
Model Synchronization: Mappings, Tiles, and

Categories

Zinovy Diskin

Generative Software Development Lab.,
University of Waterloo, Canada
zdiskin@gsd.uwaterloo.ca

Abstract. The paper presents a novel algebraic framework for specifi-
cation and design of model synchronization tools. The basic premise is
that synchronization procedures, and hence algebraic operations mod-
eling them, are diagrammatic: they take a configuration (diagram) of
models and mappings as their input and produce a diagram as the out-
put. Many important synchronization scenarios are based on diagram
operations of square shape. Composition of such operations amounts to
their tiling, and complex synchronizers can thus be assembled by tiling
together simple synchronization blocks. This gives rise to a visually sug-
gestive yet precise notation for specifying synchronization procedures
and reasoning about them.

1 Introduction

Model driven software engineering puts models at the heart of software develop-
ment, and makes it heavily dependent on intelligent model management (MMt)
frameworks and tools. A common approach to implementing MMt tasks is to
present models as collections of objects, and program model operations as oper-
ations with these objects; object-at-a-time programming is a suitable name for
this style [1]. Since models may contain thousands of interrelated objects, object-
at-a-time programming can be very laborious and error-prone. In a sense, it is
similar to the infamous record-at-a-time programming in data processing, and
has similar problems of being too close to implementation.

Replacing record- by relation-at-a-time frameworks has raised data
processing technology to a qualitatively new level in semantic transparency and
programmers’ productivity. Similarly, we can expect that model-at-a-time pro-
gramming, in which an engineer can think of MMt routines in terms of opera-
tions over models as integral entities, could significantly facilitate development
of MMt applications [1]. This view places MMt into the realm of algebra: models
are indivisible points and model manipulation procedures are operations with
them.

Model synchronization tools based on special algebraic structures called lenses
[2] can be seen as a realization of the algebraic vision. The lens framework was
first used for implementing a bidirectional transformation language for synchro-
nizing simple tree structures [3], and then employed for building synchronization

J.M. Fernandes et al. (Eds.): GTTSE 2009, LNCS 6491, pp. 92–165, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Model Synchronization: Mappings, Tiles, and Categories 93

tools for more complex models closer to software engineering practice [4,5]. In
[6], a lens-like algebraic structure was proposed to model semantics of QVT, an
industrial standard for model transformation.

Lens-based synchronization is discrete: input data for a synchronizer con-
sist of states of the models only, while mappings (deltas) relating models are
ignored. More accurately, the synchronizer itself computes mappings based on
keys and the structure of the models involved. However, in general a pair of mod-
els does not determine a unique mapping between them. To compute the latter,
some context-dependent information beyond models may be needed, and hiding
model mappings inside the tool rather than allowing the user to control them
may compromise synchronization. For example, discrete composition of model
transformations may be erroneous because in order to be composable, transfor-
mations must fit together on both models and mappings. In the paper we will
consider several examples showing that model (and metamodel) mappings are
crucial for model synchronization, and must be treated as first-class citizens not
less important than models.

In algebraic terms, the arguments above mean that model mappings must
be explicitly included in the arity shapes of MMt operations. A typical MMt
universe should appear as a directed graph (nodes are models and arrows are
mappings) that carries a structure of diagrammatic algebraic operations. The
latter act upon configurations (diagrams) of models and mappings of predefined
arity shapes: take a diagram as the input and produce a diagram as the output.

The world of diagram algebra essentially differs from the ordinary algebra.
A single diagram operation may produce several nodes and arrows that must
satisfy certain incidence relationships between themselves and input elements.
Composition of such operations, and parsing of terms composed from them,
are much more complex than for ordinary tuple-based single-valued operations.
Fortunately, we will see that diagram operations appearing in many model syn-
chronization scenarios have a square shape: the union of their input and output
diagrams is a square composed of four arrows — we will call it a tile. Compo-
sition of such operations amounts to their tiling, and complex synchronization
scenarios become tiled. Correspondingly, complex synchronizers can be assem-
bled by tiling together simpler synchronizing blocks, and their architecture is
visualized in a precise and intuitive way.

The main goal of the paper is to show the potential of the tile language
for specifying synchronization procedures and for stating the laws they should
satisfy. Tiles facilitate thinking and talking about synchronization; they allow
us to draw synchronization scenarios on the back of an envelope, and to prove
theorems about them as well. Specification and design with tiles are useful and
enjoyable; if the reader will share this view upon reading the paper, the goal
may be considered achieved.

How to read the paper. There are several ways of navigating through the
text. The fastest one is given by the upper lane in Fig. 1: rectangles denote
sections (of number n)) and arrows show logical dependencies between them.

94 Z. Diskin

4) Simple sync. sce-
narios I: Replication

6) Complex sync.
scenarios: Tiling

3) Inside models
and model deltas

A) Warming up for
category theory

C) Model trans-
lation via arrows

Abstract MMt: Model-opaque algebraic structures
(the joy of design)

Concrete MMt: Model-transparent algebraic structures
(the troubles of implementation)

7) Relation to
other work,
tracing ideas,
future work

B) Graphs and
categories: A primer

D) Heterogeneous
model matching

5) Simple sync. scena-
rios II: View maintenance

2) Model sync
overall. Mappings!

Fig. 1. Flow of Content

Section 2 is the beginning of the journey: it draws an overall picture of model
synchronization, presents two simple examples (replica synchronization and view
maintenance), and argues that mappings are of primary importance. It also
warns the reader about the dangers of walking through the arrow forest and
declares tile algebra and category theory as a means to meet the challenge.

The subsequent three upper sections present abstract algebraic models of the
examples from Section 2, and develop them into an algebraic framework based on
tiles. Models and model mappings are treated as opaque indivisible nodes and
arrows, and synchronization procedures as abstract algebraic operations over
them. Two families of such operations are considered for two basic scenarios:
replication (Section 4) and view maintenance (Section 5). Section 6 shows how
to build complex synchronizers by putting together basic blocks.

The upper three sections can be viewed as a mini-tutorial on building algebraic
theories in the diagrammatic setting. We will see how to set signatures of diagram
operations, state equational laws, and define diagram algebras intended to model
synchronization tools. The goal is to present a toolbox of algebraic instruments
and show how to use them; several exercises should allow the reader to give them
a try. Except in subsection 6.2, the mathematics employed in the upper lane is
elementary (although somewhat unusual).

The upper lane of the paper presents an abstract MMt framework: models and
mappings are black-boxes without internal structure (hence its notation: black
opaque nodes and arrows). This setting can be useful for a top-level architectural
design of synchronization tools. A more refined (and closer to implementation)
setting is presented in the concrete MMt branch of the paper formed by Sections
3,C,D connected by transparent arrows. In these sections we look inside models
and mappings, consider concrete examples, and refine the abstract constructs
of the upper lane by more “concrete” algebraic models. In more detail, Section
3 factorizes the fast route 2 → 4 (from examples in Section 2 to abstract con-
structs in Section 4) by providing a formal model for the internal structure of

Model Synchronization: Mappings, Tiles, and Categories 95

models and model deltas, and for delta composition as well (including deltas
with inconsistencies!). Section C refines the fast route 2 → 5 into a “concrete”
path 2→ 3→ C → 5 by providing an algebraic model for the view mechanism
(also based on tiles); and Section D plays a similar role for Section 6 with a
refined model of heterogenous matching.

Both frameworks — abstract and concrete — employ algebraic models and
tiling. A principal distinction of the latter is that metamodels and metamodel
mappings are explicitly included into algebraic constructs and play an essential
role. Indeed, ignoring metamodels and their mappings hides semantic meaning
of operations with heterogeneous models from the user and may provoke ad
hoc solutions in building MMt-tools. Taking metamodels seriously brings onto
the stage an entire new dimension and significantly complicates the technical
side of mapping management. Use of category theory (CT) seems unavoidable,
and two “concrete” sections C and D require certain categorical intuition and
habits of arrow thinking not familiar to the MMt community.1 Therefore, a
special “starter” on CT was written (Sect. A), which motivates and explains
the basics of arrow thinking. Section B is merely a technical primer on graphs
and categories: it fixes notation and defines several basic constructs employed in
the paper (but is not intended to cover all categorical needs). Even though the
presentation in Sect. C and D is semi-formal, all together the four lower sections
are much more technically demanding than the upper ones, and so are placed in
the Appendix that may be skipped for the first reading.

Sections 7 presents diverse comments on several issues considered or touched
on in the paper in a wider context. It also briefly summarizes contributions of the
paper and their relation to other work. Section 8 concludes. Answers to exercises
marked by * can be found on p. 143

A possible reading scenario the author has in mind is as follows. The reader
is a practitioner with a solid knowledge of model synchronization, who knows
everything presented in the paper but empirically and intuitively. He has rather
vague (if any) ideas about diagram algebra and category theory, and is hardly
interested in these subjects, yet he may be interested in a precise notation for
communicating his empirical knowledge to his colleagues or/and students. He
may also be interested in some mathematics that facilitates reasoning about
complex synchronization procedures or even allows their mechanical checking.
Such a reader would take a look through numerous diagrams in the paper
with an approximate understanding of what they are talking about, and hope-
fully could find a certain parallelism between these diagrams and his prac-
tical intuition. Perhaps, he would remember some terms and concepts and,
perhaps, would take a closer look at those concepts later on. Eventually, he
may end up with a feeling that viewing model synchronization through the pat-
terns of diagram algebra makes sense, and category theory is not so hopelessly
abstract.

Now it is the reader’s turn to see if this scenario is sensible.

1 It could explain why many known algebraic approaches to MMt ignore the meta-
modeling dimension.

96 Z. Diskin

2 Model Sync: A Tangled Story

By the very nature of modeling, a system to be modeled is represented by a set of
interrelated models, each one capturing a specific view or aspect of the system. Dif-
ferent views require different modeling means (languages, tools, and intuitions),
and their models are often built by different teams that possess the necessary expe-
rience and background. This makes modeling of complex systems heterogeneous,
collaborative, and essentially dependent on model synchronization.

This section presents a tale of model synchronization: we begin with a tangle,
then follow it and get to an arrow forest, which we will try to escape by paving
our way by tiles.

2.1 The Tangle of Relationships and Update Propagation

The task of model synchronization is schematically presented in Fig. 2. A snap-
shot of a design project appears as a heterogeneous collection M of models
(shown by nodes A, B, C...) interrelated in different ways (edges r1, r2, r3...).
The diversity of node and edge shapes is a reflection of the diversity of models
and the complexity of their mutual relationships that emerge in software design.
The image of a tangle in the center of the figure is intentional.

Typically, models in a project’s snapshot are only partially consistent, i.e.,
their relationships partially satisfy some predefined consistency conditions. That
is, we suppose that inconsistencies are partially detected, specified and recorded
for future resolution. Inconsistency specifications may be considered as part of
the intermodel relationships and hence are incorporated into intermodel edges.

Now suppose that one of the models (say, A in the figure) is updated to a
new state (we draw an arrow uA : A→ A′), which may violate existing consis-
tent relationships and worsen existing inconsistencies. To restore consistency or
at least to reduce inconsistency, other related models must be updated as well
(arrows uB : B → B′, uC : C → C′ etc). Moreover, relationships between models
must also be updated to new states r′i, i = 1, 2, ..., particularly by incorporating
new inconsistencies. Thus, the initial update uA is to be propagated from the
updated model to other related models and relationships so that the entire re-
lated fragment (“section” M of the model space) is updated to state M′. We
call this scenario a single-source update propagation.

Another scenario is when several models (say, A, B, C) are updated concur-
rently, so their updates must be mutually propagated between themselves and
other models and relationships. Such multi-source propagation is more complex
because of possible conflicts between updates. However, even for single-source
propagation, different propagation paths may lead to the same model and gen-
erate conflicts; cycles in the relationship graph confuse the situation even more.
The relationship tangle generates a propagation tangle.

Propagation is much simpler in the binary case when only two interrelated
models are considered. This is a favorite case of theoreticians. For binary situ-
ations, multi-source propagation degenerates into bi-directional (in contrast to
unidirectional single-source propagation) — an essential simplification but still

Model Synchronization: Mappings, Tiles, and Categories 97

Refinements
(refinementOf)

Matches
(replicaOf)

…

…

C

D B

D’ B

uB

Updates
(versionOf)

Typing
(instanceOf)

…

Views
(viewOf) SectionM of the space

uC

uA

r1

r2

r4

uD
r1

M

SectionM of the space
C’ r4

r3

r3

SpaceMMod of
metamodels and
their relationships

A

A

r2

SpaceMod of
models and their

relationships

Fig. 2. Models and their relationships: From a tangle to mD-space

a challenge [7]. Practical situations enjoy a mix of single- and multi-source, uni-
and bi-directional propagations. We will generically refer to them as synchro-
nization procedures.

The description above shows that understanding intermodel relationships is
crucial for design of synchronization procedures, and it makes sense to establish
a simple taxonomy. For the binary case, one model in relation to another model
may be considered as its

– replica (e.g., a Google replica of a Microsoft Outlook calendar),
– updated version (two versions of the same replica),
– view (a business view of a calendar),
– refinement (an hourly refinement of a daily schedule),
– instance (an actual content of a diary book – the metamodel for the content).

The list could be be extended and gives rise to a family of binary relations
Ri ⊂ Mod×Mod, i = 1, 2.. over the space of models Mod. Unfortunately, a
more or less complete classification of such relations important for MMt seems
to be missing from the literature.

An observation of fundamental importance for model synchronization is that
intermodel relationships are not just pairs of models (A, B) ∈ Ri, they are
mappings r : A⇒ B linking models’ elements. That is, edges in Fig. 2 have
extension consisting of links. Roughly, we may think of an edge r : A⇒ B as a
set of ordered pairs (a, b) with a ∈ A and b ∈ B being similar model elements

98 Z. Diskin

(a class and a class, an attribute and an attribute etc). We may write such a
pair �=(a, b) as an arrow a

�:r� b and call it a link (note the difference in the
bodies of arrows for mappings and links). In the UML jargon, links � are called
instances of r. In the arrow notation for links as above, the name of the very
link � may be omitted but the pointer to its type, :r, is important and should
be there.

Table 1. Intermodel rela-
tionships & mappings

Relationship Mapping
replicaOf match
versionOf update

viewOf view trc.
instanceOf typing

Table 1 presents a brief nomenclature of intermodel
relations and mappings (’trc.’ abbreviates ’traceabil-
ity’). Normally mappings have some structure over the
set of links they consist of, and we should distinguish
between a mapping r and its extension |r|, i.e., the
set links the mapping consists of. Yet we will follow a
common practice and write � ∈ r for � ∈ |r|. In gen-
eral, a mapping’s extra structure depends on the type
of the relationship, and so mappings listed in the table
are structured differently and operated differently.

2.2 Mappings, Mappings, Mappings...

In this section we consider how mappings work for synchronization. We will begin
with two simple examples. The first considers synchronization of two replicas of a
model. In the second, one model is a view of the other rather than an independent
replica. Then we will discuss deficiencies of state-based synchronization. Finally,
we discuss mathematics for mapping management.

To make tracing examples easier, our sample models will be object diagrams,
whose class diagrams thus play the role of metamodels (and the metamodel of
class diagram is the meta-metamodel).

2.2.1 Replica Synchronization

Suppose that two developers, Ann and Bob, maintain their own replicas of a
simple model Fig. 3i(a). The model consists of Person-objects with mandatory
attribute ‘name’ and any number of ‘phone’s with an optional extension number
‘ext’ (see the metamodel in the leftmost square; attribute multiplicities are shown
in square brackets).

Diagram in Fig. 3i(b) presents an abstract schema of a simple synchroniza-
tion scenario. Arrow m : A⇒ B denotes some correspondence specification, or
a match, between the models. Such specifications are often called (symmet-
ric) deltas, and are computed by model differencing tools.2 Similarly, arrow
u : A⇒ A′ denotes the delta between two versions of Ann’s replica, and we call
it an update. The task is to propagate this update to Bob’s replica and update
the match. That is, the propagation operation ppg must compute an updated
model B′ together with update u∗ and new match m′. Note that derived arrows
are dashed (and the derived node is blank, rather than shaded). When reading
2 The term directed delta refers to an operational (rather than structural) specification:

a sequence of operations (add, change, delete) transforming A to B (an edit log).

Model Synchronization: Mappings, Tiles, and Categories 99

:Person
name=Jo
pho=11

Ann’s model, A
Person
name: Str [1]
pho: Int [0..*]

ext: Int [0..1]

Metamodel, M
:Person
name=Jo
pho=22

Bob’s model, B

(b)

A

A

u

Bm

m B

ppg

(a)

u*

i) Two simple replicas to be synchronized

P: Person
(a:name) Jo
(b:pho) 11

Q: Person
(x:name) Jo
(y:pho) 22

(a)

P’:Person
(a’:name) Jon
(b’:pho) 11x5

Q:Person
(x:name) Jon
(y:pho) 22x5

P: Person
(a:name) Jo
(b:pho) 11

Q: Person
(x:name) Jo
(y:pho) 22

(c)

P’: Person
(a’:name) Jon
(b’:pho) 11x5

Q:Person
(x:name) Jon
[[(y:pho) 22]]
(z:pho):11x5

P: Person
(a:name) Jo
(b:pho) 11

Q: Person
(x:name) Jo
(y:pho) 22

P’: Person
(a’:name) Jon
(b’:pho) 11x5

Q: Person
(x:name) Jon
(y:pho) 22
(z,pho) 11x5

P: Person
(a:name) Jo
(b:pho) 11

Q: Person
(x:name) Jo
(y:pho) 22

P’: Person
(a’:name) Jon
(b’:pho) 11x5

Q: Person
(x:name) Jon
(y:pho) 22

(b) (d)

=

=
=

=

u*u

m

m

=

=

=
=

=

=
=

=

=
=

=

=
=

=

=
=

=

=

=

ii) Four cases with different input mappings

Fig. 3. Mappings do matter in update propagation

100 Z. Diskin

the paper in color, derived elements would be blue (because the color blue re-
minds us of machines and mechanical computation). We will continue with this
pattern throughout the paper.

Fig. 3ii demonstrates that the results of update propagation depend on the
input mappings u and m. All four cases presented in the figure have the same
input models A, A′, B, but different mappings m or/and u, which imply — as
we will see — different outputs B′, u∗, m′.

Consider Fig. 3ii(a). Models’ elements (their OIDs) are denoted by letters
P, a, ..., Q, x, We match models by linking those elements that are different
replicas of the same objects in the real world (note the label =). Some of such
links are provided by the user (or a matching tool) while others can be derived
using the metamodel. For example, as soon as elements P@A and Q@B are
linked, their ’name’ attributes must be linked too because the metamodel pre-
scribes a mandatory unique name for any Person object. In contrast, linking
the phone attributes b@A and y@B is an independent (basic rather then de-
rived) datum because the metamodel allows a person to have several phones.
The match shown in the figure says that b and y refer to the same phone. Then
we have a conflict between models because they assign different numbers to the
same phone.In such cases the link is labeled by (red) symbol �= signaling a con-
flict. The set of all matching links together with their labels is called a matching
mapping or just a match, m : A⇒ B.

An update mapping u : A⇒ A′ specifies a delta between models in time. Map-
ping u in Fig. 3ii(a) consists of three links. Note that in general the OIDs of the
linked (i.e., the “same”) objects may be different if, for example, Ann first deleted
object P but later recognized that it was a mistake and restored it from scratch
as a fresh object P ′. Then we must explicitly declare the “sameness” of P and P ′,
which implies the sameness of their ’name’ attributes. In contrast, the sameness
of phone numbers is an independent datum that must be explicitly declared.
Different values of linked attributes mean that the attribute was modified, and
such links are labeled by ∼ (the update analog of �=-label for matches).

Now we will consecutively consider the four cases of update propagation shown
in Fig. 3ii. In all four cases, link PP ′ ∈ u means that object P is not deleted,
and hence its model B’s counterpart, object Q, is also preserved (yet in Fig. 3ii
=-links QQ in mapping u∗ are skipped to avoid clutter.) However, Q’s attribute
values are kept unchange or modified according to mappings u and m.

Case (a). Name change in A is directly propagated to B, and addition of phone
extension specified by u is directly propagated to u∗. The very phone number is
not changed because match m declared a conflict, and our propagation policy
takes this into account. A less intelligent yet possible policy would not propagate
the extension and keep the entire y unchanged.

Case (b): conflicting link b→ y is removed from the match, i.e., Ann and Bob
consider different phones of Jo. Hence, the value of y@B should not change.

Case (c): link b→ b′ is removed from mapping u, i.e., Jo’s phone b was deleted
from the model, and a new phone b′ is added. Propagation of this update can
be managed in different ways. For example, we may require that deletions are

Model Synchronization: Mappings, Tiles, and Categories 101

propagated over both =- or �=-matching links, and then phone y must be deleted
from B′. Or we may set a more cautious policy and do not propagate deletions
over conflicting matching links. Then phone y should be kept in B′ (this variant
is shown in square brackets and is grey). Assuming that additions to A are always
propagated to B, we must insert in B a new phone z “equal” to b′.

Case (d) is a superposition of cases (b,c): both links b → y and b → b′ are
removed from resp. m and u. A reasonable update policy should give us model B′

as shown: phone y is kept because it was not matched to the deleted b, and phone
z is the new b′ propagated to B′. This result can be seen as a superposition of
the results in (b) and (c), and our propagation policies thus reveal compatibility
with mappings’ superposition.

Discussion. In each of the four cases we have an instance of the operation
specified in Fig. 3i(b): given an input diagram (u, m), an output diagram (u∗, m′)
is derived. What we call an update propagation policy is a precise specification
of how to build the output for any input. Three points are worth mentioning.
1. Policies are based on the metamodel: for example, a policy may prescribe

different propagation strategies for different attributes (say, phone changes
are propagated but name changes are not).

2. Recall that in cases (a,c) we discussed different possibilities of update propa-
gation. They correspond to different policies rather than to different outputs
of a single policy. That is, different policies give rise to different algebraic
operations but a given policy corresponds to a deterministic operation pro-
ducing a unique output for an input.

3. The mapping-free projection of the four cases would reveal a strange result:
the same three input models A, B, A′ generate different models B′ for a given
policy. That is, the mapping-free projection of a reasonable propagation
procedure cannot be seen as an algebraic operation.

2.2.2 View Update Propagation

Now we consider a different situation when Bob’s model is a view of Ann’s one,
see Fig. 4i(a). Ann is interested in objects called Persons, their full names, i.e.,
pairs (fstName, lstName), and phone numbers. Bob calls these objects Mates,
and only considers their first names but call the attribute ‘name’.

To specify this view formally, we first augment Ann’s metamodel SSS with
a derived attribute ’fstName’ coupled with the query specification Q defining
this element. Query Q says “take the first component of a name”; formally,
fstNamedef= Q(name)=proj1(name). Then we map Bob’s metamodel TTT into Ann’s
one as shown in the figure, where the view definition mapping vvv : TTT ⇒ SSS consists
of two links. Link v1 says that Bob’s class Mate is Ann’s class Person. Link v2

says that Mate attribute ’name’ is Person’s ‘fstName’ computed by query Q.
Now let A be a model over Ann’s metamodel SSS shown in the left lower corner

of Fig. 4i(a). We may apply to it the query Q specified in the metamodel, and
compute the derived attribute c = proj1(Jo Lee)=Jo. Then we select those ele-
ments of the model, whose types are within the range of mapping vvv, and relabel
them according to this mapping.

102 Z. Diskin

P: Person
(a:name) Jo_Lee
(b:pho) 11
(/c:fstName) Jo
{Jo = Q(Jo_Lee)}

Ann’s model, A

Person
name: Str2 [1]
pho: Int [0..*]
/fstName: Str [1]
{fstName=Q(name)}

Ann’s metamodel, S

M: Mate
(x:name)Jo

Bob’s model, B

Mate
name: Str [1]

v

v1

v2

f1

f2

f

u

S

A

A

B

B

T
v

f

vExe

ppgu*

(a) (b)

f

tA
tB

Bob’s metamodel, T

tB'

i) Propagating view update to the source

P: Person
(a:name) Jo_Lee
(b:pho) 11
(/c:fstNm) Jo

M: Mate
(x:name) Jo

f1

f2

f

P :Person
(a:name) Jon_Lee
(b:pho) 11
(/c:fstNm) Jon

M’: Mate
(x’:name) Jon

f 1

f 2

f
(a)

P: Person
(a:name) Jo_Lee
(b:pho) 11
(/c:fstNm) Jo

M: Mate
(x:name)Jo

f1

f2

f

P’: Person
(a’:name) Jon_?
[[(b’:pho) ?]]
(/c’:fstNm) Jon

M’: Mate
(x’:name)Jon

f 1

f 2

f
(b)

==
u

u*

ii) Two cases with different update mappings

Fig. 4. Mappings do matter in update propagation cont’d

Model Synchronization: Mappings, Tiles, and Categories 103

The result is shown in the right-lower corner as model B, and links f1,2 trace
the origin of its elements. These links constitute the traceability mapping f =
{f1, f2}. In this way, having the view definition mapping vvv, any Ann’s model A
(an instance of SSS) can be translated into a TTT ’s instance B computed together
with traceability mapping f : B ⇒ A. (A more complex example can be found
in Sect. C.)

Thus, we have a diagram operation specified by square diagram ASSSTTT B in
Fig. 4i(b). It takes two mappings — view definition vvv and typing of the source
model tA, and produces model B (together with its typing tB) and traceabil-
ity mapping f : B ⇒ A. This is nothing but an arrow formulation of the view
execution mechanism; hence the name vExe of the operation.

Now suppose that the view is updated with mapping u : B ⇒ B′, and we
need to propagate the update back to the source as shown by the lower square
in Fig. 4i(b). Update propagation is a different type of diagram operation, and
it is convenient to consider the two diagrams as orthogonal: view execution is
the top face of the semi-cube and propagation is the front. Note that an output
element of operation vExe, mapping f , is an input element for operation ppg;
diagram Fig. 4i(b) thus specifies substitution of one term into another (and we
have an instance of tiling mentioned above).

Fig. 4ii presents two cases of update propagation. In case (a), the name of
Mate-object M was modified, and this change is propagated to object P – the
preimage of M in the source model. Elements of model A not occurring in
the view are kept unchanged. In case (b), the update mapping is empty, which
means that object M was deleted and a new object M ′ added to the model.
Correspondingly, object P is also deleted and a new object P ′ is added to A.
Since the view ignores last names and phones numbers, these attributes of P ′ are
set to Unknown (denoted by ?). The attribute b′ is shown in brackets (and grey)
because a different propagation policy could simply skip P ′’s phone number as
it is allowed by the metamodel (but the last name cannot be skipped and its
value must be set to Unknown).

The results of Discussion at the end of the previous section applies to the view
update propagation as well.

2.2.3 Why State-Based Synchronization Does Not Work Well

Examples above show that synchronization is based on mappings providing
model alignment, particularly, update mappings. Nevertheless, state-based frame-
works are very popular in data and model synchronization. Being state-based
means that the input and the output of the synchronizer only include states of
the models while update mappings are ignored. More accurately, model align-
ment is done inside the synchronizer, as a rule, on the basis of keys (names,
identifying numbers or other relevant information, e.g., positions inside a prede-
fined structure). However, this setting brings with it several serious problems.

First of all, update mappings cannot be, in general, derived from the states.
Identification based on names fails in cases of synonymy or homonymy that
are not infrequent in modeling. Identification numbers may also fail, e.g., if an
employee quit and then was hired back, she may be assigned a new identification

104 Z. Diskin

number. “Absolutely” reliable identification systems like SSNs are rarely avail-
able in practice, and even if they are, fixing a typo in a SSN creates synonymy.
On the other hand, identification based on internal immutable OIDs also does
not solve the problem if the models to be aligned reside in different computers.
Even for models in the same computer, OID-based identification fails if an object
was deleted but then restored from scratch with a new ID, not to mention the
technological difficulties of OID-based alignment. Thus, update mappings can-
not be computed entirely automatically, and there are many model differencing
tools [8,9,10] employing various heuristics and requiring user assistance to fix
the deficiencies of the automatic identification. In general, alignment is another
story, and it is useful to separate concerns: discovering updates and propagating
updates are two different tasks that must be treated differently and addressed
separately.

uX
2 uX

1

S

A

A

X

f2 :v2

ppg 2uA

f2 :v2

uB

T

f1:v1

ppg 1

f1 :v1

v2 v1

X B

X B

v

u X u Bppg 1

X B
f1 :v1

Fig. 5. Mappings do matter in update
propagation (cont’d)

Second, writing synchronization
procedures is difficult and it makes
sense to divide the task into simpler
parts. For example, view update prop-
agation over a complex view can be
divided into composition of update
propagations over the components as
shown in Fig. 5: XXX is some interme-
diate metamodel and view definition
vvv is composed from parts, vvv = vvv1;vvv2.
It is reasonable to compose the proce-
dure of update propagation over view
vvv from propagation procedures over
the component views as shown in the
figure. It is a key idea for the lens
approach to tree-based data synchro-
nization [2], but lens synchronization
is state-based and so two propagation
procedures ppg1 and ppg2 can be composed if the output states of the first are
the input for the second. Hence, the composed procedure will be erroneous if
the components use different alignment strategies (e.g., based on different keys)
and then we have different update mappings u1

X , u2
X as shown in the figure.

Finally, propagation procedures are often compatible with update composi-
tion: the result of propagating a composed update uB; u′

B is equal to composition
of updates uX ; u′

X obtained by consecutive application of the procedure. How-
ever, if alignment is included into propagation, this law rarely holds — see [11]
for a detailed discussion.

2.3 The Arrow Forest and Categories

Mappings are two-folded constructs. On one hand, they consist of directed links
and can be sequentially composed; the arrow notation is very suggestive in this
respect. On the other hand, mappings are sets of links and hence enjoy set

Model Synchronization: Mappings, Tiles, and Categories 105

operations (union, intersection, difference) and the inclusion relation (defined for
mappings having the same source and target). Mappings can also be composed in
parallel: given mi : Ai ⇒ Bi (i = 1, 2), we can build m1⊗m2 : A1⊗A2 ⇒ B1⊗B2,
where ⊗ may stand for Cartesian product or disjoint union (so that we have two
types of parallel composition).

Mapping compositions complicate the relationship tangle in Fig. 2 even more:
the set of basic relationships generates derived relationships. If the latter are
not recognized, models remain unsynchronized and perhaps inconsistent. Living
with inconsistencies [12] is possible if they are explicit and specified; implicit
inconsistencies undermine modeling activities and their automation.

Thus, our tale of unraveling the tangle of relationships led us to an arrow
forest. Updates, matches, traceability and typing mappings are all important
for model synchronization. Together they give rise to complex structures whose
intelligent mathematical processing is not evident and not straightforward.

In the paper we will only consider one side of the rich mapping structure:
directionality and sequential composition. Even in this simplified setting, spec-
ifying systems of heterogeneous mappings needs special linguistic means: right
concepts and a convenient notation based on them. Fortunately, such means
were developed in category theory and are applicable to our needs (the reader
may think of “paved trails in the arrow forest”); the concrete MMt sections of
the paper will show how they work.

Arrows of different types interact in synchronization scenarios and are com-
bined into tiles. The latter may be either similar and work in the same plane,
or be “orthogonal” and work in orthogonal planes as, for example, shown in
Fig. 4i(b). Complex synchronization scenarios are often multi-dimensional and
involve combinations of low-dimensional tiles into higher-dimensional ones. For
example, update propagation for the case of two heterogeneous models with
evolving metamodels gives rise to a synchronization cube built from six 2D-tiles
(Sect. 6.2). Higher-dimensional tiles are themselves composable and also form
category-like structures. In this way the tangled collection of models and model
mappings can be unraveled into a regular net in a multi-dimensional space, as
suggested by the frame of reference on the left of Fig. 2. (Note that we do not
assume any metric and the space thus has an algebraic rather than a geometric
structure. Nevertheless, multi-dimensional visualization is helpful and provides
a convenient notation.)

3 Inside Models and Model Deltas

Diagrammatic models employ a compact concrete syntax, which is a cornerstone
of practical applications. This syntax hides a rich structure of relationships and
dependencies between model’s elements (abstract syntax), which does matter in
model semantics, and in establishing relations between models as well. In this
section we will take a look “under the hood” and consider structures underly-
ing models (Sect. 3.1) and symmetric deltas (binary relations) between models
(Sect. 3.3). To formalize inconsistencies, we introduce object-slot-value models

106 Z. Diskin

and their mappings (Sect. 3.2). We will use the notions of graph, graph mapping
(morphism) and span; their precise definitions can be found in Appendix B.

3.1 Inside Models: Basics of Meta(Meta)Modeling

A typical format for internal (repository) model representation is, roughly, a
containment tree with cross-references, in fact, a directed graph. The elements
of this graph have attributes and types; the latter are specified in the metamodel.
An important observation is that assigning types to model elements constitutes
a mapping t : A→M between two graphs underlying the model (A) and its
metamodel (M) resp. What is usually called a model graph [9,10,13] is actually
an encoding of a typing mapping t. Making this mapping explicit is semantically
important, especially for managing heterogeneous model mappings.

Example. The upper half of Fig. 6 presents a simple metamodel AAA (in the
middle) and its simple instance, model A (on the left), with a familiar syntax
of class and object diagrams. The metamodel is a class diagram declaring class
Person with two attributes. Expressions in square brackets are multiplicities:
their semantic meaning is that objects of class Person have one and only one
name (multiplicity [1..1] or [1] in short), and may have any number of phones,
perhaps none (multiplicity [0..*]).

Symbols in round brackets are beyond UML and say whether or not the value
of the attribute may be set to Unknown (null, in the database jargon). Marking
an attribute by ? means that nulls are allowed: every person has a name but
it may be unknown; we call attributes uncertain. An attribute is called certain
(and marked by !) if nulls are not allowed and the attribute must always have
an actual value. If a person has a phone, its number cannot be skipped.

Model A is an object instance of AAA. It declares two Person objects: one with
an unknown name (which is allowed by the metamodel) and phone number 11,
and the other with name Jo and without phones (which is also allowed). Symbol
’?’ is thus used as both a quasi-value (null) in the models and a Boolean value
? ∈ {?, !} in the metamodel.

In its turn, the metamodel is an instance of the meta-metamodel specified by
a class diagramMMM in the right upper corner. It says that metamodels can declare
classes that own any number (perhaps, zero) of attributes, but each attribute
belongs to one and only one class (this is a part of the standard semantics for
“black diamond” asscoiations in UML). Each attribute is assigned one primitive
type, a pair of integers specifying its multiplicity, and a Boolean value for cer-
tainty; neither of these can be skipped (marker !). We will use model element
names (like Person, pho, etc) as OIds, and hence skip the (important) part of
MMM specifying element naming: certainty and uniqueness of names.

Remark 1. As is clear from the above, an attribute’s multiplicity and certainty
are orthogonal concepts. Below we will see that their distinction matters for
model synchronization. It also matters for query processing and is well known
in the database literature [14]. Surprisingly, the issue is not recognized in UML,

Model Synchronization: Mappings, Tiles, and Categories 107

:Person
name=?
pho=11

P: Person

a1: name

“11”:Int
:val2

Person: Class

name:Attr

Str: pType
val1:type

Person
name: Str [1] (?)
pho: Int [0..*] (!)

Class
class [0..*]

Attr
mlty: Int2 [1] (!)
crty: Bool[1] (!)

pType
type

[1]

Class

Attr

pType

type

Model A Metamodel A Meta-metamodel M

owner

Graph GA

(a) Concrete syntax

(b) Abstract syntax

: Person
name=Jo

Q: Person

“Jo”:Str
:val1

[0..*]

Int2

{!,?}

class

(1,1): Int

?: {!,?}

pho:Attr

owner2: class

Int: pType
val2:type

owner1:class

a2: pho

l1:owner1

b1: name

l2:owner2

k1:owner1

Graph GA
+ Graph GM

+

[1]

[1]

m1:mlty

m2:mlty

c1: crty

!: {!,?}c2: crty
(0,*): Int

crty

mlty [1]

[1]

Fig. 6. From models to graphs

whose metamodel for class diagrams does not have the concept of certainty, and
handbooks suggest modeling an attribute’s uncertainty by multiplicity [0..1] [15].

Example cont’d: Abstract syntax. In the lower half of Fig. 6, the concrete
syntax of model diagrams is unfolded into directed graphs: model elements are
nodes and their relationships are arrows. We begin our analysis with the meta-
model graph G+

AAA (in the middle of the figure). Bold shaded nodes stand for
the concepts (types) declared in the class diagram AAA: class Person and its two
attributes. Bold arrows relate attributes with their owning class and value do-
mains. The bold elements together form an instantiable subgraph GAAA of the
entire graph G+

AAA. Non-instantiable elements of G+
AAA specify constraints on the

intended instantiations.
Graph GA (the leftmost) corresponds to the object diagram A and specifies

an instantiation of graph GAAA. Each GA’s element has a type (referred to after
the colon) taken from graph GAAA. Nodes typed by Person are objects (of class
Person) and nodes typed by attributes are slots (we use a UML term). Slots are
linked to their owning objects and to values they hold. Slot a1 is empty: there
are no value links going from it. Thus, the abstract syntax structure underlying
a class diagram is a graph G+

AAA containing an instantiable subgraph GAAA and
noninstantiable constraints. A legal instance of graph GAAA is a graph mapping
tA : GA → GAAA satisfying all constraints from G+

AAA \GAAA.

108 Z. Diskin

The same pattern applies to the pair (G+
AAA, GMMM), where GMMM is the instantiable

subgraph of graph G+
MMM specifying the metametamodel (the rightmost in Fig. 6).

Multiplicities in Fig. 6(b) are given in the sugared syntax with square brackets,
and can be converted into nodes and arrows as it is done for graph G+

AAA; asso-
ciation ends without multiplicities are assumed to be [0..*] by default. Finally,
there is a metameta... graph GMMMMMM providing types and constraints for G+

MMM; it
is not shown in the figure.

GA
tA
� GAAA

G+
AAA

|= �
∩

t+AAA

� GMMM

tAAA
�

GMMM
+

|= �
∩

Fig. 7. Models as graphs

The entire configuration appears as a chain of
graphs and graph mappings in Fig. 7. Horizontal
and slanted arrows are typing mappings; vertical ar-
rows are inclusions and symbols |= remind us that
typing mappings on the left-above of them must sat-
isfy the constraints specified in the noninstantiable
part. This compact specification is quite general and
applicable far beyond our simple example. To make
it formal, we need to formalize the notion of con-
straint and its satisfiability by a typing mappings. This can be done along the
lines described in [16].

Two models are called similar if they have the same metamodel, and hence
all layers below the upper one are fixed. In our example, two object diagrams
are similar if they are instances of the same class diagram.

3.2 Object-Slot-Value Models and Their Mappings

Our definition of models as chains of graph mappings does not distinguish be-
tween objects and values: they are just nodes in instance graphs. However, ob-
jects and values play different roles in model matching and updating, and for
our further work we need to make their distinction explicit. Below we introduce
object-slot-value (osv) models, whose mappings (morphisms) treat objects and
values differently. This is a standard categorical practice: a distinction between
objects is explicated via mappings (in Lawvere’s words, “to objectify means to
mappify”).

In the previous section we defined a metamodel as a graph mapping
t+AAA : G+

AAA → GMMM. Equivalently, we may work with the inverse mapping (t+AAA)−1,
which assigns to each element E ∈ GMMM the set of those G+

AAA’s elements e for
which t+AAA(e) = E. It is easy to check that this mapping is compatible with in-
cidence relationships between nodes and arrows and hence can be presented as
a graph morphism (t+AAA)−1 : GMMM → Sets into the universe of all sets and (to-
tal) functions between them. (Indeed, multiplicities in graph G+

MMM require all its
arrows to be functions). To simplify notation, below we will skip the metameta-
model’s syntax and write E instead of (t+AAA)−1(E) (where E stands for Class, Attr,
type etc. elements in graph GMMM). Given a model, we will also consider sets Obj
and Slot of all its objects and slots.

Model Synchronization: Mappings, Tiles, and Categories 109

Obj
tobj

� Class

Int2

Slot

obj
�

tslt� Attr

class
�

mlty�

Slot!
⊂

i
! �

Bool

crty�

Value
tval�

val �
pType

type

�

ObjA
fobj

� ObjB

SlotA

objA
�

f slt

� SlotB

objB
�

Slot!A
f slt!

�

f
slt !

�

⊂

i
!
A

�

Slot!B
⊂ i

!
B

�

Value =======

valA �
Value

valB �

(a) (b)

Fig. 8. Osv-models and their mappings

Definition 1. (Osv-models) An object-slot-value model is given by a collec-
tion of sets and functions (i.e., total single-valued mappings) specified by diagram
Fig. 8(a); the hooked arrow i! denotes an inclusion. The functions are required
to make the diagram commutative, and to satisfy two additional constraints
(1,2) (related to mlty and crty) specified below after we discuss the intended
interpretation of sets and functions in the diagram.

The bottom row gives a system of primitive types for the model, and the right
“column” specifies a class diagram without associations (the metamodel). For
example, model A in Fig. 6 is an instance of the osv-model definition with
sets Class={Person}, Attr={name, pho}, pType={Str, Int} and Value consisting
of all strings and all integers. Classes Int and Bool have their usual extension
consisting, resp., of integers (including “infinity” *) and Boolean values (denoted
by ?,!).3 The functions are defined as follows: type(name) = Str, type(pho) =
Int; class(name) = class(pho) = Person; mlty(name) = (1,1), mlty(pho) = (0,*);
crty(name) = !, crty(pho)= ?

The left column specifies the “changeable/run-time” part of the model — an
object diagram over the class diagram; hence, there are typing mappings tobj,
tslt and the requirement for the upper square diagram to be commutative. For
example, for model A in Fig. 6, we have sets Obj = {P, Q}, Slot = {a1, a2, b1}
and functions: tobj(P) = tobj(Q) = Person; tslt(a1) = name, etc; obj(a1) = P , etc.

Slots in set Slot! are supposed to hold a real value extracted by function
val. This value should be of the type specified for the attribute, and the lower
polygon is also required to be commutative. Slots in set Slot?

def= Slot \ Slot!

are considered empty, and function val is not defined on them. For model A, we

3 For a punctilious reader, values in classes Int and Bool live in the metalanguage and
are different from elements of set Value.

110 Z. Diskin

have Slot! = {a2, b1} val(a2) = ’11’, val(b1) = ’Jo’ whereas a1 ∈ Slot?. We will
continue to use our sugared notation val(s) =? for saying that slot s ∈ Slot? and
hence val(s) is not defined.

The following two conditions hold.
(1) For any attribute a ∈ Attr and object o with tobj(o) = class(a), if mlty(a) =
(m, n), then m ≤ |obj−1(o)| ≤ n (i.e., the number of a-slots that a class(a)-object
has must satisfy a’s multiplicity).
(2) If for a slot s ∈ Slot we have s.tslt.crty = 1 (i.e., the attribute is certain),
then s ∈ Slot!.

Definition 2. (Osv-model mappings) Let A, B be two osv-models over the
same class diagram, i.e., they have the same right “column” in diagram Fig. 8(a)
but different changeable parts distinguished by indexes A, B added to the names
of sets and functions (see Fig. 8(b) where the class diagram part is not shown,
and bottom double-line denotes identity). We call such models similar.

A mapping f : A→ B of similar osv-models is a pair f = (f obj, f slt) of func-
tions shown in Fig. 8(b) such that the upper square in the diagram commutes,
and triangles formed by these functions and typing mappings (going into the
“depth” of the figure) are also commutative: f obj; tobj

B = tobj
A and f slt; tsltB = tsltA .

In addition, the following two conditions hold.
(3) Let f slt! : Slot!A→ SlotB be the composition i!A; f slt, i.e., the restriction of
function f slt to subset Slot!A. We require function f slt! to map a non-empty slot to
a non-empty slot. Then we actually have a total function f slt! : Slot!A→ Slot!B,
and the upper diamond in diagram (b) is commutative.
(4) The lower diamond is required to be commutative as well: a non-empty slot
with value x is mapped to a non-empty slot holding the same value x.

To simplify notation, all three components of mapping f will often be denoted
by the same symbol f without superscripts.

Remark 2. Condition (3) says nothing about B-slot f slt(s) for an empty A-slot
s ∈ Slot?A: it may be be also empty, or hold a real value. That is, a slot with
’?’ can be mapped to a slot with either ’?’ or a real value (but a slot with a real
value v is mapped to a slot holding the same v by condition (4)).

Commutativity of diagram Fig. 8(b) is the key point of Definition 2 and essen-
tially ease working with model mappings. (Categorically, commutativity means
that model mappings are natural transformations). This advantage comes for
a price: condition (4) prohibits change of attribute values in models related by
a mapping, and hence we need to model attribute changes somehow differently.
We will solve this problem in the next section.

3.3 Model Matching via Spans

Comparing two models to discover their differences and similarities is an impor-
tant MMt task called model differencing or matching. Since absolutely reliable
keys for models’ elements are rarely possible in practice, model matching tools

Model Synchronization: Mappings, Tiles, and Categories 111

Ann’s model, A
m0: Person
(m1:name)Jo

(m2:pho) ?

P:Person
(a:name) Jo
(b:pho) 11
(c:age) ?

Q:Person
(x:name)Jo
(y:pho) 22

projection
q: M B

projection
A M: p

(b) Reified match

Person
name: Str [1] (!)
pho: Int [0..*] (?)
age: Int [0..1](?)

Metamodel, A
P:Person
name=Jo
pho =11
age = ?

Q:Person
name=Jo
pho =22

=

=

mAnn’s model, A Bob’s model, B

(a) Naïve match

m0

m1

m2

Bob’s model, BMary’s model, M
p0
p1

p1

p2

q0

q1

q1

q2

p2
q2

Fig. 9. Reification of matches

usually employ complex heuristics and AI-based techniques (like, e.g., similarity
flooding [17]), which are tailored to specific kinds of models or/and to specific
contexts of model comparison [8,10,18]. Whatever the technic is used for model
matching, the result is basically a set of matching links between the models’
elements. Such sets have a certain structure, and our goal in this section is to
specify it formally.

A simple example of model matching is shown in Fig. 9(a). Two similar mod-
els are matched by a family m of links m0,1,2 between model elements (objects
and slots). Linking slots implies linking their values; hence we have two additional
links m′

1 : Jo→ Jo and m′
2 : 11→ 22. The latter link shows a conflict between the

models.
All matching links respect typing: we cannot match an attribute and an object,

or two attributes belonging to unmatched classes. The set of matching links is
itself structured similarly to models being matched, and hence can be seen as a
new model, say, M as shown in Fig. 9(b). (Name M stands for Mary — an MMt
administrator who did the comparison of Ann’s and Bob’s models.) In the UML
jargon, this step can be called reification of links: each one becomes an object
holding two references (p and q) to the matched elements.

Note that some matching links can be derived from the others. For example,
the metamodel says that all Person objects must have one ’name’ slot. Then as
soon as we have objects P and Q matched, their name slots must be automatically
matched (the link is thus derived and shown dashed). In contrast, since several
phone slots are possible for a person, matching link m2 between slots b@A and
y@B is an independent datum (solid line).

112 Z. Diskin

Whatever the way two slots are matched, their matching means that they
should hold the same value. If it is not the case, for example, note different
numbers in slots b@A and y@B, we have a conflict between models. This conflict
is represented by setting the value in slot m2@M to ’?’ (which is allowed by the
metamodel AAA in Fig. 9(a)). Note that the metamodel also allows us to skip
attribute ’phone’, but then we would not have any record of the conflict. By
introducing a slot for the conflicting attributes but keeping it empty, we make
the conflict explicit and record it in model M . Moreover, two conflicting slots
in models A, B can be traced by links m2.p

slt, m2.q
slt. Then we may continue to

work with models A, B leaving the conflict resolution for a future processing (as
stated by the famous Living with inconsistencies principle [12]).

Note that if models were conflicting at their name-attributes, we should re-
solve this conflict at once because the metamodel in Fig. 9(a) does not allow
having null values for names. In this way metamodels can regulate which con-
flicts can be recorded and kept for future resolution, and which must be resolved
right away. Note also that whether two models are in conflict or consistent is de-
termined by the result of their matching, and hence is not a property of the pair
itself.

Definition 3. (Osv-model match) Let A, B be two similar osv-models. An
(extensional) model match is an osv-model M together with two injective model
mappings A

p←M
q→ B (see Fig. 10).

A match is called complete, if for any slot m ∈ SlotM the following holds:
(*) if m.p ∈ Slot!A, m.q ∈ Slot!B and valA(m.p) = valB(m.q), then m ∈ Slot!M.

That is, if a matching slot m links two slots with the same real value, m is not
empty (and holds the same value as well by Definition 2).

ObjA �p
obj

ObjM
qobj

� ObjB

SlotA
�

�p
slt

SlotM
� qslt

� SlotB
�

Slot!A
∪�

�p
slt!

Slot!M
∪� qslt!

� Slot!B
∪�

Fig. 10. Matching two osv-models

The term extensional refers to the fact that
in practice model matches may have some
extra (non-extensional) information beyond
data specified above; we will discuss the is-
sue later in Sect. 4.1. In this section we will
say just ‘match’.

Completion and consistency of matches.
Any incomplete match M can be completed
up to a uniquely defined complete match M∗

containing M : ObjM∗ = ObjM , SlotM∗ = SlotM , and Slot!M∗ ⊃ Slot!M . We
first set Slot!M∗ = Slot!M . Then for any slot m ∈ Slot?M we compute two
values, x(m) = valA(m.p) and y(m) = valB(m.q). If x, y are both real values and
x = y, we move m into set Slot!M∗ and set valM (m) = x, otherwise m is kept
in Slot?M∗. Below we will assume that any match is completed.

For a match M and a slot m ∈ Slot�M , there are three cases of relationships
between values x(m) and y(m) defined above. (Case A): both values are real

Model Synchronization: Mappings, Tiles, and Categories 113

but not equal; it means a real conflict between the models. (B): if exactly one
of the values is null, say, x, we have an easy conflict that can be resolved by
propagating real value y from B to A. Let Slot�M ⊂ Slot?M denotes the set of
slots for which either (A) or (B) holds.

(C) If both values are nulls, the models do not actually conflict although slot
m is empty.

Definition 4. (Consistency) Models A and B are called consistent wrt. their
(complete) match M if set Slot�M is empty. (That is, all matched slots either
hold a real value or link two empty slots, but the situation of linking two slots
with different values is excluded). As a rule, we will say in short that a match
M is consistent.

Remark 3. Links in a match can be labeled according to some four-valued logic:
no conflict between two real values, no conflict because two nulls, a real conflict
(between two real values), and an easy conflict between a value and a null. We
leave investigation of this connection for future work.

3.4 Symmetric Deltas and Their Composition

What was described above in terms of matching models understood as replicas,
may be also understood in terms of model updates. The following terminology
borrowed from category theory will be convenient.

A configuration like A
p←M

q→ B is called a model span: model M is the head,
models A, B are feet and mappings p, q are the legs or projections. A model span
consists of three set spans, i.e., spans whose nodes are sets and legs are functions,
see Fig. 10. Thus, a (complete) model match is just a (complete) model span
whose legs are injections.

Let A
p←M

q→ B be a complete model span. We may interpret it as an update
specification with A and B being the states of some fixed model before and after
the update. Then elements in sets ObjM and SlotM link elements that were
kept, A’s elements beyond the range of p are elements that were deleted, B’s
elements beyond the range of q were inserted, and elements from set Slot�M (of
“conflicting” links) show the attributes that were changed. Now we will call a
complete span with injective legs a (symmetric) delta, and interpret it as either
an (extensional) match or an update.

A delta as specified by Fig. 10 is a symmetric construct, but to distinguish the
two models embedded into it, we need to name them differently. Say, we may call
model A the left or better the source) model, and model B the right or better the
target model. It is suggestive to denote a delta by an arrow Δ : A⇒ B, whose
double-body is meant to remind us that a whole triple-span diagram (Fig. 10) is
encoded. The same diagram can be read in the opposite direction from the right
to the left, which means that delta Δ can be inverted into delta Δ−1 : B ⇒ A
(see Appendix B, p. 151 for a precise definition).

Suppose we have two consecutive deltas

A ===
Δ1⇒ B ===

Δ2⇒ C with Δ1 = (A
p1← M1

q1→ B) and Δ2 = (B
p2← M2

q2→ C)

114 Z. Diskin

between Ann’s, Bob’s and, say, Carol’s models. To compose them, we need to

derive a new delta A ===
Δ
⇒ C from deltas Δ1 and Δ2.

Since deltas are complete spans, each of them is determined by two set spans,
Δobj

i and Δslt
i , i = 1, 2, which can be sequentially composed. The reader may

think of deltas as representations of binary relations, and their composition
as the ordinary relational composition ��; a precise formal definition of delta
composition via the so called pullback operation is in Appendix B, p. 152.

In this way we derive a new osv-model N determined by sets ObjN
def=

ObjM1 �� ObjM2 and SlotN
def= SlotM1 �� SlotM2, and by function

objN : SlotN → ObjN defined in the natural way (via the universal property of
pullbacks; this is where the categorical formulation instantly provides the re-
quired result). Projections are evident and thus we have two set spans Δ =

(A
px

← xN
qx

→ C) with x = obj, slt. These data give us a span N with empty set
Slot!N . However, we can complete N as described above (we let N denote the
completion too), and so obtain a new delta Δ = (A

p← N
q→ C) between models.

Associativity of so defined composition follows from associativity of span com-
position (Appendix B). In addition, a complete span A← A→ A whose legs
consist of identity functions between sets is a unit of composition. We have thus
proved

Theorem 1. The universe of osv-models and symmetric deltas between them is
a category.

Exercise 1. Explain why Slot!N ⊇ Slot!M1 �� Slot!M2 but equality does not
necessarily hold.

4 Simple Update Propagation, I: Synchronizing Replicas

By a replica we understand a maintained copy of a model, and assume that repli-
cation is optimistic: replicas are processed independently and may conflict with
each other, which is optimistically assumed to appear infrequently [19]. Then
it makes sense to record conflicts to resolve them later, and continue to work
with only partially synchronized replicas. The examples considered in Section
2 (Fig. 3) are simple instances of replica synchronization. We have considered
them in a concrete way by looking inside models and their mappings. The present
section aims to build an abstract algebraic framework in which models and map-
pings are treated as indivisible points and arrows.

Subsection 4.1 introduces the terminology and basic notions of replica syn-
chronization; there is an overlap with the previous section that renders the
present section independent. Subsection 4.2 develops a basic intuition for the al-
gebraic approach to modeling synchronization. Subsections 4.3 and 4.4 proceed
with algebraic modeling as such: constructing algebraic theories and algebras
(instances of theories).

Model Synchronization: Mappings, Tiles, and Categories 115

4.1 Setting the Stage: Delta × Delta = Tile

Terminology. There are two main types of representations for model differ-
ences: operational and structural, which are usually called directed and sym-
metric deltas respectively [20]. The former is basically a sequence (log) of edit
operations: add, change, delete (see, e.g., [21]). The latter is a specification of
similarities and differences of the two models ([22]).

A symmetric delta can be seen extensionally as a family of matching links, in
fact, as a binary relation; in the previous section we formalized symmetric deltas
as (complete) spans (reified binary relations). Besides extension, a symmetric
delta may contain non-extensional information: matching links can be annotated
with authorship, time stamps, update propagation constraints and the like. We
also call deltas mappings and denote them by arrows (even symmetric deltas,
see Sect. 3.4).

Now suppose we have two replicas of the same model maintained by our
old friends Ann and Bob, Fig. 11. Nodes A, B are snapshots of Ann’s and
Bob’s replica at some time moment, when we want to compare them. The hor-
izontal arrow m denotes a relationship — match— between the replicas. We
interpret matches as symmetric deltas (spans) with, perhaps, some additional
(non-extensional) data. Ann and Bob work independently and later we have two
updated versions A′ and B′ with arrows a and b denoting the corresponding up-
dates. We may interpret updates structurally as symmetric deltas. Or we may
interpret them operationally as directed deltas (edit logs).

Versions and updates

Replicas and
matchesA

A B

B

a b

t

Ann’s
model

t

m

m

Bob’s
model

T: P

Fig. 11. The space of model versioning

The four deltas m, a, m′, b are mu-
tually related by incidence relation-
ships : ∂sm = ∂sa, ∂tm = ∂sb, etc.
(where ∂sx, ∂tx denote the source and
the target of arrow x), and together
form a structure that we call a tile.
The term is borrowed from a series of
work on behavior modeling [23], and
continues the terminological tradition
set up by the Harmony group’s lenses
— naming synchronization constructs
by geometric images.

Visually, a tile is just a square
formed by arrows with correspondingly sorted arrows. To avoid explicit sorting
of arrows in our diagrams, we will always draw them with updates going verti-
cally and matches horizontally. A tile can be optionally labeled by the name of
some tile’s property (predicate) P . Expression T :P means that T has property
P , i.e., T |= P or T ∈ [[P]] with [[P]] denoting the extension of P . The name of
the tile may be omitted but the predicate label should be there if T |= P holds.

The tile language: matches vs. updates. To keep the framework sufficiently
general, we do not impose any specific restrictions on what matches and updates
really are, nor do we assume that they are similar specifications. For example,

116 Z. Diskin

matches may be annotated with some non-extensional information that does
not make sense for updates, e.g., priorities of update propagation (say, ’name’
modifications are propagated from Ann’s model to Bob’s, while ’phones’ are not)
or “matching ranks” (how much we are sure that elements e@A and e′@B are
the same, see [24] for a discussion). Furthermore, we may have matches defined
structurally (with annotations or not) whereas updates operationally.

Therefore, we do not suppose that matches can be sequentially composed
with updates (and vice versa). But of course updates can be composed with
updates, and matches with matches, although match composition can be non-
trivial, if at all well-defined, because of non-extensional information. For ex-
ample, let m+ : X → Y denotes a match consisting of symmetric delta (relation,
span) m augmented with some non-extensional information. For two consecutive
matches m+

1 : A→ B, m+
2 : B → C, their extensional parts can be composed as

relations producing delta m = m1; m2 : A→ C, but to make m into a match m+

we need to compose somehow non-extensional parts of the matches. We leave
the issue for the future work and in this paper will not compose matches.

The situation with updates is simpler. Either they are interpreted structurally
as symmetric deltas (spans), or operationally as edit logs, they are sequentially
composable in the associative way. For symmetric deltas it is shown in Sect. 3.4;
and it is evident for edit logs (whose composition is concatenation).

In addition, we assume that for every model A there are an idle update
1bA : A→ A that does nothing, and an identity match 1hA : A→ A that identi-
cally matches model A to itself. For the structural interpretation of arrows, both
idle updates and identity matches are nothing but spans whose legs are identity
mappings (and no extra non-extensional information is assumed for matches).
For the operational interpretation, idle/identity arrows are empty edit logs.

Thus, in the abstract setting we have a structure consisting of two reflexive
graphs, Modmch of models and matches, and Modupd of models and updates,
which share the same class of objects Mod but have different arrows. Moreover,
arrows in graph Modupd are composable (associatively) and Modupd is a cat-
egory. We will call such a structure a 1.5-sorted category and denote it by Mod
(if Modmch also were a category, Mod would be a two-sorted category)(see
Sect. B).

Simple synchronization stories via tiles. Despite extreme simplicity of the
language introduced above, it allows us to describe some typical replication situa-
tions as shown in Fig. 12. The diagrams in the figure can be seen as specifications
of use cases (“stories”) that have happened, or may happen, in some predefined
context. The meaning of these stories is easily readable and explained in the
captions of the diagrams (a-d). In diagram (b), symbol ∼= denotes the predicate
of being an isomorphic match (i.e., we assume that a subclass [[∼=]] of arrows in
graph Modmch is defined).

The stories could be made more interesting if we enrich our language with
diagram predicates, say, Ph and Pv, allowing us to compare matches and updates.
Then, for example, by declaring that tile T belongs to the class [[Ph]] (as shown by
diagram (c)*), we say that match m′ is “better” than m. Such predicates can be

Model Synchronization: Mappings, Tiles, and Categories 117

O
1O� O

A

a
�

m
� B

b
�

A
m� B

A′

a �

m′: ∼=
� B′

b�

A
m� B

A

1A
�

m′
� B

1B
�

A
1A� A

A′

a �

1A′
� A′

b�

A
m� B

T :Ph

A

1A
�

m′
� B

1B
�

(a) diverge (b) converge (c)
revision of
match

(d)
revision of
update

(c)∗
improvement
of match

Fig. 12. Several replication stories via tiles

seen as arrows between arrows, or 2-arrows, and give rise to a rich framework of
2-categories and bicategories (see, e.g., [25]). We leave this direction of modeling
replication for future work.

The “historian’s” view on synchronization scenarios, even with comparison
predicates, is not too interesting. The practice of model synchronization is full
of automatic and semi-automatic operations triggered automatically or by the
user’s initiation. Thus, we need to enrich our language with synchronization
operations.

4.2 Update Propagation via Algebra: Getting started

As discussed in Sect. 2.2, algebraic operations modeling synchronization proce-
dures should be diagrammatic: they take a configuration (diagram) of matches and
updates that conform to a predefined input pattern, and add to it new matches
and updates conforming to a predefined output pattern. These new elements are
to be thought of as computed or derived by the operation. In this section we con-
sider how diagram operations work with a typical example, and develop a basic
intuition about the algebraic approach to modeling synchronization.

Update propagation: A sample diagram operation. Propagating updates
from one replica to another is an important synchronization scenario. We model
it by diagram operation fPpg shown in Fig. 13(a). The operation takes a match
m between replicas and an update a of the source replica, and produces an
update b of the target replica and a new match m′. The input/output arrows
are shown by solid/dashed lines resp.; the direction of the operation is shown
by the doubled arrow in the middle. (To be consistent, we should also somehow
decorate node B′ but we will not so so.)

We write (b, m′) = fPpg(a, m) and call the quadruple of arrows (tile) T =
(a, m, b, m′) an application instance of the operation. Other pairs of input ar-
rows will give other application instances of the same operation; hence, notation
T :fPpg. (The name T is omitted in the diagram). This notation conforms to la-
beling tiles by predicates introduced earlier. Operation fPpg defines a predicate
fPpg∗ of square shape: for a quadruple of arrows (a, m, b, m′) forming a square,
we set fPpg∗(a, m, b, m′) is true iff (b, m′) = fPpg(a, m); in this case we say that
the quadruple (a, m, b, m′) is a fPpg-tile. Later we will omit the star superindex.

118 Z. Diskin

A
m � B

:fPpg↘↘

A′

a �

m′
� B′

b�

A
m � B

:fPpg↘↘

A′

a �

m′
� B

1B
�

A
m � B

:fPpg↘↘

A′

a �

m′: ∼=
� B′

b�

(a) general instance (b) block (c) copy

Fig. 13. Forward update propagation (a) and its two special cases (b,c)

Below we will also use the dot-notation for function applications, (b, m′) =
(a, m).fPpg to ease reading complex formulas. Since the operation produces
two elements, we need special projection operations, upd and mch, that select
the respective components of the entire output tuple: b = (a, m).fPpg.upd and
m′ = (a, m).fPpg.mch.

Update policies and algebra. There are two extreme cases of update propa-
gation with fPpg.

One is when nothing is propagated and hence the output update is idle
as shown in diagram Fig. 13(b). Then propagation amounts to rematching:
updating the match from m to m′. If this special situation, i.e., equality
(a, m).fPpg.upd = 1B, holds for any update a originating at m’s source, we have
a very strong propagation policy that actually blocks replica B wrt. updates
from A.

The opposite extremal case is when the entire updated model is propagated
and overwrites the other replica as shown in diagram (c). A milder variant would
be to propagate the entire A′ but not delete the unmatched part of B, then match
m′ would be an embedding rather than isomorphism.

In-between the two extremes there are different propagation policies as dis-
cussed in Sect. 2.2.1. The possibility of choice is in the nature of synchronization
problems: as a rule, some fragments of information are missing and there are
several possible choices for model B′. To make computation of model B′ de-
terministic, we need to set one or another propagation policy. Yet as soon as
a policy is fixed, we have an algebraic operation of arity shown in Fig. 13(a).
Thinking algebraically, a policy is an operation (cf. Discussion in Sect. 2.2.1).

Remark 4. So-called universal properties and the corresponding operations (see
Appendix A.1) are at the heart of category theory. It explains attempts to model
update policies as universally defined operations [26]. However, our examples
show that, in general, a propagation policy could not be universally defined
simply because many policies are possible (while universally defined operations
are unique up to isomorphism).

Algebra: action vs. “history”. The mere assertion that some components of
a story specified by a tile are derived from the other components may be a strong
statement. Let us try to retell our simple synchronization stories in Fig. 12 in
an algebraic way.

Model Synchronization: Mappings, Tiles, and Categories 119

O
1O� O

↙↙↘↘

A

a
�

m
� B

b
�

O
1O� O

↘↘↙↙

A

a
�

m
� B

b
�

A
m� B

↙↙↘↘

A′

a �

m′: ∼=
� B′

b�

A
m� B

↙↙↘↘

A′

a �

m′
� B′

b�

A
m� B

↓↓

A

1A
�

m′
� B

1B
�

A
m� B

↓↓

A

a
�

m′
� B

1B
�

(a1) ??? (a2) matching Conflict resolution: (c1) (c2)
(b1) strong (b2) reasonable Exercise

Fig. 14. Replication stories and algebra: Fig. 12 processed algebraically

Diagram Fig. 14(a1) says that three arrows (a, m, b) are produced by apply-
ing some operation to the identity match, that is, in fact, to model O. This is
evidently meaningless because triple (a, m, b) cannot be derived from O alone.
In contrast, diagram (a2) is a reasonable operation: given two updates of the
same source, a match between them can be computed based on the information
provided by the input data.

Diagram (b1) says that any two matched replicas can be made isomorphic.
It is a very strong statement: we assume that all conflicts can be resolved, and
differences between replicas can be mutually propagated in a coherent way. A
more reasonable algebraic model of conflict resolution is specified by diagram
(b2): the result of the operation is just another match m′ presumably better
(with less conflicts) than m. Augmenting the language with constructs formally
capturing the meaning of “better” (e.g., 2-arrows) would definitely be useful,
and we leave it for future work.

Exercise 2 (*). Diagrams (c1,c2) present two algebraic refinements of the syn-
chronization story specified in Fig. 12(c). Explain why diagram (c1) does not
make much sense whereas (c2) specifies a reasonable operation. Hint : Note an
important distinction of diagram (c1) from diagram (b2).

4.3 An Algebraic Toolbox for a Replica Synchronization Tool
Designer

Suppose we are going to build a replica synchronization tool. Before approaching
implementation, we would like to specify what synchronizing operations the
tool should perform, and what behavior of these operations the tool should
guarantee; indeed, predictability of synchronization results is important for the
user of replication/versioning tools (cf. [3]). Hence, we need to fix a signature of
operations and state the laws they must obey; in other words, we need to fix a
suitable algebraic theory. The tool itself will be an instance of the theory, that
is, an algebra: sorts of the theory will be interpreted by classes of replicas the
tool operates on, and operations will be interpreted by actual synchronization
procedures provided by the tool.

Two main ingredients constituting an algebraic theory are a signature of op-
erations with assigned arity shapes, and a set of equational laws prescribing the
intended behavior of the operations. In ordinary algebra, operation arities are

120 Z. Diskin

• � •

:fPpg↘↘

•
� � ◦

� • � •

•
�

:biPpg↓↓ •
�

◦
�

� ◦
�

(a3)

(a1)

• � •

:bPpg↙↙

◦
� � •

�

(a2)

• � •

:fRem↘↘

•

a
� � ◦

1
�

• � •

:Res↓↓

◦
� � ◦

�

(b1) (c)

• � •

:bRem↙↙

•

1
� � •

b
�

•
K(m) : Bool� •

(b2) (d)

Fig. 15. Replica synchronization operations: update propagation (a), rematching (b),
conflict resolution (c), and Boolean test for consistency of matches (d)

sorted sets; in diagram algebra, arities are sorted graphs but the principal ideas
and building blocks remain the same. In this section we specify a pool of diagram
operations for modeling synchronization procedures, and a pool of laws that they
should, or may want, to satisfy. Together they are meant as an algebraic toolbox
with which a tool designer can work.

The carrier structure. All our operations will be defined over 1.5-sorted cat-
egories, i.e., two-sorted reflexive graphs with arrows classified into horizontal
(matches) and vertical (updates); the latter are composable and form a category.

Operations. A precise definition of a diagram operation over a two-sorted
graph is given in Sect. B. For the present section it is sufficient to have a semi-
formal notion described above.Recall that in order to avoid explicit sorting of
arrows in our diagrams, we draw them with geometrically vertical/horizontal
arrows being formally vertical/horizontal.

Figure 15 presents a signature of operations intended to model synchronization
procedures. The input/output arrows are distinguished with solid/dashed lines,
and input/output nodes are black/white.

Diagrams Fig. 15(a1,a2) show operations of forward and backward update
propagation. The former was just considered; the latter propagates updates
against the direction of match and is a different operation. For example, if the
replica at the source is in some sense superior to the replica at the target, for-
ward propagation may be allowed to propagate deletions whereas the backward
one is not. Diagram (a3) specifies bi-directional update propagation. It takes a
match and two parallel updates and mutually propagates them over the match;
the latter is then updated accordingly.

Diagrams Fig. 15(b1,b2) show operations of forward and backward rematching.
If for a given match m : A→ B, one of the replicas, say, A, is updated, we may want
to recompute the match but do not change the other replica B. This scenario is
modeled by operation fRem in Fig. 15(b1), where the update of the other replica is
set to be idle. Thus, operation fRem actually has two arguments (the left update

Model Synchronization: Mappings, Tiles, and Categories 121

and the upper match) and produces the only arrow — an updated match (at the
bottom). The backward rematch works similarly in the opposite direction. The
operation of bidirectional rematching does not make sense (Exercise 1 above). If
we were modeling both matches and updates by relations (spans), then rematch
would nothing but sequential span composition Sect. 3.3. However, as we do
not compose updates and matches, we model their composition by a special tile
operations.

Finally, Fig. 15(c) specifies operation Res of conflict resolution. It takes a
match between two replicas that, intuitively, may be inconsistent, and computes
updates a, b necessary to eliminate those conflicts that can be resolved automat-
ically without user’s input.

Other synchronization operations are possible, and the signature described
above is not intended to be complete. Neither is it meant to be fully used in
all situations. Rather, it is a pool of operations from which a tool designer may
select what is needed.

Predicates. To talk about consistency of matches, we need to enrich our lan-
guage with a consistency predicate (think of strongly consistent matches from
Sect. 3.3).

Diagram (d) presents it as a Boolean-valued operation: for any match m a
Boolean value is assigned, and we call m consistent if K(m) = 1. (The letter K
is taken from “Konsistency”: denoting the predicate by C would better fit the
grammar but be confusing wrt. terms Classes and Constraints.) In our diagrams
we will write m:K for K(m) = 1. Semantically, we have a class of consistent
matches K = {m : K(m) = 1}.
Remark 5. Consistency is often considered as a binary predicate K′ on models:
replicas (A, B) are consistent if K′(A, B) holds [6]. Our definition is essentially
different and moves the notion of consistency from pairs of replicas to matches.
Indeed, as discussed in sections 2.2, 3.3, multiple matches between replicas are
possible, and it is a match m : A→ B that makes the pair (A, B) consistent or
inconsistent.

Remark 6. The presence of predicates makes our theory non-algebraic. A stan-
dard way to bring it back to algebra is to define predicates via equations between
operations, if it is possible. Another approach is to work in the framework of
order-sorted algebra [27].

Equational laws. Equations the operations must satisfy are crucial for algebraic
modeling. Without them, algebraic theories would define too broad classes of al-
gebras encompassing both adequate and entirely inadequate algebraic models.

Equational laws for diagram operations can be concisely presented by dia-
grams as well. Consider, for example, diagram Fig. 16(a1), whose arrows are
labeled by names (identifiers) of matches and updates. The names express the
following equation: for any match m, fPpg(1∂sm, m) = (1∂tm, m). This is a gen-
eral mechanism: if all arrows in the tile have different names, the tile specifies
a generic instance of the operation without any restrictions, but the presence of
common names amounts to equational constraints like above.

122 Z. Diskin

• m � •

:fPpg↘↘

•

1
� m � ◦

1
�

(a1) IdlPpgf

•
m � •

:fPpg↘↘

•

a
�

:fPpg � ◦

b
�

:fPpg↘↘

•

a′

� m′′
� ◦

b′

�

(a2) PpgPpgf

•
m:K� •

:fPpg↘↘

•

a
� m′:K� ◦

b
�

(a3) Corrf

•
m � •

:fRem

:fPpg
•

a
�

:K
� •

1
�

(ab1) ChkPpgf

• � •
:fPpg

:fRem
•

a
�

� ◦

1
�

(ab2) PpgRemf

• m � •

:fRem↘↘

•

1
� m � ◦

1
�

(b1) IdlRemf

• � •

:fRem↘↘

•
�

:fRem � •

1
�

:fRem↘↘

•
� � •

1
�

(b2) RemRemf

Fig. 16. Replica synchronization: the laws

The equation expressed by Fig. 16(a1) has a clear interpretation: given a match
m, the idle update on the source is propagated into the idle update on the target
while the match itself is not changed. We call the law IdlPpgf following a general
pattern of naming such laws by concatenating the operation names (take the idle
update and propagate it; index f refers to forward propagation). The pattern was
invented by the Harmony group for lenses and turned out very convenient.

Diagram Fig. 16(a2) displays two fPpg-tiles vertically stacked (ignore the
boxed label for a while). It means that the output match of the upper appli-
cation of fPpg is the input match for the lower application. Since updates are
composable, the outer rectangle in the diagram is also a tile whose updates are
a; a′ and b; b′. Now the boxed label says that the outer tile is also an application
instance of fPpg. (In more detail, given a match m and two consecutive updates
a, a′ on its source, we have fPpg(a; a′, m) = (b; b′, m′′) where (b, m′) = fPpg(a, m)
(name m′ is hidden in the diagram) and (b′, m′′) = fPpg(a′, m′).) We will phrase
this as follows: if the two inner tiles are fPpg, then the outer tile is also fPpg
(note also the name of the law). Thus, composed updates are propagated com-
ponentwise.

Diagram Fig. 16(a3) says that if (b, m′) = fPpg(a, m) and m ∈ K, then m′ ∈ K
as well: consistency of matches is not destroyed by update propagation. We call
an update propagation correct if it satisfies this requirement, hence the name of
the law. Note the conditional nature of the law: it says that the resulting match is
consistent if the original match is consistent but does not impose any obligations
if the original match is inconsistent. This formulation fixes the problem of the
unconditional correctness law stated in [6].

Model Synchronization: Mappings, Tiles, and Categories 123

Exercise 3. Explain the meaning of diagrams (b1) and (b2) in Fig. 16

Now we consider laws regulating interaction between the two operations. The
law specified by diagram (ab1) is conditional. The argument of the premise and
the conclusion is the entire tile, and the diagram says: if a tile is an instance
of fRem with output match satisfying K, then the tile is also an instance of
fPpg. Formally, fRem∗(T) implies fPpg∗(T) for a tile of the shape shown in the
diagram (recall that starred names denote predicates defined by operations).
That is, if m′ = fRem(a, m) ∈ K then fPpg(a, m) = (m′, 1∂tm). The meaning of
the law is that if we update the source, and the updated match m′ is consistent,
then nothing should be propagated to the target. This is a formal explication of
the familiar requirement on update propagation: “first check, then enforce” (cf.
Hippocraticness in [6]). Hence the name of the law, ChkPpg.

Exercise 4. Explain the meaning of diagram (ab2) Fig. 16

Exercise 5 (*). Formulate some laws for the operation of conflict resolution, and
specify them diagrammatically.

There is no claim that the set of laws we have considered is complete: other
reasonable laws can be formulated. The goal was to show how to specify equa-
tional laws, and how to interpret them, rather then list them “all”.

4.4 Replica Synchronization Tools as Algebras

In this section, we build a simple algebra intended to model a replica synchro-
nization tool as it was explained at the beginning of Sect. 4.3.

We first fix a theory (= signature + laws). For the signature, we take four
operations (to be precise, operation symbols) (fPpg, bPpg, fRem, bRem) with ari-
ties specified in Fig. 15. These operations can be interpreted over any 1.5-sorted
category encompassing any number of replicas. However, we assume that our
synchronization tool will only work with two replicas propagating updates from
one to the other and back. Hence, we need to specify a specific 1.5-sorted cate-
gory adequate to our modest needs.

Definition 5. A (binary) replication lane r is given by the following data.
(a) Two categories, A and B, whose objects are called replicas (or models),

and arrows are updates. (For a category X, its classes of objects and arrows
are denoted by, resp., X0 and X1.) Specifically, objects of A are called source
replicas and those of B the target ones.

(b) A set M whose elements are called matches from A- to B-replicas, and

two functions (legs), A0
∂s← M

∂t→ B0, from matches to replicas. If for a match
m ∈M, ∂s(m) = A, ∂t(m) = B, we write m : A→ B.

(c) A set K ⊂M of consistent matches.

Figure 17 visualizes the definition: updates are vertical, and matches are hori-
zontal or slanted (solid or dotted-dashed for being consistent or inconsistent).

124 Z. Diskin

A BM

A

A

B

A
…

B

B

ts

Fig. 17. Replica
lane

We denote a replication lane by a bulleted arrow r :

A •→ B. If replicas are considered within the same ver-
sioning space, categories A and B coincide, and we call the
lane unary, r: A •→ A.

Now we define an algebra over a replica lane.

Definition 6. A diagonal replica synchronizer is a pair
δ = (rδ, Σδ

brSync) with rδ a replica lane and Σδ
brSync =

(fPpgδ, bPpgδ, fRemδ, bRemδ) a quadruple of diagram opera-
tions over rδ of the arities specified in Fig. 15. The name diag-

onal refers to the fact that propagation operations act along diagonals of operation
tiles, and bidirectional propagation (for parallel updates) is not considered.

It is convenient to denote a replica synchronizer by an arrow δ : A •→ B
whose source and target refer to the source and target of the replica lane rδ.

A diagonal synchronizer is called well-behaved (wb) if the pair (fPpg, fRem)
satisfies the laws IdlPpgf ,Corrf ,IdlRemf ,ChkPpgf specified in Fig. 16, and the pair
(bPpg, bRem) satisfies the backward counterparts of those laws. A wb diagonal
synchronizer is called very well-behaved (vwb) if the laws PpgPpgf ,RemRemf and
their backward counterparts hold too.

Modularization of the set of laws provided by the notions of wb and very wb
synchronizer is somewhat peculiar from the categorical standpoint because it
joins unitality (preservation of units of composition, ie, idle updates) with other
laws but separates it from compositionality, and the very terms are not very con-
venient. However, this modularization and terminology follow the terminology
for lenses [2] and make comparison of our framework with lenses easier (see [28]
for an analysis of these laws in the discrete setting).

The definition above is intuitively clear but its precise formalization needs a
careful distinction between syntax and semantics of a diagram operation, see
Sect. B.

5 Simple Update Propagation II: Forward and Backward
View Maintenance

In this section we consider synchronization of a source model and its view. The
content is parallel to replica synchronization and the algebraic model is developed
along the same lines. Yet view synchronization is essentially different from replica
synchronization.

5.1 View vs. Replica Synchronization

Examples in Sect. 2.2 and Appendix C show that a view definition can be mod-
eled by a metamodel mapping SSS vvv←− TTT that sends elements of the view (target)
metamodel TTT to basic or derived elements of the source metamodel SSS.4 In ad-
dition, the mapping must be compatible with the structure of the metamodels
4 Derived elements of SSS are, in fact, queries against SSS seen as a data schema.

Model Synchronization: Mappings, Tiles, and Categories 125

ff

f

tB tB

f
(a) (b)

bba

S

A

A B

T

T

1T

:getv

S

A

A B

T

T

:vExe

:putv

tBtB

:vExe

v

1T

a

v

tA
tA

B B

Fig. 18. View maintenance: Forward (a) and backward (b) update propagation

(and send a class to a class, an attribute to an attribute etc.) Such a view defi-
nition can be executed for any instance A of SSS, and produce a vvv-view of A, i.e.,

a TTT -instance denoted by A�vvv , along with a traceability mapping A
vvvA←− A�vvv (see

Sect. C for details).5 In fact, we have a diagram operation specified by the top
face of cube (a) in Fig. 18, where B = A�vvv and f = vvvA.

If the source A is updated, the update is propagated to the view by operation
getvvv (“getView”) shown in the front face of the cube Fig. 18(a). The operation
takes a source update a and view mapping f , and produces a view update b
together with a new view traceability mapping f ′. A reasonable requirement is
to have f ′ = vvvA′ and B′ = A′�vvv. In the database literature, such operations
have been considered as view maintenance [29].

If the view is updated via b : B → B′ (the front face of cube Fig. 18(b)), we
need to update the source correspondingly and find an update a : A→ A′ such
that B′ = A′�vvv; simultaneously, a new traceability mapping f ′ = vvvA′ is com-
puted. Since normally a view abstracts away some information, many updates a
may satisfy the condition. To achieve uniqueness, we need to consider additional
aspects of the situation (metamodels, view definition, the context) — this is the
infamous view update problem that has been studied in the database literature for
decades [30]. Yet we assume that somehow an update propagation policy ensur-
ing uniqueness is established, and hence we have an operation putvvv (“put update
back”) specified by the front face of the cube. Names ’get’ and ’put’ are borrowed
from the lens framework [2], but in the latter neither update nor view mappings
are considered. Also, lenses’ operation get corresponds to our vExe0.

Despite similar arity shapes of bidirectional pairs (get,put) in view synchro-
nization and (fPpg,bPpg) in replica synchronization, the two tasks are different.

First we note that in the view update situation, consistency relation K can
be derived rather than independently postulated: we set

(Cons) K def=
{
A

f←− B : f = vvvA

}
.

5 View A�vvv can be seen as vvv-projection of model A to space of TTT -models, hence symbol
� denoting restriction.

126 Z. Diskin

• �
:vExe
=⇒

◦

• � •

:get↘↘

•
�� ◦

�

• � •

:put↙↙

◦
�� •

�

• � ◦
:Get
=⇒

•
�� ◦

�

(a) (b) (c) (d)

Fig. 19. View synchronization: the signature

Next we assume that the view is entirely dependent on the source: once the source
is updated, the view is automatically recomputed so that the source update does
not create inconsistency. On the other hand, if the view is updated, it at once
becomes inconsistent with the source since only one view corresponds to the
source. Hence, there is no need for the “first-check-then-enforce” principle, and
any view update must be propagated back to the source to restore consistency.

The result is that in contrast to replica synchronization, it is reasonable to as-
sume that view update propagation always acts on consistent matches as shown
by the front faces of cubes in Fig. 18(a,b), and produces consistent matches. We
may thus ignore inconsistent matches completely. It implies that the correctness
and ”first-check-then-enforce” laws of replica synchronization become redundant,
and we do not need rematching operations. This setting greatly simplifies the
theory of update propagation over views. The rest of the section described the
basics of such a theory.

5.2 The Signature and the Laws

Figure 19 (a,b,c) presents arity shapes of the three operations we will consider.
As before, the input nodes and arrows are black and solid, the output ones are
white and dashed. The meaning of the operations is clear from the discussion
above. Operation (d) will be discussed later.

Figure 20 specifies some laws the three operations must satisfy. The laws
IdlGet, IdlPut, GetGet, and PutPut in cells (b1,b2,c1,c2) are quite similar to the
respective laws for forward and backward propagation discussed in Sect. 4. They
say that idle updates on one side result in idle updates on the other side, and
composition of updates is propagated componentwise.

The PutGet law in cell (bc) states that any put-tile is automatically a get-tile.
In the string-based notation, if (a, f ′) = put(b, f) then (b, f ′) = get(a, f).

The Exe! law in cell (a!) states that any match (the empty premise) is a correct
view traceability mapping produced by vExe applied to the target of the match.
This implies that put and get only apply to correct matches as discussed above.
We could a priori postulate this, and rearrange operation get into operation Get
specified in Fig. 19(d), which both computes the views and propagates updates.
It is a possible way to go (cf. the functorial approach to the view update problem
[26]), but this paper explores a different setting, in which vExe computes the view
model only and get propagate updates using view traceability mappings.

Exercise 6. Formulate the horizontal counterparts of GetGet and PutPut, and
explain their meaning. Hint : consider a composed view definition in Fig. 5.

Model Synchronization: Mappings, Tiles, and Categories 127

• � •

:get↘↘

•

1
�� ◦

1
�

(b1) IdlGet

• � •

:put↙↙

◦

1
�� •

1
�

(c1) IdlPut

• � •
:put

:get
◦
�� •

�

(bc) PutGet

• � •

:get↘↘

•
�� :get ◦

�

:get↘↘

•
�� ◦

�

(b2) GetGet

• � •

:put↙↙

◦
�� :put •

�

:put↙↙

◦
�� •

�

(c2) PutPut

∅

:vExe

• � •
(a!) Exe!

Fig. 20. View synchronization: the laws

5.3 View Synchronization

Definition 6. A view lane v is given by the following data.
(a) Two categories A and B, whose objects are called models and arrows are

updates. Objects of A are called source models and those of B are views.

(b1) A span of sets, A0
∂t← V

∂s→ B0 with ∂t and ∂s being total functions
giving the target and the source for each view traceability mapping f ∈ V. We
write A

f←− B if ∂t(f) = A and ∂s(f) = B.
(b2) An operation vExe : A0 → V of view execution such that for any model

A ∈ A0 and any mapping v ∈ V, the following two laws hold:
(ExeDir) ∂tvExe(A) = A

(Exe!) if ∂tv = A, i.e., A
v←− B, then v = vExe(A)

A

VA Bt

A B

A

…

B

BA

s

vExe

Fig. 21. View lane

Thus, for any A ∈ A0 we have a unique traceability
mapping A �vExe(A)

B targeting A, and any traceability
mapping is of this form.

We denote the composition vExe; ∂s, which gives the
source of the arrow vExe(A), by vExe0. Then, given a
source A, its view B = vExe0(A).

Evidently, A �= A′ implies vExe(A) �= vExe(A′), but it
may happen that B = vExe0(A) = vExe0(A′) for different
A, A′ because view abstracts away some information.

Fig. 21 visualizes the definition: updates are vertical
arrows, and view traceability mappings are horizontal. (Compare this figure with
Fig. 17 and note the difference between the carrier structures for replication and
view updates.)

128 Z. Diskin

Definition 8. A view synchronizer over a lane v is a pair of diagram opera-
tions λ = (get, put) whose arities are specified in Fig. 19. Notation λ reminds us
lenses.

We will denote view synchronizers by arrows λ : A→ B and write ∂sλ for A
and ∂tλ for B. With this notation, operations get of forward view maintenance
and vExe of view computation go in the direction of arrow λ whereas the back-
ward operation put goes in the opposite direction. Thus, although vExe computes
from A to B, all view traceability mappings computed by vExe are directed from
B to A.

A view synchronizer is called well-behaved (wb) if the pair (get, put) satisfies
the laws IdlGet IdlPut, and PutGet specified in Fig. 20. A wb synchronizer is
called very well-behaved if the laws GetGet and PutPut hold as well.

Exercise 7. Prove that in the discrete setting (mappings are just pairs of mod-
els), a (very) wb view synchronizer becomes a (very) wb lens [2].

Exercise 8. Let λ1 : A→ B, λ2 : B→ C be view synchronizers defined in
Sect. 5.2. Define a view synchronizer λ1; λ2 : A→ C and prove that it is (very)
well-behaved as soon as the components λi are such.
Hint : Define Vλ def=

{
(v1, v2)A : v1 = vExeλ1(A), v2 = vExeλ2(v1.∂s), A ∈ A0

}

and vExeλ(A) def= (v1, v2)A.

6 Complex Update Propagation: Managing Heterogeneity

In this section we consider scenarios in which the operation of update propaga-
tion is assembled from simpler propagation blocks.

6.1 Synchronization of Heterogeneous Models

Suppose that models to be synchronized are instances of different metamodels,
for example, we need to keep in sync a class diagram and a sequence diagram.
If one of the models is updated, say, a method in the class diagram is renamed,
we need to update the sequence diagram and rename messages calling for the
renamed method. Thus, we need to propagate updates across a match between
heterogeneous (non-similar) models.

We will approach this problem by adapting constructions developed in Sect. 4
for homogeneous replication. Surprisingly, a precise realization of this idea is not
too complicated. We will first find “the right” constructs using the metamodels,
and then proceed with algebras over spaces models like in the previous section.

Matching. Discussion in Appendix D shows that heterogeneous model match-
ing is based on metamodel matching via a span ooo =AAA vvv←OOO www→ BBB in the space of
metamodels, where AAA and BBB are metamodels of models to be synchronized, OOO
is a metamodel specifying their overlap, and mappings vvv,www are view definitions
that make OOO a common view to AAA, BBB. Recall that each metamodel MMM deter-
mines a 1.5-sorted category Mod(MMM) whose objects areMMM-instances (models),

Model Synchronization: Mappings, Tiles, and Categories 129

vertical arrows are their updates and horizontal arrows are matches (Sect. 4.1).
To simplify notation, we will use the following abbreviations. For a given span
ooo = AAA vvv←OOO www→ BBB, bold letters A, B denote the vertical categories (of updates)
in Mod(AAA) and Mod(BBB) resp; bold letter O denotes the horizontal graph (of
matches) in Mod(OOO).

We assume that the metamodel span is consistent, that is, there are no con-
flicts between the metamodels.

Definition 9. A heterogeneous match of type ooo is a triple h = (A, m, B) with
A ∈ A0, B ∈ B0, and m : A�vvv → B�www a match between the corresponding
projections in graph O. Match h is called consistent if match m is such.

Given a metamodel span ooo, we will denote heterogeneous matches of type
ooo by arrows A

h:ooo� B or hooo : A→ B. The typing discipline then implies that
models A and B are instances of metamodels AAA = ∂sooo and BBB = ∂tooo resp.

Propagation. Suppose we are given a matched heterogeneous pair of models
hooo : A→ B. If one of the models, say A, is updated and consistency between
models gets worse, we may want to propagate update a : A→ A′ to model B and
restore consistency as much as possible. Thus, we need to compute an update
b : B → B′ along with an updated match h′

ooo : A′ → B′ of the same type ooo.
If both legs of the span ooo are maintainable views, and the replication space

Mod(OOO) is equipped with synchronization, a reasonable idea would be to com-
pose update propagation from A to B from the blocks provided by synchro-
nization mechanisms of vvv, OOO, and www. That is, having lenses λvvv and λwww , and a
homogeneous replica synchronizer δ over Mod(O), we may try to build a het-
erogeneous replica synchronizer spanning model spaces A and B. The rest of
the section is devoted to a precise realization of this idea.

After metamodels have helped us to figure out the right concepts, we may
forget about them and work within model spaces only.

Definition 10. A triple lane t is a pair of view lanes (vl,vr) referred to as
the left and the right lanes, with a replica lane in-between them:

A
vl

� O
r
•→ O �vr

B.

Categories A, B are called the ends of the triple lane and category O is the
overlap.

A triple synchronizer τ over a triple lane t is a pair of view synchronizers for
the pair of view lanes and a diagonal replica synchronizer for the replica lane:

τ = (λl, δ, λr) with A
λl

� O
δ
•→ O �λr

B.
A triple synchronizer is called (very) well-behaved if all its three components

are such.

Theorem 2. Any triple synchronizer τ = (λl, δ, λr) gives rise to a diagonal
replica synchronizer Δτ . Moreover, the latter is (very) well-behaved as soon as
all three components are such.

130 Z. Diskin

A O
l

A

A

AO

A O

BO

B O

B
m

a b

A Bh

A B

(a) (a*)

2:get l a b

1:vExe 1:vExe

3:fPpg
m

4:put r

h

A

A

AO

A O

BO B

B

m

a

A B
h

A

(b) (b*)

2:get l 1 a

1:vExe 1:vExe

3:fRem

m

:fRem

hBO

B

1B2:getr

:fPpg

O B
r

A B

B

1B

Fig. 22. Heterogeneous update propagation

The principle idea of the proof is easy and well explained by Fig. 22.
The binary replica lane for Δτ is formed by the ends of A and B of the

triple lane, and with the class of matches formed by heterogeneous matches
(A, m, B) as described in Definition 6.1. The subclass of consistent matches is
also described in Definition 6.1.

The four operations of diagonal update propagation specified in Fig. 15 are
defined by tiling the corresponding operations of the three component synchro-
nizers: Fig. 22 shows this for forward propagation (a) and rematching (b). Ap-
plications of the operations are numbered, and concurrent applications have the
same number. Algebraically, diagrams (a) and (b) specify terms that can be ab-
breviated by diagrams (a*) and (b*). It is exactly similar to definitions by equal-
ity in the ordinary algebra: when we write, say, Δ(x, y) def= ax ∗ (b1x + b2y) ∗ cy
with x, y variables and a, b, c fixed coefficients, expression Δ(x, y) can be consid-
ered as an abbreviation for the term on the right-hand side of equality symbol.
Backward propagation and rematching are defined in exactly the same way but
in the opposite direction.

Finally, we need to check that composed operations in diagrams (a*,b*) and
their backward analogs satisfy the laws specified in Fig. 16. With tiling notation,
this check is straightforward. Ancient Indian mathematicians used to prove their
results by drawing a picture and saying ”Look!”. The reader is encouraged to
follow this way and appreciate the benefits of diagram algebra. ��
Similarly to unidirectional heterogeneous update propagation, heterogeneous
bi-directional operation can be built from lenses and bi-directional synchroniza-
tion over the overlap as suggested by Fig. 23 (where δ⇔ denotes the operation
of homogeneous bi-directional update propagation). A special case of this con-
struction for synchronizing data presented by trees was described in [3].

Model Synchronization: Mappings, Tiles, and Categories 131

A

A

AO

A O

BO

B O

B

B

m

a

a

m
A

baO

A B
h

A B

(a) (a*)

2:get l

4:putl
4:put r

2:getr

3:biPpg

bO

aO
bO b

BA O B O

:BiPpg

h

ba

a b

BA

1:vExe 1:vExe

A
l

B
rO O A B

Fig. 23. Heterogeneous bi-directional update propagation

Exercise 9 (*). Define an algebra for modeling synchronization of materialized
views, for which view data are managed independently, and inconsistency with
the source is possible (though undesirable). Hint : The possibility of inconsis-
tency makes this case somewhat similar to replication (Sect. 4) and distinct
from ordinary views (Sect. 5.2).

6.2 Synchronization with Evolving Metamodels: A Sketch

A
tA � AAA

:bPpgε↙↙
A′

a �

tA′

� AAA′
u�

Fig. 24. Typing as matching

First we note that typing can be considered as
a specific kind of match. Then model adaptation
to metamodel evolution can be described as back-
ward diagonal propagation as shown by Fig. 24
(in which superscript ε stands for “evolution”).
Arrow u encodes an ordinary (update) span in
the space of metamodels. Arrow a is a span whose
head is an instance of u’s head, and the legs are
heterogeneous model mappings over u’s legs as
described in Sect. D.1.

Now consider a heterogeneous pair of replicas A:AAA and B:BBB, and suppose
that metamodels may change. A typical scenario is shown in Fig. 25(a). The
upper face of the cube specifies a heterogeneous match defined in Sect. D.2.
Suppose that metamodel AAA is updated with u :AAA →AAA′. This update can be
propagated in two directions.

In the first one, update u is propagated over the left face of the cube and
results in update a : A→ A′ adapting model A to the change. In the second di-
rection, update u is first propagated to metamodel BBB along the match ooo by the
ordinary replica synchronization mechanisms (Sect. 5) but now working with the
metamodels rather than models. This gives us the back face of the cube and up-
date v : BBB → BBB′ of the right metamodel. The latter is then propagated to model B
by the model adaptation mechanism now applied to the right face of the cube.

132 Z. Diskin

A

Versions

A

A

B

b

B

Replicas

Typing
A B

B

v

o

o
h

h

u
1:fPpg

1:b
Ppg

2:b
Ppg

tA tB

a

tA

bvau

h

o

h

o

tB

tA

h:o

h :o

ab

uv

th = tA tB

th= tAtB

tB

u

a

ta= tAtA

v

b

tb= tBtB

oo

hh

(b)

(c)

(d)

(a)

Fig. 25. 3D-synchronization with evolving metamodels

In this way we get two parallel updates a and b at the ends of match h.

Having the metamodel span ooo′ = (AAA′ vvv′
← OOO′ www′

→ BBB′) at the back face, we may
project models A′ and B′ to their common overlap space Mod(OOO′) thus arriving
at models A′

O = vvv′�A′ and B′
O = www′�B′ . Having match m : AO → BO (occurring

into h) and all other information provided by the cube, we may derive a match
m′ : A′

O → B′
O by applying the corresponding operation to nodes and arrows

of the cube (in its de-abbreviated form with all models and model mappings
explicated). This would be a typically categorical exercise in diagram chasing.
A theoretical obstacle to be watched is that categories involved must be closed
under the required operations. Practically, it means that the required operations
have to be implemented.

Thus, synchronization scenarios with evolving metamodels are deployed within
a three-sorted graph with three sorts of arrows: vertical (updates), horizontally
frontal (matches) and horizontally “deep” (typing). Since updates and types are
composable, we actually have a 2.5-sorted category. If heterogeneous match com-
position is also defined, we have a thin triple category. This pattern could be prob-
ably extended for other types of relationships between models. Hence, general
synchronization scenarios are mutli-dimensional and are deployed within n-sorted
graphs and categories. Multi-dimensional category theory (mdCT) appears to be
an adequate mathematical framework for multi-dimensional synchronization.6

6 Md-category seems to be a new term. The term higher-dimensional categories is
already in use and refers to md-categories with weaker compositional laws: unitality
and associativity of composition hold up to canonic isomorphisms [31]. In fact, hdCT
is a different discipline, and mdCT is a proper, and very simple, sub-theory of hdCT.

Model Synchronization: Mappings, Tiles, and Categories 133

2D-projections. To manage the complexity of 3D-synchronization, it is useful
to apply a classic idea of descriptive geometry and study 2D-projections of the
3D-whole. We can realize the idea by arrow encapsulation, that is, by treat-
ing arrows of some sort as objects (nodes) and faces between those arrows as
morphisms (complex arrows). There are three ways of applying this procedure
corresponding to the three ways of viewing the cube (see the frame of reference
in the left-upper corner).

Viewing the cube along the axis of Replicas means that we consider match
arrows as nodes, the top and bottom faces as “deep” arrows, and the front and
back faces as vertical arrows. In this view, the cube becomes a tile shown in
diagram (b). If we treat typing mappings as specific matches, these tiles become
similar to replica synchronization tiles from Sect. 4

In the view along the Typing axis, typing mappings are nodes, the top and
bottom faces are horizontal arrows, and the left and right faces are vertical
arrows (but of type different from vertical arrows of the Replicas-view). The
result is shown in diagram (c). These tiles are similar to heterogeneous replication
considered above but with evolving metamodels.

Finally, in the Versions view, updates are nodes, the front and back faces
are new horizontal arrows, and the left and right faces are new deep arrows
as shown in diagram (d). Such tiles can be seen as structures for specifying
“dynamic typing”, in which typing arrows are actually couples of original and
updated typing mappings.

Tiles of each of the three sorts can be repeated in the respective directions
and we come to three two-sorted graphs Gx with x = R, T, V for the Replicas,
Typing, Version axes. Each of the graphs is a universe for its own synchronization
scenarios with different contexts. Yet there may be many similarities in the
algebras of operations, and there may be core algebraic structures common to
all three views. We leave this for future work.

7 Relation to Other Work, Brief Discussions, Future
Work

The paper is a part of an ongoing research project on model synchronization
with the Generative Software Development Lab at the University of Waterloo
The project started with the GTTSE’07 paper [32] by Antkiewicz and Czarnecki,
which outlined a broad landscape of heterogeneous synchronization, provided
a range of examples, and introduced a notation that can be seen as a precursor
of synchronization tiles. The project has been further developed in [33,11,34],
and in several papers currently in progress. The present paper aims to specify a
basic mathematical framework for the project, and to offer a handy yet precise
notation.

Of course, this is only the short prehistory of the paper. Synchronization spans
a wide range of specification problems, and the present paper (in its attempt
to set a sufficiently general framework) inevitably intersects with many ideas

134 Z. Diskin

and approaches, and builds on them. These “pre-histories” and intersections are
briefly reviewed below without any aspiration to be complete. Directions for
future work are also discussed.

7.1 Abstract MMt or Model-at-a-Time Programming

Synchronization via algebra. Analysis of synchronization problems in ab-
stract algebraic setting is a long-standing tradition in the literature on databases
and software engineering. It can be traced back to early work on the view update
problem, particularly to seminal papers by Bancilhon and Spyratos [35], Dayal
and Bernstein [30] and Gottlob et al [36]. This algebraic style was continued by
Meertens in [37] in the context of constraint maintenance, and more recently
was further elaborated in the work of the Harmony group on bi-directional pro-
gramming languages and data synchronization [2,3,38,39,40]. An adaptation of
the approach for bi-directional model transformations was developed by Stevens
[6,41] and Xiong et al [4,42]; an analysis of the corresponding algebraic theo-
ries can be found in [28]. Paper [32] mentioned above, and an elegant relational
model of bi-directional data transformations [43] by Oliveira are also within this
algebraic trend.

Two features characterize the framework: (A) model mappings are not con-
sidered or implicit; and (B) metamodels (and their mappings) are either ignored
or only considered extensionally —- a metamodel defines its class of instances
and may be forgotten afterwards (e.g., see [3]).

Feature (A) makes the framework discrete and subject to the critique in Sec-
tion 2. Feature (B) significantly simplifies technicalities but hides semantics of
model translation and makes it difficult to manage heterogeneity in a controlled
way.7 The abstract MMt part of the present paper also does not include meta-
models. However, the latter are central for the concrete MMt part that motivates
and explains several important constructs in the abstract part.

Generic MMt. A broad vision of the model-at-a-time approach to the database
metadata management was formulated by Bernstein et al in [44,1]. They coined
the term generic model management, stressed the primary importance of map-
pings, and described several major operations with models and mappings neces-
sary to establish a core MMt framework. This work originated a research direc-
tion surveyed in [45]. Interestingly, synchronization operations are not included
in the core framework as scoped by Bernstein et al.

Although mappings are first-class citizens in generic MMt, a typical al-
gebraic setting is discrete: the universe in which operations act is a set (of
models and mappings) rather than a graph; the same setting is used in Mani-
festo [46] by Brunet et al. Not surprisingly, neither diagram algebra nor category

7 Dayal and Bernstein’s work [30] is a notable exception. It does use update, trace-
ability and typing links (and, in fact, is remarkably categorical in its approach to
the problem). However, these links are not organized into mappings (not to mention
more advanced arrow encapsulation techniques), and technicalities become hardly
manageable. The categorical potential of the paper remained undiscovered.

Model Synchronization: Mappings, Tiles, and Categories 135

theory are employed in generic MMt so far; few exceptions like [47] by Alagic and
Bernstein, and [48] by the present author remain episodes without follow-up. The
purely extensional treatment of data schemas (feature (B) of synchronization
frameworks above) is also typical for generic MMt [49]; papers [47,48] are again
exceptions.

Tiles and tiling. Tile systems were developed by Ugo Montanari et al (see [50]
and references therein) as a general algebraic framework for modular description
of concurrent systems. The tiles represent modules and can be thought of as
computations (or conditional rewriting rules) with side effects. The two horizon-
tal arrows of a tile are the initial and the final states of the module, and the two
vertical arrows are the trigger and the effect. This interpretation works for our
tiles: modules are connected pairs of models, matches are their states, the input
update is a trigger and the output one is the effect. However, there are important
distinctions between the two tile frameworks. For the brief discussion below, we
will refer to them as to c-tiles and s-tiles, with c standing for concurrency and
s for synchronization.

(a) C-tiles have an interior in the sense that different c-tiles may have the
same four-arrow boundary whereas our s-tiles are merely quadruples of arrows
(in the categorical jargon, they are thin).

(b) Montanari et al only deal with operations on tiles as integral entities
(tiling-in-the-large), and consider their vertical, horizontal and parallel compo-
sition. In contrast, we have been looking inside tiles and considered algebraic
operations that produce tiles from arrows (tiling-in-the-small). We have also
considered vertical composition-in-the-large in our XyzXyz laws, and horizontal
composition in Exercise 6 on p.126.

(c) Three composition operations over c-tiles assume they are homogeneous
units, and so we have homogeneous tiling. In contrast, our complex scenarios in
Sect. 6 present heterogeneous tiling: a big tile is composed from smaller tiles of
different types.

A perfectly adequate mathematical framework for homogeneous tiling is dou-
ble categories [25], or two-sorted categories (Appendix B) for thin tiles; their
s-interpretation is described in [33]. Heterogeneous tiling requires more refined
algebraic means and a real diagram algebra. A general formal definition of a
diagram operation appears in [51] and is specified in detail in [52]; in the present
paper it is formulated in a slightly different but equivalent way. Parsing terms
composed of diagram operations is discussed in [52, Appendix A].

A few historical remarks. Elements of the tile language in the context of model
synchronization can be found in Antkiewicz and Czarnecki [32], and even earlier
in Lämmel [53]; my paper [28] also deals with s-tiles but in the discrete setting.
Operations of update propagation and conflict resolution are considered in [32]
but without any equational laws. The language of s-tiles is explicitly introduced
in Diskin et al [33] with a focus on 2D-composition and double categories. A
general framework for specifying synchronization procedures via tile algebra in
this paper is novel.

136 Z. Diskin

The 2-arrow structure. Introducing a partial order on mappings, and then or-
dering matches and updates, is important for model synchronization (see p. 116)
and should be a part of the tile language. The issue is omitted in the paper and
left for future work; some preliminary remarks are presented below.

By the principles of arrow thinking, ordering should be modeled by arrows,
and we thus come to arrows between arrows or 2-arrows. If mappings are spans,
2-arrows are ordinary arrows between their heads, but the entire structure be-
comes a 2-category and hence a much richer structure than an ordinary category.
Another approach suggested by an anonymous referee is to work with so called
allegories [54] rather than categories, in which morphisms are to be thought of
as binary relations rather than functions. However, an important feature of any
set of matching links — its structure being similar to the structure of models
— is lost if mappings are simply morphisms in an allegory. Another (arguable)
advantage of the span model of mappings is that it is technically easier to work
with 2-categories of spans than with allegories.

Parallel updates. This synchronization scenario is very important yet omitted
in the paper and left for the future work. It is a challenging problem, whose
algebraic treatment needs a more elaborated framework than simple algebraic
models we used. An initial attempt and some results can be found in [42].

Lenses, view synchronization and categories. The Harmony group’s paper
[55] was seminal. It presented a basic algebraic framework in a very transparent
way; and coined several vigorous names: get and put for the two main operations,
GetPut, PutGet, PutPut for equational laws imposed on these operations, and
lens for the resulting “bi-directional” algebra. In fact, the paper set up a pattern
for algebraic models of update propagation.

The basic lens framework is enriched with update mappings in [11]. Algebras
introduced in [11] operate on both models and update mappings, and are called
u-lenses with ’u’ standing for updates. Earlier, a similar framework was devel-
oped by Johnson and Rosebrugh [26]. For them, updates are also arrows, a model
space is a category, and a view is a functor. However, they work in the concrete
rather than abstract MMt setting, and focus on conditions ensuring uniqueness
of update policies. As discussed in Sect. 4.2, this setting may be very restrictive
in practice.

View synchronizers of the present paper can be seen as ut-lenses since they
operate on two types of mappings: updates and traceability. Moreover, given a
view definition language with well-behaved operations of update propagation de-
fined for any view mapping, both tile systems, of all get-tiles and of all put-tiles,
give rise to two-sorted categories, say, Get and Put (see Fig. 20 and Exercise 6
on p.127). In addition, the PutGet law entails inclusion Put ⊂ Get. Proving these
results is not difficult and will appear elsewhere.

Multi-dimensional synchronization. The ideas of constructing 3D-tiles (syn-
chronization cube on p. 132), and more generally of the multi-dimensional nature
of synchronization problems, seem to be new. The paper only presents a vision
(Sect. 6.2), and even the initial steps are still waiting for a precise specification.

Model Synchronization: Mappings, Tiles, and Categories 137

With dynamic interpretation of horizontal arrows as transformations (rather
than structural mappings), 2D-projections of the synchronization cube can be
seen as coupled transformations considered in [53], and have probably been stud-
ied by different communities in different contexts, e.g., [56]. If vertical arrows
(updates) are interpreted dynamically, then the front and back faces of the cube
become close to triple graph transformations [57] (with the third graph hidden
in the match). Stating precise relationships is a future work.

7.2 Concrete Model Management

Inside models: constraints as diagrams predicates. For a rich software
model, specifying its abstract syntax ”tree” as a mathematical object is not
as easy as it may seem. One of the challenges is how to specify and manage
constraints, which populate model graphs with non-instantiable elements. In
the paper we have only considered very simple constraints declared for a single
arrow (multiplicities). However, there are other practically important constraints
involving several arrows, e.g., invertibility of two mappings going in the opposite
directions, uniqueness of identification provided by a family of mappings with
a common source (a key), and many other conditions that constraint languages
(like OCL) allow us to specify.

A general approach to the problem is to specify such constraints as diagram
predicates [51] and treat models as graphs with diagram predicates, dp-graphs. A
principal distinction of this approach from the attributed typed graphs (ATGs)
[58] is that a constraint is an independent object referring to respective nodes and
edges rather than an attribute of a node or an edge. Theoretical advantages of the
approach are its universality and proximity to an established framework of the so
called sketches developed in categorical logic (see [16] for details). The approach
was shown to be useful in schema integration [59], conceptual modeling [60], and
fixing known problems with UML associations [61]. An accurate algebraic model
of metamodeling with diagrammatic constraints is an important direction for
future work.

Homogeneous model mappings and deltas. Specifying (symmetric) deltas
is a known issue, e.g., [9,10,62,63]. A major challenge is how to formally spec-
ify model changes : modifications, if we interpret deltas as updates, or conflicts,
if deltas are matches. A well-known idea is to treat a modification of an ele-
ment as its deletion followed by insertion; but it is a simplistic treatment. The
approach developed in the paper (for our OSV-models) is more adequate and
still simple but is not straightforward. First, value-preserving model mappings
are defined; then changes are specified by spans built from two value-preserving
mappings but having empty slots. This treatment of changes seems correlating
with ATG transformations but a precise comparison needs some technical work
to be done. Generalization of the idea for more practically interesting (and hence
more complex) models than simple OSV-models is important future work.

138 Z. Diskin

Heterogeneous model mappings and deltas. Precise specification of oper-
ations on heterogeneous models and model mappings is a rarity in the literature
because of semantic and technical difficulties. It is managed in the paper by
specifying heterogeneous models as chains of graphs and graph mappings; model
mappings then appear as multi-layer commutative diagrams. The idea seems to
be more or less evident but I am not aware of its realization in the literature.

Despite their frightening appearance, universes of multi-layer complex objects
and mappings are well-known in CT under the name of arrow categories. They
are well-studied and behave very well. Unfortunately, constraints may be an
obstacle: while any model is a chain of graph mappings, not any such chain is
a model because it may violate the constraints. It implies that the universe of
models may be not closed wrt. some operations, e.g., merging (colimit) [34].
How graph-based constraints declared in a metamodel affect the properties of
the corresponding universes of models is a big issue studied in categorical logic.
Its adaptation to metamodeling with diagram predicates (as constraints) [16] is
important future work.

Model translation (MT) and fibrations. The algebraic model of MT pro-
posed in the paper is generic and formulated for any metamodel language, in-
cluding an associated query language. In this model, MT is treated as a view
computation, and is entirely determined by the corresponding metamodel map-
ping considered as a view definition. The idea was first described in [48]; the
description in the present paper is more accurate and detailed. It culminates
in the statement that the view mechanism (for monotonic queries) makes the
functor projecting heterogeneous models and mappings to their metamodel
components a split fibration — a construct well known and studied in CT.

Fibrational formulation can be seen as dual to the familiar functorial se-
mantics : a model is a functor from the metamodel (theory) to some semantic
category, e.g., of sets and relations. Functorial semantics is quite popular in the
Algebraic Specification community [64], and is basic for the categorical approach
to the view update problem developed in [26], but it may seem foreign for a model
transformation engineer accustomed to work with metamodeling patterns. The
latter assume that a model is given by a (typing) mappings to the metamodel
rather than from it. Fibrations fit perfectly in this framework, but offer much
more. Practical modeling situations often comprise instances at several levels,
say, objects, classes, and the metamodel for the latter (e.g., a simple sequence
diagram is a three-level structure of this kind [65]). Specification of multilevel
modeling is quite manageable with fibrations: composition of fibrations is again a
fibration (this is a well-known result). In contrast, functorial semantics becomes
hard to manage when we consider more than one pair (theory, model).

8 Conclusion

Building theoretical foundations for model synchronization is a challenging
problem. Among the factors contributing to its complexity are heterogeneity of

Model Synchronization: Mappings, Tiles, and Categories 139

models to be synchronized, the multitude and heterogeneity of their relation-
ships, and interactions between different dimensions of synchronization. The
paper aims to show that algebraic models based on diagram operations can be
an effective means to manage the complexity of the problem.

Two lines of approaches and results are presented. The first one is abstract :
models and model mappings are treated as indivisible (black-box) nodes and
arrows, on which synchronization procedures operate. The machinery used is
algebra of tile operations and tiling as term substitution. The abstract line cul-
minates in Sect. 6, which shows how complex synchronizers can be assembled by
tiling together simple components. The second line is concrete: it provides alge-
braic models for (white-box) complex structures underlying models and model
mappings. The machinery is essentially categorical: arrow categories (for hetero-
geneous models and their mappings) and fibrations (for the view mechanism).
Tile algebra is applicable here as well.

The tile framework offers a handy notation with formal semantics, and a tool-
box of constructs amenable to algebraic manipulations and hence to automated
computer processing. This benefit package may be very appealing for a software
engineer.

Synchronization scenarios considered in the paper are deployed on 2D-planes
of a 3D-space populated by models and model mappings (and a 3D-scenario with
evolving metamodels is sketched in Sect. 6.2). The three dimensions correspond
to the three kinds of intermodel relationships (and mappings) that were consid-
ered: replication (matches), versioning (updates), metamodeling (typing). Other
kinds of relationships can give rise to new dimensions of the space and synchro-
nization procedures spanning it. Handy yet precise tile notation and the corre-
sponding algebraic framework can be an invaluable tool for multi-dimensional
synchronization.

Acknowledgements. I’m grateful to the organizers of GTTSE’09 for the invi-
tation to lecture at the school and for the chance to enjoy its unique atmosphere
— stimulating, challenging, and warm. I’d like to thank the same team for orga-
nizing qualified and friendly reviewing, and their enormous editor’s patience. I’m
indebted to the anonymous referees for valuable feedback and criticism, which
greatly improved the structure and presentation of the paper. Special thanks to
the referee who also provided detailed technical comments and suggestions.

Different parts of the paper were presented at our seminars at the University
of Waterloo, and I’m grateful to Micha�l Antkiewicz, Krzysztof Czarnecki and
Yingfei Xiong for valuable feedback and constructive criticism. Several discus-
sions of the paper’s general ideas and technical fragments with Tom Maibaum
were thought-provoking and invigorating. In addition, Tom read the entire
manuscript and provided many helpful remarks. Finally, thanks to GTTSE’09
students and participants for their attention, stimulating questions, and discus-
sions that supported my enthusiasm about the practical use of abstract diagrams.

Financial support was provided by the Ontario Research Fund.

140 Z. Diskin

References

1. Bernstein, P.: Applying model management to classical metadata problems. In:
Proc. CIDR 2003, pp. 209–220 (2003)

2. Foster, J.N., Greenwald, M., Moore, J., Pierce, B., Schmitt, A.: Combinators for
bidirectional tree transformations: A linguistic approach to the view-update prob-
lem. ACM Trans. Program. Lang. Syst. 29(3) (2007)

3. Foster, J.N., Greenwald, M., Kirkegaard, C., Pierce, B., Schmitt, A.: Exploiting
schemas in data synchronization. J. Comput. Syst. Sci. 73(4), 669–689 (2007)

4. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic
model synchronization from model transformations. In: ASE, pp. 164–173 (2007)

5. Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization
transformation based on automatic derivation of view complement functions. In:
ICFP, pp. 47–58 (2007)

6. Stevens, P.: Bidirectional model transformations in QVT: Semantic issues and open
questions. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS
2007. LNCS, vol. 4735, pp. 1–15. Springer, Heidelberg (2007)

7. Czarnecki, K., Foster, J., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.: Bidirec-
tional transformations: A cross-discipline perspective. [66], 260–283

8. Xing,Z.,Stroulia,E.:Umldiff:analgorithmforobject-orienteddesigndifferencing. In:
Redmiles, D., Ellman, T., Zisman, A. (eds.) ASE, pp. 54–65. ACM, New York (2005)

9. Lin, Y., Gray, J., Jouault, F.: DSMDiff: A Differentiation Tool for Domain-Specific
Models. European J. of Information Systems 16, 349–361 (2007)

10. Treude, C., Berlik, S., Wenzel, S., Kelter, U.: Difference computation of large mod-
els. In: ESEC/SIFSOFT FSE, pp. 295–304 (2007)

11. Diskin, Z., Xiong, Y., Czarnecki, K.: From state- to delta-based bidirectional model
transformations. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp.
61–76. Springer, Heidelberg (2010)

12. Balzer, R.: Tolerating inconsistency. In: ICSE, pp. 158–165 (1991)
13. Melnik, S., Rahm, E., Bernstein, P.: Developing metadata-intensive applications

with Rondo. J. Web Semantics 1, 47–74 (2003)
14. Dyreson, C.E.: A bibliography on uncertainty management in information systems.

In: Uncertainty Management in Information Systems, pp. 415–458 (1996)
15. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference

Manual, 2nd edn. Addison-Wesley, Reading (2004)
16. Diskin, Z., Wolter, U.: A diagrammatic logic for object-oriented visual modeling.

Electron. Notes Theor. Comput. Sci. 203(6), 19–41 (2008)
17. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph

matching algorithm and its application to schema matching. In: ICDE, pp. 117–
128. IEEE Computer Society, Los Alamitos (2002)

18. Falleri, J.R., Huchard, M., Lafourcade, M., Nebut, C.: Metamodel matching for
automatic model transformation generation. [67], 326–340

19. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37(1), 42–81
(2005)

20. Mens, T.: A state-of-the-art survey on software merging. IEEE Trans. Software
Eng. 28(5), 449–462 (2002)

21. Alanen, M., Porres, I.: Difference and union of models. In: Stevens, P., Whittle, J.,
Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg (2003)

22. Ohst, D., Welle, M., Kelter, U.: Differences between versions of uml diagrams. In:
ESEC / SIGSOFT FSE, pp. 227–236. ACM, New York (2003)

Model Synchronization: Mappings, Tiles, and Categories 141

23. Gadducci, F., Montanari, U.: The tile model. In: Proof, Language, and Interaction,
pp. 133–166 (2000)

24. Sabetzadeh, M., Easterbrook, S.: An algebraic framework for merging incomplete
and inconsistent views. In: 13th Int. Conference on Requirement Engineering (2005)

25. Kelly, G., Street, R.: Review of the elements of 2-categories. In: Category Seminar,
Sydney 1972/73. Lecture Notes in Math., vol. 420, pp. 75–103 (1974)

26. Johnson, M., Rosebrugh, R.: Fibrations and universal view updatability. Theor.
Comput. Sci. 388(1-3), 109–129 (2007)

27. Goguen, J.A., Meseguer, J.: Order-sorted algebra i: Equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations. Theor. Comput.
Sci. 105(2), 217–273 (1992)

28. Diskin, Z.: Algebraic models for bidirectional model synchronization. In: [67], pp.
21–36. Springer, Heidelberg (2008)

29. Liefke, H., Davidson, S.: View maintenance for hierarchical semistructured data. In:
Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874,
pp. 114–125. Springer, Heidelberg (2000)

30. Dayal, U., Bernstein, P.: On the correct translation of update operations on rela-
tional views. TODS 7(3), 381–416 (1982)

31. Leinster, T.: Higher Operads, Higher Categories. Cambridge University Press,
Cambridge (2004)

32. Antkiewicz, M., Czarnecki, K.: Design space of heterogeneous synchronization. In:
[68], pp. 3–46

33. Diskin, Z., Czarnecki, K., Antkiewicz, M.: Model-versioning-in-the-large: Alge-
braic foundations and the tile notation. In: ICSE 2009 Workshop on Compari-
son and Versioning of Software Models, pp. 7–12. ACM, New York (2009), doi:
10.1109/CVSM.2009.5071715, ISBN: 978-1-4244-3714-6

34. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying overlaps of heterogeneous mod-
els for global consistency checking. In: First International Workshop on Model-
Driven Interoperability, MDI 2010, pp. 42–51. ACM, New York (2010), doi:
10.1145/1866272.1866279, ISBN: 978-1-4503-0292-0

35. Bancilhon, F., Spyratos, N.: Update semantics of relational views. TODS 6(4),
557–575 (1981)

36. Gottlob, G., Paolini, P., Zicari, R.: Properties and update semantics of consistent
views. ACM TODS 13(4), 486–524 (1988)

37. Meertens, L.: Designing constraint maintainers for user interaction (1998),
http://www.kestrel.edu/home/people/meertens/

38. Bohannon, A., Foster, J.N., Pierce, B., Pilkiewicz, A., Schmitt, A.: Boomerang:
resourceful lenses for string data. In: POPL, pp. 407–419 (2008)

39. Bohannon, A., Pierce, B., Vaughan, J.: Relational lenses: a language for updatable
views. In: PODS (2006)

40. Hofmann, M., Pierce, B., Wagner, D.: Symmetric lenses. In: POPL (2011)
41. Stevens, P.: A landscape of bidirectional model transformations. [68], 408–424
42. Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Supporting parallel updates with bidi-

rectional model transformations. [66], 213–228
43. Oliveira, J.N.: Transforming data by calculation. [68], 134–195
44. Bernstein, P., Halevy, A., Pottinger, R.: A vision for management of complex mod-

els. SIGMOD Record 29(4), 55–63 (2000)
45. Bernstein, P., Melnik, S.: Model management 2.0: manipulating richer mappings.

In: Proceedings of the 2007 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2007, pp. 1–12. ACM Press, New York (2007)

http://www.kestrel.edu/home/people/meertens/

142 Z. Diskin

46. Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N., Sabetzadeh, M.: A
manifesto for model merging. In: GaMMa (2006)

47. Alagic, S., Bernstein, P.: A model theory for generic schema management. In:
Ghelli, G., Grahne, G. (eds.) DBPL 2001. LNCS, vol. 2397, p. 228. Springer,
Heidelberg (2002)

48. Diskin, Z.: Mathematics of generic specifications for model management. In: Rivero,
L., Doorn, J., Ferraggine, V. (eds.) Encyclopedia of Database Technologies and
Applications, pp. 351–366. Idea Group, USA (2005)

49. Melnik, S., Bernstein, P., Halevy, A., Rahm, E.: Supporting executable mappings
in model management. In: Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, SIGMOD 2005, pp. 167–178. ACM Press,
New York (2005)

50. Bruni, R., Meseguer, J., Montanari, U.: Symmetric monoidal and cartesian dou-
ble categories as a semantic framework for tile logic. Mathematical Structures in
Computer Science 12(1), 53–90 (2002)

51. Diskin, Z.: Towards algebraic graph-based model theory for computer science. Bul-
letin of Symbolic Logic 3, 144–145 (1997)

52. Diskin, Z.: Databases as diagram algebras: Specifying queries and views via the
graph-based logic of skethes. Technical Report 9602, Frame Inform Systems, Riga,
Latvia (1996), http://www.cs.toronto.edu/~zdiskin/Pubs/TR-9602.pdf

53. Lammel, R.: Coupled software transformation. In: Workshop on Software Evolution
and TRanformation (2004)

54. Freyd, P., Scedrov, A.: Categories, Allegories. Elsevier Science Publishers, Amster-
dam (1990)

55. Foster, J., Greenwald, M., Moore, J., Pierce, B., Schmitt, A.: Combinators for bi-
directional tree transformations: a linguistic approach to the view update problem.
In: POPL, pp. 233–246 (2005)

56. Berdaguer, P., Cunha, A., Pacheco, H., Visser, J.: Coupled schema transformation
and data conversion for xml and sql. In: Hanus, M. (ed.) PADL 2007. LNCS,
vol. 4354, pp. 290–304. Springer, Heidelberg (2006)

57. Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Ehrig, H., Heckel,
R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 411–425.
Springer, Heidelberg (2008)

58. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph
tranformations. Springer, Heidelberg (2006)

59. Cadish, B., Diskin, Z.: Heterogenious view integration via sketches and equations.
In: Michalewicz, M., Raś, Z.W. (eds.) ISMIS 1996. LNCS (LNAI), vol. 1079, pp.
603–612. Springer, Heidelberg (1996)

60. Diskin, Z., Kadish, B.: Variable set semantics for keyed generalized sketches: Formal
semantics for object identity and abstract syntax for conceptual modeling. Data &
Knowledge Engineering 47, 1–59 (2003)

61. Diskin, Z., Easterbrook, S., Dingel, J.: Engineering associations: from models to
code and back through semantics. In: Paige, R., Meyer, B. (eds.) TOOLS Europe
2008, LNBIP, vol. 11. Springer, Heidelberg (2008)

62. Cicchetti, A., Ruscio, D.D., Pierantonio, A.: A metamodel independent approach
to difference representation. JOT 6 (2007)

63. Abi-Antoun, M., Aldrich, J., Nahas, N.H., Schmerl, B.R., Garlan, D.: Differencing
and merging of architectural views. Autom. Softw. Eng. 15(1), 35–74 (2008)

64. Ehrig, H., Große-Rhode, M., Wolter, U.: Application of category theory to the area
of algebaric specifications in computer science. Applied Categorical Structures 6,
1–35 (1998)

65. Liang, H., Diskin, Z., Dingel, J., Posse, E.: A general approach for scenario inte-
gration. [67], 204–218

http://www.cs.toronto.edu/~zdiskin/Pubs/TR-9602.pdf

Model Synchronization: Mappings, Tiles, and Categories 143

66. Paige, R.F. (ed.): ICMT 2009. LNCS, vol. 5563. Springer, Heidelberg (2009)
67. Czarnecki, K., Ober, I., Bruel, J., Uhl, A., Völter, M. (eds.): MODELS 2008. LNCS,

vol. 5301. Springer, Heidelberg (2008)
68. Lämmel, R., Visser, J., Saraiva, J. (eds.): GTTSE 2007. LNCS, vol. 5235. Springer,

Heidelberg (2008)
69. Barr, M., Wells, C.: Category theory for computing science. Prentice Hall,

Englewood Cliffs (1995)
70. Adamek, J., Herrlich, H., Strecker, G.: Abstarct and concrete categories. The joy

of cats. TAC Reprints, No.17 (2007)
71. Bruni, R., Gadducci, F.: Some algebraic laws for spans. Electr. Notes Theor. Com-

put. Sci. 44(3) (2001)
72. Diskin, Z.: Model transformation as view computation: an algebraic approach.

Technical Report CSRG-573, the University of Toronto (2008)
73. Manes, E.: Algebraic Theories. Graduate Text in Mathematics. Springer,

Heidelberg (1976)
74. Jacobs, B.: Categorical logic and type theory. Elsevier Science Publishers,

Amsterdam (1999)

Answers to *-Exercises

Exercise 2 (p. 119) Diagram Fig. 14(c1) says that from a match between repli-
cas a new match can be computed without changing the replicas. This situation
is typical and is a built-in procedure in many differencing tools. However, it
cannot be modeled by an algebraic operation of the arity shown in the figure: to
recompute a match a new information is required. That is, we may have a rea-
sonable “binary” operation (m, X) • � m′ with the second argument standing
for contextual information about replicas, but the “unary” operation m • � m′

is not too sensible. In contrast, the operation specified by diagram (c2) is quite
reasonable and may be called rematching: having one of the replicas updated,
we recompute the match based on data in the original match and the update.

Exercise 4(p. 123)

• m:K� •
:Res

◦
1

� m � ◦
1
�

(a1) KRes

• � •
:Res

:fPpg&:bPpg

◦
�

� ◦
�

(a3) ResPpgf

• � •
:Res↓↓

◦
�

m′
� ◦

�

:Res↓↓
◦

1
�

m′
� ◦

1
�

(a2) ResRes

Fig. 26. Laws of conflict resolution

Three reasonable laws the operation
should satisfy are specified in Fig. 26. Di-
agram (a1) states that nothing is done
with consistent replicas. Diagram (a2)
says that conflict resolution is an idem-
potent operation. Match m′ produced by
the operation is not supposed to be neces-
sarily consistent: some of the conflicts em-
bodied in match m may need additional
information and user’s input, and hence
cannot be resolved automatically. Yet ev-
erything that could be done automatically
is done with the first run of the opera-
tion. Diagram (a3) says that resolution is
complete in the sense that nothing can be
propagated in the tile produced by Res.

144 Z. Diskin

Exercise 9 (p. 131) Synchronization of materialized views can be considered
as a particular cases of triple synchronization, in which one view (say, the right
one) is identity. Formal definitions are as follows.

A semi-triple lane is a pair st = (v, r) with v a view and r a replica lane

coordinated as follows: A
v� B

r
•→ B. A semi-triple synchronizer σ over a

semi-triple lane st is a pair σ = (λ, δ) of a view synchronizer λ over the view
lane and a diagonal replica synchronizer δ over the replica lane. A semi-triple
synchronizer is called (very) well-behaved if its two components are such.

The following result is analogous to Theorem 2.

Theorem 3. Any semi-triple synchronizer σ = (λ, δ) gives rise to a diagonal
replica synchronizer Δσ. Moreover, the latter is (very) well-behaved as soon as
its two components are such.

Appendices
Concrete MMt and Category Theory

Several words about category theory (CT) are in order. CT provides a number
of patterns for structure specification and operation. Since models and model
mappings are rich structures, and MMt needs to operate them, CT should be
of direct relevance for MMt. Of course, this theoretical prerequisite requires
practical justification and examples.

Two fundamental categorical ideas are used in the paper.
Encapsulation 1: “To objectify means to mappify”. The internal structure of
models and model mappings is encapsulated. Models are considered as indivis-
ible objects (points), and mappings as indivisible morphisms (arrows) between
them. Mappings of the same type can be sequentially composed and form a
category (a graph with associatively composable arrows). Although objects are
encapsulated, the categorical language provides sufficient means to recover the
internal structure of objects via mappings adjoint to them. For example, a spe-
cial family of mappings with a common source object makes this object similar
to a relation (and its “elements” can be thought of as tuples). Dually, a special
family of mappings with a common target object makes it similar to a disjoint
union (and its “elements” can be thought of as “either..or” variants). The next
section shows how it works.
Encapsulation 2: Arrow categories. Repeatable constructions consisting of sev-
eral models and mappings are considered as new complex objects or arrows,
which can again be encapsulated and so on. In this way we come to categories
whose objects (nodes) themselves consist of arrows, while morphisms (arrows)
are complex diagrams. For example, a model is, in fact, a typing mapping, and a
traceability mapping is a commutative square diagram like the top face of cube
Fig. 3(b). Deltas-as-spans denoted by arrows are another simple example. We
will build progressively more complex arrow categories in the subsequent sec-
tions C and D. Formalization of the sketch presented in Sect. 6.2 requires even
more complex arrow encapsulating constructions.

Model Synchronization: Mappings, Tiles, and Categories 145

Ann

Bob

Jo

Smith

Black

White

15 11

20

13

7

5

…

(Ann, Smith)

(Bob, Black)

F
U u

v

L

q

p

R

Ann_Smith

Bob_Black

N
Jo_

_White

m

n

Fig. 27. Matching and merging sets via elements

A Match and Merge as Diagram Operations: Warming
Up for Category Theory

This section aims to give a notion of how basic categorical patterns can work in
MMt. We will begin with a very simple model of models by considering them as
sets of unstructured elements (points), and discuss matching and merging sets.
Then we will reformulate the example in abstract terms and come to categories.

A.1 Matching and Merging via Elements

Suppose that our models are sets of strings denoting names, and we have two
sets, F of First and L of Last names, of some group of people as shown in
Fig. 27. We also assume that for each of the sets, different elements refer to
different persons. It does not exclude the situation when an F -name and an
L-name refer to the same person, but without additional information, sets F
and L are entirely unrelated and disjoint. To match the sets, we map them into
some common universe U , say, by assigning to each string the social security
number (SSN) of the corresponding person as shown in the left part of the figure.
Following UML, we call such assignments (directed) links and denote them by
arrows (Ann→11, Bob→13 and so on); speaking formally, links are just ordered
pairs. Similar (i.e., having the same source and target) links are collected into
mappings, u : F ⇒ U and v : L⇒ U , which are denoted by double-body arrows
to distinguish them from link-arrows. We call triple (U, u, v) a matching cospan
between sets F and L, set U is its head and mappings u, v are the legs.

Now we may form set R = {(x, y) : u(x) = v(y)} consisting of those pairs
of names, which are mapped to the same SSN. This set is equipped with two

146 Z. Diskin

projection mappings p : R⇒ F , q : R⇒ L giving the components of the pairs.
The way we built R implies that sequential compositions of mappings p; u and
q; v are equal: (x, y).p.u = (x, y).q.v for any element (x, y) ∈ R. The triple
(R, p, q) is called a correspondence span or matching span between sets F and L;
set R is its head and mappings p, q are the legs. To show that the components of
the span are derived from mappings u, v, they are denoted by dashed lines (blue
with a color display).

Each pair (x, y) in the head R of the span says that actually elements x.p ∈ F
and y.q ∈ L refer to the same object of the real world (at least, to the same
SSN). Hence, we may be interested in merging sets F and L without duplication
of information, that is, by gluing together the first and last names of the same
person. Set N of names in the middle of Fig. 27 presents the result. It is formed
by first taking disjoint union of sets F and L, and then gluing together those
elements, which are declared to be the same by the span. For example, we join
Ann and Smith since there is a pair (Ann, Smith) in set R. Since there are two
elements in R, set N has four (rather than six) elements. Note also mappings
m : F ⇒ N and n : L⇒ N embedding the original sets into the merge.

How joined names are formed is a matter of taste: Ann Smith, or Ann*Smith
or AnnSmith will all work to show that Ann and Smith are two different rep-
resentations of the same object. In fact, all work is done by inclusion mappings
m and n that map Ann and Smith to the same element in N . Similarly, the
concrete nature of elements in set R does not matter: it is mappings p, q that
do the job and specify that elements of R are pairs. Hence, strictly speaking,
sets R and N may be defined up to isomorphism: the internal structure of their
elements is not important.

Since the internal structure of elements in sets R and N is not important,
it is tempting to try to rewrite the entire construction in terms of sets and
mappings only, without elements at all. Such a pointfree rewriting, apart of
satisfying purely intellectual curiosity, would be practically useful too. If we were
able to specify object matching and merging only based on mappings between
objects without use of their internal structure, we would have generic patterns
of match and merge working similarly for such diverse objects as sets, graphs,
typed attributed graphs and so on. The benefits are essential and justify some
technical work to be done.

A.2 Matching and Merging via Arrows

Matching. Figure 28(a) presents a more abstract view of our matching con-
struction. Nodes denote sets, and arrows are mappings (functions) between them.
Double-frames of nodes and double-bodies of arrows remind us that they have
extension, i.e., consist of elements (points and links respectively).

Labels in square brackets denote diagram predicates, that is, properties of
arrow diagrams on which these labels are “hung”. Label [=] is assigned to the
entire square diagram and declares its commutativity, that is, the property p; u =
q; v (i.e., in terms of elements, r.p.u = r.q.v for any r ∈ R). Label [key] is assigned
to the arrow span (p, q) and declares the following property: for any r1, r2 ∈ R,

Model Synchronization: Mappings, Tiles, and Categories 147

U

L

F

R

u

v q

p

[=] [key]
[max]

R

U

L

F

R

u

v

[=]

!
q

[=]

p

q

U

L

F

R

u

v

p

q

p

(a) (b) (c)

pb

Fig. 28. Matching sets via arrows

R

L

F

N

p

q n

m

[=] [cov]
[min]

N

R

L

F

N
[=]

!
n

[=]

m

n

R

L

F

N

m

n

m

(a) (b) (c)

p

q

po

p

q

Fig. 29. Merging sets via arrows

r1 = r2 iff r1.p = r2.p and r1.q = r2.q. That is, the pair of mappings (p, q) can
identify the elements in set R, hence the name for the predicate. (In category
theory, such families of mappings are called jointly monic). Note that any subset
of set R defined in Fig. 27 will satisfy predicates [=] and [key]. Hence, to ensure
that set R in Fig. 28 is indeed R defined in Fig. 27, we add one more predicate
[max] stating R’s maximality. Formally, it may be formulated as follows: for any
other key span (p′, q′) as shown in Fig. 28(b), which makes the entire square
commutative, there is a mapping ! : R′ → R such that !; p = p′ and !; q = q′.

Thus, we have reformulated the task of matching sets in terms of mappings,
their composition and predicate [ke v y]. However, the latter also can be expressed
via mappings and composition!

Suppose that span (p, q) is not required to be a key, but has the following
property: for any other span (p′, q′) (also not assumed to be a key), which makes
the entire square commutative, there is a unique mapping ! : R′ → R such that
!; p = p′ and !; q = q′. This maximality property is distinct from that previously
formulated by the uniqueness requirement, and this is what does the job. That
is, we can prove that uniqueness of ! implies the [key] property of span (p, q).
Given an element r′ ∈ R′, let f ′ = r′.p′ and l′ = r′.q′ be its “names”. To ensure
commutativity conditions: !; p = p′ and !; q = q′, function ! must map r′ into
any element r of R with the same names: r.p = f ′ and r.q = l′. If span (p, q)
is not a key, there may be several such elements r and hence several functions !
providing commutativity. Hence, ! is unique iff span (p, q) is a key.

148 Z. Diskin

Thus, we may replace predicates [key] and [max] of span (p, q) in Fig. 28(a) by
the uniqueness property: for any other span (p′, q′) that makes the entire square
commutative (Fig. 28b), there is a unique mapping ! : R′ → R such that !; p = p′

and !; q = q′. In category theory such properties are called universal. The entire
matching construction can now be formulated in abstract terms as follows. Given
a cospan (u, v), a span with the same feet is derived and together with the orig-
inal cospan makes a commutative square with the universal property described
above. An operation producing a universal span from a matching cospan is called
pullback (because it pulls two arrows back). The result is shown in Fig. 28(c)
which depicts abstract nodes and arrows (single lines) whose internal structure
is invisible.

Is pullback indeed an operation, i.e., does it indeed result in a uniquely deter-
mined span? The answer is almost positive: the result of a pullback is defined up
to isomorphism. The proof can be found in any CT-textbook, e.g., [69][Theorem
5.2.2], and essentially uses associativity of arrow composition. Other construc-
tions based on universal properties are also defined up to isomorphism.

Merging. Our construction of merging sets can be processed in a similar way.
Figure 29 presents the ideas in parallel to Fig. 28. Diagram predicate [cov] de-
clared for cospan (m, n) says that the two mappings jointly cover the target,
that is, any element e ∈ N is either in the image of mapping m or n or both. We
replace this predicate by the following universal property: for any other cospan
(m′, n′) making the entire square commutative, there exists a unique mapping
! : N → N ′ such that m; ! = m′ and n; ! = n′. Indeed, if set N would contain an
element e beyond the union of images of m, n, mapping ! could map this e to
any element of N ′ without destroying the commutativity conditions.

Thus, we can define set merge in terms of mappings, their composition and the
universal property of minimality. The operation that takes a span and produces
a cospan making a commutative square with the minimal universal property
is called pushout (as it pushes arrows out). The construction is dual to the
construction of pullback in the sense that all arrows in the diagrams are reversed,
and universal maximality is replaced by universal minimality.8 Particularly, the
result of pushout is also defined up to isomorphism.

Summary. We have defined matching and merging sets via mappings (func-
tions) between sets and their sequential composition. Of course, to define the
latter, we still need the notion of element: composition of mappings f : A→ B

and g : B → C is defined by setting x.(f ; g) def= (x.f).g for all elements x ∈ A.
However, if we consider some universe of abstract objects (nodes) and abstract
associatively composable mappings (arrows) between them, then we can define
pullback and pushout operation as described above. Such graphs are called cate-
gories and, thus, the notions of match and merge can be defined for any category
irrespective of the internal structure of its objects. The next sections provides
precise definitions.

8 It can be made perfectly dual if we formulate the predicate [cov] in a different way
exactly dual to predicate [key].

Model Synchronization: Mappings, Tiles, and Categories 149

B Graphs, Categories and Diagrams: A Primer

In this section we fix notation and terminology about graphs and categories. We
also accurately define diagrams and diagram operations.

Graphs and graph mappings. A (directed multi-)graph G consists of a set
of nodes G0 and a set of arrows G1 together with two functions ∂x : G1 → G0,
x = s, t. For an arrow a we write a : N → N ′ if ∂sa = N and ∂ta = N ′. The set
of all arrows a : N → N ′ is denoted by G(N, N ′) or, sometimes, by (N → N ′) if
graph G is given by the context.

A graph mapping (morphism) f : G→ G′ is a pair of functions fi : Gi → G′
i,

i = 0, 1, compatible with incidence of nodes and arrows: ∂sf1(a)=f0(∂sa) and
∂tf1(a)=f0(∂ta) for any arrow a ∈ G1.

A graph is reflexive if every node N has a special identity loop 1N : N → N .
In other words, there is an operation 1 : G0 → G1 (with argument placed at
the under-bar subscript) s.t. ∂s1N = N = ∂t1N for any node N . If arrows
are understood behaviorally (rather than structurally) as actions or transitions,
identity loops may be also called idle (actions that do nothing and do not change
the state). A reflexive graph mapping (morphism) is a graph mapping f : G→ G′

respecting identities: f1(1N) = 1f0(N) for any node N ∈ G0.

Categories and functors. A category C is a reflexive graph |C| with an opera-
tion of arrow composition denoted by ; (semi-colon): for any pair of sequentially
composable arrows a : M → N and b : N → O, a unique arrow a; b : M → O is
defined. Composition is required to be associative: (a; b); c = a; (b; c) for any
triple a, b, c of composable arrows; and unital : 1∂0(a); a = a = a; 1∂1(a) for any
arrow a.

Nodes in a category are usually called objects, and arrows are often called
morphisms. Both a category C and its underlying graph |C| are normally denoted
by the same letter C. Thus, C0 and C1 denote the classes of all objects and all
morphisms resp. The class of objects C0 can also be considered as a discrete
category, whose only arrows are identities.

A category is called thin if for any pair of nodes (N, N ′) there is at most
one arrow a : N → N ′. It is easy to see that a thin category is nothing but a
preordered set with N ≤ N ′ iff there is an arrow A : N → N ′. Transitivity and
reflexivity are provided by arrow composition and idle loops resp.

A functor f : C→ C′ between categories is a morphism of the underlying
reflexive graphs that preserves arrow composition f1(a; b) = (f1a); (f1b).

Two-sorted graphs and 1.5-sorted categories. A two-sorted graph is a
graph G whose arrows are classified into horizontal and vertical. That is, we
have two disjoint graphs G

h
1 and G

v
1 sharing the same class of nodes G0. A two-

sorted graph is reflexive if each node has both the vertical and the horizontal
identity. A two-sorted graph morphism (mapping) is a graph mapping respecting
arrow sorts.

A two-sorted category is a two-sorted reflexive graph G whose horizontal and
vertical graphs are categories. Since horizontal composition (of matches) may be

150 Z. Diskin

problematic, in the paper we deal with 1.5-sorted categories : two-sorted reflexive
graphs in which only vertical arrows are composable and form a category.

Flat vs. deep graphs and categories. There are two ways of interpreting
elements of graphs and categories that we will call flat and deep. According to a
flat interpretation, elements of a graph do not have an internal structure, they
are symbols/tokens that can be drawn on paper. A visual representation/picture
of such a graph drawn on paper is practically equivalent to the graph itself (up
to inessential visual nuances like sizes of nodes and thickness of arrows).

According to a deep interpretation, nodes of a graph are thought of as sets
endowed with some structure, for example, plain sets with empty structure, or
sets with a partial order (posets), or vector spaces, or flat graphs, or models over
a given metamodel M . Correspondingly, arrows are thought of as structure-
preserving mappings, e.g., functions between sets, monotone functions between
posets, linear mappings between vector spaces, graph morphisms, symmetric
deltas. As a rule, deep arrows are associatively composable and deep graphs
are indeed categories, e.g., Sets (of sets and functions), Rels (of sets and re-
lations), Posets (of posets and monotone functions), Graphs (of graphs and
graph mappings), Moddelsym(M) (of M -models and symmetric deltas between
them).

The description above is rough and overly simplistic. Making it more precise
and intelligent needs a careful setting for logical and set-theoretical foundations,
and goes far beyond our goals in the paper. Note, however, that we were talking
about possible interpretations of elements constituting a category but the very
definition of a category says nothing about “depth” of its objects and arrows.9

Hence, any result proven for a general category (possessing some property P)
is applicable to any flat or deep category (possessing P). For example, when we
deal with category Modupd of models and updates, our results are applicable
to any formalization of model and update as soon as we have a category.

As a rule, deep categories are infinite and cannot be drawn on paper (think
of all sets or all M -models). However, we can draw a graph representing a small
fragment of an infinite category, and further use and manipulate this represen-
tation in our reasoning about its deep referent. For example, nodes and arrows
of a graph drawn on paper could refer to models and deltas, and operations over
them correspond to synchronization procedures. Precise specification of these
syntax-semantics relationships may be non-trivial. In the paper we deal with
the following particular case of the issue: arity shapes of diagram operations are
flat graphs whereas their carriers are deep. The next section provides an accurate
formalization of this situation.

Diagrams. When different nodes or different arrows of a graph drawn on pa-
per bear the same name, e.g., in Fig. 30(a1,a2), these names are labels “hung”
on elements of the underlying graph rather than their unique names (the latter
are unique identifiers of graph elements and cannot be repeated). Hence, in the

9 It can be formalized in terms of so called constructs and concrete categories explained
in book [70] (with care and elegance).

Model Synchronization: Mappings, Tiles, and Categories 151

Visual Formal
diagram diagram

N
a� N 1

12� 2
1 →N
2 →N
12→a

N

�

a

(a1) (b1) (d1) (c1)

M
a� N

N

a � c� O

b �

1
12� 2

3

13 � 34� 4

24 �

12→a
13→a
24→b
34→c

M

N

a � b�
c
� O

(a2) (b2) (d2) (c2)

Head
leg1� Foot1

Foot2

leg2 �

(b3)

Fig. 30. Diagrams visually (a) and formally (b,d,c)

graphical image Fig. 30(a1), we have two unnamed different nodes (understood
“flatly” as tokens) with the same label N . This label may be just another “flat”
token, or the name (identifier) of a semantic object, e.g., a model; the formal-
ization below does not take this into account (but in situations we deal with in
the paper, labels are interpreted “deeply” as semantic objects).

It is convenient to collect all labels into a graph, and treat labeling as a
graph mapping D1 : (b1)→ (c1) with (b1) and (c1) being graphs specified in
Fig. 30(b1,c1) and mapping D1 defined by table (d1), i.e., D1(1) = D1(2) = N ,
D1(12) = a. Thus, image (a1) that we call a diagram consists of three compo-
nents: graph (b1) called the shape of the diagram, graph (c1) called the carrier,
and a graph mapping (d1) — the labeling. Since the shape and the carrier are
actually referred to by the mapping, the latter alone can be called a diagram
(it is a standard categorical terminology). Indeed, the graphical image — visual
diagram shown in (a1) — is nothing but a compact presentation of mapping D1

defined up to isomorphism of the shape.
For another example, visual diagram in Fig. 30(a2) encodes the formal dia-

gram of shape (b2) in the carrier graph (c2) with labeling D2 : (b2)→ (c2) given
by table (d2) (it is a graph morphism indeed).

What was earlier called a span in graph G, is actually a diagram D : (b3)→ G
with graph (b3) in Fig. 30 being the arity shape (the head of span D is node
D(Head)∈ G etc.) Any span can be inverted: the inverse of D is another span
D† : (b3)→ G defined as follows: D†(leg1) = D(leg2) and D†(leg2) = D(leg1).
Below we will call spans arity shapes (i.e. graphs isomorphic to (b3)) also spans.

Diagram operation over sorted graphs. Syntactically, a diagram opera-
tion is defined by its symbol (name), say, op, and a span of two-sorted graphs:
Aop = (Inop

p← IOop
q→ Outop) whose legs are injections. The left foot specifies

the input arity of the operation, the right one is the output, and the head is
their intersection. For example, the operation of forward propagation considered
above is specified by Fig. 31(a). The input arity is a span, the output arity is a
cospan, and the head consists of two nodes.

152 Z. Diskin

1 � 2

3
� ⇐====

(2, 2)

(3, 3)

2

3

====
(2, 2)

(3, 3)
⇒

2

3 � 4
�

Inop
� p

IOop
q � Outop

• � •
op

•
� � ◦

�

(a) (b)

Fig. 31. Mechanism of diagram operations

We may merge both arities together (via pushout) and represent the arity span
as a two-sorted graph InOut with a designated subgraph In of basic elements.
For the forward propagation example, this construction is specified in Fig. 31(b):
the basic subgraph is shown with black nodes and solid arrows, elements beyond
the basic subgraph are white and dashed. We can restore graph Out and the
original arity span by subtracting graph In from InOut so that both formulations
are equivalent. Previously we used the latter formulation because it is intuitive
and compact.

Semantic interpretation of an operation is given by a pair σ = (Gσ, opσ) with
G

σ a two-sorted graph being the carrier of the operation, and

opσ : (Inop → G
σ)→ (Outop → G

σ),

the operation as such, being a total function between the functional spaces in
round brackets. That is, any instantiation i : Inop → G

δ of op’s input in the car-
rier generates a unique instantiation o : Outop → G

δ of op’s output, and we set
opσ(i) = o. Moreover, both instantiations are required to be equal on their com-
mon part IOop, that is, p; i = q; o. In this way, the notion of diagram operation
(its syntax and semantics) can be defined for any category (of “graphs”).

The same idea is applicable to two-sorted graphs: both the shape and the car-
rier are two-sorted graphs and labeling must respect sorting. If we treat diagram
Fig. 31(a2) as a two-sorted diagram, it would be incorrect because horizontal
arrow 12 from the shape is mapped to vertical arrow a in the carrier.

Span composition. Categories are graphs, and hence the notion of a diagram,
particularly, a span, applies to them as well. However, spans in categories are
much more interesting than in graphs because we can sequentially compose them.
Fig. 32 presents two consecutive spans between sets A, B, C. We may think of
elements in the heads as bidirectional links and write a← r → b for r ∈ R1 if
p1(r) = a and q1(r) = b; and similarly for elements in R2. If two such links
a← r1 → b ∈ R1 and (b← r2 → c) ∈ R2 have a common end b ∈ B, we may
compose them and form a new link a← r → c denoted by r1; r2. By collecting
together all such composed links, we form a new set R, which is equipped with
two projections (A

p← R
q→ C). In addition, by the condition of compositionality,

set R is equipped with another pair of projections (R1
p′
2← R

q′
1→ R2) as shown

in the figure, and it is easy to see that the upper square diagram is a pullback.

Model Synchronization: Mappings, Tiles, and Categories 153

Note also that projections p and q are compositions p = p′2; p1 and q = q′1; q2.
Now we may define the notion of span composition for any category having PBs,
and achieve a remarkable generality.

R

R1

�
p
′
2

[PB] R2

q ′
1�

A
�
p1

B
�
p2

q
1�

C

q
2�

Fig. 32. Span composition

There are however some
hidden obstacles in this seem-
ingly simple definition. Since
pullbacks are defined up to
iso(morphism), composition
of spans is also defined up
to iso. We may choose some
canonical representatives
in each of the iso classes,
but then associativity of
composition cannot be guaranteed. In fact, associativity would hold up to a
canonic isomorphism too. It makes the universe of objects with arrows being
spans a so called bicategory rather than a category, and essentially complicates
the technical side.

To avoid this, it is reasonable to consider spans up to isomorphism of their
heads: it does not matter what are the OIDs of the head’s elements. It is straight-
forward to check that composition of spans defined up to isomorphism of their
heads is associative (details can be found in [71]).

Spans we deal with in the paper are special: their legs are injective mappings.
It is known that if an input arrow in a PB-square is injective, the parallel out-
put arrow is injective too (“monics are stable under PBs”). Hence, legs p′2, q′1
are injections, which implies that legs p, q are also injective as compositions of
injections.

C Model Translation via Tiles

This section shows that model translation (MT) can be treated as a view compu-
tation, whose view definition is given by a corresponding metamodel mapping.
Moreover, this construction can be modeled by tile operations, and gives rise to
a well-known categorical construct called a fibration.

C.1 MT-Semantics and Metamodel Mappings

The MT-task is formulated as follows. Given two metamodels, SSS (the source)
and TTT (the target), we need to design a procedure translating SSS-models into TTT -
models. It can be formally specified as a function f : S→ T between the spaces
of models (instances of the corresponding metamodels). The only role of meta-
models in this specification is to define the source and the target spaces, and
metamodels are indeed often identified with their model spaces [49,3,32]. How-
ever, a reasonable model translation f : S→ T should be compatible with model
semantics. The latter is encoded in metamodels, and hence a meaningful trans-
lation should be somehow related to a corresponding relationship between the

154 Z. Diskin

metamodels. A simple case of such a relationship is when we have a mapping
f : TTT → SSS between the metamodels. Indeed, if we want to translate SSS-model into
TTT -models, the concepts specified in TTT should be somewhere in SSS. The following
example explains how it works.

Suppose that our source models consist of Person objects with attributes
qName and phone: the former is complex and composed of a qualifier (Mr or
Ms) and a string. The metamodel, SSS, is specified in the lower left quadrant of
Fig. 33. Oval nodes refer to value types. The domain of the attribute ’qName’ is
a Cartesian product (note the label ⊗) with two projections ’name’ and ’qual’.
The target of the latter is a two-element enumeration modeled as the disjoint
union of two singletons. Ignore dashed (blue with a color display) arrow and
nodes for a while.

A simple instance of metamodel SSS is specified in the upper left quadrant. It
shows two Person-objects with names Mr.Lee and Ms.Lee (ignore blue elements
again). Types (taken from the metamodel) are specified after colons and give
rise to a mapping tA : A→SSS.

Another metamodel is specified in the lower right quadrant. Note labels [disj]
and [cov] “hung” on the inheritance tree: they are diagram predicates (constraints)
that require any semantic interpretation of node Actor (i.e., a set [[Actor]] of
Actor-objects) to be exactly the disjoint union of sets [[Male]] and [[Female]].

We want to translate Person-models (SSS-instances) into Actor-models (TTT -
instances). This intention makes sense if TTT -concepts are somehow “hidden”
amongst SSS-concepts. For example, we may assume that Actor and Person refer
to the same class in the real world.

The situation with Actor-concepts Male and Female is not so simple: they
are not present in the Person-metamodel. However, although these concepts are
not immediately specified in SSS, they can be derived from other SSS-concepts. We
first derive new attributes /name and /qual by sequential arrow composition
(see Fig. 33 with derived elements shown with dashed thin lines and with names
prefixed by slash — a UML notation). Then, by the evident select-queries, we
form two derived subclasses of class Person: mrPerson and msPerson.

Note that these two subclasses together with class Person satisfy the con-
straints [disj, cov] discussed above for metamodel TTT . It can be formally proved
by first noting that enumeration {Mr,Mrs} is disjointly composed of singletons
{Mr}, {Mrs}, and then using the property of Select queries (in fact, pullbacks) to
preserve disjoint covering. That is, given (i) query specifications defining classes
mrPesron, mrsPerson, and (ii) predicate declarations [disj, cov] for the triple
({Mr,Mrs},{Mr},{Mrs}), the same declarations for the triple (Person, mrPer-
son, mrsPerson) can be logically derived.

The process described above gives us an augmentation Q[SSS] ⊃ SSS of the Person-
metamodel SSS with derived elements, where Q refers to the set of queries involved.
Now we can relate Actor concepts Male and Female to derived Person-concepts
mrPerson and mrsPerson. Formally, we set a total mapping vvv : TTT → Q[SSS] that
maps every TTT -element to a corresponding Q[SSS]-element. In Fig. 33, links con-
stituting the mapping are shown by thin curly arrows. The mapping satisfies

Model Synchronization: Mappings, Tiles, and Categories 155

traceability mapping

:pho

:isA

:/qual

:/qual

:qName

:qual:name

:qual:name

:qName
P1: Person

P2: Person

Mr_Smith :

P11:/mrPerson

Smith:str
Mr : {Mr, Ms}{ , }

Ms_Smith :

Ms : {Mr, Ms}{ , }

P21:/msPerson

:/name

:/name
:isA

(P1 Actor)

(P11 Male)

(P21 Female)

(Smith str)

(P2 Actor)

:name

:name

:isA

:isA

11:Int

Model A Model B
vA

22:Int

type mapping t /type mapping tA
BB

pho
isA

View definition mapping v

name/name

/qualname
qual

Person

qName

str {Mr,Ms}

{Mr}

{Ms} /msPerson

Actor

str

Male

Female

isA

/mrPerson

int

Metamodel S Metamodel T

[disj]
[cov]

[disj]
[cov]

Fig. 33. Semantics of model translation via a metamodel mapping

156 Z. Diskin

A ⊂ iQA � Q[A] �vvvQ[A]
B

:qEx↗↗e :p↗↗b

SSS

tA �
⊂ iQ� Q[SSS]

tQ[A]�
� vvv TTT

tB�
⇒

A ⇐
vvvA
= = A�vvv

:vEx↗↗e

SSS

tA �
⇐====

vvv
TTT

tA�
⇒ A:SSS 〈≡≡≡≡

vvvA:vvv
A�vvv :TTT

:vEx↗↗e

SSS

:µ
�

•

⇐=====
vvv

TTT

:µ
�

•

(a) (b) (c)

Fig. 34. Model translation via tile operations (the upper arrow in diagram (c) is derived
and must be dashed but the Diagram software does not draw triple arrows)

two important requirements: (a) the structure of the metamodels (incidence of
nodes and arrows, and the isA-hierarchy) is preserved; and (b) the constraints in
metamodel TTT are respected ([disj, cov]-configuration in TTT is mapped to [disj,cov]-
configuration in SSS).

Now we will show that data specified above are sufficient to automatically
translate any SSS-model into a TTT -model via two tile operations.

C.2 MT via Tile Algebra

1) Query execution. Query specifications used in augmenting SSS with derived
elements can be executed for SSS-models. For example, each pair of some model’s
arrows typed with :qName and :name produces a composed arrow typed with
:/name, and similarly any pair of some model’s arrows :qName and :qual pro-
duces an arrow :/qual (these are not shown in the figure to avoid clutter). Then
each object typed by :Person and having the value Mr along the arrow :/qual,
is cloned and typed :/mrPerson.10 The result is that the initial typing mapping
tA : A→SSS is extended to typing mapping tQ[A] : Q[A]→ Q[SSS], in which Q[A]
and Q[SSS] denote augmentations of the model and the metamodel with derived
elements.

This extended typing mapping is again structure preserving. Moreover, it is
a conservative extension of mapping tA in the sense that types of elements in
A are not changed by tQ[A]. Formally, the inverse image of submodel SSS ⊂ Q[SSS]
wrt. the mapping tQ[A] equals to A, and restriction of tQ[A] to A is again tA.

The configuration we obtained is specified by the left square diagram in
Fig. 34(a). Framed nodes and solid arrows denote the input for the operation of
query execution, dashed arrows and non-framed nodes denote the result. Label
[qExe] means that the entire square is produced by the operation; the names of
arrows and nodes explicitly refer to query Q (whereas q is part of the label, not
a separate name).

2) Retyping. The pair of mappings, typing tQ[A] : Q[A]→ Q[SSS], and view

10 With a common semantics for inheritance, we should assign the new type label /mr-
Person to the same object P1. To avoid multi-valued typing, inheritance is straight-
forwardly formalized by cloning the objects.

Model Synchronization: Mappings, Tiles, and Categories 157

Q[SSS] vvv←− TTT , provide enough information for translating model Q[A] into TTT -
metamodel. All that we need to do is to assign to elements of Q[A] new types ac-
cording to the view mapping: if an element e ∈ Q[A] has type X = tQ[A](e)inQ[SSS]
and X = vvv(Y) for some type Y ∈ TTT , we set the new type of e to be Y . For ex-
ample, since Q[A]-element P11 in Fig. 33 has type mrPerson, which (according
to the view mapping vvv) corresponds to type Male in TTT , this elements must be
translated into an instance of type Male; we denote it by (P11 •Male). If no
such TTT -type Y exists, the element e is not translated and lost by the translation
procedure (e.g., phones of Person-objects). Indeed, non-existence of Y means
that the X-concept of metamodel SSS is beyond the view defined by mapping vvv
and hence all X-instances are to be excluded from vvv-views.

Thus, translation is just retyping of some of Q[A]-elements by TTT -types, and
hence elements of the translated model B are, in fact, pairs (e, Y) ∈ Q[A]×TTT
such that tQ[A](e) = vvv(Y). In Fig. 33, such pairs are denoted by a bullet between
the components, e.g., P1•Actor is a pair (P1,Actor) etc. If we now replace bullets
by colons, we come to the usual notation for typing mappings. The result is that
elements of the original model are retyped by the target metamodel according
to the view mapping, and if B denotes the result of translation, we may write

(1) B ∼=
{

(e, Y) ∈ Q[A]×TTT : tQ[A](e) = vvv(Y)
}

We use isomorphism rather than equality because elements of B should be ob-
jects and links rather than pairs of elements. Indeed, the translator should create
a new OId for each pair appearing in the right part of (1).

First components of pairs specified in (1) give us a traceability mapping
vvvA : B → A as shown in Fig. 33. Second components provide typing mapping
tB : B →TTT . The entire retyping procedure thus appears as a diagram operation
specified by the right square in Fig. 34(a): the input of the operation is a pair
of mappings (tQ[A], vvv), and the output is another pair (vvvQ[A], tB). The square is
labeled [pb] because equation (1) specifies nothing but an instance of pullback
operation discussed in Sect. A.1.

Remark 7. If view vvv maps two different TTT -types Y1 �= Y2 to the same SSS-
type X , each element e ∈ Q[A] of type X will gives us two pairs (e, Y1) and
(e, Y2) satisfying the condition above and hence translation to TTT would dupli-
cate e. However, this duplication is reasonable rather than pathological: equality
vvv(Y1) = vvv(Y2) = X means that in the language of TTT the type X simultaneously
plays two roles (those described by types Y1 and Y2) and hence each X-instance
in Q[A] must be duplicated in the translation. Further examples of how speci-
fication (1) works can be found in [72]. They show that the pullback operation
is surprisingly “smart” and provides an adequate and predictive model of retyp-
ing.11

11 Since the construct of inverse image is also nothing but a special case of pullback,
the postcondition for operation [qExe] stating that tQ[A] is a conservative extension
can be formulated by saying that the square [qExe] is a pullback too. To be precise,
if we apply pullback to the pair (iQA, tQ[A]), we get the initial mapping tA.

158 Z. Diskin

Constraints do matter. To ensure that view model B is a legal instance of the
target metamodel TTT , view definition mapping vvv must be compatible with con-
straints declared in the metamodels. In our example in Fig. 33, the inheritance
tree in the domain of vvv has two constraints [disj,cov] attached. Mapping vvv respects
these constraints because it maps this tree into a tree (in metamodel SSS) that has
the same constraints attached. Augmentation of model A with derived elements
satisfies the constraints, A |= [disj] ∧ [cov], because query execution (semantics)
and constraint derivation machinery (pure logic, syntax) work in concert (the
completeness theorem for the first order logic). Relabeling does nothing essential
and model B satisfies the original constraint in TTT as well (details can be found
in [16]).

Arrow encapsulation. Query execution followed by retyping gives us the op-
eration of view execution shown in Fig. 34(b). In the tile language, the outer tile
[vExe] is the horizontal composition of tiles [qExe] and [pb]. Note that queries are
“hidden” (encapsulated) within double arrows: their formal targets are ordinary
models but in the detailed elementwise view their targets are models augmented
with derived elements.

Diagram (c) present the operation in an even more encapsulated way. The
top triple arrow denotes the entire diagram (b): the source and target nodes are
models together with their typing mappings, and the arrow itself is the pair of
mappings (vvv,vvvA). Although the source and the target of the triple arrow are
typing mappings, we will follow a common practice and denote them by pairs
(model:metamodel), e.g., A:SSS, leaving typing mappings implicit. Two vertical
arrows are links, i.e., pairs (A,SSS), (B,TTT); a similar link from the top arrow to
the bottom one is skipped. Diagram Fig. 34(c) actually presents a diagram oper-
ation: having a metamodel mapping SSS vvv⇐= TTT and a model A:SSS, view execution
produces a model A�vvv :TTT along with a traceability mapping (triple arrow) vvvA:vvv
encoding the entire diagram Fig. 34(b). We will return to this construction later
in Sect. D.3.

C.3 Properties of the View Execution Operation

The view execution operation has three remarkable properties.

1) Unitality. If a view definition is given by the identity mapping, view execu-
tion is identity as well, as shown by diagram Fig. 35(b1).

2) Compositionality. Suppose we have a pair of composable metamodel map-
pings vvv1: TTT ⇒ SSS and vvv2: UUU → TTT , which defines UUU as a view of a view of SSS.
Clearly, execution of a composed view is composed from the execution of com-
ponents so that for any SSS-model A we should have

vvv1;vvv2A = vvv2B ; vvv1A with B standing for A�vvv1

as shown in Fig. 35(b2). Formal proof of this fact needs an accurate definition of
query specifications (see [52] for details), and then it will be a standard exercise in
categorical algebra (with so called Kleisli triples). Details will appear elsewhere.

Model Synchronization: Mappings, Tiles, and Categories 159

A ⇐
1A
= = A

:vEx↗↗e

SSS
�
⇐=======

1SSS SSS
�

A ⇐
vvv1A
= = B ⇐

vvv2B
= = C

:vEx↗↗e :vEx↗↗e

SSS
�
⇐=======

vvv1
TTT
�
⇐=======

vvv2
uuu
�

X

A ⇐
vvvA
= =

⇐==
==

==
==

==
=

f :
vvv

B

[:uni]⇒ !:1TTT
�

:vEx↗↗e

SSS
�
⇐========

vvv
TTT
�

(b1) IdlExe (b2) ExeExe (b3) ExeUni

Fig. 35. Laws of the view execution mechanism

A A v

S Tv

f

X

!

vAQ[A]

Q [S]

:qExe :pb
A A v

S Tv

vAQ[A]

Q [S]

:qExe :pb

A1 A1 vQ[A1]

:qExe
p

Q[p]

vA1

p v:uni :uni

(a) (b)

Fig. 36. Universal property of the view mechanism

3) Universality. Suppose we have a model X and a mapping Q[A]
f←− X that

maps some of X ’s elements to derived rather than basic elements of A as shown in
Fig. 36(a). The mapping must be compatible with typing so that the outer right
square is required to be commutative. Then owing to the universal properties of
pullbacks, there is a uniquely defined mapping A�vvv

!←− X such that the triangles
commute (note that mapping ! is a homogeneous model mapping over identity
1TTT : TTT → TTT).

By encapsulating queries, i.e., hiding them inside double-arrows (see transition
from diagram (a) to (b) in Fig. 34), we can formulate the property as shown in
Fig. 35(b3), where arrows f :vvv and !:1TTT actually denote square diagrams whose
vertical arrows are typing mappings and bottom arrows are pointed after semi-
colon.

View mechanism and updates. Universality of view execution has a remark-
able consequence if queries are monotonic, i.e., preserve inclusion of datasets.
Such queries have been studied in the database literature (e.g., [29]), and it is
known that queries without negation are monotonic.

In our terms, a query Q is monotonic if any injective model mapping A
p←− A1

between two SSS-models gives rise to an injective mapping Q[A]
Q[p]←− Q[A1] be-

tween models augmented with derived elements. This is illustrated by the left-
upper square in Fig. 36(b). Applying retyping to models A�vvv and A1�vvv provides

160 Z. Diskin

the rest of the diagram apart from arrow p�vvv . To obtain the latter, we apply
the universal property of A�vvv (specified in diagram (a)) to mapping vvvA1 ; Q[p]
(in the role of mapping f in diagram (a)), and get mapping p�vvv. If the view def-
inition mapping is injective, then traceability mappings are injective too (PBs
preserve monics), and hence p�vvv is also injective. Thus, execution of views based
on monotonic queries translates mappings as well. Moreover, if model updates
are spans with injective legs, then view execution translates updates too: just
add the other leg q : A1 → A′ and apply the same construction.

D Heterogeneous Model Mapping and Matching

Suppose that models A and B to be synchronized are instances of different
metamodels, AAA and BBB respectively; we write A:AAA and B:BBB. The metamodels
may be essentially different, e.g., a class diagram and an activity diagram, which
makes matching their instances structurally difficult. It even makes sense to
reformulate the question ontologically: what is a match of non-similar models?

In Sect. 3.3 we modeled homogeneous matches by spans of homogeneous
model mappings. We will apply the same idea to the heterogeneous case; hence,
we first need to define heterogeneous model mappings.

D.1 Simple Heterogeneous Mappings

Model mappings are sets of links between model elements, and by simple map-
pings we mean those not involving derived elements. The first requirement for
links to constitute a correct mapping is their compatibility with model structure:
a class may be linked to a class, an attribute to an attribute etc. However, not
all structurally correct mappings make sense.

o:Object
name=Ford

Model A f

u:Object
name=Ford

Model BConsider a mapping between two simple
models in the inset figure. The mapping is
structurally correct but it is not enough in
the world of modeling, in which model ele-
ments have meaning encoded in metamodels.
For example, Fig. 37(a) introduces possible metamodels for models A, B, and we
at once see that sending an Employee to a Car is not meaningful. It could make
sense if the concepts (classes) Employee and Car were “the same”, in which case
it must be explicitly specified by a corresponding mapping between the meta-
models. Without such a mapping, the metamodels are not related and it may
be incorrect to map an Employee to a Car. Thus, diagram Fig. 37(a) presents
an incorrect model mapping.

An example of a correct model mapping is shown in diagram (b). We first
build a metamodel mapping and map concept Employee to Person. It is then
legitimate to map instances of Employee to instances of Person. Thus, a correct
model mapping is a pair of mappings (f, f) commuting with typing : f ; tA = tB ; f.

Arrow encapsulation. An abstract schema of the example is shown in
Fig. 37(c). As shown in Sect. 3.1, models are chains of graph mappings realizing

Model Synchronization: Mappings, Tiles, and Categories 161

(c)(a)

o:Car
make=Ford

u:Employee
name=Ford

Model A Model B

Employee
name: str

Car
make:str

Metamod.A

type mappings

o:Person
name=Ford

u:Employee
name=Ford

Model A Model B

Employee
name: str

Person
name: str

Metamod. B

f f

f

tA tB
tBtA [=]

(b)

Metamod. BMetamod. A

A B
GA GB

f1

f2

tA tB

f

GA GB
tA tB

GM

A Bf
GM

1

Fig. 37. Model mappings: incorrect (a), correct (b) and abstractly (c)

typing. Mapping A
f←− B is a triple (f1, f2, 1GMMM) commuting with typing map-

pings, i.e., f can be considered as a two-layer commutative diagram (framed by
the bigger rounded rectangle). The lower layer (the smaller frame) is the meta-
model mappings BBB f←−AAA. If metamodels AAA and BBB were instances of different
meta-metamodels,MMM, NNN , we could still build a reasonable mapping f by intro-
ducing the third componentMMM f3←−NNN commuting with typing mappings ofMMM
and NNN to their common meta-metametamodel.

GA

GA

f1

tA tB

A Bf

f

g1

tC

Cg

g
A B C

GB GC

GB
GC

f2 g2

Fig. 38. Model mapping
composition

Irrespectively of the number of layers, a mapping
between models A

f←− B contains a corresponding
mapping BBB f←−AAA between metamodels (which con-
tains a mapping between metametamodels). Hence,
models and model mappings can be projected to
metamodels and their mappings by erasing the up-
per layer. This projection is evidently a graph mor-
phism μ : Modmap→MModmap from the graph
of models and their simple mappings to the graph
of metamodels and their simple mappings.

Composition. Model mappings can be composed
componentwise as shown in Fig. 38. The outer rectangle diagram is commuta-
tive as soon as the two inner squares are such. Hence, composition of two legal
model mappings is again a legal model mapping. Associativity is evident, and the
identity mapping consists of two identities 1GA : GA ⇒ GA and 1AAA : GAAA ⇒ GAAA .
Hence, graphs of (meta)models and their mappings introduced above are cate-
gories. Moreover, projection μ : Modmap→MModmap is evidently compati-
ble with composition and identities and so is a functor.

D.2 Matching Heterogeneous Models

Consider a simple example shown in Fig. 39, where matching links between two
models are set in a naive way, and compare it with naive match in Fig. 9(a) on
p.111. The first peculiarity of match in Fig. 39 is that objects of different types

162 Z. Diskin

are matched (an Employee and a Personnel). Moreover, attributes are matched
approximately meaning that their values somehow correspond but cannot be
neither equal nor inequal because their relationship is more complex. Though
intuitive, such matches do not conform to a type discipline, and their formal
meaning is unclear.

:Employee
name=Jo Lee
age = 30
pho = 11

Ann’s model, A
:Personnel
name=Jo
bDate=01.01.75
hDate=01.01.05

Bob’s model, Bm0

m1

m2 /

Fig. 39. Heterogeneous matching

Heterogeneous model mapping were de-
fined above by including into them meta-
model mappings. We may try to apply the
same idea for heterogeneous matching:
first match the metamodels, and then pro-
ceed with models. That is, we begin with
making metamodels explicit and building
a correspondence span between them as
shown in Fig. 40(a).

Employee
name: Str2 [1]
/fstNm{…}: Str [1]
pho: Int [0..*]
age: Int [0..1]

Metamodel, A
Personnel
name: Str [1]
bDate: Date [1]
hDate: Date [1]
/age{…}: Int [1]

Metamodel, B
Person
fstName: Str
age: Int

Metamodel, Ov w

:Employee
name=JoLee
/fstNm=Jo
age = 30
pho = 11

Ann’s model, A
:Personnel
name=Jo
bDate=01.01.75
hDate=01.01.05
/age=35

Bob’s model, B

(a) Metamodel matching

:Person
fstName=Jo
age = /?

Mary’s model, M

projection
A M: f

f0

f1

projection
g: M B

g0

g1

g2

f2

(b) Direct model matching

:Employee
name=JoLee
/fstNm=Jo
age = 30
pho = 11

Ann’s model, A
:Personnel
name=Jo
bDate=01.01.75
hDate=01.01.05
/age=35

Bob’s model, B
:Person
fstName=Jo
age = 30

Ann’s proj., AO
:Person
fstName=Jo
age = 35

Bob’s proj., BO
vA wB

(c) Model matching via projections

Fig. 40. Matching a heterogeneous pair of models

The head of the span, metamodel OOO, specifies the concepts common for both
metamodels (we will say a metamodel overlap), and the legs are projection map-
pings. A basic concept in one metamodel, e.g., attribute ’age’ in metamodel AAA,
may be a derived concept in the other metamodel: there is no attribute ’age’ in
metamodel BBB but it can be derived from attribute ’bDate’ with a corresponding
query. Similarly, we may specify a query to the metamodel AAA, which defines a
new attribute ’fstNm’ (firstName). (Ellipsis in figurative brackets near derived
attributes in Fig. 40(a) refer to the corresponding query specifications.) Thus,
the legs of a correspondence span may map elements in the head to derived
elements in the feet.

Model Synchronization: Mappings, Tiles, and Categories 163

Now we can reify the match in Fig. 39 by the span in Fig. 40(b). The feet
are models A, B augmented with derived elements; the latter are computed by
executing queries specified in the metamodels (recall that a derived element in a
metamodel is a query definition). The legs are heterogeneous model mappings
whose metamodel components are specified in diagram (a) (typing mappings
are not shown). These mappings are similar to simple heterogeneous mappings
considered in Sect. D.1 but may map to derived elements; we call them complex.

Metamodel mappings are view definitions that can be executed for models
(Sect. C). By executing view vvv for model A, and view www for model B, we project
the models to the space of OOO-instances as shown in Fig. 40(c): the view models
are denoted by AOOO

def= A�vvv and BOOO
def= B�www (and their frames are dashed to

remind us that these models are derived rather than set independently). We
also call the views projections to the overlap space. Note that along with view
models, view execution computes also traceability mappings vvvA and wwwB.

There are evident mappings from the head M to projections AOOO, BOOO (not
shown in the figure to avoid clutter). The existence of these mappings can be
formally proved by the universal property of pullbacks as described in Sect. C.3.

AAA ⇐==========
vvv
OOO ==========

www
⇒ BBB

A

tA
�

⇐=========
f

M

tB
�

==========
g

⇒ B

tM
�

A

‖
‖
⇐

vvvA
= = A�vvv

�
p:

1 OOO

B�www =
wwwB
=⇒

q:1OOO�

B

‖
‖

(a) Extensional match

A ⇐
vvvA
== A�vvv

m� B�www =
wwwB
=⇒ B

(b) General match

Fig. 41. From hetero- to homogeneous
matches

An abstract schema of the con-
struction is shown in Fig. 41(a): the
top row shows the metamodel overlap,
the bottom row is the result of its exe-
cution, and the middle row is the cor-
respondence span. Double-bodies of
arrows remind us that mappings are
complex, i.e., may map to derived el-
ements in their targets.

Two slanted arrows are derived by
the universal property of view trace-
ability mappings (produced by pull-
backs). Note that triple (M, p, q) is
a homogeneous correspondence span
in the space of OOO-models. It gives us
an extensional match between models
A�vvv and B�www. We may add to this
span non-extensional information (as
discussed in Sect. 4.1) and come to diagram Fig. 41(b), in which arrow m de-
notes a general match between homogeneous models. Note that mappings vvvA

and wwwB are derived whereas match m is an independent input datum.

D.3 Complex Heterogeneous Model Mappings

Simple heterogeneous model mappings defined above give rise to a functor
μ : Modmap→MModmap. The goal of this section is to outline, semi-formally,
how this description can be extended for complex mappings involving derived
elements.

164 Z. Diskin

Let QL be a query language, that is, a signature of diagram operations over
graphs. It defines a graph MModmapQL of metamodels and their complex
mappings described in Sect. C. Similarly, we have graph ModmapQL of models
and their complex mappings like, e.g., pairs mappings (f,vvv) and (g,www) shown
in Fig. 40(b). (Recall that we actually deal with commutative square diagrams:
f ; tA = tm;vvv and g; tB = tM ;www.)

AAA ⇐======
vvv

OOO ======
www
⇒ BBB

A:AAA

:μQL

•
�

〈≡≡≡≡
f :vvv

M :OOO

:μQL

•
�

≡≡≡≡
g:www
〉 B:BBB

:μQL

•
�

Fig. 42. Encapsulation of complex
heterogeneous mappings

By encapsulating typing mappings inside
nodes, and metamodel mappings inside ar-
rows, we may rewrite the upper half of dia-
gram Fig. 41(a) as shown in Fig. 42.

A warning about arrow notation is in
order. Graph mappings in Fig. 37(c) are
denoted by double arrows to distinguish
them from links (single-line arrows), and di-
agrams of graph mappings are triple arrows.
Complex mappings add one more dimension of encapsulation — derived el-
ements, and hence mappings vvv, www should be denoted by triple arrows while
mappings-diagrams f :vvv, g:www by quadruple arrows. To avoid this monstrous no-
tation, we sacrifice consistency. It is partially restored by using bullet-end arrows
for links: the latter may be thought of as arrows with “zero-line” bodies.

Thus, similarly to simple heterogeneous model mappings, complex ones con-
tain complex metamodel mappings and hence there is a graph morphism

μQL : ModmapQL →MModmapQL

(vertical links in Fig. 42 are its instances). We want to turn the two graphs above
into categories (and μQL into a functor), i.e., we need to define composition of
complex mappings.

Composition of complex metamodel mappings is easy and amounts to term
substitution. As mentioned above in Sect. C.2, with an accurate definition of a
query langauge’s syntax, compositionality of metamodel mappings is a routine
exercise in categorical algebra (with the so called Kleisli triples [73]). It turns
graph MModmapQL into a category (the Kleisli category of the monad defined
by the query language).

Defining composition of complex model mappings is much harder because
we need to compose query executions, i.e., application instances of operations
rather than terms (definitions of operations). It can be done relatively easily
for monotonic queries defined above on p.159 (details will appear elsewhere).
Thus, if all queries are monotonic, graph ModmapQL can also be turned into a
category, whose arrows are square diagrams similar to those shown in Fig. 38.
We thus have a functor μQL : ModmapQL →MModmapQL that maps models
and model mappings to their embedded metamodel parts.

The view mechanism is a “play-back” operation specified in Fig. 34(c) such
that three laws in Fig. 35 are satisfied. Together these requirements mean that
functor μQL is a (split) fibration — a construct well-known in CT [74, Exer-
cise 1.1.6]. The fibrational formulation of metamodeling (including the the view

Model Synchronization: Mappings, Tiles, and Categories 165

mechanism) allows us to use many results of the rich theory of fibrations [74].
In a sense, it is a culmination of the concrete MMt branch of the paper: a mul-
titude of complex data is encapsulated and cast in a very compact algebraic
formulation.

Note that we did not formally prove the fibrational statement above. It is an
observation suggested by our examples and semi-formal constructions in Sect. C
and D rather than a theorem. To turn it into a theorem, we need a formal
definition of queries and query execution, and then a formal specification of our
considerations above; it is a work in progress. Part of this work is presented in [52]
for the case of functorial semantics — a model is a functor from the metamodel
to some semantic category of sets and mappings between them, which is dual to
the usual metamodeling via a typing mapping (see beginning of Sect. 3.2).

	Model Synchronization: Mappings, Tiles, and Categories
	Introduction
	Model Sync: A Tangled Story
	The Tangle of Relationships and Update Propagation
	Mappings, Mappings, Mappings...
	The Arrow Forest and Categories

	Inside Models and Model Deltas
	Inside Models: Basics of Meta(Meta)Modeling
	Object-Slot-Value Models and Their Mappings
	Model Matching via Spans
	Symmetric Deltas and Their Composition

	Simple Update Propagation, I: Synchronizing Replicas
	Setting the Stage: Delta $times$ Delta = Tile
	Update Propagation via Algebra: Getting started
	An Algebraic Toolbox for a Replica Synchronization Tool Designer
	Replica Synchronization Tools as Algebras

	Simple Update Propagation II: Forward and Backward View Maintenance
	View vs. Replica Synchronization
	The Signature and the Laws
	View Synchronization

	Complex Update Propagation: Managing Heterogeneity
	Synchronization of Heterogeneous Models
	Synchronization with Evolving Metamodels: A Sketch

	Relation to Other Work, Brief Discussions, Future Work
	Abstract MMt or $Model-at-a-Time$ Programming
	Concrete Model Management

	Conclusion
	References
	Match and Merge as Diagram Operations: Warming Up for Category Theory
	Matching and Merging via Elements
	Matching and Merging via Arrows

	Graphs, Categories and Diagrams: A Primer
	Model Translation via Tiles
	MT-Semantics and Metamodel Mappings
	MT via Tile Algebra
	Properties of the View Execution Operation

	Heterogeneous Model Mapping and Matching
	Simple Heterogeneous Mappings
	Matching Heterogeneous Models
	Complex Heterogeneous Model Mappings

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

