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Preface

The third instance of the international summer school on Generative and Trans-
formational Techniques in Software Engineering (GTTSE 2009) was held in
Braga, Portugal, July 6–11, 2009. In this volume, you find revised and extended
lecture notes for most of the long and short summer-school tutorials as well as
a small number of peer-reviewed papers that originated from the participants’
workshop.

The mission of the GTTSE summer school series is to bring together PhD stu-
dents, lecturers, as well as other researchers and practitioners who are interested
in the generation and the transformation of programs, data, models, metamodels,
documentation, and entire software systems. This mission crosscuts many areas of
software engineering, e.g., software reverse and re-engineering, model-driven en-
gineering, automated software engineering, generic language technology, software
language engineering—to name a few. These areas differ in interesting ways, for
example, with regard to the specific sorts of metamodels (or grammars, schemas,
formats, etc.) that underlie the involved artifacts, and with regard to the specific
techniques that are employed for the generation and the transformation of the
artifacts.

The first two instances of the school were held in 2005 and 2007, and their
post-proceedings appeared as volumes 4143 and 5235 in Springer’s LNCS series.

The 2009 instance of GTTSE offered eight long tutorials, given by renowned
representatives of complementary approaches and problem domains. Each tuto-
rial combined foundations, methods, examples, and tool support. The program
of the summer school featured another six short(er) tutorials, which presented
more specific contributions to generative and transformational techniques. All
tutorial presentations were invited by the organizers to complement each other
in terms of the chosen application domains, case studies, and the underlying
concepts. Yet another module in the program was a Research 2.0 event which
combined tutorial-like aspects with a great discussion.

The program of the school also included a participants’ workshop to which
all students had been asked to submit an extended abstract beforehand. The
Organizing Committee reviewed these extended abstracts and invited ten stu-
dents to present their work at the workshop. The quality of this workshop was
exceptional, and two awards were granted by a board of senior researchers that
was formed at the school.

The program of the school remains available online.1

This volume contains revised and extended lecture notes for most of the long
and short summer-school tutorials as well as a small number of peer-reviewed

1 http://gttse.wikidot.com/2009



VI Preface

papers that originated from the participants’ workshop. Each of the included
seven long tutorial papers was reviewed by two members of the Scientific Com-
mittee of GTTSE 2009. Each of the included six short tutorial papers was re-
viewed by three members. The tutorial papers were primarily reviewed to help
the authors with compiling original, readable and useful lecture notes. The three
included participant contributions were peer-reviewed with three reviews per pa-
per. For all papers, two rounds of reviewing and revision were executed.

We are grateful to our sponsors for their support and to all lecturers and
participants of the school for their enthusiasm and hard work in preparing ex-
cellent material for the school itself and for these proceedings. Thanks to their
efforts the event was a great success, which we trust the reader finds reflected in
this volume. Our gratitude is also due to all members of the scientific committee
who not only helped with the labor-intensive review process that substantially
improved all contributions, but also sent their most suitable PhD students to
the school.

The next edition of GTTSE, GTTSE 2011, will be organized in Braga again,
and it will be co-located with the 4th International Conference on Software
Language Engineering. This co-location will provide for excellent synergies.

October 2010 João M. Fernandes
Ralf Lämmel
João Saraiva
Joost Visser
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An Introduction to Software Product Line

Refactoring

Paulo Borba

Informatics Center
Federal University of Pernambuco

phmb@cin.ufpe.br

Abstract. Although software product lines (PLs) can bring significant
productivity and quality improvements through strategic reuse, boot-
strapping existing products into a PL, and extending a PL with more
products, is often risky and expensive. These kinds of PL derivation and
evolution might require substantial effort and can easily affect the behav-
ior of existing products. To reduce these problems, we propose a notion
of product line refactoring and associated transformation templates that
should be part of a PL refactoring catalogue. We discuss how the notion
guides and improves safety of the PL derivation and evolution processes;
the transformation templates, particularly when automated, reduce the
effort needed to perform these processes.

1 Introduction

A software product line (PL) is a set of related software products that are gen-
erated from reusable assets. Products are related in the sense that they share
common functionality. Assets correspond to components, classes, property files,
and other artifacts that are composed in different ways to specify or build the
different products. For example, in the simplified version of the Rain of Fire
mobile game product line shown in Fig. 1, we have three products varying only
in how they support clouds in the game background, as this impacts on product
size and therefore demands specific implementations conforming to different mo-
bile phones’ memory resources. The classes and images are reused by the three
products; the clouds image, for instance, is used by two products. Each XML file
and aspect [KHH+01] (.aj file), which are common variability implementation
mechanisms [GA01, AJC+05], specify cloud specific data and behavior, so are
only reused when considering other products not illustrated in Fig. 1.

This kind of reuse targeted at a specific set of products can bring significant
productivity and time to market improvements [PBvdL05, Chapter 21][vdLSR07,
Chapters 9-16]. The extension of a PL with a new product demands less effort
because existing assets can likely make up to a large part of the new product.
The maintenance of existing products also demands less effort because changes
in a single asset often have an impact on more than one product. Indirectly, we
can improve quality too [vdLSR07], since assets are typically more exposed and
tested through their use in different products.

J.M. Fernandes et al. (Eds.): GTTSE 2009, LNCS 6491, pp. 1–26, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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No Clouds

Static Clouds

Moving Clouds

.java

.aj

.xml

.jpg

Fig. 1. Mobile game product line

To obtain these benefits with reduced upfront investment, previous work pro-
poses to minimize the initial product line analysis and development process
by bootstraping existing related products into a PL [Kru02, CN01, AJC+05].
Through an extraction process, we can separate variations from common parts,
and then discard duplicate common parts. In Fig. 2, the first pair of arrows and
the subsequent arrow illustrate this process for the code1 of two related products:
the same mobile game with moving clouds, differing only in their image loading
policy. A similar process applies for evolving a PL, when adding new products
might require extracting a part shared by existing products but not appropriate
for some new products. In this case, a previously common part becomes a vari-
ation in the new PL. For example, the rightmost arrow in Fig. 2 shows that we
extracted the code associated to clouds to a new aspect, which is an adequate
mechanism to separate the cloud variations from the other parts of the game.
We can now, by not including the Clouds aspect, have games without clouds in
the product line.

Although useful to reduce upfront investment and the risk of losing it due
to project failure, this extraction process might be tedious. Manually extracting
and changing different parts of the code requires substantial effort, especially for
analyzing the conditions that ensure the correctness of the extraction process.
In fact, this process can easily introduce defects, modifying the behavior exhib-
ited by products before the extraction process, and compromising the promised
benefits on other dimensions of costs and risks.

To minimize these problems, the proposed extraction process could
benefit from automatic refactorings: behavior-preserving source-to-source trans-
formations that improve some quality factor, usually reusability and maintain-
ability [Rob99, Fow99]. Refactorings automate tedious changes and analyses,

1 The same process applies for other artifacts such as requirements documents, test
cases, and design models [TBD06].
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Product 1

Product 2

Common

Startup

Common

On demand

Common

Startup On demand

Common −
Clouds

Startup On demand

Clouds

Main 2

Main 1

Main 1 Main 2

Main 1 Main 2

Fig. 2. Product line extraction

consequently reducing costs and risks.2 They can help too by providing guid-
ance on how to structure extracted variants. All that could be useful for deriving
a PL from existing products, and also for evolving a PL by simply improving its
design or by adding new products while preserving existing ones.

However, existing refactoring notions [Opd92, Fow99, BSCC04, CB05] focus
on transforming single programs, not product lines (PLs). These notions, there-
fore, might justify the pair of transformations in the first step of Fig. 2, for in-
dependently transforming two programs [TBD06, KAB07, AJC+05, AGM+06].
But they are not able to justify the other two steps. The second requires merg-
ing two programs into a product line; the resulting product line has conflicting
assets such as the two main classes, so it does not actually correspond to a valid
program. Similarly, the third step involves transforming conflicting assets, which
again are not valid programs.

Similar limitations apply for refactoring of other artifacts, including design
models [GMB05, MGB08]. These notions focus on refactoring a single product,
not a product line. Besides that, as explained later, in a product line we typically
need extra artifacts, such as feature models [KCH+90, CE00], for automatically
generating products from assets. So a PL refactoring notion should overcome
the single product limitations just mentioned and go beyond reusable assets,
transforming the extra artifacts as well.

We organize this text as follows. Section 2 introduces basic concepts and no-
tation for feature models and other extra product line artifacts [CE00, BB09].
This section also emphasizes informal definitions for the semantics of these ar-
tifacts, and for a notion of program refinement [SB04, BSCC04], with the aim
of explicitly introducing notation and the associated intuitions. This aligns with
our focus on establishing concepts about an emerging topic, rather than provid-
ing a complete formalization or reporting practical experience on product line

2 Current refactoring tools might still introduce defects because they do not fully
implement some analyses [ST09].
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refactoring [ACV+05, AJC+05, AGM+06, TBD06, CBS+07, KAB07, ACN+08].
Following that, in Sec. 3, we propose and formalize a notion of product line
refactoring. This goes beyond refactoring of feature models, which is the fo-
cus of our previous work [AGM+06, GMB08]. The notion and the formaliza-
tion are independent of languages used, for example, to describe feature models
and code assets. They depend only on the interfaces expressed by the informal
definitions that appear in Sec. 2; that is why the theorems in Sec. 3 do not
rely, for example, on a formalization of feature models. To illustrate one of the
main applications of such a refactoring notion, Sec. 4 shows different kinds of
transformation templates that can be useful for refactoring product lines. This
goes beyond templates for transforming feature models [AGM+06, GMB08],
considering also other artifacts, both in isolation and in an integrated way.
As the templates use specific notation for feature models and the other arti-
facts, proving that the transformations are sound with respect to the refactoring
notion requires the formal semantics of the used notations. However, as our
main aim is to stimulate the derivation of comprehensive refactoring catalogues,
considering different notations and semantic formalizations for product line ar-
tifacts [CHE05, Bat05, SHTB07, GMB08], we prefer not to lose focus by intro-
ducing details of the specific notations adopted here.

2 Software Product Line Concepts

In the PL approach adopted in this text, Feature Models (FMs) and Configura-
tion Knowledge (CK) [CE00] enable the automatic generation of products from
assets. A FM specifies common and variant features among products, so we can
use it to describe and select products based on the features they support. A
CK relates features and assets, specifying which assets implement possible fea-
ture combinations. Hence we use a CK to actually build a product given chosen
features for that product. We now explain in more detail these two kinds of
artifacts, using examples from the Mobile Media product line [FCS+08], which
contains applications – such as the one illustrated in Fig. 3 – that manipulate
photos, music, and video on mobile devices.

2.1 Feature Models

A feature model is essentially represented as a tree, containing features and
information about how they are related. Features basically abstract groups of
associated requirements, both functional and non-functional. Relationships be-
tween a parent feature and its child features (subfeatures) indicate whether the
subfeatures are optional (present in some products but not in others, represented
by an unfilled circle), mandatory (present in all products, represented by a filled
circle), or (every product has at least one of them, represented by a filled trian-
gular shape), or alternative (every product has exactly one of them, represented
by an unfilled triangular shape). For example, Fig. 4 depicts a simplified Mobile
Media FM, where Sorting is optional, Media is mandatory, Photo and Music are
or-features, and the two illustrated screen sizes are alternative.



An Introduction to Software Product Line Refactoring 5

Fig. 3. Mobile Media screenshots

Mobile Media

Media

Photo Music

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo  Photo

Fig. 4. Mobile Media simplified feature model

Besides these relationships, feature models may contain propositional logic
formulas about features. We use feature names as atoms to indicate that a feature
should be selected. So negation of a feature indicates that it should not be
selected. For instance, the formula just below the tree in Fig. 4 states that feature
Photo must be present in some product whenever we select feature Send Photo.
So {Photo, Send Photo, 240x320}, together with the mandatory features, which
hereafter we omit for brevity, is a valid feature selection (product configuration),
but {Music, Send Photo, 240x320} is not. Likewise {Music, Photo, 240x320} is
a possible configuration, but {Music, Photo, 240x320, 128x149} is not because it
breaks the Screen Size alternative constraint. In summary, a valid configuration
is one that satisfies all FM constraints, specified both graphically and through
formulas. Each valid configuration corresponds to one PL product, expressed
in terms of the features it supports. So the following definition captures the
intuition that a FM denotes the set of products in a PL.

Definition 1 〈FM semantics〉
The semantics of a feature model F , represented as [[F ]], is the set of all valid
product configurations (sets of feature names) of F .

�

To introduce the notion of PL refactoring, discuss refactorings of specific PLs,
and even derive general theorems about this notion, this is all we need to know
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about FMs. So we omit here the formal definitions of [[F ]] and valid configura-
tions, which appear elsewhere [GMB08, AGM+06] for the notation used in this
section. There are alternative FM notations [CHE05, Bat05, SHTB07, GMB08],
but, as shall be clear later, our notion of PL refactoring does not depend on the
used FM notation. Our notion works for any FM notation whose semantics can
be expressed as a set of configurations, as explicitly captured by Definition 1.
On the other hand, to prove soundness of refactoring transformation templates,
as showed later, we would need a formal definition of [[F ]] because the templates
use a specific FM notation. But this is out of the scope of this work, which aims
to establish PL refactoring concepts and stimulate further work – such as the
derivation of refactoring catalogues considering different notations and semantic
formalizations for PL artifacts – rather than to develop a theory restricted to a
specific FM notation.

2.2 Configuration Knowledge

As discussed in the previous section, features are groups of requirements, so
they must be related to the assets that realize them. Abstracting some details of
previous work [BB09], a CK is a relation from feature expressions (propositional
formulas having feature names as atoms) to sets of asset names. For example,
showing the relation in tabular form, the following CK

Music.java, ...

AppMenu.aj, ...

Common.aj, ...

Photo.java, ...

Photo  Music

Photo  Music

Photo

Music

MM.java, ...Mobile Media

establishes that if the Photo and Music features are both selected then the
AppMenu aspect, among other assets omitted in the fifth row, should be part of
the final product. Essentially, this PL uses the AppMenu aspect as a variability
implementation mechanism [GA01, AJC+05] that has the effect of presenting
the left screenshot in Fig. 3.3 For usability issues, this screen should not appear
in products that have only one of the Media features. This is precisely what the
fifth row, in the simplified Mobile Media CK, specifies. Similarly, the Photo and
Music implementations share some assets, so we write the fourth row to avoid
repeating the asset names on the second and third rows.

Given a valid product configuration, the evaluation of a CK yields the names
of the assets needed to build the corresponding product. In our example, the
configuration {Photo, 240x320}4 leads to

{MM.java, . . . , Photo.java, . . . , Commom.aj, . . . }.
3 We could use other variability implementation mechanisms, but that is not really

needed to explain the CK concept, nor our refactoring notion, which does not depend
on the type of assets used by PLs.

4 Remember we omit mandatory features for brevity.
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This gives the basic intuition for defining the semantics of a CK.

Definition 2 〈CK semantics〉
The semantics of a configuration knowledge K, represented as [[K]], is a function
that maps product configurations into sets of asset names, in such a way that,
for a configuration c, an asset name a is in the set [[K]]c iff there is a row in K
that contains a and its expression evaluates to true according to c. �
We again omit the full formalization since, as discussed before, it is only nec-
essary to formally prove soundness of PL refactoring transformation templates
that use this particular notation for specifying the CK. Our notion of PL refac-
toring, and associated properties, work for any CK notation whose semantics can
be expressed as a function that maps configurations into sets of assets names.
This is why we emphasize the [[K]] notation in Definition 2, and use it later when
defining PL refactoring.

2.3 Assets

Although the CK in the previous section refers only to code assets, in general
we could also refer to requirements documents, design models, test cases, image
files, XML files, and so on. For simplicity, here we focus on code assets as they are
equivalent to other kinds of assets with respect to our interest in PL refactoring.
The important issue here is not the nature of the asset contents, but how we
compare assets and refer to them in the CK. We first discuss the asset reference
issue.

Asset mapping. With respect to CK references, remember that we might have
conflicting assets in a PL. For instance, on the right end of Fig. 2, we have two
Main classes. They have the same name and differ only on how they instantiate
their image loading policy:

class Main {
...new StartUp(...);...

}

class Main {
...new OnDemand(...);...

}

We could avoid the duplicate class names by having a single Main class that
reads a configuration file and then decides which policy to use, but we would
then need two configuration files with the same name. Duplicate names might
also apply to other classes and assets in a PL, so references to those names would
also be ambiguous.

To avoid the problem, we assume that the names that appear in a CK might
not exactly correspond to the names used in asset declarations. For instance, the
names “Main 1” and “On demand” in this CK

Common.javaOn Demand  Start Up

Main 2, On demand

Main 1, StartupStart Up

On Demand
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are not really class names. Instead, the PL keeps a mapping such as the one
in Fig. 5, from the CK names to actual assets. So, besides a FM and a CK,
a PL actually contains an asset mapping, which basically corresponds to an
environment of asset declarations.

{Main 1 �→
class Main {

...new StartUp(...);...

}

,

Main 2 �→
class Main {

...new OnDemand(...);...

}

,

Common.java �→
class Common {

...

}

,

...
}

Fig. 5. Asset mapping

Asset refinement. Finally, for defining PL refactoring, we must introduce a
means of comparing assets with respect to behavior preservation. As we focus
on code, we use existing refinement definitions for sequential programs [SB04,
CB05].

Definition 3 〈Program refinement〉
For programs p1 and p2, p1 is refined by p2, denoted by

p1 � p2

when p2 is at least as good as p1 in the sense that it will meet every purpose and
satisfy every input-output specification satisfied by p1. We say that p2 preserves
the (observable) behavior of p1.

�

Refinement relations are pre-orders: they are reflexive and transitive. They often
are partial-orders, being anti-symmetric too, but we do not require that for the
just introduced relation nor for the others discussed in the remaining of the text.

For object-oriented programs, we have to deal with class declarations and
method calls, which are inherently context-dependent; for example, to under-
stand the meaning of a class declaration we must understand the meaning of
its superclass. So, to address context issues, we make declarations explicit when
dealing with object-oriented programs: ‘cds • m’ represents a program formed
by a set of class declarations cds and a command m, which corresponds to the
main method in Java like languages. We can then express refinement of class
declarations as program refinement. In the following, juxtaposition of sets of
class declarations represents their union.
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Definition 4 〈Class declaration refinement〉
For sets of class declarations cds1 and cds2, cds1 is refined by cds2, denoted by

cds1 �cds,m cds2

in a context cds of “auxiliary” class declarations for cds1 and cds2, and a main
command m, when

cds1 cds •m � cds2 cds •m.

�

For asserting class declaration refinement independently of context, we have
to prove refinement for arbitrary cds and m that form valid programs when
separately combined with cds1 and cds2 [SB04].

This definition captures the notion of behavior preservation for classes, so, us-
ing an abstract programming notation [BSCC04, SB04], code transformations of
typical object-oriented refactorings can be expressed as refinements. For exam-
ple, the following equivalence (refinement in both directions) establishes that we
can move a public attribute a from a class C to a superclass B, and vice-versa.

class B extends A
ads
ops

end
class C extends B

pub a : T ; ads′

ops′

end

=cds,m

class B extends A
pub a : T ; ads
ops

end
class C extends B

ads′

ops′

end

To move the attribute up to B, it is required that this does not generate a
name conflict: no subclass of B, other than C, can declare an attribute with
the same name, to avoid attribute redefinition or hiding. We can move a from
B to C provided that a is used only as if it were declared in C. The formal
pre-conditions, and a comprehensive set of similar transformations, appear else-
where [BSCC04, SB04]. We omit them here because they focus on a specific
programming language, whereas we want to establish a notion of PL refactoring
that is language independent, as long as the language has a notion of program
refinement such as the one just discussed. Even the overall PL refactoring tem-
plates that we show later depend on specific FM and CK languages but are
programming language independent.

We could also have a similar definition of refinement for aspects and other
code artifacts, but as they can all be expressed in terms of program refinement,
hereafter we use the fundamental program refinement relation �, and assume
translations, for example of a set of classes with a specific main class, into the
formats discussed in this section. In summary, such a reflexive and transitive
notion of program refinement is all we need for our notion of PL refactoring, its
basic properties, and the overall PL templates we discuss later. For reasoning
about reusable assets in isolation we also need a notion of asset refinement
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(such as the one for class declaration). This should be compositional, in the
sense that refining an asset that is part of a given program implies refinement
of the whole program.

2.4 Product Lines

We can now provide a precise definition for product lines, and a better account
than what we represent in Fig. 1, which illustrates only assets and products. In
particular, we make sure the three PL elements discussed in the previous sections
are consistent in the sense of referring only to themselves. We also require each
PL product to be a valid program5 in its target languages.

Definition 5 〈Product line〉
For a feature model F , an asset mapping A, and a configuration knowledge K,
we say that tuple

(F, A, K)

is a product line when the expressions in K refer only to features in F , the asset
names in K refer only to the domain of A, and, for all c ∈ [[F ]],

A〈[[K]]c〉
is a valid program, where A〈S〉, for a mapping A and a set S, is an abbreviation
for {A(s) | s ∈ S}.

�

For object-oriented languages, A〈[[K]]c〉 should be a well-typed set of classes
containing a single main class, with a main method. This validity constraint
in the definition is necessary because missing an entry on a CK might lead to
products that are missing some parts and are thus invalid. Similarly, a mistake
when writing a CK or asset mapping entry might yield an invalid program due
to conflicting assets, like two aspects that we use as variability mechanism and
introduce methods with the same signature in the same class. Here we demand
CKs to be correct as explained.

It is useful to note that, following this definition, we can see a single system
as a single-product PL:

domain(A)RootRoot( , A, )
The feature model contains a single feature Root and no constraints, the asset
mapping A simply maps declared names to the corresponding system asset dec-
larations, and the CK contains a single entry relating Root to all asset names.
For a product line in this form, the corresponding single system is simply the
image of A.
5 Remember our focus on code artifacts. In general, we should require products to

contain valid artifacts no matter the languages and notations (modeling, scripting,
programming, etc.) used to describe them.
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3 Product Line Refactoring

Now that we better understand what a PL is, we can define a notion of PL
refactoring to address the issues mentioned in Sec. 1. Similar to program refac-
torings, PL refactorings are behavior-preserving transformations that improve
some quality factor. However, they go beyond source code, and might transform
FMs and CKs as well. We illustrate this in Fig. 6, where we refactor the sim-
plified Mobile Media product line by renaming the feature Music. As indicated
by check marks, this renaming requires changing the FM, CK, and asset map-
ping; due to a class name change, we must apply a global renaming, so the main
method and other classes beyond Music.java chang too.

Music.java, ...

AppMenu.aj, ...
Common.aj, ...

Photo.java, ...

Photo  Music
Photo  Music

Photo
Music

MM.java, ...Mobile Media
Photo.java

Music.java

Mobile Media

Media

Photo Music

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo  Photo

Audio.java, ...

AppMenu.aj, ...
Common.aj, ...

Photo.java, ...

Photo  Audio
Photo  Audio

Photo
Audio

MM.java, ...Mobile Media
Photo.java

Audio.java

Mobile Media

Media

Photo Audio

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo  Photo

Fig. 6. PL renaming refactoring

The notion of behavior preservation should be also lifted from programs to
product lines. In a PL refactoring, the resulting PL should be able to generate
products (programs) that behaviorally match the original PL products. So users
of an original product cannot observe behavior differences when using the cor-
responding product of the new PL. With the renaming refactoring, for example,
we have only improved the PL design: the resulting PL generates a set of prod-
ucts exactly equivalent to the original set. But it should not be always like that.
We consider that the better product line might generate more products than the
original one. As long as it generates enough products to match the original PL,
users have no reason to complain. For instance, by adding the optional Copy
feature (see Fig. 7), we refactor our example PL. The new PL generates twice as
many products as the original one, but half of them – the ones that do not have
feature Copy – behave exactly as the original products. This ensures that the
transformation is safe; we extended the PL without impacting existing users.

3.1 Formalization

We formalize these ideas as a notion of refinement for product lines, defined in
terms of program refinement (see Definition 3). Each program generated by the
original PL must be refined by some program of the new, improved, PL.
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Music.java, ...

AppMenu.aj, ...
Common.aj, ...

Photo.java, ...

Photo  Music
Photo  Music

Photo
Music

MM.java, ...Mobile Media
Photo.java

AppMenu.aj

Mobile Media

Media

Photo Music

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo  Photo

Mobile Media

Media

Photo Music

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo  Photo

Copy

CopyPhoto.aj, ...Copy  Photo
Copy.java, ...Copy

Music.java, ...

AppMenu.aj, ...
Common.aj, ...

Photo.java, ...

Photo  Music
Photo  Music

Photo
Music

MM.java, ...Mobile Media
Photo.java

AppMenu.aj

CopyPhoto.aj

Fig. 7. Adding an optional feature refactoring

Definition 6 〈PL refinement〉
For product lines (F, A, K) and (F ′, A′, K ′), the first is refined by the second,
denoted

(F, A, K) � (F ′, A′, K ′)

whenever
∀c ∈ [[F ]] · ∃c′ ∈ [[F ′]] · A〈[[K]]c〉 � A′〈[[K ′]]c′〉

�
Remember that, for a configuration c, configuration knowledge K, and asset
mapping A related to a given PL, A〈[[K]]c〉 is a set of assets that constitutes a
valid program. So A〈[[K]]c〉 � A′〈[[K ′]]c′〉 refers to the program refinement notion
discussed in Sec. 2.3.

Now, for defining PL refactoring, we need to capture quality improvement as
well.

Definition 7 〈PL refactoring〉
For product lines PL and PL′, the first is refactored by the second, denoted

PL ≪ PL′

whenever
PL � PL′

and PL′ is better than PL with respect to quality factors such as reusability
and maintainability [Rob99, Fow99]. �
We provide no formalization of quality improvement, as this is subjective and
context dependent. Nevertheless, this definition formalizes to a good extent, and
slightly generalizes, our previous definition [AGM+06]: “a PL refactoring is a
change made to the structure of a PL in order to improve (maintain or increase)
its configurability, make it easier to understand, and cheaper to modify without
changing the observable behavior of its original products”. The difficulty of for-
mally capturing quality improvement is what motivates the separate notions of
refactoring and refinement. We can only be formal about the latter.
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3.2 Examples and Considerations

To explore the definitions just introduced, let us analyze concrete PL transfor-
mation scenarios.

Feature names do not matter. First let us see how the definitions apply to
the transformation depicted by Fig. 6. The FMs differ only by the name of a
single feature. So they generate the same set of configurations, modulo renaming.
For instance, for the source (left) PL configuration {Music, 240x320} we have
the target (right) PL configuration {Audio, 240x320}. As the CKs have the same
structure, evaluating them with these configurations yield

{Commmon.aj, Music.java, . . . }
and

{Commmon.aj, Audio.java, . . . }.
The resulting sets of asset names differ at most by a single element: Audio.java
replacing Music.java. Finally, when applying these sets of names to both asset
mappings, we obtain the same assets modulo global renaming, which is a well
known refactoring for closed programs. This implies behavior-preservation and
therefore program refinement, which is precisely what, by Definition 6, we need
for assuring that the source PL is refined by the target PL. Refactoring, by
Definition 7, follows from the fact that Audio is a more representative name for
what is actually manipulated by the applications.

This example shows that our definitions focus on the PLs themselves, that
is, the sets of generated products. Contrasting with our previous notion of fea-
ture model refactoring [AGM+06], feature names do not matter. So users will
not notice they are using products from the new PL, although PL developers
might have to change their feature nomenclature when specifying product con-
figurations. Not caring about feature names is essential for supporting useful
refactorings such as the just illustrated feature renaming and others that we
discuss later.

Safety for existing users only. To further explore the definitions, let us
consider now the transformation shown in Fig. 7. The target FM has an extra
optional feature. So it generates all configurations of the source FM plus exten-
sions of these configurations with feature Copy. For example, it generates both
{Music, 240x320} and {Music, 240x320, Copy}. For checking refinement, we fo-
cus only on the configurations common to both FMs – configurations without
Copy. As the target CK is an extension of the source CK for dealing with cases
when Copy is selected, evaluating the target CK with any configuration without
Copy yields the same asset names yielded by the source CK with the same config-
uration. In this restricted name domain, both asset mappings are equal, since the
target mapping is an extension of the first for names such as CopyPhoto.java,
which appears only when we select Copy. Therefore, the resulting assets produced
by each PL are the same, trivially implying program refinement and then PL
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refinement. Refactoring follows because the new PL offers more reuse opportu-
nities due to new classes and aspects such as CopyPhoto.java.

By focusing on the common configurations to both FMs, we check nothing
about the new products offered by the new PL. In fact, they might even not
operate at all. Our refactoring notion assures only that users of existing products
will not be disappointed by the corresponding products generated by the new
PL. We give no guarantee to users of the new products, like the ones with Copy
functionalities in our example. So refactorings are safe transformations only in
the sense that we can change a PL without impacting existing users.

Non refactorings. As discussed, the transformation depicted in Fig. 6 is a
refactoring. We transform classes and aspects through a global renaming, which
preserves behavior for closed programs. But suppose that, besides renaming,
we change the AppMenu.aj6 aspect so that, instead of the menu on the left
screenshot in Fig. 3, we have a menu with “Photos” and “Audio” options. The
input-output behavior of new and original products would then not match, and
users would observe the difference. So we would not be able to prove program
refinement, nor PL refinement and refactoring, consequently.

Despite not being a refinement, this menu change is an useful PL improve-
ment, and should be carried on. The intention, however, is to change behavior,
so developers will not be able to rely on the benefits of checking refinement
and refactoring. They will have to test the PL to make sure the effect of the
applied transformations actually corresponds to the expected behavior changes.
The benefits of checking for refactoring only apply when the intention of the
transformation is to improve PL configurability or internal structure, without
changing observable behavior.

Similarly, adding a mandatory feature such as Logging to a PL is not a refac-
toring. This new feature might be an important improvement for the PL, but it
deliberately changes the behavior of all products, so we cannot rely on refactor-
ing to assure that the transformation is safe. In fact, by checking for refactoring,
we learn that the transformation is not safe, as expected. If the intention was
to preserve behavior, a failed refactoring check would indicate a problem in the
transformation process.

Figure 8 shows another possibly useful transformation that is not a refac-
toring. Suppose that, for market reasons, we removed the 128x149 screen size
alternative feature, so the target PL generates only half of the products gener-
ated by the source PL. Configurations such as {Music, 240x320}, without the
removed screen size, yield exactly the same product in both PLs. Behavior is
preserved for these configurations because the asset mappings and CKs differ
only on entries related to SS1.aj. However, refactoring does not hold because
of configurations such as {Music, 128x149}. The products associated with these
configurations cannot be matched by products from the target PL, which is
required for PL refinement.

6 See Sec. 2.2 for understanding the role this aspect plays.
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Music.java, ...

SS1.aj
Common.aj, ...

Photo.java, ...
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Media
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Fig. 8. Non refactoring: removing an alternative feature

3.3 Special Cases

For checking refinement as in the previous section, it is useful to know PL refine-
ment properties that hold for special cases. First, when PLs differ only by their
CK, we can check refinement by checking if the CKs differ only syntactically.

Theorem 1 〈Refinement with different CKs〉
For product lines (F, A, K) and (F, A, K ′), if

[[K]] = [[K ′]]

then
(F, A, K) � (F, A, K ′)

Proof: First assume that [[K]] = [[K ′]]. By Definition 6, we have to prove that

∀c ∈ [[F ]] · ∃c′ ∈ [[F ]] · A〈[[K]]c〉 � A〈[[K ′]]c′〉

From our assumption, this is equivalent to

∀c ∈ [[F ]] · ∃c′ ∈ [[F ]] · A〈[[K]]c〉 � A〈[[K]]c′〉

For an arbitrary c ∈ [[F ]], just let c′ be c and the proof follows from program
refinement reflexivity.

�

Note that the reverse does not hold because the asset names generated by K
and K ′ might differ for assets that have no impact on product behavior,7 or for
assets that have equivalent behavior but have different names in the PLs.

We can also simplify checking when only asset mappings are equal. In this
case we still bypass program refinement checking, which is often difficult.

7 Obviously an anomaly, but still possible.
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Theorem 2 〈Refinement with equal asset mappings〉
For product lines (F, A, K) and (F ′, A, K ′), if

∀c ∈ [[F ]] · ∃c′ ∈ [[F ′]] · [[K]]c = [[K ′]]c′

then
(F, A, K) � (F ′, A, K ′)

Proof: First assume that ∀c ∈ [[F ]] · ∃c′ ∈ [[F ′]] · [[K]]c = [[K ′]]c′. By Definition 6,
we have to prove that

∀c ∈ [[F ]] · ∃c′ ∈ [[F ′]] · A〈[[K]]c〉 � A〈[[K ′]]c′〉

For an arbitrary c ∈ [[F ]], our assumption gives us a c′1 ∈ [[F ′]] such that

[[K]]c = [[K ′]]c′1

Just let c′ be c′1 and the proof follows from this equality, equational reasoning,
and program refinement reflexivity.

�

Again, the reverse does not hold, for similar reasons. Noting that, in the first
theorem, ‘[[K]] = [[K ′]]’ actually amounts to ‘∀c ∈ [[F ]] · [[K]]c = [[K ′]]c’ helps to
explore the similarities between the two special cases.

3.4 Population Refactoring

The PL refactoring notion discussed so far is useful to check safety when trans-
forming a PL into another. We can then use it to justify the rightmost trans-
formation in Fig. 2, whereas typical program refactorings justify the leftmost
pair of transformations. The middle transformation, however, we cannot justify
by either refactoring notion since we actually transform two programs, which we
can see as two single-product PLs,8 into a PL. To capture this merging situation,
we introduce a refactoring notion that deals with more than one source PL. We
have to guarantee that the target PL generates enough products to match the
source PLs products. As before, we first define refinement. Here is the definition
considering two source PLs.

Definition 8 〈Population refinement〉
For product lines PL1, PL2, and PL, we say that the first two PLs are refined
by the third, denoted by

PL1 PL2 � PL

whenever
PL1 � PL ∧ PL2 � PL

�
8 See Sec. 2.4.
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It is easy to generalize the definition for any number of source PLs, but we omit
the details for simplicity. So, whereas we will likely use Definition 6 to indirectly
relate product families (products with many commonalities and few differences),
we will likely use Definition 8 to indirectly relate product populations (products
with many commonalities but also with many differences) [vO02]. This assumes
that, as a population has less commonality, it might have been initially structured
as a number of PLs. In this case, the population corresponds to the union of the
families generated by each source PL, or by the target PL.

Now we define population refactoring in a similar way to PL refactoring.

Definition 9 〈Population refactoring〉
For product lines PL1, PL2, and PL, the first two are refactored by the third,
denoted

PL1 PL2 ≪ PL

whenever
PL1 PL2 � PL

and PL is better than PL1 and PL2 with respect to quality factors such as
reusability and maintainability.

�

Assuming proper FMs and CKs, population refinement justifies the middle trans-
formation in Fig. 2. Refactoring follows from the fact that we eliminate dupli-
cated code.

4 Product Line Refactoring Catalogue

With the refactoring notions introduced so far, we are able to derive a PL from
existing products, and also to evolve a PL by simply improving its design or by
adding new products while preserving existing ones. In this way we essentially
handle the problems mentioned in Sec. 1. Nevertheless, it is useful to provide
a catalog of common refactorings, so that developers do not need to reason
directly about the definitions when evolving PLs. So in this section we illustrate
different kinds of transformation templates9 that are representative for deriving
such a catalogue. We first introduce global transformations that affect a PL as
a whole, changing FM, CK, and assets. Later we discuss transformations that
affect PL elements in a separate and compositional way. In both cases we focus on
refinement transformations, which are the essence of a refactoring catalogue, as
refactoring transformations basically correspond to refinement transformations
that consider quality improvement.

4.1 Overall Product Line Transformations

The first transformation we consider generalizes the refactoring illustrated by
Fig. 7, where we add the optional Copy feature to an existing PL. Instead of
9 Hereafter transformations.
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F

O
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e n
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K

A A'

¬O  ¬e

Fig. 9. Add optional feature refinement template

focusing on details of a specific situation like that, a transformation such as the
one depicted by Fig. 9 precisely specifies, in an abstract way, that adding an
optional feature is possible when the extra rows added to the original CK are
only enabled by the selection of the new optional feature. We express this by
the propositional logic precondition ¬O ⇒ ¬e, which basically requires e to be
equivalent to propositions of the form O or O ∧ e′ for any feature expression e′.
This assures that products built without the new feature correspond exactly to
the original PL products. In this refinement transformation, we basically impose
no constraints on the original PL elements; we only require the original FM to
have at least one feature, identified in the transformation by the meta-variable
F . We can extend the asset mapping as wished, provided that the result is a
valid asset mapping. So in this case A′ should not map names that are already
mapped by A. Similarly, O should be a feature name that does not appear in
the original FM, otherwise we would have an invalid FM in the target PL. For
simplicity, we omit these constraints and always assume that the PLs involved
in a transformation are valid.

When we need to refer to more details about the PL elements, we can use
a more explicit notation, as illustrated in Fig. 10. For instance, n refers to the
original set of names mapped to assets, and F now denotes the whole source FM.
This establishes, in a more direct way, that it is not safe to change the original
CK and asset mapping when adding an optional feature.
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Fig. 10. Add optional feature detailed refinement template
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p p[A'/A] for any p belonging to the 
language of the assets in a

Fig. 11. PL renaming refinement template

We now discuss the PL renaming refinement transformation. Figure 11 gener-
alizes the refactoring illustrated in Fig. 6, where we rename the Music feature and
related artifacts to Audio. The transformation basically establishes that this kind
of overall PL renaming is possible when renaming is a refinement in the involved
core assets languages. Note that changing the name of F to F ′ requires changes
to FM constraints (c[F ′/F ]) and CK feature expressions (e[F ′/F ]). Moreover,
changing asset name n to m′ requires changing the CK (m[m′/n]), whereas
changing the asset declaration from A to A′ implies changes to all declarations
in a′.

Composing transformations. Besides elaborate transformations like PL re-
naming, which captures a major refactoring situation, it is useful to have simpler
transformations that capture just one concern. In fact, from a comprehensive set
of basic transformations we can, by composition, derive elaborate transforma-
tions. For example, the transformation in Fig. 12 focus on feature renaming
whereas the one in Fig. 13 focus on renaming asset names, keeping the original
feature names. Both do not have preconditions, so can always be applied pro-
vided the source pattern matches the source PL. By applying them in sequence
and then applying asset declaration renaming (see Fig. 14), we derive the PL
renaming transformation, which deals with all three concerns at once.

F
A A

F'
e n
… …

e[F'/F] n
… …

c c [F'/F]

Fig. 12. Feature renaming refinement template
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Fig. 13. Asset renaming refinement template

Whereas the elaborate transformations are useful for evolving product lines in
practice, the basic transformations are useful for deriving a catalogue of elaborate
transformations and verifying its soundness and completeness. It is, in fact, good
practice to first propose basic transformations and then derive the elaborate ones,
which are more appropriate for practical use [SB04, BSCC04].
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p p[A'/A] for any p belonging to the 
language of the assets in a

Fig. 14. Asset declaration renaming refinement template

By carefully looking at the transformation in Fig. 14, we notice that it focuses
on evolving a single PL element: the asset mapping. In this case, the FM and
CK are not impacted by the transformation. In general, when possible, it is
useful to evolve PL elements independently, in a compositional way. So, besides
the overall PL transformations illustrated so far, a refactoring catalogue should
have transformations for separately dealing with FMs, CKs, and asset mappings,
as illustrated in the following sections.

4.2 Asset Mapping Transformations

Transformations that focus on changing a single PL element (FM, CK, or asset
mapping) should be based on specific refinements notions, not on the overall
PL refinement notion. For asset mappings, exactly the same names should be
mapped, not necessarily to the same assets, but to assets that refine the original
ones.



An Introduction to Software Product Line Refactoring 21

Definition 10 〈Asset mapping refinement〉
For asset mappings A and A′, the first is refined by the second, denoted

A � A′

whenever
dom(A) = dom(A′) ∧ ∀a ∈ dom(A) · A(a) � A′(a)

where dom(A) denotes the domain of A.
�

Note that A(a) � A′(a) in the definition refers to context independent asset
refinement, not to program refinement.

Given this definition, we can propose transformations such as the one in
Fig. 15, which renames assets declarations, provided that renaming is a refine-
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⎨
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⎩

p p[A'/A] for any p belonging to the 
language of the assets in a

⎧
⎨
⎩

⎧
⎨
⎩

Fig. 15. Asset mapping refinement template

ment in the underlying asset languages. This essentially simplifies the transfor-
mation in Fig. 14, by focusing on changing only an asset mapping. We do not
prove this here, but we can refine a PL by applying this kind of transformation
and keeping FM and CK as in the source PL. This relies on the compositionality
of asset refinement, as briefly discussed in Sec. 2.3, but we omit the details in
order to concentrate on the different kinds of templates.

4.3 Feature Model Transformations

It is also useful to separately evolve feature models. We explore this in detail
elsewhere [AGM+06, GMB08], but here we briefly illustrate the overall idea.10

Instead of providing a refinement notion as in the previous section, we work with
an equivalence. Two FMs are equivalent if they have the same semantics.

Definition 11 〈Feature model equivalence〉
Feature models F and F ′ are equivalent, denoted F ∼= F ′, whenever [[F ]] = [[F ′]].

�

This equivalence is necessary for ensuring that separate modifications to a FM
imply refinement for the PL as a whole. In fact, FM refinement requires only

10 We use ∼= and = to respectively denote semantic and syntactic equality of feature
models, whereas in previous work we respectively use = and ≡.
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Fig. 16. Replace alternative equivalence template
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Fig. 17. Replace or equivalence template

[[F ]] ⊆ [[F ′]], but this allows the new FM to have extra configurations that might
not generate valid programs; the associated FM refinement transformation would
not lead to a valid PL. For example, consider that the extra configurations
result from eliminating an alternative constraint between two features, so that
they are now optional. The assets that implement these features might well
be incompatible, generating an invalid program when we select both features.
Refinement of the whole PL, in this case, would also demand changes to the
assets and CK.

Such an equivalence allows us to propose pairs of transformations (one from
left to right, and another from right to left) as in Fig. 16. From left to right, we
have a transformation that replaces an alternative by an or relationship, with
appropriate constraints. From right to left, we have a transformation that intro-
duces an alternative relationship that was indirectly expressed by FM
constraints.

Similarly, Fig. 17 shows how we express or features as optional features. From
left to right we can notice a pattern of transforming a FM into constraints,
whereas in the opposite direction we can see constraints expressed as FM graph-
ical notation. This is further illustrated by the transformation in Fig. 18, which,
from left to right, removes optional relationships. A comprehensive set of trans-
formations like these allows us to formally derive other FM equivalences, which
can be useful for simplifying FMs and, consequently, refactoring a PL.



An Introduction to Software Product Line Refactoring 23

P

Q

P

Q

Q  P

Fig. 18. Remove optional equivalence template

4.4 Configuration Knowledge Transformations

For configuration knowledge transformations, we also rely on an equivalence
relation.

Definition 12 〈Configuration knowledge equivalence〉
Configuration knowledge K is equivalent to K ′, denoted K ∼= K ′, whenever
[[K]] = [[K ′]]. �
Due to the equivalence, we again have pairs of transformations. Figure 19 illus-
trates four such transformations, indicating that we can change rows in a CK
(bottom left), apply propositional reasoning to feature expressions (top left),
merge rows that refer to the same set of asset names (top right), and merge rows
with equivalent expressions (bottom right). This is not a complete set of trans-
formations, but gives an idea of what a comprehensive PL refactoring catalogue
should contain.
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Fig. 19. Configuration knowledge equivalence templates

5 Conclusions

In this chapter we introduce and formalize notions of refinement and refactoring
for software product lines. Based on these notions and specific ones for feature
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models, configuration knowledge, and asset mappings, we also illustrate the kinds
of transformation that should constitute a product line refactoring catalogue.

We hope this stimulates further work towards such a catalogue, consider-
ing different notations and semantic formalizations for software product line
artifacts [CHE05, Bat05, SHTB07, GMB08]. This is important to guide and
improve safety of the product line derivation and evolution processes. The pre-
sented transformation templates precisely specify the transformation mechan-
ics and preconditions. This is especially useful for correctly implementing these
transformations and avoiding typical problems with current program refactor-
ing tools [ST09]. In fact, even subtler problems can appear with product line
refactoring tools.

The ideas formalized here capture previous practical experience on product
line refactoring [ACV+05, AJC+05, TBD06, KAB07], including development
and use of a product line refactoring tool [CBS+07, ACN+08]. However, much
still has to be done to better evaluate our approach and adapt existing processes
and tools for product line refactoring.

Besides working towards a comprehensive refactoring catalogue, we hope to
formally prove soundness and study completeness of product line transformations
for the notations we use here for feature models and configuration knowledge.
We should also discuss refinement and refactoring properties, which we omitted
from this introduction to the subject.
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Abstract. While source transformation systems and languages like
DMS, Stratego, ASF + SDF, Rascal and TXL provide a general, pow-
erful base from which to attack a wide range of analysis, transformation
and migration problems in the hands of an expert, new users often find
it difficult to see how these tools can be applied to their particular kind
of problem. The difficulty is not that these very general systems are
ill-suited to the solution of the problems, it is that the paradigms for
solving them using combinations of the system’s language features are
not obvious.

In this paper we attempt to approach this difficulty for the TXL
language in a non-traditional way - by introducing the paradigms of use
for each kind of problem directly. Rather than simply introducing TXL’s
language features, we present them in context as they are required in
the paradigms for solving particular classes of problems such as parsing,
restructuring, optimization, static analysis and interpretation. In essence
this paper presents the beginnings of a “TXL Cookbook” of recipes for
effectively using TXL, and to some extent other similar tools, in a range
of common source processing and analysis problems. We begin with a
short introduction to TXL concepts, then dive right in to some specific
problems in parsing, restructuring and static analysis.

Keywords: source transformation, source analysis, TXL, coding
paradigms.

1 Introduction

Source transformation systems and languages like DMS [2], Stratego [6], ASF
+ SDF [3,5], Rascal [20] and TXL [8] provide a very general, powerful set of
capabilities for addressing a wide range of software analysis and migration prob-
lems. However, almost all successful practical applications of these systems have
involved the original authors or long-time experts with the tools. New potential
users usually find it difficult and frustrating to discover how they can leverage
these systems to attack the particular problems they are facing.

This is not an accident. These systems are intentionally designed to be be very
general, and their features and facilities are therefore at a level of abstraction far
from the level at which new users understand their particular problems. What
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they are interested in is not what the general language features are, but rather
how they should be used to solve problems of the kind they are facing. The real
core of the solution for any particular problem is not in the language or system
itself, but rather in the paradigm for using it to solve that kind of problem.

In this paper we aim to address this issue head-on, by explicitly outlining
the paradigms for solving a representative set of parsing, transformation and
analysis problems using the TXL source transformation language. In the long
run we are aiming at a “TXL Cookbook”, a set of recipes for applying TXL
to the many different kinds of problems for which it is well suited. While the
paradigms are couched here in terms of TXL, in many cases the same paradigms
can be used with other source transformation systems as well.

In what follows we begin with a short introduction to the basics of TXL,
just to set the context, and then dive directly into some representative problems
from four different problem domains: parsing, restructuring, optimization, and
static and dynamic analysis. With each specific problem we outline the basic
paradigms used in concrete solutions written in TXL. Along the way we discuss
TXL’s philosophy and implementation as they influence the solutions. Although
it covers many issues, this set of problems is by no means complete, and it is
expected that the cookbook will grow in future to be more comprehensive.

Our example problems are set in the context of a small, simple imperative
language designed for the purpose of demonstrating transformation and analysis
toolsets. The language, TIL (“Tiny Imperative Language”) [11], was designed
by Jim Cordy and Eelco Visser as the intended basis of a set of benchmarks for
source transformation and analysis systems.

It is not our intention to cover the features of the TXL language itself here -
there are already other published papers on the language [8] and programming
in it [9], and features of the language are covered in detail in the TXL reference
manual [10]. Rather, here we concentrate on the paradigms for solving problems
using it, assuming only a basic knowledge.

2 TXL Basics

TXL [8] is a programming language explicitly designed for authoring source
transformation tasks of all kinds. It has been used in a wide range of applications
involving millions of lines of code [7]. Unlike most other source transformation
tools, TXL is completely self-contained - all aspects of the source transformation,
including the scanner, parser, transformer and output pretty-printer are all writ-
ten in TXL. Because they have no dependencies on external parsers, frameworks
or libraries, TXL programs are easily ported across platforms.

2.1 The TXL Paradigm

The TXL paradigm is the usual for source transformation systems (Figure 1).
Input text is scanned and parsed into an internal parse tree, pattern-replacement
rewriting rules are applied to the parse tree to transform it to another, and then
the transformed tree is unparsed to the new output text.
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Fig. 1. The TXL Paradigm

Grammars and transformation rules are specified in the TXL language, which
is efficiently implemented by the TXL Processor (Figure 2). The TXL processor
is directly interpretive, with no parser generator or compile phase, which means
there is little overhead and no maintenance barrier to running multiple trans-
formations end-to-end. Thus TXL is well suited to test-driven development and
rapid turnaround. But more importantly, transformations can be decomposed
into independent steps with only a very small performance penalty, and thus
most complex TXL transformations are architected as a sequence of successive
approximations to the final result.

2.2 Anatomy of a TXL Program

A TXL program typically has three parts (Figure 3) : The base grammar defines
the lexical forms (tokens) and the rooted set of syntactic forms (nonterminals or
types) of the input language. Often the base grammar is kept in a separate file
and included using an include statement. The program nonterminal is the root
of the grammar, defining the form of the entire input. The optional grammar
overrides extend or modify the syntactic forms of the grammar to allow output
and intermediate forms of the transformation that are not part of the input
language. Finally, the rule set defines the rooted set of transformation rules and
functions to be applied to the input. The main rule or function is the root of
the rule set, and is automatically applied to the entire input.
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Transformed
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Fig. 2. The TXL Processor

Grammar Overrides
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Transformation
Rules

Fig. 3. Parts of a TXL Program
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While TXL programs are typically laid out as base grammar followed by
overrides then rules, there is no ordering requirement and grammatical forms and
rules can be mixed in the TXL program. To aid in readability, both grammars
and rule sets are typically defined in topological order, starting from the program
nonterminal and the main rule.

2.3 The Grammar: Specifying Lexical Forms

Lexical forms specify how the input text is partitioned into indivisible basic
symbols (tokens or terminal symbols) of the input language. These form the
basic types of the TXL program. The tokens statement gives regular expressions
for each kind of token in the input language, for example, C hexadecimal integers:

tokens
hexintegernumber "0[xX][abcdefABCDEF\d]+"

end tokens

Tokens are referred to in the grammar using their name enclosed in square
brackets (e.g., [hexintegernumber] ). A set of default token forms are predefined
in TXL, including C-style identifiers [id], integer and floating point numbers
[number], string literals [stringlit], and character literals [charlit].

The comments statement specifies the commenting conventions of the input
language, that is, sections of input source that are to be considered as commen-
tary. For example, C commenting conventions can be defined as follows:

comments
/* */
//

end comments

By default, comments are ignored (treated as white space) by TXL, but they can
be treated as significant input tokens if desired. Most analysis tasks can ignore
comments, but transformation tasks may want to preserve them.

The keys statement specifies that certain identifiers are to be treated as unique
special symbols (and not as identifiers), that is, keywords of the input language.
For example, the following could be used to specify the keywords of a subset
of standard Pascal. The “end” keyword must be quoted (preceded by a single
quote) to distinguish it from TXL’s own end keyword. In general, TXL’s own
keywords and special symbols are the only things that need to be quoted in
TXL, and other words and symbols simply represent themselves.

keys
program procedure function
repeat until for while do begin ’end

end keys

The compounds statement specifies character sequences to be treated as a single
character, that is, compound tokens. Since “%” is TXL’s end-of-line comment
character, symbols containing percent signs must be quoted in TXL programs.
Compounds are really just a shorthand for (unnamed) token definitions.

compounds
:= <= >= -> <-> ’%= % note quoted "%"

end compounds
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2.4 The Grammar: Specifying Syntactic Forms

Syntactic forms (nonterminal symbols or types) specify how sequences of input
tokens are grouped into the structures of the input language. These form the
structured types of the TXL program - In essence, each TXL program defines
its own symbols and type system. Syntactic forms are specified using an (almost)
unrestricted ambiguous context free grammar in extended BNF notation, where:

X literal terminal symbols (tokens) represent themselves
[X] terminal (token) and nonterminal types appear in brackets
| or bar separates alternative syntactic forms

Each syntactic form is specified using a define statement. The special type [pro-
gram] describes the structure of the entire input. For example, here is a simple
precedence grammar for numeric expressions:

File "Expr.grm"

define program % goal symbol of input
[expression]

end define

define expression
[term]

| [expression] + [term]
| [expression] - [term]

end define

define term
[primary]

| [term] * [primary]
| [term] / [primary]

end define

define primary
[number]

| ( [expression] )
end define

Grammars are most efficient and natural in TXL when most user-oriented, using
sequences in preference to recursion, and simpler forms rather than semantically
distinguished cases. In general, yacc-style compiler “implementation” grammars
should be avoided.

Sequences and optional items can be specified using an extended BNF-like
sequence notation:

[repeat X] or [X*] sequence of zero or more (X*)
[repeat X+] or [X+] sequence of one or more (X+)
[list X] or [X,] comma-separated list of zero or more
[list X+] or [X,+] comma-separated list one or more
[opt X] or [X?] optional (zero or one)

For more natural patterns in transformation rules, these forms should always be
used in preference to hand-coded recursion for specifying sequences in grammars,
since TXL is optimized for handling them.

Formatting cues in defines specify how output text is to be formatted:

[NL] newline in unparsed output
[IN] indent subsequent unparsed output by four spaces
[EX] exdent subsequent unparsed output by four spaces

Formatting cues have no effect on input parsing and transformation patterns.

2.5 Input Parsing

Input is automatically tokenized and parsed according to the grammar. The
entire input must be recognizable as the type [program], and the result is repre-
sented internally as a parse tree representing the structural understanding of the
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[number] 5
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Fig. 4. Parse tree for the expression 31+5+17 according to the example grammar

input according to the grammar. Figure 4 shows the parse tree resulting from
the input of the numeric expression “31+5+17” to a TXL program using the
TXL grammar shown above.

All pattern matching and transformation operations in TXL rules and func-
tions work on the parse tree. Since each TXL program defines its own grammar,
it is important to remember that syntax errors in the input may indicate an
incorrect grammar rather than a malformed input.

2.6 Base Grammars and Overrides

The base grammar for the syntax of the input language is normally kept in
a separate grammar file which is rarely if ever changed, and is included in the
TXL program using a TXL include statement. While the base grammar itself can
serve for many purposes, since TXL is strongly typed in the type system of the
grammar (that is, all trees manipulated or produced by a TXL transformation
rule must be valid instances of their grammatical type, so that malformed results
cannot be created), it is often necessary to add output or intermediate forms.
Analysis and transformation tasks that require output or intermediate forms not
explained by the grammar can add their own forms using grammar overrides.

Grammar overrides modify or extend the base grammar’s lexical and syn-
tactic forms by modifying existing forms using redefine statements. Redefine
statements can completely replace an original form, for example, this redefine of
[primary] in the example grammar above will modify it to allow identifiers and
lists of expressions:

include "Expr.grm" % the original example grammar

redefine primary
[id]

| [number]
| ( [expression,+] )

end redefine

The semantics of such a redefine is that the original form is replaced by the new
form in the grammar.
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Grammar overrides can also extend the existing forms of a grammatical type,
using the notation “...” to refer to the original definition of the nonterminal
type. For example, this redefine will allow XML markup on any [statement] by
extending the definition of [statement] to allow a marked-up statement.

include "C.grm" % the C language grammar

redefine statement
... % includes the original forms

| <[id]> [statement] </[id]> % adds the new XML markup form
end redefine

The redefine says that a statement can be any form it was before (“...”), or the
new form. “...” is not an elision here, it is part of the TXL language syntax,
meaning “whatever [statement] was before”.

2.7 Transformation Rules

Once the input is parsed, the actual input to output source transformation is
specified in TXL using a rooted set of transformation rules. Each transformation
rule specifies a target type to be transformed, a pattern (an example of the partic-
ular instance of the type that we are interested in replacing) and a replacement
(an example of the result we want when we find such an instance).

% replace every 1+1 expression with 2
rule addOnePlusOne

replace [expression] % target type to search for
1 + 1 % pattern to match

by
2 % replacement to make

end rule

TXL rules are strongly typed - that is, the replacement must be of the same
grammatical type as the pattern (that is, the target type). While this seems to
preclude cross-language and cross-form transformations, as we shall see, because
of grammar overrides this is not the case!

The pattern can be thought of as an actual source text example of the in-
stances we want to replace, and when programming TXL one should think by
example, not by parse tree. Patterns consist of a combination of tokens (input
symbols, which represent themselves) and named variables (tagged nonterminal
types, which match any instance of the type). For example, the TXL variable
N1 in the pattern of the following rule will match any item of type [number] :

rule optimizeAddZero
replace [expression]

N1 [number] + 0
by

N1
end rule

When the pattern is matched, variable names are bound to the corresponding
item of their type in the matched instance of the target type. Variables can be
used in the replacement to copy their bound instance into the result, for example
the item bound to N1 will be copied to the replacement of each [expression]
matching the pattern of the rule above.
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Similarly, the replacement can be thought of as a source text example of the
desired result. Replacements consist of tokens (input symbols, which represent
themselves) and references to bound variables (using the tag name of the variable
from the pattern). References to bound variables in the replacement denote
copying of the variable’s bound instance into the result.

References to variables can be optionally further transformed by subrules
(other transformation rules), which further transform (only) the copy of the
variable’s bound instance before it is copied into the result. Subrules are applied
to a variable reference using postfix square bracket notation X[f], which in func-
tional notation would be f(X). X[f][g] denotes functional composition of subrules
- that is, g(f(X)). For example, this rule looks for instances of expressions (in-
cluding subexpressions) consisting of a number plus a number, and resolves the
addition by transforming copy of the first number using the [+] subrule to add
the second number to it. ( [+] is one of a large set of TXL built-in functions.)

rule resolveAdditions
replace [expression]

N1 [number] + N2 [number]
by

N1 [+ N2]
end rule

When a rule is applied to a variable, we say that the variable’s copied value is the
rule’s scope. A rule application only transforms inside the scope it is applied to.
The distinguished rule called main is automatically applied to the entire input
as its scope - any other rules must be explicitly applied as subrules to have any
effect. Often the main rule is a simple function to apply other rules:

function main
replace [program]

EntireInput [program]
by

EntireInput [resolveAdditions] [resolveSubtractions]
[resolveMultiplys] [resolveDivisions]

end function

2.8 Rules and Functions

TXL has two kinds of transformation rules, rules and functions, which are dis-
tinguished by whether they should transform only one (for functions) or many
(for rules) occurrences of their pattern. By default, rules repeatedly search their
scope for the first instance of their target type matching their pattern, trans-
form it to yield a new scope, and then reapply to the entire new scope until no
more matches are found. By default, functions do not search, but attempt to
match only their entire scope to their pattern, transforming it if it matches. For
example, this function will match only if the entire expression it is applied to is
a number plus a number, and will not search for matching subexpressions:

function resolveEntireAdditionExpression
replace [expression]

N1 [number] + N2 [number]
by

N1 [+ N2]
end function
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Searching functions, denoted by “replace *”, search to find and transform the
first occurrence of their pattern in their scope, but do not repeat. Searching
functions are used when only one match is expected, or only the first match
should be transformed.

function resolveFirstAdditionExpression
replace * [expression]

N1 [number] + N2 [number]
by

N1 [+ N2]
end function

2.9 Rule Parameters

Rules and functions may be passed parameters, which bind the values of variables
in the applying rule to the formal parameters of the subrule. Parameters can be
used to build transformed results out of many parts, or to pass global context
into a transformation rule or function. In this example, the [resolveConstants]
outer rule finds a Pascal named constant declaration, and passes both the name
and the value to the subrule [replaceByValue] which replaces all references to the
constant name in the following statements by its value. The constant declaration
is then removed by [resolveConstants] in its replacement.

rule resolveConstants
replace [statement*]

const C [id] = V [primary];
RestOfScope [statement*]

by
RestOfScope [replaceByValue C V]

end rule

rule replaceByValue ConstName [id] Value [primary]
replace [primary]

ConstName
by

Value
end rule

2.10 Patterns and Replacements

The example-like patterns and replacements in rules and functions are parsed us-
ing the grammar in the same way as the input, to make pattern-tree / replacement-
tree pairs. Figure 5 shows an example of the pattern and replacement trees for the
[resolveAdditions] example rule. While sometimes it is helpful to be aware of the
tree representation of patterns, in general it is best to think at the source level in
a by-example style when programming TXL.

Rules are implemented by searching the scope parse tree for tree pattern
matches of the pattern tree, and replacing each matched instance with a cor-
responding instantiation of the replacement tree. In Figure 6 we can see the
sequence of matches that the rule [resolveAdditions] will find in the parse tree
for the input expression “36+5+17”. It’s important to note that the second
match does not even exist in the original scope - it only comes to be after the
first replacement. This underlines the semantics of TXL rules, which search for



36 J.R. Cordy

rule resolveAdditions
replace [expression]

      N1[number] + N2[number]
by

      N1 [+ N2]
end rule

[expression]

[expression] +

[term]

[primary]

[primary]

[term]

N2: [number] (v2)

N1: [number] (v1)

[expression]

[primary]

[term]

[number] (v1+v2)

Fig. 5. Pattern and replacement trees for the [resolveAdditions] rule

one match at a time in their scope, and following a replacement, search the entire
new scope for the next match.

Patterns may refer to a previously bound variable later in the same pattern
(technically called strong pattern matching). This parameterizes the pattern with
a copy of the bound variable, to specify that two parts of the matching in-
stance must be the same in order to have a match. For example, the following
rule’s pattern matches only expressions consisting of the addition of two identical
subexpressions (e.g., 1+1, 2*4+2*4, and (3-2*7)+(3-2*7) ).

rule optimizeDoubles
replace [expression]

E [term] + E
by

2 * E
end rule

Patterns can also be parameterized by formal parameters of the rule, or other
bound variables, to specify that matching instances must contain an identical
copy of the variable’s bound value at that point in the pattern. (We saw an
example in the [replaceByValue] rule on the previous page.) A simple way to
think about TXL variables is that references to a variable always mean a copy
of its bound value, no matter what the context is.

[expression]

[expression] +

[term]

[primary]

[primary]

[term]

[number] (17)

[number] (36)

53

[expression]

+

[primary]

[term]

[number] (17)

[expression]

[expression] +

[term]

[primary]

[primary]

[term]

[number] (5)

[number] (31)

31 + 5 + 17 36 + 17

[expression]

[term]

[primary]

[number] (53)

Fig. 6. Example application of the [resolveAdditions] rule
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2.11 Deconstructors and Constructors

Patterns can be piecewise refined to more specific patterns using deconstruct
clauses. Deconstructors specify that the deconstructed variable’s bound value
must match the given pattern - if not, the entire pattern match fails. Decon-
structors act like functions - by default, the entire bound value must match
the deconstructor’s pattern, but “deconstruct *” (a deep deconstruct) searches
within the bound value for a match. The following example demonstrates both
kinds - a deep deconstruct matches the [if condition] in the matched IfStatement,
and the second deconstruct matches the entire IfCond only if it is exactly the
word false.

rule optimizeFalseIfs
replace [statement*]

IfStatement [if_statement] ;
RestOfStatements [statement*]

deconstruct * [if_condition] IfStatement
IfCond [if_condition]

deconstruct IfCond
’false

by
RestOfStatements

end rule

Pattern matches can also be constrained using where clauses, which allow for
arbitrary matching conditions to be tested by subrules. The where clause suc-
ceeds only if its subrules find a match of their patterns. Like deconstructors, if a
where clause fails, the entire pattern match fails. Here’s an example use of where
clauses to test that two sequential assignment statements do not interfere with
each other (and thus the pair can be parallelized):

rule vectorizeScalarAssignments
replace [statement*]

V1 [variable] := E1 [expression];
V2 [variable] := E2 [expression];
RestOfScope [statement*]

where not
E2 [references V1]

where not
E1 [references V2]

by
< V1,V2 > := < E1,E2 > ;
RestOfScope

end rule

While where clauses are more general, for efficiency reasons it is always better to
use a deconstruct than a where clause when possible. Where clauses use a special
kind of rule called a condition rule, for example [references] in the example above.

function references V [variable]
deconstruct * [id] V

Vid [id]
match * [id]

Vid
end function

Condition rules are different in that they have only a (possibly very complex)
pattern, but no replacement - they simply succeed or fail to match their
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pattern, but do not make any replacement. In this case, [references] looks inside
its expression scope to see if there are any uses of the main identifier naming the
variable it is passed.

Replacements can also be piecewise refined, to construct results from several
independent pieces using construct clauses. Constructors allow partial results to
be bound to new variables, allowing subrules to further transform them in the
replacement or other constructors. In the example below, NewUnsortedSequence
is constructed so that it can be further transformed by the subrule [sortFirstIn-
toPlace] in the replacement.

rule addToSortedSequence NewNum [number]
replace [number*]

OldSortedSequence [number*]
construct NewUnsortedSequence [number*]

NewNum OldSortedSequence
by

NewUnsortedSequence [sortFirstIntoPlace]
end rule

Even when constructors are not really required, constructing a complex replace-
ment in well-named pieces can aid in readability of the rule.

This ends our basic introduction to TXL. We now move on to the real focus of
this paper - the paradigms for solving real parsing, analysis and transformation
problems using it. We begin by introducing TIL, the toy example language used
as a platform for our example problems.

3 The TIL Chairmarks

TIL (Tiny Imperative Language) is a very small imperative language with as-
signments, conditionals, and loops, designed by Eelco Visser and James Cordy
as a basis for small illustrative example transformations. All of the example ap-
plications in the TXL Cookbook work on TIL or extended dialects of it. Figure
7 shows two examples of basic TIL programs.

The TIL Chairmarks [12] are a small set of benchmark transformation and
analysis tasks based on TIL. They are called “chairmarks” because they are too

File "factors.til"

// Find factors of a given number
var n;
write "Input n please";
read n;
write "The factors of n are";
var f;
f := 2;
while n != 1 do

while (n / f) * f = n do
write f;
n := n / f;

end;
f := f + 1;

end;

File "multiples.til"

// First 10 multiples of numbers 1 through 9
for i := 1 to 9 do
for j := 1 to 10 do

write i*j;
end; end;

Fig. 7. Example TIL programs
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small to be called “benchmarks”. These tasks form the basis of our cookbook,
and the examples in this tutorial are TXL solutions to some of the problems
posed in the Chairmarks. The TIL Chairmark problems are split into six cat-
egories: parsing, restructuring, optimization, static and dynamic analysis, and
language implementation. In this tutorial we only have room for one or two spe-
cific problems from each category. In each case, a specific concrete problem is
proposed and a TXL solution is demonstrated, introducing the corresponding
TXL solution paradigms and additional language features as we go along. We
begin with the most important category: parsing.

4 Parsing Problems

Every transformation or analysis task begins with the creation or selection of a
TXL grammar for the source language. The form of the language grammar has a
big influence on the ease of writing transformation rules. In these first problems,
we explore the creation of language grammars, pretty-printers and syntactic
extensions using the parsing aspect of TXL only, with no transformations. The
grammars we create here will serve as the basis of the transformation and analysis
problems in the following sections. In many cases, a TXL grammar is already
available for the language you want to process on the TXL website.

It is important to remember that the purpose of the TXL grammar for an
input language is not, in general, to serve as a syntax checker (unless of course
that is what we are implementing). We can normally assume that inputs to be
transformed are well-formed. This allows us to craft grammars that are simpler
and more abstract than the true language grammar, for example allowing all
statements uniformly everywhere in the language even if some are semantically
valid only in certain contexts, such as the return statement in Pascal, which is
valid only inside procedures. In general, such uniformity in the grammar makes
analyzing and transforming the language forms easier. In the case of TIL, the
language is simple enough that such simplification of the grammar is unnecessary.

4.1 Basic Parser / Syntax Checker

In this first problem, our purpose is only to create a grammar for the language
we plan to process, in this case TIL. Figure 8 shows a basic TXL grammar (file
“TIL.grm”) for TIL. The main nonterminal of a TXL grammar must always
be called [program], and there must be a nonterminal definition for [program]
somewhere in the grammar. Implementing a parser and syntax checker using this
grammar is straightforward, simply including the grammar in a TXL program
that does nothing but match its input (Figure 9, file “TILparser.txl”).

Paradigm. The grammar is the parser. TXL “grammars” are in some sense
misnamed - they are not really grammars in the usual BNF specification sense, to
be processed and analyzed by a parser generator such as SDF or Bison. Rather,
a TXL grammar is a directly interpreted recursive descent parser, written in
grammatical style. Thus in TXL the grammar is really a program for parsing
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File "TIL.grm"

% TXL grammar for Tiny Imperative Language

% When pretty-printing, we parse and output
% comments, controlled by this pragma
% #pragma -comment

% Keywords of TIL, a reserved-word language
keys

var if then else while do for
read write ’end

end keys

% Compound tokens to be recognized
% as a single lexical unit
compounds

:= != <= >=
end compounds

% Commenting convention for TIL -
% comments are ignored unless -comment is set
comments

//
end comments

% Direct TXL encoding of the TIL grammar.
% [NL], [IN] and [EX] on the right are
% optional pretty-printing cues

define program
[statement*]

end define

define statement
[declaration]

| [assignment_statement]
| [if_statement]
| [while_statement]
| [for_statement]
| [read_statement]
| [write_statement]
| [comment_statement]

end define

% Untyped variables
define declaration

’var [name] ; [NL]
end define

define assignment_statement
[name] := [expression] ; [NL]

end define

define if_statement
’if [expression] ’then [IN][NL]

[statement*] [EX]
[opt else_statement]
’end ’; [NL]

end define

define else_statement
’else [IN][NL]

[statement*] [EX]
end define

define while_statement
’while [expression] ’do [IN][NL]

[statement*] [EX]
’end ’; [NL]

end define

define for_statement
’for [name] := [expression]

’to [expression] ’do [IN][NL]
[statement*] [EX]

’end ’; [NL]
end define

define read_statement
’read [name] ; [NL]

end define

define write_statement
’write [expression] ; [NL]

end define

define comment_statement
% Only ever present if -comment is set
[NL] [comment] [NL]

end define

% Traditional priority expression grammar
define expression

[comparison]
| [expression] [logop] [comparison]

end define

define logop
’and | ’or

end define

define comparison
[term]

| [comparison] [eqop] [term]
end define

define eqop
= | != | > | < | >= | <=

end define

define term
[factor]

| [term] [addop] [factor]
end define

define addop
+ | -

end define

define factor
[primary]

| [factor] [mulop] [primary]
end define

define mulop
* | /

end define

define primary
[name]

| [literal]
| ( [expression] )

end define

define literal
[integernumber]

| [stringlit]
end define

define name
[id]

end define

Fig. 8. TIL grammar in TXL
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File "TILparser.txl"

% TXL parser for Tiny Imperative Language

% All TXL parsers are automatically also pretty-printers if the
% grammar includes the optional formatting cues, as in this case

% Use the TIL grammar
include "TIL.grm"

% No need to do anything except recognize the input, since the grammar
% includes the output formatting cues

function main
match [program]

_ [program]
end function

Fig. 9. TIL parser and pretty-printer

the input language, where the input is source text and the output is a parse tree.
When crafting TXL grammars, one needs to be aware of this fact, and think (at
least partly) like a programmer rather than a language specifier.

The creation of a TXL grammar begins with the specification of the lexical
forms (tokens, or terminal symbols) of the language, using TXL’s regular expres-
sion pattern notation. Several common lexical forms are built in to TXL, notably
[id], which matches C-style identifiers, [number], which matches C-style integer
and float constants, [stringlit], which matches double-quoted C-style string lit-
erals, and [charlit], which matches single-quoted C-style character literals.

The TIL grammar uses only the default tokens [id], [integernumber] and
[stringlit] as its terminal symbols, thus avoiding defining any token patterns
of its own. ([integernumber] is a built-in refinement of [number] to non-floating
point forms.) More commonly, it would be necessary to define at least some of
the lexical forms of the input language explicitly using TXL tokens statements.

The TIL keywords are specified in the grammar using the keys statement,
which tells TXL that the given words are reserved and not to be mistaken for
identifiers. The compounds section tells us that the TIL symbols := and != are
to be treated as single tokens, and the comments section tells TXL that TIL
comments begin with // and go to the end of line. Comments are by default
ignored and removed from the parsed input, and do not appear in the parse tree
or output. However, they can be preserved (see section 4.2).

Paradigm. Use sequences, not recursions. The fact that TXL grammars are
actually parsing programs has a strong influence on the expression of language
forms. For example, in general it is better to express sequences of statements
or expressions directly as sequences ( [X*] or equivalently [repeat X] ) rather
than right- or left-recursive productions. This is both because the parser will be
more efficient, and because the TXL pattern matching engine is optimized for
searching sequences. Thus forms such as this one, which is often seen in BNF
grammars, should be converted to sequences (in this case [statement*] ) in TXL:

statements -> statement
| statements statement
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Paradigm. Join similar forms. In order to avoid backtracking, multiple similar
forms are typically joined together into one in TXL grammars. For example,
when expressed in traditional BNF, the TIL grammar shows two forms for the
if statement, with and without an else clause, as separate cases.

if_statement -> "if" expression "then"
statement*

"end" ";"
| "if" expression "then"

statement*
"else"

statement*
"end" ";"

While we could have coded this directly into the TXL grammar, because it is
directly interpreted, when instances of the second form were parsed, TXL would
have to begin parsing the first form until it failed, then backtrack and start over
trying the second form to match the input. When many such similar forms are in
the grammar, this backtracking can become expensive, and it is better to avoid it
by programming the grammar more efficiently in TXL. In this case, both forms
are subsumed into one by separating and making the else clause optional in the
TXL define for [if statement] (Figure 8).

Paradigm. Encode precedence and associativity directly in the grammar. As in
all direct top-down parsing methods, left-recursive nonterminal forms can be a
particular problem and should in general be avoided. However, sometimes, as
with left-associative operators, direct left-recursion is required, and TXL will
recognize and optimize such direct left-recursions. An example of this can be
seen in the expression grammar for TIL (Figure 8), which encodes precedence
and associativity of operators directly in the grammar using a traditional prece-
dence chain. Rather than separate precedence and associativity into separate
disambiguation rules, TXL normally includes them in the grammar in this way.

Figure 9 shows a TXL program using the TIL grammar that simply parses
input programs, and the result of running it on the example program “multi-
ples.til” of Figure 7, using the command:

txl -xml multiples.til TILparser.txl

is shown in Figure 10. The “-xml” output shows the internal XML form of the
parse tree of the input program.

4.2 Pretty Printing

The next problem we tackle is creating a pretty-printer for the input language, in
this case TIL. Pretty-printing is a natural application of source transformation
systems since they all have to create source output of some kind.

Paradigm. Using formatting cues to control output format. TXL is designed
for pretty-printing, and output formatting is controlled by inserting formatting
cues for indent [IN], exdent [EX] and new line [NL] into the grammar. These
cues look like nonterminal symbols, but have no effect on input parsing. Their
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linux% txl multiples.til TILparser.txl -xml

<program>

<repeat statement>

<statement><for_statement> for

<name><id>i</id></name> :=

<expression><primary><literal><integernumber>1</integernumber></literal></primary></expression> to

<expression><primary><literal><integernumber>9</integernumber></literal></primary></expression> do

<repeat statement>

<statement><for_statement> for

<name><id>j</id></name> :=

<expression><primary><literal><integernumber>1</integernumber></literal></primary></expression> to

<expression><primary><literal><integernumber>10</integernumber></literal></primary></expression> do

<repeat statement>

<statement><write_statement> write

<expression>

<expression><primary><name><id>i</id></name></primary></expression>

<op>*</op>

<expression><primary><name><id>j</id></name></primary></expression>

</expression> ;

</write_statement>

</statement>

</repeat statement> end ;

</for_statement>

</statement>

</repeat statement> end ;

</for_statement>

</statement>

</repeat statement>

</program>

Fig. 10. Example XML parse tree output of TIL parser

only role is to specify how output is to be formatted. For example, in the TIL
grammar of Figure 8, the definition for [while statement] uses [IN][NL] following
the while clause, specifying that subsequent lines should be indented, and that a
new line should begin following the clause. The [EX] after the statements in the
body specifies that subsequent lines should no longer be indented, and the [NL]
following the end of the loop specifies that a new line should begin following the
while statement.

Paradigm. Preserving comments in output. By default TXL ignores comments
specified using the comments section as shown in Figure 8, where TIL comments
are specified as from // to end of line. In order to preserve comments in output,
we must tell TXL that we wish to do that using the -comment command-line
argument or the equivalent #pragma directive,

#pragma -comment

Once we have done that, comments become first-class tokens and the grammar
must allow comments anywhere they may appear. For well-formed input code
this is not difficult, but in general it is tricky and can require significant tuning.
It is a weakness of TXL that it has no other good way to preserve comments.

In the TIL case, we have only end-of-line comments and we will assume that
they are used only at the statement level - if we observe other cases, they can
be added to the grammar. This is specified in the grammar with the statement
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form [comment statement], (which has no effect when -comment is off because
no [comment] token will be available to parse). [comment statement] is defined
to put a new line before each comment, in order to separate it in the output:

define comment_statement
[NL] [comment] [NL]

end define

Figure 11 shows the result of pretty-printing multiples.til using the parsing pro-
gram of Figure 9.

4.3 Language Extensions

Language extensions, dialects and embedded DSLs are a common application
of source transformation systems. The next problem involves implementing a
number of syntactic extensions to the TIL grammar. Syntactic extension is one of
the things TXL was explicitly designed for, and the paradigm is straightforward.

Figure 12 shows four small language extensions to TIL, the addition of begin-
end statements, the addition of arrays, the addition of functions, and the addition
of modules (i.e., anonymous or singleton classes). New grammatical forms, to-
kens and keywords are defined using the usual tokens, keys and define statements
of TXL, as for example with the [begin statement] definition in the begin-end
extension of TIL and the addition of the function keyword in the function ex-
tension of TIL (both in Figure 12).

Paradigm.Extension of grammatical forms.New forms are integrated into the ex-
isting language grammar using redefinitions of existing forms, such as [statement]
in the begin-end dialect of TIL. TXL’s redefine statement is explicitly designed
to support language modifications and extensions. In the begin-end extension we
can see the use of redefine to add a new statement form to an existing language:

redefine statement
... % refers to all existing forms

| [begin_statement] % add alternative for our new form
end redefine

linux% cat Examples/multiples.til

// Output first 10 multiples of numbers 1 through 9
for i:=1 to 9 do for j:=1 to 10 do

// Output each multiple
write i*j; end; end;

linux% txl -comment multiples.til TILparser.txl

// Output first 10 multiples of numbers 1 through 9
for i := 1 to 9 do

for j := 1 to 10 do
// Output each multiple
write i * j;

end;
end;

Fig. 11. Example output of the TIL pretty-printer



Excerpts from the TXL Cookbook 45

File "TILbeginend.grm"

% TXL grammar overrides for begin-end
% extension of the Tiny Imperative Language

% Add begin-end statements
redefine statement

... % existing forms
| [begin_statement] % adds new form

end redefine

define begin_statement
’begin [IN][NL]

[statement*] [EX]
’end [NL]

end define

File "TILfunctions.grm"

% TXL grammar overrides for functions
% extension of the Tiny Imperative Language

% Add functions using grammar overrides

redefine declaration
... % existing

| [function_definition] % new form
end redefine

redefine statement
... % existing

| [call_statement]
end redefine

keys
’function

end keys

define function_definition
’function [name] ’( [name,] ’)

[opt colon_id] [IN][NL]
[statement*] [EX]

’end; [NL][NL]
end define

define call_statement
[opt id_assign]

[name] ’( [expression,] ’) ’; [NL]
end define

define colon_id
’: [name]

end define

define id_assign
[name] ’:=

end define

File "TILarrays.grm"

% TXL grammar overrides for array
% extension of the Tiny Imperative Language

% Add arrays using grammar overrides
redefine declaration

’var [name] [opt subscript] ’; [NL]
| ...

end redefine

redefine primary
[name] [opt subscript]

| ...
end redefine

redefine assignment_statement
[name] [opt subscript] ’:=

[expression] ’; [NL]
end redefine

define subscript
’[ [expression] ’]

end define

File "TILmodules.grm"

% TXL grammar overrides for module
% extension of the Tiny Imperative Language

% Add modules using grammar overrides
% Requires functions extension

redefine declaration
... % existing forms

| [module_definition] % add new form
end redefine

keys
’module ’public

end keys

define module_definition
’module [name] [IN] [NL]

[statement*] [EX]
’end ; [NL] [NL]

end define

redefine function_definition
[opt ’public] ...

end redefine

Fig. 12. TXL overrides for four dialects of TIL

Such a grammar modification is called a grammar override in TXL since
it “overrides” or replaces the original definition with the new one. The “...”
notation in this example is not an elision, it is an actual part of the TXL syntax.
It refers to all of the previously defined alternative forms for the nonterminal
type, in this case [statement], and is a shorthand for repeating them all in the
redefine. It also makes the redefinition largely independent of the base grammar,
so if the definition of [statement] in TIL changes, the language extension will not
require any change, it will just inherit the new definition.
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Because TXL grammars are actually directly interpreted programs for pars-
ing, any ambiguities of the extension with existing forms are automatically re-
solved - the first defined alternative that matches an input will always be the
one recognized. So even if the base language changes such that some or all of
the language extension’s forms are subsumed by the base language grammar,
the extension will continue to be valid.

Paradigm. Grammar overrides files. Language extension and dialect files are
normally stored in a separate grammar file. Such a grammar modification file is
called a grammar overrides file, and is included in the TXL program following
the include of the base grammar, so that it can refer to the base grammar’s
defined grammatical types:

include "TIL.grm"
include "TILbeginend.grm"

For example, while the TIL begin-end extension is independent of the grammat-
ical forms of TIL other than the [statement] form it is extending, in the arrays
extension of Figure 12, [expression] and [name] refer to existing grammatical
types of TIL.

Paradigm. Preferential ordering of grammatical forms. In the begin-end exten-
sion the new form is listed as the last alternative, indicating a simple extension
that adds to the existing language. When the new forms should be used in prefer-
ence to existing ones, as in the arrays example, the new form is given as the first
alternative and the existing alternatives are listed below, as in the [declaration]
and [primary] redefinitions in the arrays extension of TIL:

redefine declaration
’var [name] [opt subscript] ’; [NL]

| ...
end redefine

redefine primary
[name] [opt subscript]

| ...
end redefine

Because grammatical types are interpreted directly as a parsing program, this
means that any input that matches will be parsed as the new form, even if
existing old forms would have matched it. So, for example, every var declaration
in the arrays extension, including those without a subscript (e.g., “var x;”) will
be parsed with an optional subscript in the extended language, even though
the base grammar for TIL already has a form for it. Similarly, every [name]
reference which appears as a [primary] in the extension will be parsed with an
[opt subscript] even though there is an existing [name] form for [primary].

Pretty-printing cues for extended forms are specified in redefine statements
in the usual way, by adding [NL], [IN] and [EX] output formatting nonterminals
to the definitions of the new forms, as in the new [declaration] form above.

Paradigm. Replacement of grammatical forms. Grammar type redefinitions can
also completely replace the original form in the base grammar. For example, the
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[assignment statement] form of the arrays extension of TIL ignores the definition
in the base grammar, and defines its own form which completely replaces it.
This means that every occurrence of an [assignment statement] in the extended
language must match the form defined in the dialect.

redefine assignment_statement
[name] [opt subscript] ’:= [expression] ’; [NL]

end redefine

Paradigm. Composition of dialects and extensions. Language extensions and
dialects can be composed and combined to create more sophisticated dialects.
For example, the module (anonymous class) extension of TIL shown in Figure
12 is itself an extension of the function extension. Extensions are combined by
including their grammars in the TXL program in dependency order, for example:

include "TIL.grm"
include "TILarrays.grm"
include "TILfunctions.grm"
include "TILmodules.grm"

Paradigm. Modification of existing forms. Extended forms need not be com-
pletely separate alternatives or replacements. When used directly in a redefine
rather than as an alternative, the “...” notation still refers to all of the origi-
nal forms of the nonterminal, modified by the additional syntax around it. For
example, in the module extension of TIL (Figure 12), the [function declaration]
form is extended to have an optional public keyword preceding it. In this way the
module dialect does not depend on what a [function definition] looks like, only
that it exists. Figure 13 shows an example of a program written in the modular
TIL language dialect described by the composition of the arrays, functions and
modules grammar overrides in Figure 12.

4.4 Robust Parsing

Robust parsing [1] is a general term for grammars and parsers that are insensi-
tive to minor syntax errors and / or sections of code that are unexplained by the
input language grammar. Robust parsing is very important in production pro-
gram analysis and transformation systems since production software languages
are often poorly documented, making it difficult to get an accurate grammar,
because language compilers and interpreters often allow forms not officially in
the language definition, and because languages often have dialects or local cus-
tom extensions in practice. For all of these reasons, it is important that analysis
and transformation tools such as those implemented in TXL be able to handle
exceptions to the grammar so that systems can be at least partially processed.

Paradigm. Fall-through forms. The basic paradigm for robust parsing in TXL
is to explicitly allow for unexplained input as a dialect of the grammar that
adds a last, uninterpreted, alternative to the grammatical forms for which there
may be such unofficial or custom variants. For example, we may want to allow
for statements that are not in the official grammar by making them the last
alternative when we are expecting a statement.
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File "primes.mtil"

// this program determines the primes up to maxprimes using the sieve method
var maxprimes;
var maxfactor;
maxprimes := 100;
maxfactor := 50; // maxprimes div 2

var prime;
var notprime;
prime := 1;
notprime := 0;

module flags
var flagvector [maxprimes];

public function flagset (f, tf)
flagvector [f] := tf;

end;

public function flagget (f) : tf
tf := flagvector [f];

end;
end;

// everything begins as prime
var i;
i := 1;
while i <= maxprimes do

flagset (i, prime);
i := i + 1;

end;

. . .

Fig. 13. Part of an example program in the TIL arrays, functions, modules dialect

Figure 14 shows the grammar overrides for a dialect of TIL that allows for
unexplained statement forms. The key idea is that all statements in TIL end
with a semicolon - so if we have a form ending in a semicolon that does not
match any of the known forms, it must be an unknown statement form. Because
alternatives in TXL grammars are tried in order, we can encode this by adding
the unknown case as the last form for [statement]:

redefine statement
... % existing forms for [statement]

| [unknown_statement] % fall-through if not recognized
end redefine

Paradigm. Uninterpreted forms. When parsing, all other alternatives are tested,
after which we fall through to the [unknown statement] form. [unknown state-
ment] is any sequence of input items that are not semicolons [not semicolon*],
ended with a semicolon. This ensures that we don’t accidentally accept uninter-
preted input over a statement boundary.

The [not semicolon] nonterminal type is the key to flushing uninterpreted
input, and uses a standard TXL paradigm for flushing input, [token or key].
[token] is a special TXL built-in type that matches any input token that is not
a keyword of the grammar, and [key] is a special built-in type that matches
any keyword. Thus the following definition describes a type that will accept any
single item from the input:
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define token_or_key
[token] % any input token that is not a keyword

| [key] % any keyword
end define

Paradigm. Guarded forms. In the robust TIL dialect, we must be careful not
to throw away a semicolon, and thus we have guarded [token or key] with a
nonterminal guard. In the [not semicolon] definition, [not ’;] indicates that if the
next input token is a semicolon, then we should not accept it as a [token or key].

define not_semicolon
[not ’;] [token_or_key] % any item except semicolon

end define

[not X] is a generalized grammatical guard that can be used to limit what can
be matched by the form following it to those inputs that cannot be recognized
as an [X], which can be any grammatical type. Its semantics are simple: if an [X]
can be parsed at the current point in the input, then the following form is not
tested, otherwise it is. In either case, [not X] does not itself consume any input.

File "TILrobust.grm"

% TXL grammar overrides for robust parsing extension of Tiny Imperative Language

% Allow for unrecognized statement forms
redefine statement

... % refers to all existing forms for [statement]
| [unknown_statement] % add fall-through if we don’t recognize a statement

end redefine

define unknown_statement
[not_semicolon*] ; [NL]

end define

define not_semicolon
[not ’;] [token_or_key] % any input item that is not a semicolon

end define

define token_or_key
[token] % any input token that is not a keyword

| [key] % any keyword
end define

Fig. 14. TXL overrides for robust statement parsing in TIL

4.5 Island Grammars

Island grammars [14,19] address a related problem to robust parsing, the problem
of embedded code we wish to process in a sea of other text we don’t want
to process. For example, we may want to analyze only the embedded C code
examples in the chapters of a textbook or a set of HTML pages, or only the
EXEC SQL blocks in a large set of Cobol programs.

The basic strategy for island grammars in TXL is to invert the robust parsing
strategy - we treat the input as a sequence of meaningful things (“islands”)
and unmeaningful things (‘water”) (Figure 15). The meaningful things are, for
example, TIL programs, and the unmeaningful things are any sequence of input
items not beginning with a TIL program.
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File "Islands.grm"

% Generic grammar for parsing documents
% with embedded islands

% The input is a sequence of interesting
% islands and uninteresting water
redefine program

[island_or_water*]
end redefine

define island_or_water
[island]

| [water]
end define

% Water is any input that is not an island
define water

[not_island+]
end define

define not_island
% any item that does not begin an island
[not island] [token_or_key]

end define

define token_or_key
[token] % any token not a keyword

| [key] % any keyword
end define

File "TILislands.txl"

% TXL program for parsing documents
% with embedded TIL programs

% Begin with the TIL grammar
include "TIL.grm"

% And the generic island grammar
include "Islands.grm"

% In this case the islands are TIL programs
define island

[til_program]
end define

define til_program
[statement+]

end define

% We can now target rules at embedded TIL
% [island]s. But in this case, we just
% delete the non-TIL, to yield code only
rule main

replace [island_or_water*]
Water [water]
Rest [island_or_water*]

by
Rest

end rule

Fig. 15. TXL generic island grammar (left), and an island parser for embedded TIL
programs based on it (right)

Paradigm. Preferential island parsing. Figure 15 shows a generic TXL gram-
mar for implementing island grammars to parse documents such as this one,
recognizing the embedded islands (such as TIL programs) and ignoring the rest
of the text (such as this paragraph). As usual, the trick is that the first alter-
native [island] is preferred, and the second [water] is tried only if the first fails.
Parameterized generic grammars such as this one are frequently used in TXL to
encode reusable parsing paradigms such as island grammars.

The generic island grammar is used by defining [island], the interesting form,
in the TXL program that includes the generic grammar. The second half of Fig-
ure 15 is a TXL program that uses the generic island grammar to make an island
grammar for embedded TIL programs in documents such as this tutorial. [island]
is defined as [til program], which uses the included TIL grammar’s [statement]
form. The analysis or transformation rules can then target the [island] forms
only, ignoring the uninterpreted water. In this case, the program simply replaces
all occurrences of [water] by the empty sequence, leaving only the embedded TIL
programs in the output.

4.6 Agile Parsing

Agile parsing [13] refers to the use of grammar tuning on an individual analysis
or transformation task basis. By using the parser to change the parse to better
isolate the parts of the program of interest or make them more amenable to the
particular transformation or analysis, we can greatly simplify the rules necessary
to perform the task.
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Paradigm. Transformation-specific forms. Agile parsing is implemented in TXL
using grammar overrides (redefines) in exactly the same way as we have done for
language extensions and dialects. In essence, we create a special dialect grammar
for the language in support of the particular task.

The remainder of this paper consists of a sampling of example problems in
various applications of source transformation, highlighting the TXL paradigms
that are used in each solution.

5 Restructuring Problems

Once we have crafted grammars for our input languages, we can begin using them
to support the real work - the transformation and analysis tasks that support
software understanding, maintenance, renovation, migration and evolution. The
flexibility of the TXL parser is a key to its application in many domains - for
example, we exploit agile parsing in many solutions. But the real work is in the
transformation and analysis rules.

In the remaining problems from the TXL Cookbook, we concentrate on source
code transformation and analysis problems in three categories: restructuring
problems, optimization problems, and static and dynamic analysis problems. In
each category, we will look at a set of small but real challenges, each couched
in terms of TIL and its extensions. We only have space for a few representative
examples in each category, chosen not because they are the most useful, but
because they introduce new recipes and paradigms.

As we have seen, a TXL “grammar” is not really a grammar - rather it is a
functional program for parsing the input, which gives us direct control over the
parse, yielding both flexibility and generality. Similarly, a TXL transformation
“rule set” is not really a term rewriting system - rather, the rules form a func-
tional program for transforming the input, with similar direct control over tree
traversal and strategy, again yielding flexibility and generality.

We begin with problems in basic program restructuring, the heart of appli-
cations in refactoring and code improvement. As with our parsing examples, all
of our example problems are based on the Tiny Imperative Language (TIL) and
its extensions. We will use the grammars and parsing techniques we developed
in Section 4 to support all our solutions.

Paradigm. Programmed functional control. Transformations and analyses are
coded in TXL using rules and functions. The basic difference between the two
is that rules repeatedly search for and transform instances of their pattern until
no more can be found, whereas functions transform exactly one instance of their
pattern. TXL is a functional language, and the transformation is driven by the
application of one rule or function, the main rule, to the parse tree of the entire
input. All other rules and functions must be explicitly invoked, either in the
main rule or in other rules invoked by it.

In contrast to pure term rewriting systems, this functional style gives the pro-
grammer fine-grained programmed control over the application of transformation
rules on an invocation-by-invocation basis, and tree traversals and strategies can
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be customized to each task. Of course, the downside of this flexibility and control
is that you must do so, the price we pay in TXL for detailed programmability.
As we shall see, in practice the common traversals and strategies are simply TXL
coding paradigms, which we can learn quickly and reuse as need be. It is these
functional paradigms that we will be exploiting in our solutions.

Paradigm. Transformation scopes. The result of a TXL rule or function invo-
cation is a transformed copy of the scope (parse tree) it is directly applied to. In
TXL, scopes of application are explicitly programmed - rules are not global, but
transform only the subtree they are applied to. The result of a rule application
is (semantically) a completely separate copy from the scope itself - the original
TXL variable bound to the scope is unchanged by a rule invocation on it, and
retains its original value (parse tree), as in all functional languages. For example,
if the TXL variable X is bound to the [number] 1, the rule invocation X [+ 1]
yields 2, but does not change X, which retains its original value, 1.

5.1 Feature Reduction

Applications in code analysis and transformation often begin by normalizing the
code to reduce the number of features in the code to be analyzed in order to
expose basic semantics and reduce the number of cases to analyze. Figure 16
is a simple example of such a feature reduction transformation, the elimination
of TIL for loops by translation to an equivalent while. The transformation has
only one rule, [main], which searches for sequences of [statement] beginning with
a for statement and replaces the for with an equivalent while statement. While
small, this simple example introduces us to a number of TXL paradigms.

It may surprise you to see that the rule is targeted at the type [statement*],
a sequence of statements, rather than just [statement], since it is a single for
statement that we are replacing. The reason for this is that we need to replace
the for loop with not one statement but several - the initialization of the iteration
variable, the declaration and computation of the upper limit, and the while loop
itself. If we had tried to replace a single [statement] with this sequence, we would
get a syntax error in the replacement, because TXL rules are constrained to
preserve grammatical type in order to guarantee a well-formed result. A sequence
of statements [statement*] is not an instance of the type [statement], and thus
a replacement of several statements would violate the type constraint.

Paradigm. Raising the scope of application. This situation is an example of
a general paradigm in TXL - transforming a pattern that is further up the
parse tree than what we really want to match, in order to be able to create a
result that is significantly different. The saying in TXL is: if you can’t create
the replacement you want, target further up the tree. In this specific case, we
need to create several [statement]s out of one - so we must target the statement
sequence [statement*] of which the for statement is a part.

Note that the statements following the for are also captured in the pattern
(MoreStatements) and preserved in the result. This is a part of the paradigm - if
we had not allowed for these, the pattern could match only sequences containing
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File "TILfortowhile.txl"

% Convert Tiny Imperative Language "for" statements to "while" form

% Based on the TIL grammar
include "TIL.grm"

% Preserve comments in output
#pragma -comment

% Rule to convert every "for" statement
rule main

% Capture each "for" statement, in its statement sequence context
% so that we can replace it with multiple statements
replace [statement*]

’for Id [id] := Expn1 [expression] ’to Expn2 [expression] ’do
Statements [statement*]

’end;
MoreStatements [statement*]

% Need a unique new identifier for the upper bound
construct UpperId [id]

Id [_ ’upper] [!]

% Construct the iterator
construct IterateStatement [statement]

Id := Id + 1;

% Replace the whole thing
by

’var Id;
Id := Expn1;
’var UpperId;
UpperId := (Expn2) + 1;
’while Id - UpperId ’do

Statements [. IterateStatement]
’end;
MoreStatements

end rule

Fig. 16. TXL transformation to convert for statements to while statements

exactly one statement - that is, the last statement of a sequence. There is no
cost to copying these from the pattern to the result, since like many functional
languages TXL optimizes flow-through copies.

Paradigm. Explicit patterns. The pattern for the for loop is fully explicated,
that is, it matches all of its parts right away rather than just a [for statement]
which we could then take apart. Similarly, the replacement contains all the parts
of the result explicitly rather than constructing a [while statement] and replacing
it whole. This example-like way of expressing rules is a TXL style - making the
pattern and replacement show as much as possible of the form of the actual
intended pattern and result target code rather than the constructed terms.

TXL uses the same parser (i.e., the TXL grammar you specify) to parse
patterns and replacements in rules as it does for input. Thus it constructs all of
the intermediate terms for you. This means that there is no cost to explicating
details in a pattern, and it would be no more efficient to have a pattern searching
for a [for statement] only than for the entire pattern we have coded in the [main]
rule, because the parsed pattern is in fact a [for statement] anyway.
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Given this preference for an example-like style, it may also surprise you to see
that the iteration statement (IterateStatement) is separately constructed and
appended [.] to the sequence of statements in the body of the loop rather than
appearing in the replacement directly. The reason for this is the definition of
sequence in TXL - the sequence type [X*] has a recursive definition, deriving
[X] [X*] or [empty]. Thus although a statement at the head of a sequence (
[statement] [statement*] as in the pattern of this rule) is a valid [statement*],
a statement at the end, [statement*] [statement], is not. Therefore the TXL [.]
(sequence append) built-in function is provided to allow for this, and the rule
uses it to append the new statement to those in the loop body.

It may also surprise you to see that the literal identifiers and keywords in
both the pattern and the replacement have been quoted using a single quote ’ in
all cases. While this is not necessary (except for the TXL keyword “end”), TXL
programmers often choose to quote literal identifiers to remind the reader that
they are not TXL variable references but part of the output text.

Paradigm. Generating unique new identifiers. The rule uses two built-in func-
tions, [ ] and [!], to generate a unique new identifier for the introduced upper
bound variable. In the construct of UpperId, a new identifier is constructed from
the original for iteration variable name Id, to which the literal identifier “upper”
is appended with underscore using the [ ] built-in function to form a new iden-
tifier (for example, if Id is “i”, then we have “i upper”). The new identifier is
then made globally unique using the unique built-in function [!], which appends
a number to it to create a new identifier unused anywhere else in the input (for
example, “i upper27”).

This first example did its transformations in place - let’s look at one that
moves things around a bit.

5.2 Declarations-to-Global

One of the standard challenges for transformation tools is the ability to move
things about, and in particular to make transformations at an outer level that
depend on things deeply embedded in an inner level and vice-versa. In the next
two examples, we will look at each of these kinds of problems in turn.

In the first problem, we are simply going to move all declarations in the TIL
program to the global scope. Even though TIL declarations seem to be able to
appear anywhere according to the TIL grammar, their meaning is apparently
global, since no scope rules are defined. In this transformation, we make the true
meaning of embedded declarations explicit by promoting all declarations to one
global list at the beginning of the program.

The simplest solution to this problem (Figure 17) uses two common paradigms
of TXL, type extraction and type filtering. The basic strategy is shown in the
main rule, which has three steps: construct a copy of all the declarations in the
program as a sequence, construct a copy of the program with all declarations
removed, and concatenate the one to the other to form the result.
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File "TILtoglobal.txl"

% Make all TIL declarations global

% Based on the TIL base grammar
include "TIL.grm"

% Preserve comments in output
#pragma -comment

% The main rule - in this case a function,
% applies only once

function main
replace [program]

Program [statement*]

% Extract all statements,
% then filter for declarations only
construct Declarations [statement*]

_ [^ Program] [removeNonDeclarations]

% Make a copy of the program
% with all declarations removed
construct ProgramSansDeclarations [statement*]

Program [removeDeclarations]

% The result consists of the declarations
% concatenated with the non-declarations
by

Declarations [. ProgramSansDeclarations]
end function

rule removeDeclarations
% Rule to remove every declaration
% at every level from statements
replace [statement*]

Declaration [declaration]
FollowingStatements [statement*]

by
FollowingStatements

end rule

rule removeNonDeclarations
% Rule to remove all statements that
% are not declarations from statements
replace [statement*]

NonDeclaration [statement]
FollowingStatements [statement*]

% Check the statement isn’t a declaration
deconstruct not NonDeclaration

_ [declaration]

% If so, take it out
by

FollowingStatements
end rule

Fig. 17. TXL transformation to move all declarations to the global scope

Extracting all the declarations from the program is done in two steps, using
the extract [ˆ ] built-in rule to get a sequence of all the statements of the program,
and then removing all those that are not declarations.

construct Declarations [statement*]
_ [^ Program] [removeNonDeclarations]

Paradigm. Extracting all instances of a type. The extract built-in function [ˆ
] is applied to a scope of type [T*] for any type [T], and takes as parameter
a bound variable V of any type. The rule constructs a sequence containing a
copy of every occurrence of an item of type [T] in V and replaces its scope with
the result. In our case, a sequence containing a copy of every [statement] in
the program is constructed. Extract ignores its original scope, so it is normally
empty to begin with. In this case, we have used the empty variable “ ”, a special
TXL variable denoting an empty item, as the scope of the rule. This is the usual
way that extract is used.

Paradigm. Filtering all instances of a type. The second step in this construct
uses the subrule [removeNonDeclarations] to remove all non-declarations from
the constructed sequence of all statements. (The constructor could have ex-
tracted all [declaration]s directly, but this would cause problems later when we
tried to concatenate them to the beginning of the program.) The subrule uses
a common filtering paradigm in TXL, looking for any occurrence of a sequence
of statements beginning with a statement that is not a declaration, and replacing
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it with the sequence without the beginning statement. The rule continues until
it can find no remaining instances in its scope.

Paradigm. Negative patterns. Determining that a statement is not a declaration
involves another common paradigm in TXL - a negated deconstructor. A normal
deconstructor simply matches a bound variable to a pattern for example:

deconstruct Statement
Assignment [assignment_statement]

which succeeds and binds Assignment if the [statement] to which Statement is
bound consists entirely of an assignment statement.

In this case, however, we are interested in statements that are not a [decla-
ration], so we use deconstruct not to say that our match succeeds only if the
deconstructor fails (that is, the [statement] bound to NonDeclaration is not a
[declaration]. Although it has a pattern, a deconstruct not does not bind any pat-
tern variables, since to succeed it must not match its pattern. Thus any variable
names in the negated deconstructor’s pattern are irrelevant, and in this case we
have explicitly indicated that by using the anonymous name “ ” in the pattern.

deconstruct not NonDeclaration
_ [declaration]

The same filtering paradigm is used in the second constructor of the main rule
to remove all declarations from the copy of the program used in the result of the
rule. This general removal paradigm can be used with any simple, complex or
guarded pattern to remove items matching any criterion from a scope.

Finally, the replacement of the rule simply appends the copy of the program
without declarations to the extracted declarations, yielding a result with all
declarations at the beginning of the program.

5.3 Declarations-to-Local

The other half of the movement challenge is the ability to make transformations
on an inner level that depend on things from an outer level. One such problem is
localization, in which things at an outer level are to be gathered and moved to an
inner level. It can be used to support clustering of related methods, refactoring
to infer methods, creation of inferred classes, and so on.

In this next problem, we assume that TIL is a scoped language rather than
unscoped. The idea is to find all declarations of variables that are artificially
global, and localize them as much as possible to the deepest inner scope in
which they are used. In some sense it is the inverse of the previous problem.

Figure 18 shows a TXL solution to this problem. The main rule for this
transformation uses two steps - “immediatize” and “localize”. The [immedia-
tizeDeclarations] rule moves declarations as far down in their scope as possible,
to immediately before the first statement that uses their declared variable.

For example, if we have the scope shown on the left below (a), then the first
step, [immediatizeDeclarations], will yield the intermediate result in the middle
(b). The second step, [localizeDeclarations], then looks for compound statements
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File "TILtolocal.txl"

% Move all declarations in a TIL program
% to their most local location

% Based on the TIL base grammar
include "TIL.grm"

% Preserve comments
#pragma -comment

% Transformation to move all declarations
% to their most local location -
% immediately before their first use,
% in the innermost block they can be.

rule main
% This rule’s pattern matches its result,
% so it has no natural termination point
replace [program]

Program [program]

% So we add an explicit fixed-point
% guard - after each application of the
% two transformations, we check to see
% that something more was actually done
construct NewProgram [program]

Program [immediatizeDeclarations]
[localizeDeclarations]

deconstruct not NewProgram
Program

by
NewProgram

end rule

rule immediatizeDeclarations
% Move declarations past statements
% that don’t depend on them.
% Use a one pass ($) traversal
replace $ [statement*]

’var V [id];
Statement [statement]
MoreStatements [statement*]

% We can move the declaration past a
% statement if the statement does not
% refer to the declared variable
deconstruct not * [id] Statement

V
by

Statement
’var V;
MoreStatements

end rule

rule localizeDeclarations
% Move declarations outside a structured
% statement inside if following statements
% do not depend on the declared variable.
% Again, use a one pass ($) traversal
replace $ [statement*]

Declaration [declaration]
CompoundStatement [statement]
MoreStatements [statement*]

% Check that it is some kind of compound
% statement (one with a statement list inside)
deconstruct * [statement*] CompoundStatement

_ [statement*]

% Check that the following statements
% don’t depend on the declaration
deconstruct * [id] Declaration

V [id]
deconstruct not * [id] MoreStatements

V

% Alright, we can move it in.
% Another solution might use agile parsing
% to abstract all these similar cases into one
by

CompoundStatement
[injectDeclarationWhile Declaration]
[injectDeclarationFor Declaration]
[injectDeclarationIfThen Declaration]
[injectDeclarationIfElse Declaration]

MoreStatements
end rule

function injectDeclarationWhile
Declaration [declaration]

% There is no legal way that the while
% Expn can depend on the declaration,
% since there are no assignments between
% the declaration and the Expn
replace [statement]

’while Expn [expression] ’do
Statements [statement*]

’end;
by

’while Expn ’do
Declaration
Statements

’end;
end function

. . . (other injection rules similar)

Fig. 18. TXL transformation to localize all declarations

into which an immediately preceding declaration can be moved, and moves the
declaration (“var x;” in the example) inside, yielding the result (c) on the right.

var y;
var x;
read y;
y := y + 6;
if y > 10 then

x := y * 2;
write x;

end;

(a)

var y;
read y;
y := y + 6;
var x;
if y > 10 then

x := y * 2;
write x;

end;

(b)

var y;
read y;
y := y + 6;
if y > 10 then

var x;
x := y * 2;
write x;

end;

(c)
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Paradigm. Transformation to a fixed point. Because declarations may be more
than one level too global, the process must be repeated on the result until a
fixed point is reached. This is encoded in the main rule, which is an instance of
the standard fixed-point paradigm for TXL rules.

Although its only purpose is to invoke the other rules, [main] is a rule rather
than a function because we expect it to continue to look for more opportunities
to transform its result after each application. But unless we check that some-
thing was actually done on each application, the rule will never halt since its
replacement NewProgram is a [program] and therefore matches its pattern. To
terminate the rule, we use a deconstructor as an explicit fixed-point test:

deconstruct not NewProgram
Program

The deconstructor simply tests whether the set of rules has changed anything on
each repeated application, that is, if the NewProgram is exactly the same as the
matched Program. If nothing has changed, we are by definition at a fixed point.
This rule is a complete generic paradigm for fixed-point application of any rule
set - only the set of rules applied in the constructor changes.

Paradigm. Dependency sorting. The rule [immediatizeDeclarations] works by
iteratively moving declarations over statements that do not depend on them. In
essence, this is a dependency sort of the code. The rule continues to move dec-
larations down until every declaration is immediately before the first statement
that uses its declared variable. (This could be done more efficiently by moving
declarations directly, but our purpose here is to demonstrate as many paradigms
as possible in the clearest and simplest way.) Dependency sorting in this way is
a common paradigm in TXL, and we will see it again in other solutions.

Paradigm. Deep pattern match. The dependency test uses another common
paradigm in TXL - a deep deconstruct. This is similar to the negated deconstruct
used in the previous problem, but this time we are not just interested in whether
Statement does not match something, we are interested in whether it does not
contain something. Deep deconstructs test for containment by specifying the
type of the pattern they are looking for inside the bound variable, and a pattern
of that type to find. In this case, we are looking to see if there is an instance of
an identifier (type [id]) exactly like the declared one (bound to V).

Paradigm. One pass rules. The [immediatizeDeclarations] rule also demon-
strates another paradigm of TXL - the “one-pass” rule. If there are two dec-
larations in a row, this rule will contually move them over one another, never
coming to a fixed point. For this reason, the rule is marked as one-pass using
replace $. This means that the scope should be searched in linear fashion for
instances of the pattern, and replacements should not be directly reexamined
for instances of the pattern. In this case, if we move a declaration over another,
we don’t try to move the other over it again because we move on to the next
sequence of statements in one-pass rather than recursive fashion.

The second rule in this transformation, [localizeDeclarations], looks for in-
stances of a declaration that has been moved to immediately before a compound



Excerpts from the TXL Cookbook 59

statement (such as if, while, for) and checks to see whether it can be moved
inside the statement’s scope. The rule uses all of the paradigms outlined above -
it is one-pass (replace $) so that it does not try the same case twice, and it uses
deep pattern matching both to get the declared identifier V from the Declaration
and to check that the following statements MoreStatements do not depend on
the declaration we want to move inside, by searching for uses of V in them.

A new use of deconstruct in this rule is the deep deconstruct of Compound-
Statement, which is simply used to check that we actually have an inner scope
in the statement in which to move the declaration.

Paradigm. Multiple transformation cases. The replacement of this rule demon-
strates another paradigm, the programming of cases in TXL. There are several
different compound statements into which we can move the declaration: while
statements, for statements, then clauses and else clauses. Each one is slightly
different, and so they have different patterns and replacements. In TXL such
multiple cases use one function for each case, all applied to the same scope.

In essence this is the paradigm for case selection or if-then-else in TXL -
application of one function for each case. Only one of the functions will match
any particular instance of CompoundStatement, and the others that do not
match will leave the scope untouched. TXL functions and rules are total, that is,
they have a defined result, the identify transformation, when they do not match.

Paradigm. Context-dependent transformation rules. In each case, the Declara-
tion to be inserted into the CompoundStatement is passed into the function for
the case using a rule parameter. Rule parameters allow us to carry context from
outer scopes into rules that transform inner scopes, and this is the paradigm for
context-dependent transformation in TXL. In this case we pass the Declaration
from the outer scope into the rule that transforms the inner scope.

The context carried in can be arbitrarily large or complex - for example, if
the inner transformation rule wanted to change small things inside its scope
but depended on global things, we could pass a copy of the entire program into
the rule. Outer context can also be passed arbitrarily deeply into subrules, so if
a small change deeply inside a sub-sub-subrule depended on something in the
outer scope, we could pass a copy all the way in.

5.4 Goto Elimination

The flagship of all restructuring problems is goto elimination - the inference of
structured code such as while loops and nested if-then-else from spaghetti-coded
goto statements in legacy languages such as Cobol. In this example we imagine
a dialect of TIL that has goto statements, and infer equivalent while statements
where possible. Figure 19 gives the grammar for a dialect of TIL that adds goto
statements and labels, so that we can write programs like the one shown on
the left below (a). Our goal is to recognize and transform loop-equivalent goto
structures into their while loop form, like the result (b) on the right.
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// Factor an input number
var n;
var f;
write "Input n please";
read n;
write "The factors of n are";
f := 2;
// Outer loop over potential factors
factors:

if n = 1 then
goto endfactors;

end;
// Inner loop over multiple instances
// of same factor
multiples:

if (n / f) * f != n then
goto endmultiples;

end;
write f;
n := n / f;
goto multiples;

endmultiples:
f := f + 1;
goto factors;

endfactors:

(a)

// Factor an input number
var n;
var f;
write "Input n please";
read n;
write "The factors of n are";
f := 2;
// Outer loop over potential factors
while n != 1 do

// Inner loop over multiple instances
// of same factor
while (n / f) * f = n do

write f;
n := n / f;

end;
f := f + 1;

end;

(b)

An example TXL solution to the problem of recognizing and transforming
while-equivalent goto structures is shown in Figure 19. The basic strategy is to
catalogue the patterns of use we observe, encode them as patterns, and use one
rule per pattern to replace them with their equivalent loop structures. In practice
we would first run a goto normalization (feature reduction) transformation to
reduce the number of cases.

The program presently recognizes two cases: “forward’ while structures, which
begin with an if statement guarding a goto and end with a goto back to the if
statement, and “backward” whiles, which begin with a labelled statement and
end with an if statement guarding a goto branching back to it.

By now most of the TXL code will be looking pretty familiar. However, this
example has two new paradigms to teach us. The first is the match of the pattern
in the rule [transformForwardWhile]. Ideally, we are looking for a pattern of the
form:

replace [statement*]
L0 [label] ’:

’if C [expression] ’then
’goto L1 [label] ’;

’end;
Statements [statement*]
’goto L0 ’;

L1 ’:
Follow [statement]

Rest [statement*]

Paradigm. Matching a subsequence. The trailing Rest [statement*] is necessary
since we are matching a subsequence of an entire sequence. If the pattern were
to end without including the trailing sequence (i.e., without Rest), then it would
only match when the pattern appeared as the last statements in the sequence of
statements, which is not what we intend.
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File "TILgotos.grm"

% Dialect of TIL that adds goto statements

redefine statement
...

| [labelled_statement]
| [goto_statement]
| [null_statement]

end redefine

define labelled_statement
[label] ’: [statement]

end define

define goto_statement
’goto [label] ’; [NL]

end define

% Allow for trailing labels
define null_statement

[NL]
end define

define label
[id]

end define

% Add missing "not" operator to TIL
redefine primary

...
| ’! [primary]

end redefine

File "TILgotoelim.txl"

% Goto elimination in TIL programs

% Recognize and resolve while-equivalent
% goto structures.

% Using the goto dialect of basic TIL
include "TIL.grm"
include "TILgotos.grm"

% Preserve comments in this transformation
#pragma -comment

% Main program - just applies the rules
% for cases we know how to transform.

function main
replace [program]

P [program]
by

P [transformForwardWhile]
[transformBackwardWhile]

end function

% Case 1 - structures of the form
% loop:
% if Cond then goto endloop; end
% LoopStatements
% goto loop;
% endloop:
% TrailingStatements

rule transformForwardWhile
% We’re looking for a labelled if guarding
% a goto - it could be the head of a loop
replace [statement*]

L0 [label] ’:
’if C [expression] ’then

’goto L1 [label] ’;
’end;

Rest [statement*]
% If we have a goto back to the labelled if,
% we have a guarded loop (i.e., a while)
% The "skipping" makes sure we look only
% in this statement sequence, not deeper
skipping [statement]
deconstruct * Rest

’goto L0 ’;
L1 ’:

Follow [statement]
FinalRest [statement*]

% The body of the loop is the statements
% after the if and before the goto back
construct LoopBody [statement*]

Rest [truncateGoto L0 L1]
by

’while ’! (C) ’do
LoopBody

’end;
Follow
FinalRest

end rule

rule transformBackwardWhile

. . . (similar to above for backward case)

end rule

% Utility rule used by all cases

function truncateGoto L0 [label] L1 [label]
skipping [statement]
replace * [statement*]

’goto L0 ’;
L1 ’:

Follow [statement]
FinalRest [statement*]

by
% nothing

end function

Fig. 19. TXL dialect grammar to add goto statements and labels to TIL, and trans-
formation to eliminate gotos (showing first case only)

What is not so obvious is why we could not simply write the pattern above
directly in the rule. The reason again has to do with the definition of [X*],
which as we recall is recursively defined as [X] [X*] or empty. The pattern above
is trying to match [statement] [statement*] [statement] [statement] [statement*],
which can’t be parsed using that definition no matter how we group it.
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Paradigm. Matching a gapped subsequence. The TXL paradigm to match such
“gapped” sequences is the one used in the [transformForwardWhile] rule. In it,
we first match the head of the pattern we are looking for, that is, the leading
if statement and the statements following it. We then search in the statements
following it for the trailing pattern, the goto back and the ending forward label.
The trick of the paradigm is that we must not look inside the statements of
the sequence, because we want the trailing pattern to be in the same statement
sequence. This is achieved using a skipping deep deconstruct.

skipping [statement]
deconstruct * Rest

’goto L0 ’;
L1 ’:

Follow [statement]
FinalRest [statement*]

This deconstructor says that we only have a match if we can find the goto back
and the ending forward label without looking inside any of the statements in the
sequence (that is, if they are both at the same level, in the statement sequence
itself). “skipping [T]” limits a search to the parse tree nodes above any embedded
[T]s - in our case, above any statements, so that the goto back is in the same
sequence as the heading if statement, completing the pattern we are looking for.

Paradigm. Truncating the tail of a sequence. The other new paradigm this
example shows us is the truncation of a trailing subsequence, achieved by the
function [truncateGoto], which removes everything from the goto on from the
statements following the initial if statement. The trick in this function is to
look for the pattern heading the trailing subsequence we want to truncate, and
replacing it and the following items by an empty sequence. Once again we use the
skipping notation, since we don’t want to accidentally match a similar instance
in a deeper statement.

6 Optimization Problems

Source transformation tools are often used in source code optimization tasks of
various kinds, and TXL is no exception. In this section we attack some traditional
source code optimizations, observing the TXL paradigms that support these
kinds of tasks. Once again, our examples are based on the Tiny Imperative
Language (TIL) and its extensions.

6.1 Statement-Level Code Motion

The first example problem is on the border between restructuring and optimiza-
tion: moving invariant assignments and computations out of while loops. In the
first solution, we simply look for assignment statements in while loops that are
independent of the loop (that is, that don’t change over the iterations of the
loop). For example, in this loop, the assignment to x does not depend on the
loop and can be moved out:
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var j; var x; var y; var z;
j := 1; x := 5; z := 7;
while j != 100 do

y := y + j -1;
x := z * z;
j := j + 1;

end;

Figure 20 shows a solution to this problem for TIL programs. The key to the
solution is the function [loopLift], which, given a while loop and an assignment
statement in it, checks to see whether the assigned expression of the assignment
contains only variables that are not assigned in the loop, and that the assigned
variable of the assignment is assigned exactly once in the loop. If both these
conditions are met, then the assignment is moved out by putting a copy of it
before the loop and deleting it from the loop.

The function uses a number of TXL paradigms. It begins by deconstructing
the assignment statement it is passed to get its parts, then uses the extract
paradigm to get all of the variable references in the assigned expression. Both
of these paradigms we have seen before. The interesting new paradigm is the
guarding of the transformation using where clauses:

% We can only lift the assignment out if all the identifiers in its
% expression are not assigned in the loop ...
where not

Loop [assigns each IdsInExpression]

% ... and X itself is assigned only once
deconstruct * Body

X := _ [expression];
Rest [statement*]

where not
Rest [assigns X]

% ... and the effect of it does not wrap around the loop
construct PreContext [statement*]

Body [deleteAssignmentAndRest X]
where not

PreContext [refers X]

Paradigm. Guarding a transformation with a complex condition. Where clauses
guard the pattern match of a rule or function with conditions that are tested
by a subrule or set of subrules. If the where clause is positive (i.e., has no not
modifier), then the subrule must match its pattern for the rule to proceed. If it
is a where not, as in these cases, then it must not match its pattern.

Paradigm. Condition rules. The subrules used in a where clause are of a special
kind called condition rules, which have only a pattern and no replacement. The
pattern may be simple, as in the [assigns] and [refers] subrules of this example,
which simply check to see if their parameter occurs in the context of their scope,
or they may be complex, involving other deconstructors, where clauses and sub-
rules. In either case, a condition subrule simply matches its pattern or not, and
the where clause using it succeeds or not depending on whether it matches. If
multiple subrules are used in the condition, the where clause succeeds if any one
of them matches, and fails only if all do not match (or conversely for where not,
succeeds only if none match).
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File "TILcodemotion.txl"

% Lift independent TIL assignments outside
% of while loops

% Based on the TIL grammar
include "TIL.grm"

% Lift all independent assignments out of loops
rule main

% Find every loop
replace [statement*]

while Expn [expression] do
Body [statement*]

’end;
Rest [statement*]

% Get all the top-level assignments in it
construct AllAssignments [statement*]

Body [deleteNonAssignments]

% Make a copy of the loop to work on
construct LiftedLoop [statement*]

while Expn do
Body

’end;

% Only proceed if there are assignments
% left that can be lifted out.
% The [?loopLift] form tests if the
% [loopLift] rule can be matched -
% "each AllAssignments" tests this
% for any of the top-level internal
% assignments
where

LiftedLoop
[?loopLift Body each AllAssignments]

% If the above guard succeeds,
% some can be moved out, so go ahead
% and move them, replacing the original
% loop with the result
by

LiftedLoop
[loopLift Body each AllAssignments]
[. Rest]

end rule

% Attempt to lift a given assignment
% outside the loop

function loopLift Body [statement*]
Assignment [statement]

deconstruct Assignment
X [id] := E [expression];

% Extract a list of all the identifiers
% used in the expression
construct IdsInExpression [id*]

_ [^ E]

% Replace the loop and its contents
replace [statement*]

Loop [statement*]

% We can only lift the assignment out
% if all the identifiers in its
% expression are not assigned in the loop ...

where not
Loop [assigns each IdsInExpression]

% ... and X itself is assigned only once
deconstruct * Body

X := _ [expression];
Rest [statement*]

where not
Rest [assigns X]

% ... and the effect of it
% does not wrap around the loop
construct PreContext [statement*]

Body [deleteAssignmentAndRest X]
where not

PreContext [refers X]

% Now lift out the assignment
by

Assignment
Loop [deleteAssignment Assignment]

end function

% Utility rules used above

% Delete a given assignment from a scope

function deleteAssignment Assignment [statement]
replace * [statement*]

Assignment
Rest [statement*]

by
Rest

end function

% Delete all non-assignments in a scope

rule deleteNonAssignments
replace [statement*]

S [statement]
Rest [statement*]

deconstruct not S
_ [assignment_statement]

by
Rest

end rule

% Delete everything in a scope from
% the first assignment to X on

function deleteAssignmentAndRest X [id]
replace * [statement*]

X := E [expression];
Rest [statement*]

by
% nada

end function

% Does a scope assign to the identifier?

function assigns Id [id]
match * [assignment_statement]

Id := Expn [expression];
end function

% Does a scope refer to the identifier?

function refers Id [id]
match * [id]

Id
end function

Fig. 20. TXL transformation to lift independent assignments out of while loops
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Paradigm. Each element of a sequence. The first where condition in the [loopLift]
function also uses another paradigm - the each modifier.

where not
Loop [assigns each IdsInExpression]

each takes a sequence of type [X*] for any type [X], and calls the subrule once
with each element of the sequence as parameter. So for example, if IdsInEx-
pression is bound to the sequence of identifiers “a b c”, then “where not Loop
[assigns each IdsInExpression]” means “where not Loop [assigns ’a] [assigns ’b]
[assigns ’c]”, and the guard succeeds only if none of the [assigns] calls matches its
pattern. This is a common TXL paradigm for checking multiple items at once.

The main rule in this example simply finds every while loop, extracts all the
assignment statements in it by making a copy of the statements in the loop body
and deleting those that are not assignments, and then calls [loopLift] with each
to try to move each of them outside the loop. Rather than use the fixed-point
paradigm, this main rule uses a where clause as a guard to check whether there
are any assignments to move in advance. To do this, it actually uses the [loopLift]
function itself to check - by converting it to a condition using [?].

where
LiftedLoop [?loopLift Body each AllAssignments]

Paradigm. Using a transformation rule as a condition. [?loopLift] means that
[loopLift] should not do any replacement - rather, it should act as a condition
rule, simply checking whether its complex pattern matches or not. Thus the
where clause above simply checks whether [loopLift] will succeed for any of the
assignments, and the rule only proceeds if at least one will match.

6.2 Common Subexpression Elimination

Common subexpression elimination is a traditional optimization transformation
that searches for repeated subexpressions whose value cannot have changed be-
tween two instances. The idea is to introduce a new temporary variable to hold
the value of the subexpression and replace all instances with a reference to the
temporary. For example, if the input contains the code on the left (a) below,
then the output should be the code (b) shown on the right.

var a; var b;
read a;
b := a * (a + 1);
var i;
i := 7;
c := a * (a + 1);

(a)

var a; var b;
read a;
var t;
t := a * (a + 1);
b := t;
var i;
i := 7;
c := t;

(b)

A TXL solution to this problem for TIL programs is shown in Figure 21.
The solution uses a number of new paradigms for us to look at. To begin, the
program uses agile parsing to modify the TIL grammar in two ways.

Paradigm. Grammatical form abstraction. First, it overrides the definition of
[statement] to gather all compound statements into one statement type. This
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File "TILcommonsubexp.txl"

% Recognize and optimize common subexpressions

% Based on the TIL base grammar
include "TIL.grm"

% Preserve comments
#pragma -comment

% Override to abstract compound statements
redefine statement

[compound_statement]
| ...

end redefine

define compound_statement
[if_statement]

| [while_statement]
| [for_statement]

end define

% Allow statements to be attributed
% so we don’t mistake one we’ve
% generated for one we need
% to process

redefine statement
...

| [statement] [attr ’NEW]
end redefine

% Main rule

rule main
replace [statement*]

S1 [statement]
SS [statement*]

% Don’t process statements we generated
deconstruct not * [attr ’NEW] S1

’NEW

% We’re looking for an expression ...
deconstruct * [expression] S1

E [expression]

% ... that is nontrivial ...
deconstruct not E

_ [primary]

% ... and repeated
deconstruct * [expression] SS

E

% See if we can abstract it
% (checks if variables assigned between)
where

SS [?replaceExpnCopies S1 E ’T]

% If so, generate a new temp name ...
construct T [id]

_ [+ "temp"] [!]

% ... declare it, assign it the expression,
% and replace instances with it
by

’var T; ’NEW
T := E; ’NEW
S1 [replaceExpn E T]
SS [replaceExpnCopies S1 E T]

end rule

% Recursively replace copies of a given
% expression with a given temp variable id,
% provided the variables used in the
% expression are not assigned in between

function replaceExpnCopies S1 [statement]
E [expression] T [id]

construct Eids [id*]
_ [^ E]

% If the previous statement did not assign
% any of the variables in the expression
where not

S1 [assigns each Eids]

% Then we can continue to substitute the
% temporary variable for the expression
% in the next statement ...
replace [statement*]

S [statement]
SS [statement*]

% ... as long as it isn’t a compound
% statement that internally assigs one of
% the variables in the expression
where not all

S [assignsOne Eids]
[isCompoundStatement]

by
S [replaceExpn E T]
SS [replaceExpnCopies S E T]

end function

% Check to see if a statement assigns
% any of a list of variables

function assignsOne Eids [id*]
match [statement]

S [statement]
where

S [assigns each Eids]
end function

function assigns Id [id]
match * [statement]

Id := _ [expression] ;
end function

function isCompoundStatement
match [statement]

_ [compound_statement]
end function

rule replaceExpn E [expression] T [id]
replace [expression]

E
by

T
end rule

Fig. 21. TXL transformation to recognize and optimize common subexpressions
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redefinition takes advantage of TXL’s programmed parsing to prefer that if,
while and for statements be parsed as [compound statement]. The original forms
are still in the definition of [statement] (denoted by “...”), but since our new form
appears first, all of them will be parsed as [compound statement]. This paradigm
is often used to gather forms so that we can use one rule to target all of the forms
at once rather than having several rules for the different grammatical types.

Paradigm. Marking using attributes. The second technique used here is gram-
mar attributes, denoted by the [attr] modifier. TXL grammar attributes denote
optional parts of the grammar that will not appear in the unparsed output text.
They can be of any grammatical type, including complex types with lots of infor-
mation in them. In this case, the attribute is simply the identifier “NEW”, and it
is added to allow us to mark statements that are inserted by the transformation
so that we don’t mistake them for a statement to be processed.

Marking things that have been generated or already processed using attributes
is a common technique in TXL, and is often the easiest way to distinguish things
that have been processed from those that have not. The new attributed form is
recursive, allowing any statement to be marked as “NEW”.

The main rule finds any statement containing a nontrivial expression, de-
termined by deconstructing it to ensure that it is not simply a [primary]. It
then deconstructs the following statements to determine if the expression is re-
peated in them. If so, then it uses the conditional guard paradigm to check that
the repetition will be legally transformable [?replaceExpnCopies]. A new unique
temporary name of the form “temp27” is then created using the unique iden-
tifier paradigm, and finally, statements are generated to declare and assign the
expression to the new temporary.

This is where the NEW attribute comes in. By marking the newly generated
statements with the NEW attribute, we are sure that they will not be matched
by the main rule and reprocessed. The remainder of the replacement copies the
original statement and following statements, substituting the new temporary
name for the expression in the original statement [replaceExpn E T] and any
subsequent uses in following statements [replaceExpnCopies S1 E T].

Paradigm. Tail-recursive continuation. Rule [replaceExpnCopies] (Figure 21)
introduces us to another new paradigm - continuing a transformation through a
sequence as long as some condition holds. In this case, we can continue to sub-
stitute the temporary name for the common expression as long as the variables
in the expression are not assigned to.

In TXL such situations are encoded as a tail-recursive function, which pro-
cesses each statement one by one checking that the conditions still hold, until it
fails and terminates the recursion. In each recursion we pass the previous state-
ment as parameter, and first check that it has not assigned any of the identifiers
used in the expression, again using the where-not-each paradigm of the previous
problem. We then match the next statement in the sequence, and check that it is
not a compound statement that assigns any of the identifiers in the expression.
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Paradigm. Guarding with multiple conditions. This check uses a new paradigm
- where not all. As we’ve seen in previous paradigms, where clauses normally
check whether any of the condition rules matches. When all is specified, the
check is whether all of the condition rules match. Thus the where clause here:

where not all
S [assignsOne Eids]

[isCompoundStatement]

checks whether it is both the case that one of the identifiers used in the expression
is assigned by the statement, and that the statement is a compound statement
(in which case our simple algorithm choose to give up and stop).

If the check succeeds and either the statement is not a compound statement
or does not assign any of the variables in the original expression, then instances
of the expression are substituted in the matched statement and we recursively
move on to the next one.

6.3 Constant Folding

Constant folding, or optimizing by recognizing and precomputing compile-time
known subexpressions, is another traditional optimization technique. In essence,
the solution is a partial evaluation of the program, replacing named constants
by their values and interpreting resulting operations on those values. Thus a
constant folding algorithm must have rules to evaluate much of the expression
sublanguage of the target language.

The solution for TIL (Figure 22) is in two parts: recognition and substitution
of constant assignments to variables that are not destroyed, and interpretation
of constant subexpressions. Of course, these two processes interact, because sub-
stitution of constant values for variables yields more constant subexpressions to
evaluate, and evaluation of constant subexpressions yields more constant values
for variables. So in the main rule we see the now familiar paradigm for a fixed
point, continuing until neither rule changes anything.

The [propagateConstants] rule handles the first half of the problem, searching
for assignments of constant values to variables (e.g., “x := 5;”) that are not
destroyed by a subsequent assignment in the same statement sequence. The two
deep deconstructs of Rest are the key to the rule. The first one ensures that
the following statements do not subsequently assign to the variable, destroying
its constant value. The second one makes sure that there is a reference to the
variable to substitute. When both conditions are met, the value is substituted
for all references to the variable in the following statements.

The second half of the transformation is the interpretation of constant subex-
pressions (possibly created by the first half substituting constant variable values).
The rule [foldConstantExpressions] simply applies a set of rules each of which
knows how to evaluate an operator with constant operands. In addition to the
simple cases, a number of special cases, such as multiplying any expression by
zero, are also handled. [foldConstantExpressions] continues applying the set of
evaluation rules until none of them changes anything and a fixed point is reached.
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File "TILconst.txl"

% Constant propagation and folding for TIL

% Begin with the TIL base grammar
include "TIL.grm"

% Preserve comments in this transformation
#pragma -comment

% Main function

rule main
replace [program]

P [program]
construct NewP [program]

P [propagateConstants]
[foldConstantExpressions]

deconstruct not NewP
P

by
NewP

end rule

% Constant propagation - find each
% constant assignment to a variable,
% and if it is not assigned again then
% replace references with the constant

rule propagateConstants
replace [statement*]

Var [id] := Const [literal] ;
Rest [statement*]

deconstruct not * [statement] Rest
Var := _ [expression] ;

deconstruct * [primary] Rest
Var

by
Var := Const;
Rest [replaceExpn Var Const]

end rule

rule replaceExpn Var [id] Const [literal]
replace [primary]

Var
by

Const
end rule

% Constant folding - find and evaluate
% constant expressions

rule foldConstantExpressions
replace [expression]

E [expression]

construct NewE [expression]
E % Generic folding of pure
% constant expressions
[resolveAddition]
[resolveSubtraction]
[resolveMultiplication]
[resolveDivision]

% Other special cases
[resolveAdd0]
[resolveSubtract0]
[resolveMultiply1Right]
[resolveMultiply1Left]
[resolveParentheses]

% Continue until we don’t
% find anything to fold
deconstruct not NewE

E
by

NewE
end rule

% Utility rules to do the arithmetic
rule resolveAddition

replace [expression]
N1 [integernumber]

+ N2 [integernumber]
by

N1 [+ N2]
end rule

rule resolveSubtraction
replace [expression]

N1 [integernumber]
- N2 [integernumber]

by
N1 [- N2]

end rule

% ... other operator folding rules
. . .

Fig. 22. TXL transformation to fold constant subexpressions

6.4 Statement Folding

Our last optimization example is statement folding, the elimination of statements
that cannot be reached because the conditions that guard them are known at
compile time, for example, when an if condition is known to be true or false. In
practice, constant folding and statement folding go together - constant folding
precomputes conditional expressions, some of which are then known to be true or
false, allowing for statement folding. These problems are closely related to condi-
tional compilation. Transformations to implement preprocessors and conditional
compilation are essentially the same as constant and statement folding.

Figure 23 shows a TXL solution to the statement folding problem for TIL
if and while statements with known conditions. In this case the main rule is a
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File "TILstmtfold.txl"

% Statement folding using TIL

% Look for opportunities to reduce code
% footprint by optimizing out unreachable code

% Begin with the TIL base grammar
include "TIL.grm"

% Preserve comments
#pragma -comment

% Main function
function main

replace [program]
P [program]

by
P [foldTrueIfStatements]

[foldFalseIfStatements]
end function

% Folding rules for constant condition ifs

rule foldTrueIfStatements
% Find an if statement
replace [statement*]

’if Cond [expression] ’then
TrueStatements [statement*]
ElseClause [opt else_statement]

’end;
Rest [statement*]

% with a constant true condition
where

Cond [isTrueEqual] [isTrueNotEqual]

% and replace it with the true part
by

’// Folded true if
TrueStatements [. Rest]

end rule

rule foldFalseIfStatements
% Find an if statement
replace [statement*]

’if Cond [expression] ’then
TrueStatements [statement*]
ElseClause [opt else_statement]

’end;
Rest [statement*]

% with a constant false condition
where not

Cond [isTrueEqual]
[isTrueNotEqual]

% and replace it with the false part
construct FalseStatements [statement*]

_ [getElseStatements ElseClause]
by

’// Folded false if
FalseStatements [. Rest]

end rule

function getElseStatements
ElseClause [opt else_statement]

deconstruct ElseClause
’else

FalseStatements [statement*]
replace [statement*]

% default none
by

FalseStatements
end function

% Utility functions to detect statically
% true conditions - these can be as
% smart as we wish

. . .

Fig. 23. TXL transformation to fold known if statements

function, since none of the rules changes anything that may create new instances
of the others, and thus the fixed point paradigm is not needed.

Paradigm. Handling optional parts. In the false if condition case (rule [foldFal-
seIfStatements]) there is a new paradigm used to get the FalseStatements from
the else clause of the if statement. Beginning with an empty sequence using
the empty variable “ ”, a separate function is used to get the FalseStatements
from the else clause. The reason for this construction is that the [else statement]
is optional - there may not be one. So beginning with the assumption there is
none (i.e., the empty sequence) we used the [getElseStatements] function to both
check if there is one (by deconstructing the ElseClause) and if so to replace the
empty sequence by the FalseStatements.

Paradigm. Creating output comments. Both cases illustrate another TXL
paradigm - the creation of target language comments. Besides explicitly marking
identifiers intended to be literal output, quoting of items in TXL marks some-
thing to be lexically interpreted in the target language rather than TXL. Thus
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a target language comment can be created in a TXL replacement simply by pre-
quoting it (Figure 23, rule [foldFalseIfStmts]). This can be handy when marking
sections of code that have been transformed in output.

7 Static and Dynamic Analysis Problems

Now that we’ve tried some of the simpler problems and introduced many of
the standard paradigms for using TXL, it’s time to attack some more realistic
challenges. Static and dynamic analysis tasks, including program comprehension,
security analysis, aspect mining and other analyses, are commonly approached
using parsing and source transformation tools. In this section we demonstrate
the use of TXL in several example static and dynamic analyses, including static
metrics, dynamic tracing, type inference, slicing, clone detection, code markup,
unique renaming and fact extraction.

7.1 Program Statistics

In our first analysis example, we demonstrate TXL’s use in computing static
program metrics. Figure 24 shows a TXL program designed to gather statement
usage statistics for TIL programs. The input is any TIL program, and the output
is empty. However, the program uses the TXL message built-in functions to print
out several statement statistics about the program on the standard error stream
as it matches the measured features. The error stream output of this program
when processing the “factors.til” program of Figure 7 looks like this:

Total: 11
Declarations: 2
Assignments: 3
Ifs: 0
Whiles: 2
Fors: 0
Reads: 1
Writes: 3

The program uses the TXL type extraction paradigm that we have seen before
to collect all statements of each type into sequences, and then counts them using
the sequence [length] built-in function to give the statistic.

Paradigm. Counting feature instances. This is a general paradigm that when
combined with agile parsing (to gather our desired grammatical forms) and the
filtering paradigm we have seen previously (to refine to the exact subset we are
interested in) can be used to count instances of any feature or pattern in the
program, including most standard static metrics. An important point here is the
use of the empty variable “ ” as the [number] scope of the counting constructors.
When used in a [number] context, the empty variable plays the role of the value
zero, which is often a good place to start a numeric computation.

Paradigm. Dynamic error stream output. The program uses the TXL error
stream built-in function [putp] to output messages reporting the statistics as
they are computed. [putp] is modeled after the C printf function, and acts in
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File "TILstats.txl"

% Gather TIL statement statistics

% Begin with the TIL base grammar
include "TIL.grm"

% Compute and output statement kind counts,
% and replace program with an empty one.
% There are many different ways to do this -
% this naive way is simple and obvioulsy
% correct, but exposes TXL’s need for generics.
% Another less clear solution could use
% polymorphism to avoid the repetition.

function main
replace [program]

Program [program]

% Count each kind of statement we’re
% interested in by extracting all of
% each kind from the program

construct Statements [statement*]
_ [^ Program]

construct StatementCount [number]
_ [length Statements]

[putp "Total: %"]

construct Declarations [declaration*]
_ [^ Program]

construct DeclarationsCount [number]
_ [length Declarations]

[putp "Declarations: %"]

construct Assignments [assignment_statement*]
_ [^ Program]

construct AssignmentsCount [number]
_ [length Assignments]

[putp "Assignments: %"]

construct Ifs [if_statement*]
_ [^ Program]

construct IfCount [number]
_ [length Ifs] [putp "Ifs: %"]

construct Whiles [while_statement*]
_ [^ Program]

construct WhileCount [number]
_ [length Whiles] [putp "Whiles: %"]

construct Fors [for_statement*]
_ [^ Program]

construct ForCount [number]
_ [length Fors] [putp "Fors: %"]

construct Reads [read_statement*]
_ [^ Program]

construct ReadCount [number]
_ [length Reads] [putp "Reads: %"]

construct Writes [write_statement*]
_ [^ Program]

construct WriteCount [number]
_ [length Writes] [putp "Writes: %"]

by
% nothing

end function

Fig. 24. TXL transformation to collect and report statement statistics

much the same way, printing out its string parameter with the output text of the
scope it is applied to substituted for the “%” in the string. In this case, the scope
is a [number], and the corresponding number value is printed in the message.

In general, the scope of [putp] can be any type at all, and both [putp] and its
simpler form [put], which takes no parameter and simply prints out the text of
its scope, can be used to instrument and debug TXL programs as they execute.

7.2 Self Tracing Programs

The addition of auxiliary monitoring code to a program is a common transfor-
mation task, and in this example we demonstrate the paradigms for adding such
code using TXL. The problem is to transform a TIL program to a self-tracing
version of itself, one that prints out each statement just before it is executed.
This is a model for a large number of transformations used in instrumentation
and dynamic analysis tasks such as test coverage and dynamic flow analysis.

To distinguish statements that are generated or have already been processed
by the transformation, the program uses the same attribute marking paradigm
we have seen before to mark statements that have been generated or already
processed, in this case marking with the attribute “TRACED”.

Paradigm. Eliding detail. In order that we don’t print out entire multi-line
messages for compound statements, the program also allows for an elision marker
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File "TILtrace.txl"

% Make a TIL program self-tracing

% Replaces every statement with a write
% statement of its text followed by itself

% Begin with the TIL base grammar
include "TIL.grm"

% Don’t bother preserving comments,
% we only want to run the result

% Pragma to tell TXL that our string
% escape convention uses backslash
#pragma -esc "¨

% Allow elided structured statements

redefine statement
...

| [SP] ’... [SP]
end redefine

% Allow for traced statements - the TRACED
% attribute marks statements already done

redefine statement
...

| [traced_statement]
end redefine

define traced_statement
[statement] [attr ’TRACED]

end define

% Main rule

rule main
% Result has two statements where one
% was before, so work on the sequence
replace [statement*]

S [statement]
Rest [statement*]

% Semantic guard: if it’s already
% done don’t do it again
deconstruct not S

_ [statement] ’TRACED
% Make a concise version of
% structured statements
construct ConciseS [statement]

S [deleteBody]
% Get text of the concise statement
construct QuotedS [stringlit]

_ [+ "Trace: "] [quote ConciseS]
by

’write QuotedS; ’TRACED
S ’TRACED
Rest

end rule

% Utility function - replace the body
% of a structured statement with ...

function deleteBody
replace * [statement*]

_ [statement*]
by

’...
end function

Fig. 25. TXL transformation to transform TIL program to self-tracing

“...” as a [statement]. This is used in the function [deleteBody], which makes a
copy of a statement in which the body has been replaced by “...” so that the
trace will be more terse. The function uses a deep search (replace * ) to find the
outermost sequence of statements embedded in the statement which is its scope.

The main rule does all of the work, searching for every statement that has not
yet been transformed (i.e., that is not yet marked with the attribute TRACED)
and inserting a write statement to print out its quoted text before it is executed.
Both the write statement and the original are attributed with TRACED in the
replacement so that they are not themselves transformed again.

Once again we see the paradigm for replacing one element of a sequence with
more than one by targeting the higher level sequence [statement*] rather than
the element [statement] - and again the pattern and replacement of the rule must
preserve the Rest of the statements following the one we are transforming.

Paradigm. Converting program text to strings. The construction of the quoted
string version of the statement’s text to be printed in the trace uses the TXL
string manipulation built-in functions [+] and [quote]. Beginning with an empty
[stringlit], once again denoted by the empty variable “ ”, the constructor con-
catenates the string literal ”Trace: ” to the quoted text of the statement.

construct QuotedS [stringlit]
_ [+ "Trace: "] [quote ConciseS]
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The [quote] built-in function creates a string literal containing the text of its
parameter, which may be any grammatical type, and concatenates it to its scope,
in this case the string “Trace: ”. The output of a run of the traced version of the
“factors.til” TIL program of Figure 7, when executed, looks like this:

Trace: var n;
Trace: write "Input n please";
Input n please
Trace: read n;
read: 6
Trace: write "The factors of n are";
The factors of n are
Trace: var f;
Trace: f := 2;

Trace: while n != 1 do ... end;
Trace: while (n / f) * f = n do ... end;
Trace: write f;
2
Trace: n := n / f;
Trace: f := f + 1;
Trace: while (n / f) * f = n do ... end;
Trace: write f;
3

7.3 Type Inference

Calculation of derived or inferred attributes of items in a program is a common
analysis task, forming part of type checking, optimization of dynamically typed
programs, translation between languages, and business type analysis such as the
Y2K problem. In this example we demonstrate the TXL paradigms for concrete
and abstract type inference, using a transformation to infer static types for the
untyped variables in a TIL program from the contexts in which they are used.

TIL declares untyped variables, originally intended to be all integer. However,
the addition of string values to the language led to string variables, making the
language effectively dynamically typed. However, perhaps TIL variables could
be statically typed if they are used consistently. This transformation infers the
type of every variable in a TIL program from its uses and explicitly adds types
to declarations using the new form: “var x: integer;” where the valid types are
“integer” and “string”. Variables of inconsistent type are flagged as an error.

Figure 26 shows a solution to this problem. Using the precedence (PRIOR-
ITY) version of the TIL grammar, the program begins with several grammar
overrides. First, the new form of declarations is added, by allowing for an op-
tional type specification on each variable declaration. Types “int”, “string” and
“UNKNOWN” are allowed. The special type UNKNOWN is included so that we
can mark variables whose type is inconsistent or that we cannot infer, so that
error messages can be generated when we are done.

Next, we override the definition of [primary] to allow for a type attribute
on every variable reference, literal constant and parenthesized expression in the
program. We will use these attributes to record local inferences we make about
types of variables and expressions.

Finally, to make the transformation more convenient, we use agile parsing to
make the grammar easier to deal with for this particular problem. Everywhere
in the TIL grammar where a variable appears as an [id] (i.e., “left hand side”
references outside of expressions), we allow instead a [primary], so that it can
be type attributed in the same way as in expressions.

redefine assignment_statement
[primary] ’:= [expression] ’; [NL]

end redefine
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File "TILtypeinfer.txl"

% Infer types for variables and expressions

% Infer all expression and variable types,
% add types to variable declarations,
% and flag type conflicts.

% Based on the TIL base grammar
include "TIL.grm"

% Preserve comments
#pragma -comment

% Allow type specs on declarations.

redefine declaration
’var [primary]

[opt colon_type_spec] ’; [NL]
end redefine

define colon_type_spec
’: [type_spec]

end define

define type_spec
’int | ’string | ’UNKNOWN

end define

% Allow type attributes on primaries.

redefine primary
[subprimary] [attr type_attr]

end redefine

define subprimary
[id] | [literal] | ’( [expression] ’)

end define

define type_attr
’{ [opt type_spec] ’}

end define

% Conflate all [id] refs to [primary],
% to make attribution rules simpler.

redefine assignment_statement
[primary] ’:= [expression] ’; [NL]

end redefine

redefine for_statement
’for [primary] := [expression]

’to [expression] ’do [IN][NL]
[statement*] [EX]

’end ’; [NL]
end redefine

redefine read_statement
’read [primary] ’; [NL]

end redefine

% The typing process has several steps:

% 1. introduce complete parenthesization,
% 2. enter default empty type attributes,
% 3. attribute literal expressions,
% 4. infer attributes from context until
% a fixed point is reached,
% 5. set type attribute of uninferred
% items to UNKNOWN,
% 6. add declaration types from variables’
% inferred type attribute,
% 7. report errors (i.e., UNKNOWN types),
% 8. undo complete parenthesization.

function main
replace [program]

P [program]
by

P [bracket]
[enterDefaultAttributes]
[attributeStringConstants]
[attributeIntConstants]
[attributeProgramToFixedPoint]
[completeWithUnknown]
[typeDeclarations]
[reportErrors]
[unbracket]

end function

% Rules to introduce and undo complete
% parenthesization to allow for detailed
% unambiguous type attribution

function bracket
replace [program]

P [program]
by

P [bracketExpressions]
[bracketComparisons]
[bracketTerms] [bracketFactors]

end function

rule bracketExpressions
skipping [expression]
replace [expression]

E [expression] Op [logop] C [comparison]
by

’( E [bracketExpressions]
Op C [bracketExpressions] ’)

end rule

. . . (bracketComparisons, bracketTerms,
bracketFactors similar)

function unbracket
replace [program]

P [program]
by

P [unbracketExpressions]
[unbracketComparisons]
[unbracketTerms] [unbracketFactors]

end function

rule unbracketExpressions
replace [expression]

’( E [expression] ’)
{ Type [type_spec] }

by
E

end rule

. . . (unbracketComparisons, unbracketTerms,
unbracketFactors similar)

% Rule to add empty type attributes
% to every primary expression and variable

rule enterDefaultAttributes
replace [attr type_attr]
by

{ }
end rule

Fig. 26. TXL transformation to infer types of TIL variables
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% The meat of the type inference algorithm.
% Infer empty type attributes from the types
% in the context in which they are used.
% Continue until no more can be inferred.

rule attributeProgramToFixedPoint
replace [program]

P [program]
construct NP [program]

P [attributeAssignments]
[attributeExpressions]
[attributeComparisons]
[attributeTerms]
[attributeFactors]
[attributeForIds]
[attributeDeclarations]

deconstruct not NP
P

by
NP

end rule

rule attributeStringConstants
replace [primary]

S [stringlit] { }
by

S { string }
end rule

rule attributeIntConstants
replace [primary]

I [integernumber] { }
by

I { int }
end rule

rule attributeAssignments
replace [assignment_statement]

X [id] { } := SP [subprimary]
{Type [type_spec] };

by
X { Type } := SP { Type };

end rule

. . . (attributeForIds similar)

rule attributeExpressions
replace [primary]

( P1 [subprimary] {Type [type_spec]}
Op [logop] P2 [subprimary] {Type} ) { }

by
( P1 {Type} Op P2 {Type} ) {Type}

end rule

. . . (attributeComparisons, attributeTerms,
attributeFactors similar)

rule attributeDeclarations
replace [statement*]

’var Id [id] { } ;
S [statement*]

deconstruct * [primary] S
Id { Type [type_spec] }

by
’var Id { Type };
S [attributeReferences Id Type]

end rule

rule attributeReferences
Id [id] Type [type_spec]

replace [primary]
Id { }

by
Id { Type }

end rule

% Once a fixed point has been reached,
% set all such remaining empty type
% attributes to UNKNOWN.

rule completeWithUnknown
replace [attr type_attr]

{ }
by

{ UNKNOWN }
end rule

% Add an explicit type to every untyped
% variable declaration, from the
% variable’s inferred type attribute.

rule typeDeclarations
replace [declaration]

’var Id [id] { Type [type_spec] };
by

’var Id { Type } : Type;
end rule

% Report type errors. An UNKNOWN
% attribute indicates either a conflict or
% not enough information to infer a type.

rule reportErrors
replace $ [statement]

S [statement]
skipping [statement*]
deconstruct * [type_spec] S

’UNKNOWN

% Issue an error message.
% [pragma "-attr"] allows attributes
% to be printed in the message.

construct Message [statement]
S [pragma "-attr"] [message

"*** ERROR: Unable to resolve types in:"]
[stripBody] [putp "%"]
[pragma "-noattr"]

by
S

end rule

function stripBody
replace * [statement*]

_ [statement*]
by

% nothing
end function

Fig. 27. TXL transformation to infer types of TIL variables (continued)
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redefine for_statement
’for [primary] := [expression] ’to [expression] ’do [IN][NL]

[statement*] [EX]
’end [NL]

end redefine

redefine read_statement
’read [primary] ’; [NL]

end redefine

Paradigm. Grammatical form generalization. Technically this allows for many
forms that are not legal in TIL - for example, the form “4 := 7;”. But since
this is a program analysis transformation, we can assume that our input is well-
formed. This is a general paradigm in TXL - using a more lenient grammar than
the target language in order to subsume forms that will be handled in the same
way into a single grammatical type in order to simplify transformation rules.
This is the core idea in agile parsing [13].

The transformation rules use a number of new paradigms: normalization of
the program so that all cases are the same, inference of attributes to a fixed
point using a set of local inference rules, promotion of locally inferred attributes
to the global scope, and denormalization of the final result.

Paradigm. Program normalization. In this case the normalization is simple -
the normalizing rule [bracketExpressions] converts every [expression] in the pro-
gram to a fully parenthesized version. Full parenthesization both makes every
expression into a [primary], which allows it to be attributed with a type due to
the overrides above, and limits every [expression] to one operator, since subex-
pression operands will be also be fully parenthesized. This reduces our inference
problem to only one case - that of a single operator, simplifying and clarifying
the inference rules. This kind of simplifying normalization is typical of many
source analysis tasks, and is essential to any complex inference problem in TXL.

The denormalizing rule [unbracketExpressions] both unparenthesizes and re-
moves the inferred type attribute of the expression, since the result of type
inference is in the explicit types on variable declarations in the result.

Paradigm. Default analysis results. Following normalization, a default empty
type attribute is added to every [primary] in the input program using the rule
[enterDefaultAttributes]. This secondary normalization again reduces the num-
ber of cases, since rules can handle both attributed and unattributed primaries
in the same way. Such defaulting is also typical of inference tasks in TXL.

Once these normalizations are complete, the actual type inference algorithm is
simple - we just look for opportunities to infer the type of as yet untyped items in
a context where other types are known. This begins with simple typing of literal
primaries, whose type is native to their value, using the rules [attributeString-
Constants] and [attributeIntConstants]. This is the base case of the inductive
inference algorithm.

Paradigm. Inductive transformation. The process then proceeds using a small
set of contextual inference rules, using the fixed-point paradigm to halt when not
more types can be inferred. The key rule is [attributeOperations], which infers
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the type of an operator expression from the types of its operands, which looks for
operations with two operands of the same type, and infers that the result must
also be of that type. Of course, such inference rules depend on the programming
language, but the basic strategy remains the same.

Another key inference rule is [attributeDeclarations], which infers the type of
a variable declaration from any one of its references, and then marks all other
references with the same type. [attributeDeclarations] uses a deep deconstructor
of the statements following the declaration to see if a type has been inferred
for any reference to the variable, and if so, gives the declaration that type and
marks all other references in the following statements with it. (Using the local-
to-global paradigm we saw in the restructuring examples.) This new typing can
in turn can give more information for the next iteration of the operator inference
rule above, and so on. Once the inference rules have come to a fixed point, any
remaining unknown types are given the special type UNKNOWN.

Finally, we insert the inferred types into all variable declarations, and then
report errors by printing out all statements containing types we could not infer
- those attributed as UNKNOWN.

construct Message [statement]
S [pragma "-attr"]

[message "*** ERROR: Unable to resolve types in:"] [stripBody] [putp "%"]
[pragma "-noattr"]

Paradigm. Making attributes visible. The message constructor illustrates the
ability of TXL to include attributes in the output text - by turning on the “-
attr” option, attributes are printed in the output text, in this case of the [putp]
function, so that they can be seen in the error message:

"*** ERROR: Unable to resolve types in:
x {UNKNOWN} := ( y {string} + 1 {int} ) {UNKNOWN};

The [pragma] function allows us to turn TXL options on and off dynamically.

7.4 Static Slicing

Dependency analysis is an important and common static analysis technique, and
one of the most common dependency analyses is the static slice. As defined by
Weiser [22], a (backward) slice is the executable subset of the statements in a
program that preserves the behavior observable at a particular statement. If the
slice is executed with the same input as the program, then all variable values
when the slice reaches the statement will be the same as if the original program
were to be executed to the same point. Often the value of one particular variable
is designated as the one of interest, in which case values of others can be ignored.

Slicing algorithms are usually carried out by building a dependency graph for
the program and then using graph algorithms to reduce it to the slice, which
is mapped back to source statements afterward. However, as we have seen in
the type inference example, in TXL we can compute dependency chains directly,
using the inductive transformation paradigm.

Figure 28 shows a TXL program for backward slicing of TIL programs. The
program uses a related TXL paradigm called cascaded markup, in which, begin-
ning with one statement marked as the one of interest, statements which directly
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influence that statement are marked, and then those that influence those state-
ments, and so on until a fixed point is reached.

The program begins with grammar overrides to allow for XML-like markup of
TIL statements. The input to the program will have one such statement marked
as the one of interest, as shown on the left (a) below. The output slice for this
input is shown on the right (b).

var chars;
var n;
read n;
var eof_flag;
read eof_flag;
chars := n;
var lines;
lines := 0;
while eof_flag do

lines := lines + 1;
read n;
read eof_flag;
chars := chars + n;

end;
write (lines);

<mark> write (chars); </mark>

(a)

var chars;
var n;
read n;
var eof_flag;
read eof_flag;
chars := n;

while eof_flag do

read n;
read eof_flag;
chars := chars + n;

end;

write (chars);

(b)

Here the statement “write (chars);” has been marked. The challenge for the
slicer is to trace dependencies backwards in the program to mark only those
statements that can influence the marked one, yielding the backward slice for
the program (b).

Paradigm. Cascaded markup. The basic strategy is simple: an assignment to a
variable is in the backward slice if any subsequent use of the variable is already in
the slice. The rule that implements the strategy is [backPropogateAssignments]
(Figure 28). We have previously seen the “skipping” paradigm - here it prevents
us from remarking statements inside an already marked statement.

The other markup propagation rules are simply special cases of this basic rule
that propagate markup backwards into loop and if statements and around loops,
and out to containing statements when an inner statement is marked. The whole
set of markup propagation rules is controlled by the usual fixed-point paradigm
that detects when no more propagation can be done.

Once a fixed point is reached, the program simply removes all unmarked
statements [removeUnmarkedStatements] and unused declarations [removeRe-
dundantDeclarations], then removes all markup to yield the program slice. The
result fot the example (a) above is shown on the right (b). (Line spacing is shown
to align with the original code, and is not part of the output.)

7.5 Clone Detection

Clone detection is a popular and interesting source analysis problem with a
wide range of applications, including code reduction and refactoring. In this
problem, we demonstrate the basic techniques for clone detection using TXL.
Clone detection can vary in granularity from statements to functions or classes.
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File "TILbackslice.txl"

% Backward static slicing of TIL programs

% Backward slice from a statement marked up
% using <mark> </mark>

% Begin with the TIL base grammar
include "TIL.grm"

% Allow for XML markup of TIL statements
redefine statement

...
| [marked_statement]

end redefine

define marked_statement
[xmltag] [statement] [xmlend]

end define

define xmltag
< [SPOFF] [id] > [SPON]

end define

define xmlend
< [SPOFF] / [id] > [SPON]

end define

% Conflate while and for statements
% into one form to optimize handling
% of both forms in one rule
redefine statement

[loop_statement]
| ...

end redefine

define loop_statement
[loop_head] [NL][IN]

[statement*] [EX]
’end; [NL]

end define

define loop_head
while [expression] do

| for [id] := [expression]
to [expression] do

end define

% The main function gathers the steps
% of the transformation: induce markup
% to a fixed point, remove unmarked
% statements, remove declarations for
% variables not used in the slice,
% and strip markups to yield the
% sliced program

function main
replace [program]

P [program]
by

P [propagateMarkupToFixedPoint]
[removeUnmarkedStatements]
[removeRedundantDeclarations]
[stripMarkup]

end function

% Back propagate markup of statements
% beginning with the initially marked
% statement of interest.
% Continue until a fixed point

rule propagateMarkupToFixedPoint
replace [program]

P [program]

construct NP [program]
P [backPropogateAssignments]
[backPropogateReads]
[whilePropogateControlVariables]
[loopPropogateMarkup]
[loopPropogateMarkupIn]
[ifPropogateMarkupIn]
[compoundPropogateMarkupOut]

% We’re at a fixed point when P = NP
deconstruct not NP

P
by

NP
end rule

% Rule to back-propagate markup of
% assignments. A previous assignment is
% in the slice if its assigned variable
% is used in a following marked statement

rule backPropogateAssignments
skipping [marked_statement]
replace [statement*]

X [id] := E [expression] ;
More [statement*]

where
More [hasMarkedUse X]

by
<mark> X := E; </mark>
More

end rule

% Similar rule for read statements

rule backPropogateReads
skipping [marked_statement]
replace [statement*]

read X [id] ;
More [statement*]

where
More [hasMarkedUse X]

by
<mark> read X; </mark>
More

end rule

function hasMarkedUse X [id]
match * [marked_statement]

M [marked_statement]
deconstruct * [expression] M

E [expression]
deconstruct * [id] E

X
end function

% Other propagation rules for loops
% and compound statements

. . .

Fig. 28. TXL transformation to compute a backward slice
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Since TIL does not have functions or classes, we are using structured statements
(if, for, while) as a simple example. While this is clearly not a realistic case,
detection of function or block clones (in any language) would be very similar.

Figure 29 shows a TXL solution to the detection of structured statement
clones in TIL. The program begins with a set of grammar overrides to gather all
of the structured statements into one type so that we don’t need separate rules
for each kind. As with the backward slicing example, we use XML-like markup
to mark the results of our analysis. In this case, we want to mark up all instances
of the same statement as members of the same clone class, so we allow for an
XML attribute in the tags.

Paradigm. Precise control of output spacing. These overrides illustrate another
output formatting cue that we have not seen before - the explicit control of out-
put spacing. TXL normally uses a set of default output spacing rules that insert
spaces around operators and other special symbols such as “<”. Unfortunately,
these spacing rules lead to strange output in the case of XML markup - for exam-
ple, the XML tag “<clone class=4>” would be output as “< clone class = 4 >”,
which is not even legal XML.

The TXL built-in types [SPOFF], [SPON] and [SP] used here allow the pro-
grammer to take complete control of output spacing. Like [NL], [IN] and [EX],
none of these has any effect on input parsing. [SPOFF] temporarily turns off
TXL’s output spacing rules, and [SPON] restores them. Between the two, items
will be output with no spacing at all. The [SP] type allows programmers to insert
spacing as they see fit, in this case forcing a space between the tag identifier and
the attribute identifier in output tags.

As we have seen is often the case, the main TXL program works in two
stages. In the first stage, a sequence containing one instance of each the cloned
compound statements in the program is constructed using the function [find-
StructuredStatementClones]. In the second stage, all instances of each one of
these are marked up in XML as instances of that clone class, assigning class
numbers as we go (function [markCloneInstances] ).

Paradigm. Context-dependent rules. The function [findStructuredStatement-
Clones] works by using the subrule [addIfClone] to examine each of the set of
all structured statements in the program (StructuredStatements) to see if it ap-
pears more than once, and if so adds it to its scope, which begins empty. While
we have seen most of this paradigm before, we have not before seen a case where
the transformation rule needs to look at both a local item and its entire global
context at the same time to determine if it applies.

This kind of global contextual dependency is implemented in TXL using rule
parameters. In this case an entire separate copy of StructuredStatements is
passed to [addIfClone] so that it can use the global context in its transforma-
tion, in this case simply to check if each particular statement it is considering
appears twice. This is an instance of the general TXL paradigm for context-
dependent transformations, which allows for arbitrary contextual information,
including if necessary a copy of the entire original program, to be passed in to a
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File "TILclonesexact.txl"

% Clone detection for TIL programs

% Find exact clones of structured statements,
% and output the program with clones marked
% up to indicate their clone class.

% Begin with the TIL base grammar
include "TIL.grm"

% We are NOT interested in comments

% Overrides to conflate all structured
% statements into one nonterminal type.

redefine statement
[structured_statement]

| ...
end redefine

define structured_statement
[if_statement]

| [for_statement]
| [while_statement]

end define

% Allow XML markup of statements.

redefine statement
...

| [marked_statement]
end redefine

define marked_statement
[xmltag] [NL][IN]

[statement] [EX]
[xmlend] [NL]

end define

% [SPOFF] and [SPON] temporarily disable
% default TXL output spacing in tags

define xmltag
< [SPOFF] [id] [SP] [id] = [number] > [SPON]

end define

define xmlend
< [SPOFF] / [id] > [SPON]

end define

% Main program

function main
replace [program]

P [program]

% First make a table of all repeated
% structured statements
construct StructuredClones

[structured_statement*]
_ [findStructuredStatementClones P]

% Mark up all instances of each of them.
% CloneNumber keeps track of the index of
% each in the table as we step through it
export CloneNumber [number] 0
by

P [markCloneInstances
each StructuredClones]

end function

% We make a table of the cloned structured
% statements by first making a table
% of all structured statements in the program,
% then looking for repeats

function findStructuredStatementClones
P [program]

% Extract a list of all structured
% statements in the program
construct StructuredStatements

[structured_statement*]
_ [^ P]

% Add each one that is repeated
% to the table of clones
replace [structured_statement*]

% empty to begin with
by

_ [addIfClone StructuredStatements
each StructuredStatements]

end function

function addIfClone
StructuredStatements [structured_statement*]
Stmt [structured_statement]

% A structured statement is cloned if it
% appears twice in the list of all statements
deconstruct * StructuredStatements

Stmt
Rest [structured_statement*]

deconstruct * [structured_statement] Rest
Stmt

% If it does appear (at least) twice,
% add it to the table of clones
replace [structured_statement*]

StructuredClones [structured_statement*]
% Make sure it’s not already in the table
deconstruct not * [structured_statement]

StructuredClones
Stmt

by
StructuredClones [. Stmt]

end function

% Once we have the table of all clones,
% we mark up each instance of each of them
% in the program with its clone class,
% that is, the index of it in the clone table

rule markCloneInstances
StructuredClone [structured_statement]

% Keep track of the index of this clone
% in the table
import CloneNumber [number]
export CloneNumber

CloneNumber [+ 1]

% Mark all instances of it in the program
% ’skipping’ avoids marking twice
skipping [marked_statement]
replace [statement]

StructuredClone
by

<clone class=CloneNumber>
StructuredClone

</clone>
end rule

Fig. 29. TXL transformation to detect exact structured statement clones in TIL
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local transformation. There it can be used both in conditions to guard the local
transformation, as is the case this time, or as a source of additional parts to be
used in the result of the local transformation.

Paradigm. Accumulating multiple results. [addIfClone] also demonstrates an-
other common paradigm - the accumulation of results into a single sequence.
Beginning with an empty sequence using the empty variable “ ” in the replace-
ment of [findStructuredStatementClones], [addIfClone] adds each result it finds
to the end of its scope sequence. It makes sure that it does not put the same
statement in twice using a guarding deconstructor, which checks to see if the
cloned statement is already in the list:

deconstruct not * [structured_statement] StructuredClones
Stmt

Once [findStructuredStatements] has constructed a unique list of all of the
cloned structured statements in the program, [markCloneInstances] marks up
all of the instances of each one in the program. Each is assigned a unique class
number to identify it with its instances using the global variable CloneNumber,
which begins at 0 and is incremented by [markCloneInstances] on each call.

Paradigm. Updating global state. While TXL is primarily a pure functional
language, global state is sometimes required in complex transformations. For
this purpose TXL allows global variables, which can be of any grammatical type
(including forms that are not in the input language). In this case the global
variable CloneNumber is a simple [number] that begins with the value 0. Inside
a TXL rule, globals are simply normal local TXL variables. But they can be
“exported” to the global scope where their value can be “imported” into another
rule where they once again act as a local variable of the rule. Within a rule, the
value bound to an imported global is set when it is imported, as if it were bound
in a pattern match. The value bound to the variable can only be changed if the
rule re-imports or exports the global with a new value.

In this case, on each invocation, [markCloneInstances] imports CloneNumber
and immediately constructs and exports a new value for it, the previous value
plus one. This new value is used in the replacement of the rule to mark up every
instance of the current clone with that clone class number, making it clear which
marked up statements are clones of one another in the result.

Of course, exact clone detection is the simplest case, and although interest-
ing, not very realistic. Fortunately, we are using TXL, so modifying our clone
detector to handle more aggressive techniques is not difficult. In particular, we
can make the clones identifier-independent, like CCFinder [18], just by adding a
normalization rule to make all identifiers the same when comparing:

rule normalizeIdentifiers
replace $ [id]

_ [id]
by

’X
end rule

If we want to be more precise, we can compare with consistent renaming -
that is, where identifiers are normalized consistently with their original names.
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% Rule to normalize structured statements
% by consistent renaming of identifiers
% to normal form (x1, x2, x3, ...)

rule renameStructuredStatement
% For each outer structured statement
% in the scope
skipping [structured_statement]
replace $ [structured_statement]

Stmt [structured_statement]

% Make a list of all of the unique
% identifiers in the statement
construct Ids [id*]

_ [^ Stmt] [removeDuplicateIds]

% Make normalized new names of the
% form xN for each of them
construct GenIds [id*]

Ids [genIds 0]

% Consistently replace each instance
% of each one by its normalized form
by

Stmt [$ each Ids GenIds]
end rule

% Utility rule -
% remove duplicate ids from a list

rule removeDuplicateIds
replace [id*]

Id [id] Rest [id*]
deconstruct * [id] Rest

Id
by

Rest
end rule

% Utility rule -
% make a normalized id of the form xN
% for each unique id in a list

function genIds NM1 [number]
% For each id in the list
replace [id*]

_ [id]
Rest [id*]

% Generate the next xN id
construct N [number]

NM1 [+ 1]
construct GenId [id]

_ [+ ’x] [+ N]

% Replace the id with the generated one
% and recursively do the next one
by

GenId
Rest [genIds N]

end function

Fig. 30. TXL rule to consistently normalize identifiers in a TIL statement

Figure 30 shows a TXL rule to consistently rename the identifiers in a TIL
structured statement. The rule works by extracting an ordered list of all of
the identifiers used in the structured statement, and then generates a list of
identifiers of the form x1, x2, x3 and so on of the same length by recursively
replacing each identifier in a copy of the list with a generated one.

The result lists might look like this:
Ids xyz abc n wid zoo
GenIds x1 x2 x3 x4 x5

Paradigm. Each corresponding pair. The actual transformation of the origi-
nal ids to the generated ones is done using the built-in rule [$], which is TXL
shorthand for a fast global substitute. The rule application uses a paired each to
pass the substitute rule each pair of corresponding identifiers in the lists, that
is, [′xyz′x1], [ ’abc ’x2], and so on. This general paradigm can be used to match
any two sequences of corresponding items, for example formals and actuals when
analyzing function calls.

7.6 Unique Renaming

Unique renaming [15] gives scope-independent names to all declared items in a
program. Unique naming flattens the name space so that every item declared
in a program can be unambiguously referred to independent of its context. In
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particular, unique naming is useful when creating a relationship database for the
program in the form of facts, as in Rigi’s RSF [21] or Holt’s TA [16] format.

In this example transformation (Figure 31), we uniquely rename all declared
variables, functions and modules in programs written in the module extension of
TIL to reflect their complete scope. For example, a variable named X declared
in function F of module M is renamed M.F.X .

This transformation demonstrates a number of new paradigms. Most obvious
is that this process must be done from the innermost scopes to the outermost,
so that when renaming things declared in a module M, all of the things declared
in an embedded function F have already been renamed F.X. That way, we can
simply rename everything transitively inside M with M. to reflect its scope, for
example yielding M.F.X .

Paradigm. Bottom-up traversal. The paradigm for applying rules “inside out”
(from the bottom up, from a parse tree point of view) is used in the main rule of
this transformation, [uniqueRename] (Figure 31). [uniqueRename]’s real purpose
is to find each declaration or statement that forms a scope, to get its declared
name (ScopeName) and then use the [uniqueRenameScope] subrule to rename
every declaration in the scope with the ScopeName. But in order for this to work
correctly, it must handle the scopes from the inside out (bottom-up).

Bottom-up traversal is done by recursively applying the rule to each matched
Scope more deeply before calling [uniqueRenameScope] for the current scope.
The paradigm consists of two parts: “skipping [statement]” in [uniqueRename]
assures that we go down only one level at a time, and the call to [uniqueRe-
nameDeeper], which simply recursively applies [uniqueRename] to the inside of
the current scope, ensures that we process deeper levels before we call [uniqueR-
enameScope] for the current level. This paradigm is generic and can be used
whenever inner elements should be processed before outer.

The actual renaming is done by the rule [uniqueRenameScope], which finds
every embedded declaration in a scope (no matter how deeply embedded), and
renames both the declaration and all of its references in the scope to begin
with the given ScopeName. For example, if ScopeName is M and some inner
declaration is so far named F.G.X, then both the declaration and all references
to it get renamed as M.F.G.X . Since we are processing inside out, there is no
ambiguity with deeper declarations whose scopes have already been processed.

Paradigm. Abstracted patterns. [uniqueRenameScope] demonstrates another
new paradigm: abstracted matching. Even though the real pattern it is looking
for is a Declaration followed by its RestOfScope, the rule matches less precisely
and uses a deconstructor to check for the pattern. This is because the replace-
ment will have to consistently change both the Declaration and the RestOfScope
in the same way (i.e. renaming occurrences of the declared name). By matching
the part that requires change in one piece, the transformation requires only one
use of the renaming substitution rule [$], making the rule simpler and clearer.

Once all declarations and embedded references have been renamed, there are
two remaining tasks: renaming references to a module’s public functions that
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File "TILuniquerename.txl"

% Uniquely rename every Modular TIL variable
% and function with respect to its context.
% e.g., variable V declared in a while
% statement in function F of module M
% is renamed as M.F.whileN.V

% Begin with the MTIL grammar
include "TIL.grm"
include "TILarrays.grm"
include "TILfunctions.grm"
include "TILmodules.grm"

% Allow for unique names - in this case,
% TIL does not have a field selection operator,
% so we can use X.Y notation for scoped names.
redefine name

[id]
| [id] . [name]

end redefine

% Main program
function main

replace [program]
P [program]

by
P [uniqueRenameDeeper]

[uniqueRenameScope ’MAIN]
[renameModulePublicReferences]
[renameFunctionFormalParameters]

end function

rule uniqueRename
% Do each statement on each level once
skipping [statement]
replace $ [statement]

Scope [statement]
% Only interested in statements with scopes
deconstruct * [statement*] Scope

_ [statement*]
% Use the function, module or unique
% structure name for it
construct ScopeName [id]

_ [makeKeyName Scope]
[getDeclaredName Scope]

% Visit inner scopes first, then this one
by

Scope [uniqueRenameDeeper]
[uniqueRenameScope ScopeName]

end rule

% Recursively implement bottom-up renaming
function uniqueRenameDeeper

replace * [statement*]
EmbeddedStatements [statement*]

by
EmbeddedStatements [uniqueRename]

end function

% Make an identifier for the scope -
% if a declaration, use the declared id,
% otherwise synthesize a unique id from the
% statement keyword
function makeKeyName Scope [statement]

deconstruct * [key] Scope
Key [key]

construct KeyId [id]
_ [+ Key] [!]

replace [id]
_ [id]

by
KeyId

end function

function getDeclaredName Scope [statement]
replace [id]

_ [id]
deconstruct Scope

DeclaredScope [declaration]
deconstruct * [id] DeclaredScope

ScopeName [id]
by

ScopeName
end function

% Do the actual work - rename each declaration
% and its references with the scope id
rule uniqueRenameScope ScopeName [id]

% Find a declaration in the scope
replace $ [statement*]

DeclScope [statement*]
deconstruct DeclScope

Declaration [declaration]
RestOfScope [statement*]

% Get its original id
deconstruct * [name] Declaration

Name [name]
% Add the scope id to its name
construct UniqueName [name]

ScopeName ’. Name
% Rename the declaration and all
% references in the scope.
by

DeclScope [$ Name UniqueName]
end rule

% This section handles the problem of
% references to a public function outside
% of the module it is declared in

rule renameModulePublicReferences
% Find a module and its scope
replace $ [statement*]

’module ModuleName [name]
ModuleStatements [statement*]

’end ;
RestOfScope [statement*]

% Get all its public function names
construct

UniquePublicFunctionNames [name*]
_ [extractPublicFunctionName

each ModuleStatements]
% Rename all references in the outer scope
by

’module ModuleName
ModuleStatements

’end ;
RestOfScope

[updatePublicFunctionCall
each UniquePublicFunctionNames]

end rule

Fig. 31. TXL transformation to uniquely rename all declared items in TIL programs
to reflect their scope
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function extractPublicFunctionName
Statement [statement]

% We’re interested only in functions
deconstruct Statement

Function [function_definition]
% Which are public
deconstruct * [opt ’public] Function

’public
% Get the function id
deconstruct * [name] Function

UniquePublicFunctionName [name]
% Add it to the end of the list
replace * [name*]
by

UniquePublicFunctionName
end function

rule updatePublicFunctionCall
UniquePublicFunctionName [name]

% Get the original name
deconstruct * [name]

UniquePublicFunctionName
PublicFunctionName [id]

% Replace all uses with unique name
skipping [name]
replace $ [name]

PublicFunctionName
by

UniquePublicFunctionName
end rule

% Rules to rename function formal parameters

... (similar to rules above)

Fig. 32. TXL transformation to uniquely rename all declared items in TIL programs
to reflect their scope (continued)

are outside its inner scope, and renaming formal parameters. Both of these pose
a new kind of transformation problem: how to do a transformation on an outer
level of the parse that depends on information from an inner level? Such a trans-
formation is called a local-to-global transformation, and is a standard challenge
for source transformation systems.

The TXL solution is demonstrated by the rule [renameModulePublicRefer-
ences] in Figure 32. We need to make a transformation of all references to the
original name of any public function of the module that occur in the scope in
which the module is declared, that is, in RestOfScope. But the public functions
of the module cannot be in the pattern of the rule - what to do?

Paradigm. Inner context-dependent transformation. The answer is to contextu-
alize the transformation by raising the information we need from the inner scope
to the level we are at. In this case, that is done by the construct of UniquePub-
licFunctionNames, which uses the subrule [extractPublicFunctionName] to get a
copy of the unique name of every public function declared in the module. Once
we have brought the context up to the level we are at, we can do the trans-
formation we need using [updatePublicFunctionCall] by passing it each public
function unique name.

In general, the inner context to be raised could be much deeper or more com-
plex than simply public functions declared one level down. Using a constructor
and subrule to bring deeper context up, we can always get what is needed.

7.7 Design Recovery

Design recovery, or fact generation, is the extraction of basic program entities
and relationships into an external graph or database that can be explored using
graph and relationship analysis tools such as CrocoPat [4], Grok [17], or Prolog.
In this problem, we show how TXL can be used to extract facts from programs
using source transformation.



88 J.R. Cordy

File "TILgeneratefacts.txl"

% Design recovery (fact extraction) for MTIL

% Given a uniquely renamed MTIL program,
% infer and generate architecture design facts
% contains(), calls(), reads(), writes()

% Begin with the MTIL grammar
include "TIL.grm"
include "TILarrays.grm"
include "TILfunctions.grm"
include "TILmodules.grm"

% Our input has been uniquely renamed by
% TILuniquerename.txl using X.Y notation
redefine name

[id]
| [id] . [name]

end redefine

% Grammar for Prolog facts
include "Facts.grm"

% Override to allow facts on any statement
redefine statement

...
| ’; % null statement,

% so we can add facts anywhere
end redefine

% Override to allow facts on any statement
redefine statement

[fact*] ...
end redefine

% Override to allow facts on any expression
redefine primary

[fact*] ...
end redefine

% Our output is the facts alone
redefine program

...
| [fact*]

end redefine

% Main program
function main

replace [program]
P [program]

construct ProgramName [name]
’MAIN

construct AnnotatedP [program]
P [addContainsFacts ProgramName]

[inferContains]
[addCallsFacts ProgramName]
[inferCalls]
[addReadsFacts ProgramName]
[inferReads]
[addWritesFacts ProgramName]
[inferWrites]

construct Facts [fact*]
_ [^ AnnotatedP]

by
Facts

end function

% Infer contains() relationships
rule inferContains

replace $ [declaration]
ScopeDecl [declaration]

deconstruct * [statement*] ScopeDecl
Statements [statement*]

deconstruct * [name] ScopeDecl
ScopeName [name]

by
ScopeDecl

[addContainsFacts ScopeName]
[addContainsParameters ScopeName]

end rule

rule addContainsFacts ScopeName [name]
skipping [statement]
replace $ [statement]

Facts [fact*] Declaration [declaration]
deconstruct * [name] Declaration

DeclName [name]
construct NewFacts [fact*]

’contains ’( ScopeName, DeclName ’)
Facts

by
NewFacts Declaration

end rule

function addContainsParameters ScopeName [name]
replace [declaration]

Public [opt ’public]
’function Fname [name]

’( ParameterNames [name,] )
OptResultParameter [opt colon_id]

Statements [statement*]
’end;

construct OptResultParameterName [name*]
_ [getResultParameterName

OptResultParameter]
construct ParameterContainsFacts [fact*]

_ [makeFact ’contains ScopeName
each ParameterNames]

[makeFact ’contains ScopeName
each OptResultParameterName]

construct FactsStatement [statement]
ParameterContainsFacts ’;

by
Public
’function Fname ’( ParameterNames )
OptResultParameter

FactsStatement
Statements

’end;
end function

function getResultParameterName
OptResultParameter [opt colon_id]

deconstruct OptResultParameter
’: ResultParameterName [name]

replace [name*]
by

ResultParameterName
end function

Fig. 33. TXL transformation to generate basic facts for an MTIL program
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% Infer calls() relationships
rule inferCalls

replace $ [declaration]
ScopeDecl [declaration]

deconstruct * [statement*] ScopeDecl
Statements [statement*]

deconstruct * [name] ScopeDecl
ScopeName [name]

by
ScopeDecl [addCallsFacts ScopeName]

end rule

rule addCallsFacts ScopeName [name]
skipping [declaration]
replace $ [statement]

Facts [fact*]
CallStatement [call_statement]

skipping [id_assign]
deconstruct * [name] CallStatement

CalledName [name]
by

’calls ’( ScopeName, CalledName ’)
Facts
CallStatement

end rule

% Infer reads() relationships
rule inferReads

replace $ [declaration]
ScopeDecl [declaration]

deconstruct * [statement*] ScopeDecl
Statements [statement*]

deconstruct * [name] ScopeDecl
ScopeName [name]

by
ScopeDecl [addReadsFacts ScopeName]

end rule

rule addReadsFacts ScopeName [name]
skipping [statement]
replace $ [statement]

Statement [statement]
by

Statement
[addExpressionReadsFacts ScopeName]

end rule

rule addExpressionReadsFacts ScopeName [name]
skipping [declaration]
replace $ [primary]

Primary [primary]
deconstruct * [name] Primary

FetchedName [name]
construct ReadsFact [fact*]

’reads ( ScopeName, FetchedName )
by

Primary [addFacts ReadsFact]
end rule

% Infer writes() relationships
. . . ( similar to reads() )

% Utility functions
function makeFact FactId [id]

Name1 [name] Name2 [name]
replace * [fact*]
by

FactId ( Name1, Name2 )
end function

function addFacts NewFacts [fact*]
replace * [fact*]

Facts [fact*]
by

Facts [. NewFacts]
end function

Fig. 34. TXL transformation to generate basic facts for an MTIL program (continued)

Figure 33 shows a program that extracts basic structural and usage facts for
programs written in the module dialect of TIL. Facts extracted include con-
tains(), calls(), reads() and writes() relationships for all modules and functions.

Paradigm. Local fact annotation. The basic strategy of the program is to an-
notate the program with facts directly in the local contexts where the fact can
be inferred. For example, for the statement: x.y.z := a.b.c; appearing in function
M.F, we will annotate the statement with the facts:

writes (M.F, x.y.z)
reads (M.F, a.b.c)
x.y.z := a.b.c;

In this way we can use local transformations to create the facts where the
evidence for them occurs. The actual rules to infer each kind of fact are fairly
simple: for each declaration in a scope, we annotate with a contains() fact. For
each reference to a name in a scope, we annotate with a reads() fact. And so on.
If more information is needed to infer a fact, we can leverage all of the previous
techniques we have seen to assist us: context-dependent transformation, inner
context-dependent transformation, bottom-up traversal, and any others we need.
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Once the program is completely annotated with facts, the only remaining
task is to gather them together, which is done using the usual type extraction
paradigm to bring all the facts into one sequence, which we can then output as
the result of our fact generation transformation. The final result of this program
is a fact base in Prolog form, that looks like this:

contains (MAIN, MAIN.maxprimes)
contains (MAIN, MAIN.maxfactor)
writes (MAIN, MAIN.maxprimes)
writes (MAIN, MAIN.maxfactor)
contains (MAIN, MAIN.prime)
writes (MAIN, MAIN.prime)

contains (MAIN, MAIN.flags)
contains (MAIN.flags, MAIN.flags.flagvector)
contains (MAIN.flags, MAIN.flags.flagset)
contains (MAIN.flags.flagset, MAIN.flags.flagset.f)
writes (MAIN.flags.flagset, MAIN.flags.flagvector)
reads (MAIN.flags.flagset, MAIN.flags.flagset.f)
. . .

8 Conclusion and Future Work

The TXL Cookbook is very much a work in progress, and what we have seen is
only part of what we hope will eventually be a comprehensive guide to using TXL
in every kind of software analysis and transformation task. We have chosen this
set of examples specifically to highlight some of the non-obvious ways in which
TXL can be used to efficiently implement many tasks.

By using a range of real problems rather than small toy examples, we have
been able to expose a number of paradigms of use that allow TXL to be effective.
The real power of the language lies not in its own features, but rather in the
way it is used - these solution paradigms. The purpose of the cookbook is to
document and demonstrate these paradigms so that potential users can see how
to solve their own problems using TXL and similar tools.
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Abstract. The paper presents a novel algebraic framework for specifi-
cation and design of model synchronization tools. The basic premise is
that synchronization procedures, and hence algebraic operations mod-
eling them, are diagrammatic: they take a configuration (diagram) of
models and mappings as their input and produce a diagram as the out-
put. Many important synchronization scenarios are based on diagram
operations of square shape. Composition of such operations amounts to
their tiling, and complex synchronizers can thus be assembled by tiling
together simple synchronization blocks. This gives rise to a visually sug-
gestive yet precise notation for specifying synchronization procedures
and reasoning about them.

1 Introduction

Model driven software engineering puts models at the heart of software develop-
ment, and makes it heavily dependent on intelligent model management (MMt)
frameworks and tools. A common approach to implementing MMt tasks is to
present models as collections of objects, and program model operations as oper-
ations with these objects; object-at-a-time programming is a suitable name for
this style [1]. Since models may contain thousands of interrelated objects, object-
at-a-time programming can be very laborious and error-prone. In a sense, it is
similar to the infamous record-at-a-time programming in data processing, and
has similar problems of being too close to implementation.

Replacing record- by relation-at-a-time frameworks has raised data
processing technology to a qualitatively new level in semantic transparency and
programmers’ productivity. Similarly, we can expect that model-at-a-time pro-
gramming, in which an engineer can think of MMt routines in terms of opera-
tions over models as integral entities, could significantly facilitate development
of MMt applications [1]. This view places MMt into the realm of algebra: models
are indivisible points and model manipulation procedures are operations with
them.

Model synchronization tools based on special algebraic structures called lenses
[2] can be seen as a realization of the algebraic vision. The lens framework was
first used for implementing a bidirectional transformation language for synchro-
nizing simple tree structures [3], and then employed for building synchronization

J.M. Fernandes et al. (Eds.): GTTSE 2009, LNCS 6491, pp. 92–165, 2011.
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tools for more complex models closer to software engineering practice [4,5]. In
[6], a lens-like algebraic structure was proposed to model semantics of QVT, an
industrial standard for model transformation.

Lens-based synchronization is discrete: input data for a synchronizer con-
sist of states of the models only, while mappings (deltas) relating models are
ignored. More accurately, the synchronizer itself computes mappings based on
keys and the structure of the models involved. However, in general a pair of mod-
els does not determine a unique mapping between them. To compute the latter,
some context-dependent information beyond models may be needed, and hiding
model mappings inside the tool rather than allowing the user to control them
may compromise synchronization. For example, discrete composition of model
transformations may be erroneous because in order to be composable, transfor-
mations must fit together on both models and mappings. In the paper we will
consider several examples showing that model (and metamodel) mappings are
crucial for model synchronization, and must be treated as first-class citizens not
less important than models.

In algebraic terms, the arguments above mean that model mappings must
be explicitly included in the arity shapes of MMt operations. A typical MMt
universe should appear as a directed graph (nodes are models and arrows are
mappings) that carries a structure of diagrammatic algebraic operations. The
latter act upon configurations (diagrams) of models and mappings of predefined
arity shapes: take a diagram as the input and produce a diagram as the output.

The world of diagram algebra essentially differs from the ordinary algebra.
A single diagram operation may produce several nodes and arrows that must
satisfy certain incidence relationships between themselves and input elements.
Composition of such operations, and parsing of terms composed from them,
are much more complex than for ordinary tuple-based single-valued operations.
Fortunately, we will see that diagram operations appearing in many model syn-
chronization scenarios have a square shape: the union of their input and output
diagrams is a square composed of four arrows — we will call it a tile. Compo-
sition of such operations amounts to their tiling, and complex synchronization
scenarios become tiled. Correspondingly, complex synchronizers can be assem-
bled by tiling together simpler synchronizing blocks, and their architecture is
visualized in a precise and intuitive way.

The main goal of the paper is to show the potential of the tile language
for specifying synchronization procedures and for stating the laws they should
satisfy. Tiles facilitate thinking and talking about synchronization; they allow
us to draw synchronization scenarios on the back of an envelope, and to prove
theorems about them as well. Specification and design with tiles are useful and
enjoyable; if the reader will share this view upon reading the paper, the goal
may be considered achieved.

How to read the paper. There are several ways of navigating through the
text. The fastest one is given by the upper lane in Fig. 1: rectangles denote
sections (of number n) ) and arrows show logical dependencies between them.
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4) Simple sync. sce-
narios I:  Replication

6)  Complex sync. 
scenarios: Tiling

3) Inside models
and model deltas

A) Warming up for 
category theory

C) Model trans-
lation via arrows

Abstract MMt: Model-opaque algebraic structures
(the joy of design)

Concrete MMt: Model-transparent algebraic structures
(the troubles of implementation)

7) Relation to
other work, 
tracing ideas,
future work

B) Graphs and
categories: A primer

D) Heterogeneous
model matching 

5) Simple sync. scena-
rios II: View maintenance 

2) Model sync 
overall. Mappings!

Fig. 1. Flow of Content

Section 2 is the beginning of the journey: it draws an overall picture of model
synchronization, presents two simple examples (replica synchronization and view
maintenance), and argues that mappings are of primary importance. It also
warns the reader about the dangers of walking through the arrow forest and
declares tile algebra and category theory as a means to meet the challenge.

The subsequent three upper sections present abstract algebraic models of the
examples from Section 2, and develop them into an algebraic framework based on
tiles. Models and model mappings are treated as opaque indivisible nodes and
arrows, and synchronization procedures as abstract algebraic operations over
them. Two families of such operations are considered for two basic scenarios:
replication (Section 4) and view maintenance (Section 5). Section 6 shows how
to build complex synchronizers by putting together basic blocks.

The upper three sections can be viewed as a mini-tutorial on building algebraic
theories in the diagrammatic setting. We will see how to set signatures of diagram
operations, state equational laws, and define diagram algebras intended to model
synchronization tools. The goal is to present a toolbox of algebraic instruments
and show how to use them; several exercises should allow the reader to give them
a try. Except in subsection 6.2, the mathematics employed in the upper lane is
elementary (although somewhat unusual).

The upper lane of the paper presents an abstract MMt framework: models and
mappings are black-boxes without internal structure (hence its notation: black
opaque nodes and arrows). This setting can be useful for a top-level architectural
design of synchronization tools. A more refined (and closer to implementation)
setting is presented in the concrete MMt branch of the paper formed by Sections
3,C,D connected by transparent arrows. In these sections we look inside models
and mappings, consider concrete examples, and refine the abstract constructs
of the upper lane by more “concrete” algebraic models. In more detail, Section
3 factorizes the fast route 2 → 4 (from examples in Section 2 to abstract con-
structs in Section 4) by providing a formal model for the internal structure of
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models and model deltas, and for delta composition as well (including deltas
with inconsistencies!). Section C refines the fast route 2 → 5 into a “concrete”
path 2→ 3→ C → 5 by providing an algebraic model for the view mechanism
(also based on tiles); and Section D plays a similar role for Section 6 with a
refined model of heterogenous matching.

Both frameworks — abstract and concrete — employ algebraic models and
tiling. A principal distinction of the latter is that metamodels and metamodel
mappings are explicitly included into algebraic constructs and play an essential
role. Indeed, ignoring metamodels and their mappings hides semantic meaning
of operations with heterogeneous models from the user and may provoke ad
hoc solutions in building MMt-tools. Taking metamodels seriously brings onto
the stage an entire new dimension and significantly complicates the technical
side of mapping management. Use of category theory (CT) seems unavoidable,
and two “concrete” sections C and D require certain categorical intuition and
habits of arrow thinking not familiar to the MMt community.1 Therefore, a
special “starter” on CT was written (Sect. A), which motivates and explains
the basics of arrow thinking. Section B is merely a technical primer on graphs
and categories: it fixes notation and defines several basic constructs employed in
the paper (but is not intended to cover all categorical needs). Even though the
presentation in Sect. C and D is semi-formal, all together the four lower sections
are much more technically demanding than the upper ones, and so are placed in
the Appendix that may be skipped for the first reading.

Sections 7 presents diverse comments on several issues considered or touched
on in the paper in a wider context. It also briefly summarizes contributions of the
paper and their relation to other work. Section 8 concludes. Answers to exercises
marked by * can be found on p. 143

A possible reading scenario the author has in mind is as follows. The reader
is a practitioner with a solid knowledge of model synchronization, who knows
everything presented in the paper but empirically and intuitively. He has rather
vague (if any) ideas about diagram algebra and category theory, and is hardly
interested in these subjects, yet he may be interested in a precise notation for
communicating his empirical knowledge to his colleagues or/and students. He
may also be interested in some mathematics that facilitates reasoning about
complex synchronization procedures or even allows their mechanical checking.
Such a reader would take a look through numerous diagrams in the paper
with an approximate understanding of what they are talking about, and hope-
fully could find a certain parallelism between these diagrams and his prac-
tical intuition. Perhaps, he would remember some terms and concepts and,
perhaps, would take a closer look at those concepts later on. Eventually, he
may end up with a feeling that viewing model synchronization through the pat-
terns of diagram algebra makes sense, and category theory is not so hopelessly
abstract.

Now it is the reader’s turn to see if this scenario is sensible.

1 It could explain why many known algebraic approaches to MMt ignore the meta-
modeling dimension.
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2 Model Sync: A Tangled Story

By the very nature of modeling, a system to be modeled is represented by a set of
interrelated models, each one capturing a specific view or aspect of the system. Dif-
ferent views require different modeling means (languages, tools, and intuitions),
and their models are often built by different teams that possess the necessary expe-
rience and background. This makes modeling of complex systems heterogeneous,
collaborative, and essentially dependent on model synchronization.

This section presents a tale of model synchronization: we begin with a tangle,
then follow it and get to an arrow forest, which we will try to escape by paving
our way by tiles.

2.1 The Tangle of Relationships and Update Propagation

The task of model synchronization is schematically presented in Fig. 2. A snap-
shot of a design project appears as a heterogeneous collection M of models
(shown by nodes A, B, C...) interrelated in different ways (edges r1, r2, r3...).
The diversity of node and edge shapes is a reflection of the diversity of models
and the complexity of their mutual relationships that emerge in software design.
The image of a tangle in the center of the figure is intentional.

Typically, models in a project’s snapshot are only partially consistent, i.e.,
their relationships partially satisfy some predefined consistency conditions. That
is, we suppose that inconsistencies are partially detected, specified and recorded
for future resolution. Inconsistency specifications may be considered as part of
the intermodel relationships and hence are incorporated into intermodel edges.

Now suppose that one of the models (say, A in the figure) is updated to a
new state (we draw an arrow uA : A→ A′), which may violate existing consis-
tent relationships and worsen existing inconsistencies. To restore consistency or
at least to reduce inconsistency, other related models must be updated as well
(arrows uB : B → B′, uC : C → C′ etc). Moreover, relationships between models
must also be updated to new states r′i, i = 1, 2, ..., particularly by incorporating
new inconsistencies. Thus, the initial update uA is to be propagated from the
updated model to other related models and relationships so that the entire re-
lated fragment (“section” M of the model space) is updated to state M′. We
call this scenario a single-source update propagation.

Another scenario is when several models (say, A, B, C) are updated concur-
rently, so their updates must be mutually propagated between themselves and
other models and relationships. Such multi-source propagation is more complex
because of possible conflicts between updates. However, even for single-source
propagation, different propagation paths may lead to the same model and gen-
erate conflicts; cycles in the relationship graph confuse the situation even more.
The relationship tangle generates a propagation tangle.

Propagation is much simpler in the binary case when only two interrelated
models are considered. This is a favorite case of theoreticians. For binary situ-
ations, multi-source propagation degenerates into bi-directional (in contrast to
unidirectional single-source propagation) — an essential simplification but still
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Fig. 2. Models and their relationships: From a tangle to mD-space

a challenge [7]. Practical situations enjoy a mix of single- and multi-source, uni-
and bi-directional propagations. We will generically refer to them as synchro-
nization procedures.

The description above shows that understanding intermodel relationships is
crucial for design of synchronization procedures, and it makes sense to establish
a simple taxonomy. For the binary case, one model in relation to another model
may be considered as its

– replica (e.g., a Google replica of a Microsoft Outlook calendar),
– updated version (two versions of the same replica),
– view (a business view of a calendar),
– refinement (an hourly refinement of a daily schedule),
– instance (an actual content of a diary book – the metamodel for the content).

The list could be be extended and gives rise to a family of binary relations
Ri ⊂ Mod×Mod, i = 1, 2.. over the space of models Mod. Unfortunately, a
more or less complete classification of such relations important for MMt seems
to be missing from the literature.

An observation of fundamental importance for model synchronization is that
intermodel relationships are not just pairs of models (A, B) ∈ Ri, they are
mappings r : A⇒ B linking models’ elements. That is, edges in Fig. 2 have
extension consisting of links. Roughly, we may think of an edge r : A⇒ B as a
set of ordered pairs (a, b) with a ∈ A and b ∈ B being similar model elements
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(a class and a class, an attribute and an attribute etc). We may write such a
pair �=(a, b) as an arrow a

�:r� b and call it a link (note the difference in the
bodies of arrows for mappings and links). In the UML jargon, links � are called
instances of r. In the arrow notation for links as above, the name of the very
link � may be omitted but the pointer to its type, :r, is important and should
be there.

Table 1. Intermodel rela-
tionships & mappings

Relationship Mapping
replicaOf match
versionOf update
viewOf view trc.

instanceOf typing

Table 1 presents a brief nomenclature of intermodel
relations and mappings (’trc.’ abbreviates ’traceabil-
ity’). Normally mappings have some structure over the
set of links they consist of, and we should distinguish
between a mapping r and its extension |r|, i.e., the
set links the mapping consists of. Yet we will follow a
common practice and write � ∈ r for � ∈ |r|. In gen-
eral, a mapping’s extra structure depends on the type
of the relationship, and so mappings listed in the table
are structured differently and operated differently.

2.2 Mappings, Mappings, Mappings...

In this section we consider how mappings work for synchronization. We will begin
with two simple examples. The first considers synchronization of two replicas of a
model. In the second, one model is a view of the other rather than an independent
replica. Then we will discuss deficiencies of state-based synchronization. Finally,
we discuss mathematics for mapping management.

To make tracing examples easier, our sample models will be object diagrams,
whose class diagrams thus play the role of metamodels (and the metamodel of
class diagram is the meta-metamodel).

2.2.1 Replica Synchronization

Suppose that two developers, Ann and Bob, maintain their own replicas of a
simple model Fig. 3i(a). The model consists of Person-objects with mandatory
attribute ‘name’ and any number of ‘phone’s with an optional extension number
‘ext’ (see the metamodel in the leftmost square; attribute multiplicities are shown
in square brackets).

Diagram in Fig. 3i(b) presents an abstract schema of a simple synchroniza-
tion scenario. Arrow m : A⇒ B denotes some correspondence specification, or
a match, between the models. Such specifications are often called (symmet-
ric) deltas, and are computed by model differencing tools.2 Similarly, arrow
u : A⇒ A′ denotes the delta between two versions of Ann’s replica, and we call
it an update. The task is to propagate this update to Bob’s replica and update
the match. That is, the propagation operation ppg must compute an updated
model B′ together with update u∗ and new match m′. Note that derived arrows
are dashed (and the derived node is blank, rather than shaded). When reading
2 The term directed delta refers to an operational (rather than structural) specification:

a sequence of operations (add, change, delete) transforming A to B (an edit log).
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i) Two simple replicas to be synchronized

P: Person
(a:name) Jo
(b:pho) 11

Q: Person
(x:name) Jo
(y:pho) 22

(a)

P’:Person
(a’:name) Jon
(b’:pho) 11x5

Q:Person
(x:name) Jon
(y:pho) 22x5

P: Person
(a:name) Jo
(b:pho) 11

Q: Person
(x:name) Jo
(y:pho) 22

(c)

P’: Person
(a’:name) Jon
(b’:pho) 11x5

Q:Person
(x:name) Jon
[[ (y:pho) 22 ]]
(z:pho):11x5

P: Person
(a:name) Jo
(b:pho) 11

Q: Person
(x:name) Jo
(y:pho) 22

P’: Person
(a’:name) Jon
(b’:pho) 11x5

Q: Person
(x:name) Jon
(y:pho) 22
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ii) Four cases with different input mappings

Fig. 3. Mappings do matter in update propagation
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the paper in color, derived elements would be blue (because the color blue re-
minds us of machines and mechanical computation). We will continue with this
pattern throughout the paper.

Fig. 3ii demonstrates that the results of update propagation depend on the
input mappings u and m. All four cases presented in the figure have the same
input models A, A′, B, but different mappings m or/and u, which imply — as
we will see — different outputs B′, u∗, m′.

Consider Fig. 3ii(a). Models’ elements (their OIDs) are denoted by letters
P, a, ..., Q, x, .... We match models by linking those elements that are different
replicas of the same objects in the real world (note the label =). Some of such
links are provided by the user (or a matching tool) while others can be derived
using the metamodel. For example, as soon as elements P@A and Q@B are
linked, their ’name’ attributes must be linked too because the metamodel pre-
scribes a mandatory unique name for any Person object. In contrast, linking
the phone attributes b@A and y@B is an independent (basic rather then de-
rived) datum because the metamodel allows a person to have several phones.
The match shown in the figure says that b and y refer to the same phone. Then
we have a conflict between models because they assign different numbers to the
same phone.In such cases the link is labeled by (red) symbol �= signaling a con-
flict. The set of all matching links together with their labels is called a matching
mapping or just a match, m : A⇒ B.

An update mapping u : A⇒ A′ specifies a delta between models in time. Map-
ping u in Fig. 3ii(a) consists of three links. Note that in general the OIDs of the
linked (i.e., the “same”) objects may be different if, for example, Ann first deleted
object P but later recognized that it was a mistake and restored it from scratch
as a fresh object P ′. Then we must explicitly declare the “sameness” of P and P ′,
which implies the sameness of their ’name’ attributes. In contrast, the sameness
of phone numbers is an independent datum that must be explicitly declared.
Different values of linked attributes mean that the attribute was modified, and
such links are labeled by ∼ (the update analog of �=-label for matches).

Now we will consecutively consider the four cases of update propagation shown
in Fig. 3ii. In all four cases, link PP ′ ∈ u means that object P is not deleted,
and hence its model B’s counterpart, object Q, is also preserved (yet in Fig. 3ii
=-links QQ in mapping u∗ are skipped to avoid clutter.) However, Q’s attribute
values are kept unchange or modified according to mappings u and m.

Case (a). Name change in A is directly propagated to B, and addition of phone
extension specified by u is directly propagated to u∗. The very phone number is
not changed because match m declared a conflict, and our propagation policy
takes this into account. A less intelligent yet possible policy would not propagate
the extension and keep the entire y unchanged.

Case (b): conflicting link b→ y is removed from the match, i.e., Ann and Bob
consider different phones of Jo. Hence, the value of y@B should not change.

Case (c): link b→ b′ is removed from mapping u, i.e., Jo’s phone b was deleted
from the model, and a new phone b′ is added. Propagation of this update can
be managed in different ways. For example, we may require that deletions are
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propagated over both =- or �=-matching links, and then phone y must be deleted
from B′. Or we may set a more cautious policy and do not propagate deletions
over conflicting matching links. Then phone y should be kept in B′ (this variant
is shown in square brackets and is grey). Assuming that additions to A are always
propagated to B, we must insert in B a new phone z “equal” to b′.

Case (d) is a superposition of cases (b,c): both links b → y and b → b′ are
removed from resp. m and u. A reasonable update policy should give us model B′

as shown: phone y is kept because it was not matched to the deleted b, and phone
z is the new b′ propagated to B′. This result can be seen as a superposition of
the results in (b) and (c), and our propagation policies thus reveal compatibility
with mappings’ superposition.

Discussion. In each of the four cases we have an instance of the operation
specified in Fig. 3i(b): given an input diagram (u, m), an output diagram (u∗, m′)
is derived. What we call an update propagation policy is a precise specification
of how to build the output for any input. Three points are worth mentioning.
1. Policies are based on the metamodel: for example, a policy may prescribe

different propagation strategies for different attributes (say, phone changes
are propagated but name changes are not).

2. Recall that in cases (a,c) we discussed different possibilities of update propa-
gation. They correspond to different policies rather than to different outputs
of a single policy. That is, different policies give rise to different algebraic
operations but a given policy corresponds to a deterministic operation pro-
ducing a unique output for an input.

3. The mapping-free projection of the four cases would reveal a strange result:
the same three input models A, B, A′ generate different models B′ for a given
policy. That is, the mapping-free projection of a reasonable propagation
procedure cannot be seen as an algebraic operation.

2.2.2 View Update Propagation

Now we consider a different situation when Bob’s model is a view of Ann’s one,
see Fig. 4i(a). Ann is interested in objects called Persons, their full names, i.e.,
pairs (fstName, lstName), and phone numbers. Bob calls these objects Mates,
and only considers their first names but call the attribute ‘name’.

To specify this view formally, we first augment Ann’s metamodel SSS with
a derived attribute ’fstName’ coupled with the query specification Q defining
this element. Query Q says “take the first component of a name”; formally,
fstNamedef= Q(name)=proj1(name). Then we map Bob’s metamodel TTT into Ann’s
one as shown in the figure, where the view definition mapping vvv : TTT ⇒ SSS consists
of two links. Link v1 says that Bob’s class Mate is Ann’s class Person. Link v2

says that Mate attribute ’name’ is Person’s ‘fstName’ computed by query Q.
Now let A be a model over Ann’s metamodel SSS shown in the left lower corner

of Fig. 4i(a). We may apply to it the query Q specified in the metamodel, and
compute the derived attribute c = proj1(Jo Lee)=Jo. Then we select those ele-
ments of the model, whose types are within the range of mapping vvv, and relabel
them according to this mapping.
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P: Person
(a:name) Jo_Lee
(b:pho) 11
(/c:fstName) Jo
{Jo = Q(Jo_Lee)}

Ann’s model, A

Person
name: Str2 [1]
pho: Int [0..*] 
/fstName: Str [1]
{fstName=Q(name)}

Ann’s metamodel, S

M: Mate
(x:name)Jo

Bob’s model, B

Mate
name: Str [1] 

v

v1

v2

f1

f2

f

u
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A

A

B

B

T
v
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vExe

ppgu*

(a) (b)
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tA
tB

Bob’s metamodel, T

tB'

i) Propagating view update to the source

P: Person
(a:name) Jo_Lee
(b:pho) 11
(/c:fstNm) Jo

M: Mate
(x:name) Jo

f1

f2

f

P :Person
(a:name) Jon_Lee
(b:pho) 11
(/c:fstNm) Jon

M’: Mate
(x’:name) Jon

f 1

f 2

f
(a)

P: Person
(a:name) Jo_Lee
(b:pho) 11
(/c:fstNm) Jo

M: Mate
(x:name)Jo

f1

f2

f

P’: Person
(a’:name) Jon_?
[[ (b’:pho) ? ]]
(/c’:fstNm) Jon

M’: Mate
(x’:name)Jon

f 1

f 2

f
(b)

==
u

u*

ii) Two cases with different update mappings

Fig. 4. Mappings do matter in update propagation cont’d
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The result is shown in the right-lower corner as model B, and links f1,2 trace
the origin of its elements. These links constitute the traceability mapping f =
{f1, f2}. In this way, having the view definition mapping vvv, any Ann’s model A
(an instance of SSS) can be translated into a TTT ’s instance B computed together
with traceability mapping f : B ⇒ A. (A more complex example can be found
in Sect. C.)

Thus, we have a diagram operation specified by square diagram ASSSTTT B in
Fig. 4i(b). It takes two mappings — view definition vvv and typing of the source
model tA, and produces model B (together with its typing tB) and traceabil-
ity mapping f : B ⇒ A. This is nothing but an arrow formulation of the view
execution mechanism; hence the name vExe of the operation.

Now suppose that the view is updated with mapping u : B ⇒ B′, and we
need to propagate the update back to the source as shown by the lower square
in Fig. 4i(b). Update propagation is a different type of diagram operation, and
it is convenient to consider the two diagrams as orthogonal: view execution is
the top face of the semi-cube and propagation is the front. Note that an output
element of operation vExe, mapping f , is an input element for operation ppg;
diagram Fig. 4i(b) thus specifies substitution of one term into another (and we
have an instance of tiling mentioned above).

Fig. 4ii presents two cases of update propagation. In case (a), the name of
Mate-object M was modified, and this change is propagated to object P – the
preimage of M in the source model. Elements of model A not occurring in
the view are kept unchanged. In case (b), the update mapping is empty, which
means that object M was deleted and a new object M ′ added to the model.
Correspondingly, object P is also deleted and a new object P ′ is added to A.
Since the view ignores last names and phones numbers, these attributes of P ′ are
set to Unknown (denoted by ?). The attribute b′ is shown in brackets (and grey)
because a different propagation policy could simply skip P ′’s phone number as
it is allowed by the metamodel (but the last name cannot be skipped and its
value must be set to Unknown).

The results of Discussion at the end of the previous section applies to the view
update propagation as well.

2.2.3 Why State-Based Synchronization Does Not Work Well

Examples above show that synchronization is based on mappings providing
model alignment, particularly, update mappings. Nevertheless, state-based frame-
works are very popular in data and model synchronization. Being state-based
means that the input and the output of the synchronizer only include states of
the models while update mappings are ignored. More accurately, model align-
ment is done inside the synchronizer, as a rule, on the basis of keys (names,
identifying numbers or other relevant information, e.g., positions inside a prede-
fined structure). However, this setting brings with it several serious problems.

First of all, update mappings cannot be, in general, derived from the states.
Identification based on names fails in cases of synonymy or homonymy that
are not infrequent in modeling. Identification numbers may also fail, e.g., if an
employee quit and then was hired back, she may be assigned a new identification
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number. “Absolutely” reliable identification systems like SSNs are rarely avail-
able in practice, and even if they are, fixing a typo in a SSN creates synonymy.
On the other hand, identification based on internal immutable OIDs also does
not solve the problem if the models to be aligned reside in different computers.
Even for models in the same computer, OID-based identification fails if an object
was deleted but then restored from scratch with a new ID, not to mention the
technological difficulties of OID-based alignment. Thus, update mappings can-
not be computed entirely automatically, and there are many model differencing
tools [8,9,10] employing various heuristics and requiring user assistance to fix
the deficiencies of the automatic identification. In general, alignment is another
story, and it is useful to separate concerns: discovering updates and propagating
updates are two different tasks that must be treated differently and addressed
separately.

uX
2 uX

1

S

A

A

X

f2 :v2

ppg 2uA

f2 :v2

uB

T

f1:v1

ppg 1

f1 :v1

v2 v1

X B

X B

v

u X u Bppg 1

X B
f1 :v1

Fig. 5. Mappings do matter in update
propagation (cont’d)

Second, writing synchronization
procedures is difficult and it makes
sense to divide the task into simpler
parts. For example, view update prop-
agation over a complex view can be
divided into composition of update
propagations over the components as
shown in Fig. 5: XXX is some interme-
diate metamodel and view definition
vvv is composed from parts, vvv = vvv1;vvv2.
It is reasonable to compose the proce-
dure of update propagation over view
vvv from propagation procedures over
the component views as shown in the
figure. It is a key idea for the lens
approach to tree-based data synchro-
nization [2], but lens synchronization
is state-based and so two propagation
procedures ppg1 and ppg2 can be composed if the output states of the first are
the input for the second. Hence, the composed procedure will be erroneous if
the components use different alignment strategies (e.g., based on different keys)
and then we have different update mappings u1

X , u2
X as shown in the figure.

Finally, propagation procedures are often compatible with update composi-
tion: the result of propagating a composed update uB; u′

B is equal to composition
of updates uX ; u′

X obtained by consecutive application of the procedure. How-
ever, if alignment is included into propagation, this law rarely holds — see [11]
for a detailed discussion.

2.3 The Arrow Forest and Categories

Mappings are two-folded constructs. On one hand, they consist of directed links
and can be sequentially composed; the arrow notation is very suggestive in this
respect. On the other hand, mappings are sets of links and hence enjoy set
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operations (union, intersection, difference) and the inclusion relation (defined for
mappings having the same source and target). Mappings can also be composed in
parallel: given mi : Ai ⇒ Bi (i = 1, 2), we can build m1⊗m2 : A1⊗A2 ⇒ B1⊗B2,
where ⊗ may stand for Cartesian product or disjoint union (so that we have two
types of parallel composition).

Mapping compositions complicate the relationship tangle in Fig. 2 even more:
the set of basic relationships generates derived relationships. If the latter are
not recognized, models remain unsynchronized and perhaps inconsistent. Living
with inconsistencies [12] is possible if they are explicit and specified; implicit
inconsistencies undermine modeling activities and their automation.

Thus, our tale of unraveling the tangle of relationships led us to an arrow
forest. Updates, matches, traceability and typing mappings are all important
for model synchronization. Together they give rise to complex structures whose
intelligent mathematical processing is not evident and not straightforward.

In the paper we will only consider one side of the rich mapping structure:
directionality and sequential composition. Even in this simplified setting, spec-
ifying systems of heterogeneous mappings needs special linguistic means: right
concepts and a convenient notation based on them. Fortunately, such means
were developed in category theory and are applicable to our needs (the reader
may think of “paved trails in the arrow forest”); the concrete MMt sections of
the paper will show how they work.

Arrows of different types interact in synchronization scenarios and are com-
bined into tiles. The latter may be either similar and work in the same plane,
or be “orthogonal” and work in orthogonal planes as, for example, shown in
Fig. 4i(b). Complex synchronization scenarios are often multi-dimensional and
involve combinations of low-dimensional tiles into higher-dimensional ones. For
example, update propagation for the case of two heterogeneous models with
evolving metamodels gives rise to a synchronization cube built from six 2D-tiles
(Sect. 6.2). Higher-dimensional tiles are themselves composable and also form
category-like structures. In this way the tangled collection of models and model
mappings can be unraveled into a regular net in a multi-dimensional space, as
suggested by the frame of reference on the left of Fig. 2. (Note that we do not
assume any metric and the space thus has an algebraic rather than a geometric
structure. Nevertheless, multi-dimensional visualization is helpful and provides
a convenient notation.)

3 Inside Models and Model Deltas

Diagrammatic models employ a compact concrete syntax, which is a cornerstone
of practical applications. This syntax hides a rich structure of relationships and
dependencies between model’s elements (abstract syntax), which does matter in
model semantics, and in establishing relations between models as well. In this
section we will take a look “under the hood” and consider structures underly-
ing models (Sect. 3.1) and symmetric deltas (binary relations) between models
(Sect. 3.3). To formalize inconsistencies, we introduce object-slot-value models
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and their mappings (Sect. 3.2). We will use the notions of graph, graph mapping
(morphism) and span; their precise definitions can be found in Appendix B.

3.1 Inside Models: Basics of Meta(Meta)Modeling

A typical format for internal (repository) model representation is, roughly, a
containment tree with cross-references, in fact, a directed graph. The elements
of this graph have attributes and types; the latter are specified in the metamodel.
An important observation is that assigning types to model elements constitutes
a mapping t : A→M between two graphs underlying the model (A) and its
metamodel (M) resp. What is usually called a model graph [9,10,13] is actually
an encoding of a typing mapping t. Making this mapping explicit is semantically
important, especially for managing heterogeneous model mappings.

Example. The upper half of Fig. 6 presents a simple metamodel AAA (in the
middle) and its simple instance, model A (on the left), with a familiar syntax
of class and object diagrams. The metamodel is a class diagram declaring class
Person with two attributes. Expressions in square brackets are multiplicities:
their semantic meaning is that objects of class Person have one and only one
name (multiplicity [1..1] or [1] in short), and may have any number of phones,
perhaps none (multiplicity [0..*]).

Symbols in round brackets are beyond UML and say whether or not the value
of the attribute may be set to Unknown (null, in the database jargon). Marking
an attribute by ? means that nulls are allowed: every person has a name but
it may be unknown; we call attributes uncertain. An attribute is called certain
(and marked by !) if nulls are not allowed and the attribute must always have
an actual value. If a person has a phone, its number cannot be skipped.

Model A is an object instance of AAA. It declares two Person objects: one with
an unknown name (which is allowed by the metamodel) and phone number 11,
and the other with name Jo and without phones (which is also allowed). Symbol
’?’ is thus used as both a quasi-value (null) in the models and a Boolean value
? ∈ {?, !} in the metamodel.

In its turn, the metamodel is an instance of the meta-metamodel specified by
a class diagramMMM in the right upper corner. It says that metamodels can declare
classes that own any number (perhaps, zero) of attributes, but each attribute
belongs to one and only one class (this is a part of the standard semantics for
“black diamond” asscoiations in UML). Each attribute is assigned one primitive
type, a pair of integers specifying its multiplicity, and a Boolean value for cer-
tainty; neither of these can be skipped (marker !). We will use model element
names (like Person, pho, etc) as OIds, and hence skip the (important) part of
MMM specifying element naming: certainty and uniqueness of names.

Remark 1. As is clear from the above, an attribute’s multiplicity and certainty
are orthogonal concepts. Below we will see that their distinction matters for
model synchronization. It also matters for query processing and is well known
in the database literature [14]. Surprisingly, the issue is not recognized in UML,
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:Person
name=?
pho=11

P: Person

a1: name

“11”:Int
:val2

Person: Class

name:Attr

Str: pType
val1:type

Person
name: Str [1] (?)
pho: Int [0..*] (!)

Class
class [0..*]

Attr
mlty: Int2 [1] (!)
crty: Bool[1] (!)

pType
type

[1]

Class

Attr

pType

type

Model A Metamodel A Meta-metamodel M

owner

Graph GA

(a) Concrete syntax

(b) Abstract syntax

: Person
name=Jo

Q: Person

“Jo”:Str
:val1

[0..*]

Int2

{!,?}

class

(1,1): Int

?: {!,?}

pho:Attr

owner2: class 

Int: pType
val2:type

owner1:class

a2: pho

l1:owner1

b1: name

l2:owner2

k1:owner1

Graph GA
+ Graph GM

+

[1]

[1]

m1:mlty

m2:mlty

c1: crty

!: {!,?}c2: crty
(0,*): Int

crty

mlty [1]

[1]

Fig. 6. From models to graphs

whose metamodel for class diagrams does not have the concept of certainty, and
handbooks suggest modeling an attribute’s uncertainty by multiplicity [0..1] [15].

Example cont’d: Abstract syntax. In the lower half of Fig. 6, the concrete
syntax of model diagrams is unfolded into directed graphs: model elements are
nodes and their relationships are arrows. We begin our analysis with the meta-
model graph G+

AAA (in the middle of the figure). Bold shaded nodes stand for
the concepts (types) declared in the class diagram AAA: class Person and its two
attributes. Bold arrows relate attributes with their owning class and value do-
mains. The bold elements together form an instantiable subgraph GAAA of the
entire graph G+

AAA. Non-instantiable elements of G+
AAA specify constraints on the

intended instantiations.
Graph GA (the leftmost) corresponds to the object diagram A and specifies

an instantiation of graph GAAA. Each GA’s element has a type (referred to after
the colon) taken from graph GAAA. Nodes typed by Person are objects (of class
Person) and nodes typed by attributes are slots (we use a UML term). Slots are
linked to their owning objects and to values they hold. Slot a1 is empty: there
are no value links going from it. Thus, the abstract syntax structure underlying
a class diagram is a graph G+

AAA containing an instantiable subgraph GAAA and
noninstantiable constraints. A legal instance of graph GAAA is a graph mapping
tA : GA → GAAA satisfying all constraints from G+

AAA \GAAA.
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The same pattern applies to the pair (G+
AAA, GMMM), where GMMM is the instantiable

subgraph of graph G+
MMM specifying the metametamodel (the rightmost in Fig. 6).

Multiplicities in Fig. 6(b) are given in the sugared syntax with square brackets,
and can be converted into nodes and arrows as it is done for graph G+

AAA; asso-
ciation ends without multiplicities are assumed to be [0..*] by default. Finally,
there is a metameta... graph GMMMMMM providing types and constraints for G+

MMM; it
is not shown in the figure.

GA
tA
� GAAA

G+
AAA

|= �
∩

t+AAA
� GMMM

tAAA
�

GMMM+

|= �
∩

Fig. 7. Models as graphs

The entire configuration appears as a chain of
graphs and graph mappings in Fig. 7. Horizontal
and slanted arrows are typing mappings; vertical ar-
rows are inclusions and symbols |= remind us that
typing mappings on the left-above of them must sat-
isfy the constraints specified in the noninstantiable
part. This compact specification is quite general and
applicable far beyond our simple example. To make
it formal, we need to formalize the notion of con-
straint and its satisfiability by a typing mappings. This can be done along the
lines described in [16].

Two models are called similar if they have the same metamodel, and hence
all layers below the upper one are fixed. In our example, two object diagrams
are similar if they are instances of the same class diagram.

3.2 Object-Slot-Value Models and Their Mappings

Our definition of models as chains of graph mappings does not distinguish be-
tween objects and values: they are just nodes in instance graphs. However, ob-
jects and values play different roles in model matching and updating, and for
our further work we need to make their distinction explicit. Below we introduce
object-slot-value (osv) models, whose mappings (morphisms) treat objects and
values differently. This is a standard categorical practice: a distinction between
objects is explicated via mappings (in Lawvere’s words, “to objectify means to
mappify”).

In the previous section we defined a metamodel as a graph mapping
t+AAA : G+

AAA → GMMM. Equivalently, we may work with the inverse mapping (t+AAA)−1,
which assigns to each element E ∈ GMMM the set of those G+

AAA’s elements e for
which t+AAA(e) = E. It is easy to check that this mapping is compatible with in-
cidence relationships between nodes and arrows and hence can be presented as
a graph morphism (t+AAA)−1 : GMMM → Sets into the universe of all sets and (to-
tal) functions between them. (Indeed, multiplicities in graph G+

MMM require all its
arrows to be functions). To simplify notation, below we will skip the metameta-
model’s syntax and write E instead of (t+AAA)−1(E) (where E stands for Class, Attr,
type etc. elements in graph GMMM). Given a model, we will also consider sets Obj
and Slot of all its objects and slots.
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Fig. 8. Osv-models and their mappings

Definition 1. (Osv-models) An object-slot-value model is given by a collec-
tion of sets and functions (i.e., total single-valued mappings) specified by diagram
Fig. 8(a); the hooked arrow i! denotes an inclusion. The functions are required
to make the diagram commutative, and to satisfy two additional constraints
(1,2) (related to mlty and crty) specified below after we discuss the intended
interpretation of sets and functions in the diagram.

The bottom row gives a system of primitive types for the model, and the right
“column” specifies a class diagram without associations (the metamodel). For
example, model A in Fig. 6 is an instance of the osv-model definition with
sets Class={Person}, Attr={name, pho}, pType={Str, Int} and Value consisting
of all strings and all integers. Classes Int and Bool have their usual extension
consisting, resp., of integers (including “infinity” *) and Boolean values (denoted
by ?,!).3 The functions are defined as follows: type(name) = Str, type(pho) =
Int; class(name) = class(pho) = Person; mlty(name) = (1,1), mlty(pho) = (0,*);
crty(name) = !, crty(pho)= ?

The left column specifies the “changeable/run-time” part of the model — an
object diagram over the class diagram; hence, there are typing mappings tobj,
tslt and the requirement for the upper square diagram to be commutative. For
example, for model A in Fig. 6, we have sets Obj = {P, Q}, Slot = {a1, a2, b1}
and functions: tobj(P ) = tobj(Q) = Person; tslt(a1) = name, etc; obj(a1) = P , etc.

Slots in set Slot! are supposed to hold a real value extracted by function
val. This value should be of the type specified for the attribute, and the lower
polygon is also required to be commutative. Slots in set Slot?

def= Slot \ Slot!

are considered empty, and function val is not defined on them. For model A, we

3 For a punctilious reader, values in classes Int and Bool live in the metalanguage and
are different from elements of set Value.
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have Slot! = {a2, b1} val(a2) = ’11’, val(b1) = ’Jo’ whereas a1 ∈ Slot?. We will
continue to use our sugared notation val(s) =? for saying that slot s ∈ Slot? and
hence val(s) is not defined.

The following two conditions hold.
(1) For any attribute a ∈ Attr and object o with tobj(o) = class(a), if mlty(a) =
(m, n), then m ≤ |obj−1(o)| ≤ n (i.e., the number of a-slots that a class(a)-object
has must satisfy a’s multiplicity).
(2) If for a slot s ∈ Slot we have s.tslt.crty = 1 (i.e., the attribute is certain),
then s ∈ Slot!.

Definition 2. (Osv-model mappings) Let A, B be two osv-models over the
same class diagram, i.e., they have the same right “column” in diagram Fig. 8(a)
but different changeable parts distinguished by indexes A, B added to the names
of sets and functions (see Fig. 8(b) where the class diagram part is not shown,
and bottom double-line denotes identity). We call such models similar.

A mapping f : A→ B of similar osv-models is a pair f = (f obj, f slt) of func-
tions shown in Fig. 8(b) such that the upper square in the diagram commutes,
and triangles formed by these functions and typing mappings (going into the
“depth” of the figure) are also commutative: f obj; tobj

B = tobj
A and f slt; tsltB = tsltA .

In addition, the following two conditions hold.
(3) Let f slt! : Slot!A→ SlotB be the composition i!A; f slt, i.e., the restriction of
function f slt to subset Slot!A. We require function f slt! to map a non-empty slot to
a non-empty slot. Then we actually have a total function f slt! : Slot!A→ Slot!B,
and the upper diamond in diagram (b) is commutative.
(4) The lower diamond is required to be commutative as well: a non-empty slot
with value x is mapped to a non-empty slot holding the same value x.

To simplify notation, all three components of mapping f will often be denoted
by the same symbol f without superscripts.

Remark 2. Condition (3) says nothing about B-slot f slt(s) for an empty A-slot
s ∈ Slot?A: it may be be also empty, or hold a real value. That is, a slot with
’?’ can be mapped to a slot with either ’?’ or a real value (but a slot with a real
value v is mapped to a slot holding the same v by condition (4)).

Commutativity of diagram Fig. 8(b) is the key point of Definition 2 and essen-
tially ease working with model mappings. (Categorically, commutativity means
that model mappings are natural transformations). This advantage comes for
a price: condition (4) prohibits change of attribute values in models related by
a mapping, and hence we need to model attribute changes somehow differently.
We will solve this problem in the next section.

3.3 Model Matching via Spans

Comparing two models to discover their differences and similarities is an impor-
tant MMt task called model differencing or matching. Since absolutely reliable
keys for models’ elements are rarely possible in practice, model matching tools
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Ann’s model,  A
m0: Person
(m1:name)Jo

(m2:pho) ?

P:Person
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Fig. 9. Reification of matches

usually employ complex heuristics and AI-based techniques (like, e.g., similarity
flooding [17]), which are tailored to specific kinds of models or/and to specific
contexts of model comparison [8,10,18]. Whatever the technic is used for model
matching, the result is basically a set of matching links between the models’
elements. Such sets have a certain structure, and our goal in this section is to
specify it formally.

A simple example of model matching is shown in Fig. 9(a). Two similar mod-
els are matched by a family m of links m0,1,2 between model elements (objects
and slots). Linking slots implies linking their values; hence we have two additional
links m′

1 : Jo→ Jo and m′
2 : 11→ 22. The latter link shows a conflict between the

models.
All matching links respect typing: we cannot match an attribute and an object,

or two attributes belonging to unmatched classes. The set of matching links is
itself structured similarly to models being matched, and hence can be seen as a
new model, say, M as shown in Fig. 9(b). (Name M stands for Mary — an MMt
administrator who did the comparison of Ann’s and Bob’s models.) In the UML
jargon, this step can be called reification of links: each one becomes an object
holding two references (p and q) to the matched elements.

Note that some matching links can be derived from the others. For example,
the metamodel says that all Person objects must have one ’name’ slot. Then as
soon as we have objects P and Q matched, their name slots must be automatically
matched (the link is thus derived and shown dashed). In contrast, since several
phone slots are possible for a person, matching link m2 between slots b@A and
y@B is an independent datum (solid line).
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Whatever the way two slots are matched, their matching means that they
should hold the same value. If it is not the case, for example, note different
numbers in slots b@A and y@B, we have a conflict between models. This conflict
is represented by setting the value in slot m2@M to ’?’ (which is allowed by the
metamodel AAA in Fig. 9(a)). Note that the metamodel also allows us to skip
attribute ’phone’, but then we would not have any record of the conflict. By
introducing a slot for the conflicting attributes but keeping it empty, we make
the conflict explicit and record it in model M . Moreover, two conflicting slots
in models A, B can be traced by links m2.p

slt, m2.q
slt. Then we may continue to

work with models A, B leaving the conflict resolution for a future processing (as
stated by the famous Living with inconsistencies principle [12]).

Note that if models were conflicting at their name-attributes, we should re-
solve this conflict at once because the metamodel in Fig. 9(a) does not allow
having null values for names. In this way metamodels can regulate which con-
flicts can be recorded and kept for future resolution, and which must be resolved
right away. Note also that whether two models are in conflict or consistent is de-
termined by the result of their matching, and hence is not a property of the pair
itself.

Definition 3. (Osv-model match) Let A, B be two similar osv-models. An
(extensional) model match is an osv-model M together with two injective model
mappings A

p←M
q→ B (see Fig. 10).

A match is called complete, if for any slot m ∈ SlotM the following holds:
(*) if m.p ∈ Slot!A, m.q ∈ Slot!B and valA(m.p) = valB(m.q), then m ∈ Slot!M.

That is, if a matching slot m links two slots with the same real value, m is not
empty (and holds the same value as well by Definition 2).

ObjA �p
obj

ObjM
qobj

� ObjB

SlotA
�

�p
slt

SlotM
� qslt

� SlotB
�

Slot!A
∪�

�p
slt!

Slot!M
∪� qslt!

� Slot!B
∪�

Fig. 10. Matching two osv-models

The term extensional refers to the fact that
in practice model matches may have some
extra (non-extensional) information beyond
data specified above; we will discuss the is-
sue later in Sect. 4.1. In this section we will
say just ‘match’.

Completion and consistency of matches.
Any incomplete match M can be completed
up to a uniquely defined complete match M∗

containing M : ObjM∗ = ObjM , SlotM∗ = SlotM , and Slot!M∗ ⊃ Slot!M . We
first set Slot!M∗ = Slot!M . Then for any slot m ∈ Slot?M we compute two
values, x(m) = valA(m.p) and y(m) = valB(m.q). If x, y are both real values and
x = y, we move m into set Slot!M∗ and set valM (m) = x, otherwise m is kept
in Slot?M∗. Below we will assume that any match is completed.

For a match M and a slot m ∈ Slot�M , there are three cases of relationships
between values x(m) and y(m) defined above. (Case A): both values are real
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but not equal; it means a real conflict between the models. (B): if exactly one
of the values is null, say, x, we have an easy conflict that can be resolved by
propagating real value y from B to A. Let Slot�M ⊂ Slot?M denotes the set of
slots for which either (A) or (B) holds.

(C) If both values are nulls, the models do not actually conflict although slot
m is empty.

Definition 4. (Consistency) Models A and B are called consistent wrt. their
(complete) match M if set Slot�M is empty. (That is, all matched slots either
hold a real value or link two empty slots, but the situation of linking two slots
with different values is excluded). As a rule, we will say in short that a match
M is consistent.

Remark 3. Links in a match can be labeled according to some four-valued logic:
no conflict between two real values, no conflict because two nulls, a real conflict
(between two real values), and an easy conflict between a value and a null. We
leave investigation of this connection for future work.

3.4 Symmetric Deltas and Their Composition

What was described above in terms of matching models understood as replicas,
may be also understood in terms of model updates. The following terminology
borrowed from category theory will be convenient.

A configuration like A
p←M

q→ B is called a model span: model M is the head,
models A, B are feet and mappings p, q are the legs or projections. A model span
consists of three set spans, i.e., spans whose nodes are sets and legs are functions,
see Fig. 10. Thus, a (complete) model match is just a (complete) model span
whose legs are injections.

Let A
p←M

q→ B be a complete model span. We may interpret it as an update
specification with A and B being the states of some fixed model before and after
the update. Then elements in sets ObjM and SlotM link elements that were
kept, A’s elements beyond the range of p are elements that were deleted, B’s
elements beyond the range of q were inserted, and elements from set Slot�M (of
“conflicting” links) show the attributes that were changed. Now we will call a
complete span with injective legs a (symmetric) delta, and interpret it as either
an (extensional) match or an update.

A delta as specified by Fig. 10 is a symmetric construct, but to distinguish the
two models embedded into it, we need to name them differently. Say, we may call
model A the left or better the source) model, and model B the right or better the
target model. It is suggestive to denote a delta by an arrow Δ : A⇒ B, whose
double-body is meant to remind us that a whole triple-span diagram (Fig. 10) is
encoded. The same diagram can be read in the opposite direction from the right
to the left, which means that delta Δ can be inverted into delta Δ−1 : B ⇒ A
(see Appendix B, p. 151 for a precise definition).

Suppose we have two consecutive deltas

A ===
Δ1⇒ B ===

Δ2⇒ C with Δ1 = (A
p1← M1

q1→ B) and Δ2 = (B
p2← M2

q2→ C)
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between Ann’s, Bob’s and, say, Carol’s models. To compose them, we need to

derive a new delta A ===
Δ⇒ C from deltas Δ1 and Δ2.

Since deltas are complete spans, each of them is determined by two set spans,
Δobj

i and Δslt
i , i = 1, 2, which can be sequentially composed. The reader may

think of deltas as representations of binary relations, and their composition
as the ordinary relational composition ��; a precise formal definition of delta
composition via the so called pullback operation is in Appendix B, p. 152.

In this way we derive a new osv-model N determined by sets ObjN
def=

ObjM1 �� ObjM2 and SlotN
def= SlotM1 �� SlotM2, and by function

objN : SlotN → ObjN defined in the natural way (via the universal property of
pullbacks; this is where the categorical formulation instantly provides the re-
quired result). Projections are evident and thus we have two set spans Δ =

(A
px

← xN
qx

→ C) with x = obj, slt. These data give us a span N with empty set
Slot!N . However, we can complete N as described above (we let N denote the
completion too), and so obtain a new delta Δ = (A

p← N
q→ C) between models.

Associativity of so defined composition follows from associativity of span com-
position (Appendix B). In addition, a complete span A← A→ A whose legs
consist of identity functions between sets is a unit of composition. We have thus
proved

Theorem 1. The universe of osv-models and symmetric deltas between them is
a category.

Exercise 1. Explain why Slot!N ⊇ Slot!M1 �� Slot!M2 but equality does not
necessarily hold.

4 Simple Update Propagation, I: Synchronizing Replicas

By a replica we understand a maintained copy of a model, and assume that repli-
cation is optimistic: replicas are processed independently and may conflict with
each other, which is optimistically assumed to appear infrequently [19]. Then
it makes sense to record conflicts to resolve them later, and continue to work
with only partially synchronized replicas. The examples considered in Section
2 (Fig. 3) are simple instances of replica synchronization. We have considered
them in a concrete way by looking inside models and their mappings. The present
section aims to build an abstract algebraic framework in which models and map-
pings are treated as indivisible points and arrows.

Subsection 4.1 introduces the terminology and basic notions of replica syn-
chronization; there is an overlap with the previous section that renders the
present section independent. Subsection 4.2 develops a basic intuition for the al-
gebraic approach to modeling synchronization. Subsections 4.3 and 4.4 proceed
with algebraic modeling as such: constructing algebraic theories and algebras
(instances of theories).
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4.1 Setting the Stage: Delta × Delta = Tile

Terminology. There are two main types of representations for model differ-
ences: operational and structural, which are usually called directed and sym-
metric deltas respectively [20]. The former is basically a sequence (log) of edit
operations: add, change, delete (see, e.g., [21]). The latter is a specification of
similarities and differences of the two models ([22]).

A symmetric delta can be seen extensionally as a family of matching links, in
fact, as a binary relation; in the previous section we formalized symmetric deltas
as (complete) spans (reified binary relations). Besides extension, a symmetric
delta may contain non-extensional information: matching links can be annotated
with authorship, time stamps, update propagation constraints and the like. We
also call deltas mappings and denote them by arrows (even symmetric deltas,
see Sect. 3.4).

Now suppose we have two replicas of the same model maintained by our
old friends Ann and Bob, Fig. 11. Nodes A, B are snapshots of Ann’s and
Bob’s replica at some time moment, when we want to compare them. The hor-
izontal arrow m denotes a relationship — match— between the replicas. We
interpret matches as symmetric deltas (spans) with, perhaps, some additional
(non-extensional) data. Ann and Bob work independently and later we have two
updated versions A′ and B′ with arrows a and b denoting the corresponding up-
dates. We may interpret updates structurally as symmetric deltas. Or we may
interpret them operationally as directed deltas (edit logs).

Versions and updates

Replicas and 
matchesA

A B

B

a b

t

Ann’s
model

t

m

m

Bob’s
model

T: P

Fig. 11. The space of model versioning

The four deltas m, a, m′, b are mu-
tually related by incidence relation-
ships : ∂sm = ∂sa, ∂tm = ∂sb, etc.
(where ∂sx, ∂tx denote the source and
the target of arrow x), and together
form a structure that we call a tile.
The term is borrowed from a series of
work on behavior modeling [23], and
continues the terminological tradition
set up by the Harmony group’s lenses
— naming synchronization constructs
by geometric images.

Visually, a tile is just a square
formed by arrows with correspondingly sorted arrows. To avoid explicit sorting
of arrows in our diagrams, we will always draw them with updates going verti-
cally and matches horizontally. A tile can be optionally labeled by the name of
some tile’s property (predicate) P . Expression T :P means that T has property
P , i.e., T |= P or T ∈ [[P ]] with [[P ]] denoting the extension of P . The name of
the tile may be omitted but the predicate label should be there if T |= P holds.

The tile language: matches vs. updates. To keep the framework sufficiently
general, we do not impose any specific restrictions on what matches and updates
really are, nor do we assume that they are similar specifications. For example,
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matches may be annotated with some non-extensional information that does
not make sense for updates, e.g., priorities of update propagation (say, ’name’
modifications are propagated from Ann’s model to Bob’s, while ’phones’ are not)
or “matching ranks” (how much we are sure that elements e@A and e′@B are
the same, see [24] for a discussion). Furthermore, we may have matches defined
structurally (with annotations or not) whereas updates operationally.

Therefore, we do not suppose that matches can be sequentially composed
with updates (and vice versa). But of course updates can be composed with
updates, and matches with matches, although match composition can be non-
trivial, if at all well-defined, because of non-extensional information. For ex-
ample, let m+ : X → Y denotes a match consisting of symmetric delta (relation,
span) m augmented with some non-extensional information. For two consecutive
matches m+

1 : A→ B, m+
2 : B → C, their extensional parts can be composed as

relations producing delta m = m1; m2 : A→ C, but to make m into a match m+

we need to compose somehow non-extensional parts of the matches. We leave
the issue for the future work and in this paper will not compose matches.

The situation with updates is simpler. Either they are interpreted structurally
as symmetric deltas (spans), or operationally as edit logs, they are sequentially
composable in the associative way. For symmetric deltas it is shown in Sect. 3.4;
and it is evident for edit logs (whose composition is concatenation).

In addition, we assume that for every model A there are an idle update
1bA : A→ A that does nothing, and an identity match 1hA : A→ A that identi-
cally matches model A to itself. For the structural interpretation of arrows, both
idle updates and identity matches are nothing but spans whose legs are identity
mappings (and no extra non-extensional information is assumed for matches).
For the operational interpretation, idle/identity arrows are empty edit logs.

Thus, in the abstract setting we have a structure consisting of two reflexive
graphs, Modmch of models and matches, and Modupd of models and updates,
which share the same class of objects Mod but have different arrows. Moreover,
arrows in graph Modupd are composable (associatively) and Modupd is a cat-
egory. We will call such a structure a 1.5-sorted category and denote it by Mod
(if Modmch also were a category, Mod would be a two-sorted category)(see
Sect. B).

Simple synchronization stories via tiles. Despite extreme simplicity of the
language introduced above, it allows us to describe some typical replication situa-
tions as shown in Fig. 12. The diagrams in the figure can be seen as specifications
of use cases (“stories”) that have happened, or may happen, in some predefined
context. The meaning of these stories is easily readable and explained in the
captions of the diagrams (a-d). In diagram (b), symbol ∼= denotes the predicate
of being an isomorphic match (i.e., we assume that a subclass [[∼= ]] of arrows in
graph Modmch is defined).

The stories could be made more interesting if we enrich our language with
diagram predicates, say, Ph and Pv, allowing us to compare matches and updates.
Then, for example, by declaring that tile T belongs to the class [[Ph ]] (as shown by
diagram (c)* ), we say that match m′ is “better” than m. Such predicates can be
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Fig. 12. Several replication stories via tiles

seen as arrows between arrows, or 2-arrows, and give rise to a rich framework of
2-categories and bicategories (see, e.g., [25]). We leave this direction of modeling
replication for future work.

The “historian’s” view on synchronization scenarios, even with comparison
predicates, is not too interesting. The practice of model synchronization is full
of automatic and semi-automatic operations triggered automatically or by the
user’s initiation. Thus, we need to enrich our language with synchronization
operations.

4.2 Update Propagation via Algebra: Getting started

As discussed in Sect. 2.2, algebraic operations modeling synchronization proce-
dures should be diagrammatic: they take a configuration (diagram) of matches and
updates that conform to a predefined input pattern, and add to it new matches
and updates conforming to a predefined output pattern. These new elements are
to be thought of as computed or derived by the operation. In this section we con-
sider how diagram operations work with a typical example, and develop a basic
intuition about the algebraic approach to modeling synchronization.

Update propagation: A sample diagram operation. Propagating updates
from one replica to another is an important synchronization scenario. We model
it by diagram operation fPpg shown in Fig. 13(a). The operation takes a match
m between replicas and an update a of the source replica, and produces an
update b of the target replica and a new match m′. The input/output arrows
are shown by solid/dashed lines resp.; the direction of the operation is shown
by the doubled arrow in the middle. (To be consistent, we should also somehow
decorate node B′ but we will not so so.)

We write (b, m′) = fPpg(a, m) and call the quadruple of arrows (tile) T =
(a, m, b, m′) an application instance of the operation. Other pairs of input ar-
rows will give other application instances of the same operation; hence, notation
T :fPpg. (The name T is omitted in the diagram). This notation conforms to la-
beling tiles by predicates introduced earlier. Operation fPpg defines a predicate
fPpg∗ of square shape: for a quadruple of arrows (a, m, b, m′) forming a square,
we set fPpg∗(a, m, b, m′) is true iff (b, m′) = fPpg(a, m); in this case we say that
the quadruple (a, m, b, m′) is a fPpg-tile. Later we will omit the star superindex.
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Fig. 13. Forward update propagation (a) and its two special cases (b,c)

Below we will also use the dot-notation for function applications, (b, m′) =
(a, m).fPpg to ease reading complex formulas. Since the operation produces
two elements, we need special projection operations, upd and mch, that select
the respective components of the entire output tuple: b = (a, m).fPpg.upd and
m′ = (a, m).fPpg.mch.

Update policies and algebra. There are two extreme cases of update propa-
gation with fPpg.

One is when nothing is propagated and hence the output update is idle
as shown in diagram Fig. 13(b). Then propagation amounts to rematching:
updating the match from m to m′. If this special situation, i.e., equality
(a, m).fPpg.upd = 1B, holds for any update a originating at m’s source, we have
a very strong propagation policy that actually blocks replica B wrt. updates
from A.

The opposite extremal case is when the entire updated model is propagated
and overwrites the other replica as shown in diagram (c). A milder variant would
be to propagate the entire A′ but not delete the unmatched part of B, then match
m′ would be an embedding rather than isomorphism.

In-between the two extremes there are different propagation policies as dis-
cussed in Sect. 2.2.1. The possibility of choice is in the nature of synchronization
problems: as a rule, some fragments of information are missing and there are
several possible choices for model B′. To make computation of model B′ de-
terministic, we need to set one or another propagation policy. Yet as soon as
a policy is fixed, we have an algebraic operation of arity shown in Fig. 13(a).
Thinking algebraically, a policy is an operation (cf. Discussion in Sect. 2.2.1).

Remark 4. So-called universal properties and the corresponding operations (see
Appendix A.1) are at the heart of category theory. It explains attempts to model
update policies as universally defined operations [26]. However, our examples
show that, in general, a propagation policy could not be universally defined
simply because many policies are possible (while universally defined operations
are unique up to isomorphism).

Algebra: action vs. “history”. The mere assertion that some components of
a story specified by a tile are derived from the other components may be a strong
statement. Let us try to retell our simple synchronization stories in Fig. 12 in
an algebraic way.
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Fig. 14. Replication stories and algebra: Fig. 12 processed algebraically

Diagram Fig. 14(a1) says that three arrows (a, m, b) are produced by apply-
ing some operation to the identity match, that is, in fact, to model O. This is
evidently meaningless because triple (a, m, b) cannot be derived from O alone.
In contrast, diagram (a2) is a reasonable operation: given two updates of the
same source, a match between them can be computed based on the information
provided by the input data.

Diagram (b1) says that any two matched replicas can be made isomorphic.
It is a very strong statement: we assume that all conflicts can be resolved, and
differences between replicas can be mutually propagated in a coherent way. A
more reasonable algebraic model of conflict resolution is specified by diagram
(b2): the result of the operation is just another match m′ presumably better
(with less conflicts) than m. Augmenting the language with constructs formally
capturing the meaning of “better” (e.g., 2-arrows) would definitely be useful,
and we leave it for future work.

Exercise 2 (*). Diagrams (c1,c2) present two algebraic refinements of the syn-
chronization story specified in Fig. 12(c). Explain why diagram (c1) does not
make much sense whereas (c2) specifies a reasonable operation. Hint : Note an
important distinction of diagram (c1) from diagram (b2).

4.3 An Algebraic Toolbox for a Replica Synchronization Tool
Designer

Suppose we are going to build a replica synchronization tool. Before approaching
implementation, we would like to specify what synchronizing operations the
tool should perform, and what behavior of these operations the tool should
guarantee; indeed, predictability of synchronization results is important for the
user of replication/versioning tools (cf. [3]). Hence, we need to fix a signature of
operations and state the laws they must obey; in other words, we need to fix a
suitable algebraic theory. The tool itself will be an instance of the theory, that
is, an algebra: sorts of the theory will be interpreted by classes of replicas the
tool operates on, and operations will be interpreted by actual synchronization
procedures provided by the tool.

Two main ingredients constituting an algebraic theory are a signature of op-
erations with assigned arity shapes, and a set of equational laws prescribing the
intended behavior of the operations. In ordinary algebra, operation arities are
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Fig. 15. Replica synchronization operations: update propagation (a), rematching (b),
conflict resolution (c), and Boolean test for consistency of matches (d)

sorted sets; in diagram algebra, arities are sorted graphs but the principal ideas
and building blocks remain the same. In this section we specify a pool of diagram
operations for modeling synchronization procedures, and a pool of laws that they
should, or may want, to satisfy. Together they are meant as an algebraic toolbox
with which a tool designer can work.

The carrier structure. All our operations will be defined over 1.5-sorted cat-
egories, i.e., two-sorted reflexive graphs with arrows classified into horizontal
(matches) and vertical (updates); the latter are composable and form a category.

Operations. A precise definition of a diagram operation over a two-sorted
graph is given in Sect. B. For the present section it is sufficient to have a semi-
formal notion described above.Recall that in order to avoid explicit sorting of
arrows in our diagrams, we draw them with geometrically vertical/horizontal
arrows being formally vertical/horizontal.

Figure 15 presents a signature of operations intended to model synchronization
procedures. The input/output arrows are distinguished with solid/dashed lines,
and input/output nodes are black/white.

Diagrams Fig. 15(a1,a2) show operations of forward and backward update
propagation. The former was just considered; the latter propagates updates
against the direction of match and is a different operation. For example, if the
replica at the source is in some sense superior to the replica at the target, for-
ward propagation may be allowed to propagate deletions whereas the backward
one is not. Diagram (a3) specifies bi-directional update propagation. It takes a
match and two parallel updates and mutually propagates them over the match;
the latter is then updated accordingly.

Diagrams Fig. 15(b1,b2) show operations of forward and backward rematching.
If for a given match m : A→ B, one of the replicas, say, A, is updated, we may want
to recompute the match but do not change the other replica B. This scenario is
modeled by operation fRem in Fig. 15(b1), where the update of the other replica is
set to be idle. Thus, operation fRem actually has two arguments (the left update
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and the upper match) and produces the only arrow — an updated match (at the
bottom). The backward rematch works similarly in the opposite direction. The
operation of bidirectional rematching does not make sense (Exercise 1 above). If
we were modeling both matches and updates by relations (spans), then rematch
would nothing but sequential span composition Sect. 3.3. However, as we do
not compose updates and matches, we model their composition by a special tile
operations.

Finally, Fig. 15(c) specifies operation Res of conflict resolution. It takes a
match between two replicas that, intuitively, may be inconsistent, and computes
updates a, b necessary to eliminate those conflicts that can be resolved automat-
ically without user’s input.

Other synchronization operations are possible, and the signature described
above is not intended to be complete. Neither is it meant to be fully used in
all situations. Rather, it is a pool of operations from which a tool designer may
select what is needed.

Predicates. To talk about consistency of matches, we need to enrich our lan-
guage with a consistency predicate (think of strongly consistent matches from
Sect. 3.3).

Diagram (d) presents it as a Boolean-valued operation: for any match m a
Boolean value is assigned, and we call m consistent if K(m) = 1. (The letter K
is taken from “Konsistency”: denoting the predicate by C would better fit the
grammar but be confusing wrt. terms Classes and Constraints.) In our diagrams
we will write m:K for K(m) = 1. Semantically, we have a class of consistent
matches K = {m : K(m) = 1}.
Remark 5. Consistency is often considered as a binary predicate K′ on models:
replicas (A, B) are consistent if K′(A, B) holds [6]. Our definition is essentially
different and moves the notion of consistency from pairs of replicas to matches.
Indeed, as discussed in sections 2.2, 3.3, multiple matches between replicas are
possible, and it is a match m : A→ B that makes the pair (A, B) consistent or
inconsistent.

Remark 6. The presence of predicates makes our theory non-algebraic. A stan-
dard way to bring it back to algebra is to define predicates via equations between
operations, if it is possible. Another approach is to work in the framework of
order-sorted algebra [27].

Equational laws. Equations the operations must satisfy are crucial for algebraic
modeling. Without them, algebraic theories would define too broad classes of al-
gebras encompassing both adequate and entirely inadequate algebraic models.

Equational laws for diagram operations can be concisely presented by dia-
grams as well. Consider, for example, diagram Fig. 16(a1), whose arrows are
labeled by names (identifiers) of matches and updates. The names express the
following equation: for any match m, fPpg(1∂sm, m) = (1∂tm, m). This is a gen-
eral mechanism: if all arrows in the tile have different names, the tile specifies
a generic instance of the operation without any restrictions, but the presence of
common names amounts to equational constraints like above.
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Fig. 16. Replica synchronization: the laws

The equation expressed by Fig. 16(a1) has a clear interpretation: given a match
m, the idle update on the source is propagated into the idle update on the target
while the match itself is not changed. We call the law IdlPpgf following a general
pattern of naming such laws by concatenating the operation names (take the idle
update and propagate it; index f refers to forward propagation). The pattern was
invented by the Harmony group for lenses and turned out very convenient.

Diagram Fig. 16(a2) displays two fPpg-tiles vertically stacked (ignore the
boxed label for a while). It means that the output match of the upper appli-
cation of fPpg is the input match for the lower application. Since updates are
composable, the outer rectangle in the diagram is also a tile whose updates are
a; a′ and b; b′. Now the boxed label says that the outer tile is also an application
instance of fPpg. (In more detail, given a match m and two consecutive updates
a, a′ on its source, we have fPpg(a; a′, m) = (b; b′, m′′) where (b, m′) = fPpg(a, m)
(name m′ is hidden in the diagram) and (b′, m′′) = fPpg(a′, m′).) We will phrase
this as follows: if the two inner tiles are fPpg, then the outer tile is also fPpg
(note also the name of the law). Thus, composed updates are propagated com-
ponentwise.

Diagram Fig. 16(a3) says that if (b, m′) = fPpg(a, m) and m ∈ K, then m′ ∈ K
as well: consistency of matches is not destroyed by update propagation. We call
an update propagation correct if it satisfies this requirement, hence the name of
the law. Note the conditional nature of the law: it says that the resulting match is
consistent if the original match is consistent but does not impose any obligations
if the original match is inconsistent. This formulation fixes the problem of the
unconditional correctness law stated in [6].
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Exercise 3. Explain the meaning of diagrams (b1) and (b2) in Fig. 16

Now we consider laws regulating interaction between the two operations. The
law specified by diagram (ab1) is conditional. The argument of the premise and
the conclusion is the entire tile, and the diagram says: if a tile is an instance
of fRem with output match satisfying K, then the tile is also an instance of
fPpg. Formally, fRem∗(T ) implies fPpg∗(T ) for a tile of the shape shown in the
diagram (recall that starred names denote predicates defined by operations).
That is, if m′ = fRem(a, m) ∈ K then fPpg(a, m) = (m′, 1∂tm). The meaning of
the law is that if we update the source, and the updated match m′ is consistent,
then nothing should be propagated to the target. This is a formal explication of
the familiar requirement on update propagation: “first check, then enforce” (cf.
Hippocraticness in [6]). Hence the name of the law, ChkPpg.

Exercise 4. Explain the meaning of diagram (ab2) Fig. 16

Exercise 5 (*). Formulate some laws for the operation of conflict resolution, and
specify them diagrammatically.

There is no claim that the set of laws we have considered is complete: other
reasonable laws can be formulated. The goal was to show how to specify equa-
tional laws, and how to interpret them, rather then list them “all”.

4.4 Replica Synchronization Tools as Algebras

In this section, we build a simple algebra intended to model a replica synchro-
nization tool as it was explained at the beginning of Sect. 4.3.

We first fix a theory (= signature + laws). For the signature, we take four
operations (to be precise, operation symbols) (fPpg, bPpg, fRem, bRem) with ari-
ties specified in Fig. 15. These operations can be interpreted over any 1.5-sorted
category encompassing any number of replicas. However, we assume that our
synchronization tool will only work with two replicas propagating updates from
one to the other and back. Hence, we need to specify a specific 1.5-sorted cate-
gory adequate to our modest needs.

Definition 5. A (binary) replication lane r is given by the following data.
(a) Two categories, A and B, whose objects are called replicas (or models),

and arrows are updates. (For a category X, its classes of objects and arrows
are denoted by, resp., X0 and X1.) Specifically, objects of A are called source
replicas and those of B the target ones.

(b) A set M whose elements are called matches from A- to B-replicas, and

two functions (legs), A0
∂s← M

∂t→ B0, from matches to replicas. If for a match
m ∈M, ∂s(m) = A, ∂t(m) = B, we write m : A→ B.

(c) A set K ⊂M of consistent matches.

Figure 17 visualizes the definition: updates are vertical, and matches are hori-
zontal or slanted (solid or dotted-dashed for being consistent or inconsistent).
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We denote a replication lane by a bulleted arrow r :

A •→ B. If replicas are considered within the same ver-
sioning space, categories A and B coincide, and we call the
lane unary, r: A •→ A.

Now we define an algebra over a replica lane.

Definition 6. A diagonal replica synchronizer is a pair
δ = (rδ, Σδ

brSync) with rδ a replica lane and Σδ
brSync =

(fPpgδ, bPpgδ, fRemδ, bRemδ) a quadruple of diagram opera-
tions over rδ of the arities specified in Fig. 15. The name diag-

onal refers to the fact that propagation operations act along diagonals of operation
tiles, and bidirectional propagation (for parallel updates) is not considered.

It is convenient to denote a replica synchronizer by an arrow δ : A •→ B
whose source and target refer to the source and target of the replica lane rδ.

A diagonal synchronizer is called well-behaved (wb) if the pair (fPpg, fRem)
satisfies the laws IdlPpgf ,Corrf ,IdlRemf ,ChkPpgf specified in Fig. 16, and the pair
(bPpg, bRem) satisfies the backward counterparts of those laws. A wb diagonal
synchronizer is called very well-behaved (vwb) if the laws PpgPpgf ,RemRemf and
their backward counterparts hold too.

Modularization of the set of laws provided by the notions of wb and very wb
synchronizer is somewhat peculiar from the categorical standpoint because it
joins unitality (preservation of units of composition, ie, idle updates) with other
laws but separates it from compositionality, and the very terms are not very con-
venient. However, this modularization and terminology follow the terminology
for lenses [2] and make comparison of our framework with lenses easier (see [28]
for an analysis of these laws in the discrete setting).

The definition above is intuitively clear but its precise formalization needs a
careful distinction between syntax and semantics of a diagram operation, see
Sect. B.

5 Simple Update Propagation II: Forward and Backward
View Maintenance

In this section we consider synchronization of a source model and its view. The
content is parallel to replica synchronization and the algebraic model is developed
along the same lines. Yet view synchronization is essentially different from replica
synchronization.

5.1 View vs. Replica Synchronization

Examples in Sect. 2.2 and Appendix C show that a view definition can be mod-
eled by a metamodel mapping SSS vvv←− TTT that sends elements of the view (target)
metamodel TTT to basic or derived elements of the source metamodel SSS.4 In ad-
dition, the mapping must be compatible with the structure of the metamodels
4 Derived elements of SSS are, in fact, queries against SSS seen as a data schema.
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Fig. 18. View maintenance: Forward (a) and backward (b) update propagation

(and send a class to a class, an attribute to an attribute etc.) Such a view defi-
nition can be executed for any instance A of SSS, and produce a vvv-view of A, i.e.,

a TTT -instance denoted by A�vvv , along with a traceability mapping A
vvvA←− A�vvv (see

Sect. C for details).5 In fact, we have a diagram operation specified by the top
face of cube (a) in Fig. 18, where B = A�vvv and f = vvvA.

If the source A is updated, the update is propagated to the view by operation
getvvv (“getView”) shown in the front face of the cube Fig. 18(a). The operation
takes a source update a and view mapping f , and produces a view update b
together with a new view traceability mapping f ′. A reasonable requirement is
to have f ′ = vvvA′ and B′ = A′�vvv. In the database literature, such operations
have been considered as view maintenance [29].

If the view is updated via b : B → B′ (the front face of cube Fig. 18(b)), we
need to update the source correspondingly and find an update a : A→ A′ such
that B′ = A′�vvv; simultaneously, a new traceability mapping f ′ = vvvA′ is com-
puted. Since normally a view abstracts away some information, many updates a
may satisfy the condition. To achieve uniqueness, we need to consider additional
aspects of the situation (metamodels, view definition, the context) — this is the
infamous view update problem that has been studied in the database literature for
decades [30]. Yet we assume that somehow an update propagation policy ensur-
ing uniqueness is established, and hence we have an operation putvvv (“put update
back”) specified by the front face of the cube. Names ’get’ and ’put’ are borrowed
from the lens framework [2], but in the latter neither update nor view mappings
are considered. Also, lenses’ operation get corresponds to our vExe0.

Despite similar arity shapes of bidirectional pairs (get,put) in view synchro-
nization and (fPpg,bPpg) in replica synchronization, the two tasks are different.

First we note that in the view update situation, consistency relation K can
be derived rather than independently postulated: we set

(Cons) K def=
{
A

f←− B : f = vvvA

}
.

5 View A�vvv can be seen as vvv-projection of model A to space of TTT -models, hence symbol
� denoting restriction.
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Fig. 19. View synchronization: the signature

Next we assume that the view is entirely dependent on the source: once the source
is updated, the view is automatically recomputed so that the source update does
not create inconsistency. On the other hand, if the view is updated, it at once
becomes inconsistent with the source since only one view corresponds to the
source. Hence, there is no need for the “first-check-then-enforce” principle, and
any view update must be propagated back to the source to restore consistency.

The result is that in contrast to replica synchronization, it is reasonable to as-
sume that view update propagation always acts on consistent matches as shown
by the front faces of cubes in Fig. 18(a,b), and produces consistent matches. We
may thus ignore inconsistent matches completely. It implies that the correctness
and ”first-check-then-enforce” laws of replica synchronization become redundant,
and we do not need rematching operations. This setting greatly simplifies the
theory of update propagation over views. The rest of the section described the
basics of such a theory.

5.2 The Signature and the Laws

Figure 19 (a,b,c) presents arity shapes of the three operations we will consider.
As before, the input nodes and arrows are black and solid, the output ones are
white and dashed. The meaning of the operations is clear from the discussion
above. Operation (d) will be discussed later.

Figure 20 specifies some laws the three operations must satisfy. The laws
IdlGet, IdlPut, GetGet, and PutPut in cells (b1,b2,c1,c2) are quite similar to the
respective laws for forward and backward propagation discussed in Sect. 4. They
say that idle updates on one side result in idle updates on the other side, and
composition of updates is propagated componentwise.

The PutGet law in cell (bc) states that any put-tile is automatically a get-tile.
In the string-based notation, if (a, f ′) = put(b, f) then (b, f ′) = get(a, f).

The Exe! law in cell (a!) states that any match (the empty premise) is a correct
view traceability mapping produced by vExe applied to the target of the match.
This implies that put and get only apply to correct matches as discussed above.
We could a priori postulate this, and rearrange operation get into operation Get
specified in Fig. 19(d), which both computes the views and propagates updates.
It is a possible way to go (cf. the functorial approach to the view update problem
[26]), but this paper explores a different setting, in which vExe computes the view
model only and get propagate updates using view traceability mappings.

Exercise 6. Formulate the horizontal counterparts of GetGet and PutPut, and
explain their meaning. Hint : consider a composed view definition in Fig. 5.
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5.3 View Synchronization

Definition 6. A view lane v is given by the following data.
(a) Two categories A and B, whose objects are called models and arrows are

updates. Objects of A are called source models and those of B are views.

(b1) A span of sets, A0
∂t← V

∂s→ B0 with ∂t and ∂s being total functions
giving the target and the source for each view traceability mapping f ∈ V. We
write A

f←− B if ∂t(f) = A and ∂s(f) = B.
(b2) An operation vExe : A0 → V of view execution such that for any model

A ∈ A0 and any mapping v ∈ V, the following two laws hold:
(ExeDir) ∂tvExe(A) = A

(Exe!) if ∂tv = A, i.e., A
v←− B, then v = vExe(A)

A

VA Bt

A B

A

…

B

BA

s

vExe

Fig. 21. View lane

Thus, for any A ∈ A0 we have a unique traceability
mapping A �vExe(A)

B targeting A, and any traceability
mapping is of this form.

We denote the composition vExe; ∂s, which gives the
source of the arrow vExe(A), by vExe0. Then, given a
source A, its view B = vExe0(A).

Evidently, A �= A′ implies vExe(A) �= vExe(A′), but it
may happen that B = vExe0(A) = vExe0(A′) for different
A, A′ because view abstracts away some information.

Fig. 21 visualizes the definition: updates are vertical
arrows, and view traceability mappings are horizontal. (Compare this figure with
Fig. 17 and note the difference between the carrier structures for replication and
view updates.)
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Definition 8. A view synchronizer over a lane v is a pair of diagram opera-
tions λ = (get, put) whose arities are specified in Fig. 19. Notation λ reminds us
lenses.

We will denote view synchronizers by arrows λ : A→ B and write ∂sλ for A
and ∂tλ for B. With this notation, operations get of forward view maintenance
and vExe of view computation go in the direction of arrow λ whereas the back-
ward operation put goes in the opposite direction. Thus, although vExe computes
from A to B, all view traceability mappings computed by vExe are directed from
B to A.

A view synchronizer is called well-behaved (wb) if the pair (get, put) satisfies
the laws IdlGet IdlPut, and PutGet specified in Fig. 20. A wb synchronizer is
called very well-behaved if the laws GetGet and PutPut hold as well.

Exercise 7. Prove that in the discrete setting (mappings are just pairs of mod-
els), a (very) wb view synchronizer becomes a (very) wb lens [2].

Exercise 8. Let λ1 : A→ B, λ2 : B→ C be view synchronizers defined in
Sect. 5.2. Define a view synchronizer λ1; λ2 : A→ C and prove that it is (very)
well-behaved as soon as the components λi are such.
Hint : Define Vλ def=

{
(v1, v2)A : v1 = vExeλ1(A), v2 = vExeλ2(v1.∂s), A ∈ A0

}

and vExeλ(A) def= (v1, v2)A.

6 Complex Update Propagation: Managing Heterogeneity

In this section we consider scenarios in which the operation of update propaga-
tion is assembled from simpler propagation blocks.

6.1 Synchronization of Heterogeneous Models

Suppose that models to be synchronized are instances of different metamodels,
for example, we need to keep in sync a class diagram and a sequence diagram.
If one of the models is updated, say, a method in the class diagram is renamed,
we need to update the sequence diagram and rename messages calling for the
renamed method. Thus, we need to propagate updates across a match between
heterogeneous (non-similar) models.

We will approach this problem by adapting constructions developed in Sect. 4
for homogeneous replication. Surprisingly, a precise realization of this idea is not
too complicated. We will first find “the right” constructs using the metamodels,
and then proceed with algebras over spaces models like in the previous section.

Matching. Discussion in Appendix D shows that heterogeneous model match-
ing is based on metamodel matching via a span ooo =AAA vvv←OOO www→ BBB in the space of
metamodels, where AAA and BBB are metamodels of models to be synchronized, OOO
is a metamodel specifying their overlap, and mappings vvv,www are view definitions
that make OOO a common view to AAA, BBB. Recall that each metamodel MMM deter-
mines a 1.5-sorted category Mod(MMM) whose objects areMMM-instances (models),
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vertical arrows are their updates and horizontal arrows are matches (Sect. 4.1).
To simplify notation, we will use the following abbreviations. For a given span
ooo = AAA vvv←OOO www→ BBB, bold letters A, B denote the vertical categories (of updates)
in Mod(AAA) and Mod(BBB) resp; bold letter O denotes the horizontal graph (of
matches) in Mod(OOO).

We assume that the metamodel span is consistent, that is, there are no con-
flicts between the metamodels.

Definition 9. A heterogeneous match of type ooo is a triple h = (A, m, B) with
A ∈ A0, B ∈ B0, and m : A�vvv → B�www a match between the corresponding
projections in graph O. Match h is called consistent if match m is such.

Given a metamodel span ooo, we will denote heterogeneous matches of type
ooo by arrows A

h:ooo� B or hooo : A→ B. The typing discipline then implies that
models A and B are instances of metamodels AAA = ∂sooo and BBB = ∂tooo resp.

Propagation. Suppose we are given a matched heterogeneous pair of models
hooo : A→ B. If one of the models, say A, is updated and consistency between
models gets worse, we may want to propagate update a : A→ A′ to model B and
restore consistency as much as possible. Thus, we need to compute an update
b : B → B′ along with an updated match h′

ooo : A′ → B′ of the same type ooo.
If both legs of the span ooo are maintainable views, and the replication space

Mod(OOO) is equipped with synchronization, a reasonable idea would be to com-
pose update propagation from A to B from the blocks provided by synchro-
nization mechanisms of vvv, OOO, and www. That is, having lenses λvvv and λwww , and a
homogeneous replica synchronizer δ over Mod(O), we may try to build a het-
erogeneous replica synchronizer spanning model spaces A and B. The rest of
the section is devoted to a precise realization of this idea.

After metamodels have helped us to figure out the right concepts, we may
forget about them and work within model spaces only.

Definition 10. A triple lane t is a pair of view lanes (vl,vr) referred to as
the left and the right lanes, with a replica lane in-between them:

A
vl

� O
r•→ O �vr

B.

Categories A, B are called the ends of the triple lane and category O is the
overlap.

A triple synchronizer τ over a triple lane t is a pair of view synchronizers for
the pair of view lanes and a diagonal replica synchronizer for the replica lane:

τ = (λl, δ, λr) with A
λl

� O
δ•→ O �λr

B.
A triple synchronizer is called (very) well-behaved if all its three components

are such.

Theorem 2. Any triple synchronizer τ = (λl, δ, λr) gives rise to a diagonal
replica synchronizer Δτ . Moreover, the latter is (very) well-behaved as soon as
all three components are such.
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Fig. 22. Heterogeneous update propagation

The principle idea of the proof is easy and well explained by Fig. 22.
The binary replica lane for Δτ is formed by the ends of A and B of the

triple lane, and with the class of matches formed by heterogeneous matches
(A, m, B) as described in Definition 6.1. The subclass of consistent matches is
also described in Definition 6.1.

The four operations of diagonal update propagation specified in Fig. 15 are
defined by tiling the corresponding operations of the three component synchro-
nizers: Fig. 22 shows this for forward propagation (a) and rematching (b). Ap-
plications of the operations are numbered, and concurrent applications have the
same number. Algebraically, diagrams (a) and (b) specify terms that can be ab-
breviated by diagrams (a*) and (b*). It is exactly similar to definitions by equal-
ity in the ordinary algebra: when we write, say, Δ(x, y) def= ax ∗ (b1x + b2y) ∗ cy
with x, y variables and a, b, c fixed coefficients, expression Δ(x, y) can be consid-
ered as an abbreviation for the term on the right-hand side of equality symbol.
Backward propagation and rematching are defined in exactly the same way but
in the opposite direction.

Finally, we need to check that composed operations in diagrams (a*,b*) and
their backward analogs satisfy the laws specified in Fig. 16. With tiling notation,
this check is straightforward. Ancient Indian mathematicians used to prove their
results by drawing a picture and saying ”Look!”. The reader is encouraged to
follow this way and appreciate the benefits of diagram algebra. ��
Similarly to unidirectional heterogeneous update propagation, heterogeneous
bi-directional operation can be built from lenses and bi-directional synchroniza-
tion over the overlap as suggested by Fig. 23 (where δ⇔ denotes the operation
of homogeneous bi-directional update propagation). A special case of this con-
struction for synchronizing data presented by trees was described in [3].



Model Synchronization: Mappings, Tiles, and Categories 131

A

A

AO

A O

BO

B O

B

B

m

a

a

m
A

baO

A B
h

A B

(a) (a*)

2:get l

4:putl
4:put r

2:getr

3:biPpg

bO

aO
bO b

BA O B O

:BiPpg

h

ba

a b

BA

1:vExe 1:vExe

A
l

B
rO O A B

Fig. 23. Heterogeneous bi-directional update propagation

Exercise 9 (*). Define an algebra for modeling synchronization of materialized
views, for which view data are managed independently, and inconsistency with
the source is possible (though undesirable). Hint : The possibility of inconsis-
tency makes this case somewhat similar to replication (Sect. 4) and distinct
from ordinary views (Sect. 5.2).

6.2 Synchronization with Evolving Metamodels: A Sketch

A
tA � AAA

:bPpgε↙↙
A′

a �

tA′

� AAA′
u�

Fig. 24. Typing as matching

First we note that typing can be considered as
a specific kind of match. Then model adaptation
to metamodel evolution can be described as back-
ward diagonal propagation as shown by Fig. 24
(in which superscript ε stands for “evolution”).
Arrow u encodes an ordinary (update) span in
the space of metamodels. Arrow a is a span whose
head is an instance of u’s head, and the legs are
heterogeneous model mappings over u’s legs as
described in Sect. D.1.

Now consider a heterogeneous pair of replicas A:AAA and B:BBB, and suppose
that metamodels may change. A typical scenario is shown in Fig. 25(a). The
upper face of the cube specifies a heterogeneous match defined in Sect. D.2.
Suppose that metamodel AAA is updated with u :AAA →AAA′. This update can be
propagated in two directions.

In the first one, update u is propagated over the left face of the cube and
results in update a : A→ A′ adapting model A to the change. In the second di-
rection, update u is first propagated to metamodel BBB along the match ooo by the
ordinary replica synchronization mechanisms (Sect. 5) but now working with the
metamodels rather than models. This gives us the back face of the cube and up-
date v : BBB → BBB′ of the right metamodel. The latter is then propagated to model B
by the model adaptation mechanism now applied to the right face of the cube.



132 Z. Diskin

A

Versions

A

A

B

b

B

Replicas

Typing
A B

B

v

o

o
h

h

u
1:fPpg

1:b
Ppg

2:b
Ppg

tA tB

a

tA

bvau

h

o

h

o

tB

tA

h:o

h :o

ab

uv

th = tA tB

th= tAtB

tB

u

a

ta= tAtA

v

b

tb= tBtB

oo

hh

(b)

(c)

(d)

(a)

Fig. 25. 3D-synchronization with evolving metamodels

In this way we get two parallel updates a and b at the ends of match h.

Having the metamodel span ooo′ = (AAA′ vvv′← OOO′ www′→ BBB′) at the back face, we may
project models A′ and B′ to their common overlap space Mod(OOO′) thus arriving
at models A′

O = vvv′�A′ and B′
O = www′�B′ . Having match m : AO → BO (occurring

into h) and all other information provided by the cube, we may derive a match
m′ : A′

O → B′
O by applying the corresponding operation to nodes and arrows

of the cube (in its de-abbreviated form with all models and model mappings
explicated). This would be a typically categorical exercise in diagram chasing.
A theoretical obstacle to be watched is that categories involved must be closed
under the required operations. Practically, it means that the required operations
have to be implemented.

Thus, synchronization scenarios with evolving metamodels are deployed within
a three-sorted graph with three sorts of arrows: vertical (updates), horizontally
frontal (matches) and horizontally “deep” (typing). Since updates and types are
composable, we actually have a 2.5-sorted category. If heterogeneous match com-
position is also defined, we have a thin triple category. This pattern could be prob-
ably extended for other types of relationships between models. Hence, general
synchronization scenarios are mutli-dimensional and are deployed within n-sorted
graphs and categories. Multi-dimensional category theory (mdCT) appears to be
an adequate mathematical framework for multi-dimensional synchronization.6

6 Md-category seems to be a new term. The term higher-dimensional categories is
already in use and refers to md-categories with weaker compositional laws: unitality
and associativity of composition hold up to canonic isomorphisms [31]. In fact, hdCT
is a different discipline, and mdCT is a proper, and very simple, sub-theory of hdCT.
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2D-projections. To manage the complexity of 3D-synchronization, it is useful
to apply a classic idea of descriptive geometry and study 2D-projections of the
3D-whole. We can realize the idea by arrow encapsulation, that is, by treat-
ing arrows of some sort as objects (nodes) and faces between those arrows as
morphisms (complex arrows). There are three ways of applying this procedure
corresponding to the three ways of viewing the cube (see the frame of reference
in the left-upper corner).

Viewing the cube along the axis of Replicas means that we consider match
arrows as nodes, the top and bottom faces as “deep” arrows, and the front and
back faces as vertical arrows. In this view, the cube becomes a tile shown in
diagram (b). If we treat typing mappings as specific matches, these tiles become
similar to replica synchronization tiles from Sect. 4

In the view along the Typing axis, typing mappings are nodes, the top and
bottom faces are horizontal arrows, and the left and right faces are vertical
arrows (but of type different from vertical arrows of the Replicas-view). The
result is shown in diagram (c). These tiles are similar to heterogeneous replication
considered above but with evolving metamodels.

Finally, in the Versions view, updates are nodes, the front and back faces
are new horizontal arrows, and the left and right faces are new deep arrows
as shown in diagram (d). Such tiles can be seen as structures for specifying
“dynamic typing”, in which typing arrows are actually couples of original and
updated typing mappings.

Tiles of each of the three sorts can be repeated in the respective directions
and we come to three two-sorted graphs Gx with x = R, T, V for the Replicas,
Typing, Version axes. Each of the graphs is a universe for its own synchronization
scenarios with different contexts. Yet there may be many similarities in the
algebras of operations, and there may be core algebraic structures common to
all three views. We leave this for future work.

7 Relation to Other Work, Brief Discussions, Future
Work

The paper is a part of an ongoing research project on model synchronization
with the Generative Software Development Lab at the University of Waterloo
The project started with the GTTSE’07 paper [32] by Antkiewicz and Czarnecki,
which outlined a broad landscape of heterogeneous synchronization, provided
a range of examples, and introduced a notation that can be seen as a precursor
of synchronization tiles. The project has been further developed in [33,11,34],
and in several papers currently in progress. The present paper aims to specify a
basic mathematical framework for the project, and to offer a handy yet precise
notation.

Of course, this is only the short prehistory of the paper. Synchronization spans
a wide range of specification problems, and the present paper (in its attempt
to set a sufficiently general framework) inevitably intersects with many ideas
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and approaches, and builds on them. These “pre-histories” and intersections are
briefly reviewed below without any aspiration to be complete. Directions for
future work are also discussed.

7.1 Abstract MMt or Model-at-a-Time Programming

Synchronization via algebra. Analysis of synchronization problems in ab-
stract algebraic setting is a long-standing tradition in the literature on databases
and software engineering. It can be traced back to early work on the view update
problem, particularly to seminal papers by Bancilhon and Spyratos [35], Dayal
and Bernstein [30] and Gottlob et al [36]. This algebraic style was continued by
Meertens in [37] in the context of constraint maintenance, and more recently
was further elaborated in the work of the Harmony group on bi-directional pro-
gramming languages and data synchronization [2,3,38,39,40]. An adaptation of
the approach for bi-directional model transformations was developed by Stevens
[6,41] and Xiong et al [4,42]; an analysis of the corresponding algebraic theo-
ries can be found in [28]. Paper [32] mentioned above, and an elegant relational
model of bi-directional data transformations [43] by Oliveira are also within this
algebraic trend.

Two features characterize the framework: (A) model mappings are not con-
sidered or implicit; and (B) metamodels (and their mappings) are either ignored
or only considered extensionally —- a metamodel defines its class of instances
and may be forgotten afterwards (e.g., see [3]).

Feature (A) makes the framework discrete and subject to the critique in Sec-
tion 2. Feature (B) significantly simplifies technicalities but hides semantics of
model translation and makes it difficult to manage heterogeneity in a controlled
way.7 The abstract MMt part of the present paper also does not include meta-
models. However, the latter are central for the concrete MMt part that motivates
and explains several important constructs in the abstract part.

Generic MMt. A broad vision of the model-at-a-time approach to the database
metadata management was formulated by Bernstein et al in [44,1]. They coined
the term generic model management, stressed the primary importance of map-
pings, and described several major operations with models and mappings neces-
sary to establish a core MMt framework. This work originated a research direc-
tion surveyed in [45]. Interestingly, synchronization operations are not included
in the core framework as scoped by Bernstein et al.

Although mappings are first-class citizens in generic MMt, a typical al-
gebraic setting is discrete: the universe in which operations act is a set (of
models and mappings) rather than a graph; the same setting is used in Mani-
festo [46] by Brunet et al. Not surprisingly, neither diagram algebra nor category

7 Dayal and Bernstein’s work [30] is a notable exception. It does use update, trace-
ability and typing links (and, in fact, is remarkably categorical in its approach to
the problem). However, these links are not organized into mappings (not to mention
more advanced arrow encapsulation techniques), and technicalities become hardly
manageable. The categorical potential of the paper remained undiscovered.
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theory are employed in generic MMt so far; few exceptions like [47] by Alagic and
Bernstein, and [48] by the present author remain episodes without follow-up. The
purely extensional treatment of data schemas (feature (B) of synchronization
frameworks above) is also typical for generic MMt [49]; papers [47,48] are again
exceptions.

Tiles and tiling. Tile systems were developed by Ugo Montanari et al (see [50]
and references therein) as a general algebraic framework for modular description
of concurrent systems. The tiles represent modules and can be thought of as
computations (or conditional rewriting rules) with side effects. The two horizon-
tal arrows of a tile are the initial and the final states of the module, and the two
vertical arrows are the trigger and the effect. This interpretation works for our
tiles: modules are connected pairs of models, matches are their states, the input
update is a trigger and the output one is the effect. However, there are important
distinctions between the two tile frameworks. For the brief discussion below, we
will refer to them as to c-tiles and s-tiles, with c standing for concurrency and
s for synchronization.

(a) C-tiles have an interior in the sense that different c-tiles may have the
same four-arrow boundary whereas our s-tiles are merely quadruples of arrows
(in the categorical jargon, they are thin).

(b) Montanari et al only deal with operations on tiles as integral entities
(tiling-in-the-large), and consider their vertical, horizontal and parallel compo-
sition. In contrast, we have been looking inside tiles and considered algebraic
operations that produce tiles from arrows (tiling-in-the-small). We have also
considered vertical composition-in-the-large in our XyzXyz laws, and horizontal
composition in Exercise 6 on p.126.

(c) Three composition operations over c-tiles assume they are homogeneous
units, and so we have homogeneous tiling. In contrast, our complex scenarios in
Sect. 6 present heterogeneous tiling: a big tile is composed from smaller tiles of
different types.

A perfectly adequate mathematical framework for homogeneous tiling is dou-
ble categories [25], or two-sorted categories (Appendix B) for thin tiles; their
s-interpretation is described in [33]. Heterogeneous tiling requires more refined
algebraic means and a real diagram algebra. A general formal definition of a
diagram operation appears in [51] and is specified in detail in [52]; in the present
paper it is formulated in a slightly different but equivalent way. Parsing terms
composed of diagram operations is discussed in [52, Appendix A].

A few historical remarks. Elements of the tile language in the context of model
synchronization can be found in Antkiewicz and Czarnecki [32], and even earlier
in Lämmel [53]; my paper [28] also deals with s-tiles but in the discrete setting.
Operations of update propagation and conflict resolution are considered in [32]
but without any equational laws. The language of s-tiles is explicitly introduced
in Diskin et al [33] with a focus on 2D-composition and double categories. A
general framework for specifying synchronization procedures via tile algebra in
this paper is novel.
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The 2-arrow structure. Introducing a partial order on mappings, and then or-
dering matches and updates, is important for model synchronization (see p. 116)
and should be a part of the tile language. The issue is omitted in the paper and
left for future work; some preliminary remarks are presented below.

By the principles of arrow thinking, ordering should be modeled by arrows,
and we thus come to arrows between arrows or 2-arrows. If mappings are spans,
2-arrows are ordinary arrows between their heads, but the entire structure be-
comes a 2-category and hence a much richer structure than an ordinary category.
Another approach suggested by an anonymous referee is to work with so called
allegories [54] rather than categories, in which morphisms are to be thought of
as binary relations rather than functions. However, an important feature of any
set of matching links — its structure being similar to the structure of models
— is lost if mappings are simply morphisms in an allegory. Another (arguable)
advantage of the span model of mappings is that it is technically easier to work
with 2-categories of spans than with allegories.

Parallel updates. This synchronization scenario is very important yet omitted
in the paper and left for the future work. It is a challenging problem, whose
algebraic treatment needs a more elaborated framework than simple algebraic
models we used. An initial attempt and some results can be found in [42].

Lenses, view synchronization and categories. The Harmony group’s paper
[55] was seminal. It presented a basic algebraic framework in a very transparent
way; and coined several vigorous names: get and put for the two main operations,
GetPut, PutGet, PutPut for equational laws imposed on these operations, and
lens for the resulting “bi-directional” algebra. In fact, the paper set up a pattern
for algebraic models of update propagation.

The basic lens framework is enriched with update mappings in [11]. Algebras
introduced in [11] operate on both models and update mappings, and are called
u-lenses with ’u’ standing for updates. Earlier, a similar framework was devel-
oped by Johnson and Rosebrugh [26]. For them, updates are also arrows, a model
space is a category, and a view is a functor. However, they work in the concrete
rather than abstract MMt setting, and focus on conditions ensuring uniqueness
of update policies. As discussed in Sect. 4.2, this setting may be very restrictive
in practice.

View synchronizers of the present paper can be seen as ut-lenses since they
operate on two types of mappings: updates and traceability. Moreover, given a
view definition language with well-behaved operations of update propagation de-
fined for any view mapping, both tile systems, of all get-tiles and of all put-tiles,
give rise to two-sorted categories, say, Get and Put (see Fig. 20 and Exercise 6
on p.127). In addition, the PutGet law entails inclusion Put ⊂ Get. Proving these
results is not difficult and will appear elsewhere.

Multi-dimensional synchronization. The ideas of constructing 3D-tiles (syn-
chronization cube on p. 132), and more generally of the multi-dimensional nature
of synchronization problems, seem to be new. The paper only presents a vision
(Sect. 6.2), and even the initial steps are still waiting for a precise specification.
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With dynamic interpretation of horizontal arrows as transformations (rather
than structural mappings), 2D-projections of the synchronization cube can be
seen as coupled transformations considered in [53], and have probably been stud-
ied by different communities in different contexts, e.g., [56]. If vertical arrows
(updates) are interpreted dynamically, then the front and back faces of the cube
become close to triple graph transformations [57] (with the third graph hidden
in the match). Stating precise relationships is a future work.

7.2 Concrete Model Management

Inside models: constraints as diagrams predicates. For a rich software
model, specifying its abstract syntax ”tree” as a mathematical object is not
as easy as it may seem. One of the challenges is how to specify and manage
constraints, which populate model graphs with non-instantiable elements. In
the paper we have only considered very simple constraints declared for a single
arrow (multiplicities). However, there are other practically important constraints
involving several arrows, e.g., invertibility of two mappings going in the opposite
directions, uniqueness of identification provided by a family of mappings with
a common source (a key), and many other conditions that constraint languages
(like OCL) allow us to specify.

A general approach to the problem is to specify such constraints as diagram
predicates [51] and treat models as graphs with diagram predicates, dp-graphs. A
principal distinction of this approach from the attributed typed graphs (ATGs)
[58] is that a constraint is an independent object referring to respective nodes and
edges rather than an attribute of a node or an edge. Theoretical advantages of the
approach are its universality and proximity to an established framework of the so
called sketches developed in categorical logic (see [16] for details). The approach
was shown to be useful in schema integration [59], conceptual modeling [60], and
fixing known problems with UML associations [61]. An accurate algebraic model
of metamodeling with diagrammatic constraints is an important direction for
future work.

Homogeneous model mappings and deltas. Specifying (symmetric) deltas
is a known issue, e.g., [9,10,62,63]. A major challenge is how to formally spec-
ify model changes : modifications, if we interpret deltas as updates, or conflicts,
if deltas are matches. A well-known idea is to treat a modification of an ele-
ment as its deletion followed by insertion; but it is a simplistic treatment. The
approach developed in the paper (for our OSV-models) is more adequate and
still simple but is not straightforward. First, value-preserving model mappings
are defined; then changes are specified by spans built from two value-preserving
mappings but having empty slots. This treatment of changes seems correlating
with ATG transformations but a precise comparison needs some technical work
to be done. Generalization of the idea for more practically interesting (and hence
more complex) models than simple OSV-models is important future work.
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Heterogeneous model mappings and deltas. Precise specification of oper-
ations on heterogeneous models and model mappings is a rarity in the literature
because of semantic and technical difficulties. It is managed in the paper by
specifying heterogeneous models as chains of graphs and graph mappings; model
mappings then appear as multi-layer commutative diagrams. The idea seems to
be more or less evident but I am not aware of its realization in the literature.

Despite their frightening appearance, universes of multi-layer complex objects
and mappings are well-known in CT under the name of arrow categories. They
are well-studied and behave very well. Unfortunately, constraints may be an
obstacle: while any model is a chain of graph mappings, not any such chain is
a model because it may violate the constraints. It implies that the universe of
models may be not closed wrt. some operations, e.g., merging (colimit) [34].
How graph-based constraints declared in a metamodel affect the properties of
the corresponding universes of models is a big issue studied in categorical logic.
Its adaptation to metamodeling with diagram predicates (as constraints) [16] is
important future work.

Model translation (MT) and fibrations. The algebraic model of MT pro-
posed in the paper is generic and formulated for any metamodel language, in-
cluding an associated query language. In this model, MT is treated as a view
computation, and is entirely determined by the corresponding metamodel map-
ping considered as a view definition. The idea was first described in [48]; the
description in the present paper is more accurate and detailed. It culminates
in the statement that the view mechanism (for monotonic queries) makes the
functor projecting heterogeneous models and mappings to their metamodel
components a split fibration — a construct well known and studied in CT.

Fibrational formulation can be seen as dual to the familiar functorial se-
mantics : a model is a functor from the metamodel (theory) to some semantic
category, e.g., of sets and relations. Functorial semantics is quite popular in the
Algebraic Specification community [64], and is basic for the categorical approach
to the view update problem developed in [26], but it may seem foreign for a model
transformation engineer accustomed to work with metamodeling patterns. The
latter assume that a model is given by a (typing) mappings to the metamodel
rather than from it. Fibrations fit perfectly in this framework, but offer much
more. Practical modeling situations often comprise instances at several levels,
say, objects, classes, and the metamodel for the latter (e.g., a simple sequence
diagram is a three-level structure of this kind [65]). Specification of multilevel
modeling is quite manageable with fibrations: composition of fibrations is again a
fibration (this is a well-known result). In contrast, functorial semantics becomes
hard to manage when we consider more than one pair (theory, model).

8 Conclusion

Building theoretical foundations for model synchronization is a challenging
problem. Among the factors contributing to its complexity are heterogeneity of
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models to be synchronized, the multitude and heterogeneity of their relation-
ships, and interactions between different dimensions of synchronization. The
paper aims to show that algebraic models based on diagram operations can be
an effective means to manage the complexity of the problem.

Two lines of approaches and results are presented. The first one is abstract :
models and model mappings are treated as indivisible (black-box) nodes and
arrows, on which synchronization procedures operate. The machinery used is
algebra of tile operations and tiling as term substitution. The abstract line cul-
minates in Sect. 6, which shows how complex synchronizers can be assembled by
tiling together simple components. The second line is concrete: it provides alge-
braic models for (white-box) complex structures underlying models and model
mappings. The machinery is essentially categorical: arrow categories (for hetero-
geneous models and their mappings) and fibrations (for the view mechanism).
Tile algebra is applicable here as well.

The tile framework offers a handy notation with formal semantics, and a tool-
box of constructs amenable to algebraic manipulations and hence to automated
computer processing. This benefit package may be very appealing for a software
engineer.

Synchronization scenarios considered in the paper are deployed on 2D-planes
of a 3D-space populated by models and model mappings (and a 3D-scenario with
evolving metamodels is sketched in Sect. 6.2). The three dimensions correspond
to the three kinds of intermodel relationships (and mappings) that were consid-
ered: replication (matches), versioning (updates), metamodeling (typing). Other
kinds of relationships can give rise to new dimensions of the space and synchro-
nization procedures spanning it. Handy yet precise tile notation and the corre-
sponding algebraic framework can be an invaluable tool for multi-dimensional
synchronization.
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Answers to *-Exercises

Exercise 2 (p. 119) Diagram Fig. 14(c1) says that from a match between repli-
cas a new match can be computed without changing the replicas. This situation
is typical and is a built-in procedure in many differencing tools. However, it
cannot be modeled by an algebraic operation of the arity shown in the figure: to
recompute a match a new information is required. That is, we may have a rea-
sonable “binary” operation (m, X) • � m′ with the second argument standing
for contextual information about replicas, but the “unary” operation m • � m′

is not too sensible. In contrast, the operation specified by diagram (c2) is quite
reasonable and may be called rematching: having one of the replicas updated,
we recompute the match based on data in the original match and the update.

Exercise 4(p. 123)

• m:K� •
:Res

◦
1

� m � ◦
1
�

(a1) KRes

• � •
:Res

:fPpg&:bPpg

◦� � ◦�

(a3) ResPpgf

• � •
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◦�
m′
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1
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Fig. 26. Laws of conflict resolution

Three reasonable laws the operation
should satisfy are specified in Fig. 26. Di-
agram (a1) states that nothing is done
with consistent replicas. Diagram (a2)
says that conflict resolution is an idem-
potent operation. Match m′ produced by
the operation is not supposed to be neces-
sarily consistent: some of the conflicts em-
bodied in match m may need additional
information and user’s input, and hence
cannot be resolved automatically. Yet ev-
erything that could be done automatically
is done with the first run of the opera-
tion. Diagram (a3) says that resolution is
complete in the sense that nothing can be
propagated in the tile produced by Res.
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Exercise 9 (p. 131) Synchronization of materialized views can be considered
as a particular cases of triple synchronization, in which one view (say, the right
one) is identity. Formal definitions are as follows.

A semi-triple lane is a pair st = (v, r) with v a view and r a replica lane

coordinated as follows: A
v� B

r•→ B. A semi-triple synchronizer σ over a
semi-triple lane st is a pair σ = (λ, δ) of a view synchronizer λ over the view
lane and a diagonal replica synchronizer δ over the replica lane. A semi-triple
synchronizer is called (very) well-behaved if its two components are such.

The following result is analogous to Theorem 2.

Theorem 3. Any semi-triple synchronizer σ = (λ, δ) gives rise to a diagonal
replica synchronizer Δσ. Moreover, the latter is (very) well-behaved as soon as
its two components are such.

Appendices
Concrete MMt and Category Theory

Several words about category theory (CT) are in order. CT provides a number
of patterns for structure specification and operation. Since models and model
mappings are rich structures, and MMt needs to operate them, CT should be
of direct relevance for MMt. Of course, this theoretical prerequisite requires
practical justification and examples.

Two fundamental categorical ideas are used in the paper.
Encapsulation 1: “To objectify means to mappify”. The internal structure of
models and model mappings is encapsulated. Models are considered as indivis-
ible objects (points), and mappings as indivisible morphisms (arrows) between
them. Mappings of the same type can be sequentially composed and form a
category (a graph with associatively composable arrows). Although objects are
encapsulated, the categorical language provides sufficient means to recover the
internal structure of objects via mappings adjoint to them. For example, a spe-
cial family of mappings with a common source object makes this object similar
to a relation (and its “elements” can be thought of as tuples). Dually, a special
family of mappings with a common target object makes it similar to a disjoint
union (and its “elements” can be thought of as “either..or” variants). The next
section shows how it works.
Encapsulation 2: Arrow categories. Repeatable constructions consisting of sev-
eral models and mappings are considered as new complex objects or arrows,
which can again be encapsulated and so on. In this way we come to categories
whose objects (nodes) themselves consist of arrows, while morphisms (arrows)
are complex diagrams. For example, a model is, in fact, a typing mapping, and a
traceability mapping is a commutative square diagram like the top face of cube
Fig. 3(b). Deltas-as-spans denoted by arrows are another simple example. We
will build progressively more complex arrow categories in the subsequent sec-
tions C and D. Formalization of the sketch presented in Sect. 6.2 requires even
more complex arrow encapsulating constructions.
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Fig. 27. Matching and merging sets via elements

A Match and Merge as Diagram Operations: Warming
Up for Category Theory

This section aims to give a notion of how basic categorical patterns can work in
MMt. We will begin with a very simple model of models by considering them as
sets of unstructured elements (points), and discuss matching and merging sets.
Then we will reformulate the example in abstract terms and come to categories.

A.1 Matching and Merging via Elements

Suppose that our models are sets of strings denoting names, and we have two
sets, F of First and L of Last names, of some group of people as shown in
Fig. 27. We also assume that for each of the sets, different elements refer to
different persons. It does not exclude the situation when an F -name and an
L-name refer to the same person, but without additional information, sets F
and L are entirely unrelated and disjoint. To match the sets, we map them into
some common universe U , say, by assigning to each string the social security
number (SSN) of the corresponding person as shown in the left part of the figure.
Following UML, we call such assignments (directed) links and denote them by
arrows (Ann→11, Bob→13 and so on); speaking formally, links are just ordered
pairs. Similar (i.e., having the same source and target) links are collected into
mappings, u : F ⇒ U and v : L⇒ U , which are denoted by double-body arrows
to distinguish them from link-arrows. We call triple (U, u, v) a matching cospan
between sets F and L, set U is its head and mappings u, v are the legs.

Now we may form set R = {(x, y) : u(x) = v(y)} consisting of those pairs
of names, which are mapped to the same SSN. This set is equipped with two
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projection mappings p : R⇒ F , q : R⇒ L giving the components of the pairs.
The way we built R implies that sequential compositions of mappings p; u and
q; v are equal: (x, y).p.u = (x, y).q.v for any element (x, y) ∈ R. The triple
(R, p, q) is called a correspondence span or matching span between sets F and L;
set R is its head and mappings p, q are the legs. To show that the components of
the span are derived from mappings u, v, they are denoted by dashed lines (blue
with a color display).

Each pair (x, y) in the head R of the span says that actually elements x.p ∈ F
and y.q ∈ L refer to the same object of the real world (at least, to the same
SSN). Hence, we may be interested in merging sets F and L without duplication
of information, that is, by gluing together the first and last names of the same
person. Set N of names in the middle of Fig. 27 presents the result. It is formed
by first taking disjoint union of sets F and L, and then gluing together those
elements, which are declared to be the same by the span. For example, we join
Ann and Smith since there is a pair (Ann, Smith) in set R. Since there are two
elements in R, set N has four (rather than six) elements. Note also mappings
m : F ⇒ N and n : L⇒ N embedding the original sets into the merge.

How joined names are formed is a matter of taste: Ann Smith, or Ann*Smith
or AnnSmith will all work to show that Ann and Smith are two different rep-
resentations of the same object. In fact, all work is done by inclusion mappings
m and n that map Ann and Smith to the same element in N . Similarly, the
concrete nature of elements in set R does not matter: it is mappings p, q that
do the job and specify that elements of R are pairs. Hence, strictly speaking,
sets R and N may be defined up to isomorphism: the internal structure of their
elements is not important.

Since the internal structure of elements in sets R and N is not important,
it is tempting to try to rewrite the entire construction in terms of sets and
mappings only, without elements at all. Such a pointfree rewriting, apart of
satisfying purely intellectual curiosity, would be practically useful too. If we were
able to specify object matching and merging only based on mappings between
objects without use of their internal structure, we would have generic patterns
of match and merge working similarly for such diverse objects as sets, graphs,
typed attributed graphs and so on. The benefits are essential and justify some
technical work to be done.

A.2 Matching and Merging via Arrows

Matching. Figure 28(a) presents a more abstract view of our matching con-
struction. Nodes denote sets, and arrows are mappings (functions) between them.
Double-frames of nodes and double-bodies of arrows remind us that they have
extension, i.e., consist of elements (points and links respectively).

Labels in square brackets denote diagram predicates, that is, properties of
arrow diagrams on which these labels are “hung”. Label [=] is assigned to the
entire square diagram and declares its commutativity, that is, the property p; u =
q; v (i.e., in terms of elements, r.p.u = r.q.v for any r ∈ R). Label [key] is assigned
to the arrow span (p, q) and declares the following property: for any r1, r2 ∈ R,
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r1 = r2 iff r1.p = r2.p and r1.q = r2.q. That is, the pair of mappings (p, q) can
identify the elements in set R, hence the name for the predicate. (In category
theory, such families of mappings are called jointly monic). Note that any subset
of set R defined in Fig. 27 will satisfy predicates [=] and [key]. Hence, to ensure
that set R in Fig. 28 is indeed R defined in Fig. 27, we add one more predicate
[max] stating R’s maximality. Formally, it may be formulated as follows: for any
other key span (p′, q′) as shown in Fig. 28(b), which makes the entire square
commutative, there is a mapping ! : R′ → R such that !; p = p′ and !; q = q′.

Thus, we have reformulated the task of matching sets in terms of mappings,
their composition and predicate [ke v y]. However, the latter also can be expressed
via mappings and composition!

Suppose that span (p, q) is not required to be a key, but has the following
property: for any other span (p′, q′) (also not assumed to be a key), which makes
the entire square commutative, there is a unique mapping ! : R′ → R such that
!; p = p′ and !; q = q′. This maximality property is distinct from that previously
formulated by the uniqueness requirement, and this is what does the job. That
is, we can prove that uniqueness of ! implies the [key] property of span (p, q).
Given an element r′ ∈ R′, let f ′ = r′.p′ and l′ = r′.q′ be its “names”. To ensure
commutativity conditions: !; p = p′ and !; q = q′, function ! must map r′ into
any element r of R with the same names: r.p = f ′ and r.q = l′. If span (p, q)
is not a key, there may be several such elements r and hence several functions !
providing commutativity. Hence, ! is unique iff span (p, q) is a key.
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Thus, we may replace predicates [key] and [max] of span (p, q) in Fig. 28(a) by
the uniqueness property: for any other span (p′, q′) that makes the entire square
commutative (Fig. 28b), there is a unique mapping ! : R′ → R such that !; p = p′

and !; q = q′. In category theory such properties are called universal. The entire
matching construction can now be formulated in abstract terms as follows. Given
a cospan (u, v), a span with the same feet is derived and together with the orig-
inal cospan makes a commutative square with the universal property described
above. An operation producing a universal span from a matching cospan is called
pullback (because it pulls two arrows back). The result is shown in Fig. 28(c)
which depicts abstract nodes and arrows (single lines) whose internal structure
is invisible.

Is pullback indeed an operation, i.e., does it indeed result in a uniquely deter-
mined span? The answer is almost positive: the result of a pullback is defined up
to isomorphism. The proof can be found in any CT-textbook, e.g., [69][Theorem
5.2.2], and essentially uses associativity of arrow composition. Other construc-
tions based on universal properties are also defined up to isomorphism.

Merging. Our construction of merging sets can be processed in a similar way.
Figure 29 presents the ideas in parallel to Fig. 28. Diagram predicate [cov] de-
clared for cospan (m, n) says that the two mappings jointly cover the target,
that is, any element e ∈ N is either in the image of mapping m or n or both. We
replace this predicate by the following universal property: for any other cospan
(m′, n′) making the entire square commutative, there exists a unique mapping
! : N → N ′ such that m; ! = m′ and n; ! = n′. Indeed, if set N would contain an
element e beyond the union of images of m, n, mapping ! could map this e to
any element of N ′ without destroying the commutativity conditions.

Thus, we can define set merge in terms of mappings, their composition and the
universal property of minimality. The operation that takes a span and produces
a cospan making a commutative square with the minimal universal property
is called pushout (as it pushes arrows out). The construction is dual to the
construction of pullback in the sense that all arrows in the diagrams are reversed,
and universal maximality is replaced by universal minimality.8 Particularly, the
result of pushout is also defined up to isomorphism.

Summary. We have defined matching and merging sets via mappings (func-
tions) between sets and their sequential composition. Of course, to define the
latter, we still need the notion of element: composition of mappings f : A→ B

and g : B → C is defined by setting x.(f ; g) def= (x.f).g for all elements x ∈ A.
However, if we consider some universe of abstract objects (nodes) and abstract
associatively composable mappings (arrows) between them, then we can define
pullback and pushout operation as described above. Such graphs are called cate-
gories and, thus, the notions of match and merge can be defined for any category
irrespective of the internal structure of its objects. The next sections provides
precise definitions.

8 It can be made perfectly dual if we formulate the predicate [cov] in a different way
exactly dual to predicate [key].
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B Graphs, Categories and Diagrams: A Primer

In this section we fix notation and terminology about graphs and categories. We
also accurately define diagrams and diagram operations.

Graphs and graph mappings. A (directed multi-)graph G consists of a set
of nodes G0 and a set of arrows G1 together with two functions ∂x : G1 → G0,
x = s, t. For an arrow a we write a : N → N ′ if ∂sa = N and ∂ta = N ′. The set
of all arrows a : N → N ′ is denoted by G(N, N ′) or, sometimes, by (N → N ′) if
graph G is given by the context.

A graph mapping (morphism) f : G→ G′ is a pair of functions fi : Gi → G′
i,

i = 0, 1, compatible with incidence of nodes and arrows: ∂sf1(a)=f0(∂sa) and
∂tf1(a)=f0(∂ta) for any arrow a ∈ G1.

A graph is reflexive if every node N has a special identity loop 1N : N → N .
In other words, there is an operation 1 : G0 → G1 (with argument placed at
the under-bar subscript) s.t. ∂s1N = N = ∂t1N for any node N . If arrows
are understood behaviorally (rather than structurally) as actions or transitions,
identity loops may be also called idle (actions that do nothing and do not change
the state). A reflexive graph mapping (morphism) is a graph mapping f : G→ G′

respecting identities: f1(1N ) = 1f0(N) for any node N ∈ G0.

Categories and functors. A category C is a reflexive graph |C| with an opera-
tion of arrow composition denoted by ; (semi-colon): for any pair of sequentially
composable arrows a : M → N and b : N → O, a unique arrow a; b : M → O is
defined. Composition is required to be associative: (a; b); c = a; (b; c) for any
triple a, b, c of composable arrows; and unital : 1∂0(a); a = a = a; 1∂1(a) for any
arrow a.

Nodes in a category are usually called objects, and arrows are often called
morphisms. Both a category C and its underlying graph |C| are normally denoted
by the same letter C. Thus, C0 and C1 denote the classes of all objects and all
morphisms resp. The class of objects C0 can also be considered as a discrete
category, whose only arrows are identities.

A category is called thin if for any pair of nodes (N, N ′) there is at most
one arrow a : N → N ′. It is easy to see that a thin category is nothing but a
preordered set with N ≤ N ′ iff there is an arrow A : N → N ′. Transitivity and
reflexivity are provided by arrow composition and idle loops resp.

A functor f : C→ C′ between categories is a morphism of the underlying
reflexive graphs that preserves arrow composition f1(a; b) = (f1a); (f1b).

Two-sorted graphs and 1.5-sorted categories. A two-sorted graph is a
graph G whose arrows are classified into horizontal and vertical. That is, we
have two disjoint graphs G

h
1 and G

v
1 sharing the same class of nodes G0. A two-

sorted graph is reflexive if each node has both the vertical and the horizontal
identity. A two-sorted graph morphism (mapping) is a graph mapping respecting
arrow sorts.

A two-sorted category is a two-sorted reflexive graph G whose horizontal and
vertical graphs are categories. Since horizontal composition (of matches) may be
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problematic, in the paper we deal with 1.5-sorted categories : two-sorted reflexive
graphs in which only vertical arrows are composable and form a category.

Flat vs. deep graphs and categories. There are two ways of interpreting
elements of graphs and categories that we will call flat and deep. According to a
flat interpretation, elements of a graph do not have an internal structure, they
are symbols/tokens that can be drawn on paper. A visual representation/picture
of such a graph drawn on paper is practically equivalent to the graph itself (up
to inessential visual nuances like sizes of nodes and thickness of arrows).

According to a deep interpretation, nodes of a graph are thought of as sets
endowed with some structure, for example, plain sets with empty structure, or
sets with a partial order (posets), or vector spaces, or flat graphs, or models over
a given metamodel M . Correspondingly, arrows are thought of as structure-
preserving mappings, e.g., functions between sets, monotone functions between
posets, linear mappings between vector spaces, graph morphisms, symmetric
deltas. As a rule, deep arrows are associatively composable and deep graphs
are indeed categories, e.g., Sets (of sets and functions), Rels (of sets and re-
lations), Posets (of posets and monotone functions), Graphs (of graphs and
graph mappings), Moddelsym(M) (of M -models and symmetric deltas between
them).

The description above is rough and overly simplistic. Making it more precise
and intelligent needs a careful setting for logical and set-theoretical foundations,
and goes far beyond our goals in the paper. Note, however, that we were talking
about possible interpretations of elements constituting a category but the very
definition of a category says nothing about “depth” of its objects and arrows.9

Hence, any result proven for a general category (possessing some property P )
is applicable to any flat or deep category (possessing P ). For example, when we
deal with category Modupd of models and updates, our results are applicable
to any formalization of model and update as soon as we have a category.

As a rule, deep categories are infinite and cannot be drawn on paper (think
of all sets or all M -models). However, we can draw a graph representing a small
fragment of an infinite category, and further use and manipulate this represen-
tation in our reasoning about its deep referent. For example, nodes and arrows
of a graph drawn on paper could refer to models and deltas, and operations over
them correspond to synchronization procedures. Precise specification of these
syntax-semantics relationships may be non-trivial. In the paper we deal with
the following particular case of the issue: arity shapes of diagram operations are
flat graphs whereas their carriers are deep. The next section provides an accurate
formalization of this situation.

Diagrams. When different nodes or different arrows of a graph drawn on pa-
per bear the same name, e.g., in Fig. 30(a1,a2), these names are labels “hung”
on elements of the underlying graph rather than their unique names (the latter
are unique identifiers of graph elements and cannot be repeated). Hence, in the

9 It can be formalized in terms of so called constructs and concrete categories explained
in book [70] (with care and elegance).
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Fig. 30. Diagrams visually (a) and formally (b,d,c)

graphical image Fig. 30(a1), we have two unnamed different nodes (understood
“flatly” as tokens) with the same label N . This label may be just another “flat”
token, or the name (identifier) of a semantic object, e.g., a model; the formal-
ization below does not take this into account (but in situations we deal with in
the paper, labels are interpreted “deeply” as semantic objects).

It is convenient to collect all labels into a graph, and treat labeling as a
graph mapping D1 : (b1)→ (c1) with (b1) and (c1) being graphs specified in
Fig. 30(b1,c1) and mapping D1 defined by table (d1), i.e., D1(1) = D1(2) = N ,
D1(12) = a. Thus, image (a1) that we call a diagram consists of three compo-
nents: graph (b1) called the shape of the diagram, graph (c1) called the carrier,
and a graph mapping (d1) — the labeling. Since the shape and the carrier are
actually referred to by the mapping, the latter alone can be called a diagram
(it is a standard categorical terminology). Indeed, the graphical image — visual
diagram shown in (a1) — is nothing but a compact presentation of mapping D1

defined up to isomorphism of the shape.
For another example, visual diagram in Fig. 30(a2) encodes the formal dia-

gram of shape (b2) in the carrier graph (c2) with labeling D2 : (b2)→ (c2) given
by table (d2) (it is a graph morphism indeed).

What was earlier called a span in graph G, is actually a diagram D : (b3)→ G
with graph (b3) in Fig. 30 being the arity shape (the head of span D is node
D(Head)∈ G etc.) Any span can be inverted: the inverse of D is another span
D† : (b3)→ G defined as follows: D†(leg1) = D(leg2) and D†(leg2) = D(leg1).
Below we will call spans arity shapes (i.e. graphs isomorphic to (b3)) also spans.

Diagram operation over sorted graphs. Syntactically, a diagram opera-
tion is defined by its symbol (name), say, op, and a span of two-sorted graphs:
Aop = (Inop

p← IOop
q→ Outop) whose legs are injections. The left foot specifies

the input arity of the operation, the right one is the output, and the head is
their intersection. For example, the operation of forward propagation considered
above is specified by Fig. 31(a). The input arity is a span, the output arity is a
cospan, and the head consists of two nodes.
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Fig. 31. Mechanism of diagram operations

We may merge both arities together (via pushout) and represent the arity span
as a two-sorted graph InOut with a designated subgraph In of basic elements.
For the forward propagation example, this construction is specified in Fig. 31(b):
the basic subgraph is shown with black nodes and solid arrows, elements beyond
the basic subgraph are white and dashed. We can restore graph Out and the
original arity span by subtracting graph In from InOut so that both formulations
are equivalent. Previously we used the latter formulation because it is intuitive
and compact.

Semantic interpretation of an operation is given by a pair σ = (Gσ, opσ) with
G

σ a two-sorted graph being the carrier of the operation, and

opσ : (Inop → G
σ)→ (Outop → G

σ),

the operation as such, being a total function between the functional spaces in
round brackets. That is, any instantiation i : Inop → G

δ of op’s input in the car-
rier generates a unique instantiation o : Outop → G

δ of op’s output, and we set
opσ(i) = o. Moreover, both instantiations are required to be equal on their com-
mon part IOop, that is, p; i = q; o. In this way, the notion of diagram operation
(its syntax and semantics) can be defined for any category (of “graphs”).

The same idea is applicable to two-sorted graphs: both the shape and the car-
rier are two-sorted graphs and labeling must respect sorting. If we treat diagram
Fig. 31(a2) as a two-sorted diagram, it would be incorrect because horizontal
arrow 12 from the shape is mapped to vertical arrow a in the carrier.

Span composition. Categories are graphs, and hence the notion of a diagram,
particularly, a span, applies to them as well. However, spans in categories are
much more interesting than in graphs because we can sequentially compose them.
Fig. 32 presents two consecutive spans between sets A, B, C. We may think of
elements in the heads as bidirectional links and write a← r → b for r ∈ R1 if
p1(r) = a and q1(r) = b; and similarly for elements in R2. If two such links
a← r1 → b ∈ R1 and (b← r2 → c) ∈ R2 have a common end b ∈ B, we may
compose them and form a new link a← r → c denoted by r1; r2. By collecting
together all such composed links, we form a new set R, which is equipped with
two projections (A

p← R
q→ C). In addition, by the condition of compositionality,

set R is equipped with another pair of projections (R1
p′
2← R

q′
1→ R2) as shown

in the figure, and it is easy to see that the upper square diagram is a pullback.
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Note also that projections p and q are compositions p = p′2; p1 and q = q′1; q2.
Now we may define the notion of span composition for any category having PBs,
and achieve a remarkable generality.

R

R1

�
p
′
2

[PB] R2

q ′
1�

A
�
p1

B
�
p2

q
1�

C

q
2�

Fig. 32. Span composition

There are however some
hidden obstacles in this seem-
ingly simple definition. Since
pullbacks are defined up to
iso(morphism), composition
of spans is also defined up
to iso. We may choose some
canonical representatives
in each of the iso classes,
but then associativity of
composition cannot be guaranteed. In fact, associativity would hold up to a
canonic isomorphism too. It makes the universe of objects with arrows being
spans a so called bicategory rather than a category, and essentially complicates
the technical side.

To avoid this, it is reasonable to consider spans up to isomorphism of their
heads: it does not matter what are the OIDs of the head’s elements. It is straight-
forward to check that composition of spans defined up to isomorphism of their
heads is associative (details can be found in [71]).

Spans we deal with in the paper are special: their legs are injective mappings.
It is known that if an input arrow in a PB-square is injective, the parallel out-
put arrow is injective too (“monics are stable under PBs”). Hence, legs p′2, q′1
are injections, which implies that legs p, q are also injective as compositions of
injections.

C Model Translation via Tiles

This section shows that model translation (MT) can be treated as a view compu-
tation, whose view definition is given by a corresponding metamodel mapping.
Moreover, this construction can be modeled by tile operations, and gives rise to
a well-known categorical construct called a fibration.

C.1 MT-Semantics and Metamodel Mappings

The MT-task is formulated as follows. Given two metamodels, SSS (the source)
and TTT (the target), we need to design a procedure translating SSS-models into TTT -
models. It can be formally specified as a function f : S→ T between the spaces
of models (instances of the corresponding metamodels). The only role of meta-
models in this specification is to define the source and the target spaces, and
metamodels are indeed often identified with their model spaces [49,3,32]. How-
ever, a reasonable model translation f : S→ T should be compatible with model
semantics. The latter is encoded in metamodels, and hence a meaningful trans-
lation should be somehow related to a corresponding relationship between the
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metamodels. A simple case of such a relationship is when we have a mapping
f : TTT → SSS between the metamodels. Indeed, if we want to translate SSS-model into
TTT -models, the concepts specified in TTT should be somewhere in SSS. The following
example explains how it works.

Suppose that our source models consist of Person objects with attributes
qName and phone: the former is complex and composed of a qualifier (Mr or
Ms) and a string. The metamodel, SSS, is specified in the lower left quadrant of
Fig. 33. Oval nodes refer to value types. The domain of the attribute ’qName’ is
a Cartesian product (note the label ⊗) with two projections ’name’ and ’qual’.
The target of the latter is a two-element enumeration modeled as the disjoint
union of two singletons. Ignore dashed (blue with a color display) arrow and
nodes for a while.

A simple instance of metamodel SSS is specified in the upper left quadrant. It
shows two Person-objects with names Mr.Lee and Ms.Lee (ignore blue elements
again). Types (taken from the metamodel) are specified after colons and give
rise to a mapping tA : A→SSS.

Another metamodel is specified in the lower right quadrant. Note labels [disj]
and [cov] “hung” on the inheritance tree: they are diagram predicates (constraints)
that require any semantic interpretation of node Actor (i.e., a set [[Actor ]] of
Actor-objects) to be exactly the disjoint union of sets [[Male ]] and [[Female ]].

We want to translate Person-models (SSS-instances) into Actor-models (TTT -
instances). This intention makes sense if TTT -concepts are somehow “hidden”
amongst SSS-concepts. For example, we may assume that Actor and Person refer
to the same class in the real world.

The situation with Actor-concepts Male and Female is not so simple: they
are not present in the Person-metamodel. However, although these concepts are
not immediately specified in SSS, they can be derived from other SSS-concepts. We
first derive new attributes /name and /qual by sequential arrow composition
(see Fig. 33 with derived elements shown with dashed thin lines and with names
prefixed by slash — a UML notation). Then, by the evident select-queries, we
form two derived subclasses of class Person: mrPerson and msPerson.

Note that these two subclasses together with class Person satisfy the con-
straints [disj, cov] discussed above for metamodel TTT . It can be formally proved
by first noting that enumeration {Mr,Mrs} is disjointly composed of singletons
{Mr}, {Mrs}, and then using the property of Select queries (in fact, pullbacks) to
preserve disjoint covering. That is, given (i) query specifications defining classes
mrPesron, mrsPerson, and (ii) predicate declarations [disj, cov] for the triple
({Mr,Mrs},{Mr},{Mrs}), the same declarations for the triple (Person, mrPer-
son, mrsPerson) can be logically derived.

The process described above gives us an augmentation Q[SSS] ⊃ SSS of the Person-
metamodel SSS with derived elements, where Q refers to the set of queries involved.
Now we can relate Actor concepts Male and Female to derived Person-concepts
mrPerson and mrsPerson. Formally, we set a total mapping vvv : TTT → Q[SSS] that
maps every TTT -element to a corresponding Q[SSS]-element. In Fig. 33, links con-
stituting the mapping are shown by thin curly arrows. The mapping satisfies
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traceability mapping 
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Fig. 33. Semantics of model translation via a metamodel mapping
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Fig. 34. Model translation via tile operations (the upper arrow in diagram (c) is derived
and must be dashed but the Diagram software does not draw triple arrows)

two important requirements: (a) the structure of the metamodels (incidence of
nodes and arrows, and the isA-hierarchy) is preserved; and (b) the constraints in
metamodel TTT are respected ([disj, cov]-configuration in TTT is mapped to [disj,cov]-
configuration in SSS).

Now we will show that data specified above are sufficient to automatically
translate any SSS-model into a TTT -model via two tile operations.

C.2 MT via Tile Algebra

1) Query execution. Query specifications used in augmenting SSS with derived
elements can be executed for SSS-models. For example, each pair of some model’s
arrows typed with :qName and :name produces a composed arrow typed with
:/name, and similarly any pair of some model’s arrows :qName and :qual pro-
duces an arrow :/qual (these are not shown in the figure to avoid clutter). Then
each object typed by :Person and having the value Mr along the arrow :/qual,
is cloned and typed :/mrPerson.10 The result is that the initial typing mapping
tA : A→SSS is extended to typing mapping tQ[A] : Q[A]→ Q[SSS], in which Q[A]
and Q[SSS] denote augmentations of the model and the metamodel with derived
elements.

This extended typing mapping is again structure preserving. Moreover, it is
a conservative extension of mapping tA in the sense that types of elements in
A are not changed by tQ[A]. Formally, the inverse image of submodel SSS ⊂ Q[SSS]
wrt. the mapping tQ[A] equals to A, and restriction of tQ[A] to A is again tA.

The configuration we obtained is specified by the left square diagram in
Fig. 34(a). Framed nodes and solid arrows denote the input for the operation of
query execution, dashed arrows and non-framed nodes denote the result. Label
[qExe] means that the entire square is produced by the operation; the names of
arrows and nodes explicitly refer to query Q (whereas q is part of the label, not
a separate name).

2) Retyping. The pair of mappings, typing tQ[A] : Q[A]→ Q[SSS], and view

10 With a common semantics for inheritance, we should assign the new type label /mr-
Person to the same object P1. To avoid multi-valued typing, inheritance is straight-
forwardly formalized by cloning the objects.
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Q[SSS] vvv←− TTT , provide enough information for translating model Q[A] into TTT -
metamodel. All that we need to do is to assign to elements of Q[A] new types ac-
cording to the view mapping: if an element e ∈ Q[A] has type X = tQ[A](e)inQ[SSS]
and X = vvv(Y ) for some type Y ∈ TTT , we set the new type of e to be Y . For ex-
ample, since Q[A]-element P11 in Fig. 33 has type mrPerson, which (according
to the view mapping vvv) corresponds to type Male in TTT , this elements must be
translated into an instance of type Male; we denote it by (P11 •Male). If no
such TTT -type Y exists, the element e is not translated and lost by the translation
procedure (e.g., phones of Person-objects). Indeed, non-existence of Y means
that the X-concept of metamodel SSS is beyond the view defined by mapping vvv
and hence all X-instances are to be excluded from vvv-views.

Thus, translation is just retyping of some of Q[A]-elements by TTT -types, and
hence elements of the translated model B are, in fact, pairs (e, Y ) ∈ Q[A]×TTT
such that tQ[A](e) = vvv(Y ). In Fig. 33, such pairs are denoted by a bullet between
the components, e.g., P1•Actor is a pair (P1,Actor) etc. If we now replace bullets
by colons, we come to the usual notation for typing mappings. The result is that
elements of the original model are retyped by the target metamodel according
to the view mapping, and if B denotes the result of translation, we may write

(1) B ∼= {
(e, Y ) ∈ Q[A]×TTT : tQ[A](e) = vvv(Y )

}

We use isomorphism rather than equality because elements of B should be ob-
jects and links rather than pairs of elements. Indeed, the translator should create
a new OId for each pair appearing in the right part of (1).

First components of pairs specified in (1) give us a traceability mapping
vvvA : B → A as shown in Fig. 33. Second components provide typing mapping
tB : B →TTT . The entire retyping procedure thus appears as a diagram operation
specified by the right square in Fig. 34(a): the input of the operation is a pair
of mappings (tQ[A], vvv), and the output is another pair (vvvQ[A], tB). The square is
labeled [pb] because equation (1) specifies nothing but an instance of pullback
operation discussed in Sect. A.1.

Remark 7. If view vvv maps two different TTT -types Y1 �= Y2 to the same SSS-
type X , each element e ∈ Q[A] of type X will gives us two pairs (e, Y1) and
(e, Y2) satisfying the condition above and hence translation to TTT would dupli-
cate e. However, this duplication is reasonable rather than pathological: equality
vvv(Y1) = vvv(Y2) = X means that in the language of TTT the type X simultaneously
plays two roles (those described by types Y1 and Y2) and hence each X-instance
in Q[A] must be duplicated in the translation. Further examples of how speci-
fication (1) works can be found in [72]. They show that the pullback operation
is surprisingly “smart” and provides an adequate and predictive model of retyp-
ing.11

11 Since the construct of inverse image is also nothing but a special case of pullback,
the postcondition for operation [qExe] stating that tQ[A] is a conservative extension
can be formulated by saying that the square [qExe] is a pullback too. To be precise,
if we apply pullback to the pair (iQA, tQ[A]), we get the initial mapping tA.
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Constraints do matter. To ensure that view model B is a legal instance of the
target metamodel TTT , view definition mapping vvv must be compatible with con-
straints declared in the metamodels. In our example in Fig. 33, the inheritance
tree in the domain of vvv has two constraints [disj,cov] attached. Mapping vvv respects
these constraints because it maps this tree into a tree (in metamodel SSS) that has
the same constraints attached. Augmentation of model A with derived elements
satisfies the constraints, A |= [disj] ∧ [cov], because query execution (semantics)
and constraint derivation machinery (pure logic, syntax) work in concert (the
completeness theorem for the first order logic). Relabeling does nothing essential
and model B satisfies the original constraint in TTT as well (details can be found
in [16]).

Arrow encapsulation. Query execution followed by retyping gives us the op-
eration of view execution shown in Fig. 34(b). In the tile language, the outer tile
[vExe] is the horizontal composition of tiles [qExe] and [pb]. Note that queries are
“hidden” (encapsulated) within double arrows: their formal targets are ordinary
models but in the detailed elementwise view their targets are models augmented
with derived elements.

Diagram (c) present the operation in an even more encapsulated way. The
top triple arrow denotes the entire diagram (b): the source and target nodes are
models together with their typing mappings, and the arrow itself is the pair of
mappings (vvv,vvvA). Although the source and the target of the triple arrow are
typing mappings, we will follow a common practice and denote them by pairs
(model:metamodel), e.g., A:SSS, leaving typing mappings implicit. Two vertical
arrows are links, i.e., pairs (A,SSS), (B,TTT ); a similar link from the top arrow to
the bottom one is skipped. Diagram Fig. 34(c) actually presents a diagram oper-
ation: having a metamodel mapping SSS vvv⇐= TTT and a model A:SSS, view execution
produces a model A�vvv :TTT along with a traceability mapping (triple arrow) vvvA:vvv
encoding the entire diagram Fig. 34(b). We will return to this construction later
in Sect. D.3.

C.3 Properties of the View Execution Operation

The view execution operation has three remarkable properties.

1) Unitality. If a view definition is given by the identity mapping, view execu-
tion is identity as well, as shown by diagram Fig. 35(b1).

2) Compositionality. Suppose we have a pair of composable metamodel map-
pings vvv1: TTT ⇒ SSS and vvv2: UUU → TTT , which defines UUU as a view of a view of SSS.
Clearly, execution of a composed view is composed from the execution of com-
ponents so that for any SSS-model A we should have

vvv1;vvv2A = vvv2B ; vvv1A with B standing for A�vvv1

as shown in Fig. 35(b2). Formal proof of this fact needs an accurate definition of
query specifications (see [52] for details), and then it will be a standard exercise in
categorical algebra (with so called Kleisli triples). Details will appear elsewhere.
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Fig. 36. Universal property of the view mechanism

3) Universality. Suppose we have a model X and a mapping Q[A]
f←− X that

maps some of X ’s elements to derived rather than basic elements of A as shown in
Fig. 36(a). The mapping must be compatible with typing so that the outer right
square is required to be commutative. Then owing to the universal properties of
pullbacks, there is a uniquely defined mapping A�vvv

!←− X such that the triangles
commute (note that mapping ! is a homogeneous model mapping over identity
1TTT : TTT → TTT ).

By encapsulating queries, i.e., hiding them inside double-arrows (see transition
from diagram (a) to (b) in Fig. 34), we can formulate the property as shown in
Fig. 35(b3), where arrows f :vvv and !:1TTT actually denote square diagrams whose
vertical arrows are typing mappings and bottom arrows are pointed after semi-
colon.

View mechanism and updates. Universality of view execution has a remark-
able consequence if queries are monotonic, i.e., preserve inclusion of datasets.
Such queries have been studied in the database literature (e.g., [29]), and it is
known that queries without negation are monotonic.

In our terms, a query Q is monotonic if any injective model mapping A
p←− A1

between two SSS-models gives rise to an injective mapping Q[A]
Q[p]←− Q[A1] be-

tween models augmented with derived elements. This is illustrated by the left-
upper square in Fig. 36(b). Applying retyping to models A�vvv and A1�vvv provides
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the rest of the diagram apart from arrow p�vvv . To obtain the latter, we apply
the universal property of A�vvv (specified in diagram (a)) to mapping vvvA1 ; Q[p]
(in the role of mapping f in diagram (a)), and get mapping p�vvv. If the view def-
inition mapping is injective, then traceability mappings are injective too (PBs
preserve monics), and hence p�vvv is also injective. Thus, execution of views based
on monotonic queries translates mappings as well. Moreover, if model updates
are spans with injective legs, then view execution translates updates too: just
add the other leg q : A1 → A′ and apply the same construction.

D Heterogeneous Model Mapping and Matching

Suppose that models A and B to be synchronized are instances of different
metamodels, AAA and BBB respectively; we write A:AAA and B:BBB. The metamodels
may be essentially different, e.g., a class diagram and an activity diagram, which
makes matching their instances structurally difficult. It even makes sense to
reformulate the question ontologically: what is a match of non-similar models?

In Sect. 3.3 we modeled homogeneous matches by spans of homogeneous
model mappings. We will apply the same idea to the heterogeneous case; hence,
we first need to define heterogeneous model mappings.

D.1 Simple Heterogeneous Mappings

Model mappings are sets of links between model elements, and by simple map-
pings we mean those not involving derived elements. The first requirement for
links to constitute a correct mapping is their compatibility with model structure:
a class may be linked to a class, an attribute to an attribute etc. However, not
all structurally correct mappings make sense.

o:Object
name=Ford

Model  A f

u:Object
name=Ford

Model  BConsider a mapping between two simple
models in the inset figure. The mapping is
structurally correct but it is not enough in
the world of modeling, in which model ele-
ments have meaning encoded in metamodels.
For example, Fig. 37(a) introduces possible metamodels for models A, B, and we
at once see that sending an Employee to a Car is not meaningful. It could make
sense if the concepts (classes) Employee and Car were “the same”, in which case
it must be explicitly specified by a corresponding mapping between the meta-
models. Without such a mapping, the metamodels are not related and it may
be incorrect to map an Employee to a Car. Thus, diagram Fig. 37(a) presents
an incorrect model mapping.

An example of a correct model mapping is shown in diagram (b). We first
build a metamodel mapping and map concept Employee to Person. It is then
legitimate to map instances of Employee to instances of Person. Thus, a correct
model mapping is a pair of mappings (f, f) commuting with typing : f ; tA = tB ; f.

Arrow encapsulation. An abstract schema of the example is shown in
Fig. 37(c). As shown in Sect. 3.1, models are chains of graph mappings realizing
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(c)(a)

o:Car
make=Ford

u:Employee
name=Ford

Model  A Model  B

Employee
name: str

Car
make:str

Metamod.A

type mappings

o:Person
name=Ford

u:Employee
name=Ford

Model  A Model  B

Employee
name: str

Person
name: str

Metamod. B

f f

f

tA tB
tBtA [=]

(b)

Metamod. BMetamod. A

A B
GA GB

f1

f2

tA tB

f

GA GB
tA tB

GM

A Bf
GM

1

Fig. 37. Model mappings: incorrect (a), correct (b) and abstractly (c)

typing. Mapping A
f←− B is a triple (f1, f2, 1GMMM) commuting with typing map-

pings, i.e., f can be considered as a two-layer commutative diagram (framed by
the bigger rounded rectangle). The lower layer (the smaller frame) is the meta-
model mappings BBB f←−AAA. If metamodels AAA and BBB were instances of different
meta-metamodels,MMM, NNN , we could still build a reasonable mapping f by intro-
ducing the third componentMMM f3←−NNN commuting with typing mappings ofMMM
and NNN to their common meta-metametamodel.

GA

GA

f1

tA tB

A Bf

f

g1

tC

Cg

g
A B C

GB GC

GB
GC

f2 g2

Fig. 38. Model mapping
composition

Irrespectively of the number of layers, a mapping
between models A

f←− B contains a corresponding
mapping BBB f←−AAA between metamodels (which con-
tains a mapping between metametamodels). Hence,
models and model mappings can be projected to
metamodels and their mappings by erasing the up-
per layer. This projection is evidently a graph mor-
phism μ : Modmap→MModmap from the graph
of models and their simple mappings to the graph
of metamodels and their simple mappings.

Composition. Model mappings can be composed
componentwise as shown in Fig. 38. The outer rectangle diagram is commuta-
tive as soon as the two inner squares are such. Hence, composition of two legal
model mappings is again a legal model mapping. Associativity is evident, and the
identity mapping consists of two identities 1GA : GA ⇒ GA and 1AAA : GAAA ⇒ GAAA .
Hence, graphs of (meta)models and their mappings introduced above are cate-
gories. Moreover, projection μ : Modmap→MModmap is evidently compati-
ble with composition and identities and so is a functor.

D.2 Matching Heterogeneous Models

Consider a simple example shown in Fig. 39, where matching links between two
models are set in a naive way, and compare it with naive match in Fig. 9(a) on
p.111. The first peculiarity of match in Fig. 39 is that objects of different types
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are matched (an Employee and a Personnel). Moreover, attributes are matched
approximately meaning that their values somehow correspond but cannot be
neither equal nor inequal because their relationship is more complex. Though
intuitive, such matches do not conform to a type discipline, and their formal
meaning is unclear.

:Employee
name=Jo Lee
age = 30
pho = 11

Ann’s model, A
:Personnel
name=Jo
bDate=01.01.75
hDate=01.01.05

Bob’s model, Bm0

m1

m2 /

Fig. 39. Heterogeneous matching

Heterogeneous model mapping were de-
fined above by including into them meta-
model mappings. We may try to apply the
same idea for heterogeneous matching:
first match the metamodels, and then pro-
ceed with models. That is, we begin with
making metamodels explicit and building
a correspondence span between them as
shown in Fig. 40(a).

Employee
name: Str2 [1]
/fstNm{…}: Str [1]
pho: Int [0..*]
age: Int [0..1]

Metamodel, A
Personnel
name: Str [1]
bDate: Date [1]
hDate: Date [1]
/age{…}: Int [1]

Metamodel, B
Person
fstName: Str
age: Int

Metamodel, Ov w

:Employee
name=JoLee
/fstNm=Jo
age = 30
pho = 11

Ann’s model, A
:Personnel
name=Jo
bDate=01.01.75
hDate=01.01.05
/age=35

Bob’s model, B

(a) Metamodel matching

:Person
fstName=Jo
age = /?

Mary’s model, M

projection
A M: f

f0

f1

projection
g: M B

g0

g1

g2

f2

(b) Direct model matching

:Employee
name=JoLee
/fstNm=Jo
age = 30
pho = 11

Ann’s model, A
:Personnel
name=Jo
bDate=01.01.75
hDate=01.01.05
/age=35

Bob’s model, B
:Person
fstName=Jo
age = 30

Ann’s proj., AO
:Person
fstName=Jo
age = 35

Bob’s proj., BO
vA wB

(c) Model matching via projections

Fig. 40. Matching a heterogeneous pair of models

The head of the span, metamodel OOO, specifies the concepts common for both
metamodels (we will say a metamodel overlap), and the legs are projection map-
pings. A basic concept in one metamodel, e.g., attribute ’age’ in metamodel AAA,
may be a derived concept in the other metamodel: there is no attribute ’age’ in
metamodel BBB but it can be derived from attribute ’bDate’ with a corresponding
query. Similarly, we may specify a query to the metamodel AAA, which defines a
new attribute ’fstNm’ (firstName). (Ellipsis in figurative brackets near derived
attributes in Fig. 40(a) refer to the corresponding query specifications.) Thus,
the legs of a correspondence span may map elements in the head to derived
elements in the feet.
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Now we can reify the match in Fig. 39 by the span in Fig. 40(b). The feet
are models A, B augmented with derived elements; the latter are computed by
executing queries specified in the metamodels (recall that a derived element in a
metamodel is a query definition). The legs are heterogeneous model mappings
whose metamodel components are specified in diagram (a) (typing mappings
are not shown). These mappings are similar to simple heterogeneous mappings
considered in Sect. D.1 but may map to derived elements; we call them complex.

Metamodel mappings are view definitions that can be executed for models
(Sect. C). By executing view vvv for model A, and view www for model B, we project
the models to the space of OOO-instances as shown in Fig. 40(c): the view models
are denoted by AOOO

def= A�vvv and BOOO
def= B�www (and their frames are dashed to

remind us that these models are derived rather than set independently). We
also call the views projections to the overlap space. Note that along with view
models, view execution computes also traceability mappings vvvA and wwwB.

There are evident mappings from the head M to projections AOOO, BOOO (not
shown in the figure to avoid clutter). The existence of these mappings can be
formally proved by the universal property of pullbacks as described in Sect. C.3.

AAA ⇐==========
vvv OOO ==========

www ⇒ BBB

A

tA
�

⇐=========
f

M

tB
�

==========
g ⇒ B

tM
�

A

‖
‖
⇐vvvA

= = A�vvv

�
p:

1 OOO

B�www =
wwwB
=⇒

q:1OOO�

B

‖
‖

(a) Extensional match

A ⇐vvvA
== A�vvv

m� B�www =
wwwB
=⇒ B

(b) General match

Fig. 41. From hetero- to homogeneous
matches

An abstract schema of the con-
struction is shown in Fig. 41(a): the
top row shows the metamodel overlap,
the bottom row is the result of its exe-
cution, and the middle row is the cor-
respondence span. Double-bodies of
arrows remind us that mappings are
complex, i.e., may map to derived el-
ements in their targets.

Two slanted arrows are derived by
the universal property of view trace-
ability mappings (produced by pull-
backs). Note that triple (M, p, q) is
a homogeneous correspondence span
in the space of OOO-models. It gives us
an extensional match between models
A�vvv and B�www. We may add to this
span non-extensional information (as
discussed in Sect. 4.1) and come to diagram Fig. 41(b), in which arrow m de-
notes a general match between homogeneous models. Note that mappings vvvA

and wwwB are derived whereas match m is an independent input datum.

D.3 Complex Heterogeneous Model Mappings

Simple heterogeneous model mappings defined above give rise to a functor
μ : Modmap→MModmap. The goal of this section is to outline, semi-formally,
how this description can be extended for complex mappings involving derived
elements.
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Let QL be a query language, that is, a signature of diagram operations over
graphs. It defines a graph MModmapQL of metamodels and their complex
mappings described in Sect. C. Similarly, we have graph ModmapQL of models
and their complex mappings like, e.g., pairs mappings (f,vvv) and (g,www) shown
in Fig. 40(b). (Recall that we actually deal with commutative square diagrams:
f ; tA = tm;vvv and g; tB = tM ;www.)

AAA ⇐======
vvv OOO ======

www ⇒ BBB

A:AAA
:μQL

•
�

〈≡≡≡≡
f :vvv

M :OOO
:μQL

•
�

≡≡≡≡
g:www
〉 B:BBB

:μQL

•
�

Fig. 42. Encapsulation of complex
heterogeneous mappings

By encapsulating typing mappings inside
nodes, and metamodel mappings inside ar-
rows, we may rewrite the upper half of dia-
gram Fig. 41(a) as shown in Fig. 42.

A warning about arrow notation is in
order. Graph mappings in Fig. 37(c) are
denoted by double arrows to distinguish
them from links (single-line arrows), and di-
agrams of graph mappings are triple arrows.
Complex mappings add one more dimension of encapsulation — derived el-
ements, and hence mappings vvv, www should be denoted by triple arrows while
mappings-diagrams f :vvv, g:www by quadruple arrows. To avoid this monstrous no-
tation, we sacrifice consistency. It is partially restored by using bullet-end arrows
for links: the latter may be thought of as arrows with “zero-line” bodies.

Thus, similarly to simple heterogeneous model mappings, complex ones con-
tain complex metamodel mappings and hence there is a graph morphism

μQL : ModmapQL →MModmapQL

(vertical links in Fig. 42 are its instances). We want to turn the two graphs above
into categories (and μQL into a functor), i.e., we need to define composition of
complex mappings.

Composition of complex metamodel mappings is easy and amounts to term
substitution. As mentioned above in Sect. C.2, with an accurate definition of a
query langauge’s syntax, compositionality of metamodel mappings is a routine
exercise in categorical algebra (with the so called Kleisli triples [73]). It turns
graph MModmapQL into a category (the Kleisli category of the monad defined
by the query language).

Defining composition of complex model mappings is much harder because
we need to compose query executions, i.e., application instances of operations
rather than terms (definitions of operations). It can be done relatively easily
for monotonic queries defined above on p.159 (details will appear elsewhere).
Thus, if all queries are monotonic, graph ModmapQL can also be turned into a
category, whose arrows are square diagrams similar to those shown in Fig. 38.
We thus have a functor μQL : ModmapQL →MModmapQL that maps models
and model mappings to their embedded metamodel parts.

The view mechanism is a “play-back” operation specified in Fig. 34(c) such
that three laws in Fig. 35 are satisfied. Together these requirements mean that
functor μQL is a (split) fibration — a construct well-known in CT [74, Exer-
cise 1.1.6]. The fibrational formulation of metamodeling (including the the view
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mechanism) allows us to use many results of the rich theory of fibrations [74].
In a sense, it is a culmination of the concrete MMt branch of the paper: a mul-
titude of complex data is encapsulated and cast in a very compact algebraic
formulation.

Note that we did not formally prove the fibrational statement above. It is an
observation suggested by our examples and semi-formal constructions in Sect. C
and D rather than a theorem. To turn it into a theorem, we need a formal
definition of queries and query execution, and then a formal specification of our
considerations above; it is a work in progress. Part of this work is presented in [52]
for the case of functorial semantics — a model is a functor from the metamodel
to some semantic category of sets and mappings between them, which is dual to
the usual metamodeling via a typing mapping (see beginning of Sect. 3.2).
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1 Introduction

JastAdd is a metacompilation system for generating language-based tools such
as compilers, source code analyzers, and language-sensitive editing support. It is
based on a combination of attribute grammars and object-orientation. The key
feature of JastAdd is that it allows properties of abstract syntax tree nodes to
be programmed declaratively. These properties, called attributes, can be simple
values like integers, composite values like sets, and reference values which point to
other nodes in the abstract syntax tree (AST). The support for reference-valued
attributes is of fundamental importance to JastAdd, because they allow explicit
definition of graph properties of a program. Examples include linking identifier
uses to their declaration nodes, and representing call graphs and dataflow graphs.
AST nodes are objects, and the resulting data structure, including attributes, is
in effect an object-oriented graph model, rather than only a simple syntax tree.

While there are many technical papers on individual JastAdd mechanisms
and advanced applications, this is the first tutorial paper. The goal is to give an
introduction to JastAdd and its core attribute grammar mechanisms, to explain
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how key problems are solved.
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1.1 Object-Oriented Model

Figure 1 illustrates the difference from a traditional compiler where important
data structures like symbol tables, flow graphs, etc., are typically separate from
the AST. In JastAdd, these data structures are instead embedded in the AST,
using attributes, resulting in an object-oriented model of the program. JastAdd is
integrated with Java, and the resulting model is implemented using Java classes,
and the attributes form a method API to those classes.

Attributes are programmed declaratively, using attribute grammars : Their
values are stated using equations that may access other attributes. Because of
this declarative programming, the user does not have to worry about in what
order to evaluate the attributes. The user simply builds an AST, typically us-
ing a parser, and all attributes will then automatically have the correct values
according to their equations, and can be accessed using the method API. The
actual evaluation of the attributes is carried out automatically and implicitly by
the JastAdd system.

The attribute grammars used in JastAdd go much beyond the classical at-
tribute grammars defined by Knuth [Knu68]. In this tutorial, we particularly
cover reference attributes [Hed00], parameterized attributes [Hed00, Ekm06],
circular attributes [Far86, MH07] and collection attributes [Boy96, MEH09].

An important consequence of the declarative programming is that the object-
oriented model in Fig. 1 becomes extensible. The JastAdd user can simply add
new attributes, equations, and syntax rules. This makes it easy to extend lan-
guages and to build new tools as extensions of existing ones.

JastAdd data structure 

x

Traditional compilation data structures 

symbol table flow graph 

x  int

Decl x

Abstract Syntax Tree 

Object-oriented model 

name 
binding

flow links 

int x

Decl

int x

S1 

S2 S3 

S1 

S2 S3 

S1 S2 S3 

Fig. 1. In JastAdd, compilation data structures are embedded as reference attributes
in the AST, resulting in an object-oriented model of the program
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1.2 Extensible Languages and Tools

In JastAdd, the order of defining attributes and equations is irrelevant—their
meaning is the same regardless of order. This allows the user to organize rules
into modules arbitrarily, to form modules that are suitable for reuse and com-
position. Sometimes it is useful to organize modules based on compilation prob-
lems, like name analysis, type analysis, dataflow analysis, etc. Other times it
can be useful to organize according to language constructs. As an example, in
JastAddJ, an extensible Java compiler built using JastAdd [EH07b], both mod-
ularization principles are used, see Figure 2. Here, a basic compiler for Java 1.4
is modularized according to the classical compilation analyses: name analysis,
type analysis, etc. In an extension to support Java 5, the modules instead reflect
the new Java 5 constructs: the foreach loop, static imports, generics, etc. Each
of those modules contain equations that handle the name- and type analyses
for that particular construct. In yet further extensions, new computations are
added, like non-null analysis [EH07a], separated into one module handling the
Java 1.4 constructs, and another one handling the Java 5 constructs.

JastAdd has been used for implementing a variety of different languages, from
small toy languages like the state machine language that will be used in this tu-
torial, to full-blown general-purpose programming languages like Java. Because
of the modularization support, it is particularly attractive to use JastAdd to
build extensible languages and tools.

1.3 Tutorial Outline

This tutorial gives an introduction to JastAdd and its core attribute grammar
mechanisms. Section 2 presents a language for simple state machines that we
will use as a running example. It is shown how to program towards the gener-
ated API for a language: constructing ASTs and using attributes. Basic attribu-

Java 1.4 
- abstract syntax 
- name analysis
- type analysis
- …

Java 5 extension 
- foreach loop 
- generics 
- static imports 
- …

Non-null for Java 1.4 
- analysis 
- inference 

Non-null for Java 5 
-analysis 
-inference 

Fig. 2. Each component has modules containing abstract syntax rules, attributes,
and equations. To construct a compiler supporting non-null analysis and inference
for Java 5, all modules in the four components are used.
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tion mechanisms are presented in Section 3, including synthesized and inherited
attributes [Knu68], reference attributes [Hed00], and parameterized attributes
[Hed00, Ekm06]. We show how name analysis can be implemented using these
mechanisms. This section also briefly presents the underlying execution model.

The two following sections present more advanced mechanisms. Section 4 dis-
cusses how to define composed properties like sets using collection attributes
[Boy96, MEH09]. These attributes are defined by the combination of values con-
tributed by different AST nodes. We illustrate collection attributes by defining
an explicit graph representation for the state machine, with explicit edges be-
tween state and transition objects. Section 5 discusses how recursive properties
can be defined using circular attributes which are evaluated using fixed-point
iteration [Far86, MH07]. This is illustrated by the computation of reachability
sets for states. Finally, Section 6 concludes the tutorial.

The tutorial includes exercises, and solutions are provided in the appendix.
We recommend that you try to solve the exercises on your own before looking at
the solutions. The code for the state machine language and the related exercise
solutions is available for download at http://jastadd.org. We recommend that
you download it, and run the examples and solutions as you work through the
tutorial. Test cases and the JastAdd tool are included in the download. See the
README file for further instructions.

1.4 Brief Historical Notes

After Knuth’s seminal paper on attribute grammars [Knu68], the area received
an intense interest from the research community. A number of different evalua-
tion algorithms were developed, for full Knuth-style AGs as well as for subclasses
thereof. One of the most influential subclasses is Kastens’ ordered attribute gram-
mars (OAGs) [Kas80]. OAGs are powerful enough for the implementation of full
programming languages, yet allow the generation of efficient static attribute eval-
uators. Influential systems based on OAGs include the GAG system which was
used to generate front ends for Pascal and Ada [KHZ82, UDP+82], and the Syn-
thesizer Generator which supports incremental evaluation and the generation of
interactive language-based editors [RT84]. For surveys covering this wealth of
research, see Deransart et al. [DJL88], and Paakki [Paa95].

JastAdd belongs to a newer generation of attribute grammar systems based on
reference attributes. Support for reference-like attributes were developed indepen-
dently by a number of researchers: Hedin’s reference attributes [Hed94, Hed00],
Poetzsch-Heffter’s occurrence attributes [PH97], and Boyland’s remote attributes
[Boy96].

Other landmark developments of strong importance for JastAdd include Jour-
dan’s dynamic evaluation algorithm [Jou84], Farrow’s circular attributes [Far86],
Vogt, Swierstra and Kuiper’s higher-order attributes [VSK89], and Boyland’s
collection attributes [Boy96].

In addition to JastAdd, there are several other current systems that support
reference attributes, including Silver [WBGK10], Kiama [SKV09], and ASTER
[KSV09]. While these systems use quite different syntax than JastAdd, and

http://jastadd.org
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support a partly different set of features, this tutorial can hopefully be of value
also to users of these systems: the main ideas for how to think declaratively
about reference attributes, and how to solve problems using them, still apply.

2 Running Example: A State Machine Language

As a running example, we will use a small state machine language. Figure 3
shows a sample state machine depicted graphically, and a possible textual rep-
resentation of the same machine, listing all its states and transitions.

S1 S2 S3 

a

b

a
state S1; 
state S2; 
state S3; 
trans a:S1->S2; 
trans b:S2->S1; 
trans a:S2->S3; 

Fig. 3. A sample state machine and its textual representation

2.1 Abstract Grammar

Given the textual representation of a state machine, we would like to construct
an object-oriented model of it that explicitly captures its graph properties. We
can do this by first parsing the text into a syntax tree representation, and then
add reference attributes to represent the graph properties. Fig. 4 shows a typical
EBNF context-free grammar for the textual representation.

<statemachine> ::= <declaration>*;

<declaration> ::= <state> | <transition>;

<state> ::= "state" ID ";"

<transition> ::= "trans" ID ":" ID "->" ID ";";

ID = [a-zA-Z][a-zA-Z0-9]*

Fig. 4. EBNF context-free grammar for the state machine language

A corresponding abstract grammar, written in JastAdd syntax, is shown in
Fig. 5. The nonterminals and productions are here written as classes, replacing
alternative productions by subclassing: StateMachine is a class containing a list
of Declarations. Declaration is an abstract class, and State and Transition
are its subclasses. The entities Label, etc. represent tokens of type String, and
can be thought of as fields of the corresponding classes. An AST consists of a
tree of objects of these classes. A parser that builds the AST from a text can be
generated using an ordinary parser generator, building the AST in the semantic
actions.
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StateMachine ::= Declaration*;

abstract Declaration;

State : Declaration ::= <Label:String>;

Transition : Declaration ::=

<Label:String> <SourceLabel:String> <TargetLabel:String>;

Fig. 5. JastAdd abstract grammar for the state machine language

2.2 Attributing the AST

To obtain an explicit object-oriented model of the graph, we would like to link
each state object to the transition objects that has that state object as its source,
and to link each transition object to its target state object. This can be done
using reference attributes. Figure 6 shows the resulting object-oriented model for
the example machine in Figure 3. We see here how the edges between state and
transition objects are embedded in the AST, using reference attributes. Given
this object-oriented model, we might be interested in computing, for example,
reachability. The set of reachable states could be represented as an attribute in
each State object. In sections 3, 4, and 5 we will see how these attributes can
be defined.

State 
S1 

target links

StateMachine

State 
S2 

State 
S3 

Transition
a:S1->S2 

Transition
b:S2->S1 

Transition
a:S2->S3 

transition links

Fig. 6. The state machine graph is embedded in the object-oriented model

Exercise 1. In Figure 6, the objects are laid out visually to emphasize the AST
structure. Make a new drawing that instead emphasizes the state machine graph.
Draw only the State and Transition objects and the links between them,
mimicking the layout in Figure 3.

2.3 Building and Using the AST

From the abstract grammar, JastAdd generates a Java API with constructors
for building AST nodes and methods for traversing the AST. This API is fur-
thermore augmented with methods for accessing the attributes. Figure 7 shows
part of the generated API for the state machine language, including the at-
tributes target, transitions, and reachable that will be defined in the coming
sections.
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class StateMachine {

StateMachine(); // AST construction

void addDeclaration(Declaration node); // AST construction

List<Declaration> getDeclarations(); // AST traversal

Declaration getDeclaration(int i); // AST traversal

}

abstract class Declaration {

}

class State extends Declaration {

State(String theLabel); // AST construction

String getLabel(); // AST traversal

Set<Transition> transitions(); // Attribute access

Set<State> reachable(); // Attribute access

}

class Transition extends Declaration {

Transition(String theLabel, theSourceLabel, theTargetLabel);

// AST construction

String getLabel(); // AST traversal

String getSourceLabel(); // AST traversal

String getTargetLabel(); // AST traversal

State target(); // Attribute access

}

Fig. 7. Parts of the API to the state machine model

Suppose we want to print out the reachable states for each state. For the small
example in Figure 3, we would like to obtain the following output:

S1 can reach {S1, S2, S3}
S2 can reach {S1, S2, S3}
S3 can reach {}

meaning that all three states are reachable from S1 and S2, but no states are
reachable from S3.

To program this we simply need to build the AST for the state machine, and
then call the reachable attributes to print out the appropriate information. We
do not need to do anything to attribute the AST—this is handled implicitly
and automatically. To program the traversal of the AST in order to call the
reachable attributes, it would be useful to add some ordinary Java methods to
the AST classes. This can be done as a separate module using a JastAdd aspect
as shown in Fig. 8.

The aspect uses inter-type declarations to add methods to existing classes. For
example, the method void StateMachine.printReachable() ... means that
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aspect PrintReachable {

public void StateMachine.printReachable() {

for (Declaration d : getDeclarations()) d.printReachable();

}

public void Declaration.printReachable() { }

public void State.printReachable() {

System.out.println(getLabel() + " can reach {" +

listOfReachableStateLabels() + "}");

}

public String State.listOfReachableStateLabels() {

boolean insideList = false;

StringBuffer result = new StringBuffer();

for (State s : reachable()) {

if (insideList)

result.append(", ");

else

insideList = true;

result.append(s.getLabel());

}

return result.toString();

}

}

Fig. 8. An aspect defining methods for printing the reachable information for each
state

the method void printReachable() ... is added to the class StateMachine.1

We can now write the main program that constructs the AST and prints the
reachable information, as shown in Fig. 9. For illustration, we have used the
construction API directly here to manually construct the AST for a particular
test program. For real use, a parser should be integrated. This is straightforward:
build the AST in the semantic actions of the parsing grammar, using the same
JastAdd construction API. Any Java-based parser generator can be used, pro-
vided it allows you to place arbitrary Java code in its semantic actions. In earlier
projects we have used, for example, the LR-based parser generators CUP and
beaver, and the LL-based parser generator JavaCC. For parser generators that
automatically provide their own AST representation, a straightforward solution
is to write a visitor that traverses the parser-generator-specific AST and builds
the corresponding JastAdd AST.

1 This syntax for inter-type declarations is borrowed from AspectJ [KHH+01]. Note,
however, that JastAdd aspects support only static aspect-orientation in the form of
these inter-type declarations. Dynamic aspect-orientation like pointcuts and advice
are not supported.
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public class MainProgram {

public static void main(String[] args) {

// Construct the AST

StateMachine m = new StateMachine();

m.addDeclaration(new State("S1"));

m.addDeclaration(new State("S2"));

m.addDeclaration(new State("S3"));

m.addDeclaration(new Transition("a", "S1", "S2"));

m.addDeclaration(new Transition("b", "S2", "S1"));

m.addDeclaration(new Transition("a", "S2", "S3"));

// Print reachable information for all states

m.printReachable();

}

}

Fig. 9. A main program that builds an AST and then accesses attributes

Exercise 2. Given the API in Fig. 7, write an aspect that traverses a state ma-
chine and prints out information about each state, stating if it is on a cycle or
not. Hint: You can use the call s.contains(o) to find out if the set s contains
a reference to the object o. What is your output for the state machine in Fig.
3? What does your main program look like?

3 Basic Attribution Mechanisms

We will now look at the two basic mechanisms for defining properties of AST
nodes: synthesized and inherited attributes, which were introduced by Knuth in
1968 [Knu68]. Loosely speaking, synthesized attributes propagate information
upwards in the AST, whereas inherited attributes propagate information down-
wards. The term inherited is used here for historical reasons, and its meaning is
different from and unrelated to that within object-orientation.

3.1 Synthesized and Inherited Attributes

The value of an attribute a is defined by a directed equation a = e(b1, ..., bn),
where the left-hand side is an attribute and the right-hand side is an expression
e over zero or more attributes bk in the AST. In JastAdd, the attributes and
equations are declared in AST classes, so we can think of each AST node as
having a set of declared attributes, and a set of equations. Attributes are de-
clared as either synthesized or inherited. A synthesized attribute is defined by
an equation in the node itself, whereas an inherited attribute is defined by an
equation in an ancestor node.

Most attributes we introduce will be synthesized. In the equation defining the
attribute, we will use information in the node itself, say E, or by accessing its
children, say, F and G. However, once in a while, we will find that the information
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A

F

t

G

u

E

s i

eq t=3 eq u=5

eq s=F.t+G.u+i

eq D.i=C.v

C

v i

eq B.i=7

eq v=i+11 D

B

Fig. 10. The attributes C.v, E.s, F.t, and G.u are synthesized and have defining equa-
tions in the node they belong to. The attributes C.i and E.i are inherited (indicated
by a downward-pointing black triangle), and are defined by equations in A and B,
respectively. For E.i, the equation in B shadows the one in A, see the discussion below.

we need is located in the context of the E node, i.e., in its parent, or further up in
the AST. In these cases, we will introduce an inherited attribute in E, capturing
this information. It is then the responsibility of all nodes that could have an E
child, to provide an equation for that inherited attribute.

In JastAdd, a shorthand is used so that the equation defining an inherited
attribute, say E.i, does not have to be located in the immediate parent of E,
but can be in any ancestor of E, on the way from the parent up to the root. If
several of these nodes have an equation for i, the closest one to E will apply,
shadowing equations further up in the AST. See Fig. 10. Thus, an equation
child.i = expression actually defines the inherited i attribute for all nodes in
the child subtree that declare the i attribute. This shorthand makes it possible to
avoid cluttering the grammar with so called copy rules, i.e., equations that merely
copy a value from a node to its children. Most attribute grammar systems have
some kind of shorthand to avoid such copy rules. There are additional shorthands
for this in JastAdd, for example allowing a single equation to be used to define
an inherited attribute of all its children subtrees.

Exercise 3. What will be the values of the attributes in Fig. 10?

Exercise 4. An equation in node n for an inherited attribute i applies to the
subtree of one of n’s children, say c. All the nodes in this subtree do not need
to actually have an i attribute, so the equation applies only to those nodes that
actually do. Which nodes in Fig. 10 are within the scope of an equation for i,
but do not have an i attribute?
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Exercise 5. In a correctly attributed AST, the attributes will have values so that
all equations are fulfilled. How can the correct attribute values be computed?
What different algorithms can you think of? (This is a difficult exercise, but
worth thinking about.)

3.2 Reference Attributes

In JastAdd, synthesized and inherited attributes are generalized in several ways,
as compared to the classical formulation by Knuth. The most important gen-
eralization is that an attribute is allowed to be a reference to an AST node.
In this way, attributes can connect different AST nodes to each other, forming
a graph. Furthermore it is allowed to use reference attributes inside equations,
and to access the attributes of their referenced objects. This allows non-local
dependencies : an attribute in one node can depend directly on attribute values
in distant nodes in the AST. The dependencies do not have to follow the tree
structure like in a classical AG. For example, if each use of an identifier has
a reference attribute that points directly to the appropriate declaration node,
information about the type can be propagated directly from the declaration to
the use node.

A

G

t

H

u

F

eq t=3 eq u=5

eq s=this 
eq m=H.u+k.v

eq D.k=C.r 
eq C.i=D.t

C eq t=F.seq r=E.r D

B

eq r=this 
eq v=i.G.t E

 r t

vr i ms k

Fig. 11. Reference attributes are indicated with a small dot beside the name. An arrow
from a dot to a node illustrates the value of the reference attribute: E.r refers to E,
due to the equation r=this in E.

Reference attributes thus allow an AST to be extended to a graph in a declar-
ative way. Also cyclic graphs can be defined, as in the example in Figure 11 (see
also exercise 6). The example shows several possibilities for equations to access
nodes and attributes, e.g.,
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– this, meaning a reference to the node itself
– k.v, accessing the v attribute of the node referred to by k
– i.G.t, accessing the t attribute of the G child of the node referred to by i

Exercise 6. Draw the remaining reference attribute values in Figure 11. In what
way is the graph cyclic? What are the values of the ordinary (non-reference)
attributes? Give an example of non-local dependencies.

3.3 Parameterized Attributes

A second generalization in JastAdd is that attributes may have parameters.
A parameterized attribute will have an unbounded number of values, one for
each possible combination of parameter values. For example, we may define
an attribute lookup(String) whose values are references to declarations, typi-
cally different for different parameter values. Conceptually, there is one value of
lookup for each possible String value. In practice, only a few of these lookup
values will actually be computed, because attribute evaluation is performed on
demand (see Section 3.8).

By accessing a parameterized attribute via a reference attribute, complex
computations can easily be delegated from one node to another. This is useful
in, e.g., name analysis, where lookup can be delegated from a method to its
enclosing class, and further on to superclasses, following the scope rules of the
language.

3.4 Thinking Declaratively

When writing an attribute grammar, you should try to think declaratively, rather
than to think about in which order things need to be computed. Think first
what properties you would like the nodes to have to solve a particular problem.
In the case of type checking, it would be useful if each expression node had a
type attribute. The next step is to write equations defining these attributes. In
doing so, you will need to solve subproblems that call for the addition of more
attributes, and so on.

For example, to define the type attribute of an identifier expression, it would
be useful to have an attribute decl that refers to the appropriate declaration
node. You could then simply define the identifier’s type as equal to the type
of its declaration. The next problem is now to define the decl attribute. This
problem would be easy to solve if all identifiers had a parameterized attribute
lookup(String), which returns a reference to the appropriate declaration node
when supplied with the name of the identifier. The next problem is now in
defining lookup(String), and so on.

In adding a new attribute, you need to decide if it should be synthesized or
inherited, i.e., if the node itself should define the attribute, or if the definition
is delegated to an ancestor. If all the information needed is available inside the
subtree rooted by the node, the attribute should be synthesized. If all the in-
formation is instead available outside this subtree, make the attribute inherited.
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Finally, if both information inside and outside are needed, make the attribute
synthesized, and introduce one or more inherited attributes to capture the in-
formation needed from outside.

As an example, consider the type attribute for expressions. Since the type will
depend on what kind of expression it is, e.g., an identifier or an add node, the
attribute should be synthesized. Similarly, the decl attribute should be synthe-
sized since it depends on the identifier’s name. The lookup(String) attribute,
on the other hand, should be inherited since there is no information in the iden-
tifier node that is relevant for the definition of this attribute. The definition is
in this case delegated to an ancestor node.

3.5 Integration with Java

The JastAdd specification language builds on top of Java. In using attributes,
with or without parameters, we can view them as methods of AST nodes. At-
tributes are similar to abstract methods, and equations are similar to method
implementations. In fact, when accessing attributes, we will use Java method
call syntax, e.g., a(), and when we write an equation, the right-hand side is
written either as a Java expression or as a Java method body.

Although ordinary Java code is used for the right-hand side of an equation,
an important requirement is that it must not introduce any externally visible
side effects such as changing fields of AST nodes or changing global data. I.e., its
effect should be equivalent to the evaluation of a side-effect-free expression. The
reason for this restriction is that equations represent definitions of values, and
not effects of execution. As soon as an AST has been created, all its attributes
automatically contain the correct values, according to their defining equations.
The underlying attribute evaluator that accomplishes this will run the equation
code, but the user does not have any explicit control over in what order the
equations are run, or how many times they are run. For efficiency, the underlying
machinery may memoize the values, i.e., run an equation just once, and store
the value for subsequent accesses. And if a particular attribute is not accessed,
its equation might not be run at all. Therefore, introducing externally visible
side effects within the equations will not have a well-defined behavior, and may
lead to very subtle bugs. The current JastAdd version (R20100416) does not
check for side-effects in equations, but leaves this responsibility to the user. In
principle, a number of static checks for this could be added, but this is an area
of future work.

3.6 Example: Name Analysis for State Labels

In section 2 we discussed an attribute target for Transition objects, that
should point to the appropriate target State object. This can be seen as a name
analysis problem: We can view the states as declarations and the transitions as
uses of those declarations. In addition to the target attribute we will define
an analogous source attribute which points to the appropriate source State
object. We start by declaring target and source as synthesized attributes of
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Transition. This definition would be easy if we had a parameterized attribute
State lookup(String label) that would somehow find the appropriate State
object for a certain label. Since we don’t have enough information in Transition
to define lookup, we make it an inherited attribute. In fact, we will declare
lookup as an attribute of the superclass Declaration, since it might be useful
also to the State subclass, as we will see in exercise 8. By looking at the ab-
stract grammar, we see that the StateMachine node can have children of type
Declaration, so it is the responsibility of StateMachine to define lookup. (In
this case, StateMachine will be the root of the AST, so there are no further
ancestors to which the definition can be delegated.)

In StateMachine, we can define lookup simply by traversing the declara-
tions, locating the appropriate state. To do this we will introduce a synthesized
attribute State localLookup(String label) for Declarations. Fig. 12 shows
the resulting grammar. We use a JastAdd aspect to introduce the attributes and
equations using inter-type declarations.

aspect NameAnalysis {

syn State Transition.source() = lookup(getSourceLabel()); // R1

syn State Transition.target() = lookup(getTargetLabel()); // R2

inh State Declaration.lookup(String label); // R3

eq StateMachine.getDeclaration(int i).lookup(String label) { // R4

for (Declaration d : getDeclarationList()) {

State match = d.localLookup(label);

if (match != null) return match;

}

return null;

}

syn State Declaration.localLookup(String label) = null; // R5

eq State.localLookup(String label) = // R6

(label.equals(getLabel())) ? this : null;

}

Fig. 12. An aspect binding each Transition to its source and target States

There are a few things to note about the notation used:

syn, inh, eq. The keywords syn and inh indicate declarations of synthesized
and inherited attributes. The keyword eq indicates an equation defining the
value of an attribute.

in-line equations. Rules R4 and R6 define equations using the eq keyword.
But equations can also be given in-line as part of the declaration of a syn-
thesized attribute. This is the case in rules R1, R2, and R5.

equation syntax. Equations may be written either using value syntax as in
R1, R2, R5, and R6:
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attr = expr,
or using method syntax as in R4:

attr { ... return expr;}
In both cases, full Java can be used to define the attribute value. However,
as mentioned in Section 3.5, there must be no external side-effects resulting
from the execution of that Java code. Even if R4 uses the method body
syntax with a loop and an assignment, it is easy to see that there are no
external side-effects: only the local variables d and match are modified.

equations for inherited attributes. R4 is an example of an equation defin-
ing an inherited attribute. The left-hand side of such an equation has the
general form

A.getC().attr()

meaning that it is an equation in A which defines the attr attribute in the
subtree rooted at the child C of the A node. If C is a list, the general form
includes an argument int i:

A.getC(int i).attr()

meaning that the equation applies to the ith child of the list. The right-
hand side of the equation is within the scope of A, allowing the API of
A to be accessed directly. For example, in R4, the AST traversal method
getDeclarationList() is accessed. The argument i is not used in this
equation, since all the Declaration children should have the same value
for lookup.

default and overriding equations. Default equations can be supplied in su-
perclasses and overridden in subclasses. R5 is an example of a default equa-
tion, applying to all Declaration nodes, unless overridden in a subclass. R6
is an example of overriding this equation for the State subclass.

Exercise 7. Consider the following state machine:

state S1;
trans a: S1 -> S2;
state S2;

Draw a picture similar to Fig. 10, but for this state machine, i.e., indicating the
location of all attributes and equations, according to the grammar in Fig. 12.
Draw also the reference values of the source and target attributes. Check that
these values agree with the equations.

Exercise 8. In a well-formed state machine AST, all State objects should have
unique labels. Define a boolean attribute alreadyDeclared for State objects,
which is true if there is a preceding State object of the same name.

Exercise 9. If there are two states with the same name, the first one will have
alreadyDeclared = false, whereas the second one will have alreadyDeclared
= true. Define another boolean attribute multiplyDeclared which will be true
for both state objects, but false for uniquely named state objects.
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3.7 More Advanced Name Analysis

The name analysis for the state machine language is extremely simple, since
there is only one global name space for state labels. However, it illustrates the
typical solution for name analysis in JastAdd: using inherited lookup attributes,
and delegation to other attributes, like localLookup. This solution scales up to
full programming languages. For example, to deal with block-structured scopes,
the lookup attribute of a block can be defined to first look among the local dec-
larations, and, if not found there, to delegate to the context, using the inherited
lookup attribute of the block node itself. Similarly, object-oriented inheritance
can be handled by delegating to a lookup attribute in the superclass. This general
technique, using lookup attributes and delegation, is used in the implementation
of the JastAddJ Java compiler. See [EH06] for details.

3.8 Attribute Evaluation and Caching

As mentioned earlier, the JastAdd user does not have to worry about in which
order attributes are given values. The evaluation is carried out automatically.
Given a well-defined attribute grammar, once the AST is built, all equations will
hold, i.e., each attribute will have the value given by the right-hand side of its
defining equation. From a performance or debugging perspective, it is, however,
useful to know how the evaluation is carried out.

The evaluation algorithm is a very simple dynamic recursive algorithm, first
suggested for Knuth-style AGs [Jou84], but which works also in the presence
of reference attributes. The basic idea is that equation right-hand sides are im-
plemented as recursive functions, and when an attribute is called, its defining
equation is run. The function call stack takes care of evaluating the attributes
in the right order.

The use of object-orientation, as in JastAdd, makes the implementation of
the algorithm especially simple, representing both attributes and equations as
methods: For synthesized attributes, ordinary object-oriented dispatch takes care
of selecting the appropriate equation method. For inherited attributes, there is
some additional administration for looking up the appropriate equation method
in the parent, or further up in the AST.

Two additional issues are taken care of during evaluation. First, attribute
values can be cached for efficiency. If the attribute is cached, its value is stored
the first time it is accessed. Subsequent accesses will return the value directly,
rather than calling the equation method. In JastAdd, attributes can be explicitly
declared to be cached by adding the modifier lazy to their declaration. It is
also possible to cache all attributes by using an option to the JastAdd system.
Attributes that involve heavy computations and are accessed more than once
(with the same arguments, if parameterized) are the best candidates for caching.
For the example in Fig. 12 we could define source and target as cached if we
expect them to be used more than once by an application:
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...
syn lazy State Transition.source() = ...
syn lazy State Transition.target() = ...
...

The second issue is dealing with circularities. In a well-defined attribute gram-
mar, ordinary attributes must not depend on themselves, directly or indirectly.
If they do, the evaluation would end up in an endless recursion. Therefore, the
evaluator keeps track of attributes under evaluation, and raises an exception at
runtime if a circularity is found. Due to the use of reference attributes, there is
no general algorithm for finding circularities by analyzing the attribute grammar
statically [Boy05].

4 Composite Attributes

It is often useful to work with composite attribute values like sets, lists, maps,
etc. In JastAdd, these composed values are often sets of node references. An
example is the transitions attribute of State, discussed in Section 2. It is
possible to define composite attributes using normal synthesized and inherited
attributes. However, often it is simpler to use collection attributes. Collection
attributes allow the definition of a composite attribute to be spread out in several
different places in an AST, each contributing to the complete composite value.
Collection attributes can be used also for scalar values like integers and booleans,
see Exercise 13, but using them for composite values, especially sets, is more
common.

4.1 Representing Composite Attributes by Immutable Objects

We will use objects to represent composite attribute values like sets. When ac-
cessing these attributes, great care must be taken to treat them as immutable
objects, i.e., to only use their non-mutating operations. However, during the
construction of the value, it is fine to use mutating operations. For example, an
equation can construct a set value by successively adding elements to a freshly
created set object. Figure 13 shows a simplified2 part of the API of the Java
class HashSet.

4.2 A Collection Attribute: transitions

A collection attribute [Boy96, MEH09] has a composite value that is defined as
a combination of contributions. The contributions can be located anywhere in
the AST. If we would use ordinary equations, we would need to define attributes
that in effect traverse the AST to find the contributions. With collection at-
tributes, the responsibility is turned around: each contributing node declares its
contribution to the appropriate collection attribute.
2 The actual API for HashSet has more general types for some parameters and returns

booleans instead of void for some operations, and has many additional operations.
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class HashSet<E> implements Set{

public HashSet(); // Constructor, returns a new empty set.

// Mutating operations

public void add(E e); // Adds the element e to this object.

public void addAll(Set<E> s); // Adds all elements in s to this object.

// Non-mutating operations

public boolean contains(T e); // Returns true if this set contains e.

public boolean equals(Set<E> s); // Returns true if this set has the

// same elements as s.

}

Fig. 13. Simplified API for the Java class HashSet

coll Set<Transition> State.transitions() // R1

[new HashSet<Transition>()] with add;

Transition contributes this // R2

when source() != null

to State.transitions()

for source();

Fig. 14. Defining transitions as a collection attribute

Fig. 14 shows how to define the transitions attribute as a collection.
Rule R1 declares that State objects have a collection attribute transitions

of type Set<Transition>. Its initial value (enclosed by square brackets) is new
HashSet<Transition>(), and contributions will be added with the method add.

Rule R2 declares that Transition objects contribute themselves (this) to
the transitions collection attribute of the State object source(), but only
when source() is not equal to null.

We can note that the definition of transitions involves only the two node
classes State and Transition. If we had instead used ordinary synthesized and
inherited attributes to define transitions, we would have had to propagate
information through StateMachine, using additional attributes. The collection
attribute solution thus leads to a simpler solution, as well as less coupling be-
tween syntax node classes.

Exercise 10. Define an attribute altTransitions that is equivalent to transi-
tions, but that uses ordinary synthesized and inherited attributes instead of
collection attributes. Compare the definitions.

Via the transitions attribute, we can easily find the successor states of a
given state. To obtain direct access to this information, we define an attribute
successors. Figure 15 shows the definition of successors as an ordinary
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syn Set<State> State.successors() {

Set<State> result = new HashSet<State>();

for (Transition t : transitions()) {

if (t.target() != null) result.add(t.target());

}

return result;

}

Fig. 15. Defining successors, by using transitions.

synthesized attribute, making use of transitions. An alternative definition
would have been to define successors independently of transitions, using a
collection attribute.

Exercise 11. Define an attributealtSuccessors that is equivalent to successors,
but that uses a collection attribute. Compare the definitions.

4.3 Collection Attribute Syntax

Figure 16 shows the syntax used for declaring collection attributes and contribu-
tions. For the collection-attribute-declaration, the initial-object should be a Java
expression that creates a fresh object of type type. The contributing-method
should be a one-argument method that mutates the initial-object. It must be
commutative, i.e., the order of calls should be irrelevant and result in the same
final value of the collection attribute. Optionally, a rootclass can be supplied,
limiting the contributions to occur in the AST subtree rooted at the closest
rootclass object above or at the nodeclass object in the AST. If no rootclass is
supplied, contributions can be located anywhere in the AST.

In the contribution-declaration, the expr should be a Java expression that has
the type of the argument of the contributing-method, as declared in the corre-
sponding collection declaration (the one for collection-nodeclass.attr()). In the
example, there is an add method in Set<Transition> which has the argument
type Transition, so this condition is fulfilled. There can be one or more such
contributions, separated by commas, and optionally they may be conditional,
as specified in a when clause. The expression ref-expr should be a reference to
a collection-nodeclass object. Optionally, the contribution can be added to a
whole set of collection attributes by using the each keyword, in which case ref-
expr should be a set of collection-nodeclass objects, or more precisely, it should
be an object implementing Java’s interface Iterable, and contain objects of
type collection-nodeclass.

Exercise 12. Given the successors attribute, define a predecessors attribute
for State, using a collection attribute. Hint: use the for each construct in the
contribution.

Exercise 13. Collection attributes can be used not only for sets, but also for
other composite types, like maps and bags, and also for scalar types like integers.
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collection-attribute-declaration ::=
′coll′ type nodeclass ′.′ attr ′()′

′[′ initial-object ′]′

′with′ contributing-method
[ ′root′ rootclass ]

contribution-declaration ::=
contributing-nodeclass ′contributes′

( expr [ ′when′ cond ] , ′,′ )+
′to′ collection-nodeclass ′.′ attr ′()′

′for′ [ ′each′ ] ref-expr

Fig. 16. Syntax for collection attributes and contributions

Primitive types, like int and boolean in Java, need, however, to be wrapped in
objects. Define a collection attribute numberOfTransitions that computes the
number of transitions in a state machine.

Exercise 14. Define a collection attribute errors for StateMachine, to which
different nodes in the AST can contribute strings describing static-semantic er-
rors. Transitions referring to missing source and target states are obvious errors.
What other kinds of errors are there? Write a collection declaration and suitable
contributions to define the value of errors.

For more examples of collection attributes, see the metrics example, available at
jastadd.org. This example implements Chidamber and Kemerer’s metrics for
object-oriented programs [CK94]. The implementation is done as an extension
to the JastAddJ Java compiler, and makes heavy use of collection attributes for
computing the different metrics. Collection attributes are also used in the flow
analysis example at jastadd.org, as described in [NNEHM09]. Here, predeces-
sors in control-flow graphs, and def and use sets in dataflow, are defined using
collection attributes.

4.4 Evaluation of Collection Attributes

When accessing a collection attribute, JastAdd automatically computes its value,
based on the existing contribution declarations. In general, this involves a com-
plete traversal of the AST to find the contributions, unless the scope of the
collection is restricted, using a root clause in the collection declaration. To im-
prove performance, several collection attributes can be computed in the same
traversal, either completely or partially. Given that a particular instance ci of a
collection attribute c is accessed, the default behavior of JastAdd is to partially
compute all instances of c, so that further traversal of the AST is unneces-
sary when additional instances of c are accessed. The algorithm used is called
two-phase joint evaluation [MEH09]. It is sometimes possible to achieve further
performance improvements by using other algorithm variants. For example, the
evaluation of several different collection attributes can be grouped, provided that
they do not depend on each other. See [MEH09] for more details.

jastadd.org
jastadd.org
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5 Circular Attributes

Sometimes, the definition of a property is circular, i.e., depending ultimately on
itself: When we write down a defining equation for the property, we find that
we need the same property to appear at the right-hand side of the equation, or
in equations for attributes used by the first equation. In this case, the equations
cannot be solved by simple substitution, as for normal synthesized and inherited
attributes, but a fixed-point iteration is needed. The variables of the equations
are then initialized to some value, and assigned new values in an iterative process
until a solution to the equation system is found, i.e., a fixed point.

The reachable attribute of State is an example of such a circularly defined
property. In this section we will first look at how this property can be formulated
and solved mathematically, and then how it can be programmed using JastAdd.

5.1 Circularly Defined Properties

To define reachability for states mathematically, suppose first that the state
machine contains n states, s1..sn. Let succk denote the set of states that can be
reached from sk through one transition. The set of reachable states for sk, i.e.,
the set of states that can be reached via any number of transitions from sk, can
then be expressed as follows:

reachablek = succk ∪
⋃

sj∈succk

reachablej

We will have one such equation for each state sk, 1≤k≤n. If there is a cycle in
the state machine, the equation system will be cyclic, i.e., there will be some
reachable set that (transitively) depends on itself. We can compute a solution to
the equation system using a least fixed-point iteration. I.e., we use one reachable
variable for each state, to which we initially assign the empty set. Then we
interpret the equations as assignments, and iterate these assignments until no
reachable variable changes value. We have then found a solution to the equation
system. The iteration is guaranteed to terminate if we can place all possible
values in a lattice of finite height, and if all the assignments are monotonic, i.e.,
if they never decrease the value of any reachable variable.

In this case, the values are sets of states, and they can be arranged in a lattice
with the empty set at the bottom and the set of all states in the state machine at
the top. Fig. 17 shows the lattice for the state machine of Fig. 3. The lattice will
be of finite height since the number of states in any given state machine is finite.
The assignments will be monotonic since the union operator can only lead to
increasing values in the lattice. Because we start at the bottom (the empty set),
we are furthermore guaranteed to find the least fixed point, i.e., the variables
will stay at the lowest possible points in the lattice. If we have a cycle in the
state machine, there may be additional uninteresting fixed points, for example
by assigning the full set of states to reachable for all states on the cycle.
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{S1, S2, S3} 

Ø

{S1, S2} {S1, S3} {S2, S3} 

{S1} {S2} {S3} 

Fig. 17. The sets of states for the state machine of Fig. 3 are arranged in a lattice

Exercise 15. For the state machine of Fig. 3, write down all the equations for
reachable. Which are the variables of the equation system?

Exercise 16. What is the (least) solution to this equation system? Are there any
more (uninteresting) solutions?

Exercise 17. Construct a state machine for which there is more than one solution
to the equation system. What would be the least solution? What would be
another (uninteresting) solution?

5.2 Circular Attributes

In JastAdd, we can program circular properties like reachable by explicitly
declaring the attribute as circular. and stating what initial value to use. The
attribute will then automatically be evaluated using fixed-point iteration. Fig. 18
shows the definition of the attribute reachable for states.

syn Set<State> State.reachable() circular [new HashSet<State>()]; // R1

eq State.reachable() { // R2

HashSet<State> result = new HashSet<State>();

for (State s : successors()) {

result.add(s);

result.addAll(s.reachable());

}

return result;

}

Fig. 18. Defining reachable as a circular attribute

Things to note:

syntax. Synthesized, inherited and collection attributes can be declared as cir-
cular by adding the keyword circular after the attribute name. For syn-
thesized and inherited attributes, an initial value also needs to be supplied,
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surrounded by square brackets as shown in the example above. For collection
attributes, the initial object is used as the initial value.

caching. Circular attributes are automatically cached, so adding the keyword
lazy has no effect.

equals method. The types used for circular attributes must have a Java equals
method that tests for equality between two attribute values.

value semantics. As usual, it is necessary to treat any accessed attributes as
values, and to not change their contents. In the example, we set result to
a freshly created object, and it is therefore fine to mutate result inside
the equation. Note that if we instead had initialized result to the set of
successors, we would have had to be careful to set result to a fresh clone
of the successors object.3

termination. For attributes declared as circular, it would be nice to have static
checks for the requirements of equation monotonicity and finite-height lat-
tices. Currently, JastAdd does not support any such checks, but leaves this
as a responsibility of the user. This means that if these requirements are
not met, it may result in erroneous evaluation or non-termination during
attribute evaluation. Boyland’s APS system provides some support in this
direction by requiring circular attributes to have predefined lattice types, like
union and intersection lattices for sets, and and and or lattices for booleans
[Boy96]. Similar support for JastAdd is part of future work.

Attributes that are not declared as circular, but which nevertheless happen
to be defined circularly, are considered erroneous. To statically check for the
existence of such attributes is, in general, an undecidable problem in the
presence of reference attributes [Boy05]. In JastAdd, such circularities are
detected dynamically, raising an exception at evaluation time.

Exercise 18. Define an attribute altReachable that is equivalent to reachable,
but that uses a circular collection attribute. Hint: make use of the predecessors
attribute defined in exercise 12.

For more examples of JastAdd’s circular attributes, you may look at the flow
analysis example at jastadd.org where intraprocedural control flow and
dataflow is defined as an extension to the JastAddJ Java compiler, as described
in [NNEHM09]. Here, the in set is defined as a circular attribute, and the out
set as a circular collection attribute. In [MH07], there are examples of defining
the properties nullable, first, and follow for nonterminals in context-free gram-
mars, using JastAdd circular attributes. The nullable property is defined using
a boolean circular attribute, and the two others as set-valued circular attributes.
A variant of follow is defined in [MEH09] using circular collection attributes.

3 In order to avoid having to explicitly create fresh objects each time a new set value
is computed, we could define an alternative Java class for sets with a larger nonmu-
tating API, e.g., including a union function that automatically returns a new object
if necessary. Such an implementation could make use of persistent data structures
[DSST86], to efficiently represent different values.

jastadd.org
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6 Conclusions and Outlook

In this tutorial we have covered central attribution mechanisms in JastAdd, in-
cluding synthesized, inherited, reference, parameterized, collection, and circular
attributes. With these mechanisms you can address many advanced problems in
compilers and other language tools. There are some additional mechanisms in
JastAdd that are planned to be covered in a sequel of this tutorial:

Rewrites [EH04], allow sub ASTs to be replaced conditionally, depending on
attribute values. This is useful when the AST constructed by the parser is
not specific enough, or in order to normalize language constructs to make
further compilation easier.

Nonterminal attributes [VSK89] allow the AST to be extended dynamically,
defining new AST nodes using equations. This is useful for macro expansion
and transformation problems. In the JastAddJ Java compiler, nonterminal
attributes are used for adding nodes representing instances of generic types
[EH07b].

Inter-AST references [ÅEH10] allow nodes in a new AST to be connected to
nodes in an existing AST. This is useful when creating transformed ASTs:
nodes in the transformed AST can have references back to suitable locations
in the source AST, giving access to information there.

Interfaces. Attributes and equations can be defined in interfaces, rather than
in AST classes, allowing reuse of language independent computations, and
supporting connection to language independent tools.

Refine. Equations in existing aspects can be refined in new aspects. This is
similar to object-oriented overriding, but without having to declare new
subclasses. Refines are useful for adjusting the behavior of an aspect when
reusing it for a new language or tool.

The declarative construction of an object-oriented model is central when pro-
gramming in JastAdd. The basic structure is always the abstract syntax tree
(AST), but through the reference attributes, graphs can be superimposed. In
this tutorial we have seen this through the addition of the source and target
edges, and the transitions, successors, and reachable sets. Similar tech-
niques are used to implement compilers for programming languages like Java.
Here, each use of an identifier can be linked to its declaration, each class decla-
ration to its superclass declaration, and edges can be added to build control-flow
and dataflow graphs. Once these graphs have been defined, further attribute def-
initions are often made in terms of those graph structures rather than in terms
of the tree structure of the AST. An example was defining transitions in terms
of source.

An important design advice is to focus on thinking declaratively when pro-
gramming in JastAdd. Think first about what attributes you would like the AST
to have. Then, in defining these attributes, think of what other attributes that
would be useful, in order to make your equations simple. This will lead to the
addition of new attributes. In this tutorial, we have mostly worked in the other
direction, in order to present simple mechanisms before more complex ones. For
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a real situation, where you already know about the JastAdd mechanisms, you
might have started out with the reachable attribute instead. In order to de-
fine it, it would have been useful to have the successors attribute. To define
the successors attribute, you find that you need the transitions and target
attributes, and so on.

The use of Java as the host language for writing equations is very power-
ful, allowing existing Java classes to be used for data types, and for connecting
the attributed AST to imperatively implemented tools. At the same time, it is
extremely important to understand the declarative semantics of the attribute
grammars, and to watch out to not introduce any external side-effects in the
equations. In particular, when dealing with composite values that are imple-
mented using objects, it is very important to distinguish between their mutating
and non-mutating operations, so that accessed attributes are not mutated by
mistake.

As for normal object-oriented programming, naming is essential. Try to pick
good descriptive names of both your AST classes and your attributes, so that
the code you write is readable, and the APIs that the attributes produce will be
simple and natural to use. For each attribute that you implement, you can write
test cases that build up some example ASTs and test that the attributes get the
intended values in different situations, so that you are confident that you have
got your equations right.

JastAdd has been used for implementing both simple small languages and
advanced programming languages. The implementation of our extensible Java
compiler, JastAddJ, has been driving the development of JastAdd, and has mo-
tivated the introduction of many of the different mechanisms and made it possi-
ble to benchmark them on large programs [EH04, MH07, MEH09, NNEHM09].
Other advanced languages are being implemented as well, most notably an on-
going open-source implementation of the language Modelica which is used for
describing physical models using differential equations [Mod10, JMo09, ÅEH10].
For more information about JastAdd, see jastadd.org.

Acknowledgments. The JastAdd system was jointly developed with my for-
mer PhD students Torbjörn Ekman and Eva Magnusson. For this tutorial I am
particularly grateful to Torbjörn for joint work on constructing the state ma-
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A Solutions to Exercices

Exercise 1

State 
S1 

State 
S2 

State 
S3 

Transition
a:S1->S2 

Transition
b:S2->S1 

Transition
a:S2->S3 

Exercise 2

Here is an aspect defining a method printInfoAboutCycles for StateMachine:

aspect PrintInfoAboutCycles {
public void StateMachine.printInfoAboutCycles() {
for (Declaration d : getDeclarationList()) {
d.printInfoAboutCycles();

}
}

public void Declaration.printInfoAboutCycles() {}

public void State.printInfoAboutCycles() {
System.out.print("State "+getLabel()+" is ");
if (!reachable().contains(this)) {
System.out.print("not ");

}
System.out.println("on a cycle.");

}
}

The main program parses an inputfile, then calls the printInfoAboutCycles
method:

package exampleprogs;
import AST.*;
import java.io.*;

public class Compiler {
public static void main(String[] args) {
String filename = getFilename(args);
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// Construct the AST
StateMachine m = parse(filename);

// Print info about what states are on cycles
m.printInfoAboutCycles();

}

public static String getFilename(String[] args) { ... }

public static StateMachine parse(String filename) { ... }
}

Running the ”compiler” on the input program of Fig. 3, gives the following
output:

State S1 is on a cycle.
State S2 is on a cycle.
State S3 is not on a cycle.

Exercise 3

C.v = 18
C.i = 7
E.s = 26
E.i = 18
F.t = 3
G.u = 5

Exercise 4

B, D, F, and G.

Exercise 5

There are many possible algorithms for computing attribute values in an AST.
Here are some alternatives:

Dynamic, with explicit depedency graph. Add dependency edges between
all attributes in an AST according to the equations. For example, for an equa-
tion a = f(b, c), the two edges (b, a) and (c, a) are added. Then run all the
equations as assignments in topological order, starting with equations with
no incoming edges. This kind of algorithm is called a dynamic algorithm
because we use the dependencies of an actual AST, rather than only static
dependencies that we can derive from the grammar.

Static. Compute a conservative approximation of a dependency graph, based on
the attribute grammar alone, so that the graph holds for any possible AST.
Then compute a scheduling for in what order to evaluate the attributes based
on this graph. This kind of algorithm is called a static algorithm, since it
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only takes the grammar into account, and not the actual AST. It might be
more efficient than the dynamic algorithm since the actual dependencies in
an AST do not need to be analyzed. On the other hand, it will be less general
because of the approximation. There are many different algorithms that use
this general approach. They differ in how they do the approximation, and
thereby in how general they are.

Dynamic, with implicit dependency graph. Represent each attribute by
a function, corresponding to the right-hand side of its defining equation.
To evaluate an attribute, simply call its function. Recursive calls to other
attributes will automatically make sure the attributes are evaluated in topo-
logical order. This algorithm is also dynamic, but does not require building
an explicit dependency graph.

The JastAdd system uses this latter algorithm, see Section 3.8 for details. The
other two alternatives are not powerful enough to handle arbitrary reference
attributes.

Exercise 6

A

G

t

H

u

F

eq t=3 eq u=5

eq s=this 
eq m=H.u+k.v

eq D.k=C.r 
eq C.i=D.t

C eq t=F.seq r=E.r D

B

eq r=this 
eq v=i.G.t E

 r t

vr i ms k

E and F are on a cycle via their attributes i and k.
Values of non-reference attributes:

E.v = 3
F.m = 8
G.t = 3
H.u = 5

Examples of non-local dependencies: the value of E.v depends directly on the
value of G.t, and F.m depends directly on E.v.
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Exercise 7

R4

State 
S1 

StateMachine

State 
S2 

Transition
a:S1->S2 

source

target

lookup

localLookup localLookuplocalLookup

R1
R2
R5

R6R6

lookup lookup

Exercise 8

syn boolean State.alreadyDeclared() =
lookup(this.getLabel()) != this;

Exercise 9

A state is multiply declared if it either is declared already, or if it has a later
namesake. To find out if it has a later namesake, we define a new attribute
lookupForward that only traverses declarations after the state. Note that the
equation for this attribute makes use of the argument i to start traversing at
the appropriate position in the list.

syn boolean State.multiplyDeclared() =

alreadyDeclared() || hasLaterNamesake();

syn boolean State.hasLaterNamesake() =

lookupForward(getLabel()) != null;

inh State Declaration.lookupForward(String label);

eq StateMachine.getDeclaration(int i).lookupForward(String label) {

for (int k = i+1; k<getNumDeclaration(); k++) {

Declaration d = getDeclaration(k);

State match = d.localLookup(label);

if (match != null) return match;

}

return null;

}

Exercise 10

syn Set<Transition> State.altTransitions() = transitionsOf(this);

inh Set<Transition> State.transitionsOf(State s);
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eq StateMachine.getDeclaration(int i).transitionsOf(State s) {

HashSet<Transition> result = new HashSet<Transition>();

for (Declaration d : getDeclarationList()) {

Transition t = d.transitionOf(s);

if (t != null) result.add(t);

}

return result;

}

syn Transition Declaration.transitionOf(State s) = null;

eq Transition.transitionOf(State s) {

if (source() == s)

return this;

else

return null;

}

We see that the definition of altTransitions is more complex than that of
transitions: two help attributes are needed: the inherited transitionsOf
and the synthesized transitionOf. Furthermore, we see that the definition of
altTransitions is more coupled in that it relies on both the existence of the
StateMachine nodeclass, and on its child structure.

Exercise 11

coll Set<State> State.altSuccessors()
[new HashSet<State>()] with add;

Transition contributes target()
when target() != null && source() != null
to State.altSuccessors()
for source();

In this case, the definitions using ordinary attributes and collection attributes
have about the same complexity and coupling.

Exercise 12

coll Set<State> State.predecessors()
[new HashSet<State>()] with add;

State contributes this
to State.predecessors()
for each successors();

Exercise 13

To define the collection, we introduce a class Counter that works as a wrapper for
Java integers. To give Transitions access to their enclosing state machine node,
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in order to contribute the value 1 to the collection, we introduce an inherited
attribute theMachine. Finally, the synthesized attribute numberOfTransitions
simply accesses the value of the Counter.

syn int StateMachine.numberOfTransitions() =
numberOfTransitionsColl().value();

coll Counter StateMachine.numberOfTransitionsColl()
[new Counter()] with add;

Transition contributes 1
to StateMachine.numberOfTransitionsColl()
for theMachine();

inh StateMachine Declaration.theMachine();
eq StateMachine.getDeclaration(int i).theMachine() = this;

class Counter {
private int value;
public Counter() { value = 0; }
public void add(int value) { this.value += value; }
public int value() { return value; }

}

Exercise 14

Here we have simply used a set of strings to represent the error messages. In
addition to missing declarations of states, error messages are added for states
that are declared more than once.

coll Set<String> StateMachine.errors()

[new HashSet<String>()] with add;

State contributes getLabel()+" is already declared"

when alreadyDeclared()

to StateMachine.errors()

for theMachine();

Transition contributes "Missing declaration of "+getSourceLabel()

when source() == null

to StateMachine.errors()

for theMachine();

Transition contributes "Missing declaration of "+getTargetLabel()

when target() == null

to StateMachine.errors()

for theMachine();
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Exercise 15

reachable1 = {S2} ∪ reachable2

reachable2 = {S1, S3} ∪ reachable1 ∪ reachable2

reachable3 = Ø

Exercise 16

The least (and desired) solution is

reachable1 = {S1, S2, S3}
reachable2 = {S1, S2, S3}
reachable3 = Ø

There are no additional solutions since the attributes that are circular (reachable1

and reachable2) have the top value in the lattice (the set of all states).

Exercise 17

This state machine has more than one solution for reachable.

S1 S2 S3 

The equation system is:

reachable1 = {S2} ∪ reachable2

reachable2 = {S3} ∪ reachable3

reachable3 = {S2} ∪ reachable2

The least (and desired) solution is:

reachable1 = {S2, S3}
reachable2 = {S2, S3}
reachable3 = {S2, S3}

An additional (and uninteresting) solution also includes S1:

reachable1 = {S1, S2, S3}
reachable2 = {S1, S2, S3}
reachable3 = {S1, S2, S3}
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Exercise 18

coll Set<State> State.altReachable() circular
[new HashSet<State>()] with addAll;

State contributes union(asSet(this),altReachable())
to State.altReachable()
for each predecessors();

In the above solution we have made use of two auxiliary functions: asSet and
union. It would have been nice if these functions had already been part of the
Java Set interface, but since they are not, we define them as functions in ASTNode
as shown below, making them available to all AST nodes. (The class ASTNode is
a superclass of all node classes.) A nicer solution can be achieved by designing
new alternative Java classes and interfaces for sets.

Set<State> ASTNode.asSet(State o) {
HashSet<State> result = new HashSet<State>();
result.add(o);
return result;

}

Set<State> ASTNode.union(Set<State> s1, Set<State> s2) {
HashSet<State> result = new HashSet<State>();
for (State s: s1) result.add(s);
for (State s: s2) result.add(s);
return result;

}
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Abstract. In many domains such as telecom, aerospace and automo-
tive industries, engineers rely on Domain Specific Modeling Languages
(DSML) to solve the complex issues of engineering safety critical soft-
ware. Traditional Language Engineering starts with the grammar of a
language to produce a variety of tools for processing programs expressed
in this language. Recently however, many new languages tend to be first
defined through metamodels, i.e. models describing their abstract syn-
tax. Relying on well tooled standards such as E-MOF, this approach
makes it possible to readily benefit from a set of tools such as reflexive
editors, or XML serialization of models. This article aims at showing
how Model Driven Engineering can easily complement these off-the-shelf
tools to obtain a complete environment for such a language, including
interpreter, compiler, pretty-printer and customizable editors. We illus-
trate the conceptual simplicity and elegance of this approach using the
running example of the well known LOGO programming language, de-
veloped within the Kermeta environment.

1 Introduction

In many domains such as telecom, aerospace and automotive industries [21],
engineers rely on Domain Specific Modeling Languages (DSML) to solve the
complex issues of engineering safety critical software at the right level of ab-
straction. These DSMLs indeed define modeling constructs that are tailored to
the specific needs of a particular domain. When such a new DSML is needed, it is
now often first defined through meta-models, i.e. models describing its abstract
syntax [14] when traditional language engineering would have started with the
grammar of the language. Relying on well tooled standards such as E-MOF, the
meta-modeling approach makes it possible to readily benefit from a set of tools
such as reflexive editors, or XML serialization of models. More importantly, hav-
ing such a tool supported de facto standard for defining models and meta-models
paves the way towards a rich ecosystem of interoperable tools working seamlessly
with these models and meta-models.

Combining this Model Driven approach with a traditional grammar based one
has however produced mixed results in terms of the complexity of the overall
approach. Several groups around the world are thus investigating the idea of a
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new Language Engineering completely based on models [22], that we call Model
Driven Language Engineering (MDLE).

In this paper we present one of these approaches, based on the Kernel Meta-
Modeling environment Kermeta [16,7]. We start in Section 2 by giving a quick
overview of executable meta-modeling, and then focusing on Kermeta, seen both
as an aspect-oriented programming language as well as an integration platform
for heterogeneous meta-modeling. We then recall in Section 3 how to model the
abstract syntax of a language in E-MOF, allowing for a direct implementation of
its meta-model in the Eclipse Modeling Framework (EMF). We then show how
to weave both the static and dynamic semantics of the language into the meta-
model using Kermeta to get an interpreter for the language. Then we address
compilation, which is just a special case of model transformation to a platform
specific model [17,3]. We illustrate the conceptual simplicity and elegance of
this approach using the running example of the well known Logo programming
language, for which a complete programming environment is concretely outlined
in this article, from the Logo meta-model to simulation to code generation for
the Lego Mindstorm platform and execution of a Logo program by a Mindstorm
turtle.

2 Executable Meta-modeling

2.1 Introduction

Modeling is not just about expressing a solution at a higher abstraction level
than code. This limited view on modeling has been useful in the past (assembly
languages abstracting away from machine code, 3GL abstracting over assembly
languages, etc.) and it is still useful today to get e.g.; a holistic view on a large
C++ program. But modeling goes well beyond that.

In engineering, one wants to break down a complex system into as many
models as needed in order to address all the relevant concerns in such a way
that they become understandable enough. These models may be expressed with
a general purpose modeling language such as the UML [26], or with Domain
Specific Modeling Languages (DSML) when it is more appropriate. Each of these
models can be seen as the abstraction of an aspect of reality for handling a given
concern. The provision of effective means for handling such concerns makes it
possible to establish critical trade-offs early on in the software life cycle.

Models have been used for long as descriptive artifacts, which was already ex-
tremely useful. In many cases we want to go beyond that, i.e. we want to be able
to perform computations on models, for example to simulate some behavior [16],
or to generate code or tests out of them [19]. This requires that models are no
longer informal, and that the language used to describe them has a well defined
abstract syntax (called its meta-model) and semantics.

Relying on well tooled Eclipse standards such as E-MOF to describe these
meta-models, we can readily benefit from a set of tools such as reflexive editors,
or XML serialization of models, and also from a standard way of accessing models
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from Java. The rest of this section introduces Kermeta, a Kernel Meta-Modeling
language and environment, whose goal is to complement Eclipse off-the-shelf
tools to obtain a complete environment for such DSMLs, including interpreters,
compilers, pretty-printers and customizable editors.

2.2 Kermeta as a MOF Extension

Kermeta is a Model Driven Engineering platform for building rich development
environments around meta-models using an aspect-oriented paradigm [16,10].
Kermeta has been designed to easily extend meta-models with many different
concerns (such as static semantics, dynamic semantics, model transformations,
connection to concrete syntax, etc.) expressed in heterogeneous languages. A
meta-language such as the Meta Object Facility (MOF) standard [18] indeed
already supports an object-oriented definition of meta-models in terms of pack-
ages, classes, properties and operation signatures, as well as model-specific con-
structions such as containments and associations between classes. MOF does not
include however concepts for the definition of constraints or operational seman-
tics (operations in MOF do jot contain bodies). Kermeta can thus be seen as an
extension of MOF with an imperative action language for specifying constraints
and operation bodies at the meta-model level.

The action language of Kermeta is especially designed to process models. It is
imperative and includes classical control structures such as blocks, conditional
and loops. Since the MOF specifies object-oriented structures (classes, properties
and operations), Kermeta implements traditional object-oriented mechanisms for
multiple inheritance and behavior redefinition with a late binding semantics (to
avoid multiple inheritance conflicts a simple behaviors selection mechanism is
available in Kermeta). Like most modern object-oriented languages, Kermeta
is statically typed, with generics and also provides reflection and an exception
handling mechanism.

In addition to object-oriented structures, the MOF contains model-specific
constructions such as containment and associations. These elements require a
specific semantics of the action languages in order to maintain the integrity of
associations and containment relations. For example, in Kermeta, the assignment
of a property must handle the other end of the association if the property is part
of an association and the object containers if the property is a composition.

Kermeta expressions are very similar to Object Constraint Language (OCL)
expressions. In particular, Kermeta includes lexical closures similar to OCL itera-
tors on collections such as each, collect, select or detect. The standard framework
of Kermeta also includes all the operations defined in the OCL standard frame-
work. This alignment between Kermeta and OCL allows OCL constraints to be
directly imported and evaluated in Kermeta. Pre-conditions and post-conditions
can be defined for operations and invariants can be defined for classes. The
Kermeta virtual machine has a specific execution mode, which monitors these
contracts and reports any violation.
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2.3 Kermeta as an Aspect-Oriented Integration Platform

Since Kermeta is an extension of MOF, a MOF meta-model can conversely be
seen as a valid Kermeta program that just declares packages, classes and so on
but does nothing. Kermeta can then be used to breath life into this meta-model
by incrementally introducing aspects for handling concerns of static semantics,
dynamic semantics, or model transformations [17].

One of the key features of Kermeta is the static composition operator "re-
quire", which allows extending an existing meta-model with new elements such
as properties, operations, constraints or classes. This operator allows defining
these various aspects in separate units and integrating them automatically into
the meta-model. The composition is done statically and the composed model is
typed-checked to ensure the safe integration of all units. This mechanism makes
it easy to reuse existing meta-models or to split meta-models into reusable pieces.
It can be compared to the open class paradigm [4]. Consequently a meta-class
that identifies a domain concept can be extended without editing the meta-
model directly. Open classes in Kermeta are used to organize "cross-cutting"
concerns separately from the meta-model to which they belong, a key feature of
aspect-oriented programming [11]. With this mechanism, Kermeta can support
the addition of new meta-class, new subclasses, new methods, new properties,
new contracts to existing meta-model. The require mechanism also provides flex-
ibility. For example, several operational semantics could be defined in separate
units for a single meta-model and then alternatively composed depending on
particular needs. This is the case for instance in the UML meta-model when
several semantics variation points are defined.

Thank to this composition operator, Kermeta can remain a kernel platform
to safely integrate all the concerns around a meta-model. As detailed in the
previous paragraphs, meta-models can be expressed in MOF and constraints
in OCL. Kermeta also allows importing Java classes in order to use services
such as file input/output or network communications during a transformation
or a simulation. These functionalities are not available in the Kermeta standard
framework. Kermeta and its framework remain dedicated to model processing
but provide an easy integration with other languages. This is very useful for
instance to make models communicating with existing Java applications.

3 Building an Integrated Environement for the Logo
Language

3.1 Meta-modeling Logo

To illustrate the approach proposed in this paper, we use the example of the Logo
language. This example was chosen because Logo is a simple yet real (i.e. Turing-
complete) programming language, originally created for educational purposes.
Its most popular application is turtle graphics: the program is used to direct
a virtual turtle on a board and make it draw geometric figures when its pen
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1 # definition of the square procedure
2 TO square :size
3 REPEAT 4 [
4 FORWARD :size
5 RIGHT 90
6 ]
7 END
8
9 # clear screen

10 CLEAR
11
12 # draw a square
13 PENDOWN
14 square (50)
15 PENUP

Fig. 1. Logo square program

is down1. Figure 1 presents a sample Logo program which draws a square. In
this paper we propose to build a complete Logo environment using model-driven
engineering techniques.

The first task in the model driven construction of a language is the defini-
tion of its abstract syntax. The abstract syntax captures the concepts of the
language (these are primitive instructions, expressions, control structures, pro-
cedure definitions, etc.) and the relations among them (e.g. an expression is
either a constant or a binary expression, that itself contains two expressions). In
our approach the abstract syntax is defined using a meta-model.

Figure 2 presents the meta-model for the abstract syntax of the Logo language.
The Logo meta-model includes:

– Primitive statements (Forward, Back, Left, Right, PenUp and PenDown).
These statement allows moving and turning the Logo turtle and controlling
its pen.

– Arithmetic Expressions (Constant, BinaryExp and its sub-classes). In our
version of Logo, constants are integers and all operators only deal with in-
tegers.

– Procedures (ProcDeclaration, ProcCall, Parameter and ParameterCall) al-
low defining and calling functions with parameters (note that recursion is
supported in Logo).

– Control Structures (Block, If, Repeat and While). Classical sequence, condi-
tional and loops for an imperative language.

In practice the Logo meta-model can be defined within the Eclipse Modeling
Framework (EMF). EMF is a meta-modeling environment built on top of the

1 A complete history of the Logo language and many code samples can be found on
wikipedia (http://en.wikipedia.org/wiki/Logo_(programming_language))
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Fig. 2. Logo Abstract Syntax

Eclipse platform and based on the Essential-MOF standard. Within Eclipse
several graphical editors can be used to define such meta-models. Once the meta-
model is defined, the EMF automatically provides editors and serialization capa-
bilities for the meta-model. The editor allows creating instances of the classes of
the meta-model and saving these instances models in the XMI standard format.
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Fig. 3. Logo square program in the generated editor and serialized in XMI

As soon as the meta-model of Fig. 2 has been defined, it is possible to in-
stantiate it using the generated editor in order to write Logo programs. Figure 3
presents a screen-shot of the generated editor with the square program presented
previously. The program was defined in the tree editor and the right part of the
figure shows how the logo program was serialized.

3.2 Weaving Static Semantics

The Object Constraint Language. A meta-model can be seen as the def-
inition of the set of allowed configurations for a set of objects representing a
domain. All structures are represented as classes, relations and structural prop-
erties. In MDLE, a meta-model defines a set of valid programs. However, some
constraints (formulas to the logician, Boolean expressions to the programmer)
cannot directly be expressed using EMOF. For example there is no easy way
to express that formal parameter names should be unique in a given procedure
declaration, or that in a valid Logo program the number of actual arguments in
a procedure call should be the same as the number of formal arguments in the
declaration. This kind of constraints forms part of what is often called the static
semantics of the language.

In Model-Driven Engineering, the Object Constraint Language (OCL) [20] is
often used to provide a simple first order logic for the expression of the static
semantics of a meta-model. OCL is a declarative language initially developed at
IBM for describing constraints on UML models. It is a simple text language that
provides constraints and object query expressions on any Meta-Object Facility
model or meta-model that cannot easily be expressed by diagrammatic notation.
OCL language statements are constructed using the following elements:
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1. a context that defines the limited situation in which the statement is valid
2. a property that represents some characteristics of the context (e.g., if the

context is a class, a property might be an attribute)
3. an operation (e.g., arithmetic, set-oriented) that manipulates or qualifies a

property, and
4. keywords (e.g., if, then, else, and, or, not, implies) that are used to specify

conditional expressions.

Expressing the Logo Static Semantics in OCL. The Logo meta-model
defined on figure 2 only defines the structure of a Logo program. To define the
sub-set of programs which are valid with respect to Logo semantics a set of
constraints has to be attached to the abstract syntax. Figure 4 presents the
OCL listing of two constraints attached to the Logo meta-model. The first one
is an invariant for class ProcCall that ensures that any call to a procedure has
the same number of actual arguments as the number of formal arguments in the
procedure declaration. The second invariant is attached to class ProcDeclaration
and ensures that the names of the formal parameters of the procedure are unique.

1 package kmLogo :: ASM
2
3 context ProcCall
4 inv same_number_of_formals_and_actuals :
5 actualArgs -> s ize () = declaration .args -> s ize ()
6
7 context ProcDeclaration
8 inv unique_names_for_formal_arguments :
9 args -> forAll ( a1 , a2 | a1.name = a2.name implies a1 =

a2 )
10
11 endpackage

Fig. 4. OCL constraint on the Logo meta-model

Weaving the Logo Static Semantics into its Meta-Model. In the Ker-
meta environment, the OCL constraints are woven directly into the meta-model
and can be checked for any model which conforms to the Logo meta-model. In
practice, once the designer has created a meta-model with the E-core formalism
in the Eclipse Modeling Framework (called e.g. ASMLogo.ecore), she can import
it into Kermeta (see line 2 in Figure 5) using the require instruction as described
in Section 2. Suppose now that the Logo static semantics (of Fig. 4) is located
in a file called StaticSemantics.ocl. Then the same require instruction can be
used in Kermeta to import the Logo static semantics and weave it into the Logo
meta-model (see line 3 in Figure 5).
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1 package kmLogo;
2 require "ASMLogo .ecore"
3 require " StaticSemantics .ocl"
4 [...]
5 c lass Main {
6 operation Main (): Void i s do
7 // Load a Logo program and check constraints on it
8 // then run it
9 end

10 end

Fig. 5. Weaving Static Semantics into the Logo Meta-Model

The integration of OCL into Kermeta relies onto two features:

– First, as presented in Section 3, Kermeta already supports a native constraint
system made of invariants, pre and post conditions which makes it possible
to work within a Design-by-Contracts methodology.

– Secondly, the support for the OCL concrete syntax is implemented with
a model transformation from the AST of OCL to the AST of Kermeta.
This transformation has been written in Kermeta. The result model of this
transformation is automatically associated to the meta-model implicated,
using the built-in static introduction of Kermeta.

Kermeta allows the user to choose when his constraints should be checked. That
can be done class by class or at the entire model level with primitive checkIn-
variant on class or checkAllInvariants on the root element of the meta-model.
The operation constraints (pre, post) are optionally checked depending on the
type of "Run" chosen from the Eclipse menu: normal run or run with constraint
checking.

So, at this stage the meta-model allows defining Logo programs with a model
editor provided by the EMF and this model can be validated with respect to Logo
static semantics within the Kermeta environment. For instance if we modify the
Logo program of Fig. 1 by calling square(50,10) instead of square(50), and if
we load it into Kermeta, then by calling checkAllInvariants we get the expected
error message that

Invariant same_number_of_formals_and_actuals
has been violated for: square(50,10)

One point of interest is that this implementation extends the expressiveness
of OCL. OCL already offers the possibility to call operations or derived prop-
erties declared in the meta-model. Kermeta allows the designer to specify the
operational semantic of these methods or these properties. Then, using the OCL
implementation in Kermeta, it is possible to express any expression based on
the first-order logic and extend it with the imperative operations provided by
Kermeta. Designer must of course still guarantee that these operations are free
from side-effects on the abstract state of the models.
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3.3 Weaving Dynamic Semantics to Get an Interpreter

The next step in the construction of a Logo environment is to define Logo op-
erational semantics and to build an interpreter. In our approach this is done in
two steps. The first one is to define the runtime model to support the execution
of Logo programs, i.e. the Logo virtual machine. The second one is to define a
mapping between the abstract syntax of Logo and this virtual machine. This
is going to be implemented as a set of eval functions woven into the relevant
constructs of the Logo meta-model.

Logo runtime model. As discussed earlier, the most popular runtime model
for Logo is a turtle which can draw segments with a pen. As for the language
abstract syntax, the structure of the runtime model can be defined by a meta-
model. The advantage of this approach is that the state of the running program
is then also a model. Like for any model, all the tools available in a framework
like EMF can then readily be used in order to observe, serialize, load or edit the
state of the runtime.

Fig. 6. Logo runtime meta-model

Figure 6 presents a diagram of the Logo virtual machine meta-model. The
meta-model only defines three classes: Turtle, Point and Segment. The state
of the running program is modeled as a single instance of class Turtle which
has a position (which is a Point), a heading (which is given in degrees) and
a Boolean to represent whether the pen is up or down. The Turtle stores the
segments which were drawn during the execution of the program. In practice the
meta-model was defined without operation using EMF tools. The operations,
implemented in Kermeta, have been later woven into the meta-model to provide
an object-oriented definition of the Logo virtual machine. Figure 7 presents an
excerpt of the Kermeta listing. It adds three operations to the class Turtle of
the meta-model.

Operational semantics. We are now going to define the operational semantics
for each constructs of the abstract syntax. The idea is again to weave operations
implemented in Kermeta directly into the meta-model in such a way that each
type of statement would contain an eval operation performing the appropriate
actions on the underlying runtime model. To do that, a context is provided as a
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1 package kmLogo;
2
3 require "VMLogo.ecore"
4 [...]
5 package VM {
6 aspect c lass Turtle {
7 operation setPenUp (b : Boolean ) i s do
8 penUp := b
9 end

10 operation rotate(angle : Integer) i s do
11 heading := (heading + angle).mod (360)
12 end
13 operation forward(steps : Integer) i s do
14 var radian : Real i n i t math .toRadians (heading.

toReal)
15 move(scale(steps ,math .sin(radian)), scale(steps ,

math.cos(radian)))
16 end
17 [...]
18 }
19 }

Fig. 7. Runtime model operations in Kermeta

parameter of the eval operation. This context contains an instance of the Turtle
class of the runtime meta-model and a stack to handle procedure calls. Figure 8
presents how the operation eval are woven into the abstract syntax of Logo. An
abstract operation eval is defined on class Statement and implemented in every
sub-class to handle the execution of all constructions.

For simple cases such as the PenDown instruction, the mapping to the vir-
tual machine is straightforward: it only boils down to calling the relevant VM
instruction, i.e. context.turtle.setPenUp(false) (see line 36 of Fig. 8).

For more complex cases such as the Plus instruction, there are two possible
choices. The first one, illustrated on lines 9–13 of Fig. 8, makes the assumption
that the semantics of the Logo Plus can be directly mapped to the semantics
of “+” in Kermeta. The interest of this first solution is that it provides a quick
and straightforward way of defining the semantics of that kind of operators. If
however the semantics we want for the Logo Plus is not the one that is built-in
Kermeta for whatever reason (e.g. we want it to handle 8-bits integers only),
we can define the wanted Plus operation semantics in the Logo Virtual Machine
(still using Kermeta of course) and change the eval method of lines 9–13 so that
it first calls eval on the left hand side, push the result on the VM stack, then
calls eval on the right hand side, again push the result on the VM stack, and
finally call the Plus operation on the VM.
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1 package kmLogo;
2 require "ASMLogo .ecore"
3 require " LogoVMSemantics .kmt"
4 [...]
5 package ASM {
6 aspect c lass Statement {
7 operation eval (context : Context) : Integer i s

abstract
8 }
9 aspect c lass Plus {

10 method eval (context : Context ) : Integer i s do
11 result := lhs.eval (context) + rhs.eval (context)
12 end
13 }
14 aspect c lass Greater {
15 method eval (context : Context ) : Integer i s do
16 result := i f lhs.eval (context) > rhs.eval (context)

then 1 e l se 0 end
17 end
18 }
19 aspect c lass If {
20 method eval (context : Context ) : Integer i s do
21 i f condition .eval (context) != 0 then
22 result := thenPart .eval (context)
23 e l se
24 result := elsePart .eval (context)
25 end
26 end
27 }
28 aspect c lass Forward {
29 method eval (context : Context ) : Integer i s do
30 context.turtle.forward (steps.eval (context))
31 result := void
32 end
33 }
34 aspect c lass PenDown {
35 method eval (context : Context ) : Integer i s do
36 context.turtle.setPenUp ( f a l s e )
37 result := void
38 end
39 }
40 [...]
41 }

Fig. 8. Logo operational semantics
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1 package kmLogo;
2 require "ASMLogo .ecore"
3 require " StaticSemantics .ocl"
4 require " LogoVMSemantics .kmt"
5 require " OperationalSemantics .kmt"
6 [...]
7 c lass Main {
8 operation Main (): Void i s do
9 var rep : EMFRepository i n i t EMFRepository .new

10 var logoProgram : ASMLogo :: Block
11 // load logoProgram from its XMI file
12 logoProgram ?= rep. getResource ("Square.xmi").one
13 // Create a new Context containing the Logo VM
14 var context : LogoVMSemantics :: Context i n i t

LogoVMSemantics :: Context .new
15 // now execute the logoProgram
16 logoProgram .eval (context)
17 end
18 end

Fig. 9. Getting an Interpreter

Getting an Interpreter. Once the operational semantics for Logo has been
defined as described above, getting an interpreter is pretty straightforward: we
first have to import each relevant aspect to be woven into the Logo meta-model
(using require instructions, see lines 2–5 in Fig. 9). We then need to load the
Logo program into Kermeta (see lines 9–12 in Fig. 9), instantiate a Context
(that contains the Logo VM) and then call eval(Context) on the root element of
the Logo program.

Loading the Square program of Fig. 1 and executing it this way will change
the state of the model of the Logo VM: during the execution, four new Segments
will be added to the Turtle, and its position and heading will change. Obviously,
we would like to see this execution graphically on the screen. The solution is
quite easy: we just need to put an Observer on the Logo VM to graphically
display the resulting figure in a Java widget. The Observer is implemented in
Kermeta and calls relevant Java methods to notify the screen that something
has changed.

3.4 Compilation as a Kind of Model Transformation

In this section we are going to outline how to build a compiler for our Logo
language. The idea is to map a Logo program to the API offered by the Lego
Mindstroms so that our Logo programs can actually be used to drive small robots
mimicking Logo turtles. These Robot-Turtles are built with Lego Mindstroms and
feature two motors for controlling wheels and a third one for controlling a pen
(see Fig. 10).
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Fig. 10. A Lego mindstorm robot-turtles

A simple programming language for Lego Mindstroms is NXC (standing for
Not eXactly C). So building a Logo compiler for Lego Mindstroms boils down
to write a translator from Logo to NXC. The problem is thus much related
to the Model Driven Architecture (MDA) context as promoted by the OMG,
where a Logo program would play the role of a Platform Independent Model
(PIM) while the NXC program would play the role of a Platform Specific Model
(PSM). With this interpretation, the compilation we need is simply a kind of
model transformation.

We can implement this model transformation either using Model-to-Model
Transformations or Model-to-Text Transformations:

Model-to-Text Transformations are very useful for generating code, XML,
HTML, or other documentation in a straightforward way, when the only
thing that is needed is actually a syntactic level transcoding (e.g. Pretty-
Printing). Then we can resort on either:
– Visitor-Based Approaches, where some visitor mechanisms are used to

traverse the internal representation of a model and directly write code
to a text stream.

– Template-Based Approaches, based on the target text containing slices
of meta-code to access information from the source and to perform text
selection and iterative expansion. The structure of a template resembles
closely the text to be generated. Textual templates are independent of
the target language and simplify the generation of any textual artifacts.

Model-to-Model Transformations would be used to handle more complex,
semantic driven transformations.

For example if complex, multi-pass transformations would have been needed
to translate Logo to NXC, it could have been interesting to have an explicit
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meta-model of NXC, properly implement the transformation between the Logo
meta-model and the NXC one, and finally call a pretty-printer to output the
NXC source code.

In our case however the translation is quite simple, so we can for example
directly implement a visitor-based approach. In practice, we are once again going
to use the aspect weaving mechanism of Kermeta simplify the introduction of
the Visitor pattern. Instead of using the pair of methods accept and visit, where
each accept method located in classes of the Logo meta-model would call back
the relevant visit method of the visitor, we can directly weave a compile() method
into each of these Logo meta-model classes (see Fig. 11).

1 package kmLogo;
2
3 require "ASMLogo .ecore"
4 [...]
5 package ASMLogo {
6 aspect c lass PenUp {
7 compile (ctx: Context) {
8 [...]
9 }

10 }
11
12 aspect c lass Clear {
13 compile (ctx: Context) {
14 [...]
15 }
16 }
17 [...]
18 }

Fig. 11. The Logo Compilation Aspect in Kermeta

Integrating this compilation aspect into our development environment for
Logo is done as usual, i.e. by requiring it into the main Kermeta program (see
Fig. 12).

3.5 Model to Model Transformation

For the Logo compiler described above to work properly, we have to assume
though that all Logo function declarations are performed at the outermost block
level, because NXC does not support nested function declarations. Since noth-
ing in our Logo meta-model prevents the Logo user to declare nested functions,
we need to either add an OCL constraint to the Well-Formedness Rules of the
language, or we need to do some pre-processing before the actual compilation
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1 package kmLogo;
2 require "ASMLogo .ecore"
3 require " StaticSemantics .ocl"
4 require "Compiler .kmt"
5 [...]
6 c lass Main {
7 operation Main (): Void i s do
8 var rep : EMFRepository i n i t EMFRepository .new
9 var logoProgram : ASMLogo :: Block

10 // load logoProgram from its XMI file
11 logoProgram ?= rep. getResource ("Square.xmi").one
12 // Create a new Context for storing global data

during the compilation
13 var context : Context i n i t Context.new
14 // now compile the logoProgram to NXC
15 logoProgram .compile(context)
16 end
17 end

Fig. 12. Getting a Compiler

step. For the sake of illustrating Kermeta capabilities with respect to Model to
Model Transformations, we are going to choose the later solution.

We thus need a new aspect in our development environment, that we call
the local-to-global aspect (See Listing 13) by reference to an example taken from
the TXL [5] tutorial. We are using a very simple OO design that declares an
empty method local2global (taking as parameter the root block of a given Logo
program) in the topmost class of the Logo meta-model hierarchy, Statement. We
are then going to redefine it in relevant meta-model classes, such as ProcDec-
laration where we have to move the current declaration to the root block and
recursively call local2global on its block (containing the function body). Then in
the class Block, the local2global method only has to iterate through each instruc-
tion and recursively call itself.

Note that if we also allow ProcDeclaration inside control structure such as
Repeat or If, we would also need to add a local2global method in these classes to
visit their block (thenPart and elsePart in the case of the If statement).

Once again this local2global concern is implemented in a modular way in Ker-
meta, and can easily be added or removed from the Logo programming environ-
ment without any impact on the rest of the software. Further, new instructions
could be added to Logo (i.e. by extending its meta-model with new classes) with-
out much impact on the local2global concern as long as these instructions do not
contain any block structure. This loose coupling is a good illustration of Ker-
meta advanced modularity features, allowing both easier parallel development
and maintenance of a DSML environment.
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1 package kmLogo;
2
3 require "ASMLogo .ecore"
4 [...]
5 package ASMLogo {
6 aspect c lass Statement
7 method local2global (rootBlock : Block) i s do
8 end
9 end

10 aspect c lass ProcDeclaration
11 method local2global (rootBlock : Block) i s do
12 rootBlock .add( s e l f )
13 block. local2global (rootBlock )
14 end
15 end
16 aspect c lass Block
17 method local2global (rootBlock : Block) i s do
18 statements .each (i| i. local2global (rootBlock ))
19 end
20 end
21 }

Fig. 13. The Logo local-to-global Aspect in Kermeta

4 Discussion

4.1 Separation of Concerns for Language Engineering

From an architectural point of view, Kermeta allows the language designer to
keep his concerns separated. Designers of meta-models will typically work with
several artifacts: the structure is expressed in the Ecore meta-model, the opera-
tional semantics is defined in a Kermeta resource, and finally the static semantics
is brought in an OCL file. Consequently, as illustrated in Figure 9, a designer can
create a meta-model defined with the Ecore formalism of the Eclipse Modeling
Framework. He can define the static semantics with OCL constraints. Finally
with Kermeta, he can define the operational semantics as well as some useful de-
rived features of the meta-models that are called in the OCL specifications. The
weaving of all those model fragments is performed automatically in Kermeta,
using the require instruction as a concrete syntax for this static introduction.
Consequently, in the context of the class Main, the meta-model contains the
data-structure, the static semantics and the operational semantics.

4.2 Concrete Syntax Issues

Meta-Modeling is a natural approach in the field of language engineering for
defining abstract syntaxes. Defining concrete and graphical syntaxes with meta-
models is still a challenge. Concrete syntaxes are traditionally expressed with
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rules, conforming to EBNF-like grammars, which can be processed by compiler
compilers to generate parsers. Unfortunately, these generated parsers produce
concrete syntax trees, leaving a gap with the abstract syntax defined by meta-
models, and further ad hoc hand-coding is required. We have proposed in [15] a
new kind of specification for concrete syntaxes, which takes advantage of meta-
models to generate fully operational tools (such as parsers or text generators).
The principle is to map abstract syntaxes to concrete syntaxes via bidirectional
mapping-models with support for both model-to-text, and text-to-model trans-
formations. Other tools emerge for solving this issue of defining the concrete
syntax from a mapping with the abstract syntax like the new Textual Modeling
Framework2. To get usable graphical editors for your domain specific language
(DSL), several projects provides a generative approach to create component and
runtime infrastructure for building graphical editors as GMF or TopCaseD. We
have used Sintaks and TopCaseD to respectively build the Logo concrete syntax,
the Logo graphical syntax and their associated editors.

4.3 Evolution Issues

Thanks to the separation of concerns, constraints and behavior aspects are inde-
pendent and may be designed in separate resources. Then they can be developed
and modified separately. The only consideration during their implementation is
that they depend on the structure defined in the Ecore meta-model. Modifi-
cation to this structure can have consequences that have to be considered in
the behavior aspects and in the constraints (if a method signature is changed
for example). Here, Kermeta’s type system is useful as a way of detecting such
incompatible changes at compile time.

5 Related Works

There is a long tradition of basing language tools on grammar formalisms, for
example higher order attribute grammars [25]. JastAdd [8] is an example of
combining this tradition with object-orientation and simple aspect-orientation
(static introductions) to get better modularity mecanisms. With a similar sup-
port for object-orientation and static introductions, Kermeta can then be seen
as a symetric of JastAdd in the DSML world.

Kermeta cannot really be compared to source transformation systems and
languages such as DMS [1], Rascal [12], Stratego [2], or TXL [5] that provide
powerful general purpose set of capabilities for addressing a wide range of soft-
ware analysis problems. Kermeta indeed concentrates on one given aspect of
DSML design: adding executability to their meta-models in such a way that any
other tool can still be used for advanced analysis or transformation purposes.
Still, as illustrated in this paper, Kermeta can also be used to program simple, al-
gorithmic and object-oriented transformations for DSML (e.g.; the local-to-global
transformation.
2 http://www.eclipse.org/modeling/tmf/

http://www.eclipse.org/modeling/tmf/


Model Driven Language Engineering with Kermeta 219

In the world of Modeling, Model Integrated Computing (MIC) [23] is probably
the most well known environment centered on the development of DSML. The
MIC comprises the following steps:

– Design a Domain Specific Modeling Language (DSML): this step allows en-
gineers to create a language that is tailored to the specific needs of the appli-
cation domain. One has also to create the tools that can interpret instances
of this language (i.e. models of the application),

– this language is then used to construct domain models of the application,
– the transformation tool interprets domain models to build executable models

for a specific target platform,

This approach is currently supported by a modeling environment including a tool
for designing DSMLs (GME) [6] and a model transformation engine based on
graph transformations (GREAT). MIC is a standalone environment for Windows
of a great power but also of a great complexity. Kermeta brings in a much more
lightweight approach, leveraging the rich ecosystem of Eclipse, and providing the
user with advanced composition mechanisms based on the notion of aspect to
modularly build his DSML environment within Eclipse.

Another approach builds on the same idea: multi-paradigm modeling. It con-
sists in integrating different modeling languages in order to provide an accurate
description of complex systems and simulate them. The approach is supported
by the ATOM3 graph transformation engine [24].

Microsoft Software Factories [9] propose the factory metaphor in which de-
velopment can be industrialized by using a well organized chain of software
development tools enabling the creation of products by adapting and assem-
bling standardized parts. A software factory may use a combination of DSMLs
to model systems at various levels of abstraction and provide transformation
between them. A software factory schema is a directed graph where the nodes
are representing particular aspects (called viewpoints) of the system to be mod-
eled and edges represent transformations between them. In particular, view-
points provide the definition of the DSMLs to be used to create model of the
viewpoints, development processes supporting model creation, model refactoring
patterns, constraints imposed by other viewpoints (that help ensuring consis-
tency between viewpoints) and finally any artifact assisting the developer in the
implementation of models based on viewpoints. Transformations between view-
points are supported mostly in an hybrid or imperative way through templates,
recipes and wizards that are integrated as extensions to Visual Studio. Compared
to Software Factories, Kermeta provides an integration platform that makes it
much easier to develop independantly and later combine the various aspects of
a development environment for a given DSML. Further Kermeta follows OMG
standards (MOF, OCL, etc.) and is smootly integrated in the Eclipse platform,
that provides an alternative open source IDE to Visual Studio and Software
Factories.

In the Eclipse environment, several languages have been developed on top of
OCL for model navigation and modification. For instance the Epsilon Object
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Language (EOL) [13] is a meta-model independent language that can be used
both as a standalone generic model management language or as infrastructure
on which task-specific languages can be built. The EOL is not object-oriented (in
the sense that it does not define classes itself), even if it is able to manage objects
of types defined externally in EMF meta-models in the spirit of JavaScript. In
contrast to the EOL, Kermeta is an object-oriented (and aspect-oriented) exten-
sion to the EMF, providing full static typing accross the languages it integrates:
E-Core, OCL and Kermeta.

6 Conclusion

This article presented the Kermeta platform for building Eclipse based, inte-
grated environments for DSML. Based on an aspect oriented paradigm [16,10]
Kermeta has been designed to easily extend meta-models with many different
concerns, each expressed in its most appropriate language: MOF for abstract
syntax, OCL for static semantics, Kermeta itself for dynamic semantics and
model transformations [17], Java for simulation GUI, etc.

Technically, since Kermeta is an extension of MOF, a MOF meta-model can
be seen as a valid Kermeta program that just declares packages, classes and
so on but does nothing. Kermeta can then be used to breath life into this meta-
model, i.e. transform it into a full blown development environment by introducing
nicely modularized aspects for handling concerns of static semantics, dynamic
semantics, or model transformations, each coming with Eclipse editor support.

Kermeta is already used in many real life projects: more details are available
on www.kermeta.org.
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1   A New Language for Meta-programming

Meta-programs are programs that analyze, transform or generate other programs.
Ordinary programs work on data; meta-programs work on programs. The range of
programs to which meta-programming can be applied is large: from programs in
standard languages like C and Java to domain-specific languages for describing high-
level system models or applications in specialized areas like gaming or finance. In some
cases, even test results or performance data are used as input for meta-programs. Rascal
is a new language for meta-programming, this is the activity of writing meta-programs.

1.1   The EASY Paradigm

Many meta-programming problems follow a fixed pattern. Starting with some input
system (a black box that we usually call system-of-interest), first relevant information is
extracted from it and stored in an internal representation. This internal representation is
then analyzed and used to synthesize results. If the synthesis indicates this, these steps
can be repeated over and over again. These steps are shown in Figure 1.1, “EASY: the
Extract-Analyze-Synthesize Paradigm”.

applicability. Let's illustrate it with a few examples.

programming
 with Rascal

   This is an abstract view on solving meta-programming problems, but it has wide
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Fig. 1.1. EASY:  The  Extract-Analyze-Synthesize  Paradigm

1.1.1   Finding Security Breaches

Alice is system administrator of a large online marketplace and she is looking for
security breaches in her system. The objects-of-interest are the system's log files.
First relevant entries are extracted. This will include, for instance, messages from the
SecureShell demon that reports failed login attempts. From each entry, login name and
originating IP address are extracted and put in a table (the internal representation in this
example). These data are analyzed by detecting duplicates and counting frequencies.
Finally results are synthesized by listing the most frequently used login names and IP
addresses.

1.1.2   A Forensic DSL Compiler

Bernd is a senior software engineer working at a forensic investigation lab of the
German government. His daily work is to find common patterns in files stored on
digital media that have been confiscated during criminal investigations. Text, audio
and video files are stored in many different data formats and each data format requires
its own analysis technique. For each new investigation, ad hoc combinations of
tools are used. This makes the process very labour-intensive and error-prone. Bernd
convinces his manager that designing a new domain-specific language (DSL) for
forensic investigations may relieve the pressure on their lab. The DSL should at least be
able to define multiple data formats and generate recognizers for them. After designing
the DSL---let's call it DERRICK---he makes an EASY implementation for it. Given
a DERRICK program for a specific case under investigation, the DERRICK compiler
first extracts information from the program and analyzes it further: which media formats
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are relevant? Which patterns to look for? How should search results be combined?
Given this information, Java code is synthesized that corresponds to the meaning of
the DERRICK program: specialized generated code that glues together various existing
libraries and tools.

1.1.3   Renovating Financial Software

Charlotte is software engineer at a large financial institution and she is looking for
options to connect an old and dusty software system to a web interface. She will need to
analyze the sources of that system to understand how it can be changed to meet the new
requirements. The objects-of-interest are in this case the source files, documentation,
test scripts and any other available information. They have to be parsed in some way in
order to extract relevant information, say the calls between various parts of the system.
The call information can be represented as a binary relation between caller and callee
(the internal representation in this example). This relation with 1-step calls is analyzed
and further extended with 2-step calls, 3-step calls and so on. In this way call chains of
arbitrary length become available. With this new information, we can synthesize results
by determining the entry points of the software system, i.e., the points where calls from
the outside world enter the system. Having completed this first cycle, Charlotte may
be interested in which procedures can be called from the entry points and so on and so
forth. Results will be typically represented as pictures that display the relationships that
were found. In the case of source code analysis, a variation of our workflow scheme
is quite common. It is then called the extract-analyze-view paradigm and is shown in
Figure 1.2, “The extract-analyze-view paradigm”.

Fig. 1.2. The  extract-analyze-view  paradigm

1.1.4  Finding Concurrency Errors

Daniel is concurrency researcher at one of the largest hardware manufacturers
worldwide. Concurrency is the big issue for his company: it is becoming harder and
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harder to make CPUs faster, therefore more and more of them are bundled on a single
chip. Programming these multi-core chips is difficult and many programs that worked
fine on a single CPU contain hard to detect concurrency errors due to subtle differences
in the order of execution that results from executing the code on more than one CPU. He
is working on tools for finding concurrency errors. First he extracts facts from the code
that are relevant for concurrency problems and have to do with calls, threads, shared
variables and locks. Next, he analyzes these facts and synthesizes an abstract model that
captures the essentials of the concurrency behaviour of the program. Finally he runs a
third-party verification tool with this model as input to do the actual verification.

1.1.5   Model-Driven Engineering

Elisabeth is a software architect at a large airplane manufacturer and her concern
is reliability and dependability of airplane control software. She and her team have
designed a UML model of the control software and have extended it with annotations
that describe the reliability of individual components. She will use this annotated
model in two ways: (a) to extract relevant information from it to synthesize input for
a statistical tool that will compute overall system reliability from the reliability of
individual components; (b) to generate executable code that takes the reliability issues
into account.

1.2   Rascal

With these examples in mind, you have a pretty good picture how EASY applies in
different use cases. All these cases involve a form of meta-programming: software
programs (in a wide sense) are the objects-of-interest that are being analyzed,
transformed or generated. The Rascal language you are about to learn is designed for
meta-programming following the EASY paradigm. It can be applied in domains ranging
from compiler construction and implementing domain-specific languages to constraint
solving and software renovation.

Since representation of information is central to the approach, Rascal provides a rich set
of built-in data types. To support extraction and analysis, parsing and advanced pattern
matching are provided. High-level control structures make analysis and synthesis of
complex data structures simple.

1.3   Benefits of Rascal

Before you spend your time on studying the Rascal language it may help to first hear
our elevator pitch about the main benefits offered by the language:

• Familiar syntax in a what-you-see is-what-you-get style is used even for
sophisticated concepts and this makes the language easy to learn and easy to use.

• Sophisticated built-in data types provide standard solutions for many meta-
programming problems.
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• Safety is achieved by finding most errors before the program is executed and by
making common errors like missing initializations or invalid pointers impossible. At
the time of writing, this checking is done during execution but a static typechecker
is nearing completion.

• Local type inference makes local variable declarations redundant.

• Pattern matching can be used to analyze all complex data structures.

• Syntax definitions make it possible to define new and existing languages and to
write tools for them.

• Visiting makes it easy to traverse data structures and to extract information from
them or to synthesize results.

• Templates enable easy code generation.

• Functions as values permit programming styles with high re-use.

• Generic types allow writing functions that are applicable for many different types.

• Eclipse integration makes Rascal available in a familiar environment: all familiar
tools are at your fingertips.

Fig. 1.3. Positioning  of various  systems

1.4   Related Work

We discuss related tools and specific influences of earlier work on the Rascal language.
Figure 1.3, “Positioning of various systems” shows the relative positioning of various
systems to be discussed in this section. On the vertical axis, the level of language-
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specificity is shown. Systems at the bottom of the figure are language-specific and can
only be applied to programs in one specific language. Systems at the top of the figure are
language-parameterized, i.e., they are generic and can be applied to arbitrary languages.
On the horizontal axis, the level of parameterization of analysis and transformation
is displayed. Systems on the left have fixed analysis/transformation properties while
the systems more to the right have more and more support for defining analysis and
transformation operations.

1.4.1   Related Tool Categories
We focus on positioning Rascal relative to a number of broad categories of tools that
are available and give some examples of typical tools in those categories.

Lexical Tools.  Lexical tools are based on the use of regular expressions and are
supported by widely available systems like Grep, AWK, Perl, Python and Ruby. Regular
expressions have limited expressiveness since they cannot express nested structures.
Lexical tools are therefore mostly used to extract unstructured textual information, like
counting lines of code, collecting statistics about the use of identifiers and keywords,
and spotting simple code patterns. Experience shows that maintaining larger collections
of regular expressions is hard.

Compiler Tools.  Well-known tools like Yacc, Bison, CUP, and ANTLR [Par07]
fall in this category. They all use a context-free grammar and generate a parser for
the language defined by that grammar. Some provide automation for syntax tree
construction but all other operations on parsed programs have to be programmed
manually in a standard programming language like C or Java.

Attribute Grammar Tools.  An attribute grammar is a context-free grammar
enriched with attributes and attribute equations that express dependencies between
attributes. In this way semantic operations like typechecking and code generation can be
expressed at a high level. Tools in this category are FNC-2 [JPJ+90], JastAdd [HM03],
Silver [VWBGK10], and others. Attribute Grammar tools are strong in program analysis
but weaker in program transformation.

Relational Analysis Tools.  Relational algebra tools provide high-level operations
on relational data. They are strong in expressing analysis problems like, for instance,
reachability. Examples of tools in this category are GROK [Hol08], Crocopat [Bey06]
and RScript [Kli08]. These tools assume that the data are already in relational form and
provide support for neither extraction nor transformation.

Transformation Tools.  Tools in this category focus on transforming programs
from one representation to another representation and they are frequently based
on term rewriting. Examples are ASF+SDF [Kli93], [BDH+01], ELAN [BKK+98],
STRATEGO [BKVV08], TOM [BBK+07], and TXL [Cor06].

Logic-based Tools.  Logic-based languages/tools form a category on their own since
they partially overlap with the other categories. The primary example is Prolog that
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has been used for syntax analysis, analysis and synthesis and is still in use today.
[KHR07] gives an overview of various logic-based approaches. Nonetheless, these
tools have never come into wide use. [LR01] illustrates the use of Prolog for analysis
and transformation. [KHR07] describes JTransformer, a more recent Prolog-based
transformation tool for Java.

Miscellaneous Tools.  There is a wide range of tools available in the space sketched
in Figure 1.3, “Positioning of various systems”. Lint [Joh79] is the classical example
of a command-line tool that performs C-specific analysis. ORION [DN04] is another
example of a tool for fixed error analysis for C/C++ programs. Codesurfer [AZ05] and
Coverity [BBC+10] are examples of tools for the analysis of C programs that provide
programmable analyses. Semmle [dMSV+08] is an example of a Java-specific tools
with highly-customizable queries. The same holds for JTransformer [KHR07], but this
also supports customizable transformations.

Comparing Tool Categories.  We audaciously list the strengths and weaknesses
of these tool categories in Table 1.1, “Comparing Tool Categories”. There are large
variations among specific tools in each category but we believe that this table gives at
least an impression of the relative strengths of the various categories and also documents
the ambition we have with the Rascal language. It is clear from this overview that the
level of integration of extraction, analysis and synthesis is mostly weak. Exceptions to
this are systems that explicitly integrate these phases. For language-specific systems this
are, for example, CodeSurfer [AZ05], Coverity [BBC+10], Semmle and JTransformer.
For language-parametric systems examples are DMS, TXL, JastAdd and Silver. All
these systems differ in the level of integration and IDE support. Rascal is comparable
to the latter systems regarding language-parametricity, provides good IDE support
and outperforms many other systems with respect to the integrated and advanced
mechanisms for specifying analysis and transformation.

Table 1.  Comparing  Tool Categories

Type Extract Analyze Synthesize

Lexical Tools ++ +/- --

Compiler Tools ++ +/- +/-

Attribute Grammar Tools ++ +/- --

Relational Tools -- ++ --

Transformation Tools -- +/- ++

Logic-based Tools +/- + +

Our Goal: Rascal ++ ++ ++

1.4.2   Work Directly Related to Rascal

Rascal owes a lot to other meta-programming languages, in particular the user-defined,
modular, syntax and term rewriting of ASF+SDF [Kli93], [BDH+01], the relational
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calculus as used in RScript [Kli08] and pioneered by GROK [Hol08], traversal functions
as introduced in [BKV03], strategies as introduced in ELAN [BKK+98] and Stratego
[BKVV08], and integration of term rewriting in Java as done in TOM [BBK+07].

We also acknowledge less specific influences by systems like TXL [Cor06], ANTLR
[Par07], JastAdd [HM03], Semmle [dMSV+08], DMS [BPM04], and various others
like, for instance, ML and Ruby.

The application of Rascal for refactoring is described in [KvdSV09]. Using Rascal for
collecting source code metrics for DSL implementations is presented in [KvdSV10].

1.4.3   Contribution
We claim as main contribution of Rascal the seamless integration of extraction, analysis
and synthesis concepts into a relatively simple, statically typed, language with familiar
syntax. Specific contributions are the integration of syntax definitions and parsing
functions, access to syntax trees both as fully typed and as untyped data structures, the
rich collection of data types and patterns, string templates, rewrite rules as normalization
device for structured data, and the use of transactions to undo side-effects. All these
features are discussed in some detail in this paper.

1.5   Reading Guide

The aim of this article is to give an easy to understand but comprehensive overview of
the Rascal language and to offer problem solving strategies to handle realistic problems
that require meta-programming. Problems may range from security analysis and model
extraction to software renovation, domain-specific language development and code
generation.

The scope of this article is limited to the Rascal language and its applications but does
not address implementation aspects of the language.

The structure of the description of Rascal is shown in Figure 1.4, “Structure of the Rascal
Description”. This article provides a self-contained version of the first three parts:

• Introduction: gives a high-level overview of Rascal and consists of Section 1, “A
New Language for Meta-Programming” and Section 2, “Rascal Concepts” . It also
presents some simple examples in Section 3, “Some Simple Examples”.

• Problem Solving: describes the major problem solving strategies in Rascal's
application domain, see Section 4, “Problem Solving Strategies”.

• Examples: gives a collection of larger examples, see Section 5, “Larger Examples”.

The other parts can be found online at http://www.rascal-mpl.org:

• Reference: gives a detailed description of the Rascal language, and all built-in
operators and library functions.
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• Support: gives tables with operators and library functions, a bibliography and a
glossary that explains many concepts that are used in the descriptions of Rascal and
tries to make them self-contained.

Fig. 1.4. Structure of the Rascal Description

1.6   Typographic Conventions

Rascal code fragments are always shown as a listing like this:

  .. here is some Rascal code ...

Interactive sessions are shown as a screen like this:

rascal> Command;
Type: Value

where:

• rascal> is the prompt of the Rascal system.

• Command is an arbitrary Rascal statement or declaration typed in by the user.
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• Type: Value is the type of the answer followed by the value of the answer as
computed by Rascal. In some cases, the response will simply be ok when there is no
other meaningful answer to give.

2   Rascal Concepts

Before explaining the Rascal language in more detail, we detail our elevator pitch a bit
and give you a general understanding of the concepts on which the language is based.

2.1   Values

Values are the basic building blocks of a language and the type of a value determines
how they may be used.

Rascal is a value-oriented language. This means that values are immutable and are
always freshly constructed from existing parts; sharing and aliasing problems are
completely avoided. The language also provides variables. A value can be associated
with a variable as the result of an explicit assignment statement: during the lifetime of
a variable different (immutable) values may be assigned to it. Other ways to associate
a value with a variable are by way of function calls (binding of formal parameters to
actual values) and as the result of a successful pattern match.

2.2   Data Types

Rascal provides a rich set of data types:

• Booleans (bool).

• Arbitrary precision integers (int), reals (real) and numbers (num).

• Strings (str) that can act as templates with embedded expressions and statements.

• Source code locations (loc) based on an extension of Universal Resource Identifiers
(URI) that allow precise description of text areas in local and remote files.

• Lists (list).

• Tuples (tuple).

• Sets (set).

• Maps (map).

• Relations (rel).

• Untyped tree structures (node)

• Fully typed data structures (data).
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The elements of tuples, maps and relation may optionally be labelled for later reference
and retrieval. There is a wealth of built-in operators and library functions available on
the standard data types.

Table 1.2. Basic Rascal  Types

Type Examples 

bool true, false

int 1, 0, -1, 123456789

real 1.0, 1.0232e20, -25.5

str "abc", "first\nnext", "result: <X>"

loc |file:///etc/passwd|

datetime $2010-07-15T09:15:23.123+03:00

tuple[T1,...,Tn] <1,2>, <"john", 43, true>

list[T] [], [1], [1,2,3], [true, 2, "abc"]

set[T] {}, {1,2,3,5,7}, {"john", 4.0}

rel[T1,...,Tn] {<1,2>,<2,3>,<1,3>}, {<1,10,100>,
<2,20,200>}

map[T, U] (), (1:true, 2:false), ("a":1, "b":2)

node f(), add(x,y), g("abc", [2,3,4])

The basic Rascal data types are illustrated in Table 1.2, “Basic Rascal Types”. Some
types have another type as argument, for instance, list[int] denotes a list of
integers. In the table, T, Ti and U denote such type arguments.

These built-in data types are closely related to each other:

• In a list all elements have the same static type and the order of elements matters. A
list may contain the same value more than once.

• In a set all elements have the same static type and the order of elements does not
matter. A set contains an element only once. In other words, duplicate elements are
eliminated and no matter how many times an element is added to a set, it will occur
in it only once.

• In a tuple all elements (may) have a different static type. Each element of a tuple may
have a label that can be used to select that element of the tuple.

• A relation is a set of tuples that all have the same static tuple type.

• A map is an associative table of (key, value) pairs. Key and value (may) have different
static types and a key can only be associated with a value once
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Untyped trees can be constructed with the built-in type node. User-defined algebraic
data types (ADTs) allow the introduction of problem-specific types and are a subtype
of node. A fragment of the abstract syntax for statements (assignment, if, while) in a
programming language would look as follows:

data STAT = asgStat(Id name, EXP exp)
          | ifStat(EXP exp,list[STAT] thenpart,
                           list[STAT] elsepart) 
          | whileStat(EXP exp, list[STAT] body)
          ;

Syntax trees that are the result of parsing source files are represented as a data type
(Tree). Since all datatypes are a subtype of node, this allows the handling of parse trees
both as fully typed ADTs and as untyped nodes (thus enabling generic operations on
arbitrary parse trees).

Fig. 1.5. Lattice  of Rascal  types

Without going into more details, we show the lattice of types in Figure 1.5, “Lattice of
Rascal types”: all types are included between the minimal type (void) and the maximal
type (value). The relation between node, abstract data type (data), Tree and parse trees
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for different language is clearly shown. The alias mechanism allows shorthands for
already defined types and is not further discussed.

2.3   Pattern Matching

Pattern matching determines whether a given pattern matches a given value. The
outcome can be false (no match) or true (a match). A pattern match that succeeds may
bind values to variables.

Pattern matching is the mechanism for case distinction (switch statement) and search
(visit statement) in Rascal. Patterns can also be used in an explicit match operator :=
and can then be part of larger boolean expressions. Since a pattern match may have
more than one solution, local backtracking over the alternatives of a match is provided.
Patterns can also be used in enumerators and control structures like for and while
statement.

A very rich pattern language is provided that includes string matching based on regular
expressions, matching of abstract patterns, and matching of concrete syntax patterns.
Some of the features that are provided are list (associative) matching, set (associative,
commutative, idempotent) matching, and deep matching of descendant patterns. All
these forms of matching can be used in a single pattern and can be nested. Patterns may
contain variables that are bound when the match is successful. Anonymous (don't care)
positions are indicated by the underscore (_).

Here is a regular expression that matches a line of text, finds the first alphanumeric
word in it, and extracts the word itself as well as the text before and after it (\W matches
all non-word characters; \w matches all word characters):

/^<before:\W*><word:\w+><after:.*$>/

Regular expressions follow the Java regular expression syntax with one exception:
instead of using numbered groups to refer to parts of the subject string that have been
matched by a part of the regular expression we use the notation:

<Name:RegularExpression>

If RegularExpression matches, the matched substring is assigned to string
variable Name.

The following abstract pattern matches the abstract syntax of a while statement defined
earlier:

whileStat(EXP Exp, list[STAT] Stats)

Variables in a pattern are either explicitly declared in the pattern itself---as done in the
example, e.g., EXP Exp declares the variable Exp and list[STAT] Stats declares
the variable Stats---or they may be declared in the context in which the pattern occurs.
So-called multi-variables in list and set patterns are declared by a * suffix: X* is thus
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an abbreviation for list[...] X or set[...] X, where the precise element type
depends on the context. The above pattern can then be written as

whileStat(EXP Exp, Stats*)

where Stats* is an abbreviation for the declaration list[STAT] Stats. The
choice whether Stats is a list or a set depends on the context. If you are not interested
in the actual value of the statements the pattern can be written as

whileStat(EXP Exp, _*)

When there is a grammar for this example language (in the form of an imported SDF
definition), we can also write concrete patterns as we will see below.

2.4   Enumerators

Enumerators enumerate the values in a given (finite) domain, be it the elements in a
list, the substrings of a string, or all the nodes in a tree. Each value that is enumerated
is first matched against a pattern before it can possibly contribute to the result of the
enumerator. Examples are:

int x <- { 1, 3, 5, 7, 11 }
int x <- [ 1 .. 10 ]
/asgStat(Id name, _) <- P

The first two produce the integer elements of a set of integers, respectively, a range
of integers. Observe that the left-hand side of an enumerator is a pattern, of which
int x is a specific instance. The use of more general patterns is illustrated by the
third enumerator that does a deep traversal (as denoted by the descendant operator /)
of the complete program P (that is assumed to have a PROGRAM as value) and only
yields statements that match the assignment pattern (asgStat). We have defined the
asgStat constructor earlier in the example in Section 2.2, “Data Types” and here we
see how it can be used as pattern.The descendant operator is part of the pattern and has
as effect that the pattern is not only tried at the root of the subject to which it is applied
(in this case P) but also to all its descendants, e.g., subtrees, list elements, and the like.
Note the use of an anonymous variable at the EXP position in the pattern.

2.5   Comprehensions

Comprehensions are a notation inspired by mathematical set-builder notation that helps
to write succinct definitions of lists and sets. They are also inspired by queries as found
in a language like SQL.

Rascal generalizes comprehensions in various ways. Comprehensions exist for lists, sets
and maps. A comprehension consists of an expression that determines the successive
elements to be included in the result and a list of enumerators and tests (boolean
expressions). The enumerators produce values and the tests filter them. A standard
example is
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{ x * x | int x <- [1 .. 10], x % 3 == 0 }

which returns the set {9, 36, 81}, i.e., the squares of the integers in the range
[ 1 .. 10 ] that are divisible by 3. A more intriguing example is

{name | /asgStat(Id name, _) <- P}

which traverses program P and constructs a set of all identifiers that occur on the left
hand side of assignment statements in P.

2.6   Control Structures

Control structures like if and while statements are driven by Boolean expressions,
for instance

if(N <= 0)
     return 1; 
  else
     return N * fac(N - 1);

Actually, combinations of generators and Boolean expressions can be used to drive the
control structures. For instance,

for(/asgStat(Id name, _) <- P, size(name) > 10){
    println(name);
}

prints all identifiers in assignment statements (asgStat) that consist of more than 10
characters.

2.7   Case Distinction

The switch statement as known from C and Java is generalized: the subject value to
switch on may be an arbitrary value and the cases are arbitrary patterns followed by a
statement. Here is an example where we take a program P and distinguish two cases
for while and if statement:

switch (P){
case whileStat(_, _):
     println("A while statement");
case ifStat(_, _, _):
     println("An if statement");
}

The switch statement (and related statements like visit) are even more general than their
counterpart in languages like C and Java. Each case is comparable to a transaction:
when the pattern succeeds and the following statement is executed successfully, all
changes to variables made by the statement are committed and thus become permanent.
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The variables bound by the pattern are always local to the statement associated with
the case. When a match fails or when the associated statement fails, a rollback to
the execution point just before the case takes place and all side-effects are undone.
External side-effects like I/O and side-effects in user-defined Java code are not undone.
Our motivation for this rather heavy mechanism is that it allows a mostly functional
programming style even in cases where the statements associated with a matching
pattern lead to failure. In those cases, the side-effects are undone and the next pattern
of the switch is tried in exactly the same state as the previous one.

2.8   Visiting

Visiting the elements of a data structure is one of the most common operations in our
domain and the visitor design pattern is a solution known to every software engineer.
Given a tree-like data structure we want to perform an operation on some (or all) nodes
of the tree. The purpose of the visitor design pattern is to decouple the logistics of
visiting each node from the actual operation on each node. In Rascal the logistics of
visiting is completely automated.

Visiting is achieved by way of visit expressions that resemble the switch statement. A
visit expression traverses an arbitrarily complex subject value and applies a number of
cases (defined in the same way as cases in a switch statement) to all its subtrees. All the
elements of the subject are visited and when one of the cases matches the statements
associated with that case are executed. These cases may:

• cause some side effect, i.e., assign a value to local or global variables;

• execute an insert statement that replaces the current element;

• execute a fail statement that causes the match for the current case to fail (and
undoing all side-effects due to the successful match itself and the execution of the
statements so far).

The value of a visit expression is the original subject value with all replacements made
as dictated by matching cases. The traversal order in a visit expressions can be explicitly
defined by the programmer. An example of visiting is given in the next subsection and
in Section 3.1, “Colored Trees”.

2.9   Functions

Functions allow the definition of frequently used operations. They have a name and
formal parameters. They are explicitly declared and are fully typed. Here is an example
of a function that counts the number of assignment statements in a program:

int countAssignments(PROGRAM P){
    int n = 0;
    visit (P){
    case asgStat(_, _):
         n += 1;
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    }
    return n;
}

Functions can also be used as values, thus enabling higher-order functions. Consider
the following declarations:

int double(int x) { return 2 * x; }

int triple(int x) { return 3 * x; }

int f(int x, int (int) multi){ return multi(x); }

The functions double and triple simply multiply their argument with a constant.
Function f is, however, more interesting. It takes an integer x and a function multi
(with integer argument and integer result) as argument and applies multi to its own
argument. f(5, triple) will hence return 15. Function values can also be created
anonymously as illustrated by the following, alternative, manner of writing this same
call to f:

f(5, int (int y){return 3 * y;});

Here the second argument of f is an anonymous function.

Rascal is a higher-order language in which functions are first-class values. Our
motivation to include first-class functions is to provide sufficient mechanisms for
writing re-usable analysis and transformation functions.

2.10   Syntax Definition and Parsing

All source code analysis projects need to extract information directly from the source
code. There are two main approaches to this:

• Lexical information: Use regular expressions to extract useful, but somewhat
superficial, flat, information.

• Structured information: Use syntax analysis to extract the complete, nested, structure
of the source code in the form of a syntax tree.

In Rascal, we reuse the Syntax Definition Formalism (SDF) and its
tooling. See http://www.rascal-mpl.org/ [http://www.meta-environment.org/Meta-
Environment/Documentation] for tutorials and manuals for SDF.

SDF modules define grammars and these modules can be imported in a Rascal module.
These grammar rules can be applied in writing concrete patterns to match parts of parsed
source code. Here is an example of the same while-pattern we saw in Section 2.3,
“Pattern Matching”, but now in concrete form:

while <Exp> do <Stats> od
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Importing an SDF module has the following effects:

• All non-terminals (sorts in SDF jargon) that are used in the imported grammar are
implicitly declared as Rascal types. For each SDF sort S, composite symbols like S*
and {S ","}+ also become available as types. This makes it possible to handle parse
trees and parse tree fragments as fully typed values. They can be assigned to variables,
can be stored in larger data structures, can be passed as arguments to functions and
can be used in pattern matching.

• For all start symbols of the grammar, parse functions are implicitly declared that can
parse source files according to a specific start symbol.

• Concrete syntax patterns for that specific grammar can be used.

• Concrete syntax constructors can be used that allow the construction of new parse
trees.

The following example parses a Java compilation unit from a text file and counts the
number of method declarations:

module Count
import languages::java::syntax::Java;
import ParseTree;

public int countMethods(loc file){
  int n = 0;
  for(/MethodDeclaration md <- parse(#CompilationUnit, 
                                     file))
      n += 1;
  return n;
}

First observe that importing the Java grammar has as effect that non-terminals like
MethodDeclaration and CompilationUnit become available as types in the
Rascal program.

The implicitly declared function parse takes a reified type (#CompilationUnit,
recall that all non-terminals are implicitly declared as types) and a location as arguments
and parses the contents of the location according to the given non-terminal. Next, a
match for embedded MethodDeclarations is done in the enumerator of the for
statement. This example ignores many potential error conditions (like error in opening
or reading the file, or syntax error during parsing) but does illustrate some of Rascal's
syntax and parsing features.

2.11   Rewrite Rules

A rewrite rule is a recipe for simplifying values. An example is (a + b)2 = a2 +
2ab + b2. A rewrite rule has a pattern as left-hand side (here: (a + b)2) and a
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replacement as right-hand side (here: a2 + 2ab + b2). Given a value and a set of
rewrite rules the patterns are tried on every subpart of the value and replacements are
made if a match is successful. This is repeated as long as some pattern matches.

Rewrite rules are the only implicit control mechanism in the language and are used
to maintain invariants during computations. For example, in a package for symbolic
differentiation it is desirable to keep expressions in simplified form in order to avoid
intermediate results like sum(product(num(1), x), product(num(0),
y)) that can be simplified to x. The following rules achieve this:

rule simplify1 product(num(1), Expression e) => e;
rule simplify2 product(Expression e, num(1)) => e;
rule simplify3 product(num(0), Expression e) => num(0);
rule simplify4 product(Expression e, num(0)) => num(0);
rule simplify5 sum(num(0), Expression e)     => e;
rule simplify6 sum(Expression e, num(0))     => e;

Whenever a new value of type Expression is constructed, these rules are implicitly
applied to that expression and all its subexpressions. When a pattern at the left-hand
side of a rule applies, the matching subexpression is replaced by the right-hand side of
the rule. This is repeated as long as any rule can be applied.

Rewrite rules are activated automatically when a value of some specific type is created
and one may always assume that values of that type are in simplified form, i.e., all
applicable rewrite rules have been applied to it.

Rewrite rules are Turing complete, in other words any computable function can be
defined using rewrite rules, including functions that do not terminate. The programmer
should be aware of this when defining rewrite rules.

2.12   Equation Solving

Many problems can be solved by forms of constraint solving. This is a declarative
way of programming: specify the constraints that a problem solution should satisfy
and how potential solutions can be generated. The actual solution (if any) is found by
enumerating possible solutions and testing their compliance with the constraints.

Rascal provides a solve statement that helps writing constraint solvers. A typical
example is dataflow analysis where the propagation of values through a program can be
described by a set of equations. Their solution can be found with the solve statement.
See Section 5.6, “Dataflow Analysis” for examples.

2.13   Other Features

All language features (including the ones just mentioned) are described in more detail
later on in this article. Some features we have not yet mentioned are:

• A Rascal programs consists of a set of modules that are organized in packages.
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• A module can import other modules. These can be Rascal modules or SDF modules
(as shown above in Section 2.10, “Syntax Definition and Parsing”).

• The visibility of an entity declared in a module can be controlled using a public/
private modifier.

• A data structures may have annotations that can be explicitly used and modified.

• There is an extensive library for built-in data types, input/output, fact extraction from
Java source code, visualization, and more.

2.14   Typechecking and Execution

Rascal has a statically checked type system that prevents type errors and uninitialized
variables at runtime. There are no runtime type casts as in Java and there are
therefore fewer opportunities for run-time errors. The language provides higher-order,
parametric polymorphism. A type aliasing mechanism allows documenting specific
uses of a type. Built-in operators are heavily overloaded. For instance, the operator + is
used for addition on integers and reals but also for list concatenation, set union etc.

The flow of Rascal program execution is completely explicit. Boolean expressions
determine choices that drive the control structures. Rewrite rules form the only
exception to the explicit control flow principle. Only local backtracking is provided in
the context of boolean expressions and pattern matching; side effects are undone in case
of backtracking.

3   Some Simple Examples

The following simple examples will help you to grasp the main features of Rascal
quickly. You can also consult the online documentation at http://www.rascal-mpl.org/
for details of the language or specific operators or functions.

3.1   Colored Trees

Suppose we have binary trees---trees with exactly two children--that have integers as
their leaves. Also suppose that our trees can have red and black nodes. Such trees can
be defined as follows:

module demo::ColoredTrees

data ColoredTree = 
            leaf(int N) 
          | red(ColoredTree left, ColoredTree right) 
          | black(ColoredTree left, ColoredTree right);

We can use them as follows:

rascal> import demo::ColoredTrees;
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ok

rascal> rb = red(black(leaf(1), red(leaf(2),leaf(3))), 
                 black(leaf(3), leaf(4)));
ColoredTree: red(black(leaf(1),red(leaf(2),leaf(3))),
                 black(leaf(3),leaf(4)))

Observe that the type of variable rb was automatically inferred to be ColoredTree.

We define two operations on ColoredTrees, one to count the red nodes, and one to sum
the values contained in all leaves:

// continuing module demo::ColoredTrees

public int cntRed(ColoredTree t){
   int c = 0;
   visit(t) {
     case red(_,_): c = c + 1;
   };
   return c;
}

public int addLeaves(ColoredTree t){
   int c = 0;
   visit(t) {
     case leaf(int N): c = c + N;
   };
   return c;
}

Visit all the nodes of the tree and increment the counter c for each red node.
Visit all nodes of the tree and add the integers in the leaf nodes.

This can be used as follows:

rascal> cntRed(rb);
int: 2
rascal> addLeaves(rb);
int: 13

A final touch to this example is to introduce green nodes and to replace all red nodes
by green ones:

// continuing module demo::ColoredTrees

data ColoredTree = green(ColoredTree left, 
                         ColoredTree right);
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public ColoredTree makeGreen(ColoredTree t){
   return visit(t) {
     case red(l, r) => green(l, r)      
   };
}

Extend the ColoredTree data type with a new green constructor.
Visit all nodes in the tree and replace red nodes by green ones. Note that the
variables l and r are introduced here without a declaration.

This is used as follows:

rascal> makeGreen(rb);
ColoredTree: green(black(leaf(1),green(leaf(2),leaf(3))),
                   black(leaf(3),leaf(4)))

This example illustrates the following:

• Abstract data types can be extended as shown by adding the green constructor. In
large applications this is often encountered as dialects/variants/extensions of a base
data type.

• Using visit one only has to consider the constructors of interest (e.g., the leaf
nodes or the red nodes) as opposed to all constructors of a datatype. For large data
types describing, for instance, programming languages or file formats this can make
a large difference in the number of cases that has to be specified.

3.2   Word Replacement

Suppose you are in the publishing business and are responsible for the systematic
layout of publications. Authors do not systematically capitalize words in titles---"Word
replacement" instead of Word Replacement"--- and you want to correct this. We solve
this problem in two steps. The first step is to define the capitalization of a single word:

module demo::WordReplacement
import String;

public str capitalize(str word)
{
   if(/^<letter:[a-z]><rest:.*$>/ := word) 
      return toUpperCase(letter) + rest;
   else
     return word;
}

The function capitalize takes a string as input and capitalizes its first character
if that is a letter. This is done using a regular expression match that anchors the

 EASY Meta-programming with Rascal 243 



match at the beginning (^), expects a single letter and assigns it to the variable
letter (letter:[a-z]) followed by an arbitrary sequence of letters until the end
of the string that is assigned to the variable rest (<rest:.*$>).
If the regular expression matches we return a new string with the first letter
capitalized.
Otherwise we return the word unmodified.

The second step is to capitalize all the words in a string. Here are two solutions:

// continuing module demo::WordReplacement

public str capAll1(str S)
{
 result = "";
 while (/^<before:\W*><word:\w+><after:.*$>/ := S) { 
    result += before + capitalize(word);
    S = after;
  }
  return result;
}

public str capAll2(str S)
{
   return visit(S){
     case /<word:\w+>/i  => capitalize(word)
   };
}

In the first solution capAll1 we just loop over all the words in the string and
capitalize each word. The variable result is used to collect the successive
capitalized words. Here we use \W do denote non-word characters and\w for word
characters.
In the second solution we use a visit expression to visit all the substrings of S.
Each matching case advances the substring by the length of the pattern it matches
and replaces that pattern by another string. If no case matches the next substring
is tried.
The single case matches a word (note that \w matches a word character).
When the case matches a word, it is replaced by a capitalized version. The modifier
i at the end of the regular expressions denotes case-insensitive matching.

We can apply this all as follows:

rascal> import demo::WordReplacement;
ok

rascal> capitalize("rascal");
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str: "Rascal"

rascal> capAll1("rascal is great");
str: "Rascal Is Great"

This example illustrates that regular expressions are an integral part of the language
and can be used in control statements (if, while), explicit pattern match (:=) and as
patterns in cases of a visit. Their use in the EASY domain is:

• Extracting lexical facts from source code (e.g., identifiers, call statements).

• Parsing DSLs with a strong lexical bias, e.g., markup languages.

• Matching lexical entities in a parse tree, e.g., find all assignments to variables
containing the substring "year".

3.3   Template Programming

Many websites and code generators use template-based code generation. They start from
a text template that contains embedded variables and code. The template is "executed"
by replacing the embedded variables and code by their string value. A language like
PHP is popular for this feature. Let's see how we can do this in Rascal. Given a mapping
from field names to their type, the task at hand is to generate a Java class that contains
those fields and corresponding getters and setters. Given a mapping

public map[str, str] fields = (
   "name" : "String",
   "age" : "Integer",
   "address" : "String"
);

we want the call

genClass("Person", fields)

to produce the following output:

    public class Person {

        private Integer age;
        public void setAge(Integer age) {
          this.age = age;
        }
        public Integer getAge() {
          return age;
        }
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        private String name;
        public void setName(String name) {
          this.name = name;
        }
        public String getName() {
          return name;
        }

        private String address;
        public void setAddress(String address) {
          this.address = address;
        }
        public String getAddress() {
          return address;
        }

    }

This is achieved by the following definition of genClass:

module demo::StringTemplate

import String;

public str capitalize(str s) {
  return toUpperCase(substring(s, 0, 1)) + 
         substring(s, 1);
}

public str genClass(str name, map[str,str] fields) {
 return "
   public class <name > {
     <for (x <- fields) {
       str t = fields[x];
       str n = capitalize(x);>
       private <t> <x>;
       public void set<n>(<t> <x>) {
         this.<x> = <x>;
       }
       public <t> get<n>() {
         return <x>;
       }
     <}>
   }
";
}
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This code makes extensive use of Rascal's string interpolation mechanism. All
characters inside the string quotes (" and ") are taken literally, except for interpolations
that are indicated by angle brackets(< and >). An interpolation is an expression that
is evaluated when the string is constructed; the value of the expression replaces the
interpolation in the resulting string. Interpolation may contain nested interpolations. The
above example contains several examples:

• The interpolation <name > consists of a single variable and will, in this example,
be replaced by "Person ". Observe that spaces and layout are significant inside
interpolations.

• The interpolation <for (x <- fields){ str t = fields[x]; str
n = capitalize(x);> ... <}> consists of a complete for statement that
will generate all field names, getters and setters. Observe that the statement consists
of three parts:

• The header <for (x <- fields){ str t = fields[x]; str n = capitalize(x);>. Inside the
header spaces are not significant.

• The body private <t> <x> ... . Inside the body spaces are significant.
Embedded interpolations may occur inside the body. Observe how these embedded
interpolations access the map fields and customize the template for a Java class.

• The closing brace <}> of the for statement.

This example illustrates how string templates can be used for code generation tasks.

3.4   A Domain-Specific Language for Finite State Machines

Finite State Machines (FSMs) are a universal device in Computer Science and are
used to model problems ranging from lexical tokens to concurrent processes. An FSM
consists of named states and labeled transitions between states. An example is shown
in Figure 1.6, “Example of a Finite State Machine”. This example was suggested by
G. Hedin at GTTSE09.

Fig. 1.6. Example  of a Finite  State  Machine

This same information can be represented in textual form as follows:

finite-state machine
    state S1;
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    state S2;
    state S3;
    trans a: S1 -> S2;
    trans b: S2 -> S1;
    trans a: S1 -> S3

and here is where the idea is born to design a Domain-Specific Language for finite state
machines (aptly called FSM). The design of a DSL always proceeds in three steps:

1. Do domain analysis. Explore the domain and make an inventory of the relevant
concepts and their interactions.

2. Define syntax. Design a textual syntax to represent these concepts and interactions.

3. Define operations. Define operations on DSL programs. This may be, for example,
typechecking, validation, or execution.

We will now apply these steps to the FSM domain.

Do domain analysis.  We assume that the FSM domain is sufficiently known. The
concepts are states and labeled transitions.

Define syntax.  We define a textual syntax for FSMs. This syntax is written in
the Syntax Definition Formalism SDF. See http://www.meta-environment.org/Meta-
Environment/Documentation for tutorials and manuals for SDF. The syntax definition
looks as follows:

module demo/StateMachine/Syntax

imports basic/Whitespace
imports basic/IdentifierCon

exports
  context-free start-symbols
    FSM
  
  sorts FSM Decl Trans State IdCon

  context-free syntax
    "state" IdCon                         -> State
    "trans" IdCon ":" IdCon  "->" IdCon   -> Trans
    State                                 -> Decl
    Trans                                 -> Decl
    "finite-state" "machine" {Decl ";"}+  -> FSM

Two standard modules for whitespace and identifiers are imported and next a fairly
standard grammar for state machines is defined. Observe that SDF syntax rules are
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written in (horizontally) reverse order as compared to standard BNF notation, with the
nonterminal appearing on the right.

Define Operations.  There are various operations one could define on a FSM:
executing it for given input tokens, reducing a non-deterministic automaton to a
deterministic one, and so on. Here we select a reachability check on FSMs as an
example.

We start with the usual imports and define a function getTransitions that extracts
all transitions from an FSM:

module demo::StateMachine::CanReach

import demo::StateMachine::Syntax;
import Relation;
import Map;
import IO;

// Extract from a given FSM all transitions as a relation

public rel[str, str] getTransitions(FSM fsm){
   return
   {<"<from>", "<to>"> | 
    /`trans <IdCon a>: <IdCon from> -> <IdCon to>` <- fsm 
   };
}

The function getTransitions illustrates several issues. Given a concrete FSM, a
deep pattern match (/) is done searching for trans constructs. Since FSM is a type that
corresponds to a nonterminal, we use a concrete pattern to achieve this: it is enclosed
by backquotes (` and `) and consists of a grammar rule with embedded variable
declarations. For each match three identifiers (IdCon) are extracted and assigned to
the variables a, from, respectively, to. Next from and to are converted to a string
(using the string interpolations "<from>" and "<to>") and finally they are placed in
a tuple in the resulting relation. The net effect is that transitions encoded in the syntax
tree of fsm are collected in a relation for further processing.

Next, we compute all reachable states in the function canReach:

// continuing module demo::StateMachine::CanReach

public map[str, set[str]] canReach(FSM fsm){
  transitions = getTransitions(fsm);
  return
    ( s: (transitions+)[s] | 
      str s <- carrier(transitions) 
    );
}
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Here str s <- carrier(transitions) enumerates all elements that occur in
the relations that is extracted from fsm. A map comprehension is used to construct a
map from each state to all states that can be reached it. Transitive closure is denoted by
a postfix +-operator and transitions+ is thus the transitive closure of the transition
relation and (transitions+)[s] gives the image of that closure for a given state;
in other words all states that can be reached from it.

Finally, we declare an example FSM (observe that it uses FSM syntax in Rascal code!):

// continuing module demo::StateMachine::CanReach

public FSM example = 
       `finite-state machine
          state S1;
          state S2;
          state S3;
          trans a: S1 -> S2;
          trans b: S2 -> S1;
          trans a: S1 -> S3`;

Testing the above functions gives the following results:

rascal> import demo::StateMachine::CanReach;
ok

rascal> getTransitions(example);

rel[str,str]: {<"S1", "S2">, <"S2", "S1">, <"S1", "S3">}
rascal> canReach(example);

map[str: set[str]: ("S1" : {"S1", "S2", "S3"}, 
                    "S2" : {"S1", "S2", "S3"},
                    "S3" : {})

This example illustrates:

• The use of concrete syntax to define a DSL, e.g., demo/StateMachine/
Syntax.

• The use of non-terminals of the grammar as types in a Rascal program, e.g., FSM.

• The use of quoted DSL fragments in Rascal code, e.g., example.

• Extraction of information from a parsed DSL program, e.g., getTransitions.

• Representation of this information as relation.

• Description of a reachability check on this relation (e.g., canReach).
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4   Problem Solving Strategies

Before we study more complicated examples, it is useful to discuss some general
problem solving strategies that are relevant in Rascal's application domain. Rascal and
supporting libraries and tools were specifically designed to support these strategies.

To appreciate these general strategies, it is good to keep some specific problem areas
in mind:

• Documentation generation: extract facts from source code and use them to generate
textual documentation. A typical example is generating web-based documentation
for legacy languages like Cobol and PL/I.

• Metrics calculation: extract facts from source code (and possibly other sources like
test runs) and use them to calculate code metrics. Examples are cohesion and coupling
of modules and test coverage.

• Model extraction: extract facts from source code and use them to construct an
abstract model of the source code. An example is extracting lock and unlock calls
from source code and building an automaton that guarantees that lock/unlock occurs
in pairs along every control flow path.

• Model-based code generation: given a high-level model of a software system,
described in UML or some other modelling language, transform this model into
executable code. UML-to-Java code generation falls in this category.

• Source-to-source transformation: given certain objectives like removing
deprecated language features, upgrading to newer APIs and the like, perform large-
scale, fully automated, source code transformation.

• Interactive refactoring: given known "code smells" allow a user to interactively
indicate how these smells should be removed. The refactoring features in Eclipse and
Visual Studio are examples.

With these examples in mind, we can study the overall problem solving workflow as
shown in Figure 1.7, “General 3-Phased Problem Solving Workflow”. It consists of
three optional phases:

• If extraction is needed to solve the problem, then define the extraction phase, see
Section 4.1, “Defining Extraction”.

• If analysis is needed, then define the analysis phase, see Section 4.2, “Defining
Analysis”.

• If synthesis is needed, then define the synthesis phase, see Section 4.3, “Defining
Synthesis”.
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Fig. 1.7. General  3-Phased  Problem  Solving Workflow

Each phase is subject to a validation and improvement workflow as shown in Figure 1.8,
“Validation and Improvement Workflow”. Each individual phase as well as the
combination of phases may introduce errors and has thus to be carefully validated. In
combination with the detailed strategies for each phase, this forms a complete approach
for problem solving and validation using Rascal.

Fig. 1.8. Validation  and  Improvement  Workflow

A major question in every problem solving situation is how to determine the
requirements for each phase of the solution. For instance, how do we know what to
extract from the source code if we do not know what the desired end results of the
project are? The standard solution is to use a workflow for requirements gathering that
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is the inverse of the phases needed to solve the complete problem. This is shown in
Figure 1.9, “Requirements Workflow” and amounts to the phases:

• Requirements of the synthesis phase. This amounts to making an inventory of the
desired results of the whole project and may include generated source code, abstract
models, or visualizations.

• Requirements of the analysis phase. Once these results of the synthesis phase are
known, it is possible to list the analysis results that are needed to synthesize desired
results. Possible results of the analysis phase include type information, structural
information of the original source.

• Requirements of the extraction phase. As a last step, one can make an inventory
of the facts that have to be extracted to form the starting point for the analysis phase.
Typical facts include method calls, inheritance relations, control flow graphs, usage
patterns of specific library functions or language constructs.

Fig. 1.9. Requirements  Workflow

You will have to identify requirements for each phase when you apply them to a specific
example from the list given earlier.

When these requirements have been established, it becomes much easier to actually
carry out the project using the three phases of Figure 1.7, “General 3-Phased Problem
Solving Workflow”.

4.1  Defining Extraction

How can we extract facts from the System under Investigation (SUI) that we are
interested in? The extraction workflow is shown in Figure 1.10, “Extraction Workflow”
and consists of the following steps:
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Fig. 1.10. Extraction  Workflow

• First and foremost we have to determine which facts we need. This sounds trivial,
but it is not. A common approach is to use look-ahead and to sketch the queries that
are likely to be used in the analysis phase and to determine which facts are needed
for them. Start with extracting these facts and refine the extraction phase when the
analysis phase is completely defined.

• If relevant facts are already available (and they are reliable!) then we are done. This
may happen when you are working on a system that has already been analyzed by
others.

• Otherwise you need the source code of the SUI. This requires:
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• Checking that all sources are available (and can be compiled by the host system
on which they are usually compiled and executed). Due to missing or unreliable
configuration management on the original system this may be a labour-intensive
step that requires many iterations.

• Determining in which languages the sources are written. In larger systems it is
common that three or more different languages are being used.

• If there are reliable third-party extraction tools available for this language mix, then
we only have to apply them and we are done. Here again, validation is needed that
the extracted facts are as expected.

• The extraction may require syntax analysis. This is the case when more structural
properties of the source code are needed such as the flow-of-control, nesting of
declarations, and the like. There two approaches here:

• Use a third-party parser, convert the source code to parse trees and do the further
processing of these parse trees in Rascal. The advantage is that the parser can be
re-used, the disadvantage is that data conversion is needed to adapt the generated
parse tree to Rascal. Validate that the parser indeed accepts the language the SUI
is written in, since you will not be the first who has been bitten by the language
dialect monster when it turns out that the SUI uses a local variant that slightly
deviates from a mainstream language.

• Use an existing SDF definition of the source language or write your own definition.
In both cases you can profit from Rascal's seamless integration with SDF. Be
aware, however, that writing a grammar for a non-trivial language is a major
undertaking and may require weeks to months of work. Whatever approach you
choose, validate the resulting grammar.

• The extraction phase may only require lexical analysis. This happens when more
superficial, textual, facts have to be extracted like procedure calls, counts of certain
statements and the like. Use Rascal's full regular expression facilities to do the lexical
analysis.

It may happen that the facts extracted from the source code are wrong. Typical error
classes are:

• Extracted facts are wrong: the extracted facts incorrectly state that procedure P calls
procedure Q but this is contradicted by a source code inspection. This may happen
when the fact extractor uses a conservative approximation when precise information
is not statically available. In the C language, when procedure P performs an indirect
call via a pointer variable, the approximation may be that P calls all procedures in
the program.

• Extracted facts are incomplete: for example, the inheritance between certain classes
in Java code is missing.
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The strategy to validate extracted facts differs per case but here are three possibilities:

• Post process the extracted facts (using Rascal, of course) to obtain trivial facts about
the source code such as total lines of source code and number of procedures, classes,
interfaces and the like. Next validate these trivial facts with tools like wc (word and
line count), grep (regular expression matching) and others.

• Do a manual fact extraction on a small subset of the code and compare this with the
automatically extracted facts.

• Use another tool on the same source and compare results whenever possible. A typical
example is a comparison of a call relation extracted with different tools.

The Rascal features that are most frequently used for extraction are:

• Regular expression patterns to extract textual facts from source code.

• Syntax definitions and concrete patterns to match syntactic structures in source code.

• Pattern matching (used in many Rascal statements).

• Visits to traverse syntax trees and to locally extract information.

• The repertoire of built-in data types (like lists, maps, sets and relations) to represent
the extracted facts.

A large diversity of problems can be encountered in the extraction phase. Rascal tries
to provide a uniform framwork with the right tools to solve them.

4.2   Defining Analysis

The analysis workflow is shown in Figure 1.11, “Analysis Workflow” and consists of
two steps:

• Determine the results that are needed for the synthesis phase.

• Write the Rascal code to perform the analysis. This may amount to:

• Reordering extracted facts to make them more suitable for the synthesis phase.

• Enriching extracted facts. Examples are computing transitive closures of extracted
facts (e.g., A may call B in one or more calls), or performing data reduction by
abstracting aways details (i.e., reducing a program to a finite automaton).

• Combining enriched, extracted, facts to create new facts.

As before, validate, validate and validate the results of analysis. Essentially the same
approach can be used as for validating the facts. Manual checking of answers on random
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samples of the SUI may be mandatory. It also happens frequently that answers inspire
new queries that lead to new answers, and so on.

Fig. 1.11. Analysis  Workflow

The Rascal features that are frequently used for analysis are:

• List, set and map comprehensions.

• The built-in operators and library functions, in particular for lists, maps, sets and
relations.

• Pattern matching (used in many Rascal statements).

• Visits and switches to further process extracted facts.

• The solve statement for constraint solving.

• Rewrite rules to simplify results and to enforce constraints.

4.3   Defining Synthesis

Results are synthesized as shown in Figure 1.12, “Synthesis Workflow”. This consists
of the following steps:

• Determine the results of the synthesis phase. A wide range of results is possible
including:

• Generated source code.

• Generated abstract representations, like finite automata or other formal models that
capture properties of the SUI.

• Generated data for visualizations that will be used by visualization tools.

• If source code is to be generated, there are various options.

• Print strings that are customized using string interpolation.
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• First generate the desired output in the form of an abstract syntax tree and then
convert this tree to a string (perhaps using forms of pretty printing).

• Generate the desired output directly as syntactically correct structured text. This
is achieved by using a grammar of the target source language and composing
syntactically correct program fragments during code generation. The grammar
defines the structure of parse trees for the target language and guarantees the
construction of type correct parse tree fragments. This approach hence guarantees
the generation of syntactically correct source code as opposed to code generation
using print statements or string templates.

• If other output is needed (e.g., an automaton or other formal structure) write data
declarations to represent that output.

• Finally, write functions and rewrite rules that generate the desired results.

Fig. 1.12. Synthesis  Workflow

The Rascal features that are frequently used for synthesis are:

• Syntax definitions or data declarations to define output formats.

• Pattern matching (used in many Rascal statements).
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• Visits of data structures and on-the-fly code generation.

• Rewrite rules.

5   Larger Examples

Now we will have a closer look at some larger applications of Rascal. We start with
a call graph analysis in Section 5.1, “Call Graph Analysis” and then continue with the
analysis of the component structure of an application in Section 5.2, “Analyzing the
Component Structure of an Application” and of Java systems in Section 5.3, “Analyzing
the Structure of Java Systems”. Next we move on to the detection of uninitialized
variables in Section 5.4, “Finding Uninitialized and Unused Variables in a Program”.
As an example of computing code metrics, we describe the calculation of McCabe's
cyclomatic complexity in Section 5.5, “McCabe Cyclomatic Complexity”. Several
examples of dataflow analysis follow in Section 5.6, “Dataflow Analysis”. A description
of program slicing concludes the chapter, see Section 5.7, “Program Slicing”.

5.1   Call Graph Analysis

Suppose a mystery box ends up on your desk. When you open it, it contains a huge
software system with several questions attached to it:

• How many procedure calls occur in this system?

• How many procedures does it contains?

• What are the entry points for this system, i.e., procedures that call others but are not
called themselves?

• What are the leaves of this application, i.e., procedures that are called but do not make
any calls themselves?

• Which procedures call each other indirectly?

• Which procedures are called directly or indirectly from each entry point?

• Which procedures are called from all entry points?

Let's see how these questions can be answered using Rascal.

5.1.1   Preparations

To illustrate this process consider the workflow in Figure 1.13, “Workflow for analyzing
mystery box”. First we have to extract the calls from the source code. Rascal is very
good at this, but to simplify this example we assume that this call graph has already
been extracted. Also keep in mind that a real call graph of a real application will
contain thousands and thousands of calls. Drawing it in the way we do later on in
Figure 1.14, “Graphical representation of the calls relation” makes no sense since we
get a uniformly black picture due to all the call dependencies. After the extraction phase,
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we try to understand the extracted facts by writing queries to explore their properties.
For instance, we may want to know how many calls there are, or how many procedures.
We may also want to enrich these facts, for instance, by computing who calls who in
more than one step. Finally, we produce a simple textual report giving answers to the
questions we are interested in.

Fig. 1.13. Workflow  for  analyzing  mystery  box

Now consider the call graph shown in Figure 1.14, “Graphical representation of the
calls relation”. This section is intended to give you a first impression what can be
done with Rascal.

Fig. 1.14. Graphical  representation  of the  calls  relation

Rascal supports basic data types like integers and strings which are sufficient to
formulate and answer the questions at hand. However, we can gain readability by
introducing separately named types for the items we are describing. First, we introduce
therefore a new type proc (an alias for strings) to denote procedures:

rascal> alias proc = str;
ok
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Suppose that the following facts have been extracted from the source code and are
represented by the relation Calls:

rascal> rel[proc, proc] Calls = 
   { <"a", "b">, <"b", "c">, <"b", "d">, <"d", "c">, 
     <"d","e">, <"f", "e">, <"f", "g">, <"g", "e">
   };
rel[proc,proc]: { <"a", "b">, <"b", "c">, <"b", "d">, 
                  <"d", "c">, <"d","e">, <"f", "e">, 
                  <"f", "g">, <"g", "e">}

This concludes the preparatory steps and now we move on to answer the questions.

5.1.2   How Many Procedure Calls Occur in This System?

To determine the numbers of calls, we simply determine the number of tuples in the
Calls relation, as follows. First, we need the Relation library so we import it:

rascal> import Relation;
ok

next we describe a new variable and calculate the number of tuples:

rascal> nCalls = size(Calls);
int: 8

The library function size determines the number of elements in a set or relation. In
this example, nCalls will get the value 8.

5.1.3   How Many Procedures Are Contained in It?

We get the number of procedures by determining which names occur in (the first or
second component of) the tuples in the relation Calls and then determining the number
of names:

rascal> procs = carrier(Calls);
set[proc]: {"a", "b", "c", "d", "e", "f", "g"}

rascal> nprocs = size(procs);
int: 7

The built-in function carrier determines all the values that occur in the tuples of a
relation. In this case, procs will get the value {"a", "b", "c", "d", "e",
"f", "g"} and nprocs will thus get value 7. A more concise way of expressing
this would be to combine both steps:

rascal> nprocs = size(carrier(Calls));
int: 7
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5.1.4   What Are the Entry Points for This System?

The next step in the analysis is to determine which entry points this application has,
i.e., procedures which call others but are not called themselves. Entry points are useful
since they define the external interface of a system and may also be used as guidance to
split a system in parts. The top of a relation contains those left-hand sides of tuples in
a relation that do not occur in any right-hand side. When a relation is viewed as a graph,
its top corresponds to the root nodes of that graph. Similarly, the bottom of a relation
corresponds to the leaf nodes of the graph. Using this knowledge, the entry points can
be computed by determining the top of the Calls relation:

rascal> import Graph;
ok

rascal> entryPoints = top(Calls);
set[proc]: {"a", "f"}

In this case, entryPoints is equal to {"a", "f"}. In other words, procedures
"a" and "f" are the entry points of this application.

5.1.5   What Are the Leaves of This Application?

In a similar spirit, we can determine the leaves of this application, i.e., procedures that
are being called but do not make any calls themselves:

rascal> bottomCalls = bottom(Calls);
set[proc]: {"c", "e"}

In this case, bottomCalls is equal to {"c", "e"}.

5.1.6   Which Procedures Call Each Other Indirectly?

We can also determine the indirect calls between procedures, by taking the transitive
closure of the Calls relation, written as Calls+. Observe that the transitive closure
will contain both the direct and the indirect calls.

rascal> closureCalls = Calls+;
rel[proc, proc]: {<"a", "b">, <"b", "c">, <"b", "d">, 
                  <"d","e">, <"f", "e">, 
                  <"f", "g">, <"g", "e">, <"a", "c">, 
                  <"a", "d">, <"b", "e">, <"a", "e">}

It is easy to get rid of all the direct calls in the above result, by subtracting (using the
set difference operator -) the original call relation from it:

rascal> indirectClosureCalls = closureCalls - Calls;
rel[proc, proc]: {<"a", "c">, <"a", "d">, 
                  <"b", "e">, <"a", "e">}
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5.1.7   Which Procedures Are Called Directly or Indirectly from Each Entry

We now know the entry points for this application ("a" and "f") and the indirect call
relations. Combining this information, we can determine which procedures are called
from each entry point. This is done by indexing closureCalls with an appropriate
procedure name. The index operator yields all right-hand sides of tuples that have a
given value as left-hand side. This gives the following:

rascal> calledFromA = closureCalls["a"];
set[proc]: {"b", "c", "d", "e"}

and

rascal> calledFromF = closureCalls["f"];
set[proc]: {"e", "g"}

5.1.8   Which procedures are called from all entry points?

Finally, we can determine which procedures are called from both entry points by taking
the intersection (&) of the two sets calledFromA and calledFromF:

rascal> commonProcs = calledFromA & calledFromF;
set[proc]: {"e"}

In other words, the procedures called from both entry points are mostly disjoint except
for the common procedure "e".

5.1.9   Wrap-Up

These findings can be verified by inspecting a graph view of the calls relation as
shown in Figure 1.14, “Graphical representation of the calls relation”. Such a visual
inspection does not scale very well to large graphs and this makes the above form of
analysis particularly suited for studying large systems.

This example illustrates the following:

• Call dependencies can easily be represented as relations.

• By design, Rascal contains the full repertoire of operators and library functions for
manipulating relations.

• This style of programming enables flexible exploration of given data.

5.2  Analyzing the Component Structure of an Application

A frequently occurring problem is that we know the call relation of a system but that we
want to understand it at the component level rather than at the procedure level. If it is
known to which component each procedure belongs, it is possible to lift the call relation

Point?
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to the component level as proposed in [Kri99]. Actual lifting amounts to translating
each call between procedures to a call between components. This is described in the
following module:

module demo::Lift

alias proc = str;
alias comp = str;

public rel[comp,comp] lift(rel[proc,proc] aCalls, 
                           rel[proc,comp] aPartOf){
   return 
      { <C1, C2> | <proc P1, proc P2> <- aCalls, 
                   <comp C1, comp C2> <- aPartOf[P1] * 
                                         aPartOf[P2]
      };
}

For each pair <P1,P2> in the Calls relation we compose the corresponding parts
aPartOf[P1] and aPartOf[P2] (each yielding a set of components) into a new
relation of calls between components. This relation is added pair by pair to the result.

Let's now apply this. First import the above module, and define a call relation and a
partof relation:

rascal> import demo::Lift;
ok

rascal> Calls = {<"main", "a">, <"main", "b">, <"a", "b">, 
                 <"a", "c">, <"a", "d">, <"b", "d">
                };
rel[str,str] : {<"main", "a">, <"main", "b">, <"a", "b">, 
                <"a", "c">, <"a", "d">, <"b", "d">
               }

rascal> Components = {"Appl", "DB", "Lib"};
set[str] : {"Appl", "DB", "Lib"}

rascal> PartOf = {<"main", "Appl">, <"a", "Appl">, 
                  <"b", "DB">, <"c", "Lib">, 
                  <"d", "Lib">};
rel[str,str] : {<"main", "Appl">, <"a", "Appl">, 
                <"b", "DB">, <"c", "Lib">, 
                <"d", "Lib">}

The lifted call relation between components is now obtained by:
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rascal> ComponentCalls = lift(Calls, PartOf);
rel[str,str] : {<"DB", "Lib">, <"Appl", "Lib">, 
                <"Appl", "DB">, <"Appl", "Appl">}

The relevant relations for this example are shown in Figure 1.15, “(a) Calls; (b)
PartOf; (c) ComponentCalls.”.

Fig. 1.15. (a) Calls ; (b) PartOf ; (c) ComponentCalls .

This example illustrates the following:

• A comprehension to build a relation, e.g., as done in lift.

• Relation projection, e.g., aPartOf[P1].

• Set product, e.g., aPartOf[P1] * aPartOf[P2].

5.3   Analyzing the Structure of Java Systems

Now we consider the analysis of Java systems (inspired by [BNL05]). Suppose that the
type class is defined as follows

alias class = str;

and that the following relations are available about a Java application:

• rel[class,class] CALL: If <C1, C2> is an element of CALL, then some
method of C2 is called from C1.

• rel[class,class] INHERITANCE: If <C1, C2> is an element of
INHERITANCE, then class C1 either extends class C2 or C1 implements interface C2.

• rel[class,class] CONTAINMENT: If <C1, C2> is an element of
CONTAINMENT, then one of the fields of class C1 is of type C2.

To make this more explicit, consider the class LocatorHandle from the JHotDraw
application (version 5.2) as shown here:

package CH.ifa.draw.standard;
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import java.awt.Point;
import CH.ifa.draw.framework.*;
/**
 * A LocatorHandle implements a Handle by delegating the 
 * location requests to a Locator object.
 */
public class LocatorHandle extends AbstractHandle {
    private Locator       fLocator;
    /**
     * Initializes the LocatorHandle with the 
     * given Locator.
     */
    public LocatorHandle(Figure owner, Locator l) {
        super(owner);
        fLocator = l;
    }
    /**
     * Locates the handle on the figure by forwarding 
     * the request to its figure.
     */
    public Point locate() {
        return fLocator.locate(owner());
    }
}

It leads to the addition to the above relations of the following tuples:

• To CALL the pairs <"LocatorHandle", "AbstractHandle"> and
<"LocatorHandle", "Locator"> will be added.

• To INHERITANCE the pair <"LocatorHandle", "AbstractHandle">
will be added.

• To CONTAINMENT the pair <"LocatorHandle", "Locator"> will be added.

Cyclic structures in object-oriented systems makes understanding hard. Therefore it is
interesting to spot classes that occur as part of a cyclic dependency. Here we determine
cyclic uses of classes that include calls, inheritance and containment. This is achieved
as follows:

rel[class,class] USE = CALL + CONTAINMENT + INHERITANCE;
set[str] ClassesInCycle =
   {C1 | <class C1, class C2> <- USE+, C1 == C2};

First, we define the USE relation as the union of the three available relations CALL,
CONTAINMENT and INHERITANCE. Next, we consider all pairs <C1, C2> in the
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transitive closure of the USE relation such that C1 and C2 are equal. Those are precisely
the cases of a class with a cyclic dependency on itself. Probably, we want to know not
only which classes occur in a cyclic dependency, but we also which classes are involved
in such a cycle. In other words, we want to associate with each class a set of classes that
are responsible for the cyclic dependency. This can be done as follows.

rel[class,class] USE = CALL + CONTAINMENT + INHERITANCE;
set[class] CLASSES = carrier(USE);
rel[class,class] USETRANS = USE+;
rel[class,set[class]] ClassCycles = 
   {<C, USETRANS[C]> | class C <- CLASSES, 
                       <C, C> in USETRANS };

First, we introduce two new shorthands: CLASSES and USETRANS. Next, we consider
all classes C with a cyclic dependency and add the pair <C, USETRANS[C]> to the
relation ClassCycles. Note that USETRANS[C] is the right image of the relation
USETRANS for element C, i.e., all classes that can be called transitively from class C.

This example illustrates the following:

• Representation of facts related to declarations in Java programs.

• Manipulation of these facts using comprehensions and relational operators.

One of the Rascal libraries gives access to the Eclipse JDT and provides information
about declarations and types of Java programs in relational form. This is briefly
illustrated in Section 5.8, “Visualizing Extracted Information”.

5.4   Finding Uninitialized and Unused Variables in a Program

Consider the following program in the toy language Pico: (This is an extended version
of the example presented earlier in [Kli03].)

[ 1] begin declare x : natural, y : natural,
[ 2]              z : natural, p : natural;
[ 3]  x := 3;
[ 4]  p := 4;
[ 5]  if q then
[ 6]        z := y + x
[ 7]  else
[ 8]        x := 4
[ 9]  fi;
[10]  y := z
[11] end

Inspection of this program shows that some of the variables are being used before they
have been initialized. The variables in question are q (line 5), y (line 6), and z (line
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10). It is also clear that variable p is initialized (line 4), but is never used. How can we
automate these kinds of analysis? Recall from Section 1.1, “The EASY Paradigm” that
we follow the Extract-Analyze-SYnthesize paradigm to approach such a problem. The
first step is to determine which elementary facts we need about the program. For this
and many other kinds of program analysis, we need at least the following:

• The control flow graph of the program. We represent it by a graph PRED (for
predecessor) which relates each statement with its predecessors.

• The definitions of each variable, i.e., the program statements where a value is assigned
to the variable. It is represented by the relation DEFS.

• The uses of each variable, i.e., the program statements where the value of the variable
is used. It is represented by the relation USES.

In this example, we will use line numbers to identify the statements in the program.
Assuming that there is a tool to extract the above information from a program text, we
get the following for the above example:

module demo::Uninit
import Relation;
import Graph;

alias expr = int;
alias varname = str;

public expr ROOT = 1;

public graph[expr] PRED = { <1,3>, <3,4>, <4,5>, <5,6>, 
                            <5,8>, <6,10>, <8,10> };

public rel[varname,expr] DEFS = { <"x", 3>, <"p", 4>, 
                                  <"z", 6>, <"x", 8>, 
                                  <"y", 10> };

public rel[varname, expr] USES = { <"q", 5>, <"y", 6>, 
                                   <"x", 6>, <"z", 10> };

This concludes the extraction phase. Next, we have to enrich these basic facts to obtain
the initialized variables in the program. So, when is a variable V in some statement S
initialized? If we execute the program (starting in ROOT), there may be several possible
execution paths that can reach statement S. All is well if all these execution path contain
a definition of V. However, if one or more of these path do not contain a definition of
V, then V may be uninitialized in statement S. This can be formalized as follows:

// module demo::Unit continued
public rel[varname,expr] UNINIT = 
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   { <V,E> | <varname V, expr E> <- USES, 
              E in reachX(PRED, {ROOT}, DEFS[V])
   };

We analyze this definition in detail:

• <varname V, expr E> : USES enumerates all tuples in the USES relation.
In other words, we consider the use of each variable in turn.

• E in reachX(PRED, {ROOT}, DEFS[V]) is a test that determines
whether expression E is reachable from the ROOT without encountering a definition
of variable V.

• PRED is the relation for which the reachability has to be determined.

• {ROOT} represents the initial set of nodes from which all path should start.

• DEFS[V] yields the set of all statements in which a definition of variable V occurs.
These nodes form the exclusion set for reachX: no path will be extended beyond
an element in this set.

• The result of reachX(PRED, {ROOT}, DEFS[V]) is a set that contains all
nodes that are reachable from the ROOT.

• Finally, E in reachX(PRED, {ROOT}, DEFS[V]) tests whether
expression E can be reached from the ROOT.

• The net effect is that UNINIT will only contain pairs that satisfy the test just
described.

When we execute the resulting Rascal code (i.e., the declarations of ROOT, PRED,
DEFS, USES and UNINIT), we get as value for UNINIT:

rascal> import demo::Uninit;
ok

rascal> UNINIT;
rel[varname,expr]: {<"q", 5>, <"y", 6>, <"z", 10>}

and this is in concordance with the informal analysis given at the beginning of this
example.

As a bonus, we can also determine the unused variables in a program, i.e., variables that
are defined but are used nowhere. This is done as follows:

// module demo::Unit continued

public set[varname] UNUSED = domain(DEFS) - domain(USES);
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Taking the domain of the relations DEFS and USES yields the variables that are defined,
respectively, used in the program. The difference of these two sets yields the unused
variables, in this case {"p"}.

This example illustrates the following:

• Representation of the control flow graph as a relation.

• Reachability computations on that flow graph.

5.5   McCabe Cyclomatic Complexity

The cyclomatic complexity of a program is defined as e - n + 2, where e and n are
the number of edges and nodes in the control flow graph, respectively. It was proposed
by McCabe [McC76] as a measure of program complexity. Experiments have shown
that programs with a higher cyclomatic complexity are more difficult to understand and
test and have more errors. It is generally accepted that a program, module or procedure
with a cyclomatic complexity larger than 15 is too complex. Essentially, cyclomatic
complexity measures the number of decision points in a program. Given a control flow
in the form of a predecessor graph Graph[&T] PRED between elements of arbitrary
type &T, the cyclomatic complexity can be computed in Rascal as follows:

module demo::McCabe
import Graph;

public int cyclomaticComplexity(Graph[&T] PRED){
    return size(PRED) - size(carrier(PRED)) + 2;
}

The number of edges e is equal to the number of tuples in PRED. The number of nodes
n is equal to the number of elements in the carrier of PRED, i.e., all elements that occur
in a tuple in PRED.

This example illustrates that metrics on a (control flow) graph can be easily expressed.

5.6   Dataflow Analysis

Dataflow analysis is a program analysis technique that forms the basis for many
compiler optimizations. It is described in any text book on compiler construction, e.g.
[ASU86]. The goal of dataflow analysis is to determine the effect of statements on their
surroundings. Typical examples are:

• Dominators (Section 5.6.1, “Dominators”): which nodes in the flow dominate the
execution of other nodes?

• Reaching definitions (Section 5.6.2, “Reaching Definitions”): which definitions of
variables are still valid at each statement?
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• Live variables (Section 5.6.3, “Live Variables”): of which variables will the values
be used by successors of a statement?

• Available expressions: which expressions are computed along each path from the
start of the program to the current statement?

5.6.1   Dominators

A node d of a flow graph dominates a node n, if every path from the initial node of
the flow graph to n goes through d [ASU86] (Section 10.4). Dominators play a role
in the analysis of conditional statements and loops. The function dominators that
computes the dominators for a given flow graph PRED and an entry node ROOT is
defined as follows:

module demo::Dominators
import Set;
import Relation;
import Graph;

public rel[&T, set[&T]] dominators(rel[&T,&T] PRED, 
                                   &T ROOT)
{
  set[&T] VERTICES = carrier(PRED);
  return  { <V,  (VERTICES - {V, ROOT}) - 
                 reachX(PRED,{ROOT},{V})> 
            |  &T V <- VERTICES
          };
}

First, the auxiliary set VERTICES (all the statements) is computed. The relation
DOMINATES consists of all pairs <S, {S1,...,Sn}> such that

• Si is not an initial node or equal to S.

• Si cannot be reached from the initial node without going through S.

First import the above module and consider the sample flow graph PRED:

rascal> import demo::Dominators;
ok

rascal> rel[int,int] PRED = {
<1,2>, <1,3>,
<2,3>,
<3,4>,
<4,3>,<4,5>, <4,6>,
<5,7>,
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<6,7>,
<7,4>,<7,8>,
<8,9>,<8,10>,<8,3>,
<9,1>,
<10,7>
};

rel[int,int]: { <1,2>, <1,3>, ...

It is illustrated inFigure 1.16, “Flow graph”

Fig. 1.16. Flow graph

The result of applying dominators to it is as follows:

rascal> dominators(PRED);
rel[int,int]: {<1, {2, 3, 4, 5, 6, 7, 8, 9, 10}>, 
<2, {}>, 
<3, {4, 5, 6, 7, 8, 9, 10}>, 
<4, {5, 6, 7, 8, 9, 10}>, 
<5, {}>, 
<6, {}>, 
<7, {8, 9, 10}>, 
<8, {9, 10}>, 
<9, {}>, 
<10, {}>}

The resulting dominator tree is shown in Figure 1.17, “Dominator tree”. The dominator
tree has the initial node as root and each node d in the tree only dominates its
descendants in the tree.
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Fig. 1.17. Dominator  tree

Fig. 1.18. Flow graph  for  various  dataflow  problems

5.6.2   Reaching Definitions

We illustrate the calculation of reaching definitions using the example in Figure 1.18,
“Flow graph for various dataflow problems” which was inspired by [ASU86] (Example
10.15).

We introduce the notions definition and use to represent information about the
program. The former describes that a certain statement defines some variable and the
latter that a statement uses some variable. They are defined as follows:

module demo::ReachingDefs

import Relation;
import Graph;
import IO;
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public alias stat = int;
public alias var = str;
public alias def  = tuple[stat, var];
public alias use = tuple[stat,var];

public rel[stat,def] definition(rel[stat,var] DEFS){
  return {<S,<S,V>> | <stat S, var V> <- DEFS};
}

public rel[stat,def] use(rel[stat, var] USES){
  return {<S, <S, V>> | <stat S, var V> <- USES};
}

Let's use the following values to represent our example:

rascal> rel[stat,stat] PRED = { <1,2>, <2,3>, <3,4>, 
                                <4,5>, <5,6>, <5,7>, 
                                <6,7>, <7,4> };
rel[stat,stat]: { <1,2>, <2,3>, ...

rascal> rel[stat, var] DEFS = { <1, "i">, <2, "j">, 
                                <3, "a">, <4, "i">, 
                                <5, "j">, <6, "a">, 
                                <7, "i"> };
rel[stat,var]: { <1, "i">, <2, "j">, ...

rascal> rel[stat,var] USES = { <1, "m">, <2, "n">, 
                               <3, "u1">, <4, "i">, 
                               <5, "j">, <6, "u2">, 
                               <7, "u3"> };
rel[stat,var]: { <1, "m">, <2, "n">,...

The functions definition and use have the following effect on our sample data:

rascal> definition(DEFS);
rel[stat,def]: { <1, <1, "i">>, <2, <2, "j">>, 
                 <3, <3, "a">>, <4, <4, "i">>, 
                 <5, <5, "j">>, <6, <6, "a">>, 
                 <7, <7, "i">> }

rascal> use(USES);
rel[stat,def]: { <1, <1, "m">>, <2, <2, "n">>, 
                 <3, <3, "u1">>, <4, <4, "i">>, 
                 <5, <5, "j">>, <6, <6, "u2">>, 
                 <7, <7, "u3">> }
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Now we are ready to define an important new relation KILL. KILL defines which
variable definitions are undone (killed) at each statement and is defined by the following
function kill:

// continuing module demo::ReachingDefs

public rel[stat,def] kill(rel[stat,var] DEFS) { 
  return {<S1, <S2, V>> | <stat S1, var V> <- DEFS, 
                          <stat S2, V> <- DEFS, 
                          S1 != S2};
}

In this definition, all variable definitions are compared with each other, and for each
variable definition all other definitions of the same variable are placed in its kill set. In
the example, KILL gets the value

rascal> kill(DEFS);
rel[stat,def]: 
{ <1, <4, "i">>, <1, <7, "i">>, <2, <5, "j">>, 
  <3, <6, "a">>, <4, <1, "i">>, <4, <7, "i">>, 
  <5, <2, "j">>, <6, <3, "a">>, <7, <1, "i">>, 
  <7, <4, "i">>
}

and, for instance, the definition of variable i in statement 1 kills the definitions of i
in statements 4 and 7.

After these preparations, we are ready to formulate the reaching definitions problem
in terms of two relations IN and OUT. IN captures all the variable definitions that are
valid at the entry of each statement and OUT captures the definitions that are still valid
after execution of each statement. Intuitively, for each statement S, IN[S] is equal to
the union of the OUT of all the predecessors of S. OUT[S], on the other hand, is equal
to the definitions generated by S to which we add IN[S] minus the definitions that are
killed in S. Mathematically, the following set of equations captures this idea for each
statement:

IN[S] = UNIONP in predecessors of S OUT[P]

OUT[S] = DEF[S] + (IN[S] - KILL[S])

This idea can be expressed in Rascal quite literally:

public rel[stat, def] reachingDefinitions(
                            rel[stat,var] DEFS, 
                            rel[stat,stat] PRED){
  set[stat] STATEMENT = carrier(PRED);
  rel[stat,def] DEF  = definition(DEFS);
  rel[stat,def] KILL = kill(DEFS);
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  // The set of mutually recursive dataflow equations 
  // that has to be solved:
  
  rel[stat,def] IN = {};
  rel[stat,def] OUT = DEF;

  solve (IN, OUT) {
    IN  = {<S, D> | int S <- STATEMENT, 
                    stat P <- predecessors(PRED,S), 
                    def D <- OUT[P]};
    OUT = {<S, D> | int S <- STATEMENT, 
                    def D <- DEF[S] + (IN[S] - KILL[S])};
  };
  return IN;
}

First, the relations IN and OUT are declared and initialized. Next follows a solve
statement that uses IN and OUT as variables and contains two equations that
resemble the mathematical equations given above. Note the use of the library function
predecessors to obtain the predecessors of a statement for a given control flow
graph.

Fig. 1.19. Reaching  definitions  for  example

For our running example the results are as follows (see Figure 1.19, “Reaching
definitions for example”). Relation IN has as value:

{ <2, <1, "i">>, <3, <2, "j">>, <3, <1, "i">>, 
  <4, <3, "a">>, <4, <2, "j">>, <4, <1, "i">>, 
  <4, <7, "i">>, <4, <5, "j">>, <4, <6, "a">>, 
  <5, <4, "i">>, <5, <3, "a">>, <5, <2, "j">>, 
  <5, <5, "j">>, <5, <6, "a">>, <6, <5, "j">>, 
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  <6, <4, "i">>, <6, <3, "a">>, <6, <6, "a">>, 
  <7, <5, "j">>, <7, <4, "i">>, <7, <3, "a">>, 
  <7, <6, "a">>
}

If we consider statement 3, then the definitions of variables i and j from the preceding
two statements are still valid. A more interesting case are the definitions that can reach
statement 4:

• The definitions of variables a, j and i from, respectively, statements 3, 2 and 1.

• The definition of variable i from statement 7 (via the backward control flow path
from 7 to 4).

• The definition of variable j from statement 5 (via the path 5, 7, 4).

• The definition of variable a from statement 6 (via the path 6, 7, 4).

Relation OUT has as value:

{ <1, <1, "i">>, <2, <2, "j">>, <2, <1, "i">>, 
  <3, <3, "a">>, <3, <2, "j">>, <3, <1, "i">>, 
  <4, <4, "i">>, <4, <3, "a">>, <4, <2, "j">>, 
  <4, <5, "j">>, <4, <6, "a">>, <5, <5, "j">>, 
  <5, <4, "i">>, <5, <3, "a">>, <5, <6, "a">>, 
  <6, <6, "a">>, <6, <5, "j">>, <6, <4, "i">>, 
  <7, <7, "i">>, <7, <5, "j">>, <7, <3, "a">>, 
  <7, <6, "a">>
}

Observe, again for statement 4, that all definitions of variable i are missing in OUT[4]
since they are killed by the definition of i in statement 4 itself. Definitions for a and j
are, however, contained in OUT[4]. The result of reaching definitions computation is
illustrated in Figure 1.19, “Reaching definitions for example”. We will use the function
reachingDefinitions later on in Section 5.7, “Program Slicing” when defining
program slicing.

5.6.3   Live Variables

The live variables of a statement are those variables whose value will be used by the
current statement or some successor of it. The mathematical formulation of this problem
is as follows:

IN[S] =USE[S] + (OUT[S] - DEF[S])

OUT[S] = UNIONS' in successors of S IN[S']

The first equation says that a variable is live coming into a statement if either it is used
before redefinition in that statement or it is live coming out of the statement and is not
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redefined in it. The second equation says that a variable is live coming out of a statement
if and only if it is live coming into one of its successors.

This can be expressed in Rascal as follows:

public rel[stat,def] liveVariables(rel[stat, var] DEFS, 
                                   rel[stat, var] USES, 
                                   rel[stat,stat] PRED){
  set[stat] STATEMENT = carrier(PRED);
  rel[stat,def] DEF  = definition(DEFS);
  rel[stat,def] USE = use(USES);
 
  rel[stat,def] LIN = {};
  rel[stat,def] LOUT = DEF;

  solve(LIN, LOUT) {
    LIN  = { <S, D> | stat S <- STATEMENT,  
                      def D <- USE[S] + 
                               (LOUT[S] - (DEF[S]))};
    LOUT = { <S, D> | stat S <- STATEMENT,  
                      stat Succ <- successors(PRED,S), 
                      def D <- LIN[Succ] };
  }
  return LIN;
}

The results of live variable analysis for our running example are illustrated in
Figure 1.20, “Live variables for example”.

Fig. 1.20. Live variables  for  example
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5.6.4   Wrap Up

The examples in Section 5.6, “Dataflow Analysis” illustrate the following:

• The use of relations to represent control flow and dataflow graphs.

• The use of the solve statement to perform fixed point computations (in these examples
to solve dataflow equations).

5.7   Program Slicing

Program slicing is a technique proposed by Weiser [Wei84] for automatically
decomposing programs in parts by analyzing their data flow and control flow. Typically,
a given statement in a program is selected as the slicing criterion and the original
program is reduced to an independent subprogram, called a slice, that is guaranteed
to represent faithfully the behavior of the original program at the slicing criterion. An
example will illustrate this (we use line numbers for later reference):

[ 1] read(n)        [1] read(n)      [ 1] read(n)
[ 2] i := 1         [2] i := 1       [ 2] i := 1
[ 3] sum := 0       [3] sum := 0      
[ 4] product := 1                    [ 4] product := 1
[ 5] while i<= n    [5] while i<= n  [ 5] while i<= n
     do                 do                do
     begin              begin             begin
[ 6]  sum :=        [6]  sum :=
          sum + i            sum + i
[ 7]  product :=                     [ 7]  product := 
        product * i                          product * i
[ 8]  i := i + 1    [8]  i := i + 1  [ 8]  i := i + 1
     end                 end              end
[ 9] write(sum)     [9] write(sum)
[10] write(product)                  [10] write(product)

(a) Sample program  (b) Slice for    (c) Slice for
                        statement [9]    statement [10]

The initial program is given as (a). The slice with statement [9] as slicing criterion is
shown in (b): statements [4] and [7] are irrelevant for computing statement [9]
and do not occur in the slice. Similarly, (c) shows the slice with statement [10] as
slicing criterion. This particular form of slicing is called backward slicing. Slicing
can be used for debugging and program understanding, optimization and more. An
overview of slicing techniques and applications can be found in [Tip95]. Here we will
explore a relational formulation of slicing adapted from a proposal in [JR94]. The basic
ingredients of the approach are as follows:

• We assume the relations PRED, DEFS and USES as before.
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• We assume an additional set CONTROL-STATEMENT that defines which statements
are control statements.

• To tie together dataflow and control flow, three auxiliary variables are introduced:

• The variable TEST represents the outcome of a specific test of some conditional
statement. The conditional statement defines TEST and all statements that are
control dependent on this conditional statement will use TEST.

• The variable EXEC represents the potential execution dependence of a statement on
some conditional statement. The dependent statement defines EXEC and an explicit
(control) dependence is made between EXEC and the corresponding TEST.

• The variable CONST represents an arbitrary constant.

The calculation of a (backward) slice now proceeds in six steps:

• Compute the relation rel[use,def] use-def that relates all uses to their
corresponding definitions. The function reaching-definitions shown earlier
in Section 5.6.2, “Reaching Definitions” does most of the work.

• Compute the relation rel[def,use] def-use-per-stat that relates the
internal definitions and uses of a statement.

• Compute the relation rel[def,use] control-dependence that links all
EXECs to the corresponding TESTs.

• Compute the relation rel[use,def] use-control-def that combines use/
def dependencies with control dependencies.

• After these preparations, compute the relation rel[use,use] USE-USE that
contains dependencies of uses on uses.

• The backward slice for a given slicing criterion (a use) is now simply the projection
of USE-USE for the slicing criterion.

This informal description of backward slicing can now be expressed in Rascal:

module demo::Slicing

import Set;
import Relation;
import demo::ReachingDefs;
import demo::Dominators;
import UnitTest;

set[use] BackwardSlice(set[stat] CONTROLSTATEMENT, 
                       rel[stat,stat] PRED,
                       rel[stat,var] USES,
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                       rel[stat,var] DEFS, 
                       use Criterion) {

  rel[stat, def] REACH = reachingDefinitions(DEFS, PRED);

  // Compute the relation between each use and 
  // corresponding definitions: use_def

  rel[use,def] use_def =
  {<<S1,V>, <S2,V>> | <stat S1, var V> <- USES, 
                      <stat S2, V> <- REACH[S1]};

  // Internal dependencies per statement

  rel[def,use] def_use_per_stat  = 
       {<<S,V1>, <S,V2>> | <stat S, var V1> <- DEFS, 
                           <S, var V2> <- USES}
       +
       {<<S,V>, <S,"EXEC">> | <stat S, var V> <- DEFS}
       +
       {<<S,"TEST">,<S,V>> | stat S <- CONTROLSTATEMENT, 
                             <S, var V> <- 
                                      domainR(USES, {S})};

  // Control dependence: control-dependence

  rel[stat, set[stat]] CONTROLDOMINATOR = 
  domainR(dominators(PRED, 1), CONTROLSTATEMENT);

  rel[def,use] control_dependence  =
  { <<S2, "EXEC">,<S1,"TEST">> 
    | <stat S1, stat S2> <- CONTROLDOMINATOR};

  // Control and data dependence: use-control-def

  rel[use,def] use_control_def = 
               use_def + control_dependence;
  rel[use,use] USE_USE = 
               (use_control_def o def_use_per_stat)*;

  return USE_USE[Criterion];
}

Let's apply this to the example from the start of this section and assume the following:

rascal> import demo::Slicing;
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ok

rascal> rel[stat,stat] PRED = { <1,2>, <2,3>, <3,4>, 
                                <4,5>, <5,6>, <5,9>, 
                                <6,7>, <7,8>, <8,5>, 
                                <8,9>, <9,10> };
rel[stat,stat]: {<1,2>, ...

rascal> rel[stat,var] DEFS  = { <1, "n">, <2, "i">, 
                                <3, "sum">, 
                                <4,"product">, 
                                <6, "sum">, 
                                <7, "product">, 
                                <8, "i"> };
rel[stat,var]: {<1, "n">, ...

rascal> rel[stat,var] USES  = { <5, "i">, <5, "n">, 
                                <6, "sum">, <6,"i">, 
                                <7, "product">, <7, "i">, 
                                <8, "i">, <9, "sum">, 
                                <10, "product">
                              };
rel[stat,var]; { <5, "i"> ...

rascal> set[int] CONTROL-STATEMENT = { 5 };
set[int]: {5}

rascal> BackwardSlice(CONTROL-STATEMENT, 
                      PRED, USES, DEFS, <9, "sum">);
set[use]: { <1, "EXEC">, <2, "EXEC">,  <3, "EXEC">, 
            <5, "i">, <5, "n">, <6, "sum">, <6, "i">, 
            <6, "EXEC">, <8, "i">, <8, "EXEC">, 
            <9, "sum"> }

Taking the domain of this result, we get exactly the statements in (b) of the example.

This example illustrates once more the use of relations as the basis for program analysis.

5.8   Visualizing Extracted Information

We are now interested in extracting information from Java source code and in
visualizing this information. More precisely:

• Given are Java source files that have been imported to Eclipse as an Eclipse project.

• Extract all class declarations from the sources.
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• For each class declaration extract:

• The number of interfaces implemented by the class.

• The number of attributes (fields) declared in the class.

• The number of methods declared in the class.

• Visualize this information as follows:

• Each class is represented by a rectangle.

• The color of the rectangle represents the number of implemented interfaces.

• The width of the rectangle represents the number of fields.

• The height of the rectangle represents the number of methods.

The Rascal program to achive this is as follows:

module Metrics

import vis::Render;
import vis::Figure;
import Resources;
import JDT;
import Java;
import Set;
import Map;
import IO;

public Figure metrics(loc project) {
  println("Extracting facts from <project>:");
  facts = extractProject(project);
  return visualize(facts);
}

private FProperty popup(str S){
  return mouseOver(box([fillColor("yellow")], 
                   text([fontSize(15), 
                         fontColor("black")], S)));
}

private Figure visualize(Resource facts) {
  classes = 
  {c | c:entity([_*,class(_)]) <- facts@declaredTopTypes};

 EASY Meta-programming with Rascal 283 



  fields =  
  (e : size((facts@declaredFields)[e]) | e <- classes);

  methods = 
  (e : size((facts@declaredMethods)[e]) | e <- classes);

  ifaces =  
  (e : size((facts@implements)[e]) | e <- classes);

  sizes =   (e : l.length | <l,e> <- facts@types);

  sc = colorScale(toList(ifaces<1>), 
                  color("grey"), color("red"));
  println("<size(classes)> classes\n");

  println("Creating visualization ...");
  return pack([size(300, 300),gap(10),center()],
              [box([width(2*fields[e]),
                    height(2*methods[e]),
                    fillColor(sc(ifaces[e])),
                    popup("<readable(e)> 
                           Fields:<fields[e]>;
                           Methods:<methods[e]>; 
                           Interfaces:<ifaces[e]>")
                    ])
               | e <- classes]);
}

public void main(){
  render(metrics(|project://org.eclipse.imp.pdb.values|));
}

It consist of the following parts:

• First relevant libraries are imported, in particular those for visualisation and Java fact
extraction.

• Next, the function metrics is declared: it takes a location of a Java project, extracts
the facts for this project and calls visualize to do the actual visualization.

• The function popup produces a text popup to be used in the visualization (it will
appear when hovering over a figure).

• The heavy lifting is done in the function visualize. First, the facts are massaged in
a form suitable for display, and then a list of boxes is created with the visual properties
corrresponding to each class. FInally, these boxes are packed together to achieve a
minimal display area for the visualization.
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• Function main, finally, calls metrics for a specific project and renders the
resulting figure.

The resulting visualization, embedded in the Rascal IDE, is shown in Figure 1.21,
“Rascal IDE showing the Metrics visualization”.

Fig. 1.21. Rascal  IDE showing  the  Metrics  visualization

This example illustrates the following:

• Use of the JDT library for fact extraction from Java source code.

• Use of the Figure library for visualization.

• Rascal as bridge between fact extraction and visualization.

6  Concluding Remarks

Rascal and its IDE are in full development at the time of writing and a prototype
implementation is available for download. We have given here only a sketch of the
language and its applications. The following topics have not been covered in this article:
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• The use of SDF modules to parse source text.

• The extensive Rascal library that supports many operations on basic data types
including shortest path, reachability and bisimulation on graphs. It also provides tools
for drawing graphs and charts, for extracting data from Subversion repositories and
more. As mentioned before, our design goal is that Rascal and supporting libraries
and tools give as much support as possible for the EASY workflow. This means that
we want to provide as much functionality as possible for extraction, analysis, and
synthesis. Currently, we provide access to various data and repository formats (XML,
HTML, RSF, CVS, SVN, GIT). The Rascal Eclipse JDT library provides direct
access to facts that have been extracted from Java source code. The Figure library
provides visualization tools. Since the number potentially relevant technologies is
unlimited we cannot strive for any form of compleness, but we extend the library on
a call by need basis.

• The Rascal IDE that is based on Eclipse and that provides, for instance, very good
interactive debugging facilities.

We refer the interested reader to http://www.rascal-mpl.org/ for a more complete and
up-to-date overview and for downloading the latest version of Rascal that extends and
enhances Rascal version 0.1 as described here.

The main contribution of this work is providing a language, libraries and tools that
make it simpler to carry out software engineering tasks that fit the EASY paradigm.
The Rascal language is based on many known concepts but adds some innovations as
well: the deep integration of grammars (non-terminals are types; parsers are generated
on the fly), integrated pattern matching for regular expressions, abstract and concrete
syntactic patterns, rewrite rules as normalization device for structured values, and the
visit statement for expressing tree visits illustrate this. We have designed Rascal as the
glue that can combine the diverse technologies that are needed to carry out a range of
tasks in the domain of software analysis and transformation.
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Abstract. The design of modeling languages is still much more of an art than a 
science. There is as yet no systematic consolidated body of knowledge that a 
practitioner can refer to when designing a computer-based modeling language. 
This overview article provides a personal perspective, comprising a selective 
summary of some important lessons learned and experiences gained in the de-
sign of some of the currently most widely used modeling languages, in particu-
lar the industry standard UML and MOF languages. The purpose is to provide 
readers with a sense of the state of the practice and state of the theory, such as it 
is, based on the author's long-term experience in this domain. Various key con-
cepts involved are defined, current common methods of language design are 
explored, and heuristic guidelines provided. A list of key research topics is in-
cluded at the end. 

Keywords: engineering models, modeling languages, model-based engineering, 
model-driven development, computer language design, metamodeling, MOF, 
EMF, UML, profiles, programming language semantics. 

1   Introduction 

Modeling is an age-old human activity whereby an artifact is constructed that resembles 
in some way an imagined or existing system or process. Models serve as surrogates of 
the system or process that they represent in order to help us understand or appreciate it 
more. And, although they come in many different forms and are used for many different 
purposes, some practical and some less so, in almost all cases, the intent of modeling is 
to reduce the full scale of the represented phenomenon to something accessible to  
human comprehension or some type of formal treatment. The link between models, 
modeling, and human understanding is often overlooked, but it is crucial if we are to 
understand how to construct useful models and modeling languages. 

Of particular interest to us here are engineering models, that is, models used in the 
analysis, design, and construction of engineering artifacts. Engineers use models for 
four primary purposes: 

1. Models help us understand the represented phenomenon. This is especially useful 
when the complexity of the phenomenon is such that it challenges our cognitive 
capacities. 
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2. Models also help us communicate our understanding to others. 
3. Models are often used to predict some important characteristics of the represented 

phenomena.  
4. Last but not least, engineering models are often used as blueprints, that is, design 

specifications that guide implementations. 
 

Since software-based systems are among the most complex systems built by man, it is 
to be expected that models play a particularly critical role in software development, 
especially since the model and its corresponding software share the same medium and 
can, therefore, be formally related to each other through automated transformations 
and hyperlinks (traces). In principle, this can help reduce the likelihood that an im-
plementation will diverge significantly from its specification. (Strange as it may seem, 
the significance of models in software development is still highly contentious. For one 
analysis of this issue refer to [14].) 

A software model is an engineering model of some software along with its related 
artifacts (such as its environment, requirements, etc.). Software models are usually 
described using one or more modeling languages. In general, modeling languages do 
not have to be formal or even computer based—many software models are expressed 
using natural languages. However, in this article, we are only interested in those soft-
ware modeling languages that can be processed by a computer in some way and will 
only discuss those in the remainder of this document. Note that even though a model-
ing language may be computer based, it does not necessarily follow that the language 
is precise, formal, or executable. In fact, the vast majority of computer-based model-
ing languages in use are informal, designed primarily for documentation purposes. 

Unfortunately, as can be expected, informal languages tend to be imprecise and 
ambiguous, opening up the possibility of misinterpretation of the model, which, be-
cause it is often difficult to detect, can lead to significant but not always obvious dif-
ferences between design intent expressed though a model and its actual realization. 
Furthermore, if such a model is used as a blueprint, it has the additional drawback of 
not being able to help us predict with confidence whether or not the proposed design 
is adequate (or even feasible). As Bertrand Meyer noted in a tongue-in-cheek article 
commenting on the then newly-revealed Unified Modeling Language (UML): 
“...bubbles and arrows,...as opposed to programs, never crash” [7]. These issues have 
proven quite troublesome and have led to a rather skeptical attitude about the benefits 
of modeling among many software developers. For example, adherents of the so-
called “agile” movement in software engineering often reject any serious use of mod-
eling, claiming that it is counterproductive. 

Still, the movement towards modeling of complex software systems seems inevita-
ble, since models, being abstractions, are the only truly effective means by which hu-
mans can cope with the sheer complexity of much modern software. Therefore, to make 
modeling more effective, it is necessary that we design good and useful modeling lan-
guages. Unfortunately, although modeling languages have been around since the dawn 
of computing (consider, for instance, the classical flow chart), it is only in the past few 
decades that the topic of modeling language design has received due attention. This 
means that we are still unsure of how to design these languages, what distinguishes a 
good one from a bad one and why, what is the proper process of designing such a lan-
guage, and so on. Consequently, it might have been more appropriate to have put the 
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word “theory” in the title of this article between quotation marks, as such theory that is 
currently present is fragmented, incomplete, and sometimes inconsistent. Current ap-
proaches are mostly based on heuristics, some of which are documented in this article. 
These heuristics come mostly from industrial experience, although the pace of research 
is accelerating. Given the lack of theoretical underpinnings, it is rather surprising how 
far industry has managed to progress in the definition and use of modeling languages to 
practical ends. There have been numerous successes with the application of modeling 
languages and methods in large industrial projects (c.f., [9][16]). Yet, it is difficult to 
reproduce these successes across the board. In the absence of a consolidated general 
theory of modeling language design and use, there is no guarantee that what may have 
worked on one project or system will necessarily succeed in other cases. 

The purpose of this overview article is to document some of the author’s personal 
experiences and lessons learned, gained from extensive and direct involvement in the 
design and implementation of a number of significant modeling languages, both  
so-called general purpose languages, such as UML [12], as well as domain-specific 
languages, such as MOF [10] and ROOM [13]. While an attempt has been made to 
organize this knowledge into some semblance of order, it is far from being a system-
atic and comprehensive review of either the state of the art or practice. Rather, as the 
title forewarns, it captures a personal perspective. There are now available other ref-
erences that deal with the topic of modeling language design, including notably 
[5][4][2][6]. However, the different viewpoints expressed in these sources clearly and 
accurately illustrate the lack of a consensus and the immaturity of the technical disci-
pline. Consequently, readers are cautioned to treat this overview as yet another per-
spective on the problem of modeling language design. I contribute it in the hope that 
it will prove useful to both its readers as well as those who are hoping to consolidate 
the various views and make sense of it all. 

Section 2 starts with a definition of what I feel constitutes a computer-based mod-
eling language and its principal components. This is then used as the basis for struc-
turing the rest of the paper, except for a brief digression on the rather controversial 
topic (needlessly so, in my view) of general-purpose versus domain-specific lan-
guages in section 3. Sections 4 (Metamodeling), 5 (Profile-Based DSML Definition) 
and 6 (A Systematic Method for Defining UML Profiles) deal with the methods for 
defining the abstract syntax of modeling languages. Special attention is placed on the 
UML profile mechanism and its use, which, unfortunately, have not received due 
attention from a theoretical point of view – although it is used quite extensively in 
practice. Section 7 focuses on semantics, their design and specification. Finally, some 
conclusions and a list of major research topics are discussed in section 8.  

One highly relevant topic that is intentionally omitted here, albeit reluctantly, is the 
issue of model transformations, both model-to-model and model-to-code. As experi-
ence with programming languages has shown, this is an important factor that can have 
significant effect in the design of a computer language. However, its inclusion would 
have greatly expanded the scope and length of this overview. 

2   The Key Elements of Computer Modeling Languages 

The three key components of the majority of current modeling languages and their 
principal  relationships are shown in the UML class diagram in Fig. 1. 
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Fig. 1. Elements of a modeling language specification 

The abstract syntax defines the set of language concepts and the composition rules 
that represent the "algebra" for combining these concepts into valid or so-called 
"well-formed" models. This syntax is called “abstract” to distinguish it from the con-
crete syntax, that is, the actual human-readable notation used to present and view 
models. Although it is not necessarily the case, most present-day modeling languages 
keep the abstract syntax separate from and independent of the concrete syntax.  

Distinguishing these two kinds of syntaxes opens up the possibility for a given 
modeling language to have multiple different concrete representations (e.g., depend-
ing on the context or the viewpoint chosen). This idea is certainly not new, but it has 
been exploited much more in modeling language design compared to traditional pro-
gramming languages, due to the much greater emphasis on the communication func-
tion of models. The latter is the primary reason why so many modeling languages opt 
for a graphical syntax, since graphics are often significantly more conducive to human 
understanding than text (e.g., finite state machines are typically more easily compre-
hended as graphs than as text). In other words, in modeling language design the 
communication value of models is deemed a first-order design concern. In fact, this 
additional focus may be the primary differentiator between programming languages 
(as represented by the current set of widely-used languages such as Java or C#) and 
current modeling languages. 

As an example, UML has both graphical and textual concrete syntaxes. Like the 
abstract syntax, the concrete syntax consists of a set of notational elements and its 
own set of composition rules. However, in general, there is not always a direct one-to-
one correspondence between the two syntaxes. For example, a given abstract syntax 
concept may have more than one representation within a given concrete syntax, or, a 
single notational element may represent multiple language concepts. Some language 
concepts may capture language abstractions and, thus, may not even have a notational 
equivalent. Conversely, some notational elements may not have a corresponding  
abstract syntax element (e.g., punctuation symbols to delineate tokens in a textual 
concrete syntax).  
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As an example, assume that we are asked to define a modeling language for de-
scribing the game of football (soccer). The abstract syntax of our language is likely to 
include concepts such as Player, Coach, Game, Team, Goal, Ball, etc. In addition, it 
might include as part of the abstract syntax various relationships that must hold be-
tween these concepts, such as the fact that a Team consists of Players and Coaches or 
that a Game involves two Teams. In addition, these may be supplemented by various 
rules and constraints, such as that, in a valid Game, each Team must field a minimum 
of 7 players and a maximum of 11 players. Not all concepts included in the abstract 
syntax are necessarily directly available for use by modelers. For ease of language 
definition and evolution, it is sometimes convenient to include abstract concepts in 
the abstract syntax. These concepts do not have a corresponding concrete representa-
tion and, therefore, cannot appear in a model. For instance, we might introduce an 
abstract concept such as Person to capture features that are common to both Players 
and Coaches. The latter can then be defined more simply as specializations of the 
abstract concept. To distinguish those concepts that can be specified by modelers, we 
shall refer to them specifically as constructs, since they are directly available for con-
structing models.  

For our concrete syntax, we may choose to use a graphical approach, in which, for 
example, we may choose to represent Players using icons representing human soccer 
players, Teams by icons representing their team logos with arcs connecting them to 
those Players belonging to the team, etc. Or, we may define a textual syntax using 
keywords such as "player" and "team" to represent the language concepts. 

The third major component of the definition of a modeling language (or any com-
puter language for that matter) is a specification of its semantics. Simply put, the 
semantics defines the meaning of the concepts of a language. In case of modeling 
languages, which are used to specify models of the real-world (software, people, ma-
chines, actions, etc.), the semantics define the real-world entity or phenomenon that 
each language concept represents (e.g., the Player concept in our example would be 
the computer representation of some individual who plays football on a team). There 
are many different ways of specifying semantics of computer languages, both formal 
and informal. Since we are solely interested in computer modeling languages here, a 
key element in the definition of the semantics of a language is selecting the model of 
computation. This is a conceptual model of how the computation that is being mod-
eled actually occurs. Many different models of computation have emerged over time 
in computer science, including algorithmic models, event-driven models, a flow-
based model, logic programming models, etc. 

There are numerous inter-dependent design choices that have to be made when de-
signing a modeling language. The following is a sample set of top-level questions to 
be addressed when designing a modeling language: 

 
• Should the language be domain specific or general purpose? 
• Is the language to be used primarily for documentation or will it also support 

implementation? 
• Should the language be defined informally or formally? 
• Should the language be executable or not? 
• What should be the dominant model of computation behind the language? 
• Should the language include facilities for extension? 
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• Should the language be designed from scratch or as a refinement of an existing 
modeling language (e.g., as a profile)? 

In designing the abstract syntax, some crucial questions that need to be addressed are: 

• What approach should be used to define the language concepts and their relation-
ships (e.g., meta-modeling or BNF)? 

• How should well-formedness rules and constraints be defined? 
• Should the abstract syntax specification take advantage of generalization mecha-

nisms? 

When it comes to defining a concrete syntax, top-level questions that need corre-
sponding design choices include: 

• Should the language have a graphical, textual, or combined syntax? 
• What rules and guidelines should be used to guarantee consistency of syntax? 
• Should it be possible to support multiple representations of the same element? 
• Should the language support multiple viewpoints? 
• How should the concrete syntax be specified? (Note that, in case of graphical 

languages, there is no satisfactory agreed on method for specifying a notation) 
• How should the mapping from the concrete syntax to the abstract syntax be 

specified? 
• Etc. 

Finally, related to semantics, the following are some key questions: 

• What method of specifying semantics should be used (operational, denotation, 
axiomatic, natural language, etc.)? 

• If multiple models of computation are used, how are they reconciled with each 
other? 

Unfortunately, the state of the art of modeling language design is such that we do not 
yet have a systematic and comprehensive set of answers to many of these questions. 
There is no established body of theory or time-proven guidelines on which to rely to 
ensure that we produce a reasonably usable and consistent language for a given set of 
requirements. In what follows, we will discuss some putative answers to some of 
these questions, but certainly not all, partly because we are not yet sure of how to 
answer them best in given circumstances. 

3   Domain-Specific Modeling Languages 

Specialization is a relentless ever-increasing trend in all facets of society, including 
software. We are seeing a constant branching of knowledge domains into yet more 
refined and specialized sub-domains and so on. For example, the general discipline of 
engineering started off as a more or less unified body of knowledge (c.f., [15]), even-
tually branching out into various specialties (such as mechanical engineering, electri-
cal engineering, civil engineering, etc.), which, in turn, spawned yet more refined  
sub-specialties, and so on. Each domain is characterized by its own refinements of the 
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concepts that it inherits from its more general domains. For ease of communication 
and reasoning, common concepts are given agreed upon domain-specific names that 
constitute the unique technical vernacular of that domain; i.e., its domain-specific 
language.   

Clearly, when writing software for applications in a given domain, it would be  
advantageous to have a direct way of expressing these concepts. For instance, the 
Fortran language provided a more-or-less direct way of specifying mathematical for-
mulas in programs, as opposed to expressing them indirectly through assembly- or 
machine-language program fragments.  

3.1   Expressing Domain Concepts in Software 

In general, in software engineering there are two basic strategies for capturing do-
main-specific concepts. The first approach is through domain-specific libraries or 
frameworks. These usually take the form of collections of subroutines, macros, or, in 
object-oriented languages, classes and methods, which capture the domain concept 
semantics. The alternative strategy is through computer language definition, that is, 
by defining languages that directly capture domain concepts as first-class language 
constructs. For example, the Cobol language, which targets data processing applica-
tions where it is often necessary to sort data in some fashion, provides a sort instruc-
tion. This not only saves programmers the effort of having to write their own sort 
routines but also avoids the possibility of incorrectly programmed implementations of 
sorting. 

Given that the language-based approach involves the extra effort of defining a 
computer language and at least producing and validating a compiler for it (all of 
which are technically challenging tasks requiring highly-specialized expertise), what 
advantages does it have over the library approach? After all, there does not seem to be 
much of a difference in terms of effort or clarity in calling a procedure as opposed to 
invoking a language construct. Furthermore, the library approach is more flexible, 
since it is typically much easier and less risky to modify the code in a library than it is 
to change the language definition. 

However, there are two important advantages of the domain-specific language ap-
proach over program libraries. The first of these is the matter of syntactical form. 
Namely, a domain-specific language provides the ability to define a syntax for the 
language that is best suited to the domain. Consider, for example, the syntax of the 
Lisp language, which is based on an implementation of the Lambda calculus. It is a 
syntax that is quite different from the one used in more common procedural lan-
guages, but which is very close to the Lambda calculus that inspired it. (Although 
many software practitioners will claim that syntax is a secondary or even irrelevant 
concern, this is contradicted by the fact that there are frequent and often heated de-
bates among them on the relative benefits of one syntax over another. Syntax matters 
because it contributes to understanding.) While the linear form of traditional text-
based programming languages does not provide for much syntactical differentiation, 
syntax becomes a much more relevant factor in modern model-based computer lan-
guages, which often resort to highly varied graphical representations. 
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A second and perhaps more important advantage of the language-based approach to 
domain specialization is that, under normal circumstances, the definition of a language 
is independent of any specific applications1. In effect, the definition of a computer lan-
guage acts as a kind of standard, whether or it is formal (de iure) or an informal (de 
facto). Like all standards, it represents a point of agreement between multiple parties. 
The language definition can be used by compiler specialists to write compilers, educa-
tors to develop training courses, as well as program analysis experts to define methods 
and build tools that can verify or predict certain important properties of applications 
written using that language—independently of any specific applications.  

Of course, methods and tools can also be constructed to deal with program librar-
ies, but, as noted earlier, libraries are generally much less stable than language  
definitions. Any modifications to a library can render useless any tools and facilities 
constructed for the previous unmodified version.  

We can conclude from the above general discussion that the choice between a li-
brary-based approach or a language-based approach depends on a number of factors 
and that the choice does not automatically come down in favor of one or the other. 
Nevertheless, in the remainder of this paper, we will only consider the language-based 
approach and, more specifically, the issue of domain-specific modeling languages 
(DSMLs) [5][4][6][2]. 

3.2   General-Purpose versus Domain-Specific Computer Languages 

In the domain of modeling language design, there has been some theological contro-
versy recently about the relative merits of DSMLs compared to general-purpose  
modeling languages (GPMLs) such as UML [12]. It has been argued that the general 
nature of GPMLs forces them to be large and unwieldy, making them difficult to learn 
and difficult to use. Worse yet, because their concepts are general, they do not provide 
sufficient expressive power to allow concise and precise specification of the kinds of 
subtleties that characterize many complex application domains. In contrast, DSMLs 
can have custom-designed concepts, which can be defined as accurately as desired.  

These are valid and rather compelling arguments that clearly favor DSMLs over 
GPMLs. However, when designing a computer modeling language it is useful to con-
sider a number of pragmatic issues that extend beyond purely technical factors. 

(At this point, it is useful to keep in mind that the difference between GPMLs and 
DSMLs is simply a matter of degree of specialization and not a question of some 
fundamental qualitative difference. What may be characterized as a domain-specific 
concept from one perspective may be seen as insufficiently specific in the context of a 
particular application or project. So, even though we opt for a domain-specific lan-
guage, we may still not get the expressiveness we desire and may still have to resort 
to some additional form of specialization.) 

When considering the question of language specialization, it is instructive to review 
the history of the development of high-level programming languages. With the inven-
tion and subsequent success of Fortran, high-level languages became the standard for 

                                                           
1  There is some tension between being domain specific and application independent: the more 

application independent a language is, the less domain-specific it becomes and vice versa. 
The most domain-specific language is a language that is defined for just a single application. 
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computer programming, quickly displacing assembly-level programming. The benefits 
of domain-specific languages were recognized early on, and, in the sixties and  
seventies of the past century we saw a profusion of hundreds of domain-specific pro-
gramming languages. There were business data processing languages, report writing 
languages, artificial intelligence languages, real-time languages, telecom languages, 
simulation languages, and so on. Yet, although many of these specialized languages are 
still around and are still being used, the vast majority of current industrial software 
development is being done using dominant general-purpose programming languages, 
including the original stalwarts such as Fortran and Cobol, as well as the more recent 
general-purpose additions (C, C++, C#, Java). To support domain-specific concepts, 
developers are primarily relying on domain-specific libraries and frameworks. The 
trend towards highly-specialized domain-specific programming languages seems to be 
diminishing. Why? 

3.3   Necessary Criteria for Successful Computer Languages 

Frustrating as it may be to technically-oriented individuals, technical excellence is 
only one of the factors that contributes to the acceptance or rejection of a computer 
language. The following are some of the essential criteria that must be met for a com-
puter language to be successful2: 

 
• Obviously, first and foremost, the language has to be technically sound—it 

should not have any major design flaws and constraints. 
• It should be expressive, which means that it should provide constructs that allow 

succinct and precise specification of concepts from the application domain. 
• A language must be understandable, which is to say that it should not be so com-

plex to pose a major learning and tooling hurdle.  
• For the same reason as above, a new language should have a look and feel that is 

familiar to its target user community. (Languages that introduce new and unusual 
syntactical forms are often rejected outright by many practitioners.) 

• It should be efficient, that is, it should be possible to produce with it programs 
that are sufficiently responsive and require reasonable resources to execute. 

• Last, but certainly not least, a language must have an adequate support structure. 
 
The support structure of a language consists of a number of different elements. Perhaps 
the most important of these is the availability of adequate and relatively inexpensive 
tool support. Specifically, this includes industrial-strength compilers, editors, debuggers, 
build tools, version control tools, analysis tools, and so on. Without these, a language is 
very not very likely to gain a significant foothold among practitioners, no matter how 
technically advanced it might be. Another key element of the support structure is the 
ready availability of teaching materials and training courses. Development and mainte-
nance of professional-quality tools, teaching materials, and training courses require 
highly-specialized skills and significant resources that are typically only available from 

                                                           
2  "Successful" in the sense that it is being used for industrial software development and has a 

significant and at least a non-diminishing user base. There are, of course, other valid defini-
tions of success, but those are out of scope of this overview. 
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specialized commercial vendors or from large-scale open source projects. It is difficult 
to secure these for smaller niche languages. Consequently, the only languages that truly 
have adequate support structure are general-purpose languages, ones with significant 
populations of users. 

Based on the above, it seems that the right question to debate is not whether a lan-
guage is "domain-specific" or "general-purpose", which, as we have pointed out, are 
rather vague terms, but how well it meets the above criteria. 

3.4   Approaches to DSML Design  

To date, three primary methods for defining DSMLs have emerged: 

1. Refinement of an existing modeling language by specializing some of its general 
constructs to represent domain-specific concepts. 

2. Extension of an existing modeling language by supplementing it with fresh do-
main-specific concepts with new constructs that are derived from the existing 
language concepts. 

3. Definition of a new modeling language from scratch. 

Without doubt, the last of these has the potential for the most direct and succinct ex-
pression of domain-specific concepts. However, it suffers from the serious drawbacks 
discussed in section 3.3, particularly in terms of lack of an adequate support structure. 
Furthermore, it is generally more difficult and expensive to develop tools for model-
ing languages than for programming languages, due to the usually more sophisticated 
semantics behind many modeling language constructs. For example, a tool that  
compares two different versions of a state machine model must “understand” the 
semantics of state machines. In contrast, because programming languages are mostly 
textual, the differences are usually expressed in terms of lines of text that have been 
added or changed, without any concern for semantic constructs, such as states or tran-
sitions. The semantic interpretation of such differences is left to the programmer. 
Unfortunately, this kind of semantics-free differencing is not practical for graphical 
languages. Similar issues exist with other kinds of tools, especially those intended for 
model analysis. 

In essence, the same set of problems is encountered in the second method albeit in 
a somewhat milder form because some degree of support structure and expertise reuse 
can be expected.  

Consequently, the refinement-based approach seems to be the most practical and 
most cost-effective solution to DSML design in many situations. If properly designed, 
an extension-based DSML allows reuse of the tooling support structure of the base 
language, access to a broader base of trained experts, and usually requires less spe-
cialized training. On the other hand, its principal disadvantage is that the expressive 
power of the DSML may be diminished due to the semantic and syntactic limitations 
of the base language. Therefore, it would be wrong to conclude that this approach is 
optimal in all situations. However, if the base language is relatively general, the like-
lihood that it will be limiting is actually much less, because it has general constructs 
that leave more opportunity for refinement. 

This is the rationale behind the so-called profile mechanism provided in UML 2. 
Unfortunately, this mechanism was designed in piecemeal fashion, starting with a 
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simple (simple-minded?) understanding of the problem and a simple solution, evolv-
ing gradually into something more sophisticated as more experience and understand-
ing accrued. Furthermore, the semi-formal nature of the UML 2 language and its 
metamodel compounded the difficulties. The refinement approach is based on the 
notion of semantic containment, which is very difficult to verify unless there is a 
formal foundation to support it. More specifically, it is not easy to ascertain whether a 
particular UML profile is a proper refinement or an extension of UML proper. 

Nevertheless, the idea of a profile as a semantically contained refinement of some 
more general base language is a useful one due to its obvious advantages (reuse of 
tools, etc.). We will examine the UML 2 implementation of profiles in section 5. 

3.5   The Fragmentation Problem 

DSMLs are often used to specify different viewpoints of a complex system. Each 
viewpoint deals with one set of concerns and, therefore, is an abstraction of the under-
lying full system that emphasizes features related to those concerns while ignoring or 
hiding from view those that are not. For sufficiently complex systems, multiple view-
points are necessary, which means that it is highly likely that some features will be 
represented in more than one viewpoint. This means that we may have multiple de-
scriptions of the same feature, expressed in multiple models, each of which could be 
specified using a different DSML. The so-called fragmentation problem is the prob-
lem of ensuring that the different representations of a given system feature, specified 
using different modeling languages, are mutually consistent. This problem is greatly 
compounded if the DSMLs used are semantically unrelated (e.g., use different models 
of computation). 

A pragmatic way of coping with this problem is to have an underlying merged 
representation of the system being modeled. This representation is constructed by 
merging the information provided by individual DSML models. The different do-
main-specific views can then be viewed as projections of the underlying merged 
model. When a change is made to one of the projections, it is translated into a modi-
fication of the underlying merged model, where any inconsistencies can be detected 
and flagged. The merged model, being a model, is also expressed using some mod-
eling language, possibly a more general language (since it has to somehow accom-
modate the information defined in all the different domain-specific models). Also 
required are two-way mappings between each of the DSMLs and the merged model 
language.  

It seems self evident that, if the various DSMLs share a common semantic  
base, then these mappings should be simpler to define than if the languages are 
independent. Once again, it seems that a profile-based strategy for DSMLs has an 
important advantage here, provided that all the DSMLs are refinements of the same 
base language. 

3.6   Refine, Extend, or Define? 

Although we mentioned some advantages of the refinement (i.e., profile) approach, the 
question of which approach is best has no single easy answer. It depends very much on 
the problem at hand. The refinement approach should be considered only if there is a 
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significant semantic similarity between the concepts of the desired DSML and the con-
cepts of the chosen base language. Furthermore, there should be no semantic conflicts, 
such as contradictory constraints, between the base language and the desired DSML. If 
these conditions are not satisfied, then refinement is probably not a good choice and 
some other approach may be more suitable. 

There are other pragmatic considerations to take into account when choosing an ap-
proach to designing a DSML. The following seem to be some of the most important: 

 
• When designing a DSML from scratch, it is extremely useful to have someone with 

modeling language design experience available for consultation, since this still far 
from being an exact science. There are numerous pitfalls in designing modeling 
languages (we will discuss some of them later) that can cause much grief in both 
the definition and the use of a language. The refinement and extension approaches 
hold the advantage here since they already embody such experience. 

• It is also highly recommended to have direct domain expertise at your disposal 
during the process of language definition. A well-designed DSML draws a bal-
ance between the inevitable technical constraints imposed by computer technol-
ogy and the needs of domain experts. Language design experts tend to favor the 
former and, because they lack domain insight, they often have a distorted view of 
the domain requirements. 

• An assessment must be made regarding the anticipated costs of establishing and 
maintaining an adequate language support structure (compilers, debuggers, mis-
cellaneous utilities, libraries, training materials and expenses). These can be quite 
substantial if a completely new language is being contemplated. 

• Another important consideration is the ability of the language to interwork with 
other languages (e.g., legacy code). By their very nature, DSMLs focus only on 
specific aspects of a complex system, and, consequently, specifications written in 
these languages will likely need to relate in some way to specifications written 
using other DSMLs. To this end, some authors suggest that a DSML definition 
should include explicit specifications of its required and provided interfaces to 
other languages [5]. For example, a language might expose certain of its concepts 
to be referenced by other languages. Similarly, it may specify external foreign 
concepts that it needs to reference. 

• Related to the above, an important issue to consider is the ease with which the 
support structure of a DSML can be seamlessly integrated into an existing devel-
opment environment.  

4   Metamodeling 

Metamodeling is a technique for defining modeling languages. It consists of defining 
a special model, the metamodel, using a modeling language designed specifically for 
metamodeling, which defines the language concepts and their relationships—its ab-
stract syntax. Note that the metamodeling DSML is often supplemented by other 
languages, such as a language for formally capturing constraints (e.g., OMG’s OCL).  
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4.1   Context-Free Grammars versus Metamodels 

The technique of using models to capture the abstract syntax of a modeling language 
is a departure from the traditional programming language design practice of using 
context-free grammars for that purpose. Context-free grammars are usually expressed 
through some variant of the Backus-Naur Form (BNF)—a text-based syntax. In con-
trast, most metamodeling languages use so-called graph grammars. It seems that 
metamodeling languages, such as the OMG’s MOF [10], often provide more concise 
and more readily discernible abstract syntax specifications than context-free gram-
mars. This is particularly true where complex relationships exist between different 
language concepts, a very common case. Such relationships can be represented di-
rectly through graphs and are easier to comprehend, particularly if a graphical con-
crete syntax is used. Context-free grammars, on the other hand, are better suited to 
describing simple tree structures. This complicates the specification of general graphs, 
since it requires the use of references to represent complex graph structures. 

Moreover, metamodeling languages allow language concepts to include attributes, 
allowing for a more concise representation. This also enables the use of inheritance 
mechanisms which can further simplify language definition. 

Finally, with metamodeling it is possible to incorporate various constraints do-
main-specific constraints directly into the metamodel. With context-free grammars, 
these constraints need to be kept separately.  

4.2   Metalevels 

We have already noted that the language used to define a metamodel, is itself a mod-
eling language, which, of course, can have its own metamodel. Naturally, the latter is 
also expressed using some modeling language, and so on. Clearly, this could lead us 
to an infinite regression of metalevels. The usual method of circumventing this recur-
sion is to make one level self-defining. That is, at some level the metamodeling lan-
guage at that level is used to define itself. A convenient terminology was introduced 
to help us differentiate the different levels in discussions. The hierarchy starts off with 
the actual system that needs to be modeled. It is referred to as meta-level zero (or, 
simply, M0). For example, this might be some planned or existing software program 
that we would like to model. Models of M0 entities occur at meta-level one (M1, such 
as, for example, a UML model of some software. The (meta)model that describes the 
M1 modeling language is at level M2. In case of the UML standard, this language is 
the MetaObject Facility (MOF) language. Most such hierarchies end with level M3, 
with the definition of the meta-metamodeling language, which is defined in terms of 
itself. In the OMG language hierarchy, this is yet again the MOF language. 

4.3   The OMG’s MOF 

The MOF is a typical example of a present-day metamodeling language. Another, 
quite popular metmodeling language is the Eclipse Modeling Framework (EMF) [1], 
which is much simpler than the MOF, but less expressive. Most metamodeling lan-
guages can be described as simplified versions of class-association modeling found in 
UML. In fact, both UML 2 and the MOF share a common library, called the UML 2 
Infrastructure, which captures this commonality. However, despite this syntactical 
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similarity it should be kept in mind that the domain of MOF—the modeling of model-
ing languages—and the domain of UML—modeling of software-based systems—are 
quite distinct from each other. Thus, since the MOF is mostly used to describe static 
abstract syntax structures, unlike UML, it has practically no facilities for specifying 
behavior. 

The core constructs of the MOF are illustrated in the example in Fig. 2 (the names 
of the constructs are indicated by the text inside the dashed line callout boxes – note 
that these are not actually part of the MOF language but are provided for conven-
ience). These constructs should be familiar to anyone familiar with UML class dia-
grams, and will be described only briefly here.  

This particular example shows a fragment of the abstract syntax definition for a 
simple DSML for modeling applications from the automotive domain. Language 
concepts are specified by classes (e.g., Vehicle, Automobile, Person). Note that ab-
stract concepts, that is concepts which are not directly usable by modelers (and, 
hence, without a concrete syntax), are indicated by the fact that their names are itali-
cized (e.g., Vehicle). Language concepts can be refined by providing them with typed 
attributes, such as the “id” attribute of Vehicle (which might be used to specify some 
type of identification string). 

Language concepts can be related to each other via generalization relationships. In 
this case, we see that an Automobile is a special kind of Vehicle which means that it 
inherits all the properties of Vehicle, such as “id”, but which also adds further Auto-
mobile-specific attributes, such as “make” and “power”.  

Concepts can also be related to each other via associations. Associations signify 
that the use of one concept in a model may require the presence of a related concept at 
the opposite end of the association. For instance, we can see that if the model includes 
an instance of the Automobile construct, it might be accompanied by a “driver”, 
which is an instance of the Person construct. In fact, the notation “0..*” specifies that 
the number of “driver” instances is open ended, starting with zero (i.e., no “drivers”). 

 

Fig. 2. Basic MOF modeling concepts 



304 B. Selic 

A special kind of association is known as a composition. A composition means 
that, if an instance of the owning concept (indicated by the class adjacent to the end 
with the filled diamond graphical element) is removed (e.g., Automobile), then the 
corresponding instance(s) at the opposite end will also be removed (e.g., instances of 
Wheel).  

As mentioned earlier, abstract syntax specifications are often accompanied by con-
straints, which provide some additional rules that a well formed model must respect. 
In the example, the rule is specified using the OCL language and indicates that if the 
“power” of the Automobile is equal to or greater than 100, its drivers must be at least 
16 years old. 

MOF packages are not used to capture any language concept. Instead, they are 
used to group elements of the abstract syntax definition into convenient modular 
units, either as units of reuse or as a way of partitioning a complex specification. 
MOF packages are namespaces whose elements can be designated as public, pro-
tected, or private. A public element can be referenced from outside by elements in 
other packages. This can be achieved by using the package import mechanism of 
MOF. That is, when a package P1 imports package P2, elements in package P1 can 
directly reference the public elements of package P2 as if they were defined within 
package P1.  

MOF provides another useful mechanism related to packages: package merge. The 
basic idea of package merge is to enable incremental definition of language concepts. 
It allows a base concept definition to be selectively extended with incremental defini-
tion fragments. For instance, consider the metamodel in Fig. 3a, where the ResPack-
age contains a definition of the Element concept, which is defined as a subclass of the 
Object concept. When the contents of the merge increment defined within the Incre-
mentalPackage are merged into the ResPackage, the result is shown in Fig. 3b. 

 

Fig. 3. Package merge 
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The package merge operation works by finding matching elements with the same 
name in the two packages and merging them into a single combined element in the 
merging package. It is a mechanism that is quite similar to generalization in effect 
since it merges two sets of features into one. However, in contrast to generalization, 
the result is a single concept rather than two concepts with different names.  

Package merge is particularly useful when defining languages that have multiple 
levels of definition. For example, at one level of definition, the Element concept from 
Fig. 3a might be defined simply by the contents of IncrementPackage. This may be 
sufficient for some users of the language, who would prefer not to be bothered with 
the more sophisticated form in Fig. 3b. However, for those users who need the more 
complex definition of the concept, the language can be easily extended by merging 
the desired increments. Note, furthermore, that valid models based on the simpler 
definition will still be valid in the extended language definition (but not vice versa). 
This allows the possibility of smooth conversion of models as the definition of the 
language evolves. 

4.4   Mixin-Like Concept Definition 

In traditional object-oriented terminology, a “mixin” is a small feature that is defined 
independently and which, like trace ingredients in a food recipe, can be combined with 
another more substantial definition, to give the overall result an additional “flavor” (i.e., 
capability). Mixins are similar in intent and method to aspects as encountered in aspect-
oriented programming. For instance, it may be useful to define Redness as a distinct 
concept that captures the fact that something is of a red hue. This can then be composed 
with other concepts, such as Hair, Automobile, or Sky, to produce the notions of 
RedHair, RedAutomobile, and RedSky respectively. The advantage of doing it in this 
manner is that Redness is defined in just one place, independently of other definitions. 
This allows cleaner and more precise definition of concepts and also enables independ-
ent modification of that concept should the need arise. 

The idea of mixin-like fragments in combination with generalization as a way of 
merging the fragments has emerged as a useful metamodeling style. It works as fol-
lows: a core of fine-grained and independent language features is defined, usually as 
abstract concepts. They are then composed into various useful feature combinations  
 

 

Fig. 4. Mixin-like concept definition 
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using multiple generalizations3. Consider, for example, the language definition frag-
ment shown in Fig. 4. In this case, the mixin elements are shown at the top; Package-
ableElement captures the notion of a language construct that can be contained in a 
package, MultiplicityElement represents an element that is somehow bounded within 
an integer range, and NamedElement is an abstraction of a concept that may have a 
name. Each of them is defined independently of the others. However, they are com-
bined in different ways to produce different language constructs. Operation is a com-
bination of PackageableElement and NamedElement. Parameter combines 
NamedElement and MultiplicityElement as does Property. 

While this approach is quite elegant and has the obvious advantages, it should be 
used with care. Since it uses multiple generations to combine mixins, it has the usual 
problems of multiple inheritance, such as the potential name clashes and diamond 
inheritance. Care must be taken that the mixins are indeed independent concepts, or 
they may interfere with each other. Finally, this approach is also particularly suscepti-
ble to another major problem, overgeneralization, which is described in the following 
section. 

4.5   The Overgeneralization Trap 

Overgeneralization occurs in deep generalization hierarchies due to unanticipated con-
flicts between multiple conflicting generalizations. As an example, take the fragment of 
the UML 2 metamodel shown in Fig. 5. In this case, the top abstraction is the notion of 
an Element, which captures certain characteristics that apply to all language concepts. 
One of these is the notion of ownership shown by the composition from Element to 
itself. In essence, this is saying that an instance of Element may also own other  
Elements. In fact, this is where the core concept of ownership is defined in UML (this 
concept is specialized in many different places in the metamodel, not shown in this 
diagram). Two immediate refinements of Element are the abstract concepts of Classifier 
(i.e., something that can be classified into generalization hierarchies) and Relationship. 
The problem of overgeneralization can be seen even at this level: note that, since no 
additional constraints are imposed on the Relationship and Classifier concepts, it is 
possible for a Relationship to own a Classifier and vice versa4. The problem is even less 
visible the deeper one goes in the generalization hierarchy. For instance, if Dependency 
is a kind of Relationship (several levels below) and UseCase is a kind of Classifier (also 
several levels below), then a Dependency can own a UseCase—which is definitely not 
the intent of the language designers. 

The conflict comes when the general notion of ownership, as defined for Element, 
is combined with the notion of specializations of Element. For each specialization of 
Element, there needs to be constraints that limit the ownership association to only the 
appropriate types. Furthermore, this has to be repeated transitively for every subclass, 
which is not only tedious, but also makes the metamodel difficult to modify. 

                                                           
3  It might appear at first that this can be achieved by package merge as well. However, package 

merge uses name matching whereas the mixins all have different names and may have to be 
combined in many different ways. 

4  A well-documented manifestation of this problem encountered in OO programming  
languages is known as “co-variance”. 
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Fig. 5. The problem of overgeneralization 

The problem can potentially occur with any feature (attribute, association end, or 
operation) defined for abstract concepts. In principle, each time a subclass is defined, 
all of its features need to be examine for such conflicts and appropriate constraints 
formulated. 

4.6   Some Lessons Learned and Guidelines Related to Language Design 

The author participated in the definition and standardization of both the MOF and 
UML languages. The following are some lessons learned from this experience. Mod-
eling language designers may choose to use them as guidelines or as warnings of 
potential pitfalls that might await them: 

 
1. Always start design with a semantics model. Before getting into the business of 

designing the abstract and concrete syntaxes, it is necessary to have a sufficient 
understanding of the domain. In particular, for computer language designers, it is 
useful to think early about a suitable model of computation that is a close seman-
tic match to the domain semantics (we will say more on this in section 7.1). This 
will not only facilitate and ease language design (because a model of computation 
typically implies numerous consistent design decisions that can be reused), but 
may also provide support for different kinds of formal computer-based analyses 
of models. For instance, if the model of computation is based on Petri nets or on 
some kind of finite state machine formalism, then it becomes possible to take ad-
vantage of many formal analyses methods defined for these formalisms. 

2. Modularize and layer the language, particularly if the language is going to sup-
port multiple viewpoints for different sub-domains. Note that a language modu-
larized in this way can allow the use different syntaxes (abstract and concrete), 
for each sub-domain. To avoid the fragmentation problem, however, it is gener-
ally useful to have a common foundation that supports all the different modules 
and provides a means for ensuring consistency of models. 
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3. Provide for language extensibility. No matter how confident you are about your 
understanding of the domain and its users, chances are that you will need to  
specialize the language in the future. Some kind of relatively lightweight extensi-
bility mechanism is useful in such cases, so that the impact of the extension on 
existing tools and other language support structure can be minimized. 

4. Allow for incorporating “foreign” language fragments in models. In far too 
many cases, a language is rejected because some relatively small but crucial part 
of a system cannot be properly or efficiently specified in that language. Rather 
than throw out the baby with the bathwater, it may be useful to allow for incorpo-
rating fragments of other languages in a model. This is the modern equivalent to 
the old facility provided in many earlier programming languages of incorporating 
assembler code fragments into a high-level language program. (Note that some-
times, this problem can be resolved by providing custom code generation capa-
bilities for such fragments, but this is still not an exact science. Until this issue is 
resolved, it is a good idea to allow some kind of language infiltration.) 

5. Beware of overgeneralization (see section 4.5). 
6. Make a clear distinction between language constructs that represent design-time 

concepts from those that represent run-time concepts. Experience with UML in 
particular has shown that, unless these concepts are clearly delineated, modelers 
will confuse them and use design-time concepts to represent run-time ideas. A 
UML package, for example, is strictly a design-time concept, yet it is often used 
inappropriately to model some run-time concept, such as a layer. 

5   Profile-Based DSML Definition 

The profile mechanism of the Unified Modeling Language (UML) was designed to 
support the refinement approach to DSML design. It is restricted to DSMLs that fall 
within the syntactic and semantic envelope defined by standard UML. This is be-
cause, by definition, a UML profile cannot violate any of the abstract syntax rules and 
semantics of standard UML. 

From its inception, UML was designed to be customizable, to be a "family of lan-
guages". Consequently, its definition includes numerous semantic variation points 
and it provides mechanisms for its own refinement (the profile mechanism). Semantic 
variation points are areas in which the UML specification supports multiple possible 
interpretations. These may be explicit in the form of multiple pre-defined choices, or 
implicit, by not leaving undefined certain semantics. Semantic variations can be re-
duced or eliminated by adding constraints or using other refinement mechanisms such 
as stereotypes. For example, standard unrefined UML supports both single and multi-
ple generalization (inheritance). However, this can be limited to just single inheritance 
simply by defining one additional constraint that limits the number of ancestors of a 
class to no more than one. 

The basic refinement mechanisms of the initial versions of UML, stereotypes and 
tagged values, were relatively lightweight and, unfortunately, not very precisely defined. 
They permitted attaching domain-specific semantics to selected elements of UML mod-
els. For instance, a particular class in a UML model could be selected to represent a mu-
tual-exclusion semaphore device by tagging that class with a custom-built “semaphore” 



 The Theory and Practice of Modeling Language Design 309 

stereotype. By attaching this stereotype to a given model element, that element automati-
cally acquires the semantics associated with the “semaphore” stereotype, in addition to its 
standard UML class semantics. Conversely, removing the stereotype from the model 
element results in the removal of its semaphore aspect, while retaining its original base 
semantics.  

A stereotype definition consists of a user-defined stereotype name, a specification 
of the base UML concept (e.g., Class) for the stereotype, optional constraints that 
specified how the base concept was specialized (e.g., a Class that can have at most 
one parent), and a specification of the semantics that the stereotype adds to the base 
concept semantics. The latter is typically specified using informal natural language, 
but, of course, formal specifications are also possible.  

A UML tool supporting only standard UML will treat an element with an attached 
stereotype will simply treat the stereotype like an attached comment that it can ignore. 
However, a more specialized tool or a custom version of a standard UML tool that is 
sensitive to the semantics of that stereotype, will detect and inspect the stereotype and 
interpret it appropriately. For example, a concurrency analysis tool might be able to 
detect potential concurrency conflicts in a model by analyzing the accesses to those 
model elements tagged with semaphore stereotypes.  

Since stereotypes capture domain-specific concepts, they are typically used in con-
junction with other stereotypes from the same domain. This eventually led to the 
concept of a profile, a specially designated UML package that contained a collection 
of related stereotypes. 

5.1   Innovations to Profiles Introduced in UML 2 

Many of the shortcomings of the initial profiling mechanism, stemming mostly from 
its imprecise definition, were eliminated in UML 2. Unfortunately, these improve-
ments have received very little coverage in popular UML textbooks and are still rela-
tively unknown and underutilized. The following are the most important of these 
innovations: 

 
• An expanded and more precise definition of profiles and stereotypes was pro-

vided. Thus, in UML 2, a stereotype is semantically very close to the concept of a 
metaclass (i.e., a language concept in the abstract syntax).  

• Formal rules for writing OCL constraints attached to stereotypes were intro-
duced. Thus, even a standard UML tool could detect if a constraint within a pro-
file violated some standard UML constraint. 

• A new and more scalable notation for stereotypes and their attributes was added. 
• The semantics of applying (and un-applying) profiles to UML models were both 

expanded and clarified.  
• The rules for the serialized (XMI) representation of profiles and their contents 

were defined. 
• It became possible for a profile definition to be based on just a subset of the UML 

metamodel (as opposed to the full metamodel), resulting in potentially very com-
pact and simple DSML specifications. 



310 B. Selic 

• The ability to create associations between stereotypes and other metamodel ele-
ments was added. This allowed the creation of new relationships between previ-
ously independent UML concepts. 

• A default "batch" stereotyping mechanism was introduced to simplify the stereo-
typing of individual model elements. 

• The profile mechanism was generalized beyond the UML context so that it could 
be used with any MOF-based modeling language. 

 
In the remainder of this section, we provide a brief description of the principal fea-
tures of the UML 2 profile mechanisms. 

5.2   Profiles 

There are two significantly different ways in which UML profiles can be used: 
A profile can be created to define a DSML. This language can then be used to con-

struct domain-specific models using concepts from that DSML. An example of such a 
profile might be a language for modeling real-time applications. This language might 
provide domain-specific concepts such as Priority, Task, Deadline, etc. in place of the 
corresponding general-purpose UML concepts such as Class, Behavior, etc. 

Alternatively, a profile can also be created to define a domain-specific viewpoint. 
Such a viewpoint, when applied to a standard UML model, re-casts selected elements of 
that model in a domain-specific form. The result is a domain-specific interpretation of 
the original model. Furthermore, the profile may also add supplementary information 
relevant only to that viewpoint. For instance, it may be useful to analyze the perform-
ance characteristics of a particular design expressed as a UML model. One common 
technique for analyzing performance characteristics of software systems is based on 
queueing theory, which views a system as a dynamically balanced network of interact-
ing clients and servers. Using a performance UML profile, it is possible to identify 
individual model elements in the base model as playing the roles of clients or servers by 
attaching appropriate stereotypes to them, including element-specific performance met-
rics, and then to compute the overall performance characteristics of the proposed design. 

The ability to dynamically apply and un-apply a UML profile without affecting the 
underlying model is crucial to this type of profile usage, because it allows the same 
model to be viewed from any number of different viewpoints (e.g., performance, 
security, availability, timing).  

Typically, a model to which a viewpoint profile has been applied is transferred to a 
specialized analysis tool that can then transforms it into an appropriate analysis-
specific model based. This model can then be analyzed by the domain-specific tool 
and the results fed back into the original UML model. By this technique, modelers 
can take advantage of many useful types of analyses without having to be experts in 
those techniques. This can be of great utility since many of these analyses are quite 
complex and require levels of expertise and skill that are both scarce and expensive. 

5.3   Stereotypes 

As noted previously, stereotyping of model elements is a convenient way of identifying 
elements in a UML model that have additional non-standard semantics; i.e., semantics 
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that extend beyond the UML standard itself. Stereotype definitions are often supple-
mented with constraints (typically written in OCL). These are used to capture domain-
specific constraints that apply only to the stereotype but not to its base UML concept.  

A UML stereotype is almost like a subclass that specializes a standard (base) UML 
modeling concept (specified by a metaclass). However, there are some important 
differences. One of the primary reasons for this is the need to support viewpoint type 
profiles described above, which require the ability to dynamically apply and un-apply 
profiles. 

Namely, when a stereotype is applied to a model element, it is in the form of a spe-
cial attachment to that model element. This attachment contains the information about 
the applied stereotype and any values associated with its attributes. When the corre-
sponding profile is removed (i.e., when the viewpoint is no longer needed), the at-
tached stereotypes are simply removed without affecting the original model element 
in any way.  

Another important reason for the difference between stereotypes and regular meta-
classes, is that a stereotype can specialize more than one base metaclass. However, 
the semantics of this are not the conjunctive semantics of multiple generalization. 
Instead, the semantics are disjunctive, which means that the stereotype can be applied 
to model elements that are instances of any of its base metaclasses (or any of their 
subclasses). This feature allows a given domain-specific concept to be realized by 
more than one base UML concept. A typical case where this is useful is when we 
need to apply a stereotype to either a type (e.g., Class) or to instances of a type (model 
elements typed by InstanceSpecification). 

Modelers can apply stereotypes selectively to model elements of their correspond-
ing base class. For instance, if «clock» is a stereotype of the Class metaclass, then it is 
not mandatory for all model elements that are instances of Class to be stereotyped by 
this stereotype. However, in some cases, it may actually be required that a stereotype 
must be applied to all instances of the base metaclass. For instance, if a model repre-
sents a C++ program, then all classes in the model should have the same C++ stereo-
type applied, since C++ only recognizes one type of class. For those situations, the 
profile designer has the choice to declare the stereotype to be “required”, which 
means that all instances of the base class and its subclasses must have the stereotype 
applied to them whenever the corresponding profile is applied. 

5.4   Model Libraries 

A model library is a stereotyped package5 that contains useful model fragments in-
tended to be reused by other models, most notably profiles – although they can be 
reused by any model. If the library is defined in the context of a profile (package), 
then it is part of the profile definition. This allows complex domain-specific concepts 
to be captured using the full power of standard UML modeling constructs, unham-
pered by the limitations of stereotype modeling. A common application of such librar-
ies is to use them to type stereotype attributes. 

However, it is important to note that, even when a library is part of a profile, the 
elements it describes are not metamodel (M2) elements but M1 model elements. This 

                                                           
5  Model libraries are packages identified by the «modelLibrary» system-defined stereotype. 
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means that, unlike stereotypes, they do not have any special semantics outside those 
provided by UML (unless, of course, they are themselves stereotyped). Still, they can 
be used to capture domain-specific semantics by association, so to speak, due to the 
fact that they are defined in the context of a particular profile.  

For example, a model library for robotics, might introduce classes such as Robot, 
Manipulator, VisionSystem, etc. Outside the context of a profile, these are just classes 
with nothing to differentiate them from any other UML model elements. However, 
when they are used within or part of a profile, they implicitly acquire domain-specific 
semantics by association. In such situations, a tool that is sensitized to the encompass-
ing profile can interpret these elements in a domain-specific way.  

As a special degenerate case, a profile may be defined without any stereotypes, 
containing (or importing) nothing but model libraries. The drawback of this, however, 
is that such a profile cannot take advantage of some of the features of profiles, notably 
the ability to be dynamically applied or unapplied. 

6   A Systematic Method for Defining UML Profiles 

There has been little material published to guide designers of UML profiles. The 
consequence is that there are very many UML profiles that are either technically inva-
lid because they contravene standard UML in some way (and, thus, cannot be prop-
erly supported by standard UML tools) or they are of poor quality. In this section, we 
describe a method for defining profiles that will avoid some of the most common 
pitfalls. 

In this approach, the definition of a UML profile involves the construction of two 
distinct but closely related artifacts: a domain model (or metamodel) and the profile 
itself. The process commences with the initial definition of the domain model, which 
is then translated into the profile. However, depending on the complexity of the 
DSML and how well it conforms to UML, it may be necessary to iterate between 
these two artifacts. In addition to domain expertise, a close familiarity with the UML 
metamodel is also vital when defining a profile.  

6.1   The Domain Metamodel 

The primary purpose of a domain model is to specify what needs to be represented in 
the DSML and how. Experience with defining profiles has indicated that it is best if 
the initial domain model is defined strictly on basis of the needs of the domain, with-
out any consideration of the UML metamodel (to which it will be mapped subse-
quently). This achieves a useful separation of concerns and ensures that the initial 
DSML design is not corrupted by contingencies of the profile mapping.  

Unfortunately, far too many profiles start with the UML metamodel trying to fit the 
various domain concepts one-by-one within the framework that it provides. This con-
flates domain modeling issues and profile mapping issues and typically leads to loss 
of focus on domain concerns. The usual result is a DSML that is well aligned with the 
UML metamodel but which are suboptimal for domain modeling. 

An “ideal” DSML metamodel, on the other hand, is an unpolluted specification of 
what the corresponding profile should provide. In practice, it may not always be possible 
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to map this model precisely to the UML metamodel since the latter may have some con-
straints, metaclass attributes, or relationships, which are in conflict with the domain 
model. When that happens, it may be necessary to adjust the domain model with some 
loss of expressive power as a result. Naturally, if the profile strays too far from the ideal, 
then it may be the case that the profile-based approach is inappropriate or that UML is 
not the right base language for that particular DSML. (Note that, in such cases, the work 
invested in developing the domain model can be fully reused for a non-profile DSML.) 

A domain model is metamodel of the DSML that should all the key elements of a 
modeling language described in section 2. 

 

Fig. 6. A partial domain model of a DSML 

The abstract syntax of a DSML can be expressed using the OMG MOF (Meta-
Object Facility) language. In principle, other metamodeling languages can be used for 
this purpose, but MOF has the advantage that its models are easily translated into 
UML profiles. This is because UML metamodel is defined using MOF.  

The basic language constructs are typically captured using MOF classes and attrib-
utes, while the relationships between them are represented either by associations or 
through class attributes. As much as possible, profile constraints should be written 
using OCL, since that language was specifically designed to be used with MOF and 
because it is supported by many UML tools. 

For example, the relationship between processors, tasks, schedulers in an operating 
system DSML example would be captured using the MOF model fragment depicted 
in Fig. 6. 

6.2   Mapping the Domain Model to a Profile 

Once the domain model is completed, the process of mapping it to the UML meta-
model can commence. This is done by going step-by-step through the full set of do-
main concepts (specified as classes in the domain model) and identifying the most 
suitable UML base concepts for each.  

For example, in the operating system DSML shown in Fig. 6, we might conclude 
that the Processor domain concept is conceptually and semantically similar to the 
Node concept of UML, while the Task concept is related to the UML Class concept 
whose “isActive” attribute is set to “true”. Thus, we would define a stereotype called 
Processor whose metaclass is Node and a stereotype called Task whose metaclass is 
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Class. We could then define an attribute of the Task stereotype called “state” and also 
add a constraint that the “isActive” attribute of any Class tagged by this stereotype 
must have its “isActive” attribute set to “true”. 

Note that not all domain concepts need to be directly derived from corresponding 
UML metaclasses; some may be specializations (subclasses) of other “abstract” 
stereotypes in the profile. For example, a generic “semaphore” domain concept might 
be defined as a stereotype of the UML Class concept. This stereotype can then be 
refined further by multiple subclass stereotypes corresponding to different flavors of 
the generic concept (e.g., queueing semaphores, binary semaphores, etc.). 

The richness and diversity of concepts in the UML metamodel provides a very 
good foundation on which to base concepts for a very large number of DSMLs. How-
ever, although it may be easy in most cases to find a corresponding base metaclass for 
a domain concept, this is not sufficient. Care must be taken to ensure that the selected 
base metaclass does not have any attributes, associations, or constraints that are con-
tradictory to the semantics of the domain concept. Often, such issues can be resolved 
by simple constraints. For example, a conflicting attribute or association end from a 
base metaclass can be eliminated by forcing its multiplicity to be zero using a con-
straint (provided that it has a lower multiplicity bound of zero). 

The following guidelines should be used for mapping domain concepts to UML 
metamodel elements: 

 
1. Select a base UML metaclass whose semantics are closest to the semantics of the 

domain concept. This is very important since the semantics of UML concepts are 
often built into UML tools and also because people who know UML will natu-
rally expect a stereotype to inherit the semantics of its base metaclass. After all, 
the reuse of UML tools and UML expertise are among the primary justifications 
for the profile approach.  

2. Unfortunately, all too often, base metaclasses for stereotypes are chosen on the 
basis of a purely syntactic match. For instance, contrary to what might be ex-
pected, the OMG SysML profile does not use the UML Dependency concept to 
capture certain kinds of functional relationships that exist in a model. Instead, it 
uses the Class concept for this purpose because that allows reuse of some nota-
tional forms used with UML classes. In general, purely syntactical matches of 
this type should be avoided since they will lead to confusion and misinterpreta-
tion by tools. 

3. Check all the constraints that apply to the selected base metaclass to verify that it 
has no conflicting constraints. Note that it may not be sufficient to check just the 
base metaclass for such constraints but also all of its superclasses, if they exist. 

4. Check to determine if any of the attributes of the selected base metaclass need to 
be refined. This is a way of specializing the base concept for domain-specific se-
mantics. For example, in modeling a task in the example operating system 
DSML, we added a constraint that specified that the “isActive” attribute must be 
set to “true”. Constraints of this type may be used to define domain-specific de-
fault values of attributes and also to eliminate attributes that may not be relevant 
to the domain (by setting their lower multiplicity bounds to zero).  

5. Check to determine if the selected base metaclass has no conflicting associations 
to other metaclasses. These would be conceptual links inherited from UML that 



 The Theory and Practice of Modeling Language Design 315 

contradict domain-specific semantics in some way. Fortunately, many of these 
can be eliminated by the above technique of setting their lower multiplicity 
bounds to zero. However, if this is not possible, then this may not be the appro-
priate metaclass despite its semantic proximity to the domain concept. 

7   Semantics 

The semantics of a modeling language define what the concepts and rules of the lan-
guage denote, that is, their meaning. Clearly, for a domain-specific computer lan-
guage, these are primarily drawn from the problem domain, although, as we shall 
argue, the technical domain related to adapting these to computing technology must 
also play a significant role in the semantics. For example, the concepts and the rules 
have to be formulated as precisely and completely as possible, since they have to be 
realized by a computer. This usually requires some kind of formal (e.g., mathemati-
cal) or highly structured informal specification format. In addition, they must be for-
mulated in a way that is relatively easily mapped to the way that computers operate, 
not only because we are concerned efficiency and feasibility (which we normally are), 
but also because that increases the likelihood that the domain concepts will be cap-
tured accurately6. 

7.1   Static and Dynamic Semantics and Models of Computation 

Static semantics refers to the various rules that specify what constitutes a well-formed 
(i.e., legal) program. These rules quite often reflect some characteristics of the do-
main, such as, for instance, rules on compatibility between data of different types. 
Static semantics are normally captured by the abstract syntax of the language. Dy-
namic semantics, on the other hand, describe the run-time aspects of the language, 
that is, how programs written in the language execute on a computer7. 

As noted earlier, the inspiration for dynamic semantics normally comes from the 
problem domain. For a domain-specific language, these semantics should reflect the 
way that domain practitioners prefer to think about how things happen in their  
world. However, as the real-world is infinitely more varied and more complex than 
computing technology, there is a need to map domain semantics to some kind of 
model of computation. A model of computation is a paradigm for how computers 

                                                           
6  As an example of how technological concerns can impact a domain, consider the difference 

between the way that numbers are defined in mathematics and the way they are realized with 
computing technology. In the latter case, we have to deal with issues of finite precision, 
rounding, overflows, etc., all of which prevent us from a fully accurate rendering of the do-
main concept. As experience has shown, such factors can indeed have a significant impact on 
language design. 

7  In rare cases, a domain may not have any noteworthy dynamics. For instance, the MOF lan-
guage is used for defining static structures and the rules that control them. The models con-
structed by meta-modeling languages of this type are (typically) not meant to be executed in 
the traditional interpretation of that term. In such cases, it is sufficient for the language to de-
fine just the structural patterns that characterize the domain.  
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execute programs8. Many different models of computation have been defined in the 
past, including logical, functional, procedural, object-oriented, `quantum, and so on. 
For our purposes, we will focus only on the following two general categories that are 
the most commonly used and which are most readily understood by individuals who 
are not necessarily computer experts: 

 
• Behavior-dominant models of computation. This category includes both pro-

cedural and flow-based (e.g., functional, data flow) models. They are well 
suited to domains where algorithms, parallel or serial, are the dominant phe-
nomenon. The base concept here is that of a stateless computational fragment 
that performs some transformation of its inputs and presents them on its out-
puts. These fragments can be combined using either control flow relationships 
(for procedural type models), data flow relationships (for functional models), 
or some hybrid of the two. 

• Structure-dominant models represent computation as a network of collaborat-
ing computational entities. This includes the object-oriented model of comput-
ing as well as agent-based models and the like. The base notion here is that of 
a specialized structural entity capable of reacting to inputs and, where appro-
priate, generating appropriate outputs, which it may direct to other structural 
entities. In contrast to behavior-dominant models, a structural entity may in-
clude state information, which is a function of previous inputs and which is 
maintained throughout the lifetime of the entity. 

In practice, it is often necessary to mix these categories in various ways, although, in 
most cases, one of them represents the dominant paradigm in the sense that it provides 
the top-level context for the others. For example, object-oriented computing has a 
structure-dominant model, but the implementation of object operations (methods) is 
typically procedural (i.e., behavior dominant). 

Choosing a dominant model of computation requires both domain expertise and 
computing technology expertise. The domain experts supply the desired dynamic 
semantics, usually, in some informal manner, whereas the computing experts select 
the model or models of computation that most closely map to the desired semantics. 
The computer experts are also responsible for defining the more formal mapping of 
the domain semantics to the model of computation. 

From this, we can see that there are two principal activities related to the semantics 
of a modeling language: (1) the design and formulation of the desired semantics and 
(2) their specification in a way that can be communicated to both humans and com-
puters. Informal but structured and precise specifications of semantics are best suited 
for human consumption, while, formal, often mathematical, specifications are neces-
sary for computers. 

Language designers have a number of choices for specifying the dynamic seman-
tics of their languages. These may be mathematically formal or, as is often the case, 
specified in the form of computer programs written in some programming language. 

                                                           
8  The on-line encyclopaedia, Wikipedia, cites the following definition: “… a model of compu-

tation is the definition of the set of allowable operations used in computation....” 
(http://en.wikipedia.org/wiki/Model_of_computation). 
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The latter approach is interesting since such specifications are more easily verified9 
and may also provide the basis for an implementation. In the following section we 
provide a brief overview of one prominent practical example, from the author's ex-
perience, of how the semantics of a relatively large modeling language have been 
specified.  

7.2   The Executable UML Foundation Specification 

The Executable UML Foundation [11] is a technology recommendation recently 
adopted by the OMG, the same industry consortium that manages the UML and MOF 
language specifications. It is intended to serve two primary purposes: 

 
1. To provide a formal specification of the dynamic semantics of a core subset of 

UML 2. This subset comprises a complete modeling language in its own right 
and is the foundation on which the rest of UML 2 is based. The intent is to use 
this subset as a basis for defining the more complex and higher level elements 
of UML, such as statecharts and composite structures as shown in Fig. 7. 

2. To serve as a standardized facility for describing the semantics of modeling 
languages in general. Namely, the semantics of a modeling language can, in 
principle, be defined by specifying them as a program written using the Execu-
table UML Foundation modeling language. (In fact, the Executable UML 
Foundation is itself the first example of this capability, since it is specified us-
ing itself – a common approach in computer language design.) 

 
The Executable UML Foundation specification uses the latter approach to describe 
the dynamic semantics of the Executable UML Foundation modeling language. This 
language—a proper subset of the full UML 2 modeling language—is officially called 
fUML (for “foundational” UML). Its semantics are defined by a family of virtual 
machines capable of executing fUML programs (Fig. 7). For example, the semantics 
of UML 2 statecharts could be described by writing an appropriate fUML program.  

The fUML family of virtual machines is based on a structure-dominant object-
oriented model of computation. This is not surprising given that UML is firmly 
founded on object-oriented principles; it is an example of how the domain can influ-
ence the selection of the model of computation. From the modeler’s point of view, all 
behavior in a fUML virtual machine stems from the behavior of application objects 
responding to messages generated by other application objects sent over links that 
connect them. These objects exist within the virtual machine environment, which is 
responsible for their creation and destruction, for performing the transport of mes-
sages, for scheduling and dispatching of method executions, and for interactions with 
entities outside the virtual machine. fUML objects are active objects, which means 
that they only respond to external events when they perform an explicit receive opera-
tion. This allows the modeling of parallel and distributed computations. 

                                                           
9  Mathematically inclined people may disagree with this conclusion. However, it is the au-

thor`s experience that the formal semantics specifications of most computer languages are so 
complex that their mathematical specifications run on for many pages making them very dif-
ficult to verify conclusively. 
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Fig. 7. The Architecture of the Executable UML Foundation 

While the dominant model of computation of the fUML virtual machine is struc-
tural, their behavior is specified using a flow-based style. fUML objects execute UML 
actions, whose semantics are described using a combination of data flow (functional) 
and control flow (procedural) models of computation. A major part of the fUML 
specification consists of descriptions of the semantics of individual fUML actions 
(e.g., send message, read attribute, create object). The approach here is based on de-
fining a corresponding “execution” object for each supported action. For example, for 
the TestIdentity action of UML (which tests whether two different object ids represent 
the same object), the fUML specification defines a TestIdentityExecution object. 
Execution objects are created dynamically by the virtual machine and executed when 
their turn comes. After completing its action, an execution object is no longer useful 
and is discarded. If execution reaches the same point in the program again, a new 
execution object will be created. 

The specification of how execution objects behave is defined using a proper subset 
of fUML, called base UML or, bUML, for short10. The reason for using only a subset 
of fUML to describe itself is that it simplifies the next level of semantics specifica-
tion. Being simpler than fUML, bUML is easier to define in a formal manner. The 
ultimate semantics specification in this chain, the specification of bUML, is done 

                                                           
10  Actually, the current version of the Executable UML Foundation specification uses a strictly 

controlled subset of the Java programming language (which has relatively well understood 
semantics) to define the semantics of fUML actions rather than bUML. This subset of Java is 
chosen in such a way that its statements can be easily and relatively directly mapped to 
bUML (these mappings are actually included in the spec). The reason for this shortcut was 
purely practical and was necessitated by the desire to produce a reference implementation 
that was used to verify the fUML definition. With no fUML or bUML implementation avail-
able, some other means had to be found to bootstrap the process. Furthermore, given that 
there was no textual syntax available for writing bUML programs only graphical representa-
tions could be used. Unfortunately, these diagrams tended to be extremely cumbersome and 
practically unreadable. The full definition of both fUML and bUML is awaiting the definition 
of a textual version of the UML action language, which is currently under development. 
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using a mathematical formalism called the Process Specification Language (PSL) [3]. 
This uses an axiomatic approach based on first-order logic to describe the semantics 
of processes in execution. The PSL specification of bUML serves not only to define 
the semantics in a mathematically precise fashion, it also opens up the possibility of 
using computer-based automated reasoning to analyze programs written in bUML, 
and, ultimately, fUML and UML itself. 

Since UML has numerous semantic variation points, some of this variability pene-
trates down into the semantics of fUML itself. For example, UML leaves the precise 
semantics of inter-object communications undefined. Thus, it leaves open the ques-
tion of whether or not messages are delivered in the order in which they are sent (e.g., 
in priority based communications systems). Consequently, fUML also has semantic 
variation points, although a much smaller number compared to UML, which is why it 
is referred to as a "family of virtual machines". This variability allows support for 
different flavors of executable UML languages.  

The feasibility and practicality of using fUML as a general-purpose tool for defin-
ing the semantics of modeling languages remains to be tested. However, assuming 
that most domain-specific languages will likely be simpler than UML, we can be 
optimistic about its outlook. Ideally, it should be possible to supplement the abstract 
syntax definition (MOF or profile) with a fUML specification of its dynamic seman-
tics. Given that these are based on standards, it is possible in principle to exchange 
complete computer-readable language specifications, which can be supported by 
generic customizable language tools and, in this way, avoid the difficult problem of 
the missing language support structure. 

8   Conclusions and a Look to the Future 

In this paper, I have provided a summary of some of the practical and theoretical 
issues related to design of modeling languages, based on personal experience with 
MOF, UML, and related languages. The heavy emphasis on these standards should 
not be interpreted as an endorsement of these languages as paragons of modeling 
language design. But, whatever their failings (and these are undoubtedly numerous), 
they are very widely used in both industry and research. This makes them significant 
by default. As a direct participant in the definition of these standards, I had hoped to 
provide a candid and unmediated description of the lessons learned and experience 
gained in the design of these important languages. It still remains, however, for some-
one to codify and generalize these lessons and incorporate them into a useful and 
systematic theory of modeling language design that would serve as the foundation of 
a proper and reliable engineering discipline. 

There are indeed many research challenges still facing us before we reach this goal. 
For example, what should a good metamodeling language look like? EMF is ex-
tremely simple compared to the MOF. Which of these approaches is the better one, or, 
is something in the middle best? Perhaps the answer to that question depends on the 
type of language being defined; if so, what is the nature of that dependency? And, 
what about the profile approach, with its promises of minimizing language support 
structure issues? Under what circumstances is it effective? What should its refinement 
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constructs look like? Also unresolved is the best way (or ways) in which language 
semantics are to be defined.   

The question that is very much neglected at the moment is the problem of defining 
concrete syntaxes for modeling languages, particularly graphical ones, although a 
recently published work shows great promise [8]. Since one of the primary goals of a 
concrete syntax is to facilitate communications, it surely needs some input from cog-
nitive psychology experts with their insights into human intuition.  

There is, of course, the whole topic of model transformations and automated code 
generation from modeling languages, which has not been touched on in this overview. 
There are numerous conferences and workshops and many publications on this topic, 
so at least this issue is not being neglected and some major progress is being made. 
Surprisingly, however, (at least to me) very little of this work is inspired by the exist-
ing and much proven body of knowledge in compiler construction. 

Another related issue is that of tools: the current generation of tools to support 
modeling languages is still immature. Almost all of the important tools are far too 
complex, fraught with major usability problems, which divert the users' attention from 
the problem at hand. How should we design our tools to make them flexible and eas-
ily adaptable to specific problems and individual needs. How do we construct tools 
that are capable of adapting to different languages and semantics? 

The research topics above represent merely a sampling; the full list is much longer 
and growing. At the same time, the need for a solid theoretical underpinning is be-
coming ever more pressing. Currently, it seems to me that industrial practice is far 
ahead of the theory in this domain, but these solutions tend to be product-specific or 
project-specific point solutions. These need to be studied and consolidated into gen-
eral solutions.  

In conclusion, there is at present much opportunity for very interesting and very 
fruitful research in the area of modeling language design. Unfortunately, the current 
efforts tend to work mostly in isolation of each other, with much relearning and rein-
vention. I am convinced that this can only be rectified if some form of consolidation 
of research efforts is undertaken. 
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Abstract. Embedded Systems permeate all aspects of our daily life, from the 
ubiquitous mobile devices (e.g., PDAs and smart-phones) to play-stations, set-
top boxes, household appliances, and in every electronic system, be it large or 
small (e.g., in cars, wrist-watches). Most embedded systems are characterized 
by stringent design constraints such as reduced memory and computing 
capacity, severe power and energy restrictions, weight and space limitations, 
most importantly, very short life spans and thus strict design cycles. 
Reconfiguration has emerged as a key technology for embedded systems as it 
offers the promise of increased system performance and component number 
reduction. Reconfigurable components can be customized or specialized (even 
dynamically) to the task at hand, thereby executing specific tasks more 
efficiently leading to possible reductions of the weight and power. In this 
article, we introduce and discuss compilation techniques for reconfigurable 
embedded systems. We present specific compiler techniques focusing on 
source-level code transformations highlighting their potential and the 
applicability of generative programming techniques to this compilation domain. 

1   Introduction 

Reconfigurable computing architectures are playing a very important role in specific 
computing domains [1]. In the arena of high-performance computing (HPC), Field-
Programmable Gate-Arrays (FPGAs) [2] have exhibited in many cases outstanding 
performance gains over traditional von-Neumann based computer architectures [3]. In 
the context of embedded systems, FPGAs are common-place for early prototyping, and 
in deployment, given their unique the ability support “zero-cost” updates of hardware in 
early product insertion windows where modifications are required, as well as the low 
initial development costs when compared to ASIC (Application-Specific Integrated 
Circuit) solutions. The substantial increase of resource capacity in high-end FPGAs and 
their extreme flexibility has enabled reconfigurable architectures to embrace both 
traditional and newer markets such as embedded and high-performance computing. 
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The increasingly complexity of reconfigurable architectures and the constant time-
to-market pressures have exacerbated the need for the ability to program such 
architectures at higher-levels of abstractions other than the de facto standard low-level 
hardware-oriented programming environments. A substantial issue that hampers the 
mapping of high-level programming languages to reconfigurable architectures is the 
diversity of granularity of hardware resources in these architectures. Fine-grained 
reconfigurable fabrics (such as FPGAs) are able to implement digital architectures at a 
fairly low-level while coarse-grained reconfigurable fabrics are better suited to 
implement computations based on ALU and storage elements. While coarse-grained 
architectures offer a set of target programming abstractions such as instructions and 
memory, they are less flexible than fine-grained architectures in terms of low-level 
control and scheduling.  They facilitate some of the aspects of high-level compilation 
while hampering the development of very customized low-level digital controller 
solutions. Fine-grained architectures represent the opposite end of the programmability 
spectrum. They offer a wide range of design choices but offer virtually no low-level 
hardware abstractions. Compilers must thus structure their designs in a mix of 
instructions and dedicated controllers and logic circuits, substantially increasing the 
complexity of the mapping. 

For several years, there have been large efforts on compiling high-level 
programming languages to reconfigurable architectures [4, 5] and while research has 
proven that it is possible to bridge the gap between traditional high-level software 
programming models and hardware-oriented programming languages (e.g., VHDL or 
Verilog) the extreme low level abstractions exposed by reconfigurable architectures 
make this compilation problem extremely challenging.  

This chapter provides a tutorial on compilation techniques for embedded systems 
with a special emphasis on architectures consisting of reconfigurable hardware as 
accelerator units of general-purpose processors. A typical compilation flow, as 
depicted in Fig. 1, is split in two different compilation processes, one for the segment 
of the input program to be mapped to the traditional processor and another process 
corresponding to the segment to be mapped to the hardware accelerator. The hardware 
compilation process may exhibit different approaches depending on the target 
hardware accelerator architecture. Depending on the nature of the hardware 
accelerator, the flow might have to include hardware synthesis steps such as RTL 
(Register-Transfer-Level) logic synthesis and placement-and-routing (P&R), which in 
turn requires the generation of hardware-oriented description in languages as interim 
steps in the compilation flow.  

A common approach to reduce the complexity of the compilation process relies on 
a set of predefined architecture or architectural elements (modules) that are then 
embedded in the target configurable architecture as soft hardware macro elements. In 
this approach, the compilation flow needs to include the generation of the 
macroinstructions to program the hardware elements, possibly requiring a limited 
form of P&R for the assignment of instructions to various macro elements that will 
orchestrate the flow of data in the overall hardware design. 

This chapter is organized as follows. Section 2 briefly introduces embedded 
reconfigurable architectures. Then, in Section 3, we describe the main concepts on 
compilation for reconfigurable architectures. In Section 4, we outline various code 
transformations along with illustrative examples. Section 5 highlights the potential of  
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Fig. 1. Typical compilation flow for embedded systems consisting of a microprocessor with 
hardware accelerators 

using generative programming techniques and tools to improve compilation to 
embedded and reconfigurable architectures. Finally, Section 6 concludes this chapter. 

2   Embedded and Reconfigurable Architectures 

Reconfigurable computing fabrics – FPGAs being one of the most notable examples – 
consist mainly of aggregations of a large number of elements, namely: functional 
units (FUs), memory elements (MEs), interconnection resources (IRs), and I/O 
buffers (IOBs). Contemporary FPGAs combine fine-grained with coarse-grained 
elements such as multipliers, DSP blocks, memory blocks and even microprocessors, 
as is the inclusion of IBM PowerPC cores in some Xilinx FPGA devices. Fig. 2 
depicts a possible block diagram of a computing system implemented in a 
reconfigurable computing fabric.  

 

Fig. 2. An example of a possible computing system implemented in a reconfigurable fabric, 
which includes a general purpose processor (GPP) and a reconfigurable processing unit (RPU) 

The reconfigurable fabrics distinguish themselves according to the granularity of  
the FUs and IRs. Typically, fine-grained architectures include configurable blocks  
with small bit-widths (e.g., 4 bits), whereas coarse-grained architectures include 
configurable blocks with large bit-widths (e.g., 16, 24, 32 bits), while other 
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architectures still expose a mix of fine- and coarse-grained hardware structures. In the 
case of fine-grained architectures, core cell elements may consist of programmable 
hardware components that implement Boolean functions with a number of inputs and a 
single output, as illustrated in Fig. 3(a) for a 2-input fine-grained cell (typical FPGAs 
use more complex cells with 4 or 6 inputs and 1 or 2 outputs). 

Coarse-grained architectures also include a number of cells, (such the one 
presented in Fig. 3(b)), programmable interconnect resources, and distributed 
memories. They are more appropriate to implement data-path operations. Note, 
however, that fine-grained reconfigurable fabrics allow the implementation of 
microprocessors, configurable processors (i.e., processors with extensible ISA – 
Instruction-Set Architecture – and parameterizable capabilities [6]) and coarse-
grained reconfigurable arrays, as well. 

Reconfigurable hardware can be coupled (tightly or loosely) to a processor as a 
programmable accelerator. In this scenario, the reconfigurable hardware acts as a 
reconfigurable functional unit implementing extensions to the ISA of the host 
processor or simply as a co-processor. In this latter case, the reconfigurable hardware 
can even undertake more sophisticated computations. 

The granularity of the reconfigurable fabric constrains the type of computing 
engines that can efficiently be implemented with its resources. Fine-grained fabrics 
implement computing engines using gate-level circuitry descriptions (e.g., AND, OR 
gates), while coarse-grained fabrics implement computing engines at the word or 
ALU level. Coarse-grained fabrics limit in practice the set of computing models (such 
as coarse-grain data-flow), whereas in fine-grained fabrics one can implement 
virtually any type of computing model. This flexibility comes at a cost: programming 
of fine-grained fabrics is more difficult, cumbersome, and time consuming, imposing 
a significant overhead in interconnect-resources, to ensure routing between its 
configurable blocks. 

 

 

 
(a) (b) 

Fig. 3. Example of possible cells: (a) fine-grained; (b) coarse-grained reconfigurable fabrics 

One possible approach when compiling high-level programming languages to 
reconfigurable architectures such as FPGAs relies on the use of hardware mapping 
templates as the one illustrated in Fig. 4. Here the mapping is decoupled between a 
control unit and a data-path unit. The control unit is responsible for managing the 
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execution of the program on the data-path unit, including memory accesses. Both 
units might be specific (or custom) to a given computation or have programmable 
features allowing those units to efficiently execute a selected set of programs. An 
important component of this approach includes the specific use of local data 
memories and corresponding data partition to the specific needs of the computations. 

With respect to the output generated by compilers, it is often based on HDL-RTL 
descriptions [7] representing computing engines based on the organization depicted in 
Fig. 4 when targeting fine-grained reconfigurable fabrics, and/or on assembly code to 
program coarse-grained reconfigurable architectures.  

 

Fig. 4. Typical organization of a computing engine: memory, data-path and control unit 

3   Compilation to Reconfigurable Computing Architectures 

We now describe key concepts in compilation techniques and execution schemes for 
reconfigurable embedded architectures. It is assumed the reader to have basic 
knowledge about compiler analyses and mapping techniques [8-10]. 

3.1   Resource Sharing 

For a given input program, a compiler may bind each operation to a distinct functional 
unit. To save hardware resources, a compiler may use functional units to implement 
two or more operations. In this case, a functional unit is shared using a time 
multiplexed scheme [7, 11]. Correct operands are connected to the inputs of the 
functional units (using control and multiplexers) and the results of the functional units 
are connected (possibly with registers) to the operations needing them. 

Resource sharing has been used extensively by high-level synthesis tools [7] and 
several scheduling, allocation and binding steps have been proposed. The typical goal 
of scheduling is to minimize the number of hardware resources used, possibly via 
resource sharing, while minimizing the overall execution time. Besides functional 
units, there are a number of other hardware resources that may benefit from resource 
sharing, as is the case with memories and input/output ports. In these latter cases, the 
compiler may not have the opportunity to decide about considering sharing or not and 
may have to contemplate it. Fig. 5 illustrates a typical interface scheme to a single-
port memory. When an operation on a shared hardware resource spans multiple 
execution stages, a compiler may take advantage of pipelining resource sharing 
whereby operators simultaneously use different stages of the execution on the 
resource. 
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Fig. 5. Interface from different data-path locations to a single-port memory 

3.2   Scheduling 

Static scheduling defines the control step where a specific operation will be executed. 
A common scheduling algorithm is the list-scheduling [7, 11] whereby the operations 
whose input values are already available are scheduled for execution on the set of 
existing functional units. Two of the more common strategies list-scheduling 
implementations include the ASAP (As Soon As Possible) and ALAP (As Late As 
Possible) scheduling information, corresponding respectively to the most eager and 
the least eager scheduling of operations whose operands have been already computed. 

Fig. 6(a) depicts a simple computation expressed as a loop construct in a high-level 
programming language using array variables. Here we depict the original computation 
as well as a version where the loop was unrolled by a factor of 2 thereby exposing 
more basic operations to a scheduling algorithm. In Fig. 6(b) we present the data-flow 
graph of the unrolled variant of the code and in Fig. 6(c) and (d) we depict the ASAP 
and ALAP schedule respectively for the original as well as for the unrolled versions 
of the code. 

In these schedules we assume each array variable is mapped to a distinct memory 
unit and that both memory read and write operations exhibit a latency of 3 clock 
cycles. We further assume that there is a single multiplier and a single adder unit. 

3.3   Loop Pipelining 

Loop pipelining is a technique that aims at reducing the execution time of loops by 
explicitly overlapping computations of consecutive loop iterations. Only iterations (or 
parts of them), which do not depend on each other can be overlapped. Two distinct 
cases are: loop pipelining of innermost loops and pipelining across nested loops. Due 
to its performance benefits, loop pipelining has been the focus of many research 
efforts and is supported in every major compiler. When compiling to microprocessor-
based systems, loop pipelining is known as software pipelining [12]. Many 
contemporary compilers use as their basis the well-known iterative modulo 
scheduling technique [12-14]. We illustrate in Fig. 7 a simple example and two 
possible software pipelining approaches. A first approach is depicted in Fig. 7(a) and 
uses a kernel set of instructions and explicit prologue and epilogue sections. A second 
approach, depicted in Fig. 7(b), makes use of predicated instructions with an epilogue 
and a prologue sections as part of the kernel. The second approach has the advantage 
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of a lower number of load/store instructions in the code, an important aspect when 
mapping to architectures where the more the number of load/store instructions in the 
code higher is the overhead cost. 

 

Fig. 6. Scheduling for ASAP and ALAP strategies in the presence of memory accesses for 
distinct memories and for unrolled loop code versions. In these examples we assume a single 
multiplier unit and a single adder unit. 

for(int i=0; i<10; i++) { 
   C[i] = A[i] * B[i]; 
} 

a_tmp = A[0]; 
b_tmp = B[0]; 
for(int i=0; i<9; i++) { 
   C[i] = a_tmp * b_tmp; 
   a_tmp = A[i+1]; 
   b_tmp = B[i+1]; 
} 
C[9] = a_tmp * b_tmp; 

for(int i=0; i<11; i++) { 
   C[i-1] = a_tmp * b_tmp: if i!=0 
   a_tmp = A[i]: if i!=10; 
   b_tmp = B[i]: if i!=10; 
} 

(a) (b) (c) 

Fig. 7. Simple example illustrating software pipelining: (a) original source code; (b) modified 
source code illustrating the epilogue and the prologue code sections added; (c) use of 
predication enables software pipelining without explicit epilogue and prologue sections 

In the context of reconfigurable or custom architectures, most notably FPGAs, 
many researchers have exploited loop pipelining in various forms [5]. Some loop 
transformations (e.g., unrolling, interchange, tiling) can enhance the applicability of 
loop pipelining. Loop pipelining can be also used to overlap subsequent iterations of 
an outer loop with an inner loop. 
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3.4   Task-Level Pipelining 

Applications such as video and image/signal processing domains, are naturally 
structured as sequences of data-dependent tasks using a producer/consumer 
communication paradigm and are thus amenable to pipelined execution [15, 16]. In 
this context, one may overlap some of the execution steps of sequences of loops or 
functions by starting computing as soon as the required data items are produced in a 
previous function or iteration of a previous loop. 

The tasks can communicate data using a consumer/producer model implemented 
using a custom, application data-driven, fine-grained synchronization buffering. Such 
an execution scheme allows for out-of-order, data-dependent producer-consumer 
pairs. Data can be communicated to subsequent stages using a FIFO mechanism [15]. 
Each FIFO stage may store an array element or a set of array elements. Array 
elements in each FIFO stage can be consumed by a different order than the one they 
have been produced. Examples with the same order of producer/consumer only need 
FIFO stages with one array element. In the other case, each stage must store a 
sufficient number of array elements in order that all of them are consumed (by any 
order) before the next FIFO stage is considered. Instead of using coarse-grained (the 
grain is related to the size of the FIFO stages) synchronization, the approach 
presented in [16] uses a hash-based inter-stage buffer and signal flags to identify the 
availability of data elements. Due to the complexity to statically determine the 
communication needed by this type of pipelining, its application has been limited.  

With the widespread use of multicore architectures, task-level pipelining may be a 
key execution technique that exploits the coarse-grained parallelism intrinsic to these 
architectures. A compiler aware of task-level pipelining must be able to analyze the 
applicability of this technique, and if applicable it must split the code in tasks and 
insert the data communication primitives. Reconfigurable hardware resources will 
bring more opportunities to this task-level pipelining, as special and customized inter-
stage buffers can be configured according to the application under execution. 

3.5   Temporal Partitioning 

Temporal partitioning [17, 18] split a computation in disjoint sections to be executed 
by time-sharing a hardware resource. Given its similarity to scheduling, various 
scheduling-based algorithms have been proposed for temporal partitioning. When 
performing scheduling, in a given control step each operation is assigned to a 
functional unit trying to execute as many operations concurrently as possible, while 
still preserving data dependences of the input computation. Between control steps and 
temporal partitions, data might be communicated typically relying on hardware 
support in the form of registers, register files, or memories. Fig. 8 illustrates an 
example of temporal partitioning of a data-flow graph representing a section of an 
application code. The original data-flow graph shown in Fig. 8(a) is split in three 
temporal partitions illustrated in Fig. 8(b) communicating data via registers.  

There have been many proposed algorithms for temporal partitioning. They consist 
of extensions to list-scheduling and, e.g., other alternative approaches using 
optimization algorithms such as simulated annealing [19]. One of the major steps in 
temporal partitioning algorithms includes the profitability evaluation of the mapping  
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Fig. 8. Example of Temporal Partitioning: (a) data-flow graph representing a section of code; 
(b) data-flow graph split in three sections executed with time-sharing of the hardware resources 
(notice the data communicated between sections) 

of a given operation to a temporal partition. This step requires an estimation of the 
resources needed when a specific operation is added to a temporal partition already 
containing other operations. To simplify this estimation, most proposed schemes use 
high-level models with algorithmic relaxing (or dampening) factors. Given that 
temporal partitioning elicits hardware resource sharing several approaches have tried 
to integrate both problems [20, 21]. 

3.6   Hardware/Software Partitioning 

As most reconfigurable computing platforms include a traditional processor coupled 
to reconfigurable resources, partitioning the computations between the processor and 
the reconfigurable resources is a key aspect of the compilation flow. As a result, the 
original computations are partitioned into a software component and a hardware 
(reconfigurable) component. The software component is then compiled onto a target 
processor using a traditional, native compiler for that specific processor. The 
hardware components are mapped to the reconfigurable resources by, commonly, 
translating the correspondent computations to representations accepted by hardware 
compilers or synthesis tools. As part of this partitioning, additional instructions to 
synchronize the communication of the data between the processor and the 
reconfigurable resources are required. Fig. 9 illustrates an example of applying 
hardware/software partitioning over an example and considering a reconfigurable 
processing unit connected to the microprocessor. This partitioning process is even 
more complex if the target architecture consists of multiple processors or the 
communication schemes between devices or cores can be defined in the compilation 
step, as is the case when targeting complex embedded systems. 

Hardware/software partitioning has long been the focus of the hardware/software 
co-design research community [22]. A common approach relies on the use of 
migration methods that evaluate the impact of allocating selected segments of code  
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…
// Number of array elements N
int N=4;

// create a reconfigware object
HWConfigure(“vect_dist.bit”);

//send the arrays to the memory of the board
HWput(X, AddrX, N, PORT_A); 
HWput(Y, AddrY, N, PORT_A);

// start the reconfigurable hardware execution
HWset(START, 1, PORT_B);

// pool the DONE bit till the completion of the 
// reconfigurable hardware execution 
do {} while(HWget(DONE, PORT_B) != 1);

// get the result from the register on the FPGA
int L2NORM = HWget(RESULT, PORT_C);

…

…
// Number of array elements N
int N=4;

int L2NORM = 0;

for(int i=0; i<N;i++) {
short Aux = X[i] - Y[i];
L2NORM += Aux*Aux;  

}
…

 

Fig. 9. Migration of an inner loop to reconfigurable hardware (notice the initialization, control 
and wait loop in the new software version on the right) 

from the microprocessor to custom hardware. For instance, the automatic generation 
of instruction-set extensions (ISEs) supported by dedicated hardware can be thought 
as a special problem of hardware/software partitioning [23, 24]. 

4   Code Transformations for Reconfigurable Architectures 

We now describe code transformations that are particularly suited for embedded and 
reconfigurable computing systems. We deliberately exclude from this discussion 
generic code transformations that compilers routinely perform for all target 
architectures. For instance, constant folding and constant propagation, dead code 
elimination, strength reduction or common sub-expression elimination, are often 
implemented in the compilation process and seldom done explicitly at source-code 
level. Although most code transformations discussed here are not tied to a particular 
language, we focus on an imperative programming language such as C as this is a 
popular embedded systems programming language. In the next subsections we 
describe a representative set of high-level source-code transformations outlined in 
Table 1 where we briefly describe them and their perceived benefit. 

4.1   Floating-Point to Fixed-Point Precision 

It is common that an initial version of an algorithm requiring real numbers is 
developed using double or single precision data types. After this initial development 
effort, users typically explore alternative implementations with reduced precision 
requirements, such as fixed-point representations. Operations over real numbers do 
not necessarily require dedicated floating-point units thus allowing for lower-cost 
design solutions. In this process, the algorithms must be adapted to use fixed-point 
representations commonly performed at source-code level with user help and/or of 
assistant tools (see, e.g., [25]). 
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Table 1. Code transformations (transformations indicated by * are described in greater detail in 
the following sub-sections) 

Transformation Description 
Floating- to fixed-
point data types and 
floating-point 
precision conversions 
(e.g., double vs. 
single precision)* 

Transforms floating-point to fixed-point numeric representations. Requires 
analysis – static and/or dynamic – for deciding the integer and fractional 
representation components. A related transformation includes conversion to 
non-standard floating-point representations (i.e., non IEEE 754). Similar 
transformations recast computations using higher-precision floating-point 
representations such as single to double precision. 

Loop transformations 
(e.g., loop unrolling, 
distribution, fusion, 
fission, reorder) 

Loop-based transformations from loop unrolling (partial or full), loop 
distribution, loop fission, or combinations thereof such as unroll-and-jam. 
Overall increase opportunities for ILP and other forms of concurrency such as 
task parallelism. 

Software Pipelining Transforms a loop in order to have operations of subsequent iterations 
overlapped with the current iteration. This transformation might explicitly use 
prologue and epilogue or the use of predicates. 

Data distribution*, 
Custom data layout* 
and Data replication* 

Divides/Replicates datasets in chunks in order to distribute them, possibly in a 
custom fashion, by multiple memories in the system thereby enabling 
concurrent access to multiple data items. 

Scalar promotion  
(elimination of 
memory accesses)  

Converts array elements into scalar variables eliminating the need for array 
indexing and in many cases memory accesses. When combined with replication 
and distribution can increase data availability and eliminate anti-dependences. 

Data reuse* 
(elimination of 
redundant memory 
accesses)  

Transforms a computation so that data (usually in array variables) that are 
frequently accessed can be cached (typically in registers) thereby eliminating 
many accesses to array variables. This transformation is commonly 
implemented using scalar variables, rotating registers, shift registers, and local 
memories in conjunction with loop unrolling and constant propagation. 

Function inlining and 
exlining  

Replaces function calls by the function body (inlining) or code patterns or 
clones to calls to functions (exlining) having as body such patterns or clones. 

Code motion 
(hoisting) 

Moves code around basic blocks, loops, and functions. A special is loop-
invariant code motion that movies code outside loops. 

Pointers to array 
variables 

Transforms pointers to array variables. This might improve data-dependence 
analysis and as consequence better results. 

 
There are two common cases of fixed-point representations: (a) uniform fixed-

point data type (i.e., all the variables use the same number of bits to represent the 
fractional and the integer fields); (b) non-uniform (variable) fixed-point representation 
for each variable (i.e., each variable may have a different number of bits for integer 
and fractional fields). Fig. 10 illustrates these two cases. The original code in  
Fig. 10(a) uses floating-point data types. This code can be transformed to a uniform 
fixed-point representation taking advantage of macros as illustrated in Fig. 10(b), 
using in this case 32 bits of word-length and 16 bits for the fractional field. A non-
uniform (variable) fixed-point representation requires more code modifications to 
specify for each operation, the properties of each operand and the corresponding 
result (as is shown in Fig. 10(c) for some code statements). 

4.2   Data Reuse and Scalar Replacement 

Computations often reuse data values, for example when they repeatedly use 
coefficients of a given signal transformation or when they repeatedly access, possibly 
in an overlapped fashion, a region of an array variable. An implementation can exploit 
this data reuse by selectively choosing which data values to reuse, caching them in  
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… 
#define NPOINTS 64 
#define ORDER 32 

float input[NPOINTS]; 
float output[NPOINTS]; 

 

float cf [NPOINTS]={0.25, 0.51 , 0.75,…} 
float state[NPOINTS]={0.25,0.5,0.75,…} 

… 
void latnrm(float data[], float  outa[], float cf[], 
                     float state[]) { 
   int i, j; 
   float left,right,top, sum; 
   float bottom=0;  

 
   for (i = 0; i < NPOINTS; i++) { 
       top = data[i]; 

for (j = 1; j < ORDER; j++) { 
   left = top; 
   right = state[j]; 

           state[j] = bottom; 
    top = cf[j-1]*left - cf[j]*right; 
    bottom = cf[j-1]*right + cf[j]*left; 

       } 
      … 
      sum = 0.0; 
      for (j = 0; j <  ORDER; j++)  
         sum += state[j]*cf[j+ORDER]; 
      outa[i] = sum; 
   } 
} 
… 

… 
#define FRACT_BITS 16 
#include "uniform_fixed.h" 
#define NPOINTS 64 
#define ORDER 32 

fixed in_fixed[NPOINTS], out_fixed[NPOINTS]; 

 

fixed cf[NPOINTS]={ 
FLOAT_TO_FIXED(0.25), FLOAT_TO_FIXED(0.51), 
FLOAT_TO_FIXED(0.75),…}; 
fixed state[NPOINTS]={ 
FLOAT_TO_FIXED(0.25), FLOAT_TO_FIXED(0.5), 
FLOAT_TO_FIXED(0.75), …}; 

… 
void latnrm(fixed data[],fixed  outa[],fixed cf[],  fixed state[]) { 
   int i,j; 
   fixed left,right, top, sum, bottom=0; 
   for (i = 0; i < NPOINTS; i++)  { 
      top = data[i]; 
      for (j = 1; j < ORDER; j++) { 

  left = top; 
  right = state[j]; 
  state[j] = bottom; 
  top = FIXED_MULT(cf[j-1], left) -  FIXED_MULT(cf[j], right); 
  bottom = FIXED_MULT(cf[j-1], right) + FIXED_MULT(cf[j], left); 

      } 
      … 
      sum = 0; 
      for (j = 0; j <  ORDER; j++)  

   sum += FIXED_MULT(state[j],cf[j+ORDER]); 
      outa[i] = sum; 
   } 
} 

(a) (b) 
… 
fixed cf[NPOINTS]={ 
FLOAT_TO_FIXED(0.25, cf_a, cf_f), FLOAT_TO_FIXED(0.51, cf_a, cf_f), FLOAT_TO_FIXED(0.75, cf_a, cf_f),…}; 
… 
top = FIXED_TO_FIXED(data[i], data_a, data_f, top_a, top_f); 
… 
top = FIXED_ADD(FIXED_MULT(cf[j-1], left, cf_a, cf_f, left_a, left_f, t1_a, t1_f) -     
            FIXED_MULT(cf[j], right, cf_a, cf_f, left_a, left_f, t2_a, t2_f), t1_a, t1_f, t2_a, t2_f, top_a, top_f) ; 
… 

(c) 

Fig. 10. Examples of floating- to fixed-point data representation conversion: (a) original code; 
(b) code using macros to represent operations on fixed-point data; (c) code sketch with non-
uniform fixed-point data type representations 

scalar variables the first time they are accessed. These values, saved into registers or 
internal memories, are then reused in the remainder of the computation until they are 
no longer needed. As with traditional architectures, this caching of data “locally” in 
registers or memories improves the overall hardware implementation performance as 
it reduces data access latency in many cases even eliminating memory accesses [26]. 

Fig. 11 illustrates the application of this data reuse concept using a transformation 
called scalar replacement. Here successive iterations of the loop in Fig. 11(a) access 
an overlapping set of data values. At each loop iteration, two of the three values used 
have been accessed in the previous iteration. A way to exploit this reuse is as shown 
in Fig. 11(b). The code uses three scalar variables x_0, x_1 and x_2 and shifts the 
values through them at each iteration. Before the loop executes, the first two values of  
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for (int i = 2; i< N; i++) { 
   y[i] = x[i] + x[i-1] + x[i-2]; 
} 

int x_2 = x[0] 
int x_1 = x[1]; 
Int x_0; 
for (int i = 2; i< N; i++) { 
   x_0 = x[i]; 
   y[i] = x_0 + x_1 + x_2; 
   x_2 = x_1; 
   x_1 = x_0; 
} 

(a) (b) 

Fig. 11. Transformations for data reuse: (a) original code; (b) transformed code 

the array x are fetched to the scalar variables. At each iteration of the transformed 
code a single array access is performed, a substantial reduction from the original code. 

As can be observed by this example, this data transformation has the potential to 
substantially reduce the number of external memory accesses at the expense of local 
storage in the form of registers or internal memory storage. Researchers have developed 
sophisticated compiler data dependence analyses and code transformations to derive 
efficient hardware implementations that exploit these reuse opportunities [27]. 

4.3   Data Distribution and Custom Data Layout 

Unlike the previous transformation, data distribution increases the availability of data 
by distributing the data through distinct memories. Data distribution, commonly used 
for array variables, partitions the array data into disjoint subsets of data, each of 
which is mapped to a distinct memory unit. When used in combination with loop 
unrolling, data distribution, allows the generation of hardware implementations that 
concurrently accesses data without memory access contention. 

Fig. 12 illustrates the application of loop unrolling and data distribution for the img 
array of the example code. As an interim transformation step, the original img array is 
first partitioned into two distinct arrays, imgOdd and imgEven, bound to two different 
memories. This distribution then allows the two simultaneously memory loads 
corresponding to the unrolled statement in the code in Fig. 12(b). 

As it is apparent, data distribution does not increase the required storage needs as 
the original data is partitioned into disjoint data sets. Other than a possible execution  
 

 
… 
type img[N][N]; 
… 
for(j=0; j < N; j++) { 
    … 
    for(i=0; i < N; i++) { 
      … = img[j][i]; 
    } 
    … 
} 

... 
type imgOdd[N][N/2], imgEven[N][N/2]; 
… 
for(j=0; j < N; j++) { 
   … 
   for(i=0; i < N; i+=2) { 
        … = imgOdd[j][i/2]; 
        … = imgEven[j][i/2]; 
   }… 
} 

(a) (b) 

Fig. 12. Loop unrolling and array data distribution example: (a) Original C source code;  
(b) Loop unrolled by a factor of 2 and distribution of the img array variable 
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time overhead in data reorganization via distribution, this transformation increases the 
availability of data provided the underlying architecture has enough memory modules 
with adequate capacity to accommodate the data. 

As with other array-based computations, researchers have developed sophisticated 
data dependence analysis techniques that can derive a custom data layout to the data 
access pattern of array variables of a computation, typically in a loop nest, and maps 
section of these arrays to distinct memories to minimize memory access time [26]. 

4.4   Data Replication 

Unlike the data distribution and data layout transformations described previously, data 
replication creates various copies, or replicas, of specific data values in distinct 
storage structures. Data replication thus increases the availability of the data and thus 
allows concurrent data accesses. Fig. 13 illustrates the application of loop unrolling, 
and data replication for the img array of the example code. The replication creates 
two copies of the img array, respectively imgA and imgB that are matched to the 
array data accesses resulting in the unrolled code for the inner loop. 

 
… 
type img[N][N]; 
… 
for(j=0; j < N; j++) { 
   … 
   for(i=0; i < N; i++) { 
     … = img[j][i]; 
   } … 
} 

… 
type imgA[N][N], imgB[N][N]; 
… 
for(j=0; j < N; j++) { … 
   for(i=0; i < N; i+=2) { 
        … = imgA[j][i]; 
        … = imgB[j][i+1]; 
   } … 
} 

(a) (b) 

Fig. 13. Loop unrolling and array data replication example: (a) Original C source code;  
(b) Loop unrolled by 2 and replication of img 

This transformation has to be exercised with caution as it increases the availability 
of data at the expense of potentially substantial increase in allocated storage space. As 
a result, its applicability may be limited to small array variables that are immutable 
throughout the computation, i.e., to variables that hold coefficient or parameter data 
that need to be accessed frequently and freely. In addition to these storage issues, 
there is also the issue of consistency should the data be modified during the 
computation. In this case, the execution must ensure all replicas are updated with the 
correct values before the copies can be accessed [27]. 

4.5   Combining Source-Level Code Transformations 

We now illustrate the impact of source code transformations using as key 
performance metrics the number of external memory accesses. We use as an 
illustrative example the smooth image-processing operator depicted in Fig. 14(a) and 
hardware architectures suggested by the application of the various transformations as 
illustrated in Fig. 16. In these hardware architectures we explore the existence of 
multiple local memories and the possibility of simultaneously memory accesses. 
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In this example, the computation performs a convolution of a 3-by-3 window with 
the values stored in the K array. This convolution is implemented by the two inner 
loops on respectively the index variables r and c (standing for row and column) that 
accumulate the value in the sum variable. After normalization, each sum value is 
stored in the output image at a pixel location corresponding to the center of the 
window of the input image used. The computation is repeated for the adjacent 
windows both “below” (in the sense of increasing value of the index i variables) and 
to the “right” (in the sense of the increasing value of the j variable). 

 
1. int sizeX= 350;  
2. int sizeY= 350;  
3. void smooth(short[][] IN, short[][] OUT){  
4.   short[][] K = {{1, 2, 1},{2, 4, 2},{1, 2, 1}};  
5.   for(int j=0; j < sizeY-2; j++)  
6.     for(int i= 0; i < sizeX-2; i++) {  
7.       int sum = 0;  
8.       for(int r=0; r < 3; r++)  
9.         for(int c = 0; c < 3; c++)  
10.           sum += IN[j+r][i+c]*K[r][c];  
11.       sum= sum / 16;  
12.       OUT[j+1][i+1] =  (short) sum;  
13.     } 
14. } 
    

1. int sizeX= 350;  
2. int sizeY= 350;  
3. void smooth(short[][]IN, short[][] OUT) {  
4. for(int j=0; j < sizeY-2; j++)  
5.     for(int i= 0; i < sizeX-2; i++) {  
6.       int sum += IN[j][i];  
7.       sum += IN[j][i+1]*2;  
8.       sum += IN[j][i+2];  
9.       sum += IN[j+1][i]*2;  
10.       sum += IN[j+1][i+1]*4;  
11.       sum += IN[j+1][i+2]*2;  
12.       sum += IN[j+2][i];  
13.       sum += IN[j+2][i+1]*2;  
14.       sum += IN[j+2][i+2]; 
15.       sum= sum / 16;  
16.       OUT[j+1][i+1] =  (short) sum;  
17.    } 
18. }  

(a) (b) 

Fig. 14. Smooth operator: (a) original code; (b) transformed code using loop unrolling and 
scalar replacement 

A naïve implementation of this computation would have all variables mapped to 
external storage requiring 2,179,872 load operations and 121,104 store operations 
resulting in a total of 2,300,976 external memory operations. Clearly, and even if 
adequately pipelined, these operations are simply too many and consume a substantial 
amount of energy and execution time. An obvious improvement on this computation 
would consist in the application of loop unrolling to the two innermost loops given 
that their iteration bounds are small and in the use of scalar replacement of the 
references to the K array. The resulting source code, depicted in Fig. 14(b), performs a 
total of 1,089,936 external memory load operations, 121,104 external memory store 
operations or a total of 1,211,040 a reduction of approximately 50% of the external 
memory operations. There is also potential for even further reduction of the number 
of memory accesses as subsequent iterations of the i loop do indeed use common 
input values, as 6 out of the 9 values used in the previous iteration of this loop can be 
reused if cached in local registers or internal memories.  

Exploiting this opportunity, we can apply the data-reuse transformation over the IN 
array across both the i and the j loop. These reuse variants exhibit increasingly levels 
of data reuse, and thus increasing reduction on the number of memory operations at 
the expense of increasing internal storage requirements.  
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In the simplest data reuse variant, we only exploit data reuse in the innermost i 
loop, which corresponds to the reuse along the rows of the IN array. We can exploit 
this reuse at the source level by capturing in the first iteration of the i loop (as 
dictated by the predicate: i == 0) where the code loads and saves in the internal 
memory array IN_REG, all the 9 data items fetched for the IN array. In the subsequent 
iterations of the i loop, the code only fetches the “leading” 3 data items 
corresponding to each of the three rows as the “window” moves to the “right” 
(direction of increasing indices of j). The values in IN_REG array are reused in 
subsequent iterations of the loop by rotating the values of the indices line0, line1 
and line2 at the completion of each iteration, requiring an internal memory with 9 
positions1.  Fig. 15(a) depicts this transformed code where we have omitted some of 
the source code for brevity and space considerations. For this code implementation, 
we have a total of 365,400 external memory load operations, 121,104 external store 
operations resulting in a total of 486,504 external memory operations, and thus a 
reduction of 4.7× over the original code implementation. 

Another code variant, can exploit reuse across iterations of the outermost loop, the 
j loop, saving the values read across two consecutive iterations of the j loop. The 
transformed code, depicted in Fig. 15(b), saves the data elements in the IN array 
accessed in the first iteration of the j loop and in the first iteration of the i loop in an 
internal memory.  In this implementation we have a total of 122,500 external memory 
load operations, 121,104 external store operations resulting in a total of 243,604 
external memory accesses, and thus a reduction of 9× over the original 
implementation. As each value the computation uses is fetched from external memory 
only once, this implementation is optimal from the viewpoint of the number of 
external memory accesses. This implementation, however, comes at the cost of 
requiring an internal memory with 3 times the number of pixels in each image row, in 
this case 3×350 values. 

As seen by this example, compilation to reconfigurable architectures and 
embedded systems with multiple local memories requires a vast number of code 
transformations to allow efficient implementations. Fig. 16 depicts four possible 
hardware designs suggested by the combination of two of these transformations. In 
Fig. 16(a) we have the naïve or base hardware architecture for the smooth operator 
code. Here the core data-path is responsible for the direct hardware implementation of 
the arithmetic operations in the inner loop of the algorithm implementation.  

In Fig. 16(b) we have a design where the input IN array has been replicated and 
distributed among three RAM blocks, each being accessed for a consecutive line of 
that array. In Fig. 16(c) we have a design suggested by the application of scalar 
replacement where consecutive accesses to the elements of a row of the IN array are 
drawn from a tapped-delay line. Each of the delay lines thus mimics the movement of 
the “window” in the smooth operation. Finally, in Fig. 16(d) we have a design  
 

                                                           
1 In reality a clever implementation only requires an internal memory with 6 positions as the 

values of the leftmost column in the 3×3 window can be immediately replaced by other 3 
values after being used in the current iteration computation. This implementation “trick” 
however complicates the code generation substantially as values need to be rotated as they are 
being used for the last time in the computation. 
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1. int sizeX= 350; 
2. int sizeY= 350; 
3. int MEM_SIZE = 3; 
4.  
5. short IN_REG[MEM_SIZE][MEM_SIZE]; 
6.  
7. void smooth(short[][]IN, short[][] OUT) { 
8.    int line0=0, line1=1, line2=2; 
9.  
10.   for(int j=0; j < sizeY-2; j++) { 
11.      for(int i= 0; i < sizeX-2; i++) { 
12.        if (i == 0){ 
13.          // loading /saving the first 6 elements 
14.          // of 3x3 window in internal memory 
15.          IN_REG[line0][0] = IN[j][i]; 
16.          IN_REG[line0][1] = IN[j][i+1]; 
17.          IN_REG[line1][0] = IN[j+1][i]; 
18.          IN_REG[line1][1] = IN[j+1][i+1]; 
19.          IN_REG[line2][0] = IN[j+2][i]; 
20.          IN_REG[line2][1] = IN[j+2][i+1]; 
21.        } 
22.        // loading/saving last column of 3x3 window 
23.        IN_REG[line0][2] = IN[j][i+2]; 
24.        IN_REG[line1][2] = IN[j+1][i+2]; 
25.        IN_REG[line2][2] = IN[j+2][i+2]; 
26.        int sum = IN_REG[line0][0]; 
27.        sum += IN_REG[line0][1]*2; 
28.        sum += IN_REG[line0][2]; 
29.        sum += IN_REG[line1][0]*2; 
30.        sum += IN_REG[line1][1]*4; 
31.        sum += IN_REG[line1][2]*2; 
32.        sum += IN_REG[line2][0]; 
33.        sum += IN_REG[line2][1]*2; 
34.        sum += IN_REG[line2][2]; 
35.        sum= sum / 16; 
36.        OUT[j+1][i+1] =  (short) sum; 
37.        // rotate pointers line0, line1 and line2 
38.        line0 = ((line0+1) % MEM_SIZE); 
39.        line1 = ((line1+1) % MEM_SIZE); 
40.        line2 = ((line2+1) % MEM_SIZE); 
41.     } 
42. } 
 

1. int sizeX= 350;  
2. int sizeY= 350;  
3. int MEM_SIZE = 3; 
4. short IN_REG[MEM_SIZE][sizeX]; 
5. void smooth(short[][]IN, short[][] OUT) {  
6. int line0=0, line1=1, line2=2; 
7. for(int j=0; j < sizeY-2; j++) { 
8.   for(int i= 0; i < sizeX-2; i++) {  
9.      if (j == 0){      // loading / saving the  
10.         if (i==0) {    // first 3 rows of the IN array 
11.           IN_REG[line0][0] = IN[j][i]; 
12.           IN_REG[line0][1] = IN[j][i+1]; 
13.           IN_REG[line0][2] = IN[j][i+2]; 
14.           IN_REG[line1][0] = IN[j+1][i]; 
15.           IN_REG[line1][1] = IN[j+1][i+1]; 
16.           IN_REG[line1][2] = IN[j+1][i+2]; 
17.           IN_REG[line2][0] = IN[j+2][i]; 
18.           IN_REG[line2][1] = IN[j+2][i+1]; 
19.    IN_REG[line2][2] = IN[j+2][i+2]; 
20.       } else {     // (j == 0) and (i != 0) 
21.          IN_REG[line0][i+2] = IN[j][i+2]; 
22.          IN_REG[line1][i+2] = IN[j+1][i+2];  
23.          IN_REG[line2][i+2] = IN[j+2][i+2]; 
24.     } else { // (j != 0) 
25.          IN_REG[line2][i+2] = IN[j+2][i+2]; 
26.     } 
27.     // now the smooth computation 
28.     int sum = IN_REG[line0][i];  
29.     sum += IN_REG[line0][i+1]*2;  
30.     sum += IN_REG[line0][i+2];  
31.     sum += IN_REG[line1][i]*2;  
32.     sum += IN_REG[line1][i+1]*4;  
33.     sum += IN_REG[line1][i+2]*2;  
34.     sum += IN_REG[line2][i];  
35.     sum += IN_REG[line2][i+1]*2;  
36.     sum += IN_REG[line2][i+2]; 
37.     sum= sum / 16;  
38.       OUT[j+1][i+1] =  (short) sum;  
39.       // rotate pointers line0, line1 and line2   
40.       line0 = ((line0+1) % MEM_SIZE); 
41.       line1 = ((line1+1) % MEM_SIZE); 
42.       line2 = ((line2+1) % MEM_SIZE); 
43.   } 
44. }  

(a) (b) 

Fig. 15. Smooth operator after loop unrolling and scalar replacement: (a) using internal 
IN_REG array, and (b) using internal memory IN_REG array with reuse along the j-loop of 
the computation 

suggested by the application of data replication/distribution and scalar replacement. 
Only in an architecture with multiple configurable resources such as RAM blocks, 
interconnects and fine-grain registers could these designs be efficiently implemented.  

4.6   Significance of Code Transformations in Reconfigurable Computing 

The transformation examples described in the previous section highlight the 
significance of those transformations in the context of configurable and reconfigurable 
architectures. While many of those transformations can be successfully applied in the 
context of traditional processor-based architectures (either single or multi-core),  
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Fig. 16. Possible resultant architectures: (a) with 3 RAM blocks; (b) with 3 RAM blocks and 
tapped delay-lines; (c) with 4 RAM blocks; (d) with 4 RAM blocks and tapped delay-lines 

configurable and reconfigurable architectures magnify, in many instances, their 
performance impact. We now highlight some key examples of these transformations 
and describe the specific features of reconfigurable architectures that enable 
performance (either time, space, power, or energy) gains. In this description we broadly 
classify source code transformations in three categories, namely:  

 

− Representation-oriented Transformations: In this class of transformations, one 
can include numeric representation transformations that take advantage of the fact 
that in reconfigurable architectures (most notably FPGA-like architectures) one can 
select precisely the number of bits for the numeric representation of the values of 
interest as well as the specific implementation of the operators that manipulate 
them. As such, each individual operation only manipulates the bits strictly needed 
resulting in space, time and power savings over pre-defined numeric operators such 
as the ones using floating-point units. Customization of the numeric values is a key 
application and/or code transformation in industrial and embedded applications for 
enhanced accuracy and energy savings (see, e.g., [33]). 

− Computation-oriented Transformations: These transformations expose additional 
operations per “synchronization” or “control” point in the computation’s execution 
(e.g., loop iteration). These operations can be executed concurrently in a spatial 
fashion rather than being pipelined in a single execution unit. In fine-grained 
reconfigurable architectures one can lay down a custom pipeline structure for each 
computation to match the computation at hand. Typically, this will involve the use 
of intermediate storage structures to save temporary (intermediate) results that 
would otherwise have to be written and read back from a local or global storage. 
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The profitability and performance increase now depends critically not only on the 
true control and data dependences of the computation, but also on the ability to 
feed and schedule the various functional units. When combined with data-oriented 
transformations, transformations such as loop unrolling and loop fission may create 
independent tasks of variable granularity that can be executed concurrently. 

− Data-oriented Transformations: These transformations remap data locations in 
the traditional address-space organization to physical storage structures. In the case 
of scalar-replacement and the corresponding mapping of the array values to 
elements of a tapped-delay line, in a single clock cycle a large number of data 
transfer can occur. Furthermore, and because the indexing of the elements to be 
used in the computation is fixed (as they are drawn from the very same tap in the 
delay line), huge savings in array indexing are accomplished. Some of these 
transformations, such as data partitioning, have already been explored in the 
context of distributed-memory multiprocessors. In the context of reconfigurable 
architectures, however, the richness of the programmability of the underlying 
interconnection resources allows transformations that would be otherwise less 
appealing. An example is the use of data replication where in a single clock cycle 
multiple storage structures can be written making the cost of replication very low. 
 

In all of the transformations highlighted above, the potentially large savings are 
achieved by the ability of the underlying architecture to be customizable to the 
specific structure of the computation and/or storage at hand. 

4.7   Key Compiler/Design Tool Challenges for Reconfigurable Architectures 

Arguably the biggest challenge in leveraging the diversity and wealth of code 
transformations is the adequate selection of which and in what sequence should a 
compiler or synthesis tool apply them. For fine-grained reconfigurable architectures, 
such as FPGAs, this problem is compounded by the fact that additional back-end 
steps such as placement-and-routing (P&R) need to be carried out with the possibility 
that the target device does not meet the required resources budget. Thus, selecting the 
transformations and understanding the interplay between them and the specific nature 
of the target architecture is of paramount importance for dealing with the potentially 
huge design spaces these code transformations create. 

Exploring these design spaces and generating an implementation for each possible 
design-space point is clearly infeasible. Instead we believe several key techniques and 
the corresponding challenges to make their application a reality will be required to 
ameliorate or mitigate this search, namely:  

− Modeling and Estimation: If compilers are going to be successful in leveraging 
the wealth of code transformations and their interactions, adequate performance 
models for the effects of each transformation in each of the relevant metrics need 
to be devised [34]. In various contexts, it seems very unlikely that precise 
modeling is possible. As such, estimation techniques offer a valuable approach to 
avoid long compilation/synthesis times at the expense of precision loss [35]. 
Recent experiences in limited contexts have shown that it is possible to use 
imprecise information and still make correct design choices. 
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− Virtualization and Module Generation: One possible approach to mitigate the 
complexity and diversity of the target configurable architectures includes the use of 
virtualization in combination with module generation techniques for code 
generation. Virtualization would offer an intermediate representation where 
abstract computation and storage structure could be both described and modeled.  
The use of module generators integrated with the data-flow graph representing the 
overall program enables the specialization of each module instance without 
incurring in long code generation times. The use of pre-placed and pre-routed soft-
macros is a key technique in this setting. The key issue, in particular for coarse-
grained reconfigurable architectures, lies in the ability not to excessively fragment 
the overall hardware implementation. 
 

While in general any of these challenges seems insurmountable, exploring selected 
applications and architectures thereby limiting the diversity of the choices may prove 
to be a winning strategy. Work in the domain of digital and signal processing has 
shown that it is possible to attain full automation and thus correct designs with 
extremely short design times, at the expense of a very modest performance loss when 
compared to hand-coded designs [36]. In this context, domain-specific languages [37] 
or the use of aspect-oriented programming [28] where the user can convey key 
features of the input domain or requirements of the desired solution provide a 
stepping stone to reduce the compiler’s mapping complexity and thus make 
configurable technology approachable to the average programmer. 

5   The Importance of Generative Programming 

Source-level code transformations are a key program transformation technique for 
improving specific execution metrics such as time, energy or space (memory). These 
transformations, however, often have conflicting goals making their choice and 
ordering an extremely hard optimization problem. For example, data replication 
increases data availability (i.e., available bandwidth) at the expense of memory 
storage. In addition, transformations are very cumbersome and error-prone for 
programmers to apply them manually, thus suggesting the use of automated code 
transformation systems and/or compilation tools. To exacerbate these difficulties, 
many if not all of these transformations require program knowledge that is often 
neither present in the original program specification nor can it be easily extracted 
from it. As such, compilers that use them are extremely limited by the semantics of 
the input programming language and thus require programmer input to guide them in 
the applicability of these transformations. 

Generative programming tools [29] offer a path for the automation of code 
transformations. They may allow programmers to augment computation with key 
desired metric goals that will lead to the development of internal transformation 
application strategies. These approaches thus rely on linguistics mechanisms that are 
beyond the semantics of the input program languages, typically in the form of rule-
based systems (e.g., pattern-apply-condition). We thus believe to be very important to 
exploit the synergies between the more traditional domains of compiler optimization 
and code transformations holistic concepts from generative programming. Tools such 
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as TXL [30], Tom [31], and Stratego/XL [32] may undoubtedly play an important 
role by enhancing the compilation flow with code transformation rules and strategies. 

When integrated in a compilation flow, the use of mature transformation tools such 
as Tom [31] has several advantages as it may expose to developers a powerful way to 
derive transformations and to apply different strategies that can be very important to 
achieve the desired performance.  

6   Conclusions 

This chapter described key concepts on compilation for reconfigurable architectures, 
from a base flow to a flow that incorporates source-level program transformations 
with the aim at improving the custom generated architecture. As reconfigurable 
architectures support both spatial and temporal computing, they allow aggressive 
forms of parallelism and concurrent execution. Effective compilation thus requires the 
synergy of techniques from various domains, from high-level dependence analysis to 
low-level hardware scheduling. As highlighted we have outlined a possible research 
direction with the use of generative programming techniques to assist code 
transformations, which we hope this article has motivated and which we believe is a 
promising avenue to address and overcome the many programming challenges 
reconfigurable embedded architectures impose. 
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Abstract. The prototypical Model-Driven Performance Engineering
(MDPE) Workbench from SAP Research permits multi-paradigm deci-
sion support for performance related questions in terms of what-if simu-
lations, sensitivity analyses and optimizations. This support is beneficial
if business analysts are designing new processes, modifying existing ones
or optimizing processes. The functionality is provided as an extension of
existing Process Modelling Tools, such as the tools employed by process
environments like the jCOM! or the SAP NetWeaver Business Process
Management (BPM) Suites as well as classical enterprise software like
SAP Business Suite or Open ERP.

By evaluating our workbench for real world cases we experienced that
business processes may span different environments, each employing dif-
ferent Process Modelling Tools. The presence of heterogeneous tools in-
fluences the end-to-end performance of the overall process. Thus, the
MDPE Workbench essentially needs to take the complete process into
account. In this paper, a model transformation chain and a model man-
agement architecture is explained to enable such functionality. This ar-
chitecture combines results from our previous publications, outlines these
results in more detail and explains them in the context of end-to-end pro-
cesses. Furthermore, the work is evaluated with an industrial business
process which spans three different Process Modelling Tools.

1 Introduction

We experienced that performance related decision support for business processes
is especially useful in cases of a high degree of complexity in resource intensive
processes, such as processes with layered use of resources or complex workflows.
Also the complex statistical distribution of the history data or the plan data
related to a process, like a planned workload, demand performance decision
support. Business performance related decision support therefore needs to be
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considered as one integral part of process environments, especially of Process
Modelling Tools. Such tools are considered as part of such process environments
and are the focus of this paper.

In our previous publications we described the Model-Driven Performance
Engineering (MDPE) Workbench [1,2,3] which enables the integration of multi-
ple Performance Analysis Tools into Process Modelling Tools in order to enable
support for decisions which have influence on the process performance. For in-
stance, decision support related to throughput and utilization of resources can
be provided by discrete event simulation tools, like AnyLogic [4]. Such tools also
enable predictions related to the gross execution time of process instances. This
enables to answer questions like “How will the execution time of a Sales Order-
ing Process be affected in June by adding an additional process step into the
process in May?”. Additionally, we did experiments with analytical Performance
Analysis Tools, such as the LQN tool [5] and the FMC-QE tool [6,7]. Analytical
tools are beneficial to answer sensitivity related questions in a short computation
times, such as “Which are the most sensitive resources (humans or hardware)
of the process for the overall performance?”. Moreover, optimization tools can
be integrated for performance related decision support, for instance, in order
to decide at which point of time a certain business resource is needed to meet
processing targets and to optimize utilization of resources. For optimization, ex-
isting libraries and tools can be used, such as OptQuest [8] which is employed
by the AnyLogic tool as well.

Thus, the integration of different Performance Analysis Tools in Process Mod-
elling Tools via the MDPE Workbench permits multi-paradigm decision support
for process modelling. Additionally, we also experienced the need for decision
support, which spans across multiple Process Modelling Tools. An example use
case would be a business process provided by an enterprise software vendor, like
SAP, which is extended with sub-processes. These can be maintained by inde-
pendent software vendors. In such cases, different parts of the process might be
modelled with different Process Modelling Tools which are normally based on
different process modelling language, such as BPMN [9], jPASS! [10] or SAP
proprietary languages. Thus, the performance related decision support needs to
abstract these different languages.

In this paper, we describe the model transformation chain that we have im-
plemented in order to integrate multi-paradigm decision support into multiple
Process Modelling Tools. This transformation chain has raised the need for a
model management architecture to support tracing of performance analysis re-
sults back to the process models, management of process model annotations and
administration of the different tools.

The remainder of the paper is structured as follows: The next section describes
an industrial example of a Process Modelling Tool chain. In Sections 3 and 4, a
solution is proposed which comprises a model transformation chain and a model
management approach. The success of this approach is evaluated in Section 5.
Finally, in Sections 6 and 7, an overview on the related work and conclusions
are provided.
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Fig. 1. Case Study: A business process spanning across three different Process Mod-
elling Tools

2 Case Study: A Business Process Spanning Multiple
Process Modelling Tools

Our case study involves a Wine Seller who gets wine supply from several sup-
pliers, and thereafter sells the wine to customers. The Sales and Distribution
Organization of the Wine Seller is supported by a standard software product
implementing standard back-end processes, such as Business ByDesign [11] or
Business Suite [12]. The back-end process under consideration is called “Sales
Order Processing”.

The lower left part of figure 1 depicts the “Sales Order Processing” process.
Please note that the “Sales Order Processing” sub-process is modelled as so
called “Process Flow Model”. This is a SAP proprietary and, at the time of
writing, not published modelling language. Therefore, the language has been
replaced in the figure with a Petri-net [13].

Moreover, as can be seen in the lower right part of Figure 1, this process also
triggers an external process for the “Invoice Processing”, which is outsourced
by the Wine Seller to an external company. In our case study, this external
company uses a tool called jPASS!, which is the Process Modelling Tool of the
jCOM! Business Process Management (BPM) Suite [14]. The jPASS! Process
Modelling Tool enables top-down modelling of business processes with the help
of the jPASS! modelling language [10,15].
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The Sales and Distribution Organization of the Wine Seller additionally re-
quired an extension of the standard business process so that an extra free bottle
of wine could be added to orders of customers who reported a quality issue in
their previous order.

This raises the need for an extended version of the “Sales Order Processing”
in this case. It is, however, not desirable to change the business process directly
in the back-end because the application should be independent of the software
vendors life cycle, SAP and jCOM! in our case. Therefore, a third technology is
needed that could use the platform back-end business logic. To meet this require-
ment, the process called “Wine Under Special Treatment” has been developed,
which is depicted by the upper part of Figure 1 and was originally introduced
in [16].

For the implementation of this process, the BPMN [9] based Process Mod-
elling Tool called “Process Composer”, which is a part of the NetWeaver BPM
[17] tooling, has been employed. This tool is specifically meant for applying ex-
tensions on top of existing back-end processes, such as the described extensions.

We experienced that a domain expert, with no performance expertise, gener-
ally cannot predict the performance related consequences if such an extension is
deployed. In the context of the wine seller case study, one performance related
issue would be to analyse if the additional manual approval steps introduced
with the NetWeaver BPM result in an increased end-to-end time than defined
as an objective and if so, how to improve the situation.

We also experienced that such analyses need to be done with a combination
of different Performance Analysis Tools, for instance, a discrete event simulation
tool for what-if questions, an analytical performance analysis tool for sensitivity
related questions and an optimization tool to improve the process within user
provided constraints.

Moreover, the complete end-to-end process spanning three different Process
Modelling Tools needs to be considered since the whole process would be influ-
enced by the newly developed composite process.

In the following sections, these needs are addressed.

3 A Model Transformation Chain for MDPE

In this section, the transformation chain of Figure 2 is proposed to interconnect
chains of Process Modelling Tools with multiple Performance Analysis Tools.

This chain has a number of Process Models and Process Model Annotations as
input. This input is transformed via a number of model to model transformations
(see M2Ms in the Figure), a few model to text transformations (see M2Ts in
the figure) and a number of intermediate models, into a Performance Analysis
Tool Input. Most transformations create a trace model (see Trace Models in the
Figure) that enable visualization of performance analysis results based on the
original process models.

In the remainder of the section, the transformation chain is explained in more
detail by describing the different intermediate models of this chain. This descrip-
tion is divided into two parts. The first part, which deals with the abstraction
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Fig. 2. MDPE transformation chain as block diagram [18]

of Performance Analysis Tools, is explained in the following paragraph. Then,
the abstraction of Performance Modelling Tools is provided as the second part.

3.1 Abstraction of Performance Analysis Tools (TIPM and
Representation Independent Model)

An abstraction of Performance Analysis Tools is reflected by the so called Tool-
Independent Performance Model (TIPM) which we defined in a joint work to-
gether with TU-Dresden, XJ-Technologies. The TIPM is related to the so called
Core Scenario Model [19]. A simplified version of the TIPM meta-model is shown
in Figure 3. In the following paragraph, the meta-model is explained in detail.
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Fig. 3. Tool-Independent Performance Model (TIPM) (simplified)

A TIPM can be distinguished into two parts. The first part contains “Exper-
iments” which include a list of “Monitors”. These monitors are visualized with
the light colour in Figure 3. Monitors are filled with values based on the perfor-
mance analysis results, such as simulation results (see “PredictionMonitor” in
the figure) which comprises latencies, utilizations and queue lengths. The latency
specifies the time required in a simulation between two “Steps”. The queue length
and utilization attributes are filled with the queuing behaviour of the simulated
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“Resources”. The monitored values are of type “DecisionSupportOutputParam-
eter” which can be associated with “PerformanceRequirements” and “Perfor-
manceObjectives”. These meta-classes represent user provided knowledge, to
further analyse the performance analysis results, for instance, for the assessment
if a requirement will be met in the future. User provided knowledge is taken from
the Process Model Annotations (see Figure 2) which are explained in a later part
of this section.

The part of the TIPM meta-model which is shaded in dark grey (see Figure
3) has to be filled before a performance analysis can be executed by a Perfor-
mance Analysis Engine. This part of the TIPM combines the behavioural in-
formation from Process Models with Performance Parameters. The behavioural
information, consumed from an End-to-End UML Model (see Figure 2) which is
explained in the next paragraph, is defined in the TIPM as a graph with “Steps”
(nodes) and “PathConnections”, which are used to interconnect the “Steps”.

Performance parameters, which are also taken from the process model an-
notations, are represented in the TIPM as attributes of different meta-classes.
For instance, the parameter multiplicity (see “multiplicityParam” attribute in
the “Resource” meta-class) indicates how many units are available in a pool of
resources, e.g. 10 employees in the Philadelphia sales office.

Performance parameters are also used in order to create “Scenarios” in the
TIPM. An example of such a “Scenario” is the execution of the previously intro-
duced business process of the Wine Seller for a certain sales unit (e.g. Philadel-
phia and Chicago) or a certain type of process instances (e.g. instances of sales
orders below 1000 Euro and instances of orders of 1000 Euro or above). Re-
sources can be shared among multiple “Scenarios” (see Figure 3), such as the case
that 10 employees for marketing are shared between the sales unit in Philadel-
phia and in Chicago. In this specific case, the TIPM would contain the business
process of Section 2 twice, but the marketing resources only once. Of course,
“Scenarios” can also be used to simulate resource sharing situations between
different business processes.

All performance parameters are of type “DecisionSupportInputParameter”.
Such values can have a reference to a “ModificationConstraint”, again based on
process model annotations, which define possible variations of a performance pa-
rameter, for instance, in order to restrict the solution space for the optimization
of a parameter to answer questions like “How many employees are needed to
meet processing targets and to optimize utilization of resources?”.

In the case that a Performance Analysis tool is not TIPM based and its input
data structure is different to the TIPM structure, a transformation between the
TIPM and the tool input is required. For such transformations, two concerns
can be separated:

– Structural concern: One is required to perform a structural transformation
from the TIPM structure to the Performance Analysis Tool structure. It is,
for instance, necessary to generate a structure of AnyLogic library objects if
the simulation tool AnyLogic [4] is employed as performance Analysis Tool.
This structure includes all AnyLogic objects and their connections. This step,
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therefore, needs to generate all necessary objects together with additional
objects required to connect everything into a working model.

– Representation concern: The Performance Analysis Tools use a specific con-
crete syntax, such as a concrete XML format, as input. For the purpose of
serialization it is necessary to apply the formatting so that the generated
data can be read by the Performance Analysis Tool.

Thus, a so-called Representation Independent Performance Analysis Model (see
Figure 2) is needed as an intermediate model to keep the transformations be-
tween a TIPM and Performance Analysis Tools clean from serialization details.
Due to this intermediate models, two separate M2M transformation are intro-
duced, one for the structural and another for the representation concern.

The structural model-to-model (M2M) transformation translates from the ab-
stract syntax of the TIPM to the representation independent model. The second
model-to-text (M2T) transformation then translates the representation indepen-
dent model into the Performance Analysis Input. For example, if a XML based
representation is used, this input would reflect a structure of XML Attributes and
XML Nodes. Fortunately, most modern Performance Analysis Tools use a XML
language to represent their input. One can therefore normally benefit from the
already available serialization functionality of most transformation tools, such
as the ATL tooling, to serialize XML conformant text.

In the following subsection, the intermediate models to abstract Process Mod-
elling Tools are described.

3.2 Abstraction of Process Modelling Tools (Exchange Model and
End-to-End Process Model)

Transformations from Process Models and Performance Parameters to a TIPM
are complex as the structure of the TIPM meta-model is most likely different
from the meta-model structure of the process modelling languages. This is due
to the fact that Process Models normally express Petri-net [13] like behaviour
whereas the TIPM additionally expresses “Scenarios”, “Resources”, etc., and
the related associations.

We, however, also experienced that the structures of the process modelling
languages, such as BPMN, jPASS!, Process Flow, etc., are related as they can
normally be translated into each other.

Therefore, it is beneficial to add an Exchange Model in the Model Transfor-
mation Chain (see Figure 2) in order to express process behaviour. We have not
chosen Petri-nets itself due to the following reasons: A UML to TIPM transfor-
mation was available from the initial proof of concept phase of the MDPE related
research described in [3]. At that time, UML had especially been chosen as it en-
abled us share models with external partners in public funded research project,
such as the MODELPLEX project [20]. Additionally, one can apply formally de-
fined Petri-net semantics [13] to UML Activity Diagrams, as discussed in more
detail in [21]. Finally, UML Activity diagrams permit to not only support active
systems but, in future versions of the MDPE Workbench, also reactive systems
as explained below.
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Eshuis [22] analysed the process modelling related concept of workflows, which
are used to define “operational business process[es]”. According to Eshuis, mod-
els which do not consider interactions with the environment, such as timing
events in BPMN, are interpreted as closed and active systems, whereas models
which support external events are interpreted as open and reactive systems. He
also explains that Petri-nets especially well support the first type, whereas UML
Activity Diagrams also support the open and reactive systems. In our current
implementation we only consider closed systems, i.e. we don’t support most of
the BPMN event types. By employing UML Activity Diagrams as exchange lan-
guage, we are, however, prepared for implementing the support for the missing
events in the future.

Due to the UML Activity Diagrams that we use as Exchange Models, the
required transformations to adapt a new Process Modelling Tool are less complex
than generating a TIPM directly. This is due to the fact that an complex already
available UML to TIPM transformation can be reused. This also helps to prevent
investing significant duplicated effort in implementing the similar functionality
of transforming from Petri-net like behaviour model to a TIPM.

Figure 2 shows that we employ UML Activity Diagrams not only as Exchange
Models, but also for an End-to-End Process Model. This model simply merges
the different sub-processes into a single end-to-end process. The M2M transfor-
mation which generates this end-to-end model takes, in addition to the UML
models for the sub-processes, also an Interconnection Definition as input. This
definition is needed to specify how the different UML models are connected, for
example, via a map which relates the final nodes of one sub-process with the
initial nodes of another sub-process.

3.3 Challenges Based on the Model Transformation Chain

It has been explained that a transformation chain is needed to interconnect the
different tools.

However, means are still needed to represent the transformation chain in a
systematic way, so that, for example, different adapters for Process Modelling
Tools and Performance Analysis Tools can be activated and deactivated with
little effort and the modular transformation can still be extracted.

Related to this, it is necessary to associate trace models of a transformation
chain instance with the correct intermediate models of the chain.

In addition to that, the process model annotations have to be managed by the
model transformation chains. This is caused by the fact that the performance
parameters and the user provided knowledge in terms of performance objectives,
requirements and constraints is annotated based on the process models at the
beginning of the chain, but only taken as an input for the transformation which
generates the TIPM. This can be, for instance, the third transformation step in
the transformation chain. Thus, an approach is required which makes it possible
to keep annotations independent from a concrete intermediate model in a model
transformation chain. Hence, the pollution of the proposed intermediate models
and model transformations with the annotation data should be avoided.
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Concluding, an approach is required which allows representation of different
kinds of models, such as trace models, annotation models, intermediate mod-
els and also model transformations1. Additionally, for the purpose of navigation
between the different models, an approach to manage relationships between the
different models, such as trace relationships or annotation relationships, is nec-
essary. In the following section, a solution for this need is provided.

4 A Model Management Approach for MDPE

In this section, first a meta-model is described which permits to define mod-
els and relationships between these models. Second, an architecture is proposed
which employs this meta-model to simplify administration of the MDPE trans-
formation chain, tracing and model annotation.

4.1 Representation of Models and Model Relationships

In order to systematically deal with different kinds of models and the relation-
ships among them, Bézivin’s megamodelling approach [23] enables to define all
these relationships in another model. Such a global model could be interpreted
for model navigation tasks, such as for the navigation from an intermediate
model to the related trace models. Bézivin’s basic meta-model for such a global
model is depicted by the upper part of Figure 4. This meta-model enables to
express different kinds of “Relationships” among different types of “Models”,
such as “Terminal Models”. Thus, a number of process models and other kinds
of models of the transformation chain are terminal models that can be described
using the basic megamodelling concepts.

The upper right part of Figure 4 shows other types of terminal models, which
are considered by the megamodelling approach, such as Transformation Models
and Weaving Models.

However, besides of transformation models, annotation models and tracing
models are also used in the transformation chain (see Figure 2). Even if annota-
tion models and tracing models are based on weaving models, a distinguishing
between both types is necessary to simplify end-to-end tracing and transforma-
tion chain based annotation functionality.

The “ModelAnnotation” and “ModelTrace” relationships have been intro-
duced to allow navigation among models related through annotation and trace-
ability information. The last one is associated with a “TraceModel” which can
be related to a specific target model through associations inherited-from “Di-
rectedRelationship” and “ModelWeaving”. In a similar way, “ModelAnnotation”
is associated with an “AnnotationModel” and can be related to a specific target
model. The “ModelTransformation” meta-class in Figure 4 represents a single
transformation. A “ModelTransformation” can be specified in terms of a “Trans-
formationModel”, such as an ATL transformation.
1 In this paper, we assume that transformation scripts conform-to meta-models, such

as it is the case for ATL scripts.
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Fig. 4. Extract of the MDPE Metamodel extension of the Megamodel

The following section explains how the megamodel is employed within the
MDPE Workbench [2,24,25].

4.2 Magamodelling Based Model Navigation

Based on the refined megamodel, the architecture of the Model Navigation Agent
of the MDPE Workbench has been defined. This architecture is depicted in
Figure 5.

The figure shows that, beside of other relationships, the ModelTransformation
(Relationship), ModelTrace(Relationship) and ModelAnnotation(Relationship)
are represented in the Refined Megamodel. These relationships and the different
MDPE Modelling Artefacts are used by the Transformation Chain Controller,
Tracing Controller and Annotation Controller as depicted in the figure.

In the following paragraphs, the different controllers are explained in detail.

Transformation Controller: Figure 6 shows that the transformation rela-
tionship is set in the megamodel by an Administration Tool. The purpose of
this tool is to enable users to select the currently active Process Modelling Tool
and Performance Analysis Tool. The administration tool therefore stores the
currently active Transformation Chain into the megamodel. This specification is
consumed by a Transformation Controller, which executes the different Transfor-
mation Models and outputs the final Tool Input for Performance Analysis Tools
based on a number of Process Models. The transformation outputs a number
of Trace Models as by-products of the transformation [25]. The Transformation
Controller also sets the Tracing Relationships between Process Models, Interme-
diate Models (e.g. the TIPM) and the final input for the Performance Analysis
Tool into the megamodel.
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Fig. 5. Model Navigation Agent
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Tracing Controller: The tracing relationships between trace models and mod-
els of the transformation chain are consumed by the Tracing Controller, which
is depicted in Figure 7. Due to the Model Trace relationships in the megamodel,
this agent is able to navigate backward through an instance of a model trans-
formation chain containing i sets of intermediate, source and target models as
shown in the figure. The agent is therefore also able to create an end-to-end
trace model from an arbitrary Seth of models to a Setk of models. The resulting
trace model is called the End-to-End Trace Model in the figure. The implemen-
tation of this end-to-end trace model generation has been done with the ATL
transformation language.
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Fig. 7. Megamodel based Tracing Controller

However, some M2M languages, such as ATL, only allow transformation
scripts where each single input model is explicitly named. Thus, lists of an infi-
nite length of input models are not always supported. This is, however, beneficial
for tools like the MDPE Workbench if one considers possible future extensions
of the approach. Additionally, it is only required to activate the “UML2UML
Transformation” if a process is spanning across multiple process environments.
Thus, only some set-ups of the MDPE Workbench will contain this transfor-
mation. Therefore, an end-to-end trace model can be generated via recursively
iterating over the on the traces from the different transformation steps, for
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instance, via a transformation which takes all traces and the megamodel as
an input. The megamodel is needed because the transformation needs to know
the currently active model transformation chain.

The resulting end-to-end trace model can be utilized for different purposes, for
instance, to utilize a model annotation as input for an arbitrary transformation
step in an automated model transformation chain (see “R” between Tracing
Controller and Annotation Controller in Figure 5), as described in the following
subsection.

Annotation Controller: Figure 8 gives an overview of the proposed Annota-
tion Controller. This controller takes the end-to-end trace model from the tracing
controller as input in order to create an Annotation of Model in Seth based on
Data of Model in Setk.
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Fig. 8. Megamodel based Annotation Controller

The approach can, therefore, be used to annotate content or annotations of an
arbitrary model in the Setk in an automated transformation chain, to another
arbitrary model in the Seth. Note that the Seth is not necessarily created in the
chain before the Setk.

The combination of the tracing controller and the annotation controller is,
however, only beneficial if the following restriction is considered:

In some cases a model in the Setk cannot be related to a model in the Seth.
This for example happens if not all meta-classes of a model in the Setk are
translated into models of Seth. In this case it is obviously not possible to relate
these elements of the Setk to elements of the Seth, which have not been trans-
lated. However, such cases are considered as an indication of either an invalid
model annotation or an invalid model transformation chain. Thus, the domain
specialist needs to be informed by the tooling in such cases.

5 Experiences

For the evaluation of the transformation chain based approach, we had to set
up the model transformation chain as shown in Figure 9. This transformation
chain takes the three different kinds of process modelling languages as input,
which constitute the end-to-end process described in Section 2. All three modelling
languages are first transformed to UML (see BPMN2UML, ProcessFlow2UML,
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JPASS2UML in Figure 9). In a second step, the three UML models are intercon-
nected to formulate an end-to-end UML model (see UML2TIPM in Figure 9),
which is then, together with the Performance Parameters, transformed to a
TIPM.

Three different types of performance related decision support are provided.
The AnyLogic tool is used as a discrete event simulation engine and as an opti-
mization engine. Please note that the required transformations are different for
both cases as different kinds of experiments have to be created in the AnyLogic
tool. Moreover, the simulation based decision support only takes performance
requirements into account as Performance Assessment Data, whereas the opti-
mization also considers objectives and constraints. Additionally, we attached the
FMC-QE tool in order to get analytic support for sensitivity related decisions.
Therefore, the TIPM, which contains the end-to-end business process including
its resource related behaviour, is transformed via a Representation Independent
Model (e.g. the AL SIM Model in Figure 9) into Tool Input (e.g. the AL SIM.xml
in Figure 9).

In the following paragraphs, we describe our experiences:
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Fig. 9. Example Transformation Chain Set-Up

From the functional point of view, the combination of TIPM and UML as
intermediate languages enables to abstract the different process modelling lan-
guages. Without the proposed transformation chain, the creation of end-to-end
simulation models would have required to manually switch between three differ-
ent Process Modelling Tools and three different Performance Analysis Engines.
Therefore, in case one wants to get end-to-end decision support for the use case
that we introduced, nine different tools need to be understood. In general, for
the end-to-end decision support spanning across n process environments and m
Performance Analysis Tools, n+m tools have to be understood by a domain spe-
cialist. In [26] metrics are provided to measure the complexity of using a tool.
One of the measures is the number of manual steps; another one is the number
of context switches. Obviously, our solution reduces the number of manual steps
to a “push-button” activity and one is not required to switch between numerous
tools involved.
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Due to UML being employed as an Exchange Model, we only had to write the
complex part of the transformation between process modelling languages and
TIPM once. Thus, as long as a new process modelling language can be mapped
to UML Activity Diagrams, those effectively reduce the development effort asso-
ciated with attaching different Process Modelling Tools. If a process modelling
language cannot be mapped to UML Activity Diagrams due to a currently un-
foreseen process modelling concept, one might still be able to map it, with more
effort, to the TIPM. If this is also not possible, significant development effort
might be required to modify the TIPM and, in worst case, all transformations
from and to the TIPM. This is, however, considered as not very likely.

Additionally, the TIPM as Generic Performance Analysis Model also enabled
to provide decision support based on multiple Performance Analysis Engines,
such as the analytic FMC-QE tool and the simulation engine AnyLogic. In case
a new Process Modelling Tool is attached to the MDPE Workbench, the existing
transformations between TIPM and Performance Analysis Tools can be reused.
Again, if the TIPM needs to be modified for a new Performance Analysis Tool
due to a currently unforeseen performance analysis concept, significant effort
might be needed, in particular if the new TIPM version induces the need to
update existing transformations. This is, however, considered as not likely.

Moreover, the Transformation Chain Management permits to manage the
different modelling artefacts, such as annotation models and process models,
across the transformation chain. This enables one to use, for instance, annotation
models that reference the process models at any step in the transformation chain,
and by tracing Assessment Results backwards through the chain in order to
visualize them, also as annotation models, based on the original process models.

Adding a new step to the Transformation Chain is, therefore, not an issue
anymore. This was, for instance, needed when we added the “UML2UML” trans-
formation step (see Figure 9). The additional transformation step was one pre-
requisite in order to realize end-to-end decision support which spans the tool
chain built by the Process Flow modelling tool, the Process Composer and the
jPASS! tool.

However, the performance parameters are currently specified manually, which
is not sufficient in cases where historic performance parameters, such as how
long a special process step took in the past, are available as process instance
data. Therefore, in order to fully support end-to-end decision support spanning
across the three BPM tools, it is not only required to abstract three different
modelling languages with a model transformation chain, but also to abstract
three different sources for such historic process instance data.

Additionally, we are lacking a mechanism to deal with the confidentiality of
the business sub-processes. It might, for instance, not be appropriate for the
third party of our use case to provide their business process description to the
wine seller company. Thus, solutions are required to ensure confidentiality, for
instance, by preventing that the employees of the wine company have visibility
to the invoicing process.
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6 Related Work

Some model-driven scenarios which involve chains of multiple transformations
can be found in the literature, such as the twelve-step transformation chain in the
interoperability scenario for business rules presented in [27] or the five step chain
in the interoperability scenario for code clone tools presented in [28]. Compared
to these works, reasoning for the transformation chain of the MDPE Workbench
has been provided to integrate chains of Process Modelling Tools and Perfor-
mance Analysis Tools. Additionally, an architecture for model management has
been provided which enables end-to-end tracing, annotation and administration
of automated model transformation chains of arbitrary lengths.

The main concepts behind the concept of intermediate languages that we
have employed for our transformation chain can also be found in other software
transformations. For example, the abstraction of Performance Analysis Tools
and Process Modelling Tools with performance specific language TIPM and the
behaviour specific language UML Activity Diagrams is related to formats like
PDG or SSA [29,30]. The combination of UML Activity Diagrams and the TIPM
can be seen as means for a source- or target-independent intermediate (pivot)
format to reduce the number of required transformations. This is similar to the
use of byte code to abstract from the processor architecture.

From the application point of view, the closest related work to our knowl-
edge is the integrated performance simulation functionality within some process
environments of the BPM domain, such as EMC Documentum Process Suite
[31]. However, the offered simulation-based functionality is only at a basic level
[32]. To the best of our knowledge, the proposed approach is the only one which
provides, based on a model transformation chain and an architecture for model
management, support for chains of process environments, each employing differ-
ent Process Modelling Tools. Our approach further enables to benefit from the
know-how and functionality contained in a sophisticated performance decision
support system, which makes use of sophisticated model simulations, optimiza-
tions, and static analyses, and also a combination of them.

7 Conclusion

In this paper, the combination of a model transformation chain and a model
management architecture has been proposed in order to provide end-to-end per-
formance related decision support for business processes spanning multiple Pro-
cess Modelling Tools. The proposed architecture enables to interconnect multiple
Process Modelling Tools with multiple Performance Analysis Engines.

As a next step we anticipate to extend the current model transformation chain
in order to provide functionality for the abstraction of history data logs which are
provided by process environments. This would allow a better integration of the
MDPE Workbench into these environments. Additionally, we plan to extend the
existing model management approach to permit dealing with the confidentiality
of the business sub-processes.
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E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 134–150. Springer, Heidelberg (2009)



362 M. Fritzsche and W. Gilani

3. Fritzsche, M., Johannes, J.: Putting Performance Engineering into Model-
Driven Engineering: Model-Driven Performance Engineering. In: Giese, H. (ed.)
MODELS 2007. LNCS, vol. 5002, pp. 164–175. Springer, Heidelberg (2008)

4. XJ Technologies: AnyLogic — multi-paradigm simulation software (2009),
http://www.xjtek.com/anylogic/

5. Franks, R.G.: PhD Thesis: Performance Analysis of Distributed Server Systems.
Carlton University (1999)

6. Zorn, W.: FMC-QE: A new approach in quantitative modeling. In: Proceedings
of the 2007 International Conference on Modeling, Simulation & Visualization
Methods (MSV 2007), pp. 280–287. CSREA Press (2007)

7. Porzucek, T., Kluth, S., Fritzsche, M., Redlich, D.: Combination of a dis-
crete event simulation and an analytical performance analysis through model-
transformations. In: Proceedings of the International Conference and Workshop
on the Engineering of Computer Based Systems (ECBS 2010), pp. 183–192. IEEE
Computer Society, Los Alamitos (2010)

8. Rogers, P.: Optimum-seeking simulation in the design and control of manufac-
turing systems: Experience with optquest for arena. In: Proceedings of the 2002
Winter Simulation Conference, WSC 2002 (2002)

9. Object Management Group: Business Process Modeling Notation Specifica-
tion, Final Adopted Specification, Version 1.0 (2006), http://www.bpmn.org/

Documents/OMG%20Final%20Adopted%20BPMN%201-0%20Spec%2006-02-01.pdf

10. jCOM1 AG: jpass! - subjektorientierte prozessmodellierung (2009), http://www.
jcom1.com/cms/jpass.html

11. SAP AG: Sap solutions for small businesses and midsize companies (2009),
http://www.sap.com/solutions/sme/businessbydesign/index.epx

12. SAP AG: Sap business suite - integrated enterprise applications help lower
costs, improve insight, and capture opportunities (2009), http://www.sap.com/
solutions/business-suite/index.epx

13. Peterson, J.L.: Petri Net Theory and the Modelling of Systems. Prentice-Hall,
Englewood Cliffs (1981)

14. jCOM1 AG: Process management - jcom1 (2009), http://www.jcom1.com/
15. Fleischmann, A.: Distributed Systems, Software Design & Implementation (1995)
16. Fritzsche, M., Gilani, W., Fritzsche, C., Spence, I., Kilpatrick, P., Brown, T.J.:

Towards utilizing model-driven engineering of composite applications for business
performance analysis. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008.
LNCS, vol. 5095, pp. 369–380. Springer, Heidelberg (2008)

17. SAP AG: Components & tools of sap netweaver (2009), http://www.sap.com/
platform/netweaver/components/sapnetweaverbpm/index.epx
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(eds.) SLE 2008. LNCS, vol. 5452, pp. 178–187. Springer, Heidelberg (2009)

29. Ferrante, J., Ottenstein, K., Warren, J.: The program dependence graph and its
use in optimization. ACM Transactions on Programming Languages and Systems
(TOPLAS) 9, 319–349 (1987)

30. Cytron, R., Ferrante, J., Rosen, B., Wegman, M., Zadeck, F.: Efficiently com-
puting static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems (TOPLAS) 13, 451–490
(1991)

31. Associates, B.S.: The BPMS Report: EMC Documentum Process Suite
6.0 (2008), http://www.bpminstitute.org/whitepapers/whitepaper/article/
emc-documentum-process-suite-6-0-1/news-browse/1.html

32. Harmon, P., Wolf, C.: The state of business process management (2008), http://
www.bptrends.com/surveys_landing.cfm

http://www.bpminstitute.org/whitepapers/whitepaper/article/emc-documentum-process-suite-6-0-1/news-browse/1.html
http://www.bpminstitute.org/whitepapers/whitepaper/article/emc-documentum-process-suite-6-0-1/news-browse/1.html
http://www.bptrends.com/surveys_landing.cfm
http://www.bptrends.com/surveys_landing.cfm


Building Code Generators with Genesys:

A Tutorial Introduction

Sven Jörges1, Bernhard Steffen1, and Tiziana Margaria2

1 Chair of Programming Systems, Technische Universität Dortmund, Germany
sven.joerges@tu-dortmund.de, bernhard.steffen@cs.tu-dortmund.de

2 Chair of Service and Software Engineering, Universität Potsdam, Germany
margaria@cs.uni-potsdam.de

Abstract. Automatic code generation is a key feature of model-driven
approaches to software engineering. In previous publications on this
topic, we showed that constructing code generators in a model-driven
way provides a lot of advantages. We presented Genesys, a code gener-
ation framework which supports the model-driven construction of code
generators based on service-oriented principles. With this methodology,
concepts like bootstrapping and reuse of existing components enable a
fast evolution of the code generation library. Furthermore, the robustness
of the code generators profits from the application of formal methods. In
this paper, we will show in detail how code generators are constructed
with Genesys, in a tutorial-like fashion. As an example, we will build a
code generator for HTML documentation from scratch.

1 Introduction

Automatic code generation is a key feature of model-driven approaches to soft-
ware engineering. It has several advantages such as the elimination of manual
coding errors and the avoidance of repetitive work, and it provides a fast track
to a deployable and testable system/application.

In [1], we showed that constructing code generators in a model-driven way
provides a lot of advantages. We presented Genesys, a code generation frame-
work which supports the model-driven construction of code generators based on
service-oriented principles. Genesys is an integral part of jABC [2–4], a flexible
framework designed to enable systematic development according to the XMDD
paradigm (cf. Sect. 2). When modeling with jABC, systems or applications are
assembled on the basis of an (extensible) library of well-defined, reusable building
blocks. From such models, code for various platforms (e.g. Java-based platforms,
mobile devices, etc.) can be generated. As the code generators for these mod-
els have also been built within jABC, concepts like bootstrapping and reuse of
existing components enable a fast evolution of the code generation library. Fur-
thermore, the robustness of the code generators profits from the application of
formal methods like e.g. model checking [5].

In this paper, we will show in detail how code generators are constructed with
Genesys, in a tutorial-like fashion. As an example, we will build a code generator
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Fig. 1. How XMDD is realized by the jABC framework

for HTML documentation from scratch, thereby elaborating on the roles in the
process and their respective tasks.

In the following sections, we first will briefly introduce the jABC framework
and its basic concepts, as well as Genesys itself (Sect. 2 and 3). Afterwards we
focus on the paper’s main contribution, which is a detailed tutorial on how to
build a code generator, the Documentation Generator, with Genesys (Sect. 4).
In Sect. 5 we discuss related work. Finally, we will sum up and describe some
future work in Sect. 6.

2 The jABC Framework

jABC [2–4] is a flexible framework designed to support systematic development
according to the XMDD (Extreme Model-Driven Development) paradigm [6].
The key idea of XMDD is to move all application-specific activities to the mod-
eling level. Models are put at the center of the design activity, becoming the first
class citizens of the global system design process. Consequently, libraries are es-
tablished at the model level, i.e. that building blocks are (elementary) models
rather than software components, and systems are specified by model combina-
tions (composition, configuration, superposition, conjunction etc.), viewed as a
set of constraints that the implementation needs to satisfy. Via code generation,
such model combinations are translated into a homogeneous solution for a de-
sired environment. As opposed to other model-driven approaches such as MDA
[7], generated code is regarded as a “by-product” that must never be touched
manually. Any system changes (upgrades, customer-specific adaptations, new
versions etc.) with visible effect on the models happen only at the modeling
level, with a subsequent regeneration of the code.

Fig. 1 shows how the XMDD paradigm is realized by jABC. The box in the
center depicts the central development artifact labeled “Global SLG”, which
represents an application built in jABC. SLG is short for Service Logic Graph,
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which is the term for any model built with jABC. Basically, SLGs are directed
graphs that represent the flow of actions in an application. The model library
(big box on top of Fig. 1) provides the repertoire for modeling such SLGs. It is
divided into three parts: the component model library, the feature model library,
and a library of temporal constraints and types.

The component model library contains elementary, reusable building blocks
required to assemble an application. Such a building block may represent an
atomic service, providing a single functionality of e.g. a legacy system, COTS
software or a web service. In jABC, these atomic services are called Service
Independent Building Blocks (SIBs). jABC already ships with a huge library of
such SIBs (the Common SIBs [8]), which provide a very elementary basis for
assembling SLGs. The bulk of SIBs we use for the tutorial in this paper can
be found among the Common SIBs. Besides being an atomic service, a building
block may also represent a whole model (i.e. another SLG). Such building blocks
are called macros. Thus SLGs can be hierarchical, which grants a high degree of
reusability not only of the building blocks, but also of the models themselves,
within larger systems (we will also demonstrate the reuse of models in this
tutorial). Note that the only difference between a SIB and a macro is whether
the component is realized by a concrete implementation or by a model - for the
jABC user, a macro is used just like any other SIB.

A model that realizes a macro is called a “feature”, which is reflected in Fig. 1
by the feature library. “Features” denote entire SLGs, modeling reusable appli-
cation aspects such as error handling, security management, logging etc. Such
aspects (called Feature Logic Graphs, FLGs) are modeled once, and afterwards
they are part of the model library and can be reused across applications, even
across domains.

Furthermore, the model library also includes constraints, which define the
rules of an application and can be verified automatically by means of formal
methods like model checking. Such constraints, combined with corresponding
verification tools, assure the consistency and compatibility when the various
parts of the model library are used to build the global application model (Fig. 1:
“Integration as Consistency/Compatibility”). Having assured that this model
resembles a valid application according to the given constraints especially clears
the way for generating executable code for a desired target platform. This is the
task of Genesys, which will be explained in Sect. 3.

The jABC framework provides a tool for graphically modeling SLGs from
SIBs, macros and FLGs. Fig. 2 shows jABC’s graphical user interface, which
consists of three main parts (indicated by the numbers):

1. the project and SIB browser, which enable the user to browse available jABC
projects and the library of building blocks that can be used for modeling,

2. the graph canvas, which is used for composing models, and
3. the inspectors, which provide detailed information about elements selected

in the canvas.
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Fig. 2. jABC’s User Interface

We will elaborate on this figure in the following sections, which further explain
the concepts of SIBs and SLGs in order to provide a basis for the tutorial in this
paper.

2.1 Service Independent Building Blocks (SIBs)

SIBs are the elementary building blocks for constructing models in jABC. As
pointed out above, a SIB represents an atomic service, which can be every-
thing, ranging from low-level functionality like string concatenation, displaying
a message or reading information from a database, to web services or even the in-
teraction with highly complex systems, like enterprise resource planning (ERP)
software. For the user of jABC, the granularity of the service represented by
such a SIB is completely transparent: In order to use a SIB, it is only necessary
to know which behavior it represents, but not how the behavior is implemented.

These perspectives lead to two separate roles involved in the development with
jABC. First of all, application experts use jABC to graphically build models of
an application. They usually have very specific knowledge of this application
and the relevant concepts of the underlying domain, but they do not care about
concrete implementations or target platform issues (e.g. which database is used
etc.). Application experts resort to ready-made libraries of SIBs and use these
SIBs as simple black boxes, independent of their concrete realization. Contrary
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to this, SIB experts (or IT experts) are developers who realize a SIB’s behavior
for a concrete target platform, i.e. they provide the concrete implementations
of the atomic services. In practice, application experts and SIB experts work
together closely: If the application expert needs a particular SIB that is not
provided by a ready-made library, he requests a corresponding implementation
from the SIB expert. In the following, we will elaborate on the SIB concepts
from both perspectives.

The Application Expert’s View on SIBs: As pointed out above, the appli-
cation expert builds models by using SIBs from ready-made libraries, which are
shipped with jABC. These libraries can be searched and explored using jABC’s
SIB browser1, depicted in Fig. 2 (1). Via drag and drop, a particular SIB can be
moved from the SIB browser to the canvas (2), which is technically tantamount
to instantiating the SIB. Consequently, there can be several instances of one SIB
in a model.

Fig. 2 (2) shows an example of such a SIB instance, highlighted by the
box. In the SIB browser (1), it is visible that it is an instance of the SIB
RunStringTemplate, which is categorized as part of the Common SIBs (cp.
Sect. 2) package called “Script SIBs”. The task of RunStringTemplate is to
employ the template engine StringTemplate [9] to evaluate a template. Such a
template is basically a textual skeleton containing placeholders which are filled
with dynamic content as soon as the template engine is invoked.The correspond-
ing SIB instance in the canvas is labelled Generate Index Header, and there is
another instance of the SIB contained in the model (labelled Generate Index
Footer), which illustrates the reusability of those building blocks. In the canvas,
SIBs are visualized by an icon and a label at the bottom of the icon, both of
them are freely customizable by the application expert. By selecting a particular
SIB instance in the canvas, its details are displayed by the SIB inspector (3).

In order to facilitate reusability, each SIB provides a set of parameters for
configuring the SIB’s behavior. As visible from the SIB inspector (3), the SIB
RunStringTemplate takes four parameters, e.g. one of them (“template”) be-
ing the template that should be evaluated by StringTemplate. In order to allow
SIB instances in a model to communicate with each other, i.e. to share data,
the concrete service implementations usually keep track of an execution context.
Technically, this context is like a hash map, containing simple key-value pairs.
Thus a SIB instance is able to read and manipulate data that has been stored in
the context by other SIB instances, provided that both SIB instances agree on
the key which identifies the data. While the concrete implementation of the exe-
cution context is irrelevant for (and invisible to) the application expert, the keys
used by SIB instances to share data are again customized by SIB parameters.
Accordingly, the exemplary SIB instance in Fig. 2 has one parameter “result”
(3), which specifies the key used to store the evaluation result of StringTemplate
in the execution context (in the example, this key is indexPage). Besides param-
eters, each SIB also provides a set of so-called branches, which reflect its possible

1 The categorization structure visualized there is a taxonomy [2].
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execution results. For instance, the SIB RunStringTemplate has two branches
(not visible in Fig. 2): default, if the template was evaluated successfully, and
error, if the template could not be evaluated (e.g. because of syntax errors). As
will be described in the following Sect. 2.2, branches provide the basis for wiring
SIB instances in a model via directed edges.

The SIB Expert’s View on SIBs: The SIB expert provides the application
expert with required SIBs, either by continuously extending the ready-made
libraries, or as a reaction to a direct request. Implementing a SIB basically
consists of two parts: the SIB itself and its service adapters.

The SIB is the building block presented to the application expert in jABC.
As pointed out above, this is a black box representing a specific behavior con-
figurable by parameters, and reflecting its possible results by branches. Such a
SIB is described by means of a very simple Java class, which defines the SIB’s
constituents via programming conventions:

– parameters are defined by all public fields of the Java class,
– branches are defined by a static String array called BRANCHES, and
– a default icon and documentation are added by implementation of special

methods.

Finally, the class is marked as a SIB via an annotation (@SIBClass), which also
declares a unique identifier in order to reliably distinguish the SIB from other
SIBs. Sect. 4.2 shows a detailed example of such a Java class.

A service adapter implements the SIB’s behavior for a concrete target plat-
form. Particularly, as one SIB may be executable on multiple target platforms,
an arbitrary number of service adapters can be attached to a SIB. A service
adapter is usually implemented in a programming language supported by the
desired target platform, so it may for instance be a Java class, a C# class or a
Python script. Decoupling the concrete platform-specific implementations from
the SIB description assures that the SIB itself is entirely platform-independent.
As soon as at least one service adapter is implemented for a SIB, the SIB is
executable, thus enabling:

– Interpretation: Models containing SIBs are directly executable by an in-
terpreter which calls the implementation provided by one of the service
adapters.

– Code Generation: When transforming models to code, the code generator
translates each SIB instance to calls to the corresponding service adapter.

Sect. 4.2 shows an example of a service adapter.

2.2 Service Logic Graphs (SLGs)

As mentioned above, SLG is the term for any model built with jABC. Basically,
SLGs are directed graphs that represent the flow of actions in an application.
The nodes in such a graph are SIB instances or, in order to facilitate hierar-
chical modeling, macros that point to other SLGs. For instance, in the example
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Fig. 3. Hierarchical Models (SLGs) in jABC

model depicted on the top of Fig. 3, the nodes labelled Print Exception and
Print Success are SIB instances, while the nodes labelled Initialize Docu
Generator and Generate Documentation are macros (indicated by the green
dot on their icons).

The directed edges between the nodes indicate the flow of actions. Each edge is
labelled with one or more branches, whereas the source node of the edge defines
the set of possible branches that can be assigned to that edge. In other words, the
wiring of SIB instances and macros in models is performed on the basis of possi-
ble execution results. Roughly speaking, branches could also be seen as “exits” of
a SIB/macro. If a node has more than one outgoing edge, the edges represent al-
ternative execution flows. For instance, the node Initialize Docu Generator
in Fig. 3 has two branches “default” and “error”, each assigned to one outgo-
ing edge in the model. This reads as follows: If the result of Initialize Docu

Generator is “default” proceed with Generate Documentation, if the result is
“error” go to Print Exception. If Initialize Docu Generator produces an-
other result, it is considered an undefined behavior. In order to define where the
execution of a model starts, a node can be defined as an entry point. This is in-
dicated by the node’s label being underlined (e.g. Initialize Docu Generator
in Fig. 3)2.

The preceding descriptions already anticipated a mechanism which is key
to seamlessly enabling hierarchical modeling: Just like SIBs, macros also have
parameters and branches. However, as these parameters and branches belong
to an entire model associated with the macro, they are called model parameters
and model branches, respectively.

A model’s set of model parameters and model branches is defined by selectively
exporting parameters and branches of SIB instances/macros in that model. For
model branches, this is exemplified in Fig. 3. The bottom part of the figure shows

2 Please note that a model could potentially have more than one entry point, depend-
ing on whether this is supported by the selected interpreter or code generator.
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the sub-model that is associated with the macro Generate Documentation. It is
visible by the underlined label of Generate Index Header that this sub-model
again has one entry point. For proper execution semantics, we also need to specify
at which points the sub-model can be left in order to return to the parent model.
This is done by means of model branches, which, in analogy to SIBs, define
the “exits” of models. In jABC’s graphical modeling tool, these exits are not
visualized by concrete edges pointing to the parent model, but the information is
displayed in one of the inspectors (the “Graph” inspector). For illustration, Fig. 3
indicates the model exits via dashed arrows. In the example, each SIB instance
contained in the sub-model has a branch labelled “error”, all of them exported
and mapped to a model branch which is also called “error” (1)3. This means
that the error handling for all execution steps in the sub-model is delegated to
the parent model. Furthermore, the SIB instance Write Index Page exports
its “default” branch as a model branch, which is also called “default” (2). In
the parent model, the macro Generate Documentation provides exactly those
two exits “default” and “error”, which are defined as model branches in the
underlying sub-model. As with normal SIBs, these branches then can be assigned
to outgoing edges of the macro: For the application expert, there is no difference
in using a SIB or a macro. Likewise, it is possible to define model parameters of
a sub-model, which then become the parameters of an associated macro.

The fact that SLGs can be modeled hierarchically is key to both the clarity
and the reusability of models. The appropriate use of sub-models improves the
legibility and maintainability of SLGs and keeps them from getting too big and
complex. Furthermore, especially thanks to model parameters, models can be
reused just like SIBs, which forms the basis for the feature library described
above (cp. Fig. 1).

2.3 jABC Plugins

The jABC framework provides a tool for graphically modeling SLGs. The func-
tional range of the tool can be extended by plugins. For instance, the verification
of constraints or the integration of Genesys’ code generators are realized as jABC
plugins.

The Tracer [2] is another very important jABC plugin. It is an interpreter
that enables the user to execute (animate) a model in the modeling tool, to e.g.
support rapid prototyping. In order to be executable by the Tracer, SIBs have
to provide a service adapter implemented in Java.

Another example of a plugin is the AnnotationEditor, which allows to annotate
almost any kind of information to jABC projects and to any SLG constituent, in-
cluding SIBs, macros, features and the SLG itself. In the tutorial presented here,
the AnnotationEditor is used for attaching HTML-formatted documentation to
SLGs and the contained SIBs.

3 The name of a model branch/model parameter can be defined freely by the applica-
tion expert.
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3 Building Code Generators with Genesys

Genesys [1] is a framework for constructing code generators based on jABC.
More precisely, it is a special jABC bundle that provides tools (the “Genesys
Developer Tools”) and SIB libraries in order to support modeling code genera-
tors as SLGs. Building code generators as models offers several advantages [1],
such as the acceleration of development due to a high degree of reusability, or the
amenability to formal methods like model checking. Currently, Genesys’ main
focus is the construction of code generators for jABC itself, though we are cur-
rently researching the general applicability of this approach (e.g. for generating
code from Ecore models, see Sect. 6). However, the tutorial in this paper will
focus on a code generator for jABC, i.e. that it takes SLGs as its input, in order
to demonstrate all perspectives and roles that are possibly using Genesys.

Especially for jABC code generators constructed with Genesys, the frame-
work also provides a library of ready-made code generators for translating SLGs
to different target languages and platforms like e.g. Java, C#, BPEL, Android,
iPhone OS etc. Those generators are made available to jABC’s application ex-
perts via a corresponding plugin (the “Genesys jABC Plugin”).

Thus there are at least two different types of users for Genesys: the domain
experts and the application experts. Domain experts (who often are developers
and sometimes even congruent with the SIB experts), who have deep knowledge
of the target domain for which a particular application should be modeled with
jABC. Their main task is to customize jABC in a way that it fits the domain.
This includes organizing SIBs and FLGs in a taxonomical structure, selecting
appropriate plugins and defining how models are translated to code in that
domain (by creating new code generators with Genesys or selecting existing
ones). Application experts, which already have been introduced in Sect. 2.1, then
use the jABC variant customized by the domain experts to model and generate
an application for the target domain.

As the main contribution of this paper, we now show in detail how a code
generator is built using the Genesys approach, in a tutorial-like fashion.

4 Tutorial: The Documentation Generator

In the following sections we will demonstrate the construction of a complete
code generator with Genesys. This generator produces an HTML documentation
website from a set of jABC models. We will show how to profit from reusing
existing models and SIBs, and we will examine the construction process from
the perspective of both the domain expert and the application expert. Note
that as implementing new SIBs is in most cases not necessary for building code
generators, we will not elaborate on the work of the SIB expert in this tutorial.

Requirements: The Documentation Generator. As we are constructing
a code generator that is to be used in jABC, the Documentation Generator
takes jABC models as its input. The generator’s task is to produce an HTML
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Fig. 4. The Docu Generator main model (topmost hierarchy level)

documentation website (comparable to the Javadoc Tool) from those models
according to the following requirements:

1. The generator should process all jABC models in a given directory.
2. For each jABC model, a separate HTML page should be generated, contain-

ing the following information:
– the documentation of the model and
– a list of all SIB instances contained in that model. Each list entry should

display the corresponding SIB’s label. Furthermore, each entry should
be linked to a detail page (described in 3) containing the documentation
of the particular SIB instance, as well as to the corresponding public SIB
documentation [10].

3. For each SIB instance in each jABC model, a detail HTML page will be
generated, displaying the SIB instance’s documentation. This page should
be linked to the corresponding model page.

4. An index page should be generated, listing all processed models along with
links to their respective model pages.

5. Each generated HTML page should contain a timestamp in order to retain
the time of the last generation.

From the user perspective, the Documentation Generator should be easily usable
via the Genesys jABC plugin.

4.1 Modeling the Code Generator

Based upon the requirements described above, we can now start modeling the
code generator. As outlined in Sect. 3, this task is usually performed by a domain
expert who is versed in the target domain as well as in using jABC and Genesys.
For the Documentation Generator, the target domain comprises jABC mod-
els along with their associated concepts (SIBs, branches etc.), and the HTML
format.

In the following, we will show how to model the Documentation Generator
in jABC. For the sake of simplicity, we will not elaborate on all the parame-
terizations of the employed SIBs in detail. Instead we will focus on which SIBs
are used to solve the task and how they are connected to each other. For each
used SIB we will name the corresponding class so that it is easily possible for
the reader to reproduce the example by himself. If no class is named, then the
SIB class is equal to the SIB label displayed in the model. Detailed information
for all SIB classes can be found in the online SIB documentation [10].
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Fig. 5. The Initialize Docu Generator Model (second hierarchy level)

Structuring the Generation Process: Modeling a code generator with Ge-
nesys proceeds top-down. Thus as the first step of modeling the code generator,
we divide the generation process into two abstract coarse-grained phases: the
initialization phase and the generation phase. In the initialization phase, the
code generator will set up the generation by verifying the input parameters and
loading the jABC models, and in the generation phase the HTML website is
produced.

Fig. 4 shows the resulting model, containing the SIB Initialize Docu Gene-
rator for the initialization phase and Generate Documentation for the gener-
ation phase. Both SIBs are macros (SIB class MacroSIB), as both phases will be
refined and concretized in the following. Along with the two macros, the model
contains two other SIBs emitting either a success message (Print Success, SIB
class PrintConsoleMessage) when the two phases have been finished success-
fully, or an error message (Print Exception) if anything failed during the exe-
cution of the code generator.

Note that in our example, the error handling is always delegated to the main
model depicted in Fig. 4. All the SIBs used in the Documentation Generator’s
models have “error” branches that lead to the SIB Print Exception, either
as direct edges in the main model, or as model branches in all the other mod-
els. Consequently, Print Exception is the central (though very simple) error
handling step for the entire generator.

The Initialization Phase: We proceed by concretizing the initialization phase.
Basically, this phase has to verify the input parameters provided by the user and
to set up the generation process. The Documentation Generator will have two
input parameters:

outputFolder, the absolute path to the output directory for the generated
HTML files, and

modelPath, a list of absolute paths to directories containing the jABC models
for which the documentation should be generated.

The refined model for the initialization phase is depicted in Fig. 5.
We start by processing the generator parameter “outputFolder”, whose value

is first put into the execution context (Put Output Folder, SIB class PutFile)
in order to be accessible by the following SIBs. Afterwards, the SIB Check
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Fig. 6. The Load Models Model (third hierarchy level)

Output Folder (SIB class CheckPath) verifies this value: If it does not de-
note a proper (i.e. existent and writeable) directory, the following step Throw
Exception issues an error. Otherwise, the initialization phase continues with
handling the second input parameter “modelPath” (macro Load Models), which
is again performed in a sub-model.

The sub-model referenced by Load Models is displayed in Fig. 6. As loading
models is a standard task performed by all Genesys code generators, this model is
part of the feature library and thus can be entirely reused for the Documentation
Generator, without any changes. A detailed discussion of this model loading
process is not required for this paper: The domain expert does not have to
know the details of model loading in jABC anyway, as from his perspective, the
ready-made model is used just like a SIB.

The Generation Phase: For modeling the generation phase, we go back to
the main model (Fig. 4) and refine the macro Generate Documentation. The
resulting model is depicted in Fig. 7.

The generation process starts with generating the static header of the index
page (Generate Index Header) using StringTemplate. Note that all SIBs with
“ST” on their icon are instances of the SIB class RunStringTemplate described
in Sect. 2. The header of the index page only consists of static text, for instance
containing the opening html and body tags for the document. Afterwards, a time
stamp is generated (Generate Time Stamp, SIB class GetTimeStamp), which is
inserted into the footer of each generated HTML page. The generation of the
index page content and the detail pages for the models and the contained SIBs
is again modeled in a sub-model (referenced by the macro Generate Model
Pages). After the detail pages are produced, the generator finalizes the index
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Fig. 7. The Generate Documentation Model (second hierarchy level)

page. For this purpose, the SIB Generate Index Footer is parameterized with
the following simple template:

</ul>
<hr>
<i>Generated : $timeStamp$</i>

</body>
</html>

Besides some closing tags, this template contains a placeholder called “timeS-
tamp”, which is enclosed by dollar signs. When the generator is executed, String-
Template replaces this placeholder by the timestamp produced by the step
Generate Time Stamp. The generation phase finishes with writing the index
page to a file (Write Index Page, SIB class WriteTextFile).

The sub-model that refines the macro Generate Model Pages is depicted
in Fig. 8. It starts by iterating all jABC models that have been loaded in
the initialization phase (Next Model, SIB class IterateElements).4 As long
as there are still models left to be processed, the “next” branch of the SIB
will be used, otherwise the execution proceeds with the parent model (Fig. 7),
connected via a model branch. The following step Update Model Counter (SIB
class UpdateCounter) keeps track of a model number that is incremented each
time the SIB is executed. This number is required to construct the names for the
model detail pages. Then the generator extracts some information from the cur-
rent model: The SIB Get Model Name stores its name in the execution context,
and the SIB Convert Content to Html reads the documentation annotated via
the AnnotationEditor and converts it to proper HTML markup, which is also
stored in the execution context. Now the generator has gathered enough infor-
mation for generating an index page entry for the current model (basically the
model name, linked to the model detail page, step Generate Index Entry), as
well as the header of the model detail page, containing the model’s documenta-
tion and name.

To generate the list of SIBs in the current model along with the SIB de-
tail pages, the generator retrieves all contained SIB instances (Get SIB Graph
Cells) and then again delegates the production of all SIB-specific HTML markup
to a sub-model (macro Generate Markup for SIBs). Finally, the footer of the
detail page is generated (Generate Model Page Footer) and the entire page is
written to a file (Write Model Page).

4 Please note that the Documentation Generator produces HTML pages for all jABC
models in a given directory, which particularly includes all used sub-models. Con-
sequently, we do not need to expand the macros or to use any recursion - a simple
iteration of the models is sufficient.
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Fig. 8. The Generate Model Pages Model (third hierarchy level)

The last model required for the Documentation Generator refines the macro
Generate Markup for SIBs (see Fig. 9). In the first step, it iterates all SIB
instances contained in the current model (Next SIB Graph Cell, SIB class
IterateElements), which works just like the Next Model step in Fig. 8. Fur-
thermore, analogous to the model detail pages, the SIB Update SIB Counter
(SIB class UpdateCounter) keeps track of a SIB counter that is used for the
file names of the resulting SIB detail pages. Then again, some information is
collected from the current SIB found in the execution context: its class name
(Get SIB Class Name), unique identifier (Get SIB Class Name) and instance
label (Get SIB Label).

The following SIB Generate Documentation Link differs from the other SIBs
used in the Documentation Generator, as it is the only one that calls a remote
functionality, in this case a web service available on the internet. This web service
takes a SIB’s class name and UID as input and uses this information to construct
the URL of the corresponding online SIB documentation [10]. As this SIB was
not provided by the ready-made SIB libraries, it had to be newly implemented.
An appropriate service adapter only needed to realize the communication with
an already existing web service, so that this implementation was very easy, which
we will demonstrate in the following Sect. 4.2.

In the following step, the code generator reads the current SIB’s documenta-
tion, attached via the AnnotationEditor (Convert Content To Html). Depend-
ing on whether such an annotated documentation could be found, a list entry
for the current SIB on the model page is generated. In case a documentation is
found, this entry is linked to a SIB detail page which is generated in the step
Generate SIB Page. This SIB is parameterized with the following template:
<html>

<body>
$sibDoc$
<a h r e f=”model $modelCounter$ . html”>back to ”$modelName$”</a>
<hr>
<i>Generated : $timeStamp$</i>

</body>
</html>

Again, the static text contains placeholders that are replaced by StringTemplate,
using information collected by the code generator:

sibDoc: The current SIB’s HTML documentation retrieved by the Convert
Content To Html step in Fig. 9.
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Fig. 9. The Generate Markup for SIBs Model (fourth hierarchy level)

modelCounter: The number of the current model assigned by the SIB Update
Model Counter in Fig. 8.

modelName: The name of the current model retrieved by the SIB Get Model
Name in Fig. 8.

timeStamp: The time stamp produced by Generate Time Stamp in Fig. 7.

As clearly visible from the usage of this information in the template, SIB in-
stances in sub-models can easily access information left in the execution context
by SIB instances at arbitrary levels of the model hierarchy. This is due to the
global nature of the execution context: There is only one single context which is
shared by all SIB instances across the entire model hierarchy.

Finally, if a SIB detail page has been generated, it is also written to a file
(Write SIB Page).

Summary: We have now modeled a complete code generator according to the
requirements listed above. The resulting generator consists of 6 models (5 new,
1 could be reused from the feature library), containing 43 SIB instances (of 23
different SIBs). Only one SIB had to be implemented, as the rest of the required
functionality could be covered with existing SIBs. The depth of the resulting
model hierarchy is 4.

4.2 Implementing the Generate Documentation Link SIB

In order to get an impression of how SIBs are implemented, this section briefly
shows the anatomy of the SIB Generate Documentation Link. As already men-
tioned above (Sect. 4.1), this SIB uses a web service available on the internet
in order to produce the URL of the corresponding online documentation from a
given SIB’s class name and unique identifier.

First, we specify the SIB itself, which is described via a simple Java class shown
in Listing 1.1. The implementation starts with the @SIBClass annotation, which
marks the class as a SIB and defines its unique identifier. Afterwards, the SIB’s
constituents are defined as fields:
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– The SIB’s branches “default” and “error” are specified via the BRANCHES
array (line 4).

– The inputs (sibClassNameKey, sibUidKey) and output (resultKey) are de-
fined as public fields. The given strings represent execution context keys for
reading or storing the corresponding data (lines 7-13) that can be customized
by the application expert.

The implementation of the interface Generatablemarks the SIB as having a Java
implementation that can be used for code generation. The interface demands the
method generate, which defines the name of the corresponding service adapter
(WebServiceAdapter), the name of the method which realizes the SIB’s behavior
(generateDocumentationLink)and the names of the SIB parameters that should
be passed to the service adapter. In order to add service adapters for other tar-
get platforms, corresponding interfaces are added to the SIB. For instance, if the
SIB required an implementation in Ruby, it would implement an additional in-
terface RubyGeneratable, demanding a method generateRuby that provides all
information necessary to generate calls to a Ruby script.

1 @SIBClass ( ” web se rv i c e s/GenerateDocumentationLinkSIB” )
2 public class GenerateDocumentationLinkSIB implements Generatable {
3 // SIB branches
4 public static f ina l St r i ng [ ] BRANCHES = { ” d e f au l t” , ” e r r o r ” } ;
5

6 // execut ion contex t key for the SIB ’ s c l a s s name
7 public St r i ng sibClassNameKey = ”sibClassName” ;
8

9 // execut ion contex t key for the SIB ’ s unique i d en t i f e r
10 public St r i ng sibUidKey = ” sibUid ” ;
11

12 // execut ion contex t key for the r e s u l t
13 public St r i ng resu l tKey = ” r e s u l t ” ;
14

15 public Serv iceAdapterDesc r iptor generate ( ) {
16 return new Serv i ceAdapterDesc r iptor ( ”WebServiceAdapter” , ”

generateDocumentationLink” , ” sibClassNameKey” , ” sibUidKey” ,
” re su l tKey” ) ;

17 }
18 }

Listing 1.1. Implementation of the SIB Generate Documentation Link

As the second step, we have to implement the service adapter that realizes
the SIB’s behavior. Listing 1.2 shows the corresponding service adapter for Java.
Again, it is a simple Java class, that contains a static method providing the actual
implementation. The name of the class, the name of the method and the order
of the method’s parameters have to correspond to the information given in the
SIB’s generate method. As an exception, the parameter environment (line 2),
which is the current execution context (cp. Sect. 2.1), always has to be the first
parameter as a convention, and thus does not have to be defined in the SIB. The
actual implementation of the method is very simple:

– In lines 4 and 5, the SIB’s class name and unique identifier are retrieved
from the execution context, using the given context keys.
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– Afterwards, an instance of the web service is created (line 7). The corre-
sponding classes are generated from the web service’s public WSDL via the
JAX-WS framework [11].

– In line 8, the web service is called and its result is written into the execution
context, using the given context key.

– Finally, depending on whether the web service invocation was successful or
not, the method returns the “default” or the “error” branch.

1 public class WebServiceAdapter {
2 public static St r i ng generateDocumentationLink(

LightweightExecutionEnvironment environment , S t r i ng
sibClassNameKey , S t r i ng sibUidKey , S t r i ng re su l tKey ) {

3 try {
4 St r i ng sibClassName = ( S t r i ng ) environment . getLocalContext ( ) . ge t

( sibClassNameKey ) ;
5 St r i ng sibUidName = ( St r i ng ) environment . getLocalContext ( ) . ge t (

sibUidKey) ;
6

7 GenerateDocumentationLinkService port = new
GenerateDocumentationLinkWebServiceService ( ) .
getGenerateDocumentationLinkServicePort ( ) ;

8 environment . getLocalContext ( ) . put ( resultKey , port .
generateDocumentationLink( sibClassName , sibUidName ) ) ;

9 } catch ( Exception exp ) {
10 return ” e r r o r ” ;
11 }
12 return ” d e f au l t ” ;
13 }
14 }

Listing 1.2. Java Service Adapter for the SIB Generate Documentation Link

4.3 Generating the Code Generator

While modeling a code generator, it is possible at any time to execute, debug and
test it using jABC’s Tracer. However, for productive use of the code generator,
it should be translated to code itself, for instance in order to be able to use it
via the Genesys jABC Plugin. This is usually performed in two steps: editing the
generator’s meta data and finally generating the generator.

In Genesys, the meta data describing a code generator is accumulated in a
so-called descriptor. For instance, this contains a name for the code generator,
a short and a long description (the latter should e.g. provide information about
the generator’s parameters), the name of the author, a version number, a clas-
sification of the generator as an Extruder or a Pure Generator (see [1]), an icon
etc. For editing a generator’s descriptor, the Genesys Developer Tools provide a
special inspector, depicted in Fig. 10 (left).

Besides bundling meta data, the descriptor also has an important technical pur-
pose for the next step, the generation of the code generator. When translating a
model to code, Genesys’ code generators use the existence of a descriptor as a trig-
ger to determine whether it is a code generator that is being generated, or anything
else. In the first case, some extra code is produced, e.g. the implementation of a
special interface called CodeGenerator. Later on, this allows the Genesys jABC
Plugin to detect the code generator and to make it available to the user.
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Fig. 10. Left: The inspector for editing a code generator’s meta data. Right: Creating
a code generator configuration.

After specifying the meta data and thus declaring the model to be a code gen-
erator, we can proceed with translating it to executable code. This is performed
just like for any other model, i.e. using the Genesys jABC Plugin to create a
generator configuration. Creating such a configuration always includes selecting
an appropriate code generator for the translation, and then properly configuring
it. In our example, we select the “Java Class Generator” (that generates simple
executable Java classes [1]). Fig. 10 (right) shows the inspector for creating con-
figurations, and it is visible in the tooltip of the selected configuration how the
“Java Class Generator” has been parameterized to generate the Documentation
Generator. After the configuration is created, the generator can be translated to
Java source code.

To finally make the Documentation Generator available to the Genesys jABC
Plugin (and thus to the application expert), some manual steps need to be
performed by a person with technical skills, i.e. a developer or administrator.
In particular, the generated source has to be compiled with a Java compiler
and added to jABC’s classpath (e.g. as a JAR file). Finally, the user’s jABC
instance has to be restarted in order to load the new code generator. We are
currently working on automating this process, so that a new code generator can
be generated, compiled and loaded into jABC on-the-fly, without interrupting
the domain expert’s workflow (cp. Sect. 6).

4.4 The Application Expert’s Perspective: Using the Documentation
Generator

After the Documentation Generator has been modeled, generated and loaded as
described in Sect. 4.1, its usage is very simple. For an arbitrary jABC model, the
application expert is now able to generate an HTML documentation by creating
a generator configuration: Fig. 11 (left) shows the corresponding dialog. After
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Fig. 11. Left: Creating a generator configuration with the Documentation Generator,
Right: HTML documentation produced by the Documentation Generator

selecting the Documentation Generator, the meta data specified by the domain
expert (see Sect. 4.3) is displayed and the generator can be configured. This
new configuration can then be used to invoke the Documentation Generator.
An exemplary part of a generated HTML documentation page is depicted in
Fig. 11 (right): in this case, the Documentation Generator generated its own
documentation.

5 Related Work

A lot of related solutions aim at supporting the development of code gener-
ators or model-to-text (M2T) transformations, including M2T languages like
JET [12], the Epsilon Generation Language (EGL, [13]) or MOFScript [14],
template engines like Velocity [15] or StringTemplate [9], or full-blown code gen-
eration frameworks like e.g. openArchitectureWare [16] or AndroMDA [17]. Most
of these solutions are tightly coupled with their own template language, e.g. the
Velocity Template Language (VTL, [15]) for Velocity or XPand [18] for oAW
(AndroMDA is an exception, as it provides facades for changing the underlying
template language).

Genesys does neither restrict to nor define a particular M2T or template lan-
guage. Due to its service-oriented approach, almost any M2T tool or template en-
gine can be used for Genesys code generators: The integration has to be performed
once by a SIB expert who implements corresponding SIBs. Currently, Genesys
already ships with ready-made SIBs for e.g. Velocity and StringTemplate. As a
SIB’s granularity is not restricted to libraries or small software components
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(cp. Sect. 2.1), also entire code generation frameworks can be incorporated into
Genesys this way. For instance, we integrated AndroMDA as SIBs, so that
Genesys is able to generate code for UML diagrams. Due to this flexibility,
we also consider Genesys a meta-framework.

Another important concern of Genesys is the clear separation of the genera-
tion logic (traversing a model’s elements, collecting data etc.) from the actual
output definition (e.g. resulting code or markup). Most of the M2T/template
languages support the usage of control flow statements like loops or conditions,
and sometimes even calling external code via special directives. Although being
powerful mechanisms, such features lead to mixing generation logic and out-
put definition, in our opinion, at the expense of readability and maintainability.
In Genesys, anything related to the generation logic should be reflected in the
model, while the output definition, i.e. the templates, should not contain more
than simple placeholders (variables). For calling external code, corresponding
SIBs should be implemented (if they do not already exist) and integrated into
the code generator model. Although this approach demands a certain discipline
from the code generator developer, there are several benefits from having the
entire generation logic as a formal model, such as verifiability.

Some of the tools and frameworks named above support the invocation of
generators and templates as parts of a workflow. For instance, oAW provides
an XML-based workflow language, and EGL can be used in Apache Ant [19]
scripts. These workflows are in most cases used to build tool chains, but never
to separate the generation logic from the output definition. Furthermore, the
underlying workflow definitions are not amenable to verification with formal
methods. In Genesys, formal models are used both for the generation logic and,
at a higher hierarchy level, for building tool chains.

Concerning verifiability, there are various approaches that also aim at assuring
the reliability of automatic code generation. A ”verifying compiler”, as proposed
by Tony Hoare and Jay Misra in their grand challenge [20], is one possible
solution to achieve this goal. According to this approach, the compiler is able to
determine the correctness of the problem by using additional information, like
e.g. assertions or annotations, in the source code. A lot of research has been
done on this, e.g. taking the form of proof-carrying code [21] or evidence-based
approaches [22]. Other work aims at verifying the compiler itself, like e.g. the
Verifix project [23], or at validating the translation especially for optimizing
compilers [24]. In contrast to these rather analytical techniques, constructive
approaches postulate a more systematic development process, e.g. based on the
adoption of accepted standards [25] or the generation of code from specifications
[26]. All these approaches have in common that they work more or less on the
source code level. As all code generators in the Genesys framework are modeled
as SLGs, the verification is applied on the modeling level, which is one of the
key ideas of the XMDD paradigm. This also allows us to formulate constraints
which are not only applicable to one code generator, but to whole families of
code generators.
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6 Conclusion and Future Work

In this paper, we have demonstrated how to build a complete code generator
from scratch using the Genesys framework. We constructed the Documentation
Generator, which is able to produce an HTML documentation from jABC mod-
els. While modeling, we profited from existing models and SIBs, which were
reused for the code generator, supporting the observations we described in [1].
We also have demonstrated the flexibility of the SIB concept: Whether the func-
tionality realized by a SIB is simple or complex, local or remote, implemented
in Java or C, is entirely transparent to the domain expert, thus helping him to
exclusively focus on the code generation logic. Furthermore, we examined the use
of Genesys from the perspective of both the domain expert and the application
expert.

Currently, we focus on applying Genesys to other inputs than SLGs to broaden
the scope beyond jABC. Again, we profit from the framework’s service-orientation:
For traversing and collecting information from SLGs, we use a special SIB li-
brary, which can be easily replaced by a library of SIBs supporting other model
types. All other SIBs that are used for Genesys (e.g. the SIBs for integrating
template engines) are completely independent of the given model. For instance,
we currently investigate the automatic generation of corresponding SIBs for a
given Ecore [27] meta-model, which can then immediately be used to build a
code generator for models that belong to this meta-model.

Furthermore, we are working on further simplifying the domain expert’s work
of building a code generator. As pointed out in Sect. 4.3, there are still some
manual steps required to make a modeled code generator accessible for the ap-
plication expert. Currently, the generated source has to be compiled with a Java
compiler, added to jABC’s classpath and afterwards, jABC has to be restarted
in order to load the new code generator. In an upcoming version of the Genesys
Developer Tools, this process will be entirely automated, so that the domain
expert’s workflow is not interrupted anymore.
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Abstract. Early aspects are crosscutting concerns that are identified in the early 
phases of the software development life cycle. These concerns do not align well 
with the decomposition criteria of traditional software development paradigms 
and, therefore, they are difficult to modularise. The result is their specification and 
implementation scattered along several base modules, producing tangled 
representations that are difficult to maintain, reuse and evolve. It is now 
understood that the influence of requirements that cut across other requirements 
results in incomplete understanding of specified requirements and limits the 
architectural choices. Thus, a rigorous analysis of crosscutting requirements and 
their interactions is essential to derive a balanced architecture. Early Aspects offer 
additional abstraction and composition mechanisms for systematically handling 
crosscutting requirements. This paper focuses on two pioneering requirements 
approaches, one based on viewpoints and another based on use-cases. 

Keywords: Requirements analysis, separation of concerns, aspect-orientation. 

1   Introduction 

The established principles of Software Engineering [23], such as modularization, 
abstraction and encapsulation, play a major role in achieving separation of concerns 
[8]. Traditional Software Engineering methods, such as structured and object-oriented 
approaches, have been developed with those principles in mind. Nonetheless, the 
modularization techniques they provide cannot separate all interrelated complex 
concerns. Certain broadly-scoped properties (e.g., response time, security, persistence) 
are very difficult to modularize. This is because existing approaches generally follow a 
dominant decomposition criterion that is not suitable to capture and represent all kinds 
of concerns found in software applications [12]. This problem is known as the tyranny 
of the dominant decomposition: the system is modularized in only one way at a time 
and, consequently, the concerns that do not align with that decomposition criteria end 
up scattered across many modules [25]. Such crosscutting concerns span traditional 
module boundaries (for example, classes in an object-oriented decomposition), 
hindering understandability, maintainability and evolution. 

Modern approaches propose mechanisms for decomposition and composition. 
However, they mostly use a dominant base decomposition, with other possible 
dimensions cutting across them. For example, approaches, such as the Non-Functional 
Requirements framework [5], use non-functional requirements as the dominant 
dimension with the functional dimension added a posteriori. Other requirements 
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engineering (RE) approaches, such as viewpoints [9] and use cases [10], use 
functional requirements as the dominant decomposition with analysis conducted 
against a set of non-functional requirements cutting across the base. Crosscutting is a 
phenomenon that is not limited to Non-Functional Requirements (NFRs) and 
functional requirements can also often cut across parts of a system [20].  

It is now understood that the influence of requirements that cut across other 
requirements result in incomplete understanding of specified requirements and limits 
the architectural choices. Thus, a rigorous analysis of crosscutting requirements and 
their interactions is essential to derive a balanced architecture. Early Aspects work 
with existing requirements approaches by offering additional abstraction and 
composition mechanisms for systematically handling crosscutting requirements. 

This paper focuses on the identification and modelling of requirements-level 
crosscutting concerns in viewpoint and use-case based requirements models. An early 
identification of crosscutting concerns provides a means for: reasoning about the 
problem domain; handling quality attributes; performing trade-off analysis whenever 
conflicting situations are detected; supporting better architectural choices. Thus, we 
address Requirements Engineering and do not comment on which approach or 
technology should be used to implement the resulting specification. 

This work aims at: clarifying the advantages of aspect-oriented requirements 
identification, modelling and analysis over existing techniques; discussing, by means 
of real-world examples, how one can identify, model, compose and analyse aspects at 
the requirements-level using relevant techniques and tools; discussing the role of 
aspectual requirements in the software lifecycle with regards to improving software 
modularity and associated quality attributes. A fresh contribution is the use of MATA 
to model volatile concerns, making composition much simpler and expressive 
compared to the previous approach.  

This paper starts with an overview on the basic concepts of Early Aspects. Section 
2 introduces the aspect-oriented concepts, and in particular the aspect-oriented 
requirements analysis methods. Then we choose two representative approaches, one 
being an extension of viewpoints (Section 3), and the other a use case based approach 
we developed having in mind requirements evolution Section 4) and finish comparing 
them. Finally, we present our conclusions and discuss future work. 

2   Background 

Aspect-Oriented Software Development (AOSD) appeared as a new step to improve 
the separation of concerns principle, which aims at identifying and modularizing 
those parts of software that are relevant to a particular concept, goal or purpose [8]. 
This is an essential principle in software engineering to reduce software development 
complexity and increase understandability, minimizing the impact of change through 
encapsulation of different concerns in separate modules. In the context of this work, a 
concern refers to a property that addresses a certain problem of interest to one or more 
stakeholders and which can be defined by a set of coherent requirements.  

2.1   An Introduction to Aspect-Orientation 

Software Engineering is continuously evolving, searching for more efficient techniques 
to modularise and compose software systems. Historically, most new development 
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techniques are introduced at the programming level and their concepts are later 
abstracted and applied at the earlier stages (e.g., design, analysis and requirements). 
We have seen this evolution tendency in the 70’s, with structured techniques, and in 
the late 80’s and early 90’s, with object-oriented techniques [22].  

AOSD is another step towards achieving improved modularity, aiming at 
modularizing crosscutting concerns by providing means for their systematic 
identification, separation, representation and composition [21]. Typical examples of 
crosscutting concerns are NFRs, but crosscutting concerns can also be functional 
requirements, such as auditing, or validation [14, 20]. Crosscutting concerns are 
encapsulated in separate modules, known as aspects, and composition mechanisms are 
later used to weave them back with other base (or core) modules, at loading time, 
compilation time, or run-time [3]. Similarly to what happened to previous software 
development approaches, AOSD was introduced first at the programming level. The 
concepts have then moved beyond programming and are now being applied at earlier 
development stages, such as design, architecture and requirements engineering [6].  

2.2   Aspect-Oriented Requirements and Its Influence on Architecture Design 

Aspect-oriented requirements techniques build upon the strong focus on composition 
in AOSD by providing a fine-grained specification of how a requirements-level aspect 
constrains or influences specific requirements in a system. Such a detailed 
understanding of the composition relationships between aspectual and non-aspectual 
requirements leads to an improved understanding of their interaction, inter-
relationships and conflicts. This, in turn, helps to identify trade-offs early on in the 
development life cycle and undertake negotiations with the affected stakeholders. 
Furthermore, the aspectual requirements and their associated trade-offs can be traced 
to implementation to ensure that they have been preserved in line with the 
requirements specification that the stakeholders signed off on. 

An aspect at the requirements-level is a broadly-scoped property, represented by a 
single requirement or a coherent set of requirements, that affects multiple other 
requirements in the system so that: it may constrain the specified behaviour of the 
affected requirements; it may influence the affected requirements in order to alter 
their specified behaviour. Figure 1 shows requirements-level aspects affecting 
multiple requirements.  

During composition, conflicting situations may be found and resolved even before 
the architecture design is derived. A conflict is detected any time a contribution 
relationship between two concerns is negative. These contributions are unidirectional 
and can be positive, negative or “none”. For example, Response Time contributes 
negatively to Security and positively to Availability. Whenever there is a negative 
contribution between candidate aspects we are faced with a conflicting situation if 
these apply to the same or overlapping sets of requirements (e.g., in a viewpoint or in 
a use case). These conflicting situations have an impact on the architecture design. 
The required trade-offs pull an architecture in various directions, leading to a number 
of architectural choices that would serve stakeholders’ needs with varying levels of 
satisfaction. Figure 2 illustrates this idea.  

We created a decision support system to handle other types of conflicts (e.g., 
involving disagreements between stakeholders) [4, 17, 18]. 
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Fig. 1. Requirements-level aspects influencing other requirements [19] 
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Fig. 2. Aspectual requirements pulling architecture in various directions [15] 

2.3   Two Aspect-Oriented Requirements Approaches 

We have chosen to discuss in the tutorial two pioneering and very different 
approaches, Arcade [21] and MATA [27], representing two different requirements 
paradigms: viewpoints and use-cases, respectively. Though viewpoints and use cases 
do provide subjective perspectives on a system, they do not treat non-functional 
properties (e.g., security, real-time, mobility) systematically. These properties often 
form good candidate aspects that cut across viewpoints and use cases. Some 
approaches treat NFRs explicitly, but do not handle their crosscutting nature nor do 
they handle their functional aspects. Finally, we selected two examples as we wanted 
to confront attendees with different modelling situations.  

3   The Arcade Approach 

Arcade supports separation of aspectual requirements, non-aspectual requirements 
and composition rules. This makes it possible to establish early trade-offs between 
aspectual requirements; hence, providing support for negotiation and subsequent 
decision-making among stakeholders.  
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3.1   Generic Model for AORE  

Figure 3 illustrates the Arcade model [21].  

Identify and specify 
stakeholders’ requirements

Identify and 
specify concerns

Identify coarse-grained 
concern/stakeholders’ 
requirements relationships

Identify candidate 
aspects

Define composition 
rules

Compose aspects 
and stakeholders’ 
requirements

Build 
contribution 
table

Attribute weights 
to conflicting 
aspects

Resolve 
conflicts

Handle conflicts

Revise 
requirements 
specification

Specify aspect 
dimensions

Compose

Identify & Specify

 

Fig. 3. Arcade model [21] 

We start by identifying and specifying both concerns1 and stakeholders’ 
requirements. The latter is carried out using an existing requirements level separation 
of concerns mechanism such as viewpoints [9], use cases [10], goals [13] or problem 
frames [11]. The order in which the specification of concerns and stakeholders’ 
requirements is accomplished depends on the dynamics of the interaction between 
requirements engineers and stakeholders. In any case, it is useful to relate concerns to 
requirements, through a matrix, as the former may constrain the latter. Once the 
coarse-grained relationships between concerns and stakeholders’ requirements have 
been established and the candidate aspects identified, the next step is to define 
detailed composition rules. These rules operate at the granularity of individual 
requirements and not just the modules encapsulating them. Consequently, it is 
possible to specify how an aspectual requirement influences or constrains the 
behaviour of a set of non-aspectual requirements in various modules. At the same 
time, if desired, aspectual trade-offs can be observed at a finer granularity. This 
alleviates the need for unnecessary negotiations among stakeholders for cases where 
there might be an apparent trade-off between two (or more) aspects but in fact 
different, isolated requirements are being influenced by them. It also facilitates 
identification of individual, conflicting aspectual requirements with respect to which 
negotiations must be carried out and trade-offs established. 

After composing the candidate aspects and stakeholders’ requirements using the 
composition rules, identification and resolution of conflicts among the candidate 
                                                           
1  The notion of concern here is that used in PREView, which has a direct correspondence with 

non-functional requirements. It is NOT the general concept as proposed by Dijkstra and used 
later in MATA. 
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aspects is carried out. Conflict resolution must lead to a revision of the requirements 
specification. If this happens, then the requirements are recomposed and any further 
conflicts arising are resolved. The cycle is repeated until all conflicts have been 
resolved through effective negotiations. 

The last activity identifies the aspects’ dimensions. We have observed that aspects 
at this early stage have an impact that can be described in terms of two dimensions:  

 Mapping: an aspect might map onto a system feature/function (e.g. a simple 
method, object or component), decision (e.g. a decision for architecture choice) 
and design (and hence implementation) aspect (e.g. response time). This is why 
we call aspects at the RE stage candidate aspects as, despite their crosscutting 
nature at this stage, they might not directly map onto an aspect at later stages. 

 Influence: an aspect might influence different points in a development cycle, e.g. 
availability influences the system architecture while response time influences 
both architecture and detailed design. 

The concrete techniques we have chosen are viewpoints [9] for identifying the 
stakeholder requirements, and XML as the definition language for specifying these 
requirements, the candidate aspects identified and the composition rules to relate 
viewpoints with aspects. Tool support is provided by the Aspectual Requirements 
Composition and Decision support tool, Arcade (lending its name to the method). The 
tool makes it possible to define the viewpoint requirements, aspectual requirements 
and composition rules using pre-defined templates.  

3.2   Case Study 

The case study we have chosen is a simplified version of the toll collection system on 
the Portuguese highways [7]. “In a road traffic pricing system, drivers of authorised 
vehicles are charged at toll gates automatically. The gates are placed at special lanes 
called green lanes. A driver has to install a device (a gizmo) in his/her vehicle. The 
registration of authorised vehicles includes the owner’s personal data, bank account 
number and vehicle details. The gizmo is sent to the client to be activated using an 
ATM that informs the system upon gizmo activation. 

A gizmo is read by the toll gate sensors. The information read is stored by the 
system and used to debit the respective account. When an authorised vehicle passes 
through a green lane, a green light is turned on, and the amount being debited is 
displayed. If an unauthorised vehicle passes through it, a yellow light is turned on 
and a camera takes a photo of the plate (used to fine the owner of the vehicle). There 
are three types of toll gates:  single toll, where the same type of vehicles pay a fixed 
amount, entry toll to enter a motorway and exit toll to leave it. The amount paid on 
motorways depends on the type of the vehicle and the distance travelled.” 

3.3   Illustrating Arcade with the Traffic Pricing System 

3.3.1   Identify and Specify Stakeholders’ Requirements 
Based on the requirements described above, as well as in our knowledge as users of 
the system, the following viewpoints, some with sub-viewpoints, were identified [21]:  

 ATM: allows customers to enter their own transactions using cards. The ATM 
sends the transaction information for validation and processing. 
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 Vehicle: enters and leaves toll gates. There is a sub-viewpoint Unauthorised 
Vehicle whose plate number is photographed. 

 Gizmo: is read by the system and is glued on the windscreen of the car. 
 Police: receives data about the unauthorised vehicles and their infractions. 
 Debiting System: interacts with the bank to allow debits in clients’ accounts. 
 Toll Gate: through which the vehicles pass when entering or leaving the toll 

collection system. There are two sub-viewpoints: Entry Toll and Paying Toll. 
Entry Toll detects gizmos. The Paying Toll viewpoint is further refined into two 
sub-viewpoints: Single Toll turns the light green and displays the amount to be 
paid for authorised vehicles and turns the light yellow, sounds an alarm and 
photographs the plate numbers for unauthorised vehicles; Exit Toll behaves 
similarly to single toll, except that it must take into account the valid (or invalid) 
entrance of the vehicle. 

 Vehicle Owner: who has three sub-viewpoints: Registration of vehicles, 
cancellation of registration and modification of registration details; Billing in the 
form of regular invoices; Activation of the gizmo using ATMs. 

 System administrator: introduces new information and modifies existing 
information in the system. 

Figure 4 shows a viewpoint in XML. The structure is self-explanatory. A Viewpoint 
tag denotes the start of a viewpoint while a Requirement tag denotes the start of a 
requirement. Refinements such as sub-viewpoints and sub-requirements are 
represented via the nesting of the tags. Each requirement has an id which is unique 
within its defining scope (the viewpoint). Viewpoint names are unique within each 
case study. However, XML namespaces can be used for the purpose as well. 

 
 
<?xml version="1.0" ?>  
- <Viewpoint name="Vehicle"> 

   <Requirement id="1">The vehicle enters the system when it is within ten meters of the toll gate.</Requirement>  
   <Requirement id="2">The vehicle enters the toll gate.</Requirement>  
   <Requirement id="3">The vehicle leaves the toll gate.</Requirement>  
   <Requirement id="4">The vehicle leaves the system when it is twenty meters away from the toll 

gate.</Requirement>  
 - <Viewpoint name="UnauthorisedVehicle"> 

   <Requirement id="1">The vehicle number plate will be photographed.</Requirement>  
    </Viewpoint> 

  </Viewpoint> 

Fig. 4. The Vehicle viewpoint in XML 

Note that currently this type of specification can be obtained by using text-mining 
supported by EA-Miner [24] in collaboration with RDL [26]. 

3.3.2   Identify and Specify Concerns  
Concerns are identified by analysing the initial requirements. For example, since the 
owner of a vehicle has to indicate his/her bank details during registration, Security is 
an issue that the system needs to address. Other concerns in our case study, identified 
in a similar way, are: Response Time, Multi-Access System, Compatibility, Legal 
Issues, Correctness and Availability. For simplification we choose to provide the 
specification of only Response Time (Figure 5). The Requirement tag has the same 
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semantics and scoping rules as for the viewpoints. The only difference is that the 
defining scope is now the Concern. Like viewpoints, concerns can be nested as well 
and concern names are unique with the scope of a case study in Arcade. 
 

 
 
<?xml version="1.0" ?>  
- <Concern name="ResponseTime"> 

- <Requirement id="1"> 
  The system needs to react in-time in order to:  
   <Requirement id="1.1">read the gizmo identifier;</Requirement>  
   <Requirement id="1.2">turn on the light (to green or yellow);</Requirement>  
   <Requirement id="1.3">display the amount to be paid;</Requirement>  
   <Requirement id="1.4">photograph the plate number from the rear;</Requirement>  
   <Requirement id="1.5">sound the alarm;</Requirement>  
   <Requirement id="1.6">respond to gizmo activation and reactivation.</Requirement>  

  </Requirement> 
  </Concern> 

Fig. 5. The Response Time concern in XML 

3.3.3   Identify Coarse-Grained Concern/Viewpoint Relationships 
Now we can relate viewpoints and concerns, by building the matrix in Table 1. 

3.3.4   Identify Candidate Aspects 
Table 1 shows which concerns cut across specific viewpoints. For example, we can 
observe that the requirements in Response Time influence and constrain the 
requirements in the viewpoints: Gizmo, ATM, Toll Gate and Vehicle. Consequently, 
all concerns identified form candidate aspects as they cut across multiple viewpoints. 
In another system, a concern might constrain a single viewpoint and, hence, will not 
qualify as a candidate aspect (note that it will still be modularised as a concern). 

Once a candidate aspect has been identified, the XML specification of the 
corresponding concern is transformed to reflect this fact. The transformation is a 
simple operation (using a simple transformation in XSLT – eXtensible Style Sheet 
Language for Transformations) which replaces the Concern tag with an Aspect tag. 
While this might seem a trivial transformation, it ensures that the specification reflects 
the aspectual nature of a concern. 

3.3.5   Compose Aspects and Viewpoints: Define Composition Rules 
Composition rules define the relationships between aspectual requirements and 
viewpoint requirements at a fine granularity. Composition rule definitions can be 
governed by an XML schema in Arcade. However, for simplification we describe the 
structure of composition rules with reference to some examples and not the XML 
schema definition. As shown in Figure 6, a coherent composition rule is encapsulated 
in a Composition tag, in this case, for Response Time requirements (partially). The 
semantics of the Requirement tag here differ from the tags in the viewpoint and aspect 
definitions. Each Requirement tag has at least two attributes: the aspect or viewpoint 
it is defined in and an id which uniquely identifies it within its defining scope. If a 
viewpoint requirement has any sub-requirements these must be explicitly excluded or 
included in the Constraint imposed by an aspectual requirement. This is done by 
providing an include or exclude value to the optional children attribute. A value of all 
for a viewpoint or id value implies that all the viewpoints or requirements within the 
specified viewpoint are to be constrained. 
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Table 1. Matrix relating concerns with viewpoints 

(P: Police; Gz: Gizmo; DS: Debiting System; TG: Toll Gate; PT: Paying Toll; ST: Single Toll; ExT: Exit 
Toll; ET: Entry Toll; Vh: Vehicle; UV: Unauthorized Vehicle; VO: Vehicle Owner; Act: Activation; Reg: 

Registration; Bill: Billing; Adm: Administration) 

           VP 
Concerns 

P Gz DS ATM TG PT ST ExT ET Vh UV VO Reg. Act. Bill. 
Adm.

 
Response Time                

Availability                 
Security               
Legal Issues               
Compatibility               

Correct-ness                 
Multi Access                 

 
 

The Constraint tag defines an often concern-specific action and operator defining 
how the viewpoint requirements are to be constrained by the specific aspectual 
requirement. Although the actions and operators are informal they must have clearly 
defined meaning and semantics to ensure valid composition of aspects and 
viewpoints. The Outcome tag defines the result of constraining the viewpoint 
requirements with an aspectual requirement. The action value describes whether 
another viewpoint requirement or a set of viewpoint requirements must be satisfied or 
merely the constraint specified has to be fulfilled. 
 
 
<?xml version="1.0" ?>  
- <Composition> 

- <Requirement aspect="ResponseTime" id="1.1"> 
- <Constraint action="enforce" operator="between"> 

  <Requirement viewpoint="Vehicle" id="1" />  
  <Requirement viewpoint="Vehicle" id="2" />  

  </Constraint> 
- <Outcome action="satisfied"> 

  <Requirement viewpoint="Gizmo" id="1" children="include" />  
  </Outcome> 

  </Requirement> 
  </Composition> 

Fig. 6. The composition rules for Response Time requirements 

The informality of the actions and operators ensures that the composition 
specification is still readable by the stakeholders, an important consideration during 
requirements engineering. For example, if we look at the composition rule in Figure 6 
and focus on the values in bold we get the following: “Response Time requirement 
1.1 must be enforced between requirements Vehicle 1 and Vehicle 2 with the outcome 
that Gizmo requirement 1 including its children is satisfied”. The complete example 
and the specification and composition language can be found in [21]. 

3.3.6   Handling Conflicts 
Aspects and viewpoints are composed using composition rules. This leads to identify 
conflicts among aspects whose requirements constrain the same or overlapping sets of 
viewpoint requirements. In Arcade, this process is optimised as any potential 
interaction or conflict can be deduced from the composition rules. Thus, one does not 
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need to compose the aspects and viewpoints until the conflicts have been resolved. 
XML semantic composition is now possible with [26]. 

Build the contribution table. This table shows in which way (negatively or positively) 
an aspect contributes to others. This matrix shown in Table 2 is symmetric, i.e., only the 
diagonally upper (or lower) triangle needs to be considered. 

Table 2. Contribution matrix 

         Aspects 
Aspects 

Response 
Time Availability Security

Legal 
Issues Compatibility Correctness 

Multi-
Access 

Response Time   −   − − 
Availability        
Security        
Legal Issues        

Compatibility        
Correctness        

Multi-Access        

 
In this case, Response Time contributes negatively to Security, Correctness and 

Multiple Access and positively to Availability, for example. Whenever there is a 
negative contribution between aspects we are faced with conflict if these aspects 
apply to the same or overlapping sets of requirements in the viewpoints. 

Attribute weights to conflicting aspects. To help resolve conflicts we allocate 
weights to the cells of the aspect/viewpoint matrix where the conflicting aspects apply 
to the same viewpoints. Weighting allows us to describe the extent to which an aspect 
may constrain a viewpoint (c.f. Table 3). The values are given according to the 
importance each aspect has for each viewpoint. The scales we are using are based on 
ideas from fuzzy logic and have the following meaning:  

 Very important takes values in the interval ] 0,8 .. 1,0] 
 Important takes values in the interval ] 0,5 .. 0,8] 
 Average takes values in the interval ] 0,3 .. 0,5] 
 Not so important takes values in the interval ] 0,1 .. 0,3] 
 Do not care much takes values in the interval [0 .. 0,1] 

Using fuzzy values (very important, important, not so important, etc.) facilitates the 
stakeholders’ task of attributing priorities to conflicting aspects. Therefore, for 
viewpoint Gizmo, for example, Response Time has higher priority than Correctness 
and Multiple Access, and Correctness has higher priority than Multiple Access. 

Resolve conflicts. The conflict mentioned above should not be too difficult to 
resolve, as the weights express priorities. However, Toll Gate and its sub-viewpoints: 
Paying Toll (with sub-viewpoints: Single Toll, Exit Toll) and Entry Toll still show a 
conflicting situation between Response Time and Correctness. These two aspects 
contribute negatively to each other and have the same weight allocated to them (see 
the cells highlighted in Table 3). Using Arcade we can determine where that conflict 
exists (in this case, in Paying Toll). On one hand, the toll gate needs to react in time; 
on the other hand, it needs to display the correct amount. To resolve these kinds of 
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conflicting situations negotiation among stakeholders is needed. One suitable solution 
will be to lower the weight allocated to Response Time to 0.8 for the affected 
viewpoints. This is because Correctness is more important than Response Time. It is 
essential that the correct amount is displayed (and subsequently billed) even though 
the driver may not see it (if s/he is driving too fast).  

Table 3. Matrix with weights to conflicting aspects 

(P: Police; Gz: Gizmo; DS: Debiting System; TG: Toll Gate; PT: Paying Toll; ST: Single Toll; ExT: Exit 
Toll; ET: Entry Toll; Vh: Vehicle; UV: Unauthorized Vehicle; VO: Vehicle Owner; Act: Activation; Reg: 

Registration; Bill: Billing; Adm: Administration) 

VP 
Aspects 

P Gz DS ATM TG PT ST ExT ET Vh UV VO Reg. Act. Bill. Adm..

Response Time  1,0  0,3 1,0 1,0 1,0 1,0 1,0 1,0 1,0      
Availability               
Security    1,0             
Legal Issues                 

Compatibility                 
Correctness  0,8   1,0 1,0 1,0 1,0 1,0        

Multi Access  0,3  0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3      

 
Once all the conflicts have been resolved the specification is revised and 

recomposition carried out to identify any further conflicts. 

3.3.7   Specify Aspect Dimensions 
Specification of a candidate aspect’s dimensions makes it possible to determine its 
influence on later development stages and identify its mapping onto a function, 
decision or aspect, if aspect-orientation is used later. However, this development 
strategy is not imposed. Indeed, one could use frameworks or patterns to implement 
an aspect, for example. Patterns, for instance, are interesting from another perspective 
as well: they help identifying state-dependent aspects. These are better seen when the 
state design pattern is used to show crosscutting states.  

Going back to our example, consider our Compatibility candidate aspect. The 
requirements derived from this aspect will influence parts of the system specification, 
architecture and design pertaining to requirements derived from viewpoints 
constrained by it. They will also influence system evolution as change of the user’s 
ATM cards must be anticipated. The Compatibility aspect will, however, map on to a 
function allowing activation and reactivation of the gizmo. The Response Time 
aspect, on the other hand, will influence the type of architecture chosen and the design 
of the classes realising the requirements constrained by Response Time. It will map to 
an aspect at the design and implementation level because response time properties 
cannot be encapsulated in a single class and will be otherwise spread across a number 
of classes.  

4   Modelling Aspects Using a Transformation Approach (MATA) 

MATA [27] is an aspect-oriented modelling tool that considers aspect composition as a 
special case of model transformation. In MATA, the joinpoint model is defined by a 
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diagram pattern which allows for very expressive joinpoints. For example, a joinpoint 
may define a sequence of messages. This is in contrast to most previous approaches to 
aspect-oriented modelling that only allow joinpoints to be single model elements, such 
as a single message. Also, MATA supports more expressive composition types. For 
example, an aspect sequence diagram can be composed with a base sequence diagram, 
using parallel, alternative or loop fragments as part of the composition rule.  Most 
other approaches have often been limited to the before, after, around advice of AspectJ. 

4.1   MATA Basic Principles 

The composition mechanism of MATA is based on graph transformations. A graph 
transformation is a graph rule r: L → R from a left-hand side (LHS) graph L to a right-
hand side (RHS) graph R. In MATA the composition of a base model, Mb, with an 
aspect model, Ma, which crosscuts the base, is specified by a graph rule, r: LHS RHS: 

 A pattern is defined on the left-hand side (LHS), capturing the set of points in Mb 
where new model elements should be added; 

 The right-hand side (RHS) defines those new elements and specifies how they 
should be added to Mb. 

MATA supports composition for several UML diagrams (e.g., class, sequence, 
activity and state diagrams). It represents graph rules in UML’s concrete syntax, with 
some extensions to allow for more expressive pointcut and variable expressions. A 
MATA rule is given in a diagram, by using the following stereotypes:  

 «create»: applied to any model element, specifying the creation of an element. 
 «delete»: applied to any model element, specifying the deletion of an element. 
 «context»: used with container elements that are created; it avoids creating an 

element inside a created element, forcing it to match an element in the base. 

Figure 7 shows two examples of MATA rules defined in the context of sequence 
diagrams. R1 specifies that the aspectual behaviour consists of an interaction between 
2 objects that must be instantiated to 2 objects in the base.  The rule says that the 
fragment par (that specifies parallelism) and messages r and s in one of the sections of 
the fragment are created, i.e., they define the aspectual behaviour that must be 
inserted in the base. However, since p is defined as <<context >>, it must be matched 
against a message with the same name in the base. The resulting composed model 
when applying R1 is shown on the top right-hand corner of the figure.  Note that since 
q and b are not part of the rule they come after the par fragment.  

Rule R2 is similar, the main difference is the use of the “any” operator. This 
allows that, in the example, any sequence of messages between p and q can happen in 
the base (in this case, only the q message). 

4.2   Scenario Modelling with Aspects: Illustrating with a Case Study  

We first show the application of MATA when modelling aspectual scenarios, i.e., 
scenarios that crosscut other scenarios. To model aspectual scenarios we first identify 
use cases. Then, for each use case we identify the possible scenarios (main and 
secondary). Then, by analysing them we find the crosscutting behaviour (or aspectual 
scenarios). Next, we model in detail the base scenarios using sequence diagrams and 
the aspectual scenarios using MATA which encapsulates the composition rule.  
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Fig. 7. MATA rules [2] 

We will illustrate this using a simple car parking example [1]. The top-level 
requirements for the car parking system are as follows: “To use a car parking system, 
a client has to get a ticket from a machine after pressing a button. Afterwards, the car 
is allowed to enter and park in an available place. The system has to control if the car 
parking is full or if it still has places left. When s/he wants to leave the parking place, 
s/he has to pay the ticket obtained (described above) in a paying machine. The 
amount depends on the time spent. After paying the client can leave by inserting the 
ticket in a machine which will open the gate for her/him to leave. Regular users of 
the parking system may pre-purchase time and enter/exit by inserting a card and PIN 
number which will result in money being deducted automatically from the user’s 
account.” 

4.2.1   Identify Use Cases, Aspectual and Non-aspectual Scenarios 
From the requirements above, we identify the use cases Enter Lot, Exit Lot and Pay. 
Figure 8 shows a use case diagram.  

 

Fig. 8. Use Case Diagram for the Car Parking System 
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Next, we refine each use case into scenarios. Table 4 shows a non-exhaustive list 
of scenarios. Among these, some crosscut others. For example, handling error 
situations are tangled with normal ones. Also, these handling error situations crosscut 
several scenarios. This is the case of broken machinery, incorrect PIN, etc. 

Table 4. Car parking scenarios 

S1 Enter Lot, parking lot has space 
S2 Enter Lot, parking lot has no space 
S3 Enter Lot, regular user types in PIN and enters 
S4 Enter Lot, regular user types in PIN; PIN incorrect 
S5 Enter Lot, parking lot has space; machine is broken 
S6 Exit Lot, driver inserts ticket; ticket paid 
S7 Exit Lot, driver inserts ticket; ticket not paid 
S8 Exit Lot, driver has no ticket 
S9 Exit Lot, grace period from paying ticket exceeded 
S10 Exit Lot, regular user types in PIN and exits 
S11 Exit Lot, driver types in PIN; insufficient funds in account 
S12 Exit Lot, driver inserts ticket; machine is broken 
S13 Exit Lot, driver inserts ticket; ticket cannot be read 
S14 Exit Lot, driver types in PIN; PIN incorrect 
S15 Pay, driver inserts ticket, correct money inserted 
S16 Pay, driver inserts ticket; ticket cannot be read 
S17 Pay, driver inserts ticket; machine is broken 
S18 Pay, driver adds money to PIN card 

 
This leads to the scenarios given in Tables 5 and 6, where I1-I11 are non-aspectual 

and A1-A3 are aspectual. For example, A1 is an aspectual scenario as it crosscuts the 
non-aspectual scenarios I3, I4, and I10. 

Table 5. Non-Aspectual Scenarios 

I1 Enter Lot, parking lot has space 
I2 Enter Lot, parking lot has no space 
I3 Enter Lot, regular user types in PIN and enters 
I4 Exit Lot, driver inserts ticket; ticket paid 
I5 Exit Lot, driver inserts ticket; ticket not paid 
I6 Exit Lot, driver has no ticket 
I7 Exit Lot, grace period from paying ticket exceeded 
I8 Exit Lot, regular user types in PIN and exits 
I9 Exit Lot, driver types in PIN but insufficient funds in account 
I10 Pay, driver inserts ticket and correct money 
I11 Pay, driver adds money to PIN card  

Table 6. Aspectual Scenarios 

A1 Machine is broken 
A2 Ticket cannot be read 
A3 PIN incorrect  

4.2.2   Describe Aspectual and Non-aspectual Scenarios 
Figure 9 shows the MATA sequence diagram for interaction aspect A1. If the 
machine cannot respond the supervisor is alerted and the driver receives an error 
message. The diagram contains three role names that must be instantiated to compose 
the aspect with UML sequence diagrams.  
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Driver :|Machine Supervisor
<<create>>

|Action( |a )

timeout 

alertSupervisor( |a )

displayErrorMessage

<<create>>

any

alt

 

Fig. 9. The aspectual scenario “Machine is broken” 

The non-aspectual scenario I4 is depicted in Figure 10. Having the ticket inserted, 
the Lot Exit Machine checks it and if it is valid the transaction is recorded. Then the 
ticket is ejected and the barrier opens. Once the driver gets the ticket and leaves, the 
barrier closes.  

Driver
Lot Exit 
Machine Data RecordBarrier

insertTicket( t )

checkTicket(t)

recordTransaction(t)

ejectTicket

open

takeTicket

drive
sensorValidatedExit

close

 

Fig. 10. Sequence diagram for exiting with paid ticket 

The composed scenario is shown in Figure 11. First we instantiate the roles: 
|Machine binds to Lot exit Machine, |Action binds to insertTicket(t) and |a binds to t. 
Then we compose, based on the graph transformations mechanisms of MATA.  
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Barrier Driver
Lot Exit 

Machine Data Record Supervisor

drive

insertTicket( t )

checkTicket(t)

ejectTicket

takeTicket

sensorValidatedExit

recordTransaction(t)

open

close

timeout
alertSupervisor(t)

displayErrorMessage

bold = former
roles

alt

 

Fig. 11. Composed scenario 

4.3   Specifying Volatile Behaviour as Aspects 

Volatile requirements are business rules that are prone to change during the software 
life. Thus, we would like to be able to change them quickly, at any time. Our proposal 
is to handle volatility as aspects, since both concepts share independency, modular 
representation and composition with a base description. Doing so, volatility is 
modularized and requirements modifications can be rapidly instantiated and 
composed into an existing system.  

Figure 12 shows a model to handle volatile requirements [16]. The process starts 
identifying the problem domain concerns and follows by classifying them either as a 
service or a constraint and either enduring or volatile. Each concern is described in 
terms of its main elements in a template illustrated in Tables 7 and 8. Refactoring may 
be needed if a concern description, for example, is too complex, justifying the 
decomposition of this concern into two or more sub-concerns (step 3).   

Concern
Identification (1)

Concern Classification
& Description (2)

Concern
Representation (4)

Concern
Evolution (7)

Concern
Refactoring(3)

Model
Instantiation (5)

Model
Composition (6)

 

Fig. 12. Aspect-oriented evolutionary model for volatile concerns [16] 
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Concerns are represented using UML or MATA diagrams. Enduring services are 
modelled using UML. During this task, crosscutting elements in a model, or 
crosscutting models can be identified. Volatile concerns, crosscutting concerns and 
constraints are defined as role elements in the representation models. Representing 
these concerns as roles requires that the original concern definition is modified to 
become non-specific, thus allowing several concrete instantiations (step 5).  

Concern evolution (step 7) may require that new concerns be identified, classified, 
refactored and modelled, iteratively. At this stage, the outcome of the process is a 
specification where core concerns and concern roles are kept separate. Instantiation 
and/or composition (steps 5 and 6) can take place at the level of granularity of 
elementary concerns or models. While instantiation offers the opportunity to make 
concrete decisions regarding volatile concerns, which have been marked as role 
elements, composition serves to weave the instantiated concerns into a base model 
that contains enduring services. Composition is facilitated using MATA.  

The process just described is now illustrated using an automated transport system2 
in which “transport contractors bid to fulfil passenger transport orders. Passenger 
orders can be bid on by all transport contractors and the lowest bid wins. In the case 
of two lowest bids, the first arriving bid wins. Successful completion of an order 
results in a monetary reward for the shuttle involved. In case an order has not been 
completed in a given amount of time, a penalty is incurred.” 

4.3.1   Concern Identification, Classification and Description 
The identification of concerns involves the identification of stakeholders, analysing 
documents that describe the problem, reusing catalogues [5], stakeholders’ interviews 
transcripts, etc. In our example, two concerns are identified: (C1) Passenger orders 
can be bid for by all transport contractors and the lowest bid wins. In the event of two 
lowest bids, the first arriving bid wins. (C2) Successful completion of an order results 
in a monetary reward for the shuttle involved. In case an order has not been 
completed in a given amount of time, a penalty is incurred. 

Concerns are classified according to their type, i.e., enduring, volatile, services or 
constraints. For example, concern C1 is a service that might be classified as both 
enduring and volatile. While the first sentence refers to something stable as it is likely 
that shuttles will always have to bid for business in this system, the second implies a 
choice process which is likely to change depending on organization policies. This 
leads to a natural refactoring of this concern into two separate concerns—one to 
capture the enduring part and one to capture the volatile part. 

Each concern is detailed using a template that collects its contextual and internal 
information. Tables 7 and 8 illustrate the templates for concern C1 (refactored into 
C1a and C1b). The “Interrelationships” lists the concerns that a given concern relates 
to. A responsibility is an obligation to perform a task.  

4.3.2   Concern Refactoring 
In the transport system example, the concern “(C1) Passenger orders can be bid for by 
all transport contractors and the lowest bid wins. In the event of two lowest bids, the 
first arriving bid wins.” could be decomposed into two separate concerns—one for the 
                                                           
2  Shuttle system description found at http://scesm04.upb.de/case-study-1/ 
ShuttleSystem-CaseStudy-V1.0.pdf 
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bidding (C1a) and one for the decision on who wins in the event of two equal lowest 
bids (C1b). Identified volatile concerns may be redefined to represent a more generic 
concern. For example, C1b if originally defined as Choosing From Equal Bids, can be 
generalized to Choose Bid. Such a generalization facilitates software change since a 
designer may want to change the bidding policies in the future. 

The classification process helps to refactor the list of concerns into a list with 
consistent granularity. This is because increased granularity is often needed to be able 
to specify the fact that part of a concern is enduring or volatile. As an example, for 
concern (C1) above, one would like to say that the first part of the concern (the 
bidding process) is enduring, whereas the second part (dealing with two lowest bids) 
is volatile—one might, for example, later wish to use a different selection strategy in 
which bidders with strong performance histories win equal bids. Such a classification 
would lead naturally to splitting concern (C1) into two concerns (C1a) and (C1b). 
Applying a classification strategy consistently across a set of concerns leads to a 
consistent level of granularity in concern representation. 

 
Table 7. Order Handling description 

Concern # C1a 
 Name Order Handling 
 Classification Enduring service 
 Stakeholders Shuttle, Passenger 

 Interrelationships C1b, C2 

List of pre-conditions 

(1) There is a new order 
List of responsibilities 

(1) Broadcast order 
(2) Receive bids 
(3) Store bids  

Table 8. Choose Bid description 

Concern # C1b 
 Name Choose Bid 
 Classification Volatile service 
 Stakeholders Shuttle 
 Interrelationships C1a 

List of pre-conditions 

(1) There should be at least one order 
List of responsibilities 

(1) Get offers 
(2) Select winning bid 
(3) Store Choice 
(4) Make decision known  

 

4.3.3   Concern Representation 
Concerns are represented using UML use case and activity models. Elements in a 
model representing crosscutting concerns or volatile constraints and services are 
marked as roles and the model becomes a pattern modelled using MATA notation.  

Build use case models. A MATA use case model is a modified use case model with 
use case roles, each one representing volatile constraints and services. It incorporates 
use case roles, where concerns are mapped into use cases, volatile constraints and 
services are mapped into use case roles, stakeholders are mapped into actors and 
interrelationships help in identifying relationships between use cases. Apart from the 
<<include>> and <<extend>> relationships we also have those that are derived from 
constraints, the new relationship <<constrain>>, meaning that the original use case 
restricts the behaviour of the destination use case. Some of the use cases derived from 
constraint concerns are typically global properties, such as NFRs. Figure 13 illustrates 
a MATA use case model for the transport system, where C1a (in Table 7) and C1b (in 
Table 8) are represented by use cases. Note how C1b is given as a role use case, 
pointing out the clear distinction between enduring and volatile concerns—a reader of 
the model can immediately see where the volatility lies.  
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Identify crosscutting concerns. Crosscutting concerns are those that are required by 
several other concerns. This can be found in the concerns’ templates, or looking at the 
relationships between use cases in the MATA use case model. For example, one use 
case that is included by or extends several other use cases is crosscutting. 
 

Order Handling

Choose Bid

Passenger
Shuttle <<include>>

 

Fig. 13. Transport UCPS 

Build activity models. These describe the use cases’ behaviour. Each responsibility 
in the concern’s template corresponds to an activity in an activity diagram or an 
activity role in a MATA activity diagram. The nature of the concern (crosscutting, 
enduring or volatile) decides whether activities or activity roles are used. For 
example, C1b is volatile; therefore, one or more of its responsibilities will 
correspond to activity roles in the activity diagram. Activity roles are those that 
correspond to the responsibilities that are primarily responsible for making the 
concern volatile. In this case, responsibility 2 of C1b will correspond to a role 
activity (Figure 14.b).  
 

 

(a) Order Handling 

 

<<delete>>

<<create>><<create>>

<<create>>

<<create>>

 
(b) Choose Bid 

Fig. 14. 

 
Model instantiation. Model elements can be instantiated by a rule of the form: 

<step #.> Replace |<modelElement A> with <modelElement B> 

This means that modelElement A is eliminated and substituted by modelElementB, 
including its context. For example, consider the concern C1b, represented in the 
MATA use case model as |Choose Bid. The instantiation rule is as follows: 

1. Replace |Choose Bid  
with Choose From Bids (Equal Bids Choice Based On Arrival Time) 
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An instantiation for MATA activity model in Figure 14 (b) is: 

2. Replace |Select Winning Bid  
with Select Lowest Bid (Equal Bids Choice Based On Arrival Time) 

Model composition. Composition and instantiation can be applied independently 
from each other in an incremental fashion, leading to consecutive refinements of 
abstract requirements models into more concrete analysis models. In a more 
traditional aspect-oriented view, only crosscutting concerns would be composed with 
base modules. Here, we use composition to weave aspectual or volatile models to 
base models. As discussed before, the composition rule is specified in MATA 
diagrams. In the example, Figure 14(b) specifies that the Store bids activity must exist 
in the base model (Figure 14 (a)) and that the transition from Store bids to the final 
state will be deleted. The resulting model is illustrated in Figure 15.  

BroadcastOrder

ReceiveBids

StoreBids

GetOffers

SelectWinningBid

StoreChoice

MakeDecisionKnown

(1)

(2)  

Fig. 15. Resulting composed model  

In this particular case, the choice of a particular method for choosing the winning 
bid would be performed after this composition. When the requirements change, 
composition can be used to update the model in a less difficult and modular way. 

Concern evolution. Evolution should cope with changes in concerns that are already 
part of the system and with new functionalities or constraints not yet part of the 
existing system. In the former, the system is prepared to handle the change, by either 
defining a new instantiation rule, or else by changing one or more composition rules. 
For example, a change in the process used to select the winning bid (C1b) is easily 
handled at all levels by specifying the appropriate instantiations: 

1. Replace |Choose Bid  
with Choose From Bids (Equal Bids Choice Based On History) 

2. Replace |Select Winning Bid  
with Select Lowest Bid (Equal Bids Choice Based On History) 

In cases where we have to remove a concern, we need to remove all dependencies on 
this concern from all the composition rules. Coping with new requirements or 
constraints requires the reapplication of the method to identify the corresponding new 
concerns. These are integrated with the existing system by adding or changing 
existing composition rules. 
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5   Conclusions and Discussion 

At the end of the tutorial, participants had a clear understanding of: the role of aspect-
oriented software development concepts in requirements engineering; techniques, 
tools and good practice guidelines for identifying, modelling, composing and 
analysing crosscutting properties at the requirements-level; how aspect-oriented 
requirements models and their analysis drive development of solution domain models. 

To accomplish this goal, we discussed the fundamental concepts of aspect-
orientation and showed how aspect-oriented requirements engineering methods can 
work in tandem with existing requirements engineering ones. We have done this by 
presenting two different types of aspect-oriented requirements analysis approaches, 
illustrating them with case studies and their supporting tools. One of the approaches 
was Arcade, an extension of a viewpoint-oriented approach, and the other was 
MATA, which employs use cases and handles volatile concerns as aspects to facilitate 
the systems’ evolution. While the first focuses mainly on aspectual requirements that 
correspond to quality attributes, the second allows the use of UML, a modelling 
standard that is well-known by the software engineering community. 
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Abstract. Kiama is a lightweight language processing library for the
Scala programming language. It provides Scala programmers with em-
bedded domain-specific languages for attribute grammars and strategy-
based term rewriting. This paper provides an introduction to the use
of Kiama to solve typical language processing problems by developing
analysers and evaluators for a simply-typed lambda calculus. The em-
beddings of the attribute grammar and rewriting processing paradigms
both rely on pattern matching from the base language and each add a
simple functional interface that hides details such as attribute caching,
circularity checking and strategy representation. The similarities between
embeddings for the two processing paradigms show that they have more
in common than is usually realised.

1 Introduction

Kiama is a language processing library for the Scala programming language [1, 2].
We are distilling the key ideas of successful processing paradigms from language
research and making them available in a lightweight library. In other words, we
are embedding the paradigms into a general purpose language. The result is a
flexible combination of general programming techniques and high-level abstrac-
tions suited to many forms of language processing. At present, we are focused
on building traditional language processing applications such as compilers, in-
terpreters, generators and static analysis tools, but in the longer term we believe
that these paradigms have much to offer in a more general software engineering
setting.

Some of the motivation for Kiama comes from experience building genera-
tors for the Eli system [3]. Eli translates high-level specifications of language
syntax, semantics and translation into C implementations. Eli successfully com-
bines many off-the-shelf tools and custom-built generators that use a variety of
specification languages. However, because of their varying origins, the Eli spec-
ification languages are often ad hoc, have arbitrary differences and lack features
that are commonplace in general purpose languages such as name space control,
modularity and parameterisation. In our view, as language processing systems
are used to tackle larger tasks and different techniques are combined, these issues
become particularly problematic.

The Kiama thesis is that in the language processing domain it is better to start
with a modern general purpose language that embodies prevailing wisdom about
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how to structure, scale and extend applications, than to expect every generator
builder to incorporate this wisdom into their own specification languages and
tools. The approach of Kiama is therefore to combine proven language processing
paradigms into a coherent whole, supported by general facilities from a host
language.

Kiama is hosted by the Scala programming language that provides both
object-oriented and functional features in a statically-typed combination run-
ning on the Java Virtual Machine [1, 2]. Thus, Scala constitutes a powerful base
on which to experiment with embedding. At present, Kiama supports two main
processing paradigms: attribute grammars and strategy-based term rewriting. At-
tribute grammars are particularly suited to expressing computations on fixed tree
or graph structures, which is needed for static analysis. Rewriting is ideal for
describing computations that transform trees for translation or optimisation.

A notable result from our experience embedding attribute grammars and
rewriting in Scala is the high degree to which the power of more complex generator-
based systems can be realised with a lightweight embedding. For this domain at
least, Scala provides just the right level of expressibility for the notations and flex-
ibility for their implementation. Moreover, the two paradigms are embedded in a
very similar way based on Scala’s pattern matching constructs. Thus, parallels be-
tween the paradigms that were not previously obvious are revealed and the new
concepts that must be learned by a programmer are limited.

A full comparison of Kiama with related work is beyond the scope of this
paper. Nevertheless, it is important to note that the library has been heavily
influenced by existing notations and implementations of both attribute gram-
mars and rewriting. The attribute grammar facilities are modelled on those of
the JastAdd system [4]. Kiama’s term rewriting library is based on the Stratego
language and library [5]. Kiama also shares some characteristics with other em-
beddings of these paradigms, most notably strategic programming in functional
languages in the Strafunski [6] and Scrap Your Boilerplate projects [7].

Kiama is released under the GNU Lesser General Public License. Further
information including binary distributions, code, documentation, examples and
mailing lists can be found on the project site http://kiama.googlecode.com.

Outline

This paper presents an overview of Kiama’s current capabilities with a focus on
how the main features of the JastAdd and Stratego languages are supported via
a lightweight embedding. (More detailed discussion of Kiama’s relationship to
JastAdd can be found in Sloane et al. [8]).

We proceed by developing implementations of typical processing tasks for a
simply-typed version of the lambda calculus. This source language was chosen
to be familiar and relatively simple, yet to provide processing tasks that are also
relevant to other more complex languages.

Section 2 describes the version of lambda calculus used in the rest of the
paper and how programs are represented as Scala data structures. Section 3
shows how Kiama’s attribute grammar facilities can be used to define static
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program analyses. Section 4 implements various forms of evaluation mechanism
as rewriting strategies. The paper concludes with a short discussion of Kiama’s
capabilities and future plans.

The paper presents the main code fragments necessary to achieve the desired
effects. No knowledge of Scala is assumed, but experience with object-oriented
programming and pattern-matching as in functional languages will be useful. We
omit uninteresting scaffolding code that is necessary to turn these fragments into
compilable Scala code. The complete source code can be found in the lambda2
example in the Kiama distribution.

2 A Typed Lambda Calculus

To keep things simple but realistic, we use a simply typed lambda calculus as the
source language for the processing described in this paper. Figure 1 summarises
the abstract syntax of the language.

The Scala version of the abstract syntax is a straight-forward encoding of
the abstract syntax using Scala case classes (Figure 2). For most purposes, case
classes operate as regular classes but also provide special construction syntax and
pattern matching support similar to that provided for algebraic data types in
functional languages. Case objects are the sole instances of anonymous singleton
case classes.

As an example of construction, a tree fragment representing the lambda cal-
culus expression

(λx : Int . (λy : Int . x + y − 2)) 3 4

can be constructed in Scala by the expression

App (App (Lam ("x", IntType ,
Lam ("y", IntType ,

Opn (SubOp ,
Opn (AddOp , Var ("x"),

Var ("y"))),
Num (2)))

Num (3)),
Num (4))

In later sections, we will pattern match against “constructors” such as Lam and
App to deconstruct such expressions.

3 Attribution

Attribute grammars have been widely studied as a specification technique for
describing computations on trees [9, 10]. In an attribute grammar, the context-
free grammar of a language is augmented with attribute equations which define
the values of attributes of tree nodes. In their purest form, attribute grammars
have no notion of tree updates, so they are best suited to analysis of fixed
structures and attributes can be understood as static properties.
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Expressions (e) n number
v variable
λv : t . e lambda abstraction
e1 e2 application
e1 o e2 primitive operation

Types (t) int primitive integer type
t1 → t2 function type

Operations (o) + addition
− subtraction

Fig. 1. Abstract syntax of typed lambda calculus

abstract class Exp
case class Num (n : Int) extends Exp
case class Var (i : Idn) extends Exp
case class Lam (n : Idn , t : Type , e : Exp) extends Exp
case class App (e1 : Exp , e2 : Exp) extends Exp
case class Opn (o : Op , e1 : Exp , e2 : Exp) extends Exp

type Idn = String

abstract class Type
case object IntType extends Type
case class FunType (t1 : Type , t2 : Type) extends Type

abstract class Op
case object AddOp extends Op
case object SubOp extends Op

Fig. 2. Scala data type to represent the lambda calculus abstract syntax

Attribute grammar evaluation approaches can be divided into two broad cat-
egories: those that statically analyse attribute dependencies and those that wait
until run-time. Kiama’s approach is in the latter category [8]. It uses an evalua-
tion mechanism similar to that apparently first used by Jourdan [11], a variant
of which is also used in the JastAdd system [4]. Attributes are computed by
functions that dynamically demand the values of any other necessary attributes.
Attribute values are cached so that they do not needed to be re-evaluated if they
are demanded again.

3.1 Free Variables

As a simple example of using attribution to compute a useful property of a
tree, consider free variable analysis of lambda calculus expressions. We want to
calculate a set of the variables that are not bound in a supplied expression. A
typical case-based definition of this analysis is as follows [12].

fv(n) = {}
fv(v) = {v}
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fv(λv : t . e) = fv(e)− v

fv(e1 e2) = fv(e1) ∪ fv(e2)
fv(e1 o e2) = fv(e1) ∪ fv(e2)

A Kiama version of this analysis uses standard Scala pattern matching to
specify the same cases and build a Scala Set value (Figure 3). In attribute
grammar terminology, fv is a synthesised attribute because it is defined in terms
of attributes of the expression and its children.

In Figure 3, ==> is a Kiama infix type constructor alias for Scala’s generic
partial function type. Thus, a function of type T ==> U transforms values of
type T into values of type U, but may not be defined at all values of type T.

val fv : Exp ==> Set[Idn] =
attr {

case Num (_) => Set ()
case Var (v) => Set (v)
case Lam (v, _, e) => fv (e) -- Set (v)
case App (e1, e2) => fv (e1) ++ fv (e2)
case Opn (_, e1, e2) => fv (e1) ++ fv (e2)

}

Fig. 3. Free variable attribute definition. Exp ==> Set[Idn] is the type of a partial
function from expressions to sets of variable identifiers. The operators -- and ++ are set
difference and union, respectively. An underscore is a wildcard pattern which matches
anything.

The code between braces in Figure 3 is standard Scala syntax for an anony-
mous pattern-matching partial function. Kiama’s attr function wraps the pat-
tern matching with the dynamic behaviour of non-circular attributes.

def attr[T,U] (f : T ==> U) : T ==> U

attr (f), where f is a partial function between some types T and U, behaves
just like f except that it caches its argument-result pairs and detects when a
cycle is entered (i.e., when f (t) is requested while evaluating f (t), for some
node t).

The free variables of an expression e can now be referenced via a normal
function application fv (e) or using Kiama’s attribute access operator -> as
e->fv. The latter is designed to mimic traditional attribute grammar notations.

3.2 Name and Type Analysis

Free variable analysis is a very simple computation defined by a bottom-up
traversal of the expression tree. Name and type analyses are examples of more
complex processing that must be performed by compilers and many other source
code analysis tools. An analysis of names is typically needed before type analysis
can be performed. Our aim in this section is to analyse expressions such as
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val env : Exp ==> List [(Idn ,Type )] =
attr {

case e =>
(e.parent) match {

case null => List ()
case p @ Lam (x, t, _) => (x,t) :: p->env
case p : Exp => p->env

}
}

Fig. 4. Definition of environment attribute as list of bound variables and their types.
Scala’s match construct performs pattern matching. A pattern p @ patt matches
against the pattern patt and, if successful, binds p to the matched value. A pattern
of the form p : T succeeds if the value being matched is of type T, in which case it
binds p to the value. An underscore is a pattern that matches anything. :: is the List
prepend operation.

λx : Int . (λy : Int→ Int . y x) and determine that the application y x is legal
because y is a function from integer to integer and x is an integer.

It is not immediately obvious how to achieve the appropriate traversals of an
expression tree to perform name and type analysis. Do we first perform a traversal
for name analysis and then one for type analysis, or can we mix them somehow?
The attribute grammar paradigm helps considerably with avoiding these ques-
tions because it enables us to concentrate on the dependencies between attributes.
Dynamic scheduling of attribute computations will take care of the traversal.
Therefore, we do not need to explicitly separate name and type analysis.

An environment-based analysis. First, we present a name and type analysis
that uses explicit environment structures to keep track of the bound names
and their types. An alternative where the tree itself holds this information is
presented in the next section.

The env attribute computes an environment for a given expression consisting
of all variables that are visible at that expression and their types. The environ-
ment is represented by a list, with the interpretation that earlier entries hide
later ones, thereby implementing variable shadowing.

In contrast to the fv attribute which was defined by matching on the node itself,
the env attribute is defined by cases on its parent. In other words, the names that
are visible at a node depend on the node’s context. We have three cases: a) at the
top of the tree (null parent) nothing is visible, b) inside a lambda expression, the
visible names are whatever is visible at the lambda node plus the name bound
at that node, and c) in all other cases, the names visible at a node are just those
that are visible at the node’s parent. These cases are easily specified by pattern
matching (Figure 4). In attribute grammar terms, env is an inherited attribute.1

1 In some cases, not shown in this overview, it is useful to match on both the node and
its parent. Therefore, the synthesised versus inherited distinction is not particularly
meaningful in Kiama, since each attribute definition is free to access any part of the
tree that it needs.
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val tipe : Exp ==> Type =
attr {

case Num (_) =>
IntType

case Lam (_, t, e) =>
FunType (t, e->tipe)

case App (e1, e2) =>
e1- >tipe match {

case FunType (t1, t2) if t1 == e2- >tipe =>
t2

case FunType (t1, t2) =>
message (e2 , "need " + t1 + ", got " +

(e2- >tipe ))
IntType

case _ =>
message (e1 , "application of non-function ")
IntType

}

case Opn (op, e1, e2) =>
if (e1- >tipe != IntType)

message (e1, "need Int , got " + (e1- >tipe ))
if (e2- >tipe != IntType)

message (e2, "need Int , got " + (e2- >tipe ))
IntType

case e @ Var (x) =>
(e->env).find { case (y,_) => x == y } match {

case Some ((_, t)) => t
case None =>

message (e, "’" + x + "’ unknown")
IntType

}
}

Fig. 5. Definition of the expression type attribute. Kiama’s message operation records
a message associated with a particular tree node. Scala’s find method searches a list
using the predicate provided as an argument and returns an Option[T] value, where T

is the list element type. A value of type Option[T] is either Some (t) for some value
t of type T, or it is None.

Kiama provides fields called structural properties that give generic access to
the tree structure. For example, the parent field of e used in Figure 4 is a
structural property that provides access to the parent of any node, or null if
the node is the root. The other structural properties provided by Kiama are
isRoot for all nodes, and prev, next, isFirst and isLast for nodes occurring
in sequences. The structural properties are provided automatically to any class
that inherits Kiama’s Attributable trait, as in

abstract class Exp extends Attributable
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With env in hand, we can define the tipe attribute2 that gives the type of
any expression (Figure 5). Unlike traditional typing rules, the environment is not
passed, because it can be accessed directly using the env attribute as needed.
There are five cases:

a) a number has integer type,
b) a lambda expression λx : t . e has type t→ te where te is the type of e,
c) an application of a function of type t1 → t2 to an expression of type t1 is of

type t2,
d) the operands and result of an operation are integers, and
e) the type of a variable is the type associated with that variable name in the

environment.

If none of these cases apply, a typing error is reported using Kiama’s message
facility and an error type of IntType is returned. (Of course, this approach
may lead to spurious errors. A more robust implementation would return a
dedicated error type and ensure that values of the error type were acceptable in
any context.)

A reference-based analysis. In the environment-based analysis, we reuse the
type nodes of the tree when constructing the environment (in the Lam case). We
can go further and do away with the environment completely by observing that
each binding can be represented by the lambda expression in which it is created.
This kind of observation is at the heart of Hedin’s Reference Attribute Gram-
mars [13], which can be achieved in Kiama with the facilities we have seen already.

All of the cases for the tipe attribute stay the same as in the environment
version, except for the variable case (Figure 6). Instead of looking up the name in
the environment, we define a lookup attribute that traverses the tree to find the
name if it can. There are three cases: a) we are examining a lambda expression
that defines the name we are looking for, so return that lambda expression, b)
we are at the root of the tree, so report that we didn’t find a binder for the name,
and c) ask the parent to lookup the name. lookup is therefore a parameterised,
reference attribute in attribute grammar terminology.3 In the variable case of
tipe we can now use lookup to find the binder of the name, if there is one.

In lookup, the parent reference e.parent[Exp] requires the type annotation
Exp because parent is generic and the compiler is not able to infer that expres-
sions only ever occur as children of expressions. The necessity for this annotation
reveals a limitation in the embedding approach due to full grammar knowledge
not being available when the abstract syntax is implemented as a class hierar-
chy. The type annotation results in a cast to the given type and it is up to the
developer to ensure that the cast cannot fail. More discussion of this issue can
be found in Sloane et al. [8].
2 type cannot be used since it is a Scala keyword.
3 This use of a parameterised attribute defined by a Scala function is simple, but it

may not provide the desired caching behaviour, since the parameter value is not
included in the cache key. Kiama also provides a variant of attr that can be used if
more advanced caching is important.
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def lookup (name : Idn) : Exp ==> Option[Lam] =
attr {

case e @ Lam (x, t, _) if x == name =>
Some (e)

case e if e.isRoot =>
None

case e =>
e.parent[Exp]->lookup (name)

}

val tipe : Exp ==> Type =
attr {

...

case e @ Var (x) =>
(e->lookup (x)) match {

case Some (Lam (_, t, _)) =>
t

case None =>
message (e, "’" + x + "’ unknown")
IntType

}

}

Fig. 6. Definition of the name lookup attribute and the new case for name and type
analysis of variables

4 Rewriting

Kiama’s rewriting library is closely modelled on the Stratego rewriting lan-
guage [5]. Stratego uses a general notion of a rewriting strategy that takes as
input a term representing a tree structure, and either succeeds, producing a
(possibly) rewritten term, or fails. Stratego has a rich language of strategy com-
binators and library strategies that achieve choice, iteration and other more
complex term traversal patterns.

The aim for this part of Kiama was to see how much of Stratego could be
realised using a pure embedding approach, in contrast to the standard imple-
mentation which compiles to C. As this section shows, most of Stratego can be
easily encoded. Our encoding is based around a functional abstraction similar
to that used for attribute equations in the previous section. Standard Scala pat-
tern matching can be used within rewrite rules. Implementations of the Stratego
combinators and library strategies enable most Stratego programs to be written
using almost the same syntax.

This section presents examples of using Kiama’s rewriting library to evaluate
lambda calculus expressions, based on Stratego versions of the same [14].
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val s =
reduce (beta + arithop)

val beta =
rule {

case App (Lam (x, _, e1), e2) =>
substitute (x, e2, e1)

}

val arithop =
rule {

case Opn (op, Num (l), Num (r)) =>
Num (op.eval (l, r))

}

Fig. 7. Definition of simple reduction strategies. The function substitute is assumed
to implement capture-free substitution. Each primitive operator is assumed to have a
method eval that evaluates that operator on two integers and returns the result.

4.1 Evaluation

The evaluation strategies fit into a general framework. The interface to an evalu-
ator is a function eval that takes an expression and returns the expression that
is the result of evaluation.

def eval (exp : Exp) : Exp =
rewrite (s) (exp)

val s : Strategy

Evaluation is achieved by rewriting with the strategy s which is defined in
various ways in the following sections. rewrite applies its strategy argument to
its term argument. If the strategy succeeds, rewrite returns the resulting term,
otherwise, it returns the original argument.

4.2 Basic Reduction

The basic evaluation rule for lambda calculus is beta reduction [12].

(λx : t . e1) e2 → [e2/x]e1

where [e2/x]e1 means capture-free substitution of e2 for occurrences of the vari-
able x in e1. Primitive operations can be evaluated by reduction rules that use
operations in the meta-language.

Figure 7 shows an encoding of these rules as strategies in Kiama. Each rule
is written as a pattern matching function on the relevant tree structure.4 The
pattern match is wrapped by a call to Kiama’s rule function that converts the
function into a strategy.

def rule (f : Term ==> Term) : Strategy

4 While the different rules could be combined into a single one, we prefer to keep them
separate to enable more flexible reuse.
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A Strategy is a function from Term to Option[Term]. The Option wrapper is
used to represent success and failure. rule lifts a partial function f to the Strategy
type, mapping undefinedness of f to None, representing failure of the strategy. In
other words, rule (f), for some partial function f, when applied to a term t, suc-
ceeds with the result of f (t), if f is defined at t, otherwise it fails.

The beta and arithop strategies are combined in Figure 7 to form s using
the non-deterministic choice operator +. Finally, the library strategy reduce is
used to repeatedly apply the basic strategies to the subject term until a fixed
point is reached.

4.3 The Reduce Strategy

The definition of reduce shows both the power of the Stratego language for
combining strategies, but also the relatively clean way that this language can
be embedded into Scala. In Stratego, reduce is defined in terms of other library
strategies and basic combinators as

try (s) = s <+ id
repeat (s) = try (s; repeat (s))
reduce (s) = repeat (rec x (some (x) + s))

where the new Stratego constructs are

– the identity strategy (id) which always succeeds without changing the sub-
ject term,

– deterministic choice (<+) where the second strategy is only applied to the
subject term if the first strategy fails,

– sequential composition (;), where the second strategy is applied to the result
of a successful invocation of the first,

– definition of a locally recursive binding of x by rec x, and
– the primitive traversal combinator some whose result succeeds if the argu-

ment strategy succeeds on at least one child of the subject term.5

Thus, we can see that try attempts to apply its argument strategy but leaves
the term unchanged if that strategy fails. repeat applies a strategy repeatedly
until it fails. reduce repeatedly applies a strategy to sub-terms and the subject
term itself until all of those applications fail, upon which it succeeds with the
most recent result.

Stratego programs are built up in this way from a collection of primitives and
a large library. The result is an extremely expressive language of tree traversal
and transformation. Similar power can be achieved in Kiama using notations
that are very similar to those of Stratego, even though we rely entirely on Scala
syntax and concepts.

Figure 8 shows the Kiama version of the library strategies needed for the basic
reduction example. Scala’s ability to define methods with symbolic names means
5 Stratego and Kiama also have all and one that require success on all children or

one child, respectively.
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def attempt (s : => Strategy) : Strategy =
s <+ id

def repeat (s : => Strategy ) : Strategy =
attempt (s <* repeat (s))

def reduce (s : => Strategy ) : Strategy = {
def x : Strategy = some (x) + s
repeat (x)

}

Fig. 8. Kiama version of Stratego library combinators. A parameter type preceded by
=> indicates a pass-by-name mode.

that the primitive combinators <+ and + can be provided as Strategy methods;
we use <* for sequencing, since semicolon is already claimed for other purposes
by the Scala syntax. Similarly, try is renamed attempt since the former is a
Scala keyword. Other than these cosmetic changes, the main differences between
the two versions are the inclusion of the type information and a more verbose
definition for the recursive value x in reduce.

4.4 Explicit Substitution

Instead of relying on a separate substitute function to implement the core of
the beta reduction rule, explicit substitutions can be used to bring the entire
evaluation process into the rewriting paradigm.

Figure 9 shows how an explicit substitution version can be written in Kiama.
First, a new Let tree construct is declared to represent substitutions. The sub-
stitution [e2/x]e1, where x has type t, will be represented by the expression
Let ("x", t, e2, e1)

s is now defined in terms of a lambda strategy which in turn combines beta
reduction (modified to produce an explicit substitution), primitive evaluation
(unchanged) and a set of new strategies that implement substitution. subsVar
actually performs substitution on a variable reference, whereas the others prop-
agate substitutions inward. (As before, a single rule could be used instead of
these reusable pieces.)

4.5 Innermost Evaluation

Using reduce has an efficiency penalty because it repeats its search for a re-
ducible expression starting from the top of the whole expression each time. An
innermost evaluation reduces sub-terms before trying to reduce the subject term.
Stratego’s innermost library strategy is defined as follows in terms of a more
general bottomup traversal strategy.

innermost (s) = bottomup (try (s; innermost (s)))
bottomup (s) = all (bottomup (s)); s

both of which are defined in an analogous way in the Kiama library.
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case class Let (name : Idn , tipe : Type , exp : Exp ,
body : Exp) extends Exp

val s =
reduce (lambda)

val lambda =
beta + arithop + subsNum + subsVar + subsApp +
subsLam + subsOpn

val beta =
rule {

case App (Lam (x, t, e1), e2) =>
Let (x, t, e2, e1)

}

val subsNum =
rule {

case Let (_, _, _, e : Num) => e
}

val subsVar =
rule {

case Let (x, _, e, Var (y)) if x == y => e
case Let (_, _, _, v : Var) => v

}

val subsApp =
rule {

case Let (x, t, e, App (e1, e2)) =>
App (Let (x, t, e, e1), Let (x, t, e, e2))

}

val subsLam =
rule {

case Let (x, t1, e1, Lam (y, t2 , e2)) if x == y =>
Lam (y, t2, e2)

case Let (x, t1, e1, Lam (y, t2 , e2)) =>
val z = freshvar ()
Lam (z, t2, Let (x, t1, e1,

Let (y, t2, Var (z),
e2)))

}

val subsOpn =
rule {

case Let (x, t, e1 , Opn (op, e2 , e3)) =>
Opn (op, Let (x, t, e1, e2), Let (x, t, e1 , e3))

}

Fig. 9. Definition of reduction with explicit substitutions. In subsLam, freshvar is a
helper function that returns a unique variable name each time it is called.
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innermost can be used with the lambda strategy defined in the previous
section to achieve a more efficient evaluation. In Kiama syntax, we have

val s = innermost (lambda)

4.6 Eager Evaluation

An innermost evaluation is still not very realistic since in a programming lan-
guage implementation based on lambda calculus it is unlikely that reductions
will be performed inside the body of a lambda expression until that expression is
applied to an argument. Eager evaluation reduces the arguments of applications
before the reduction of applications.

An evaluation strategy to express this pattern of evaluation is as follows.

val s : Strategy =
attempt (traverse) <* attempt (lambda <* s)

First, we traverse the expression to evaluate any parts of it that should be evalu-
ated before reduction at the top-level of the expression is attempted. The lambda
strategy from earlier can be reused and augmented with a simple traversal strat-
egy that controls exactly which sub-terms are reduced first.

val traverse : Strategy =
rule {

case App (e1, e2) =>
App (eval (e1), eval (e2))

case Let (x, t, e1 , e2) =>
Let (x, t, eval (e1), eval (e2))

case Opn (op, e1, e2) =>
Opn (op, eval (e1), eval (e2))

}

In this version of traversewe evaluate eagerly, so that both sides of applications,
the bound expressions and bodies of substitutions and the operands of primitives
are evaluated. Forms that are not to be traversed do not need to be mentioned.

4.7 Congruences

Stratego provides a short-hand congruence notation for expressing traversal
strategies of this kind. For example, if C is a node constructor with two ar-
guments and s1 and s2 are strategies, then C(s1, s2) is a congruence for C. It
matches any C node, applies s1 to the first component of the node, applies s2

to the second component, and, if both s1 and s2 succeed, creates a new C node
containing their results in the first and second components, respectively. If either
s1 or s2 fail, then C(s1, s2) fails.

traverse from the previous section can be written using Stratego congruences
as follows.

App (s, s) + Let (id, id, s, s) + Opn (id, s, s)

The effect is to recursively evaluate those parts of the structure where s appears
and leave untouched those parts where id appears.
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Automatic support for congruences appears to beyond a pure embedding ap-
proach, since it requires knowledge of the abstract syntax. As a partial measure,
Kiama helps developers of abstract syntaxes write their own congruences.6 For
example, a congruence for App can be written in Kiama as follows.

def App (s1 : => Strategy ,
s2 : => Strategy ) : Strategy =

rulefs {
case _ : App => congruence (s1, s2)

}

This definition overloads App to take strategy arguments. The pattern match re-
stricts attention to App nodes and a Kiama library function congruence returns
a strategy that implements the semantics of the congruence using s1 and s2.
rulefs is a variant of rule that takes a function returning a strategy instead of
the usual function that returns a term. With this congruence definition, eager
evaluation can be defined simply, without the supplementary traverse strategy.

val s : Strategy =
attempt (App (s, s) + Let (id, id , s, s) +

Opn (id, s, s)) <*
attempt (lambda <* s)

4.8 Lazy Evaluation

Finally, we consider lazy evaluation where as much as possible is left un-reduced
until a beta reduction is performed. Only the traversal strategy needs to change;
the new traversal refrains from evaluating application arguments and let-bound
expressions too early. (A full lazy evaluation method would also include sharing
of computed values, which we omit here.) The change is restricted to the con-
gruences, where id now appears in the positions for arguments to applications
and bound expressions in Let constructs.

val s : Strategy =
attempt (App (s, id) + Let (id, id , id, s) +

Opn (id, s, s)) <*
attempt (lambda <* s)

5 Conclusion

The examples in this paper are typical language processing problems: static anal-
ysis and evaluation by transformation. We have seen that these problems can be
solved easily using embeddings of attribute grammars and strategic-based rewrit-
ing in a general purpose language. The attribute grammar embedding achieves
a substantial proportion of the functionality of JastAdd and the rewriting em-
bedding is very faithful to the Stratego language design. These embeddings can
also be employed to solve other language processing tasks such as desugaring,
interpretation, code generation, and optimisation.
6 We plan to generate congruences from a description of the abstract syntax in a future

version of Kiama.
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The similarities between the embeddings of attribute grammars and rewriting
show that these two paradigms are alike in ways that have not been appreci-
ated to date. In each case, a simple functional interface, provided by attr and
rule, suffices to hide the complexities of the representation of attributes and
strategies. Apart from calling these functions, a Kiama programmer uses stan-
dard Scala constructs to define attribute equations and rewriting rules. Thus,
Kiama’s version of these paradigms is particularly lightweight compared to stan-
dalone generator-based systems such as JastAdd and Stratego. This lightweight
nature makes it more accessible to mainstream developers who would otherwise
not be exposed to these high-level processing paradigms. Moreover, since Kiama
is pure Scala, it automatically gains advantage from existing Scala tools such as
IDE support for editing and debugging, further simplifying the adoption process.

Kiama has some advanced capabilities that have not been presented here. The
attributes used in this paper cannot have cyclic dependencies (i.e., depend on
themselves). In some situations such cyclic dependencies are useful, particularly
in analysis problems where a solution is found by computing until a fixed point
is reached. See Sloane et al. [8] for an example that computes variable liveness
information using a variant of attr designed to handle cyclic dependencies.
Section 3.2 used a higher-order attribute which was a reference to an existing
tree node; Kiama also allows higher-order attributes that refer to new nodes
and supports forwarding [15] to redirect attribute evaluations automatically to
higher-order attributes. Finally, Kiama includes attribute decorators [16] that
can express patterns of attribute propagation.

Work on Kiama continues. Of particular interest is the interaction between
the two paradigms, such as using the free variables attribute during rewriting.
This kind of combination raises questions about the validity of attribute values
after a rewriting step. We are exploring methods for removing the necessity
for type casting of the generic structural properties such as parent due to a
lack of knowledge about the tree structure. We are also investigating features
such as collection attributes [17, 18] and better support for attribute modularity.
Following Stratego, Kiama’s strategies are currently largely untyped, except that
Scala’s type rules prevent ill-typed terms from being created. Typed strategies
will come to Kiama soon. It would also be useful to have some way of specifying
pattern matching on objects using concrete syntax [19, 20].
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Some Issues in the ‘Archaeology’ of
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Abstract. During a software project’s lifetime, the software goes through
many changes, as components are added, removed and modified to fix
bugs and add new features. This paper is intended as a lightweight in-
troduction to some of the issues arising from an ‘archaeological’ inves-
tigation of software evolution. We use our own work to look at some
of the challenges faced, techniques used, findings obtained, and lessons
learnt when measuring and visualising the historical changes that happen
during the evolution of software.

1 Introduction

Wikipedia defines archaeologyas “the science that studies human cultures through
the recovery, documentation, analysis, and interpretation of material culture and
environmental data.” Software archaeology is similar: it studies the human activ-
ities during the lifetime of a software project through the artefacts it generates,
such as code and design documents. As important are those intermediate items
that often get lost after software delivery, in the form of emails, memos, tick-
ets, drafts, comments or logs. Being the materials for archaeological study, these
artefacts form important trails for others to reconstruct the history of develop-
ment [7,15]. Their history is the fundamental memory for developers to maintain
the software. They are also a valuable source for similar projects, showing good
practice to be reused and pitfalls to be avoided.

All these artefacts are, ideally, kept in a readily interpretable and persistent
form with the help of the ‘digitalised memory’ of the project life: version con-
trolled repositories, archived emails, reported bug records, etc. However, just
sieving through these data already imposes great challenges to software archae-
ologists, not to mention the additional difficulties in interpreting them. There
are at least three types of transformations involved.

– ‘Horizontal’ or evolutionary transformations are conceptual units of work
that lead from one version of the software to the next. These high-level
transformations are often ‘mediated’ or triggered by other artefacts (e.g. bug
reports) but the archaeological evidence of these transformations is often just
fine-grained changes (e.g. lines of code added). As software processes are also
programs [20], evolutionary transformations become amenable to analysis.

J.M. Fernandes et al. (Eds.): GTTSE 2009, LNCS 6491, pp. 426–445, 2011.
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– ‘Vertical’ or generative transformations are responsible for producing a lower-
level artefact from a higher-level one. An example is the transformation from
requirements to code via design documents. Code generation [8], meta-
programming [10], and model-driven development [23], among others, are ap-
proaches that allow to specify and automate some of these transformations.

– Archaeological transformations involve the extraction and processing of data
from available artefacts in order to turn such artefacts into models, measure-
ments, visualizations and documentation that can help the archaeologist in-
terpret the project’s history.

Due to the different kinds of transformations involved, some common challenges
faced when recovering and reconstructing the past are:

1. Abstraction. The sheer amount of data can easily overload a person [25].
The key is to use abstractions that serve the purpose at hand. One has to
be careful though, as transforming the original data into its abstract form
(e.g. a model or a metric) might lose subtle but important details.

2. Lost artefacts. Some artefacts are hardly documented, e.g. the original goals
and motivations, assumptions, tacit knowledge, design rationale and princi-
ples [32]. However, they are what the archaeologists would like to infer from
other related artefacts, at the risk of deriving wrong or biased information.

3. Automation. The archaeologist needs an assistant to perform the mundane
work of data collection and transformation, otherwise they may not be able
to understand the overall software system, because the history of artefacts is
complex and expensive to find out manually. The assistant is ideally a robot
that can perform these transformation tasks automatically. However, fully
automated recovery is not always achievable depending on the source and
target of the transformations [14].

4. Evaluation. Any analysis performed by one archaeologist should make sense
to another archaeologist, but it may be more valuable if the evaluation is
performed by the ‘witnesses’ (the original developers or users) or by alter-
native sources. Automated tools for measuring and visualising the software
artefacts can be of a great help to make the study repeatable. The use of
standard formats such as Rigi [29] to record the results would also help
reduce the barrier for others to evaluate them.

To reconstruct a vivid history of software development, we aim to understand not
only the deliverable artefacts such as the software itself, but also the tacit knowl-
edge reflected by the communications and the coordination amongst stakehold-
ers of the software. Recovering higher-level transformations from finer-grained
changes would help the archaeologists reconstruct a model to sufficiently repre-
sent the evolution. Generative and archaeological transformations are not always
in the form of round-trip to maintain the equivalence between the source and the
target. Certain properties in the source can be preserved in the target, often with
additional information at a lower level of abstraction. The reality is, however,
that the information to recover transformations is not always available.

When transformations are applied in archaeology, one must be prepared for
the loss of information, sometimes important one. As it is often difficult to obtain
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the original sources when studying the target of these transformations, one must
be careful not to put too much trust into the data sets. Only when reliable
information is hard to obtain, one should rely solely on the data rather than
the people. Open source projects [12] often make the life of archaeologists much
easier as they make available not only the targets but also the sources and
mediators of evolutionary and generative transformations, including the code,
the email archives and the bug reports, etc.

In the next three sections we present a part of our own archaeological work
on analysing architectural evolution and discuss in Section 5 some general is-
sues and lessons arising from it. While our previous papers [26,27] focussed on
the technical results (i.e. the outcome of the archaeological process), this one
emphasizes the means to obtain them (i.e. the archaeological process itself) and
the research path decisions taken. As such, Sections 1, 5 and part of 2 are new,
and Sections 3.2 and 3.3 are the result of extensively rewriting, updating and
expanding material that was fragmented across several papers [26,27,33], adding
many more details about the data model and infrastructure used to assess the
past history. Nevertheless, we also updated the results (Section 4), adding new
data about the more recent releases of the chosen case study, and introducing
a distinction between forced and unforced changes, which in turn led to several
changes in the data visualization approach.

The paper, like the summer school that originated it, is aimed mainly at post-
graduate students. By narrating our experience, and not just the end results, we
aim to give those wishing to enter this research area a glimpse of the ‘backstage’
events of software archaeology. Interested readers are encouraged to afterwards
consult more detailed treatments of this subject [19,17,24,7,15].

2 Motivation

Our research on architectural evolution started in a rather opportunistic way,
when we came across the call for papers for the challenge track of the 5th Working
Conference on Mining Software Repositories1. The challenge was to mine the
Eclipse project, an open source integrated development environment (IDE) with
respect to 1) bug analysis, 2) change analysis, 3) architecture and design, 4)
process analysis or 5) team structure. The call for papers provided several CVS
repositories with subsets of the Eclipse project, but authors could choose any
other data source.

Given our past interest in software evolution and software architecture, and
knowing that Eclipse had a strong IBM lead, we decided to attempt an analysis
of the architectural change process, thereby addressing topics 2), 3) and 4) of
the five proposed2. To be more precise, the research questions that we had in
mind were:

1 http://msr.uwaterloo.ca/msr2008/challenge/
2 We later also looked briefly into the team structure of Eclipse and how it changed

over time [28], but will not go further into it for this paper.

http://msr.uwaterloo.ca/msr2008/challenge/
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1. Is there any systematic architectural change process, or is the architecture
being continually modified in every release?

2. Does the architectural evolution follow any of Lehman’s software evolution
laws, like continuous growth and increased complexity?

3. Is there any evidence of restructuring work aimed at reducing growth and
complexity?

4. Is there any stable (i.e. unchanged) architectural core around which the
system grew?

Once we saw the Eclipse project contained data to enable the archaeological
investigation of those questions [26], the next step was to widen the scope of
the research questions, looking at whether Eclipse’s architecture was following
design guidelines that have been proposed to ease changes, like absence of cyclic
dependencies, low coupling and Martin’s stable dependency principle [18]. The
detailed motivation, research questions and results of those investigations were
presented in [27]. Here, we only revisit one of the questions:

5. Does cohesion increase and coupling decrease over time?

The main point to keep in mind is that, while the research was triggered by
a given case study, it was led by general research questions about architectural
process and design principles. The overarching motivation was to invalidate such
principles, in the spirit of falsifiability of scientific hypotheses [21]: if a highly
successful and continuously evolving infrastructure project like Eclipse, on which
many third-party components and applications have been built, does not follow
commonly recommended guidelines, the usefulness (or at least the importance)
of such guidelines could be questioned.

3 Data Collection

After having explained our motivation and particular architectural research an-
gle, we can look more closely at the case study, which data was extracted, and
how.

3.1 The Case Study

The case study consists of multiple builds, i.e. snapshots, of the Eclipse Software
Development Kit (SDK) source code. Each build is implemented by a set of plu-
gins, Eclipse’s components. Each plugin may depend for its compilation on Java
classes that belong to other plugins. For example, the implementation of plugin
platform (we omit the default org.eclipse prefix) in 3.3.1.1 depends on eight other
plugins, including core.runtime and ui. Each plugin provides zero or more exten-
sion points. These can be required at run-time by other plugins in order to extend
the functionality of Eclipse. A typical example are the extension points provided
by the ui plugin: they allow other plugins to add at run-time new GUI elements
(menu bars, buttons, etc.). It is also possible for a plugin to use the extension
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3.1 3.2M1 3.1.13.2M2 3.2M3 3.1.23.2M4 3.2 3.3M1 3.2.1 3.3M23.2M5 3.2.2 3.3RC43.2RC7 3.3 3.3.1 3.3.1.1

Fig. 1. Chronological and logical sequences of some of the analysed builds

points provided by itself. Again, the ui plugin is an example thereof: it uses its
own extension points to add the default menus and buttons to Eclipse’s GUI.

In the remaining of the paper, we say that plugin X statically depends on
plugin Y if the compilation of X requires Y , and we say that X dynamically
depends on Y if X uses at run-time an extension point that Y provides. Note
that the dynamic dependencies are at the architectural level; they do not capture
run-time calls between objects.

For our purposes, the architectural evolution of Eclipse corresponds to the
creation and deletion of plugins and their dependencies over several builds. There
are various types of builds in the Eclipse project. We analysed major and minor
releases (e.g. 2.0 or 2.1) and the service releases that follow them (e.g. 2.0.1).
In parallel to the maintenance of the current release, the preparation of the
next one starts. The preparation consists of some milestones, followed by some
release candidates. For example, release 3.1 was followed by milestone 1 of release
3.2 (named 3.2M1), further five other milestones, and seven release candidates
(3.2RC1, 3.2RC2, etc.), culminating in minor release 3.2.

Figure 1 shows part of the builds we analysed, and their chronological and
logical order. The logical order is indicated by solid arrows: each release may have
multiple logical successors. The chronological order is represented by positioning
the nodes from left to right: each release has a single chronological successor.
The dotted arrows indicate that some builds, in which the chronological and
logical orders coincide, were omitted due to page width constraints.

For our purposes, it makes more sense to order the builds by their numbers
rather than by their dates, i.e. to follow a logical rather than a chronological
order. The latter is useful when analysing the amount of changes per fixed time
frame, which is for example necessary if one wishes to compare the evolution of
different systems [12]. In our case, due to research question 1 (Section 2), we
wish to check whether architectural changes are associated to particular builds.
Hence, we compare changes between builds in logical order. For example, instead
of analysing the chronological sequence 3.1, 3.2M1, 3.2M2, 3.1.1, 3.2M3, 3.2M4,
3.1.2 (see Figure 1), we either follow the main sequence 3.1, 3.1.1, 3.1.2 or the
milestone sequence 3.1, 3.2M1, 3.2M2, . . . , 3.2. For this paper we analysed two
build sequences: the 26 major, minor and service releases from 1.0 to 3.5.1 over
a period of almost 8 years (from November 2001 to September 2009), and the
27 milestones and release candidates between 3.1, 3.2, and 3.3 over a period of
2 years (from June 2005 to June 2007).

3.2 The Data Model

To perform our analyses in a systematic way and to be able to reapply them
to other case studies, we define a very simple structural model and associated
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metrics. We were inspired by an existing axiomatic metrics framework [5], in
which a generic structural model serves to impose constraints to characterize
different kinds of metrics (size metrics, cohesion metrics, etc.). Our structural
model is simpler and our metrics largely follow the constraints proposed in [5].

We represent a module (to use a relatively neutral term) by a directed graph,
where nodes represent elements and arcs represent a binary relation between
elements. Each element is classified as being either internal or external to the
module. Likewise, internal relationships IR are those between internal elements
IE, while external relationships ER are those between an internal and an external
element EE. In this way, the description of a module also includes the connections
to its context. Formally, a module is a graph G = (IE ∪ EE, IR ∪ ER), such
that IE ∩ EE = ∅, IR ⊆ IE × IE, and G′ = (IE ∪ EE, ER) is a bipartite
graph.

We define the following metrics on modules.

– The size of a module is the number of internal elements: size(G) = |IE|.
– The complexity is the number of internal relationships: complexity(G) =
|IR|. Since it is impossible for a single metric to fully capture complexity,
our aim was to define it as simply and as generally as possible.

– The cohesion could be defined as the ratio between the complexity and the
square of the size. The reason for this definition is for cohesion to be nor-
malised and to reach its maximal value for complete graphs. Given that
we should not expect a well designed architecture to evolve towards a com-
plete graph, we define the metric instead as to be a simple relationships to
elements ratio: cohesion(G) = complexity(G)/size(G).

– The coupling of a module is the number of (incoming and outgoing) external
dependencies: coupling(G) = |ER|.

The graph-based model is generic enough for modules, elements and relationships
to represent almost anything. For example, modules and elements can represent
Java packages and classes, respectively, with arcs representing the inheritance
relation. A module may also correspond to a class, with elements representing
methods and arcs representing the call relation.

For our purposes, we wish to apply the model to Eclipse and other plugin-
based architectures. Therefore, we take a module to be the whole architecture of
a sub-system (the Eclipse SDK in this case study) and an element to be a plugin,
while relationships may denote the static or dynamic dependencies. Because of
the latter, we also need to include in the model the extension points provided
and required by each plugin.

We use a relational representation instead of a graph-based one, for practical
reasons. Operationally, the first step consists of defining the following relations
from the repository’s data:

– IP (p) or EP (p) holds if p is an internal or external plugin
– Prov(p, e) or Req(p, e) holds if plugin p provides or requires extension point e
– SD(p, p′) holds if plugin p statically depends on plugin p′
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From these, the following relations can be computed:

– internal static dependencies ISD(p, p′) ≡ SD(p, p′) ∧ IP (p) ∧ IP (p′)
– external static dependencies ESD(p, p′) ≡ SD(p, p′) ∧ ¬ISD(p, p′)
– dynamic dependencies DD(p, p′) ≡ ∃e : Prov(p′, e) ∧Req(p, e)
– internal dynamic dependencies IDD(p, p′) ≡ DD(p, p′) ∧ IP (p) ∧ IP (p′)
– external dynamic dependencies EDD(p, p′) ≡ DD(p, p′) ∧ ¬IDD(p, p′)
– internal dependencies ID(p, p′) ≡ ISD(p, p′) ∨ IDD(p, p′)
– external dependencies ED(p, p′) ≡ ESD(p, p′) ∨ EDD(p, p′)

Given the above relations, computing the metrics is just a matter of com-
puting the cardinality (i.e. the number of tuples) in the appropriate relation.
For example the size is |IP | and the complexity is |ISD| or |IDD| or |ID|,
depending on which dependencies we take as the arcs. Note that in general
|ID| ≤ |ISD|+ |IDD|.

The relational model further allows to compute missing (i.e. required but
not provided) and unused (i.e. provided but not required) plugins and extension
points. For example, given all plugins P (p) ≡ IP (p)∨EP (p) and all dependencies
D(p, p′) ≡ SD(p, p′) ∨DD(p, p′) we have

– missing plugins MP (p) ≡ ∃p′ : D(p′, p) ∧ ¬P (p)
– unused extension points UEP (e) ≡ ∃p : Prov(p, e) ∧ ¬∃p′ : Req(p′, e)

Missing artefacts indicate potential compile-time or run-time errors, or an ill-
defined module boundary, or some problem with the data mining process. Unused
artefacts tell us how open and extensible the module is. Too many unused ele-
ments such as unused extension points provided by the internal plugins, might
be an indication of premature generality. A completely self-contained and closed
module would have no missing nor unused elements.

To allow a historical analysis, the model has to be enriched with the notion
of a snapshot, which is a module at some point in time. For our case study, a
snapshot is one of the Eclipse builds mentioned in Section 3.1. All the above
relations must have an additional argument stating the snapshot in which they
hold. For example, P (p, s) holds if plugin p exists at snapshot s and SD(p, p′, s)
holds if p statically depends on p′ in snapshot s. To allow flexibility in the
choice of the snapshot sequences to analyse, we allow the researcher to define
the relation Next(s, s′), which states that snapshot s′ comes immediately after
snapshot s. The relation is considered ill-defined if a snapshot succeeds itself,
has more than one successor, or if more than one snapshot has no predecessor.
The unique snapshot without predecessor is considered the first release of the
sequence: First(s′) ≡ ∃s′′ : Next(s′, s′′) ∧ ¬∃s : Next(s, s′).

Once a sequence is defined, it is possible to compute how each module snapshot
has been obtained from the previous one. In particular, we compute:

– added plugins AP (p, s′) ≡ P (p, s′) ∧Next(s, s′) ∧ ¬P (p, s)
– kept plugins KP (p, s′) ≡ P (p, s′) ∧ First(s) ∧ P (p, s)
– deleted plugins DP (p, s′) ≡ Next(s, s′) ∧ P (p, s) ∧ ¬P (p, s′)
– previous plugins PP (p, s′) ≡ P (p, s′) ∧ ¬AP (p, s′) ∧ ¬KP (p, s′)
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and similarly for static and dynamic dependencies. This of course assumes that
elements and relations maintain a unique name throughout the module’s his-
tory, which means that a renaming will be counted as a simultaneous deletion
and addition. The aim of computing the kept (i.e. unchanged) elements and
relationships of the module is to address Question 4 in Section 2.

3.3 The Tool Infrastructure

We developed a suite of small tools that first extract the data, then compute
the metrics, and finally visualise the results. However, we took care to make the
suite relatively independent of our particular needs, in order to be useful in a
variety of contexts. Therefore, instead of developing a standalone application
or an extension for a particular IDE, we have put together a simple pipeline
architecture of scripts that manipulate text files. This makes it easier to interface
with other tools and to replace part of the pipeline, e.g. for a different case study.

A partial architecture of our tool suite3 is shown in Figure 2 as a set of
processes that convert input data files on the left into the output data files on
the right. Among the processes, fact extractors obtain factual relations from
artefacts of a single release of the software system and store the relations in
Rigi Standard Format (RSF) files. RSF is a simple and widely used text format
in which each line represents a tuple, with the relation name being followed
by each tuple element, separated by spaces [29]. We next used the relational
calculator Crocopat [3] to implement a fact merger that combines facts about
selected individual snapshots into a single fact base by adding the snapshot id
to every relation tuple. Metric calculators compute from the fact base a number
of metrics, such as size and complexity. The reporters present the metrics and
the architecture in a number of ways, including various visualisations. In the
remaining of this section we detail parts of the mining process.

For each Eclipse plugin there is an XML file, called plugin.xml, that lists
the extension points provided and used by that plugin, and the other plugins it
depends on for compilation. Since release 3.0, the static dependency is in another
file, MANIFEST.MF, which is not in XML format. These metadata files are hence
a straightforward source of dependency information between plugins, saving us
from having to delve into their source code. We fully agree with Alex Wolf’s
argument in his WICSA’09 keynote, that configuration files are an underexplored
source of architectural information, which has so far been mainly extracted, in
a potentially not very reliable way, from source code.

We first considered extracting the metadata files for each build directly from
the CVS repository, for example by checking out all files with tag R 3 1 (CVS
tags cannot include periods) in order to obtain the information about release
3.1. However, after a while we found out that there is no direct correspondence
between CVS tags and builds. In other words, comparing the set of metadata
files obtained from the CVS repository with the set of those included in the
actual builds, we found that often the two sets didn’t coincide. We also tried to

3 The complete suite also includes the mining of Bugzilla repositories [28].
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Fig. 2. Overview of our toolset

check out the files according to the known date of the build, but again there was
a mismatch. We realized the Eclipse project uses for each build a complicated
file that indicates which source files are included.

The input to our analysis is therefore not a CVS repository, but a set of
compilable source code archives, one per build we wish to analyse. How each
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source code archive was obtained is not of concern to our tool, making it in-
dependent of any configuration management system. In our case, for each of
the builds we analysed, we downloaded the source code of the whole SDK from
http://archive.eclipse.org or its mirrors. In previous work [26,27] we only anal-
ysed builds up to 3.3.1.1. When starting to download more recent ones for this
paper, we were dismayed to find out that the Eclipse project no longer keeps
older milestones and release candidates in their archive, in order to save storage
and bandwidth. We therefore were only able to add releases (6 of them) for this
paper. Fortunately, we kept a copy of the previously downloaded milestones and
release candidates, enabling us to do further mining on them.

The repository is first processed by some shell, AWK and XSLT scripts
that extract the information about the existing architectural elements from the
plugin.xml files (and MANIFEST.MF files, depending on the build). The result
of this processing is a RSF file with the basic relations (IP , EP , Prov, Req
and SD) presented in Section 3.2. Whereas in previous work we defined as an
internal plugin any component for which a plugin.xml file existed, in this pa-
per we only take the subset of those where the name starts with org.eclipse
but does not end in source. A source plugin wraps the source code of some
other plugin, so that the code can be accessed for help and debugging pur-
poses in the Eclipse IDE, by providing extensions to the pde.core plugin. Given
that source plugins don’t add functionality, we decided to ignore them for this
study. Moreover, since in recent releases many plugins also have their source
counterpart, this would greatly inflate the metrics, in particular the size
metric.

Once we have the basic relations for each snapshot, we use Crocopat first to
merge all RSF files into a single one (top left of Figure 2) as mentioned before,
and second to compute any derived relations and metrics (Section 3.2 and centre
of Figure 2), given the snapshot sequence. For example, from the Prov and Req
relations between plugins and extension points, a Crocopat script computes the
dynamic dependency relation among plugins. Crocopat is also used to compute
transitive closures over dependencies, in order to detect dependency cycles. The
Crocopat script also computes added, deleted and kept plugins and dependencies,
distinguishing between unforced and forced additions and deletions. We will
explain those concepts in Section 4.

Finally, for the ‘front end’ of the chain, we use Crocopat and AWK to auto-
matically translate the relevant relations in the RSF files (e.g. SD) into files for
input to graphviz4, GUESS [1] and CCVisu [2]. This allows to display or animate
the architectural structure in various ways. As for showing the evolution of met-
rics along build sequences, we simply use bar and line charts. In previous work we
used Crocopat to generate spreadsheets in OpenOffice’s XML format and used
OpenOffice or Excel to create the charts. For this paper we took another path:
Crocopat generates comma separated value files (one for each sequence) which
we upload to Google Spreadsheets. We then wrote Javascript code that calls

4 http://www.graphviz.org/

http://www.graphviz.org/
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the Google Visualization API5 in order to get the data from the spreadsheets,
generate charts and embed them into a web page.

Using Google tools has several advantages over the previous approach. First,
the data is made public to other researchers and in various formats (HTML,
OpenOffice, Excel) without any additional effort on our part. Second, the bar
and line charts are large and interactive, allowing the reader to click on the data
points to see the exact values, instead of just perceiving generic trends from a
small, static, and grey chart in a paper. Third, the Google Visualization API
includes an expressive data query language that allows some calculations to be
performed on the fly, like computing the ratio of the values in two columns. This
means that some additional metrics can be presented without having to change
the Crocopat script, run it again and upload the new spreadsheet.

Overall, our tool infrastructure has been designed and developed over time
with the aim of being flexible, light-weight and interoperable. Flexibility and
interoperability are achieved by an open and easy to modify pipe-and-filter ar-
chitecture in which the pipes are text files in standard formats (XML, RSF) and
the filters are scripts executed by widely used, freely available, and generic data
processing and visualization tools (AWK, XSLT, Crocopat, graphviz, etc.). Due
to this, it should not be too difficult to integrate our scripts within existing tool
chains, like FETCH [4], and to modify the ‘back-end’ to handle other systems
besides Eclipse.

The approach is light-weight because it is independent of any particular con-
figuration management tool like CVS or Subversion, because it just relies on
metadata files and not on static code analysis, and because the relations are
kept in text files. Given the small size of the database (87,397 tuples for the 53
Eclipse builds analysed), our approach remains very efficient.

4 The Results

After presenting the data model and how the data is mined and processed, we
are in a position to show the results. The charts presented in this section (and
others) can be interacted with at a web page6 that also links to the spreadsheets
with all measurements.

To show the evolution of the metrics over the two snapshot sequences, we use
mostly stacked bar charts, with each bar segment showing a particular subset of
the total number of items (plugins or dependencies). The segments are stacked,
from bottom to top, as follows: unforced deletions, forced deletions, kept items
(i.e. since the first snapshot in the sequence), previous items, forced additions,
unforced additions. In general, a change is considered unforced if it is by choice,
and forced if it is due to another change, e.g the unforced deletion of a plugin
forces the deletion of all its extension points and dependencies.

5 http://code.google.com/apis/visualization
6 http://michel.wermelinger.ws/chezmichel/2009/10/

the-architectural-evolution-of-eclipse

http://code.google.com/apis/visualization
http://michel.wermelinger.ws/chezmichel/2009/10/the-architectural-evolution-of-eclipse
http://michel.wermelinger.ws/chezmichel/2009/10/the-architectural-evolution-of-eclipse
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We use the same colour for unforced additions and deletions, and the same
colour for forced deletions and additions. Since deletions are represented by
negative numbers and additions by positive ones, there is no possible confusion.
We also use a darker colour to distinguish kept from previous items. On the PDF
version of this paper you can see we use warmer colours (red and orange) for
changed and cooler colours (blue tones) for unchanged items. The aim of these
choices was to have a reduced colour palette that translated well to grey scale
values in the printed version, while using position and hue to quickly draw the
reader’s attention to the unforced changes at the extremities of each bar.

4.1 Size

Figure 3 shows the evolution of Eclipse’s size, along the two snapshot sequences.
Note that the number of kept plugins is with regard to the first release in the se-
quence, i.e. 1.0 or 3.1. We consider all plugin additions and deletions as unforced,
because they are architectural choices.

We can observe that, over all releases, the size of the architecture increases
more than sevenfold, from 35 to 271. The evolution follows a segmented growth
pattern, in which different segments have different growth rates. In particular,
the rate is zero during service and positive during major and minor releases. A
look at the interim builds reveals that most of those changes occur in milestones,
although some also occur in the later release candidates.

Segmented growth patterns have been observed for other open source systems,
as surveyed in [12]. Those studies also observed superlinear growth, i.e. growth
with increasing rates, which is not the case here. Our hypothesis is that while
those studies focused on source code, we focus on the architecture, which, to
remain useful and understandable to stakeholders, has to be kept within a rea-
sonable size. In fact, the evolution of the size follows a pattern observed for other
systems [30]: long equilibrium periods, in which changes can be accommodated
within the existing architecture, alternate with relatively short punctuation pe-
riods, in which changes require architectural revisions.

4.2 Complexity

Figure 4 plots the changes to overall complexity, i.e. to relation ID (Section 3.2).
The web page indicated earlier provides additional charts for static and dynamic
internal dependencies and for milestones and release candidates. A forced ad-
dition or deletion of a dependency is associated to the creation or removal of
at least one of the involved plugins, i.e. the addition (resp. deletion) of a de-
pendency between two plugins is called unforced if both plugins already existed
(resp. still remain).

Again, dependencies change mostly during milestones and remain the same
during service releases, except for a few deletions in 3.3.1. However, contrary to
continuous increase of size, there has been a decrease of complexity in release
3.1, i.e. there was some effort to counteract the system’s growth.
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Fig. 3. Evolution of the size

Moreover, the chart shows that most additions are forced, i.e. new dependen-
cies are due to new plugins, while most deletions are unforced, i.e. due to changes
in the plugins’ implementations in order to reduce dependencies.

The new releases analysed for this paper continue to keep the same plugins
and dependencies since release 1.0, as seen by the continuous dark blue segments
in Figures 3 and 4. The architectural core is hence the same as presented in [27].

4.3 Cohesion

The previous charts show that size and complexity grow ‘in sync’, following the
same punctuation and equilibrium pattern. There are however two exceptions:
release 3.0 substantially increased the complexity while only slightly increasing
the size, and release 3.1 decreased the complexity while increasing the size.
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Fig. 4. Evolution of the overall complexity

Hence, computing the cohesion, we note it is remarkably almost constant
(Figure 5) except for the increase at 3.0, which was kept until 3.1 because ser-
vice releases didn’t change the architecture. After 8 years, the cohesion levels
of release 3.5.1 (1.40 internal dynamic dependencies and 2.17 static ones per
plugin) are very similar to those of the much smaller release 1.0. The chart also
shows that there are many more static dependencies than dynamic ones, as can
be checked with the additional complexity charts on the web site mentioned
earlier.

Interestingly, when we showed the previous version of this chart [27] to Eclipse
developers at IBM Zurich, we were told there was no explicit aim to keep the
cohesion constant. Nevertheless, we conjecture this might be an indirect conse-
quence of possibly wishing to keep the various Eclipse SDK sub-systems (the
Plugin Development Environment, the Java Development Toolkit, etc.) loosely
cohesive to facilitate the configuration of the IDE to individual needs.

Fig. 5. Evolution of the cohesion
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Fig. 6. Evolution of the coupling

4.4 Coupling

The evolution of coupling also follows a segmented growth pattern, but with
a substantial decrease in release 3.0, which replaced all external dependencies
(Figure 6). Release 3.1 further reduced the dependency on external plugins,
although it grew again in later releases.

We looked into the actual dependencies and plugins involved, and realized that
plugins that depended on external plugins in 2.1.3, depend in 3.0 on new internal
plugins which in turn depend on the external plugins. In other words, release
3.0 introduced internal ‘proxy’ plugins for the external plugins, and this reduced
coupling between Eclipse and third-party components. Additionally, one of the
external plugins used by release 2.1.3, org.apache.xerces, was removed. Figure 6
sums up all these modifications as unforced changes (the rewiring) and forced
changes (due to the removed plugin and new proxies). Overall, the chart shows
most changes to the coupling are unforced, i.e. by choice rather than due to the
addition or removal of plugins.

4.5 Summary

We can now return to the initial questions (Section 2) and summarize what the
archaeological investigation has shown.

1. The development of Eclipse follows a systematic process in which the archi-
tecture is mainly changed during the milestones of the next major or minor
release. Some release candidates may still introduce some small changes, but
the architecture is frozen for the last few builds before the release. Service
releases almost never introduce any architectural changes.

2. Overall, the Eclipse architecture is always growing and as such follows
Lehman’s 6th law of evolution. Due to the systematic change process, such
growth follows a known segmented pattern of alternating long equilibrium
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and shorter punctuation periods, the latter mostly during milestones. Com-
plexity (as measured by the dependencies among plugins) also increases, as
Lehman’s 2nd law postulates, and does so following the same segmented
growth pattern as size.

3. There has been some effort to reduce the system’s growth, but overall dele-
tions are far fewer than additions, possibly to avoid breaking the many ex-
isting third-party Eclipse plugins. The major reduction efforts have been in
releases 3.0 (small size growth, reduced coupling) and 3.1 (reduced complex-
ity and coupling).

4. The new releases analysed for this paper continue to use the layered archi-
tectural core we presented before [27].

5. The Eclipse architecture is kept loosely cohesive during its evolution, con-
trary to our initial expectations. However, Eclipse developers follow the usual
advice of minimising coupling: the number of external static dependencies
is very small compared to the number of internal ones and there have been
explicit efforts (i.e. unforced changes) to reduce coupling.

To sum up, we were not able to find any empirical evidence to falsify the in-
vestigated design guidelines and evolution laws, with the possible exception of
increased cohesion. From the above observations (systematic process, segmented
growth, punctual but extensive restructurings, and avoidance of deletions), we
feel that Eclipse can be used as a pedagogical case study of best practice to
achieve sustainable architectural evolution of software frameworks.

5 Discussion

Reflecting on our work, we can pass on several lessons and issues to be aware of
when embarking on an archaeological investigation of software evolution.

For brevity and clarity, most research papers only present the results, i.e. the
‘after the fact’ picture of the research process, in which all pieces of the puzzle
fit into a perfectly logical conceptual building. The dead ends and twists and
turns of the path that led to the results remain often unreported. In reality,
the process is not as linear as the papers, written on hindsight, seem to imply.
In particular, software archaeology is iterative and incremental, with a constant
interplay between research questions, which provide the overall guidance, and
the available data, which constrains what can be done. Both parts mutually
influence each other and together shape the overall data mining and analysis.
For example, while we presented the research questions (Section 2), the data
model (Section 3.2) and its extraction from the Eclipse repository (Section 3.3)
in a sequential fashion, each phase apparently determining the next one, in reality
a preliminary analysis of the repository was needed to assess what data could be
extracted, i.e. what kinds of builds and architectural information was available,
which in turn helped shape the research questions, the abstracted data model and
the tool set. Software archaeologists must therefore be prepared to ‘follow’ the
data, especially if faced with lost artefacts, as mentioned in the introduction.
Like in real archaeology, software-related artefacts may be lost because they
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were not recorded in a persistent way, or because they were later ‘destroyed’
by accident or on purpose. Keeping your own copy of datasets might be a good
idea, as we found out (Section 3.3).

However, the research cannot be completely data-driven. Software repositories
are simply too rich and big for an ad-hoc exploration to guarantee interesting
results with little effort. Research questions are hence fundamental to frame
and guide an efficient mining process. Moreover, questions must be explicit and
relevant in order to avoid the dreaded ‘so what?’ question by critics. Relevancy
can be pedagogical, practical or theoretical, often being a mix of the three,
as in our case: while the main aim was theoretical, seeking empirical evidence
of design guidelines and evolution laws, the results can be used for teaching
purposes, using Eclipse as a good practice exemplar of architectural evolution.

The mining infrastructure should also be a reusable asset. Tool development
takes considerable effort; return on investment is obtained by using the tools over
several research iterations. Moreover, one should strive to build upon third-party
infrastructure. Examples of reusable tools that build upon other existing tools
are MoDisco7, an Eclipse plugin, and the batch-oriented tool chain FETCH
[4]. Both approaches have advantages. Tools within IDEs become part of the
developers’ workflow: the archaeological process is tightly integrated with the
development process, each one feeding into the other. IDE-independent tools
like FETCH can be more general and flexible, because wiring together existing
generic data processing and visualization tools allows adaptation to a variety
of research scenarios and data sources. On the other hand, tools like MoDisco
aim to achieve such flexibility by providing a generic model transformation in-
frastructure that is able to generate metrics, visualizations and documents from
models, allowing users to tailor the models and transformations to their par-
ticular needs. While our approach is also driven by a model (of the system’s
structure), it is ad-hoc in the sense that the model and metrics, albeit generic,
are fixed, whereas a truly model driven approach like MoDisco is much more
customizable, systematic, expressive and reusable. However, such characteristics
come at a price: model-driven approaches require heavy-weight infrastructure
and considerable investment from the user to learn and customize it, even for
simple models and measurements like those in this paper.

Once the data has been mined and processed, it has to be presented. Simple
quantitative displays (e.g. line diagrams) are a good indication of the change rate,
but visualising the actual transformations (e.g. the before and after architecture)
still poses a challenge, even if using animations. As the charts in Section 4
indicate, even at the highest level of design abstraction, any realistic system
comprises hundreds of artefacts. Presenting them in an understandable way on a
big screen is challenging, let alone on paper. We have experimented with graphviz
and GUESS, but results were unsatisfactory. Only graphs with relatively few
nodes and arcs, like the architectural core, can be easily depicted.

Contrary to Physics and other subjects, there is not yet a culture in Com-
puting that leads authors to fully publicise the data on which their conclusions

7 http://www.eclipse.org/gmt/modisco

http://www.eclipse.org/gmt/modisco
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are based, so that other researchers can build on it and independently verify it.
Publishers do not yet provide the means for such data to be stored and accessed
as easily as the papers that report on the data. Fortunately, due to the Web 2.0
it is becoming easier for authors to publish their data and visualizations, and we
described one way to do so in Section 3.3.

Tracking changes in artefacts is a long-standing research strand. As mentioned
in the introduction of this paper, one of the issues is abstraction, in particular
how to abstract fine-grained changes into meaningful transformations. One pos-
sible heuristic is to attempt to minimize the number of transformations that
encompass all observed changes. Two approaches that follow such a strategy for
source code changes are [6,13]. Those proposals appeal to the language engineer-
ing community [16,9] where the primary artefacts are text-based.

On the other hand, when the artefacts are structured as models, one may
leverage more semantic information (e.g. from UML model elements and their
relationships) to detect structural changes [31,22]. Such approaches appeal to
the model-driven engineering community because the basic changes detected can
suggest more complex adaptive framework changes [11] at the modeling level.

Whereas text or model comparison reconstructs the actual changes, measuring
changes is a good way to spot overall trends. One particularly relevant trend for
evolution is zero changes, i.e. what does not change. In our work, it corresponds
to the architectural core, an important design feature.

However, metrics don’t tell the whole story: they don’t capture all the ‘what’
and ‘how’ of evolution and certainly not the ‘why’. Hence, measurements should
be complemented by an inspection of the actual artefacts and, if possible, by
other information sources, e.g. bug reports or the system’s developers. For ex-
ample, metrics and the distinction between forced and unforced changes can tell
that Eclipse was restructured in release 3.0, but only looking at plugins can one
understand it was in part due to the adoption of the OSGi run-time infrastruc-
ture. Also, without asking the developers one might assume that the constant
cohesion is a deliberate design aim.

In spite of all sources of information one can consult, researchers and their
audience must accept that in software archaeology there will always be some
space for subjective interpretation, first because, contrary to apples falling on
scientists’ heads, software projects don’t follow any natural laws, and second
because threats to the validity of the conclusions can hardly be completely elim-
inated. There might be errors in the mining infrastructure, the statistical method
employed might be inappropriate for the data at hand, etc. As in the natural
sciences, any abstraction/model can only provide a partial view on the studied
subject, and software development is a complex socio-technical endeavour with
many potential confounding factors. In our case, the simple size, complexity and
cohesion metrics only provide a very partial view of software architecture.

Researchers often strive to justify they adequately handled the threats to va-
lidity, but it is probably sometimes better to just point to them as opportunities
for further improvement. After all, research is a community practice, not an
individual pursuit.
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6 Conclusions

This paper is a twofold tutorial. On the one hand, in a similar spirit to the
case studies presented in business management literature, the research provides
empirical evidence for using Eclipse as a tutorial case study on sustainable good
practice for architectural evolution. On the other hand, the research serves as
a tutorial-by-example on some of the issues faced when doing archaeological
investigations into software evolution. For that, we provide more details on the
research process than in our previous papers, make the measurements publicly
available, and reflect on our experience.

Software archaeology, not just for evolution, is blooming due to the increased
availability of rich software project repositories. We hope this paper helps the
next generation of researchers in this exciting area.
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Abstract. Most universities teach computer language handling by
mainly focussing on compiler theory, although MDA (model-driven archi-
tecture) and meta-modelling are increasingly important in the software
industry as well as in computer science. In this article, we investigate
how traditional compiler theory compares to meta-modelling with re-
gard to formally defining the different aspects of a language, and how
we can expand the focus in computer language handling courses to also
include meta-model-based approaches. We give an outline of a computer
language handling course that covers both paradigms, and share some
experiences from running a course based on this outline at the University
of Agder.

1 Introduction

Although MDA (model-driven architecture) and meta-modelling is increasingly
important in the software industry as well as in computer science, many univer-
sities still teach language handling with the main focus on compiler theory. For
example, in the Norwegian universities, we have found that there is a strong em-
phasis on compiler theory (CT) and little or no focus on meta-modelling (MM)
in most available computer language handling courses (see Table 1).

Compiler theory has traditionally had its strength in defining optimised com-
pilers for large textual general purpose languages. On the other hand, the focus
among language designers is shifting towards creating small domain specific lan-
guages (DSLs) [1]. These languages may have a graphical or textual presentation
(concrete syntax), and they are often based on existing languages and may be
preprocessed / embedded / transformed into other languages for execution, in-
stead of being compiled with a traditional compiler.

MDA may have some advantages when it comes to defining these types of
languages. An important aspect of MDA is to provide the language designer with
support for rapid development and automatic prototyping of language support
tools, and allow for working on a high level of abstraction. This approach allows
the language designer to focus on the language being developed, while still being
able to use the definition for generating tools such as editors, validators and code

J.M. Fernandes et al. (Eds.): GTTSE 2009, LNCS 6491, pp. 446–460, 2011.
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Table 1. Courses available at Norwegian universities related to computer language
handling. The information is collected from course catalogues and course descriptions.

University Course Name ECTS MM CT Notes
Bachelor level courses:

Norwegian U. of
Sci. and Tech.

TDT4165 Programming
languages

7,5 x Languages and lan-
guage implementation

U. of Oslo INF3110 Programming
languages

10 x Language description

Master level courses:
U. of Agder IKT415-C System devel-

opment with generative
programming

5 x x Recently revised to also
include MM

Norwegian U. of
Sci. and Tech.

TDT4205 Compilers 7,5 x Compiler construction

U. of Oslo INF5110 Compiler tech-
niques

10 x x CT is main focus but
MM is mentioned

U. of Bergen INF225 Introduction to
program translation

10 x Last held in 2005, com-
piler focussed

No courses currently available:
U. of Stavanger N/A No courses available
U. of Tromsø N/A No courses available

generators. Meta-model-based tools are typically based on these principles, but
there are also grammar-based tools available that take a similar approach, such
as LISA [2].

It may therefore be beneficial to modify university courses in computer lan-
guage handling to focus not only on compiler development, but also on meta-
model-based language design and definition.

The main purpose of this article, is to compare a compiler-theory-based ap-
proach with a meta-model-based approach to master level courses in computer
language handling, and to examine how that type of courses can be modified
from a focus on traditional compiler theory to also cover meta-model-based ap-
proaches, tools and technologies. We wish to emphasise that the goal of this paper
is not to come up with clear-cut statements about which is better of grammar-
based and meta-model-based language definition technologies, but rather to find
out which technologies are adequate and suitable for which aspects of a language
definition, and how both approaches can be included when teaching computer
language handling.

The article is based on literature study, language specifications, and the au-
thors’ own experiences with tools, language descriptions as well as teaching of
both compiler theory and meta-modelling.

The rest of the article is organised as follows: Section 2 and 3, are introductory
sections enumerating the main elements we want to cover in courses in compiler
theory and meta-modelling, respectively. Each of these language elements, or lan-
guage aspects, are handled in the following sections; structure / abstract syntax
in Section 4, constraints / static semantics in Section 5, presentation / concrete
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syntax in Section 6 and behaviour / dynamic semantics in Section 7. For each of
the language aspects described in sections 4 to 7, we have subsections covering
the following topics:

– A general introduction to this aspect.
– Some important issues related to teaching this aspect from the perspective

of compiler theory.
– Some important issues related to teaching this aspect from the perspective

of meta-modelling, including a selection of meta-model-based tools and tech-
nologies that can be used to illustrate the theory of this aspect.

– A comparison of the two approaches from the perspective of teaching this
aspect.

In Section 8, we propose an outline of a unified computer language handling
course, covering meta-modelling as well as compiler theory. Finally, we sum-
marise our findings in Section 9.

2 A Compiler Theory Curriculum

From Figure 1, we see the basic flow of the main elements of a compiler, and
this can also serve as the sequence of main topics for a series of lectures in
compiler-construction-based language handling.

Concrete syntax including scanner and parser parts of the compiler, and sym-
bol table generation.

Static semantics including type checking and logical constraints.
Abstract syntax including intermediate code generation and building abstract

syntax trees.

Fig. 1. Elements of a compiler
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Translational semantics including optimisation, code generation and error
handling.

Execution semantics including run time environments.

In traditional compiler technology, languages are defined by a concrete syntax,
an abstract syntax and semantics. Concrete syntax can be precisely defined
in BNF/EBNF, and compiler-compiler and parser generator tools like lex and
yacc may be used to generate the parser. EBNF can also be used for defining
the abstract syntax, however in practice abstract syntax is often automatically
derived from the concrete syntax. Although there are well established methods
for specifying the formal semantics for a language, in practice, semantics is often
not formally defined but developed in an ad-hoc fashion [3].

3 Metamodelling - A Curriculum Based on Aspects of a
Programming Language

In [4], a language definition is said to consist of the following aspects: Structure,
Constraints, Presentation and Behaviour (see Figure 2).

Fig. 2. Aspects of a computer language description

Structure defines the constructs of a language and how they are related.
Constraints bring additional constraints on the structure of the language, be-

yond what is feasible to express in the structure itself.
Presentation defines how instances of the language are represented. This can

be the definition of a graphical or textual concrete language syntax.
Behaviour explains the semantics of the language. This can be a transformation

into another language (denotational or translational semantics), or it defines
the execution of language instances (operational semantics). Another type
of semantics is axiomatic semantics, that gives meaning to phrases of a lan-
guage by describing the logical axioms that apply to them.

These aspects are not always as strictly separated as they seem in the illus-
tration; constraints are shown as overlapping with structure, since constraints
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interact closely with the structure-related technologies in building up (and re-
stricting) the structure of the language. However, constraints can also be used
for defining restrictions for presentations as well as behaviour.

The structure is the core of the language; it contains the concepts that should
be part of the language, and the relations between them. Traditional grammar-
based compiler tools tend to force the focus to the presentation of the language
rather than its structure. On the other hand, a meta-model-based approach to
language design facilitates a focus on the structure. Starting from a well-defined
language structure, it is convenient to define one or more textual and/or graph-
ical presentations for the language, as well as to define code generation into exe-
cutable target languages such as Java. It is feasible to build a series of lectures in
computer language handling on a running example using Eclipse/EMF-based [5]
plug-ins and frameworks, to illustrate all aspects of a meta-model-based language
definition.

Meta-models define the structure and constraints of a language. For a com-
plete language definition, it is also necessary to define the presentation and
behaviour, and relate these definitions to the meta-model, as explained in [3].

Because of this difference in main focus between traditional compiler technol-
ogy and meta-modelling, it also seems reasonable to let this be reflected in the
teaching of these topics. When teaching compiler theory, it is common to start
with parsing and grammars, and then later move into abstract syntax and finally
semantics and code generation. However, when teaching meta-model-based lan-
guage design, it is essential to start with teaching how to create a well-formed ab-
stract structure, instead of initially focussing on the presentation of the language.
Based on the Structure lecture, should follow lectures on Constraints, Textual
and Graphical Presentation, and finally lectures on Transformation (Model-to-
Model and Model-to-Text) and Execution.

4 Structure / Abstract Syntax

4.1 Definition

The structure of a language specifies what the instances of the language are;
it identifies the meaningful components of each language construct [6] and re-
lates them to each other. Based on the language structure definition, a language
instance can normally be represented as a tree or a graph. To describe the struc-
ture of a computer language therefore means to describe graph structures: what
types of nodes exist, and how they can be connected.

There are different levels of expressiveness used in different contexts; gram-
mars, meta-models, database schema descriptions, RDF schemata, and XML
schemata are all examples of different ways to express structure.

4.2 Topics and Issues for the Compiler Theory Lecture

Compiler technology commonly uses context-free grammars to define structure.
Abstract syntax is in most cases quite similar to the concrete syntax, with some
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redundancy removed. Most popular computer languages are grammar-based and
do not have a separately described abstract syntax definition, but rely on the
concrete syntax.

Grammars can be used to define abstract syntax trees as data structures for
language instances [7]. An extended form of context-free grammars are attribute
grammars; they define attributed abstract syntax trees. Attributes can help to
realise the other aspects of the language: constraints, presentation and behaviour.
Attributes can also function as additional connections that turn the abstract
syntax tree into a real graph.

The lecture on abstract syntax should include an introduction to grammars
and common language structures including regular languages, automata, context
free languages, parse trees, abstract syntax trees and attribute grammars.

4.3 Topics and Issues for the Meta-modelling Lecture

While simple grammars define a tree-structure, meta-models are capable of defin-
ing a graph. Meta-modelling uses UML’s structure modelling constructs to model
the structure of languages. A meta-model only defines an abstract structure for
a language, because it just describes what the language concepts are and not
how their are written or drawn. A meta-model introduces classifiers like classes
and associations, for all the constructs in a language. Associations are used to
define how instances of these classes, i.e. instances of language constructs, relate
to each other.

Meta-modelling allows to modularise, reuse, and combine whole languages or
single language constructs. To achieve this, meta-modelling uses object-oriented
UML notions like packages and imports, class inheritance, and feature refine-
ment. Object-orientation does not only help with the meta-model design, but
also for the design of other definitions and tools based on the meta-model. The
graphical nature of meta-models can also facilitate understanding of the struc-
ture compared to a textual presentation of structure as is commonly used with
grammars.

There are different standards and recommendations for meta-modelling with
different complexity and expressiveness. The most famous dialects are MOF 1.x
[8], EMF/Ecore [5], and CMOF [9]. The simplicity of EMF/Ecore and EMOF
makes it easy to align it to the Java programming language. This fact and EMFs
tight integration into Eclipse [10], make it today’s most popular meta-modelling
language.

Around meta-modelling (especially EMF and Eclipse), many tools and
frameworks have been created to easily describe and execute tasks like: per-
sistent language instances in data-bases, validation of language instances, model
transformation, execution of language instances, and providing different forms
of model editors. Meta-modelling fuelled the vision of creating domain specific
languages including comprehensive tools with little resources. Meta-modelling
and repositories are the bases for many existing domain specific language and
UML case tools.
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One weak point with meta-models, is that it is still not well understood what
criteria to use to evaluate the quality of a meta-model, and what properties are
important and desirable.

4.4 Comparison Related to Teaching

We note that structure can be handled fine with both approaches, but while
the structure is usually the starting point when defining a language with meta-
model-based technologies, there is less emphasis on this aspect in traditional
compiler theory. Therefore, it seems reasonable to start a course in meta-model-
based language design with an introduction to structure definition, using for
example Eclipse with EMF/Ecore (preferably with a graphical Ecore editor) for
demonstrating relevant examples. It should also be noted that the simple tree
structures generated from simple grammars are easier to understand for students
then the more complex graphs typically formed by meta-models and attribute
grammars.

5 Constraints / Static Semantics

5.1 Definition

Constraints on a language can put limitations on the structure of a well-formed
instance of the language. This aspect of a language definition mostly concerns
logical rules or constraints on the structure that are difficult to express directly
in the structure itself. Neither meta-models nor grammars provide all the ex-
pressiveness that is needed to define the set of wanted language instances. The
constraints could for example be first-order logical constraints or multiplicity
constraints for elements of the structure [11].

There is an overlap between the structure and constraint aspects of a language.
Some language features may obviously belong to one of them, but many features
could belong to either of them, depending on choice or on the expressiveness of
the technology used to define the structure.

5.2 Topics and Issues for the Compiler Theory Lecture

What we want to express here are logical rules (static semantic conditions) re-
lated to elements of the language structure. Often, these constraints are ex-
pressed in code, and in some cases in a logic language. These logical rules may
be attached to attributes in an attribute grammar. This lecture should also
include an introduction to type systems and type checking.

5.3 Topics and Issues for the Meta-modelling Lecture

While meta-models are constructive definitions of what objects a language in-
stance can consist of, constraints allow to narrow down the possible instances of
a meta-model class. A meta-model constraint is thereby always written in the
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context of a class, and only constrains the set of possible instances (objects) of
this class. A constraint forms a logical expression. It takes an instance of the
context class as input and evaluates to a boolean value, assessing the instance
as either a valid, or an invalid instance. Only the models that exclusively consist
of valid objects are valid language instances.

In meta-modelling, the most common technology for expressing constraints
is the Object Constraint Language, OCL. OCL is designed to present the ex-
pressiveness of predicate logic, in a programming language like syntax. Related
tools allow to check whole models or single objects, based on the constraints
associated with the model’s meta-model classes. Language tools based on meta-
models, usually do not check a model within a separate tool, but are integrated
into model editors. Model editors check single objects and can display invalid
objects to the user.

5.4 Comparison Related to Teaching

We see that constraints can be handled fine with both approaches. There is often
more emphasis on explicitly defined constraints in meta-model-based develop-
ment. Teaching constraints will fit naturally as an extension to lectures about
structure, and can be illustrated by creating and adding logical expressions to
an example grammar and OCL constraints to an example meta-model.

6 Presentation / Concrete Syntax

6.1 Definition

The presentation of a language describes the possible forms of a statement of the
language. In the case of a textual language, it describes what words are allowed
to use in the language, what words have special meaning and are reserved, and
what words are possible to use for variable names. It may also describe what
sequence the elements of the language may occur in; the syntactic features of
the language. This is expressed in a grammar for textual languages.

Similarly, in a graphical language, the presentation will express what different
symbols are used in the language, and how they can be connected and modified to
form a meaningful unit in the language. The presentation of graphical languages
can be defined in two ways:

The "constructive" way is generator-based, using graph grammars.
The "direct" way may describe a model for the graph.

In addition to defining the graph structure, we may wish to define attributes
such as location, shape, and colour of the different elements in the graph.

Describing language structures separately from the language’s notation(s),
allows us to define multiple notations for the same language, and allows for
arbitrary kinds of notations, graphical (diagrams and other variants) as well as
textual.

There are two major ways to connect the presentation to the structure of a
language;
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The "constructive" way is done by defining a transformation between pre-
sentation and structure.

The "abstract" way is based on pattern matching, showing how elements of
the presentation are connected to the structure elements.

We have two main approaches to creating tools for handling presentation of
a language;

Parsers that have to support a one-way connection from the presentation to
the corresponding structure.

Editors that have to support a two-way connection between the presentation
and the corresponding structure, providing feedback from the syntax analysis
in form of syntax highlighting, error messages, code completion suggestions
etc.

In addition, executable output text in the form of machine code or byte code
can also be considered a presentation of a language instance. Code generators
have to support a one-way connection from the structure to a presentation of
the code to be generated.

6.2 Topics and Issues for the Compiler Theory Lecture

The presentation of a language is in traditional compiler theory called con-
crete syntax. Context free grammars for the concrete syntax of a programming
language are often written in BNF (Backus–Naur form) or EBNF (Extended
BNF) notation, and most popular parser generators use grammars based on an
(E)BNF-like syntax.

This lecture should include a basic introduction to different grammar types
such as LL, LR, SLR, LALR; and also parse tables, canonical sets, first-follow
sets, conflicts (shift-reduce and reduce-reduce), conflict resolution, and mapping
between concrete and abstract syntax. For graphical concrete syntax, a brief
introduction to graph grammars should be included. Symbol table management
and error handling may also fit into this lecture.

6.3 Topics and Issues for the Meta-modelling Lecture

Meta-models describe language structures with classes and associations resulting
in language instances that are graphs, rather than the tree structures normally
generated by grammars. Therefore, a meta-model is a suitable basis for defining
graphical notations.

In general, notations are described in a separate formalism. Textual notation
for example can be described with context-free grammars, graphical notations
can be described in their own meta-model for shapes and connections. A third
model then defines a mapping between the meta-model elements and the nota-
tion definition’s elements.

A formalism to define a certain kind of notation consist of a notation defi-
nition language and a mapping definition language. Existing formalism for no-
tations definition are usually embedded in frameworks and tools that realise
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them. Existing formalisms for graphical notations and textual notations allow
to automatically create graphical editors and feature-rich text editors, includ-
ing error annotations (for validations), code-completion, name-resolution, syntax
highlighting, etc.

Graph grammars have also been suggested for use in creating modelling tools.
See for example [12] for more information on graph grammars.

Frameworks for textual notations can be divided into tools like XText [13],
which actually provides editors solely based on language definitions consisting
of grammars, and frameworks like TCS [14], TEF [15] and EMFText [16], which
combine meta-models and grammars. XText allows to define a language syntax
and implicitly a language structure based on a grammar-like definition. XText
generates a meta-model and a textual editor for this meta-model from this defi-
nition. The editor continuously generates a meta-model instance, by parsing the
text entered by the user. The other frameworks allow to provide a grammar and
grammar-to-meta-model mapping based on already existing meta-models. They
generate editors that allow creation of meta-model instances, by parsing the user
text. These frameworks use techniques similar to those of attribute grammars
to handle non-containment model structures and provide automatic support for
resolving named references based on these techniques.

One well-known framework for graphical notations is GMF [17]. It features
a language to define graphical notations, including different shapes, shape con-
tainment, connections, and labels for different elements. GMF allows to define
simple mappings between meta-model elements and the elements of a graphical
notation. GMF generates Eclipse and GEF-based [18] editors from these defini-
tions. This is fully functional for simple language notations, and can be enriched
by manually altering the generated code.

6.4 Comparison Related to Teaching

While textual presentation may be a natural starting point in compiler theory
based teaching, it is more suitable to let lectures on presentation build on a
foundation of basic structure. In this part, the students should get practice in
defining grammars for simple languages as well as deriving languages from gram-
mars. If a running meta-model-based example is used, it may be fruitful to show
the students how an EMF-based example structure (with constraints) can be
extended with both graphical and textual presentations, using editor generation
frameworks like for example GMF for graphical editor generation and EMFText
for textual editor generation.

7 Behaviour / Dynamic Semantics

7.1 Definition

The behaviour of a language describes what is the actual meaning of a statement
of the language.

Two main types of formal ways of defining semantics are called operational
and denotational semantics [6]:
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Denotational semantics in the strict sense, is a mapping of a source expres-
sion to an input-output function working on some mathematical entities. If
we wish to include model transformations and language-to-language trans-
lations in our behaviour descriptions, we can include them in this category
by applying a more broad definition of denotational semantics; namely a
transformation of each phrase of the language into a phrase in some other
language, often a mathematical formalism. To execute or interpret the be-
haviour of a statement, semantics for the target language is then needed. A
denotational semantics describes an “abstract” compiler.

Operational semantics describes the execution of the language as a sequence
of computational steps. You will then need to know the semantics of the
interpreter. Operational semantics may be described by state transitions
for an abstract machine. In [11], it is described how semantics for SDL are
handled by Abstract State Machines (ASM). With operational semantics,
a runtime environment is needed. An operational semantics describes an
“abstract” interpreter.

A third type of semantics, Axiomatic semantics, gives meaning to phrases of
a language by describing the logical axioms that apply to them. Experience
shows that axiomatic semantics are extremely complex and rarely used for com-
puter languages. For this paper we only focus on denotational and operational
semantics.

7.2 Topics and Issues for the Compiler Theory Lecture

Semantics has traditionally been an area that is much less formalised than the
structure or abstract syntax of a language. In most cases, the semantics has
been described in plain English, or by reference implementation of a compiler
or interpreter for the language. However, for attribute grammars, it is quite
common to attach more formal semantic rules to the attributes.

7.3 Topics and Issues for the Meta-modelling Lecture

Similar to grammars, in many cases, the semantics has been described in plain
English, or by reference implementation.

While the focus in traditional compiler theory teaching often is on code gen-
eration, it is natural in a course focussing on meta-model-based technologies to
cover model-to-model transformations as well as model-to-text transformations.
For the former, transformation languages like QVT or ATL can be used to create
example transformations on the structure of the running EMF-based example,
and for the latter, JET [19], Acceleo [20] or XPand [13] can be used to generate
textual code.

There is plenty of academic work that suggests the definition of operational
semantics based on a meta-model. These approaches create state-transitions sys-
tems to describe behaviour along Plotkin’s classical operational semantics [21].
These systems are based on meta-models as a definition for the set of states, and
depending on the approach use transformations based on graph transformations
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[22], or some form of action languages, like UML Activities [23], or ASM [11]
to define possible state transitions. The Eclipse plugin EProvide [24], provides
support for developing visual debuggers and interpreters based on operational
semantics defined in ASM, QVT/Relations, Java, Prolog or Scheme.

7.4 Comparison Related to Teaching

We have noted that it may be challenging to teach this language aspect since
most of the tools available for supporting the theory of this aspect are relatively
immature and/or hard to use, particularly for execution behaviour. Model-to-
model transformations tend to be better supported by meta-model-based tools
and technologies. Model-to-text transformation is adequately supported by both
approaches. On the other hand, execution is not well supported in any of the
two approaches.

For illustrating the theory in this lecture, we may want to give the structure
of our running example Model-to-Model transformations using QVT or ATL,
and Model-to-Text with for example JET or XPand. It may also be useful to
demonstrate operational semantics with ASM-based semantics in EProvide.

8 A Computer Language Handling Course Outline

From the ideas developed in the previous sections, we have defined the following
course outline:

Level: MSc.
Prerequisites: Object oriented programming, UML modelling.
Credits: 5 ECTS.
Literature: Aho, Lam, Sethi, Ullman: Compilers (2nd ed.)[25]; Clark, Sammut,

Willans et. al.: Applied Metamodeling (2nd ed.) [26].
Form: 7 parts; each part with lectures, practical and theoretical exercises, and

an obligatory hand-in.

Part 1 - Introduction: Compilers, languages, language aspects, grammars,
NFA and DFA automata, T-diagrams.

Part 2 - Structure: Models, meta-models, MDA, EMF/Ecore, abstract syn-
tax, attribute grammars.

Part 3 - Constraints: Semantic analysis, type systems, static and dynamic
checks, type safety, logical constraints, OCL.

Part 4 - Textual presentation: Syntax analysis, top-down and bottom-up
parsing, lexical analysis, mapping, symbol tables, error handling, TEF, EMF-
Text.

Part 5 - Graphical presentation: Graphical languages, graph grammars,
GMF.

Part 6 - Transformation behaviour: Transformation, code generation, in-
termediate code, optimisation, handling of generated code, JET, QVT.
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Part 7 - Execution behaviour: Semantics, interpreters, runtime
environments, storage allocation, activation records, parameter passing,
dynamic binding, ASM, EProvide.

Part 8 - Summary: Repetition of the most important topics of the course.

In the related project course, the students have a choice of different projects
building on this course.

8.1 Experiences

The course has been implemented at the University of Agder in the spring term
of 2010. After running the course, the following experiences were gathered:

– It is good to use a running example where aspects are added to complete
a simple example language. It is also beneficial to cover all language as-
pects within one platform. However, students can easily be demotivated by
immature tools.

– We should not try to cover too many different tools in the practical exer-
cises, but rather concentrate on the most important ones and give the stu-
dents more time to try them out for themselves by modifying and extending
provided examples.

– The understanding should be strengthened by giving different perspectives
on the same issues in a lecture covering both compiler theory and meta-
modelling. However, the connection between the two paradigms were some-
times difficult for the students to see.

9 Conclusions

When it comes to teaching of computer language handling, we conclude that
although traditional compiler theory should still play an important role, there is
also a need for a stronger focus on meta-model based technologies. Although the
two paradigms are emphasising different aspects of language definition, we have
shown that it is still possible to cover all important language aspects relatively
well with either paradigm.

It is possible to build a series of lectures in computer language handling where
both compiler-theory-based and meta-model-based approaches are covered. The
meta-model-based approach can be illustrated by running examples based on
Eclipse/EMF and other Eclipse-based plug-ins and frameworks, to cover all as-
pects of a language definition.

We have found that it is essential to emphasise the connections and similarities
between compiler-theory-based and meta-model-based approaches to language
handling, and to avoid the least mature tools. It is also important to ensure that
the students has a common software platform to lower the risks of unexpected
bugs and problems.
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Abstract. C++ template metaprogramming is an emerging direction of
generative programming: with proper template definitions we can enforce
the C++ compiler to execute algorithms at compilation time. Template
metaprograms have become essential part of today’s C++ programs
of industrial size; they provide code adoptions, various optimizations,
DSL embedding, etc. Besides the compilation time algorithms, template
metaprogram data-structures are particularly important. From simple
typelists to more advanced STL-like data types there are a variety of
such constructs. Interesting enough, until recently string, as one of the
most widely used data type of programming, has not been supported. Al-
though, boost::mpl::string is an advance in this area, it still lacks the
most fundamental string operations. In this paper, we analysed the pos-
sibilities of handling string objects at compilation time with a metastring
library. We created a C++ template metaprogram library that provides
the common string operations, like creating sub-strings, concatenation,
replace, and similar. To provide real-life use-cases we implemented two
applications on top of our Metastring library. One use case utilizes com-
pilation time inspection of input in the domain of pattern matching al-
gorithms, thus we are able to select the more optimal search method at
compilation time. The other use-case implements safePrint, a type-safe
version of printf – a widely investigated problem. We present both the
performance improvements and extended functionality we have achieved
in the applications of our Metastring library.

1 Introduction

Generative programming is an emerging programming paradigm. The C++ pro-
gramming language [22] supports the generative programming paradigm with
using the template facility. Templates are designed to shift the classes and algo-
rithms to a higher abstraction level without losing efficiency. They enable data
structures and algorithms to be parametrised by types, thus, the classes and al-
gorithms can be more general and flexible. It makes the source code shorter and
easier to read and maintain which improves the quality of the code. Templates
and template-based libraries – most notably the Standard Template Library
(STL) – is now an unavoidable part of professional C++ programs.
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C++ templates – as opposed to the Java and C# solution – work using the
instantiation mechanism. Instantiation happens when a template is referred to
with some concrete arguments. During instantiation the template parameters are
substituted with the concrete arguments and the generated code is compiled.

The instantiation mechanism has an – originally unintentional – side effect. By
defining clever template constructs we can enforce the C++ compiler to execute
algorithms at compilation time. To demonstrate this in 1994 Erwin Unruh wrote
a program which printed a list of prime numbers as part of error messages [23].
Unruh used template definitions and template instantiation rules to compute
the primes at compilation time. This programming style is called C++ template
metaprogramming [26]. The template metaprogram itself “runs” at compilation
time. The output of this process is the generated C++ code – in most cases
not the pure source code, but its internal representation – which is also checked
by the compiler. The generated program can run as an ordinary “run-time”
program. Template metaprogramming has been proven to be a Turing-complete
sub-language of C++ [5].

Template metaprogramming is widely used today for several purposes, like
executing algorithms at compilation time to optimize or make safer run-time
algorithms and data structures. Expression templates were the first applications
[25] allowing C++ expressions to be evaluated lazily and eliminating the over-
head of object-oriented programming mainly in numerical computations.

Static interface checking increases the safety of the code, allowing checking at
compilation time whether template parameters meet the given requirements [19].
As the C++ programming language has no language support to describe explicit
requirements for certain template properties, only the template metaprogram
based library solutions [29] remain.

The classical compilation model of software development designs and imple-
ments sub-programs, then compiles them and runs the program. During the first
step the programmer makes decisions about implementation details: choosing al-
gorithms, setting parameters and constants. Using template metaprograms some
of these decisions can be delayed. Active libraries [24,13] take effect at compi-
lation time, making decisions based on programming contexts. In contrast to
traditional libraries they are not passive collections of routines or objects, but
take an active role in generating code. Active libraries provide higher abstrac-
tions and can optimize those abstractions themselves.

Domain specific languages (DSLs) are dedicated to special problems. They are
often incorporated into some general purpose host language – many times into
C++. The Ararat system [9], boost::xpressive and boost::proto [38,32] libraries
are good examples to libraries for embedding DSLs.

In the last fifteen years lots of research activities focused on improving the
process of metaprogramming. Essential compilation time algorithms have been
identified and used to develop basic metaprogram libraries [1,2]. Complex
data structures are also available for metaprograms. Recursive templates store
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information in various forms, most frequently as lists or tree structures. The
canonical examples for sequential data structures are typelist [1] and the ele-
ments of the boost::mpl library [30].

Strings are one of the most commonly used data types in programming. Some
programming languages provide strings as built-in data types, while others sup-
port strings and their operations by their standard library. A number of applica-
tions are based on string manipulation, like lexical analysers, pattern matchers
and serialization tools. These applications are widely used in most areas of com-
puter science. Numerous research activities and studies managed to improve the
efficiency of these algorithms, however these improvements focused only on run
time algorithm optimizations.

Sometimes, part of the input arguments of string manipulation algorithms are
known at compilation time. In these cases a template metaprogram is able to
customize the string algorithm to the corresponding input, making it safer and
more efficient. While using the Knuth-Morris-Pratt sub-string search algorithm
[4] we know the exact pattern we are searching in the text. Thus, we can generate
the next vector of the algorithm at compilation time. As an other example the
regular expression library boost:xpressive is able to check the syntax of the
matching pattern at compilation time to detect erroneous regular expressions.

As more and more complex applications of template metaprogramming have
appeared, it is surprising that for a long time strings were not supported for com-
pilation time programming. The first attempt, boost::mpl::string [34] has
been created recently, and still lacks a number of essential features like compare,
search and replace sub-strings. Therefore we extended boost::mpl::string to
create our own metastring library to provide a better support for string manip-
ulation in metaprograms. In this paper, we present the meta-algorithms of usual
string operations.

To illustrate the importance of the Metastring library, we demonstrate its
usage by detailed use cases. One of the examples is from the searching algorithm
domain. Knowing the pattern to search at compilation time, we are able to
choose various optimizations to improve our algorithm.

The other example is the implementation of the printf C function in a type-
safe way. Although the printf function of the C standard library has a compact
and practical syntax – that is why printf is so widely used even today – it is
not recommended to use it in C++, because it parses the formatting string at
run time, thus, it is not type-safe. At the same time, in most cases the formatter
string is already known at compilation time. Hence, it is possible to generate
a formatter string specific printf using metaprograms, so that the compiler is
able to check the type of the parameters, making the code safer. We show that
our type-safe printf performs better than the type-safe stream operations from
the standard C++ library.

The paper is organized as follows. In Section 2 we give a short description
of the template metaprogramming techniques. Section 3 introduces our Metas-
tring library. In Section 4 we discuss our pattern matching improvements as
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applications of the metastring construct. In Section 5 we present the type-safe
printf. We give an overview on related and future works in Section 6, and we
summarize our results in Section 7.

2 Template Metaprograms

The template facility of C++ allows writing algorithms and data structures
parametrized by types. This abstraction is useful for designing general algorithms
like finding an element in a list. The operations of lists of integers, characters or
even user defined classes are essentially the same. The only difference between
them is the stored type. With templates we can parametrize these list operations
by type, thus, we need to write the abstract algorithm only once. The compiler
will generate the integer, double, character or user defined class version of the
list from it. See the example below:

template<typename T>
struct list
{
void insert(const T& t);
// ...

};

int main()
{
list<int> l; //instantiation for int
list<double> d; //instantiation for double
l.insert(42); d.insert(3.14); // usage

}

The list type has one template argument T. This refers to the parameter type,
whose objects will be contained in the list. To use this list we need to generate
an instance and assign a specific type to it. That method is called instantiation.
During this process the compiler replaces the abstract type T with a specific
type and compiles this newly generated code. The instantiation can be invoked
either explicitly by the programmer but in most cases it is done implicitly by
the compiler when the new list is first referred to.

The template mechanism of C++ enables the definition of partial and full
specializations. Let us suppose that we would like to create a more space efficient
type-specific implementation of the list template for bool type. We may define
the following specialization:

template<>
struct list<bool>
{
//type-specific implementation

};
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Nevertheless, the implementation of the specialized version can be totally differ-
ent from the original one. Only the names of these template types are the same. If
during the instantiation the concrete type argument is bool, the specific version
of list<bool> is chosen, otherwise the general one is selected.

Template specialization is essential practice for template metaprogramming
too. In template metaprograms templates usually refer to other templates, some-
times from the same class with different type argument. In this situation an
implicit instantiation will be performed. Such chains of recursive instantiations
can be terminated by a template specialization. See the following example of
calculating the factorial value of 5:

template<int N>
struct factorial
{
enum { value = N * factorial<N-1>::value };

};

template<>
struct factorial<0>
{
enum { value = 1 };

};

int main()
{
int result = factorial<5>::value;

}

To initialize the variable result here, the expression factorial<5>::value has
to be evaluated. As the template argument is not zero, the compiler instanti-
ates the general version of the factorial template with 5. The definition of
value is N * factorial<N-1>::value, hence the compiler has to instantiate
the factorial again with 4. This chain continues until the concrete value be-
comes 0. Then, the compiler choses the special version of factorial where the
value is 1. Thus, the instantiation chain is stopped and the factorial of 5 is calcu-
lated and used as initial value of the result variable in main. This metaprogram
“runs” while the compiler compiles the code.

Template metaprograms therefore stand for the collection of templates, their
instantiations and specializations, and perform operations at compilation time.
The basic control structures like iteration and condition appear in them in a
functional way [20]. As we can see in the previous example, iterations in metapro-
grams are applied by recursion. Besides, the condition is implemented by a tem-
plate structure and its specialization.
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template<bool cond_, typename then_, typename else_>
struct if_
{
typedef then_ type;

};

template<typename then_, typename else_>
struct if_<false, then_, else_>
{
typedef else_ type;

};

The if structure has three template arguments: a boolean and two abstract
types. If the cond is false, then the partly-specialized version of if will be
instantiated, thus the type will be bound by the else . Otherwise the general
version of if will be instantiated and type will be bound by then .

Complex data structures are also available for metaprograms. Recursive tem-
plates store information in various forms, most frequently as tree structures, or
sequences. Tree structures are the favorite forms of implementation of expres-
sion templates [25]. The canonical examples for sequential data structures are
typelist [1] and the elements of the boost::mpl library [30].

We define a typelist with the following recursive template:

class NullType {};
struct EmptyType {}; // could be instantiated

template <typename H, typename T>
struct Typelist
{
typedef H head;
typedef T tail;

};
typedef Typelist< char, Typelist<signed char,

Typelist<unsigned char, NullType> > > Charlist;

In the example we store the three character types in a typelist. We can use helper
macro definitions to make the syntax more readable.

#define TYPELIST_1(x) Typelist< x, NullType>
#define TYPELIST_2(x, y) Typelist< x, TYPELIST_1(y)>
#define TYPELIST_3(x, y, z) Typelist< x, TYPELIST_2(y,z)>
// ...
typedef TYPELIST_3(char, signed char, unsigned char) Charlist;

Essential helper functions – like Length, which computes the size of a list at
compilation time – have been defined in Alexandrescu’s Loki library[1] in pure
functional programming style. Similar data structures and algorithms can be
found in the boost::mpl metaprogramming library [30].
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3 Metastring Library

In this chapter we introduce our metastring library. In the examples we write
the type- and function names of boost without the scope (string, instead of
boost::mpl::string) to save space. If we write the names of functions or ob-
jects in STL we put the scope before them.

Metastring library is based on boost::mpl::string [34]. The Boost Metapro-
gram Library provides us a variety of meta containers, meta algorithms and meta
iterators. The design of that library is based on STL, the standard library of
C++. However, while the STL acts at run time, the boost::mpl works at com-
pilation time. The meta version of regular containers in STL, like list, vector,
deque, set and map are provided by boost::mpl. Also, there are meta versions
of most algorithms and iterators. The string metatype was added to boost in
the release 1.40. Contrary to other meta containers, the metastring has lim-
ited features. Almost all regular string operations, like concatenation, equality
comparison, substring selection, etc. are missing. Only the c str meta function,
which converts the metastring type to constant character array, is provided by
boost.

In our Metastring library we extended the boost::mpl::string with the
most common string operations. The boost::mpl::string is a variadic tem-
plate type [10] like the boost::mpl::vector [36], but only accepts characters as
template arguments. The instantiated metastring type can perform as a concrete
string at compilation time. Since an instantiated metastring is a type, one can
assign a shorter name to it by the typedef keyword.

Certain programming languages define the string datatype as a sequence of
characters; i.e. array or list of characters. The metastring itself is a template
type. The template arguments contain the value of the string. Because C++
does not support passing string literals to template arguments [18], we need to
pass string arguments character by character.

typedef string<’H’,’e’,’l’,’l’,’o’> str;

Setting metastrings char-by-char is very inconvenient, therefore, the boost li-
brary offers an improvement. In most architectures, the int contains at least
four bytes and since the size of a character is one byte, it can store four char-
acters. As a template argument can be any integral type, hence it is possible to
pass four characters as integer, and later on a metaprogram transforms it back
to characters. This provides a more readable notation:

typedef string<’Hell’,’o’> str;

Nevertheless, this is still not the simplest way of setting a metastring. The next
C++ standard will provide a better and standard solution: with the combination
of variadic templates [10] and user defined literals [28] we can pass a string in
the form of "Hello"s to variadic templates with character arguments.

Since the literature usually uses the parameter passing by four character con-
vention, in the rest of the paper we will follow that.
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In the Metastring library we provide the meta-algorithms of the most com-
mon string operations, like concat, find, substr, equal, etc. These algorithms
are also template types, which accept metastring types as template arguments.
The concat and substr defines a type called type which is the result of the
operation. equals provides a static boolean constant called value, which is ini-
tialized as true if the two strings are equal, otherwise as false. find defines a
static std::size t constant called value, which is initialized as the first index
of matching, if the pattern appears in the text and as std::string::npos otherwise.
See the example about concatenation of strings below:

typedef string<’Hell’,’o’> str1;
typedef string<’ Wor’,’ld!’> str2;

typedef concat<str1, str2>::type res;

std::cout << c_str<res>::value

The type defined by concat<str1, str2> is a new metastring type, which rep-
resents the concatenation of str1 and str2 metastrings.

In the next chapter we present applications which can take either efficiency or
safety advantages of metastrings. The first example is pattern matching. If the
text or a pattern is known at compilation time, we can improve the matching
algorithms. (If both the text and the pattern are known, we can perform the
whole pattern matching algorithm at compilation time.) The second application
is a type-safe printf. If the formatter string is known at compilation time, we
can generate a specialized kind of printf algorithm to it, which can perform
type checking.

4 Pattern Matching Applications with Metastrings

Most of the pattern matching algorithms start with an initialization step. This
step depends only on the pattern. If the pattern is known at compilation time,
we can shift this initialization subroutine from run time to compilation time.
This means that while the compiler compiles the code it will wire the result of
the initialization subroutine into the code. Thus, the algorithm does not need
to run the initialization step, because it is already initialized. The more often
the pattern matching algorithm is invoked, the more speed-up we achieve. The
example below shows how to use these algorithms:

typedef string<’patt’,’ern’> pattern;
std::string text;
// reading data to text

std::size_t res1 = kmp<pattern>(text);
std::size_t res2 = bm<pattern>(text);
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The kmp and bm function templates implement the Knuth-Morris-Pratt [15] and
the Boyer-Moore [3] pattern matching algorithms. The return values are similar
to the std::string’s find memberfunction in STL and are either the first index
of the match or std::string::npos. The implementation of these functions are
the following:

template<typename pattern>
std::size_t kmp(const std::string& text)
{
const char* p = c_str<pattern>::value;
const char* next = c_str<initnext<pattern>::type>::value;
//implementation of Knuth-Morris-Pratt

}

template<typename pattern>
std::size_t bm(const std::string& text)
{
const char* pattern = c_str<pattern>::value;
const char* skip = c_str<initskip<pattern>::type>::value;
//implementation of Boyer-Moore

}

The pattern template argument must be a metastring type for both of the
functions. The initnext and the initskip meta algorithms create the next
and the skip vectors for the algorithms at compilation time. The rest of the
algorithms are the same as the normal run time version.

We compared the full run time version of algorithms with our solution where
the initialization is performed at compilation time. Fig. 1 shows the results
related to Knuth-Morris-Pratt and fig. 2 to Boyer-Moore. We tested these al-
gorithms with several inputs. The input was a common English text and the
pattern contained a couple of words. The pattern did not appear in the text,
thus the algorithms had to read all the input. We measured the running cost
with one, two, five and ten kilobyte long inputs. In both charts, the first columns
show the running cost of the original algorithms and the second ones show the
performance of the algorithms optimized at compilation time. The X-axis shows
the inputs and the Y-axis shows the instructions consumed during the algorithm.
The larger improvement can be achieved applying pattern match repeatedly.

It is quite rare but still interesting case when the text is known in compile
time. In this case a meta program can analyze the characteristic of the text
and choses the best pattern matching algorithm. For example if the alphabet of
the input text is large, the Boyer-Moore is more efficient, but if the alphabet
is small, choosing the Knuth-Morris-Pratt algorithm is more beneficial. The fig-
ure 3 shows the differences of search speed, when a search is performed by only
Knuth-Morris-Pratt (1st group) or Boyer-Moore(2nd group) algorithm or the
optimized version (3rd group). InputA denotes an ordinary English text and the



470 Z. Szűgyi et al.

Fig. 1. Comparison of Knuth-Morris-Pratt

Fig. 2. Comparison of Boyer-Moore
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Fig. 3. Comparison of algorithms

pattern is a single word. InputB denotes the text containing a few characters,
and the pattern has several repetitions. The Y-axis illustrates the consumed
instructions.

5 Type-Safe Printf

The printf function of the standard C library is easy to use and efficient but
has a major drawback: it is not type-safe. Due to the lack of type-safety, mis-
takes of the programmer may cause undefined behavior at runtime, because the
compiler does not verify the validity of the arguments passed to printf. There
are workarounds, for example gcc type checks printf calls and emits warnings
when they are incorrect, but it is specific to gcc. C++ introduced iostreams as
a replacement of printf. Iostreams are type-safe, but they have runtime and
syntactical overhead. The syntax of printf is more compact than the syntax of
streams, the structure of the displayed message is defined at one place, in the
format string, when we use printf but it is scattered across the whole expres-
sion when we use streams. Here is an example for using printf and streams to
display the same thing:

printf("Name: %s, Age: %d\n", name, age);
std::cout << "Name: " << name << ", Age: " << age << std::endl;
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In this section we implement a type-safe version of printf using compilation
time strings assuming that the format string is available at compilation time,
which is true in most cases. We write a C++ wrapper for printf which validates
the number and type of its arguments at compilation time and calls the original
printf without any runtime overhead.

We call the type-safe replacement of printf safePrintf. It is a template
function taking one class as a template argument: the format string as a compi-
lation time string. The arguments of the function are the arguments passed to
printf. As the example usage

safePrintf< string<’Hell’, ’o %s’, ’!’> >("John");

shows there is only a slight difference between the usage of printf and our type-
safe safePrintf. On the other hand, there is a significant difference between
their safety: safePrintf guarantees that the printf function called at runtime
has the right number of arguments and they have the right type.

Under the hood safePrintf evaluates a template-metafunction at compila-
tion time which verifies the number and type of the arguments. safePrintf
emits a compilation error [14] when at least one of the arguments is not correct.
If the evaluation succeeds safePrintf calls printf with the same arguments
safePrintf was called with. The template metafunction verifying the argu-
ments has only compilation time overhead, it has zero runtime overhead, the
body of safePrintf consists of a call to printf which is likely to be inlined.
At the end of the day using safePrintf has zero runtime overhead compared
to printf. Here is a sample implementation of our safePrintf:

template <typename FormatString, typename A1, typename A2>
int safePrintf(A1 a1, A2 a2)
{
BOOST_STATIC_ASSERT((
CheckArguments<
FormatString,
boost::mpl::list<A1, A2>

>::type::value
));
return
printf(boost::mpl::c_str<FormatString>::type::value, a1, a2);

}

This example works only when exactly two arguments are passed to safePrintf.
We will generalise it later. We evaluate a metafunction called CheckArguments
which takes the format string, which is a compilation time string, and a type
list containing the types of the arguments passed to printf. CheckArguments
evaluates to a bool value: it is true when the argument types are valid and it
is false when they are not. CheckArguments parses the format string charac-
ter by character and verifies that the arguments conform to the format string.
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After verifying the validity of the arguments safePrintf generates code call-
ing the original printf function of the C library. The format string passed to
printf is automatically generated from the compilation time string argument
of safePrintf. For example

safePrintf< string<’Hell’, ’o %s’, ’!’> >("John");

calls printf with the following arguments:

printf("Hello %s!", "John");

Under the hood CheckArguments uses a finite state machine [13] to parse the
format string. The states of the machine are represented by template meta-
functions, the state transitions are done by the C++ compiler during template
metafunction evaluation. Template metafunctions are evaluated lazily, thus the
C++ compiler instantiates only valid state transitions of the finite state machine.
When an argument of safePrintf has the wrong type according to the format
string, CheckArguments stops immediately, skipping further state transitions of
the finite state machine. Thus the C++ compiler has a chance to emit the error
immediately and continue compilation of the source code. We use a helper func-
tion, CheckArgumentsNonemptyFormatString, to implement CheckArguments:

template <typename FormatString, typename Ts>
struct CheckArgumentsNonemptyFormatString :
boost::mpl::eval_if<
typename boost::mpl::equal_to<
typename boost::mpl::front<FormatString>::type,
boost::mpl::char_<’%’>

>::type,
ParseSpecifier<
typename boost::mpl::pop_front<FormatString>::type,
Ts

>,
CheckArguments<
typename boost::mpl::pop_front<FormatString>::type,
Ts

> > {};

template <typename FormatString, typename Ts>
struct CheckArguments :
boost::mpl::eval_if<
typename boost::mpl::empty<FormatString>::type,
boost::mpl::empty<Ts>,
CheckArgumentsNonemptyFormatString<FormatString, Ts>

> {};

As one can see the template metafunction CheckArguments is just a wrapper
for CheckArgumentsNonemptyFormatString to handle empty format strings, the
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real parsing is done by CheckArgumentsNonemptyFormatString. The combina-
tion of these metafunctions represent one state of the finite state machine. Every
character except % transitions back to this state, those characters are not im-
portant for us. The % character transitions to another state, represented by the
ParseSpecifier metafunction:

template <typename FormatString, typename Ts>
struct ParseSpecifier : boost::mpl::and_<

IsArgumentValid<
typename boost::mpl::front<FormatString>::type::value,
typename boost::mpl::front<Ts>::type>,

CheckArguments<
typename boost::mpl::pop_front<FormatString>::type,
typename boost::mpl::pop_front<Ts>::type > > {};

This metafunction verifies the argument specified by the currently parsed place-
holder in the format string using IsArgumentValid. When it is ok it continues
the verification, otherwise it emits an error immediately. The implementation of
IsArgumentValid is straightforward, it takes a character constant and a type
as its arguments and evaluates to a bool value. It can be implemented in a
declarative way:

template <char specifier, typename Ts>
struct IsArgumentValid : boost::mpl::false_ {};

template <>
struct IsArgumentValid<’c’, char> : boost::mpl::true_ {};

template <>
struct IsArgumentValid<’d’, int> : boost::mpl::true_ {};
// ...

Note that only the implementation of a simplified version of safePrintf was
presented here to demonstrate how our solution works, the implementation of
a verification function supporting the whole syntax of printf is too long to
discuss here.

We have only shown the implementation of a safePrintf taking exactly 2
arguments. Other versions can be implemented in a similar way:

template <typename FormatString>
int safePrintf();

template <typename FormatString, typename A1>
int safePrintf(A1 a1);

template <typename FormatString, typename A1, typename A2>
int safePrintf(A1 a1, A2 a2);
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template <typename FormatString,
typename A1,
typename A2,
typename A3>

int safePrintf(A1 a1, A2 a2, A3 a3);
// ...

These functions can be automatically generated using the Boost precompiler li-
brary [31]. As it is the case with other Boost libraries, the number of printf func-
tions generated can be specified by a macro evalutaing to an integer value. Thus,
users of the library can increase it according to their needs. We do not present
here how we generate these functions, it can be done using BOOST PP REPEAT
provided by the Boost precompiler library.

This solution combines the simple usage and small run-time overhead of
printf with the type-safety of C++ using compilation time strings. Strous-
trup wrote a type-safe printf using variadic template functions [10,28] which
are part of the upcoming standard, C++0x [21]. His implementation uses run-
time format strings and transforms printf calls to writing to C++ streams at
runtime. For example the code

printf("Hello %s!", "John");

using his type-safe printf does

std::cout << ’H’ << ’e’ << ’l’ << ’l’ << ’o’
<< ’ ’ << "John" << ’!’;

at runtime. This solution prints the format string character by character which
makes it extremely slow. The author’s intention was to demonstrate the use of
variadic templates, but it can be further optimized in the following way:

std::cout << "Hello " << "John" << "!";

We have measured the speed of normal printf, used by our implementation,
and both of the above. We measured the speed of the following call:

printf("Test %d stuff\n", i);

and its std::cout equivalents. We printed the text 100 000 times and measured
the speed using the time command on a Linux console. The average time it took
can be seen in Table 1. printf, which is used by our type-safe implementation,
is almost four times faster than the example on [28] and more than two times
faster than the optimized version of that example.

We measured the performance of the C style printf function and the C++
style std::cout stream with several kinds of input from the simple ones to
more compound samples. To do this measurement we used the profiler module
of Valgrind [35] dynamic analysis tool called Callgrind. Table 2 shows the results.
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Table 1. Elapsed time

Method used Time

std::cout for each character 0,573 s

normal std::cout 0,321 s

printf 0,152 s

Table 2. Instructions fetched

Pattern printf cout

”hello” 326 363

”hello%s”, ”world” 603 722

”hello%s%d”, ”world”, 1 942 1217

”hello%s%d%c”, ”world”, 1, ’a’ 1149 1500

”hello%s%d%c\n”, ”world”, 1, ’a’ 1395 2148

In the first column we present the printed pattern. The second column shows
the instructions needed to print it using printf, and the third one shows the
same using cout.

As we can see from the table, cout is slower than printf. When the printed
text is simple, the difference is slight, but it is growing as the text becomes more
and more complex.

Another difference between Stroustrup’s type-safe printf and ours is the way
they validate the types of the arguments. Stroustrup’s solution ignores the type
specified in the format string, it displays every argument supporting the stream-
ing operator regardless of its type. For example, it accepts the following incorrect
usage of printf

printf("Incorrect: %d", "this argument should be an integer");

while our solution emits an error at compilation time. On the other hand, our
solution can only deal with types the C printf can handle, while Stroustrup’s
solution can deal with any type which supports the streaming operator.

A drawback of Stroustrup’s solution is that it does not detect when the ar-
guments of printf are shifted or are in the wrong order and displays them
incorrectly. For example Stroustrup’s printf accepts

printf("Name: %s\nAge: %d\n", "27", "John");

and displays

Name: 27
Age: John

while our solution emits a compilation error.
Stroustrup’s solution throws an exception at runtime when the number of

arguments passed to printf is incorrect, which can lead to hidden bugs due to
incomplete testing. Our solution emits compilation errors in such cases to help
detecting these bugs.
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6 Related Work

Modern programming languages with object-oriented features and operator over-
loading are able to create classes with an interface close to high level matematical
notations. For instance, arrays, matrices, linear algebraic operations are typical
examples. However, as Veldhuizen noted, the code generated by such libraries
tends to be inefficient [27]. As an example, he measured array objects using op-
erator overloading in C++ were 3-20 times slower than the corresponding low
level implementation. This is not because of poor design on the part of library
developers, but because object-oriented languages force inefficient implementa-
tion techniques: dynamic memory allocations, high number of object copying,
etc. These performance problems are commonly called as abstraction penalty.

Attempts to implement smarter optimizers were largely unsuccessful, mainly
because of the lack of semantical information. Efforts to describe semantics of
a type is still in experimental phase without too much result [11]. On the other
hand, a more promising approach is to write an active library. Active libraries
[24] act dynamically, makes decisions at compilation time based on the calling
context, choose algorithms, and optimize code. These libraries are not passive
collections of functions or objects, like traditional libraries, but take an active role
in generating code. Active libraries provide higher abstractions and can optimize
those abstractions themselves. In C++ active libraries are implemented with the
help of template metaprogramming techniques [13].

An other possible optimization technique is partial evaluation [8,12]. Partial
evaluators regard a program’s computation as containing two subsets: static
computations which are performed at compile time, and dynamic computations
performed at run time. A partial evaluator executes the static optimizations
and produces a specialized residual program. To determine which portions of a
program can be evaluated, a partial evaluator may perform binding time analysis
to separate static and dynamic data and language constructs. Sometimes we
call such a language as two-level language. C++ template resemble a two-level
language, as function templates take both statically bound template parameters
and dynamically bound function arguments [27].

There are third party libraries to apply string-related compilation time oper-
ations in some special areas of programming. The boost::spirit library is an
object oriented recursive descent parser framework [33]. EBNF grammars can be
written with C++ syntax and these grammars can be inlined in the C++ source
code. Since the implementation of spirit uses template metaprogramming tech-
niques, the parser of the EBNF grammar is generated by the C++ compiler. The
boost::waveC++ preprocessor library [37] uses the spirit parser construction
library to implement a C++ lexer with ISO/ANSI Standards conformant pre-
processing capabilities. Wave provides an iterator interface which gives access to
the currently preprocessed token of the input stream. These preprocessed tokens
are generated on-the-fly while iterating over the preprocessor iterator sequence.
The boost::xpressive is a regular expression template library [38] dealing with
static regular expressions. This library can perform syntax checking and generate
optimized code for static regexes.
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Stroustrup demonstrates how a type-safe printf can be built using the fea-
tures of the upcoming C++ standard [21]. The differences between this and our
solution are explained in chapter 5.

Since the style of metaprograms is unusual and difficult, it requires high pro-
gramming skills to write. Maintenance of template metaprograms are much more
harder. Besides, it is sorely difficult to find errors in template metaprograms.
Porkoláb et al. provided a metaprogram debugger tool[17] in order to help find-
ing bugs.

7 Summary and Future Work

Strings, one of the most commonly used data types in programming, had only
weak support for C++ template metaprograms. In this paper we emphasize the
importance of string manipulation at compile time. We have developed Metas-
tring library based on boost::mpl::string and extended its compile time func-
tionality with the usual operations of run time string libraries. We presented the
implementational details of our Metastring library and discussed syntactic sim-
plifications to reduce the syntactical overhead. To illustrate the importance of
the metastring, we investigated two application areas in details.

When either the text or the pattern are known at compilation time, pattern
matching algorithms can be significally improved. We dealt with two pattern
matching algorithms: Boyer-Moore and Knuth-Morris-Pratt to demonstrate the
power of metastrings. Our future work is to create a more sophisticated method
– which takes more pattern matching algorithms into account – to find the best
pattern matching solution.

As the other motivating application, we have created a C++ wrapper for
printf function taking the format string as a compilation time string argument
and validating the type of the runtime arguments based on that string. Validation
happens at compilation time, therefore our solution has zero run time overhead
but ensures type-safety. We have compared our type-safe printf solution to the
one on Stroustrup’s website and found that our solution provides stricter type-
safety and runs at least two times faster. Our future plan is to introduce the %a
specifier – which means any – to force the compiler to deduce the argument’s
type. Stroustrup’s solution behaves similarly.
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Abstract. The process of grammar convergence involves grammar ex-
traction and transformation for structural equivalence and contains a
range of technical challenges. These need to be addressed in order for
the method to deliver useful results. The paper describes a DSL and the
infrastructure behind it that automates the convergence process, hides
negligible back-end details, aids development/debugging and enables ap-
plication of grammar convergence technology to large scale projects. The
necessity of having a strong framework is explained by listing case stud-
ies. Domain elements such as extractors and transformation operators
are described to illustrate the issues that were successfully addressed.

1 Introduction

The method of grammar convergence has been presented in [15] and elaborated
in a large case study [16], with a journal version being in print. The basic idea
behind it is to extract grammars from available grammar artefacts, transform

Fig. 1. The megamodel of SLPS: every vertex is a language, every arc is a lan-
guage transformation. Thin grey lines denote tools present prior to this research: e.g.,
GDK [13] or TXL [3]. Thick grey edges are for co-authored transformations.
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them until they become identical, and draw conclusions from the properties
of the transformation chain: its length, the type of steps it consisted of, the
correspondence with the properties expected a priori from documentation, etc.
Grammar convergence can be used among other ways to establish an agreement
between a hand-crafted object model for a specific domain and an XML Schema
for standard serialisation of the same domain; to prove that various grammar-
ware such as parsers, code analysers and reverse engineering tools agree on the
language; to synchronise the language definition in the manual with the reference
implementation; to aid in disciplined grammar adaptation.

In this paper we will use the terms “grammar convergence” and “language
convergence” almost interchangeably. In fact, language convergence is a broader
term that includes convergence of not only the syntax, but also parse trees,
documentation, possibly even semantics. We focus on dealing with grammars
here, but the reader interested in consistency management for language specifi-
cations can imagine additional automated steps like extracting a grammar from
the language document before the transformation and inserting it back after-
wards [12,14].

Language convergence was developed and implemented as a part of an open
source project called SLPS, or Software Language Processing Suite1. It comprises
several stand-alone scripts targeting comparison, transformation, benchmark-
ing, validation, extraction, pretty-printing. Most of those scripts were written in
Python, Prolog, Shell and XSLT. Grammar convergence is a complicated process
that can only be automated partially and therefore requires expert knowledge
to be used successfully. In order to simplify the work of a grammar engineer, a
specific technical infrastructure is needed with a solid transformation operators
suite, steadily defined internal notations and a powerful tool support for every
stage. This paper presents such a framework and explains both engineering and
scientific design choices behind it.

Figure 1 presents a “megamodel” [2] of SLPS. Every arc from this graph
is a language transformation tool or a sequence of pipelined tools. Many of
the new DSLs developed for this infrastructure are in fact XML: BGF, XBGF,
BTF, XBTF, LDF, XLDF, LCF—just an engineering decision that let them
profit fully from XMLware facilities like validation against schemata and trans-
formation with pattern matching. (These advantages are not unique for XML,
of course). Others are mostly well-known languages that existed prior to this
research: ANTLR [18], SDF [9], LLL [13], XSD [5], etc.

The left hand side of the megamodel is mostly dedicated to language
documentation-related components: LDF is a Language Document Format [23],
an extension of grammar notation that covers most commonly encountered el-
ements of language manuals and specifications. The central part contains the
grammar notation itself: the BGF node has a big fan-in since every incoming
arc represents a grammar extraction tool (see §4.1). The only outgoing arcs are
the main presentation forms: pure text, marked up LATEX and a graph form, plus
transformation generators (see §5.4) and integration tools (see §6.3).

1 Software Language Processing Suite: http://slps.sf.net

http://slps.sf.net
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Fig. 2. The overall convergence graph for the Factorial Language. The grey arrows
show grammar relations that are expressed in LCF but not performed directly by the
convergence infrastructure (the reason is that, for example, generating Ecore from XML
Schema cannot be done from command line and must be performed via Eclipse IDE).

The inherent complexity of the domain and the methodology led to the de-
velopment of what we call LCI, or Language Convergence Infrastructure. It is
the central point of SLPS, it provides full technical support to its functionali-
ties, operating on a DSL called LCF (LCI Configuration Format) in which the
input configuration must be expressed. The DSL details are also provided in this
paper.
§2 motivates the need for language convergence by giving three example sce-

narios of its application. §3 starts describing the domain by explaining the DSL,
while §4, §5 and §6 address the notions linked to sources, transformations and
targets correspondingly.

2 Motivation

In this section three distinct applications of grammar convergence are briefly
presented together with the results acquired from them.

2.1 Same Language, Multiple Implementations: Factorial Language

A trivial functional programming language was defined in [15] to test out the
method of grammar convergence, we called it Factorial Language. We modelled
the common scenario of one language having several independently developed
grammars by writing or generating nine grammar artefacts within various frame-
works, as seen on Figure 2:

antlr. A parser description in the input language language of ANTLR [18].
Semantic actions (in Java) are intertwined with EBNF-like productions.

dcg. A logic program written in the style of definite clause grammars.
sdf. A concrete syntax definition in the notation of SDF (Syntax Definition

Formalism [9]), a parser description targeted for SGLR parsing.
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read2

jls2
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Fig. 3. Binary convergence tree for the JLS grammars—or rather two trees with shared
leaves. As usual, the nodes on the top (the leaves) are grammars extracted directly from
the JLS. All other nodes are derived by transformation chains denoted as arcs. We use
a (cascaded) binary tree here: i.e., each non-leaf node is derived from two grammars.

txl. Another transformational framework that allows for agile development of
tools based on language descriptions [3].

ecore. An Ecore model, created manually in Eclipse and represented in XMI [17].
ecore2. An alternative Ecore model, generated automatically by Eclipse, given

the XML Schema of the domain.
xsd. An XML schema [5] for the abstract syntax of FL. In fact, this is the

schema that served as the input for generating both the object model of the
jaxb source and the Ecore model of the ecore2 source.

om. A hand-crafted object model (Java classes) for the abstract syntax of FL.
It is used by a Java-based implementation of an FL interpreter.

jaxb. Also an object model, but generated by the JAXB data binding technol-
ogy [10] from the XML schema for FL.

2.2 Language Evolution: Java Language Specification

In [16] we describe a completed effort to recover the relationships between all
the grammars that occur in the different versions of the Java Language Specifi-
cation (JLS). The case study concerns the 3 different versions of the JLS [6,7,8]
where each of the 3 versions contains 2 grammars: one grammar is optimised
for readability (i.e., read1–read3 on Figure 3), and another one is intended to
serve as a basis for implementation (i.e., impl1–impl3 on Figure 3). The JLS
is critical to the Java platform — it is a foundation for compilers, code gen-
erators, pretty-printers, IDEs, code analysis and manipulation tools and other
grammarware for the Java language. One would expect that the different gram-
mars per version are essentially equivalent in terms of the generated language.
For implementability reasons one grammar may be more liberal than the other.
One would also expect that the grammars for the different versions engage in an
inclusion ordering (again, in terms of the generated languages) because of the
backwards-compatible evolution of the Java language.
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The case study comprised around 17000 transformation steps and has shown
that the expected relationships of (liberal) equivalence and inclusion ordering
are significantly violated by the JLS grammars. Thus, grammar convergence can
be used as a form of consistency management for the JLS in particular, and
language specifications in general.

2.3 BNF-Like Grammar Format

The abstract syntax of BGF, which is the internal representation for grammars
in our infrastructure, is defined by the corresponding XML Schema. There is
also a pretty-printer that helps to present BGF grammars for debugging and
publishing purposes (let us call this presentation notation “BNF”). This pretty-
printer is grammarware, the concrete syntax of its output can be specified by
a grammar. How does this grammar relate to the XML Schema of BGF? We
applied grammar convergence method to these two grammars: the hand-crafted
one for the concrete syntax and the one derived from the XSD for the abstract
syntax. (We had to be satisfied with a manually engineered grammar since gram-
mar inference from an XSL transformation sheet is far from trivial and perhaps
even undecidable).

The convergence graph is trivial and thus not shown here. The transformation
scripts are also considerably simple for this case study, which allowed us to exam-
ine them in detail. The conclusion was that: BGF allows for empty grammars,
BNF does not (as expected, since BNF is used for presentation);BNF contains
indentation rules and abstract syntax, BGF does not (as expected due to
the abstract nature of BGF); BGF includes root elements, BNF does not
(as expected, since EBNF dialects never specify starting symbols).

This case study shows that grammar convergence can also be used for validat-
ing implicit assumptions within a grammar engineering infrastructure. The cost
of such use is low (the case study took no more than an hour), but it brings more
discipline to the grammar engineering process. The additional confidence comes
from the guarantee that there are no other differences besides those included in
our list.

3 Grammar Convergence Domain Overview

Grammar convergence is a method of establishing relationships between lan-
guage grammars by extracting them and transforming towards equivalence.
Thus, we distinguish three core domain elements: the source grammars that
are obtained from available grammar artefacts; the target grammars that are
the common denominators of the source grammars; and the transformation
chains that bind them together and represent their relationships, as shown on
Figure 4. The methodology has been presented in [15] and elaborated in a large
case study [16].
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Fig. 4. The abstract view on the grammar convergence process

LCF is a configurational domain specific language that is used by the LCI.
Since it encapsulates all crucial domain concepts, we will examine its grammar
and explain them while doing so. The grammar is presented in an EBNF dialect
specific for SLPS: beside the usual notation it has selectors. By writing a::b we
refer to a nonterminal b but label its particular occurrence as a. There are also
four built-in symbols: string for any string, xstring for a macro expanded
string, id for a unique identifier denoting an entity such as a grammar or a tool
and refid for a reference to such an identifier.
scenario:

shortcut� tools source+ target+ testset�

shortcut:
name::id expansion::xstring

Each convergence scenario contains shortcuts, tools, sources, targets and test
sets. Shortcuts are macro definitions used mostly for maintainability purposes:
for example, it is possible with them to define the path to the main working
directory once and refer to it in all necessary places. Shortcuts can be defined
based on other shortcuts.
tools:

transformer::tool comparator::tool validator::tool? generator�

tool:
grammar::xstring tree::xstring?

Two tools are crucial for grammar convergence and must always be defined:
the transformer and the comparator. The transformer takes a BGF grammar
and an XBGF script and applies the latter to the former, resulting in a trans-
formed BGF grammar (or an error return code, which is handled by the LCI).
§5 will address this tool in detail. The comparator takes two BGF grammars
and returns the verdict on their equivalence. Since the premise of grammar con-
vergence method was to document grammar relationships, the comparator is
not expected to do any sophisticated matching besides applying basic algebraic
laws. A validator tool is optional and can check each one of the many XML
files generated in the convergence process for well-formedness and conformance
to a schema. Both tools will be described in §6. Each of these tools can consist
of a pair of references to external programs: one program that operates on a
grammar level and one on a parse tree level. The latter part is optional, but if
it is absent, no coupled transformations can take place.
generator:

name::id command::xstring
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A transformation generator is a named tool that takes a BGF grammar as an
input and produces an XBGF script applicable to that grammar and containing
transformations of a certain nature, see §5.
testset:

name::id command::xstring

A test set is also used for coupled transformations and for more thorough valida-
tion: each test case is tried with a corresponding parser and is co-transformed.
This subdomain will not be addressed in this paper since it is a separate big
research area and still work in progress for us.

4 Convergence Sources

source:
name::id derived? source-grammar source-tree? test-set::refid�

derived:
from::refid using::string

source-grammar:
extraction::xstring parsing::xstring? evaluation::xstring?

source-tree:
extraction::xstring evaluation::xstring?

A convergence source is defined at least by a name and the command that will
be executed for its extraction. Possible additional properties include for a de-
rived source its previously known (but invisible for LCI otherwise) relation to
another source, which allows LCI to draw grey links in Figure 2. A grammar-
based parser and evaluator detailed in the next subsections, can also be spec-
ified. The extractor and evaluator for the tree level are also optional (the
corresponding parser does not make sense since a parse tree is stored in a BTF
which is either correct by definition or filtered out by a validator). Test sets
compatible with this source can also be listed here to be used later to find bugs
in the source grammar.

One of the crucial parts of our infrastructure is the format for storing
grammars. Instead of trying to model all possible peculiar or even idiosyncratic
details deployed within grammar artefacts in various frameworks: semantic ac-
tions, lexical syntax descriptions, precedence declarations, classes/interfaces or
elements/attributes dichotomy, etc—we opted for sacrificing them and storing
only the crucial core grammar knowledge. In fact, by abstracting from these
details at the extraction stage, we get an XML-based dialect of EBNF.

4.1 Extractors

Extraction happens only once per source even if the source is used more than
once. When it succeeds, LCI stores the extracted grammar in order to fall back
to the old snapshot if it ever goes wrong in one of the future runs. The extracted
grammar is also subject to validation, in case the validator is specified.

An extractor is simply a software component that processes a software artefact
and produces a BGF grammar. In the simplest case, extraction boils down to a
straightforward mapping defined by a single pass over the input. Extractors are
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Table 1. The mapping between the XML output of the TXL parser and BGF

TXL BGF

program bgf:grammar

defineStatement bgf:production

repeat barLiteralsAndTypes bgf:expression/choice

repeat literalOrType bgf:expression/sequence if length> 1

literalOrType/type/typeSpec bgf:expression/plus/bgf:expression or
(depending on bgf:expression/star/bgf:expression or
opt typeRepeater/typeRepeater) bgf:expression/optional/bgf:expression or

bgf:expression

literalOrType/literal bgf:expression/terminal

typeid/id nonterminal

typically implemented within the computational framework of the kind of source,
or in its affinity: e.g., in Prolog for DCG, in ASF+SDF for SDF, in ANTLR for
ANTLR. Several examples follow.

TXL to BGF mapping. TXL [3] distribution contains a TXL grammar for
TXL grammars. By using that, we can parse any correct TXL grammar and seri-
alise the resulting abstract syntax tree in the XML form. After that the mapping
becomes trivial and is easily implemented in the form of XSLT templates that
match TXL tags and generate BGF tags with the equivalent internal details, as
shown on Table 1.

SDF to BGF mapping. The Meta-Environment [11] contains both SDF def-
inition for SDF definitions and the transformational facitilies needed for map-
ping. After specifying the mapping in ASF in the form of traversal functions and
rewriting rules, this sequence of actions is required for extraction:

� pack-sdf for combining all extractor modules into one definition
� sdf2table for making a parse table out of that definition
� eqs-dump for compiling ASF formulæ
� sglr for parsing the SDF source grammar with the table
� asfe for rewriting the resulting parse tree
� unparsePT for serialising the transformed parse tree into the file

These tools are tied together by appropriate makefiles and shell scripts. The first
three steps are performed once and need to be redone only if the extractor itself
changes; the last three steps are executed per extracted grammar.

HTML to BGF recovery. A JLS document is basically a structured text
document with embedded grammar sections. In fact, the more readable grammar
is developed throughout the document where the whole more implementable
grammar is given at once in the last section.
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Table 2. Irregularities resolved by grammar extraction given the HTML source

impl1 impl2 impl3 read1 read2 read3 Total

Arbitrary lexical decisions 2 109 60 1 90 161 423

Well-formedness violations 5 0 7 4 11 4 31

Indentation violations 1 2 7 1 4 8 23

Recovery rules 3 12 18 2 59 47 141
◦ Match parentheses 0 3 6 0 0 0 9
◦ Metasymbol to terminal 0 1 7 0 27 7 42
◦ Merge adjacent symbols 1 0 0 1 1 0 3
◦ Split compound symbol 0 1 1 0 3 8 13
◦ Nonterminal to terminal 0 7 3 0 8 11 29
◦ Terminal to nonterminal 1 0 1 1 17 13 33
◦ Recover optionality 1 0 0 0 3 8 12

Purge duplicate definitions 0 0 0 16 17 18 51

Total 11 123 92 24 181 238 669

The JLS is available electronically in HTML and PDF format. Neither of these
formats was designed with convenient access to the grammars in mind. We have
opted for the HTML format here. The grammar format slightly varies across
the different JLS grammars and versions; we had to reverse engineer formatting
rules from different documents and sections — in particular from [6,7,8, §2.4]
and [7,8, §18].

In order to deal with irregularities of the input format, such as liberal use of
markup tags, misleading indentation, duplicate definitions as well as numerous
smaller issues, we needed to design and implement a non-classic parser to extract
and analyse the grammar segments of the documents and to perform a recovery.
About 700 fixes were performed that way, as can be seen from Table 2.

We face a few syntax errors with regard to the syntax of the grammar notation.
We also face a number of “obvious” semantic errors in the sense of the language
generated by the grammar. We call them obvious errors because they can be
spotted by simple, generic grammar analyses that involve only very little Java
knowledge, if any. We have opted for an error-recovery approach that relies on a
uniform, rule-based mechanism that performs transformations on each sequence
of tokens that corresponds to an alternative.

The rules are implemented in Python by regular expression matching. They
are applied until they are no longer applicable. Examples of them include match-
ing up missing parentheses by deriving their absence from the context, converting
improperly positioned metasymbols to terminals and removing duplicate defini-
tions. The complete list is given with details and examples in the journal version
of [16].

4.2 Parsers and Evaluators

A parser is one of the most commonly available grammar artefacts: it is a
syntactic analyser that can tell whether some input sequence matches the given
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grammar. If such a tool is indeed present, it can be referenced in LCF as well and
will be used for testing purposes. A compatible test set must also be provided
separately.

It is possible to implement all transformation operators to be applicable not
only to languages (grammars), but also to instances (parse trees). If this is done
and the corresponding tree extractors and parsers are provided in LCF, then
LCI is not limited to converging grammars only. For every source that has a test
set attached, for every test case in that set, LCI performs coupled extraction,
transformation and comparison.

Additionally, evaluators can be provided that can execute test cases and
compare return values with expected ones (for simplicity our prototype works
with integers). Test sets must be present in a unified format for LCI to figure
out applicable actions. Test cases will also be validated if the validation tool
is specified. The evaluators play a similar role, but their return value is not an
error code, but rather the result of evaluating the given expression. The difference
between an evaluator listed in the grammar properties and an evaluator given
in the instance properties is that the input of the former is a correct program in
the original format and the latter takes a parse tree of an instance, presented in
BTF (BGF Tree Format).

5 Grammar Transformation

We have developed a suite of sophisticated grammar transformation operators
that can be parametrised appropriately and called from a script. The resulting
language is called XBGF (X stands for transformation), and is processed by the
transformer. Some XBGF commands have been presented in [15,16], we give
several examples here as well; the complete language manual is available as [22].

5.1 Unfolding

There are several folding and unfolding transformation operators in XBGF, of
which the simplest one is just called unfold. It searches the scope for all the
instances of the given nonterminal usage and replaces such occurrences with the
defining expression of that nonterminal. By default the scope of the transfor-
mation is the full grammar, but it can be limited to all the definitions of one
nonterminal or to one labelled production. Regardless of the specified scope,
unfolding is not applied to the definition of the argument nonterminal.

The definition that is being unfolded is assumed to consist of one single pro-
duction. When only one of several existing productions is used for unfolding,
such a transformation makes the language (as a set of strings generated by the
context-free grammar) smaller. The corresponding XBGF command is called
downgrade. Other refactoring variants of unfold operator include inline that
unfolds the definition and purges it from the grammar, and unchain which
removes chain productions (a: b; b: ...; with no other use for b).
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5.2 Massaging

The massage operator is used to rewrite the grammar by local transformations
such that the language generated by the grammar (or the denotation according
to any other semantics for that matter) is preserved. There are two expression
arguments: one to be matched, and another one that replaces the matched ex-
pression. One of them must be in a “massage relation” to the other. The scope
of the transformation can be limited to one labelled production or to all produc-
tions for a specific nonterminal symbol.

The massage-equality relation is defined by these algebraic laws:
x? = (x; ε) (x?)? = x? (x, x
) = x+

x? = (x?; ε) (x?)+ = x
 (x
, x) = x+

x
 = (x+; ε) (x?)
 = x
 (x?, x
) = x


x
 = (x
; ε) (x+)? = x
 (x
, x?) = x


x? = (x?; x) (x+)+ = x+ (x+, x
) = x+

x+ = (x+; x) (x+)
 = x
 (x
, x+) = x+

x
 = (x
; x) (x
)? = x
 (x+, x?) = x+

x
 = (x?; x+) (x
)+ = x
 (x?, x+) = x+

x
 = (x?; x
) (x
)
 = x
 (x
, x
) = x


x
 = (x+; x
) x = (s1 :: x; s2 :: x)

The selectors are needed in the bottom right formula because a choice between
two unnamed x will always be normalized as x, as explained in §6.1.

5.3 Projection and Injection

A good example of the transformation operators that do not preserve semantics
of a language will be inject and project. Projection means removing compo-
nents of a sequential composition, injection means adding them. The operators
take one production as a parameter with additional or unnecessary components
marked in a special way. For projection the transformation engine checks that
the complete production exists in the grammar and replaces it with the new
production with fewer components, injection works similarly, but the other way
around. If the projected part is nillable, i.e. it can evaluate to ε, the operator is
always semantic-decreasing and is called disappear. If the projected part corre-
sponds to the concrete syntax, i.e. contains only terminal symbols, the operator
preserves abstract semantics and is called abstractize.

5.4 Transformation Generators

Grammar convergence researchhas started with an objective to use programmable
grammar transformations to surface the relationshipsbetween grammars extracted
from sources of different nature. Hence, we mostly aimed to provide a comprehen-
sive transformation suite, a convergence strategy and an infrastructure support.
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However, at some point we found it easier to generate the scripts to resolve specific
mismatches rather than to program them manually. A full-scale research on this
topic remains future work, yet below we present the results obtained so far and
the considerations that can serve as foundation for the next research steps.

Consider an example of converging concrete and abstract syntax definitions.
This situation requires a transformation that removes all details that are specific
to concrete syntax definitions, i.e., first and foremost strips all the terminals
away from the grammar. Given the grammar, it is always possible to generate
a sequence of transformations that will remove all the terminal symbols. It will
take every production in the grammar, search for the terminals in it and if
found, produce a corresponding call to abstractize (the name refers to going
from concrete syntax to abstract syntax). For instance, given the production:

[ifThenElse] expr:
"if" expr "then" expr "else" expr

The following transformation will be generated (the angle brackets denote parts
that will be projected away):

abstractize(
[ifThenElse] expr:

〈"if"〉 expr 〈"then"〉 expr 〈"else"〉 expr
);

Other generators we used in the FL case study were meant for removing all
selectors from the grammar (works quite similar to removing terminals), for
disciplined renamings (e.g., aligning all names to be lower-case) and for auto-
mated setting of the root nonterminals by evaluating them to be equal to top
nonterminals of the grammar.

Eliminating all unused nonterminals can also be a valuable generator in some
cases. For us it was not particularly practical since we wanted to look into each
nominal difference (which unused terminal is a subtype of) in order to better
align the grammars.

A more aggressive transformation generator example can be the one that
inlines or unchains all nonterminals that are used only once in the grammar.
This can become a powerful tool when converging two slightly different grammars
and thus can be considered a form of aggressive normalisation. We did not work
out such an application scenario for grammar convergence so far.

Deyaccification [12,20], a well-studied mapping between recursion-based and
iteration-based nonterminal definitions, can also be performed in an automated
fashion. In general, all grammar transformations that have a precondition en-
abling their execution, can be generated—we only need to try to apply them
everywhere and treat failed preconditions as identical transformations.

On various occasions we also talk about “vertical” and “horizontal” produc-
tions. The former means having separate productions for one nonterminal, as
in:

x:
foo

x:
bar
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The latter (horizontal) means having one production with a top choice, as in:

x:
foo
bar

There are also singleton productions that are neither horizontal nor vertical
(as in just “x: foo”), and productions that can be made horizontal by distri-
bution (as in “x: foo | bar”). According to this classification and to the need
of grammar engineers, it is possible to define a range of generators of differ-
ent aggressiveness levels that would search for horizontal productions and apply
vertical to them; or search for vertical productions and apply horizontal to
them; or search for potential horizontal productions and apply distribute and
vertical to them; etc.

It is important to note here that even though complete investigation of the
possible generators and their implementation remain future work, this alone will
not be enough to replace human expertise. Semi-automation will only be shifted
from “choose which transformation to apply” to “choose which generator to
apply”. A strongly validated strategy for automating the choice is needed, which
is not easy to develop, even if possible.

6 Convergence Targets

A target needs a name and one or more branches it consists of:
target:

name::id branch+

branch:
input::refid preparation::phase? nominal-matching::phase? structural-matching::phase?

(extension::phase | correction::phase | relaxation::phase)�

Each branch is defined as an input node and optionally some phases. The input
can refer to a source or to another target, which is then called an intermedi-
ate target. Phases of convergence have been related to the strategy advised
by [16], the notion is used to separate preliminary nominal matching scripts
from language-preserving refactorings doing structural matching and from un-
safe steps like relaxation, correction or extension. In case of no phases specified,
the input grammar is propagated to the output of the branch.
phase:

step::(perform-transformation::string | automated-transformation)+

automated-transformation:
method::id result::string

Any transformation step is either bound to an XBGF file or relates to a gen-
erator. The latter is not necessarily a one-to-one relation, in the Java case study
some scripts were designed so universally that they were re-used several times
for different sources. The re-use requires higher expertise level and better accu-
racy in grammar manipulation, but pays off in large projects. Transformation
generators are external tools that take a BGF grammar as an input and produce
an XBGF script applicable to that grammar and containing transformations of
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a certain nature, see §5.4. Generators are defined at the top-level just as trans-
formers or comparators, so that they can be applied in different places. LCI is
prepared for a generator to fail or to produce inapplicable scripts.

Whenever a generator or a script fails, that branch is terminated prematurely,
implying that all consecutive transformations will fail. For all branches that reach
the target, their results are compared pairwise to all others. If all branches fail
or the comparator reports a mismatch, the target fails.

The graph that depicts all sources and targets as vertices and all branches as
edges, is called a convergence graph (or a convergence tree, if it is a tree).
The examples have already been provided on Figures 2 and 3.

6.1 Grammar Comparison and Measurement

If (x, y) represents sequential composition of symbols x and y, and (x; y) repre-
sents a choice with x and y as alternatives, then the following formulæ are used
for normalising grammars as a post-transformation or pre-comparison activity:

(, )⇒ ε (; )⇒ fail

(. . . , (x, . . . , z), . . .)⇒ (. . . , x, . . . , z, . . .) (x, )⇒ x

(. . . , x, ε, z, . . .)⇒ (. . . , x, z, . . .) (x; )⇒ x

(. . . ; (x; . . . ; z); . . .)⇒ (. . . ; x; . . . ; z; . . .) ε+ ⇒ ε

(. . . ; x; fail; z; . . .)⇒ (. . . ; x; z; . . .) ε
 ⇒ ε

(. . . ; x; . . . ; x; z; . . .)⇒ (. . . ; x; . . . ; z; . . .) ε?⇒ ε

The output of the comparator, boiled down to the number of mismatches, is
used for measuring the progress when working on huge convergence scenarios
like the JLS one. We say that we face a nominal mismatch when a nonterminal
is defined or referenced in one of the grammars but not in the other. We face
a structural mismatch when the definitions of a shared nonterminal differ. For
every nonterminal, we count the maximum number of unmatched alternatives
(of either grammar) as the number of structural mismatches [16].

The Levenshtein distance and similar clone detection metrics used for code
analysis [21] can be applied to grammars. The result of such comparison can pos-
sibly be suggestive enough for automated generation of transformation scripts—
this is our future work in progress at the moment. There is significant related
work on schema matching [19] and model diffing [4] as well.

6.2 Validation and Error Control

Validator is an optional tool that is asked to check the XML validity of every
grammar produced in the convergence process. Normally all BGF grammars
produced during convergence are valid, which means if validation fails, there
is something fundamentally wrong with the extractor or another part that pro-
duced it. The LCI is ready for any external tool to fail or behave inappropriately.
For example, the generators discussed in the previous section can fail; can pro-
duce invalid scripts; can produce inapplicable scripts; can produce scripts that
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produce invalid grammars. The error handling mechanism must be prepared
for any of those possibilities and the report of the LCI should be useful for a
grammar engineer.

6.3 Pretty-Printing

Strictly speaking, the presentation level itself is not a necessary part in the
grammar convergence approach. However, the LCI does not exist in vacuum, and
in this section we describe three most important application points for grammar
representation. We call the presentation layer “pretty-printing” since it mostly
comprises taking a grammar stored in its abstract form and serialising it in a
specific concrete notation.

Debugging activities are unavoidable even for the best grammar engineers.
When grammars are extracted, they need some kind of cursory examination that
is cumbersome in pure XML. When grammars are compared, the comparison
results need to be presented in the most concise and the most expressive way
possible. To create a comprehensive test set one needs a way to print out any
particular test case in a clear form. For tasks like these in our infrastructure we
have uniform pretty-printers from BGF (grammars), XBGF (transformations)
and LDF (documentation).

Publishing can take a form of an example included in a paper or in a thesis,
or it can be a complete hypertext manual. Somewhat more sophisticated pretty-
printers are required at this stage: for instance, a language manual in LDF can
be transformed to a PDF document, to an HTML web page, to a LATEX source,
to an XSL:FO sheet, etc.

Connecting to other frameworks is the most complicated form of pretty-
printing. When a functionality is required by our research that is already handled
by an existing framework, it is better to pretty-print the input that is expected by
that framework, use the external tool, and import back the result. For instance,
the DMS software engineering toolkit [1] contains much more advanced grammar
comparator which we can utilise after pretty-printing BGF as DMS. Another
example can be the lack of parser generation facility in our own infrastructure:
the MetaEnvironment [11] can generate it for us, if we serialise BGF as SDF.
(Naturally, the lexical part could not be derived and had to be added by hand).

7 Conclusion

Essentially the LCI tool set is a model-driven framework for the domain of lan-
guage recovery, transformation and convergence. LCI Configuration Format is a
DSL that allows a language engineer to express the domain concepts in a concise
and abstract form. Several other DSLs were designed to be used for expressing
grammar knowledge, transformation steps, parse trees, language documents. It
has been shown both by argument and by example that utilising these DSLs
helps to take on convergence scenarios of considerable size. Our future areas of
research interest include both strengthening the automation aspect by providing
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more generators and introducing inferred transformation steps, on one hand, and
widening the application area to full-scale language convergence by working on
bidirectional and coupled transformations, on the other hand.
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13. Kort, J., Lämmel, R., Verhoef, C.: The Grammar Deployment Kit. In: van den
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Hedin, Görel 166
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Porkoláb, Zoltán 461
Prinz, Andreas 446

Selic, Bran 290
Sinkovics, Ábel 461
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