedure preserves homomorphisms.

To extend a model A = (X, F, . . . , P, . . .), we extend operations F, . . . on X ,
i.e. mappings of Cartesian products of X into X itself, and relations P, . . . on X ,
i.e. subsets of such products. Let us provide a slightly more general definition
involving n-ary mappings of X1 × . . . × Xn into Y , and n-ary relations that
are subsets of X1 × . . . × Xn. We shall use it e.g. when we shall show that any
mapping h of a certain type between models extends to h̃ of the same type.

Definition 1. Given an n-ary mapping F : X1 × . . .×Xn → Y , let F̃ : βX1 ×
. . .× βXn → βY be defined as follows:

F̃ (u1, . . . , un) ={
S ⊆ Y : {x1 ∈ X1 : . . . {xn ∈ Xn : F (x1, . . . , xn) ∈ S} ∈ un . . .} ∈ u1

}
for every u1 ∈ βX1, . . . , un ∈ βXn.

Lemma 2. For all z1 ∈ X1 and u2 ∈ βX2, . . . , un ∈ βXn,{
x1 :

{
x2 : . . . {xn : F (x1, x2, . . . , xn) ∈ S} ∈ un . . .

}
∈ u2

}
∈ ẑ1

iff
{
x2 : . . . {xn : F (z1, x2, . . . , xn) ∈ S} ∈ un . . .

}
∈ u2 .

Proof. Clear.

Proposition 3. If F : X1 × . . . × Xn → Y , then F̃ : βX1 × . . . × βXn → βY .
Moreover, the restriction of F̃ on dom (F ) is F .

Proof. By definition, dom (F̃ ) = βX1 × . . . × βXn, and a standard argument
shows that values of F̃ are ultrafilters. It follows from Lemma 2 that for all
z1 ∈ X1, . . . , zn ∈ Xn,{

x1 : . . . {xn : F (x1, . . . , xn) ∈ S} ∈ ẑn . . .
}
∈ ẑ1 ↔ F (z1, . . . , zn) ∈ S,

and therefore,

F̃ (ẑ1, . . . , ẑn) = ŷ whenever F (z1, . . . , zn) = y,

and thus F̃ extends F up to identification of x and x̂.
1 See also Remark at the end of the paper.
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Let us discuss the construction.
First, in the unary case, an F : X → Y extends to F̃ : βX → βY by

F̃ (u) =
{
S ⊆ Y : {x ∈ X : F (x) ∈ S} ∈ u

}
.

This gives the standard unique continuous extension of F . Indeed, it is easy to
see that F̃ is continuous, and continuous extensions agreeing on a dense subset
coincide.

Next, consider the binary case. F : X1×X2 → Y extends to F̃ : βX1×βX2 →
βY by

F̃ (u1, u2) =
{
S ⊆ Y : {x1 ∈ X1 : {x2 ∈ X2 : F (x1, x2) ∈ S} ∈ u2} ∈ u1

}
.

This can be considered as the extension fulfilled in two steps: first one extends
left translations, then right ones. In the extended F , all right translations are
continuous; in other words, the groupoid (βX, F̃ ) is right topological . Moreover,
all left translations by principal ultrafilters are continuous, and such an extension
is unique.

The extensions of mappings of arbitrary arity have analogous topological prop-
erties: If F : X1×. . .×Xn → Y and 1 ≤ i ≤ n, then for every x1 ∈ X1, . . . , xi−1 ∈
Xi−1 and ui+1 ∈ βXi+1, . . . , un ∈ βXn, the mapping

u �→ F̃ (x̂1, . . . , x̂i−1, u, ui+1, . . . , un)

of βXi into βY is continuous, moreover, F̃ is a unique such extension of F .
A proof of this fact will be done in the next section (Lemma 13).

Definition 4. Given P ⊆ X1 × . . .×Xn, let P̃ be defined as follows:

〈u1, . . . , un〉 ∈ P̃ iff{
x1 ∈ X1 : . . . {xn ∈ Xn : 〈x1, . . . , xn〉 ∈ P} ∈ un . . .

}
∈ u1

for every u1 ∈ βX1, . . . , un ∈ βXn.

Proposition 5. If P ⊆ X1 × . . . ×Xn, then P̃ ⊆ βX1 × . . . × βXn. Moreover,
P̃ ∩ (X1 × . . .×Xn) is P .

Proof. By Lemma 2.

Let us discuss the construction.
If P is a unary relation on X , P ⊆ X , one has

u ∈ P̃ iff P ∈ u.

(The definition involves n-tuples; a 1-tuple 〈x〉 is just x.) Thus P̃ is an elementary
open set of βX ; the extensions of all unary relations on X form the standard
open basis of the topology of βX . As we noted, the P̃ are in fact clopen.

If P is a binary relation, P ⊆ X1 ×X2, one has

〈u1, u2〉 ∈ P̃ iff
{
x1 ∈ X1 : {x2 ∈ X2 : 〈x1, x2〉 ∈ P} ∈ u2

}
∈ u1.
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There is an easier way to say the same. Let 〈 〉̃ denote the extension of the pairing
function 〈 〉 (cf. Definition 11.1 in Hindman–Strauss’ book, there 〈 〉̃ is denoted
by ⊗ and referred as a “tensor product”; another name that is used is a “Fubini
product”). Then

〈u1, u2〉 ∈ P̃ iff P ∈ 〈u1, u2〉̃.
This formula displays a similarity to the formula with unary P explicitly.

As for topological properties of extended binary relations, it is easy to see
that for any x1 ∈ X1 and u2 ∈ βX2, the set {u1 ∈ βX1 : 〈u1, u2〉 ∈ P̃} is clopen
in βX1, and the set {u2 ∈ βX2 : 〈x̂1, u2〉 ∈ P̃} is clopen in βX2.

Likewise, if 〈 〉̃ denotes the extension of taking n-tuples, one gets the following
redefinition:

Proposition 6. Let P ⊆ X1 × . . .×Xn. Then for all u1 ∈ βX1, . . . , un ∈ βXn,

〈u1, . . . , un〉 ∈ P̃ iff P ∈ 〈u1, . . . , un〉̃ .

Proof. Clear.

The extensions of relations of arbitrary arity have analogous topological prop-
erties: If P ⊆ X1 × . . . × Xn and 1 ≤ i ≤ n, then for every x1 ∈ X1, . . . , xi−1 ∈
Xi−1 and ui+1 ∈ βXi+1, . . . , un ∈ βXn, the subset

{u ∈ βXi : 〈x̂1, . . . , x̂i−1, u, ui+1, . . . , un〉 ∈ P̃}

of βXi is clopen. A proof of this fact is also postponed to the next section
(Lemma 17).

Remark. It is worth to note that, strictly speaking, the symbol ˜ carries an ambi-
guity (although the context usually leaves no doubts). First, given a relation P ,
one gets distinct extensions P̃ depends on its implicit arity. Say, let P ⊆ X×X .
If P is regarded as a binary relation on X , then P̃ is a binary relation on βX ,
while if P is considered as a unary relation on X×X , then P̃ is a unary relation
on β(X×X). Similarly for extensions of mappings. Second, the same object can
have distinct extensions when regarded as a function or as a relation. Say, let
P be a binary relation that is a function, and let FP denote this unary function.
If FP is an injection, then P̃ and F̃P do not coincide: P̃ = P , while F̃P �= FP

whenever βX �= X .
This case near characterizes relations coinciding with their extensions. Let us

say that a relation P is almost injective iff for any i and all fixed x1, . . . , xi−1,
xi+1, . . . , xn, the set

Px1,...,xi−1,xi+1,...,xn = {xi : 〈x1, . . . , xn〉 ∈ P}

is finite. Note that a unary relation is almost injective iff it is finite. Then it
can be shown that P̃ = P iff P is almost injective. The ‘only if’ part assumes
that any infinite set carries a non-principal ultrafilter, which is weaker than the
compactness of βX but still unprovable in ZF. The result can be restated in
ZF alone if we redefine almost injective relations by replacing “is finite” with
“carries no ultrafilter” (in ZFC the definitions coincide, while in any model
without ultrafilters all relations are almost injective).
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Lemma 7. Let h1 : X1 → Y1, . . . , hn : Xn → Yn, and G : Y1 × . . . × Yn → Z.
For all S ⊆ Z and u1 ∈ βX1, . . . , un ∈ βXn, the following are equivalent:

S ∈ G̃(h̃1(u1), . . . , h̃n(un)) ,{
y1 ∈ Y1 : . . . {yn ∈ Yn : G(y1, . . . , yn) ∈ S} ∈ h̃n(un) . . .

}
∈ h̃1(u1) ,{

x1 ∈ X1 : . . . {xn ∈ Xn : G(h1(x1), . . . , hn(xn)) ∈ S} ∈ un . . .
}
∈ u1 .

Proof. The first and the second formulas are equivalent by definition of F̃ .
That the second and the third formulas are equivalent can be proved by

a straightforward induction on n. First one gets{
y1 : . . . {yn : G(y1, . . . , yn) ∈ S} ∈ h̃1(un) . . .

}
∈ h̃1(u1)

iff
{
x1 : h1(x1) ∈ {y1 : . . . {yn : G(y1, . . . , yn) ∈ S} ∈ h̃n(un) . . .}

}
∈ u1

iff
{
x1 : {y2 : . . . {yn : G(h1(x1), y2, . . . , yn) ∈ S}∈ h̃n(un) . . .}∈ h̃2(u2)

}
∈u1 .

Then similarly{
y2 : . . . {yn : G(h1(x1), y2, . . . , yn) ∈ S} ∈ h̃n(un) . . .

}
∈ h̃2(u2)

iff
{
x2 : . . . {yn : G(h1(x1), h2(x2), . . . , yn) ∈ S} ∈ h̃n(un) . . .

}
∈ u2 ,

etc. After n steps we obtain the required equivalence.

Corollary 8. The following are equivalent:

〈h̃1(u1), . . . , h̃n(un)〉̃ ∈ P̃ ,

P ∈ 〈h̃1(u1), . . . , h̃n(un)〉̃ ,

{x1 : . . . {xn : 〈x1, . . . , xn〉 ∈ P} ∈ h̃n(un) . . .} ∈ h̃1(u1),
{x1 : . . . {xn : 〈h1(x1), . . . , hn(xn)〉 ∈ P} ∈ un . . .} ∈ u1.

Proof. The first and the second formulas are equivalent by Proposition 6, while
the second and two last formulas are equivalent by Lemma 7 with 〈 〉 as G.

Definition 9. Given a model A = (X, F, . . . , P, . . .), let βA denote the extended
model (βX, F̃ , . . . , P̃ , . . .).

As a corollary of Lemma 7, we get that continuous extensions of homomorphisms
are homomorphisms.

Theorem 10 (The First Main Theorem). Let A and B be two models. If
h is a homomorphism of A into B, then h̃ is a homomorphism of βA into βB.

Proof. Let A = (X, F, . . . , P, . . .) and B = (Y, G, . . . , Q, . . .).
Operations. As h is a homomorphism of (X, F ) into (Y, G), we have for all

x1, . . . , xn ∈ X ,

h(F (x1, . . . , xn)) = G(h(x1), . . . , h(xn)).
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Then by Lemma 7, for all u1, . . . , un ∈ βX ,

h̃(F̃ (u1, . . . , un))

=
{
S : {x1 : . . . {xn : h(F (x1, . . . , xn)) ∈ S} ∈ un . . .} ∈ u1

}
=
{
S : {x1 : . . . {xn : G(h(x1), . . . , h(xn)) ∈ S} ∈ un . . .} ∈ u1

}
= G̃(h̃(u1), . . . , h̃(un)),

thus h̃ is a homomorphism of (βX, F̃ ) into (βY, G̃).
Relations. As h is a homomorphism of (X, P ) into (Y, Q), we have for all

x1, . . . , xn ∈ X ,

〈x1, . . . , xn〉 ∈ P implies 〈h(x1), . . . , h(xn)〉 ∈ Q.

We must verify that for all u1, . . . , un ∈ βX ,

〈u1, . . . , un〉 ∈ P̃ implies 〈h̃(u1), . . . , h̃(un)〉 ∈ Q̃,

thus
{
x1 : . . . {xn : 〈x1, . . . , xn〉 ∈ P} ∈ un} . . .

}
∈ u1 implies{

x1 : . . . {xn : 〈x1, . . . , xn〉 ∈ Q} ∈ h̃(un) . . .
}
∈ h̃(u1).

By Corollary 8, the latter formula is equivalent to{
x1 : . . . {xn : 〈h(x1), . . . , h(xn)〉 ∈ Q} ∈ un . . .

}
∈ u1.

That h is a homomorphism means just P ⊆ {〈x1, . . . , xn〉 : 〈h(x1), . . . , h(xn)〉 ∈
Q}. Therefore, the implication holds since u1, . . . , un are filters, thus h̃ is a ho-
momorphism of (βX, P̃ ) into (βY, Q̃).

Topological properties of extensions. The second main theorem

Here we describe specific topological structure of our extensions. Then we es-
tablish our second main result showing that the extensions are universal in the
class of models carrying a topology with similar properties.

We start from an explicit description of extensions of (unary) mappings to
arbitrary compact Hausdorff spaces.

Definition 11. If F : X → Y where Y is a compact Hausdorff topological
space, let F̃ : βX → Y be defined as follows:

F̃ (u) = v iff {v} =
⋂

A∈u

cl Y (F“ A).

It is routine to check that the intersection consists of a single point, so the
definition is correct, and that F̃ is a continuous extension of F , unique since
Y is Hausdorff.

If the compact space is βY , the ultrafilter F̃ (u) can be rewritten in a form
closer to that we known already.
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Lemma 12. If F : X → βY , then

F̃ (u) =
{
S ⊆ Y : {x ∈ X : F (x) ∈ S̃} ∈ u

}
.

Proof. It easily follows from the definition that

F̃ (u) = {S ⊆ Y : (∀A ∈ u) (∃x ∈ A) F (x) ∈ S̃}.

It remains to verify

(∀A ∈ u) (∃x ∈ A) F (x) ∈ S̃ iff {x ∈ X : F (x) ∈ S̃} ∈ u.

‘If’ uses the fact that u is a filter, while ‘only if’ uses that u is ultra.

In particular, if F : X → Y ⊆ βY with Y discrete, then F̃ in the sense of the
first definition coincide with F̃ in the sense of this new definition, thus witnessing
we do not abuse notation.

Lemma 13. Let F : X1 × . . . × Xn → Y . For each i, 1 ≤ i ≤ n, and for
every x1 ∈ X1, . . . , xi−1 ∈ Xi−1 and ui+1 ∈ βXi+1, . . . , un ∈ βXn, the mapping
F̃x1,...,xi−1,ui+1,...,un of βXi into βY defined by

u �→ F̃ (x1, . . . , xi−1, u, ui+1, . . . , un)

is continuous. Moreover, F̃ is the only such extension of F .

Proof. We shall show that F̃ can be constructed by fixing successively all but one
arguments and extending resulting unary functions. First we describe the con-
struction and verify that the constructed extension has the required continuity
properties. Then we verify that it coincides with F̃ .

Step 1. Fix all but the last arguments: x1 ∈ X1, . . . , xn−1 ∈ Xn−1, and put

fx1,...,xn−1(x) = F (x1, . . . , xn−1, x).

Thus fx1,...,xn−1 : Xn → Y . We extend it to f̃x1,...,xn−1 : βXn → βY and put

F1(x1, . . . , xn−1, u) = f̃x1,...,xn−1(u).

Thus F1 : X1× . . .×Xn−1×βXn → βY . It is obvious from the construction that
F1 is continuous in its last argument (since then it coincides with f̃x1,...,xn−1).
And it is continuous in any other of its arguments (since then its domain is
discrete).

Step 2. Fix all but the (n − 1)th arguments: x1 ∈ X1, . . . , xn−2 ∈ Xn−2,
un ∈ βXn, and put

fx1,...,xn−2,un(x) = F1(x1, . . . , xn−2, x, un).

Thus fx1,...,xn−2,un : Xn−1 → βY . We extend it to f̃x1,...,xn−2,un : βXn−1 → βY
and put

F2(x1, . . . , xn−2, u, un) = f̃x1,...,xn−2,un(u).
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Thus F2 : X1 × . . . × βXn−2 × βXn → βY . The mapping F2 is continuous in
its (n − 1)th argument (since then it coincides with f̃x1,...,xn−2,un). Moreover,
it is continuous in its nth argument whenever the fixed (n − 1)th argument is
in Xn−1 (since then it coincides with F1).

Arguing so, after n−1 steps we get Fn−1 : X1×βX2× . . .×βXn → βY , which
is continuous in its ith argument whenever any jth fixed argument is in Xj , for
all i, 1 ≤ i ≤ n, and all j < i.

Step n. Fix all but the first arguments: u2 ∈ βX2, . . . , un ∈ βXn, and put

fu2,...,un(x) = Fn−1(x, u2, . . . , un).

Thus fu2,...,un : X1 → βY . We extend it to f̃u2,...,un : βX1 → βY and put

Fn(u, u2, . . . , un) = f̃u2,...,un(u).

Thus Fn : βX1 × . . . × βXn → βY . The mapping Fn is continuous in its first
argument (since then it coincides with f̃u2,...,un). Moreover, it is continuous in
its ith argument whenever any jth fixed argument is in Xj , for all i, 1 ≤ i ≤ n,
and all j < i.

The uniqueness of such an extension follows from the uniquiness of continuous
extensions of unary mappings by induction.

It remains to verify that Fn coincides with F̃ . We have:

F1(x1, . . . , xn−1, un) = f̃x1,...,xn−1(un)

=
{
S : {x : fx1,...,xn−1(x) ∈ S} ∈ un

}
= F̃ (x̂1, . . . , x̂n−1, un).

Then

F2(x1, . . . , xn−2, un−1, un) = f̃x1,...,xn−2,un(un−1)

=
{
S : {xn−1 : fx1,...,xn−2,un(xn−1) ∈ S̃} ∈ un−1

}
=
{
S : {xn−1 : F1(x1, . . . , xn−2, xn−1, un) ∈ S̃} ∈ un−1

}
=
{
S : {xn−1 : f̃x1,...,xn−1(un) ∈ S̃} ∈ un−1

}
=
{
S : {xn−1 : {T : {x : fx1,...,xn−1(x) ∈ T } ∈ un} ∈ S̃} ∈ un−1

}
=
{
S : {xn−1 : S ∈ {T : {x : fx1,...,xn−1(x) ∈ T } ∈ un}} ∈ un−1

}
=
{
S : {xn−1 : {xn : fx1,...,xn−1(xn) ∈ S} ∈ un} ∈ un−1

}
= F̃ (x̂1, . . . , x̂n−2, un−1, un).

Likewise we get Fn(u1, . . . , un) = F̃ (u1, . . . , un), as required.

Remark. This description of continuity of extended mappings cannot be im-
proved. If some of u1, . . . , ui−1 is non-principal, then the mapping
F̃u1,...,ui−1,ui+1,...,un of βXi into βY defined by

u �→ F̃ (u1, . . . , ui−1, u, ui+1, . . . , un)
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is not necessarily continuous. E.g. let F be a usual (binary) addition of natural
numbers; then the mapping u �→ u1+̃u is discontinuous. Also for fixed only x1 ∈
X1, . . . , xi−1 ∈ Xi−1, the (n− i + 1)-ary mapping F̃x1,...,xi−1 of βXi × . . .×βXn

into βY defined by

〈ui, . . . , un〉 �→ F̃ (x1, . . . , xi−1, ui, . . . , un)

is not necessarily continuous. E.g. let F (x1, x2, x3) = x2+x3 and use the previous
observation.

To name shortly the established topological property of F̃ , let us introduce
a terminology.

Definition 14. Let X1, . . . , Xn, Y be topological spaces, and let C1 ⊆ X1, . . . , Cn

⊆ Xn. We shall say that an n-ary function F : X1×. . .×Xn → Y is right continu-
ous w.r.t. C1, . . . , Cn iff for each i, 1 ≤ i ≤ n, and every c1 ∈ C1, . . . , ci−1 ∈ Ci−1
and xi+1 ∈ Xi+1, . . . , xn ∈ Xn, the mapping

x �→ F (c1, . . . , ci−1, x, xi+1, . . . , xn)

of Xi into Y is continuous. If all the Ci coincide with, say C, we shall say that
F is right continuous w.r.t. C.

In particular, F is right continuous w.r.t. the empty set iff for any x2 ∈ X2, . . . ,
xn ∈ Xn, the mapping

x �→ F (x, x2, . . . , xn)

of X1 into Y is continuous. Clearly, a unary F is right continuous iff it is contin-
uous. If the operation is binary, the right continuity w.r.t. the empty set means
that all right translations are continuous, and usually referred as “right continu-
ity”, see e.g. [2]. If F is right continuous w.r.t. the whole X1, . . . , Xn, it is called
separately continuous .

The following proposition notes obvious properties of compositions of right
continuous functions.

Proposition 15. (i) Let F : X1 × . . .×Xn → Y be right continuous w.r.t. C1,
. . . , Cn, and let g : Y → Z be continuous. Then H : X1 × . . .×Xn → Z defined
by

H(x1, . . . , xn) = g(F (x1, . . . , xn))

is right continuous w.r.t. C1, . . . , Cn.
(ii) Let all f1 : X1 → Y1, . . . , fn : Xn → Yn be continuous, and let G : Y1× . . .×
Yn → Z be right continuous w.r.t. D1, . . . , Dn. Then H : X1 × . . . × Xn → Z
defined by

H(x1, . . . , xn) = F (h1(x1), . . . , hn(xn))

is right continuous w.r.t. f−1
1 D1, . . . , f

−1
n Dn. �

Proof. Clear.
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Definition 16. We shall say that an algebra is right topological with C a topo-
logical center iff all its operations are strongly right continuous w.r.t. C.

In this terms, Lemma 13 states that for any algebra A = (X, F, . . .), its extension
βA = (βX, F̃ , . . .) is right topological with X a topological center.

Lemma 17. Let P ⊆ X1 × . . . × Xn. For every i, 1 ≤ i ≤ n, and for any
x1 ∈ X1, . . . , xi−1 ∈ Xi−1 and ui+1 ∈ βXi+1, . . . , un ∈ βXn, the subset

P̃x1,...,xi−1,ui+1,...,un = {u ∈ βXi : 〈x̂1, . . . , x̂i−1, u, ui+1, . . . , un〉 ∈ P̃}

of βXi is clopen.

Proof. Let

fx1,...,xi−1,ui+1,...,un(u) = 〈x̂1, . . . , x̂i−1, u, ui+1, . . . , un〉̃ .

The mapping fx1,...,xi−1,ui+1,...,un of βXi into β(X1 × . . .×Xn) is continuous by
the previous lemma. Hence

P̃x1,...,xi−1,ui+1,...,un = {u ∈ βXi : 〈x̂1, . . . , x̂i−1, u, ui+1, . . . , un〉 ∈ P̃}
= {u ∈ βXi : P ∈ 〈x̂1, . . . , x̂i−1, u, ui+1, . . . , un〉̃ }
= {u ∈ βXi : P ∈ fx1,...,xi−1,ui+1,...,un(u)}
= {u ∈ βXi : fx1,...,xi−1,ui+1,...,un(u) ∈ Q̃}

where Q is P considered as a unary relation on X1 × . . . × Xn, thus Q̃ is
a unary relation on β(X1 × . . . × Xn). Since Q is clopen, so is its preimage
P̃x1,...,xi−1,ui+1,...,un under the continuous mapping fx1,...,xi−1,ui+1,...,un .

To name shortly the established topological property of P̃ , let us introduce
a terminology.

Definition 18. Let X1, . . . , Xn be topological spaces, and let C1 ⊆ X1, . . . , Cn ⊆
Xn. We shall say that an n-ary relation P ⊆ X1 × . . . × Xn is right open
w.r.t. C1, . . . , Cn iff for each i, 1 ≤ i ≤ n, and every c1 ∈ C1, . . . , ci−1 ∈ Ci−1
and xi+1 ∈ Xi+1, . . . , xn ∈ Xn, the subset

Pc1,...,ci−1,xi+1,...,xn = {x ∈ Xi : 〈c1, . . . , ci−1, x, xi+1, . . . , xn〉 ∈ P}

of Xi is open. That a relation is right closed (or right clopen, etc.) is defined
likewise.

In particular, P is right open w.r.t. the empty set iff for every x2 ∈ X2, . . . ,
xn ∈ Xn, the subset

Px2,...,xn = {x ∈ X1 : 〈x, x2, . . . , xn〉 ∈ P}

of X1 is open. Clearly, a unary P is right open iff it is open. Likewise for right
closed (right clopen, etc.) relations.

The following proposition notes an obvious interplay of right open (right
closed, right clopen, etc.) relations and right continuous functions.
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Proposition 19. (i) Let F : X1×. . .×Xn →Y be right continuousw.r.t. C1, . . . ,
Cn, and let Q ⊆ Y be open. Then

P = {〈x1, . . . , xn〉 ∈ X1 × . . . ×Xn : F (x1, . . . , xn) ∈ Q}

is right open w.r.t. C1, . . . , Cn.
(ii) Let all F1 : X1 → Y1, . . . , Fn : Xn → Yn be continuous, and let Q ⊆
Y1 × . . .× Yn be right open w.r.t. D1, . . . , Dn. Then

P = {〈x1, . . . , xn〉 ∈ X1 × . . .×Xn : 〈F1(x1), . . . , Fn(xn)〉 ∈ Q}

is right open w.r.t. F−1
1 D1, . . . , F

−1
n Dn.

Both clauses also hold for right closed (right clopen, etc.) relations.

Proof. Clear.

Definition 20. Let A = (X, F, . . . , P, . . .) be a model equipped with a topology,
and C ⊆ X . We shall say that A is right open, and C is its topological center
iff all its operations are right continuous w.r.t. C and all its relations are right
open w.r.t. C. Likewise for right closed (right clopen, etc.) models.

Note that if the model is an algebra (i.e. does not have relations), each of these
properties means that the algebra is right topological with C a topological center.

In this terms, two last lemmas state the following.

Corollary 21. For any model A, its extension βA is right clopen with A a topo-
logical center.

Proof. Lemmas 13 and 17.

The following theorem concerns rather arbitrary right open and right closed
models with dense topological centers than ultrafilter extensions.

Theorem 22. Let A be a right open model, B a Hausdorff right closed model,
and C ⊆ A a dense submodel and a topological center of A. Let h be a continuous
mapping of A into B such that

(i) h
C is a homomorphism, and
(ii) h“ C is a topological center of B.

Then h is a homomorphism of A into B.

Proof. Let A = (X, F, . . . , P, . . .) and B = (Y, G, . . . , Q, . . .).
Operations. We argue by induction on arity of F (and G).
Step 1. Fix c1, . . . , cn−1 ∈ C and put for all x ∈ X and y ∈ Y ,

fc1,...,cn−1(x) = F (c1, . . . , cn−1, x),
gh(c1),...,h(cn−1)(y) = G(h(c1), . . . , h(cn−1), y).
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The functions fc1,...,cn−1 and gh(c1),...,h(cn−1) are continuous (since c1, . . . , cn−1
are in C, C is a topological center of A, and h“ C is a topological center of B).
Therefore the functions h◦fc1,...,cn−1 and gh(c1),...,h(cn−1)◦h (both of X to Y ) are
continuous too (as compositions of continuous functions). Moreover, they agree
on the dense subset C of X (since C is a subalgebra and h 
 C is a homomor-
phism), i.e. for all c ∈ C,

h(fc1,...,cn−1(c)) = gh(c1),...,h(cn−1)(h(c)).

Hence (as Y is Hausdorff) they coincide, i.e. for all x ∈ X ,

h(fc1,...,cn−1(x)) = gh(c1),...,h(cn−1)(h(x)).

Thus we proved that for all c1, . . . , cn−1 ∈ C and xn ∈ X ,

h(F (c1, . . . , cn−1, xn)) = G(h(c1), . . . , h(cn−1), h(xn)).

Step 2. Fix c1, . . . , cn−2 ∈ C and xn ∈ X , and put for all x ∈ X and y ∈ Y ,

fc1,...,cn−2,xn(x) = F (c1, . . . , cn−2, x, xn),
gh(c1),...,h(cn−2),h(xn)(y) = G(h(c1), . . . , h(cn−2), y, h(xn)).

Again, the functions fc1,...,cn−2,xn and gh(c1),...,h(cn−2),h(xn) are continuous (since
c1, . . . , cn−2 are in C, C is a topological center of A, and h“ C is a topological cen-
ter of B). Therefore the compositions h◦fc1,...,cn−2,xn and gh(c1),...,h(cn−2),h(xn)◦h
(both of X to Y ) are continuous too. Moreover, they agree on the dense subset C
of X (by Step 1), i.e. for all c ∈ C,

h(fc1,...,cn−2,xn(c)) = gh(c1),...,h(cn−2),h(xn)(h(c)).

Hence they coincide, i.e. for all x ∈ X ,

h(fc1,...,cn−2,xn(x)) = gh(c1),...,h(cn−2),h(xn)(h(x)).

Thus we proved that for all c1, . . . , cn−2 ∈ C and xn−1, xn ∈ X ,

h(F (c1, . . . , cn−2, xn−1, xn)) = G(h(c1), . . . , h(cn−2), h(xn−1), h(xn)).

After n steps, we get h(F (x1, . . . , xn)) = G(h(x1), . . . , h(xn)) for all x1, . . . ,
xn ∈ X , thus showing that h is a homomorphism of (X, F ) into (Y, G), as
required.

Relations. Assuming 〈x1, . . . , xn〉 ∈ P , we shall show 〈h(x1), . . . , h(xn)〉 ∈ Q
by induction on n.

Step 1. First we suppose c1, . . . , cn−1 ∈ C. Pick arbitrary neighborhood V
of h(xn). Since h is continuous, there exists a neighborhood U of xn such that
h“ U ⊆ V . The set U ∩Pc1,...,cn−1 is open (Pc1,...,cn−1 is open as c1, . . . , cn−1 are
in the topological center C) and nonempty (xn belongs to it), and so there is
c ∈ C∩U∩Pc1,...,cn−1 (since C is dense). Therefore, we have 〈c1, . . . , cn−1, c〉 ∈ P ,
and so 〈h(c1), . . . , h(cn−1), h(c)〉 ∈ Q (since h
C is a homomorphism).
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So we see that any neighborhood of h(xn) has a point y with 〈h(c1), . . . ,
h(cn−1), y〉 ∈ Q. Since the set

Qh(c1),...,h(cn−1) = {y : 〈h(c1), . . . , h(cn−1), y〉 ∈ Q}

is closed (as h(c1), . . . , h(cn−1) are in the topological center h“ C), it has the
point h(xn). Thus we proved that whenever c1, . . . , cn−1 ∈ C and 〈c1, . . . , cn−1,
xn〉 ∈ P , then

〈h(c1), . . . , h(cn−1), h(xn)〉 ∈ Q.

Step 2. Now we suppose c1, . . . , cn−2 ∈ C and xn ∈ X . Pick arbitrary neigh-
borhood V of h(xn−1). Since h is continuous, there exists a neighborhood U
of xn−1 such that h“ U ⊆ V . Again, the set U ∩ Pc1,...,cn−2,xn is open and
nonempty, so there is c ∈ C ∩U ∩Pc1,...,cn−2,xn . Hence, 〈c1, . . . , cn−2, c, xn〉 ∈ P ,
and so 〈h(c1), . . . , h(cn−2), h(c), h(xn)〉 ∈ Q (by Step 1).

So any neighborhood of h(xn−1) has a point y with 〈h(c1), . . . , h(cn−2), y,
h(xn)〉 ∈ Q. Since the set

Qh(c1),...,h(cn−2),h(xn) = {y : 〈h(c1), . . . , h(cn−2), y, h(xn)〉 ∈ Q}

is closed, it has the point h(xn−1). Thus we proved that whenever c1, . . . , cn−2 ∈
C and 〈c1, . . . , cn−2, xn−1, xn〉 ∈ P , then

〈h(c1), . . . , h(cn−2), h(xn−1), h(xn)〉 ∈ Q.

After n steps, we conclude that whenever 〈x1, . . . , xn〉 ∈ P , then 〈h(x1), . . . ,
h(xn)〉 ∈ Q, thus h is a homomorphism of (X, P ) into (Y, Q), as required.

The following theorem states the universal property of A completely analogous
to that of the Stone–Čech (or Wallman) compactification.

Theorem 23 (The Second Main Theorem). Let A and B be two models,
and let B be compact Hausdorff right closed. Let h be a homomorphism of A
into B such that h“ A is a topological center of B. Then h̃ is a homomorphism
of βA into B.

Proof. By Corollary 21 and Theorem 22.

Note that the First Main Theorem (Theorem 10) follows from this one.

Generalizations

Here we note that the results establishing universality of ultrafilter extensions
of models w.r.t. homomorphisms remain true if one replaces homomorphisms by
more general relationships between models.

The concepts of homotopy and isotopy are customarily used for groupoids,
especially, in quasigroup theory. Let us give a general definition of homotopy
and isotopy between arbitrary models.
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Definition 24. Let F and G be n-ary operations on X and Y resp. Mappings
h, h1, . . . , hn of X into Y form a homotopy of (X, F ) into (Y, G) iff

h(F (x1, . . . , xn)) = G(h1(x1), . . . , hn(xn))

for all x1, . . . , xn ∈ X . The homotopy is an isotopy iff all the h, h1, . . . , hn are
bijective.

Definition 25. Let P and Q be n-ary relations on X and Y resp. Mappings
h1, . . . , hn of X into Y are a homotopy of (X, P ) into (Y, Q) iff

P (x1, . . . , xn) implies Q(h1(x1), . . . , hn(xn))

for all x1, . . . , xn ∈ X . The homotopy is an isotopy iff all the h1, . . . , hn are
bijective and

P (x1, . . . , xn) iff Q(h1(x1), . . . , hn(xn)).

Note that when all the h, h1, . . . , hn coincide, then the homotopy is an homomor-
phism (and the isotopy is an isomorphism). In particular, homotopies of unary
relations are homomorphisms.

If A and B have more than one operation or relation, there are various ways
to define homotopies (and isotopies) between them, the weakest of which is as
follows.

Definition 26. A family H of mappings of X into Y form a homotopy of A
into B iff for any m-ary operation F in A there are mappings h, h1, . . . , hm in H
forming a homotopy of (X, F ) into (Y, G) with the corresponding operation G
in B, and for any n-ary relation P in A there are mappings h1, . . . , hn in H
forming a homotopy of (X, P ) into (Y, Q) with the corresponding relation Q
in B. The homotopy H is an isotopy iff all mappings in H are bijective.

Obviously, a homotopy H is a homomorphism iff |H | = 1. In general, the size
of H can be regarded as a degree of its dissimilarity to a homomorphism.

Proposition 27. Let F : X → Y .
(i) If F is surjective, then so is F̃ .

(ii) If F is injective, then so is F̃ . Moreover, (F̃ )−1 = (F−1 )̃ .
(iii) If F is bijective, then F̃ is a homeomorphism of βX onto βY .

Proof. (i) We must show that for any v ∈ βY there is u ∈ βX such that F̃ (u) =
v, i.e.

S ∈ v iff {x : F (x) ∈ S} ∈ u

for all S ⊆ Y . Given v, let

D =
{
{x : F (x) ∈ S} : S ∈ v

}
.

D has the finite intersection property: Given S′, S′′ ∈ v, we have {x : F (x) ∈
S′} ∩ {x : F (x) ∈ S′′} = {x : F (x) ∈ S′ ∩ S′′}, so this set is in D (since S′ ∩ S′′

is in v).
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Let u be any ultrafilter that extends D. Then u is as required: The ‘only if’
part holds by definition of u. To verify the ‘if’ part, notice that if S /∈ v then
Y \ S ∈ v, and so {x : F (x) ∈ Y \ S} ∈ u, whence it follows {x : F (x) ∈ S} /∈ u
(as preimages of disjoint sets are disjoint).

(ii) We must show that if u′, u′′ ∈ βX are distinct, then so are F̃ (u′), F̃ (u′′) ∈
βY , i.e. there is T ∈ F̃ (u′)\F̃ (u′′), and thus {x : F (x) ∈ T } ∈ u′\u′′. As u′ �= u′′,
there is S ∈ u′ \ u′′. Since F is injective, we have {x : F (x) ∈ F“ S} = S, so we
can put T = F“ S.

The equality (F̃ )−1 = (F−1 )̃ follows immediately.
(iii) This follows from (i) and (ii).

Remark. Clause (i) uses the assumption that any filter extends to an ultrafilter,
which is, as we mentioned above, equivalent to the compactness of βX .

By using Lemma 7 and Proposition 27 and modifying arguments of the proofs
of our main results, one gets the following generalization (we leave details for
the reader).

Theorem 28. Both Main Theorems (Theorems 10 and 23), as well as Theo-
rem 22, remain true by replacing homomorphisms with homotopies, isotopies,
and embeddings. �

Question. Characterize relationships between models such that both theorems
remain true by replacing homomorphisms with these relationships.

Another interesting question is about theories of extended models.

Question. Characterize formulas that are preserved under β.

In [4] we answer the question for the case when the formulas are identities and
the models are groupoids.

Finally, let us mention that certain types of ultrafilters form submodels of
extended models. In particular, so are κ-complete ultrafilters, for any given κ.
A proof generalizes the proof in [5] given for groupoids.

Remark. When I prepared the paper for publishing, I recognized V. Goranko’s
unpublished manuscript Filter and Ultrafilter Extensions of Structures:
Universal-algebraic Aspects, 2007 (the author said me the first version was writ-
ten ten years before). Goranko extends models by arbitrary filters. However his
filter extension of operations does not work for ultrafilters, so he defines this case
separately, in the same way that in Definition 1 here. His extension of relations
differs from that given in Definition 4. Goranko proved a theorem analogous
to the First Main Theorem, both theorems coincide for ultrafilter extension of
operations. He asks whether there is another ultrafilter extension of operations
that would be “better”. Perhaps the Second Main Theorem can be considered
as the negative answer.
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1 Reasoning about Social Relations

Communities consist of individuals bounds together by social relationships and
roles. Within communities, individuals reason about each other’s beliefs, knowl-
edge and preferences. Knowledge, belief, preferences and even the social rela-
tionships are constantly changing, and yet our ability to keep track of these
changes is an important part of what it means to belong to a community. In
the past 50 years, our patterns of reasoning about knowledge, beliefs and pref-
erences have been extensively studied by logicians (cf. notably, [12], [19], [1],
[6], [10], [18], and [17].), but the way in which we are influenced by social re-
lationships has received little attention. The country and culture in which we
are born, our families, friends, partners or work colleagues all play a part in the
formation, rejection and modification of our attitudes. One might update one’s
beliefs about the impact of human activities on climate change after reading a
scientific report, become vegetarian after moving to California, decide to change
one’s appearance because of peer pressure, vote for a candidate one doesn’t like
personally for the sake of one’s department, or argue in a court of law for the in-
nocence of someone one believes to be guilty. From the perspective of individual
rationality, such changes are difficult to understand, but they are not arbitrary
and are governed by norms that we internalise as readily as the rules of logic. It
is the logic of these internalised norms of social behaviour, a social conception
of rationality, that we intend to investigate from the standpoint of logic.

This paper lays out the problems we wish to address, with a view to promoting
the logic of community as an interesting area of research in applied philosophical
logic. As a small test case, we will provide some technical details for the first
of the following examples. But the main aim of our paper is to describe what
we take to be a coherent and fruitful topic for future research, some of which is
already under way.

1.1 Facebook Friends

Perhaps the simplest example of a social structure is that of online commu-
nities such as Facebook (www.facebook.com). Cutting out bells and whistles,
the structure is just that of a symmetric relation of ‘friendship’. The relation is
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not necessarily transitive and is arguably irreflexive. Yet even with this simple
structure, we get an interesting model of communities. Define an agent’s ‘com-
munity’ to be the set of her friends (together with the agent herself, if friendship
is not reflexive). In this way, we get a picture of the social world as a collec-
tion of overlapping communities. Even this is a little more subtle and flexible
than the naive view of communities as isolated groups: nations, schools, fami-
lies, etc. Moreover, we also get a simple model of the interaction between social
relations and propositional attitudes, specifically knowledge. Privacy protocols
ensure that information can be restricted to be viewable only to one’s friends
(in theory at least!). This can be implemented (in logic) with an announcement
operator – details will be given in Section 2 below. The social network itself is
also subject to change: one can add or remove friends, so altering both social
and epistemic relations.

1.2 Distributed Knowledge

I have a friend in Minsk, who has a friend in Pinsk, whose friend in Omsk,
has friend in Tomsk, with friend in Akmolinsk. His friend in Alexan-
drovsk has friend in Petropavlovsk, whose friend somehow is solving
now the problem in Dnepropetrovsk. (Tom Lehrer, Lobachevsky)

Within any community, knowledge propagates via social relations. Actual trans-
mission of knowledge depends on communication but as a first approximation,
one can reason about who knows what on the basis of social relations. If you tell
your colleague about some important secret at work, the chances are that his
or her lover will also know. The same is true of academic networks, as immor-
talised by Tom Lehrer. A network of ‘friends’ gives rise to degrees of accessibility
of information, which can be captured by the sequence of propositions

0. I know p
1. I have a friend who knows p
2. I have a friend who has a friend who knows p
∞ I am connected by friendship to someone who knows that p

The inference from p being accessible to an agent to that agent knowing p is de-
feasible, but there is no need to build in such defeasibility to a logic of distributed
knowledge. Instead, one can reason directly about accessible information, defin-
ing an operator ‘I have access to the information that p’ or even the more fine-
grained ‘I have access in n steps to the information that p’ for proposition n in
the above list.

1.3 Social Information Flow

The mechanism for distributing knowledge is communication, which is a hugely
complex matter in reality. Nonetheless, one can model the transmission of infor-
mation within a simple social network on the assumption that announcements
are made to friends. This gives an analogous sequence of propositions:
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0. I tell a friend that p
1. My friend tells her friends that p
2. My friends’ friends’ tell their friends that p
∞ I told your secret to only one person, but now everyone knows!

By modelling this using announcement operators restricted to friends, we get an
elementary logic of gossip.

1.4 Deference to Expert Opinion

Whereas friendship is a symmetric relation, the way in which our attitudes are
shaped by society is typically asymmetric. Different people have different access
to information and different capacities to absorb, process and transmit it. Our
reasoning about knowledge in the community often takes these asymmetries
into account. A clear example is the way in which we defer to expert opinion on
matters that require specific training, ability or experience. In a court of law,
or in policy making committees, the testimony of experts carries more weight
than the opinion of ordinary folk. Even in our daily lives, when we seek council
from older or more experienced members of our communities, we do it with an
attitude of deference. If the opinion of the expert is in line with my own, then I
may feel more confident in my attitudes but there is little practical consequence.
The interesting case is when there is some difference.

Suppose I initially believe that ∼p but that I consult Prof. X, who is an expert
on matters to do with p. Prof. X is of the opinion that p. In reasoning about
community belief, it may be sufficient to leave it at this point. There is a conflict,
but Prof. X’s opinion is that of an expert. Thus we have

1. I believe ∼p
2. Concerning p, I defer to the opinion of Prof X
3. Prof X believes p

This is consistent, but if I do nothing with Prof. X’s advice, then I have wasted
my time in consulting him, at possibly also the large sum of money paid as
his fee. One action I might take is to change my belief to ∼p. A great deal
has been written on the subject of belief revision and much of it applies to the
analysis of this situation. But another possibility is for me to defer to Prof. X
in the sense that I act in accordance with his belief, taking it to be a safer
guide to action, but retaining a private conviction in ∼p. This is consistent but
requires further analysis of the relation between belief, desire and action, all of
which may also have a social dimension. Further possibilities are opened when
considering the behaviour of groups. We, as a society, may agree to consult a
panel of scientific experts when formulating policy regarding climate change.
Given the expert opinion that significantly unpleasant consequences will result
if the rate of carbon emissions is not drastically reduced (p for short), we may
revise the group belief accordingly, admitting that some members of the group
– perhaps most of them – retain their belief that ∼p. For all this to be modelled
in a logical system, we must have a mechanism for belief aggregation that is
sensitive to social relations within the group.
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1.5 Peer Pressure

Deference to experts requires the addition of asymmetric social relationships to
our model. But even within the symmetric friendship model, there is an asymme-
try between myself and others. Suppose that I have a magnificent, well-developed
and well-groomed handlebar moustache. I like it very much but most (perhaps
all) of my friends think it is ridiculous and are even somewhat embarrassed to
be seen with me in public. Our preferences are clear. Other things being equal,
I prefer to have the moustache than not to have it, but my friends prefer the
opposite. We can then define ‘peer pressure’ as adopting a deferential attitude
to one’s friends. Although the friendship relation is symmetric, it is important
that it is also irreflexive: I am not my own friend. There are two further differ-
ences with the case of deference to expert opinion. First, the attitude involved is
preference rather than belief. And second, one is deferential not to an individual
but to a group. We therefore have to employ techniques of preference aggrega-
tion. Interestingly, the group is indexically determined. When bowing to peer
pressure, I am deferential to the aggregated preference of my friends.

1.6 Community Norms

A somewhat similar scenario occurs whenever individual preferences are contrary
to community norms, such as paying one’s taxes. Everyone (let’s assume) prefers
not to pay tax but also prefers that everyone else in the community does pay
tax. The Golden Rule of many ethical systems tells us what we ought to do in
such situations but duty and preference may diverge. Again we have the logical
structure of peer pressure but with an added asymmetry. In this case, everyone’s
preferences are the same de re; they only differ de se. Fleshing this out a bit,
letting T (x) stand for the predicate ‘x pays his/her taxes’, we can say that
everyone agrees to the following indexical proposition

I prefer ∼T (I) and T (x) for all x �= I

The socially acceptable resolution of this problem is for everyone to adopt a
deferential attitude to the group’s aggregated preference, which if we assume
that a majority of n− 1 to 1 is sufficient for suitably large n, results in everyone
paying their taxes - even if they retain a private preference not to.

1.7 Mutual Subordination

Our final example of an interesting puzzle concerning logic in communities com-
monly arises in more intimate settings. There is a young couple, a boy and a
girl, desperately in love and yet lacking a little in self-assurance. They have just
moved in together. All is well except for one small problem about their sleeping
arrangements. Both are used to sleeping on the right side of the bed and they
both prefer this strongly. Yet they also both prefer to sacrifice their personal
preferences in favour of the other - such is the power of love. Communication
is obviously the answer to this problem but they are faced with the paradox of
Mutual Subordination:
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1. He prefers to sleep on the right.
2. He knows that she also prefers to sleep on the right.
3. He is deferential to her preferences and so revises his preference to that of

sleeping on the left.
4. She does the same.
5. Now they both prefer to sleep on the left.

The last two examples have a game theoretical flavour and similar game theoret-
ical scenarios have been extensively studied.1 Our analysis, however, stresses the
interplay between individuals and their communities, and how each is affected
in attitude attribution, something which is hardly captured in a utility oriented
calculus. For instance, there is a distinction between my preferences, my friends’
preferences and our aggregated preferences. In a lot of cases, my preferences may
not correspond to those of my friends, nor to our aggregated preferences. When
I am saying that x is preferable, I might be reporting my own preference, that
of my friends, or that of our community. I might in the same day say that “x
is preferable” and “x is not preferable” without contradicting myself, as I might
be reporting preferences in the name of my community on one occasion and
my own on another occasion. We think that rationality for community has to
accommodate this if it is to make sense at all, and the logic of the next section
is devised with this purpose in mind.

2 Facebook Logic

In the remainder of the paper, we develop an epistemic logic of communities. This
logic emphasises the multi-faceted attitude analysis of the above examples with
a two-dimensional approach, one dimension standing for each agent’s epistemic
possibilities, the second for each agent’s community (one’s friends). As a starting
point for this new paradigm of research, we sketch an approach to modelling the
first of the applications mentioned above: that of Facebook Friends.

Define a social network 〈A,"〉 to consists of a set A of agents and a binary
relation " of friendship between agents that is irreflexive and symmetric. In the
simplest case, we will only be interested in one propositional attitude: knowledge.
For this, we adopt a minor variant of the standard definition from epistemic logic
(e.g. [6]). An epistemic model 〈W, A,∼, V 〉 consists of a set W of epistemic
alternatives, a set A of agents, a partial equivalence relation ∼a on W for each
agent a in A, and a propositional valuation function V , assigning a subset of
W ×A to each propositional variable.

There are two main differences from the standard definition. First the relation
∼a, which is interpreted by the relation between epistemic alternatives of be-
ing indistinguishable by a, is a partial equivalence relation. This means that it is
symmetric and transitive but not necessarily reflexive. We do not insist on reflex-
ivity because we allow for the possibility that some epistemic alternatives have
1 One can even trace back such analyses to traditional community wisdom, for instance

in Indian culture, the so-called tragedy of the commons and Birbal story (cf. [14]).
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been ruled out by some but not all of the agents; this will be important when we
consider the dynamics of announcements. Second, propositional variables (and
formulas more generally) are interpreted as expressing indexical propositions,
represented as subsets of W × A instead of subsets of W .

Now, combining the two ideas we define an epistemic social network
model M to consists of a social network model 〈A,"w〉 for each w in W and an
epistemic model 〈W, A,∼, V 〉. A social network model is linked to each epistemic
alternative so that we can represent an agent’s ignorance about the structure of
the social network. We use indexical modal operators K and F , read as ‘I know
that’ and ‘all my friends’ with a semantics in which satisfaction is relative to
both an epistemic alternative w and an agent a. The salient clauses are:

M, w, a |= p iff (w, a) ∈ V (p)
M, w, a |= Kϕ iff M, v, a |= ϕ for every v ∼a w
M, w, a |= Fϕ iff M, w, b |= ϕ for every b "w a

A simple example illustrates the difference between the alternations of modalities
K and F . Let p be the proposition ‘I am in danger’. Then

KFp : I know that all my friends are in danger
FKp : Each of my friends knows that s/he is in danger

We define the existential duals as usual: 〈K〉 = ∼K∼, 〈F 〉 = ∼F∼.

2.1 Distributed Knowledge

The basic scenario of Distributed Knowledge, as discussed above, can be repre-
sented as follows:

∼(Kp ∨ K∼p) & 〈F 〉(Kp ∨ K∼p)
I don’t know whether p, but I have a friend who does.
Kp, 〈F 〉Kp, 〈F 〉〈F 〉Kp, etc.
I know p, I have a friend who knows p, I have a friend who has a friend who
knows p, etc.
〈F ∗〉Kp
I am connected by friendship to someone who knows that p

The latter requires a new operator, F ∗, which can be introduced (following
PDL in [11]) as the modality of the transitive closure of the friendship relation.

2.2 Talking about Friends

To talk about your friends, you need to give them names. We therefore introduce
a syntactic category of nominals and extend the valuation function V to apply to
nominals as well as propositional variables (for further details of hybrid logic, we
refer to [3]). We will assume that names are ‘rigid designators’ in the epistemic
sense, i.e., that every agent knows who is whom. So for each nominal n we insist
that
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there is an agent n ∈ A such that for all a ∈ A and w ∈ W , (w, a) ∈ V (n) iff
an.

Now we can say

〈F 〉n: n is my friend

Also borrowed from hybrid logic is an operator @n for shifting the evaluation
to the agent named n. This enables us to say

@nKp: n knows that p

Finally, another hybrid logic device: a way of indexically referring to the
current agent. This is provided by the operator ↓x which names the current
agent ‘x’. This enables us to express some nice interactions between friendship
and knowledge:

↓x〈F 〉K@n〈F 〉x: I have a friend who knows that n is friends with me.

To capture the semantics of ↓x we need the help of an assignment function
g assigning agents to variables. Variables are of the same syntactic category as
nominals and so we also write x for g(x). With the help of assignment functions,
we get the following satisfaction conditions:

M, g, w, a |= x iff g(x) = a
M, g, w, a |= @nϕ iff M, g, w, n |= ϕ
M, g, w, a |=↓xϕ iff M, gx

a
, w, a |= ϕ

where, as usual, gx
a

is defined by gx
a
(y) = a if x = y and g(y) otherwise.

2.3 Indexical Public Announcements

In dynamic epistemic logic, the result of publicly announcing that p is given by
eliminating epistemic alternatives in which p is not true.2. The operator [!ϕ] for
‘after announcing ϕ’ is defined by

M, w |= [!ϕ]ψ iff if M, w |= ϕ then Mϕ, w |= ψ

where Mϕ is the result of restricting M to the set of epistemic alternatives v
such that M, v |= ϕ. The logic is pleasingly simple, thanks to the following (now
well-known) reduction axioms:

[!ϕ]p ≡ (ϕ ⊃ p)
[!ϕ]∼ψ ≡ (ϕ ⊃ ∼[!ϕ]ψ)
[!ϕ](ψ1 & ψ2) ≡ ([!ϕ]ψ1 & [!ϕ]ψ2)
[!ϕ]Kaψ ≡ (ϕ ⊃Ka[!ϕ]ψ)

With these axioms, a completeness result for the base epistemic logic can be lifted
to its dynamic extension. A crucial feature of the operator is the restriction to
announcements that are true. Without this, the model Mϕ would not contain w
and the satisfaction condition would be rendered meaningless.
2 Public announcement logic was introduced in [15].
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To interpret public announcement in indexical epistemic models, we give the
obvious definition:

M, w, a |= [!ϕ]ψ iff if M, w, a |= ϕ then Ma,ϕw, a |= ψ

where Ma,ϕ is the restriction of M to those epistemic alternatives v such that
M, v, a |= ϕ. But there is a problem: public announcements cannot be reduced
when we add the hybrid shifting operator @n. The equivalence

[!ϕ]@nψ ≡ (ϕ ⊃@n[!ϕ]ψ)

is not in general valid. If ϕ is a non-indexical proposition then the equivalence
holds: in fact we have the simpler equivalence [!ϕ]@nψ ≡ @n[!ϕ]ψ. Since the
truth of a non-indexical ϕ does not depend on the agent, it does not matter which
agent announces it. But when the truth of ϕ is indexical, varying by agent, then
the equivalence breaks down.

Suppose, for example that a but not n is in danger. Then evaluating at a, the
following two propositions are not equivalent:

1. [!p]@np
After I announce that I am in danger, n is in danger.

2. (p ⊃@n[!p]p)
If I am in danger then after n announces that he is in danger, he is in danger.

Proposition 1 can easily be falsified; there is no implication from a’s being in
danger to n’s being in danger. But Proposition 2 is true: if n is not in danger
then he cannot announce that he is and so the consequent of the conditional is
trivially true. Moreover, there is no way of avoiding the problem. To do so, we
would need an announcement by n that is equivalent to a’s announcement, but
for indexical announcements this is impossible.

Our solution is to introduce a new operator [n!ϕ] for ‘after n announces ϕ’,
with satisfaction conditions

M, g, w, a |= [n!ϕ]ψ iff if M, g, w, n, |= ϕ then Mn,ϕ, g, w, a |= ψ

This has the advantage of admitting reduction equivalences as follows:

[n!ϕ]p ≡ (@nϕ⊃ p)
[n!ϕ]∼ψ ≡ (@nϕ ⊃ ∼[n!ϕ]ψ)
[n!ϕ](ψ1 & ψ2) ≡ ([n!ϕ]ψ1 & [n!ϕ]ψ2)
[n!ϕ]@mψ ≡ @m[n!ϕ]ψ
[n!ϕ] ↓xψ ≡ ↓x[n!ϕ]ψ
[n!ϕ]Fψ ≡ F [n!ϕ]ψ
[n!ϕ]Kψ ≡ K[n!ϕ]ψ

(with a change of bound variables in the line for ↓x, if necessary.)
The new operator also allows us to recover reduction for the indexical notion

of public announcement via the equivalence

[!ϕ]ψ ≡ ↓x[x!ϕ]ψ

in which x is a new variable.
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2.4 Talking to Friends

Of greater interest to logic in the community is the possibility of making an-
nouncements only to one’s friends. Here we adopt a simplistic approach, noting
some of its limitations and a direction for further research.

We define an operator [F !ϕ] for ‘after I announce ϕ to my friends’ by

M, g, w, a |= [F !ϕ]ψ iff if M, g, w, a |= ϕ then M ′, g, w, a |= ψ

where M ′ = 〈W, A, F,∼′, V 〉 has the same set W of epistemic alternatives as M
but has an indistinguishability relation ∼′ defined as follows:

if b " a then
u ∼′

b v iff u ∼b v and M, g, u, a |= ϕ and M, g, v, a |= ϕ
otherwise ∼′

b=∼b

In other words, the epistemic indistinguishability relation of agents that are
not friends with a remains unchanged, but that of a’s friends is changed so as to
remove links between alternatives that are incompatible with a’s announcement.

For example, suppose that n is in danger (p) and announces this to her friends.
After the announcement, all of n’s friends will know @np that n is in danger. So
the formula

@n[F !p]FK@np

is valid.
Scenarios of this kind are somewhat similar to what is called private announce-

ment in [4]. Our way of handling the announcement here is to take them to be
soft information (see detailed discussions on soft information vs. hard informa-
tion in [16]). We think that the approach of product update with event model
in [4] can be adapted to this context, too.

3 Prospects

The sketch of Facebook Logic is only a beginning. Even within this simple model
of communities there is much to investigate. We hope that this case study has
shown the readers where we are heading: our goal is to use recent developments
in dynamic logics of knowledge, belief and preference to model the subtleties of
the communication and relationship between agents in communities. Going back
to the topics outlined in Section 1, there are immediate directions we would like
to explore. Due to limitations of space, we finish with a few preliminary remarks
on how to proceed.

1. Preference and belief. To model preference and belief, we can introduce
two orderings to the model, one for preference relation, one for plausibility
relation, between alternatives. From there, we can consider changes in prefer-
ence and beliefs within communities, again extending the existing framework
on preference change and belief revision, e.g., [16], [13], [5] and [9].
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2. Dominance. To model asymmetric social relations, we can replace friend-
ship relation in the model with a new preorder S (for ‘is subordinate to’)
between agents, and investigate, for instance, what the paradox of mutual
subordination in Section 1.7 means to us within communities.

3. Aggregation. As agents are modelled explicitly, we can easily add groups
of agents by imposing an algebra on the set of A, such as a semilattice �
whose atoms are interpreted as individuals. Different aggregation procedures
can be defined in terms of the structure of the social network, see studies in
this line [2], [7] and [8].
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2. Andréka, H., Ryan, M., Schobbens, P.-Y.: Operators and laws for combining pref-
erential relations. Journal of Logic and Computation 12, 12–53 (2002)

3. Areces, C., ten Cate, B.: Hybrid logics. In: van Benthem, J., Blackburn, P., Wolter,
F. (eds.) Handbook of modal logic. Elsevier, Amsterdam (2006)

4. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common
knowledge and private suspicions. In: TARK 1998 (1998)

5. Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision. In:
van der Hoek, W., Bonanno, G., Wooldridge, M. (eds.) Logic and the Foundations
of Game and Decision Theory. Texts in Logic and Games, vol. 3. Amsterdam
University Press (2008)

6. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
The MIT Press, Cambridge (1995)

7. Girard, P.: Modal Logics for Belief and Preference Change. PhD thesis, Stanford
University (2008)

8. Girard, P., Seligman, J.: An analytic logic of aggregation. In: Ramanujam, R.,
Sarukkai, S. (eds.) Logic and Its Applications. LNCS (LNAI), vol. 5378, pp. 146–
161. Springer, Heidelberg (2009)

9. Grune-Yanoff, T., Hansson, S.O.: Preference Change: Approaches from Philosophy,
Economics and Psychology. In: Theory and Decision Library. Springer, Heidelberg
(2009)

10. Hansson, S.O.: Preference logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook
of Philosophical Logic, ch. 4, vol. 4, pp. 319–393. Kluwer, Dordrecht (2001)

11. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press, Cambridge (2000)
12. Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca (1962)
13. Liu, F.: Changing for the Better: Preference Dynamics and Agent Diversity. PhD

thesis, ILLC, University of Amsterdam (2008)
14. Parikh, R.: Knowledge, games and tales from the east. In: Ramanujam, R.,

Sarukkai, S. (eds.) Logic and Its Applications. LNCS (LNAI), vol. 5378, pp. 65–76.
Springer, Heidelberg (2009)

15. Plaza, J.A.: Logics of public announcements. In: Proceedings of the 4th Interna-
tional Symposium on Methodologies for Intelligent Systems (1989)



188 J. Seligman, F. Liu, and P. Girard

16. van Benthem, J.: Dynamic logic for belief revision. Journal of Applied Non-classical
Logic 17(2), 129–155 (2007)

17. van Benthem, J.: Logical dynamics of information and interaction. Cambridge Uni-
versity Press, Cambridge (to appear, 2010)

18. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer,
Berlin (2007)

19. von Wright, G.H.: The Logic of Preference, Edinburgh (1963)



Reasoning about Protocol Change and
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Abstract. In social interactions, protocols govern our behaviour and
assign meaning to actions. In this paper, we investigate the dynamics of
protocols and their epistemic effects. We develop two logics, inspired by
Propositional Dynamic Logic (PDL) and Public Announcement Logic
(PAL), for reasoning about protocol change and knowledge updates. We
show that these two logics can be translated back to the standard PDL
and PAL respectively.

1 Introduction

Protocols are the rules that govern the actions of humans or machines. They
have two major functions in our everyday life. First of all, protocols regulate
behaviours and thus let us (or machines) know what to do or what not to do.
For example, when you are driving a car you are also driving according to various
traffic protocols; in case an accident happens legal protocols are called into play;
while you are sending emails or SMS messages to a friend to complain about
the bad luck, communication protocols on computers are running to make sure
the messages are delivered. Second, protocols assign meaning to actions. For
example, we are educated to be polite by following social protocols such as
shaking hands. The handshaking action itself does not mean anything, it is the
conventional protocol: “if you want to say hello formally and politely then shake
hands” which lets this simple action carry some extra information. We can also
create a new meaning for an action by setting a new protocol. For example,
by popularizing the slogan “Love her, take her to Häagen-Dazs!” in China, the
ice cream company Häagen-Dazs managed to let many young Chinese couples
believe that buying an ice cream shows their love, no matter what love actually
means. Because of the existence of such protocols we save our civilization from
chaos and make it more meaningful everyday. Without doubt, protocols rule the
world.

Already from the Häagen-Dazs example, we can see that it is important to
understand how we can “install” new protocols to people. More generally, we are
interested in the changes of protocols and their epistemic effects. Here we give
some more examples of dynamics of protocols in social interactions. Imagine that
you were told to close the door and on your way to do it you are told again not
to close it. Now what to do? As another example, a well-trained spokesman may
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respond to a yes-no question (viewed as a protocol that says: answer ‘Yes!’ or
answer ‘No!’) by inserting yet another protocol: “before answering your question,
tell me what you meant by φ.” Here is a more interesting example that involves
meaning changing: The Chinese are non-confrontational in the sense that they
will not overtly say “No.”, instead they say “I will think about it.” or “We will
see.”. For a western businessman, “We will see.”, according to the standard in-
terpretation, means it is still possible. However, if he is updated with the Chinese
protocol: say “We will see.” if you want to say “No.”, then he should understand
this is just another way of saying “No.”. Clearly the difference in protocols is
sometimes the reason behind many conflicts and misunderstandings. Such phe-
nomena invite a formal investigation on the question “how to change protocols
and update your knowledge?”. This paper reports an attempt in addressing this
very question.

Our approach is inspired by two well-known logics: Propositional Dynamic
Logic (PDL [7]) and Public Announcement Logic (PAL [20,9]). First of all, as
we have seen above, the protocols usually have program-like structures, which
suggests a formalization of protocols by regular expressions as in PDL. In the
pioneering work of [10] and [6], where protocols involving knowledge were stud-
ied, protocols were indeed treated as simple programs in the form of ?φ · a (if φ
holds then do a). Here we also need such tests ?φ together with regular expres-
sions to encode how protocols assign meaning to actions, e.g., ?plove · abuy for
our Häagen-Dazs example. On the other hand, the simplest protocol changing
action might be a public protocol announcement and it is useful, e.g., a public
announcement of what the Chinese means by using “We will see.” could solve
many problems in advance. Differing from the public announcements !φ in PAL,
an announcement of a protocol may not have truth values, instead it changes
the set of possible (sequences of) actions in addition to the inherent restrictions
of actions according to the model. Putting the protocol announcements [!π] (π
is a regular expression) together with program modalities [π] as in PDL, we may
express that “Although b is possible according to the current protocol, after the
announcement of the new protocol a·b, we can not execute b as the first event any
more” by the formula 〈b〉� ∧ [!(a · b)]¬〈b〉�1. The more interesting case is when
knowledge (expressed by Kiφ) comes in. For instance, in our we-will-see story we
would like [awill-see]Kipno to be not valid while [!(?pno · awill-see)][awill-see]Kipno

to be valid. We will define the formal semantics for such an enriched epistemic
language in this paper.

The contributions of this paper can be summarized as follows:

– We introduce various protocol announcement operators to PDL-based logics.
– The new logics can be used to reason about: 1. the executable actions accord-

ing to the current protocol, and 2. the information that the actions carry,
thus formally capturing the two functions of protocols.

– Epistemic reasoning in presence of unplanned protocol changes is facilitated.
– New protocol changing operators do not drive the logics beyond PDL or PAL.

1 Here we assume that if a protocol is announced then it is followed by its executor.
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Related work. Besides the ones we already talked about earlier, some more re-
lated work should be mentioned here. Process logic [21,11] extends PDL in adding
modalities to specify progressive behaviours like “during the execution of pro-
gram π, φ will be true at some point.” In this paper, we not only reason about
properties in the middle of an execution of a protocol but also handle the proto-
col changes during the execution. The later feature also distinguishes our work
from the work using regular expressions as protocols [2,17,26]. Moreover, the
semantics of our logics will be defined on the states in the models, instead of on
paths as in [21,11]. Aucher [1] also proposed an extended Dynamic Epistemic
Logic (DEL), where the reasoning of the ongoing events is facilitated, however,
in a setting without protocols. Unlike the work of switching strategies in the
context of games [19], the change of our protocols can be made at any time
unplanned and also we incorporate knowledge in the discussions.

The existing work on protocols in DEL enriches the epistemic models with ex-
plicit protocols (sets of sequences of DEL events) such that the possible behaviours
of agents are not only restricted by the inherent preconditions of epistemic events
but also by protocol information [13,22,12]. This is similar to the treatment of
protocols in Epistemic Temporal Logic (ETL) [10,18], where the temporal devel-
opment of a system is generated from an initial situation by a commonly known
protocol2. In our work, the semantics of our languages with protocol announce-
ments will be defined on standard Kripke models. The extra protocol information
is only introduced by protocol announcements while evaluating a formula. Such
an approach makes it possible to not only model the “installation” of the initial
protocol explicitly but also to handle protocol changes during the execution of
the current one.

Our treatment for the events that carry meaning is largely inspired by [18],
in which the authors give a very general and elegant semantics for messages
(events) according to the underlying protocol in the setting of ETL. Here we can
explicitly express the protocols and their changes in the logical language. Note
that in the standard PAL, the interpretations of announcements are fixed and
implicitly assumed to be common knowledge, e.g., in PAL an announcement !φ
is assumed to have an inherent meaning: φ is true. This is because the semantic
objects (event models) are explicitly included in the syntax as in the general DEL
framework. However, the same utterance (syntax) may carry different meanings
(semantics) as we have seen in the we-will-see example. A closer look at public
announcements should separate the utterances and their meanings, as we will
demonstrate later in this work.

Structure of the paper. In this paper we develop two logics featuring protocol
changing operators. As an appetizer, we start in Section 2 with the first logic
PDL!, a version of test-free PDL equipped with protocol announcements [!π]. The
semantics is given in a non-standard style by using modes of satisfaction rela-
tions [8,24]. It is shown that [!π] and many other similar protocol announcement
operators do not increase the expressive power of the logic. Section 3 extends the
2 However, the framework in [22] can also handle the protocols which are not common

known.
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language PDL! with knowledge operators and Boolean tests to handle the cases
like the above we-will-see example where knowing a protocol gives meanings to
actions. We show that this new logic, when interpreted on S5 models, is equally
expressive as PAL. We conclude in Section 4 and point out future work.

2 Protocol Announcement Logic PDL!

The formulas of PDL! are built from a set of basic proposition letters P and a
finite set of atomic action symbols Σ as follows:

φ ::= � | p | ¬φ | φ ∧ φ | [π]φ | [!π]φ
π ::= 1 | 0 | a | π · π | π + π | π∗

where p ∈ P and a ∈ Σ. Note that π are actually regular expressions based
on Σ (we denote the set of such regular expressions as RegΣ). The intended
meaning of the formulas is mostly as in PDL, but “in context” of the protocol
constraints: [π]φ now says that “after any run of the program π which is allowed
by the current protocol, φ holds”. The new formula [!π]φ expresses “after the
announcement of the new protocol π, φ holds”.

To give the semantics to PDL!, we first recall some basic facts about regular
expressions.

The language of a regular expression π is defined as follows:

L(0) = ∅ L(1) = {ε} L(a) = {a}
L(π · π′) = {wv | w ∈ L(π), v ∈ L(π′)}
L(π + π′) = L(π) ∪ L(π′)
L(π∗) = {ε} ∪

⋃
n>0(L(πn))

where ε is the ‘skip’ protocol (empty sequence) and πn = π · · ·π︸ ︷︷ ︸
n

.

The language of the input derivative π\a of a regular expression π ∈ RegΣ

is defined as L(π\a) = {v | av ∈ L(π)}. With the output function o : RegΣ →
{0,1} we can axiomatize the operation \a (cf. [4,5]):

π = o(π) +
∑

a∈Σ(a · π\a)
1\a = 0\a = b\a = 0 (a �= b) a\a = 1
(π · π′)\a = (π\a) · π′ + o(π) · (π′\a) (π + π′)\a = π\a + π′\a
(π)∗\a = π\a · (π)∗ o(π · π) = o(π) · o(π′)
o(π∗) = 1 o(1) = 1
o(0) = o(a) = 0 o(π + π′) = o(π) + o(π′)

Given w = a0a1 · · ·an ∈ Σ∗, let π\w = (π\a0)\a1 · · · \an. It is clear that π\w =
{v | wv ∈ L(π)}3. Together with the axioms of Kleene algebra [14] we can
syntactically derive π\w which is intuitively the remaining protocol of π after
executing a run w. For example:

(a+(b·c))∗\b = (a\b+(b·c)\b)·(a+b·c)∗ = (0+(1·c))·(a+b·c)∗ = c·(a+(b·c))∗

3 π\w is also a regular language cf. [5].
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More generally, we can define L(π\π′) = {v | ∃w ∈ L(π′) such that wv ∈ L(π)}
(cf. [5]). We say w ∈ Σ∗ is compliant with π (notation: w ∝ π ) if π\w �= 0,
namely, executing w is allowed by the protocol π.

Intuitively, to evaluate [π]φ we need to memorize the current protocol in some
way. Here we employ a trick similar to the ones used in the semantics developed
in [8,24,3]: we define the satisfaction relation w.r.t. a mode π (notation: �π),
which is used to record the current protocol. Given the current protocol π, the
allowed runs in a program π′ w.r.t. π are those w ∈ Σ∗ such that w ∈ L(π′) and
w ∝ π. Note that if the current protocol is π, then after executing a run w we
have to update π by the remaining protocol π\w.

As in the standard PDL, we interpret PDL! formulas (w.r.t. P,Σ) on Kripke
models M = (S,→, V ) where S is a non-empty set of states, →⊆ S ×Σ× S is
a set of labelled transitions, and the valuation function V : S → 2P assigns to
each state a set of basic propositions. Now we are ready to give the semantics
as follows:

M, s � φ ⇔M, s �Σ∗ φ
M, s �π p ⇔ p ∈ V (s)

M, s �π ¬φ ⇔M, s �π φ
M, s �π φ ∧ ψ ⇔M, s �π φ and M, s �π ψ

M, s �π [π′]φ ⇔ ∀(w, s′) : w ∈ L(π′), w ∝ π, and s
w→ s′ =⇒ M, s′ �π\w φ

M, s �π [!π′]φ ⇔M, s � 〈π′〉� =⇒ M, s �π′ φ

where the mode Σ∗ stands for the universal protocol (a0 + a1 + · · ·+ an)∗ if the
set of atomic actions Σ is {a0, a1, . . . , an}. The first clause says that initially
everything is allowed and the last one says that the newly announced protocol
overrides the current one. [π′]φ is true w.r.t. the current protocol π iff on each
s′ that is reachable from s by some run w of π′ which is allowed by the current
protocol π: φ holds w.r.t. the remaining protocol π\w. Note that it is important
to remember w which denotes how you get to s′ as the following example shows:

Example 1. Consider the following model M:

s
a �� • c ��

d
�� •

It can be verified that:

M, s � [!(a · c + b · d)][a + b](¬〈d〉� ∧ 〈c〉� ∧ [!(c + d)]〈d〉�)

The intuition behind is as follows. After announcing the protocol a · c + b · d,
the program a + b can be executed according to this protocol, but actually only
a can be executed on the model. Thus after executing a + b only c is possible
according to the remaining protocol (a · c + b · d)\a = c. However, if we then
announce a new protocol (c + d) then d also becomes available. ♣

Recall the standard PDL semantics, it is not hard to see that the following propo-
sition holds.
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Proposition 1. For any test-free PDL formula φ and any pointed Kripke model
(M, s):

M, s �PDL! φ ⇐⇒ M, s �PDL φ

A natural question to ask is that whether PDL! is more expressive than test-free
PDL. To answer the question, we now have a closer look at the strings w in the
semantics of [π′]φ. Given π, let CL(π) be the set of all the pre-sequences of π:
{w | w ∝ π}.

We first show that we can partition CL(π) into finitely many regular expres-
sions satisfying certain properties.

Lemma 1. For any regular expression π there is a minimal natural number k
such that CL(π) can be finitely partitioned into π0, . . . , πk and for any w, v ∈
L(πi) : π\w = π\v.
Proof. By Kleene’s theorem we can construct a deterministic finite automaton
(DFA) recognizing the language of π. It is well known that DFA can be mini-
mized, thus we obtain a smallest DFA that recognizes L(π):

Aπ = ({q0, . . . , qk},Σ, q0, �, F )

where {q0, . . . , qk} is a set of states with q0 being the start state and a sub-
set F being the set of accept states. For each i ≤ k such that qi can reach a
state in F : we let πi be the regular expression corresponding to the automaton
({q0, . . . , qk},Σ, q0, �, {qi}). Since Aπ is deterministic, it is not hard to see that
these πi form a partition that we want. ��
In the sequel, we call the above unique partition π0, . . . , πk the pre-derivatives
of π. For example, the minimal deterministic automaton4 of a∗ · d + b · (c + d) is:

•

c

��

d

��

q0b



d

��

a 		 •

a

��

d




��


•↓

thus the pre-derivatives of a∗ · d + b · (c + d) are 1, a · a∗, b, a∗ · d + b · (c + d).
Now we define the following translation from PDL! to the test-free PDL:

t(φ) = tΣ∗(φ)
tπ(p) = p

tπ(¬φ) = ¬tπ(φ)
tπ(φ1 ∧ φ2) = tπ(φ1) ∧ tπ(φ2)
tπ([π′]φ) =

∧k
i=0([θi]tπ\πi

(φ))
tπ([!π′]φ) = 〈π′〉� → tπ′(φ)

where π0, . . . , πk are the pre-derivatives of π, θi is a regular expression corre-
sponding to L(π′)∩L(πi), and π\πi = π\w for any w ∈ L(πi) due to Lemma 1.
4 We omit the transitions to the “trash” state which can not reach any accept state.
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By this translation we can eliminate the [!π] operator in PDL! and thus showing
that PDL! and the test-free PDL are equally expressive.

Theorem 1. For any pointed Kripke model M, s :

M, s �PDL! φ ⇐⇒ M, s �PDL t(φ).

Proof. By induction on φ we can show: M, s �π φ ⇐⇒ M, s �PDL tπ(φ). The
only non-trival case is for [π′]φ:
M, s �π [π′]φ
⇐⇒ ∀(w, s′) : w ∈ L(π′), w ∝ π, and s

w→ s′ =⇒ M, s′ �π\w φ

⇐⇒ ∀(w, s′) : if there is a pre-derivative πi : w ∈ L(π′), w ∈ L(πi), and s
w→ s′

then M, s′ �π\w φ
⇐⇒ for all pre-derivatives πi, for all s′ : if there is a w ∈ L(π′) ∩ L(πi)
and s

w→ s′ then M, s′ �π\w φ

⇐⇒M, s �
∧k

i=0[θi]tπ\πi
(φ)

��
Discussion. In this section, we take a rather liberal view on the “default” proto-
col, namely we assume that everything is allowed initially. On the other hand, we
can well start with a conservative initialization where nothing is allowed unless
announced later. It is not hard to see that we can also translate this conserva-
tive version of PDL! to PDL if we let t(φ) = t1(φ) where 1 is the constant for
empty sequence i.e., the skip protocol. For example, t1([a]⊥ ∧ [!a]〈a + b〉�) =
[0]⊥ ∧ ta(〈a + b〉�) = 〈a〉�.

Moreover, [!π] is rather radical in the sense that it changes the protocol com-
pletely. We may define a more general operation as follows: Let π(x) ∈ RegΣ∪{x},
namely, π(x) is a regular expression with a variable x. Now we define:

M, s �π [!π′(x)]φ ⇔ (M, s � 〈π′(π)〉� =⇒ M, s �π′(π) φ)

We can then concatenate, add, insert and repeat protocols by announcing x ·π′,
x+π′, π′+x, and x∗ respectively. It is easy to see that the announcement operator
[!π] introduced previously is a special case of [!π(x)]. We can still translate the
logic with the generalized protocol announcements to PDL with an easy revision
of the translation:

tπ([!π′(x)]φ) = 〈π′(π)〉� → tπ′(π)(φ)

Similarly, without adding the expressive power, we can introduce a refinement
operator [!(a/π′)] for each a ∈ Σ with the following semantics:

M, s �π [!(a/π′)]φ ⇔M, s � 〈π[a/π′]〉� =⇒ M, s �π[a/π′] φ

where π[a/π′] is the regular expression obtained by substituting each a in π with
π′. Intuitively the operator [!(a/π′)] refines the current protocol by making the
atomic step a more complicated.
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3 Public Event Logic PDL!?b

In this section, we allow tests in the protocol announcements and study how
agents update their knowledge according to the protocols and their observations
of the public events. We shall see that by announcing a protocol with tests, we
can let actions carry propositional information as motivated in the introduction.

Given a finite set P of basic propositions, a finite set Σ of atomic actions and
a set I of agents, the language of PDL!?b is defined as follows:

φ ::= � | p | ¬φ | φ ∧ φ | [π′]φ | [!π]φ | Kiφ
π ::= ?φb | a | π · π | π + π | π∗

where i ∈ I, φb are Boolean formulas based on P, and π′ are a test-free regular
expressions. Note that we do not include 1 and 0 as atomic actions in π since
they can be expressed by the Boolean tests ?� and ?⊥. We call the programs
with possibly Boolean tests guarded regular expressions.

In this section, we assume that all the a ∈ Σ are public events which can be
observed by all the agents, while the tests, unless announced, are not observable
to the agents. Here [π′]φ is intended to express that “φ holds after the agents
observe any sequence of public events which is not only allowed in π′ but also
complaint with the current protocol.” Therefore only test-free programs are con-
sidered in the modality [π′], since the tests can not be observed anyway. Now we
can express the Häagen-Dazs slogan mentioned in the introduction by the pro-
tocol: πH-D =?plove · abuy. A suitable semantics should let [!πH-D][abuy ]Kiplove

be valid. However, without the announcement !πH-D, buying an ice cream does
not mean anything: [abuy]Kiplove should not be valid.

To prepare ourselves for the definition of the semantics, we first interpret
guarded regular expressions as the languages of guarded strings following the
definitions in [15]. A (uniform) guarded string over finite sets P and Σ is a
sequence ρa1ρa2ρ . . . ρanρ where ai ∈ Σ and ρ ⊆ P representing the valuations
of basic propositions in P (p ∈ ρ iff p is true according to ρ as a valuation). For
any ρ ⊆ P, let φρ be the characteristic formula φρ =

∧
p∈ρ p ∧

∧
p∈P−ρ ¬p. On

the other hand, for any Boolean formula ψ, let Xψ ⊆ 2P be the corresponding
set of valuations, represented by subsets of P, that make ψ true.

Now we can define the language of guarded strings associated with a guarded
regular expression over Σ and P:

Lg(a) = {ρaρ | ρ ⊆ P}
Lg(?ψ) = {ρ | ρ ∈ Xψ}
Lg(π1 · π2) = {w ( v | w ∈ Lg(π1), v ∈ Lg(π2)}
Lg(π1 + π2) = Lg(π1) ∪ Lg(π2)
Lg(π∗) = {ε} ∪

⋃
n>0(Lg(πn))

where πn = π · · ·π︸ ︷︷ ︸
n

, and ( is the fusion product: w ( v = w′ρv′ when w = w′ρ

and v = ρv′.
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We write π1 ≡g π2 if Lg(π1) = Lg(π2). For example, we have:

?p · ?q · a ≡g?(p ∧ q) · a ≡g?(p ∧ p) · ?q · a

?(p ∧ q) · a+?(p ∧ ¬q) · a ≡g ?p · a and ?p · a · a �≡g ?p · a.

We now define the language of input derivative π\w for a guarded string w as:

Lg(π\w) = {v | w ( v ∈ Lg(π)}

and we say w ∝g π if Lg(π\w) �= ∅. As in the previous section, we let CLg(π) =
{w | w ∝g π} and let Lg(π1\π2) = {v | ∃w ∈ Lg(π2) and w ( v ∈ Lg(π1)}. For
example, if p is the only proposition letter then Lg((?p·a·b·b+?¬p·a·b·c)\(a·b)) =
{{p}b{p}, ∅c∅} = Lg(?p · b+?¬p · c).

Before defining the semantics of PDL!?b formally, let us recall the semantics of
PAL (cf. e.g., [20,9] ). Given a set of agents I, the language of PAL extends the
propositional logic with the standard knowledge operators Ki for each i ∈ I and
propositional announcement operators [!ψ] with the following semantics based
on S5 Kripke models (S, {∼i}i∈I, V )5:

M, s � Kiφ ⇔ for all t, if s ∼i t then M, t � φ
M, s � [!ψ]φ ⇔ if M, s � ψ then M|ψ, s � φ

where M|ψ = (S′, {∼′
i}i∈I, V

′) with S′ = {s ∈ S | M, s � ψ}; ∼′
i = ∼i∩(S′×S′);

and V ′ = V |S′ (i.e. the restriction of VM on the domain S′). Intuitively the effect
of announcing a formula ψ is to restrict the model to the ψ-worlds. In our setting,
observing a sequence of public events is similar to hearing a sequence of public
announcements, but the propositional information carried by the public events
are given by the previously announced protocols, not by the syntactic forms of
the public events. What we need to do in the semantics is to let agents match the
protocol knowledge with their observations and find out what tests have been
done when executing the protocol so far. According to the information about
the tests, the agents can eliminate some possible worlds as in PAL.

Given a sequence v of atomic actions and Boolean tests, let Lp(v) be the
subsequence of v obtained by ignoring all the tests but keeping all the public
events a0 . . . ak, e.g., Lp(?p · a · b) = Lp(?q · a · ?p · b) = a · b. Now we interpret
PDL!?bon the S5 models (S, {∼i}i∈I, V ) as follows:

M, s � φ ⇔M, s �Σ∗ φ
M, s �π p ⇔ p ∈ V (s)

M, s �π ¬φ ⇔M, s �π φ
M, s �π φ ∧ φ′ ⇔M, s �π φ and M, s �π φ′

M, s � Kiφ ⇔ for all t: s ∼i t =⇒ M, t � φ
M, s �π [π′]φ ⇔ for all w ∈ L(π′) : M, s � φw

π =⇒ M|φw
π
, s �π\w φ

M, s �π [!π′]φ ⇔ (∃w : w = ρv ∈ Lg(π′) and V (s) = ρ) =⇒ M, s �π′ φ

5 An S5 model is a Kripke model where the relations ∼i are equivalence relations.
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where:
φw

π =
∨

{φρ | v = ρa1ρa2ρ · · · ρakρ,Lp(v) = w, v ∝g π}

Note that we do not include the transitions labelled by a ∈ Σ in the models
since we assume that each public event is executable at each state unless it is
not compliant with the current protocol (e.g., you can talk about anything in
public unless constrained by some law or conventions). Since the public events
are intended to be announcement-like events, we also assume that executing a
protocol of such event does not result in changing the facts on the real state.
This explains the uniformity of ρ in guarded strings.

Intuitively φw
π in the above clause for [π′]φ is the propositional information

agents can derive from observing w ∈ Σ∗ in the context of protocol π. To see this,
consider an observable sequence w = a1a2 · · · ak ∈ Σ∗, each v = ρa1ρa2ρ · · · ρakρ
such that v ∝g π is a possible actual execution of the protocol consistent to
the observation w. However, agents can not distinguish v, v′ ∝g π if Lp(v) =
Lp(v′) = w. Therefore the disjunction φw

π is then the information which can be
derived from the observation of w according to the protocol π. The intuition
behind the last clause is that the new protocol is updated only if it is executable
at the current pointed model.

Consider the Häagen-Dazs example, let M be a two-world model represent-
ing that a girl i does not know whether a boy loves her or not (she is not sure
between a plove-world s and a ¬plove world t). Let π0 =?plove · abuy. Note that
Lp({plove}abuy{plove}) = Lp(∅abuy∅) = {abuy}, thus φ

abuy

Σ∗ = p∨¬p = �. On the
other hand φ

abuy
π0 is clearly plove. We now show M, s � [abuy]Kiplove:

M, s � [abuy]Kiplove

⇐⇒ M, s �Σ∗ [abuy]Kiplove

⇐⇒ for all w ∈ L(abuy),M, s �Σ∗ φw
Σ∗ =⇒ M|φw

Σ∗ , s �Σ∗\w Kiplove

⇐⇒ M, s � φ
abuy

Σ∗ =⇒ M|
φ

abuy
Σ∗

, s �Σ∗\abuy
Kiplove

⇐⇒ M, s �Σ∗ Kiplove

Since s ∼i t and M, t � ¬plove then M, s � [abuy ]Kiplove. On the other hand:

M, s � [!π0][abuy]Kiplove

⇐⇒ M, s �π0 [abuy ]Kiplove

⇐⇒ M, s �π0 φ
abuy
π0 =⇒ M|

φ
abuy
π0

, s �π0\abuy
Kiplove

⇐⇒ M|plove
, s �?plove

Kiplove

It is clear that M, s � [!π0][abuy]Kiplove.

Similarly, for the we-will-see scenario mentioned in the introduction, ifM is a two-
world model representing that a Westerner i does know whether pno (state s) or
¬pno (state t) then we can show that:

M, s � [!(?� · awill−see)]([awill−see]¬Kipno ∧ [!(?pno · awill−see)][awill−see]Kipno)

where ?�·awill−see is the default protocol a Westerner may have as the standard
interpretation for the sentence “we will see” which does not carry any useful
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information. As a more complicated example, the reader can check the model
validity of the following formula on a model where agent i is not sure about p:

[!(?p · a · b+?¬p · a · c)]([a]¬(Kip ∨ Ki¬p) ∧ [a · (b + c)](Kp ∨ K¬p)).

Note that the semantics of [π′]φ is very similar to the one for public an-
nouncement, but with protocol updates and a quantification over w ∈ L(π′). It
is not hard to see that each PAL formula with Boolean announcements only can
be mimicked by a PDL!?b formula by setting the meaning of announcements by
protocols at the beginning. For example [!p](Kip∧ [!q]q) can be reinterpreted in
PDL!?b as [!(?p·a+?q ·b)∗][a](Kip∧[b]q). In this way we separate an announcement
as an action with its meaning.

In the rest of this section we will show that PDL!?b can be translated back to
PAL. We will follow a similar strategy as in the previous section for the expres-
sivity of PDL!. This time we need to use automata on guarded strings.

Given P let B(P) be the set 22P

. Intuitively, X ∈ B(P) represent Boolean
formulas over P. We denote the corresponding formula of X ∈ B(P) by φX .
Based on the exposition in [15], we define the automata which recognize uniform
guarded strings.

Definition 1. (Automata on guarded strings) A finite automaton on (uni-
form) guarded strings (or simply guarded automaton) over a finite set of actions
Σ and a finite set of atomic tests P is a tuple A = (Q,Σ,P, q0, �, F ) where
the transitions are labelled by atomic actions in Σ (action transitions) and sets
X ∈ B(P) (test transitions). A accepts a finite string w over Σ∪B(P) (notation:
w ∈ LΣ∪B(P)(A)), if it accepts w as a standard finite automaton over label set
Σ∪B(P). The acceptance for guarded strings is defined based on the acceptance
of normal strings and the following transformation function G which takes a
string over Σ ∪ B(P) and outputs a set of uniform guarded strings.

G(a) = {ρaρ | ρ, ρ ⊆ P}
G(X) = {ρ | ρ ∈ X}

G(ww′) = {vρv′ | vρ ∈ G(w) and ρv′ ∈ G(w′)}

We say A accepts a finite guarded string v : ρa0ρ . . . ak−1ρ over Σ and P, if
v ∈ G(w) for some string w ∈ LΣ∪B(P)(A). Let Lg(A) be the language of guarded
strings accepted by A. ♠

We say a guarded automaton is deterministic if the following hold (cf. [15]):

– Each state is either a state that only has outgoing action transitions (action
state) or a state that only has outgoing test transitions (test state).

– The outgoing action transitions are deterministic: for each action state q and
each a ∈ Σ, q has one and only one a-successor.

– The outgoing test transitions are deterministic: they are labelled by {{ρ} |
ρ ⊆ P} and for each test state q and each ρ, q has one and only one {ρ}-
successor. Clearly these tests ρ at a test state are logically pairwise exclusive
and altogether exhaustive (viewing ρ as the Boolean formula φρ).
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– The start state is a test state and all accept states are action states.
– Each cycle contains at least one action transition.

The Kleene theorem between guarded automata and guarded regular expressions
is proved in [15]6.

Theorem 2. [15, Theorem 3.1, 3.4] For each guarded regular expression π over
P and Σ there is a (deterministic) guarded automaton A over P and Σ such
that Lg(π) = Lg(A), and vice versa.

Given a guarded regular expression π, we let Cp(π) = {Lp(w) | w ∈ CLg(π)}.
Namely, Cp(π) is the collection of all the possible observations of public events
(no tests) according to π. Following the idea in the previous section, we need to
finitely partition it.

Lemma 2. Given a guarded regular expression π over Σ and P, we can finitely
partition Cp(π) into test-free regular expressions π0, . . . , πn such that for any
i ≤ n : w, v ∈ L(πi) =⇒ φw

π = φv
π and π\w = π\v.

Proof. (Sketch) The strategy for the proof is as follows: we first partition Cp(π)
into π0, . . . , πk such that for any i ≤ k, for any w, v ∈ L(πi) =⇒ φw

π = φv
π , then

we further partition each πi according to the shared derivatives like in the proof
of Lemma 1.

From Theorem 2, we can build a deterministic guarded automaton Aπ such
that Lg(Aπ) = Lg(π). Based on Aπ it is easy to build a deterministic automaton
A such that Lg(A) = CLg(π) by setting new accept states. From the definition
of deterministic guarded automata, the start state in A has only test transitions
labelled by {ρ} for each ρ ⊆ P. Since we only consider uniform guarded strings
in the language, then an accepting path starting with a transition {ρ} can never
go through any other test transition labelled by {ρ′} for any ρ′ �= ρ. Then we
can prune and massage A into the following shape while keeping the accepting
language intact:

s0 a 		

b
��

�

���
���

•

q0

{ρ0}���

�����

{ρk}

��
{ρ1}
���

���
��

•

c

��

s1 a′ 		

b′
��

�

���
��

•

•
6 In [15], the author considered general guarded strings whose guards need not to

be uniform throughout the string. Our definitions of the languages of the guarded
regular expressions and the languages of guarded automata are essentially restric-
tions of the corresponding definitions of languages in [15] to uniform guarded strings.
Therefore the Kleene theorem proved in [15] also applies to our restricted setting.
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where k = |2P|, the start state q0 is the only test state, and there is no incoming
transition at q0.

Let Bsi be the standard finite automaton over the action set Σ : (Qact,Σ,
si, �, F ) where Qact is the set of action states in Q, F is the set of accept states
in A, and q

a� q′ in Bsi ⇐⇒ q
a� q′ in A. Given Z ⊆ {ρ0, . . . , ρk} (intuitively a

Boolean formula), let DZ be the product automaton Πρi∈ZBsi×Πρi �∈ZBsi where
Bsi is the complement automaton of Bsi . We can show that DZ recognizes all the
sequences w based on Σ such that {ρ | w = Lp(v), v = ρa1ρ · · · ρakρ ∈ Lg(A)} =
Z. By Kleene Theorem, we can turn each DZ into a regular expression.

Thus, we can finitely partitioned Cp(π) into π0, . . . , πn such that for any i ≤ n,
for any w, v ∈ L(πi) =⇒ φw

π = φv
π . By the similar techniques as in the proof

of Lemma 1, we can further partition each of these regular expressions πi into
finitely many regular expressions πi0 . . . πim such that for any w, v ∈ L(πij):
π\w = π\v. This gives us the desired final partition. ��

Now we define the following translation from PDL!?b to PAL:

t(φ) = tΣ∗(φ)
tπ(p) = p

tπ(¬φ) = ¬tπ(φ)
tπ(φ1 ∧ φ2) = tπ(φ1) ∧ tπ(φ2)

tπ(Kiφ) = Kitπ(φ)
tπ([π′]φ) =

∧
{[!ψj ]tθj(φ) | L(πj) ∩ L(π′) �= ∅}

tπ([!π′]φ) = χπ′ → tπ′(φ)

where:

– all the πj form a partition of Cp(π) satisfying the desired properties stated
in the above lemma,

– ψj = φw
π for some w ∈ L(πj),

– θj = π\w for some w ∈ L(πj),
– χπ′ =

∨
{φρ | ρv ∈ Lg(π′) for some sequnece v}.

Note that by the properties of the partition, ψj and θj are well-defined. Intu-
itively, χπ′ is the precondition of π′ to be executed. Based on the above transla-
tion t, it is not hard to prove:

Theorem 3. For any pointed S5 Kripke model M = (S, {∼i}i∈I, V, s) :

M, s �PDL!?b φ ⇐⇒ M, s �PAL t(φ).

Since PAL is equally expressive as the standard epistemic logic (EL) without any
announcement operators (cf. e.g., [9]) and PDL!?b is clearly at least as expressive
as EL then PAL and PDL!?b are equally expressive.
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4 Conclusions and Future Work

In this paper we proposed two PDL-style logics with simple and natural operators
for reasoning about protocol changes and knowledge updates: Logic PDL! han-
dles protocol changes in a context without knowledge; PDL!?b includes tests in
the protocols and knowledge operators to deal with the situations where events
carry information for agents according to the knowledge of the protocols. We
showed that PDL! is equally expressive as the test-free PDL and PDL!?b is equally
expressive as PAL. By using the new languages, what we gain is the explicitness
and convenience in modelling scenarios with protocol changes and knowledge
updates, as we demonstrated by various examples. In [25] we also investigated
another closely related logic PDL�, which extends the DEL framework with more
general product update operations taking general guarded automata as update
models. For interested readers who want to see more applications of the proto-
col changing operations, we refer to [27] where we integrated a similar protocol
changing operator in a specific setting of communications over channels.

It is shown in [16] that the public announcement logic, though equally expres-
sive as epistemic logic, is exponentially more succinct than the pure epistemic
logic in expressing certain properties on K models. Here we conjecture that simi-
lar results apply to our new logics as well. However, we leave out the succinctness
and complexity analysis for future work.

Also note that the logic PDL!?b is interpreted on S5 epistemic models which
do not have action transitions, since we implicitly assume all the public events
are like public communications by words which are always executable unless
constrained by protocols. We can well consider more general models with action
transitions or consider actions that can change the facts in models as discussed
in [23]. Another restriction in PDL!?b is that we only consider Boolean tests for
simplicity. To make the logic more interesting we would like to include epistemic
tests in the future. Such extensions may essentially increase the expressive power
of the logic.

Acknowledgements. The author would like to thank Ram Ramanujam and Hans
van Ditmarsch for their insightful remarks on various versions of this work, and
the anonymous referees for their useful comments.
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Abstract. We examine a logic that combines knowledge, awareness, and
change of awareness. Change of awareness involves that an agent becomes
aware of propositional variables. We show that the logic is decidable, and
we present a complete axiomatization.

1 Introduction
Awareness and knowledge. Modal logic has long been used to reason about
knowledge and belief in multi-agent systems. In modal logics we model uncer-
tainty by allowing the value of propositions to vary between the so-called possible
worlds. An agent knows a proposition in a given world if the proposition is true
in all worlds accessible from that world. The logics require that the agents are
aware of all propositional variables in the model. Thus reasoning in these models
is undertaken under a closed world assumption: the relevant propositional vari-
ables are known to all agents. For every propositional variable in every world,
every agent assigns a value to that variable.

While agents may be uncertain about the value of propositions, they may
also be unaware of these propositions, and they may become aware of proposi-
tions. Uncertainty and incompleteness (i.e., unawareness) are different issues in
modelling multi-agent systems. Without taking awareness into account, it seems
difficult to explain the following transition, wherein the epistemic complexity of
the model increases:

Initially, Hans (i) does not know whether coffee is served (p) after his
talk. (Actually, no coffee will be served—¬p, underlined.) Hans is un-
aware of it that wine is not served (¬q) after his talk. Now, someone
mentions that wine and coffee will not both be served. This makes Hans
aware that wine is an issue. After this, Hans does not know whether cof-
fee is served after his talk and also does not know whether wine is served
after his talk. (Of course, actually, there is no coffee and no wine.)

¬p¬q p¬q

¬pq

i

i i

i i

i

¬p pii i

i becomes aware of q
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We find that there are many subtleties and intricacies involved in defining the
semantics for such dynamics of awareness. In this paper we will discuss these
intricacies and in doing so make the following contributions:

1. We will introduce a new form of model equivalence modulo the agents’ aware-
ness and uncertainty, called awareness bisimulation.

2. We will define a new type of knowledge, referred to as intrinsic knowledge.
Intrinsic knowledge is essential to express the dynamic interactions between
awareness and knowledge. It relates to implicit and explicit knowledge.

3. We will introduce an logical operator for becoming aware of propositional
variables and give semantics for this operator that is consistent with our
intuitions of awareness and knowledge.

Prior research. Our work is rooted in: the tradition of epistemic logic [10] and in
particular multi-agent epistemic logic [13,2]; in various research since the 1980s
on the interaction of awareness and knowledge [1,14,15,8] — including a relation
to recent works like [9,5,7]; and in modal logical research in propositional quan-
tification, starting in the 1970s with [3] and followed up by work on bisimulation
quantifiers [18,11,4].

Works treating awareness either follow a more semantically flavoured ap-
proach, where awareness concerns propositional variables in the valuation [1,15,8],
or a more syntactically flavoured approach. In the latter, awareness concerns all
formulas of the language in a given set, in order to model ‘limited rationality’
of agents. It is (also) pursued in [1] and in recent work like [5]. We are straight
into the semantic corner: within the limits of their awareness, agents are fully
rational.

For the static part of the logical language we follow [1]. For the dynamic part,
it is remarkable that levels of ‘interactive unawareness’ in [8] can be described
in terms of the awareness bisimulation introduced in our work (at the end of our
paper). The insights made clear in their paper were very motivating for us. Our
work builds on [17], which focusses on a special case (public global awareness)
of the current paper, but unlike the present paper also treats awareness of other
agents and forgetting (i.e., becoming unaware).

2 Structures

Given are a countably infinite set of propositional variables (facts) P and a
(disjoint) finite set of agents N . Propositional variables are named p, q, r, and
agent variables are named i, j, k, possibly indexed or quoted.

Definition 1 (Epistemic awareness model). An epistemic awareness model
for N and P is a tuple M = (S, R,A, V ) that consists of a domain S of (factual)
states (or ‘worlds’), an accessibility function R : N → P(S × S), an awareness
function A : N → S → P(P ∪ N) and a valuation function V : P → P(S).
For R(i) we write Ri and for A(i) we write Ai; accessibility function R can be
seen as a set of accessibility relations Ri, and V as a set of valuations V (p). A
pointed epistemic awareness model (M, s) is an epistemic awareness state.
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Given an arbitrary model M we will refer to the elements of the tuple as
(SM , RM ,AM , V M ). The awareness function A may be varied to reflect dif-
ferent logics. Public global awareness results if the value of A is the same for
all agents and for all states. Individual global awareness results if the awareness
function is the same in all states, but may vary among agents. These logics are
discussed in [17]. In this work we focus on the logic of individual local aware-
ness where there are no constraints placed on the awareness function A. For the
sake of generality we will assume no restrictions on the accessibility function Ri,
either. However, we will sometimes require that the relation satisfies some sim-
ple properties (such as reflexivity, transitivity, etc.). The property of awareness
introspection [8] holds if all agents know when they are aware of a fact or of
another agent: “If (s, t), (s, u) ∈ Ri, then Ai(t) = Ai(u).”

Awareness bisimulation. Consider the following scenario: in state s agent i is
aware of proposition p, state u is accessible for agent i from state s, and in
state u agent j is aware of proposition p and also of proposition q. That agent
j is also aware of q in u should leave agent i indifferent, as she is not aware
of q in s! This sort of similarity is captured in the following notion, named
awareness bisimulation. Informally, given a model and a set of propositional
variables P ′ ⊆ P , another model is a P ′ awareness bisimulation if it cannot
be distinguished from the first by formulas consisting only of the propositional
variables in P ′, in the scope of agents who are aware of those propositions.

Definition 2 (Awareness bisimulation). Let epistemic awareness models
M = (S, R,A, V ) and M ′ = (S′, R′, A′, V ′) be given. For all P ′ ⊆ P we define
the relation R[P ′] by (s, s′) ∈ R[P ′] iff:

atoms for all p ∈ P ′, s ∈ V (p) iff s′ ∈ V ′(p);
aware for all i ∈ N , Ai(s) ∩ P ′ = A′

i(s
′) ∩ P ′;

forth for all i ∈ N , if t ∈ S and Ri(s, t) then there is a t′ ∈ S′ such that
R′

i(s
′, t′) and (t, t′) ∈ R[P ′ ∩ Ai(s)];

back for all i ∈ N , if t′ ∈ S′ and R′
i(s

′, t′) then there is a t ∈ S such that
Ri(s, t) and (t, t′) ∈ R[P ′ ∩A′

i(s
′)].

Epistemic awareness state (M ′, s′) is a P ′-awareness bisimulation of epistemic
awareness state (M, s) (written (M ′, s′)↔P ′(M, s)) iff (s, s′) ∈ R[P ′].

The ‘aware’ clause can be considered as an additional basic structural require-
ment besides ‘atoms’, only due to the nature of our models where states have
more structure than merely factual truth. If we were to replace R[P ′ ∩Ai(s)] in
the back and forth clauses with R[P ′], we would have the definition of a stan-
dard (restricted) bisimulation over labelled transition structures [16]. (Restricted
to P ′ ⊆ P .) Thus every bisimulation is an awareness bisimulation. Vice versa, if
all agents are aware of all propositional variables, the awareness bisimulation is
a standard bisimulation (for the relations Ri). This is what we desire: we then
revert to the standard multi-agent epistemic situation, where awareness plays
no role.
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Proposition 1. The relation ↔P ′ is an equivalence relation.

Proof. This can be easily seen by examining the Definition 2.

Definition 2 is more complex than the definition of standard bisimulation, how-
ever its motivation is very simple. Two worlds are P ′-awareness bisimilar if, for
any observer aware only of the propositions in P ′, the worlds appear identical.
It gives us the “P ′-perspective” of a world. We also call it observational equiva-
lence. Let that observer be agent i in state s, then the required P ′ is Ai(s) and
her perspective is that of Ai(s)-awareness-bisimilarity. We might also say that
her view of the model is that of its R[Ai(s)] equivalence class.

The crucial part of the definition is that in ‘forth’, in the requirement “(t, t′) ∈
R[P ′ ∩Ai(s)]”, the bisimulation for state t is (further) restricted to the propo-
sitional variables that agent i is aware of in state s, the i-predecessor of t. (And
similarly for ‘back’.) An honoured principle (also in economics, and in artificial
intelligence) is that incompleteness precedes uncertainty. The awareness function
of an agent in a given state (incompleteness) determines what the agent can ‘see’
in all accessible states (uncertainty), and so on. This chaining of awareness is
expressed with awareness bisimulation. This chaining requirement was present
in epistemic awareness structures since its inception in [1]. We have merely em-
ployed it to the full and in the one and only way, for structural similarity.

Example. In Figure 1 agent i is aware of p but unaware of q in state s. In the
figure, names of states are followed, separated by a dot, by values of propositional
variables. Unaware variables are between parentheses. For example, s.p(¬q)
means that in state s p is true and q is false, and the agent is aware of p and not of
q. The three depicted epistemic states, wherein she (from left to right) implicitly
knows q, knows ¬q, or does not know whether q, are observationally indistin-
guishable for the agent: they are p-awareness bisimilar. A p-awareness bisimula-
tion between (e.g.) the left and the right picture is R = {(s, s′′), (t, t′′), (t, t′′′)}.

s.p(¬q) s′.p(¬q) s′′.p(¬q)

t.pq t′.p¬q t′′.pq t′′′.p¬q

i i i
i

Fig. 1. Agent i is aware of p but unaware of q in state s

3 Language and Semantics

We augment multi-agent epistemic logic with three new operators: Aiϕ, to mean
that agent i is aware of all the propositional variables in ϕ; and A+

i pϕ for agent i
becoming aware of propositional variable p, after which ϕ is true. The construct
Kiϕ, “agent i knows ϕ” stands in our case for “agent i intrinsically knows ϕ”—
the meaning of intrinsic will be explained later.
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Definition 3 (Language). Given are a countably infinite set of propositional
variables (facts/atoms) P , and a (disjoint) countably infinite set of agents N .
The language L of individual local awareness is defined as

ϕ ::= � | p | ϕ ∧ ϕ | ¬ϕ | Kiϕ | Aiϕ | A+
i pϕ

where i ∈ N and p ∈ P . Implication →, disjunction ∨, and equivalence ↔ are
defined by abbreviation. For ¬Ki¬ϕ we write Liϕ.

The semantics of the awareness operator Ai is purely syntax-based, namely using
the free variables of a formula. These are defined as: v(�) = ∅, v(p) = {p},
v(ϕ ∧ ψ) = v(ϕ) ∪ v(ψ), v(¬ϕ) = v(ϕ), v(Kiϕ) = v(ϕ), v(Aiϕ) = v(ϕ), and
v(A+

i pϕ) = v(ϕ) \ {p}. Note that v(ϕ) ⊆ P . We explicitly include � in the
language, as the usual abbreviation p∨¬p complicates cases where not all agents
are aware of p (an agent unaware of p would then not explicitly know truth).

Definition 4 (Semantics). Let M = (S, R,A, V ) be given.

(M, s) |= �
(M, s) |= p iff s ∈ V (p)
(M, s) |= ϕ ∧ ψ iff (M, s) |= ϕ and (M, s) |= ψ
(M, s) |= ¬ϕ iff (M, s) �|= ϕ
(M, s) |= Kiϕ iff ∀t ∈ sRi, ∀(M ′, t′)↔Ai(s)(M, t), (M ′, t′) |= ϕ
(M, s) |= Aiϕ iff v(ϕ) ⊆ Ai(s)
(M, s) |= A+

i pϕ iff (M i�→p, s) |= ϕ

where M i�→p = (S, R,A ∪ {(i, (t, p)) | t ∈ S}, V ). The set of validities (and the
logic) is called DLILA (Dynamic Logic of Individual Local Awareness).

Intrinsic knowledge. The treatment of knowledge in this semantics is novel. An
agent knows ϕ only if in all accessible states ϕ remains true for every possible
interpretation of all propositional variables that she is unaware of. We achieve
this by composing the accessibility relation for an agent with the bisimulation
relation modulo the propositional variables of which the agent is unaware. Be-
cause the constraints in this composition are interdependent, we have one Ki

operator in the logical language and not, instead, two independent operators,
one for standard modal accessibility and another one for bisimulation quantifi-
cation. If the agent is aware of every propositional variable in the formula ϕ, the
interpretation of knowledge is as for epistemic logic.

Awareness dynamics. Compared to knowledge, the semantics of becoming aware
is simple. The complexity of becoming aware can only be seen in the context of
intrinsic knowledge. Suppose that the agent is unaware of p and that p is true in
all accessible states. We then have that A+

i pKip is true: after the agent becomes
aware of p, p is true. But although the agent considers that as a possibility, she
does not know that, and she also considers it possible that after becoming aware
of p, she knows that p is false, or that she is uncertain about p: all true are
LiA

+
i pKip, LiA

+
i pKi¬p, and A+

i p¬(Kip ∨ Ki¬p).
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In this paper, we made one of three possible choices for awareness dynamics.
All three consist of making an unaware variable into an aware variable, i.e.,
changing the set A in a model but leaving all other parameters the same. Given
state s, one can make agent i aware of the propositional variable p:

– in the actual state (only): A ∪ {(i, (s, p))}.
– in the actual state and all states accessible for agent i: A ∪ {(i, (s, p))} ∪
{(i, (t, p)) | t ∈ S and Ri(s, t)}.

– in all states of the model: A∪ {(i, (t, p)) | t ∈ S}.

All three are bisimulation invariant (with for the ‘actual state only’ version the
restriction that the operation is performed on a bisimulation contraction, this
requires a further adjustment of the definition). You might see the public version
of becoming aware as the ‘public announcement’ version of awareness dynamics:
just as in information dynamics, more complex dynamics have more complex
axiomatizations, and this is on our future agenda.

KD45 and S5 Apart from the logic DLILA we also consider the logics DLILAL,
where every modal operator Ki satisfies the axioms of the logic L. Typical choices
of L are S5 and KD45. One should be careful to note that this is not a simple case
of restriction. Restricting the underlying logic to L (for example KD45) means
that in interpreting the formula Kiϕ, we may only consider pointed models
(M ′, t′) that satisfy the constraints of L (so transitive, serial and euclidean for
KD45). The validities of DLILAL therefore do not necessarily extend those of
DLILA. And indeed, each axiomatization also poses new problems.

Specific logics require us to vary the semantics of the operator A+
i p. For

example, given awareness introspection and S5, the minimal way of becoming
aware makes an agent aware of a propositional variable in the current world
and in every indistinguishable world (the second option, before). In this paper
we show completeness for the logic DLILAK namely for awareness models M
where (SM , RM ) is a tree, and where becoming aware means becoming aware in
every world.

Where to put the complexity? An alternative interaction between knowledge and
becoming aware is embodied in the following semantics (presented in [17]):

(M, s) |= Kiϕ iff ∀t ∈ sRi, (M, t) |= ϕ
(M, s) |= A+

i pϕ iff ∃(N, t)↔Ai(s)(M, s), (N i�→p, t) |= ϕ

Here, the epistemic operator Ki remains the ‘classical’ one, whereas the becoming
aware operator A+

i p is the complex one. The advantage is obvious: the novel
operator is the only addition to a well-known logic (namely that of [1]). The
disadvantage is that a propositional variable may change its value in the process
of the agent becoming aware of it; p may be true, but in the transition to a
(P \ {p})-bisimilar state it may become false. So, e.g., the agent may become
aware that she knows p to be false, even if prior to that she ‘implicitly knew’ p
to be true. In that semantics, Ki does not mean implicit knowledge at all.

It seemed better to stock all the factual change into the mind of the agent
only, as in the complex Ki operator, such that the becoming aware operation is
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merely revealing the veil of incompleteness. For KD45 and S5 structures that
also satisfy ‘awareness introspection’ the distinction is immaterial, as the two
semantics then are identical with respect to explicit knowledge. So, from an
agent’s point of view, there is no difference.

Proposition 2. The semantics of DLILAK are invariant to bisimulation.

Proof. This is straightforward because relation ↔A is closed under bisimulation.

Examples

1. The introductory example about coffee and wine can be explained by seeing
the model on the left as the equivalence class modulo unawareness of q of
the model on the right. The agent can speculate over all models in that class
(cf. the semantics of Ki, with bisimulation except for q). Becoming aware
means that a model identical to the right model but with q unaware in all
states, is transformed into the right model. On the left, in the actual state
where p is false, it is e.g. true that: ¬Aiq ∧ A+

i q¬Kiq.
2. Consider again Figure 1, and the roots of the models. In all three cases agent

i knows that p. But she does not know in state s that q, because accessible
state t is p awareness bisimilar to (e.g.) t′ wherein q is false. After becoming
aware of q in state s, she knows q: then, any state that is {p, q} awareness
bisimilar to t must satisfy q. So A+

i qKiq is true. Consider a KD45 extension
of these models, i.e., add access (t, t) on the left, (t′, t′) in the middle, and
(t′′, t′′), (t′′, t′′′), (t′′′, t′′), (t′′′, t′′′) on the right. Now we have that the agent
considers it possible that: after becoming aware of q, she knows that q, or
she knows that ¬q, or she does not know whether q.

3. Consider the case of DLILAKD45, where every agent’s accessibility relation
is transitive, serial and euclidean. Crucially, in KD45, strong beliefs may
be mistaken, but you do not consider that possible: to yourself, your beliefs
appear knowledge. So Li(¬p∧Kip) is inconsistent. However, in DLILAKD45
it is valid that an agent i considers it possible that she becomes aware of a
propositional variable p that is false and that she believes to be true. That
is nothing but speculating about becoming aware of false information that
you had reason to accept! A validity of the language is ¬Aip → LiA

+
i p(¬p∧

Kip). The interpretation of this formula is shown in Figure 2. The crucial
aspect is that the pair (s, t) ∈ R[∅] (the dashed line): agent i cannot a
priori distinguish the reality of p being true in the believed world from the
speculative option that p is false there but believed true. However, after
becoming aware of p (in both s and t) this option is out of reach, as (s, t) �∈
R[p].

s.(¬p) t.(p)
i

i s.¬p t.p
i

i

××
⇒

Fig. 2. You can become aware of a false belief
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4 Intrinsic, Explicit and Implicit Knowledge

Past literature on knowledge and awareness has focused on the difference be-
tween implicit knowledge (“knowing” something without being fully aware of
that thing) and explicit knowledge (“knowing” something as well as being fully
aware of that thing). Intrinsic knowledge is strictly weaker than explicit knowl-
edge and strictly stronger than implicit knowledge. It allows us to reason about
the process of becoming aware, and that is our reason to complicate the existing
picture. Implicit knowledge and explicit knowledge are definable in our frame-
work, and we can compare those definitions with the traditional definitions.

Definition 5 (Explicit knowledge KE
i and implicit knowledge KI

i )
– KE

i ϕ iff Aiϕ ∧ Kiϕ (explicit knowledge)
– KI

i ϕ iff A+
i v(ϕ)Kiϕ (implicit knowledge)

Expression A+
i v(ϕ) means ‘becoming aware of a finite set of propositional vari-

ables’ and is defined in the obvious way. We also have that KI
i ϕ is equiva-

lent to A+
i v(ϕ)KE

i ϕ. The [1] definitions (in bold) are that (M, s) |= KI
i ϕ iff

∀t ∈ sRi, (M, t) |= ϕ, and that (M, s) |= KE
i ϕ iff (M, s) |= Aiϕ and ∀t ∈ sRi,

(M, t) |= ϕ. We now observe that KE
i ϕ iff KE

i ϕ, and that KI
i ϕ implies KI

i ϕ but
not vice versa (e.g., if i is unaware of p, but j is aware of p, then i implicitly
knows j to know that i is aware of p: KI

i KE
j Aip — this may come closer to im-

plicit knowledge as in [12]). Intrinsic knowledge is clearly not definable in terms
of implicit and explicit knowledge, given its semantics employing bisimulation
quantification! Interaction between the three kinds of knowledge includes:

Proposition 3. |= KE
i ϕ → Kiϕ and |= Kiϕ → KI

i ϕ.

On the other hand, �|= KI
i ϕ → Kiϕ. For example, you can implicitly know that

p but, as you are unaware of p, you do not intrinsically know that p.

Proposition 4. Awareness bisimilar states satisfy the same explicit knowledge:
If (M, s) |= KE

i ϕ and (M, s)↔Ai(s) (M ′, s′), then (M ′, s′) |= KE
i ϕ.

Proof. Note that Aiϕ means v(ϕ) ⊆ Ai(s). In the language restricted to Ai(s)
the epistemic awareness states (M, s) and (M ′, s′) are therefore bisimilar in
the standard sense, from which follows logical equivalence, thus equivalence of
Aiϕ ∧Kiϕ in both states.

5 Decidability

In this section we show decidability via an embedding into bisimulation-quantified
modal logics [4]. Bisimulation-quantified modal logic is an extension of multi-
modal (such as multi-agent) modal logic with the bisimulation quantifier, ∃pϕ,
which is interpreted as: “there is some model bisimilar to the current model ex-
cept for the atom p, and in which ϕ is true”. We recall the notion of restricted
bisimulation already apparent in Definition 2. These logics are interpreted on
models without the awareness function but that are otherwise similar.
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Definition 6 (Bisimulation Quantified Modal Logic). Let LC be the set of
validities for a model class C. We define the bisimulation-quantified extension of
LC to be QLC with the syntax:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ | ∃pϕ

where p ∈ P and i ∈ N , and with the crucial semantic clause:

M, s |=C ∃pϕ ⇐⇒ for some M ′, t ∈ C, M, s↔P−pM
′, t and M ′, t |=C ϕ.

It is shown in [4] that bisimulation quantified logics are decidable where LC is an
idempotent transduction logic; multi-agent S5 and multi-agent K describe such
idempotent transduction logics, and consequently have decidable bisimulation
quantified extensions. We will give the embedding for DLILAK in QLK (where
K is the class of models satisfying all K validities).

Definition 7. Let ϕ ∈ L, and for every agent i ∈ N and for every propositional
variable (atom) p ∈ v(ϕ), let ai

p be an atom not appearing in ϕ, (referred to as an
awareness atom, where Aϕ is the set of awareness atoms for ϕ). The embedding
of DLILAK into QLK is given by the recursive function ψ|ϕ such that:

�|ϕ = � (Aiψ)|ϕ =
∧

p∈v(ψ) ai
p

p|ϕ = p (Kiψ)|ϕ =
∧

C⊆v(ψ)(AiC → [i]∀Cϕψ|ϕ)
(¬ψ)|ϕ = ¬(ψ|ϕ) (A+

i pψ)|ϕ = ψ|ϕ[�\ai
p]

(ψ ∧ χ)|ϕ = (ψ|ϕ) ∧ (χ|ϕ)

where ∀C is an abbreviation for ∀p0...∀pn for the set of atoms C = {p0, ..., pn};
Cϕ is the set of all atoms in C along with the awareness atoms ai

p where p appears
in C; C is the complement of C with respect to the set of atoms in ϕ and the set
Aϕ; and for C ⊆ v(ϕ), AiC is an abbreviation for

∧
p∈C [i]ai

p ∧
∧

p∈v(ϕ)\C [i]¬ai
p.

Also, ψ[χ\p] is an abbreviation for the replacement of every free occurrence of
the atom p in ψ with the formula χ.

This embedding is a direct encoding of the semantics for DLILAK into the
logic QLK . The only non-trivial recursions are for Kiψ, which uses bisimulation
quantifiers to encode an awareness bisimulation, and A+

i pψ, that simply sets
agent i’s awareness of p to true at every state.

Proposition 5. Let M = (S, R,A, V ) be a model such that for all atoms p ∈
v(ϕ), and for all agents i ∈ N , for all s ∈ S, we have s ∈ V (ai

p) if and only if
p ∈ Ai(s). Then for all s ∈ S: M, s |= ϕ ⇐⇒ M, s |= ϕ|ϕ. (On the right hand
side, ignore the awareness parameter of the model in order to interpret ϕ|ϕ.)

Proof (Sketch). We give this proof by induction over the complexity of formulas.
The induction hypothesis holds for ψ ⊂ ϕ if and only if for all models N where
the awareness atoms match the agents’ awareness in M we have for every s ∈ SN ,
N, s |= ψ if and only if N, s |= ψ|ψ. The base of the induction is the propositional
atoms of ϕ and the truth symbol, �, and these may be seen to support the
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induction hypothesis. The inductive cases for ¬α and α∧ β follow directly from
their semantic definitions, and the case for Aiα follows immediately from the
fact that the awareness atoms agree with the agent’s awareness.

For Kiα, suppose that (N, s) is a pointed model such that N, s |= Kiα. Let C
be the set of propositional variables AN

i (s) ∩ v(ϕ). We may proceed as follows:
N, s |= Kiα

⇔ [Def ] ∀t ∈ sRN
i , ∀(N ′, t′)↔C(N, t), N ′, t′ |= α

⇔ [I.H.] ∀t ∈ sRN
i , ∀(N ′, t′)↔C(N, t), N ′, t′ |= α|ϕ

⇔ [∗] ∀t ∈ sRN
i , ∀(N ′, t′) ∼=Cϕ (N, t), N ′, t′ |= α|ϕ

⇔ [Def ] ∀t ∈ sRN
i , N, t |= ∀Cϕα|ϕ

⇔ [Def ] N, s |= [i]∀Cϕα|ϕ
The equivalences here are all straightforward, except for the one labelled ∗. In the
forward direction this is trivial: every Cϕ-bisimulation is a C-awareness bisim-
ulation. In the reverse direction, we must note the construction of α|ϕ. Here
modalities [i] only appear in the form

∧
C⊆v(α)(Aic → [i]∀Cϕα|ϕ). With respect

to this form we can see that Cϕ-bisimulations and C-awareness-bisimulations
indeed are equivalent since every application of a modality extends the bisimu-
lation according to awareness function at that point. Since C is defined to be the
set of atoms of which agent i is aware, the result follows. Finally, we note that
for the interpretation of A+

i pα it is enough to manually fix the interpretation of
every free occurrence of the atom ap

i in α|ϕ to true, as Aip will be true in every
state.

Thus we have a translation from DLILAK to the bisimulation quantified logic
QLK that preserves the meaning of formulas (given a set of awareness atoms in
the model). Decidable satisfiability and model-checking follow. We have not yet
investigated the lower bound for complexity of the translation. The translation
given is quite general, as it also suffices for QLKD45 or QLS5.

6 Axiomatization

We provide an axiomatization DLILA for DLILAK , and we show it to be sound
and complete. The propositional rules and axioms, and those for knowledge (only
involving Ki), are standard. The axioms for awareness (for Ai) simply capture
the syntactic definition. The interaction between knowledge and awareness is
governed by the axioms AK1–AK4.

C0 All tautologies of prop. logic K Ki(ϕ → ψ) → Kiϕ → Kiψ
MP From ϕ and ϕ → ψ infer ψ Nec From ϕ infer Kiϕ
A1 Ai(ϕ ∧ ψ) ↔ Aiϕ ∧ Aiψ A2 Ai¬ϕ ↔ Aiϕ
A3 AiKjϕ ↔ Aiϕ A4 AiAjϕ ↔ Aiϕ
A5 AiA

+
j pϕ ↔ Aip ∧ Aiϕ A6 Ai�

AK1 Kiϕ ∧ ¬Aip → Kiϕ[ψ\p]
AK2 From Aiϕ ∧ Kiϕ → Kiψ infer Aiψ ∧Kiϕ → Kiψ
AK3 (Ki(p → ϕ) ∨ Ki(¬p → ϕ)) ∧ ¬Aip → Kiϕ
AK4 (Ki(Ajp → ϕ) ∨ Ki(¬Ajp → ϕ)) ∧ ¬Aip → Kiϕ.
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In AK1 we require that ψ is free for p in ϕ, and the axioms AK3 and AK4 may
only be applied in the case where the atom p does not appear outside the scope
of a modal (knowledge) operator. Axioms AK1 and AK2 are not required in
the completeness proof, but we have left them in as they represent important
principles that hold in all semantic variations of DLILA: AK1 shows that if an
agent is not aware of an atom, then the agent may not distinguish the interpre-
tation of that atom from the interpretation of an arbitrary proposition; AK2
states that if intrinsic knowledge of ψ can be derived from explicit knowledge of
ϕ, then intrinsic knowledge of ψ may also be derived from intrinsic knowledge of
ϕ and awareness of ψ. Axioms AK3 and AK4 are specific to the K semantics:
they capture the intrinsic nature of the knowledge operator: if an agent is un-
aware of an atom, he does not refute any interpretation of that atom, nor does
he refute the interpretation of any agent’s awareness of that atom.

Finally we present axioms for becoming aware. We note from the semantics
that if an agent i becomes aware of an atom this will only affect the interpretation
for formulas Aiϕ or Kiϕ. Consequently A+

i p commutes with all other operators.

B0 A+
i p� B1 A+

i pq ↔ q
B2 A+

i p(ϕ ∧ ψ) ↔ A+
i pϕ ∧ A+

i pψ B3 A+
i p¬ϕ ↔ ¬A+

i pϕ
B4a Ajp → (A+

i pKjϕ ↔ KjA
+
i pϕ) B4b KiA

+
i pϕ → A+

i pKiϕ
B5a A+

i pAjϕ ↔ Ajϕ where i �= j B5b A+
i pAiϕ ↔ Aiϕ[�\p]

B6 A+
i pA+

j qϕ ↔ A+
j qA+

i pϕ

Soundness and completeness. The soundness is straightforward. We show com-
pleteness for DLILA by constructing a canonical model for any formula using
maximal consistent sets of formulas in L—proofs are in the appendix.

Definition 8. The canonical model is built from the set S of all maximal con-
sistent sets of formulas with respect to the system DLILA. Further we define
M = (S,R,A,V) where:

– for all i ∈ N , for all maximal consistent sets σ, τ ∈ S, (σ, τ) ∈ Ri if and
only if for all formulas A+

i v(ϕ)Kiϕ ∈ σ, we have ϕ ∈ τ ;
– for all σ ∈ S for all i ∈ N , for all p ∈ P , we have p ∈ Ai(σ) if and only if

Aip ∈ σ;
– for all σ ∈ S, for all p ∈ P , we have σ ∈ V(p) if and only if p ∈ σ.

Proposition 6. Every canonical model is an epistemic awareness model.

Proof. In the presence of complete awareness, intrinsic knowledge is equivalent
to explicit knowledge, and the logic of explicit knowledge is canonical. We note
that the awareness function A is constant for each agent’s local state because of
the axiom AK3.

Lemma 1 (Truth Lemma). For every σ ∈ S, for every formula ϕ, we have
ϕ ∈ σ if and only if M, σ |= ϕ.

(Proof in Appendix.) It follows that for every consistent formula ϕ we may con-
struct a model so the axiomatization DLILA is complete for the logic DLILA.
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7 Comparison

Our approach is in some respects simpler and more constrained than [8]. From
the epistemic awareness structure we are able to implicitly derive a complete
lattice of spaces via awareness bisimulation, whereas in [8] this structure is given
explicitly. In other words, we have a succinct, technical tool to derive that result.

The principles A1, . . . , A6 in DLILA straightforwardly correspond to (a multi-
agent version of) LKXA in [6] and Proposition 3 in [8]—epistemic operators Ki

in the scope of awareness operators can be replaced by the explicit knowledge
operators KE

i assumed by those authors; A5 is a ‘mix’ axiom relating to dy-
namics. Principles AK1 and AK2 were conceived using results for bisimulation-
quantified logics and are strictly about intrinsic knowledge only.

Although we do not explicitly have propositional quantifiers, they are in-
directly present in intrinsic knowledge operators. Propositional quantification is
integrated with awareness and knowledge in [7] (and in various precursors). This
concerns quantification over the set of formulas of which an agent is aware. They
interestingly mention that “Using semantic valuations [for quantification] does
not work in the presence of awareness” [7, p.506]; although of course correct, we
are wondering if our work may make the authors reconsider the suggested scope
of that remark.

Dynamics of (factual) awareness is presented in [9,5,19]. In [9] becoming aware
means (initially) becoming ignorant about that proposition. It uses an algebraic
approach. Becoming ignorant is also the approach in the recent [19], that con-
tains various other novelties. In [5], the approach in Section 3 is similarly dy-
namic modal as ours, and it provides an integrated combination of syntactic and
semantic awareness.
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Appendix: Proof of Truth Lemma 1

For a convenient proof, we give a syntactic version of awareness bisimulation.

Definition 9. We say a formula of DLILA is explicit if it is built from the
following syntax: ϕ ::= � | p | ϕ∧ϕ | ¬ϕ | Kiϕ ∧Aiϕ | Aiϕ. For every C ⊆ P ,
let B(C) be a binary relation on S satisfying for all σ, τ ∈ S, (σ, τ) ∈ B(C) if
and only if for every explicit formula ϕ containing only the atoms in C, we have
we have ϕ ∈ σ implies ϕ ∈ τ . We refer to such formulas ϕ as C-explicit.

The following lemma is a strengthening of Proposition 4 and shows the corre-
spondence between Definition 9 and Definition 2.

Lemma 2. For every σ, τ ∈ S, for every C ⊆ P we have (M, σ)↔C(M, τ) if
and only if (σ, τ) ∈ B(C).

Proof (Sketch). (=⇒) We show by induction over the complexity of formulas
that for any σ, τ where (M, σ)↔C(M, τ), we have, for any C-explicit formula
ϕ, ϕ ∈ σ if and only if ϕ ∈ τ . In the case that ϕ is a propositional atom or
� it is clear that ϕ ∈ σ iff ϕ ∈ V (σ) iff ϕ ∈ V (τ) iff ϕ ∈ τ . The inductions
for the propositional operators ∧ and ¬ are similarly straightforward. For Aiϕ,
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by application of the axioms A1-A6 we have Aiϕ ∈ σ iff for all atoms p in
ϕ we have Aip ∈ τ . By the aware clause of Definition 2, this is equivalent to
Aip ∈ τ so we must have Aiϕ ∈ τ . Finally, if Kiϕ ∧ Aiϕ ∈ σ, then for all
σ′ ∈ σRi we have ϕ ∈ σ′. By Definition 2 for all τ ′ ∈ τRi, there exists σ′ ∈ σRi

such that τ ′↔C∩Ai(σ)σ
′. By the induction hypothesis it follows that ϕ ∈ τ ′, so

Kiϕ ∧ Aiϕ ∈ σ iff Kiϕ ∧ Aiϕ ∈ τ .
(⇐=) Here we show that the relations B(C) satisfy the properties specified

in Definition 2. Clearly the clauses atom and aware hold since if (σ, τ) ∈ B(C)
then σ and τ agree on all C-explicit formulas which includes the atoms in C, and
the awareness of those atoms. To see forth holds, suppose that (σ, τ) ∈ B(C).
Then for all agents i, for all σ′ ∈ σRi, for all C ∩Ai(σ)-explicit formulas ϕ ∈ σ′,
we have Liϕ ∧ Aiϕ ∈ σ. By the definition of B(C) we have, for all C ∩ Ai(σ)
formulas ϕ ∈ σ′, Liϕ ∧ Aiϕ ∈ τ . By the axiom B4a every finite subset of the
C ∩Ai(σ)-explicit formulas in σ′ is consistent with the set of implicit knowledge
formulas, {ψ | A+v(ψ)Kiψ ∈ τ}. As there is no finite proof of inconsistency
we may conclude that the set of C ∩ Ai(σ)-explicit formulas in σ′ is consistent
with the set of implicit knowledge formulas in τ . By Definition 8 there is some
τ ′ ∈ τRi such that (σ, τ ′) ∈ B(C ∩ Ai(σ), as required. The case for back is
handled symmetrically.

Lemma 2 provides a compelling justification for the notion of awareness bisim-
ulation. Two states are C-awareness bisimilar exactly when they agree on all
C-explicit formulas. We continue with the proof of the Truth Lemma 1 proper.

Proof (Sketch). This lemma is given by induction over the complexity of formu-
las. The base case, where ϕ ∈ P or ϕ = � is a direct application of the definition
of V , so we may assume for all ψ ⊂ ϕ, for all σ ∈ S we have ψ ∈ σ if and only if
M, σ |= ψ. The induction proceeds as follows:

¬ Suppose ϕ = ¬ψ. Then since ψ ∈ σ if and only if M, σ |= ψ, from the
consistency of σ we have ϕ ∈ σ if and only if M, σ |= ϕ.

∧ Suppose ϕ = ψ1 ∧ ψ2. Then since ψi ∈ σ if and only if M, σ |= ψi, from
the consistency of σ we have ϕ ∈ σ if and only if M, σ |= ϕ.

Ai Suppose ϕ = Aiψ. Then clearly by the axioms A1-A7, Aiψ ∈ σ if and only
if, for all atomic propositions p ∈ ψ we have Aip ∈ σ. This is equivalent to
(M, σ) |= Aip for all atoms, p in ψ, which is equivalent to (M, σ) |= Aiψ.

Ki Suppose Liψ ∈ σ. Let Ψ = {α | Kiα∧Aiα ∈ σ}. Now Ψ ∪{ψ} is consistent
(since the conjunction γ of every finite subset appears in σ as Liγ), and
furthermore, it must be consistent with the Ai(σ)-explicit formulas that
appear in some τ ∈ σRi. Therefore, we may find a maximal consistent set
τ ′ such that ψ ∈ τ ′↔Ai(σ)τ ∈ σRi, so (M, σ) |= Liψ as required.
Conversely, suppose that (M, σ) |= Liψ. We proceed by induction over the
knowledge-depth of ψ, where the induction hypothesis is, that for all ψ of
knowledge depth n:

1. for all τ ∈ S, � Li(τΓ
ψ ) ∧ AiΓ

ψ → Liτψ, and
2. for all τ ∈ S, (M, τ) |= ψ if and only if ψ ∈ τ .
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Here, Γ is a set of propositional variables; τΓ
ψ is the set of subformulas

of ψ containing only atoms from Γ that appear in the set τ ; AiΓ
ψ

is an
abbreviation for

∧
{¬Aip | p ∈ ψ\Γ}; and τψ is the set of subformulas of ψ

that appear in τ . This is sufficient to show M, σ) |= Liψ implies Liψ ∈ σ
since if (M, σ) |= Liψ, we have ψ ∈ τ for some τ↔Ai(σ)τ

′ ∈ σRi. By
Lemma 2, τ

Ai(σ)
ψ ∈ τ ′, and hence Li(τ

Ai(σ)
ψ ) ∈ σ. Applying the inductive

hypothesis we have Liψ ∈ σ as required.
For the base case, iff ψ has knowledge depth 0, we can see from axioms

B0-B7 and A1-A6 that ψ is effectively a propositional formula where the
atoms are either propositional atoms, or agents’ awareness of propositional
atoms. Now there are two cases: if Aiψ ∈ σ, then by the axiom B4b we
have for every τ ∈ σRi, for every τ ′↔Ai(σ)τ , ψ ∈ τ ′, so (M, σ) |= Kiψ
and we are done. Alternatively, if Aiψ /∈ σ, then there are some atoms in
ψ that agent i is not aware of at σ. Let T = {p, Ajp | p, j ∈ v(ψ)}. For
any τ, τ ′ where τ↔Ai(σ)τ

′ ∈ σRi there is a subset of T true at τ . We may
apply the axioms AK3 and AK4 to derive

Liχ(τ) = Li

⎛⎝ ∧
α∈T ∩τ

α ∧
∧

α∈T \τ

¬α ∧ ψ

⎞⎠
Therefore there is some maximal consistent set ρ containing χ(τ), and as
τ ′ agrees with ρ on the interpretation of all atoms up to the depth of ψ,
we must have (M, τ ′) |= ψ as required. As this is the case for every τ ∈ S
it must be that � Li(τΓ

ψ ) ∧ AiΓ
ψ → Liτψ.

For the inductive step we proceed in a similar fashion. Suppose τ↔Ai(σ)τ ′

∈ σRi. Given that we may apply the axiom AK4 to replicate the awareness
state of agents at τ ′. We may then apply the inductive hypothesis to infer
Kjψk at (M, τ), where ψk has knowledge depth less than n. Finally we
may again apply AK3 and AK4 to replicate the interpretation of atoms,
and other agents’ awareness of the atoms at τ . As ψ may be written as a
Boolean combination of atoms, agents’ awareness of atoms and formulas
Kjψk (where the knowledge depth of ψk is less than n), the result follows.

A+
i p Suppose that ϕ = A+

i pψ, and ϕ ∈ σ. From axiom B3 we can see the
set τ = {α | A+

i pα ∈ σ} is maximal and consistent. Furthermore from
Definition 8 we can see that for all j, for every ρ ∈ S we have ρ ∈ σRj if
and only if ρ ∈ τRj . Thus the successors of τ are exactly the successors of σ.
Also, from the axioms B0-B6 we have for all atoms p, τ ∈ V(p) iff σ ∈ V(p),
for all agents j �= i we have Aj(σ) = Aj(τ) and finally Ai(σ)∪{p} = Ai(τ).
From this we can see (M, τ) is bisimilar to (M̂i�→p, σ), where M̂ is the tree
unwinding of M. As ψ ∈ τ , the result follows.

Conversely, suppose that (M, σ) |= A+
i pψ and for contradiction, sup-

pose that ¬A+
i pψ ∈ σ. Applying B3 we have A+

i p¬ψ ∈ σ. From the ar-
gument above it follows that a model bisimilar to (M̂i �→p, σ) satisfies ¬ψ,
so the contradiction follows from the bisimulation invariance of DLILAK

(Proposition 2).
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