

Lecture Notes in Computer Science 6378
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Deborah L. McGuinness James R. Michaelis
Luc Moreau (Eds.)

Provenance
and Annotation of Data
and Processes

Third International Provenance andAnnotation Workshop
IPAW 2010, Troy, NY, USA, June 15-16, 2010
Revised Selected Papers

13

Volume Editors

Deborah L. McGuinness
Tetherless World Constellation
Rensselaer Polytechnic Institute
110 8th Street, Troy, NY 12180, USA
E-mail: dlm@cs.rpi.edu

James R. Michaelis
Tetherless World Constellation
Rensselaer Polytechnic Institute
110 8th Street, Troy, NY 12180, USA
E-mail: michaj6@cs.rpi.edu

Luc Moreau
University of Southampton
School of Electronics and Computer Science
Southampton SO17 1BJ, United Kingdom
E-mail: l.moreau@ecs.soton.ac.uk

Library of Congress Control Number: 2010940987

CR Subject Classification (1998): H.3-4, D.4.6, I.2, H.5, K.6, K.4, C.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-17818-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-17818-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

In Memoriam,
Eleanor Louise McGuinness,

1917 - 2010

Preface

Interest in and needs for provenance are growing as data proliferate. Data are
increasing in a wide array of application areas, including scientific workflow
systems, logical reasoning systems, text extraction, social media, and linked data.
As data volumes expand and as applications become more hybrid and distributed
in nature, there is growing interest in where data came from and how they were
produced in order to understand when and how to rely on them. Provenance,
or the origin or source of something, can capture a wide range of information.
This includes, for example, who or what generated the data, the history of data
stewardship, manner of manufacture, place and time of manufacture, and so on.
Annotation is tightly connected with provenance since data are often commented
on, described, and referred to. These descriptions or annotations are often critical
to the understandability, reusability, and reproducibility of data and thus are
often critical components of today’s data and knowledge systems.

Provenance has been recognized to be important in a wide range of areas in-
cluding databases, workflows, knowledge representation and reasoning, and dig-
ital libraries. Thus, many disciplines have proposed a wide range of provenance
models, techniques, and infrastructure for encoding and using provenance. One
timely challenge for the broader community is to understand the range of strengths
and weaknesses of different approaches sufficiently to find and use the best models
for any given situation. This also comes at a time when a new incubator group has
been formed at the World Wide Web Consortium (W3C) to provide a state-of-the-
art understanding and develop a roadmap in the area of provenance for Semantic
Web technologies, development, and possible standardization.

The Third International Provenance and Annotation Workshop (IPAW 2010)
built on the success of previous workshops held in Salt Lake City (2008), Chicago
(2006, 2002), and Edinburgh (2003). It was held during June 15–16, in Troy,
New York, at Rensselaer Polytechnic Institute. IPAW 2010 brought together
computer scientists from different areas and provenance users to discuss open
problems related to the provenance of computational and non-computational
artifacts. A total of 59 people attended the workshop. These attendees came
from the United States (USA), the United Kingdom (UK), the Netherlands,
Germany, Brazil, and Japan. We received 36 submissions in response to the
initial call for papers. Each of these submissions was reviewed by at least three
reviewers. Overall, 7 submissions were accepted as full papers, 11 were accepted
as medium-length papers, 7 were accepted as demo papers, and 6 were accepted
as short papers. In addition, a follow-up call for late-breaking work in the form of
a poster and abstract was issued, which resulted in 10 additional contributions
being made.

VIII Preface

The workshop was organized as a single-track event with paper, poster, and
demo sessions interleaved. Susan Davidson (University of Pennsylvania) pre-
sented a keynote address on provenance and privacy.

Prior to IPAW 2010, on June 14, 28 attendees participated in a Provenance
Hackathon, organized by Paul Groth. The aim of the Provenance Hackathon
was to see whether participants, grouped in teams, could quickly build end-user
applications that demonstrate unique benefits of provenance, through leveraging
existing infrastructure and provenance models. Each application was evaluated
based on provenance usage and usefulness by a panel of three judges. Details of
participating teams, as well as provenance strategies and solutions, can be found
at http://thinklinks.wordpress.com/2010/06/15/provenance-hackathon/

Immediately following IPAW 2010, a group of 28 researchers met to discuss
plans for the fourth and last Provenance Challenge. The Provenance Challenge
series was initiated to understand and compare expressiveness of provenance sys-
tems; it evolved into an interoperability challenge, in which provenance informa-
tion is exchanged between systems. The Second Provenance challenge led to the
specification of a common provenance model, the Open Provenance Model [1],
which was tested in the Third Provenance Challenge. The purpose of the fourth
and last Provenance Challenge is to apply the Open Provenance Model to a
broad end-to-end scenario, and demonstrate novel functionality that can only be
achieved by the presence of an interoperable solution for provenance. The partic-
ipants successfully identified a scenario and provenance queries as well as a draft
schedule. Details can be found at http://twiki.ipaw.info/bin/view/Challenge/
FourthProvenanceChallenge

After the challenge planning meeting, a group of 20 researchers met to dis-
cuss evolving issues with one provenance Interlingua (PML). The workshop was
organized by Paulo Pinheiro da Silva. Applications and tools were presented and
use cases were articulated to help motivate and prioritize language extensions.

IPAW 2010 and associated workshops were a very successful event with much
enthusiastic discussion and many new ideas generated. We are grateful for the
support of STI Innsbruck for sponsoring the Provenance Hackathon, of Microsoft
for sponsoring the banquet, and for Rensselaer for providing meeting space and
staff support. We also thank the Program Committee members for their thorough
reviews.

Reference

[1] Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth,
Natalia Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers, Beth Plale, Yogesh
Simmhan, Eric Stephan, and Jan Van den Bussche. The open provenance model
core specification (v1.1). Future Generation Computer Systems, July 2010. (DOI:
10.1016/j.future.2010.07.005) (URL: http://eprints.ecs.soton.ac.uk/21449/)

Organization

IPAW 2010 was organized by the Tetherless World Constellation at Rensselaer
Polytechnic Institute.

Workshop Co-chairs

Deborah L. McGuinness Rensselaer Polytechnic Institute, USA
Luc Moreau University of Southampton, UK

Program Committee

Christian Bizer Freie Universität Berlin, Germany
James Cheney University of Edinburgh, UK
Richard Cyganiak DERI, Ireland
Susan Davidson University of Pennsylvania, USA
Li Ding Rensselaer Polytechnic Institute, USA
Ian Foster University of Chicago,USA
Peter Fox Rensselaer Polytechnic Institute, USA
Juliana Freire University of Utah, USA
Alyssa Glass Stanford University, USA
Paul Groth Vrije Universiteit Amsterdam, The Netherlands
Olaf Hartig Universität zu Berlin, Germany
Michael Hausenblas DERI, Ireland
Bertram Ludaescher University of California, Davis, USA
Marta Mattoso UFRJ, Brazil
Simon Miles Kings College, UK
Paolo Missier University of Manchester, UK
Jim Myers NCSA, USA
Paulo Pinheiro da Silva University of Texas, El Paso, USA
Beth Plale Indiana University, USA
Satya Sahoo Wright State University, USA
Yogesh Simmhan Microsoft Research, USA
Kerry Taylor CSIRO, Australia
Jan Van den Bussche Universiteit Hasselt, Belgium
Evelyne Viegas Microsoft Research, USA
Jun Zhao University of Oxford, UK

Provenance Hackathon Chair

Paul Groth Vrije Universiteit Amsterdam, The Netherlands

X Organization

Publication Chair

James R. Michaelis Rensselaer Polytechnic Institute, USA

Local Organizers

Jacky Carley Rensselaer Polytechnic Institute, USA
Li Ding Rensselaer Polytechnic Institute, USA
Alvaro Graves Rensselaer Polytechnic Institute, USA
Timothy Lebo Rensselaer Polytechnic Institute, USA
Jamie P. McCusker Rensselaer Polytechnic Institute, USA

Poster/Demonstration Session Chairs

Stephan Zednik Rensselaer Polytechnic Institute, USA
Patrick West Rensselaer Polytechnic Institute, USA

Sponsoring Institutions

Microsoft Corporation, Redmond, WA, USA
Rensselaer Polytechnic Institute, Troy, NY, USA
Springer, New York, NY, USA
STI Innsbruck, Innsbruck, Austria

Table of Contents

Keynotes

On Provenance and Privacy . 1
Susan B. Davidson

Papers

The Provenance of Workflow Upgrades . 2
David Koop, Carlos E. Scheidegger, Juliana Freire, and
Cláudio T. Silva

Approaches for Exploring and Querying Scientific Workflow Provenance
Graphs . 17

Manish Kumar Anand, Shawn Bowers, Ilkay Altintas, and
Bertram Ludäscher

Automatic Provenance Collection and Publishing in a Science Data
Production Environment—Early Results . 27

James Frew, Greg Janée, and Peter Slaughter

Leveraging the Open Provenance Model as a Multi-tier Model for
Global Climate Research . 34

Eric G. Stephan, Todd D. Halter, and Brian D. Ermold

Understanding Collaborative Studies through Interoperable Workflow
Provenance . 42

Ilkay Altintas, Manish Kumar Anand, Daniel Crawl,
Shawn Bowers, Adam Belloum, Paolo Missier, Bertram Ludäscher,
Carole A. Goble, and Peter M.A. Sloot

Provenance of Software Development Processes . 59
Heinrich Wendel, Markus Kunde, and Andreas Schreiber

Provenance-Awareness in R . 64
Chris A. Silles and Andrew R. Runnalls

SAF: A Provenance-Tracking Framework for Interoperable Semantic
Applications . 73

Evan W. Patton, Dominic Difranzo, and Deborah L. McGuinness

Publishing and Consuming Provenance Metadata on the Web of Linked
Data . 78

Olaf Hartig and Jun Zhao

XII Table of Contents

POMELo: A PML Online Editor . 91
Alvaro Graves

Capturing Provenance in the Wild . 98
M. David Allen, Adriane Chapman, Barbara Blaustein, and
Len Seligman

Automatically Adapting Source Code to Document Provenance 102
Simon Miles

Using Data Provenance to Measure Information Assurance
Attributes . 111

Abha Moitra, Bruce Barnett, Andrew Crapo, and Stephen J. Dill

Explorations into the Provenance of High Throughput Biomedical
Experiments . 120

Jamie P. McCusker and Deborah L. McGuinness

Janus : From Workflows to Semantic Provenance and Linked Open
Data . 129

Paolo Missier, Satya S. Sahoo, Jun Zhao, Carole Goble, and
Amit Sheth

Provenance-Aware Faceted Search in Drupal . 142
Zhenning Shangguan, Jinguang Zheng, and Deborah L. McGuinness

Securing Provenance-Based Audits . 148
Roćıo Aldeco-Pérez and Luc Moreau

System Transparency, or How I Learned to Worry about Meaning and
Love Provenance! . 165

Stephan Zednik, Peter Fox, and Deborah L. McGuinness

Pedigree Management and Assessment Framework (PMAF) 174
Kenneth A. McVearry

Provenance-Based Strategies to Develop Trust in Semantic Web
Applications . 182

Xian Li, Timothy Lebo, and Deborah L. McGuinness

Reflections on Provenance Ontology Encodings . 198
Li Ding, Jie Bao, James R. Michaelis, Jun Zhao, and
Deborah L. McGuinness

Abstract Provenance Graphs: Anticipating and Exploiting Schema-Level
Data Provenance . 206

Daniel Zinn and Bertram Ludäscher

On the Use of Semantic Abstract Workflows Rooted on Provenance
Concepts . 216

Leonardo Salayandia and Paulo Pinheiro da Silva

Table of Contents XIII

Provenance of Decisions in Emergency Response Environments 221
Iman Naja, Luc Moreau, and Alex Rogers

An Approach to Enhancing Workflows Provenance by Leveraging Web
2.0 to Increase Information Sharing, Collaboration and Reuse 231

Aleksander Slominski

StarFlow: A Script-Centric Data Analysis Environment 236
Elaine Angelino, Daniel Yamins, and Margo Seltzer

GExpLine: A Tool for Supporting Experiment Composition 251
Daniel de Oliveira, Eduardo Ogasawara, Fernando Seabra,
Vı́tor Silva, Leonardo Murta, and Marta Mattoso

Data Provenance in Distributed Propagator Networks 260
Ian Jacobi

Towards Provenance Aware Comment Tracking for Web Applications . . . 265
James R. Michaelis and Deborah L. McGuinness

Browsing Proof Markup Language Provenance: Enhancing the
Experience . 274

Nicholas Del Rio, Paulo Pinheiro da Silva, and Hugo Porras

Towards a Threat Model for Provenance in e-Science 277
Luiz M.R. Gadelha Jr., Marta Mattoso, Michael Wilde, and
Ian Foster

Provenance Support for Content Management Systems: A Drupal
Example . 280

Aı́da Gándara and Paulo Pinheiro da Silva

ProvenanceJS: Revealing the Provenance of Web Pages 283
Paul Groth

Integrating Provenance Data from Distributed Workflow Systems with
ProvManager . 286

Anderson Marinho, Leonardo Murta, Cláudia Werner,
Vanessa Braganholo, Eduardo Ogasawara,
Sérgio Manuel Serra da Cruz, and Marta Mattoso

Using Data Lineage for Sub-image Processing . 289
Johnson Mwebaze, John McFarland, Danny Boxhoorn,
Hugo Buddelmeijer, and Edwin Valentijn

I Think Therefore I Am Someone Else: Understanding the Confusion
of Granularity with Continuant/Occurrent and Related Perspective
Shifts . 292

James D. Myers

XIV Table of Contents

A Multi-faceted Provenance Solution for Science on the Web 295
Edoardo Pignotti, Peter Edwards, and Richard Reid

Social Web-Scale Provenance in the Cloud . 298
Yogesh Simmhan and Karthik Gomadam

Using Domain Requirements to Achieve Science-Oriented Provenance . . . 301
Eric Stephan, Todd Halter, Terence Critchlow,
Paulo Pinheiro da Silva, and Leonardo Salayandia

Author Index . 305

On Provenance and Privacy

Susan B. Davidson

University of Pennsylvania

Provenance is a double-edged sword. On the one hand, it enables transparency,
understanding the ”why” and ”where” of data, and reproducibility of results. On
the other hand, it potentially exposes intermediate data and the functionality
of modules within the workflow. However, a scientific workflow often deals with
proprietary modules as well as private or confidential data, such as genomic
or medical information. Hence providing exact answers to provenance queries
over all executions of the workflow may reveal private information. In this talk
we discuss potential privacy issues in a scientific workflow - module privacy,
data privacy, and provenance privacy - and frame several natural questions: (i)
Can we formally analyze module, data or provenance privacy giving provable
privacy guarantees for an unlimited/bounded number of provenance queries?
(ii) How can we answer provenance queries, providing as much information as
possible to the user while still guaranteeing the required privacy? Then we look
at module privacy in detail and propose a formal model. Finally we point to
several directions for future work.

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Provenance of Workflow Upgrades

David Koop1, Carlos E. Scheidegger2, Juliana Freire1, and Cláudio T. Silva1

1 University of Utah
2 AT&T Research

Abstract. Provenance has become an increasingly important part of
documenting, verifying, and reproducing scientific research, but as users
seek to extend or share results, it may be impractical to start from the
exact original steps due to system configuration differences, library up-
dates, or new algorithms. Although there have been several approaches
for capturing workflow provenance, the problem of managing upgrades
of the underlying tools and libraries orchestrated by workflows has been
largely overlooked. In this paper we consider the problem of maintaining
and re-using the provenance of workflow upgrades. We propose different
kinds of upgrades that can be applied, including automatic mechanisms,
developer-specified, and user-defined. We show how to capture prove-
nance from such upgrades and suggest how this provenance might be
used to influence future upgrades. We also describe our implementation
of these upgrade techniques.

1 Introduction

As tools that capture and utilize provenance are accepted by the scientific com-
munity, they must provide capabilities for supporting reproducibility as systems
evolve. Like any information stored or archived, it is important that provenance
is usable both for reproducing prior work and migrating that work to new envi-
ronments. Just as word processing applications allow users to load old versions of
documents and convert them to newer versions and data processing libraries pro-
vide migration paths for older formats, provenance-enabled tools should provide
paths to upgrade information to match newer software or systems. Furthermore,
it is important to capture and understand the changes that were made in order
to run a previous computation in a new environment. One goal in documenting
provenance is that users can more easily verify and extend existing work. If a
given computation cannot be translated to newer systems or software versions,
extensions become more difficult.

Workflow systems have made significant strides in allowing users to quickly
compose a variety of tools while automatically capturing provenance information
during workflow creation and execution [11,8]. Such systems enforce a structure
on computations so that each workflow step is easily identifiable. Unfortunately,
while these systems provide interfaces to a variety of routines and libraries, they
are limited in their ability to upgrade workflows when the underlying routines
or their interfaces are updated. It is well-known that software tends to age [19].

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 2–16, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Provenance of Workflow Upgrades 3

CSVReader CSVReader

JoinData

ExtractColumnExtractColumn

MplScatterplot

MplFigure

MplFigureCell

ComposeData

StringToNumeric

StringToNumeric

CSVReader CSVReader

JoinData

ExtractColumnExtractColumn

MplScatterplot

MplFigure

MplFigureCell

AggregateData

AggregateData

StringToNumeric

StringToNumeric

a

b

c

Fig. 1. A workflow comparing road maintenance and number of miles of road by state
before and after upgrading two packages. In (a), the AggregateData module has been
replaced, and the developer has specified an upgrade to combine multiple aggregation
steps into a single ComposeData module. In (b), the interface of ExtractColumn has
been updated to offer a new parameter. Finally, in (c), the interface of the plotting
mechanism has not changed, but the implementation of that module has, as evidenced
by the difference in the background of the resulting plots.

As requirements change, so do implementations and interfaces. This is more
starkly obvious in the case of workflows, where different software tools from a
variety of different sources need to be orchestrated. Figure 1 shows an example
of different modifications that can be applied to workflow modules, including the
addition of new parameters, the merger of two modules, and the replacement of
the underlying computation. Still, many workflow systems do store information
about the versions of routines as provenance. We seek to use this information to
design schemes that allow users to migrate their work as newer algorithms and
systems are developed.

There are two major approaches when dealing with upgraded software compo-
nents and the documents or applications that utilize them. It is often important
to maintain old versions of libraries and routines for existing applications that
rely on them. In this case, an upgrade to a library should not replace the existing
version but rather augment existing versions. Such an approach is common in
system libraries and Web services where deleting previous versions can render
existing code unexecutable. However, when we can safely upgrade the document

4 D. Koop et al.

CSVReader CSVReader

JoinData

ComposeData

StringToNumeric

StringToNumeric

CSVReader CSVReader

JoinData

AggregateData

AggregateData

StringToNumeric

StringToNumeric

A

B

Upgrade Provenance (A → B)
delete connection StringToNumeric → AggregateData
delete connection AggregateData → AggregateData
delete module AggregateData version 1.0.4
delete connection AggregateData → JoinData
delete module AggregateData version 1.0.4
add module ComposeData version 1.1.0
add connection StringToNumeric → ComposeData
add connection ComposeData → JoinData

Execution Provenance (A)
execute module CSVReader version 0.8.0
execute module StringToNumeric version 0.9.0
→ execute module AggregateData version 1.0.4
→ execute module AggregateData version 1.0.4
execute module CSVReader version 0.8.0
execute module StringToNumeric version 0.9.0
execute module JoinData version 1.0.0
...

Execution Provenance (B)
execute module CSVReader version 0.8.0
execute module StringToNumeric version 0.9.0
→ execute module ComposeData version 1.1.0
execute module CSVReader version 0.8.0
execute module StringToNumeric version 0.9.0
execute module JoinData version 1.0.0
...

Fig. 2. On the right, we show the provenance of upgrading workflow (A) to the updated
workflow (B). Besides the provenance of the upgrade, here we show the provenance of
the executions of both (A) and (B). Note that version information is maintained in
both forms of provenance.

or application to match the new interfaces, we might modify the object to utilize
the new version. This second approach is more often used for documents than
for existing applications or code, because there exists an application that can
upgrade old versions. While the first approach is important to to ensure that the
original work can be replicated, because workflows are only loosely coupled to
their implementations and live in the context of a workflow system, this second
approach is sensible for them. Furthermore, as Figure 2 illustrates, by capturing
the provenance of the upgrades, we know exactly what has been changed from
the original version and how it might be reverted.

In order to accomplish the goal of upgrading an existing workflow, we must
solve the challenges of detecting when upgrades are necessary and applicable, as
well as dealing with routines (modules) from disparate sources. Because work-
flow systems often store information about the modules included in workflows,
it is possible to detect when the current implementation of a module differs from
one that was previously used. However, since they come from different sources,
each source may define or release upgrades differently. Thus, we cannot hope to
upgrade workflows atomically, without considering specific concerns from each
source. Finally, while some upgrades may be automated or specified by a devel-
oper, others may require user intervention. When the user needs to be in the
loop, it is important to make the process less tedious and error-prone.

The Provenance of Workflow Upgrades 5

Contributions. We propose a routine for detecting when a workflow is incom-
patible with current installed software and approaches for both automated and
user-defined upgrades. Our automated algorithm combines default routines for
cases when only implementations changes with developer-defined routines, and
uses a piecewise algorithm to process all components from each package at once.
This allows complex upgrades, like replacing a subworkflow containing three
modules with a single module. For user-defined upgrades, we suggest how a user
might define a single upgrade once and apply it automatically to a collection of
workflows. Finally, we discuss how upgrades should be considered as an integral
part of the information currently managed by provenance-enabled systems. It is
critical that we can determine what steps may have led to an upgraded workflow
producing different results from the original. We describe our implementation of
this upgrade framework in the VisTrails system [26].

2 Workflow Upgrades

2.1 Background

A workflow describes a set of computations as well as an order for these com-
putations. To simplify the presentation, we focus on dataflows; but note that
our approach is applicable to more general workflow models. In a dataflow, com-
putational flow is dictated by the data requirements of each computation. A
dataflow is represented as a directed acyclic graph where nodes are the compu-
tational modules and edges denote the data dependencies as connections between
the modules—an edge connects the output port of a module to an input port of
another. Often, a module has a set of associated parameters that can control the
specifics of one computation. Some workflows also utilize subworkflows where a
single module is itself implemented by an underlying workflow.

Because workflows abstract computation, there must be an association be-
tween the module instances in a workflow and the underlying execution en-
vironment. This link is managed by the module registry which maps module
identifiers to their implementations. For convenience and maintenance, related
modules are often grouped together in packages. Thus, the module identifier may
consist of package identifier, a module name, an optional namespace, and infor-
mation about the version of the implementation. Version information can serve
to inform us when implementations or interfaces in the environment change.

Consider, for example, the VisTrails system [26]. In VisTrails, each module
corresponds to a Python class that derives from a pre-defined base class. Users
define custom behaviors by implementing a small set of methods. These, in turn,
might run some code in a third-party library or invoke a remote procedure call
via a Web service. The Python class also explicitly describes the interface of the
module: the set of allowed input and output connections, given by the module’s
ports. A VisTrails package consists of a set of Python classes.

Incompatible Workflows. After a workflow is created, changes to the underlying
implementation of one or more of its modules may make the workflow incompat-
ible. Figure 3 shows an incompatible and a valid version of a workflow. Because

6 D. Koop et al.

CSVReader
!

CSVReader
!

JoinData
!

ExtractColumn
!

ExtractColumn
!

AggregateData
!

AggregateData
!

StringToNumeric
!

StringToNumeric
!

CSVReader CSVReader

JoinData

ExtractColumnExtractColumn

AggregateData

AggregateData

StringToNumeric

StringToNumeric

Fig. 3. Incompatible (left) and valid (right) versions of a workflow. In an incompat-
ible workflow, the implementation of modules is missing, and thus, no information is
available about the input and output ports of these modules.

module registry information is usually not serialized with each workflow, it can
be difficult for users to define upgrades for obsolete workflows. As shown in the
figure, although we may lack the appropriate code to execute a module or dis-
play the complete set of input and output interfaces for a module, we can display
each module with the subset of ports identified by connections in the workflow.
This is useful to allow users to edit incompatible workflows in order to make
them compatible with their current environment.

Provenance of Module Implementation. Workflow systems offer mechanisms for
capturing provenance information both about the evolution of the workflow it-
self and each execution of a workflow [11,12,21]. Information about the imple-
mentations used for each workflow module may be stored together with either
evolution or execution provenance (i.e., the execution log). However, note that if
the interface for a module changes, it will often require a change in the workflow
specification. Thus, while the execution provenance may contain information
about the versions used to achieve a result, any change in the interface of a
module may make reproducibility via execution provenance alone difficult. By
storing information about the implementations (like versions of each module)
as evolution provenance, we can connect the original workflow to all upgraded
versions.

Workflow evolution can be captured via change-based provenance [12], where
every modification applied to a workflow is recorded. The set of changes is rep-
resented as a tree where nodes correspond to workflow versions and an edge
between two nodes corresponds to the difference between the two corresponding
workflow specifications.

Any workflow instance can be reconstructed by applying the entire sequence
of change operations from the root node to the current version. For upgrades,

The Provenance of Workflow Upgrades 7

we can leverage this approach to record the set of changes necessary to update
an old workflow to a new version. Note that these changes define the difference
between the two versions, so our provenance will maintain an explicit definition
of the upgrade for reference and comparison.

2.2 Detecting the Need for Upgrades

To support upgrades, workflow systems must provide developers with facilities
to develop and maintain different versions of modules (and packages) as well as
detect and process inconsistencies when workflows created with older versions
of modules are materialized. First, it is important to have a mechanism for
identifying a group of modules (e.g., using a group key), as well as a version
indicator or some other method like content-hashing that can be used to identify
when module implementations may have changed. Ideally, any version identifier
of a module should reflect the version of the code or underlying libraries. In fact,
we may be able to aid developers by signaling when their code has changed,
alerting them to the need to change the version. Alternately, developers might
link version identifiers to revisions of their code as defined in a version control
system.

Second, we need to tackle the problem of identifying when and where upgrades
might be necessary. Upon opening a workflow, the system needs to check that the
modules specified are consistent with the implementation defined by the module
registry. As discussed earlier, this usually involves checking version identifiers
but could also be based on actual code. If there are inconsistencies, we need to
identify the type of discrepancy; the workflow may specify an obsolete version of
a module, a newer version, or perhaps the module may not exist in the current
registry. In all of these cases, we need to reconcile the workflow to the current
environment.

2.3 Processing Upgrades

We wish to allow developers to specify upgrade paths but also provide automated
routines when upgrades are trivial and allow users to override the specified paths.
The package developer can specify how a specific module is to be upgraded in
all contexts. If that is not possible or the information is not available for a given
module, we can attempt to automatically upgrade a module by replacing the old
version with a new version of the same module. A third method for upgrading a
workflow is to display the obsolete modules and let the user replace them directly.
Our upgrade framework leverages all three approaches. It starts with developer-
specified changes, provides default, automated upgrades if the developer has not
provided them, and allows the user to choose to accept the upgrade, modify it,
or design their own.

Developer-Defined Upgrades. Because the modules of any workflow may originate
from a number of different packages, we cannot assume that a global procedure
can upgrade the entire workflow. Instead, we allow developers to specify upgrade

8 D. Koop et al.

JoinData

ExtractColumnExtractColumn

MplScatterplot

AggregateData

JoinData

ExtractColumnExtractColumn

MplScatterplot

AggregateData

JoinData

ExtractColumnExtractColumn

MplScatterplot

AggregateData

JoinData

ExtractColumnExtractColumn

MplScatterplot

AggregateData

actColum actColum actColum actColum

Fig. 4. Upgrading a single module automatically involves deleting all connections, re-
placing the module with the new version, and finally adding the connections back

routines for each package. Specifically, we allow them to write a method which
accepts the workflow and the list of incompatible modules. A module may be
incompatible because it no longer exists in the package or its version is different
from the implementation currently in the registry. A developer needs to imple-
ment solutions to handle both of these situations, but the system can provide
utility routines to minimize the effort necessary for some types of changes. In
addition, there may be cases where the developer wants to replace entire sub-
workflows with different ones. Changes in the specification of parameter values
may also require upgrade logic. For example, an old version of module may have
taken the color specification as four integers in the [0,255] range, but the new
version requires floats in the [0.0, 1.0] range. Such conversions can be developer-
specified so that the a user need not modify their workflows in order for them
to work with new package versions. Note that developer-specified upgrades may
need to be aware of the initial version of a module. For example, if version 0.1 of
a module has a certain parameter, version 0.2 removes it, and version 1.0 adds it
back, the upgrade from 0.1 to 1.0 will be necessarily different than the upgrade
from 0.2 to 1.0.

Automatic Upgrades. We can attempt to automate upgrades by replacing the
original module with a new version of the same module. For any module that
needs an upgrade, we check the registry for a module that shares the same
identifying information (excluding version) and use that module instead. Note
that it is necessary to recreate all incoming and outgoing connections because
the old module is deleted and a new module is added. If an upgraded module
renames or removes a port, it is not possible to complete the upgrade. We can
either continue with other upgrades and notify the user, or rollback all changes
and alert the user. Also note that if two connected modules both require upgrades
we will end up deleting and adding at least one of the connections twice, once for
the first module replacement and again for the second module upgrade. Finally,
we need to transfer parameters to the new version in a similar procedure as that
used with connections. See Figure 4 for an example of an automatic upgrade.

User-Assisted Upgrades. While we hope that automatic and developer-specified
upgradeswillaccount formostof the cases, theymay fail for complicated situations.

The Provenance of Workflow Upgrades 9

In addition, a developer may not specify all upgrade paths or a user may desire
greater control over the changes. In such a scenario, we need to display the old,
incompatible pipeline,highlightmodules that are out-of-date, andallow the user to
performstandardpipelinemanipulations.Oneproblem is that,becausewemaynot
have access to the version of the package that was used to create the workflow, we
may not be able to display the module correctly for the user to interact with. With
VisTrails, we can display the basic graph connectivity as shown in Figure 3, but
we may not have entire module specification. Our display is therefore a “recovery
mode” where the workflow is shown but cannot be executed or interacted with in
the same way as a valid version. Once users replace all old modules with current
versions, they will able to execute the workflow and interact with it. We can aid
users by providing high-level actions that allow them to, for example, replace an
incompatible module with a new, valid one.

In addition, while users may be willing to perform one or two upgrades man-
ually, it would be helpful if we are able to aid users by automating future up-
grades based on those they have already defined. Workflow analogies provide this
functionality by allowing users to select existing actions including upgrades and
apply them to other workflows [20]. Because analogies compute a soft matching
between starting workflows, they can be applied to a variety of different work-
flows. Thus, for a large collection of workflows, a user may define a few upgrades
and compute the rest automatically using these analogies.

2.4 Provenance Concerns

Given a data product, we cannot hope to reproduce or extend the data prod-
uct without knowing its provenance—how it was generated. If our provenance
information includes information about the versions of the modules used, we
can use that to drive upgrades. Note that without version information, we may
incorrectly determine which upgrades are necessary. Thus, the provenance of the
original workflow is important to define the upgrade.

At the same time, we wish to capture the provenance of the upgrades. When
users either run old versions of workflows or upgrade and modify these versions,
it is important to track the changes both in the execution provenance and in
the workflow evolution provenance. By noting the specific module versions used
in the execution provenance, we can better support reproducibility. We need to
ensure that the versions recorded are exactly the versions executed, not allowing
silent upgrades to happen without being noted in the provenance. Similarly,
whenever a user upgrades a workflow, the changes that took place should be
noted as evolution provenance so that subsequent changes are captured correctly.
See Figure 2 for an example of captured provenance information that is relevant
for upgrades.

As a workflow evolves over a number of years and is modified by a number of
users, it is important to track the provenance of this evolution. Upgrades may
be critical changes in workflow development and often occur when a new user
starts to revise an existing result. By keeping track of these actions, we may
be able to identify how, for example, inconsistencies in results may have arisen

10 D. Koop et al.

because of an upgrade. In addition, we do not lose links as workflows are refined.
Without upgrades, a user may create a (duplicate) workflow rather than re-use
an existing one. If that occurs, we lose important provenance of the original
workflow and related workflows.

3 Implementation

We have implemented the framework described in Section 2 in the VisTrails
system. Below, we describe this implementation.

In VisTrails, when a workflow is loaded (or materialized), it is validated
against the current environment: the classes defining the modules and the port
types for each module. To detect whether modules have changed, we begin by
checking each module and ensuring the requested version matches the registry
version. Next, we check each connection to ensure that the ports they connect
are also valid. Finally, we check the parameter types to ensure they match those
specified by the implementation. If any mismatches are detected, we raise an
exception that indicates what the problem is and which part of the workflow
it affects. Note that if one problem occurs, we can immediately quit validation
and inform the user, but if we wish to fix the problems, it is useful to identify
all issues. Thus, we collect all exceptions during validation, and pass them to a
handler.

We attempt to process all upgrades at once, with the exception of subwork-
flows which are processed recursively. To this end, we sort all requests by the
packages that they affect, and attempt to solve all issues one package at a time.
This way, a package developer can write a handler to process a group of upgrade
requests instead of processing each request individually.

Replace, Remap, and Copy. Note that an upgrade that deletes an old module
and adds a new version discards information about existing connections, pa-
rameters, and annotations. In order to maintain this information as well as its
provenance, we extended VisTrails change-based provenance with a new change
type (or action) that replaces the original module, remaps the old information,
and copies it to a new version of the module. This ensure that we transfer all
relevant information to the new version and maintain its provenance. The new
action extracts information about connections, parameters and annotations from
the old module before replacing it, and then adds that information to the new
module. Note that, because interfaces may change, we allow the user to remap
parameter, port, or annotation names to match the new module’s interface.

Algorithm. Formally, our algorithm for workflow upgrades takes a list of de-
tected inconsistencies between a workflow and the module registry and produces
a set of actions to revise the workflow. We categorize inconsistencies as “miss-
ing”, “obsolete”, or “future” modules, and this information is encoded in the
exception allowing developers to tailor upgrade paths accordingly. We begin by
sorting these errors by package identifier. Then for each package, we check if the
package has a handler for all types of upgrades. If it does, we call that handler.

The Provenance of Workflow Upgrades 11

If not, we cannot hope to reconcile “missing” modules. For obsolete modules,
we can attempt to automatically reconcile them by replacing them with newer
versions. For future modules, we can attempt to downgrade them automatically,
but usually we raise this error to the user.

Automatic upgrades work module by module, and for each module, we first
check to see if an upgrade is possible before proceeding. An upgrade is possible if
the module interface has not changed from the version specified by the workflow
and the version that exists on the system. We check that by seeing if each
connection and parameter setting can be trivially remapped. If they can, we
extract all of the connections and parameters before deleting all connections to
the module and the module itself. Then, we add the new version of the module
and replace the connections and parameters. All of these operations are encoded
as a single action.

For developer-defined upgrades, we pass all of the information about incon-
sistencies as well as the current state of the workflow to the package’s upgrade
handler. The handler can make use of several capabilities of the workflow system
to minimize the amount of code. Specifically, we have a remap function that al-
lows a developer to specify how to replace a module when interface changes are
due to renaming. In addition, developers can replace entire pieces of a workflow,
but doing so might require locating subworkflows that match a given template.
Many workflow systems already have query capabilities, and these can be ap-
plied to facilitate these more complex upgrades. As with automatic upgrades,
these operations are encoded as a single action.

If automated and developer-defined upgrades cannot achieve a compatible
workflow, a user can define an upgrade path. Most of this process is manual
and mirrors how a user might normally update a workflow. Until the workflow
is compatible with the current environment, the workflow cannot be executed,
giving users a well-defined goal. Upon achieving a valid workflow, we can save the
user’s actions and use workflow analogies [20] to help automate future upgrades.

Subworkflows. To handle subworkflows, both validation and upgrade handling
are performed recursively. Thus, we process any workflow by first recursing on
any subworkflow modules, processing the underlying workflows, and then con-
tinuing with the rest of the workflow. However, our upgrades must be handled
using an extra step; if we update a subworkflow, we must also update the mod-
ule tied to that subworkflow to reflect any changes. For example, a subworkflow
may modify its external interface by deleting inputs or outputs. Thus, we must
upgrade a module after updating its underlying subworkflow.

Preferences. While upgrades are important, we wish to add them without in-
terfering with a user’s normal work. Besides the choice between upgrading or
trying to load the exact workflow with older package versions, a user may also
wish to be notified of upgrades and persist their provenance in different ways.
Specifically, if old versions exist, a user may wish to always try use them, au-
tomatically upgrade, or be prompted for a decision. If not, a user has a similar
selection of options: never upgrade, always upgrade, or be presented with the

12 D. Koop et al.

choice to upgrade. When a user wants to upgrade, he may choose to persist the
provenance of these upgrades immediately or delay saving these changes until
other changes occur. If a user is browsing workflows, it may may reasonable to
only persist upgrade provenance when the workflow is modified or run. This
way, a user can examine a workflow as it would appear after an upgrade, but the
persistence of these upgrades is delayed until something is changed or the work-
flow is executed. Users might also want to have immediate upgrades where the
upgrade provenance is persisted exactly when any workflow is upgraded, even if
the user is only viewing the workflow.

4 Discussion

While perfect reproducibility cannot be guaranteed without maintaining the ex-
act system configuration and libraries, we believe that workflow upgrades offer a
sensible approach to manage the migration from older workflows to new environ-
ments. Note that provenance allows us to always revisit the original workflow,
and we can run this version if we can reconstruct the same environment. By
storing the original implementations along with workflows, we may be able to
reproduce the original run, although changes in the system configuration may
limit such runs. Thus, coupling provenance with version control systems could
ensure that we users can access previous package implementations. However,
when extending prior work in new environments, upgrades also serve to convert
older work to more efficient and extensive environments. In addition, manag-
ing multiple software versions is a non-trivial task, and even with a modern
OS package management system, installing a given package in the presence of
conflicts is actually known to be NP-Complete [9]. Thus, we cannot expect in
general to easily run arbitrarily old library versions. Because workflows abstract
the implementation from the computational structure, the results of upgrades
are more likely be valid.

Some workflow systems use Web services or other computational modules
that are managed externally. In these cases, we may not know if the interface
or implementation may have changed so it is harder to know when upgrades are
necessary. However, the services may make version information available or the
workflow system may be able to detect a change in the interface [5]. In this case,
we are not able to leverage developer-specified upgrade routines, but we should
be able to accomplish automatic or user-specified upgrades.

When using change-based provenance to track upgrades, a user can see both
the original evolution as well as the upgrades and progress after the upgrades.
See Figure 5 for an example. It may be useful to upgrade an entire collection
of related workflows while retaining the original provenance of exploration, but
adding the upgraded versions may lead to a complex interface. We believe that
restructuring the tree to display the original history but with links to the up-
grades might be useful. Finally, we emphasize that the change-based model for
the workflows provenance in VisTrails is an attractive medium in which to incor-
porate the upgrading data. Since the upgrades as represented as actions, they are

The Provenance of Workflow Upgrades 13

aliases

volume renderingbone

bone_camera bone_camera

volume renderingbone

aliases bone_camera

bone

aliases

volume rendering

Fig. 5. Workflow Evolution before and after upgrades as well as after retagging the
nodes

treated as first-class data in the system, and so the extensive process provenance
capabilities of VisTrails can be directly used. For example, upgrade actions can
then be used in queries or incorporated into statistical analyses [14,20,21].

5 Related Work

Workflow systems have recently emerged as an attractive alternative for repre-
senting and managing complex computational tasks. The goal behind these sys-
tems is to provide the utility of the shell script in a more user-friendly, structured
manner. Workflow systems incorporate comprehensive metadata which, among
other advantages, facilitates programming and distribution of results [15], repro-
ducibility [12], allows better execution monitoring [18], and provides potential
efficiency gains [3].

As the auditability and cost of generating results has increased, managing the
provenance of data products [22] and computational processes [12] has become
very important. Together, these ideas allow users to obtain a fairly comprehen-
sive picture of the programs and data that were used to generate final results.
However, these descriptions are, in a sense, static. In general, the processes are
assumed to stay the same for the lifetime of the workflow, and, as we have
argued before, longevity necessarily introduces changing requirements and inter-
faces. Our approach serves to detect and manage these changes to underlying
implementations while still keeping the attractive features of workflow systems
described above.

It is well known that longevity introduces novel challenges for maintainabil-
ity of software systems, in particular in the presence of complicated dependen-
cies [19]. There have been a number of approaches to problem of managing
software upgrades, in particular, in understanding and ensuring safety proper-
ties of dynamic updates in, for example, running code or persistent stores [4,10].
In small-scale environments, the solutions tend to involve the description (or
prediction) of desired properties to be maintained [16]. For deployments at the

14 D. Koop et al.

scale of entire institutions or large computer clusters, they tend to involve careful
scheduling, and staged deployment of upgrades [1,6].

Component-based software has evolved to separate different concerns in or-
der to provide wide-ranging functionality. While usually at a lower level than
workflow systems, component objects use well-defined interfaces and are substi-
tutable [24]. For this reason, it is also important to track the component evo-
lution and versioning [23]. The term “dependency hell” was coined to describe
problems with compatibility when replacing components with new versions. Mc-
Camant and Ernst describe methods to identify such incompatibilities [17] while
Stuckenholz proposes “intelligent component swapping” to update multiple com-
ponents at once [23].

Web services are another kind of component-based architecture. Since the
standards do not address the evolution of Web services, developers must rely on
design patterns and best practices [5]. Specifically, adding to an interface is pos-
sible, but changing or removing from that interface is not. Andrikopoulos et al.
formalize the concepts of service evolution [2]. There are a variety of approaches
that seek to develop mechanisms to version Web services including using a chain
of adapters [13] and hierarchical abstraction [25]. In order to publish such ver-
sions, services are distinguished via namespaces or URLs. In contrast to much
of the work for component upgrades, our approach seeks to add capability by
updating older workflows rather than only maintaining backward compatibility.

In this paper, we focus on the problem of providing a means of describing
upgrade paths so that a workflow can be automatically updated, its upgrade
history appropriately recorded, and its execution sufficiently similar to the one
before the upgrade. Such problems exist even when lower-level upgrades are
successfully deployed. In that sense, our mechanisms for coping with upgrades
are closer in spirit to mechanisms for automatically updating database queries
after relational schemas have changed [7].

6 Conclusion and Future Work

We have proposed a framework for workflow upgrades and described its im-
plementation in the VisTrails system. Our framework handles three types of
upgrades—automated, developer-specified, and user-defined, and we have dis-
cussed how these can be supported in a systematic fashion. We have also shown
how the framework leverages provenance information to accomplish upgrades
and produces updated provenance detailing the changes introduced by the up-
grades. Our implementation is currently available in nightly releases of VisTrails,
and we are planning to incorporate it into the next major release of VisTrails.

One area that we would like to explore further is the interface for involving
the user in upgrades. The “replace module” action allows users to specify how an
upgrade is accomplished, and we believe a user might drag a new module onto
the incompatible module to replace it. At the same time, if the routine specifi-
cations do not exactly match, the user should be able to specify the remapping,
similar to the method available to developers in their code. We might extend
this functionality to allow the user to specify the connections visually.

The Provenance of Workflow Upgrades 15

In addition to capturing the provenance of upgrades and using this informa-
tion to guide future user-driven, manual upgrades, we believe we might also use
this provenance for further analysis. For example, we might be able to exam-
ine the actions used in upgrades to mine rules for packages whose developers
have not defined upgrade paths. It may also be interesting to try to analyze
performance or accuracy changes in workflow execution after upgrades.

Acknowledgments

Our research has been funded by the National Science Foundation (grants IIS-
0905385, IIS-0844546, IIS-0746500, ATM-0835821, CNS-0751152, IIS-0713637,
OCE-0424602, IIS-0534628, CNS-0514485, IIS-0513692, CNS-0524096), the De-
partment of Energy SciDAC (VACET and SDM centers, and SBIR DE-FG02-
85157), and IBM Faculty Awards (2005, 2006, 2007, and 2008).

References

1. Ajmani, S., Liskov, B., Shrira, L.: Scheduling and simulation: how to upgrade
distributed systems. In: HOTOS, pp. 8–8 (2003)

2. Andrikopoulos, V., Benbernou, S., Papazoglou, M.P.: Managing the evolution of
service specifications. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 359–374. Springer, Heidelberg (2008)

3. Bavoil, L., Callahan, S., Crossno, P., Freire, J., Scheidegger, C., Silva, C., Vo,
H.: VisTrails: Enabling interactive, multiple-view visualizations. In: Proceedings
of IEEE Visualization, pp. 135–142 (2005)

4. Boyapati, C., Liskov, B., Shrira, L., Moh, C.-H., Richman, S.: Lazy modular up-
grades in persistent object stores. SIGPLAN Not. 38(11), 403–417 (2003)

5. Brown, K., Ellis, M.: Best practices for Web services versioning. IBM developer-
Works (2004),
http://www.ibm.com/developerworks/webservices/library/ws-version/

6. Crameri, O., Knezevic, N., Kostic, D., Bianchini, R., Zwaenepoel, W.: Staged de-
ployment in mirage, an integrated software upgrade testing and distribution sys-
tem. SIGOPS Oper. Syst. Rev. 41(6), 221–236 (2007)

7. Curino, C., Moon, H.J., Zaniolo, C.: Automating database schema evolution in
information system upgrades. In: HotSWUp, pp. 1–5 (2009)

8. Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and op-
portunities. In: Proceedings of SIGMOD, pp. 1345–1350 (2008)

9. di Cosmo, R.: Report on formal management of software dependencies. Technical
report, INRIA,September EDOS Project Deliverable WP2-D2.1 (2005)

10. Dumitraş, T., Narasimhan, P.: Why do upgrades fail and what can we do about
it? In: Bacon, J.M., Cooper, B.F. (eds.) Middleware 2009. LNCS, vol. 5896, pp.
1–20. Springer, Heidelberg (2009)

11. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for computational tasks:
A survey. Computing in Science and Engineering 10(3), 11–21 (2008)

12. Freire, J., Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E., Vo, H.T.:
Managing rapidly-evolving scientific workflows (Invited paper). In: Moreau, L.,
Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 10–18. Springer, Heidelberg
(2006)

http://www.ibm.com/developerworks/webservices/library/ws-version/

16 D. Koop et al.

13. Kaminski, P., Litoiu, M., Müller, H.: A design technique for evolving web services.
In: CASCON 2006: Proceedings of the 2006 Conference of the Center for Advanced
Studies on Collaborative research, p. 23. ACM, New York (2006)

14. Lins, L., Koop, D., Anderson, E., Callahan, S., Santos, E., Scheidegger, C., Freire,
J., Silva, C.: Examining statistics of workflow evolution provenance: a first study.
In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069, pp. 573–579.
Springer, Heidelberg (2008)

15. Ludascher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee,
E.A., Tao, J., Zhao, Y.: Scientific workflow management and the kepler system:
Research articles. Concurr. Comput.: Pract. Exper. 18(10), 1039–1065 (2006)

16. McCamant, S., Ernst, M.D.: Predicting problems caused by component upgrades.
In: ESEC, pp. 287–296 (2003)

17. McCamant, S., Ernst, M.D.: Early identification of incompatibilities in multi-
component upgrades. In: Vetta, A. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 440–
464. Springer, Heidelberg (2004)

18. Microsoft Workflow Foundation,
http://msdn2.microsoft.com/en-us/netframework/aa663328.aspx

19. Parnas, D.L.: Software aging. In: Taylor, R.N. (ed.) ICSE-WS 1994 and SE-HCI
1994. LNCS, vol. 896, pp. 279–287. Springer, Heidelberg (1995)

20. Scheidegger, C.E., Vo, H.T., Koop, D., Freire, J., Silva, C.T.: Querying and creating
visualizations by analogy. IEEE TVCG 13(6), 1560–1567 (2007)

21. Scheidegger, C.E., Koop, D., Santos, E., Vo, H.T., Callahan, S.P., Freire, J., Silva,
C.T.: Tackling the provenance challenge one layer at a time. Concurrency and
Computation: Practice and Experience 20(5), 473–483 (2008)

22. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science.
SIGMOD Rec. 34(3), 31–36 (2005)

23. Stuckenholz, A.: Component evolution and versioning state of the art. SIGSOFT
Softw. Eng. Notes 30(1), 7 (2005)

24. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

25. Treiber, M., Juszczyk, L., Schall, D., Dustdar, S.: Programming evolvable web
services. In: PESOS 2010: Proceedings of the 2nd International Workshop on Prin-
ciples of Engineering Service-Oriented Systems, pp. 43–49. ACM, New York (2010)

26. VisTrails, http://www.vistrails.org

http://msdn2.microsoft.com/en-us/netframework/aa663328.aspx
http://www.vistrails.org

Approaches for Exploring and Querying Scientific
Workflow Provenance Graphs

Manish Kumar Anand1, Shawn Bowers2, Ilkay Altintas1, and Bertram Ludäscher1,3

1 San Diego Supercomputer Center, University of California, San Diego, USA
2 Department of Computer Science, Gonzaga University

3 UC Davis Genome Center, University of California, Davis
mkanand@sdsc.edu, bowers@gonzaga.edu, altintas@sdsc.edu,

ludaesch@ucdavis.edu

Abstract. While many scientific workflow systems track and record data prove-
nance, few tools have been developed that provide convenient and effective ways
to access and explore this information. Two important ways for provenance in-
formation to be accessed and explored is through browsing (i.e., visualizing and
navigating data and process dependencies) and querying (e.g., to select certain
portions of provenance graphs or to determine if certain paths exist between items
within a graph). We extend our prior work on representing and querying data
provenance by showing how these can be effectively and efficiently combined
into an interactive provenance browser. The browser allows different views of
provenance to be explored and queried, where queries are expressed in a declar-
ative graph-based provenance query language. Query results are expressed as
provenance subgraphs, which can be further visualized and navigated through the
browser. The browser supports a generic model of provenance that can be used
with various workflow computation models, and has a direct translation to the
Open Provenance Model. We present the provenance model, the query language,
and describe the overall browser architecture and implementation.

1 Introduction

Scientific workflow provenance is commonly represented using data and process de-
pendency graphs [1,2] in which dependencies represent causal relationships among
data products and/or process invocations. As workflows are executed, many workflow
execution environments (e.g., [3,4,5]) store the associated provenance graphs within
dedicated provenance stores (i.e., databases). This provenance information is of great
interest to scientists and other users, e.g., for determining data lineage, result interpre-
tation, and evaluating the quality of workflow results.

While many workflow systems store provenance information, few provide users
with tools for effectively and efficiently exploring, accessing, and querying the prove-
nance graphs associated with workflow runs. In this paper, we address problems in
exploring and querying provenance information by presenting approaches that combine
provenance visualization and navigation with support for incremental query. These ap-
proaches have been implemented within a provenance browser application. The browser
supports a generic model of provenance that is compatible with a number of existing

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 17–26, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

18 M.K. Anand et al.

(d). Complete invocation dependency view(c). Data lineage graph for (a)

(b). Flow graph with fine-grained node dependencies for the first invocation of each actor

Softmean:1

AlignWarp:1

AlignWarp:2

AlignWarp:3

AlignWarp:4

Reslice:1

Reslice:2

Reslice:3

Reslice:4

Slicer:1

Slicer:2

Slicer:3

Convert:1

Convert:2

Convert:3

1918

17

16

14

13

11

10

9

7

6 AlignWarp:1
AlignWarp:1

AlignW
arp:1

Ali
gn
Wa
rp:
1 AtlasXGraphicAtlasXSlice

Image

Header

Image

Header

WarpParamSet

Image

Header

Header

Image

Convert:1

Slicer:1

Sl
ic
er
:1

Softmean:1

Softmean:1

Softm
ean:1

So
ftm
ea
n:
1

Reslice:1

Re
sl
ic
e:
1

1

2

6 7 8

9 10

Images

AnatomyImage

Image Header
RefImage

Image Header

...

D1

Reslice
:1

AlignWarp:1
2

11

AnatomyImage

WarpParamSet

D2
1Images

... 12

13

ReslicedImage

D3

14

Image Header

1Images

...

Softmean:1

15

16

AtlasImage

D4

17

Image Header

1

...

Images

Slicer:1

15

18

AtlasXImage

D5

AtlasXSlice

1

...

Images

Convert:1

15

19

AtlasXImage

D6

AtlasXGraphic

1

...

Images

AlignWarp:1 Reslice:1 Softmean:1 Slicer:1 Convert:1

(a). The first provenance challenge fMRI workflow graph

AlignWarp Reslice Softmean Slicer Convert

Fig. 1. (a) Workflow for the fMRI image analysis of the first provenance challenge; (b) Trace
showing the first invocations of each actor (for a typical run); (c) Implied fine-grain data depen-
dency graph for the data items in (b); and (d) Implied invocation dependency graph for the run,
with the first invocations of each actor shown in gray

provenance models (including the Open Provenance Model [1]), and incorporates stor-
age and query optimization that makes browsing and querying over (often large and
complex [6]) provenance graphs feasible.

Contributions. This paper describes the different approaches used in implementing
the provenance browser (first presented in [7]). In particular, we briefly describe the
provenance model and query language (QLP) of the browser and show how these ap-
proaches can easily accommodate the Open Provenance Model (OPM). We then present
the provenance browser1 focusing on its architecture, implementation, and optimization
techniques. The implementation allows users to easily navigate different aggregated
views of underlying provenance graphs and specify new provenance views through in-
cremental queries. Our approach also maintains the user’s query history, allowing users
to go back to and navigate previous query results.

2 Model of Provenance and Query Language

The Provenance Model. We assume workflow runs follow a standard dataflow-based
workflow computation model (e.g., [3,4]). However, our provenance model also sup-
ports processes that (1) can execute multiple times in a workflow run (and in parallel),
and (2) can recieve and produce data products that are structured via labeled, nested
collections (e.g., data can be organized into XML structures).

Consider the simple workflow in Fig. 1(a) representing the First Provenance Chal-
lenge fMRI workflow [1]. Steps in the workflow are referred to as actors that are invoked

1 The browser is open-source and can be freely downloaded from
http://www.daks.ucdavis.edu/projects/pb, or from within Kepler as the “provenance-
browser” extension module.

http://www.daks.ucdavis.edu/projects/pb

Approaches for Exploring and Querying Scientific Workflow Provenance Graphs 19

over input data supplied by previous steps. This example takes a set of anatomy images
representing 3D brain scans and a reference image, and creates a graphical image for
each 2D slice. In this example workflow implementation we assume each invocation
of an actor receives an XML data structure, performs an update on a portion of that
structure, and then sends the updated version of the structure to downstream actors (see
Fig. 1(b)).

Fig. 1(b) shows the first invocation of each actor for a typical run of the workflow.
The invocation of the AlignWarp actor (AlignWarp:1) modifies the first AnatomyImage
collection (node 2), and replaces its contents with a WarpParamSet data token (node
11). The invocation of the Reslice actor uses this WarpParamSet to generate a new
Image and Header data token (nodes 13 and 14, respectively). Since only a part of an
XML data structure D may be modified by an invocation, we also represent explicit data
dependencies as part of a run. For example, the dashed arrow from node 11 to node 2 in
Fig. 1(b) states that the WarpParamSet was created from the AnatomyImage collection
by the first invocation of AlignWarp. Note that node 11 implicilty depends on each of
the descendents of node 2. Each descendent of a collection also implicitly inherits the
dependencies of its ancestors, e.g., node 13 depends on node 11 since it is a descendent
of node 12. Taken together, Fig. 1(b) denotes a portion of the trace for a run of Fig. 1(a),
in this case corresponding to the first invocation of each workflow actor.

More formally, we define a trace as an acyclic digraph T = (V,E,τ,L). Each vertex
V = S∪ I represents either a data structure s ∈ S or an actor invocation i ∈ I. Edges
E = Ein ∪Eout are in-edges Ein ⊆ S× I or out-edges Eout ⊆ I×S. Each trace includes a
function τ : S →X that maps structures s ∈ S to their corresponding XML trees τ(s)∈X .
We assume an underlying space of XML nodes N from which XML trees X are built,
and a function nodes(x) ⊆ N that gives the nodes of a structure x ∈ X . Further, we
allow different versions of XML trees τ(s) ∈ X to share nodes from N. To support fine-
grained dependencies we consider ternary node-level lineage relations L ⊆ N × I ×N
such that (n1, i,n2) ∈ L implies n1 was required for the derivation of n2 by i. We define
the relations in, out, ddep, and idep using the following Datalog rules.

in(n, i) :- Ein(s, i), n ∈ nodes(τ(s)).
out(i,n) :- Eout(i,s), n ∈ nodes(τ(s)).

ddep(n2,n1) :- L(n1, i,n2).
idep(i2, i1) :- L(n1, ii,n2),L(n2, i2,n3).

The last two relations can be used to construct standard dependency graphs, e.g., see
Fig. 1(c) and (d).

Correspondence to the Open Provenance Model (OPM). OPM traces can be repre-
sented using the above model (with the major difference being that OPM lacks explicit
support for modeling structured data). Within OPM, artifacts denote “opaque” data ob-
jects (atomic with respect to OPM), used edges relate artifacts to the processes they
were input to, wasGeneratedBy edges relate artifacts to the process they were produced
by, wasDerivedFrom edges define data dependencies between artifacts, and wasTrig-
geredBy edges denote dependencies between processes. OPM employs the following
first-order constraints (i.e., “completion rules”) over these edges [1].

20 M.K. Anand et al.

(a). Combined process and data dependency view used in the Provenance Browser to show dataflow

Softmean:1AlignWarp:1 Reslice:1 Slicer:1 Convert:1

10

9

7

6Image

Header

Header

Image
11

WarpParamSet 14

13

Image

Header

17

16

Image

Header

1918

AtlasXGraphicAtlasXSlice

Softmean:1AlignWarp:1 Reslice:1 Slicer:1 Convert:1

10

9

7

6Image

Header

Header

Image
11

WarpParamSet 14

13

Image

Header

17

16

Image

Header

1918

AtlasXGraphicAtlasXSlice

used
used

used

use
d

used
used

used

used

used

used wasGenBywasGenBy
wasGen

By

wasGenBy

wasGen
By

wasGenBy

wasGenBy

(a). Standard Open Provenance Model view of (a)

Fig. 2. (a) A standard provenance-browser view of a provenance graph; and (b) the same view
with corresponding OPM edges

∀a∀p1∀p2(wasGeneratedBy(a, p1)∧used(p2,a) → wasTriggeredBy(p2, p1))
∀p1∀p2(wasTriggeredBy(p2, p1) →∃a(wasGeneratedBy(a, p1))∧used(p2,a))
∀a1∀a2(wasDerivedFrom(a2,a1) →∃p(used(p,a1)∧wasGeneratedBy(a2, p)))

If OPM artifacts are represented as single-node tree structures, we have the following
equivalences: used corresponds to the in relation; wasGeneratedBy corresponds to the
out relation; wasDerivedFrom corresponds to the ddep relation; and wasTriggeredBy
corresponds to the idep relation. Given these, it can easily be shown that the OPM com-
pletion rules for wasDerivedFrom and wasTriggeredBy are equivalent to the ddep and
idep rules, respectively. Fig. 2(a) shows a standard provenance view used by the prove-
nance browser that gives the in and out relations for the first actor invocations of the
example in Fig. 1; and Fig. 2(b) shows the same basic view but using the corresponding
OPM used and wasTriggeredBy edges. A similar graph can be constructed for the ddep
to wasDerivedBy, and idep to wasTriggeredBy correspondences.

The Query Language for Provenance (QLP). QLP queries are expressed against
provenance trace graphs, and can include constructs for querying the different dimen-
sions of traces including lineage relations among nodes and invocations, in-out edges
among input and output structures of invocations, and structural relations among nodes
within and across data structures. The syntax of QLP is similar in spirit to tree and
graph-based languages such as XPath and generalized path expressions, such as those
used in Lorel [8]. However, QLP queries primarily act as filters over lineage relations.
That is, given a set of lineage relations, a QLP query selects and returns a subset of the
relations.

To illustrate QLP, the lineage queries “*..19”, “6 .. *”, and “#Softmean .. #Convert.. *”
return lineage relations denoting sets of paths that: start from any node and end at node
19; start at node 6 and end at any node; and start at invocations of Softmean and pass
through invocations of the Convert actor; respectively. See [9] for other QLP constructs
and functions.

Applying QLP to OPM Provenance Graphs. QLP queries can be directly evalu-
ated against OPM graphs based on the straightforward mapping described above. QLP
queries expressed against OPM graphs of the form “n1 .. n2” select the set of OPM
edges that lie on a wasDerivedFrom path starting at artifact n2 and ending at artifact n1.

Approaches for Exploring and Querying Scientific Workflow Provenance Graphs 21

Query Optimization & Rewriting
(QLP to SQL)

Provenance Browser Kepler Scientific Workflow System

Provenance Storage Optimization
(Reduction Techniques)

Workflow
Trace

Workflow
Trace

Workflow
Trace (XML)

RDBMS Database
(Provenance Store)

Provenance
Queries in QLP

Lineage Relations
and Metadata
(Query results)

Records

Stores
SQL Query

Returns Lineage Edges
& Data Structures

Query & Navigation
History

(Local Storage)
Directly load
trace file *

Fig. 3. The basic provenance browser architecture where trace files can be loaded either directly
into the browser or through a dedicated provenance store (relational database)

Thus, if n2 is connected to n1 either directly or transitively through one or more was-
DerivedFrom edges, then all edges, processes, and artifacts on this path are returned.
QLP queries of the form “#p1 .. #p2” select the set of OPM edges, artifacts, and pro-
cesses that lie on a wasTriggeredBy path from process p2 to process p1. Again, if p2 is
connected to p1 through one or more wasTriggeredBy edges, then all edges, processes,
and artifacts along the path are returned as a result of the query. For QLP queries of the
form “n .. #p” and “#p .. n”, we first find the output and input artifacts of process p and
then use these artifacts to find wasDerivedFrom paths to and from n, respectively. More
complicated QLP expressions such as “n1 .. #p1 .. n2” and “#p1 .. n1 .. n2 .. #p3” are
evaluated based on these simple patterns as described in [10,9].

3 The Provenance Browser

The provenance browser provides an interactive approach for visualizing and querying
provenance traces. The basic architecture of the browser is shown in Fig. 3 and two
standard views of provenance information are shown using the browser in Fig. 4.

The Provenance Browser Architecture. The provenance browser has been integrated
with the Kepler scientific workflow system [3,7] and can also be run as a stand-alone
application. Given a trace file, a set of pre-processing steps are applied to the trace prior
to storage in a provenance database. The pre-processing steps perform storage reduction
techniques (based on factorization) over the data lineage graph of the workflow trace as
described in [9]. Using the provenance browser, a user can connect to a provenance store
to select traces to view, issue QLP queries against traces, and then display, navigate, and
further query these results. As shown in Fig. 3, QLP queries are parsed, optimized, and
rewritten to corresponding SQL queries expressed against the provenance database. Op-
timized and translated SQL queries return sets of lineage edges as query results from
which the browser constructs and displays the corresponding lineage graph. Finally, the
browser maintains (i.e., caches) query results as well as navigation and query history

22 M.K. Anand et al.

(a)

(b)

Fig. 4. Two basic provenance views supported by the browser: (a) The in-out edge representa-
tion over data and invocation dependencies; and (b) the corresponding collection structure and
invocation graph after the first set of actor invocations

locally. Local storage, e.g., allows query results to be accessed and viewed efficiently
within the browser.

Visualization and Navigation. As shown in Fig. 4(a), the left-side of the provenance
browser displays the XML collection structure together with the details of actor invo-
cations. Much like a web browser, this information can be navigated (e.g., to select
among different data items and invocations). The browser also displays various prove-
nance views of the execution trace: the dependency history view of Fig. 4(a) combines
data dependency and process invocation graphs (where data nodes are denoted as circles
and invocations as squares); the collection history view at the top of Fig. 4(b) shows the
data structures input and output by invocations; and the invocation dependency view
at the bottom of Fig. 4(b) shows process dependencies. Each of these views are syn-
chronized, e.g., selection of a data item in the dependency history view also selects the
corresponding item in the collection history view. Within a view, users can also step
forward and backward (“VCR-style”) through the execution history to display corre-
sponding portions of the XML structures and data dependencies.

Incremental Querying. Fig. 5 shows an example of an incremental query session
within the provenance browser. As shown in Fig. 5(c), the provenance browser con-
tains a separate query window for users to issue QLP queries. In this example, we have
selected the workflow run “FC-001” (see Fig. 4(a)). In general, users can select one or
more traces from a provenance store using the query window. Once selected, the default
views of the traces are displayed in the browser. If a workflow is not selected, all traces
within the provenance store will be queried (but not initially displayed in the browser).
After a query is entered into the query window and executed, the new provenance views
that correspond to the query answer are constructed and displayed in the browser. In the

Approaches for Exploring and Querying Scientific Workflow Provenance Graphs 23

(a) (b) (c)

Fig. 5. Incrementally query support in the provenance browser: (a) the result of the first QLP
query (expressed over the lineage graph of Fig. 4(a)); (b) the result of the second QLP query
expressed over the result of the first query; and (c) the query window

example of Fig. 5, the user first enters the query “* .. //AtlasXGraphic” whose query
result is shown in Fig. 5(a). This new view can be explored and navigated in exactly
the same way as if the entire trace were displayed. The query result can also be further
queried, as shown by the second query in Fig. 5(c) whose result is shown in Fig. 5(b).

Query History. The browser automatically captures the sequence of queries issued by
the user (where the initial view is denoted as “T” in the query window). Users can return
to a previous query result at any time by selecting the query from the query history or
using the forward-backward buttons within the query window. In our example, selecting
the first query (denoted query 2, since the initial trace is treated as query 1) would return
the view from Fig. 5(b) back to Fig. 5(a). We could then continue browsing, return to
the view in Fig. 5(b), move to the original view in Fig. 4(a), or issue a new query to
generate a different view. The ability to incrementally query provenance graphs allows
users to more easily inspect and explore relevant portions of large provenance graphs
(containing, e.g., hundreds or thousands of nodes), which contrasts with more static
approaches that simply display entire lineage graphs.

Optimization Techniques. Queries in QLP largely involve evaluation of transitive
path queries, expressed in QLP whenever the ‘..’ operator is used. To evaluate queries
efficiently, we store both the immediate edges and transitive closure of dependency
nodes. Naively materializing transitive closures for each dependency node can have
prohibitively large overhead with respect to storage cost. To reduce this storage cost,
we employ a “pointer-based” approach that partitions the transitive closure table into
smaller tables (based on reduction techniques) where the original transitive closure ta-
ble can be obtained by joining these smaller tables together [9]. In particular, a naive
approach for storing nodes N and their dependencies D is as tuples P(N,D) in which
nodes involved in shared dependencies will be stored multiple times. For example, if
nodes n4, n5, and n6 each depend on nodes n1, n2, and n3, nine tuples must be stored
P(n4,n1), P(n4,n2), P(n4,n3), P(n5,n1), ..., P(n6,n3), where each node is stored multi-
ple times in P. Instead, we introduce additional levels of indirection through “pointers”

24 M.K. Anand et al.

Fig. 6. Example sizes (left) and query time (right) for real provenance traces

(similar to vertical partitioning) for storing reduced sets of dependencies. Thus, we di-
vide P(N,D) into two relations P1(N,X) and P2(X ,D) where X denotes a pointer to the
set of dependencies D of N.2 For instance, using this approach we store only six tuples
P1(n4,&x), P1(n5,&x), P1(n6,&x), P2(&x,n1), P2(&x,n2), and P2(&x,n3) for the above
example. Additional levels of indirection are also used to further reduce redundancies
within dependency sets based on their common subsets, and similar techniques are used
to reduce transitive dependency sets by applying reduction techniques directly to point-
ers (as described in [11]). We also use a set of optimization techniques [9] to efficiently
evaluate the generic lineage path queries of the form p = N1 ..N2 · · · Nm, where each Ni

can correspond to a set of nodes. It may be the case that not all the nodes in the set
Ni share a lineage relationship with all the nodes in the other set. We use techniques
to prune each of the sets Ni giving a new pruned set PNi such that each node ni ∈ PNi

shares a dependency relationship with at least one node in all other sets, and vice versa.
Each pruned set is computed as PNi = (∩ j=i−1

j=1 NFi)∩Ni ∩ (∩k=m
k=i+1NBi), where NFi is

“forward” lineage nodes for Ni (i.e., Ni ..*), and NBi is the “backward” lineage nodes
for Ni (i.e., * ..Ni). We rewrite p to PN1 ..PN2 · · · PNm and evaluate each simple path
PNi ..PNi+1. Each of these simple paths are first evaluated to retrieve the set of nodes N
on the lineage path from nodes in PNi to nodes in PNi+1 as PNFi ∩PNBi . Finally, the set
of lineage edges is computed from N.

The left side of Fig. 6 shows the sizes of actual provenance traces generated from
metagenomic (STP, STM, and CYC), phylogenetic (WAT), and astronomy (PC3) work-
flows. As shown, the provenance graphs are relatively large, containing between ∼5–
20K lineage edges, as shown by the number of tuples when only immediate edges (I)
are stored. Even for simple QLP lineage queries, e.g., involving single-step derivation
path expressions “s1.. s2’, standard evaluation techniques result in query execution times
that are impractical. For instance, by storing both immediate and transitive dependen-
cies (IC), these simple queries can take upwards of 1000 s (these times are worse if
only immediate edges are stored, since recursion is required). As shown in Fig. 6, em-
ploying these storage and reduction techniques together with the query optimization
approaches reduces query execution time to less than 100 ms, making common (but
relatively complex) graph queries practical within the provenance browser.

2 The actual partitioning is slightly more complex than this, but follows the same general idea.

Approaches for Exploring and Querying Scientific Workflow Provenance Graphs 25

4 Related Work

Many tools have been created (e.g., in Kepler [3] and Taverna [4], among others) that
statically display provenance graphs or provide a log of provenance events. Exceptions
include VisTrails [5], which provides a browser for displaying workflow edit opera-
tions, and the Zoom*UserViews prototype [12], which simplifies provenance graphs by
inferring composite invocations. The provenance browser combines visualization with
navigation and a declarative, high-level provenance query language (QLP). Standard
approaches for querying provenance information (e.g., [13,5]) return sets of nodes (ei-
ther sets of data items or process invocations) as query results that require additional
steps (or queries) to reconstruct causal relations among nodes within a query answer.
Instead, QLP returns sets of lineage edges, which enables incremental querying. We’ve
shown here that a subset of our model has a direct mapping to OPM [1]. It also offers a
more flexible approach for modeling nested data (e.g., compared to [14]) by not requir-
ing processes to generate entirely new structures, and supporting update semantics.

5 Conclusion

We extend our prior work [15,7] by describing the architecture, implementation, and
underlying approaches of the provenance browser. The browser is based on a general
model of provenance and a high-level, declarative query language. In addition, we have
also shown how OPM aligns with our model of provenance and query language. We
would like to extend the provenance browser with the navigation operators [16], so that
users visualize, summarize, and query provenance views from this environment.

Acknowledgements. This research was supported in part by NSF grants OCI-0722079,
and DBI 0619060, DOE grant DE-FC02-07ER25811, and the Gordon and Betty Moore
Foundation award to Calit2 at UCSD for CAMERA.

References

1. Moreau, L., et al.: The open provenance model. Technical Report 14979, ECS, Univ. of
Southampton (2007)

2. Davidson, S.B., Boulakia, S.C., Eyal, A., Ludäscher, B., McPhillips, T.M., Bowers, S.,
Anand, M.K., Freire, J.: Provenance in scientific workflow systems. IEEE Data Eng. Bull.
(2007)

3. Ludäscher, B., et al.: Scientific workflow management and the Kepler system. Concurr. Com-
put.: Pract. Exper. 18, 1039–1065 (2006)

4. Oinn, T., et al.: Taverna: lessons in creating a workflow environment for the life sciences.
Concurr. Comput.: Pract. Exper. 18, 1067–1100 (2006)

5. Scheidegger, C., et al.: Tackling the provenance challenge one layer at a time. Comput.: Pract.
Exper. 20, 473–483 (2008)

6. Chapman, A., et al.: Efficient provenance storage. In: SIGMOD (2008)
7. Bowers, S., McPhillips, T., Riddle, S., Anand, M., Ludäscher, B.: Kepler/pPOD: Scientific

workflow and provenance support for assembling the tree of life. In: Freire, J., Koop, D.,
Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, Springer, Heidelberg (2008)

26 M.K. Anand et al.

8. Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wiener, J.L.: The Lorel query language for
semistructured data. Intl. J. on Digitial Libraries 1, 68–88 (1997)

9. Anand, M.K., Bowers, S., Ludäscher, B.: Techniques for efficiently querying scientific work-
flow provenance graphs. In: EDBT (2010)

10. Anand, M.K., Bowers, S., McPhilips, T., Ludäscher, B.: Exploring scientific workflow prove-
nance using hybrid queries over nested data and lineage graphs. In: SSDBM (2009)

11. Anand, M.K., Bowers, S., McPhilips, T., Ludäscher, B.: Efficient provenance storage over
nested data collections. In: EDBT (2009)

12. Biton, O., Boulakia, S.C., Davidson, S.B., Hara, C.S.: Querying and managing provenance
through user views in scientific workflows. In: ICDE (2008)

13. Holland, D., Braun, U., Maclean, D., Muniswamy-Reddy, K.K., Seltzer, M.: A data model
and query language suitable for provenance. In: Moreau, L., Foster, I. (eds.) IPAW 2006.
LNCS, vol. 4145, Springer, Heidelberg (2006)

14. Missier, P., Belhajjame, K., Zhao, J., Goble, C.: Data lineage model for taverna work-
flows with lightweight annotation requirements. In: Freire, J., Koop, D., Moreau, L. (eds.)
IPAW 2008. LNCS, vol. 5272, pp. 17–30. Springer, Heidelberg (2008)

15. Anand, M.K., Bowers, S., Ludäscher, B.: Provenance browser: Displaying and querying sci-
entific workflow provenance graphs (Demo) In: ICDE (2010)

16. Anand, M.K., Bowers, S., Ludäscher, B.: A navigation model for exploring scientific work-
flow provenance graphs. In: WORKS (2009)

Automatic Provenance Collection and
Publishing in a Science Data Production

Environment—Early Results�

James Frew1, Greg Janée2, and Peter Slaughter2

1 Bren School of Environmental Science and Management,
University of California, Santa Barbara

frew@bren.ucsb.edu
2 Institute for Computational Earth System Science,

University of California, Santa Barbara
{gjanee,peter}@icess.ucsb.edu

Abstract. The Earth System Science Server (ES3) system transpar-
ently collects provenance information from executing code. Provenance
information (ancestors or descendants) for any process or data granule
may then be retrieved from a web service, in both textual and graphi-
cal formats. We have installed ES3 in a quasi-production environment,
wherein multiple Earth satellite data streams are synthesized into daily
grids of global ocean color parameters, and the resulting data granules
published online. ES3’s non-intrusive nature makes its insertion into such
an environment fairly straightforward, but considerations such as collat-
ing distributed provenance (from processes spread across computing clus-
ters) and sharing unique identifiers (to link programs and data granules
with their separately-maintained provenance) must still be addressed.
We present for discussion our preliminary results from assembling such
an environment.

1 Introduction

UCSB’s Ocean Color Research Group (OCRG)1 creates and distributes a variety
of ocean color data products as candidate NASA Earth science data records (ES-
DRs). These products range from ocean optical properties and phytoplankton
functional groups to phytoplankton growth rates and carbon-based productivity.
Many of the products are derived by merging data from multiple satellite sensor
systems [7].

All OCRG products have associated quality indices, which comprise both the
statistical confidence of individual values, and how the product as a whole relates
to previous versions, similar products, and in situ validation data. Additionally,
OCRG is charged by its cooperative agreement with NASA to track and manage
algorithm and data lineage throughout the product generation process, and to
� supported by NASA cooperative agreements NNG04GC52A and NNX08AP36A.
1 http://wiki.icess.ucsb.edu/measures

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 27–33, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://wiki.icess.ucsb.edu/measures

28 J. Frew, G. Janée, and P. Slaughter

implement methods for automatically informing users of updated products or
analyses.

ESDRs represent a blurring of the historic distinction between data creators
and data providers [2]. Research groups like OCRG are now charged with dis-
tributing their data products to the broader research community, as well as
developing the science-based algorithms that drive the products’ creation.

2 A Non-intrusive Science Data System

OCRG is part of a larger ocean color science community that has its own
computational idioms, artifacts, and traditions. While the underlying phenom-
ena are continuous in space and time, the data products are typically gener-
ated and exchanged in fixed granularities, based on both natural units (e.g.,
daily/weekly/monthly aggregations) and historic limitations (e.g., file sizes small
enough to transfer expeditiously over slow connections.) Data granules are usu-
ally pre-calculated and managed as files or database BLOBs. Granules typically
have standard naming conventions that encode significant product semantics
(e.g., dates, regions, version numbers) and are distributed in complex formats
(e.g., HDF, netCDF) that commingle metadata and multidimensional data.

The ocean color science community has additionally standardized on a specific
computational environment (SeaDAS2) based on an interpreted array manipu-
lation language (IDL3). Data product generation occurs either manually (by
invoking specific commands) or quasi-automatically (by batch jobs.) Data pub-
lication involves simply moving the product files onto a web server. High-level
metadata (e.g., publications describing the algorithms) is available, but supplied
separately.

Introducing product and provenance management into such an environment
is challenging. We have simplified this problem by adopting a microservices ap-
proach. Microservices [1, 8] are an architectural pattern, originally developed in
the digital curation community, in which a system’s functionality is devolved
into small, self-contained, interoperable services. While we support a compre-
hensive array of microservices for data product search, access, and metadata
management, we focus here on those associated with identity and provenance
management.

3 Identity Management

Persistent identification of datasets, data granules, external metadata, and an-
cillary resources is critical to maintaining the documentation and reproducibility
that are the hallmarks of the scientific method. Strictly speaking, persistence of
identifiers over time is an outcome–a result of commitment–but the technical
forms of identification can make persistence more or less difficult to achieve.
2 http://oceancolor.gsfc.nasa.gov/seadas
3 http://www.ittvis.com/idl

http://oceancolor.gsfc.nasa.gov/seadas
http://www.ittvis.com/idl

Automatic Provenance Collection and Publishing 29

For data products that are released in discrete, named versions, such as OCRG
products, incorporating versions in identifiers is an additional challenge. Specif-
ically, version-aware identifiers must allow users of a granule to:

– Cite a specific version of a granule;
– Cite the most recent version of a granule, and/or a granule sans version; and
– Detect that a version of a granule no longer exists, and be directed to ap-

propriate metadata and from there to a newer version.

We are developing an approach to version-aware identity management that sat-
isfies these requirements and that is built on two technologies: well-known persis-
tent identifier schemes such as Archival Resource Keys (ARKs) [6], and HTTP
redirection. A granule identifier in this approach consists of a dataset identifier
drawn from a persistent identifier scheme, to handle dataset-level relocation over
time, prefixed to a filename that includes a version indicator and other seman-
tics. HTTP redirection rules, in the form of regular expressions, express version
defaulting and granule deletion. The net result is an identity management system
that requires almost no cooperation from the data providers or data production
system.

Our preliminary work on integrating version-related redirections with per-
sistent identifiers has led us to select ARKs as the most appropriate persis-
tent identifier scheme. Unlike Digital Object Identifiers (DOIs)4, ARKs allow
qualifying information (e.g., granule identifiers) to be appended to the dataset
identifier and passed along by the identifier resolution system. Unlike Persistent
URLs (PURLs)5, ARKs are self-identifying, and don’t require the reservation of
a portion of the HTTP URL namespace for their implementation.

4 Provenance Management

The ES3 system [3] collects provenance information from executing code, using
a combination of system call tracing, transparent wrapping, and application
environment instrumentation (Figure 1.)

For clarity, we will limit the discussion hereafter to ES3’s system call tracing
(“shell plugin”) mode. In this mode, provenance collection entails:

1. The ES3 collector process is started on the processing host system. The
collector waits for provenance event messages from an instrumented process.

2. A science process is invoked on the processing host system, from an ES3-
instrumented command interpreter (usually bash.) The science process may
be arbitrarily complex, and is usually a script that invokes several other
processes. The science process itself is not modified in any way, and the ES3
command interpreter behaves identically to a standard one; this is why we
call ES3 “non-intrusive.”

4 http://doi.org
5 http://purl.org

http://doi.org
http://purl.org

30 J. Frew, G. Janée, and P. Slaughter

Log files
 (hierarchical)

Provenance capture

Provenance storage/tracing

User program

run
read
write

ES3 Transmitter

IDL plugin Bash plugin
(strace) Plugin n ...

Logger

ES3 Collector

Web Service layer

ES3 Core

database
interface

Command
processor

BDB DB

XML DB

Provenance retrieval

Fig. 1. ES3 architecture

3. The ES3 command interpreter sends traces of all the science process’s system
interactions to the ES3 collector, which formats them, discards unwanted de-
tail, and saves this “raw provenance” to a log file. Raw provenance is simply
a set of tuples of the form
(process ID, timestamp, system call, arguments [, ...])
where the system calls are limited to “provenance events;” i.e., file access,
process creation, or program execution. The collector does some simple edit-
ing of the raw provenance (e.g., converts file descriptors to corresponding file
names) consistent with near-real-time processing.

4. When the science process exits, the ES3 transmitter process is invoked
and scans the log file. The transmitter assembles the raw provenance into a
provenance graph and submits the graph components to the ES3 database,
as follows:

(a) Provenance graph nodes are created by assigning an automatically gen-
erated unique identifier (UUID) to each provenance event.

(b) Any filesystem object referenced by a provenance graph node and read-
able by the transmitter is checksummed with a secure hash algorithm
(e.g., SHA-16). This checksum is included in the provenance metadata.

(c) Connected events (e.g., processes writing to and reading from the same
file or pipe) are indicated by creating a provenance graph edge between
the appropriate UUIDs.

6 http://www.ietf.org/rfc/rfc3174.txt

http://www.ietf.org/rfc/rfc3174.txt

Automatic Provenance Collection and Publishing 31

(d) The provenance graph nodes and edges are formatted as XML messages
and sent to the ES3 database.

The ES3 database allows event identifiers to be queried for their associated meta-
data (date, time, host system parameters, etc.), and of course for their parent
and/or child events. The parent/child queries may be recursive, generating for-
ward and/or reverse provenance to any specified depth. Provenance metadata is
delivered as serialized graph in XML.

ES3 currently provides post-processors that convert the ES3 native prove-
nance graph format to GraphML7 or DOT8, for visualizing in tools such as
yEd9 or Graphviz10.

Figure 2 shows a portion (immediate ancestors and descendants) of the prove-
nance for a single execution of the OCRG ocean color algorithm, retrieved from
ES3 as GraphML and rendered by yEd. Note that ES3 correctly recognizes the
nested provenance that results from scripts executing other scripts.

We realize that different kinds of queries or user communities may require
alternative provenance renderings [5]. We are therefore exploring connecting the
ES3 database to a generic web-based graph browsing system [4].

5 Issues Raised

A meta-issue we address is the need to manage multiple kinds of identifiers–
datasets, granules, provenance events–and to make the mappings between them
as transparent as possible.

ES3 has been developed in a cluster computing environment, which is a pri-
mary reason that it uses a decentralized event identifier scheme (UUIDs.) ES3
transmitters running on multiple hosts can thus submit provenance information
to a more centralized (e.g., per-cluster) database without danger of identifier
collisions.

Note, however, that the mapping between the provenance events recorded by
ES3 and the objects managed by the rest of the data system is many-to-one:
any object may participate in many provenance events. Likewise, the mapping
between object identifiers and checksums can be many-to-one, since objects may
be updated. The ES3 database therefore supports queries against these mappings
(e.g., return an objects’s provenance events, given its checksum.)

The identity management service, on the other hand, is concerned with map-
ping published names (persistent identifiers) to the appropriate internal objects.
Provenance management enables the partial or complete automation of this
mapping by allowing concepts like “product” and “version” to be functionally
defined—for example, a particular version of a dataset might defined as all data
objects generated by a specific instance (as defined by a checksum) of a particular
algorithm (as defined by a filename.)
7 http://graphml.graphdrawing.org
8 http://www.graphviz.org/doc/info/lang.html
9 http://www.yworks.com/en/products_yed_about.html

10 http://www.graphviz.org

http://graphml.graphdrawing.org
http://www.graphviz.org/doc/info/lang.html
http://www.yworks.com/en/products_yed_about.html
http://www.graphviz.org

32 J. Frew, G. Janée, and P. Slaughter

Fig. 2. OCRG ocean color algorithm provenance

Automatic Provenance Collection and Publishing 33

We are examining how to best incorporate and advertise published identifiers
in metadata, and in the granules themselves.

References

[1] Abrams, S., Kunze, J., Loy, D.: An emergent micro-services approach to digital
curation infrastructure. In: Proceedings of the Sixth International Conference on
Preservation of Digital Objects, San Francisco, CA (October 2009)

[2] Frew, J., Bose, R.: Lineage retrieval for scientific data processing: A survey. ACM
Computing Surveys 37(1), 1–28 (2005)

[3] Frew, J., Metzger, D., Slaughter, P.: Automatic capture and reconstruction of com-
putational provenance. Concurr. Comput.: Pract. Exper. 20(5), 485–496 (2008)

[4] Gretarsson, B., Bostandjiev, S., O’Donovan, J., Hollerer, T.: WiGis: a scal-
able framework for web-based interactive graph visualizations. In: Eppstein, D.,
Gansner, E.R. (eds.) Graph Drawing. LNCS, vol. 5849, pp. 119–134. Springer, Hei-
delberg (2010)

[5] Kunde, M., Bergmeyer, H., Schreiber, A.: Requirements for a provenance visual-
ization component. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS,
vol. 5272, pp. 241–252. Springer, Heidelberg (2008)

[6] Kunze, J.A.: Towards electronic persistence using ARK identifiers. In: Masanès,
J., Rauber, A., Cobena, G. (eds.) 3rd Workshop on Web Archives, Trondheim,
Norway, pp. 4–12 (August 2003)

[7] Maritorena, S., Siegel, D.A.: Consistent merging of satellite ocean color data sets
using a bio-optical model. Remote Sensing of Environment 94(4), 429–440 (2005)

[8] Moore, R.: Towards a theory of digital preservation. International Journal of Digital
Curation 3(1), 63–75 (2008)

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 34–41, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Leveraging the Open Provenance Model as a Multi-tier
Model for Global Climate Research

Eric G. Stephan, Todd D. Halter, and Brian D. Ermold

Pacific Northwest National Laboratory
Richland, Wa

{Eric.Stephan,Todd.Halter,Brian.Ermold}@pnl.gov

Abstract. Global climate researchers rely upon many forms of sensor data and
analytical methods to help profile subtle changes in climate conditions. The
U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM)
program provides researchers with a collection of curated Value Added Prod-
ucts (VAPs) resulting from continuous sensor data streams, data fusion, and
modeling. We are leveraging the Open Provenance Model as a foundational
construct that serves the needs of both the VAP producers and consumers. We
are organizing the provenance in different tiers of granularity to model VAP
lineage, causality at the component level within a VAP, and the causality for
each time step as samples are being assembled within the VAP. This paper
shares our implementation strategy and how the ARM operations staff and the
climate research community can greatly benefit from this approach to more ef-
fectively assess and quantify VAP provenance.

Keywords: Provenance, Climate.

1 Introduction

In this paper we present how the Atmospheric Radiation Measurement (ARM) pro-
gram is relying upon the Open Provenance Model [1] and its overlapping accounts
feature to track provenance for data processing at different granularity levels.

The Pacific Northwest National Laboratory (PNNL) has been an integral part of
the Department of Energy (DOE) ARM [2] program’s infrastructure team since its
inception in 1998. The ARM Data Management Facility manages data flow for over
300 sensors located around the world, ingests the data into an ARM standard format,
performs quality control on the data through the ARM Data Quality Office, performs
reprocessing on the data through the ARM Reprocessing Center, and transfers the
resulting data sets to the ARM Archive. In addition, the facility is responsible for
the development and deployment of Value Added Products (VAPs) [2] that provide
derived data products through complicated processing pipelines. VAPs fuse informa-
tion from sensors, models, algorithms, and other VAPs to derive information of
interest that is either impractical or impossible to measure directly. The information
of interest includes (but is not limited to) cloud microphysics, aerosol properties,
atmospheric state, and radiometric properties. VAPs can also be used to improve the
quality of existing sensor data, and when multiple sensors are producing the same

 Leveraging the Open Provenance Model as a Multi-tier Model 35

type of data a “best estimate” VAP will identify the highest quality data. This ex-
perience has given us significant familiarity with a variety of climate data sets, as
well as production-level experience handling streaming data, long-term data sets, and
data reprocessing. ARM data is stored in a NetCDF file format that provide a struc-
ture that supports the storage of the data sets annotated with metadata. A significant
need from the users is to directly disseminate provenance into the ARM NetCDF
results, providing transparency to the user and greatly adding value to the analysis
without requiring significant changes to the large body of existing analysis work-
flow. From an operational standpoint, it is foreseen that the number of sensors and
ARM data products will increase significantly, dwarfing today’s complexity of
algorithm interdependency. We envision provenance as an overarching data-driven
standard advancing many of the day-to-day tasks relating to data processing and
reprocessing, error detection and troubleshooting in analytical methods. This is in
contrast today where there is no standardization and all tasks are managed from
scripts, legacy codes, and developer defined log files.

For the past twenty years most questions could be answered either through web re-
ports or by relying on knowledgeable operations staff to determine the source of any
problem by examining log and configuration files and performing database queries.
However, with the deployment of new instruments, an order of magnitude increase in
data throughput, and new advanced data products, a need for formalized methodolo-
gies was identified to automate analysis of the data products to efficiently continue to
maintain strict quality assurance and quality control measures. In addition to this, data
consumers began wanting a clearer understanding of the sources (instrument, data
ingest processes, and higher order climate algorithms) relied upon for data, the confi-
dence scores associated with the data, and other relevant information for each sample
point.

In our early assessment of provenance needs using the Open Provenance Model
(OPM) XML schemata, provenance exceeded sample datum by a storage space ratio
of 1:23,000. In the past, we were accustomed to thinking of causality being consid-
erably smaller than the resulting data, and that one causality graph consisting of hun-
dreds of artifacts, processes, and relationships could represent the entire workflow
history [3][4]. Because of diverse provenance-related questions being asked at differ-
ent granularities, we also needed a flexible model that could be dissected in a variety
of ways to support a number of analytical mash-ups. Based on all these factors a
multi-scale conceptual model resulted [5].

2 Relevant Research

From a modeling perspective the provenance community has explored multi-tier ap-
proaches in the past. A visual analytic tool [6] developed for provenance exploration
relied upon a multi-tier model approach for depicting multiple levels of provenance
granularity. OPM uses accounts to depict overlapping provenance models, refine-
ments, and hierarchies.

To describe the organization and structure of provenance for VAP-run instances
the mathematical construct hedge is borrowed from the tree automaton community. A
hedge is defined as a tree with an ordered sequence of unranked subtrees[7][8].

36 E.G. Stephan, T.D. Halter, and B.D. Ermold

While we expect there to be mathematical or statistical properties of trees (and by
extension hedges) that can be leveraged to derive additional provenance information
or insights into either usual or anomalous states of the data analysis workflow, it is
still too early to determine what can be leveraged until we can perform a deep dive
into the provenance actually being generated by the VAP runs. This is needed before
mathematical tools can be applied to augment the analysis.

3 Multi-tier Provenance Model

ARM provenance is being used as a means to more uniformly describe a complete
history of VAP sample generation, VAP runs, and VAP interdependency. The ration-
ale behind using a multi-tier model as opposed to a monolithic model is that each tier
(or component) has a unique purpose, different characteristics, and distinct levels of
granularity. The term multi-tier could be thought of as multi-part, with each tier be-
ing a separate component representation, but sharing overlapping parts. The model is
broken into three distinct levels of granularity (Table 1) that are interconnected. To
help visualize the model in its entirety we think of the three tiers as a landscaped park
with directed paths running from hedge to hedge, and branches ordered along the
hedge trunk.

Table 1. Granularity and purpose for each provenance tier

Branch Tier: As each VAP sample is processed the execution history will also be
captured. This means that for a VAP that provides temperature measurements at a one
second interval over a twelve month period, 500,000 samples will result along with a
separate execution history (branch) for each data point occupying approximately
15GB of uncompressed storage (1 GB compressed). Because each sample is produced
autonomously an ordered set of acyclic spanning trees are formed that can be ana-
lyzed to find missing samples, periodic anomalies in the workflow, or sporadic excep-
tions that may occur.

The Branch tier will rely on the following components in OPM: accounts, entities,
and relationships. Each branch will be identified by its own account using an identi-
fier that pertains to a corresponding sample time step. Because the time step interval
is consistent, time will be inferred by sample order within the hedge tier. Each branch
account will share with its parent hedge account a common process that initiates the
sample analysis process as shown in Figure 1.

Processes will include references to sample analysis algorithms, workflow control
logic, and data processing. Artifacts will include references to informational messages
collected during processing along with warnings, errors, fatal messages, QC codes,

 Leveraging the Open Provenance Model as a Multi-tier Model 37

and sample origin. These entities rely on the following statements to depict relation-
ships and on directionality to depict the execution history: Artifact Used By Process,
Process Triggered By Process, Artifact Generated By Process. The definition of arti-
facts will be extended to include the Dublin Core Element Set [9].

Fig. 1. Branch Tier

Hedge Tier: All sample points within a VAP rely upon the same overall workflow
control logic and configuration parameters to process all samples. From a workflow
perspective the VAP is a simple workflow that prepares data for analysis, performs
analysis through a huge control loop that iterates over each sample, and then performs
post-processing by storing the VAP in a NetCDF file. From a provenance perspective
this forms an overarching graph of the VAP workflow history. Each VAP has only
one hedge tier and one account that will be uniquely identified with a corresponding
VAP identifier. As shown in Figure 2, the middle tier in the hedge account overlaps
with each branch account (each iteration through the control loop), but leaves the
detail of the sample analysis to the branch tier to separately provide these details. The
hedge tier also interfaces with the Path Tier that will be described in the next section.

The Agent entity describes the person or control that initiated the VAP run. Arti-
fact entities correspond to VAP parameter settings along with VAP or sensor data
streams to build the product. The definition of artifacts will be extended to include the
Dublin Core Element Set along with emerging standards from the Climate and Fore-
cast Working Group.

Process entities include workflow controller logic, and data pre and post processing
along with Dublin Core metadata describing the software identity and version num-
ber. These entities rely upon relationships and directionality to form the following
statements: Process Controlled By Agent, Artifact Used by Process, Process Trig-
gered by Process (branch), and Artifact Generated by Process.

Path Tier: Understanding lineage is extremely important because most of the VAPs
are a composite of sensor streams disseminated from existing VAPs. Understanding
this interdependence is vital to ARM operations staff that periodically must invalidate
VAPs due to discoveries of error conditions. This creates a cascading effect, impact-
ing VAPs reliant upon erroneous data. To track these conditions only one Account is
used to track lineage. The Path account overlaps with each Hedge account. The VAP

38 E.G. Stephan, T.D. Halter, and B.D. Ermold

Fig. 2. Hedge Tier

Artifacts and the main VAP processes are shared between the Path and Hedge Tiers.
The OPM entities included at this tier are: Artifacts, Processes, and Agents. Agents
are considered a production batch process; otherwise the developer initiates a VAP
run. The Process tracked is the overall VAP script used, and the Artifacts are the sen-
sor streams and VAPs relied upon to create the VAP. These entities rely upon rela-
tionships and directionality to form the following statements: Process controlled by
Agent, Artifact Generated by Process, and Artifact Used by Process.

4 Discussion

In this section we describe how provenance is automated, and how producers and
consumers will use the model. Relying on the provenance model gives us the oppor-
tunity to automate and streamline many of the quality-related processes.

Automating Provenance: The data producers are responsible for the full life cycle
of VAPs, algorithms used within the VAP, managing the interdependencies between
the VAP runs, and maintaining the latest products. Our current plan is to apply a
provenance listener that ties into the ARM error handler and message logging system.
This is currently deployed in the ARM environment and has already been abstracted
to track events from a developer’s perspective.

For any given VAP run, provenance will be generated in the following top-down
context: path, hedge, and branch. The script or workflow generating the VAP will be
responsible for attaching any referential information and the associated event history
along with any relevant event history.

Once the provenance is captured, it will be managed by maintaining synchroniza-
tion between the different provenance tiers in the store. Provenance will be stored
persistently as separate storage blocks. The path tier block provides references to the
hedge block; the hedge tier will in turn provides references to each branch block.
Because of the foreseen storage bloat issues we are remaining flexible on our storage

 Leveraging the Open Provenance Model as a Multi-tier Model 39

technical solution to determine the best overall approach and depending on the pro-
ducer/consumer needs how long the raw provenance will be retained. Some alterna-
tives under consideration are: distributed file stores with provenance formatted as
XML or RDF N3 format, and relying upon the Open Source Array Database being
developed by SciDB [10] which is expected to be released in 2010.

Analytical Methods – At least three automated analytical methods are now avail-
able that were either not previously available or easily attainable without provenance:
automated quantitative analysis, interference, and discovery. We foresee many other
types of analysis obtainable in the future. Quantitative analysis is extremely important
at the sample level. Erroneous conditions typically are not self evident when looking
at a single branch, rather, anomalies may occur due to a faulty instrument reading at a
particular time of the day. Only by comparing multiple branches side by side are the
conditions apparent. Squarified treemap [11] display tree structures as flattened nested
boxes and arrange similar looking boxes together. In our tests we relied on VAPs that
collected cloud cover data. Through the squarified treemap we were able to visualize
conditions corresponding to clear skies where no samples were collected and proc-
essed. By rendering branches into summary level views over selected time periods
(day, hour minute) of distinct entity (artifacts or processes) counts in a relational da-
tabase schemata we were able to detect times when provenance branches contained
atypical number of nodes this we were not only able to detect and rendered branches.
OPM provides transitive closure is relied upon to determine is workflows successfully
completed, and we explored uses of discovery either by providing a web-based search
engine based on selected indexed provenance and by using a tree structure visualiza-
tion tool Prefuse [12] to browse selected portions of the path, hedge, and branch tiers.

In addition to the flexibility offered to analytical methods is also scalability by
means of being able to discretely dissect provenance horizontally along one tier, or
vertically between one or more tiers by selecting accounts based on VAP interdepen-
dency, VAPs themselves, or specific branches representing time slices of different
VAPs. The branches represent a wealth of knowledge needed for comparative analy-
sis. It may become quite common to detect various anomalies from different branch
time slices to differentiate between sensor mechanical problems and natural phenom-
ena. In this example to thoroughly conduct this analysis the time branches for the last
ten years over a given month might be necessary to confirm the origin of a sensor’s
behavior. Because each branch is a non overlapping acyclic graph, groups of branches
can be analyzed one group at a time or potentially distributed and analyzed over mul-
tiple compute nodes to increase efficiency.

Uses – It was important to tie the analytical methods and provenance to practical
examples to demonstrate how provenance might be used by scientists and operations.
We split out a special category, developers, which are part of operations and who
have a special need for provenance related to debugging activities [5].

From the consumer perspective the scientist’s primary motivation in examining
historical evidence has more to do with establishing confidence in their VAP of inter-
est. In most cases we anticipate their interest at the hedge and branch tier of a given
VAP run. At the hedge level the input deck used, the specific algorithms (including
version) relied upon, along with the time span time step intervals used in the VAP run
are fundamental to helping the researcher establish the context of how the VAP was
created.

40 E.G. Stephan, T.D. Halter, and B.D. Ermold

From our preliminary research we found that while the data producers are gener-
ally interested in the resulting graph representation of the branch, the scientists prefer
a flattened view derived from each branch. This view currently consists of at least two
fields: field origin and quality control codes. Each will correspond to a sample datum
within the NetCDF file. This will provide scientists with a detailed knowledge of how
the product was assembled at an incremental level and will allow them to understand
possible reasons for trends or anomalies themselves.

While we do not have implementation details at this time we are determining how
best to disseminate this knowledge to the user community. Simply showing the raw
OPM data does not seem effective for end users. Our current plan is to disseminate
provenance as part of the VAP as an encoded bit pack describing instruments used,
parameters used, and quality/confidence level based on the provenance results. This
encoded information may result from the branch tier for sample level data, or may be
associated from the hedge tier associated with an overall VAP run. The key is that
provenance for a given VAP instance will reside within the archive and the prove-
nance encoding or will be distributed in the NetCDF file for each sample.

5 Conclusion

The Open Provenance Model has provided ARM a strong foundation for supporting
overlapping provenance models that represent different processing refinements during
the creation of the VAP. While we have identified some initial ways to exploit the
provenance information there are many more to explore. We also believe that with the
abundance of provenance, workflow query, and analysis, that exposing the hedges
will make it far easier for future applications to transform, query, and analyze VAP
results.

Acknowledgments. This research is supported by the Laboratory Directed Research
and Development Program at the Pacific Northwest National Laboratory operated by
Battelle for the U.S. Department of Energy under contract DE-AC05-76Rl0 1839.

We also acknowledge the collaborative efforts of U.S. Department of Energy as
part of the Atmospheric Radiation Measurement Program.

References

1. Moreau, L., Clifford, B., Freire, J., Gil, Y., Groth, P., Futrelle, J., Miles, S., Myers, J.,
Simmhan, Y.L., Stephan, E.G.: The Open Provenance Model Core Specification, v1.1
(2010)

2. Atmospheric Radiation Measurement Climate Research Facility. ARM Annual Report.
Technical report available from U.S. Department of Energy as DOE/SC-ARM-0706

3. Gibson, T.D., Stephan, E.G.: Application of Provenance for Automated and Research
Driven Workflows. In: Tara at Second International Provenance and Anotation Workshop,
June 17, Salt Lake City, UT (2008)

4. Gibson, T.D., Schuchardt, K.L., Stephan, E.G.: Application of Named Graphs Towards
Custom Provenance Views. In: 1st Workshop on the Theory and Practice of Provenance
(TaPP 2009), USENIX, Berkeley, CA (2009)

 Leveraging the Open Provenance Model as a Multi-tier Model 41

5. Stephan, E.G., Halter, T.D., Gibson, T.D., Beagley, N., Schuchardt, K.L.: A Multi-Tier
Provenance Model for Global Climate Research. In: International Conference on Network-
Based Information Systems (NBIS 2009), Indianapolis, Indiana, August 19-21, pp. 481–
486. IEEE, Piscataway (2009), doi:10.1109/NBiS.2009.16

6. David, G., Michelle, Z.: Characterizing Users’ Visual Analytic Activity for Insight Prove-
nance (2008)

7. Comon, H., Dauchet, M., et al.: Tree automata techniques and applications (1997),
http://www.grappa.univ-lille3.fr/ [11] 10

8. Courcelle, B.: On recognizable sets and tree automata. In: Nivat, M., Ait-Kaci, H. (eds.)
Resolution of Equations in Alegebraic Structures,

9. Dublin Core metadata semantics: An analysis of the perspectives of information profes-
sionals Park and Childress. Journal of Information Science (2009); 0165551509337871v16

10. Stonebraker, M., Becla, J., Dewitt, D., Lim, K., Maier, D., Ratzesberger, O., Zdonik, S.:
Requirements for Science Data Bases and SciDB. In: Conference on Innovative Data Sys-
tems Research, CIDR (2009)

11. Bruls, D.M., Huizing, C., van Wijk, J.J.: Squarified Treemaps. In: de Leeuw, W., van
Liere, R. (eds.) Data Visualization 2000, Proceedings of the joint Eurographics and IEEE
TCVG Symposium on Visualization, pp. 33–42 (2000)

12. Heer, J., Card, S.K., Landay, J.A.: Prefuse: A Toolkit for Interactive Information Visuali-
zation. In: CHI 2005, Portland, OR, April 2-7 (2005)

Understanding Collaborative Studies through
Interoperable Workflow Provenance

Ilkay Altintas1,2, Manish Kumar Anand1, Daniel Crawl1, Shawn Bowers3,
Adam Belloum2, Paolo Missier4, Bertram Ludäscher5, Carole A. Goble4,

and Peter M.A. Sloot2

1 San Diego Supercomputer Center, University of California, San Diego, USA
{altintas,mkanand,crawl}@sdsc.edu

2 Computational Science, University of Amsterdam, The Netherlands
{A.S.Z.Belloum,p.m.a.sloot}@uva.nl

3 Department of Computer Science, Gonzaga University
bowers@gonzaga.edu

4 School of Computer Science, University of Manchester, Manchester, UK
{pmissier,carole.goble}@cs.man.ac.uk

5 UC Davis Genome Center, University of California, Davis
ludaesch@ucdavis.edu

Abstract. The provenance of a data product contains information about how the
product was derived, and is crucial for enabling scientists to easily understand,
reproduce, and verify scientific results. Currently, most provenance models are
designed to capture the provenance related to a single run, and mostly executed
by a single user. However, a scientific discovery is often the result of methodi-
cal execution of many scientific workflows with many datasets produced at dif-
ferent times by one or more users. Further, to promote and facilitate exchange
of information between multiple workflow systems supporting provenance, the
Open Provenance Model (OPM) has been proposed by the scientific workflow
community. In this paper, we describe a new query model that captures implicit
user collaborations. We show how this model maps to OPM and helps to answer
collaborative queries, e.g., identifying combined workflows and contributions of
users collaborating on a project based on the records of previous workflow ex-
ecutions. We also adopt and extend the high-level Query Language for Prove-
nance (QLP) with additional constructs, and show how these extensions allow
non-expert users to express collaborative provenance queries against this model
easily and concisely. Furthermore, we adopt the Provenance Challenge 3 (PC3)
workflows as a collaborative and interoperable usecase scenario, where different
stages of the workflow are executed in three different workflow environments -
Kepler, Taverna, and WSVLAM. Through this usecase, we demonstrate how we
can establish and understand collaborative studies through interoperable work-
flow provenance.

1 Introduction

As scientific knowledge grows and the number of studies that require access to knowl-
edge from multiple scientific disciplines increase, the complexity of scientific problems

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 42–58, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Understanding Collaborative Studies through Interoperable Workflow Provenance 43

Fig. 1. Component architecture of a typical scientific research infrastructure (external data, ser-
vice and computational infrastructure not shown)

amplifies. To cope with this complexity, scientists use computational methods that are
evolving almost daily. However, the basic scientific method remains the same while be-
ing continuously transformed from manual to automated with the advances in computer
science and technology. This gradual shift from manual process execution to automa-
tion of repeatable patterns resulted in the creation of scientific workflow systems.

Scientific workflow management systems [1,2,3,4] are critical to the way a modern
scientist conducts studies today by making technological advances more approachable
through integrative interfaces and abstractions for underlying computational and data
resources. Scientific workflow systems allow scientists to develop formal, customiz-
able, reusable and extensible definitions for all or part of a scientific process and execute
them efficiently. In addition, using scientific workflows to perform computational ex-
periments on data unleashes the possibility to maintain its provenance [5]. Typically de-
signed iteratively by a user and ran multiple times by one or more users, the provenance
of a scientific workflow provides a rich source for conducting similar future scientific
studies [6]. However, this is still only a partial solution to the modern scientific process
that relies on multi-disciplinary collaborative teams working on different parts of scien-
tific studies. Currently, provenance support in workflow systems are mostly designed to
capture the information related to a single workflow run by a user. On the other hand,
the collaborative process often involves design and execution of multiple workflows [7]
where different members of a team conceptualize their contribution as workflows and
make it available through a common infrastructure. A scientific discovery is the result
of methodical execution of many of these workflows with many datasets at different
times by one or more users.

Community portals [8], virtual laboratories [9], and Web2.0-based social networking
and sharing environments [10] are popular platforms to establish a common infrastruc-
ture where community members can contribute to data, workflows and projects through

44 I. Altintas et al.

(a) (b)

(c)

Fig. 2. Different observables of shared data, workflows and their runs in a typical scientific re-
search project: (a) data ({d1,d2,d3}) published by users in {u1,u6}; (b) ready to run workflows
({w f1.. w f5}) published by users in {u2,u4,u5}; (c) flow graph for published workflow runs
(customized through their parameters) and related data ({d1.. d10}) in user spaces ({u1,u2,u3}),
separated by horizontal dashed lines

their user spaces under generic governance rules. Workflows could be executed multiple
times by one or more scientists, potentially from an end-user interface that combines
several workflows. In addition, the executed workflows use data from external data re-
sources and the scientific outputs are saved in data repositories, optionally along with
intermediate results and the process provenance. A typical set of components for such
an infrastructure is illustrated in Fig. 1.

The discussion in this paper lies in the heart of these sharing and execution practices
in e-science projects where the overall execution of a set of workflows can result in an
overarching model of the scientific process leading to data artifacts. All the observables

Understanding Collaborative Studies through Interoperable Workflow Provenance 45

(a) (b)

(c)

Fig. 3. Different views generated by modeling and analysis of runs in a typical scientific research
project: (a) data dependency view; (b) run dependency view; (c) overall non-transitive directed
implicit user ({u1.. u6}) collaboration view

in such a project within a three- dimensional space of users, workflows and data are
illustrated in Fig. 2. The history of workflow runs in different user spaces {u1,u2,u3}
depicted in Fig. 2(c) shows the usage of published data in Fig. 2(a) and workflows in
Fig. 2(b). Users who performed the workflow runs or used published data start an “im-
plicit collaboration”. In Fig. 2(c), a run node identifies the provenance of a previous
workflow run and the fine-grained data dependencies are shown by dashed links be-
tween data nodes. One can identify the flow of workflow executions leading to a data
artifact that is published as a “scientific discovery” by chaining together the runs per-
formed by users. This chaining happens through data artifacts consumed and produced
by workflow runs, e.g., in Fig. 2(c), d5 produced by run2 of u2 is consumed by run4

performed by u1, creating a link between run2 and run4.
A goal of this approach is to extend the current single-workflow and single-user tar-

geted provenance approach to a number of workflow runs within a controlled environ-
ment such as a website community portal for sharing data and workflows. In this paper,
we assume that the data store is publicly shared between users. Using this extended
information, one can generate views of data dependencies, related workflow executions

46 I. Altintas et al.

and user collaborations, as seen in Fig. 3(a), Fig. 3(b) and Fig. 3(c) respectively. In ad-
dition, it becomes possible to answer queries for potential acknowledgements of a sci-
entific result and the correction trail of a faulty data item. Another important goal is to
propose and demonstrate an architecture that facilitates the interoperability of different
workflow systems through provenance of workflow runs and related data. We assume
the model of provenance is shared between different workflow systems and provides
a global repository of data artifact identifiers, i.e., an artifact produced by one work-
flow system and consumed by another can be uniquely identified. The design of this
repository is not in the scope of this paper. This new approach puts user actions and
collaborations in the center of the conducted research independent of computational
technologies used to generate results.

Contributions. We investigate the implicit user collaborations in a QLP-based [11]
query model that maps to OPM [12] using observables in an e-science infrastructure
(Fig. 2) and for generating views on top of them (Fig. 3). This approach links OPM
graphs for workflow runs that have an input or output data dependency and helps to
answer queries such as identifying data connections between workflow runs and contri-
butions of users collaborating on a project based on the records of past executions. We
adopt and extend a high-level query language for provenance, QLP, to express complex
collaborative provenance queries. We also establish a mapping between QLP and OPM.
Furthermore, through the PC3 (http://twiki.ipaw.info/bin/view/Challenge/) usecase sce-
nario, we demonstrate the feasibility of how our approach will lead to development of
systems that increase interoperability and reusability of workflow results by integrating
provenance coming out of different workflow systems and, in turn, enhancing efficiency
in modern collaborative research.

Outline. The organization of this paper is as follows. In Section 2, we introduce the con-
cept of collaborative views and queries over interoperable provenance data. Section 3
explains QLP and the extensions we build on top of QLP that map to OPM constructs
along with the QLP expressions of queries defined in Section 2. A feasibility study for
the explained techniques is provided in Section 4, based on PC3 workflows. We review
background work in Section 5 and conclude in Section 6.

2 Building Collaborative Views

The lifecycle of scientific workflows—which includes the design, execution, sharing,
and management of data and provenance products—depends not only on the workflow
itself, but also the overall scientific research infrastructure and scientific collaborations
within which scientists use these workflows. In this section, we introduce the concept
of collaborative views based on the provenance of workflows and user actions within a
scientific infrastructure (see Fig. 2). We also present example queries that are enabled
by our provenance model, including those that allow scientists to determine implicit
collaborative relationships. The basic relations we use to develop collaborative views
are shown in Fig. 4. We first describe these relations, and then show how they enable
the construction of both standard and collaborative provenance views.

The relation Run(r,w) states that r is a run (i.e., execution) of a workflow w (shown
using rounded boxes in Fig.4). We assume every run is of exactly one workflow. Each run

Understanding Collaborative Studies through Interoperable Workflow Provenance 47

Fig. 4. The main entities and edges of the collaborative provenance model

r can take zero or more data artifacts din as input according to the relation Input(r,din),
which states that din was input to r. Each run r can also have zero or more data artifacts
dout as outputs according to the relation Output(r,dout), which states that dout was an
output of r. A data artifact can be an output of at most one run, but can be used as an
input to zero or more runs.

Although not shown directly in Fig. 4, we assume a relation DerivedFrom(dout ,r,din)
for capturing causal dependencies between input and output data items of a run r. Given
a fact DerivedFrom(dout ,r,din), we say that dout was derived from r using din. Each
derivation also implies that din was an input to r, i.e., Input(r,din), and dout was an
output of r, i.e., Output(r,dout). This constraint is captured in first-order logic (FO) as

∀din,r,dout (DerivedFrom(dout ,r,din) → Input(r,din)∧Output(r,dout)).

We define the relation DDep(dout ,din) as the set of all immediate data dependencies
given by DerivedFrom, where dout is said to depend on din. We can easily compute
DDep using the following Datalog rule.

DDep(dout ,din) :- DerivedFrom(dout ,r,din).

We write DDep∗ to denote the transitive closure of the DDep relation.
The Used and Produced relations (as shown in Fig. 4) are variants of Input and Output

that additionally imply a derivation relationship. These relations are defined as views
over Input and Output using the following Datalog rules.

48 I. Altintas et al.

Used(r,din) :- DerivedFrom(dout ,r,din).
Produced(r,dout) :- DerivedFrom(dout ,r,din).

The first rule states that a data artifact din was used by a run r if din derived an output
dout of r. The second rule states that a data artifact dout was produced by a run r if it was
derived by an input din of r. Note that these relations do not explicitly link the inputs
and outputs of a derivation, which is only done through the DerivedFrom relation.

We define the relation RDep(r2,r1) as the set of all immediate run dependencies,
where r2 is said to depend on r1. The RDep relation is defined as the following view in
Datalog.

RDep(r2,r1) :- Output(r1,d1),Used(r2,d1).

Specifically, a run dependency is established between a run r2 and r1 whenever the
output of r1 is used by r2 to derive a data artifact.

We assume the relation Published(u,w) records the case when a user u published a
workflow w to the workflow repository; and similarly, Published(u,d) records the case
when u published a data artifact d to the shared data store (see Fig. 2). A user u may
also perform, i.e., execute and then publish, a workflow run r, which is captured by the
relation Performed(u,r). When a user performs a run, we assume all outputs of the run
are published to the data store, which is captured by the following FO constraint.

∀u,r,d (Performed(u,r)∧Output(r,d) → Published(u,d)).

As shown in Fig. 4, we consider three variants of collaboration, which we define as
views using the following Datalog rules.

WFCollab(u2,u1) :- Published(u1,w),Run(r,w),Performed(u2,r).

DataCollab(u2,u1) :- Published(u1,d1),Used(r,d1),Performed(u2,r).

RunCollab(u2,u1) :- Performed(u1,r1),Output(r1,d1),Used(r2,d1),
Performed(u2,r2).

The first rule states that a workflow collaboration (WFCollab) is established between
two users whenever the second user executes a workflow that is publishes by the first
user. The second rule states that a data collaboration (DataCollab) is established be-
tween two users whenever a data artifact published by the first user was used as an
input by a run that is performed by the second user. The third rule states that a run
collaboration (RunCollab) is established between two users whenever a run performed
by the second user uses the output of a run by the first user.

A collaboration dependency CDep(u2,u1) between two users is established when-
ever they participate in one of the three collaborations defined above (where u2 depends
on u1). The CDep relation is easily defined in Datalog as follows.

CDep(u2,u1) :- WFCollab(u2,u1).
CDep(u2,u1) :- DataCollab(u2,u1).
CDep(u2,u1) :- RunCollab(u2,u1).

Understanding Collaborative Studies through Interoperable Workflow Provenance 49

Table 1. Example queries across workflow executions and collaborations

Q1 Which data artifacts were used explicilty or implicitly to generate data artifact d?

Q2 Which runs were used in the generation of a data artifact d?

Q3 If data artifact d is detected to be faulty, which runs were affected by d?

Q4 Which users depended on data artifact d?

Q5 Which user collaborations were involved in the derivation of artifact d2 from artifact d1?

Q6 Who are the potential acknowledgements for a publication of a data artifact d?

Each of the views shown in Fig. 3 can be reconstructed from the provenance model
described here. The relations DDep and RDep defined above can be used to construct
the standard data and run dependency graphs shown in Fig. 3(a) and 3(b), respectively.
More importantly, using the CDep relation, we can also construct user collaboration
views (i.e., the collaboration dependency graph) as in Fig. 3(c). With these three de-
pendency graphs, it becomes possible to answer both standard provenance queries as
well as queries that involve user collaborations. In the following section we extend the
model presented here (with respect to the three dependency graphs) to addtionally sup-
port lineage-based path queries. Our approach provides a simple mechanism for filtering
dependency graphs to answer provenance queries such as those in Table 1.

3 Expressing Collaborative Queries

We use QLP (the Query Language for Provenance) [11] for expressing lineage queries,
and in particular, to filter the dependency graphs described in Section 2. In general, an-
swering standard provenance questions (including those of Table 1) requires the genera-
tion of recursive queries over lineage graphs. Such queries are often complex to express
and expensive to evaluate [12,13,14,15]. QLP provides a simple, declarative, path-based
language (similar, e.g., to XPath) for expressing such queries, and optimization tech-
niques have been developed that make answering QLP queries over large provenance
repositories feasible [16]. QLP queries work over sets of lineage edges, e.g., represented
by the DerivedFrom relation. A QLP path query p can be viewed as a filter that selects
matching paths within the lineage graph induced by the underlying edges. The result of
a QLP query is the set of edges along matching paths of the induced graph. Thus, QLP
is a closed language that returns a subset of a given set of lineage edges. Closed lan-
guages such as QLP have a number of benefits including the ability to construct views,
“incremental” querying, and visualization [17,18].

QLP queries are expressed and evaluated against a selected provenance view, which
can be a single workflow run, the entire repository of runs, or the provenance view
resulting from a previous query. In the collaborative provenance query scenario, users
can use QLP expressions to filter the various dependency views of Fig. 3. Below we
present the basic constructs of QLP and show how QLP can be used to filter dependency
graphs (and subsequently answer the queries of Table 1; see Table 2).

In the scenario illustrated by Fig. 2, the lineage information is recorded at a “coarse-
grain” level, where only the lineage relationships between inputs and outputs of a run

50 I. Altintas et al.

Lineage-preserving path queries (examples)
* .. en Lineage graph that resulted in nodes in en.
en .. * Lineage graph for nodes derived from nodes in en

en1 .. en2 Lineage graph for paths from nodes in en1 to nodes in en2

en1 .. ri .. en2 Lineage graph for paths from nodes in en1 to en2 passing through run ri

Functions over lineage path queries
exists(p) True if the selected view contains a path defined by path query p
runs(p) The runs of the lineage graph returned by path query p
workflows(p) The workflows of the lineage graph returned by path query p
artifacts(p) The data nodes of the lineage graph returned by path query p
inputs(p) The source nodes of the lineage graph returned by path query p
outputs(p) The sink nodes of the lineage graph returned by path query p

Views over lineage path queries
DATA-DEP(p) Data dependencies (Fig. 3(a)) of the lineage graph selected by path query p
RUN-DEP(p) Run dependencies (Fig. 3(b)) of the lineage graph selected by path query p
COLLAB-DEP(p) Collaborations (Fig. 3(c)) of the lineage graph selected by path query p

Fig. 5. Basic QLP constructs and functions, where en is a node expression comprised of either a
data artifact identifier, a run identifier, a data artifact type (denoting the set of artifacts having that
type), or a workflow (denoting the set of runs of the workflow). We use p to denote a QLP path
query, and ri to denote a run.

are stored. In the following, we restrict the underlying lineage model of QLP to be
over workflow runs, as opposed to the standard use of QLP that supports queries over
indidvidual processes within runs (thus modeling lineage at a “fine-grain” level).

Table 5 introduces some of the basic constructs and functions of QLP, together with
the extensions described here, including the DATA-DEP, RUN-DEP, and COLLAB-DEP
functions. As a simple example of a QLP path query, the expression “* .. d7” returns
lineage edges denoting paths starting from any node in the lineage graph and ending at
node d7. Similarly, the query “d2 .. *” returns lineage edges denoting paths starting at
node d2 and ending at any node in the lineage graph. Both “ends” of a path can be fixed
in QLP, e.g., the query “d5 .. d9” returns all edges on paths in the lineage graph that start
at d5 and end at d9. QLP queries can restrict paths to include intermediate objects, e.g.,
the query “#r2 .. d6 .. #r5 .. *” returns the set of lineage edges denoting paths that start
at run r2, go through artifact d6 followed by (via one or more lineage edges) run r5, and
end at any node.

3.1 Filtering Dependency Views Using QLP

The DATA-DEP, RUN-DEP, and COLLAB-DEP functions construct data, run, and collab-
oration dependency graphs, respectively, that result from evaluating a QLP query over
the current provenance view. Thus, these functions, unlike the DDep, RDep, and CDep
relations defined in Section 2, create views purely out of lineage relations.

Filtering Data Dependency Views. We write v(p) to denote the set of lineage edges
of the form 〈d2,r,d1〉 ∈ L returned after evaluating a QLP path query p over a set of

Understanding Collaborative Studies through Interoperable Workflow Provenance 51

lineage edges L [16]. We directly use this evaluation to define the DATA-DEP function
as follows.

DATA-DEP(p) := {〈d2,d1〉 | ∃r : 〈d2,r,d1〉 ∈ v(p)}
As shown in Table 2, we can use the DATA-DEP function to answer Q1 of Table 1, which
returns the subset of the data-dependency graph that ends at artifact d. Note that the
DATA-DEP function computes a subset of the DDep relation restricted to lineage edges.

Filtering Run Dependency Views. Similarly, to construct a filtered run-dependency
graph, we again use the evaluation function as follows.

RUN-DEP(p) := {〈r2,r1〉 | ∃d1,d2,d3 : 〈d3,r2,d2〉 ∈ v(p)∧〈d2,r1,d1〉 ∈ v(p)}
Note that each output of a run within a lineage graph returned by a QLP query is re-
quired to be dependent on some input (since only derivation edges are considered).
Thus, the run dependencies returned by the RUN-DEP function have the additional con-
straint that each output is dependent on some input (within the query result) of the run.
This can be viewed as restricting the RDep relation to only selecting from Produced
edges instead of Output edges. We can use the RUN-DEP function to answer Q2 and Q3
of Table 1, as shown in Table 2.

Filtering User Collaboration Views. Let DATA-DEP∗(p) be the set of edges of the
transitive closure of the edges returned by DATA-DEP(p). We define the COLLAB-DEP
function as:

COLLAB-DEP(p) := C-DEPWF(p)∪C-DEPDATA(p)∪C-DEPRUN(p),

where the functions C-DEPW F , C-DEPDATA, and C-DEPRUN are defined as follows.

C-DEPW F(p) := {〈u2,u1〉 | ∃r,w : Run(r,w)∧Published(u1,w)∧
Performed(u2,r)}

C-DEPData(p) := {〈u2,u1〉 | ∃d1,d2,r : Published(u1,d1)∧Performed(u2,r)∧
〈d2,r,d1〉 ∈ v(p)}

C-DEPRun(p) := {〈u2,u1〉 | ∃d0,d1,d2,r1,r2 : Performed(u1,r1)∧
〈d1,r1,d0〉 ∈ v(p)∧〈d2,r2,d1〉 ∈ v(p)∧Performed(u2,r2)}

The COLLAB-DEP function can be used to answer queries Q4-Q6 of Table 1, as shown
in Table 2.

3.2 Relation between the Collaborative Model and OPM

The Open Provenance Model (OPM) [12] has emerged from the e-science community,
and has evolved as a standard representation to facilitate the exchange of information
between multiple provenance systems. OPM is based on a model and set of inference
rules for directed acyclic provenance graphs, which represent casual dependencies be-
tween data products and processes. OPM defines three primary entities (nodes): (1)

52 I. Altintas et al.

Table 2. Example queries expressed using the dependency functions defined for QLP

Q1 DATA-DEP(* .. d)

Q2 RUN-DEP(* .. d)

Q3 RUN-DEP(d .. *)

Q4 COLLAB-DEP(d .. *)

Q5 COLLAB-DEP(d1.. d2)

Q6 COLLAB-DEP(* .. d)

Artifacts: immutable piece of data; (2) Processes: actions or series of actions performed
on or caused by artifacts; and (3) Agents: entities that enable, facilitate, control, or
affect execution of processes. OPM also defines five primary types of causal dependen-
cies (edges) that comprise provenance graphs: (1) used: a process used artifact(s); (2)
wasGeneratedBy: an artifact was generated by a process; (3) wasTriggeredBy: a process
was triggered by another process(es); (4) wasDerivedFrom: an artifact was derived from
another artifact(s); and (5) wasControlledBy: a process was controlled by an agent.

The collaborative model, e.g., as in Fig. 4, roughly contains the same entities and
five causal dependencies of OPM. A lineage (i.e., DerivedFrom) relation is of the form
〈dout ,r,din〉 for data nodes (artifacts in OPM) din and dout and run (or processes in
OPM) r. For example, in Fig. 3(b) 〈d4,r1,d1〉 is a lineage relation stating that artifact d1

was used by the run r1 to produce artifact d4 (i.e., artifact d4 wasDerivedFrom artifact
d1), and artifact d4 wasGeneratedBy workflow run r1. Adjacent lineage relations, e.g.,
〈d7,r3,d4〉 and 〈d4,r1,d1〉 state that run r3 wasTriggeredBy run r1. Similarly, users in
the collaborative model can be viewed as a form of agents in OPM, where Performed
edges are similar to wasControlledBy edges in OPM. To the best of our knowledge,
OPM does not provide support for recording when users publish data and workflows,
which is essential in the collaborative model proposed here for creating the various
types of user collaborations described in Section 2.

4 Conceptual Interoperability Scenario

To further illustrate our approach, we describe (i) an interoperability scenario, de-
rived from the Third Provenance Challenge (PC3), (ii) some prototypical collabora-
tive queries, and (iii) an architecture for its implementation. A similar example based
on the First Provenance Challenge is currently being implemented in the context of a
DataONE1 student project.

Usecase. The workflows selected for PC3 are part of an image-processing pipeline in
the Pan-STARRS2 project. A next generation panoramic telescope surveys the sky look-
ing for asteroids or comets that may impact the Earth. The telescope may generate
several TBs of data nightly, which must be reduced and stored into an object data man-
agement framework that is publicly accessible by astronomers. Based on this usecase,

1 http://dataone.org
2 http://pan-starrs.ifa.hawaii.edu

http://dataone.org
http://pan-starrs.ifa.hawaii.edu

Understanding Collaborative Studies through Interoperable Workflow Provenance 53

Fig. 6. Conceptual process for the Provenance Challenge 3

the main PC3 workflow ingests CSV files containing readings from the telescope into
an SQL database and the plotting workflow creates histograms of the ingested data.

To build a collaborative workflow environment, we assume that we executed the
fragments of these PC3 workflows in three different workflow systems as shown in
Fig. 6. In this scenario, Taverna [19] performs the initialization and pre-loading checks,
WS-VLAM [20] loads the CSV files into the database and updates the column counts,
and Kepler [21] creates the histograms. We chose this division of the PC3 workflows to
evenly and logically divide the tasks among the workflow engines.

An example history of observables and actions within this usecase is shown in
Table 3. In this scenario, all three workflow engines use the same MySQL database
when executing their subset of the PC3 workflows. In the pre-load tasks, Taverna ver-
ifies the contents of the input CSV files and creates the tables in the database. Next,
WS-VLAM reads the contents of the CSV files into these tables, and verifies the row
counts and data values. Finally, Kepler produces histograms from these data. For exam-
ple, the second row refers to run1 performed by u2 using w fpreload published by u1. In
run1, u2 used dJ062941 as an input and the run produced dJ062941−1 as its output.

Collaborative PC3 Queries. The following are example queries on Table 3 expressed
using the QLP functions defined in Section 3.

Q1. What data contributed to dhistogram?
DATA-DEP(* .. dhistogram)

Q2. If dJ062942−2 is determined to be faulty, what other data products may be faulty
based on dJ062942−2?

DATA-DEP(dJ062942−2 .. *)

Q3. What runs contributed to the generation of dJ062941−2?
RUN-DEP(* .. dJ062941−2)

Q4. Which users contributed workflows that produced dhistogram?
COLLAB-DEP(* .. dhistogram)

54 I. Altintas et al.

Table 3. The publish and run observables in interoperable PC3 scenario. The contents of the table
shall be read as follows: e.g., the second row refers to run1 performed by u2 using w fpreload
published by u1. In run1, u2 used dJ062941 as an input and the run produced dJ062941−1 as its
output.

u1 Published w fPreload

u2 Performed run1 Used w fPreload Used dJ062941 Produced dJ062941−1

u3 Performed run2 Used w fPreload Used dJ062942 Produced dJ062942−2

u4 Published w fLoad

u5 Published w fVisualize

u2 Performed run3 Used w fLoad Used dJ062941−1 Produced dJ062941−2

u3 Performed run4 Used w fVisualize Used dJ062941−2 Produced dhistogram

u3 Published dhistogram

Fig. 7. Architecture for answering collaborative queries

QLP-based Interoperable Query Framework. Fig. 7 shows the design of an end-to-
end framework that can be plugged into any scientific infrastructure with the ability to
publish data and workflows, to execute workflows using different workflow engines, to
collect workflow provenance and to express and evaluate QLP queries. In this archi-
tecture, workflows use a shared data space with common data identifiers. To generate
data dependency views, using the QLP mapping to OPM, the QLP Querying Engine
transforms users QLP queries into OPM queries. In addition, the same querying en-
gine routes the mapped queries to distinct provenance stores using the developed SQL
(RDBMS), XQuery (XML) and SPARQL (RDF) interfaces.

Understanding Collaborative Studies through Interoperable Workflow Provenance 55

5 Related Work

The ideas presented in this paper depend on previous work in scientific workflow prove-
nance and collaborative scientific platforms. Below we present the related work.

Provenance in Scientific Workflows. Scientific workflow systems are being used in
many scientific domains, and many approaches have been proposed recently for repre-
senting and storing workflow provenance [5,6]. However, most of the existing prove-
nance approaches store provenance for a single runs, and do not capture or maintain
associations across runs [22,23,24,25]. The framework described in [7] records associ-
ations between multiple related workflow runs. Vistrails provides a spreadsheet where
users can compare the results of multiple workflows, or multiple workflow runs[26].
However, our work is based on capturing associations not only across workflow runs,
but also across users, where users play an active role of publishing data, or publish-
ing workflows, or executing workflow runs. Our work captures these associations and
establishes user collaboration views based on provenance.

Querying Provenance. Approaches for querying provenance are largely based on phys-
ical data representations [14], e.g., relational, XML, or RDF schemas, where users ex-
press provenance queries through corresponding query languages, i.e., SQL, XQuery,
or SPARQL. Provenance queries often require computing transitive closures over de-
pendency relations, and expressing such queries using standard approaches is typically
done using recursion or stored procedures [15,16,27]. Expressing such queries is both
cumbersome and error-prone, and requires considerable user expertise. High-level lan-
guages such as QLP provide a separation between the logical provenance model and its
underlying physical representation, which allows for the use of different representation
schemes and additional optimization techniques. Also, QLP is closed under lineage
relations, where answers to lineage queries are sets of lineage dependencies (edges)
forming provenance subgraphs, i.e., provenance preserving.

Collaborative Applications in E-Science. Since collaborative research studies require
substantial infrastructure, we often see infrastructure projects that facilitate conducting
a number of these multi- disciplinary scientific studies for a particular domain, e.g.,
Virolab [28], VL-e [9] and CAMERA [8]. In the VL-e project, the WFBus focuses on
the execution of workflows developed in various workflow management systems. Col-
laborative views through provenance covers both the execution and provenance aspects
of an aggregate workflow. In the context of the CAMERA project, workflow-related
scientific products and their provenance are stored in data repositories that are accessi-
ble through the project portal, allowing for collaborative views and queries over these
runs. In the ViroLab virtual laboratory, scientific applications are executed as scripts
and their provenance is recorded by collecting events emitted by the GridSpace engine
that executes the experiment scripts. Collaborative views over the provenance of these
executing scripts can be captured by explicit reuse of results from previous experiments.
An interesting opportunity arises from the support for Scientific Research Objects [29]
by myExperiment [10]. Applications such as portal environments can deploy the con-
tent of SROs in new ways and collaborative views over them.

56 I. Altintas et al.

6 Conclusion

In this paper, we introduced the concept of collaborative views and queries over interop-
erable provenance data in a collaborative scientific research. We adopted and extended
a high-level query language for provenance, QLP, to express complex collaborative
provenance queries. We also established a mapping between QLP and OPM. Finally, we
showed the feasibility of our approach on collaborative queries through PC3-inspired
usecase workflows and described our planned architecture for its future implementa-
tion. The contributions of this paper tie together users actions with multiple workflow
executions that create a chain of custody for data generated by collaborations.

This is the right time to introduce such provenance models and query languages as
collaborative research projects are ever growing and Web2.0-oriented scientific shar-
ing environments, e.g., myExperiment, are being introduced to allow for sharing and
execution of workflows in different workflow system by groups of users. Thanks to
Provenance Challenge efforts, OPM is starting to be adopted by workflow systems par-
ticipating in the challenge pushing OPM as a standard for provenance data.

Future Work. In the future, we plan to publish an implementation of the QLP based
collaborative query engine based on the PC3 workflow using workflows in Kepler,
Taverna and WSVLAM. We are currently conducting a larger bioinformatics usecase
from the CAMERA project where users share data, workflows and runs through shared
stores. We also intend to work on aspects of restricted user spaces and optimization of
collaborative query evaluation.

Acknowledgements. The authors would like to thank for their collaboration to the Vi-
roLab consortium and the Kepler team. This research was supported by the Dutch Bsik
project VL-e: Virtual Laboratory for e-Science and the European ViroLab grant INFSO-
IST-027446, NSF SDCI Award OCI-0722079 for Kepler/CORE, DOE grant DE-FC02-
01ER25486 for SciDAC/SDM, NSF CEO:P Award No. DBI 0619060 for REAP, NSF
IIS-0630033 for pPOD and Gordon and Betty Moore Foundation award to Calit2 at
UCSD for CAMERA.

References

1. Ludäscher, B., Goble, C. (eds.) Special section on scientific workflows. ACM SIGMOD
Record 34(3) (2005)

2. Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M. (eds.) Workflows for e-Science.
Springer, Heidelberg (2007)

3. Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C., Livny,
M., Moreau, L., Myers, J.: Examining the challenges of scientific workflows. IEEE Com-
puter 40(12), 24–32 (2007)

4. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-science: An overview of
workflow system features and capabilities. Future Generation Computer Systems 25, 528–
540 (2009)

5. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science. SIGMOD
Record 34, 31–36 (2005)

6. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for computational tasks: A survey.
Computing in Science and Engineering 10, 11–21 (2008)

Understanding Collaborative Studies through Interoperable Workflow Provenance 57

7. Bowers, S., McPhillips, T., Wu, M.W., Ludäscher, B.: Project Histories: Managing Data
Provenance Across Collection-Oriented Scientific Workflow Runs. In: Cohen-Boulakia, S.,
Tannen, V. (eds.) DILS 2007. LNCS (LNBI), vol. 4544, pp. 122–138. Springer, Heidelberg
(2007)

8. Altintas, I., Lin, A.W., Chen, J., Churas, C., Gujral, M., Sun, S., Li, W., Manansala, R.,
Sedova, M., Grethe, J.S., Ellisman, M.: Camera 2.0: A data-centric metagenomics commu-
nity infrastructure driven by scientific workflows. In: Proceeding of The IEEE 2010 Fourth
International Workshop on Scientific Workflows, Miami, Florida (2010)

9. Zhao, Z., Booms, S., Belloum, A., de Laat, C., Hertzberger, B.: Vle-wfbus: A scientific work-
flow bus for multi e-science domains. In: International Conference on e-Science and Grid
Computing (2006)

10. Roure, D.D., Goble, C., Stevens, R.: Designing the myexperiment virtual research environ-
ment for the social sharing of workflows. In: E-SCIENCE 2007: Proceedings of the Third
IEEE International Conference on e-Science and Grid Computing, Washington, DC, USA,
pp. 603–610. IEEE Computer Society Press, Los Alamitos (2007)

11. Anand, M.K., Bowers, S., Mcphillips, T., Ludäscher, B.: Exploring scientific workflow
provenance using hybrid queries over nested data and lineage graphs. In: SSDBM 2009: Pro-
ceedings of the 21st International Conference on SSDM, pp. 237–254. Springer, Heidelberg
(2009)

12. Moreau, L., Freire, J., Futrelle, J., McGrath, R.E., Myers, J., Paulson, P.: The Open Prove-
nance Model: An Overview. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS,
vol. 5272, pp. 323–326. Springer, Heidelberg (2008)

13. Anand, M.K., Bowers, S., Ludäscher, B.: A navigation model for exploring scientific work-
flow provenance graphs. In: WORKS 2009: Proceedings of the 4th Workshop on Workflows
in Support of Large-Scale Science, pp. 1–10. ACM, New York (2009)

14. Cohen, S., Cohen-Boulakia, S., Davidson, S.B.: Towards a model of provenance and user
views in scientific workflows. In: Leser, U., Naumann, F., Eckman, B. (eds.) DILS 2006.
LNCS (LNBI), vol. 4075, pp. 264–279. Springer, Heidelberg (2006)

15. Heinis, T., Alonso, G.: Efficient lineage tracking for scientific workflows. In: SIGMOD 2008:
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data,
pp. 1007–1018. ACM P, New York (2008)

16. Anand, M.K., Bowers, S., Ludäscher, B.: Techniques for efficiently querying scientific work-
flow provenance graphs. In: EDBT 2010: Proceedings of the 13th International Conference
on Extending Database Technology, pp. 287–298. ACM, New York (2010)

17. Anand, M.K., Bowers, S., Altintas, I., Ludäscher, B.: Approaches for exploring and querying
scientific workflow provenance graphs. In: IPAW (2010)

18. Anand, M.K., Bowers, S., Ludäscher, B.: Provenance browser: Displaying and querying sci-
entific workflow provenance graphs (Demo). In: 26th IEEE International Conference on Data
Engineering (2010)

19. Turi, D., Missier, P., Goble, C., De Roure, D., Oinn, T.: Taverna workflows: Syntax and se-
mantics. In: International Conference on e-Science and Grid Computing, pp. 441–448 (2007)

20. Korkhov, V., Vasyunin, D., Wibisono, A., Guevara-Masis, V., Belloum, A., de Laat, C., Adri-
aans, P., Hertzberger, L.: Ws-vlam: towards a scalable workflow system on the grid. In:
WORKS 2007: Proceedings of the 2nd workshop on Workflows in Support of Large-scale
Science, pp. 63–68. ACM, New York (2007)

21. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E.,
Tao, J., Zhao, Y.: Scientific workflow management and the Kepler system. Concurrency and
Computation: Practice and Experience. Special Issue on Scientific Workflows (2005)

22. Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance collection support in the kepler scien-
tific workflow system. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp.
118–132. Springer, Heidelberg (2006)

58 I. Altintas et al.

23. Davidson, S.B., Boulakia, S.C., Eyal, A., Ludäscher, B., McPhillips, T.M., Bowers, S.,
Anand, M.K., Freire, J.: Provenance in scientific workflow systems. IEEE Data Eng. Bull. 30,
44–50 (2007)

24. Bowers, S., Mcphillips, T., Riddle, S., Anand, M.K., Ludäscher, B.: Kepler/ppod: Scientific
workflow and provenance support for assembling the tree of life. In: Freire, J., Koop, D.,
Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, pp. 70–77. Springer, Heidelberg (2008)

25. Zhao, J., Goble, C., Stevens, R., Turi, D.: Mining taverna’s semantic web of provenance.
Concurrency and Computation: Practice and Experience, Special Issue on The First Prove-
nance Challenge 20, 463–472 (2007)

26. Scheidegger, C.E., Vo, H.T., Koop, D., Freire, J., Silva, C.T.: Querying and re-using work-
flows with vstrails. In: SIGMOD 2008: Proceedings of the 2008 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 1251–1254. ACM, New York (2008)

27. Anand, M.K., Bowers, S., McPhillips, T., Ludäscher, B.: Efficient provenance storage over
nested data collections. In: EDBT 2009: Proceedings of the 12th International Conference
on Extending Database Technology, pp. 958–969. ACM, New York (2009)

28. Malawski, M., Bartynski, T., Bubak, M.: Invocation of operations from script-based grid
applications. Future Generation Computer Systems 26, 138–146 (2010)

29. De Roure, D., Goble, C.: Research objects for data intensive research. In: E-Science (2009)

Provenance of Software Development Processes

Heinrich Wendel, Markus Kunde, and Andreas Schreiber

Simulation and Software Technology
German Aerospace Center (DLR)

51147 Cologne, Germany
{Heinrich.Wendel,Markus.Kunde,Andreas.Schreiber}@dlr.de

http://www.dlr.de/sc

Abstract. ”Why does the build fail currently?” - This and similar ques-
tions arise on a daily basis in software development processes (SDP).
There is no easy way to answer these questions, the required information
is stored throughout different tools, the version control and continuous
integration systems in this example. The tools mainly live in isolated
worlds and no direct connection between their data exists. This paper
proposes a solution to such problems, based on provenance technologies.
After outlining the complexity of a SDP, the questions arising on a daily
basis are categorized. Finally an approach to make the SDP provenance-
aware is proposed based on PRiME, the Open Provenance Model and a
SOA architecture using Neo4j to store the data, Gremlin to query it and
REST webservices as connection to the tools.

1 Introduction

Research in provenance focuses on a variety of topics, ranging from suitable
models to useable libraries and informative visualizations. Those technologies
have been tested on real world use cases, mainly scientific workflows from areas
like engineering, medicine and bioinformatics. Moreau provides a very detailed
overview over the research performend in this area [1]. This paper focuses on a
new field of application, namely software development processes (SDP).

Some effort has been invested to record the execution of programs, e.g., by
recording all Java method calls [2]. Traceability deals with the links between
requirements, design artifacts, tests and code in both directions [3]. Application
Lifecycle Management Systems (ALM) provide integrated tool suites to manage
artifacts and their relationships in an SDP [4]. Recording the interaction of
tools has been handled in the Taverna project, related to scientific workflows
[5]. Automatic reasoning on collected information, stored using semantic web
technologies, can be done using the Proof Markup Language [6].

In contrast to those approaches the paper focuses on recording the interactions
between developers and a distributed tool suite in an SDP and the resulting
artifacts. Stored in a graph databases provenance questions can be executed
using a graph query language.

Chapter 2 describes a typical SDP and the tools used in it, showing the
need of the proposed solution. Chapter 3 gives a categorization of questions

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 59–63, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.dlr.de/sc

60 H. Wendel, M. Kunde, and A. Schreiber

occuring during the process. Those questions have to be answerable through the
information collected by the provenance system outlined in chapter 4. Finally a
summary and evaluation of the approach is given in chapter 5.

2 Software Development Processes

Due to the complexity of today’s software a large number of development pro-
cess models evolved. Although those processes not necessarily force the usage of
certain tools, the development can be simplified and sped up by their usage. A
typical tool suite at DLR consists of an integrated development environment, a
version control system, an issue tracker, a continuous integration framework and
a documentation management system.

A lot of interaction occurs between developers, the tools they use during
the development process and automatically between different tools. Examples
of those interactions are: i) discussion about a feature request; ii) entering or
changing requirements in an issue tracking system; iii) automatic code style
checks during a check-in.

Information about those processes is, if available at all, distributed over the
different tools used. Version control systems feature a history of all files and
their editors, issue tracking systems a list of all comments for an issue. Still,
the missing link between these different tools makes it either impossible to draw
conclusions from this information or is at least very time-consuming, especially
when the immense amount of available data is considered.

3 Questions

A lot of questions arise during such complex processes. Based on an internal survey
at DLR they have been categorized into one or more of the following groups:

Error Detection: During day to day development it often happens that builds
or unit tests suddenly fail. In such cases it is important to identify the source of
the error. In many cases this might be the responsible developer, who should be
contacted first, because he has the most knowledge to fix the problem. Sometimes
it might also be the failure of a tool, e.g., ocurring after an upgrade.

Quality Assurance: Customers are always interested in a product with maxi-
mal quality, therefore quality assurance has always been a very important topic,
not only in the domain of software engineering. The number of unit tests or code
coverage percentages give important hints on where the quality of the product
is very good or still deficient.

Process Validation: Following a defined process is another way of performing
quality assurance. By following norms like ISO 9001 the quality of the final
product is not assured, but the quality of the process that led to the product.
This is especially important in the area of medical software, where a process
validation is required.

Provenance of Software Development Processes 61

Monitoring: Often problems do not become visible until a closer look at the
project. Automatic monitoring and notifications can help to identify those prob-
lems, e.g., to see if an issue takes longer to implement than expected.

Statistical Analysis: Statistics help to interpret and draw conclusions out of
collected data. They can be used by managers, e.g., to decide if the project is
in time, needs more resources or if developers can be put into another project.
Developers are interested in statistics to see how they perform or compare to
others.

Process Optimization: Another use of monitoring, error detection and statis-
tics is the optimization of the process itself. E.g., a lot of commits related to one
issue might show that the issues should be split more fine-grained next time. A
build tool that fails in a lot of cases because of segmentation faults might be
replaced by a new one.

Developer Rating: There is no widely accepted method to rate the produc-
tivity of developers; and it might not be a popular topic. Still the collected data
can give some hints in order to decide which developer to assign to a specific
problem. It might show that some developers are better in writing unit tests and
some in documentation and helps to improve the process.

Informational: Sometimes data has to be collected for informational purposes,
e.g., when creating a release announcement it shall contain a list of all bugs
fixed.

4 A Provenance-Aware Software Development Process

In order to answer such questions the SDP has to be made provenance-aware
using PRiME [7]. Originally PRiME was created for applications, not for pro-
cesses or the later developed Open Provenance Model (OPM), therefore a few
adaptions are needed to apply it to SDPs. First, the breackdown into individ-
ual application components, has to be changed to a breakdown into individual
subprocesses. Second, instead of using interaction graphs, OPM graphs are used
to picture the interactions between the actors. Using this methodology an OPM
meta-model for the individual SDP can be created.

Based on the Neo4j graph database, which has successfully been used to store
provenance information [8], a service oriented architecture to record information
using this meta model can be implemented. Served by a web server, individual
interfaces are exposed via REST to allow the insertion of new data. The services
are secured using HTTP basic authentication. Afterwards each tool has to be
extended to call the appropiate REST interface when new actions are performed.
Usually the core of the tool must not be changed, because they provide some
kind of hook mechanism which allow the execution of actions on specific events.

Finally a second interface is provided, allowing to query the recorded data
using the graph programming language Gremlin [9]. The questions, previously

62 H. Wendel, M. Kunde, and A. Schreiber

stated in a human-readable format and analyzed by its starting item and scope
using PRiME, can be translated into Gremlin queries. The queries can be exe-
cuted using a provenance console served by a webserver.

5 Evaluation and Conclusions

The proposed approach has been implemented and evaluated using the SDP of
the distributed simulation framework Remote Computing Environment [10] at
DLR. The adapted metholodogy and selected technolgies could be successfully
used and offers the possibility to answer questions from all categorizes summa-
rized in chapter 3. The integration into the distributed tool suite was possible
and showed a reasonable performance.

Some minor issues in the detailed modelling process regarding index structures
and best practices for using Neo4j remain. Furthermore it is questionable if
OPM is really needed for modelling or any arbitrary graph would suffice. OPM
produces some overhead and could still be used as data exchange format.

Although it was possible to answer all given questions using the Turing-
complete language Gremlin it is not intuitive to use. More work can be spend
on visual query technologies. The Eclipse plug-in Neoclipse already offers graph
navigation mechanisms. Combined with a meta-model definition, currently
under development for Neo4j, a way to graphically specify queries could be
developed.

Medical software must be developed following certain process models, the
provenance model could be used to verify the compliance to the process. Even
if the process itself is valid the tools might fail and prevent the process from
working, which could also be detected. Moreover it might be possible to extend
the approach to development processes in general, not focusing on software, but,
e.g. system design or other engineering domains.

References

1. Moreau, L.: The foundations for provenance on the web. Technical report, University
of Southampton (2009)

2. Miles, S.: Automatically adapting source code to document provenance. In: Pro-
ceedings of the 3rd International Provenance and Annotation Workshop, Springer,
Heidelberg (2010)

3. Kannenberg, A., Saiedian, D.H.: Why software requirements traceability remains a
challenge. CrossTalk The Journal of Defense Software Engineering (2009)

4. Schwaber, C.: The changing face of application life-cycle management. Technical
report, Forrester (2006)

5. Zhao, J., Goble, C., Stevens, R., Turi, D.: Mining taverna’s semantic web of prove-
nance. Concurrency and Computation: Practice and Experience 20(5), 463–472
(2008)

6. da Silva, P.P., McGuinness, D.L., Fikes, R.: A proof markup language for semantic
web services. Inf. Syst. 31(4), 381–395 (2006)

Provenance of Software Development Processes 63

7. Munroe, S., Miles, S., Moreau, L., Vázquez-Salceda, J.: Prime: a software engi-
neering methodology for developing provenance-aware applications. In: SEM 2006:
Proceedings of the 6th International Workshop on Software Engineering and Mid-
dleware, pp. 39–46. ACM, New York (2010)

8. Tylissanakis, G., Cotronis, Y.: Data provenance and reproducibility in grid based sci-
entific workflows. In: GPC 2009: Proceedings of the 2009 Workshops at the Grid and
Pervasive Computing Conference, pp. 42–49. IEEE Computer Society, Los Alamitos
(2009)

9. Gremlin - a graph-based programming language,
http://wiki.github.com/tinkerpop/gremlin/

10. Remote component environment, http://www.rcenvironment.de/

http://wiki.github.com/tinkerpop/gremlin/
http://www.rcenvironment.de/

Provenance-Awareness in R

Chris A. Silles and Andrew R. Runnalls

School of Computing
University of Kent
Canterbury, UK

{C.A.Silles,A.R.Runnalls}@kent.ac.uk

Abstract. It is generally acknowledged that when, in 1988, John Cham-
bers and Richard Becker incorporated the S AUDIT facility into their S
statistical programming language and environment, they created one of
the first provenance-aware applications. Since then, S has been spiritually
succeeded by the open-source R project; however, R has no such facility for
tracking provenance. This paper looks at how provenance-awareness is be-
ing introduced to CXXR (http://www.cs.kent.ac.uk/projects/cxxr),
a variant of the R interpreter designed to allow creation of experimental R
versions. We explore the issues surrounding recording, representing, and
interrogating provenance information in a command-line driven interac-
tive environment that utilises a lazy functional programming language.
We also characterise provenance information in this domain and evaluate
the impact of adding facilities for provenance tracking.

1 Introduction

The use of computer systems for recording information has proliferated in re-
cent years; however, facilities for recording how this data has come to be in its
present state have only recently started to catch up due to research in the field
of provenance-aware computing. This discipline has developed quickly over the
last decade and is now reaching maturity with the Open Provenance Model for
the representation and exchange of provenance information [1].

In this paper we look at how facilities for recording and examining provenance
have been introduced to the interactive statistical environment and programming
language, CXXR, which is based on the popular R project [2]. Recording process
documentation for the purpose of reproducible computing in R has previouslybeen
researched in Sweave [3], a system based on concepts of literate programming [4].

Making applications provenance-aware is not in itself a new concept [5]; how-
ever, CXXR presents some novel challenges, primarily to the way in which prove-
nance is represented conceptually, but also to the way in which provenance needs
to be presented to the user, and how particular features of the language require
modelling in order to capture complete provenance.

The structure of this paper is as follows. Section 2 provides an introduction
to the software and describes the approach to handling provenance therein. We
then, in Section 3, detail the implementation steps we have taken. We conclude
with a summary of findings and what we are looking forward to in Section 4.

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 64–72, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Provenance-Awareness in R 65

2 CXXR

2.1 History

CXXR is a variant of R, which is an open-source implementation of S.

S. S is a language and interactive environment for statistical computing, graph-
ics, and exploratory data analysis [6]. It was developed during the mid-1970s
at Bell Laboratories by John Chambers and Richard Becker. S emerged from
Bell Labs at around the same time as the C programming language, and this is
reflected in both its syntax and name. Despite this, it uses the semantics of a
functional programming language, including employment of lazy evaluation.

S AUDIT. ‘New S’ was released in 1988 sporting a new feature entitled S AU-
DIT [7]. While a user operated a session within S, a record was maintained of
each top-level expression evaluated; as well as objects read from and written to
during the course of evaluation.

The accompanying S AUDIT program was able to process this record and
allow the user to interrogate it. S AUDIT was able to perform a number of
queries on the audit record, such as displaying the full sequence of statements;
those statements responsible for reading from, or writing to, a specific object; or
simply providing a list of all objects in the session.

A more intriguing feature of S AUDIT was its ability to create an audit plot,
which was a directed-acyclic graph with statements as nodes arranged on the
circumference of a circle (anti-clockwise in order of creation), and edges each
representing an object written by one statement, later being read by another.
Audit plots enabled users to visualise how objects were being used over their
lifetime.

New S, therefore, became one of the first provenance-aware software applica-
tions, and even featured visualisation of provenance: features that were at the
time innovative, and still remain novel today.

R and CXXR. While S as an application continues life as a commercial prod-
uct called S+ retailed by TIBCO [8], the language, library and environment have
been reimplemented as part of the open-source R project [2]. The R distribution
comprises an interpreter and a number of packages for common functionality,
which have been written in a mixture of C, Fortran, and R itself. It is main-
tained by a nineteen-strong team of core developers, and enjoys a large and
active userbase working in areas as diverse as retail strategy, genetics, educa-
tion, pharmacology, proteomics, and data and text mining.

CXXR is a project to reengineer the fundamental components of the R inter-
preter from C into C++, while fully preserving functionality of the standard R
distribution [9]. The primary objective of CXXR is to enable experimental ver-
sions of the R interpreter to be created, allowing new functionality to be easily
introduced.

66 C.A. Silles and A.R. Runnalls

Listing 1. Example R commands
> 1+2

[1] 3

> three <- 1+2

> square <- function(x) { x*x }

> nine <- square(three)

> nine

[1] 9

2.2 How R Works

Data Types. R has many data types, the most important of which is the vector.
Vectors are homogeneous arrays of data, and may be composed of elements
of types including integers, booleans, strings, and real and complex numbers.
Vectors are ubiquitous in R. Even a single value (e.g. 3.14) is treated as a vector
having only one element.

Example. Listing 1 shows the evaluation of some commands in R. The > char-
acter is the prompt, at which the user enters commands. The first statement
performs a simple addition, and R prints the result. The square brackets indi-
cate that the result is a vector, and the number signifies the index of the element
at the beginning of the line. The second and third statements show assignment
of a vector and a function to objects respectively.

Objects. When the user performs an assignment, a binding is created between
a symbol object and a value object. The space in which bindings are stored is
known as an environment. Environments are used, among other things, to define
scope. The two environments with which we are concerned here are the global and
base environments. The workspace the user operates in is the global environment,
and the standard library functions reside in the base environment. In the second
statement of Listing 1, a binding is created in the global environment between
the symbol three, and an integer vector containing the single element ‘3’, as
illustrated by Figure 1.

Garbage Collection. R — and CXXR likewise — is garbage collected, so
objects that can no longer be accessed by the user because they have either been
manually deleted or bindings to them have been reassigned to reference other
objects, will at some point be destroyed by the garbage collector, which then
releases unused memory.

2.3 Making CXXR Provenance-Aware

The principal objective of this work is to enable CXXR to identify the following
information of any given object: -

1. The process that led to it – the sequence of commands executed;
2. Its ancestors – which other objects it depends on;
3. Its descendants – which other objects depend on it.

Provenance-Awareness in R 67

Global
 Environment

three [3]

Fig. 1. Bindings exist within environments and connect symbols to values. In this case,
the symbol ‘three’ with a singleton integer vector ‘3’.

2.4 What Provenance?

The use of the word ‘object’ in R is unfortunately ambiguous. As mentioned
above, what is commonly referred to as an ‘object’ in R is really a binding
in an environment between a symbol and an object representing a value. The
R language is dynamically typed, which means a variable (i.e. ‘object’) has no
intrinsic type, and simply takes on the type of the object assigned to it. When
referring to ‘object x’, what is often intended is the value of a binding referred
to by symbol x in a particular environment. So what exact provenance are we
interested in?

A binding allows an object to exist in an environment and be utilised in
expressions, but it also gives an object meaning.

Consider the following R code:

> x <- 1:5
> y <- x

The first expression creates an integer vector composed of the values 1 to 5, and
establishes a binding between the symbol x and the newly created vector. The
second expression assigns x to y; or speaking more strictly, it binds y to a copy
of x’s vector. It’s a trivial example, but understanding what happens in a case
like this is critical to understanding how provenance is defined in this context.

The object referred to by x — in the strict sense, meaning the integer vector
1,2,3,4,5 — has not changed. All that has happened to it is that a clone of it has
been created. To understand where x and y have come from, we need to know
what has been bound to them in a particular environment.

Therefore, in order for provenance information to have meaning, it needs to
be associated not with an object, but with a binding.

3 Implementation

The fundamental addition to CXXR required for recording provenance is the
introduction of read and write monitors, which are attached to environments
and get triggered when a binding in that environment is either read from or is
created or overwritten.

68 C.A. Silles and A.R. Runnalls

3.1 Storing

Three C++ containers have been introduced to store various aspects of prove-
nance information.

The Provenance class is central to storing provenance for a binding. It is
composed of the timestamp of when the binding was created; the top-level ex-
pression that was being evaluated; the symbol that is bound; and references to
the parentage and children of the binding.

Binding B1 is a parent of binding B2 (and conversely B2 is a child of B1)
if binding B1 was read in the course of evaluating the top-level expression that
gave rise to binding B2. Parentage is represented by the Parentage class, which
inherits from the C++ Standard Template Library (STL) std::vector class,
and stores pointers to Provenance objects.

A ProvSet of provenance objects is used to store references to Provenance
objects. This collection is an std::set, and its members are ordered by time of
creation. It is used primarily for storing references to children.

The class collaboration diagram for the relationship between new classes and
existing CXXR classes is shown in Figure 2.

Parentage ProvSet

Provenance

Binding RObjectSymbol

Expression

Exis ng CXXR class

New class

Fig. 2. Class collaboration diagram

3.2 Recording

The mechanism responsible for reading commands from the standard input,
evaluating them, and printing the result is known as the Read-Evaluate-Print-
Loop (REPL). Provenance for each REPL iteration is recorded according to the
following algorithm: -

– Begin with the following empty collections:
• Seen set: Provenance of bindings either read from or written to;
• Parentage list: Provenance of bindings read from (in sequence).

– On read of binding to symbol x:
• If x is not in the Seen set, add it to Parentage and Seen.

– On write of binding to symbol y:
• Create a new Provenance object comprising:

∗ A reference to the current top-level expression;
∗ A reference to symbol y;

Provenance-Awareness in R 69

∗ A reference to the current Parentage;
∗ The current timestamp;
∗ An empty set of children;

• Register the new Provenance object as a child of each of its parents, as
recorded by the current Parentage list;

• Associate this Provenance object with the Binding of y;
• Add y to Seen.

3.3 Retrieval

In order for the user to be able to interrogate provenance information a couple of
new R commands have been introduced. The provenance(x) function returns
a list detailing the provenance of the current binding of x: the date and time
of its creation, the expression immediately responsible for its current state, its
symbol, and a list of both its parent and child Provenances.

The pedigree(x) function describes the full sequence of commands executed
that led to the current binding of x. A full ancestry is collated by recursively
looking at each Provenance’s parentage starting from x; ordering all ancestors
by time of binding creation; and printing their respective expressions, which are
by definition relevant and their order chronological.

Listing 2 shows the result of these functions applied to one of the bindings
resulting from evaluating the expressions shown in Listing 1. Firstly, the call to
the provenance function shows information about nine, most interestingly that
it has two parents: square, a function; and three, an integer vector of a single
element. Secondly, the sequence of commands resulting in the current state of
binding nine is detailed by the pedigree() function.

3.4 Issues

Loops. Although their use is not generally encouraged, loops are present in R.
Consider the following loop to compute the sum of integers 1 to 5 and store this
in object x:

> x <- 0 # Initialise x to zero
> for (n in 1:5) # n = {1..5}
+ x <- x + n # Increment x by n

There are two top-level expressions being evaluated here: The first initialises
x, and the second (split across two lines, as indicated by the continuation prompt
beginning with +) is a loop in which n iteratively takes the values from 1 to 5
and gets added to x. During each iteration of the loop, bindings x and n are both
read and written.

Our initial implementation did not model this behaviour correctly because
for each iteration of the loop, Provenances of bindings to x and n were added
multiple times to the current parentage.

A more natural representation of this is, when a binding is read, to only add
the associated Provenance to the current Parentage if it has not previously been

70 C.A. Silles and A.R. Runnalls

Listing 2. Example of provenance inspection functions
> provenance(nine)

$command

nine <- square(three)

$symbol

nine

$timestamp

[1] "03/15/2010 03:34:27 PM.241776"

$parents

[1] "square" "three"

$children

NULL

> pedigree(nine)

three <- 1 + 2

square <- function(x) x*x

nine <- square(three)

written to or read from during the current top-level expression evaluation. This
is the purpose of the seen set. In the case of the above loop, this strategy records
only one parent for each x and n: the initial binding of x created by the first
expression. This is illustrated by Listing 3.

Promises. The R language is capable of lazy evaluation of expressions, meaning
they are not evaluated unless and until their value is required. The mechanism
at the heart of lazy evaluation in R is a promise, which comprises an expression
to be evaluated, and an environment in which the expression is to be evaluated.
As in other programming languages, lazy evaluation prevents expressions from
being evaluated unnecessarily in function bodies. R also installs the standard
library functions into the base environment as promises that only load the full
function definition when it is required. This practice is referred to as lazy loading.

When a promise is forced, that is to say its expression gets evaluated, its
original binding may be succeeded by a new one. According to the algorithm
outlined above, this would then get placed in the seen set and thus be excluded
from appearing in the current parentage. This meant that during the first invo-
cation of a lazily-loaded function, it could not appear as a parent to any object
written. Subsequent invocations worked as desired because no additional binding
creation precluded attribution of parentage. We handle this by not including in
the seen set any binding created as a result of forcing a promise.

Source. R’s source(input) function reads expressions from file input and eval-
uates each line in turn. This needs to be handled as a special case as these evalu-
ations fall outside of the main Read-Evaluate-Print-Loop (REPL) mechanism.

Provenance-Awareness in R 71

Listing 3. Example illustrating how our refined implemention handles loops
> x<-0

> for (n in 1:5) x<-x+n

> provenance(x)

$command

for (n in 1:5) x <- x + n

$symbol

x

$timestamp

[1] "11/06/2009 11:39:11.230680"

$parents

[1] "x"

For the purposes of provenance collection, we view source as a white box,
so that objects written are directly attributed to the precise statement within
the file that resulted in their creation. This is opposed to a black box approach,
which would simply describe a resulting object as having been created by a call
to source with a particular input.

This more precisely describes the sequence of commands responsible for the
current state of data, but not how that sequence came to be evaluated, since no
record of the input file usage is made.

4 Conclusion

This work demonstrates how it is possible to introduce facilities for prove-
nance awareness into an interactive, command-line driven statistical environ-
ment. CXXR has provided a number of challenges, the most novel of which are
the necessity of attaching provenance to bindings rather than objects; facili-
ties for lazy loading; and evaluating expressions from a file as opposed to the
command line.

4.1 Further Work

Looking forward, one of our priorities is to enable cross-session provenance track-
ing. That is to say, when the user terminates a session, the objects are serialised
along with relevant provenance information so the user is then able to restore a
session with not only the object data, but also the pedigree of that data. This
will require modifying the serialisation formats of CXXR, and draws into ques-
tion how best the provenance information collected can be mapped to the Open
Provenance Model [1].

CXXR is currently only aware of provenance in the global and base environ-
ments. Other environments, such as local environments in user defined functions,

72 C.A. Silles and A.R. Runnalls

and those associated with attached data frames, will eventually have their prove-
nances tracked. This will present new challenges, in particular the user interface
will need to provide an effective method of allowing the user to inspect prove-
nance in different environments, and displaying the information in an intuitive
way.

References

1. Moreau, L., Clifford, B., Freire, J., Gil, Y., Groth, P., Futrelle, J., Kwasnikowska, N.,
Miles, S., Missier, P., Myers, J., Simmhan, Y., Stephan, E., den Bussche, J.V.: The
open provenance model — core specification (v1.1). Future Generation Computer
Systems (December 2009)

2. The R Foundation: The R Project for Statistical Computing,
http://www.r-project.org

3. Gentleman, R.: Reproducible research: A bioinformatics case study. Statistical Ap-
plications in Genetics and Molecular Biology 4(1), Article 2 (2005)

4. Knuth, D.E.: Literate programming. Comput. J. 27(2), 97–111 (1984)
5. Callahan, S.P., Freire, J., Scheidegger, C.E., Silva, C.T., Vo, H.T.: Towards

provenance-enabling paraview, pp. 120–127 (2008)
6. Becker, R.A.: A brief history of S. Computational Statistics – Papers Collected on

the Occasion of the 25th Conference on Statistical Computing at Schlosz Reisens-
burg, pp. 81–110 (1994)

7. Becker, R.A., Chambers, J.M.: Auditing of Data Analyses. SIAM Journal on Scien-
tific and Statistical Computing 8, 747–760 (1988)

8. TIBCO Software Inc: Spotfire S+, http://spotfire.tibco.com
9. Runnalls, A.R.: CXXR project, http://www.cs.kent.ac.uk/projects/cxxr

http://www.r-project.org
http://spotfire.tibco.com
http://www.cs.kent.ac.uk/projects/cxxr

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 73–77, 2010.
© Springer-Verlag Berlin Heidelberg 2010

SAF: A Provenance-Tracking Framework for
Interoperable Semantic Applications

Evan W. Patton, Dominic Difranzo, and Deborah L. McGuinness

Rensselaer Polytechnic Institute,
110 8th StreetTroy, NY, USA, 12180

{pattoe,difrad,dlm}@cs.rpi.edu

Abstract. This paper describes the foundations of a framework for constructing
interoperable semantic applications that support recording of provenance in-
formation. The framework uses a client-server infrastructure to control the en-
coding of application. Provenance records for application components, settings,
and data sources are stored as part of the final application file using the Open
Provenance Model (OPM) [1]. The application can render events such as set-
ting changes to users so that they can identify when collaborators make changes
to the application. We demonstrate how the system can be used to collaborate
on a project, identify errors in data sources, and extrapolate insights to other
data sets by making changes to the application. Lastly, we outline some key is-
sues related to using asymmetric key encryption for tracking changes in seman-
tic content and how we address them (or not) within this framework.

Keywords: provenance, semantic framework, semantic collaboration.

1 Introduction

As open linked data continues to proliferate on the World Wide Web, better methods
of building applications will need to be established to cover the wide range of issues
that rise from maintaining and interacting with this complex network of data. Tracking
provenance, both of the underlying data sources and the application processes and con-
figurations, will be critical to maintaining integrity of information and knowledge ex-
change between individuals, and is a key issue that needs to be solved as part of the
growth of the Semantic Web. This paper describes the foundations of an application
programming framework that provides a possible solution to maintaining application
process and configuration integrity when applications are shared across multiple users.

Since collaboration of data, processes, and users is one of the primary drivers for
provenance on the Semantic Web, the Semantic Application Framework (SAF) was
designed for building applications that pass data between themselves and track when
users make changes to individual settings, resulting in changing application behavior.

Use case. A user should be able to instantiate one or more semantically enabled ap-
plications within the application workspace, link those applications together to form a
workflow, and import one or more datasets to explore using the composite application
the user generated.

74 E.W. Patton, D. Difranzo, and D.L. McGuinness

Our approach aims to encode provenance data and the application structure and
settings using RDF+XML. , The exported file is signed using asymmetric encryption
so that other users can verify the integrity of the application when the receive it. Addi-
tional modifications by third-party users must be tracked in order to identify when
individuals change the behavior of the application.

2 Related Work

The Semantic Application Framework is aimed to bring workflow-style construction
to web-based compositions of data and applications. Rather than thinking of applica-
tions as segmented processes completely independent of one another, the SAF treats
them as individual components that can be linked together by end users, making data
and processes of one application available to another, much like existing scientific
workflow systems such as Kepler [2]. Unlike Kepler, SAF-based applications work
entirely within the Resource Description Framework, so that any applications that
understand a common vocabulary can manipulate and annotate the same data.

One of the goals of this work is to wrap existing web applications with SAF so that
users can make use of semantics in existing Web 2.0 tools and record provenance of
themselves and others interacting with existing data. Similar advances have been
made using plugin models, such as the VisTrails system [3], that provides a socket-
based method for applications to record events, replay events, and provide a visual
representation of the provenance trace to the user. This has been tested in two envi-
ronments: radiology [3] and 3D modeling [4]. In both scenarios, a plugin for an exist-
ing software tool provides records of user interaction by tracking the undo stack and
reporting changes to the VisTrails server. Users can then backtrack by simply choos-
ing a point in the generated revision history tree.

3 Demonstration

We will walk through an example of how the Semantic Application Framework al-
lows different users to collaborate and build dynamic web applications together. In
this example Alice and Bob, two students in a 20th century history class, want to
build a small web application to visualize the major battles in World War II. Alice
starts off wanting to visualize the timeline of battles in the European theatre for World
War II, so she creates a SPARQL endpoint application instance, a timeline application
instance, and links them together. She then identifies a third party SPARQL endpoint
where the World War II information is located for the SPARQL app. She can then
visualize the data in the timeline app. She selects a particular time frame, saves the
application, and emails it to Bob.

Bob likes the timeline but wants to see more information regarding the progress of
the Allies through Europe. He believes a map displaying the location of the battles
would help show this. He augments his copy of Alice’s original application by creat-
ing a second SPARQL application to query for location information and a map appli-
cation instance to plot the points. He combines the output of the timeline application
with his copy of the SPARQL application as input for the map application. By chang-
ing the timeline's frame, he can now see how the battle points move through the map
over time. He saves the application and sends it back to Alice.

 SAF: A Provenance-Tracking Framework for Interoperable Semantic Applications 75

Using the provenance data that SAF collects, Alice can observe the changes in the
application Bob made and track what datasets, applications, and users have been added
since he emailed it. Alice thinks the modifications Bob made results in a powerful
visualization of the European theatre, and wants to use the same system to investigate
the Pacific theatre. She updates the SPARQL applications to point to the appropriate
endpoints and uses the visualization to identify some key conflicts. She then saves the
application and sends it to Bob.

Bob opens the file, and can observe the changes Alice has made to the application.
He notices that some of the map locations for the battles don't match up, and that the
marker for the Battle of Midway seems to be too far east as compared to his textbook.
 He decides the data source Alice included for map locations may not be trustworthy,
and identifies alternative data source to replace it.

4 Implementation

4.1 Architecture and Security Model

The Semantic Application Framework (SAF) uses a client-server architecture com-
bined with X509 certificates over the secure socket layer (SSL) to enforce provenance
tracking. These certificates are used for signing the application so that other users can
use the server to verify the authenticity of an application description and the prove-
nance associated with that application.

When an application is exported, the server generates an RDF file that describes
the application, the provenance of the application, and a pointer to the server that gen-
erated the application. This file is then signed using the server’s private key, and the
signature is included as a triple. Any other SAF-capable server can reverse this proc-
ess to verify that a third party has not tampered with the RDF file.

4.2 Client-Side Implementation

The client-side portion of SAF is written in JavaScript, and provides a number of
high-level classes that provide necessary fundamentals for engineering provenance-
tracking applications. Data sources are loaded into the application by way of the RDF
parser used by Tabulator [5]. Applications derive from these classes, and use a pro-
vided set of function calls to establish mechanisms for both user-application interac-
tion and application-application interaction. Lastly, the implementation is responsible
for providing tools for the user to identify changes to the application, which it does by
rendering a trace on the right-hand side of the browser window.

Application-application interaction. For applications to interact with one another,
they must establish input and output bindings. A binding is a point where RDF data is
supplied to or generated by the application. The user can then link applications to-
gether by identifying what bindings should be linked together. When data appears on
an output binding, all of the applications with input bindings bound to it are sent a
notification for them to respond to the presence of this new data.

76 E.W. Patton, D. Difranzo, and D.L. McGuinness

User-application interaction. Applications must instantiate an instance of a SA-
FUserInterface object or derivative that encapsulates an HTML div element where the
application can render its interface. The interface renders settings, although the mode
of those settings may change from application to application. In the sample applica-
tion discussed above, for example, the timeline encodes a start date-time and an end
date-time through the selection boxes that the user can drag. When a user makes a
change to a setting, the application should call the setSettingValue function to register
the change for provenance tracking.

5 Summary

In this paper, a framework for the foundation of provenance-supporting semantic ap-
plications was discussed with respect to students collaborating on a research project for
a class. Such methods, however, can be generalized to any source of semantic data on
the World Wide Web. We will present a demonstration using our implementation that
shows how applications built within a shared framework can allow users to build col-
laborative applications and keep attribute and track changes to applications by users.

6 Future Work

There are many elements to this Semantic Application Framework that need to be
further developed. The use of asymmetric encryption raises the issue syntactic versus
semantic equivalence. The signing mechanism only works if the files are not modified
in any way. However, viewing a file then saving it could result in content reordering
while maintaining exact semantics. Algorithms must be made more robust to this.

Additionally, SAF does not take advantage of OPM metadata tied to existing data
sources. When a user imports a data source, the software does not utilize any existing
provenance information stored in that data source. Therefore, it can be difficult to
detect when a change to the data source may have occurred that could change the ap-
plication behavior. Future versions will have to take care to identify OPM informa-
tion, or follow rdf:seeAlso to look for metadata resources to better capture all of the
available provenance information. We will also investigate using another provenance
Interlingua – PML – for more completely encoding inferences.

Lastly, the current implementation works on a single client communicating with a
single server. One of the planned extensions to the software involves the composition
of applications running on separate servers through the use of WSDL [6] interfaces
using OWL-S [7] or similar service markup languages.

References

1. Moreau, L., Clifford, B., Freire, J., Gil, Y., Groth, P., Futrelle, J., Kwasnikowska, N., Miles,
S., Missier, P., Myers, J., Simmhan, Y., Stephan, E., Van den Bussche, J.: The Open
Provenance Model Core Specification (v1.1),
http://eprints.ecs.soton.ac.uk/18332/1/opm.pdf

 SAF: A Provenance-Tracking Framework for Interoperable Semantic Applications 77

2. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler: an
extensible system for design and execution of scientific workflows. In: Scientific and
Statistical Database Management (2004)

3. Freire, J., Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E., Vo, H.T.: Managing
Rapidly-Evolving Scientific Workflows. In: Moreau, L., Foster, I. (eds.) IPAW 2006.
LNCS, vol. 4145, Springer, Heidelberg (2006)

4. Callahan, S.P., Freire, J., Scheidegger, C.E., Silva, C.T., Vo, H.T.: A Process-Driven
Approach to Provenance-Enabling Existing Applications.

5. Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J., Lerer,
A., Sheets, D.: Tabulator: Exploring and Analyzing linked data on the Semantic Web. In:
Proceedings of the 3rd International Semantic Web User Interaction Workshop

6. Christensen, E., Cubera, F., Meredith, G., Weerawarana, S.: Web Services Description
Language (WSDL) 1.1., http://www.w3.org/TR/wsdl

7. Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D.L.,
Parsia, B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N., Sycara, K.: Bringing
Semantics to Web Services: The OWL-S Approach. In: Cardoso, J., Sheth, A.P. (eds.)
SWSWPC 2004. LNCS, vol. 3387, Springer, Heidelberg (2005)

Publishing and Consuming Provenance
Metadata on the Web of Linked Data

Olaf Hartig1 and Jun Zhao2

1 Humboldt-Universität zu Berlin
hartig@informatik.hu-berlin.de

2 University of Oxford
jun.zhao@zoo.ox.ac.uk

Abstract. The World Wide Web evolves into a Web of Data, a huge,
globally distributed dataspace that contains a rich body of machine-
processable information from a virtually unbound set of providers cov-
ering a wide range of topics. However, due to the openness of the Web
little is known about who created the data and how. The fact that a
large amount of the data on the Web is derived by replication, query
processing, modification, or merging raises concerns of information qual-
ity. Poor quality data may propagate quickly and contaminate the Web of
Data. Provenance information about who created and published the data
and how, provides the means for quality assessment. This paper takes a
first step towards creating a quality-aware Web of Data: we present ap-
proaches to integrate provenance information into the Web of Data and
we illustrate how this information can be consumed. In particular, we
introduce a vocabulary to describe provenance of Web data as metadata
and we discuss possibilities to make such provenance metadata accessible
as part of the Web of Data. Furthermore, we describe how this metadata
can be queried and consumed to identify outdated information.

1 Introduction

During recent years an increasing number of data providers adopted a set of best
practices for publishing and connecting structured data on the Web, leading to
the creation of a globally distributed dataspace – the Web of Data [1]. While this
dataspace holds an enormous potential, using data from the Web poses questions
of information quality and trustworthiness. These questions can be addressed by
methods that use provenance information about the data. We present approaches
how such provenance information can be made available in the Web of Data.

1.1 The Web of Data

The best practices that enable the creation of the Web of Data are basically
four principles that became known as the Linked Data principles [2]. These
principles require to identify entities with HTTP URIs that can be resolved over
the Web into data that describes the identified entity. This data is represented

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 78–90, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Publishing and Consuming Provenance Metadata 79

using the Resource Description Framework (RDF). RDF is a generic data model
that represents data using triples of the form (subject, predicate, object). Each
element of such an RDF triple can be a URI or a local identifier for unnamed
entities; objects can also be a literal. A set of RDF triples is called an RDF
graph. The predicate in an RDF triple specifies how subject and object of the
triple are related. These relationships as well as classes of entities are defined
in vocabularies. Since vocabulary definitions can be represented as RDF data,
vocabularies can also be published as Linked Data; the terms introduced in
vocabularies just have to be identified with dereferencable HTTP URIs, enabling
a Linked Data aware application to retrieve and utilize the definition of terms
used in the currently processed data. Furthermore, the Linked Data principles
require that the provided RDF graphs should include RDF links pointing to
RDF data from other data sources on the Web. An RDF link is an RDF triple
where the subject is a URI in the namespace of one data source and the object
is a URI in the namespace of another source. By connecting data from different
sources via RDF links a single, globally distributed dataspace emerges.

We call RDF graphs that can be retrieved by resolving URI references Linked
Data object. Usually, Linked Data objects are part of a linked dataset which is a
larger RDF graph that contains data about multiple entities. Typical approaches
to create a linked dataset are Linked Data interfaces over native RDF stores and
wrappers over relational databases or over Web APIs. Some wrappers materialize
the created linked dataset, others convert the data on the fly.

1.2 The Need for Provenance Metadata in the Web of Data

The rapid growth and the wide adoption of the Web of Data is driven by the
openness of the Web. The same linked dataset can be replicated and hosted at
different locations on the Web, under the same or different URI namespaces.
Different copies of linked datasets can be created using the same source data.
Datasets can be connected by different sets of RDF links, created using differ-
ent tools or methods and maintained by different publishers. The openness of
the Web means that once the data and links are made available on the Web,
these different copies of statements about the same set of entities –which might
be in conflict and of varied quality– become completely interconnected and in-
tertwined. Finding data about a specific entity may result in multiple URIs
identifying this entity and linking to Linked Data objects from different sources.
Which of these links should be followed? Which of the Linked Data objects pro-
vides more trustworthy or more up-to-date information about the entity? To
answer these questions we need not only data about the entity but also informa-
tion about how the data became available. Hence, we require information about
the provenance of Linked Data.

We identify two main sources for obtaining provenance information about
data: information recorded by the application that performs the provenance-
based evaluation of the data and provenance-related metadata published by the
providers of the data. Only a small amount of provenance can be recorded by
applications itself if these applications process data consumed from the Web.

80 O. Hartig and J. Zhao

Hence, to obtain more complete knowledge these applications rely on provenance
metadata from third parties such as the data providers. However, in a recent
study [3] we discovered a general lack of provenance-related metadata about data
on the Web. Reasons are the lack of suitable vocabularies to describe Web data
provenance and a lack of tools to generate and provide provenance metadata.

1.3 Contributions and Structure

To overcome the problem of missing provenance metadata about Linked Data we
present approaches to publish such metadata; and we discuss how this metadata
can be retrieved and used in applications. To allow for a successful consumption
of provenance metadata we conceive it as an absolute necessity that this meta-
data becomes an integral part of the Web of Data. This is only possible if the
publication of this metadata adheres to the same principles that are used for the
data itself. Therefore, we present a vocabulary that allows providers of Linked
Data to describe the provenance of their data with RDF. Furthermore, we dis-
cuss how these RDF based provenance descriptions can be published as Linked
Data on the Web. To reduce the required effort for this publication we extended
several Linked Data publishing tools, enabling them to automatically provide
provenance metadata. The main goal of consuming this provenance metadata is
to assess quality and trustworthiness of data retrieved from the Web. Hence, we
also discuss how this metadata can be retrieved and we demonstrate its use in
an example scenario, identifying outdated information in the Web of Data.

This paper is organized as follows: Section 2 introduces our Provenance Vo-
cabulary; in Section 3 we describe options to publish provenance metadata and
we present our provenance extensions to Linked Data publishing tools. Section 4
discusses consuming provenance metadata and describes our experiment of using
this metadata to compare the timeliness of data. Section 5 reviews related work
and we conclude in Section 6.

2 Describing Provenance of Linked Data

Our aim is to enable Linked Data providers to offer provenance-related metadata
in the form of Linked Data. Providing provenance information as Linked Data
requires vocabularies that can be used to describe the different aspects of prove-
nance. In this section we introduce our Provenance Vocabulary1 and illustrate
its use by a running example. Furthermore, we describe the design principles
applied to the development of the vocabulary.

2.1 Overview of the Provenance Vocabulary

The Provenance Vocabulary is defined as an OWL ontology2 and it is partitioned
into a core ontology and supplementary modules. To avoid making the core
1 http://purl.org/net/provenance/
2 The introduction in this paper refers to revision 0.5 of the Provenance Vocabulary

as is available at http://purl.org/net/provenance/ns-20100710

Publishing and Consuming Provenance Metadata 81

ontology too complex the modules provide less frequently used concepts and a
broad range of specializations of the core concepts. At present we provide three
supplementary modules: Types, Files and Integrity Verification.

The development of our vocabulary is motivated by the need to describe the
main aspects of provenance of data consumed from the Web. In [3] we identify
two main dimensions of provenance that are typical in this context: data creation
and data access. Some, more general concepts, such as actors, processes, and
artifacts, are relevant in both these dimensions. Consequently, the Provenance
Vocabulary consists of three parts: general terms, terms for data creation, and
terms for data access.

The general terms include classes for the general types of provenance el-
ements: Actor, Execution and Artifact. Actor has sub-classes HumanActor
and NonHumanActor; Artifact has sub-classes DataItem and File. Further-
more, the general terms include properties that relate individuals of the gen-
eral classes with each other (cf. Figure 1, central section): an Artifact was
yieldedBy an Execution which may have used further employedArtifacts. An
Execution was performedAt a specific time; it was performedBy an Actor, and
it might have had other involvedActors. A NonHumanActor was operatedBy
a HumanActor and it may have deployedSoftware. An Artifact might have
been serializedBy a File; a DataItem might have been containedBy another
DataItem; and a DataItem might have been precededBy a former version of this
item. Notice, some of these properties are abstract (yieldedBy, involvedActor,
and employedArtifact) which means they are not intended to be used to de-
scribe instance data but to provide an abstract base for other properties.

With these general terms we can describe the main provenance elements of a
running example using RDF data3:

<> a prv:DataItem ;
foaf:primaryTopic <http://example.org/gene/0030840> ;
foaf:topic <> .

<http://example.org /flybase> a void:Dataset ;
void:exampleResource <http://example.org/gene/0030840> .

<http://example.org/triplify> a prv:Actor, prv:NonHumanActor ;
prv:operatedBy <http://example.org/orga> ;
prv:deployedSoftware _:b1 .

_:b1 rdf:type doap:Version ;
doap:revision "0.5" .

_:b2 rdf:type doap:Project ;
doap:release _:b1 ;
doap:homepage <http://triplify.org> .

<http://example.org/orga> a foaf:Organization , prv:Actor, prv:HumanActor .

This data describes: a data item which primarily represents data about a gene
identified by the URI http://example.org/gene/0030840; a linked dataset,
identified by http://example.org/flybase; and an instance of the Triplify
service [4], a Linked Data publishing tool. This instance, identified by the URI
http://example.org/triplify, is operated by organization http://example.

3 We use RDF Turtle notation (http://www.w3.org/TeamSubmission/turtle/); URI
namespace prefixes used are: rdfs for http://www.w3.org/2000/01/rdf-schema#, prv for

http://purl.org/net/provenance/ns#, prvTypes for http://purl.org/net/provenance/types#, doap

for http://usefulinc.com/ns/doap#, and void for http://rdfs.org/ns/void#

82 O. Hartig and J. Zhao

Fig. 1. Classes and properties defined by the Provenance Vocabulary core ontology

org/orga. In our running example, the linked dataset is a Linked Data version of
FlyBase, the central genetic database for Drosophila research. Triplify publishes
this dataset by creating Linked Data objects on the fly, using results of queries
to the JDBC endpoint of the relational FlyBase database. The data item in the
description represents such a Linked Data.

The terms in the data creation dimension (cf. Figure 1, upper-right section)
describe how a DataItem has been createdBy a DataCreation. The property
usedData refers to source data used during a DataCreation; usedGuideline
refers to guidelines such as transformation rules or mapping definitions that
were used to guide a DataCreation. Using the data creation terms, the creation
in our running example could be described as follows:

<http://example.org/triplify> a prvTypes:DataCreatingService .
<> prv:createdBy [

a prv:DataCreation ;
prv:performedAt "2010-03-01T12:38:42+00:00"^^xsd:dateTime ;
prv:performedBy <http://example.org/triplify> ;
prv:usedData _:x ;
prv:usedGuideline _:y] .

_:x a prv:DataItem ;
foaf:homepage <http://flybase.org/> ;
prv:createdBy [a prv:DataCreation ;

prv:performedAt "2010-02-19T00:00:00+00:00"^^xsd:dateTime] .
_:y a prv:CreationGuideline , prvTypes:TriplifyConfiguration ;

prv:createdBy [a prv:DataCreation ;
prv:performedBy <http://example.org/orga>] .

The example data item was created by a DataCreation execution performed by
the Triplify service on Mar.1, 2010. The creation was based on unnamed source
data from the Feb.19, 2010 release of the FlyBase database; the creation was
guided by an unnamed Triplify configuration created by the organization who
operates the Triplify service.

Publishing and Consuming Provenance Metadata 83

The data access dimension (cf. Figure 1, lower-left section) focuses on re-
trieving data items from the Web. Using the data access terms in provenance
descriptions is, in particular, recommended to provide information about the
retrieval of source data items and of creation guidelines. The Provenance Vo-
cabulary allows to describe how a DataItem has been retrievedBy the execu-
tion of a DataAccess. The retrieved DataItem is a Web representation of the
accessedResource. The accessedService is a DataProvidingService which
was usedBy the DataPublisher; furthermore each DataProvidingService is
usually operatedBy a HumanActor. In our running example, the Triplify service
retrieved the FlyBase relational data that was used to create the example Linked
Data object from the FlyBase JDBC endpoint:

_:x prv:retrievedBy [
a prv:DataAccess ;
prv:accessedService [a prv:DataProvidingService , prvTypes:JDBCService ;

foaf:homepage <http://flybase.org/>] ;
prv:performedAt "2010-03-01T12:38:42+00:00"^^xsd:dateTime ;
prv:performedBy <http://example.org/triplify>]] .

Notice, since the Linked Data object was created on the fly, the execution time
of the data access described is equal to the creation time of the object.

To allow for a wide range of applications the vocabulary does not prescribe a
specific granularity by which provenance information has to be described. Hence,
the classes in the core ontology are quite general. For instance, a DataItem could
a single RDF triple or it could be a specific RDF graph that represents a Linked
Data object as in the example. More specific specializations of the general classes
are provided with the types module. However, while our vocabulary, including
its modules, provides a basic framework to describe the provenance of data from
the Web it does not aim to support the description of every aspect and detail
of provenance. In particular, to provide a detailed description of a specific data
creation we propose to use more specialized vocabularies and associate these
descriptions with the corresponding DataCreation entity. In the documentation
for our vocabulary we propose some examples of how other vocabularies can be
used together with the Provenance Vocabulary.

2.2 Design Principles of the Provenance Vocabulary

We develop the Provenance Vocabulary with understandability and usability in
mind. For this reason we apply a consistent scheme for property names, using
the simple past form of a verb followed by a class name or the preposition by.
Furthermore, we omit inverse properties to avoid interoperability problems in
Linked Data consuming systems that do not apply OWL-DL based reasoning in
many cases.

Some of the properties in our vocabulary are shortcuts, allowing for a more
convenient use. For instance, many data creations are based on the creation
of a file that serializes the created data item. Since it is more convenient to
describe these file-based data creations implicitly by referring to the creation of
the file instead of the data item itself, our vocabulary provides additional terms
for these file-based descriptions. Hence, it is also possible that a File has been
createdBy a DataCreation; this implies the DataItem that was serializedBy

84 O. Hartig and J. Zhao

the File was also created by the same DataCreation. The vocabulary definition
includes rules to enable reasoners to infer such kind of implications. Similarily,
the properties usedGuidelineFile and usedDataFile introduced in the Files
module are alternatives to usedGuideline and usedData, respectively.

Another good practice for Linked Data vocabularies is the interlinking of
related terms between vocabulary definitions. Such “schema-level links” improve
the degree to which published data is self-describing. The Provenance Vocabulary
adheres to this practice. For instance, the Actor class is defined to be equivalent
to the Agent class in the FOAF vocabulary. This relationship enables a FOAF-
aware application to infer actors in a provenance description are FOAF agents
and to deal with them accordingly, e.g., in visualizations.

3 Publishing Provenance Descriptions about Linked Data

To achieve the goal of integrating provenance of Linked Data into the Web of
Data it is not only necessary to provide a vocabulary but also to actually make
the provenance descriptions available to Linked Data based applications. There-
fore, we provide recommendation for publishing provenance-related metadata as
Linked Data in this section. These recommendations should be understood as a
proposal while best practices still have to emerge.

The primary location of metadata about a linked dataset is its voiD descrip-
tion, that is, an RDF document on the Web which describes the dataset based
on the Vocabulary of Interlinked Datasets (voiD) [5]. A voiD description should
comprise general provenance information for the described dataset. In addition
to general provenance information about a linked dataset we suggest to provide
more detailed information with each access to the dataset. There are basically
three options to provide access to a linked dataset on the Web: Linked Data
objects, RDF dumps, and SPARQL endpoints. While these options do not ex-
clude each other they require the application of different provenance publication
approaches as we discuss in the remainder of this section.

3.1 Adding Provenance to Linked Data Objects

The Linked Data object that can be retrieved by resolving the HTTP URI for an
entity is an RDF graph that –according to the Linked Data principles– contains
data about the entity identified by the URI. We propose that these Linked Data
objects additionally contain provenance-related metadata (i.e. additional RDF
triples) about themselves and about the contained RDF triples. Provenance of
specific RDF triples could be described using RDF reification. The provenance of
the whole Linked Data object should be expressed as illustrated by our running
example: the provenance metadata presented in Section 2.1) describes a repre-
sentation of a Linked Data object. To accelerate the adoption of the practice to
augment Linked Data objects with (provenance) metadata we extended several,
widely used Linked Data publishing tools as we describe in Section 3.4.

If possible, the provided provenance description should also comprise detailed
provenance information about source data and creation guidelines that have been

Publishing and Consuming Provenance Metadata 85

used during the creation of the Linked Data object. Furthermore, the provenance
description should cover the linked dataset of the Linked Data object. How-
ever, instead of augmenting the object itself with provenance metadata about
its dataset we propose to link to a voiD description using an HTTP URI that
identifies the dataset (as illustrated in the running example).

3.2 Adding Provenance to RDF Dumps

A linked dataset can be provided as an RDF dump, that is, an RDF document
which contains the whole linked dataset. Usually, an RDF dump represents a
linked dataset as a single RDF graph. We propose to augment this graph with
provenance metadata about itself, similar to the practice proposed in the previ-
ous section for Linked Data objects. However, in this case the added provenance
metadata describes the provenance of the whole dataset and, thus, is likely to be
similar to the information provided with a voiD description for the dataset. In
addition to this information the metadata should also describe the provenance
of the RDF dump itself.

It is also possible to serialize a linked dataset as a collection of Named
Graphs [6], i.e. RDF graphs named with a URI. In this case each of these graphs
could contain provenance metadata about itself. Alternatively, the collection of
Named Graphs could contain an additional Named Graph that describes the
provenance of the other graphs.

3.3 Providing Provenance Information at SPARQL Endpoints

A third possibility to provide access to a linked dataset is via a SPARQL end-
point, i.e., a query service that executes SPARQL queries over the dataset.
SPARQL is the query language for RDF data. We propose to make provenance
metadata a part of the dataset published via such a SPARQL endpoint so that
queries can ask for provenance information. Furthermore, a provenance-enhanced
SPARQL query engine could also add provenance metadata automatically to
query results. SPARQL defines four different query result forms: select, con-
struct, describe, and ask. The result of construct and describe queries is an RDF
graph. Similar to the practice proposed for Linked Data objects, a provenance-
enhanced SPARQL query engine could add provenance metadata to these result
graphs. The result of a select query is a set of variable bindings that can be
represented as a table; ask queries result in a boolean value. To exchange these
types of results over the Web, SPARQL endpoints usually serialize the results
using a standard XML format or a JSON format. It requires future work to
define a possibility how these serializations can be extended with provenance
descriptions.

3.4 Metadata Extensions that Simplify the Publication

A large-scale augmentation of the Web of Data with provenance metadata can
only be achieved when the effort for creation and for publication is kept to a

86 O. Hartig and J. Zhao

minimum. For this reason, we extended several tools that are widely used for
publishing Linked Data on the Web, including Triplify, Pubby4 and D2R server5,
with a metadata component [7]. These new components automatically generate
and serve provenance metadata with Linked Data objects as proposed in Sec-
tion 3.1. Due to our extensions data publishers can easily enrich their data with
provenance metadata by simply configuring a few parameters, such as the name
and the URI identifying the publisher or the URI of the dataset. Hence, with data
providers upgrading their Linked Data servers to the latest release of these tools
we can expect a significant increase in the amount of provenance information
added to the Web of Data.

4 Consuming Provenance from the Web of Data

Consuming provenance information from the Web of Data includes retrieving
provenance metadata from the Web and making use of it. In this section, we
present approaches to query for provenance metadata and we demonstrate its
use in an example scenario, identifying outdated information in the Web of Data.

4.1 Querying for Provenance Metadata

A simple approach to query for provenance requires that provenance metadata
is accessible through the SPARQL endpoints for linked datasets as we propose in
Section 3.3. This practice enables applications to issue queries as in the following
example:
Example 1. SPARQL query (prefix declarations omitted) that asks for the cre-
ation time of the source data used to create a linked dataset.
SELECT ?creation_time WHERE {

<http://example.org/dataset> prv:createdBy [prv:usedData ?source_data] .
?source_data prv:createdBy [prv:performedAt ?creation_time] }

If the provenance metadata is provided as a part of Linked Data objects (cf.
Section 3.1) and the metadata is properly interlinked (i.e. it includes links to
voiD descriptions etc.) then provenance can be queried using the link traversal
based query execution paradigm [8] as implemented in SQUIN6. This query
approach evaluates SPARQL queries as in Example 2 over a dataset that is
continuously augmented with Linked Data objects from the Web. These objects
are discovered by following RDF links that correspond to partial query results.
Example 2. SPARQL query asking for the creation time of the source data used
to create a Linked Data object about a specific gene.
SELECT ?creation_time WHERE {

?data foaf:primaryTopic <http://example.org/gene/0030840> .
prv:createdBy [prv:usedData ?source_data] .

?source_data prv:createdBy [prv:performedAt ?creation_time] }

In the remainder of this section we present an example scenario in which we
retrieve provenance information using SQUIN to execute queries as in Example 2.
4 http://www4.wiwiss.fu-berlin.de/pubby/
5 http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/
6 http://squin.org

Publishing and Consuming Provenance Metadata 87

4.2 The Example Scenario

Our experiment scenario is based on two databases that provide complemen-
tary knowledge for Drosophila genetic research: FlyBase and another relational
database, FlyTED, which is a specialized gene expression image repository for
Drosophila testis. Using these databases we create three linked datasets and pub-
lish their provenance information using our Provenance Vocabulary and voiD.

Our first dataset, DFB, is created by transforming a subset of FlyBase on-
the-fly using Triplify as in our running example. The other two datasets, DFT1
and DFT2, are created by transforming two different snapshots of FlyTED into
RDF and publishing these RDF dumps as Linked Data using Pubby.

While the provenance of Linked Data objects about genes from DFB corre-
sponds to our running example, Figure 2 illustrates the provenance of a Linked
Data object gdj about a gene from DFT1 or DFT2. Each gdj is created by a
Pubby instance that accesses the SPARQL endpoint for the corresponding Fly-
TED linked dataset; this endpoint executes queries over the RDF dump created
by transforming the corresponding FlyTED database snapshot.

Our metadata extensions to Triplify and Pubby (cf. Section 3.4) provide prove-
nance metadata for all the Linked Data objects from the three datasets. Addi-
tionally, we, manually, create voiD descriptions with provenance metadata for
these datasets and publish these descriptions as Linked Data on the Web.

For biologists interested in a more complete knowledge about genes it is useful
to connect FlyBase and FlyTED. We may create owl:sameAs links between
genes from DFB and those in DFT1 and DFT2. However, without additional
context information a search for FlyTED gene entities that are owl:sameAs to a
FlyBase gene will return all matching FlyTED genes no matter when their data
was created. Some of these data mappings might no longer be correct because
gene names are changed regularly in biological databases, whenever additional
knowledge about genes and their functions becomes available. The goal of our
scenario is to identify those genes from DFB that are mapped to multiple genes
from DFTn and to analyze whether some of the mappings point to outdated
information.

Fig. 2. Illustration of the creation process of a FlyTED gene data object

88 O. Hartig and J. Zhao

4.3 Comparing the Timeliness

Each FlyTED gdi is part of the linked dataset DFT1 or DFT2. Since the creation
of these Linked Data objects is performed by the Pubby instance accessing the
SPARQL endpoints, the timeliness of these objects depends on the freshness of
the data used for creating the endpoint, i.e., the RDF dumps. The timeliness of
these dumps depends on the timeliness of the original FlyTED database snap-
shots. In order to identify which gene data is more outdated we need to compare
their timeliness. Because all gdi are generated on the fly by Pubby, they all have
the same creation time. Hence, we need to compare the creation time of their
source data, the FlyTED database snapshots.

A SPARQL query similar to the query in Example 2 can be used to retrieve
this information. For example, the two FlyTED gene entities CG12993 and p-cup
both have an owl:sameAs relationship to the same gene in FlyBase. Using link
traversal based query execution we search for the creation time of the source
data used to create data about these genes. The query result shows that the
creation time of the source data about CG12993 is earlier than p-cup because
the Linked Data object gdCG12993 about CG12993 is derived from a gene record
from an older version of FlyTED and therefore it is less fresh than gdp-cup for
p-cup. Based on these results, we conclude that gdCG12993 is more outdated than
gdp-cup. In fact, the gene name CG12993 is no longer used by the community
and is now replaced by p-cup. The Linked Data object gdCG12993 might contain
outdated and misleading information about this p-cup gene. Linked Data users
should choose the more up-to-date gene URI if they would like to access more
accurate knowledge.

Based on an analysis of all the gene entities from DFT1 and DFT2 we found
that 9 different FlyBase genes are mapped to more than one FlyTED genes. For
each of these FlyBase genes we compared the timeliness of the data about the
FlyTED genes mapped to the FlyBase gene. This comparison revealed that all
these FlyBase genes are linked to at least one outdated FlyTED gene URI, all
of which have been replaced in the more up-to-date FlyTED linked dataset.

This small experiment is just one example which shows how crucial it is to as-
sess the timeliness of Linked Data objects. Without this contextual information,
users of Linked Data face the danger of using poor quality data that might con-
tain wrong information without even being aware of it. Our experiment is a very
first step of demonstrating the importance of integrating provenance in the Web
of Data and the importance of provenance metadata for reducing potential errors
in Linked Data applications and, thus, enhancing the trust in Linked Data.

5 Related Work

Representing and analyzing provenance is a topic of research since many years [9].
While many approaches exist for representing provenance of data creation [10,11],
none of these explicitly addresses the characteristics of data access, e.g., the re-
trieval of data from the Web. Although this type of provenance is not always
required in self-contained systems such as a DBMS or a workflow management

Publishing and Consuming Provenance Metadata 89

system, it needs be captured for the Web of Linked Data. The Provenance Vo-
cabulary presented in this paper allows to describe both aspects, data creation
and data access.

Many related work on provenance for the Web have emerged in the context
of Semantic Web research. Harth et al. [12] propose a “social dimension to as-
sociate provenance with the originator (typically a person) of a given piece of
information”. Our Provenance Vocabulary encourages to represent human actors
and their relation to data items.

Ding et al. [13] understand the provenance of RDF data as the RDF graphs of
which parts of an analyzed RDF graph has been derived from. The authors argue
that tracking complete RDF graphs is too coarse-grained and that a representa-
tion on the level of single RDF statements is unsuitable, too. Hence, Ding et al.
introduce RDF molecules as the finest sub-graphs to decompose an RDF graph.
Our vocabulary models data items on an abstract level. They can represent data
of any level of granularity: RDF graphs, statements, or RDF molecules.

Da Silva et al. use the term knowledge provenance to refer to information
about the origin of knowledge and about the reasoning processes used to produce
answers [14]. In [15] the authors present the Proof Markup Language to describe
justifications for results of an answering engine or a reasoner. These justifications
may describe the execution of a specific type of data creation process modeled
by our Provenance Vocabulary.

Moreau et al. propose the Open Provenance Model (OPM) which aims to
provide a community-compliant, general-purpose provenance model [16]. OPM
contains many concepts similar to the general terms in our vocabulary. How-
ever, in contrast to the domain-independent approach of OPM our vocabulary
explicity addresses the provenance of Linked Data published on the Web. Hence,
our vocabulary can be defined as an OPM profile, created for the Web of Data
application domain. Such an alignment with OPM will help us to ground our
vocabulary with a community data model and, thus, is part of our future work.

Similarily to OPM, Sahoo et al. propose Provenir [17], an upper-level prove-
nance ontology that defines abstract classes and properties which can be refined
for a specific domain. An alignment of the Provenance Vocabulary with Provenir
is also part of our future work.

6 Conclusion

This paper presents a Provenance Vocabulary that assists providers of Linked
Data to describe the provenance of their data using RDF. We explain how this
vocabulary can be used to describe data items of different granularity and we
propose approaches how metadata with such provenance descriptions can be-
come an integral part of the Web of Data. Furthermore, we discuss how such
provenance metadata can be consumed in order to support an example scenario
of identifying outdated information from the Web of Data. An alignment with
other existing provenance models and vocabularies is part of our future work. We
will also continue our investigation of using provenance to support the evaluation
of information quality.

90 O. Hartig and J. Zhao

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. In: Int.
Journal on Semantic Web and Information Systems. Special Issue on Linked Data
(2009)

2. Berners-Lee, T.: Design issues: Linked data,
http://www.w3.org/DesignIssues/LinkedData.html (retrieved March 19 2010)

3. Hartig, O.: Provenance Information in the Web of Data. In: Proceedings of the
Linked Data on the Web Workshop (LDOW) at WWW (2009)

4. Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify: Light-
weight linked data publication from relational databases. In: Proceedings of the
18th International Conference on World Wide Web, WWW (2009)

5. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets.
In: Proceedings of the Linked Data on the Web Workshop (LDOW) at WWW
(2009)

6. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and trust.
In: Proceedings of the 14th International World Wide Web Conference, WWW
(2005)

7. Hartig, O., Zhao, J., Mühleisen, H.: Automatic integration of metadata into the
web of linked data. In: Proceedings of the Demo Session at the 2nd Workshop on
Trust and Privacy on the Social and Semantic Web (SPOT) at ESWC (2010)

8. Hartig, O., Bizer, C., Freytag, J.C.: Executing SPARQL queries over the web of
linked data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,
D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, Springer,
Heidelberg (2009)

9. Bose, R., Frew, J.: Lineage retrieval for scientific data processing: A survey. ACM
Computing Surveys 37(1) (2005)

10. Simmhan, Y., Plale, B., Gannon, D.: A Survey of Data Provenance in e-Science.
SIGMOD Record 34(3) (2005)

11. Tan, W.C.: Provenance in Databases: Past, Current, and Future. IEEE Data En-
gineering Bulletin 30(4) (2007)

12. Harth, A., Polleres, A., Decker, S.: Towards a Social Provenance Model for the
Web. In: Proceedings of the Workshop on Principles of Provenance (2007)

13. Ding, L., Finin, T., Peng, Y., da Silva, P.P., McGuinness, D.L.: Tracking RDF
Graph Provenance using RDF Molecules. Technical Report TR-CS-05-06, UMBC
(2005)

14. da Silva, P.P., McGuinness, D.L., McCool, R.: Knowledge Provenance Infrastruc-
ture. Data Engineering Bulletin 26(4) (2003)

15. da Silva, P.P., McGuinness, D.L., Fikes, R.: A Proof Markup Language for Semantic
Web Services. Information Systems 31(4-5) (2006)

16. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska,
N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., den
Bussche, J.V.: The open provenance model core specification (v1.1). In: Future
Generation Computer Systems (in Press 2010) (accepted Manuscript)

17. Sahoo, S., Thomas, C., Sheth, A., York, W., Tartir, S.: Knowledge modeling and
its application in life sciences: a tale of two ontologies. In: Proceedings of the 15th
International Conference on World Wide Web, WWW (2006)

http://www.w3.org/DesignIssues/LinkedData.html

POMELo: A PML Online Editor

Alvaro Graves

Tetherless World Constellation
Department of Cognitive Sciences
Rensselaer Polytechnic Institute

Troy, NY 12180
gravea3@rpi.edu

Abstract. This paper introduces POMELo, a simple, web-based PML
(Proof Markup Language) editor. The objective of POMELo is to al-
low users to create, edit, validate and export provenance information
in the form of PML documents. This application was developed with
provenance novices in mind, making it usable in various settings, from
educational to scientific. Since this is a web-based application, users do
not need to install or run any software aside from a normal web browser,
which simplifies its adoption and makes it more attractive for inexperi-
enced users.

Keywords: PML, Web Application, Graphical Editor, Validation.

1 Introduction

There is an increasing acknowledgement of the importance of provenance infor-
mation in different areas, from Semantic Web and eScience[15] to Ancient Art
market[11]. Currently, there are powerful tools[4][12] that allow experts to edit
and manage complex graphs describing provenance information. However, we
see a need for simpler tools that can be used for educational purposes as well as
being used by experts. Furthermore, most of the currently available applications
related to provenance require installation of special software and libraries, mak-
ing it difficult for novice users to create, visualize, edit and export provenance
data.

In the past few years, application development for the web has become
widespread. Nowadays, it is possible to write documents, read emails and edit
spreadsheets using web applications. Web applications have multiple benefits:
On one hand, the Web provides an open, interoperable platform where users can
access resources from different locations. Moreover, these “web apps” usually do
not require the user to install third party software, simplifying their adoption.
These factors inspired the development of POMELo: A simple application that
allow users to view and edit provenance information without the need for writing
PML directly or installing software.

The rest of this paper is organized as follows: Section 2 provides a brief descrip-
tion of PML; Section 3 presents the related work; Section 4 discusses available

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 91–97, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

92 A. Graves

features in POMELo; Section 5 gives examples of situations where POMELo can
be useful; Section 6 describe future work and potential extension for POMELo;
Finally, Section 7 shows the conclusions.

2 Proof Markup Language (PML)

The Proof Markup Language[13] is an interlingua designed for sharing explana-
tions and representing provenance knowledge over the Web. PML was designed
modularly through three different ontologies.

2.1 PML-P: Provenance

The first component in PML is the provenance ontology, which aims to provide
a set of primitives to represent provenance information. Thus it is possible to use
PML-P for describing pieces of information, as well as their sources, languages,
and formats in which they are expressed.

2.2 PML-J: Justification

The justification component provides primitives for explaining the steps taken
in a process to draw a conclusion. PML-J allows users to express inference steps,
assumptions, assertions, as well as sets of rules and engines used to obtain a
specific conclusion.

2.3 PML-T: Trust

The Trust ontology allows users to indicate their trust in other users as well as
their beliefs in assertions. This information can be expressed using numerical
values (usually between 0 and 1). Is important to note that the method or
algorithm for establishing a specific value is left to the user.

3 Related Work

Over the years, several initiatives have appeared to visualize and deal with prove-
nance information. The Inference Web Browser (IWBrowser)[3] is a web-based
tool for visualizing PML documents. This tool allows users to visualize PML
proofs and show the results in english or in a graphical tree structure. Prove-
nance Explorer[1] is another tool focused on visualizing provenance information
expressed in OWL[14] (using an extension of ABC ontology[10]) and SWRL[8]
and supports inference using Algernon[2] as an inference engine. VisTrails was
developed by Freire et al.[7] and allows users to keep track of provenance in-
formation from workflows as well as data, and visualize it graphically. VisTrails
was developed with scientists as the target audience and provides a rich infras-
tructure, including a workflow creator, a repository and a programming API.
Probe-It![4] is a Java-based application for visualizing PML documents obtained
from inference engines. Users can see the justification behind a certain conclu-
sion in a graphical way as well as explore data through different views (results,
justification, provenance).

POMELo: A PML Online Editor 93

4 Features of POMELo

POMELo was based on “RDF Editor”[9] and the ARC2 library[16] for pars-
ing RDF/XML. Implementation of POMELo was done using PHP, Javascript,
AJAX and JQuery. A screenshot of POMELo can be seen in Figure 2. We now
describe the most important features available in POMELo.

Graphical Visualization: One of the main features in POMELo is the use
of graphical visualization to manage PML: Each entity is shown as a rectangle
(green for resources and blank nodes, blue for literals) while the predicates are
described as labeled edges. These nodes and edges can be rearranged for better
display. Finally, hovering the mouse over a resource, it is possible to obtain its
type (when available). An example can be seen in Figure 1.

Fig. 1. Graphical representation of PML

Editing: Users can edit and curate provenance data. They can add Information
Sources, Agents, Inference steps and other entities from PML based on four
menus available on the left panel (one for each component of PML plus Literals).
They can include them as resources or blank nodes. It is also possible to link
different resources using predicates available from PML-P (PML’s provenance
ontology), PML-J (justification ontology) and PML-T (trust ontology).

Import and Export: POMELo allow users to import PML documents in the
RDF/XML format. Users need to provide the URL where the PML document is
located and POMELo will retrieve, parse and display it graphically. In the same
way, it is possible to export the current PML model into RDF/XML.

Validation: POMELo can also validate PML graphs against the Inference Web
PML Validation Service[5]. This service allows users to verify if their PML docu-
ment is valid by making 10 evaluations, from loading of the data to issues related
to typing of the resources. The validations may return warnings, errors or fatal
errors. In turn, the user can make modifications to their model and perform
follow-up validation. In this way, users can create valid PML documents using
an integrated platform.

94 A. Graves

Fig. 2. Example of a PML document loaded into POMELo

5 Examples of Use

POMELo can be used for several purposes: First, it can help with curating small
portions of a bigger provenance model, where a user may not be interested in
the whole model but only a small part. He may load that portion into POMELo,
study it, make edits and finally export it again.

It is also possible to use POMELo for educational purposes. People interested
in studying provenance and in particular PML may not want to install addi-
tional software. To use POMELo, only a web browser and Internet connection
is required.

5.1 Example 1: Visualizing PML

Professor A is giving a lecture on using provenance (in particular on how to
express provenance information using PML). For that purpose, Professor A pre-
pared several examples as documents in RDF/XML format available on the Web.
In turn, students can use POMELo to visualize these documents.

5.2 Example 2: Editing and Validating PML

A scientist B receives a URI from scientist C containing provenance information
about an experiment in PML. B opens the document using POMELo for visu-
alizing it. After a few minutes studying it, she decides to add more information

POMELo: A PML Online Editor 95

to the PML graph (for example, adding a new antecedent to justify the default
value in a sensor). In order to confirm that she has not made any mistake editing
the provenance information, B validates the current PML graph using the “Val-
idate!” button. POMELo indicates that the PML information is valid, but also
report a warning because of not using a more specific type for the Information
node. Figure 3 shows an example of a successful validation in POMELo. Finally
she exports her work in RDF/XML format.

Fig. 3. POMELo validates a PML document using the PML validation service. The
dialog box indicates warnings related to this document.

6 Future Work

There are several improvements that can be made to POMELo: First, the default
layout was developed based on the assumption that trees will be the most likely
structure found in PML documents (i.e., a documents describes the provenance
of one thing). While this is useful, we have found certain situations where PML
documents refers to several entities, making the tree layout inappropriate. To
solve this, we are already working in integrating graphviz[6] as a “layout man-
ager” that can coordinate how POMELo should render the nodes depending on
the graph structure of the PML document. Another interesting feature would
be to cluster specific parts of the PML document and visualize them as one
node. Due the nature of PML, the use of blank nodes and other different levels
intermediate types of nodes may overload the screen (e.g., when describing a list
of authors). Thus, it would be desirable to allow users to group several recurrent
sub-structures in a PML document into one node, alleviating from an overload
of nodes on the screen.

Another direction we have considered is to allow users to collaboratively visu-
alize and edit a PML document: This could make easier for students to under-
stand provenance and in particular to use PML. Also, the ability for exporting

96 A. Graves

in different formats and publishing documents from POMELo, would add value
from the educational perspective as well as from the professional point of view.
Finally, the possibility of uploading PML documents directly from POMELo
to a central repository would make the whole process of creating, editing and
publishing provenance information more fluid and easy for users.

7 Conclusions

In this paper, we presented POMELo, a web application that allows users to
work with provenance information using PML. The aim of this application is
to allow users to visualize, modify and export provenance information in PML.
One of the goals of POMELo is to serve as a tool that can be adopted by expert
as well as novice users. Since it is based on the Web, POMELo does not need
special libraries, but only a web browser and an Internet connection. We show
the functionalities of POMELo, including its integration with PML Validator
that allow users to create, verify and correct their model in a simple, unified
interface. A demo of POMELo can be seen at http://graves.cl/pml/pomelo.

Acknowledgement

Thanks to James Michaelis for helping in the revision of this paper.

References

1. Cheung, K., Hunter, J.: Provenance Explorer–Customized Provenance Views Using
Semantic Inferencing. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe,
D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp.
215–227. Springer, Heidelberg (2006)

2. Crawford, J.M., Kuipers, B.J.: Algernona tractable system for knowledge-
representation. ACM SIGART Bulletin 2(3), 44 (1991)

3. Da Silva, P., Sutcliffe, G., Chang, C., Ding, L., Del Rio, N., McGuinness, D.: Pre-
senting TSTP proofs with inference web tools. In: CEUR Workshop Proceedings,
Citeseer, vol. 373, pp. 81–93.

4. Del Rio, N., da Silva, P.: Probe-it! visualization support for provenance. In: Bebis,
G., Boyle, R., Parvin, B., Koracin, D., Paragios, N., Tanveer, S.-M., Ju, T., Liu,
Z., Coquillart, S., Cruz-Neira, C., Müller, T., Malzbender, T. (eds.) ISVC 2007,
Part II. LNCS, vol. 4842, pp. 732–741. Springer, Heidelberg (2007)

5. Ding, L., Tao, J., McGuinness, D.: An initial investigation on evaluating semantic
web instance data (2008)

6. Ellson, J., Gansner, E., Koutsofios, L., North, S., Woodhull, G.: Graphviz, open
source graph drawing tools. In: Graph Drawing, pp. 594–597. Springer, Heidelberg
(2001)

7. Freire, J., Silva, C., Callahan, S., Santos, E., Scheidegger, C., Vo, H.: Managing
rapidly-evolving scientific workflows. In: Provenance and Annotation of Data, pp.
10–18

http://graves.cl/pml/pomelo

POMELo: A PML Online Editor 97

8. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL:
A semantic web rule language combining OWL and RuleML. W3C Member sub-
mission 21 (2004)

9. Krsulovic, E.: Rdf editor (2009), http://code.google.com/p/tesis-e/
10. Lagoze, C., Hunter, J.: The ABC ontology and model. Journal of Digital Informa-

tion 2(2), 77 (2001)
11. Levine, J.: et al. The importance of provenance documentation in the market for

ancient art and artifacts: The future of the market depend on documenting the
past. DePaul J. Art Tech. & Intell. Prop. L. 19, 219–421 (2009)

12. McGuinness, D., da Silva, P., Chang, C.: IWBase: Provenance metadata infrastruc-
ture for explaining and trusting answers from the web. Technical report, Citeseer

13. McGuinness, D., Ding, L., da Silva, P., Chang, C.: PML 2: A modular explanation
interlingua. In: Proceedings of AAAI, vol. 7 (2007)

14. McGuinness, D., Van Harmelen, F., et al.: OWL web ontology language overview.
W3C recommendation, February10 (2004)

15. Miles, S., Groth, P., Deelman, E., Vahi, K., Mehta, G., Moreau, L.: Provenance:
The bridge between experiments and data. Computing in Science and Engineer-
ing 10(3), 38 (2008)

16. Nowack, B.: Arc, rdf classes for php (2006), http://arc.semsol.org/

http://code.google.com/p/tesis-e/
http://arc.semsol.org/

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 98–101, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Capturing Provenance in the Wild

M. David Allen, Adriane Chapman, Barbara Blaustein, and Len Seligman

The MITRE Corporation
{dmallen,achapman,bblaustein,seligman}@mitre.org

Abstract. All current provenance systems are “closed world” systems; prove-
nance is collected within the confines of a well understood, pre-planned system.
However, when users compose services from heterogeneous systems and or-
ganizations to form a new application, it is impossible to track the provenance
in the new system using currently available work. In this work, we describe the
ability to compose multiple provenance-unaware services in an “open world”
system and still collect provenance information about their execution. Our ap-
proach is implemented using the PLUS provenance system and the open source
MULE Enterprise Service Bus. Our evaluations show that this approach is scal-
able and has minimal overhead.

Keywords: provenance, capture, distributed systems.

1 The Challenge of “Open World” Provenance Capture

Provenance, or the history of information, has garnered interest in government, com-
mercial and scientific circles. However, provenance systems will only become ubiqui-
tous when it can be easily captured in the heterogeneous, distributed environments
typical of most real-world enterprises.

In contrast to this need, current provenance capture techniques assume a closed world
– a contained environment about which the provenance system has considerable knowl-
edge and control. In application-embedded provenance, capture is limited to the data
and processes within a particular application [4, 5, 7]. Workflow-based systems, such as
[2, 8, 12], can only capture provenance for events that occur within that workflow sys-
tem. More generic provenance management systems [3, 6, 13] provide a provenance
reporting interface; however, because provenance is not a central feature of most appli-
cations, the incentives do not exist for them to report provenance. Operating system
based systems [11] only capture provenance within a particular machine and, as a result,
fail to support distributed interactions across heterogeneous environments. Also, OS-
based provenance is usually at too low a semantic level to help users understand the
business processes that have acted upon their data. Even the most “unplanned” prove-
nance capture system today, for user-created mashups [7], assumes the applications used
in the mash-up are provenance aware and report metadata in a particular format.

All these approaches assume a single system controlled by a central provenance
collecting entity. Among our U.S. government customers though, it is common for
data to flow across organizational boundaries and for each autonomous stakeholder to
use and transform data with their own applications. Therefore, provenance capture

 Capturing Provenance in the Wild 99

must cross system and organizational boundaries. While these systems often expose
some interface, their implementation technology is often unknown.

We advocate for a solution that does not require system-invasive strategies and
also does not restrict the user’s choice of applications. To be useful in an “open
world”, the solution must capture provenance 1) across multiple systems with no
assumption of control over those systems, 2) from legacy systems that are not prove-
nance aware, and 3) at the level of application interaction, not at the level of protocol
interaction or foundational technology stack (i.e. OS, filesystem).

2 Provenance Capture at Distributed System Coordination Points

Among MITRE’s customers, there are often points of coordination in the interactions
among distributed, heterogeneous systems. Popular examples include enterprise ser-
vice buses, business process execution engines, and proxy servers. These coordination
points present a previously untapped opportunity to log provenance that spans sys-
tems and organizations without requiring application modification.

To explore the feasibility of capture at distributed system coordination points, we
created a provenance capture module using an enterprise service bus (ESB) which
addresses the requirements described above. An ESB is a tool for integrating multiple
applications with different messaging specifications, and for specifying the way in
which they interact with one another (the implicit workflow). The popular open
source ESB MULE [10] provides built-in support for automatic message routing and
translation between different technologies such as Java Messaging Service (JMS),
SOAP, etc., greatly simplifying communication among services in a distributed, het-
erogeneous environment. An ESB is a perfect point for provenance capture in the
wild: it is a point of coordination among multiple distributed systems.

By tying capture into a service such as MULE, it is possible to capture provenance
of implicit workflows—as opposed to pre-planned explicit workflows—across dispa-
rate, autonomous systems. We implemented our approach in the MULE Capture
Agent (MCA), which uses the provenance reporting API of PLUS [3], a provenance
manager with a model similar to OPM [9]. MCA also uses MULE’s “Envelope Inter-
ceptor” interface, which allows inspection of the ESB’s state both immediately before
and after a service is executed. When MCA encounters a new object, it records the
object in the provenance store and “tags” the object with a unique identifier. This
identifier is carried as the message flows throughout the system, permitting previously
unconnected single-step provenance to be linked into meaningful provenance DAGs.

MULE and other ESBs provide a large amount of metadata relevant to service invo-
cations (e.g., a given request came from Firefox or the time of the response was
09:07:23). MCA can access this metadata and report it to PLUS whenever it is antici-
pated that future provenance queries might require it. In addition to message metadata,
some applications that leverage provenance may also require excerpts from the under-
lying message payload. For example, latitude and longitude may need to be extracted if
future provenance queries might include location predicates (“show me the derivation
of all today’s situation reports within 20km of Port-au-Prince”). In such cases, the
ability to peek at the message payload is required. MCA uses several techniques to
introspect into messages, including reflection, a java ability to examine the runtime
behavior of applications in the VM. Whether the information comes from message

100 M.D. Allen et al.

metadata or is extracted from the message payload, PLUS manages it using its extensi-
ble facility for attaching attribute-value pairs to provenance nodes.

3 Evaluation

We tested1 MCA on two different workflows: LoanBroker is a standard MULE test
scenario, and CoTLooper is a scenario that uses Cursor on Target (CoT) [1] messages.
CoTLooper is a simple test that provides an example of operational messages contain-
ing real and necessary metadata such as latitude, longitude, entity identifiers, and
other information used by several tracking and sensor-fusion systems.

Figure 1 shows the average time required to capture one node using the MULE cap-
ture mechanism. For this experiment, we used LoanBroker, and ran through 1000 loan
requests. Each loan request requires checking with a credit bureau and requesting
candidate loan quotes from 3 different banks. We measured the time to invoke the
provenance capture function and log the information. While there is a high startup
cost because of connection pooling, since MULE is typically used for high-volume
and long-running distributed systems, the more accurate capture times are found to
the right of the graph, where the number of interactions dwarfs the number of connec-
tions. In a system where several hundred messages are sent per second, the average
per-transaction cost of provenance capture is very low.

�����

�����

�����

�����

	����

����

�����

�����

�����

����

�
��� ����� �
��� ����� �
��� �����

��
��
��

�������	
���	�������	���

�
��
���

�����
������
�������

���������
����������

���

����������

���������� ���

����������

����������

����������� �� ����!��

��
��
��
�

���������������������
�����	

Fig. 1. The average time to log provenance within
MULE over time

Fig. 2. Message Reflection effect on
Message Capture Time

Figure 2 shows the time for collecting information about the message to place in
the provenance store, and uses the Loan Broker and CoTLooper workflows, giving a
sampling of four different message types, three from Loan Broker and one from
CoTLooper. Additionally, while CoTLooper is a toy workflow, the messages it passes
utilizes real production APIs for Cursor on Target version 2 messages, serialized in
XML. There is a significant impact for utilizing message reflection compared to no
reflection2. The time to reflect within a message depends on how the class being

1 All experiments were performed on a Linux 2.6.18 (CentOS 5.3) Quad-core box with 1.6Ghz

processors and 4GB RAM, running MULE v2.1.2 and PLUS. All data is measured in nano-
seconds, through the use of Java 1.6’s System.nanoTime().

2 Reflection in this case refers to calling a method dynamically at run-time, when the prove-
nance capture mechanism was not compiled against the code defining that method.

 Capturing Provenance in the Wild 101

reflected into is implemented; a simple “getter” method, such as getLatitude() from
CoT Messages, which returns a stored value will be very fast. By contrast, a method
which needs to parse a file will be much slower. The provenance capture mechanism
cannot make any guarantee about how long it takes to invoke these methods, but it
can provide infrastructure for doing so, and minimize the infrastructure cost.

4 Conclusions

In this work, we take the first step towards providing an automatic and simple mecha-
nism for capturing provenance in open world systems. By enabling the MULE ESB
with provenance collecting abilities, any application that is built to use MULE is
automatically provenance enabled without underlying application modification or
user knowledge. The approach captures previously implicit workflows, logging ex-
actly what happened rather than what was expected to happen. In addition, no modifi-
cations to the capture mechanism are needed as applications evolve over time.

We see this work as an initial step toward multi-organizational provenance capture.
Additional provenance collectors would be required, of course, since not all distrib-
uted, heterogeneous services use an ESB. We envision a variety of capture agents,
each tailored to a different type of coordination point.

References

[1] Cursor on Target, http://cot.mitre.org/
[2] Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance Collection Support in the Kepler

Scientific Workflow System. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS,
vol. 4145, pp. 118–132. Springer, Heidelberg (2006)

[3] Blaustein, B.T., Seligman, L., Morse, M., Allen, M.D., Rosenthal, A.: PLUS: Synthesiz-
ing privacy, lineage, uncertainty and security. In: ICDE Workshops, pp. 242–245 (2008)

[4] Buneman, P., Chapman, A., Cheney, J.: Provenance Management in Curated Databases.
In: ACM SIGMOD, pp. 539–550 (2006)

[5] Frew, J., Metzger, D., Slaughter, P.: Automatic capture and reconstruction of computa-
tional provenance. Concurr. Comput.: Pract. Exper. 20, 485–496 (2008)

[6] Groth, P., Miles, S., Moreau, L.: PReServ: Provenance Recording for Services. UK OST
e-Science second AHM (2005)

[7] Groth, P.T., Miles, S., Moreau, L.: A model of process documentation to determine
provenance in mash-ups. ACM Trans. Internet Tech. 9 (2009)

[8] Missier, P., Belhajjame, K., Zhao, J., Goble, C.: Data lineage model for Taverna work-
flows with lightweight anotation requirements. In: Freire, J., Koop, D., Moreau, L. (eds.)
IPAW 2008. LNCS, vol. 5272, pp. 17–30. Springer, Heidelberg (2008)

[9] Moreau, L., Ludäscher, B., et al.: Special Issue: The First Provenance Challenge. Concur-
rency and Computation: Practice and Experience 20, 409–418 (2008)

[10] Mulesoft.org, MULE 2.x (2009),
http://www.mulesoft.org/display/MULE2INTRO/Home

[11] Muniswamy-Reddy, K.-K., Holland, D.A., Braun, U., Seltzer, M.I.: Provenance-Aware
Storage Systems. In: USENIX, pp. 43–56 (2006)

[12] Scheidegger, C.E., Vo, H.T., Koop, D., Freire, J., Silva, C.: Querying and Re-Using
Workflows with VisTrails. In: SIGMOD (2008)

[13] Simmhan, Y., Plale, B., Gannon, D.: Karma2: Provenance Management for Data Driven
Workflows. Journal of Web Services Research 5 (2008)

Automatically Adapting Source Code to
Document Provenance

Simon Miles

Department of Informatics, King’s College London, UK

Abstract. Being able to ask questions about the provenance of some
data requires documentation on each influence on that data’s existence
and content. Much software exists, and is being developed, for which
there is no provenance-awareness, i.e. at best, the data it outputs can be
connected to its inputs, but with no record of intermediate processing.
Further, where some record of processing does exist, e.g. as logs, it is not
in a form easily connected with that of other processes. We would like
to enable compiled software to record useful documentation without re-
quiring prior manual adaptation. In this paper, we present an approach
to adapting source code from its original form without manual manipu-
lation, to record information on data provenance during execution.

1 Introduction

Many systems have been developed where the processing performed is docu-
mented during execution. The documentation allows us to answer questions
about the processes which led to a data item being produced, i.e. its provenance.
The documentation commonly contains copies of intermediate data items, other-
wise discarded by the completion of a process, and causal dependencies between
data items. In some cases, recording is performed automatically and transpar-
ently, as a side-effect of the execution, without either the author or user of a
process being involved in what is recorded or how.

Such automatic, transparent recording has been built into workflow systems
[1], and operating environments in which user actions are performed, e.g. the
Provenance-Aware Storage System [2] or ES3 [3]. In the former, transparent
recording means documenting the connection between data on them being inputs
and outputs to the same workflow step. In the latter, OS (or higher) events are
intercepted to document how an executed process reads and writes files.

Whether processes are enacted as pre-scripted workflows or ad-hoc user ac-
tions, the component steps are compiled from some source code and the inter-
mediate data created within compiled components or the details of how outputs
depend on inputs may be as important as intermediate data or dependencies
at the workflow/OS level. In some cases, we want a record of what occurred
during the execution of compiled code. To some extent, this can be provided by
logging, but here there is no interoperability with the wider execution setting:
we wish to know not only the list of events occurring between the executable’s

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 102–110, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Automatically Adapting Source Code to Document Provenance 103

initiation and termination, but also that the executable’s inputs were themselves
provided as part of a larger, distributed workflow. Such interoperability is a goal
of the Open Provenance Model (OPM) [4], which documents processes as causal
graphs allowing independently produced graphs to be combined.

Braun et al. [5] considered issues inherent in achieving automatic collection of
provenance data. One consideration is that the granularity of provenance infor-
mation a user is interested in is generally coarser/higher-level than an automatic
collection mechanism records. It is important that some parts of an execution
could and, sometimes can only, remain relatively opaque, described in coarse-
grained terms. Another, related, consideration is that, for storage and privacy
reasons, it may be undesirable to automatically record all that could be. A way
to resolve this is to allow, but not require, configuration of what will be recorded,
thus retaining transparency as far as it does not have a negative effect.

In more theoretical work, Souilah et al. [6] provided a formalism for languages
expressible as asynchronous π-calculus, whereby the provenance of values ex-
changed across channels (and of the channels themselves) would be maintained
throughout execution. In this work, the values are automatically augmented with
their provenance as metadata, and thus propagated through the system. Pro-
cesses can make decisions (accepting a value or not) by filtering on static patterns
within the provenance data, which is expressed as a list of communication events.
Buneman et al. [7] examined how the semantics of database query and update
languages implied the provenance of data within the databases, and so could au-
tomatically be augmented with actions to record how the data was transformed.
The provenance was expressed as the propagation of colours, denoting data re-
maining the same in value or in kind, as the database was transformed. In both
the latter papers, a correctness property of the provenance, with regards to what
actually occurred in the system, was articulated and proven.

In this paper, we describe a preliminary approach, SourceSource, whereby
source code is automatically adapted to document its processing during exe-
cution. While we argue the approach is generally applicable to procedural lan-
guages, our preliminary work is applied to a case study Java program. To enable
configuration by the developer, where desired, the code retains its original form
as far as possible in the adapted form, with recording statements inserted in the
same language. Configuration is aided by treating the code as a set of compo-
nents, some amenable to adaptation and some not (opaque), and allowing the
developer to decide if a component should not be adapted to record its execu-
tion except at a coarse-grained level (merely connecting component inputs to
outputs). The documentation is recorded as an OPM causal graph, allowing the
program’s execution to be connected with the preceding processes producing the
program’s inputs and succeeding processes consuming its outputs.

2 Overview and Case Study

Following OPM, the provenance of some data is the processes and artifacts which
ultimately cause it to exist, and causal relations between them. An artifact is

104 S. Miles

a constant data item and a process is the execution of some procedure, taking
artifacts as input (used relation) and producing artifacts as output (wasGener-
atedBy relation). An artifact may be generated by one process then later used
by another, indirectly connecting the two processes. A set of OPM artifacts, pro-
cesses and relations between them forms an OPM graph. An OPM graph may
document the provenance of multiple artifacts, and we say that the graph is a
set of process documentation from which the provenance of individual artifacts
can be extracted by querying. Finally, each artifact, process and relation can be
annotated with multiple annotations, each having a type and value.

Fig. 1. Adaptation of source code (top) and then its execution (bottom) (top)

Fig. 1 (top) depicts SourceSource architecture. The adapter component takes
source code and produces an adapted version. A program comprises one or
more source components for which the code is adaptable, e.g. class files in
Java, plus one or more opaque components for which code is not available,
e.g. databases, third-party libraries. The user can choose which components are
adapted. The adapted version is augmented to interleave execution with calls
to a recording library to document execution, making use of opaque component
adapters triggered for statements where an opaque component is used. When
the code is executed (bottom of figure) on its standard platform, the execution
of the adapted components is automatically documented. For an opaque com-
ponent, the relevant plug-in is invoked to document the execution (as far as is
possible) and connect it to the source execution which called the component.
The recording library outputs process documentation and an identifier for the
execution.

We take as our case study the workflow used in the third Provenance Chal-
lenge1, an analysis of astronomy data from the Pan-STARRS project [8], im-
plemented in Java. The aim of our approach is to automatically adapt code
so that OPM documentation of its execution is recorded, without prior modi-
fication of the code to suit our approach. Therefore, a key fact about the case

1 http://twiki.ipaw.info/bin/view/Challenge/

Automatically Adapting Source Code to Document Provenance 105

study is that it was developed independently from our work, with no knowledge
that the SourceSource approach would be applied. In the provenance challenge,
queries were performed over the process documentation to demonstrate its ef-
ficacy. For example, one query, inspired by program slicing [9], asked ‘Which
operation executions were strictly necessary for the Image table to contain a
particular (non-computed) value?’. We refer readers to the challenge website for
more details.

3 Process Documentation

We first describe the process documentation produced in our approach, then in
Section 4 explain how SourceSource adapts code to record this. SourceSource
primarily documents statements being executed (processes in OPM) and vari-
ables having particular values (OPM artifacts). A variable may take on multiple
values during execution, so the recording library holds a mapping from each
variable name to the artifact denoting its most recent value. When a variable
has a new value, this is recorded as a new artifact by the adapted code and the
most recent mapping is updated. When a variable is used in a statement, the
most recent artifact for that variable is found, and connected by a causal (used)
relation to the process representing the statement’s execution. For example, in
Fig. 2 (top), the first statement assigns a value to a variable FileEntry, then
the second depends on that value, and this dependency holds even if there were
other statements between the two shown.

for (LoadAppLogic.CSVFileEntry FileEntry : ReadCSVReadyFileOutput) {
boolean IsExistsCSVFileOutput = LoadAppLogic.IsExistsCSVFile (FileEntry);

LoadWorkflow_main_Statement5
for (LoadAppLogic.CSVFileEntry FileEntry : ReadCSVReadyFileOutput) {
LoadWorkflow_main_Declaration6
boolean IsExistsCSVFileOutput = LoadAppLogic.IsExistsCSVFile (FileEntry);

for (LoadAppLogic.CSVFileEntry FileEntry : ReadCSVReadyFileOutput) {
Recorder.process ("LoadWorkflow_main_Statement5");
Recorder.variable ("LoadWorkflow_main_FileEntry", "LoadWorkflow_main_Statement5", FileEntry);
Recorder.pass ("IsExistsCSVFile", 0, "LoadWorkflow_main_FileEntry");
Recorder.push ();
boolean IsExistsCSVFileOutput = LoadAppLogic.IsExistsCSVFile (FileEntry);
Recorder.pop ();
Recorder.process ("LoadWorkflow_main_Declaration6");
Recorder.variable ("LoadWorkflow_main_IsExistsCSVFileOutput", "LoadWorkflow_main_Declaration6",

IsExistsCSVFileOutput);
Recorder.generated ("LoadWorkflow_main_IsExistsCSVFileOutput", "Assigned Value In",

"LoadWorkflow_main_Declaration6");
Recorder.used ("LoadWorkflow_main_Declaration6", "LoadWorkflow_main_FileEntry",

"Used In Expression");

Fig. 2. A snippet of code from the case study unadapted (top), with naming annota-
tions (middle), and after adaptation (bottom)

106 S. Miles

3.1 Identifiers and Querying

Regardless of query language, a user querying for the provenance of data, maybe
long after the process which produced it took place, will only have certain in-
formation available. Such a user cannot be expected to have available identifiers
which are not part of the source code, input data, or outputs of adaptation or
execution, and just because an identifier is somewhere in the process documen-
tation we cannot assume the user knows what it identifies.

We can decompose a provenance query into: identifying the start item of
which to find the provenance; expressing what in the potentially large set of
documentation connected to the start item is relevant for the query; and how
the relevant documentation is post-processed to answer the query. All stages
require identifiers (for input, output and intermediate data) to be known. We
take the following approach to identification in SourceSource (see Chapman and
Jagadish on the general problems of identifying intermediate data [10]).

– An execution of a statement is identified by: the statement’s scope identifiers
(e.g. package and method names in Java), a unique statement identifier gen-
erated by SourceSource, and the count of which iteration of this statement
this execution denotes (how many times the statement has been executed).

– A variable value is identified by: the statement execution where the value is
assigned/used, the variable’s scope and its name.

– Each program execution is identified by a generated execution identifier.

The identifiers above are annotated to the relevant artifacts/processes in the
OPM graph. The execution identifier is also the filename of the serialised graph,
allowing a user to connect the execution with its documentation. In combina-
tion, the above ensure there is a unique way to identify each documented arti-
fact/process across executions, and identifiers can be known to querying users
through being connected to the artifact/process either in the original source
code, the adapted source code, or the execution output.

In the case study, each Java statement is given a name scoped by its class, e.g.
LoadWorkflow main Statement5 (in class LoadWorkflow, in method main, the
5th statement). These can be used to query for the provenance of the iterations
of executing the statements. A tool is provided to see what names statements are
given to aid those building queries. A snippet of the output this tool produces is
shown in Figure 2 (middle), where each statement is preceded by its identifier.
The opaque plug-ins must identify processes and artifacts appropriately for their
components. For the case study database plug-in, described below, each database
entry is given an identifier comprised of the table name and the primary key fields
of the entry, e.g. table=P2DETECTION, objID=113191992826421637.

3.2 Granularity and Procedure Calls

The provenance of a data item can be expressed in different ways, suitable for
different purposes. In particular, a description of its provenance can be expressed
at a coarser or finer granularity of detail. OPM allows for multiple granularities

Automatically Adapting Source Code to Document Provenance 107

of documentation to be demarcated by account identifiers. At a coarse granu-
larity, the execution of a procedure call can be described as a black-box process
which produces outputs given inputs, implying a possible causal connection be-
tween the outputs and inputs. At a fine granularity, the execution of a procedure
call can be described as the caller’s arguments being used as inputs to a succes-
sion of processes which comprise the procedure executed, ultimately resulting in
outputs returned to the caller. SourceSource always records the coarse-grained
account for a procedure call in an adapted procedure, and will record the fine-
grained account where the called procedure is also adapted. The two accounts
are connnected, by the identifiers of the call inputs and outputs being common
to both accounts, and by an OPM refinement relationship.

Each procedure’s execution is documented as a separate OPM sub-graph,
with the final graph produced from the program’s execution being the union
of those sub-graphs. In Figure 3, we illustrate a snippet of the OPM graph
produced by executing the adapted case study source, corresponding to the part
shown in Figure 2. There are three accounts: one for the execution of the main
method (FineGrained1), one for the invocation of the IsExistsCSVFilemethod
(CoarseGrained2), and one for the execution of that method (FineGrained2).

Fig. 3. Fragment of OPM graph produced in case study (ovals denote artifacts, solid
rectangles denote processes, relations are arrows pointing from effect to cause, and
key-value lists are annotations, dashed rectangles demarcate accounts)

In account CoarseGrained2 we see an artifact A1 for the FileEntry variable
passed as argument to the invocation process, P, and A2 for the value assigned
to variable IsExistsCSVFileOutput. In account FineGrained2, the same values
are assigned to variables local to method IsExistsCSVFile, and are different
artifacts derived from (and identical in value to) A1 and A2. Each artifact and
process is annotated with its identifier (Section 3.1), plus variable values for

108 S. Miles

artifacts. If the developer chose not to adapt the source component containing
IsExistsCSVFile, the left-hand part of the graph would be excluded, without
disconnecting the graph on the right-hand side.

4 Adaptation

Adaptation consists of three stages: explicate to transform code to enable ad-
dition of recording statements; identify to determine unique (within a single
execution) identifiers for every occurrence which will be documented as an ar-
tifact or process; and augment to insert recording statements interleaved with
execution. To perform adaptations in all three stages, we use TXL [11], a tool to
transform source code from one form to another. A TXL rule takes a subtree of a
given form, and transforms it into another subtree following the same grammar.

4.1 Explicate and Identify Stages

The first stage of adaptation is to, as minimally as possible, add structure to
the code to enable recording steps to be inserted. In Java, this means that the
body of if and similar control statements are represented as blocks (if (C)
then {X}) rather than single statements (if (C) then X).

As discussed above, to be able to query the process documentation after
recording, the entities to be referred to must be identifiable. This has two impli-
cations: (i) entities which have no natural identifier in the source code must be
given one, (ii) the identifier to use on recording should be determined for each
entity prior to augmenting with recording statements using those identifiers. In
the first case, the primary entities in question are the statements, as they do not
by default have a name by which they can be referred by a querier.

The first phase of the identify stage is to go through and annotate each
statement with a name unique within its method, e.g. Statement5. TXL al-
lows attributes to be inserted into the parse tree which will not be apparent
in the transformed output, but can be used by other rules, and so the names
are prepended to statements as such. In the second phase, we use attributes to
provide global identifiers to code entities (variables, methods, statements). We
ensure names are unique across the execution by constructing them from their
scopes, e.g. a method’s local variable is named by the package name, class name,
method name, and variable name. As described in Section 3.1, we provide a tool
to enable the identifiers of each source code line to be seen. A snippet of the
output is shown in Fig. 2 (middle).

4.2 Augment Stage

In the augment stage, for each occurrence of a process/artifact, and for each
causal relation between them, a recording statement is inserted into the code.
Processes could include method calls, expression evaluations, or variable assign-
ments. Currently, we augment at the statement level. In Fig. 2 top and bottom,

Automatically Adapting Source Code to Document Provenance 109

we show a snippet of the case study code before and after augmentation. There
is a loop across the elements of a collection, whose body’s first line is the as-
signment of the result of a method call to a new variable (new each time round
the loop). In augmenting that code snippet, our TXL scripts insert the following
recording statements (other operations on the recording API document receipt
of parameters, return of values from methods etc.)

1. Each loop iteration expression is a process, so a statement is inserted at the
start of the loop body to document this process, named ... Statement5
in the identify stage. On execution, this recording statement will insert a
process node into the OPM graph.

2. We document the state of the loop variable, ... FileEntry, which will insert
an artifact into the OPM graph with the variable’s new value, and put the
value the most recent mapping in memory.

3. The next statement in the original source includes a method call, so we need
to keep track of the arguments passed to connect them with the parameters
inside the called method. We store this as a tuple: the method being called,
the index of the argument and the most recent value of the variable passed.

4. Each method invocation is documented in a separate account. The push
method continues any subsequent recording in a new account, pushing the
current one onto a stack. When the invocation completes, pop returns to the
original account being used and creates a refinement relationship between
the call (in a new coarse-grained account) and the invoked method accounts.

5. A process node is recorded for the assignment statement, and a generated
artifact for the newly assigned variable.

6. We record relations, used and generated, documenting the artifacts (vari-
able values) were used and generated by the assignment statement.

In many cases, source code which could be adapted using SourceSource will make
calls to libraries, databases or other components for which the SourceSource
approach cannot apply. Where this occurs, the call to the component in the
source code can be adapted to invoke a plug-in which handles recording process
documentation for components of that type (before and/or after the call, as
appropriate). For the case study, we developed and used one plug-in, very much
tailored to the case study, for the database holding the experiment results.

5 Conclusions

Where distributed processes include a compiled tool which does not record any
documentation about its processing, the provenance of those processes’ results
will be more limited, will exclude some potentially relevant intermediate data
items, and may be disconnected (it may not be apparent where the tool’s out-
puts depend on its inputs). Making a tool provenance-aware manually can be
expensive, so we would rather that the tool could, without manual modifica-
tion, automatically recorded documentation during execution. The solution we
present in this paper is to automatically adapt the tool’s source code to record

110 S. Miles

documentation in OPM. The approach is particularly applicable where the tool’s
developer should have control over the recording, e.g. to manage volume, to pro-
tect privacy, to remove irrelevant details. By inserting recording statements into
the code in the same language, we require nothing of the developer but make it
easier for them to configure recording afterwards.

The work described here is preliminary, so while everything achieved in Source-
Source can be applied to any Java program, only those code features essential
for completing the case study have been tested. While the principles of only
minimally changing the code structure and using the same source language are
adhered to, there are undoubtably improvements possible in how recording state-
ments are inserted, e.g. to ensure low overhead costs. Checking and improving
performance overhead requires a larger case study: both the original and adapted
case study code execute trivially quickly.

References

1. Barga, R., Digiampietri, L.A.: Automatic generation of workflow execution prove-
nance. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 1–9.
Springer, Heidelberg (2006)

2. Muniswamy-Reddy, K.-K., Holland, D., Braun, U., Seltzer, M.: Provenance-aware
storage systems. In: Proceedings of the 2006 USENIX Annual Technical Confer-
ence, Boston, MA (June 2006)

3. Frew, J., Slaughter, P.: ES3: A Demonstration of Transparent Provenance for Sci-
entific Computation. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS,
vol. 5272, pp. 200–207. Springer, Heidelberg (2008)

4. Moreau, L., Clifford, B., Freire, J., Gil, Y., Groth, P., Futrelle, J., Kwasnikowska,
N., Miles, S., Missier, P., Myers, J., Simmhan, Y., Stephan, E., den Bussche, J.V.:
The open provenance model core specification (v1.1). Future Generation Computer
Systems (to appear, 2010)

5. Braun, U., Garfinkel, S., Holland, D.A., Muniswamy-Reddy, K.K., Seltzer, M.I.:
Issues in automatic provenance collection. In: Moreau, L., Foster, I. (eds.)
IPAW 2006. LNCS, vol. 4145, pp. 171–183. Springer, Heidelberg (2006)

6. Souilah, I., Francalanza, A., Sassone, V.: A formal model of provenance in dis-
tributed systems. In: TAPP 2009: First workshop on on Theory and practice of
provenance, USENIX Association, Berkeley, CA, USA, pp. 1–11 (2009)

7. Buneman, P., Cheney, J., Vansummeren, S.: On the expressiveness of implicit
provenance in query and update languages. ACM Trans. Database Syst. 33(4),
1–47 (2008)

8. PS1 Consortium: Pan-STARRS, http://ps1sc.org/ (last accessed March 2010)
9. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference

on Software Engineering (ICSE 1981), pp. 439–449 (1981)
10. Chapman, A., Jagadish, H.V.: Provenance and the price of identity. In: Freire, J.,

Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, pp. 106–119. Springer,
Heidelberg (2008)

11. Cordy, J.: The TXL Source Transformation Language. Science of Computer Pro-
gramming 61(3), 190–210 (2006)

http://ps1sc.org/

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 111–119, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Using Data Provenance to Measure Information
Assurance Attributes

Abha Moitra1, Bruce Barnett1, Andrew Crapo1, and Stephen J. Dill2

1 General Electric Global Research, 1 Research Circle, Niskayuna, NY 12309
{moitraa,BarnettBr,Andrew.Crapo}@ge.com

2 Lockheed Martin IS&GS,
321 Ballenger Center Drive, MS 125/1F10, Frederick, MD

Stephen.J.Dill@lmco.com

Abstract. Data Provenance is multi-dimensional metadata that specifies
Information Assurance attributes like Confidentiality, Authenticity, Integrity,
Non-Repudiation etc. It may also include ownership, processing details and
other attributes. Further, each Information Assurance attribute may itself have
sub-components like objective and subjective values or application security ver-
sus transport security. Traditionally, the Information Assurance attributes have
been specified probabilistically as a belief value (or corresponding disbelief
value) in that Information Assurance attribute. In this paper we introduce a
framework based on Subjective Logic that incorporates uncertainty by repre-
senting values as a triple of <belief, disbelief, uncertainty>. This framework
also allows us to work with conflicting Information Assurance attribute values
that may arise from multiple views of an object. We also introduce a formal
semantic model for specifying and reasoning over Information assurance prop-
erties in a workflow. Data Provenance information can grow substantially as the
amount of information kept for each object increases as well as the complexity
of a workflow increases. In such situations, it may be necessary to summarize
the Data Provenance information. Further, the summarization may depend on
the Information Assurance attributes as well as the type of analysis used for
Data Provenance. We show how such summarization can be done and how it
can be used to generate trust value in the data. We also discuss how the Infor-
mation Assurance values can be visualized.

Keywords: data provenance, information assurance, subjective logic, semantic
model, uncertainty framework, Figure of Merit, trust, confidence.

1 Introduction

Our primary interest is in calculating the assurance in data. Components used to cal-
culate this are the Information Assurance (IA) communication attributes, which
include attributes of confidentiality, integrity, authenticity, non-repudiation, and avail-
ability. Factors that impact this include opinions of the data sources and of the certifi-
cate authorities used during the authentication process. These values are based on the
observer’s viewpoint, loyalties, and knowledge, and are therefore highly subjective.

112 A. Moitra et al.

For simplicity we will not address these factors in this paper. Instead, we will focus
on the information assurance attributes of the communication itself, related to the
communication channel and process. If all parties agree on the relative strength of
cryptographic algorithms at a certain point in time, then this forms the basis for an
objective and consistent measurement of information assurance values across multiple
parties regarding a set of messages.

In this paper we describe a model of information flow based on simple and com-
plex messages (messages with attachments) about which objective information assur-
ance attribute values are collected. This model includes the capability to rollup data
provenance information over a complex message and/or over a multi-step information
flow. We call these aggregations a Figures of Merit or FoM.

Given objective information assurance attribute values for a message or a figure of
merit, our next goal is to summarize these in a simple visual icon that allows those
who must act on information quickly to understand how confidential, authentic, and
unmodified the data is, therefore allowing them to make more educated choices when
dealing with the data.

2 Previous Work

In our previous work [1], we developed a generalized and flexible framework that
was independent of any implementation, yet allowed a series of data provenance re-
cords to be captured, and analyzed. We summarize the framework below.

Each time a message is moved between agents, systems or processes, a single Data
Provenance (DP) record is created. This record might be stored or sent along in paral-
lel with the message. During the analysis, all of the records related to a single mes-
sage are assumed to be available. Each DP record has two parts: one from the sender
and one from the receiver.

Each part has an invariant and a variant section. The variant section may contain
routing information to forward the message to the final destination, and may change
during the routine process. The invariant part remains unchanged, allowing crypto-
graphic hashes of this section to be consistent. The sender’s invariant section may
include the following components:

− Identity of the Author of the message
− Message ID
− Timestamp
− Message contents and type
− References to other message IDs, e.g., attachments
− Destination
− Security label or classification
− Outgoing Information Assurance values

It also includes the hash value (and name of hash algorithm) of the message contents.
The sender (or someone acting as a proxy) may optionally sign the DP record, or
attach a hash encrypted with a private key of the record, as assurance the DP record
has not been modified.

 Using Data Provenance to Measure Information Assurance Attributes 113

The receiver appends his own values to the record, adding

− Identity of the Receiver of the message
− Timestamp
− Incoming Information Assurance values
− Hash of the message body as seen by the receiver

The receiver may append a signature or an encrypted hash based on both the sender
and receiver’s records. One important characteristic of this approach is that third par-
ties can validate the DP record at a later date.

There are several possible variations of the format. The timestamp may be part of
the message ID. Some systems may split the message body from the record, and re-
trieve it by message ID when validating the record. Also, the message may be en-
crypted and the receiver may not have the key, as it may be forwarding the encrypted
message to a third party. The receiver can create a record that they received an en-
crypted message, and provide a signed hash as proof. DP records can also have multi-
ple signatures from multiple parties, if desired. This is useful in multiple trust do-
mains. It is also possible that some of these fields may be blank, as the sender may not
have any encryption capabilities.

Using this foundation, we build a system that implements this framework. We then
developed a mechanism to calculate the information assurance attributes based on the
DP records that are available.

3 Subjective Logic

We needed a flexible mechanism to calculate confidence that also allowed us to deal
with uncertainty. We used Jøsang’s Subjective Logic [2], which uses three values b,
d, and u, where:

b = belief, or the belief that the proposition is true
d = disbelief, or the belief the proposition is false
u = uncertainty, or the amount of uncommitted belief
These components satisfy b + d + u =1, and b, d, u ∈ [0,1]

4 Implementation Details

In order to make our prototype implementation more transparent to both our team
members and to our sponsor, we chose to capture our models of information flow and
of the data provenance at each point along the flow in a semantic model rather than in
a traditional programming language. Our target representation was the Web Ontology
Language (OWL) with a rules layer to capture domain inferences not implied by the
formal models. We used a controlled English representation called the Semantic Ap-
plication Design Language (SADL) as the authoring environment [6]. SADL is a
language that maps directly and unambiguously into OWL and Jena Rules or SWRL.
An Eclipse-based SADL-IDE supports the authoring, testing, and version control of
the models.

114 A. Moitra et al.

Information flow in our prototype is represented as instances of Message passed
between instances of Agent. Snapshots of the data provenance state of the Message
are captured as instances of DPInfo. When an Agent sends a Message, a SenderD-
PInfo (subclass of DPInfo) captures relevant data provenance information. When an
Agent receives a Message, a ReceiverDPInfo (also a sub class of DPInfo) captures the
data provenance state at receipt. There is an association between these two DPInfo
instances and the process of moving a Message from a sending Agent to a receiving
Agent is called a Hop. A series of Hops is called a Flow.

The definitions of DPInfo, SenderDPInfo, and ReceiverDPInfo are shown in
Figure 1 in SADL syntax. Note that common attributes include measures of Integrity,
Confidentiality, and Authenticity expressed as Subjective Logic values.

Fig. 1. Definition of DPInfo in SADL

Messages can be complex, meaning that a Message can include Attachments (sub-
class of Message), which can in turn have Attachments, etc. For a given Hop, the top-
level Message, which is not an Attachment at that point in the Flow, is referred to as
the root container. It is desirable to roll up information across the parts of a complex
message to obtain a single composite representation of the data provenance state of

 Using Data Provenance to Measure Information Assurance Attributes 115

the whole Message. We call such a composite view a Figure Of Merit. Note that while
a Figure Of Merit is a simplifying aggregation, which can more easily be perceived by
a human observer, the DPInfo instances used in the rollup will normally be available
so that drilldown into details is possible if desired. Note that we were measuring at-
tributes of the transmission of the information, and did not measure attributes related
to the contents of the messages. We considered the contents to be opaque. We also did
not address contents editing, annotations, etc.

While SADL provides a useful way of authoring and testing models, it does not
currently provide an easy mechanism for creating visualizations of scenarios and
graphical representations of the Subjective Logic values of instances of DPInfo and
FigureOfMerit. To do the latter, we implemented an Excel client user-interface with
the desired graphical representations. We put together a representative scenario to
demonstrate the flexibility and usefulness of our approach. From the scenario and
from the user supplied input values, a situation-specific instance data model in the
form of an OWL n-triple file is automatically created by the client. This model is
passed to a Jena reasoner which reasons over both the logic of the formal model, e.g.,
transitive closure over class hierarchy, and over the domain rules to create an inferred
model. The client then passes a SPARQL query to the reasoner to retrieve the desired
information from the inferred model. It uses this information to populate the iconic
graphical representations of the DP attributes of simple Messages and the Figure Of
Merit rollups of complex Messages.

5 Analyzing the Records

We first assigned values to the various cryptographic algorithms. Generally, the
stronger a cryptographic function is, the stronger the belief that it provides protection.
The weaker a cryptographic function is, the greater the uncertainty whether someone
has defeated the algorithm. For instance, any message that is signed with Message
Digest 5 (MD5) is given a low belief and high uncertainty because of the recent dem-
onstrations of MD5’s defeatability [3]. If we had knowledge that the account was
compromised, then we would assign a high value to disbelief of the message’s attrib-
ute, and the belief and uncertainty values would decrease in response.

Knowledge of the individual information assurance attributes enables better deci-
sions that can adapt to different situations. For instance, if a warfighter was told to
investigate evidence that a terrorist was seen entering a building, knowledge of the
source of information could affect their reaction to unexpected events. If the source of
information was not over a confidential channel, then the warfighter’s arrival may be
anticipated. If the message has low integrity, then the information could have been
distorted and may have to be verified. If the information was not strongly authenti-
cated, then the information may come from an unreliable source. Because of this, we
decided to calculate each of IA attributes individually, rather than use a single value
to indicate trust. We then created a visual summary of the IA values, to assist in the
decision process.

116 A. Moitra et al.

5.1 Integrity

To verify the integrity, first the hash is verified to correspond to the message body. In
addition, when the message enters the system, the hash can be compared with the
most recent hash. The resulting value is based on the strength of the weakest hash
algorithm used.

If the hash values differ when traveling through a person or device, it would indi-
cate a man-in-the-middle attempt. If, for a single hop, the incoming and outgoing hash
values differ, then the entity forwarding the message modified it. If the hash differs in
a single record, then a substitution occurred during the transmission process.

5.2 Authenticity

If the creator of the message signs the initial DP record, authenticity can be based on
the algorithmic strength used to sign the record. We should further adjust these values
based on the strength of the algorithms used by the certificate authorities. As others
have done this [4], we focused on the core attributes, which could be further adjusted
based on more subjective opinions (which Subjective Logic can provide).

If the message enters the system unsigned, one of the parties forwarding the mes-
sage can sign the message. This entity can become a proxy for the sender’s ID. Belief
of authenticity then becomes subjective based on confidence in the proxy.

5.3 Confidentiality

There is no easy way, using just the DP records, to determine if some person ordevice has
revealed information using other communication channels. However, we can lower the
confidence value every time some entity received a message that they could read. Essen-
tially, the more that know a secret, the less confidence there is in the confidentiality.

We can also base the calculation on the encryption properties of each transmission.
If any single transmission is sent unencrypted, the belief in the confidentiality of the
message drops to zero, and the uncertainty approaches one.

If the sender and receiver’s belief in the confidentiality differ, then this may indi-
cate a system problem. For instance, if a sender believes a message is confidential, but
the receiver believes the message has no security, this may indicate an implementa-
tion flaw.

5.4 Non-repudiation

Non-repudiation is provided for when the sender signs the DP record, which includes
the signature of the message author.

5.5 Availability

There is no way to calculate the availability of the information, based on just the DP
records. This requires knowledge of system characteristics and past history. Given
synchronized timestamps, and knowledge of the frequency and expected latency of
the messages, is it possible to detect attacks that delay or prevent messages from be-
ing received.

 Using Data Provenance to Measure Information Assurance Attributes 117

6 Summarizing Information with an Icon

When summarizing a complex message with multiple components, there are two
different issues to be resolved. The first is the analysis of a simple message from
beginning to end. We described how we addressed this in the previous section.

The second issue is summarizing a message containing multiple messages, photos,
etc. There are several different consensus functions one can use with Subjective Logic
[4]. We considered them, but these make the most sense when dealing with the truth-
fulness of the content of messages. Since we are only addressing the communication
channel, and we ignore the semantic meaning of the messages, we chose a minimum
function that summarized a message based the lowest valued attribute of the sub-
components.

For the visualization, we use a simple 3-column icon that shows Confidentiality,
Integrity, and Authenticity, with green, red, and gray values representing belief, dis-
belief, and uncertainty respectively. An example is shown in Figure 3, which uses the
colors from top to bottom of green, red, and grey.

Fig. 2. Icon of Information Assurance Attributes

This example icon shows somewhat high belief in confidentiality, less belief in the
integrity, and for illustrative purposes, disagreement on the authenticity of a message
as both green and red is shown. Our implementation did not capture any conflict, as it
was measuring objective information gathered during the distribution process.

7 Sample Visualization

In a sample demonstration, we have 6 messages from five sensors being referenced
and included by two analysts, who in turn forwarded their information to a third
analyst. The final report consists of 6 images, and the output from the first two
analysts. In this workflow, none of the messages are modified. The workflow is
shown in Figure 4.

Fig. 3. Sample Workflow

118 A. Moitra et al.

The GUI is built on top of Microsoft Excel, which also generated the icon. The al-
gorithms used for each of the Information Assurance attributes for each of the sen-
sors, and the reports from the analysts, are selectable. Authenticity is determined by
the strength of the algorithm the creator uses to sign the message. The integrity is
determined by the strength of the algorithm to sign the Dpinfo record. The confidenti-
ality of the message is determined by the strength of the algorithm used to encrypt the
message. In addition, we can introduce security failures in the demonstration, such as
invalid signatures, and incorrect hash values. After generating a set of messages cor-
responding to the conditions of the scenario, the resulting Figure of Merit (FoM) is
shown for each of the messages in Figure 5. We assume that each person and device
sends information in the most secure way. Because of this, on each outgoing message
each of the senders assigned high confidence in their information, and the icons are all
green. The receiver may downgrade the trust if stronger encryption algorithms are
possible. If any of the cryptographic verifications fail, belief becomes zero, and disbe-
lief is increased, showing red in the FoM icon.

Fig. 4. Sample Results

In Figure 5, we show a sample workflow with 2 failures introduced: Analyst 2’s
report had an invalid signature (the authentication column is red), and Analyst 3’s
report indicates a hash mismatch (the integrity column is red), perhaps indicating a
man-in-the-middle attack. Note how the icons allowed someone to quickly spot any
potential problems. Also note how the authenticity of Analyst 3’s report has some
uncertainty (some grey on the top of the authentication column), as the signature used
the weaker RSA1024 instead of RSA4096.

8 Conclusion

We believe that the framework described in this paper is suitable for capturing, summa-
rizing, and analyzing objective evidence about the information assurance attributes of a
message at various points in its life cycle, from creation to final destination. We believe

 Using Data Provenance to Measure Information Assurance Attributes 119

that measuring the information assurance attributes of the infrastructure is an essential
component in measuring the overall trust in a more complex system. We also believe
the approach to be suitable for including more subjective information such as opinions
and knowledge of outside conditions. Subjective logic provides a well-founded mecha-
nism to resolve conflict and to rollup summary values. The iconic summary is a suitable
mechanism to visually display the information assurance attributes of messages and
figures of merit, and allows one to quickly identify weaknesses in the communication
infrastructure.

Acknowledgements. This paper was prepared by GE Global Research as an account
of work sponsored by Lockheed Martin Corporation. Information contained in this
paper is the property of Lockheed Martin Corporation. Neither GE nor Lockheed
Martin Corporation, nor any person acting on behalf of either; (a). Makes any
warranty or representation, expressed or implied, with respect to the use of any
information contained in this paper, or that the use of any information, apparatus,
method, or process disclosed in this paper may not infringe privately owned rights; or
(b). Assume any liabilities with respect to the use of, or for damages resulting from
the use of, any information, apparatus, method, or process disclosed in-this paper."

References

1. Moitra, A., Barnett, B., Crapo, A., Dill, S.: Data Provenance Architecture to Support Infor-
mation Assurance in a Multi-Level Secure Environment. In: MILCOM 2009, Boston (2009)

2. Jøsang, A.: Artificial Reasoning with Subjective Logic. In: Proceedings of the Second Aus-
tralian Workshop on Commonsense Reasoning, Perth (1997)

3. Sotirov, A., Stevens, M., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A., de Weger, B.
(2008-12-30).: MD5 considered harmful today,
http://www.win.tue.nl/hashclash/rogue-ca/ (retrieved December 30,
2008) Announced at the 25th Chaos Communication Congress

4. Jøsang, A.: An Algebra for Assessing Trust in Certification Chains. In: Proceedings of the
Network and Distributed Systems Security Symposium, NDSS 1999 (1999)

5. Josang, A.: The Consensus Operator for Combining Beliefs. Artificial Intelligence Jour-
nal 141(1-2), 157–170 (2002),
http://persons.unik.no/josang/papers/Jos2002-AIJ.pdf

6. Crapo, A.: Semantic Application Design Language,
http://sadl.sourceforge.net/

Explorations into the Provenance of High
Throughput Biomedical Experiments

Jamie P. McCusker and Deborah L. McGuinness

Tetherless World Constellation
Department of Computer Science
Rensselaer Polytechnic Institute

110 8th Street Troy, NY 12180, USA
{mccusj,dlm}@cs.rpi.edu

http://tw.rpi.edu

Abstract. The field of translational biomedical informatics seeks to in-
tegrate knowledge from basic science, directed research into diseases, and
clinical insights into a form that can be used to discover effective treat-
ments of diseases. We demonstrate methods and tools to generate RDF
representations of a commonly used experimental description format,
MAGE-TAB, mappings of MAGE documents to two general-purpose
provenance representations, OPM (Open Provenance Model) and PML
(Proof Markup Language). We show through a use case simulation that
the data represented in MAGE documents can be completely represented
in OPM and PML through use of round trip analysis of certain exam-
ples. The success in mapping MAGE documents into general-purpose
provenance models shows that promise in the implementation of the
translational research provenance vision.

1 Introduction

Translational biomedical research focuses on translating findings in basic science
into advances in treatment and diagnosis of diseases for patients in the clinic, and
has become a major research priority in the last five years. [1,2] Translational
research requires the coordination and collaboration of a number of different
disciplines, including basic science, clinical research, and increasingly, biomedi-
cal informatics. [3] As the scale and complexity of biomedical experiments has
increased, so has the role of biomedical informatics. It plays an active role in the
design, execution, and analysis of most biomedical research. The translational
research pipeline, often thought of as a cycle of knowledge from the experimental
“bench” to the clinical “bedside” and back, requires the management of many
different kinds of data and artifacts by specialists in their disciplines. This in-
cludes information about the collection, management, and disposition of human,
animal, and xenographic biomaterials, collection and management of partici-
pants in clinical research and trials, management of patient histories and charts,
data from lab results, diagnostic imaging at the radiological and histopatholog-
ical scales, as well as experiments using high-throughput technologies such as

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 120–128, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://tw.rpi.edu

Provenance of High Throughput Biomedical Experiments 121

Fig. 1. Some common experimental and clinical artifacts that are created or used in the
process of translational biomedical research. This example is common of translational
cancer research.

microarray assays and high throughput sequencing. Common derivations and
artifacts from the translational research pipeline are shown in Figure 1 on page
121.

1.1 The Translational Research Provenance Vision

The vision is relatively simple: It should be possible for a research scientist,
clinician, patient or legal guardian to be able to query, assess, and collate the
knowledge needed to make decisions about research and patient care. In order
to be able to do this, the information that is used to make these decisions must
have at hand the provenance of those materials, so as to be able to judge the
relevance and veracity of the information they need. For this to happen, there
must be a consistent model of provenance that can be used regardless of the
origin, domain, or format of the information at hand.

By accomplishing this, we make it possible to gain a complete picture of how
experiments were conducted, if they are comparable, and how well confounding
variables have been controlled for. In the longer term, it also offers an opportunity
to build experiments based on previous work, by understanding what kinds of
methods have been used on certain kinds of problems, and to find new avenues of
research. Provenance also makes electronic health records much more portable,
as it becomes possible for clinicians to assess if lab work performed at other
institutions is comparable with work done at their own. For patients, access to
a consistent model of the provenance of their medical state means being able to
take control of their own health, and to understand the reasoning behind clinical
treatments and advice.

The World Wide Web Consortium (W3C) has chartered a incubator group
for provenance representations1 and has developed a number of biomedical use
1 http://www.w3.org/2005/Incubator/prov

122 J.P. McCusker and D.L. McGuinness

cases. Many of these use cases describe specific steps along the path to realizing
this translational research provenance vision. Additionally, existing automated
computational workflow systems, such as Wings/Pegasus [4], Taverna/myGrid
[5], and VisTrails [6], have started to converge towards a common interchange
language for provenance.

1.2 High Throughput Experiments and Provenance

Scientists look to provenance information, such as experimental workflow, to
learn about experiments and results in their field. Critical to their understand-
ing is: (1) how the experiment was performed, and (2) what needs to be known
to be able to repeat it. As such, it is vital that systems that support the sciences
provide a framework for incorporating provenance information at every step of
the research chain. This is especially true for high throughput assays such as
microarrays. Each microarray can measure hundreds of thousands to more than
a million nuclear material hybridizations. Because of the scale of measurement,
an experimental design must overcome a potentially high False Discovery Rate
(FDR) [7] through use of many biological replicates for each experimental con-
dition. Additionally, the context that is provided by richly encoded provenance
can be used to automate certain aspects of scientific research.

In bioinformatics and computational biology, the problem of provenance has
been an issue for some time. Goble [8] identifies a number of provenance-related
issues in re-use and propagation of database information. The rapid growth and
evolution of experimental techniques has makes it ever more difficult for scien-
tists to evaluate the soundness and validity of the data at hand. This growth
has resulted in the establishment of a standard for describing microarray-based
experiments. The MIAME (Minimal Information About a Microarray Experi-
ment) and MAGE (MicroArray and Gene Expression) standards [9] established
metadata requirements for microarray experiments in informal (MIAME) and
formal (MAGE) terms. MAGE currently has a number of representations, includ-
ing MAGE-ML (MAGE Markup Language) and MAGE-TAB (MAGE TABle).
These standards, combined with data sharing requirements from most funding
institutions such as the National Institutes of Health in public databases such
as the National Center for Biotechnology Information’s (NCBI) GEO (Gene
Expression Omnibus) [10] and the European Bioinformatics Institute’s (EBI)
ArrayExpress [11], along with those databases’ adoption of the MAGE and MI-
AME standards, have resulted in thousands of microarray experiments stored in
a consistent standardized format.

However, this format is designed specifically for microarray experiments. New
assay types, such as tissue microarrays [12], high-throughput sequencing, and
other low or medium throughput experiments require a more generalized data
model. Additionally, information about findings is absent from MAGE and MI-
AME, as is the detailed information about the biospecimens that were used
in the experiment gathered and managed by the biospecimen bank. This is all
valuable information that can benefit from a common data model, if one were
available. Integration with other data sources in the translational pipeline, such

Provenance of High Throughput Biomedical Experiments 123

as biospecimen management tools, Laboratory Information Management Sys-
tems (LIMS), and computational workflow automation tools through the use of
a common model of provenance can provide a complete picture of the provenance
of experiments. A first step in this process is to convert experimental data into
a common provenance representation. We accomplish this by implementing a
simulation the following use case:

MAGE Data Sharing Use Case: Two databases, A and B, are repositories
for microarray experiments that conform to the MAGE standard. B would
like to load some experiments from A, which publishes a web service that de-
scribes its experiments using a general purpose provenance model. B should
be able to re-create the information about the experiments it retrieves from
A without loss.

Implementing this use case using a general purpose provenance model would
demonstrate that it is possible to transform MAGE-compliant experimental
metadata into that provenance model without losing any information. We create
implementation simulations of this use case using the Open Provenance Model
(OPM) [13] and Proof Markup Language (PML) [14]. Through these imple-
mentations, we show that it is possible to represent microarray experimental
metadata fully and without loss in two common general purpose provenance
models, and with the continuing adoption of general purpose provenance mod-
els by computational workflow systems, establishes the first link in the chain of
provenance for the translational research provenance vision.

2 Related Work

There is a significant amount of related work to this topic. We highlight three
areas, which the following subsections each discuss. The first area is work related
to the MAGE object model. MAGE is a standard used to describe microarray ex-
periments in a consistent manner. The second area is work related to analysis of
data format compatibility using round trip analysis. We use this type of analysis
to determine the suitability of representing MAGE-based experiment metadata
in general purpose provenance models. The third area is work related to general
purpose provenance models, specifically OPM. OPM has been used as a common
representation for provenance interchange at two provenance challenges [15,16].

2.1 MAGE

The MAGE object model and related representations has been in wide use for
a considerable period [9] in bioinformatics. Currently, the most commonly used
MAGE format is MAGE-TAB [17], a delimited text-based format encompassing
a number of file formats, of which we use information from the Investigation
Design Format (IDF), which contains global information about an experiment,
including submitters, publications, protocols, experimental factors, etc.; Sam-
ple and Data Relationship Format (SDRF), which describes the experimental
workflow and how samples and other data and physical artifacts relate to each
other.

124 J.P. McCusker and D.L. McGuinness

2.2 Round Trip Analysis

Round-Trip analysis of data representations, especially meta-models, have been
a gold standard for validating the expressivity of those models. Farquhar et al.
[20] uses a similar method validate conversion from various ontology languages
into a common format. Antkiewicz et al. [21] discusses round-trip engineering,
or using round-trip analysis to show that Framework-Specific Modeling Lan-
guages (FSMLs) can be shown to reliably represent Domain-Specific Modeling
Languages (DSMLs) in the Java Eclipse platform.

2.3 General Purpose Provenance Models

A commonly used provenance interlinguas is the Open Provenance Model. OPM
has its roots in the workflow world, where it has evolved as a proposed common
interchange language for computational workflow management and execution
tools, and was used as a standard interchange for the second and third Prove-
nance Challenges. A number of scientific workflow applications have participated
in these challenges, which involved the generation of OPM graphs by each team
for query by the other team members. Because of this, Taverna [22] and Pega-
sus/Wings [4] now support the export of provenance information in OPM. This
support makes it very attractive as a first link between disciplines within the
translational pipeline, as bioinformaticians often use computational workflow
automation tools for research.

3 Methods

We simulate the MAGE data sharing use case in a semantic web environ-
ment using the MGED Ontology [23] as a foundation for the representation
of MAGE documents in RDF. The overall process flow is seen in Figure 2
on page 125. We start by converting MAGE-TAB documents into RDF using
MAGETAB2MAGERDF2 and feed the resulting RDF into an OPM processor
that infers the relevant OPM structure from the original RDF. A separate en-
gine extracts the statements relating to OPM so that the resulting document
is a pure instance of provenance data in OPM. A second processor attempts to
reverse the initial step, taking the provenance data and generating the original
MAGE RDF document. Finally, a comparison processor takes the difference be-
tween the original MAGE RDF and the regenerated MAGE RDF and outputs
the statements that are missing in the regenerated document. The process of
converting MAGE-TAB to RDF and the mapping from MAGE-RDF to OPM is
discussed in depth in McCusker and McGuinness [24].

3.1 Evaluation

To evaluate our mappings, we perform an extraction of OPM-specific information
from the resulting output RDF graphs and reverse the mapping process discussed
2 http://magetab2rdf.googlecode.com

Provenance of High Throughput Biomedical Experiments 125

Fig. 2. The round trip analysis process. A MAGE-TAB file is converted to RDF and
is fed into a processor that infers OPM from the original MAGE RDF. The OPM is
extracted, ensuring only information represented in the provenance model remains. A
processor then re-creates the original RDF to the best of its abilities from OPM. The
resulting RDF is compared to the original to find missing statements.

above. We then compare the graphs to determine what statements are missing
from the reconstructed graph as compared to the original.

We extract data relevant to a particular ontology in order to ensure that
only data relating to that ontology or its imports remains. Only statements
that use properties from the ontology import closure and individuals with a
rdf:type of a class in the ontology import closure are extracted, everything else
is filtered out. We perform the data extraction using three Jena models: (1)
a base comparison model with only the ontology import closure, (2) an input
model with the ontology import closure and the input graph to extract from, and
(3) an output model with starts with the ontology import closure. The algorithm
then iterates over all the classes and properties in the base comparison model
and copies all statements relating to those classes and properties.

For the conversions back to MAGE from OPM, we reverse the rules discussed
in McCusker and McGuinness [24]. These rules are described in opm2mage.rules3.
The same generic inferencing processor, using the Jena API and rules engine, is
used to run the conversion of OPM back into MAGE.

We use the Jena API to compare the reconstructed MAGE RDF graph with
the original by creating a Jena models for the original and reconstructed graphs,
and take difference of the original graph against the reconstructed graph. This
results in a model that contains all statements that are in the original graph
that are not in the reconstructed graph.

3 https://scm.escience.rpi.edu/svn/public/mageprovenance/rules/opm2mage.rules

126 J.P. McCusker and D.L. McGuinness

4 Results

For the mapping of MAGE to OPM, we performed a round-trip analysis on
the ArrayExpress experiment E-MEXP-9864, a small-scale but well-annotated
exemplar experiment on Arabidopsis thaliana. We report that on conversion of
the experiment to OPM and back to MAGE, there are no missing statements
from the reconstructed RDF graph.

5 Discussion

A successful mapping of one of the most widely-used experimental description
formats to a general purpose provenance model suggests two things: (1) de-
scriptions of high-throughput experiments can be successfully represented using
a general purpose model, and (2) OPM is sufficiently mature as a model of
provenance to support real-world descriptions of experimental workflows in the
biological sciences. Given this successful mapping, it is now possible to support a
wide range of biomedical experiments within existing provenance models without
a need for domain-specific extensions. It also means that the vision of consistent
provenance representations across the translational research pipeline is possible,
and points to interesting future work in representing biospecimen history and
clinical information using general-purpose provenance models.

5.1 Future Work

We are currently working on scaling the declarative mapping for OPM and devel-
oping a procedural mapping for Proof Markup Language, another provenance
representation [14]. The MAGE object model represents a small part of the
derivational history of biospecimens that are used in these experiments. Future
work of providing biospecimen history and analysis, as well as patient clini-
cal history in a provenance model, we look to realize the translational research
provenance vision laid out in this paper. More generally, each part of the trans-
lational research pipeline represents future work that is needed to realize the
translational research provenance vision. Finally, research is needed in visual-
ization and search of large graphs of provenance before generalized provenance
models can be used effectively. Biomedical informaticians already use graph-
based tools such as Cytoscape to visualize large molecular interaction graphs,
but clinicians and patients will probably require a different perspective.

6 Conclusion

We proposed a vision of provenance for translational biomedical research that
supports the integration of clinical and research artifacts across the translational
research pipeline, provided an overview into the translational research pipeline,
4 http://www.ebi.ac.uk/microarray-as/ae/files/E-MEXP-986

Provenance of High Throughput Biomedical Experiments 127

and showed how high throughput experiments provide a critical role in current
biomedical research. We also demonstrated mappings of MAGE descriptions of
experiments onto a general purpose models of provenance, OPM, and showed
that the mappings are faithful and complete using an analysis of the round trip
mapping of exemplar data. We also provided a framework for analyzing conver-
sions of data from one RDF model to another. We discussed the advantages and
pitfalls of declarative and procedural mappings. Finally, we gave a window into
future work in implementing the translational research provenance vision.

References

1. Zerhouni, E.A.: Translational and clinical science–time for a new vision. New Eng-
land Journal of Medicine 353(15), 1621 (2005)

2. Zerhouni, E.A.: US biomedical research: basic, translational, and clinical sciences.
Jama 294(11), 1352 (2005)

3. Payne, P.R.O., Johnson, S.B., Starren, J.B., Tilson, H.H., Dowdy, D.: Breaking the
translational barriers: the value of integrating biomedical informatics and transla-
tional research. Journal of Investigative Medicine 53(4), 192 (2005)

4. Kim, J., Deelman, E., Gil, Y., Mehta, G., Ratnakar, V.: Provenance trails in
the Wings/Pegasus system. Concurrency and Computation: Practice and Expe-
rience 20(5), 587–597 (2008)

5. Zhao, J., Goble, C., Stevens, R., Turi, D.: Mining taverna’s semantic web of prove-
nance. Concurrency and Computation: Practice and Experience 20(5), 463–472
(2008)

6. Scheidegger, C., Koop, D., Santos, E., Vo, H., Callahan, S., Freire, J., Silva, C.:
Tackling the provenance challenge one layer at a time. Concurrency And Compu-
tation 20(5), 473 (2008)

7. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society.
Series B (Methodological), 289–300 (1995)

8. Goble, C.: Position statement: Musings on provenance, workflow and (Semantic
web) annotations for bioinformatics. In: Workshop on Data Derivation and Prove-
nance, Chicago (2002)

9. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert,
C., Aach, J., Ansorge, W., Ball, C., Causton, H., et al.: Minimum information
about a microarray experiment (MIAME)-toward standards for microarray data.
Nature genetics 29(4), 365–372 (2001)

10. Barrett, T., Troup, D.B., Wilhite, S.E., Ledoux, P., Rudnev, D., Evangelista, C.,
Kim, I.F., Soboleva, A., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sher-
man, P.M., Muertter, R.N., Edgar, R.: NCBI GEO: archive for high-throughput
functional genomic data. Nucl. Acids Res. 37(suppl. 1), D885–D890 (2009)

11. Parkinson, H., Kapushesky, M., Kolesnikov, N., Rustici, G., Shojatalab, M., Abey-
gunawardena, N., Berube, H., Dylag, M., Emam, I., Farne, A., et al.: ArrayExpress
update–from an archive of functional genomics experiments to the atlas of gene
expression. In: Nucleic Acids Research (2008)

12. Berman, J., Edgerton, M., Friedman, B.: The tissue microarray data exchange
specification: A community-based, open source tool for sharing tissue microarray
data. BMC Medical Informatics and Decision Making 3(1), 5 (2003)

128 J.P. McCusker and D.L. McGuinness

13. Moreau, L., Miles, S., Missier, P., Simmhan, Y., Futrelle, J., Myers, J., Stephan,
E., Kwasnikowska, N., den Bussche, J.V., Freire, J., et al.: The open provenance
model (v1. 1) (2009)

14. McGuinness, D., Ding, L., Pinheiro da Silva, P., Chang, C.: Pml 2: A modular
explanation interlingua. In: Proceedings of AAAI, vol. 7 (2007)

15. Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and op-
portunities. In: Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data, pp. 1345–1350 (2008)

16. Moreau, L., Kwasnikowska, N., Van den Bussche, J.: The Foundations of the Open
Provenance Model (2009)

17. Rayner, T., Rocca-Serra, P., Spellman, P., Causton, H., Farne, A., Holloway, E.,
Irizarry, R., Liu, J., Maier, D., Miller, M., Petersen, K., Quackenbush, J., Sherlock,
G., Stoeckert, C., White, J., Whetzel, P., Wymore, F., Parkinson, H., Sarkans, U.,
Ball, C., Brazma, A.: A simple spreadsheet-based, MIAME-supportive format for
microarray data: MAGE-TAB. BMC Bioinformatics 7(1), 489 (2006)

18. Bian, X., Klemm, J., Basu, A., Hadfield, J., Srinivasa, R., Parnell, T., Miller, S.,
Mason, W., Kokotov, D., Duncan, M., et al.: Data submission and curation for
caArray, a standard based microarray data repository system (2009)

19. Stokes, T., Torrance, J., Li, H., Wang, M.: ArrayWiki: an enabling technology for
sharing public microarray data repositories and meta-analyses. BMC bioinformat-
ics 9(Suppl 6), S18 (2008)

20. Farquhar, A., Fikes, R., Rice, J.: The ontolingua server: A tool for collaborative
ontology construction. International Journal of Human-Computers Studies 46(6),
707–727 (1997)

21. Antkiewicz, M., Czarnecki, K.: Framework-specific modeling languages with
round-trip engineering. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, p. 692. Springer, Heidelberg (2006)

22. Missier, P., Belhajjame, K., Zhao, J., Goble, C.: Data lineage model for Tav-
erna workflows with lightweight annotation requirements. In: Freire, J., Koop, D.,
Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, pp. 17–30. Springer, Heidelberg
(2008)

23. Whetzel, P., Parkinson, H., Causton, H., Fan, L., Fostel, J., Fragoso, G., Game,
L., Heiskanen, M., Morrison, N., Rocca-Serra, P., et al.: The MGED Ontology: a
resource for semantics-based description of microarray experiments. Bioinformat-
ics 22(7), 866 (2006)

24. McCusker, J.P., McGuinness, D.L.: Representing high throughput biomedical ex-
periments using the open provenance model. Technical report, Technical Report
TW-2010-14, Tetherless World Constellation, Rensselaer Polytechnic Institute,
USA (2010)

25. Shannon, P., Markiel, A., Ozier, O., Baliga, N., Wang, J., Ramage, D., Amin,
N., Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome research 13(11), 2498 (2003)

Janus: From Workflows to Semantic Provenance
and Linked Open Data

Paolo Missier1, Satya S. Sahoo3,�, Jun Zhao2,��,
Carole Goble1, and Amit Sheth3

1 School of Computer Science, University of Manchester, UK
{pmissier,carole}@cs.man.ac.uk

2 Department of Zoology, University of Oxford, UK
jun.zhao@zoo.ox.ac.uk

3 The Kno.e.sis Center, Wright State University, Dayton, OH, USA
{sahoo.2,amit.sheth}@wright.edu

Abstract. Data provenance graphs are form of metadata that can be
used to establish a variety of properties of data products that undergo
sequences of transformations, typically specified as workflows. Their use-
fulness for answering user provenance queries is limited, however, unless
the graphs are enhanced with domain-specific annotations. In this paper
we propose a model and architecture for semantic, domain-aware prove-
nance, and demonstrate its usefulness in answering typical user queries.
Furthermore, we discuss the additional benefits and the technical impli-
cations of publishing provenance graphs as a form of Linked Data. A
prototype implementation of the model is available for data produced by
the Taverna workflow system.

1 Introduction

Experimental science increasingly relies upon computational techniques and
large-scale data management to achieve its goals. As with any experimental
method, either manual or automated, an important step of the scientific process
is the validation of its results. In the case of automated, high-throughput data
generation and transformation pipelines, implemented for example as workflows,
the complexity of the processes and the volumes of data call for validation pro-
cedures to be automated, too. One of the prominent approaches involves the
analysis of detailed traces of the data transformations that are recorded during
the execution of the data pipeline. These traces are a form of metadata, relative
to the data involved in the process, known as data provenance. The growing
realisation of the importance of this type of metadata for experimental science
has in recent years spurred a wealth of research in provenance acquisition and
analysis [17,1,5,7].

Provenance metadata is structured as a causal graph amongst data elements
as they undergo several transformations through some composition of processes.
� This work was partly funded by NIH RO1 Grant# 1R01HL087795-01A1.

�� This work was partly funded by EPSRC Grant# EP/G049327/1.

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 129–141, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

130 P. Missier et al.

The two main strains of research in this area concentrate on (i) provenance
modelling, with the goal of supporting the users’ data validation tasks; and (ii)
data architectures for provenance management. The work presented in this pa-
per falls in the former of these two categories. Most of the provenance models
proposed so far, including those just cited, have been focusing on describing
the causal relationships amongst data products, without specific concern for the
semantic characterisation of those products. We refer to these graphs as domain-
agnostic, as they do not include any reference to domain-specific terms. In con-
trast, we propose a new semantic model of provenance, embodied by domain-
aware graphs, designed to support data derivation questions that are formulated
by user-scientists using domain-specific terminology. Fig. 1 clarifies the distinc-
tion between the two types of graphs1. The main differences between Fig. 1(a)
and Fig. 1(b) are the additional semantic annotations shown in the latter. In
this limited example, these are of the form V instance-of C or V has-source
C′, where V is a value, and C, C′ are terms in some domain vocabulary, for bi-
ology concepts and biological database resources, respectively. We expect that,
regardless of the specific formalism chosen to specify these annotations, domain-
aware graphs be useful to answer a broader class of user questions than their
domain-agnostic counterparts (namely those questions that rely upon domain
terms).

(a) Domain-agnostic
provenance graph

(b) Domain-aware provenance graph

Fig. 1. Adding simple annotations to provenance graphs

Taking this idea further, we also note that grounding a provenance model in
the Semantic Web framework presents additionally opportunities for support-
ing an even broader class of user questions. In particular, we explore the idea
of making semantic provenance graphs a part of the broad Web of Data, an
increasingly rich source of interconnected data that is uniformly represented ac-
cording to the principles and conventions of Linked Open Data (LOD) [4]. In
practice, we show how mapping data elements in the graph to equivalent data
that is published elsewhere in the Web of Data, makes it possible for queries
to retrieve properties of data, which are not explicitly represented in the prove-
nance graph or its annotations, but are instead associated with their equivalent
external representations.

1 We use an abstract notation that is close to the one adopted in the Open Provenance
Model http://www.openprovenance.org, where data values (the circles) are either
produced or consumed by processes (the squares).

http://www.openprovenance.org

Janus: From Workflows to Semantic Provenance and Linked Open Data 131

1.1 Paper Scope and Contributions

The idea of semantic provenance was first proposed in [15], but few concrete
examples exist to date of its realisation beyond, for example, [6]. In this paper
we take a concrete step towards the implementation of a semantic provenance
model, code-named Janus, cast specifically in the context of provenance for data
processed by Life Sciences workflows. We describe a practical implementation of
Janus2 , which is grounded in the Taverna workflow model [10] and (domain-
agnostic) provenance model [12], and demonstrate its technical feasibility as
well as its benefits to users in terms of enhanced query answering capabilities.
The paper offers the following specific contributions. Firstly, we set Janus in
the Semantic Web framework, where we define its model as an extension of the
Provenir upper ontology for workflow-based data provenance [16]. In this setting,
Janus consists of a domain-agnostic part, which models essentially the same
entities as the existing Taverna provenance model, and a domain-aware part,
obtained by extending the ontology to include properties and classes like those
shown earlier in Fig 1(b). Secondly, we describe the prototype implementation
of an extension to the current Taverna provenance architecture, which produces
semantic, RDF-based provenance graphs for workflow runs, that conform to the
Janus ontology.

Thirdly, we show how the RDF provenance graph can be domain-enhanced
by associating semantic types from a variety of public ontologies to some of its
elements. We also discuss how existing semantic annotations on the workflow
and its composing services, when available, can be automatically propagated to
the provenance graph. We then show how, in this setting, we can answer a class
of user queries that predicate on the domain annotations. Finally, we show on a
practical example how the provenance graph can “blend in” as part of the Web
of Data, and exemplify our approach by mapping data identifiers in the graph
to those in the Bio2RDF project [2], resulting in extended semantic provenance
queries.

1.2 Related Work

While provenance data model is a well studied topic [17], the challenge of asso-
ciating domain semantics to it has received relatively little attention. The Open
Provenance Model (OPM) [13] provides the annotation framework to support the
need for adding extra information to provenance entities. However, this frame-
work is not defined in the current OPM OWL ontology3. Previous work by Cao
et al. [6] and Zhao et al. [18] experimented with providing semantic annotations
to provenance logs by post-processing, but without a clear data model for ac-
commodating domain-semantics. Such a data model is essential for building a
domain-aware provenance collection architecture that could scale beyond case
studies. In this paper, we extend the Provenir ontology to create the domain-
aware Janus provenance model to address the challenge.
2 Janus is publicly available at: http://purl.org/net/taverna/janus#
3 http://openprovenance.org/model/opm.owl

http://purl.org/net/taverna/janus#
http://openprovenance.org/model/opm.owl

132 P. Missier et al.

Query frameworks and user-facing visualizations to support a user-oriented
view of provenance can be found in the work by Biton et al. [3] and Howe
et al. [9]. Provenance queries that present information in a more meaningful way
to the domain scientists have been implemented by Cao et al. [6] and McGuinness
et al. [11]. This work takes it further by connecting domain-enhanced provenance
graphs created locally with the global Web of Data in order to expand the
possible semantic provenance queries.

2 A Concrete Example

Our running example consists of a bioinformatics workflow designed to find all
known relationships between a specific region in the mouse genome, known as
a QTL (Quantitative Trait Loci), and the metabolic pathways involving genes
that are present in that region. A schematic representation of the workflow is
given in Fig. 2(a).4 The workflow starts by retrieving all the genes known to the
Ensembl public database for a given input region, using the Biomart service.
It then retrieves all metabolic pathways from the KEGG pathways database,
such that at least one of those genes are involved.5 Note that the schematic
representation does not include the many adapter scripts that are required in
reality to accomplish this composite task.

(a) Schematic representation of a
Taverna workflow

(b) Schematic representation of a
provenance graph for a workflow run

Fig. 2.

A scientist may want to ask a number of high-level questions regarding the
relationship between the outputs and some of the inputs of a workflow execution
(“run”). Amongst these, we are going to consider the following two, which can
be expressed in terms of queries on a provenance graph:
4 The actual workflow, too large to be reproduced here, can be found on the myEx-

periment Web site: http://www.myexperiment.org/workflows/931
5 Ensembl: www.ensembl.org,

Biomart: www.biomart.org/,
KEGG: www.genome.jp/kegg/pathway.html

http://www.myexperiment.org/workflows/931
www.ensembl.org
www.biomart.org/
www.genome.jp/kegg/pathway.html

Janus: From Workflows to Semantic Provenance and Linked Open Data 133

1. for each Kegg pathway observed in the workflow output (or for a specific
one), find all genes that are within the input QTL and are involved in that
pathway;

2. amongst all genes that are known to perform a certain biological function,
list those that are involved in a certain pathway.

The terms in italics refer to concepts in the bioinformatics domain, similar to
those in Fig. 1(b). Intuitively, one can answer (1) for a particular run, by travers-
ing a domain-aware provenance graph for that run, like the one sketched in
Fig. 2(b). An output value o for the workflow depends on some input or inter-
mediate value i, if and only if there is a path from i to o in the graph. Thus,
(1) can be reduced to a query that finds all pairs (i, o) such that o is of type
pathway, i is of type gene, and there is a path from i to o. In Sec. 3.3 we show
how our proposed semantic provenance framework supports this query.

The graph, however, is not sufficient to answer question (2), which refers to
the biological function of a gene, a concept that is not included in the semantic
annotations. Our approach in this case is based upon the idea that the genes
that appear in the graph may also be published elsewhere in the broad Web of
Data, where the missing annotations can potentially be found. When this is the
case, one can formulate a hybrid query that (i) retrieves the biological functions
of all the genes that appear in the graph, using a Linked Data query, and (ii)
for those genes that satisfy the condition, find all paths to the corresponding
pathways in the graph6. We elaborate on this strategy and on its limitations in
Sec. 4, showing in particular how that the gene IDs in the graph can be mapped
to Bio2RDF genes.

3 The Janus Semantic Provenance Infrastructure

The examples from the previous section highlight the need for incorporating
domain semantics as part of the provenance model, to bridge the gap between
the domain-agnostic provenance produced during workflow execution, and the
users’ domain-oriented view of provenance. An expressive provenance model with
well-defined formal semantics not only enables complex domain-specific informa-
tion to be modeled, but also facilitates provenance interoperability and supports
reasoning over large sets of provenance information. As mentioned in the in-
troduction, formally Janus is an extension of Provenir, an upper-level reference
OWL DL ontology for provenance modeling designed to be extended to repre-
sent provenance in multiple domains. In turn, Provenir extends concepts from the
well-known Basic Formal Ontology (BFO)7 to define a set of provenance terms,
including the three fundamental concepts of data, process, and agent. Provenir
also defines a set of 11 named relationships amongst classes, including partonomy
relations, temporal information, precedence, and causal relationships, providing

6 Note however, that there is no guarantee that the gene will be found in the Web of
Data, or that the condition on its external annotations can be evaluated there.

7 http://ontology.buffalo.edu/bfo/

http://ontology.buffalo.edu/bfo/

134 P. Missier et al.

a foundation for the semantic modelling of provenance. As an upper-level ref-
erence model for provenance, Provenir ensures a common modeling approach,
conceptual clarity of provenance terms, and use of design patterns for consistent
provenance modeling.

3.1 Modeling Domain-Agnostic Provenance in Janus

The Taverna provenance model defined in [12] includes both a static and a
dynamic portion. The static portion describes the graph structure of a work-
flow specification (processors, processor ports, and data dependencies as links
between ports), such as the one in our running example of Fig. 2(a). The dy-
namic portion accounts for multiple invocations of a processor that occur during
workflow execution, as well as for the binding of actual values to the processors
ports. In the first step of the design, we model the existing Taverna provenance
model as an OWL ontology. As illustrated in Fig. 3, the classes in the static por-
tion (janus:workflow spec, janus:processor spec, and class janus:port)
extend corresponding Provenir classes and are associated through appropri-
ate properties, for example janus:processor spec provenir:has parameter
janus:port. Note that data links in the workflow are modelled using the
link from property from port onto itself. Individuals in these classes include
the workflow itself (gene pathway workflow), its processors (eg. genes in qtl),
and the processors’ ports (eg. qtl end position, chromosome name). In turn,
these individuals may be related to one or more run-time counterparts in the
dynamic portion of the ontology through object property has execution:

Fig. 3. Domain-aware Janus as an extension of Provenir

Janus: From Workflows to Semantic Provenance and Linked Open Data 135

dom(has execution) = workflow spec or processor spec

range(has execution) = workflow exec or processor exec

and has value binding:

dom(has value binding) = port, range(has value binding) = port value

3.2 Modeling Semantic Provenance in Janus

We now describe the Janus extension to include domain-specific terms. A variety
of scientific communities are creating ontologies to model domain knowledge, for
example the National Center for Biomedical Ontologies (NCBO)8 currently lists
166 publicly available ontologies in the Life Sciences domain. To model semantic
provenance in Janus, we re-use the classes defined in four public ontologies listed
at NCBO, namely the BioPAX, National Cancer Institute Thesaurus, Founda-
tional Model of Anatomy (FMA), and the Sequence ontologies, while the fifth
ontology, OWL Time9 is available from the W3C. This reuse strategy facilitates
the interoperability of Janus-conformant provenance graphs with large public
datasets. For example, these graph can be easily linked to the KEGG, Reac-
tome, and BioCyc databases, which currently make their biological pathway
datasets available as BioPAX-conformant RDF datasets.

These extensions are used to annotate both workflow processors and
their ports. For example, the three input ports for our example workflow:
chromosome name, start position and end position, are annotated with con-
cepts so:chromosome and so:base pair, respectively, where the so prefix de-
notes the NCBO-listed Sequence Ontology. Similarly, ports that denote proteins
and pathways are annotated using terms fma:protein and biopax:pathway,
from the FMA and the BioPax ontology, respectively. In general, semantic types
are associated to ports in an extensible way through the generic has value type
property, according to the following pattern:

dom(has value type) = port, range(has value type) = domain entity

BioPax:pathway owl:subClassOf domain entity

FMA:protein owl:subClassOf domain entity

For each workflow run, the Taverna provenance component produces domain-
agnostic provenance in the form of an RDF graph that conforms to the
Janus ontology just described, i.e., it contains RDF statements of the form
N rdf:type C, where N is a node in the provenance graph and C is some
Janus concept. The semantic annotation of these graphs assumes that the work-
flow specification is itself semantically annotated, and it involves automatically
propagating those annotations, first to the static portion of the provenance
graph, and then to the dynamic portion. Statically annotating the workflows
8 http://www.bioontology.org/
9 http://www.w3.org/TR/owl-time

http://www.bioontology.org/
http://www.w3.org/TR/owl-time

136 P. Missier et al.

prior to their execution is a realistic proposition. While this may involve a man-
ual curation process, typical workflows never include more than a handful of
services, and furthermore, in the long run one can assume that these annota-
tions will be available through a registry that describes the services that compose
the workflow (Taverna workflows essentially specify Web service compositions).
The BioCatalogue registry for Life Science services10, for example, is set out to
provide semantic annotations for hundreds of services, and these annotations
carry over to the workflows where the services are invoked.

The propagation of workflow annotations to the provenance graph is fairly
straightforward. Firstly, consider a static workflow element, say port X =
chromosome name, annotated with concept C = so:chromosome in the work-
flow (using any available formalism). In the provenance graph this is expressed
using the pattern:

X rdf:type Port, C = {c}, X has value type c

for example:

chromosome name rdf:type Port, so:chromosome = {singleton chromosome}
chromosome name has value type singleton chromosome

Secondly, the annotations on a port carry over to each of the values that are
bound to that port11, using a collection of inference rules like the following:

X rdf:type Port C = {c} X has value type c
X has value v v rdf:type PortValue

v rdf:type C

This rule asserts the value v as an individual of the Janus class C. The set of
rules accounts for various annotations, for example the following rule:

X rdf:type Port X has source S X has value v v rdf:type PortValue

v has source S

annotates v with the data source of the port (for instance, the KEGG database).
As a proof of concept, the Janus ontology currently models the semantic

provenance terms that are adequate for representing the domain semantics of
our example workflow, using less than 30 classes and properties with a DL ex-
pressivity of ALCH(D). Many of the classes, for example to model collection data
structures, have not been described as they are less relevant to our discussion in
this paper. In the future, we plan to extend Janus with the domain terms used
to annotate the default set of services in the Taverna release version.

3.3 Provenance Query Infrastructure for Janus

We now describe the Janus query infrastructure that has been implemented
to support the example provenance queries discussed in Sec. 2. The query
10 http://www.biocatalogue.org
11 This assumes that the ports are strongly typed, i.e., that all values bound to the

port have the same type as the port.

http://www.biocatalogue.org

Janus: From Workflows to Semantic Provenance and Linked Open Data 137

infrastructure is implemented using the open source Jena ARQ tool12, and sup-
ports provenance queries expressed in the SPARQL query language [14]. We
composed the SPARQL query pattern corresponding to the example query (1)
from Sec. 2: “Find all the QTL genes that are involved in KEGG pathways”.
The SPARQL query pattern first identifies port values that are individuals of
class biopax:pathway and are linked to values “KEGG”, which are themselves
individuals of class NCI:Data Sources, through property has source. In the
next step, the query pattern traverses the property has value binding between
a port and a port value, followed by traversal of the property links from be-
tween individuals of class port, until it reaches individuals of class so:base pair
that represent the result QTL genes (the second provenance query proposed in
Sec. 2: “Find pathways that contain genes with specific functions,” is discussed
in the next section).

Provenance queries typically involve a recursive traversal of the graph to com-
pute a transitive closure, namely over the links from property. We had two op-
tions for implementing the transitive closure function, namely a function that is
tightly coupled to the RDF data store implementation, or a generic module that
can be used with any RDF data store. We chose a generic implementation using
the SPARQL ASK function, which allows the provenance query infrastructure to
be used over multiple RDF stores. The SPARQL ASK function allows “applica-
tion to test whether or not a query pattern has a solution,” [14] without return-
ing a result set or graph. The transitive closure functions starts with the port
instance linked to the input value and then recursively expands the SPARQL
query expression using the ASK function until a false value is returned. The
SPARQL ASK function, in contrast to the SELECT and CONSTRUCT func-
tions, does not bind the results of the query to variables in the query pattern,
and is therefore a low-overhead function for computing transitive closures.

4 Taverna Provenance and Linked Data

So far we have shown how the domain-aware extensions to Janus enable answer-
ing domain-specific semantic provenance queries. In this section we describe how
we can, in addition, also use these semantic annotations to link Janus-compliant
provenance graphs to the open Web of Data in order to expand the range of
supported domain provenance queries.

4.1 Publishing Taverna Provenance as Linked Data

Because Janus provenance is already available as RDF graphs, we only need to
make these graphs Linked data-compliant and accessible on the Web. This means
that 1) each Janus entity URI should be derefenceable, and 2) wherever possible,
the data URIs under the Janus namespace should be mapped to other linked
data URIs on the Web. We use existing Linked Data publication tools, namely
Pubby13, to implement the first step. In order to connect Janus graphs with
12 http://jena.sourceforge.net/ARQ/
13 http://www4.wiwiss.fu-berlin.de/pubby/

http://jena.sourceforge.net/ARQ/
http://www4.wiwiss.fu-berlin.de/pubby/

138 P. Missier et al.

LOD we create rdfs:seeAlso links between Janus data URIs and Bio2RDF [2]
data URIs. We use Bio2RDF data URIs because Bio2RDF is one of the earliest
linked datasets and it is regarded as a nucleus of the Life Science datasets. Using
the semantic annotations associated with Janus provenance, we define a set of
rules for the identity mapping. Given a Janus data item di with value value(di),
its mapping Bio2RDF URI URI(di) is determined by the type of di and the
data source where di comes from, according to the following rules:

– IF isType(di) == Gene AND isSource(di) == Entrez THEN
• URI(di) = http://bio2rdf.org/geneid: + value(di)

– IF isType(di) == Gene AND isSource(di) == UniProt THEN
• URI(di) = http://bio2rdf.org/uniprot: + value(di)

– IF isType(di) == Gene AND isSource(di) == KEGG THEN
• URI(di) = http://bio2rdf.org/kegg: + value(di)

– IF isType(di) == Pathway AND isSource(di) == KEGG THEN
• URI(di) = http://bio2rdf.org/path: + value(di)

Fig. 4. Semantic provenance for Taverna in the Linked Data context

4.2 Consuming Taverna Provenance as Linked Data

As mentioned, creating Janus Linked Data provenance that is connected to
Bio2RDF makes the provenance graphs an integral part of the Web of Life Sci-
ence data (see Figure 4). This opens the provenance graph to queries that run on
the Web of Data. Furthermore, provenance graphs that are created during differ-
ent workflow runs are now indirectly, and automatically connected through their
common external data URIs, thus supporting queries that span across multiple
runs.

To demonstrate this, we show how we can support a semantic provenance
query that requires access to both Janus and the various Bio2RDF repositories,
by executing a single SPARQL query against SQUIN [8], a Linked Data query
engine. Instead of having to write separate SPARQL queries against each indi-
vidual data source, SQUIN allows us to treat the whole Web of Data as one single
data space. It is a query engine that applies the “follow your nose” principle of
Linked Data: it traverses the whole Web of Data to retrieve all relevant data

Janus: From Workflows to Semantic Provenance and Linked Open Data 139

sources for a query by taking the URIs in the query and those in the interme-
diate results, following links of these URIs to other data sources, and applying
the querying graph pattern to the intermediate result space in order to obtain
relevant results.

Our example query below searches for the functions of those proteins encoded
by the Entrez genes that were generated by the executions of the example work-
flow in Figure 2(b). The domain knowledge about the genes is drawn from two
Bio2RDF data repositories and the knowledge about which Taverna data prod-
ucts are Entrez genes comes of the domain-enhanced Janus provenance. This
simple SPARQL query needs access to at least three linked datasets. SQUIN
query engine allows us to write one single query against these multiple data
sources. The result will return the biological process related to the data prod-
ucts from any workflow runs that are Entrez genes. We can then use semantic
provenance queries similar to the one presented in Sec. 3.3 to search for KEGG
pathways that contain these genes.

PREFIX uniprot: <http://purl.uniprot.org/core/>

PREFIX ex: <http://purl.org/net/taverna/janus/>

PREFIX : <http://purl.org/net/taverna/janus#>

SELECT distinct ?entrezgene ?function

WHERE {

ex:dataproudct1 rdf:type <http://purl.org/obo/owl/sequence#gene> .

ex:dataproudct1 :has_source :entrez_gene .

ex:dataproudct1 rdfs:seeAlso ?entrezgene .

?entrezgene <http://bio2rdf.org/bio2rdf_resource:xPath> ?protein .

?protein uniprot:classifiedWith ?function.

}

This example shows that drawing on the domain knowledge from the Linked
Data cloud enables us to extend the kind of domain-level provenance queries
that we can implement that are more meaningful to the scientists. Finding spe-
cific KEGG pathways that are related to genes of interesting functions will help
scientists quickly identify potential pathways from hundreds of experiment re-
sults. The above example query could enable scientists to quickly identify the
presence of pathways that consistently exist in different experimentations, in-
cluding those that were conducted by the scientists themselves.

5 Conclusions and Further Work

We have presented a semantic provenance model for workflow data, called Janus,
and a prototype implementation for the Taverna workflow system and prove-
nance model. The implementation demonstrates the benefits of collecting se-
mantic provenance, by showing exemplars semantic provenance queries that can
now be answered by the system.

The main objection that is often raised in connection with semantic anno-
tations, is the annotation cost. We have noted, in Sec. 3, that the annotation
effort is actually limited to the workflow specification, and indeed, possibly just
to the services used in the workflow, when those are annotated once and for all

140 P. Missier et al.

as part of the service registry curation process. In turn, this observation provides
additional motivation for the development of registries like Biocatalogue.

Our investigation into the idea of publishing provenance graphs as Linked
Data is still preliminary and requires additional insight. For instance, the simple
rules used to link Janus provenance with the Web of Data do not consider the
possibility that the workflow and Bio2RDF refer to different copies of the same
database. Also, some of the mapping Bio2RDF URIs might not exist at all or are
actually linked to mismatching data entities, and the precision of the mapping
between Janus and Bio2RDF data URIs needs to be evaluated. Finally, we plan
to conduct a user assessment as a way to establish the perceived value of semantic
provenance from the users’ perspective.

References

1. Barga, R.S., Digiampietri, L.A.: Automatic capture and efficient storage of e-
Science experiment provenance. Concurrency and Computation: Practice and Ex-
perience 20, 419–429 (2008)

2. Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: To-
wards a Mashup to Build Bioinformatics Knowledge Systems. Journal of Biomed-
ical Informatics 41, 706–716 (2008)

3. Biton, O., Cohen Boulakia, S., Davidson, S.B.: Zoom*UserViews: Querying Rele-
vant Provenance in Workflow Systems. In: VLDB, pp. 1366–1369 (2007)

4. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. Int. Journal
on Semantic Web and Information Systems, Special Issue on Linked Data (2009)
(in press)

5. Bowers, S., McPhillips, T.M., Ludäscher, B.: Provenance in collection-oriented sci-
entific workflows. Concurrency and Computation: Practice and Experience 20, 519–
529 (2008)

6. Cao, B., Plale, B., Subramanian, G., Missier, P., Goble, C., Simmhan, Y.: Seman-
tically Annotated Provenance in the Life Science Grid. In: Freire, J., Missier, P.,
Sahoo, S.S. (eds.) 1st International Workshop on the Role of Semantic Web in
Provenance Management. CEUR Proceedings (2009)

7. Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and op-
portunities. In: SIGMOD Conference, pp. 1345–1350 (2008)

8. Hartig, O., Bizer, C., Freytag, J.C.: Executing SPARQL queries over the web of
linked data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,
D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309.
Springer, Heidelberg (2009)

9. Howe, B., Lawson, P., Bellinger, R., Anderson, E., Santos, E., Freire, J., Scheideg-
ger, C., Baptista, A., Silva, C.: End-to-end escience: Integrating workflow, query,
visualization, and provenance at an ocean observatory. In: Procs Fourth IEEE
International Conference on eScience, pp. 127–134 (2008)

10. Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M.R., Li, P., Oinn,
T.: Taverna: a tool for building and running workflows of services. Nucleic acids
research 34, 729–732 (2006)

11. McGuinness, D.L., Fox, P., Pinheiro da Silva, P., Zednik, S., Del Rio, N., Ding, L.,
West, P., Chang, C.: Annotating and embedding provenance in science data repos-
itories to enable next generation science applications. In: American Geophysical

Janus: From Workflows to Semantic Provenance and Linked Open Data 141

Union, Fall Meeting (AGU 2008), Eos Trans. AGU, Fall Meet. Suppl., Abstract
IN11C-1052, vol. 89(53) (2008)

12. Missier, P., Paton, N.W., Belhajjame, K.: Fine-grained and efficient lineage query-
ing of collection-based workflow provenance. In: Procs. of EDBT, Lausanne,
Switzerland (2010)

13. Moreau, L.: The Open Provenance Model v 1.1 (2009)
14. Prud’ommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Rec-

ommendation (2008)
15. Sahoo, S.S., Sheth, A., Henson, C.: Semantic provenance for eScience: Managing

the deluge of scientific data. IEEE Internet Computing 12, 46–54 (2008)
16. Sahoo, S.S., Sheth, A.: Provenir ontology: Towards a Framework for eScience Prove-

nance Management (2009)
17. Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-science.

SIGMOD Record 34, 31–36 (2005)
18. Zhao, J., Wroe, C., Goble, C., Stevens, R., Quan, D., Greenwood, M.: Using Se-

mantic Web Technologies for Representing e-Science Provenance. In: McIlraith,
S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp.
92–106. Springer, Heidelberg (2004)

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 142–147, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Provenance-Aware Faceted Search in Drupal

Zhenning Shangguan, Jinguang Zheng, and Deborah L. McGuinness

Tetherless World Constellation,
Computer Science Department, Rensselaer Polytechnic Institute,

110 8th Street, Troy, NY 12180, U.S.A.
{shangz,zhengj3,dlm}@cs.rpi.edu

Abstract. As the web content is increasingly generated in more diverse situa-
tions, provenance is becoming more and more critical. While a variety of ap-
proaches have been investigated for capturing and making use of provenance
metadata, arguably no single best-practice approach has emerged. In this paper,
we investigate an approach that leverages one of the most popular content man-
agement systems – Drupal. More specifically, we study how provenance meta-
data can be captured and later published as structured data on the Web using
Drupal. We also demonstrate how provenance metadata can be used to facilitate
faceted search in Drupal.

Keywords: Provenance, Faceted Search, PML, Drupal.

1 Introduction

Information on the Web is increasingly generated using a wide variety of diverse
sources. It is also pointed out in [1] that capturing provenance both within and across
systems, and publishing that provenance provides potential for many benefits, such as
tracing audit trails of data, reproducing scientific experimental results, finding useful
information, evaluating data quality, establishing information accountability, etc.

Although there have been numerous previous research efforts aimed at represent-
ing and tracking provenance in both closed and open systems, even at different levels
of granularity, many of the approaches have limitations and inflexibilities that result
from decisions made from targeting a specific system, application, or scenario. More-
over, historically provenance research has often focused on capturing provenance
metadata; currently there is an increasing interest in studying how provenance can be
used in different ways.

With the goal of exploring the issues mentioned above, this short paper describes
some of our ongoing efforts related to provenance using a Drupal-based solution. Our
proposed demonstration will highlight two areas:

─ Representing and publishing provenance metadata. We are exploring the con-
figurability and extensibility of Drupal. Our approach is to create a provenance-
aware Drupal-based platform for web applications.

─ Providing provenance-aware faceted search. We are designing and implement-
ing a Drupal-based faceted search that can search over metadata and use prove-
nance to help inform search results and help filter results. We will demonstrate

 Provenance-Aware Faceted Search in Drupal 143

how provenance-aware search can be more efficient, and provide insight into
ranking and presentation options. We also will expose how provenance facets,
such as temporal facets related to the creation and modification time of some
Drupal content, are being used in our search functionality.

The rest of the paper is organized as follows. Section 2 highlights the related work.
Section 3 demonstrates our initial effort to capture, encode, and publish provenance
information as structured RDF. Section 4 describes how to make use of these prove-
nance metadata to facilitate faceted search. Finally, we conclude the paper and outline
some future work in section 5.

2 Related Work

Four areas of work are considered related to the topic of our paper.
There is a diverse literature on systems and applications that are capable of captur-

ing provenance metadata, for example, Taverna [2], VisTrails [3], REDUX [4],
Pegasus [5], Karma [6]. While they successfully demonstrate different approaches of
capturing provenance, they can be viewed as having an application-dependent nature
and thus they can be less flexible and less extensible when applications differ greatly
from those that these approaches were designed to satisfy. Our work differs from
these approaches in that we are investigating mechanisms to capture and publish
provenance using Drupal, which has the potential to serve as the foundation of an
application-independent solution.

Another spectrum of related research is the generic provenance models and vo-
cabularies, most notably the Open Provenance Model (OPM) [1], Provenance Markup
Language (PML) [7], and the Provenance Vocabulary [8]. While providing different
vocabularies for representing provenance, there are certain conceptual overlaps be-
tween them. For example, both OPM and Provenance Vocabulary have similar basic
concepts, i.e., Agents (OPM) and Actors (Provenance Vocabulary) denoting people,
Processes (OPM) and Executions (Provenance Vocabulary) representing executions
of actions or processes, and Artifacts (both OPM and Provenance Vocabulary) repre-
senting the entity produced or manipulated. Currently, we are using PML to encode
the provenance metadata. However, supporting provenance representations using
different domain-independent provenance vocabularies is planned as one of our future
work areas.

Faceted search for exploration has been widely studied over the past years. Numer-
ous research efforts [9] [10] [11] have demonstrated benefits including usability and
flexibility of faceted browsers when interacting with structured data (e.g., relational
databases, XML, RDF). In this paper, we are making use of the generated provenance
metadata to facilitate faceted search and help locate the desired information.

Drupal, one of the most popular CMS systems, has been widely deployed. Re-
cently, there is an emerging effort from both the Semantic Web community and the
Drupal development community to enable Drupal to publish semantic metadata (e.g.,
RDF, RDFa) [12]. Our implementation makes use of some of the Drupal modules
introduced in [12] to create provenance related node fields. We are also developing
Drupal module of our own to publish provenance metadata encoded in PML.

144 Z. Shangguan, J. Zheng, and D.L. McGuinness

3 Capturing and Publishing Provenance in Drupal

The information that Drupal1 organizes and manages is called content. Usually, a
piece of content in Drupal corresponds to a single node (in the form of a page) that
has a title, an optional body text description, and perhaps several additional fields.
Every node also belongs to a particular content type, such as Person, Blog and etc.
The site administrator uses the Content Construction Kit (CCK)2 to create a node by
specifying its content type (e.g., Person), title (e.g., name of the person), body text
(e.g., short bio of the person), and fields (e.g., first name, last name, email of the per-
son). Furthermore, the RDF CCK3 module extends the functionality of CCK to enable
the definition of mappings between: 1) a specific content type (e.g., Person) and an
RDF class (e.g., foaf:Person), and 2) a node field (e.g., field_firstname) and an RDF
property (e.g., foaf:givenName).

Currently, our initial implementation of the Drupal provenance module is capable
of capturing provenance at two levels of granularity.

─ Node-level: This level focuses on the provenance metadata associated with a
node in Drupal, such as who created the node, when the node was first created,
and when the node was last modified.

─ Content-level: This level keeps track of the provenance metadata associated
with all the revisions of a node in Drupal, such as who modified the body text of
the node and changed the values of the fields, when these modifications and
changes happened, as well as the texts/values after every revision.

The benefit of having both the node-level and content-level provenance is that the
former captures the basic provenance metadata about the node while the latter keeps
track of the detailed edit history information.

The implementation of capturing node-level provenance is straightforward: we can
use CCK and RDF CCK to define several provenance related fields and map them to
the RDF properties from our chosen provenance vocabulary. Currently, we define two
fields for every node in Drupal and map them to pmlp:hasCreationDateTime and
pmlp:hasModificationDateTime, representing when the node was first created and last
modified respectively.

In contrast to capturing node-level provenance, keeping track of the content-level
provenance is not natively supported in Drupal. Thus we develop our own provenance
module4, making use of various Drupal core hook function and core API.

Besides capturing provenance metadata, our module is also capable of publishing
these metadata as RDF on the Web. To access both the node-level and the content-
level provenance metadata, users can follow the URL pattern http://your_domain_na-
me/drupal-dir/node/node-id/pml for every node in a standard Drupal installation

1 We are using Drupal version 6.16 and PHP 5.2 at the time of this writing. Unless explicitly

stated, this holds for all the discussions throughout this paper.
2 Content Construction Kit (CCK) module: http://drupal.org/project/cck.
3 RDF CCK module: http://drupal.org/project/rdfcck.
4 The source code for our provenance module can be found at http://tw2.tw.rpi.edu/drupal-

dev/provenance.zip.

 Provenance-Aware Faceted Search in Drupal 145

without clean URLs5 turned on. Currently we are only using PML to represent the
provenance metadata, with support for OPM and Provenance Vocabulary in progress.
Figure 1 shows the exported provenance metadata for a node in our experimental
Drupal installation.

Fig. 1. Exported Provenance Metadata for a Drupal node

4 Provenance-Aware Faceted Search in Drupal

Being able to capture both the node-level and content-level provenance immediately
brings about a lot of benefits, especially for provenance-ware search in Drupal. Cur-
rently our provenance-aware faceted search is implemented using the Exhibit module6
of Drupal. More specifically, we leverage the functionality of it to build the faceted
search interface, with some facets generated from the node-level provenance meta-
data, such as pmlp:hasCreationDateTime and pmlp:hasModificationDateTime. Our
initial implementation is demonstrated in Figure 2, with the “Creation Time” facet
generated from the pmlp:hasCreationDateTime node field.

Fig. 2. Initial implementation of provenance-aware faceted search

5 Conclusion and Future Work

In this paper we described some of our ongoing effort to capture and publish prove-
nance metadata in Drupal. With the help of various Drupal modules, such as CCK and

5 Drupal clean URLs: http://drupal.org/getting-started/clean-urls. The provenance metadata can

also be accessed via a similar URL pattern by appending “/pml” to the end of a node URL.
6 Exhibit Drupal module: http://drupal.org/project/exhibit.

146 Z. Shangguan, J. Zheng, and D.L. McGuinness

RDF CCK, node-level provenance can be captured by defining node fields and estab-
lishing mappings between them and RDF properties in the chosen provenance model,
which is PML in our case. We also developed a provenance module in order to cap-
ture content-level provenance, which can be used to trace the revision history of
nodes in a deployed Drupal website. Finally, our initial effort to facilitate faceted
search with the help of the captured provenance metadata is also presented. We plan
to provide a demonstration of our provenance-aware faceted search in one (or more)
of our eScience applications at IPAW.

We identify two general directions for future work. First, our current implementa-
tion supports provenance encodings using only PML, without giving the user the
ability to choose which provenance model to use. We plan to further enable the user
to specify their desired provenance model when exporting the provenance metadata.
Second, at present only the node-level provenance is exploited in the faceted search.
However, content-level provenance might also contain useful properties to generate
facets, such as revision time, date, and the user who made that revision. Moreover,
content-level provenance can also be used to generate the edit history of the contents
managed by Drupal. Therefore, another important aspect of our future work is to take
advantage of the content-level provenance to further improve faceted search and gen-
erate edit history information of the nodes (pages) in Drupal. We also plan to leverage
provenance data to help filter search results when result sets are large.

References

1. Moreau, L.: The Foundations for Provenance on the Web. J. Foundations and Trends in
Web Science (2009)

2. Zhao, J., Goble, C.A., Stevens, R., Turi, D.: Mining Taverna’s semantic web of prove-
nance. Concurrency and Computation: Practice and Experience 20(5), 463–472 (2008)

3. Freire, J., Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E., Vo, H.T.: Managing
rapidly-evolving scientific workflows. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS,
vol. 4145, pp. 10–18. Springer, Heidelberg (2006)

4. Barga, R.S., Digiampietri, L.A.: Automatic capture and efficient storage of e-science ex-
periment provenance. Concurrency and Computation: Practice and Experience 20(5), 419–
429 (2008)

5. Kim, J., Deelman, E., Gil, Y., Mehta, G., Ratnakar, V.: Provenance trails in the
wings/pegasus system. Concurrency and Computation: Practice and Experience 20(5),
587–597 (2008)

6. Simmhan, Y.L., Plale, B., Gannon, D.: Karma2: Provenance management for data-driven
workflows. Int. J. Web Service Res. 5(2), 1–22 (2008)

7. McGuinness, D.L., Ding, L., Pinheiro da Silva, P., Chang, C.: PML2: A modular explana-
tion Interlingua. In: ExaCt (2007)

8. Hartig, O., Zhao, J.: Using Web Data Provenance for Quality Assessment. In: Proceedings
of the 1st Int. Workshop on the Role of Semantic Web in Provenance Management
(SWPM) at ISWC, Washington, DC, USA (2009)

9. Hildebrand, M., van Ossenbruggen, J., Hardman, L.: /facet: A Browser for Heterogeneous
Semantic Web Repositories. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe,
D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 272–285.
Springer, Heidelberg (2006)

 Provenance-Aware Faceted Search in Drupal 147

10. Oren, E., Delbru, R., Decker, S.: Extending Faceted Navigation for RDF Data. In: Cruz, I.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M.
(eds.) ISWC 2006. LNCS, vol. 4273, pp. 559–572. Springer, Heidelberg (2006)

11. Schraefel, M.C., Karam, M., Zhao, S.: mSpace: interaction design for user-determined,
adaptable domain exploration in hypermedia. In: AH 2003: Workshop on Adaptive Hy-
permedia and Adaptive Web Based Systems, pp.21–235 (2003)

12. Corlosquet, S., Delbru, R., Clark, T., Polleres, A., Decker, S.: Produce and Consume
Linked Data with Drupal. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,
Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 763–
778. Springer, Heidelberg (2009)

Securing Provenance-Based Audits

Roćıo Aldeco-Pérez and Luc Moreau

School of Electronics and Computer Science, University of Southampton,
Southampton SO17 1BJ, UK

{raap06r,l.moreau}@ecs.soton.ac.uk

Abstract. Given the significant increase of on-line services that require
personal information from users, the risk that such information is mis-
used has become an important concern. In such a context, information
accountability is desirable since it allows users (and society in general)
to decide, by means of audits, whether information is used appropriately.
To ensure information accountability, information flow should be made
transparent. It has been argued that data provenance can be used as the
mechanism to underpin such a transparency. Under these conditions, an
audit’s quality depends on the quality of the captured provenance in-
formation. Thereby, the integrity of provenance information emerges as
a decisive issue in the quality of a provenance-based audit. The aim of
this paper is to secure provenance-based audits by the inclusion of cryp-
tographic elements in the communication between the involved entities
as well as in the provenance representation. This paper also presents a
formalisation and an automatic verification of a set of security properties
that increase the level of trust in provenance-based audit results.

1 Introduction

In recent years, an increasing number of on-line services have appeared on the
Web, e.g. social networks, governmental sites, on-line selling sites. Most of them
offer personalised services that require private personal information from their
users. By disclosing personal information, users get access to a wide range of
new functionalities, such as recommendations or customisation. But at the same
time, they face the risk that their information is misused.

Within this context, it is desirable to allow users to verify whether their
information was misused or not. In order to achieve this, information usage
should be made transparent so it can be determined later whether the use of such
information is appropriate [1]. In other words, the transparency of information
usage enables information accountability, a property according to which users
can inspect such information usage through a process we refer to as audit.

Weitzner et al. have recognised that provenance, which consists of causal de-
pendencies between data and events explaining what contributed to a result in a
specific state [2], can be used as a mechanism to achieve information accountabil-
ity [1]. Thus, if provenance of data is available, processing becomes transparent
since the provenance of data can be audited to decide whether information was
used in a proper way.

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 148–164, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Securing Provenance-Based Audits 149

In order to support such a vision, systems should be made provenance-aware
[3] by describing all the steps and data derivations involved in their execution,
in the form of process documentation [4]. Information related to the use of a
specific piece of data can be obtained from process documentation by means of
a provenance query [5], resulting in a provenance graph, which can be analysed
to decide whether information was used appropriately [6].

Against this background, the integrity of the captured process documentation
and the provenance graph derived from it becomes a vital issue in guaranteeing
the quality of a provenance-based audit. Therefore, we address this problem by
developing a framework that secures the communication between the entities
that are part of a provenance-aware system as well as the provenance query re-
sult representation. Specifically, we secure the process documentation created by
entities and the result of provenance queries by including cryptographic elements
in both.

The contributions of this paper are: (i) A secure provenance-aware com-
munication protocol that addresses the integrity of the information exchanged
between entities, (ii) A specially designed provenance graph that allows us to
check the integrity of its content and, (iii) An automatic verification of the
integrity of a Secure Provenance-based Auditing Architecture, which increases
the level of trust in the audit results generated by it. The remainder of this pa-
per is structured as follows. In Section 2, an overview of the provenance model
this work relies upon is presented. In Section 3, to address the integrity property
in the communication between entities, the secure communication formalisation,
which is related to the Provenance-based Auditing Architecture [6], is presented.
In Section 4, to address the integrity property in a provenance graph, we pre-
sented the Secured Provenance Graph and an algorithm that checks its integrity.
In Section 5, the formal verification of the integrity property of one protocol re-
lated to the Provenance-based Auditing Architecture is presented and explained.
Finally, Section 6 discusses some related work and Section 7 offers some conclud-
ing remarks.

2 Provenance Model Overview

In this section, we present a brief overview of the provenance model and con-
cepts that we use in this paper [7]. We assume that applications capture extra
information describing what occurred during their execution. Such extra infor-
mation is referred to as process documentation, which is recorded in a storage
component called Provenance Store, and queried to obtain the provenance of
some data. Process documentation consists of a set of assertions, created by the
applications’ components. These assertions contain a description of the data ex-
changed by such components and relationships expressing causal dependencies
between them. A provenance graph, which is a view of past execution in which
its nodes are data and its edges are labelled with causal relationships’ names
[8], can be obtained by querying the Provenance Store. If a provenance graph is
later analysed during an audit, it is possible to answer questions regarding past

150 R. Aldeco-Pérez and L. Moreau

executions of applications. One important assumption of this model is that all
participants are not malicious and send provenance information faithfully [3].

The information flow of an auditable provenance-aware system consists of
four stages. (1) Recording of process documentation in which components make
assertions related to the actions they perform and record them in a Provenance
Store. (2) Storage of process documentation in which assertions are persistently
stored in a Provenance Store. (3) Querying of process documentation in which
process documentation is queried to obtain a provenance graph. (4) Analysis of
a provenance graph to answer questions regarding the execution of the entities
within the system the result of which is an audit report. Requirements such as
processing of data is compatible with the purpose for which it was captured and
only information to be processed was captured can be checked in the analysis
stage. These requirements are not presented in this paper, however, initial work
related to that analysis can be found in [6]. In order to guarantee a correct
audit report, it is necessary to ensure during all these stages the integrity of the
information in which such an analysis is based.

To do that, we create two mechanisms that guarantee the integrity of as-
sertions. One is used in the recording and storage stages, whereas the other is
used in the querying and analysis stages. The reason for having two separated
mechanisms is to maintain the independence between the creation of distributed
assertions and the querying of them in a centralised repository.

In Section 3, we discuss the mechanism used to secure the recording and stor-
age stages. In Section 4, we explain the mechanism used to secure the querying
and analysis stages.

3 Securing the Recording and Storage Stage

In this section, we discuss how the assertions created by the entities of a prove-
nance-aware system can be secured. The assertions that are recorded during the
recording stage are created from the information exchanged between the partici-
pating entities, i.e. during their communication. If this information is maliciously
altered then, the quality of the audit can be compromised.

In order to address this problem, we need to secure the messages exchanged
between entities and also the assertions that they are sending to the Provenance
Store. To achieve that, we add some cryptographic components to both messages
and assertions.

To exemplify this process, we formalise a secure communication protocol be-
tween the entities that are part of a provenance-based auditing system, specifi-
cally we secure the Provenance-based Auditing Architecture presented in [6]. This
formalisation process relies on UML sequence diagrams that model a security pro-
tocol enabling the involved entities to apply security functions to the transferred
data and, thus, protect it. To this end, we use the UML extension UMLsec, which
offers a cryptographic notation for secure systems development [9].

In this formalisation, we assume that entities establish communication by
using the TLS (Transport Layer Security) protocol [10], which allows them to

Securing Provenance-Based Audits 151

verify each others’ identities and create a session key used to encrypt/decrypt
exchanged messages. We also assume that entities’ public and private keys are
created and interchanged.

The sequence diagram presented in Section 3.2 models four basic security char-
acteristics: confidentiality, authentication, non-repudiation and integrity. Data
integrity is the state that exists when computerized data is the same as that in
the source documents and has not been exposed to accidental or malicious alter-
ation or destruction [11]. If data integrity is not supported by auditable systems,
the quality of an audit report will be affected. Due to the the importance of this
property, we only focus on the verification of it; the remaining characteristics
can be verified using a similar technique.

3.1 Provenance-Based Auditing Architecture

The Provenance-based Auditing Architecture, which is presented in [6] and
briefly explained in this section, is depicted in Figure 1. This architecture uses
provenance to audit the correct use of private information to later make ac-
countable the involved entities for any information misuse. The architecture is
inspired by the roles introduced in the Data Protection Act [12], which places
restrictions on how organisations can use personal information that they request
from individuals. It contains the actors Data Controller (DC), who is the indi-
vidual or organisation that decides the purpose for which, and the manner in
which, personal information is to be processed; the Data Subject (DS), who is an
individual whose information is held by DC, and the Data Processor, who is an
individual or organisation that processes personal information on behalf of DC.
In order to make this architecture provenance-aware the Provenance Store (PS)
component is introduced. This component represents a provenance repository
in which provenance information is maintained. Finally, to be able to perform
audits, the Auditor actor is introduced. This actor represents an internal or
external entity that assesses the use of Data Subject’s private information.

Communication’s architecture can be structured in three protocols. The Data
Request protocol represents a request for personal information issued by a Data
Controller to a Data Subject. The Task Request protocol represents a request for
delegating a task issued by a Data Controller to a Data Processor. The Query
Request protocol represents the querying of the assertions stored in the Prove-
nance Store issued by an Auditor to a Provenance Store. The Data Request and
the Task Request protocols model the recording and storage stage. The Query
Request protocol models the querying and analysis stage. As Data Request and
Task Request are similar protocols [6], we focus on the Data Request protocol
in the next section. The query request protocol is introduced in Section 4.

3.2 Data Request Protocol Formalisation

This section presents and explains the Data Request sequence diagram, which
is used in the formalisation of the Data Request protocol.

152 R. Aldeco-Pérez and L. Moreau

Fig. 1. Provenance-based Auditing Architecture

Data Request Protocol. The Data Request protocol represents the process
in which the Data Controller establishes communication with the Data Subject
to request personal information. The process is the following: DC requests some
personal information from DS for a given purpose that indicates the way in which
this personal information can be used, DS authenticates the identity of DC and
after a successful authentication, DS responds with the requested information.
Finally, when DC receives such information, DC acknowledges it reception. At the
same time, both actors (DS and DC) record in the Provenance Store the assertions
related to such a process.

Fig. 2. Data Request UMLsec Sequence Diagram

Securing Provenance-Based Audits 153

Messages. In the Data Request sequence diagram, which is displayed in Figure
2, the messages interchanged between DS and DC are marked with Mi. These
messages use the notation showed in Table 1, Equation (1). To provide confi-
dentiality, non-repudiation and integrity, these messages are symmetrically en-
crypted and signed. These messages also contain a unique identifier idi and a
hash-value hi related to their corresponding assertions, which are used to create
the relationship and the hash-value of the next assertions.

To make this communication protocol provenance-aware, the entities should
record assertions related to the messages they send. Then, the sender of a mes-
sage generates an assertion related to it indicating the relationship with the
previous message. In the sequence diagram, the messages marked with Ai are
assertions recorded by actors in the Provenance Store. These messages use the
notation showed in Table 1, Equation (2) and (3), in which idi is a unique as-
sertion identifier of the cause and idi−1 of the effect of an optional relationships
rel in the Provenance Store. These identifiers are created locally by the entities.
d is the data contained in the message to which this assertion is related to. To
provide integrity of the information asserted by entities, a hash-value h is in-
troduced. This hash-value is created by the sender to protect the content of the
assertion and its relationship with the previous message. For that reason, this
hash-value includes the hash-value of the previous assertion, which is identified
by the corresponding id. To provide non-repudiation, assertions also contain a
signature, which is computed by the sender. If an assertion related to the first
message of a protocol is created, this assertion does not contain a relationship
and a hash-value then, the Equation (2) is used.

Cryptographic Elements. In this protocol, a hash-value h is computed by
a hash function h, and represented as h = h(d). The concatenation operation
is represented by ‖. For the signature, the public and private keys of an actor
A are represented by kA and k−1

A respectively. The signature s is computed
by s = Signk−1

A
(h) and the verification of s by ExtkA(s) = h. In this digital

signature scheme, a hash-value of data is signed, so after verifying the signature
the hash-value should be verified too. The encryption of a piece of data d is
computed by x = {d}k′ and the decryption by Deck′(x) = d, where k′ is a
symmetric key. This symmetric key is created during the execution of the TLS
protocol and it is used to encrypt the information that is considered private.
During the TLS execution the entities also check their identities. Due to space
restriction, messages related to the TLS protocol are not presented. However,
TLS formalisation can be found in [9].

Guards. When this protocol is executed, the guards, which are shown in the
sequence diagram of Figure 2 in rounded rectangles and are identified by the
names guardMi and guardAi, are used to verify the content of message Mi and
assertion Ai, respectively. The Data Request protocol proceeds by exchanging
six messages between DS, DC and PS. Message M1 contains purpose, which is
symmetrically encrypted using the session key and signed using the private key
of DC. With this message DC requests personal information from DS indicating

154 R. Aldeco-Pérez and L. Moreau

the purpose from which this information is captured. When M1 is received, it
is later verified and decrypted, as guardM1 shows. In response, DS sends the
encrypted personal data requested (data) in message M2, which is also signed
by DS. When DC receives M2, the signature is verified and the data is decrypted,
as guardM2 shows. Then, DC sends an acknowledgement to the reception of the
data to DS in M3, which is also verified and decrypted (even its corresponding
guard is not presented to avoid cluttering the diagram).

Table 1. Auxiliar Functions

secureMsg(d, idi, hi, k
′, k−1

A) =
〈
{idi||d||hi}k′ , sign

k−1
A

(h(d||idi||hi))
〉

(1)

If Mi = secureMsg(d, idi, hi, k
′, k−1

A) then

encData(Mi) = {idi||d||hi}k′ , sign(Mi) = sign
k−1

A
(h(d||idi||hi)), hash(Mi) = hi

assertion(idi, d, k−1
A) =

〈
idi, d, h(d), sign

k−1
A

(h(idi||d))
〉

(2)

If Ai = assertion(idi, d, k−1
A) then

cause(Ai) = idi, dataItem(Ai) = d, hash(Ai) = h(d),

sign(Ai) = sign
k−1

A
(h(idi||d)), allData(Ai) = idi||d

assertion(idi, d, rel, idi−1, hi, k
−1
A) = (3)〈

idi, d, rel, idi−1, h(d||rel||hi), sign
k−1

A
(h(idi||d||rel||idi−1||hi))

〉

If Ai = assertion(idi, d, rel, idi−1, hi, k
−1
A) then

cause(Ai) = idi, dataItem(Ai) = d, rel(Ai) = rel,

effect(Ai) = idi−1, hash(Ai) = h(d||rel||hi),

sign(Ai) = sign
k−1

A
(h(idi||d||rel||idi−1||hi)), allData(Ai) = idi||d||rel||idi−1||hi

Turning to assertions, A1 creates an assertion related to the first message of
the process, then, it does not create a relationship. When A1 is received by PS
the hash-value and the signature contained in it are checked, as guardA1 shows.
A2 creates a relationship indicating that data contained in M2 was Acquired
For the purpose contained in M1. Again, when this assertion is received by the
PS, its hash-value and signature are checked according to guardA2. Finally, A3
records a relationship indicating that M3 was sent in acknowledgement to (in Ack
To) M2. Similarly, this assertion is checked according to guardA3. If any of the
guards related to the assertions does not check, it means that the integrity of the
asserted information was compromised. Then, the protocol terminates in a failed
state and the appropriated measures should be carried out. After each guard is
successfully checked, the corresponding assertion is stored in the Provenance
Store.

Securing Provenance-Based Audits 155

3.3 Storage Stage

After a successful execution of the protocol, the assertions are stored in the
Provenance Store; we are then able to check the integrity of its complete con-
tent by checking each of the hash-values and signatures of the assertions. That
guarantees that the assertions were not modified during their exchange or during
their storage. This checking can be used to frequently inspect the integrity of the
stored information and take the necessary measures if a problem is found. This
mechanism also prevents internal attacks, such as attacks from the Provenance
Store administrator that can maliciously modify the stored assertions, as the
assertions’ hash-values were created by the architecture entities.

Another important issue is the maliciously insertion of assertions. This can oc-
cur in three different ways: insert a malicious message in the communication that
creates a malicious assertion, an entity creates a malicious assertion to record it
in the Provenance Store, or a malicious assertion is inserted directly to the Prove-
nance Store. To prevent the first one, we rely on nounce numbers included in the
interchanged messages as part of the TLS protocol [10]. This technique prevents
the insertion of malicious messages, and consequently, the creation of assertions
related to them. To prevent the second one, we assume that all the entities creating
assertions are properly authenticated, so we can trust in the assertions created by
them. In the last one, we assume that the Provenance Store is properly protected
and just entities with the right credentials can record assertions.

So far, we have secured the assertions created by the entities of our architec-
ture. However, as our architecture can contain various entities that interchange
information at different times, new relationships can be created continuously.
For example, suppose that an entity A produced a result r that is later reused
by an entity B. When A produced r, it was not aware that r would be reused
by another entity. Therefore, A did not create any relationship related to that
reusing process. When B reuses r, it creates a relationship indicating the way
in which r is reused by B. If we obtain the complete provenance graph of r, we
will get two relationships: one created by A, indicating how r was produced, and
one by B, indicating how r was reused. During the querying process, both rela-
tionships are linked by the Provenance Store to the item r. However, as such a
link is created at the querying stage, the mechanism explained in Section 3 does
not secure it. For that reason, we create a different mechanism to protect the
integrity of provenance graphs. This mechanism is presented in the next section.

4 Securing the Querying and Analysis Stage

At this point, we can guarantee that the assertions generated by entities and
stored in the Provenance Store have not been maliciously altered during the
recording and storage stages. Then, they can be queried to obtain provenance
graphs containing the provenance of some data. To maintain the integrity of these
provenance graphs during the querying stage, the Provenance Store includes new
cryptographic components in them. To achieve that, we have developed a Secured
Provenance Graph, which defines a data structure that is included in each node

156 R. Aldeco-Pérez and L. Moreau

of a provenance graph and is later used to verify its integrity. By including this
structure, we are protecting the provenance graphs from any malicious alteration
performed by an attacker, including the auditors. In the next section, the Secured
Provenance Graph is presented and explained.

4.1 Secured Provenance Graph

Let us consider a set of node identifiers Id, a set of references to data D, a set of
hash-values H , and a set of relationships’ names R. A Secured Provenance Graph
G = (V, E, Node, Edge) is a directed acyclic graph, where V = Id, E ⊆ Id× Id,
Node : Id → D × H and edges are labelled using the function Edge : E → R.

Let us consider a secured provenance graph G. Each node contains a reference
to a piece of data and a hash-value. Then, given an id ∈ V , we obtain its
corresponding data by the accessor dataG(id) and its corresponding hash-value
by the accessor hashG(id). We also obtain the list of ancestors’ identifiers by
the accessor ancestorG(id), which is lexicographically ordered. The hash-value
contained in each node is calculated according to Equation (4).

compHashG(id) = h

⎛
⎝dataG(id)

�
idi∈ancestorG(id)

edge(id, idi) ‖ hashG(idi)

⎞
⎠(4)

Equation (4) creates a hash-value that is used to verify not only the integrity
of the data and the relationships related to id but also the integrity of the past
of such data. This is achieved by including the hash-values of the id’s ancestor,
which creates an unforgeable reference to the id’s past. The complete Provenance
Secured Graph is protected by the signature of the Provenance Store, so it is not
possible for another entity to reproduce or alter it without being noticed. Then,
after the graph is created, we compute the signature S = Signk−1

PS
(G), which is

attached to the corresponding provenance graph.
Figure 3 presents an example of a Secured Provenance Graph, in which nodes

are represented by circles containing references to data di, the directed edges are
labelled with relationships ri and the hash-values associated with each node are
represented as hi. Note that the Provenance Store does not always have access
to the data that is part of a provenance graph, for that reason the nodes contain
references to data. This way, we also avoid any problems related to the privacy
of this information. Here, we assume that the data itself is protected by access
control techniques implemented in the corresponding data repository.

It is important to note that the order of the relationships and the hash-
values in each node is a very important issue. In graphs, the outgoing edges of
a node are not ordered. However, if we want to create and later verify the hash-
values contained in such a node, it is necessary to preserve certain order in the
checking process. For example, the hash-value of node d3, which is presented in
Figure 3, can be created in two different ways. If we take r5 in first place, we
obtain the hash-value h3 = h(d3r5h6r6h7). But, if we take r6 in first place, its
hash-value is h3 = h(d3r6h7r5h6). Both hash-values represent the same node

Securing Provenance-Based Audits 157

Fig. 3. Secured Graph Example

in the provenance graph. Nevertheless, if we do not know the order in which
the hash-value was created, its checking will be incorrect as h(d3r5h6r6h7) is
different from h(d3r6h7r5h6). In our case, the list of ancestors’ identifiers is lex-
icographically ordered according to the relationship’s names. Then, the correct
hash-value is h3 = h(d3r5h6r6h7). Note that a provenance graph can contain
nodes with no relationships. This does not mean that such nodes do not have a
“past”. Instead, however, it means that the provenance graph does not contain
the past of such nodes because it is not relevant for the analysis stage. If for some
reason, a problem is found in these nodes without explicit past, the auditor can
request to the Provenance Store a provenance graph showing its past. Later, this
new provenance graph can be checked.

4.2 Secured Provenance Graph Integrity Checking

After a provenance graph is received by an auditor, its integrity needs to be
checked. In that way, we can detect any malicious alteration made to it by any
attacker or by the auditor. Hence, in this section, we present the algorithm used
to verify the integrity of a Provenance Secured Graph.

In order to check the integrity of a Secured Provenance Graph, the procedure
integrityCheck is introduced in Algorithm 1. Initially, the signature associ-
ated with such a graph is verified using the public key of the Provenance Store,
kPS . This signature is used to check that the content of the complete graph was
not altered. If the signature cannot be verified, there is no reason to continue
with the rest of the process, then the algorithm returns 0.

If the signature checks, then the algorithm verifies the hash-value of each node
in the graph. This is achieved by visiting each graph’s node to create a new hash-
value by calling the compHashG function, which is presented in Equation (4).

158 R. Aldeco-Pérez and L. Moreau

Algorithm 1. Secured Provenance Graph Integrity Checking
1: procedure integrityCheck(G :Secured Provenance Graph, kPS : publicKey)
2: id : node identifier ∈ V
3: if ExtkPS (Sign

k−1
PS

(G)) �= h(G) then

4: return 0 � signature does not check
5: end if
6: for all id ∈ G do
7: if hashG(id) �= (compHashG(id)) then
8: return -1 � integrity is compromised in id
9: end if

10: end for
11: return 1 � Success
12: end procedure

This new hash-value depends on the ancestors’ hash, which in turn depends on
the hash-values of its ancestors. Later, the new hash-value is compared against
the hash-value contained in the node. If they are not the same, the integrity of
this node has been compromised, and the algorithm returns -1. If after visiting all
the nodes no problem is found, the nodes’ integrity is intact, and the algorithm
returns 1.

If the integrity of any of the provenance graph nodes has been compromised,
it will be indicated which one was altered using the corresponding id. Then, the
auditor can access the information related to such id stored in the Provenance
Store to check if it was altered since the recording stage. If none of them were
altered, then an audit process is allowed to begin. In this way, we can guarantee
that the results derived from the analysis of a secured provenance graph are
based on information that has not been maliciously altered.

In our scheme deletion of provenance information is not allowed as, to be
able to perform a successful audit, we need all the assertions that our model
records. Moreover, if one or more assertions are deleted, the presented algorithm
finds an integrity problem, as the hash-values will not check, and not a problem
of deletion of assertions. To avoid that, provenance repositories should imple-
ment appropriate access control techniques. In certain scenarios, deletion is used
to enforce privacy of the information avoiding the identification of a specific
individual through personal data. To support that, instead of deletion we use
anonymisation. This is a technique that uses references to data in provenance
information instead of real data [13]. These references, which are references to
data stored in a database, are solved by accessing such a database. In that way,
we only have access to the anonymised data if we have the right permissions and
credentials.

5 Securing Provenance Based-Audits

In this section, we explain how we check the model of the Provenance-based
Auditing Architecture presented in Section 3.1. The architecture model consist

Securing Provenance-Based Audits 159

of three sequence diagrams (Data Request, Task Request and Query Request,
which represents the processes presented in Section 4), which need to be verified
separately. For space restrictions, we only present the verification of the integrity
property in the Data Request sequence diagram presented in Section 3.

To verify that the integrity property is held by the data exchanged in our
sequence diagram, we use UMLsec to create attacks against the modelled pro-
tocol using an adversary model. The adversary model we use here represents a
network attacker that can eavesdrop, modify or insert messages on the commu-
nication channel with malicious intentions, and shows that these attacks fail.
This adversary model relies on an extended Dolev-Yao adversary model [14], in
which an adversary can read messages sent over the communication channel to
include them in its knowledge set to later use them to derive new knowledge. If
the adversary breaks the integrity of the sent messages, then it can modify the
messages without being detected.

The adversary object contains three types of predefined values: secret,
initial knowledge and guard. The values associated with secret describe
the types of data that should be protected from the attacker, in this case they
should hold the integrity property to ensure the integrity of the data. The val-
ues associated with initial knowledge denote the information known by the
attacker beforehand, whereas, guardn represents the operations to be performed
by the receiver of message n before such a message is received.

Returning to the diagram presented in Section 3, the items purpose, data and
OK are part of the secret type indicating that they need to be protected during
the execution of the process. The initial knowledge set contains the public keys
of the actors in the diagram (kDC and kDS).

In the Data Request sequence diagram, we model the messages exchanged
between entities and the assertions recorded by them in the Provenance Store.
The integrity of the messages is verified by using a digital signatures scheme
(hash) whereas the integrity of assertions is checked by using the included hash-
value and its corresponding checking, which is represented by the guards in the
diagram.

To verify that the integrity property is maintained during the execution of
the protocol modelled in the Data Request sequence diagram, we use the model
checker Viki [15]. Viki is a software that receives as input a UML sequence
diagram and its adversary model to return the possible attacks that can be
performed by the given attacker in the modelled protocol. Viki obtains the secu-
rity requirements from the UMLsec elements and the predefined values used in
sequence diagrams [15]. Then, these requirements are formalised in First-Order
Logic and analysed with automatic theorem provers (e-SETHEO [16] and SPASS
[17]) to find a flaw. If a flaw is found, a Prolog engine can be used to generate
the attack trace of such flaw and solve it. Each modelled sequence diagram and
its corresponding adversary model are executed at the same time to verify if the
defined security properties are held during the whole execution [18]. As in this
context, an attack means that a property is not held [18], we define an integrity
attack as follows.

160 R. Aldeco-Pérez and L. Moreau

Definition 1 (Successful Integrity Attack). A sequence of protocol transi-
tions that lead to a piece of data to be modified without being noticed.

Then, the integrity property that Viki checks is the following.

Lemma 1 (Integrity Property). For the Data Request protocol, no successful
integrity attack is possible.

The verification of this lemma relies on the collision resistant nature of the used
cryptographic hash function guaranteeing that an adversary cannot alter the
integrity of a piece of data (messages or assertions) without having a visible
effect in the output. Neither an adversary can insert an entirely new piece of
data without being detected. Then, under the assumption that we use a collision
resistant hash function, we can guarantee the integrity property in the modelled
protocol. After performing the verification using Viki, the outcome is that the
modelled protocol holds the Integrity Property. Therefore, we can guarantee that
the assertions generated by this protocol hold the Integrity Property and can be
used for creating query results.

For each protocol of the Provenance Based-Auditing Architecture four lemmas
have been derived, which cover the confidentiality, integrity, non-repudiation
and authentication properties. Considering that we model three protocols in our
architecture, then we derived a total of 12 lemmas. Due to the lack of space,
these lemmas are not shown. However, we present the following theorem, which
covers the complete architecture.

Theorem 1 (Secure Provenance Based-Auditing Architecture). A Pro-
venance Based-Auditing Architecture is secure if for the protocols Data Request,
Task Request and Query Request, the Integrity, Confidentiality, Non-Repudiation
and Authentication properties are held.

The verification of this theorem relies on the proofs of each of the property
lemmas derived from each of the protocols of the architecture. If each of the
properties is held by all of the protocols in our architecture, then the theorem
holds.

Since Theorem 1 holds for our architecture, we can conclude that the archi-
tecture is secure and, therefore, the audits performed on it are secure too. Then,
the results derived from these secure audits are based on correct information.
This theorem was verified by using Viki, which concluded that the modelled
architecture is secure.

6 Related Work

Recently, researchers have realised that provenance should be preserved in its
original form while is created, transported, recorded and queried. This way,
we are able to trust in all result derived from its analysis. For that reason,
some researchers [19,20,21,22,23,24] have focused on presenting and solving the
problem of securing provenance information.

Securing Provenance-Based Audits 161

Tan et al. [19] expose and discuss the problem of security provenance in a SOA-
based Provenance System. Here, to ensure accountability, liability and integrity
of assertions, they make use of digital signatures providing non-repudiati- on and
ensuring that assertions are not changed intentionally or accidentally. Contrary
to our work, they discuss basic security issues within provenance system and
mention some solutions but they do not explain how these solutions can be
implemented in practice. Moreover, this work mostly relies on access control
techniques implemented in the provenance repository.

Hasan et al. [20] present the problem of securing provenance as an issue that
had not been explored but is essential when provenance is used in law, digital
forensic, regulatory compliance and authorships context. They identify integrity,
availability and confidentiality as the main properties that a provenance-aware
system should handle to provide trustworthy provenance. They also base their
analysis in a different provenance model in which provenance is represented by
linear chains. Even the secure provenance problem is introduced and discussed,
a practical approach to implement it is not presented. In another work by Hasan
et al., they present a secure provenance scheme for linear chain provenance rep-
resentation [24]. Such model support confidentiality and integrity of provenance
information. Their scheme is similar to our approach in the sense that they also
include extra cryptographic information to the provenance information to ensure
the mentioned properties. The main difference between their work and ours is
that we protect the complete information flow of a provenance-aware system. We
also are able to protect a non-linear provenance representation (i.e. provenance
graphs as in OPM).

Braun et al. also discuss the securing provenance problem [21]. In this case,
they use a similar provenance model to the one we use, in which provenance
is represented as a causality graph. For that reason, provenance information
differs from traditional data and, therefore, the existing security models used to
protect “traditional information” do not apply to graphs and are not easy to
extend. Thus, new solutions should be developed and specially designed. Their
work focuses on access control and how each of the elements of a causality graph
needs different levels of access control. In this paper, we have developed a new
technique specially designed to protect the integrity of a provenance graph but
focusing on the integrity property and not on access control. However, our work
is compatible with access control techniques.

Chong et al. discuss the problem of confidentiality and privacy of provenance
information from a semantic point of view in a “provenance traces” approach
[23]. They develop semantic definitions and mechanism to enforce these security
properties. They also mention that data and provenance have different security
requirements and, therefore, special mechanism to protect provenance informa-
tion should be designed. Although, in this paper we focus on the integrity of
provenance information, we have also modelled and verified confidentiality and
privacy of provenance information by using cryptographic and anonymisation
techniques, respectively. This work is not presented due to space restrictions but
we expect to publish it later.

162 R. Aldeco-Pérez and L. Moreau

Xu et al. present the secure provenance problem from the management point of
view. Here, they present some desirable requirements for secure provenance man-
agement systems and propose a framework that satisfies these requirements [22].
Integrity is among those requirements for which they adopt a similar approach
to ours: integrity of both data and provenance information is important. To en-
sure that, they propose the creation of a layer in their framework that maintains
the integrity of data and provenance information during storage, transferring
and processing. However, unlike us, they do not present any practical solution
to support that property.

Finally, a set of approaches [25,26,27,28] used by the database community
to support similar security properties as the ones presented in this paper can
complement our work. Even these approaches were not created to specifically
protect provenance information, the solutions presented to solve security issues
(such as privacy) can be adapted to be implemented in the presented provenance
model.

7 Conclusions

Securing provenance is critical for making systems accountable on the Open
Provenance Vision, as described by Moreau [29]. This paper presents a solution
for this. Initially, we have presented a framework that guarantees a set of se-
curity properties in a Provenance-based Auditing Architecture to increase the
level of trust in provenance-based audit results. Due to space restrictions, we
focus on the integrity property and only on one protocol of the architecture,
Data Request. In this protocol, we can guarantee the integrity of the assertions
created by the participant entities as well as the integrity of provenance query
results. We secure them by including cryptographic elements to both that can
later be verified. First, we define a secure communication protocol that ensures
the integrity of the information exchanged between entities and of the assertions
sent to the Provenance Store. This way, we secure the creation and storage of
assertions. Second, to ensure that provenance query results have not been ma-
liciously altered, we design the Secured Provenance Graph, which contains a
specially designed hash-value in its nodes along with the Provenance Store sig-
nature. Later, with the Integrity Checking Algorithm, we can verify the integrity
of this graph.

Finally, we present an automatic verification of the integrity property in the
communication protocol presented in Section 3. This verification allows us to
guarantee the integrity of the information exchanged and the created asser-
tions. Although, just one property and one protocol have been presented, the
complete architecture and more security characteristics have been verified. Our
future work is focused on extending our Secured Provenance Graph to the Open
Provenance Model [8]. We are also working on measuring the overhead generated
by hash-values during the recording of process documentation and the querying
process.

Securing Provenance-Based Audits 163

Acknowledgements. This research was partially supported by the Programme
Alβan, the European Union Programme of High Level Scholarships for Latin
America, (scholarship number E06D103956MX) and by the Mexican Council
CONACyT (scholarship number 182546). Thanks to the anonymous reviewers
for their useful comments.

References

1. Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J., Sussman,
G.J.: Information accountability. Communications of the ACM 51(6), 82–87 (2008)

2. Groth, P., Moreau, L.: Recording process documentation for provenance. IEEE
Transactions on Parallel and Distributed Systems (September 2009)

3. Miles, S., Groth, P., Munroe, S., Moreau, L.: PrIMe: A Methodology for Developing
Provenance-Aware Applications. ACM Transactions on Software Engineering and
Methodology (June 2009)

4. Groth, P., Miles, S., Moreau, L.: A Model of Process Documentation to Determine
Provenance in Mash-ups. Transactions on Internet Technology (TOIT) 9, 1–31
(2009)

5. Miles, S.: Electronically querying for the provenance of entities. In: Moreau, L.,
Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 184–192. Springer, Heidelberg
(2006)

6. Aldeco-Pérez, R., Moreau, L.: Provenance-based Auditing of Private Data Use.
In: International Academic Research Conference, Visions of Computer Science
(BSC 2008), London, UK, BCS, pp. 141–152 (2008)

7. Moreau, L., Groth, P., Miles, S., Vázquez, J., Ibbotson, J., Jiang, S., Munroe, S.,
Rana, O., Schreiber, A., Tan, V., Varga, L.: The provenance of electronic data.
Communications of the ACM 51(4), 52–58 (2008)

8. Moreau, L., Clifford, B., Freire, J., Gil, Y., Futrelle, J., Kwasnikowska, N., Miles,
S., Missier, P., Myers, J., Simmhan, Y., Stephan, E., Van Den Bussche, J., Pale,
B.: The Open Provenance Model Core Specification (v1.1). Future Generation
Computer Systems, 1–30 (2010)

9. Jürjens, J.: Secure Systems Development with UML. Springer, Heidelberg (2005)
10. Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J., Wright, T.: Transport

Layer Security (TLS) Extensions. RFC 3546 (June 2003)
11. Institute, N.S.: Trusted computer system evaluation criteria (5200.28-std). Tech-

nical report, Department of Defence Standard (1985)
12. HomeOffice: Data Protection Act (1998)
13. Kifor, T., Varga, L., Vazquez-Salceda, J., Alvarez, S., Willmott, S., Miles, S.,

Moreau, L.: Provenance in Agent-Mediated Healthcare Systems. IEEE Intelligent
Systems 21(6), 38–46 (2006)

14. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on
Information Theory 29(2), 198–208 (1983)

15. Jürjens, J.: Using interface specifications for verifying crypto-protocol implemen-
tations. In: Foundations of Interface Technologies, FIT2008 @ ETAPS (2008)

16. Stenz, G., Wolf, A.: e-SETHEO: An Automated Theorem Prover. In: Dyckhoff,
R. (ed.) TABLEAUX 2000. LNCS, vol. 1847, pp. 436–440. Springer, Heidelberg
(2000)

17. Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C., Topic, D.: S
PASS Version 2.0. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392,
pp. 275–279. Springer, Heidelberg (2002)

164 R. Aldeco-Pérez and L. Moreau

18. Shabalin, P.: Model Checking UMLsec Models. Master’s thesis, Department of
Informatics, TU München, Germany (2004)

19. Tan, V., Groth, P., Miles, S., Jiang, S., Munroe, S., Tsasakou, S., Moreau, L.:
Security Issues in a SOA-based Provenance System. In: Moreau, L., Foster, I.
(eds.) IPAW 2006. LNCS, vol. 4145, pp. 203–211. Springer, Heidelberg (2006)

20. Hasan, R., Sion, R., Winslett, M.: Introducing Secure Provenance: Problems and
Challenges. In: Proceedings of the ACM Workshop on Storage Security and Sur-
vivability (StorageSS), pp. 13–18. ACM Press, New York (2007)

21. Braun, U., Shinnar, A., Seltzer, M.: Securing Provenance. In: Proceedings of the 3rd
USENIX Workshop on Hot Topics in Security (HotSec 2008). USENIX Association
(2008)

22. Xu, S., Ni, Q., Bertino, E., Sandhu, R.: A Characterization of the problem of secure
provenance management. In: International Conference on Intelligence and Security
Informatics, pp. 310–314. IEEE, Texas (2009)

23. Chong, S.: Towards semantics for provenance security. In: First workshop on The-
ory and practice of provenance (2009)

24. Hasan, R., Sion, R., Winslett, M.: The Case of the Fake Picasso: Preventing History
Forgery with Secure Provenance. In: FAST 2009 7th conference on File and storage
technologies, pp. 1–14. USENIX Association, Berkeley (2009)

25. Miklau, G., Levine, B.N., Stahlberg, P.: Securing history: Privacy and account-
ability in database systems. In: Conference on Innovative Data Systems Research
(CIDR 2007), Asilomar, CA, USA, pp. 387–396 (2007)

26. Stahlberg, P., Miklau, G., Levine, B.N.: Threats to privacy in the forensic anal-
ysis of database systems. In: International Conference on Management of Data
(SIGMOD 2007), pp. 91–102. ACM, New York (2007)

27. Vaughan, J.A., Jia, L., Mazurak, K., Zdancewic, S.: Evidence-based audit. In: 21st
IEEE Computer Security Foundations Symposium (CSF 2008), pp. 177–191. IEEE
Computer Society, Washington (2008)

28. Lu, W., Miklau, G.: Auditing a Database under Retention Restrictions. In: IEEE
International Conference on Data Engineering (ICDE 2009), Washington, USA,
pp. 42–53. IEEE Computer Society, Los Alamitos (2009)

29. Moreau, L.: The foundations for provenance on the web. Foundations and Trends
in Web Science (in Press 2010)

System Transparency, or How I Learned to
Worry about Meaning and Love Provenance!

Stephan Zednik, Peter Fox, and Deborah L. McGuinness

Rensselaer Polytechnic Institute, Troy NY 12180, USA

Abstract. Web-based science analysis and processing tools allow users
to access, analyze, and generate visualizations of data without requiring
the user be an expert in data processing. These tools simplify science
analysis for all science users by reducing the data processing overhead for
the user. The benefits of these tools come with a cost, the increased need
for transparency in data processing. By providing a clear explanation of
the science concepts and processing performed by the science analysis
tool we can increase user trust, understanding, and accountability and
reduce misinterpretation or generation of inconsistent results.

We will demonstrate knowledge provenance (processing lineage and
related domain information) presentation capabilities applied to an ex-
isting web-based Earth science data analysis tool (e.g. Giovanni from
NASA/GSFC). Our conclusion is that user accessible visual presenta-
tions of knowledge provenance are key to building meaningful user un-
derstanding of analysis and processing decisions and should be a key
component of data analysis tools.

1 Introduction

Science communities are putting increasing emphasis toward sharing data and
developing publicly accessible tools to support streamlined analysis and visual-
ization of this data. These tools are of great benefit to the community, as the
burden of dealing with downloading data, accessing specialized data formats,
running analysis processes, and complicated plotting tools is lifted from the
user, allowing them to get directly to the core of their research. These powerful
user tools come with a hidden cost; while the barrier to entry is lowered since the
user does not have to manually address system-specific behaviors of the analysis
operations1, the user may also be unaware of a multitude of system, science,
and data lineage details that can negatively impact the scientific or statistical
applicability of the results.

We aim to develop a multi-function provenance system geared toward enhanc-
ing user understanding of data products and information derived from science
analysis tools. User-oriented visual presentations of science knowledge and pro-
cessing provenance represent the key functional requirement to achieving our
goal. To achieve a reasonable level of understanding regarding the fitness for pur-
pose of science data, a user should be aware not just of what processes were run
1 Data access, format translations, data calibrations and screenings, etc.

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 165–173, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

166 S. Zednik, P. Fox, and D.L. McGuinness

to produce the data product, but the science intent of the processing and science
concepts associated with processing and data throughout the processing trace.
We call this integration of processing history and science concepts, knowledge
provenance, and we believe it is integral in developing transparent, open science
applications. Beyond just attempting to capture this knowledge provenance, we
must present it to the user in a manner designed for human consumption, yet
thorough - with hooks that allow the user to dig into the web of knowledge and
follow concepts to their definition and, ideally, provide understanding. It is our
assertion that exposing rich knowledge provenance to the science tool user in a
manner that is cognitively pleasing to use, easy to navigate and informative of
meaning, will significantly enhance user understanding of science data and the
processes used to develop it.

We illustrate our work toward knowledge provenance representation and pre-
sentation for operation of a test environment of the NASA Giovanni [1,2] inter-
active online Earth science data visualization and analysis tool. Giovanni allows
Earth scientists, interdisciplinary and other applications researchers to perform
multi-sensor and model data analysis online, e.g., explore connections between
atmospheric processes and sea or land surface properties. Giovanni is a pub-
licly available production tool that is actively used by modelers, researchers,
application users, policy makers, teachers, and students.

2 Use Cases

Our initial use case revolves around capturing and presenting Giovanni pro-
cessing provenance with the specific goal of exposing this provenance for the
user’s visual consumption. Further use cases expand upon our presentation of
the knowledge provenance to include highlighting potential differences in the
knowledge provenance lineage of two compared products and advising the user
on potential negative applicability factors in a data comparison by analyzing the
knowledge provenance of the compared artifacts.

Provenance Visual Lineage/Proof Use Case: Provide a visual representation of pro-

cessing and knowledge provenance for a time-averaged latlon map comparison of Aerosol

Optical Depth from MODIS Terra and Aerosol Optical Depth from MODIS Aqua over

the calendar period of 2008-01-01 to 2008-01-31.

Our basic provenance use case; capture and visually present the provenance
to the end user. This scenario does not perform analysis of the provenance -
just capture and presentation. Knowledge provenance is presented as a causality
graph based on the provenance data lineage integrated with domain metadata.

Provenance-aware Advisor Use Case: Use Giovanni to compute a difference
map of MODIS Daily Aerosols from Aqua and Terra Platforms, using knowledge
provenance to

1. understand the differences between the compared products

2. explain anomalies that may be present in the generated difference map.

System Transparency, or How I Learned to Worry about Meaning 167

A more complex provenance use case; our system now provides applicability
information, based on an analysis of the knowledge provenance, that a non-
expert user would not necessarily glean from a raw visual presentation of the
knowledge provenance. The basic flow for this use case scenario is:

System uses descriptive logic to determine when target domain concepts in the knowl-

edge provenance are different in a manner that may affect a comparison

1. System determines that the two datasets correspond to two different MODIS2 sen-
sors on two different satellites (Aqua (EOS PM-1) and Terra (EOS AM-1)).

2. System determines that the two satellites have different Nominal Equatorial Cross-
ing Times (NEQCT) (13:30 for Aqua and 10:30 for Terra)

3. System determines that the two satellites have different daytime nodes3 (Ascending
vs Descending)

4. System uses these differences, together with the dataset DataDay definition4 to infer

that there is a difference in the local observation times included in grid cells in each

product, with differences being greatest over the Central Pacific (see Figure 1.)

Fig. 1. Map of the time difference discrepancy between MODIS Aqua and MODIS
Terra spatial coverage over the Pacific Ocean

We believe this is a critical provenance use case because it highlights how inte-
grated provenance and domain information can be used by an intelligent system
to discover highly-relevant information that would not be easily determinable if
provenance and science domain metadata is disjoint.

3 System Requirements

The present production Giovanni service does not capture and retain provenance
information, therefore, we developed a testbed Giovanni service based on the
following architecture requirements

2 Moderate-Resolution Imaging Spectroradiometer.
3 Segment of the orbit transiting the Earth in daytime.
4 A specification of how data are aggregated into daily data products, i.e., which pixels

or scenes are included in a given day.

168 S. Zednik, P. Fox, and D.L. McGuinness

– develop test Giovanni environment to capture processing lineage
– encode processing lineage in a provenance interlingua
– encode domain metadata related to artifacts and processes referenced in the pro-

cessing lineage in one or more domain interlinguas
– domain and provenance interlinguas must be integrable, that is to say the domain

and provenance metadata should not be disjoint
– integrated knowledge base should be supported by standard query and rule systems
– visualization service should generate a user-orientated presentation of the knowl-

edge provenance from the integrated metadata

To satisfy the provenance capture requirement our testbed Giovanni service pro-
duces a log of processes and inputs/outputs from processing. This log is trans-
lated to conform to an OWL5 data lineage model. The artifact and processes
identifiers in the log allow us to link the data lineage RDF graph with externally
defined domain metadata encoded in OWL. By integrating the data lineage with
the externally defined domain metadata we construct a knowledge base that sup-
ports mixed provenance / domain queries and reasoning (which can be used to
infer domain or provenance information about entities in the knowledge prove-
nance). Domain specific conditions related to provenance, such as highlighted
in the provenance-aware advisor use case, can be checked by query or ruleset -
with advisory or warning entities being declared in the knowledge provenance
when the specific conditions are found. These rules and queries are engineered
by domain experts but the advisories/warnings issued in the knowledge prove-
nance contain descriptive metadata and become a part of the total knowledge
provenance. Tools that support just the standard provenance OWL vocabulary
can be used to generate a visualization of the data lineage; and tools that ad-
ditionally support the integrated domain metadata can generate a visualization
of the entire knowledge provenance.

4 Knowledge Provenance

We use the Proof Markup Language [3, 4] (PML) OWL ontology as a general-
purpose provenance interlingua to encode a justification for the generation of
Giovanni data visualizations. PML was chosen because it is a published prove-
nance interlingua designed to encode justification metadata about general infor-
mation or objects produced by an agent or decision mechanism. This generally
scoped information-centric view of provenance lends itself well to our definition
of knowledge provenance and we can make use of already-existing PML sup-
ported tools. Leveraging an OWL ontology as our provenance interlingua was
also a supporting factor because OWL supports our requirement of using an
interlingua system that supports the integration of multiple domain interlinguas
and for which established query6 and reasoning7 mechanisms already exist.
5 Web Ontology Language.
6 SPARQL.
7 SWRL, Jena Rules.

System Transparency, or How I Learned to Worry about Meaning 169

This mix of processing and science information in the provenance, which we
call knowledge provenance, results in a very versatile knowledge base that sup-
ports a wide range of science-focused provenance reasoning. For example, in our
provenance-aware use case, the applicability of a processing algorithm can be
checked against the spatial and temporal resolutions of the service input dataset.
Comparison integrity between two parameters or datasets can be checked based
on a large number of factors, most encoded in the science metadata but reached
by traversing the provenance lineage of the compared data products and their
sources. These reasoning checks and queries would not be easy or straightfor-
ward if the science metadata and data lineage / processing provenance existed
in disjoint knowledge bases.

5 Provenance Visualization

Probe-It! [5] is a provenance browser suited to graphically render provenance
information encoded in PML. Probe-It! does not generate content, but renders
an interactive visual representation of a provenance causality graph.

In Probe-It!, users can select nodes within the provenance trace to see a de-
tailed view of the justification for the process/decision at that point. As of the
time of this writing, Probe-It! only supports the presentation of information en-
coded in PML properties, so statements in the non-PML vocabulary are not
visible to the user. Much of the science information in our knowledge prove-
nance is not encoded in the PML interlingua, rather this information is stated
in domain interlingua and related to the data lineage through entities common
to both the PML graph and the domain graph. For the moment we are encod-
ing the values of non-PML properties that capture important aspects of images,
datasets, satellites, and processes into string description properties from the
PML vocabulary. This gives us a basic mechanism to represent domain specific
information (such as temporal and spatial resolutions of a dataset, or the orbital
characteristics of the satellite an instrument operates on) from PML tools that
do not support our domain interlinguas.

An early Probe-It! visualization of the provenance generated by our prove-
nance visual lineage use case scenario is shown in Figure 2. The highlighted
center node represents the process that extracts the requested data from the
data source based on user selections of dataset, parameter, and spatial and tem-
poral constraints. The output, or conclusion, of this process is a set of temporary
data files listed in an XML fragment. This XML fragment can be viewed by the
user using Probe-It! detail view of the node, or a human-friendly summary of
the results of the process may also be shown. In this early representation of the
knowledge provenance a fragment of the testbed Giovanni processing log detail-
ing the output of the selected process are encoded in a PML string property
as a representation for the conclusion of the process. This interface highlights
the need for support of domain vocabularies in the visualization tools; both to
support better domain presentation as well as to retain semantics of the domain
interlingua and entities.

170 S. Zednik, P. Fox, and D.L. McGuinness

Fig. 2. Probe-It! visualizing the provenance of a data extraction process during a Gio-
vanni data analysis comparison

We have been working with the Probe-It! team at UTEP8 to determine the
best way to present information from non-PML vocabularies (our domain in-
terlinguas). Changes made to Probe-It! that support presentation of general
vocabularies are folded back into the core Probe-It! browser.

The Probe-It! visualization is made accessible to the Giovanni user by way of
a link that is available on the Giovanni results page. When the user clicks this
link the Giovanni service invokes the Probe-It! web applet, passing to Probe-It!
the entity URI of the final conclusion from the provenance trace, and Probe-It!
automatically loads the provenance trace for the passed in information.

Internal use and informal evaluation of Probe-It! found that while processing
provenance structure is clear and easy to follow, science information encoded
as non-semantic text in the PML description properties can be hard to under-
stand and difficult for users to act upon. User analysis of the provenance trace to

8 University of Texas at El Paso.

System Transparency, or How I Learned to Worry about Meaning 171

determine the similarity of compared products or to discover potential applica-
bility issues with processing actions was found to be especially difficult.

Subsequently, a visualization was defined by domain experts from the Gio-
vanni team, whereby selected science information in the knowledge provenance
is highlighted for the user in a concise table, geared towards the comparison and
analysis scenarios for which a generic lineage presentation was found difficult
to use. The table has a column for each data selection in a comparison analy-
sis, to support a clear and simple presentation of differences in the knowledge
provenance within the data selections. A set of simple semantic (Jena) rules
was developed to search for semantically important differences in the knowledge
provenance and if found, an advisory is generated in the model data displayed
within the table with links to descriptive information regarding the posted ad-
visory. These rules have been extended beyond simple semantic differences to
include complex scenarios where multiple science aspects of the artifacts, along
with certain processing actions, lead to anomalous results in the data visualiza-
tions. An example presentation of the domain differences found and advisory
issued based on our provenance-aware advisor use case is shown in Figure 3.

The table representation of knowledge provenance has tested very well with
our internal science group. Its ability to show, side-by-side, discrepancies between
knowledge provenance of compared artifacts along with advisories and warnings
about the comparison has proved to be an improved way to relate actionable
information to the end user.

We plan to continue work on both (browse and table) visualizations of prove-
nance. Both presentations have significant strengths, and both have areas where
clarity or detail could be improved. At present, we do not know if these pre-
sentation scenarios will converge, but co-development should bring significant
improvements to both.

6 Demonstration

We plan to demonstrate at IPAW 20109 execution of our provenance-capturing
testbed Giovanni service and both visual presentations of the resulting prove-
nance. We will show how Probe-It! is used to present a provenance trace of the
Giovanni service execution and how Probe-it!’s local view can be used to ac-
cess both processing and domain metadata about nodes within the provenance
trace. We will also show how the Giovanni table view of knowledge provenance
is used by domain experts to highlight differences in selected factors related to
the provenance of compared data products and how the table view is used to
inform users of comparison advisories and warnings in their data selection.

7 Discussion and Conclusions

To date, we have developed the ability to generate processing and science
knowledge provenance for execution of a test environment of the NASA
9 The Third International Provenance and Annotation Workshop,
http://tw.rpi.edu/portal/IPAW2010

http://tw.rpi.edu/portal/IPAW2010

172 S. Zednik, P. Fox, and D.L. McGuinness

Fig. 3. Knowledge provenance table, and advisories, for the visualization comparison
from the use case scenario

Giovanni interactive online Earth science data visualization and analysis tool.
This knowledge provenance captures both processing and science concepts in-
volved in artifacts/information and processing within the system. Two user fo-
cused presentations of this provenance have been utilized.

System Transparency, or How I Learned to Worry about Meaning 173

– Probe-It! is used to browse the causality graph of Giovanni processing and
contains a simple representation of science information for the artifacts and
processes in the provenance trace.

– A Knowledge Provenance Table is used to show properties from the knowl-
edge provenance side-by-side when Giovanni is used to generate an analysis
comparison. This mode has been shown to be useful in showing the end user
if the data selection comparison is potentially invalid.

The next stage of our work will be to increase and refine the expressiveness
of our knowledge provenance, increase support and utility in Probe-It! for pre-
sentation of information from non-PML vocabularies, and further develop the
knowledge provenance table presentation. The results of this work will eventually
be incorporated into the production Giovanni analysis tool.

Acknowledgments

– This work was supported in part by the NASA ESTO AIST-08-071 project ”Multi-
Sensor Data Synergy Advisor” (PI: Gregory Leptoukh, NASA GSFC10)

– The PML group at Inference Web
– The Probe-It group at UTEP/CyberShARE

References

1. Acker, J.G., Leptoukh, G.: Online Analysis Enhances Use of NASA Earth Science
Data, 2007. Eos, Trans. AGU 88, 14–17 (2007)

2. Berrick, S.W., Leptoukh, G., Farley, J., Rui, H.: Giovanni: A Web Service Workflow-
Based Data Visualization and Analysis System. IEEE Trans. Geoscience and Remote
Sensing 46, 2788–2795 (2009)

3. da Silva Pinheiro, P., McGuinness, D., Fikes, R.: A Proof Markup Language for
Semantic Web Services. Information Systems, 31(4-5), June-July 2006, pp 381-395.
Prev. version, KSL Tech. Report KSL-04-01 (June 2006)

4. McGuinness, D., Ding, L., Pinheiro da Silva, P., Chang, C.: PML 2: A Modular
Explanation Interlingua. In: ExaCt pp. 49-55 Also Stanford KSL Tech. Report KSL-
07-07 (2007)

5. Del Rio, N., Pinheiro da Silva, P.: Probe-It! Visualization support for provenance.
In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Paragios, N., Tanveer, S.-M., Ju,
T., Liu, Z., Coquillart, S., Cruz-Neira, C., Müller, T., Malzbender, T. (eds.) ISVC
2007, Part II. LNCS, vol. 4842, pp. 732–741. Springer, Heidelberg (2007)

10 Goddard Space Flight Center.

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 174–181, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Pedigree Management and Assessment Framework
(PMAF)

Kenneth A. McVearry

ATC-NY,
Cornell Business & Technology Park,

33 Thornwood Drive, Suite 500,
Ithaca, NY 14850

kmcvearry@atcorp.com

Abstract. The Pedigree Management and Assessment Framework (PMAF) is a
customizable framework for writing, retrieving and assessing provenance and
other metadata that reflects the quality of an information object (such as a
document), the relationships between information objects and resources (such
as people and organizations), etc. PMAF stores metadata in a volume-efficient
format using RDF (Resource Description Framework), and can write and query
metadata at a fine-grained level. Once metadata has been stored in PMAF, the
user can run a variety of assessments (predefined queries) to reveal particular
aspects of the metadata graph. We will demonstrate the PMAF browser inter-
face, which can be used to view the existing metadata graph for an information
object; the PMAF assessment interface, which allows the user to select and run
predefined queries on the metadata; and the integration of PMAF with a stan-
dard document editor and content management system.

Keywords: information pedigree, provenance, RDF, metadata graph, assessment.

1 Introduction to PMAF

Modern information management systems are increasingly net-centric, making more
information available more quickly. In this environment, the information consumer
must distinguish decision-quality information from potentially inaccurate, or even
conflicting, pieces of information from multiple sources. With knowledge of the
information’s pedigree, or provenance, the user can establish trust in information,
ensure accountability, discover sources of errors, and correct propagated errors.

The Pedigree Management and Assessment Framework (PMAF) enables the pub-
lisher of information to record standard provenance metadata about the source, man-
ner of collection, and the chain of modification of information as it passes through
processing and/or assessment. In addition, the information publisher can define and
include other metadata relevant to quality assessment, such as domain-specific meta-
data about sensor accuracy or the organizational structure of agencies. PMAF stores
this potentially enormous amount of metadata compactly and presents it to the user in
an intuitive graphical format, along with PMAF-generated assessments that enable the
user to quickly estimate information quality.

 Pedigree Management and Assessment Framework (PMAF) 175

2 PMAF Background

PMAF was initially developed through SBIR (Small Business Innovation Research)
funding provided by the Air Force Research Laboratory (AFRL) in Rome, NY. The
Phase I SBIR was awarded in 2005, and the Phase II was awarded in 2006 and com-
pleted in 2008. PMAF was originally created for the Joint Battlespace Infosphere
(JBI) program at AFRL, which implemented an information management environ-
ment. The original scenario for application of PMAF was the creation of Air Tasking
Orders including the fusion of sensor data.

Follow-on work includes the Metadata Security Assertion Framework and Evalua-
tion (MetaSAFE) system, which was a Phase II SBIR awarded in 2008 and completed
in 2010. MetaSAFE securely manages and provides access to metadata used to vali-
date security decisions, such as whether to release a document across a security
domain. MetaSAFE added pedigree assurance features to PMAF including digital
signatures and hashing; hashing provides strong binding of metadata to information
objects, and digital signatures provide strong attribution of metadata to the people
and/or processes that generate it.

3 Provenance Model

The PMAF model of pedigrees includes the following concepts.

3.1 Resource

A resource is any nameable object that can have an associated pedigree, or can be
referred to in a pedigree. People, web sites, documents, programs, etc. are all consid-
ered resources.

3.2 Provenance Metadata

Provenance metadata is information about how a resource was created, transformed,
or used.

3.3 Pedigree Fragment

Provenance metadata is stored in one or more provenance repositories in the form of
pedigree fragments. Each pedigree fragment contains information about a resource.
A pedigree fragment consists of one or more “local” claims about the provenance of a
resource. A local claim is one that involves only a single step of the creation, trans-
formation, or use of a resource. For example, the facts that a document was created
(1) by a particular person, (2) at a particular time and place, (3) by running a particu-
lar program, and (4) using particular source documents are all local facts about that
document. In contrast, if document A was created using document B as a source, then
the sources of document B will be considered non-local facts about A.

The complete pedigree of a document is assembled from local statements about
that document, its sources, the sources of those sources, etc. Typically, the pedigree
fragments for a resource will be published by the same client application that created

176 K.A. McVearry

or modified the resource. However, “third party” contributions to a pedigree are also
possible, i.e. created by an application that is neither the writer nor the reader of the
associated resource document. Allowing such third-party contributions supports the
handling of objects whose sources are unknown or partially known, such as web
pages. Whether the pedigree fragments are published by the creating application, or
by a third-party application, provenance metadata will typically be published through
the PMAF publish API.

3.4 Root Pedigree

A provenance repository can be queried to obtain pedigree fragments associated with
a given resource. These pedigree fragments are assembled into a root pedigree for a
resource. A root pedigree is a complete (relative to the information available) collec-
tion of local information associated with a resource (where local is as defined above –
within a single step – rather than non-remote). The complete root pedigree for a re-
source can be divided into two parts: source record and usage record. The source
record for a resource is the local history of a creation or transformation step resulting
in the current state of the resource. The usage record for a resource describes how
that resource is used in the source pedigrees of other resources.

For example, if document A is produced using document B as a source, then this
fact will be in the source record of A, but will be in the usage record of B. Typically,
the usage records can be more difficult to assemble than the source records, because
the source record only needs to be created once (when the resource is created), while
the usage record can involve many different individual creation or transformation
steps performed by different users at different locations and times.

3.5 Provenance Subgraph

A provenance subgraph is a collection of related provenance statements assembled for
use by some assessment procedure. Like a root pedigree, a provenance subgraph is
associated with a particular resource, but it may include information from several
connected root pedigrees. For instance, a source pedigree subgraph for a resource A
may include statements of the form “A has source B” as well as “B has source C”. A
provenance subgraph thus allows one to draw nonlocal conclusions about a resource,
such as “foreign news reports contributed to this document.”

There are two pure approaches to creating such provenance subgraphs: (1) create a
complete pedigree, and then filter to get the desired provenance subgraph; or (2) build
up the desired provenance subgraph by gathering pedigree fragments as needed.
Because complete pedigrees can be huge and can be distributed among many different
repositories, we consider it impractical to ever create a “complete” pedigree, so
PMAF follows the latter approach. We use the word “subgraph” because these ob-
jects can be thought of as subsets of the complete pedigree, which in turn can be
thought of as a potentially huge graph of relationships among resources. In PMAF we
describe these relationships using RDF (discussed below).

PMAF uses a two-stage query system to assemble provenance information for use by
assessments. The first stage involves querying the provenance repositories for pedigree
fragments associated with a given resource; the results of this stage of the query are

 Pedigree Management and Assessment Framework (PMAF) 177

assembled into root pedigrees. The second stage of a query involves assembling appro-
priate root pedigrees together to make a required provenance subgraph.

4 Provenance Represented in RDF

In PMAF, pedigree fragments, root pedigrees and provenance subgraphs are all
represented as graphs, described using the Resource Description Framework (RDF)
specification. RDF supports: a) unique unambiguous identification of the entities
mentioned in pedigree statements, b) exchange of machine-readable information for
automated processing of pedigree, c) unlimited extensibility of terminology used to
represent pedigree, and d) semantic tagging, logical inference and other automated
processing of the pedigree information.

RDF represents information as a collection of statements, called triples. Each tri-
ple has three elements—the subject, predicate and object. Each element in the triple
is specified by either a Universal Resource Identifier (URI) or a literal (a string, num-
ber, etc). A collection of RDF triples can be viewed as a graph, in which the subject
and object are nodes and the predicate is a directed arc that points from the subject to
the object.

URI’s can be used to uniquely identify information that exists on the web, in a file-
system, in a database, etc.; as well as concepts, persons, or objects that do not have an
electronic representation. So if related pieces of information are stored in separate
locations on a server or on the web, the relationships among them can be detailed
using RDF, and a URI can be used instead of the full set of information that the URI
refers to.

For example, a sensor may generate thousands of images an hour; the make and
age of the sensor may help an analyst determine the quality or reliability of the images
that were captured, but each image does not need to include a copy of the make/age
metadata of the sensor in its pedigree. Instead, that sensor metadata can be stored in
one unique location and only that location’s URI will be incorporated into the pedi-
gree metadata of each image. In addition, once an image has been transformed or
fused with other information, the resulting image need not include another copy of the
URI referring to that sensor metadata; instead, it will incorporate a URI to the earlier
information’s pedigree metadata, which in turn incorporates the sensor metadata URI.
In this way, the volume of the metadata can be reduced to a linear function of the
number of transformations.

5 PMAF Architecture

PMAF is intended for situations involving the following participants:

• One or more information object repositories. We assume that there is a
unique naming system for objects obtained from each repository.

• One or more repositories of provenance metadata for the information objects.
We do not assume that the provenance metadata is stored in the same reposi-
tory as object information.

178 K.A. McVearry

• A client application that reads and writes information objects and uses
PMAF to read and write the corresponding provenance metadata.

• PMAF, which provides an API for both querying and publishing provenance
metadata.

The design for PMAF and how it interacts with the various participants are shown in
Figure 1.

Fig. 1. PMAF Architecture

5.1 Pedigree Assembler

The pedigree assembler assembles the root pedigrees from pedigree fragments that it
receives from one or more repositories of provenance metadata. It supports extensi-
bility through the use of pluggable modules to handle system-specific operations that
depend on the type of information repositories being used, and to use a standard
framework for encoding provenance information, independent of the type of prove-
nance storage in use.

The pedigree assembler can easily be adapted for different types of provenance
storage, and for different granularities of provenance metadata. Provenance metadata
can be stored in files, in a database, or as separate objects in an information object
repository. Multiple sources of provenance metadata must be merged before full
provenance can be assembled.

5.2 Assessment Query

A client application can invoke assessment queries on an object in its information
repository(s) to help determine the quality and trustworthiness of the information.

5.3 Subgraph Query

Each assessment invokes one or more subgraph queries for the given object. The result
of a subgraph query is a provenance subgraph, which is a data structure describing a
particular aspect of the provenance of the object. Each request for a subgraph includes a
specification for the type of subgraph desired, together with a URI that uniquely names
the subject of the subgraph. The subgraph query component constructs the requested
subgraph using root pedigrees that it receives from the pedigree assembler.

 Pedigree Management and Assessment Framework (PMAF) 179

5.4 Pedigree Publisher

A client application can insert or modify objects in its information repository(s), and
make calls on PMAF to publish corresponding additions to the provenance metadata
in the appropriate pedigree repository.

5.5 Publish API

The mapping between information object names and the corresponding provenance
metadata is a modular component that can be plugged into the PMAF framework to
accommodate new types of information objects. The publish API allows client appli-
cations to publish provenance metadata for new objects without needing to know the
format of the metadata or where it will be stored. It makes use of the modular map-
ping between object names and provenance metadata.

6 PMAF Interfaces

PMAF includes a variety of graphical interfaces; some support pedigree browsing and
drill-down, and others enable users to quickly estimate information quality based on
the assessments described in the next section.

PMAF’s built-in pedigree browsers provide two distinct views of the pedigree.
The tree browser depicts the ancestry of a given document (or, alternatively, its de-
scendants) in hierarchical form, where each node in the tree represents a source (or
descendant) document. Such hierarchal trees are familiar to computer users from file
system browsers. The graph browser depicts the pedigree as a graph, with labeled
arcs to source documents, publishers, and other pedigree metadata. The graph viewer
enables the user to zoom out to a bird’s eye view of the whole graph or zoom in (drill
down) to sections of interest.

7 PMAF Assessments

In time-critical situations, users need to quickly evaluate information quality. To
support assessment of the quality of information objects, PMAF offers quick, accu-
rate, and focused analyses based on the pedigree. Documents and other objects and
their relationships in the pedigree that have an immediate bearing on the quality of the
information are evaluated and presented to the user. Other analyses estimate the
trustworthiness of information publishers or the reliability of documents.

PMAF provides the user with five assessments for an information object that help
to evaluate its quality:

• its influence or impact on other information objects (Source Impact)
• whether it has been superseded or deprecated by newer information (Source

Deprecation)
• whether it derives from conflicting sources (Conflict Notification)
• publisher reputation (Feedback)
• source corroboration analysis (Unique Sources).

180 K.A. McVearry

Based on the assessment analyses, the PMAF user can estimate the quality of the
information. In addition, custom pedigree assessments can be created and plugged
into PMAF that are specific to the information domain of a client application, provide
additional dimensions of metadata analysis, etc.

8 PMAF Vocabularies

PMAF includes a baseline provenance ontology that extends the Dublin Core Meta-
data Initiative (DCMI) vocabulary, incorporating terms that support a decision-
making process, the dependency of data in general, and the occurrence of conflicting
data. In addition PMAF includes vocabulary from the Friend of a Friend (FOAF),
DoD Discovery Metadata Specification (DDMS) and Intelligence Community Meta-
data Standard for Information Security Markings (IC-ISM) standards.

At its core PMAF is vocabulary-agnostic. PMAF does not require the use of any
particular vocabulary or term, and is completely configurable to use any vocabulary –
whether previously defined or newly created. Rather than requiring the use of a par-
ticular provenance model or vocabulary storage format, terms are recorded using the
common denominator of RDF and need not be predefined by PMAF. Depending on
the use case, an integrated approach combining PMAF with another ontology tool
and/or model may be beneficial.

9 PMAF Applications

Our recent integration efforts for PMAF have focused on document processing and
content management applications. However, we believe that the open architecture of
PMAF is suitable for collection of provenance metadata from a variety of system and
application types, such as:

• Workflow: collect provenance for information objects as they pass through
processes that run within the workflow system

• Enterprise Service Bus: report message passing and transformations
• Web Services: collect provenance for web service processing of information

objects, as well as of the web services themselves (e.g. versioning)

10 PMAF Demonstration

We will begin the PMAF demonstration by using the graph browser interface to view
the existing metadata graph for an information object, in this case a document. Since
the provenance metadata is stored in RDF format, it can be viewed as a graph with the
subjects and object resources represented as nodes, and each predicate as a link be-
tween a subject node and object node. The links represent metadata such as the type
of the object, the creator, the publisher, the create date, sources for the object (e.g.
other documents), and if the object has subparts (each of which can have its own
metadata, i.e. at a fine-grained level).

 Pedigree Management and Assessment Framework (PMAF) 181

We will demonstrate interactively exploring the graph by reviewing the metadata
for sources, sources of sources, etc (moving backward in time), and then understand-
ing the impact of sources on downstream objects (moving forward in time). We will
also demonstrate the results of running several of the built-in PMAF assessments on
the sample provenance metadata, including the Unique Sources, Source Deprecation,
Conflict Notification, and Source Impact assessments.

We will then demonstrate the integration of PMAF with a standard document edi-
tor (Microsoft Word), allowing the creation and publishing of provenance metadata as
a side effect of copying and pasting information from existing files into a new docu-
ment. Finally we will demonstrate the integration of PMAF with a Content Manage-
ment System (Microsoft SharePoint), allowing the creation and publishing of new
metadata for files based on standard CMS operations such as checking in, moving and
renaming a file.

References

1. Gioioso, M.M., McCullough, S.D., Cormier, J.P., Marceau, C., Joyce, R.A.: Pedigree Man-
agement and Assessment in a Net-centric Environment. In: Proceedings of the SPIE Sym-
posium on Defense and Security (2007)

2. Combs, V.T., Hillman, R.G., Muccio, M.T., McKeel, R.W.: Joint Battlespace Infosphere:
Information Management within a C2 Enterprise. In: 10th International Command and Con-
trol Research and Technology Symposium (2005)

3. RDF Primer, http://www.w3.org/TR/rdf-primer
4. Berners-Lee, T.: Uniform Resource Identifiers (URI): Generic Syntax,

http://www.ietf.org/rfc/rfc2396.txt
5. Dublin Core Metadata Initiative, http://dublincore.org
6. Chapman, A.: Industry Provenance State of the Art, presentation to the Information Assur-

ance Metadata Community of Practice (IAM CoP) working group (2009)

Provenance-Based Strategies to
Develop Trust in Semantic Web Applications

Xian Li1, Timothy Lebo1,2, and Deborah L. McGuinness1

1 Rensselaer Polytechnic Institute, Troy, NY USA
2 Air Force Research Laboratory, Information Directorate, Rome, NY USA

{lix15,lebot}@rpi.edu,
dlm@cs.rpi.edu

Abstract. Linked data and Semantic Web technologies enable people
to navigate across heterogeneous sources of data thus making it easier
for them to explore and develop multiple perspectives for use in making
decisions and solving problems. While the Semantic Web offers benefits
for developers and users, several new challenges are emerging that may
negatively impact users’ trust in Web-based collaborative systems.

This paper describes several use cases to illustrate potential trust is-
sues faced by Semantic Web applications, and provides a concrete exam-
ple for each using a specific system we built to investigate United States
Supreme Court decision making. Provenance-based solutions are pro-
posed to develop trust and/or minimize the distrust that is provoked by
the situation. While these use cases address distinct situations, they are
all described in terms of how a contradiction can arise between the user’s
mental model and the statements presented in the display. This common-
ality may be used to develop additional classes of trust-threatening use
cases, and the proposed provenance-based solutions can be applied to
many other Semantic Web Applications.

1 Introduction

As the amount of data available on the Web quickly increases, applications based
on Semantic Web technologies are being developed to utilize information from
multiple data sources. With a variety of visualization technologies, the advan-
tages from heterogeneous sources of data are indicated by providing compre-
hensive views on a given problem, and gaining understanding of problems from
a larger picture where different sources of data are interlinked. However, one
essential growing challenge is related to diverse quality of the data. As more
diverse data is used, user’s distrust may increase, particularly when their prior
knowledge and expectations are different from what the system appears to be
presenting.

To address these emerging challenges, we propose provenance-based solutions
using the Proof Markup Language (PML) [7] and apply them to representative
use cases in Semantic Web Applications. The organization of the paper is as
follows: in Section 2, we review related works in the area of provenance in the

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 182–197, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Provenance-Based Strategies to Develop Trust in Semantic Web Applications 183

context of the Web. In Section 3, we give a brief introduction to the system with
which we developed use cases to illustrate challenges and provenance solutions.
Section 4 describes the principles used to generate use cases, the main cause
behind different types of distrust risks, and the provenance used to develop
trust. Section 5 concludes with a discussion of future work.

2 Related Work

In their multidisciplinary survey of trust research, Artz et al. [1] distinguish be-
tween policy- and reputation-based trust paradigms. While the former focuses on
“hard security” that is determined through authentication, access control, and
encryption, the latter combines personal experiences and experiences of others
to determine a degree of trust. They identify the common theme that “trust is
a willingness to be vulnerable to the actions of another.” When making deci-
sions based on information from the web, one can be vulnerable to distributed
contributions that the system incorporates and displays. For example, Zhao et
al. [14] describe risks to scientific users’ trust in FlyWeb, a consolidation and
alignment of three independent data sources related to the fruit fly. They note
that asynchronous updates of component data sources can violate expectations
of scientists working with older releases.

Vulnerability, however, is not necessary to gain trust, since trust may be im-
parted without vulnerability. To help qualify the notion of trust in an information
system, it may be viewed as proportional to the characteristics of information
quality. Naumann et al. [9] describe information quality using several components
and incorporated them into query planning over multiple, distributed, and het-
erogeneous sources. Their approach strives to plan queries that select from good
data sources based on their completeness, timeliness, uniqueness, availability,
financial cost, and accuracy. Their approach uses rules at the granular level of
attributes and queries instead of at the class or source level and relies upon a
domain-specific global schema to which all contributing data sources are cast.

Data believability is similar to information quality. Prat and Madnick [10]
reinforce its definition as “the extent to which data are accepted or regarded as
true, real and credible.” They propose the three dimensions of trustworthiness,
reasonableness, and temporarily to measure data believability using provenance-
based measurements and present computational approaches to combine the com-
ponents of believability. They measure trustworthiness of the data source at a
holistic level. Reasonableness of data measures the extent to which a data value
is likely using possibility, consistency over sources, and consistency over time.
Temporality of data measures the extent to which the query time overlaps with
the data value’s validity interval.

Provenance is an important aspect of information quality and believability. To
track the lineage of changes between releases of FlyWeb, Zhao et al. proposed a
provenance-based solution. Sillence et al. [11] describe several provenance factors
important to users in a study of non-experts using the web to investigate health
topics. Factors included the ability to cross-validate across information sources,

184 X. Li, T. Lebo, and D.L. McGuinness

recency of information updates, and citations to original sources. Buneman et
al. [3] described primary issues for data provenance in the context of the web,
including obtaining provenance information, citing components of a document
in another context, and ensuring integrity of citations in situations where the
cited items evolve. Hartig [5] proposes a general provenance model that incor-
porates both data creation and data access. Fox et al. [4] address the problem of
identifying validity and origin of data on the web by modeling and maintaining
information sources, information dependencies, and trust structures. Using four
levels of provenance ranging from strong provenance (high certainty) to weak
provenance (high uncertainty), they annotated web data to create islands of cer-
tainty among the wild uncertainty and incompleteness. Miles et al. [8] present
use cases for process documentation in e-science experiments. For each use case
presented, they present provenance question as an action that can be realized
by processing recorded process documentation. In our use cases, we outline how
trust can be developed by answering a provenance question.

Bizer and Cyganiak [2] present WIQA, a named graph query system that
permits users to select policies to qualify the sets of characteristics to which
they attribute a certain equivalent level of trust. These policies are then used to
filter aggregated information to a contextually-trusted subset, and explanations
for why information fulfills a policy are provided. Filtering policies may also
contain explanation templates, which can be used to generate natural language
as well as RDF explanations about filtering decisions. Their use of templates
to specify what to show in the application is analogous to our subject-centric
template approach. They use the Semantic Web Publishing Language to de-
scribe the provenance and signing of the aggregated named graphs, while we
are using the Proof Markup Language. They are permitting the user to specify
the templates, while our application currently imposes a fixed selection policy.
Their use of explanation templates are also a convenient solution for producing
explanations, which is not an aspect that we have fully addressed in our current
work.

Tummarello et al. [13] present Sig.ma, a semantic integration mashup API
and user browser. Based on a textual search, it presents data aggregated from
multiple traditional and semantic web data sources and offers a highly interac-
tive browsing experience permitting users to inquire for the source of a particular
data item, reject or hide certain sources or data values, organize the arrange-
ment of information, and capture their current view for sharing using a variety
of popular representations such as RDF, JSON, permanent URLs, and HTML
snippets. Sig.ma develops trust by allowing users to express their opinions of
reliability on different data sources. This very flexible infrastructure and inter-
action methodology is useful for free-formed, user-driven exploration of content.
However, this paradigm is not amenable to application developers attempting
to communicate a particular, well structured story – as with the application we
are evaluating for the use cases we describe in this paper. Although the system
permits re-publishing of “customized views”, the view type is limited to a single
subject with traditional attribute-value listings and does not extend to visual

Provenance-Based Strategies to Develop Trust in Semantic Web Applications 185

depictions that may more effectively communicate such as the maps, faceted
browsers, scatter plots, bar charts, tables, and timelines that we find in the sys-
tem we evaluate. Although Sig.ma preserves provenance information by tracking
the URL sources of data, it is not clear that it uses a common representation
that can be reused by external applications. Our provenance-based proposals for
addressing distrust events reuses the Proof Markup Language that is already
used across a variety of applications. Using PML also permits comprehensive
capture of the data incorporation and permits easy elaboration.

3 Supreme Court: Justices and Decision Making

3.1 Application Domain

Supreme Court scholars utilize data from each case and vote to analyze judicial
decision-making. Scholars have made independent efforts to collect needed infor-
mation, format them for easy processing, check their accuracy, and publish and
maintain them in a reusable state. The U.S. Supreme Court Database (SCDB)
[12] is regarded as a core dataset that encodes many aspects of Justices’ votes
since 1953. The SCDB is periodically released in formats accepted by most sta-
tistical applications. However, focusing on statistical aspects of these isolated
data may result in a limited set of views and analytical directions, with missed
opportunities to gain different perspectives and insights on existing data.

Besides the SCDB datasets, studies on judicial decision-making have relied
on additional variables such as birth, education, party identification, and ap-
pointing presidents. These personal attributes are readily available from bio-
graphical directories and data collections of other scholars in the field. Due to
the large amounts of data involved, manual encoding methods are time con-
suming and their limited visibility minimizes the chances for others to correct
mistakes. The isolation of each data source may also limit insight into aggregate
relationships.

3.2 Tools and Techniques: Advantages and Challenges

Linked Data and other Semantic Web technologies were proposed to improve
this situation, demonstrated by an application Supreme Court: Justices and De-
cision Making [6]. The SCDB dataset was transformed into Resource Description
Framework (RDF) and connected to linked data available from DBpedia. RDF
represents data in a directed graph where a single labeled edge, known as a
triple, has components known as the subject, predicate, and object. The SCDB
and DBPedia data sources were bridged using data from a Semantic Media Wiki
to reconcile different naming of Justices. The approach has many advantages.
First, linked versions of SCDB datasets can easily be connected to many other
datasets, enabling multiple perspectives on Supreme Court and Justices. Sec-
ond, Linked Open Data covers much more factual information about Justices’
personal attributes and career histories. Third, linked data is readily accessible.

186 X. Li, T. Lebo, and D.L. McGuinness

Finally, a large community maintains linked data, which can reduce the bias and
errors in the information.

However, challenges rise as data from different sources are incorporated to
gain understanding, make decisions, and solve problems. The quality of the data
from heterogeneous sources determines to what extent the data could be trusted
and utilized. For certain information shown in the system, it is important to
identify its quality such as the source of this information, author of the data,
the update time, reliability and trustworthiness. The representative use cases
described below address the most common scenarios in which users of Supreme
Court: Justices and Decision Making encountered distrust.

4 Developing Trust through Provenance

When the user, based on their background knowledge and current context, iden-
ties either a surprise or a direct contradiction with the content of an information
system, any part of the system is susceptible to blame. We refer to this situation
as a distrust event. To develop trust, the system’s role is to respond by iden-
tifying the sources and the processing leading to a particular conclusion. This
is done by accepting a description of the issue contradiction and providing a
subset of provenance to show the cause of the concern. We assume supplemen-
tal user interface elements that accept the user’s concern and casts it into the
appropriate URIs of an RDF subject and property.

Table 1 illustrates a simple taxonomy for the use cases described in this paper.
The first dimension distinguishes among situations where the user believes that
the system is either incorrect or has omitted some content. The second dimen-
sion distinguishes among the primary causes of the distrust event, whether it be
the linked data, the application incorporating the linked data, or the application
user. The use cases are further distinguished by three types of provenance that
can be used to develop trust when faced with the distrust event. Each type of
provenance is represented using the Proof Markup Language and is described
further in the following sections with the use cases that they address. The compo-
sition of the three types of provenance represents the entire data flow from initial
gathering of subjects, through multi-source incorporation as well as third-party
APIs providing user interface components.

– Provenance of subject scope describes the actions taken by the appli-
cation to determine the subjects that should be investigated. This includes
a query, the web service providing a query response, and the web service
parameters. The subject scope query may exist fully-parameterized or may
be parameterized using user input.

– Provenance of subject-centric queries describes the actions taken by
the application to gather information about the subjects within the available
data sources. This includes the Uniform Resource Identifier for the in-scope
subject, a query template parameterized for the subject, the web service
providing a query response, and the web service parameters.

Provenance-Based Strategies to Develop Trust in Semantic Web Applications 187

Table 1. Classification of five use cases that provoke distrust events, based on a simple
taxonomy of the user response to the system and the primary cause of the situation.

Linked Data is
primary cause

Application is pri-
mary cause

User is primary
cause

User believes that the Sys-
tem is Incorrect

1 4 2,3

User believes that the Sys-
tem Omitted Content

5

– Provenance of user interface invocation describes the actions taken by
the application to provide user interface elements using third-party APIs.
This includes the API used and the subset of query results transferred.

4.1 Provenance of Subject-Centric Queries

The provenance solution proposed here is to show how answers were obtained
for queries about specific subjects. It develops trust by displaying the source of
the data and the steps taken to construct the query. The majority of use cases
are addressed by this provenance type.

Use Case 1: User Belives That the System Is Incorrect, Incorrect Data

How distrust is generated. User trust is at risk when the system exhibits objective
content that the user believes to be incorrect. Although it is the system’s action
to incorporate the data, the incorrectness of linked data is the primary cause. If
the system attempts to display sources for its content along with the content, it
may be difficult to ensure complete, granular coverage. The third factor leading
to this event is an appropriate level of user background knowledge. Although
common knowledge may lead to this potential conflict, greater user expertise
will increase the likelihood of this type of distrust event. A conclusive resolution
can be achieved because the conflict involves objective information. A corollary
to this use case is where the user is not certain about the incorrectness, but is
merely questioning his own interpretation due to unfamilarity with the content or
the display design. Another corollary occurs when the application selects values
of properties from multiple sources to find that they contradict.

How trust can be developed. Because the system relies upon external linked data
sources, the objectively incorrect information can be traced to the source to iden-
tify whether it is the source that is incorrect or the application reads the source
incorrectly. When the user inquires about the incorrect data, the subject’s URI
and one of its properties are used to search the provenance for the queries that
were constructed for the subject using query templates that contain the prop-
erty. It is important to note that the subject and property characterizing the
distrust event need not be of the same RDF triple; they need only to co-occur
within the provenance of an instantiated subject-centric template. Web services

188 X. Li, T. Lebo, and D.L. McGuinness

that responded to these queries would then be listed for the user as the source
of contention. This strategy insulates the non-offending sources from blame and
localizes the distrust to the appropriate linked data components. Higher granu-
larities of source tracing would allow refined localization for offending sources.
In the case where the same properties are selected from multiple sources, multi-
ple subject/property pairs would be used to identify the appropriate provenance
fragments for each.

Linked data can be used in a variety of ways. Dereferencable URIs may be
crawled, and they may also be aggregated, indexed, and queried using SPARQL
endpoints. Each technique offers benefits and tradeoffs. For lightweight clients
accessing small portions of a large, curated dataset, use of a query endpoint
is a good alternative. The application we evaluated used this approach, and
the subject-centered provenance was identified to address its needs. Since the
subject-centered provenance describes query construction and execution, the
more straight forward “query” of dereferencing a URI could also be modeled
in this fashion. Further, these two variants of subject-centered provenance are
not mutually exclusive. A single application could perform both types depending
on its data incorporation objectives.

Fig. 1. User believes that no President was a member of the Green Party, and thus
could not have nominated Robert Jackson to the Supreme Court of the United States

An example. As reproduced in Figure 1, the system reported that Robert H.
Jackson was nominated by a President that was a member of the Green Party1.
Only a moderate amount of common knowledge is needed to recognize that this
nomination is impossible, since no President was a member of the Green Party.
The commonality of this knowledge varies with the nationality and education
level of the audience. Although the system is exhibiting a reasonable portrayal of
the data by using the color green, this was done to handle the future possibility
of the Green Party – the linked data is the primary cause of the distrust event.

Figures 2 and 3 show the structure of the provenance for query creation and
execution, respectively. These form the subject-centric provenance that describes
1 This use case assumes that the user correctly interprets the displayed content. The

following use case describes a distrust event where the user misinterprets the display.

Provenance-Based Strategies to Develop Trust in Semantic Web Applications 189

case1:jackson_query

pmlj:Query

rdf:type

S T

 http://dbpedia.org/sparql?query=select...%JUSTICE%...

 http://dbpedia.org/sparql?query=select...Jackson...

 http://dbpedia.org/resource/Robert_H._Jackson

[]

[]

a pmlj:InferenceStep

case1:ns_jackson_query_string

case1:ns_nominator_query_templatecase1:ns_jackson_dbpedia_URI

case1:nominator_query_template

case1:jackson_query_string

case1:justices_javascript

case1:jackson_dbpedia_URI

rdf:first

rdf:first
rdf:rest

pmlj:hasInferenceEngine

pmlj:hasAntecedentList

pmlj:hasConclusion

pmlj:isConsequentOf

pmlj:hasConclusionpmlj:hasConclusion

pmlp:hasContent

pmlp:hasRawString

pmlp:hasRawString

pmlp:hasRawString

Fig. 2. Query creation half of the subject-centric provenance for the Green Party
claim. Literal values are in blue font, pmlj:NodeSets have a yellow background, and
pmlj:InferenceSteps have a gray background. The red S highlights the subject for
which descriptions were gathered using the template highlighted by the red T, which
contains the property that characterizes the Green Party distrust event. These are
connected to the data source through the query case1:ns jackson sparql results.

the cause of the Green Party claim. The URI for Jackson and the involved prop-
erty “party” are used to identify the data source http://dbpedia.org/sparql.
A pmlj:NodeSet augments the constructed query string pmlp:Information
with an pmlj:InferenceStep to justify how the query was constructed. The
pmlj:InferenceStep cites the application code as the pmlj:InferenceEngine
and the subject and query template it used as input. The query string is also
the content of a pmlj:Query, which is connected (in Figure 3) to the query
result “Green” by a pmlj:NodeSet case1:ns jackson sparql results. The
pmlj:InferenceStep identifies the SPARQL endpoint proxy and the parame-
ters used as a cause for the query result. The data source of the “Green Party”
is found at the granularity of SPARQL query endpoint2.

2 Note that while we provide a portion of the detailed PML encoding, this is not
intended to be displayed to the end user. Instead the fine grained encoding provides
enough information for GUI application developers to provide details of the sources,
query formation, and other reasoning on demand to end users in an appropriate
format and context.

190 X. Li, T. Lebo, and D.L. McGuinness

 csv

 http://dbpedia.org/sparql

 output

 service-uri

 Green,

[]

[]

[]

a case1:Information

a case1:Information

case1:ns_jackson_sparql_results

case1:ns_output_csv

case1:ns_service-uri_dbpedia

case1:justif4_jackson_sparql_results

case1:jackson_sparql_results

case1:tetherless_world_SPARQL_proxy

rdf:first

rdf:first

rdf:rest

rdf:first rdf:rest

pmlp:hasRawString

pmlp:hasRawString

pmlj:hasConclusion

pmlj:isConsequentOf

pmlp:hasName

pmlp:hasConclusion

pmlp:hasName

pmlp:hasConclusion

pmlj:hasInferenceEngine

pmlj:hasAntecedentsList

pmlj:hasAnswer

pmlp:hasRawString

case1:ns_jackson_query_string

case1:jackson_query

pmlj:Query

rdf:type

S

Fig. 3. Query execution half of the subject-centric provenance for the Green Party
claim. Note that case1:jackson query and case1:ns jackson query string in this
Figure are the same rdfs:Resources as shown in Figure 2. The red S highlights the data
source responsible for descriptions involving the subject and property of the distrust
event.

Use Case 2: User Doubts That the System Is Correct, User Misinter-
pretation

How distrust is generated. User trust is at risk when the user misinterprets
content exhibited by the system. The system’s role in this misinterpretation may
contribute to this situation with varying degrees, depending upon the quality of
its design. This situation occurs when either objective or subjective information
is presented, where prior knowledge is correct, and linked data is correct. Both
sides of this contradiction are based on factual information and the contradiction
happens due to users misinterpretation of the data. This use case can apply in
situations when the source data is correct or when it is incorrect.

How trust can be developed. Distinctions between objectivity and subjectivity
and between incorrect or misinterpreted data rest with the user’s perspective. In
each case, the response to the distrust event is initiated by citing the subject and
property of the data for which the user has a concern. In this way, the variety
of distrust events are handled in a uniform manner. Because the system did not
query for and did not receive this objectively incorrect information from external
data sources, the system cannot blame the linked data. When the subject and

Provenance-Based Strategies to Develop Trust in Semantic Web Applications 191

Fig. 4. The user misinterprets the content presented, thinking that the system is claim-
ing David Hacket Souter was a Republican

property are questioned by the user, the provenance can be searched for the
queries that were created using the subject’s URI. Showing all of these using
an interface appropriate for the user and context will inform the user that the
property was not gathered by the application. Additionally, all query results may
be searched for the property and value in question, and these can be shown to
demonstrate that the subject is not included in these results. The graph patterns
of SPARQL queries and the bindings structure of the results may present a
challenge for a straight-forward solution.

An example. As reproduced in Figure 4, a user knows Justice David Souter is
a Democrat while what she perceives from the interface is that Souter is Re-
publican. The application is referring to the party of Souter’s nominator, not of
Souter himself. The system can develop trust by showing all queries involving
Souter, none of which will involve his political party. The system could also show
all query results involving “Republican” and show that Souter is not involved
in these results. The same subject-centric provenance components are used as
described in Use Case 1. But because no specific property is indicated in this
scenario, the provenance process will search for all queries given Souter’s URI,
identifying a variety of templates where the actual queries come from. Alterna-
tively, the provenance process could be searched for all query results mentioning
“Republican,” showing the queries that went into the results.

Use Case 3: User Is Certain That the System Is Incorrect, Subjective
Content

How distrust is generated. This type of contradiction happens when the analyt-
ical results showed by the linked data contradicts with users subjective opinions
instead of facts. The application is a source cause because it is aggregating data
with subjective content. Linked data is a cause because the source is contributing
data with subjective content. The user is a cause in this situation if their views
disagree with the subjective content exhibited. Any subjective claims must be
supported, but will not be conclusive as in the previous use cases that addressed
objective content. This use case involves more complicated and ambiguous issues
and can not be resolved conclusively because individuals disagree on interpreta-
tions of a set of facts.

192 X. Li, T. Lebo, and D.L. McGuinness

How trust can be developed. A claim on its own is not a fact; it must be supported.
The source of the claim can be provided using provenance of subject-centric
queries, but instead of assigning blame of the source, the system is deferring
the credibility of the claim. More elaborate solutions would incorporate how the
analytical results were derived using source of data, computation mechanisms,
and the people invoking the analysis.

An example. In the SCDB, each vote that a Justice makes is classified as re-
flecting a conservative or liberal position. The total conservative votes can be
compared to the total liberal votes to quantify a Justice’s stance. Figure 5 reflects
the neutrality of David Hacket Souter because he voted approximately equally
for conservative and liberal decisions. This contrasts with the general stereotype
that he has a strong liberal stance3. Given Souter’s URI and the property “deci-
sionDirection,” subject-centric provenance can be used to identify SCDB as the
source of the vote tally for conservative and liberal votes.

Fig. 5. A user with conservative political views considering David Souter to be a liberal
disagrees with a claim that he served as a moderate Justice

4.2 Use Cases Addressed by Provenance of User Interface
Invocation

Solutions for use cases in this category are based on an extension to the subject-
centered query provenance described in the previous section. The content pre-
sented by a third-party user interface or visualization API is represented with an
instance of pmlp:Information, and instances of pmlj:NodeSet provide justifi-
cations enumerating the content’s antecedent query results. These query results
3 http://topics.nytimes.com/top/reference/timestopics/people/s/

david h souter/index.html

Provenance-Based Strategies to Develop Trust in Semantic Web Applications 193

are part of the subject-centered provenance already described. The use case
addressed by this provenance solution involves the Exhibit framework. The in-
corporating web application is insulated from distrust when illustrating that it
obtained correct data and transferred requests to the third-party API.

Use Case 4: User Is Certain That the System Is Incorrect, Rendering
Distortion

How distrust is generated. Contradictions at this level may be caused by the
inconsistency between two content elements depicting the same data property.
Distrust in the system is generated because of its self-contradictory exhibition.
Some user background knowledge may be required to fulfill the contradiction.
The objective nature of the data can lead to a conclusive resolution of this
distrust event.

How trust can be developed. Instead of reporting the source of incorrect or miss-
ing data as in the previous solutions, trust is developed by illustrating that cor-
rect data was incorporated and provided to a supporting API. Any distortions
of content become the responsibility of the API and not of the web application.
If the source data elements for the two contradictory content elements are the
same, it is clearly a rendering distortion. However, if the same data property
was provided by separate sources and the content is correctly portrayed, then
the conflicting data sources should be shown and the third-party user interface
APIs can be absolved.

An example. As reproduced in Figure 7, the system exhibited self-contradictory
nativity information for David Hackett Souter, since the map is pointing to
Quebec and the information box lists Melrose, Massachusetts. Users background
knowledge about the uniqueness of a birthplace led to a contradiction. It is pos-
sible that “Quebec” came from SCDB and “Melrose, Massachusetts” came from
DBpedia, but SCDB does not describe nativity. In this case, the same value “Mel-
rose, Massachusetts” was provided to both display APIs. One simply displayed
the text, while the other obtained incorrect latitude and longitude values for
the string. Given Souter’s URI and the property “Birthplace,” the appropriate
subject-centered queries could be found. Unlike in the previous section, conclu-
sions derived from these results are found to identify the pmlj:InferenceEngine
that used the query results to produce the visual display.

4.3 Use Case Addressed by Provenance of Subject Scope

Use Case 5: User Believes That the System Omitted Content, System
Scoped

How distrust is generated. If the system is showing instances of a certain type,
the user may reasonably expect all instances to be shown. The system is the
primary cause of this distrust event, since it is scoped to show only certain data

194 X. Li, T. Lebo, and D.L. McGuinness

 Melrose, Massachusetts, United States

 http://
dbpedia.org

/sparql?
query=select

...Souter...

[]

[]

case5:jus_exhibit_content

case5:jus_souter_sparql_results

case5:ns_exhibit_content

case5:ns_souter_sparql_results

case5:ns_souter_query_string

case5:souter_query

case5:souter_sparql_results

case5:souter_query_string

case5:exhibit_content

case5:tetherless_world_SPARQL_proxy

pmlj:Query

pmlp:WebService

rdf:first

rdf:first

pmlj:hasInferenceEngine

pmlj:hasAntecedentsList

pmlj:hasInferenceEngine

pmlj:hasAntecedentsList

pmlj:hasConclusion

pmlj:isConsequentOf

pmlj:hasConclusion

pmlj:isConsequentOf

pmlj:hasConclusion

rdf:type

pmlp:hasContent

pmlj:hasAnswer

pmlp:hasRawString
pmlp:hasRawString

rdf:type

case5:exhibit_api

Fig. 6. With provenance of user interface invocation, subject-centered query prove-
nance is extended to capture subsequent uses of the query result. An instance of
pmlp:Information represents all content displayed by a third-party user interface API,
and a pmlj:NodeSet provides justification for the information by citing that Exhibit
was given the query results case5:souter sparql results

Fig. 7. User is certain that a person could not be born in two places. This incorrect
content could be caused by several situations, each with varying degrees of blame for
linked data and the application.

Provenance-Based Strategies to Develop Trust in Semantic Web Applications 195

from certain sources. The linked data is not a cause because the system did not
request the data. The user is a cause because of reasonable expectations for a
comprehensive view. This use case differs from the previous because the system
is subject-scoping, and thus not intending to show omitted data. A corollary to
this use case is where the user not only knows an entity exists, but also knows it is
described in the cited sources. An additional corollary occurs when the primary
cause shifts from the applications subject-scoping to the lack of requested linked
data. This would be classified into the first empty box4 of the taxonomy shown
in Table 1.

How trust can be developed. While principle data sources provide the entities
that will be displayed, augmenting data sources provide supplemental properties.
Searching the subject-centered query provenance for a URI from an augmenting
source will not succeed because queries were only performed for URIs from pri-
mary sources. Without an appropriate subset of provenance, showing the overall
flow of queries can distinguish among primary and secondary sources. Multiple
subject-centered query provenance segments can be composed to capture the
application’s chaining of queries.

An example. As reproduced in Figure 8, search results for “white” do not show
Edward Douglas White, whom the user knows was a Justice. The application
is using SCDB as its primary data source and augmenting these descriptions
using DBPedia. Since Edward Douglas White served before the period that
SCDB describes (1953-2009), his descriptions are not available. Showing that
the initial queries were constructed from entities in SCDB and not DBpedia will
provide this explanation. DBpedia can be highlighted as containing descriptions
of Edward Douglas White to indicate that if the system incorporated DBpedia
as a primary source, it would have included it as content.

Fig. 8. The user knows Edward Douglas White was a Justice of the Supreme Court, but
search results for “white” showing only Byron Raymond White leads to a contradiction

4 The remaining empty box in the taxonomy would contain use cases where the user
was the cause of the system’s omission of content, where search terms or other data-
filtering user elements are employed.

196 X. Li, T. Lebo, and D.L. McGuinness

5 Conclusions

Our accumulation and analysis of use cases for an existing linked data application
has established provenance of the subject-centric query as a primary type that
can be used to address a variety of distrust events and help develop user trust in
applications incorporating linked data by insulating non-offending sources from
blame and localizing the distrust to the appropriate components. The two re-
maining provenance types reinforce its importance by demonstrating its basis
for extension to address still other types of distrust events. We identified two
types of user response that provoke a distrust event, three types of their primary
cause, and a contradiction-based technique for identifying and developing dis-
trust trust use cases. We propose these factors be considered when developing
linked data applications and services.

We plan to use these use cases to guide implementation of provenance within
the current implementation of SupremeCourt: Justices and Decision Making. This
will enable an evaluation of our proposed methodology, which should include the
characteristics for information quality and believability. We plan to identify
application-independent functionality that should be part of a provenance-enabled
web application framework. Saving intermediate results that can be retrieved in
response to distrust events will be an important aspect. Development of additional
uses cases for the application may lead to a more sophisticated taxonomy and gen-
eral understanding of distrust events, and approaches for accepting the user’s con-
cern to initiate provenance search and explanation will also be needed.

References

1. Artz, D., Gil, Y.: A survey of trust in computer science and the semantic web.
Web Semantics: Science, Services and Agents on the World Wide Web 5(2), 58–71
(2007)

2. Bizer, C., Cyganiak, R.: Quality-driven information filtering using the wiqa policy
framework. Web Semantics: Science, Services and Agents on the World Wide Web,
The Semantic Web and Policy 7(1), 1–10 (2009)

3. Buneman, P., Khanna, S., Tan, W.-C.: Data provenance: Some basic issues. In:
Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 87–93. Springer,
Heidelberg (2000)

4. Fox, M., Huang, J.: Knowledge provenance in enterprise information. International
Journal of Production Research 43(20), 4471–4492 (2005)

5. Hartig, O.: Provenance information in the web of data. In: Proceedings of the 2nd
Workshop on Linked Data on the Web, LDOW 2009 (2009)

6. Li, X., Ding, L., Hendler, J.A.: Study supreme court justice decision making with
linked data. Technical report, Rensselaer Polytechnic Institute (2010)

7. McGuinness, D., Ding, L., da Silva, P., Chang, C.: Pml 2: A modular explanation
interlingua. In: Proceedings of AAAI, vol. 7 (2007)

8. Miles, S., Groth, P., Branco, M., Moreau, L.: The requirements of using provenance
in e-science experiments. Journal of Grid Computing 5(1), 1–25 (2007)

9. Naumann, F., Leser, U., Freytag, J.-C.: Quality-driven integration of heterogeneous
information systems. In: VLDB Conference, pp. 447–458 (1999)

Provenance-Based Strategies to Develop Trust in Semantic Web Applications 197

10. Prat, N., Madnick, S.: Measuring data believability: A provenance approach. In:
HICSS 2008: Proceedings of the Proceedings of the 41st Annual Hawaii Inter-
national Conference on System Sciences, Washington, DC, USA, p. 393. IEEE
Computer Society, Los Alamitos (2008)

11. Sillence, E., Briggs, P., Fishwick, L., Harris, P.: Trust and mistrust of online health
sites. In: Proceedings of the SIGCHI conference on Human factors in computing
systems, pp. 663–670. ACM, New York (2004)

12. Spaeth, H., Segal, J.: US Supreme Court Judicial Data Base: Providing New In-
sights into the Court, The. Judicature 83, 228 (1999)

13. Tummarello, G., Cyganiak, R., Catasta, M., Danielczyk, S., Delbru, R., Decker,
S.: Sig.ma: live views on the web of data. In: WWW 2010: Proceedings of the
19th international conference on World wide web, pp. 1301–1304. ACM, New York
(2010)

14. Zhao, J., Klyne, G., Shotton, D.: Provenance and linked data in biological data
webs. In: Proceedings of the 17th International World Wide Web Conference
WWW2008 (Workshop: Linked Data on the Web LDOW 2008), vol. 22 (April
2008) Citeseer

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 198–205, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Reflections on Provenance Ontology Encodings

Li Ding1, Jie Bao1, James R. Michaelis1, Jun Zhao2, and Deborah L. McGuinness1

1 Tetherless World Constellation, Rensselaer Polytechnic Institute
{dingl,baojie,michaj6,dlm}@cs.rpi.edu

2 Image Bioinformatics Research Group, Department of Zoology, University of Oxford
jun.zhao@zoo.ox.ac.uk

Abstract. As more data (especially scientific data) is digitized and put on the
Web, it is desirable to make provenance metadata easy to access, reuse, inte-
grate and reason over. Ontologies can be used to encode expectations and
agreements concerning provenance metadata representation and computation.
This paper analyzes a selection of popular Semantic Web provenance ontolo-
gies such as the Open Provenance Model (OPM), Dublin Core (DC) and the
Proof Markup Language (PML). Selected initial findings are reported in this
paper: (i) concept coverage analysis – we analyze the coverage, similarities and
differences among primitive concepts from different provenance ontologies,
based on identified themes; and (ii) concept modeling analysis – we analyze
how Semantic Web language features were used to support computational
provenance semantics. We expect the outcome of this work to provide guidance
for understanding, aligning and evolving existing provenance ontologies.

Keywords: provenance, ontology, semantic web.

1 Introduction

In distributed and open environments, such as the Web, consumers can access data
without knowledge of its creation and expected use. Provenance plays an important
role in supporting transparency and accountability of such data. In order to ensure
data transparency, the corresponding provenance metadata should be made accessible
for consumers through an effective environment for data management. Likewise, in
order to evaluate the accountability of data, consumers need to correctly understand
the provenance metadata. In both cases, the use of provenance ontologies can be help-
ful. We found it natural to use a Semantic Web-based approach in our work since
semantic technologies have been integrated into the web and semantic web languages
provide a means for encoding provenance concepts and their meanings.

A number of applications of provenance data management have benefited from the
use of Semantic Web ontologies [1, 2, 3]. In these applications, provenance data is
represented through RDF graphs serialized in an RDF syntax, such as RDF/XML, and
can be published on the Web as Linked Data [4]. Likewise, to encode richer prove-
nance data, either RDFS or OWL are used. Semantic Web tools, such as RDF APIs,
triple stores and reasoners, are used to leverage the vocabulary defined by the prove-
nance ontologies and make inferences accordingly. In particular, SPARQL can be
used to express simple queries over provenance data.

 Reflections on Provenance Ontology Encodings 199

We selected a few representative Semantic Web provenance ontologies for analy-
sis, and attempt to address two issues: (i) Concept coverage: what primitive prove-
nance concepts are supported? What are the similarities and differences among the
primitive concepts? (ii) Concept modeling: how are computational provenance se-
mantics modeled? What are the expressivities? The outcome of our study not only
provides guidance to provenance ontology users but also has the potential to promote
best practices in collaborative provenance ontology development.

The rest of this paper is organized as follows: Section 2 reviews selected Semantic
Web provenance ontologies; Section 3 analyzes primitive provenance concepts in
these ontologies using theme-based grouping; Section 4 analyzes the use of ontology
constructs in provenance ontologies; Finally, Section 5 provides concluding remarks.

2 Semantic Web Provenance Ontologies

Semantic Web provenance ontologies1 have emerged in one of two ways: from
scratch, or through the conversion of existing provenance vocabularies not based on
Semantic Web technologies. Many of them focus on the provenance of digital objects
(e.g. scientific data), using the Web as a data management infrastructure, and encod-
ing computational provenance semantics using declarative ontology constructs. This
paper focuses on the following representative ontologies2.

Open Provenance Model (OPM) [5] originated from workflow trace sharing, and
is also designed to support more general provenance representation and computation.
It defines both provenance entities (e.g., “artifact”) and provenance relations (e.g., an
artifact “was generated by” a process). Starting from XML Schema-based encodings,
OPM recently adopted an OWL-based encoding, which has evolved with the new
OPM specification (OPM 1.1).

Proof Markup Language (PML) [6] originated from logical proof sharing, and
has also been used in other information manipulation contexts such as information
extraction and machine learning. It consists of three modules: (i) a taxonomy of
primitive provenance entities with related properties; (ii) a representation of data
derivation and acquisition trace using proof theoretic notation; and (iii) an encoding
of trust and belief on data and agents. Since its inception in 2003, PML has consis-
tently followed the linked data principle in publishing its data.

 Dublin Core (DC) was originally developed in the digital library domain. It pro-
vides a provenance vocabulary which primarily covers generic binary provenance rela-
tions such as “source” and “creator”. It leverages RDFS ontology constructs, and its
provenance relations are typically binary without specifying domain/range restrictions.
Dublin Core Terms (DCTerms) 3 is the current recommended version of Dublin Core,
having more relations and concepts than the previous DC Element vocabulary4.

Provenance Vocabulary (PRV) [7] was recently developed to track information
manipulation. It consists of three modules: (i) the core module that defines basic con-
cepts for tracking data creation and data access, (ii) a taxonomy specific to Web

1 In the rest of this paper, the term “ontology” refers to semantic web provenance ontology.
2 For more provenance related ontologies, see http://tw.rpi.edu/portal/Provenance.
3 http://dublincore.org/documents/dcmi-terms/
4 http://dublincore.org/documents/dces/

200 L. Ding et al.

information transfer and (iii) a taxonomy specific to authentication of information. It
uses OWL 2 constructs, e.g., property chain Axiom.

Provenir5 [14] focuses on information manipulation. It is built on top of the OBO
Relation Ontology (OBO-RO) [8], which covers generic binary relations frequently
used in bioinformatics. This ontology defines new provenance entities, and it also
uses the newly defined classes to extend the definition of OBO-RO by adding domain
and range restrictions to existing OBO-RO properties.

Some of the above ontologies are modularized. Table 1 lists the selected ontologies
as well as their key modules (with the corresponding namespace-prefix mappings).
Every module can be retrieved by dereferencing the corresponding namespaces,
except OPM6.

Table 1. Selected semantic web provenance ontologies and their modules

Ontology Namespace Prefix
OPM 1.1 http://openprovenance.org/ontology# opm
PML 2.0

http://inference-web.org/2.0/pml-provenance.owl#
http://inference-web.org/2.0/pml-justification.owl#

pmlp
pmlj

Dublin Core Terms http://purl.org/dc/terms/ dcterms
Provenance Vocabulary http://purl.org/net/provenance/ns# prv
Provenir Ontology
OBO Relation Ontology

http://knoesis.wright.edu/provenir/provenir.owl#
http://www.obofoundry.org/ro/ro.owl#

provenir
ro

Table 2 shows basic statistics about these ontologies: triples are counted using the
JENA API7; class/property numbers are counted based on two criteria, i.e. (i) the
terms are defined as classes or properties [9] and (ii) the terms use the module’s
namespace (we did not count redefined external concepts in PRV and Provenir); and
OWL species and DL Expressivity were obtained using Pellet8 online services.

Table 2. Basic statistics of selected semantic web provenance ontologies

 opm pmlp pmlj dcterms Prv provenir ro
of triples 309 505 207 857 304 136 268
of classes 20 30 8 22 14 8 0
of properties 26 47 21 55 17 2 24
OWL Species OWL DL OWL DL OWL DL RDFS OWL 2 DL OWL DL OWL Lite
DL Expressivity ALCF(D) ALCHIF(D) ALHF(D) ALH(D) RI(D) ALCH ALR+HI

3 Concept Coverage Analyses

We review concept coverage from two perspectives: (i) to group similar primitive con-
cepts by their themes to see if different ontologies focus on similar themes; and (ii) to
review semantics of primitive concepts for identifying the difference between similar

5 http://wiki.knoesis.org/index.php/Provenir_Ontology
6 http://github.com/lucmoreau/OpenProvenanceModel/raw/master/elmo/src/main/resources/opm.owl

was used in this study as the current draft OWL profile for OPM 1.1 .
7 http://jena.sourceforge.net/
8 Pellet online demo at http://www.mindswap.org/2003/pellet/demo.shtml

 Reflections on Provenance Ontology Encodings 201

primitive concepts. Due to their different design principles, primitive concepts in differ-
ent ontologies are not necessarily the same even if they have the same name. Since the
meaning of primitive concepts is primarily described in natural language in the annota-
tions of ontology and the related publications, precise alignment is challenging. There-
fore, we empirically identified several themes to use for grouping similar primitive
concepts and further discuss their differences. We are not claiming comprehensive cov-
erage with our provenance concept themes but we did find them instructive for prove-
nance ontology comparison.

Table 3 lists the selected ontologies and compares their concept theme coverage.
Due to space limitations, each table cell contains a few example terms from the corre-
sponding ontology (see rows) on the theme (see columns). To support definition of
themes, we use "entity" to refer to things that distinctly exist and “relation” to refer to
relations among entities. A “theme” is used to group similar entities and relations
reflecting one dimension of provenance metadata, and these themes have clear con-
nection to the well-known five Ws (and one H)9 in information gathering. Themes are
identified based on an empirical study over the selected provenance ontologies10, so it
is not necessarily exhaustive. Themes are generally disjoint, but exceptions are per-
mitted. For example, a robot could be considered as an agent in a car manufacturer
factory, but an artifact (product) of a robot manufacturing factory.

Table 3. Provenance ontology theme coverage

 OPM 1.1 PML 2.0 DCTerms PRV core Provenir
 (+OBO-RO)

Agents Agent Agent Agent Actor Agent
artifacts Artifact IdentifiedThing,Information PhysicalResource Artifact Data
Events WasGeneratedBy

Process
pmlp:SourceUsage,

 pmlj:InferenceStep
ProvenanceStatement
Source

Execution

provenir:process,
 ro:derives_from

methods InferenceRule Policy
MethodOfAccrual

CreationGuideline

time OTime hasCreationDateTime PeriodOfTime performedAt temporal_parameter
space Location Spatial_parameter

• Agents (Who): Actionable entities that can take actions in an event. Organization
and Person are two common types of agents. PML and PRV core additionally de-
fined agent taxonomies. While opm:Agent is defined as a snapshot of an agent, the
others define Agent as a continuant entity which is mutable over time.

• Artifacts (Who): Entities made by agents and involved in events. OPM explicitly
emphasizes the immutable status of artifacts, such that an evolving entity could be
related to multiple artifacts (each of which being a snapshot of the entity). While
OPM and DCTerms consider both digital and physical entities, the other selected
ontologies focus only on digital entities, especially data. opm:Artifact is defined to
be disjoint with opm:Agent. Both PML and PRV additionally define artifact tax-
onomies. PML defines pmlp:Information (i.e. snapshot of data) and pmlp:Source
(i.e. the container of information) to support differentiating inference steps (i.e., de-
riving data from data) from source usage (e.g., acquiring data from data containers).

9 http://en.wikipedia.org/wiki/Five_Ws (Who, What, When, Where, Why, & How)
10 Note: our study is based on the ontology and supporting documents. We are in discussion

with ontology authors to confirm and refine our observations.

202 L. Ding et al.

• Events (What): Observable occurrence(s), execution of action(s) (potentially
including the past). Although not explicitly claimed, these ontologies contain enti-
ties and/or relations that record events, especially derivation, i.e., something was
derived from something else. For example, opm:WasGeneratedBy captures an
event where an artifact was generated by a process at a certain moment, and
opm:Process is also a kind of event because “processes also occurred in the
past”[5]. PML supports both data derivation events by pmlj:InferenceStep and data
acquisition events by pmlp:SourceUsage. OBO-RO and DCTerms offer binary re-
lations, e.g., ro:derives_from and dcterms:source, which obviously can be mapped
to data derivation events and data acquisition events, respectively.

• Methods (How): Entities denoting the operations (or actions) used (or mentioned)
in events. For example, a recipe exposes the instructions used in a cooking event,
and a protocol shows the methods used in a biomedical experiment. PML uses
pmlp:InferenceRule to annotate methods used in events so that users can find
events reusing the same method. DCTerms and PRV also have similar concepts.
An instance of method can be further declaratively annotated by declarative scripts
such as list of instructions or program source code.

• Time (When): Temporal concepts, such as time and date when things were created
(or updated), primarily used for annotating events. Most ontologies only defined
temporal properties, while OPM and DCTerms define additional time classes.
Unlike the other selected ontologies which only focus on time points, OPM addi-
tionally defines duration using opm:noEarlierThan and opm:noLaterThan.

• Space (Where): Geospatial concepts such as locations, GPS coordinates and re-
gions. Only DCTerms and Provenir support this theme, and their definitions are
remain general and avoid including detailed geospatial concept taxonomies.

A few additional observations arose with the theme analysis. First, similar concepts
may still have different meanings, e.g., OPM and PML treat the concept “agent” as
immutable and mutable, respectively. Second, feedback from the use of provenance
ontologies in applications can lead to their evolution, e.g., a special concept
pmlp:LearnedSourceUsage was added to better support explaining tasks in multi-
agent learning contexts[10]. Third, some themes can be supported by dedicated on-
tologies, e.g., the OWL Time ontology11, the WGS84 Geo Positioning Ontology12 and
Friend of a Friend (FOAF)13. Finally, it is important to represent the scope of a par-
ticular workflow, e.g., OPM defined opm:Account to associate entities with a work-
flow, and PML uses a recursive algorithm to determine the scope of a proof.

4 Concept Modeling Analyses

We now analyze the semantic structure and concept modeling patterns by comparing
the use of ontology constructs in the ontologies (see Table 4). The ontology constructs
are further grouped by the following four functional groups that were summarized
from the manual analysis of the selected ontologies.

11 http://www.w3.org/2006/time
12 http://www.w3.org/2003/01/geo/wgs84_pos
13 http://xmlns.com/foaf/0.1/

 Reflections on Provenance Ontology Encodings 203

Table 4. How OWL/RDFS ontology constructs were used in provenance ontologies

 opm pmlp pmlj dcterms prv provenir ro
rdfs:subClassOf X X X X X X
rdfs:subPropertyOf X X X X X X
owl:disjointWith X X X X
owl:unionOf X X X

Concept
Taxonomy

owl:equivalentClassOf X
owl:inverseOf X X X Inference

on relations owl:TransitiveProperty X
rdfs:domain / rdfs:range X X X X X X
owl:allValuesFrom X X X X

Constraints

Cardinality Restriction X X X X
owl:imports X X Concept

Reuse Reused ontology foaf ro

Concept Taxonomy. Semantic ontology languages, e.g., RDFS and OWL, provide
set-theoretic constructs (e.g. sub-set, union, equivalence, complement and disjoint) to
support taxonomy definitions. These ontology constructs are observed in all selected
ontologies in modeling class taxonomies and/or property taxonomies. A direct benefit
of using OWL and RDFS is that those constructs are supported by corresponding
reasoners that are capable of inferring additional information about taxonomies, e.g.,
transitive closure of sub-set relations and consistency validation using disjoint seman-
tics. PML has a larger class taxonomy than some other provenance interlingua options
(e.g. OPM). One reason for PML’s growth was a direct consequence of application
driven growth from reuse beyond its original scope (e.g., reuse in machine learning
and text analytics applications although original constructor design was aimed at
hybrid logical first order reasoning. Its growth also generated a redesign to create
modules that could be used independently. We anticipate that other provenance on-
tologies, if they decide to grow in breadth, may also provide modularization options.
The use of disjointness may be an issue in some ontologies. Overusing disjointness
can limit reusability since for example an initial modeling might expect person and
inference-engine to be disjoint but in a different context, a person might function as
an inference engine and thus may be an instance of both classes.

Inference on Relations. A binary provenance relation can be defined as an OWL
object property to carry additional computational semantics such as "inverse" and
"transitive". Upon defining “part/whole” relation, OBO-RO additionally used both
owl:TransitiveProperty and owl:inverseOf constructs in defining ro:has_part in com-
parison with a similar concept dcterms:hasPart from DCTerms. Besides the two con-
structs in table 4, PRV leverages the OWL2 construct owl:propertyChainAxiom to
enable more complex inference on relations: if x is prv:serializedBy y and y is
prv:createdBy z then x is prv:createdBy z. The OWL and OWL2 constructs discussed
here are selected because they have obvious connection to provenance graph infer-
ence [5]. We should also note that SPARQL can also be used to enable some other
kinds of provenance computation, such as converting binary relation from/to corre-
sponding class instances.

Constraints. Upon sharing provenance metadata, users may also want to leverage
provenance ontologies to assure the quality of provenance metadata. Integrity constraints,

204 L. Ding et al.

such as cardinality restrictions, may be encoded using the OWL syntax along with a non-
standard semantics based on the Closed World Assumption (CWA) [11]14. For example,
an instance of opm:WasGeneratedBy needs to be associated with at least one instance of
opm:Process via the opm:cause relation, and this can be encoded using
owl:minCardinality.

Concept Reuse. Section 2 showed the trend of modularizing provenance ontologies,
and raised issues on ontology reuse. In practice, ontology reuse can be done by using
the owl:imports construct (i.e., explicitly copy the content of the other ontology, e.g.,
pmlj imports pmlp), or by directly using terms in the external ontology (i.e., users
need to dereference the terms to get their definitions, e.g., PRV uses external terms to
enrich its definition). It is notable that the meaning of imported terms may also be
redefined during importing. For example, in Provenir, the meaning of ro:has_agent is
beyond its original meaning in OBO-RO due to additional domain/range statements.

5 Conclusion

This study investigated a select group of Semantic Web provenance ontologies and
yielded interesting observations: (i) provenance ontologies share common themes
surrounding provenance research; (ii) similar terms in the same theme can carry dif-
ferent semantics, e.g. opm:Agent and pmlp:Agent; (iii) we observed the use of RDFS,
OWL and OWL2 in encoding provenance ontologies and supporting provenance
computation (e.g. transitive provenance graph inference); (iv) Some ontologies are
fully self-contained while some others reuse external concepts.

The above observations not only help users to review provenance ontologies via a
side-by-side comparison, but also promote better collaborative provenance ontology
development. First, modularization has been seen as a successful practice in ontology
development for controlling the cost of development and reuse. It would be desirable
to keep a minimal set of core concepts in one module and support extensions, such as
detailed classification and domain specific concepts, in other modules. However, we
should also avoid excessive modularization that may cause unnecessary overhead.
Second, while provenance theme-level mapping provides general guidance for reus-
ing ontologies, a concept-level mapping is still needed to keep the ontologies interop-
erable. Work on ontology mapping has been reported on the OPM-PML mapping [12]
and the OPM-DCTerms mapping [13]. Additionally, mapping efforts are underway in
the W3C Provenance Incubator15. Future research should also emphasize mapping
different provenance ontologies as well as reusing concepts from other ontologies.

Acknowledgments. This work is supported in part by NSF #0524481, DARPA
#FA8650-06-C-7605, #FA8750-07-D-0185, #55-002001, #F30602-00-2-0579, and
ITA project W911NF-06-3-0001.

14 Note that the standard semantics of OWL does not support the modeling of integrity con-

straints as it uses the Open World Assumption (OWA), c.f. [11].
15 http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings

 Reflections on Provenance Ontology Encodings 205

References

[1] Zhao, J., Wroe, C., Goble, C., Stevens, R., Quan, D., Greenwood, M.: Using semantic
web technologies for representing e-science provenance. In: McIlraith, S.A., Plexousakis,
D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 93–106. Springer, Heidel-
berg (2004)

[2] Golbeck, J., Hendler, J.: A Semantic Web approach to the provenance challenge. Concur-
rency and Computation: Practice and Experience 20, 431–439 (2008)

[3] Zednik, S., Fox, P., McGuinness, D.L., Pinheiro da Silva, P., Chang, C.: Semantic Prove-
nance for Science Data Products: Application to Image Data Processing. In: Workshop on
the role of Semantic Web in Provenance Management (2009)

[4] McGuinness, D.L., Pinheiro da Silva, P.: Explaining Answers from the Semantic Web:
The Inference Web Approach. Journal of Web Semantics 1(4), 397–413 (2004)

[5] Moreau, L., Clifford, B., Freire, J., Gil, Y., Groth, P., Futrelle, J., Kwasnikowska, N.,
Miles, S., Missier, P., Myers, J., Simmhan, Y., Stephan, E., Bussche, J.: The Open Prove-
nance Model Core Specification (v1.1), submitted to Future Generation Computer Sys-
tems (2009)

[6] McGuinness, D.L., Ding, L., Pinheiro da Silva, P., Chang, C.: PML 2: A Modular Expla-
nation Interlingua. In: Proceedings of the 2007 Workshop on Explanation-aware Comput-
ing, ExaCt-2007 (2007)

[7] Hartig, O., Zhao, J.: Publishing and Consuming Provenance Metadata on the Web of
Linked Data. In: Proceedings of the 3rd International Provenance and Annotation Work-
shop, IPAW (2010)

[8] Smith, B., Ceusters, W., Klagges, B., Köhler, J., Kumar, A., Lomax, J., Mungall, C.,
Neuhaus, F., Rector, A.L., Rosse, C.: Relations in Biomedical Ontologies. Genome Biol-
ogy, 6:R46 (2005)

[9] Ding, L., Finin, T.: Characterizing the Semantic Web on the Web. In: Cruz, I., Decker, S.,
Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC
2006. LNCS, vol. 4273, pp. 242–257. Springer, Heidelberg (2006)

[10] McGuinness, D.L., Glass, A., Wolverton, M., Pinheiro da Silva, P.: Explaining Task
Processing in Cognitive Assistants that Learn. In: AAAI 2007 Spring Symposium on In-
teraction Challenges for Intelligent Assistants (2007)

[11] Tao, J., Sirin, E., Bao, J., McGuinness, D.L.: Integrity Constraints in OWL, accepted by
the 24th Conference on Artificial Intelligence (AAAI 2010)

[12] Michaelis, J.R., Zednik, S., Ding, L., McGuinness, D.L.: A comparison of the OPM and
PML provenance models. Tetherless World Constellation Technical Report (2009)

[13] Miles, S., Moreau, L., Futrelle, J.: OPM Profile for Dublin Core Terms (v0.3) (July
2009),
http://twiki.ipaw.info/pub/OPM/ChangeProposalDublinCoreMappi
ng/dcprofile.pdf

[14] Sahoo, S.S., Barga, R.S., Goldstein, J., Sheth, A.: Provenance Algebra and Materialized
View-based Provenance Management, Microsoft Research Technical Report (MSR-TR-
2008-170) (November 2008)

Abstract Provenance Graphs: Anticipating and
Exploiting Schema-Level Data Provenance

Daniel Zinn and Bertram Ludäscher

�����������	
���������
�	��

Abstract. Provenance graphs capture flow and dependency information recorded
during scientific workflow runs, which can be used subsequently to interpret, val-
idate, and debug workflow results. In this paper, we propose the new concept of
Abstract Provenance Graphs (APGs). APGs are created via static analysis of a
configured workflow W and input data schema, i.e., before W is actually executed.
They summarize all possible provenance graphs the workflow W can create with
input data of type �, that is, for each input v � � there exists a graph homomor-
phism �v between the concrete and abstract provenance graph. APGs are helpful
during workflow construction since (1) they make certain workflow design-bugs
(e.g., selecting none or wrong input data for the actors) easy to spot; and (2) show
the evolution of the overall data organization of a workflow. Moreover, after work-
flows have been run, APGs can be used to validate concrete provenance graphs.
A more detailed version of this work is available as [14].1

1 Introduction

The ability to record, visualize, and query provenance information (in particular data
lineage) is considered a key feature of scientific workflow systems and is becoming
increasingly important, e.g., to help interpret, validate or debug runs of scientific work-
flows. So far, provenance information is provided, almost by definition, only after the
execution of a workflow run. We propose a novel way of specifying, deriving, and ex-
ploiting a-priori (i.e., design-time) provenance information, i.e., which anticipates and
summarizes the structure of workflow provenance graphs, based on (i) the given work-
flow specification, (ii) a description of the workflow input structure (e.g., XML DTDs),
and (iii) declarative data scope expressions (i.e., actor configurations).

We focus on dataflow-oriented workflows with structured data models. Here, data
is organized in nested, labeled collections much like XML data. The scientific data
(base data) is handled opaquely by the workflow specification and the execution engine.
Actors, which wrap external components or tools (base functions) use configurations to
describe the interaction between the base data organized in nested collections and the
base functions.

Example 1: Simple phylogenetics workflow. Fig. 1 shows a simple phylogenetics work-
flow. The input data, a set of amino acid sequences (of base type ���) is stored inside
the ������	 collection that will also contain the intermediary and overall output data.

1 This work was supported in part by NSF awards IIS-0612326, OCI-0722079, DBI-0619060,
DE-FC02-07ER25811, ATM-0619139, and IIS-0630033.

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 206–215, 2010.
c� Springer-Verlag Berlin Heidelberg 2010

Anticipating and Exploiting Schema-Level Data Provenance 207

Project

Seq*

α: In← each //Tree

ω: skip

α: In←//Aligned/Seq

ω: INSERT
$tree
INTO /Project

α: In←//Seq

ω: INSERT
Aligned[$out]
INTO /Project

C
o
n
fi
g
s

W
o
rk

fl
o
w

G
ra

p
h

Fig. 1. A simple phylogenetics workflow consisting of three actors C�������, Q���	�
��, and
D
��T
��, together with a data source and sink. While the data (organized in nested, labeled
collections) flows through the actors during workflow execution, each actor selects base data,
calls external services, and places their results back into the stream. Actor configurations specify
which base data is selected (� part of the configuration) and how results are written back into
the stream (� part of the configuration). Note that the write configuration � of D
��T
�� is the
no-operation
��� since D
��T
�� should not have any e�ect on the collection data.

The actor C������� is configured to use all sequence objects (labeled with their type
���) as input, and create a new sub-collection
����� in the ������	 collection to
put all output data in. Q���	�
�� takes all ��� objects in the
����� collection, passes
the data to the Quicktree tool, and inserts the tool’s output, a phylogenetic tree, directly
under ������	. D
��T
��, which is used only for display purposes, draws each tree
object found in the input data. �
During workflow design, the scientist places actors on the workflow tool’s canvas and
subsequently provides actor configurations. The configurations play a significant role
for the semantics of the workflow, and it is thus important that the designer does not
introduce bugs. Our approach of providing the scientist with an abstract provenance
graph during this crucial phase helps to detect errors in the configurations. Abstract
provenance graphs make it obvious which base data is used and produced by which
actor, and how the data organization evolves during the workflow execution.

The main ideas and steps of our approach are as follows: We compute APGs ahead of
time, i.e., before a workflow W executes, using static analysis (type inference)
techniques. Specifically, we infer a schema-level summary of the possible concrete
provenance graphs that W can generate for the given input structures and actor con-
figurations. Since the information is provided at the schema-level, an APG can be seen
as a compile-time summary of the scientific workflow itself.

In particular, we make the following contributions: (1) We define abstract prove-
nance graphs as summaries for the concrete provenance graphs a workflow can create
for a given input schema. Concrete and abstract graphs are related via graph homomor-
phisms. (2) We introduce three kinds of abstract provenance graphs for workflows with
a structured data model: flowgraph, time-collapsed and structure-collapsed flowgraph.
(3) We provide examples to demonstrate the usefulness of APGs for workflow design.

2 Motivation

Recent work about scientific workflow design has demonstrated that constructing sci-
entific workflows using an XML-like data model with XPath-like configurations leads

208 D. Zinn and B. Ludäscher

to robust workflows with less shims and wires compared to approaches that do not de-
ploy structured data models [10,13,12]. The key insight is that the XML data structure
provides a level of indirection for actor communications and thus e�ectively removes
the tight coupling between data flow, control flow, and the workflow graph.

Bugs introduced in the workflow configurations are hard to detect during design-
time. The configurations determine which part of the input data of an actor is used as
input to the wrapped component (base functions) and how the components output is
incorporated back into the actors’ XML output stream. Errors in input configurations �

can cause actors to not call their base functions, simply because the XPath expressions
do not match any data in the input stream. Further, even when input data is selected and
base functions are called, a configuration error can cause a base function to be supplied
with the wrong input data, i.e., data that the workflow designer did not intend to be
input. We will now provide examples for these two kinds of errors.

Example 2: Configuration errors causing idle actors. Consider the phylogenetics work-
flow from Example 1 (Fig. 1). Imagine the input expression � of the Q���	�
�� actor
to contain a spelling error ��
��������� instead of ��
���������. Then, no data
would be selected from the actor’s input, and consequently, its base function (here the
Q���	�
�� tool) would not be called; also none of the following actors would execute
their base function. This bug of idle actors is hard to spot during design time. �
Example 3: Configuration errors causing wrong input selections. Consider again the
workflow in Fig. 1 with the input expression � of Q���	�
�� changed to �����. Al-
though the actor is not idle, the data provided to the base function comprises all se-
quence data. This includes the aligned sequences as well as the unaligned ones that
were part of the global workflow input. Again, this configuration error is not evident
without carefully inspecting the configurations and having the overall XML structure
in mind. Note that this type of bug might even be hard to notice during runtime: the
base function will simply be provided with more data, potentially not creating obvious
fail-stop faults, but hard-to-detect semantic errors. �
To summarize, although configurations allow us to construct flexible and adaptive work-
flows, they are also prone to typos and other errors that would cause the workflow to
behave in ways not intended by the designer. However, once a workflow has been run,
the data and its lineage (or provenance) can be visualized in several ways. A provenance
flowgraph [3] shows how the nested collection structure and the data evolves from one
workflow step to the next. The flowgraph of the workflow from Example 1 is shown in
Fig. 2: the collection structure is laid out as a tree using black top-to-down edges; the
green left-to-right edges show dataflow from the collection input to the actors and fur-
ther to the output collection. The provenance flowgraph visualizes the detailed dataflow
of a scientific workflow. It can thus be used to detect errors in the actor configurations.
However, the following two reasons prevent the flowgraph being utilized during work-
flow design: (i) The provenance graph, by definition, is constructed during or after the
workflow execution. (ii) The provenance graph provides too much detail. In fact, for re-
alistic workflows, provenance graphs can easily contain thousands of nodes [3], making
them impractical to find design-errors without explicitly querying the graph structure.

Anticipating and Exploiting Schema-Level Data Provenance 209

Project Project

Aligned

Clustalw

Seq Seq Seq
Seq Seq Seq
Seq Seq ...

Seq Seq Seq
Seq Seq Seq
Seq Seq ...

Seq Seq Seq
Seq Seq Seq
Seq Seq ...

Project

Aligned

Seq Seq Seq
Seq Seq Seq
Seq Seq ...

Seq Seq Seq
Seq Seq Seq
Seq Seq ...

Tree

QuickTree DrawTree

Project

Aligned

Seq Seq Seq
Seq Seq Seq
Seq Seq ...

Seq Seq Seq
Seq Seq Seq
Seq Seq ...

Tree

Fig. 2. Provenance flowgraph for the workflow of Fig. 1. It shows that the C������� actor reads
in all �	� objects to create the �	� objects under the �����	� collection. These newly created
aligned sequences are then used by Q���	�
�� to infer a phylogenetic tree. D
��T
�� only dis-
plays the tree and not change the data stream; thus it is not connected to the last data-graph.

Project

Seq*

Project

Seq* Aligned

Seq*

Project

Seq* Aligned

Seq*

Tree

QuickTreeClustalw

Project

Seq* Aligned

Seq*

Tree

DrawTree

Fig. 3. Abstract provenance flowgraph for the phylogenetic workflow from Fig. 1. Similar to the
concrete provenance graph (Fig. 2), a data-oriented view of the workflow is presented. However,
the abstract graph uses a graphical representation at the schema-level to summarize the data
involved in the computation and is thus more compact than the concrete flowgraph.

3 Abstract Provenance Graphs

Similar to concrete provenance graphs, abstract provenance graphs show the collection
structure and dataflow. However, (1) the graph is computed as a static analysis before the
workflow is run, and (2) the data and actors are shown at a type level and thus in a con-
densed yet informative way. Fig. 3 shows the abstract flowgraph for the phylogenetics
workflow from Example 1. The relationship between workflow description W, a con-
crete flowgraph FW , and an abstract flowgraph AW is shown in the following diagram.

W AW (τ)
static analysis

via τ

FW (v)

via v ∈ τ

workflow

execution

em
be
dd
in
g
/

co
ns
tra
in
ts

su
m
m
ar
y/

gr
ap
h
ho
m
om
or
ph
is
m
H v

During the execution of a workflow W on
an input value v, provenance information can
be collected to create a concrete flowgraph
FW (v). However, given a workflow W to-
gether with an input type �, we can infer an
abstract flowgraph AW(�) via abstract inter-
pretation, a form of static analysis.

The abstract provenance graph summa-
rizes possible concrete provenance graphs
(i.e., one for each value v � �) via an em-
bedding that gives rise to a graph homomor-

phism2 on the two graphs. Thus, the APG constrains the possible provenance graphs
that can be created by the specific workflow W with input schema �. Consider the APG

2 A graph homomorphism is a mapping between two graphs that respects their structure. More
concretely, it maps adjacent vertices to adjacent vertices.

210 D. Zinn and B. Ludäscher

in Fig. 3: Since there is no edge between the left ��� node in the second type graph to
the Q���	�
�� actor, there is no input value v � � for which Q���	�
�� would use any
of those sequence-data as input. The abstract provenance graph can therefore be used as
a data-oriented view of the workflow specification itself. Since it is created at the type-
level without actually executing the workflow, it can be used during workflow design
time to provide immediate feedback to the designer upon configurations changes.

We use XML to represent nested, ordered collections that can contain base data,
where �v and �v denote the set of base data nodes and collection nodes of a value v
respectively. To simplify the presentation of the rest of the paper, we consider workflow
pipelines, i.e., where a workflow W is a sequence of actors: W � A1 � A2 � � � � � An.
We identify each actor with a function (or update) from values to values. The execution
semantics of W on input data v0 is then simply the composition of its actors.

Provenance flowgraph. A provenance flowgraph FW (v0) shows the evolution of the
XML data v0� � � � � vn during the execution of workflow W on the XML data v0 (Fig. 2).
In particular, the provenance of base data items d � �v is illustrated. FW (v0) is com-
posed from (1) the individual graphs for each value, (2) nodes i � � representing actor
invocations, and (3) provenance edges of the kind ��, ��	, and ���� with �� � � � �,
��	� ���, and ����� ���. Thus, our model closely ressembles the Open Provenance
Model (OPM) [11]. Our �� and ��	 relations correspond to the inverses of OPM’s ����
and ���� relations.

3.1 Abstract Provenance Flowgraphs

As an important step towards the creation of APGs, we now introduce the formalism
for our types �. We adapt regular expression types (RE types) [9] to summarize a set of
values. Our RE types are similar to DTDs or XML-Schema, with two distinctions: (1)
we disallow recursion, and (2) we restrict them to our data model, which contains no
attributes. (3) As it is the case in XML Schema, we disallow ambiguous [6] RE types.
Like XML Schemas, RE types can encode vertical context information (the sequence
of labels from the root to the current node). Our non-recursive RE types are of the
following form:

� ::� () � T � �� �� � ���� � a[�] � �� a � �� T � � (1)

An RE type can either be the type of the empty sequence (); a base type T (e.g., �	���
or ���); a sequence of two already defined types; the alternative of two types; a collec-
tion type a[�] with a label a from the label alphabet �; or a repetition type �

�. The set
of values of a type � (written [[�]]) is recursively defined in the usual [9] way:

(i) [[()]] � �()�
(ii) [[T]] � �d � d is a base data value of type T �
(iii) [[�� ��]] � �x� y � x � [[�]]� y � [[��]]�
(iv) [[����]] � [[�]] � [[��]]
(v) [[a[�]]] � �a[x] � x � [[�]]�
(vi) [[��]] � �a0� a1� � � � � an � n � � 0 � i � n� ai � [[�]]�

(2)

Note, how the embedding �1 in Fig. 4(a) is a summary for the value v1: regardless of
how many
-labeled subtrees there are in v1, they are all mapped to the single
 symbol

Anticipating and Exploiting Schema-Level Data Provenance 211

X

A A B B

12 42 “x” “x” “a” “b”

v1 =

a) b)

c)

τ = X

(A | B)*

int,string* string*X[(A[int, string*] | B[string*])*]

X[A[5, “hallo”, “world”], B[“x”],B[()],A[42]]

τ =

v2 =

E2

X[A[12],A[42,“x”],B[“x”],B[“a”,“b”]]v1 =

E1

Fig. 4. (a) regular expression type � and values v1� v2 � � with embeddings �1 and �2; (b) and (c)
show the graphical representations of � and v1, respectively

in the type �. In general, sequences in the value that are characterized by the repetition
constructor “�” are collapsed in the type. Furthermore, since every v � � has a derivation
that corresponds to an embedding, � summarizes all its values. Fig. 4(a) highlights this
fact by showing two di�erent values v1 and v2 with their respective embeddings. We
further group multiple invocations to one actor node via 	 : �

. Due to space
constraints, we refer to [14] for more details.

The abstract provenance flowgraph AW (�0) is based on the intermediary types �i

and the workflow output type �n (which are constructed via propagating �0 through the
workflow) and provenance edges. This is similar to the concrete flowgraph, which is
composed of the graphs for the individual values v0� � � � � vn. Since there are embeddings
�i for each of the values into each of the types in the abstract graph, and since 	 is
a mapping between the invocation nodes in FW (v0) and the actor nodes in the abstract
flowgraph AW(�0), we have a complete mapping of all nodes in FW (v0) to the nodes in
AW(�0). Similar mappings can be constructed for a di�erent input value v�

0 � �. We now
require that edges in AW (�0) are placed such that for all input values v � � the resulting
mapping�v :� �v � 	 is a “tight” graph homomorphism as described below:

Property 1. The abstract flowgraph AW(�0) has a provenance edge e (e.g., ��, ��	, or
���� edge) between two nodes N1� N2 i� there is an input value v � �0 such that the
concrete flowgraph FW (v) contains two nodes n1� n2 with �v(n1) � N1 and �v(n2) �
N2, such that n1 and n2 are connected with a provenance edge e of the respective kind3.

Corollary 1. If there is no �� edge between a base type node T and an actor node A
in the abstract flowgraph AW(�), then in no execution of W on any value v � � will any
invocation of actor A use a data item b that would be mapped to T via�v. In particular,
if an actor node A does not have any incoming edges in the abstract flowgraph, then its
base function will never be called.

This corollary is very useful in practice, as it helps to discover errors as in Example 2.
The abstract provenance graph, which indicates that none of the actors Q���	�
�� and
D
��T
�� will be called is shown in Fig. 5.

Corollary 2. If there is an �� edge between a base type node T and an actor node
A in the abstract flowgraph AW(�), then there is at least one input value v � � such

3 Note, that we have not drawn copy edges in our abstract provenance layouts (e.g., in Fig. 3) to
avoid cluttering the graph.

212 D. Zinn and B. Ludäscher

Project

Seq*

Project

Seq* Aligned

Seq* QuickTreeClustalw DrawTree

Project

Seq* Aligned

Seq*

Project

Seq* Aligned

Seq*

Fig. 5. Abstract flowgraph for Example 2 showing idle actors Q���	�
�� and D
��T
��

Project

Seq*

Project

Seq*

Clustalw

Project

Seq* Aligned

Seq*

Tree

QuickTree

Aligned

Seq*

Project

Seq* Aligned

Seq*

Tree

DrawTree

Fig. 6. Abstract flowgraph for Example 3 showing that Q���	�
�� also uses the unaligned set of
sequences as input and not just the aligned ones as was desired

that executing W on v will cause an invocation of actor A that uses a data item b that
corresponds to T via �v.

This corollary helps to identify configuration errors as in Example 3, where too much
data was selected as input for a particular component:

3.2 Variations of Abstract Provenance Graphs

Abstract provenance flowgraphs can be used as a starting point to create even more
coarse-grained summaries:

Time-collapsed flowgraph. Instead of showing the evolution of intermediary data
from actor to actor in the workflow, we can collapse all nodes that are connected via
copy edges into one single node. This view is especially interesting in workflows that
only add data and collections from step to step, since here each node in the collapsed
graph is also a node in the output type �n (since no actor deletes data or collections).
Thus, the time-collapsed flowgraph for add-only workflows corresponds to a summary
of the output data, explaining its provenance:

Project

Seq* Aligned

Seq*Clustalw

DrawTree

QuickTree

1) 2) 3)
Project

Seq* Aligned

Seq*

Tree

QuickTree

Clustalw DrawTree

Project

Seq* Aligned

Seq*

Tree

QuickTree

Clustalw DrawTree

Fig. 7. Time-collapsed abstract flowgraphs for the workflows described in Examples 1-3. 1) is the
intended behavior, in 2), a configuration errors causes two actors to idle, and in 3), Q���	�
��

also consumes the �	� data directly under the ����	�� collection, which is a design error

Anticipating and Exploiting Schema-Level Data Provenance 213

Clustalw
Project/
Seq*

Project/
Aligned/
Seq*

Project/
Seq*

Project/
Aligned/
Seq* Project/

Tree
QuickTree DrawTree

Clustalw QuickTree
Project/
Seq*

Project/
Aligned/
Seq*

Project/
Tree

DrawTree
1)

2)

3)

DrawTree

QuickTree

Clustalw

Fig. 8. Structure-collapsed flowgraphs for the workflows from Examples 1-3. The collection-
structure is collapsed into the leaf nodes. This graph shows the explicit routing of data items
through the set of actors. In this view, actors that work on data independently are drawn as parallel
branches (not shown in these examples).

Structure-collapsed flowgraph. Starting from the time-collapsed flowgraph, we can
additionally summarize the graph by collapsing XML nesting edges into their leaf
nodes, i.e., into the data type nodes. The result (Fig. 8) shows how base data evolves.

4 Related Work

Our provenance model is closely related to the Open Provenance Model (OPM) [11].
OPM does not directly support nested data; although there is a proposal to handle col-
lections in OPM [8]; we adopt the extensions of Anand et al. [3] for nested data here.
Our concrete provenance flowgraph is also based on [3], which introduces a provenance
model for workflows with XML-structured data models and actors with update seman-
tics. In their work, they use a combined structure for eÆcient storage, which was the
inspiration for our time-collapsed abstract graph versions. In [2], they propose sum-
mary techniques for provenance graphs along with a model to navigate between these
di�erent summaries. This work is similar to ours in the sense that it also addresses
the problem of summarizing provenance graphs. However, their approach is based on
actual provenance information that has been gathered during a workflow run. Their
created views thus summarize only one specific workflow execution—not like our ap-
proach, which summarizes all possible executions based on the workflow’s input data
type. Furthermore, our approach is intended to be used during workflow design-time
when no actual provenance information is available yet.

In a recent paper, Acar et al. [1] investigate the relationship between provenance
graphs and the computation performed by the system. They extend DFL, a dataflow-
oriented extension of the nested relational calculus, to produce concrete provenance
graphs. This paper is close to ours in the spirit of computing provenance graphs from
the language in which the workflow is defined rather than by collecting provenance
information via a rather loosely linked provenance recording mechanism. Our paper
demonstrates another advantage of linking provenance closely with the model of com-
putation by showing the usefulness of computing schema-level graphs.

214 D. Zinn and B. Ludäscher

Related to the summarization goal of our abstract graphs is the work from Biton et
al. [5,4], where groups of actors in a workflow are replaced by a module to simplify
the provenance information. Our work here is orthogonal in the sense that the ZOOM
groups can be used to further collapse multiple actors in our abstract graphs. In other
words, we can further summarize abstract graphs by applying the ZOOM grouping to
our grouping	 of invocations.

Our work, suggesting to use abstract provenance graphs as feedback, aims at im-
proving the workflow design process. Viewed from this perspective, there exists related
work within the scientific workflow community. In [7], Gibson et al. present a “data
playground” for intuitive workflow specification, in which users can focus on their
data, rather than on the processes of the workflow. It would be interesting to investigate
whether our concept of abstract provenance graphs can be utilized in this system. Using
abstract provenance graphs inside a GUI to create workflow configurations by having
the users interactively select nodes, and possibly groupings for multiple invocations, is
also an interesting avenue for future work.

5 Conclusion

Abstract provenance graphs make explicit use of XML typing mechanisms to summa-
rize potential provenance graphs. We generalized embeddings that occur while vali-
dating XML documents with DTDs to graph homomorphisms between concrete and
abstract provenance graphs. Similar to how an XML document is validated against a
DTD, our approach allows to validate a concrete flowgraph FW (v) (recorded by a sci-
entific workflow system) against the abstract flowgraph AW (�) obtained from a config-
ured workflow and input type �. Furthermore, based on type propagation algorithms,
abstract provenance graphs can be constructed without executing the workflow. Thus,
they allow the designer to anticipate the high-level (XML) structure of the workflow re-
sult, together with a summary of the result derivation in terms of the workflow’s active
components (actors). To the best of our knowledge, this is the first attempt to exploit
provenance information during the design process of scientific workflows.

Acknowledgements. The authors thank Timothy McPhillips, Lei Dou, Sean Riddle,
Sven Köhler, and Shawn Bowers for their work on collection-oriented modeling and
design in Kepler, as well as for the many fruitful discussions.

References

1. Acar, U., Buneman, P., Cheney, J., den Bussche, J.V., Kwasnikowska, N., Vansummeren,
S.: A graph model of data and workflow provenance. In: Proceedings of the 2nd USENIX
Workshop on the Theory and Practice of Provenance, TaPP 2010 (2010)

2. Anand, M.K., Bowers, S., Ludäscher, B.: A navigation model for exploring scientific work-
flow provenance graphs. In: Proceedings of the 4th Workshop on Workflows in Support of
Large-Scale Science (WORKS 2009), pp. 1–10. ACM, New York (2009)

3. Anand, M.K., Bowers, S., McPhillips, T.M., Ludäscher, B.: Exploring scientific workflow
provenance using hybrid queries over nested data and lineage graphs. In: SSDBM, pp. 237–
254 (2009)

Anticipating and Exploiting Schema-Level Data Provenance 215

4. Biton, O., Cohen-Boulakia, S., Davidson, S.B.: Zoom UserViews: Querying relevant prove-
nance in workflow systems. In: VLDB 2007, pp. 1366–1369 (2007)

5. Biton, O., Davidson, S.B., Khanna, S., Roy, S.: Optimizing user views for workflows. In:
ICDT 2009: Proceedings of the 12th International Conference on Database Theory, pp. 310–
323. ACM, New York (2009)

6. Bruggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Information and
Computation 142(2), 182–206 (1998)

7. Gibson, A., Gamble, M., Wolstencroft, K., Oinn, T., Goble, C., Belhajjame, K., Missier, P.:
The data playground: An intuitive workflow specification environment. Future Generation
Computer Systems 25(4), 453–459 (2009)

8. Groth, P., Miles, S., Missier, P., Moreau, L.: A proposal for handling collections in the Open
Provenance Model (2009)

9. Hosoya, H., Vouillon, J., Pierce, B.C.: Regular expression types for XML. ACM Transactions
on Programming Languages and Systems (TOPLAS) 27(1), 46–90 (2005)

10. McPhillips, T., Bowers, S., Zinn, D., Ludäscher, B.: Scientific workflow design for mere
mortals. Future Generation Computer Systems 25(5), 541–551 (2009)

11. Moreau, L., Cli�ord, B., Freire, J., Gil, Y., Groth, P., Futrelle, J., Kwasnikowska, N., Miles,
S., Missier, P., Myers, J., Simmhan, Y., Stephan, E., den Bussche, J.V.: The Open Provenance
Model - core specification (v1.1). Future Generation Computer Systems (2010)

12. Zinn, D., Bowers, S., Ludäscher, B.: XML-based computation for scientific workflows. In:
Intl. Conf. on Data Engineering, ICDE (2010); See also technical report CSE-2009-21, UC
Davis, 2009

13. Zinn, D., Bowers, S., McPhillips, T.M., Ludäscher, B.: Scientific workflow design with data
assembly lines. In: Deelman, E., Taylor, I. (eds.) Proceedings of the 4th Workshop on Work-
flows in Support of Large-Scale Science (WORKS 2009). ACM, New York (2009)

14. Zinn, D., Ludäscher, B.: Abstract provenance graphs: Anticipating and exploiting schema-
level data provenance. Technical Report CSE-2010-14, UC Davis (2010)

On the Use of Semantic Abstract Workflows
Rooted on Provenance Concepts

Leonardo Salayandia and Paulo Pinheiro da Silva

University of Texas at El Paso, Computer Science Department,
El Paso, Texas 79968, USA
{leonardo,paulo}@utep.edu

http://www.cs.utep.edu

Abstract. Two challenges related to capturing provenance about scien-
tific data are: 1) determining an adequate level of granularity to encode
provenance, and 2) encoding provenance in a way that facilitates end-
user interpretation and analysis. A solution to address these challenges
consists in integrating two technologies: Semantic Abstract Workflows
(SAWs), which are used to capture a domain expert’s understanding of
a scientific process, and PML, an extensible language used to encode
provenance. This paper describes relevant features of these technologies
for addressing the granularity and interpretation challenges of prove-
nance encoding and presents a discussion about their integration.

Keywords: Process, Provenance, PML, Semantic Abstract Workflows.

1 Introduction

Semantic Abstract Workflows (SAWs) are useful to encode process knowledge
from the perspective of domain experts [1] and the Proof Markup Language
(PML) is useful to encode justifications about how information is produced [2].
This paper describes the integration of SAWs and PML, which results in two
benefits: 1) Given that determining an adequate level of granularity to encode
provenance is challenging [3], i.e, provenance at a very fine level may not be scal-
able and provenance at a very coarse level may not be useful, process knowledge
captured from the perspective of domain experts serves as a guide to determine
an adequate level of granularity; 2) Provenance languages such as PML utilize
specialized terminology that may be unfamiliar to end users. The integration of
these technologies has the benefit of having domain-specific terminology used to
refer to a domain expert’s understanding of a process that can be propagated to
refer to provenance knowledge as well.

This paper is organized as follows: Section 2 presents SAWs and PML, Sec-
tion 3 presents how these technologies are integrated, Section 4 presents a dis-
cussion about the integration, and Section 5 concludes the paper.

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 216–220, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.cs.utep.edu

On the Use of SAWs Rooted on Provenance Concepts 217

2 Background

2.1 Semantic Abstract Workflows

SAWs capture flows of information from information sources of a process, through
information transformation activities, and finally to information sinks at the end
of that process. An initial phase in creating a SAW is to have domain experts
identify and name the types of information and types of activities involved in
their processes. For example, the information type Digital Elevation Map is dif-
ferent from the information type Gravity Map for a geophysicist because each
type of map models different properties of interest about a region of Earth. In
contrast, both maps could be represented as PDF files, and therefore, be consid-
ered of the same information type from a programmer’s point of view; however,
this type classification would not yield a SAW that captures the point of view
of the process’ domain expert, i.e., the geophysicist. Activity types are simi-
larly identified from the point of view of the domain expert, where Method is
the preferred term used to refer to discrete activities included in processes that
transform information, i.e., transform information from one type to another.
Methods can be software driven, such as the type of application used to trans-
form a dataset to a map, or human driven, such as the type of activity performed
to analyze a model to obtain an interpretation.

SAWs do not contain constructs to represent control flow such as order of
execution, selection, and iteration. As a result, one SAW can model different im-
plementations of a process. Another characteristic of SAWs is that path traver-
sals are suggestive in nature. Specifying an information type flowing from one
method type to another means that it is conceivable, in the view of the do-
main expert, that such flow can occur. In executing a process implementation,
however, that information flow may or may not happen.

2.2 Proof Markup Language

PML defines primitive concepts and relations for representing provenance about
data. Two essensial modules of PML are: 1) The provenance ontology (PML-P)
that defines concepts to represent identifiable things from the real world that are
useful to determine data lineage; and 2) the justification ontology (PML-J) that
defines concepts and relations to represent dependencies between identifiable
things.

The foundational concept in PML-P is IdentifiedThing, which refers to
an entity in the real world. These entities have attributes that are useful for
provenance, such as name, description, create date-time, authors, and owner.
Two key subclasses of IdentifiedThing motivated by provenance representa-
tional concerns are Information and Source. Information supports references
to information at various levels of granularity and structure. Source refers to an
information container, and it is often used to refer to all the information from the
container. For example, things such as organization, person, agent, and service
can be a Source. PML-P provides a simple but extensible taxonomy of sources.

218 L. Salayandia and P. Pinheiro da Silva

PML-J provides concepts and relations used to encode information manipu-
lation steps used to derive a conclusion. A justification requires concepts for
representing conclusions, conclusion antecedents, and information manipula-
tion steps used to transform or derive conclusions from antecedents. The jus-
tification vocabulary has two main concepts: NodeSet and InferenceStep. A
NodeSet includes structure for representing a conclusion and a set of alterna-
tive InferenceSteps each of which can provide an alternative justification for a
conclusion. Every NodeSet has a unique web-addressable identifier, i.e., a URI.
Web-addressable NodeSets make it possible to construct justification trees in a
distributed environment.

3 Integrating Process and Provenance Concepts

The ontology behind the encoding of SAWs is called Workflow-Driven Ontol-
ogy (WDO) [4]. This ontology defines the generic concepts of Information
and Method that domain experts specialize to capture the terminology about
their processes. The ontology of provenance-related concepts used in PML is the
PML-P ontology. PML-P includes the concepts of Information, MethodRule,
and Source that are specializations of the more generic concept Identified
Thing. The WDO and PML-P ontologies are aligned to take advantage of the
process knowledge that domain experts capture through SAWs to encode prove-
nance from a process implementation. The main alignment involves the merger
of the WDO concept of Information with the PML-P concept of Information,
and the substitution of the WDO concept of Method for the PML-P concept
of MethodRule. The ontology alignment also includes the use of the PML-P
concept Source as the sources and sinks used in SAWs. Sources and sinks as
used in SAWs are conceptually equivalent, except for the flow of information,
i.e., sources produce information and sinks receive information. Sources in PML,
however, are used through another PML-P concept denominated SourceUsage,
which records information about the date and time of source access. This is im-
portant in provenance encodings because sources, e.g., websites and documents,
may change over time and the provenance encodings may lose validity. Date/time
source access is not necessary for process knowledge.

4 Discussion

SAWs are designed to model a domain expert’s understanding of a process. As
such, SAWs can be used to identify provenance use cases that can be obtained
from the implementation that the domain expert uses to carry out a process.
This approach is offered by the WDO-It! tool, a Java-based editor for SAWs [5].
WDO-It! includes functionality to generate PML-encoding modules based on
the activities identified in the process. These modules are used to instrument
a process implementation to intercept and interlink intermediate results as a
process is being executed, effectively capturing provenance in PML about the
resulting artifact.

On the Use of SAWs Rooted on Provenance Concepts 219

Abstract process knowledge encoded in SAWs is useful to present provenance
at a manageable level of detail to the end user. For example, the execution of a
process may involve many iterations of a cycle, and hence, the resulting prove-
nance tree may be cumbersome to interpret and analyze. Given that SAWs do
not contain control-flow information, SAWs are an effective canonical represen-
tation of a process with respect to the methods involved. What is more, since
processes encoded in SAWs use the same ontological concepts used to encode
provenance in PML, method and data types included in SAWs can be used to
filter provenance trees with respect to specific parts of a process.

The integration of SAWs and PML results in controlled vocabularies created
by domain experts to encode process knowledge that are also useful to formu-
late provenance-related queries and to present provenance for browsing by users
familiar with the domain of discourse.

With respect to related work, [6] presents an approach that consists of infer-
ring a schema-level summary of the possible concrete provenance graphs that
could be generated from an executable workflow specification. The result is an
abstract provenance graph that could be used to facilitate the analysis of data
flow as it relates to a workflow specification. In this sense, abstract provenance
graphs are similar in nature to SAWs. However, levels of abstraction provided
by the two approaches differ. With SAWs, the approach consists in having the
scientist model their understanding of a process as a graph and using the termi-
nology that is specific to the problem domain. With abstract provenance graphs,
the approach consists on creating an executable specification of the scientist’s
process first and then generating the abstraction from it. On one hand, abstract
provenance graphs will result in a level of abstraction that is less close to the
problem domain but that is tightly integrated to a specific execution environ-
ment. On the other hand, SAWs will result in a level of abstraction that closely
relates to the problem domain, however, additional manual work is needed to
map that level of abstraction to specific implementations of the process. An addi-
tional benefit of SAWs is that they can be mapped to multiple implementations
of the same process, or even be mapped to manual systems where processes are
human driven instead of software driven.

5 Conclusion

This paper presented an integration of technologies used to capture process
and provenance knowledge through the alignment of their underlying ontolo-
gies. Two main benefits are that provenance is encoded at a granularity that
suits the level of detail documented by domain experts, and that provenance
is encoded using domain expert’s defined concepts, which facilitates subsequent
querying and analysis of provenance. The integration of these technologies is im-
plemented through the WDO-It! tool [5], and an approach named CI-Miner [7]
has been developed to guide domain experts to document their processes and
to construct provenance-capturing modules that can be used to instrument pro-
cess implementations. The latest version of the aligned ontology can be found
at http://trust.utep.edu/2.0/wdo.owl.

220 L. Salayandia and P. Pinheiro da Silva

This work was funded in part by the National Science Foundation (HRD-
0734825) and the Department of Homeland Security (2008-ST-062-000007).

References

1. Pinheiro da Silva, P., Salayandia, L., Del Rio, N., Gates, A.Q.: On the Use of
Abstract Workflows to Capture Scientific Process Provenance. In: 2nd Workshop on
the Theory and Practice of Provenance (TaPP 2010), San Jose, CA (2010)

2. McGuinness, D., Ding, L., Pinheiro da Silva, P., Chang, C.: PML2: A Modular Ex-
planation Interlingua. In: AAAI 2007 Workshop on Explanation-aware Computing,
Vancouver, British Columbia, Canada (2007)

3. Stephan, E., Halter, T., Critchlow, T., Pinheiro da Silva, P., Salayandia, L.: Us-
ing Domain Requirements to Achieve Science-Oriented Provenance. Late Breaking
Contribution Poster, to appear in IPAW (2010)

4. Salayandia, L., Pinheiro da Silva, P., Gates, A.Q., Salcedo, F.: Workflow-Driven
Ontologies: An Earth Sciences Case Study. In: 2nd IEEE International Conference
on e-Science and Grid Computing, Amsterdam, Netherlands (2006)

5. WDO-It!: An editor for Worflow-Driven Ontologies, http://trust.utep.edu/wdo
6. Zinn, D., Ludaescher, B.: Abstract Provenance Graphs: Anticipating and Exploiting

Schema-Level Data Provenance. In: 3rd International Provenance and Annotation
Workshop, Troy, NY (2010)

7. Pinheiro da Silva, P., Salayandia, L., Gandara, A., Gates, A.Q.: CI-Miner: Semanti-
cally Enhancing Scientific Processes. Earth Science Informatics 2(4), 249–269 (2009)

http://trust.utep.edu/wdo

Provenance of Decisions in Emergency Response
Environments

Iman Naja, Luc Moreau, and Alex Rogers

School of Electronics and Computer Science, University of Southampton
Southampton, SO17 1BJ, UK

{izn1g08,L.Moreau,acr}@ecs.soton.ac.uk

Abstract. Mitigating the devastating ramifications of major disasters
requires emergency workers to respond in a maximally efficient way. In-
formation systems can improve their efficiency by organizing their efforts
and automating many of their decisions. However, absence of document-
ing how decisions were made by the system prevents decisions from being
reviewed to check the reasons for their making or their compliance with
policies. We apply the concept of provenance to decision making in emer-
gency response situations and use the Open Provenance Model to express
provenance produced in RoboCup Rescue Simulation. We produce prove-
nance DAGs using a novel OPM profile that conceptualizes decisions in
the context of emergency response. Finally, we traverse the OPM DAGs
to answer some provenance questions about those decisions.

1 Introduction
Major disasters, like the 2004 Indian Ocean and the 2010 Haiti earthquakes cause
deaths, injuries, and serious damage. To minimize the effect of such disasters,
emergency responders must work in a maximally efficient way. They must make
numerous decisions centered on prioritizing which civilians to rescue and they
must make these decisions in unpredictable changing environments while racing
against time and coordinating with different rescue agencies. As such, there is
an increasing need to build information systems that organize the efforts of
responders and improve their efficiency by automating many of the decisions
they make on the ground. Most notably, recent efforts in research in the disaster
management domain on the levels of developing infrastructure simulation and
intelligent agent are being tested in the RoboCup Rescue Simulation league [1].

However, a critical shortcoming arises within current approaches through their
inability to represent the causal factors that led certain decisions to be made.
In turn, this makes it difficult to determine whether these decisions were com-
pliant with policies and regulations, and to hold decision makers to account1.
1 We consider accountability of decisions to be analogous to Weitzner et al.’s [25]

definition of information accountability, where the transparency of use of information
enables ascertaining its appropriate use as per given rules. So, we perceive that
transparency of actions and decisions, and how they influenced later actions and
decisions, permits the checking of compliance with requirements or policies.

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 221–230, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

222 I. Naja, L. Moreau, and A. Rogers

As such, there is a need to document how decisions were made and to refer to
such documentation when the need arises to review the history of their making
or to check compliance with rules and policies. This can done through recording
and querying their provenance, where provenance describes the history of items,
physical or immaterial, and how they came to be. Provenance has proven to be
useful in a variety of domains including amongst others workflow re-enactment,
inferring reasons for result differences in scientific experiments, and quality as-
surance of data [2,22,16]. To this end, we consider the provenance of decisions
to include any data that affected their making as well as the processes that led
to this data. We consider this provenance to be vital to understanding causality
of events within a system and how decisions influence others in decision chains.

Thus, our work aims to exploit the provenance of decisions to understand
how they were made and why. Being motivated by addressing problems in the
emergency response domain, we proposed the use case “Provenance of Decision
Making in Emergency Response” to the W3C Provenance Incubator Group. The
work presented in this paper forms the first steps towards addressing the sce-
narios of the use case. Accordingly, we use RoboCup Rescue Simulation (RCRS)
as a testbed to show how we can enable an automated decision-making system
to record its provenance by applying the PrIMe methodology [14] to it. PrIMe
assists in indicating what needs to be recorded so that the provenance questions,
we are interested in, can be answered. Because answering the questions requires
querying provenance graphs, we use the Open Provenance Model (OPM) [17] to
produce provenance DAGs, making use of a novel OPM profile that specializes
OPM and conceptualizes decisions in the context of emergency response.

In summary, the contributions of this paper are as follows:

1. Applying OPM to the decision making domain, a field in which it has not
previously been used. We do so by proposing an OPM profile that specializes
OPM and use it to represent decisions in the context of emergency response.

2. A prototype to be integrated with RCRS that generates OPM DAGs and
answers provenance queries so as to handle the use case.

The rest of this paper is organized as follows. Section 2 presents our motivation
and the use case. Section 3 briefly describes RCRS. Section 4 shows how PrIMe
can be used to make RCRS provenance-aware. Section 5 details how provenance
information of RCRS can be exposed using the OPM profile RobocupProfile.
Section 6 presents related work and Section 7 presents future work and concludes.

2 Provenance of Decisions: Tracing Decisions Made by
Emergency Responders

We are motivated by the need to interpret events in cases of floods where the
police and fire brigade must evacuate casualties according to some prioritiza-
tion scheme from buildings that are flooded or buildings under the threat of
being flooded. Evacuees needing medical attention are taken to a triage area
and examined by medics who prioritize their care and delivery to hospitals.

Provenance of Decisions in Emergency Response Environments 223

Consequently, we proposed the use case “Provenance of Decision Making:
Tracing Decisions Made in Emergency Response Situations”2 to the W3C Prove-
nance Incubator Group3 so as to address the need for information systems that
not only organize efforts of emergency responders and improve their efficiency
but also use the provenance of decisions to reveal how they were made and why.
The goal of the use case is to suggest the use of provenance in the Justification
for Decisions dimension4. This dimension is divided into three sub-dimensions
[24]. Currently, we focus only on two: argumentation, where provenance is used
to deduce what information affected the choice of a certain solution, and an-
swering why-not questions, where provenance of decisions is used to capture
why particular choices were not made.

3 Decisions in RoboCup Rescue Simulation

RCRS league is a competition aiming to stimulate research in multi-agent systems
in the disaster management domain by inviting participants to devise state-of-the-
art strategies that automate decision-making, prioritization, and coordination and
cooperation [1]. The simulation models a city hit by an earthquakewith fires erupt-
ing in various parts of the city and buildings collapsing blocking roads and trapping
civilians. Three types of emergency response agents are initially spread across the
city with only the knowledge of its map. They then move around learning about
the world and performing their tasks. At each time step in the simulation, each
agent ‘thinks’ about what it should do and submits an action to the simulator5.
This computes the effect of all the agents’ actions on the world’s state and informs
the agent about the effect of its action and what new entities or changes it should
sense.

Due to space restrictions, we focus only on ambulance teams that remove
civilians trapped in buildings and transport them to refuges6.

Ambulance Agents. We utilize the platform’s default ambulance agents after
slightly improving them so they behave as follows. Each agent prioritizes civilians
according to how far they are from it, irrespective of criticality of conditions of
other civilians. So, it sorts the civilians, plans its path to the nearest one, heads
to it, unburies it, loads it, plans its path to the closest refuge and moves there.
Once at the refuge it unloads the civilian and repeats the previous steps for its
next target. If it is not aware of any civilians, it wanders about until it finds one.
Based on this scheme, when an agent heading to a civilian discovers another
on its way, it re-prioritizes and chooses the closer one. Also, an agent informs
other agents when it rescues a civilian or discovers that one has perished. This
prevents cases where agents head to save civilians that have died or have already

2 http://tiny.cc/Prov_Decision_Making
3 www.w3.org/2005/Incubator/prov/wiki/Main_Page
4 The use case includes additional propositions, see Future Work (§7).
5 The simulator is composed of a mediator kernel and several specialized simulators.
6 The other two types of agents are Fire Brigades which extinguish fires in buildings

to prevent further damage to them and Police forces which clear blockages in roads.

http://tiny.cc/Prov_Decision_Making
www.w3.org/2005/Incubator/prov/wiki/Main_Page

224 I. Naja, L. Moreau, and A. Rogers

been rescued and cases where agents wander about looking for civilians while
others are aware of ones that need to be rescued.

4 Provenance-Aware RoboCup Rescue Simulation
We now show how to apply PrIME [14], a three-phase methodology that when
applied to a system makes it provenance-aware, to enable RCRS to record its
provenance. In the first phase of PrIMe, we identified the following questions as
relevant to understanding events that usually take place in RCRS:

1. A civilian C1 was rescued by agent A. What were the steps (i.e. the sequence
of actions) that A took to rescue C1?

2. A certain civilian C2 died. Why was C2 not rescued?

3. After A rescued C1, its prioritized target list had C2 on top. However, A
rescued C3 next. What pieces of information influenced that change of goals?

4. What were the factors that led to the long delay in saving C4?

Note that PrIMe supports adding anticipated use cases at later stages. In the
second phase of PrIMe, we decomposed RCRS into three actors representing the
ambulance agent, kernel, and simulator. We then iterated the second phase to
identify the actors within the ambulance agent that are responsible for the differ-
ent decisions, and they are as follows. (1) Thinker : the component that decides
what to do next based on the strategy and the state. It is further decomposed
into two actors: the State maintainer maintains the agent’s state and view of the
world and the Planner decides what action to perform next. (2) Path Searcher :
the component that uses a path search algorithm to plan the path from one place
to another. (3) Sorter : the component that sorts the list of target civilians based
on a prioritization scheme. In the third phase of PrIMe, we mapped actors and
messages to OPM processes and artifacts respectively and created OPM edges
corresponding to information flow between the actors.

Figure 1 shows an example of a decision reached with the involvement of
some RCRS’s actors and illustrates the flow of messages between them7. We
trace the actors’ decisions and their interactions and state what interesting pro-
cess documentation they record. First, Planner checks the state of the agent by
consulting State Maintainer (message M1). State Maintainer asserts that the
agent is currently carrying a civilian and that it is not at a refuge (M2). Based
on this state, Planner decides to move towards a refuge. It requests from Path
Searcher the shortest path to the closest refuge (M3). Path Searcher produces
the path, asserts it, and returns it to Planner (M4), which then informs the
kernel that it wishes to execute a ‘move’ action (M5). The kernel processes the
action and replies to the agent with the updated state of the world, newly per-
ceived entities, and agents’ messages (M6). Finally, Planner uses this response
to asserts the new information and update State Maintainer (M7).

7 For an example involving all RCRS’s actors check http://tiny.cc/iznMoveActors

http://tiny.cc/iznMoveActors

Provenance of Decisions in Emergency Response Environments 225

The Simulated World

Misc
Sim

M 5a
(Processed
Action)

M 5b (Updated State of World)State Maintainer

Planner

M1 Get State
M2 Return State

Justified by
M7

Update
State

Response
to

Based on

M3
Plan
Path

M4 Return Path

Kernel
Response

to

Path Search
and return
Path

M5 (Action=Move)
M6(Updates & New Sensed entities)

Has Civilian

Not at refuge

M
es
sa
g
es

R
el
at
io
n
sh
ip
s

Fig. 1. Some RCRS Actors and their Interactions

5 OPM-Based RCRS Provenance Information
OPM is a model of provenance designed to, among other requirements, allow the
exchange of provenance information between systems [17]. We assume that the
reader is familiar with its basic concepts. We chose OPM because of the features
it possesses, like controlled vocabulary, annotations, inference rules, and profiles.
An OPM profile consists of a mandatory unique global identifier in addition to
four optional elements as follows:

1. Controlled vocabulary for annotations, and their permitted subjects and
values, specifying application-specific properties. These are used to subtype
nodes and edges of OPM DAGs and to define application-specific properties.

2. General guidelines to how OPM graphs can be structured.
3. Profile expansion rules that show how nodes or edges can be derived.
4. Syntactic shortcuts and how they can be serialized.

We now present the OPM profile RobocupProfile that specializes OPM to rep-
resent provenance produced in RCRS. At this stage we only utilize the first two
elements of OPM profiles. First, we specify two subtypes of the Agent node (1)
Ambulance, corresponds to ambulance agents, and (2) Kernel, corresponds to
the kernel. Also, accounts are classified into (1) KernelAcct - corresponds to
the kernel’s viewpoint, (2) AgentAcct - corresponds to the viewpoint of agents,
and (3) AgentDetailAcct - corresponds to the nodes and edges pertaining to the
internal processings of the agent. Finally, tables 1, and 2 display the controlled
vocabulary of RobocupProfile.

RobocupProfile explicitly shows how processes and artifacts and the dependen-
cies linking them can model how RCRS ambulance agents make their decisions.

Table 1. RobocupProfile Artifacts and Processes and the Accounts they belong to

Sub-type Account

A
rt

ifa
ct

s TaskResult (rescuing a civilian succeeded or failed), Agent-
Perceptions, AgentMessage AgentState, (e.g. agent’s target
list, position, whether it is carrying a civilian or not)

AgentAcct
∪ KernelAcct

SortedListCivs, PlannedPath AgentDetailAcct

P
ro

ce
ss

es AmbulanceAction (move, unbury, load civilian, unload civi-
lain, rest), PassMessages, ReceiveMessage

AgentAcct
∪ KernelAcct

DecideAction, PlanPath, SortCivilians AgentDetailAcct
ManageMessages, ManageActions KernelAcct

226 I. Naja, L. Moreau, and A. Rogers

Table 2. RobocupProfile Edges

Edge Sub-type Effect Cause
Used ManagingMssgs ManageMessages AgentMessage

Used ConstructingMssgs PassMessage AgentMessage

WGB SortedListGeneration SortedListCivs SortCivilians

WGB PathGeneration PlannedPath PlanPath

WGB ResultOfAction TaskResult ∪ AgentState AmbulanceAction

WGB ResultOfHandlingAction TaskResult ∪ AgentState ManageMessages

WGB DecomposingMssgs AgentMessage ReceiveMessages

WTB ActionHandling ManageActions AmbulanceAction

WTB DecidingAction AmbulanceAction DecideAction

WDF TargetDiscovery AgentState AgentMessage
∪ AgentPerceptions

WDF SavedCivilian TaskResult AgentState

WDF UpdatedState AgentState AgentState ∪ SortedListCivs

WDF SortedCivs AgentState SortedListCivs

WDF PathToPriority PlannedPath AgentState

Handle
Agents’
Actions

Unload
Civilian
C1

Decide
on
Action

ResultOfAction
SavedCivilian

TaskResult

Resultof
HandlingAction

ManageActions
(KernelAcct)

Ambulance
ActionHandle

Agents’
Actions

Result
OfAction

Move
Carrying
Civilian

Resultof
HandlingAction

ManageActions
(KernelAcct)

Ambulance
Action

Plan
PathDecide

on
Action

Start

DecideAction
(AgntDetailAcct)

PlanPath
(AgntDetailAcct)

DecideAction
(AgntDetailAcct)

SavedCivilian

Fig. 2. Portion of OPM DAG

Specifically, the dependencies within each decision process on the different arti-
facts are explicitly stated. In turn, the dependencies of those artifacts on other
artifacts are also declared. Further, the dependencies of those artifacts on previ-
ous decision process are stated, using subtypes of was generated by edges. Hence,
chains of decisions, and how their results came out, can be expressed. Figure 2
shows a portion of an OPM DAG illustrating two AmbulanceActions (unload and
move), the decisions that produced them, and the artifacts that influenced those
decisions. In more detail, TaskResult ‘Civilian C1 rescued by Agent 1’ was derived
from AgentPerceptions which were generated by the kernel managing agents’ ac-
tions. This, in turn, was triggered by the agent unloading C1. The ‘unload’ action
was triggered by DecideAction which used AgentState artifacts indicating that
the agent ‘has a civilian’ and is ‘at a refuge’. In turn, the AgentState indicating
that the agent was at a refuge was generated by a ‘move’ action that used a path
artifact generated by PlanPath that was triggered by DecideAction. Note that the
kernel is required only in RCRS and not in the real world, as humans do not need
a ‘kernel’ to tell them the results of their actions.

Provenance of Decisions in Emergency Response Environments 227

Querying RCRS Provenance. Understanding why events occurred in RCRS
and how decisions affected them requires mapping provenance questions into
provenance queries. Querying consists of traversing the OPM DAG to produce
a provenance graph pertaining to the data items of interest. A query is formed
of a query data handle, which identifies the entity for which the provenance is
sought, and the scope of traversal [13], which identifies what forms a relevant
answer to the query (i.e. what parts of the OPM graph are of interest to the
querier).

Traversing a graph produced by RCRS should exploit RobocupProfile’s charac-
teristics. For instance, the data handle can specify the type of artifact pertaining
to the data item for which provenance is sought, e.g. for the query of question 1
in §4, the data handle is identified by the type of the artifact, namely TaskRe-
sult. Also, the scope can identify which paths to prune by discarding certain
sub-types of nodes or edges, as well as stopping the traversal when certain types
of nodes and edges are reached. Additionally, accounts can be used to prune
nodes and edges that are not in the scope, e.g. nodes belonging to KernelAcct
can be pruned when traversing the graph to address question 1.

We now briefly show how to address the questions in §4. Though all are queried
based on the above, each has varied aspects and is handled distinctly.

Answering question 1 is done by finding and traversing a series of Ambulance-
Actions where the last one generates a TaskResult concerning C1.

Question 2 requires checking why each agent did not save civilian C2, i.e.
why C2 never became their priority on their sorted list of civilians. We use
Chapman and Jagadish’s algorithms which explore why certain data item were
not returned by a query [5] and we find the SortedListCivs where C2 does not
show.

Question 3 requires finding AgentStates concerning both civilians and their
UpdatedState dependencies, and if needed the artifacts they were derived from.

Question 4 considers the activity of question 1 (sequence of actions taken to
save a civilian) and analyzes its beginning, ending, and the number of steps
between them. By showing the number of processes that took place within the
activity, we point out the factors that contributed to its elongation.

6 Related Work

The Belief-Desire-Intention framework [20] is the best known and best studied
model in the Agent Theories, Architectures, and Languages community [8]. How-
ever, it lacks mechanisms that allow agents to learn based on past experiences,
thus it has been extended to allow the use of learning in [19]. Other recent work
has aimed to make use of history and experiences by using an agent’s past ex-
periences and its history of interactions with other agents. While the aim of [12]
is to improve organizational performance by presenting a structural adaptation
method that is based on the history of interactions with agents to be used by an
agent to self-organize and decide to drop relations with other agents; most of the
other work is centered on using past interactions with other agents so that an
agent can ultimately choose whether or not to trust, cooperate with, and rely on

228 I. Naja, L. Moreau, and A. Rogers

those other agents [23,7,4,10]. The aforementioned work does not treat past ex-
periences as provenance data and so does not exploit any provenance framework
or model nor does it utilize the history for the benefits of understanding what
went on and why. This is done in [11,15] where distributed processes in an organ
transplant management application are treated as agents and the provenance
of their actions and interactions is recorded. Specifically, a provenance model
that extends PrIMe to capture the goals and intentions of agents in distributed
systems is presented in [15]. Although we apply our approach to multi-agent
systems which fall under the umbrella of distributed systems, our focus is on
how and why decisions were made; and RobocupProfile considers agents’ goals
and intentions through their influences on the decision making process.

Approaches to explanations in rule-based systems like the expert-system
MYCIN included paraphrasing the system code; however, such expert-systems
do not provide justifications for their rules [18]. On the other hand, the genera-
tion of explanations benefits from decision theory as a powerful tool for justify-
ing decisions [18], commonly used in the contexts of decision trees and reasoning
about preferences. Nevertheless, such approaches would be limited when reason-
ing about causality and chains of decisions; at least not to the extent that the
application of provenance provides.

Additionally, addressing accountability of the autonomous entities forming
distributed systems is a challenge [16]. For users to have confidence in them, these
systems must be made accountable, i.e. be enabled to prove their compliance with
policies [25]. Several approaches use provenance to make systems accountable,
including [6] and [21]. Finally, the need to secure provenance is vital in many
critical areas such as law, scientific data, and authorship [9] and would also be
important in the decision making domain. Addressing this need includes securing
provenance [3] and maintaining provenance integrity [9].

7 Conclusion and Future Work

In summary, our work provides a proof-of-concept for how provenance can be
used to track decisions in automated emergency response systems. We presented
the use case “Provenance of Decision Making in Emergency Response” as the
motivation for our work. RCRS was used as a testbed application and PrIMe
was applied to it to make it provenance-aware. Furthermore, OPM was used
to produce provenance DAGs, making use of a novel OPM profile that special-
izes OPM and conceptualizes decisions in the context of emergency response.
Thus, the presented work provides a means for justifying automated decisions
in emergency response systems by capturing why and how they were made.

Our work shows how provenance of decisions can be exploited in an offline
manner, after an application has terminated, to understand automated decisions
in complex scenarios. We believe that provenance of decisions can also be used in
an online manner for the purpose of making better decisions. This is especially
true when previous decisions need to be revised because some new observation
has invalidated or complemented previous knowledge. We have proposed these
scenarios in our use case and our future work will aim to address these points.

Provenance of Decisions in Emergency Response Environments 229

Acknowledgements

This research was undertaken as part of the ALADDIN (Autonomous Learning
Agents for Decentralised Data and Information Systems) Project and is jointly
funded by a BAE Systems and EPSRC strategic partnership (EP/C 548051/1).

References
1. (RoboCup Rescue), http://www.robocuprescue.org/index.html
2. Bose, R., Frew, J.: Lineage retrieval for scientific data processing: a survey. ACM

Computing Surveys 37(1), 1–28
3. Braun, U., Holland, D.A., Muniswamy-Reddy, K.K., Seltzer, M.I.: Coping with

cycles in provenance. Technical report, Harvard University (2006)
4. Chalkiadakis, G., Boutilier, C.: Sequential decision making in repeated coalition

formation under uncertainty. In: Proc. of AAMAS 2008, Estoril, Portugal, (2008)
5. Chapman, A., Jagadish, H.V.: Why not? In: Proc. of the 35th SIGMOD int’l conf.

on Management of data
6. Chorley, A., Edwards, P., Preece, A., Farrington, J.: Tools for tracing evidence in

social science. In: Third Int’l Conf. on e-Social Science (October 2007)
7. Fullam, K.K., Barber, K.S.: Dynamically learning sources of trust information:

experience vs. reputation. In: Proc. of AAMAS 2007, (2007)
8. Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge, M.: The Belief-Desire-

Intention Model of Agency. In: Proc. of the 5th Int’l Workshop on Intelligent Agents
V, Agent Theories, Architectures, and Languages (1998)

9. Hasan, R., Sion, R., Winslett, M.: The case of the fake picasso: Preventing history
forgery with secure provenance. In: Proc. of 7th USENIX Conference on File and
Storage Technologies, FAST 2009, pp. 1–14 (2009)

10. Khosravifar, B., Gomrokchi, M., Bentahar, J., Thiran, P.: Maintenance-based trust
for multi-agent systems. In: Proc. of AAMAS 2009, Budapest, Hungary, (2009)

11. Kifor, T., Varga, L.Z., Vazquez-Salceda, J., Alvarez, S., Willmott, S., Miles, S.,
Moreau, L.: Provenance in agent-mediated healthcare systems. IEEE Intelligent
Systems 21, 38–46 (2006)

12. Kota, R., Gibbins, N., Jennings, N.R.: Self-organising agent organisations. In: Proc.
of AAMAS 2009, Budapest, Hungary, (2009)

13. Miles, S.: Electronically querying for the provenance of entities. In: Moreau, L.,
Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 184–192. Springer, Heidelberg
(2006)

14. Miles, S., Groth, P., Munroe, S., Moreau, L.: Prime: A methodology for developing
provenance-aware applications. ACM TOSEM (2010)

15. Miles, S., Munroe, S., Luck, M., Moreau, L.: Modelling the provenance of data in
autonomous systems. In: Proc. of AAMAS 2007, (2007)

16. Moreau, L.: The foundations for provenance on the web. Foundations and Trends
in Web Science (in Press 2010)

17. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska,
N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y.L., Stephan, E., Van
Den Bussche, J.: The Open Provenance Model Core Specification (v1.1). Future
Generation Computer Systems (in Press 2010)

18. Papamichai, K.N., French, S.: Explaining and justifying the advice of a decision
support system: a natural language generation approach. Expert Systems with
Applications 24 (2003)

http://www.robocuprescue.org/index.html

230 I. Naja, L. Moreau, and A. Rogers

19. Phung, T., Winikoff, M., Padgham, L.: Learning Within the BDI Framework: An
Empirical Analysis, pp. 282–288 (2005)

20. Rao, A.S., Georgeff, M.P.: BDI Agents: From Theory to Practice. In: Proceedings
of the First International Conference on MultiAgent Systems (1995)

21. Ringelstein, C., Staab, S.: PAPEL: A Language and Model for Provenance-Aware
Policy Definition and Execution. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM
2010. LNCS, vol. 6336, Springer, Heidelberg (2010)

22. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science.
SIGMOD Rec. 34, 31–36 (2005)

23. Teacy, W.T., Patel, J., Jennings, N.R., Luck, M.: Travos: Trust and reputation
in the context of inaccurate information sources. Autonomous Agents and Multi-
Agent Systems 12, 183–198 (2006)

24. W3C Provenance Incubator Group: (Provenance dimensions)
http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Dimensions (last
accessed March 01 2010)

25. Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J., Sussman,
G.J.: Information accountability. Commun. ACM 51, 82–87 (2008)

http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Dimensions

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 231–235, 2010.
© Springer-Verlag Berlin Heidelberg 2010

An Approach to Enhancing Workflows Provenance by
Leveraging Web 2.0 to Increase Information Sharing,

Collaboration and Reuse

Aleksander Slominski

Department of Computer Science, Indiana University
Bloomington, IN, 47405, USA
{aslom}@cs.indiana.edu

Abstract. Web 2.0 promises a more enjoyable experience for creating content
by users by providing easy-to-use information sharing and collaboration tools,
and focusing on user-centered design. Provenance in Scientific Workflow Man-
agement is one kind of user-generated data that can benefit from using Web 2.0.
We propose a simple set of Web 2.0 technologies that is simple to implement
and can be immediately leveraged by scientific users. Using Atom Syndication
Protocol to represent workflow state and its provenance users can easily dis-
seminate their scientific results. Collaboration and authoring can be facilitated
by using Atom Publishing Protocol and standard Web 2.0 blogging tools to
publish and annotate provenance. Users can search stored provenance by using
search engines. If search results are in standard Atom Syndication Protocol, for
example when search engines support OpenSearch standard, then Atom feeds
can be used to monitor provenance changes increasing the likelihood of discov-
eries. By using those Web 2.0 standards, the value of scientific provenance data
increases by making it a natural part of growing a variety of user-generated sci-
entific (and non-scientific) content.

Keywords: scientific workflow provenance, user-generated content, scientific
notebook, atom syndication format, atom publishing protocol.

1 Introduction

Web 2.0 promises greater control over user-generated content and a more enjoyable
experience for users by improving information sharing and collaboration capabilities,
and focusing on user-centered design. Those benefits should not only be enjoyed by
end-users but enterprise and scientific users as well.

There is an increasing interest in trying to leverage Web 2.0 benefits in science
with the ultimate goal to create something that may be called “Science 2.0” [4]. Sci-
entific Workflow Management (SWFMS) [14] is one of such areas of science that
may benefit to leverage Web 2.0 (e.g. [6][7]). In particular, we believe that one of the
areas where the biggest gains can be obtained from using Web 2.0 standards is to
apply it to provenance in Scientific Workflow Management Systems. That will help to
solve one of the biggest problems that scientists have when working on scientific
workflows: how to collaborate and disseminate results. To collaborate scientists need

232 A. Slominski

to have a shared environment (Web 2.0 is a good candidate) and to disseminate results
they need to be able to not only send output files but allow other scientists to repro-
duce them (that is why provenance is important).

2 Web 2.0 and Scientific Workflow Provenance

Web 2.0 does not have one clear definition [16] but key characteristics of Web 2.0
around user-generated data can be identified [1]:

• Search: the ability to find useful information in ever- increasing amounts of
data is a key feature of Web 2.0 for users. Making data and metadata generated in
scientific workflows searchable by search engines is the simplest approach to accom-
plish it. Moreover, by using OpenSearch 1.1 [8] more customized search queries and
results in formats required by scientists can be provided. For example, search results
in standard Atom Syndication Protocol [10] can represent provenance and its meta-
data (as in examples below).

• (Hyper) Links are the key ingredient to the Internet experience. If scientific
content is not linked, it is as if did not “exist” on the Internet. The ability to cite and
reference is an integral part of scientific process and scientific papers – the same con-
cept in Science 2.0 is implemented by using links.

• Authoring has been the enabling factor in making Web 2.0 successful. In par-
ticular, blogs provide easy-to-use platforms that ordinary users can leverage with
minimal computer-science experience. Scientific Workflows are managed by scien-
tific users (such as scientists) that, in majority, prefer to concentrate on their science
than to become proficient in computer-science. Leveraging well-tested Web 2.0 au-
thoring tools in scientific environments, therefore, can lead to quicker dissemination
of results as well as easier sharing and collaboration.

• Tags are a very easy-to-use tool for organizing information without the need
for users to learn and understand taxonomies. Tags provide bottom-up taxonomy and
should significantly help scientific users organize quickly increasing amounts of data
produced in science.

• Syndication and publication of content is made easy with standards such as
The Atom Publishing Protocol [9]. The pull model of publishing works well to broad-
cast scientific results to interested subscribers and facilitate collaboration.

We believe that the Scientific Workflow Provenance can benefit from network ef-
fect by making it a natural part of a variety of Web 2.0 user-generated content. To
achieve this there are several proposed solutions. A leading approach is to build on a
larger framework of Semantic Web and in particular Linked Data [11] with HTTP
URIs and combination of RDF and SPARQL as machine readable data format and
query language. However Semantic Web requires a layer of sophisticated middleware
to achieve its goals - it is much more than a simple extension of World Wide Web and
using it for provenance require additional work [13][15].

As a simple alternative to full stack of Semantic Web one could use The Atom
Syndication Format [10] as it is an extensible entry data format that can embed any
XML data (including XHTML) and metadata about it (including links). That extensi-
bility can be leveraged to encode scientific workflow provenance. In particular, the
Open Provenance Model [2] may be good target to assure that provenance data is not

 An Approach to Enhancing Workflows Provenance by Leveraging Web 2.0 233

locked inside SWFMS. The query part can be fulfilled by search engines indexing
pages generated from ATOM entries and feeds. For more targeted searches Open-
Search can be leveraged.

Even though ATOM provides only a subset of capabilities available in fully fea-
tured Semantic Web solution, ATOM entries can be easily transformed into RDF and
can be fully integrated into evolving Semantic Web middleware.

3 Using the Open Provenance Model with ATOM

In the Open Provenance Model (OPM) [2] there are several types of nodes, including
Artifact, Process, Agent and OPM nodes and edges:

• Artifact is an “immutable piece of state, which may have a physical em-
bodiment in a physical object or a digital representation in a computer system”;

• Process is defined as an “action or series of actions performed on or caused
by artifacts, and resulting in new artifacts”;

• Agent is a “contextual entity acting as a catalyst of a process, enabling, fa-
cilitating, controlling, or affecting its execution”;

• OPM also describes relations between nodes, edges in a graph. Typical edges
are “used,” “wasGeneratedBy,” and “wasDerivedFrom.”

OPM nodes and edges could be naturally represented as ATOM entries, edges trans-
lated to links in ATOM entries, and an OPM graph becomes an ATOM feed. There are
already existing proposals to do it. In this paper we show a very simple encoding of
OPM into ATOM. Each ATOM entry has atom:link to give URL to retrieve HTML
representation and a unique atom:id that works well as an graph node ID. Moreover,
any part of XML representation of OPM (such as [3]) can be embedded:

 <entry>
 <title>Workflow 1 in Foo Version 1.1 </title>
 <link href="http://example.org/foo/1.1/w1 "/>
 <id>urn:uuid:...-888888888</id>
 <updated>2010-03-13T17:00:03Z</updated>
 <summary>Workflow 1 was executed by system Foo
Version 1.1.</summary>
 <opm:Agent id=”urn:uuid:...-888888888” />
 </entry>
 <entry>
 <title>Input file bar.dat</title>
 <link href="http://example.org/f/bar.dat"/>
 <id>urn:uuid:...-9999999999</id>
 <updated>2010-03-13T17:01:03Z</updated>
 <summary>Input file bar.dat</summary>
 <opm:Artifact id=”urn:uuid:...-9999999999” />
 <category scheme=”http://...” term=”bar” />
 </entry>

User actions will naturally correspond to blog postings, with the “agent” doing

work (or becoming an author)

234 A. Slominski

 <entry>
 <title>Running Xyz Processing</title>
 <link href="http://example.org/w/AAAA "/>
 <id>urn:uuid:...-AAAAAAAA</id>
 <updated>2010-03-13T17:11:03Z</updated>
 <summary>Xyz processed bar.dat </summary>
 <opm:Process id=”urn:uuid:...- 888888888” />
 <oprel:used id=”urn:uuid:...-9999999999” />
 <link rel=”http://.../opm/rel#used”
 href=”http://example.org/f/bar.dat” />
 </entry>

4 Use Case Scenario

To illustrate how scientific workflow users can benefit from Web 2.0 integration, we
describe a scenario where Alice is monitoring workflows that are run by Bob. Bob
either manually or by using a job scheduler runs large weather forecast workflows
using his custom code. The workflow system Foo used by Bob is running a process
that Bob designed and that leverages Bob’s experience. In particular, he has designed
a special Xyz processing used in his workflows. For each new process started, the Foo
system creates a new ATOM feed (OPM graph) and publishes workflow progress as
ATOM entries to this feed. The system also publishes ATOM entry to public ATOM
feed when a new process starts. Alice is using specialized software to monitor this
feed (it could be a slightly modified commercial blog reader). If Bob used PubSub-
Hubbub protocol [12] then Alice could get near-instant notifications about changes in
Bob workflows.

When results of Xyz processing are published, they are automatically downloaded
to Alice’s desktop (standard function of blog software) and analytics code is executed
(additional software required). The analytics could also be a workflow process that
publishes results as ATOM feed so Bob (and other scientists) can monitor it and ver-
ify provenance of results. When analytics detects interesting conditions (such as a
strong possibility of a tornado), an alarm is published to high priority ATOM feed to
which Alice is subscribed (by email, SMS, etc.).

When Alice finds something interesting about Bob’s results, she can publish it to
her blog or post a comment to Bob’s workflow feed to let Bob know that his work-
flow produced something that may be incorporated in Alice’s future publications.

5 Summary

We hope that we demonstrated that provenance publishing and collaborating on
scientific results can be facilitated by using Atom Publishing Protocol and standard
Web 2.0 blogging tools. With easy migration path for data stored in ATOM format
to future Semantic Web and Provenance standards additional benefits can be lever-
aged in the future as Web 2.0-related technologies mature and become attractive to
scientists.

 An Approach to Enhancing Workflows Provenance by Leveraging Web 2.0 235

References

1. McAfee, A.P.: Enterprise 2.0: The Dawn of Emergent Collaboration. MITSloan Manage-
ment Review 47, 21–28 (2006)

2. The Open Provenance Model Core Specification (v1.1),
http://eprints.ecs.soton.ac.uk/18332/1/opm.pdf

3. http://github.com/lucmoreau/OpenProvenanceModel/blob/master/
opm/src/main/resources/opm.1_1.xsd

4. Waldrop M.: Science 2.0: Great New Tool, or Great Risk? In Scientific American (May
2008)

5. Harrison, A., Taylor, I.: Web enabling desktop workflow applications. In: SC-WORKS 2009
(2009)

6. De Roure, D., Goble, C.: myExperiment: A Web 2.0 Virtual Research Environment for
Research using Computation and Services. In: Workshop On Integrating Digital Library
Content with Computational Tools and Services at JCDL 2009, Austin, Texas, USA (19-
06-2009)

7. De Roure, D., Goble, C., Bhagat, J., Cruickshank, D., Goderis, A., Michaelides, D., New-
man, D.: myExperiment: Defining the Social Virtual Research Environment. In: 4th IEEE
International Conference on e-Science, Indianapolis, Indiana, USA, December 7-12 (2008)

8. OpenSearch 1.1 Specification,
http://www.opensearch.org/Specifications/OpenSearch/1.1

9. The Atom Publishing Protocol. Internet Official Protocol Standards, RFC 5023 (October
2007), http://tools.ietf.org/html/rfc5023

10. The Atom Syndication Format. Internet Official Protocol Standards, RFC 4287 (December
2005), http://tools.ietf.org/html/rfc4287

11. Berners-Lee, T.: Linked data,
http://www.w3.org/DesignIssues/LinkedData.html

12. PubSubHubbub Core 0.3 – Working Draft,
http://pubsubhubbub.googlecode.com/svn/trunk/
pubsubhubbub-core-0.3.html

13. Hartig, O.: Provenance Information in the Web of Data. In: Proceedings of the Linked
Data on the Web (LDOW) Workshop at the World Wide Web Conference (WWW), Ma-
drid, Spain (April 2009)

14. Yu, J., Buyya, R.: A Taxonomy of Workflow Management Systems for Grid Computing.
Technical Report GRIDS-TR-2005-1, Grid Computing and Distributed Systems Labora-
tory, University of Melbourne (2005),
http://www.gridbus.org/reports/GridWorkflowTaxonomy.pdf

15. Moreau, L.: The Foundations for Provenance on the Web. Foundations and Trends in Web
Science, http://eprints.ecs.soton.ac.uk/18176/ (submitted)

16. Sharma, P.: Core Characteristics of Web 2.0 Services. (Published 28 November 2008),
http://www.techpluto.com/web-20-services/

StarFlow: A Script-Centric
Data Analysis Environment

Elaine Angelino, Daniel Yamins, and Margo Seltzer

School of Engineering and Applied Sciences, Harvard University,
33 Oxford St., Cambridge, MA 02138

{elaine,margo}@eecs.harvard.edu, yamins@fas.harvard.edu

http://www.eecs.harvard.edu/~margo/

Abstract. We introduce StarFlow, a script-centric environment for data
analysis. StarFlow has four main features: (1) extraction of control and
data-flow dependencies through a novel combination of static analysis,
dynamic runtime analysis, and user annotations, (2) command-line tools
for exploring and propagating changes through the resulting dependency
network, (3) support for workflow abstractions enabling robust parallel
executions of complex analysis pipelines, and (4) a seamless interface
with the Python scripting language. We describe real applications of
StarFlow, including automatic parallelization of complex workflows in
the cloud.

Keywords: automatic parallelization, automatic updating, computa-
tional workflows, control flow, data-flow, data analysis, dependency
tracking, provenance, Python, workflow abstraction.

1 Introduction

Many people analyze data by writing pipelines of scripts: short programs written
in high-level languages such as Python that parse input, call numerical analysis
routines, and write output.

Scripts plus data files are powerful because they are very flexible: they allow
users to mix and match many kinds of data formats and analysis routines, out-
put files where convenient, write code that performs complicated computational
tasks, re-use code in different places, and put related functions into the same file.
While script pipelines are less rigid than databases, they are more prone to disor-
ganization. Scripts and data live in conventional file systems, where dependency
relationships are exposed only at runtime, and provenance of data is easily lost.

The data analysis work cycle consists of basic actions: create an analysis
pipeline and execute its initial run, modify input data or an analysis function
and propagate the change, add an analysis function and re-execute the pipeline,
and create related pipelines based on an abstract workflow. In this context, it
is difficult and annoying to remember what functions were called with what
parameters to produce what files, to re-run a long chain of downstream scripts
when an upstream data file or script is modified, to capture repeated patterns
of analysis, to parallelize execution, and to communicate or replicate analyses.

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 236–250, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.eecs.harvard.edu/~margo/

StarFlow: A Script-Centric Data Analysis Environment 237

Data analysts who write scripts are thus confronted by fundamental data man-
agement challenges: identifying dependencies, propagating changes, parallelizing
work, sharing data and code, and archiving relevant information. Dependency
tracking and workflow management tools would help them by making recompu-
tation automatic and efficient and by making sharing easier.

These programmers are an important and unique user group. They are com-
fortable with and depend on writing code, and as a result are unwilling to depend
on tools that depart from the scripting environment. At the same time, they are
not sophisticated software engineers; they write code as a means to produce
analytic results, not to produce code as an end result.

A workflow tool for these users must integrate in a simple way with the existing
scripting environment. By focusing on these users in this environment, we have
designed a dependency tracking system and workflow engine with novel features.
A key observation is that scripts plus data files already contain workflows in the
sense that they implicitly describe a dependency graph. This insight motivates
both design constraints and a unified and flexible framework for managing de-
pendencies across multiple workflows that may exist separately or overlap within
a user’s file system.

Dependency tracking systems can explicitly capture the provenance of data
analysis and enable workflow tools for managing, generating and executing anal-
ysis pipelines. Existing tools track dependencies by combining dynamic runtime
analysis, static analysis, and/or user annotations; their specific choices restrict
when and what dependencies can be extracted and thus when and how they
can be used to drive actions. User annotations plus static analysis extract con-
trol flow prior to runtime execution, enabling automatic parallelization. Even
without annotations, dynamic analysis extracts both information and control
flow. Whether dynamic or static, control flow dependency tracking at the level
of functions facilitates incremental recomputation.

StarFlow strategically uses all three methods of dependency tracking while
integrating seamlessly with a script-based programming environment1. This
unique combination of features makes StarFlow widely applicable, from single-
purpose analysis pipelines written “on the fly” to complex workflows in a high-
performance computing environment.

Below, we introduce a design framework for data analysis workflow engines
and describe existing implementations (§2). Next, we describe StarFlow’s im-
plementation (§3), user scenarios (§3.4), workflow abstraction and automatic
parallelization of complex workflows in the cloud (§4).

2 Features of a Workflow Engine for Data Analysis

A workflow engine for data analysis can be evaluated by: (1) how and at what
level of granularity it tracks dependency relationships between data and anal-
ysis functions, (2) what user actions it supports using those dependencies, (3)
1 See http://bitbucket.org/dyamins/starflow/ for StarFlow source code and documen-

tation.

238 E. Angelino, D. Yamins, and M. Seltzer

whether and how it supports workflow abstraction, and (4) how it integrates
with a programming environment. We use this framework to describe our design
and to classify existing workflow tools (Table 2).

2.1 Tracking Dependencies

A set of scripts implies a dependency network of links between data and func-
tions. A function may depend on file inputs, create file outputs, and use other
functions (Fig. 1). There are three complementary sources of dependency infor-
mation: user annotations, static code analysis, and dynamic runtime analysis.
Each technique has strengths and weaknesses (Table 1).

User annotation of dependencies allows a workflow tool to be aware of
dependencies without having to extract them, and is a widely used technique.
The familiar Unix make utility requires that a user create a Makefile, explic-
itly specifying file targets, their dependencies, and commands transforming one
to another. Although Makefiles are notoriously difficult to maintain, they are
still the de facto standard way to specify source code dependencies. Workflow
management systems also ask users to explicitly describe both information and
control flow; there are many in the scientific (e.g. Galaxy[26], GenePattern[16],
Kepler[18], Knime[3], Pegasus[9], Taverna[22], Vistrails[4]) and business (e.g.
clario[5], Pentaho Data Integration [8]) communities. Their users construct work-
flows by connecting functional “nodes” with well-defined input/output types.

Static analysis of code can automate some of this manual annotation, but
in the general case cannot completely capture information or control flow; these

file2

myfunc()

outdir/

parse()

file1

Fig. 1. The function myfunc() depends on input files ‘file1’ and ‘file2’, creates out-
put directory ‘outdir/’, and uses the function parse(). Arrows are in the direction of
information flow.

Table 1. Three complementary methods for tracking information flow and control
flow: dynamic runtime analysis, static analysis of code, and user annotation

Runtime analysis Static analysis User annotation

Information flow Accurate, but Difficult Acceptable if
data dependencies sometimes too late lightweight
Control flow Accurate, but Usually possible Very annoying
functional dependencies mostly unnecessary

StarFlow: A Script-Centric Data Analysis Environment 239

Table 2. Comparison of data tracking implementations

Runtime analysis Static analysis User annotation

make Specify file targets,
their file dependencies
& executable com-
mands in a Makefile

make +

Automake

depcomp determines
source file dependen-
cies during compilation

When depcomp fails,
makedepend determines
source file dependencies

Specify C/C++ source
files in a simplified
Makefile

Workflow
management
systems

Specify node parame-
ters & data flow in a
GUI or flow language

IncPy Modified Python inter-
preter tracks file I/O
& function calls; mem-
oizes function returns

StarFlow File I/O interception &
stack trace inspection
in the Python inter-
preter

Abstract syntax tree
analysis of Python code
tracks function-level
control flow

Specify data flow &
non-Python control
flow directly in func-
tion definition lines

are Turing-undecidable problems. In practice, static analysis can often extract a
highly accurate description of control flow. For example, makedepend augments
the standard make utility by using static analysis to automatically extract C
source code file dependencies. Static analysis can even extract dependencies at
the level of functions because their syntax makes them easy to parse from the
abstract syntax tree. Data-flow dependencies are difficult to extract because
they are not explicit in the abstract syntax tree, e.g. they may be implicit in a
concatenation of strings.

Dynamic analysis captures the actual information and control flow gener-
ated during runtime execution of scripts. File input/output interception captures
data file dependencies, and stack trace inspection captures functional dependen-
cies. Pure runtime systems use only dynamic runtime analysis. For example,
provenance-aware storage systems (PASS) automatically track provenance at
the level of files and processes dynamically at runtime [21], while IncPy is a
modified Python interpreter that dynamically tracks file I/O and computational
results at the level of function calls [13]. Automake is another dynamic analysis
tool that automates the construction of Makefiles [24].

The granularity of dependency tracking determines what actions it can sup-
port. Notably, make-like tools track control flow at the level of files, but practical
incremental recomputation requires tracking at the level of functions.

2.2 Using the Dependency Network

Knowing the dependency network supports three activities: dependency explo-
ration, automatic change propagation, and pipeline extraction and sharing.

240 E. Angelino, D. Yamins, and M. Seltzer

Dependency exploration involves querying the dependency network to un-
derstand where files and functions come from and their upstream and down-
stream dependencies. A query might concern only dependency structure (e.g.,
“On what Python modules does this output depend?”) or could take into ac-
count other information, such as the file modification times of dependency targets
relative to their sources (e.g., “Do I need to rerun this analysis?”).

Automatic change propagation involves the use of a “smart” updating en-
gine that queries the dependency network to support incremental recomputation;
it updates targets by (re-)executing the minimal set of control flow components
necessary. When the user invokes make, it examines the file modification times
of targets relative to their dependencies to determine those in need of updating
and executes the minimal sequence of necessary commands. The Panda project
is developing a formalism and algorithms for provenance-based refresh in data-
oriented workflows [14]. IncPy’s dynamic analysis and memoization facilitates
fine-grain incremental recomputation.

Extraction and sharing of an analysis pipeline between users is facilitated
by knowing its dependency network.

2.3 Workflow Abstraction

Once a user develops an analysis pipeline, she often needs to apply it to a po-
tentially large number of similar analyses. If we view the overall pipeline as an
abstract workflow, then each of these pipelines becomes an instance of that ab-
stract workflow. Workflow environments differ in whether and how they allow
users to represent abstract workflows, concrete instances or both. Those that do
support workflow abstraction additionally differ in whether they support pro-
grammatic instantiation of concrete pipelines from abstract workflows. Scripting
environments support but do not typically come with ready tools for workflow
abstraction, while workflow management systems emphasize workflow abstrac-
tion but not necessarily programmatic instantiation.

2.4 Integration with the Programming Environment

There are two fundamental approaches to providing dependency tracking ca-
pabilities: make the workflow management system the center of the system or
integrate dependency tracking into the programming environment. Workflow
management systems tend to do the former while integrated development envi-
ronments (IDEs) do the latter. It is often a design goal of workflow management
systems to support novices who do not want to write programs [18]. For example,
Taverna replaces a regular programming environment with a GUI for manipu-
lating an XML-based flow language, Scufl [20]; users can also directly write in
Scufl to annotate dependencies. IDE-based systems provide a unified interface
for code developement that decreases the distance between where a user edits
and executes scripts. Eclipse’s C/C++ Development Tooling (CDT) IDE includes
standard make build, plus a GUI for writing Makefiles and invoking make [12].
While the Chimera virtual data system is script-based, it requires use of a virtual
data language (VDL) [11].

StarFlow: A Script-Centric Data Analysis Environment 241

An important extension of a workflow engine’s integration with the program-
ming environment is its support for distributed computing on a grid or in the
cloud. Users often have computational needs at multiple scales, from jobs they
want to run a personal computer to high performance computing (HPC) prob-
lems; many of the scientific and business workflow tools mentioned already can
be deployed in a variety of environments. Other workflow management solutions
are specifically for distributed systems, such as Azkaban and Oozie for Apache
Hadoop by LinkedIn and Yahoo!, respectively [7,15]. Some tools, including Pi-
Cloud and pomsets, specialize in workflow management for cloud services, e.g.,
Amazon’s EC2 [10,23].

3 StarFlow

StarFlow is a data analysis environment that is script-centric, has make-like tools,
tracks dependencies at the level of functions rather than files, and is constrained
in scope to the level of a scripting language. Our implementation of the StarFlow
workflow engine has four main features: (1) dependency tracking of both infor-
mation and control flow via a novel combination of static analysis, dynamic
analysis, and user annotations, (2) command-line tools supporting dependency
exploration, automatic updating, and pipeline extraction and sharing, (3) work-
flow abstractions and concrete analysis pipeline instances, and (4) a seamless
interface with Python. Although our initial implementation is for Python, our
design principles and algorithms are broadly applicable. Sections §3.2 and §3.3
describe how StarFlow tracks and uses dependencies, and section §3.4 presents
various usage scenarios.

3.1 Design Principles

A few basic principles guide StarFlow’s design. First, users express dependencies
only in their code. This design choice makes sharing dependency information a
consequence of sharing code, and so these actions do not have to occur sep-
arately. Second, StarFlow is designed to place a minimal burden on the user,
implying that any required annotations must be lightweight. Finally, StarFlow
is for programmers who aren’t software engineers, and so it is script-centric and
simple.

3.2 Tracking Dependencies

StarFlow uses a combination of dynamic analysis, static analysis and user anno-
tations to track data and functional dependencies.

User annotations. Although user annotations in StarFlow are purely optional,
they enable parallelization and dependency querying before a script has ever
been run. They also make sharing dependency provenance a side effect of
sharing code. Such annotations are simple declarations within Python functions
that expose the inputs and outputs of the function. For example,

242 E. Angelino, D. Yamins, and M. Seltzer

def myfunc(depends_on=(‘file1’,‘file2’), creates=‘outdir/’):

indicates that (‘file1’,‘file2’) and ‘outdir/’ are the file names of
the inputs and output of myfunc, respectively. The user can also annotate
non-Python functional dependencies, e.g. a Perl script, with an analogous
parameter, uses.

When functions specify input and output file namess via parameters, the
user can write a simple one-line annotation to describe information flow. It is
a Python decoration, indicated by @activate, consisting of two lambda ex-
pressions, one representing the inputs (depends_on annotations) and the other
representing the outputs (creates annotations). Upon function invocation, the
decoration maps the parameters to the appropriate lambda expression. For
example, in

@activate(lambda x: (x[0], x[1]), lambda x: x[2])
def myfunc(infile1, infile2, outdir):

the first lambda represents the depends_on values, mapping to the first
two parameters (x[0] and x[1]), while the second lambda represents the
creates values, mapping to the third parameter x[2]. Thus, like in the previous
example, (infile1, infile2) are the inputs and outdir is the output of
myfunc(). This is particularly useful for workflow abstraction (§4) but also for
any function whose inputs and/or outputs are specified at runtime.

Static analysis. StarFlow uses static code analysis to determine most con-
trol flow prior to runtime execution. First, it examines import statements to
determine what external modules a script depends on. Then, it uses Python’s
built-in compiler.ast module to access the abstract syntax tree to determine
the functional dependencies within a module. Static analysis cannot determine
conditional control flow, and StarFlow has different methods for approximating
dependencies in different scenarios. For example, it extracts control flow in all
conditional clauses, but never extracts control flow in an eval statement.

Dynamic analysis. During runtime, for each function executed at the top of
the Python stack, StarFlow uses sys.settrace to set a trace function. StarFlow
walks the stack and examines all function calls to extract control flow and in-
tercepts file I/O functions to extract information flow. This produces a trace
of all function calls specifying the stacks where they were invoked, as well as
what I/O operations were performed and what files they involved. By setting an
environment variable, the user can control how StarFlow uses runtime depen-
dencies: they can be simply logged, or they can be compared to the results of
static analysis and user annotations to check for consistency.

Dependency representation. As a result of using the three methods of de-
pendency tracking, StarFlow determines the dependency network; we describe
its representation here.

StarFlow: A Script-Centric Data Analysis Environment 243

LoadLiveModules() takes a set of directories and recursively deter-
mines all the Python modules inside those directories. The user can pass
LoadLiveModules() a set of regular expression filters to conditionally select
modules and functions and can maintain a LiveModules configuration file to set
the default input.

LinksFromOperations() determines the dependency network corresponding
to a list of Python modules. It uses static code analysis and extracts user anno-
tations to construct the dependency list including both information and control
flow. LinksFromOperations() caches the compiled bytecode of user-generated
functions so that irrelevant changes, such as edits to comments or changes to
unrelated functions in the same module, do not result in changes to the de-
pendency network. It returns the LinkList, a table whose records correspond
to dependency links and whose columns describe the links. For example, this
LinkList describes the dependencies in Figure 1:

Link Link Source Link Target Update Update
Type Source File Target File Script ScriptFile
DependsOn file1 file1 myfunc()mymodule.py None mymodule.py
DependsOn file2 file2 myfunc()mymodule.py None mymodule.py
CreatedBy myfunc() mymodule.py outdir/ outdir/ myfunc() mymodule.py
Uses parse() mymodule.py myfunc()mymodule.py None mymodule.py

There are four files: ‘file1’, ‘file2’, ‘mymodule.py’, and ‘outdir/’. The four links
represent that: (1-2) the myfunc() function depends on the files ‘file1’ and ‘file2’,
and is inside of the Python module ‘mymodule.py’, (3) the ‘outdir/’ directory is
created by the function myfunc() inside of ‘mymodule.py’, and (4) the myfunc()
function uses the function parse(), and both are in ‘mymodule.py’.

The LinkList is stored on-disk in a serialized format. The LinkList can
trivially be represented in a tabular format (CSV) or XML or RDF consistent
with the Open Provenance Model (OPM) [6]. We could easily allow users to edit
pipelines by directly editing the LinkList, but do not currently do so.

3.3 Exploring, Updating and Sharing

StarFlow includes a set of Python command-line tools for exploring dependen-
cies, propagating changes, and extracting and sharing analysis pipelines.

Exploring dependencies. DownstreamLinks() takes a list of source depen-
dencies and propagates down through the dependency network to return a list
of downstream dependencies. Its default behavior uses file time stamps to prop-
agate only through dependencies in need of updating, i.e., dependencies whose
targets’ time stamps are older than those of their sources. When Forced = True,
it ignores time stamps and instead propagates through all downstream depen-
dencies. UpstreamLinks() is an analogous function for upstream dependencies.

ShowUpdates() uses DownstreamLinks() to determine and print a readable
report describing what Python functions to execute, and in what order, to update
dependency targets relative to their sources, without actually calling them.

244 E. Angelino, D. Yamins, and M. Seltzer

Propagating changes. StarFlow’s automatic updating engine supports two
styles of change propagation. Update() uses ShowUpdates() to implement
downstream updating, so changes to the dependency network trigger execu-
tion of downstream functions. Make(Targets) implements upstream updating
in the spirit of make, so targets are made by executing upstream functions that
have changed or whose upstream dependencies have changed. For both functions,
the user can force re-execution by passing Forced = True. Both can propagate
changes through a restricted dependency network, i.e., a filtered LinkList. The
user can pass a list of regular expression filters mapping to a list of Python
functions and specify default filters from a configuration file.

StarFlow’s automatic updating engine combines change propagation with a
set of optional “smart” features: (1) consistency checking that can issue an error
or warning if user annotations contradict runtime file I/O, (2) Unix-style diff
checking between each round of updates, so that if a set of updates produces no
changes, unnecessary downstream updates are cancelled, (3) data archiving and
managed exception handling so that if user scripts throw errors, downstream
updates are cancelled and previous versions of data restored, and (4) storing of
sha-1 checksums after each round of computation to detect corrupt data.

Extracting and sharing. Extract(Targets) uses UpstreamLinks(Targets)
to find all code modules and data sources required to recompute Targets and
then extracts them into a zipped archive. The result of Extract(Targets) can
then be integrated into another user’s StarFlow environment with Integrate().

3.4 Basic Use Case

StarFlow enables a highly organized real-time data analysis development cycle
where the user can automatically update her pipelines every time she edits
scripts or data. Consider a user-generated Python module containing several
parameterized functions for basic data processing and analysis:

def Parser(infile, outfile):
X = open(infile)
Y = remove_header(X)
Z = pivot(Y)
save(Z, outfile)

def Cluster(infile, outfile, distfunc, param=None):
X = open(infile)
C = hcluster(X, distfunc, param)
save(C, outfile)

def PCA(infile, outfile):
X = open(infile)
Y = pca(X)
save(Y, outfile)

StarFlow: A Script-Centric Data Analysis Environment 245

def Compare(PCAfile, Clusterfile, outfile):
X1 = open(PCAfile)
X2 = open(Clusterfile)
Y = compute_error(X1, X2)
save(Y, outfile)

These functions read input data files, process their contents, and write
output data files. They depend on other functions located either in the same
module or imported from elsewhere. Regular user interaction at the Python
interpreter, without StarFlow, might look like this:

>> from my_module import *
>> Parser(‘raw_data.csv’, ‘data.csv’)
>> PCA(‘data.csv’, ‘pca.csv’)
>> Cluster(‘data.csv’, ‘euc.csv’, EuclideanDistance)
>> Compare(‘pca.csv’, ‘euc.csv’, ‘error1.csv’)
>> Cluster(‘data.csv’, ‘geo.csv’, GeometricDistance)
>> Compare(‘pca.csv’, ‘geo.csv’, ‘error2.csv’)

StarFlow enables the user to track the dependencies of these sorts of op-
erations. Suppose the user wants to use the depends_on and creates
annotations to record the first four function calls from the above interpreter
session. She could add the following lines to my_module.py:

def ParseBigInput(depends_on=‘raw_data.csv’, creates=‘data.csv’):
Parser(depends_on, creates)

def DoPCA(depends_on=‘data.csv’, creates=‘pca.csv’):
PCA(depend_on, creates)

def ClusterEuclid(depends_on=‘data.csv’, creates=‘euc.csv’):
Cluster(depends_on, creates, EuclideanDistance)

def Comp(depends_on=(‘pca.csv’, ‘euc.csv’), creates=‘error.csv’):
Compare(depends_on[0], depends_on[1], creates)

With the information flow annotated, StarFlow can determine the complete
dependency network prior to runtime (Fig. 2). The user opens the Python
terminal and initializes StarFlow by importing its modules.

>> from starflow.interactive import *

Before executing anything, the user can type ShowUpdates() to see what
functions will run and in what order:

246 E. Angelino, D. Yamins, and M. Seltzer

ParseBig
Input()

data.csv

Parser()

raw_data.csv

Cluster
Euclid()

euc.csv

DoPCA()

PCA()

pca.csv

Comp()

Cluster()

Compare()

error.csv

Fig. 2. Dependency graph extracted by StarFlow. Arrows are in the direction of in-
formation flow. Files are rectangles and functions are ovals. For example, the function
DoPCA() depends on the file data.csv, creates the file pca.csv, and uses the function
PCA().

>> ShowUpdates()
Round 1: my_module.ParseBigInput
Round 2: my_module.DoPCA, my_module.ClusterData
Round 3: my_module.Comp

The output of ShowUpdates() corresponds to the breadth-first parallelization
scheme that StarFlow can implement automatically. As before, the user can
make edits to data or functions and propagate incremental changes by calling
Update() or related tools. When using StarFlow with the depends_on and
creates annotations, the user may find that she only needs to type two
commands at the prompt – ShowUpdates() and Update() – to review and
propagate changes as she develops her analysis pipelines.

Later, the user edits her scripts and data, and wants to propagate these
changes. First, she makes a small change to the file raw_data.csv. She types
Update(), and StarFlow re-executes each of the function calls she typed at the
prompt because they are all downstream of the raw_data.csv file. Next, she
makes a small change to the hcluster function. Now when she types Update(),
StarFlow re-executes only the function calls to Cluster, because it depends
directly on hcluster, and Compare, because it is downstream of Cluster.

StarFlow: A Script-Centric Data Analysis Environment 247

4 Workflow Abstraction

StarFlow supports a simple metaprogramming syntax that allows the user to con-
struct abstract workflows and then instantiate concrete analysis pipelines from
them. The user represents a workflow by a simple data model for a list of con-
crete workflow steps, the OpList. Each step corresponds to a concrete function
call with inputs and outputs and is represented as a three-tuple: a unique string
name, a function, and a tuple of function parameters. Actual concrete workflows
are instantiated by passing the OpList to the Actualize() templating engine.
Actualize(OpList, ‘path.py’) writes out a Python module, ‘path.py’ where
each step corresponds to a hard-coded function with depends_on and creates
annotations. For example, this script:

def instantiator(creates=‘instances.py’):
L = []
for i in [‘a’, ‘b’, ‘c’]:

L += [(‘step_’+i, myfunc, (‘in1_’+i, ‘in2_’+i, ‘out_’+i))]
Actualize(L, ‘instances.py’)

instantiates three concrete instances of a one-step workflow, where myfunc is
@activate decorated, as in §3.2. Each workflow step is automatically written
out as a separate function in ‘instances.py’:

def step_a(depends_on=(‘in1_a’, ‘in2_a’), creates=‘out_a’)
myfunc(‘in1_a’, ‘in2_a’, ‘out_a’)

def step_b(depends_on=(‘in1_b’, ‘in2_b’), creates=‘out_b’)
myfunc(‘in1_b’, ‘in2_b’, ‘out_b’)

def step_c(depends_on=(‘in1_c’, ‘in2_c’), creates=‘out_c’)
myfunc(‘in1_c’, ‘in2_c’, ‘out_c’)

By combining workflow abstraction with automatic updating, we have de-
veloped a parallelization engine. Users can exploit this engine by writing an
abstract workflow that generates many concrete instances. When configured
for parallelization, StarFlow’s Update() command materializes these instances,
computes their dependency network and partitions them into parallelizable
groups. We then use a grid scheduler to dispatch the parallel jobs on available
machines. The next section shows how we have integrated StarFlow with Ama-
zon’s Elastic Compute Cloud (EC2) [17] to perform automatically, parallelized
web download and analysis.

Applying parallelization to abstract workflows. We combine StarFlow
with StarCluster [25] to enable automatic parallelization of workflows in a high
performance cloud setting. StarCluster manages the creation and adminstration
of clusters hosted on Amazon’s EC2, connecting to SunGrid Engine for job
scheduling and load balancing.

248 E. Angelino, D. Yamins, and M. Seltzer

Below we illustrate a representative and simple scenario; it is embarrassingly
parallel and contains just one of many possible analyses of interest. Suppose the
user wants to download data from the U.S. Environmental Protection Agency
about facilities or sites subject to environmental regulation [2]. There is one
downloadable file for each of 50 states, and the user wants to call the function
pairwise_comparison() for each pair of states. She writes this module, using
Actualize to automatically produce ‘EPA_instances.py’:

01 urlroot = ‘http://www.epa.gov/enviro/html/frs_demo/’
02 urlroot += ‘geospatial_data/state_files/state_combined_’
03
04 def EPA(depends_on=‘states.txt’, creates=‘EPA_instances.py’):
05
06 L = []
07 statelist = open(‘states.txt’,‘r’).read().strip().split(‘,’)
08
09 for S in statelist:
10 L += [(‘get_’+S, wget, (urlroot+S+‘.zip’, S+‘.zip’))]
11 L += [(‘unzip_’+S, unzip, (S+‘.zip’, S+‘/’))]
12
13 for i in range(0, 49):
14 S1 = statelist[i]
15 for j in range(i+1, 50):
16 S2 = statelist[j]
17 L += [(‘compare_’+S1+‘_’+S2, pairwise_comparison,
18 (S1+‘/data.csv’, S2+‘/data.csv’, S1+‘_’+S2+’.csv’))]
19
20 Actualize(L, ‘EPA_instances.py’)

In the first for loop (lines 9-11), the user downloads and unzips the data,
producing two rounds of 50 function executions that, within a round, can be
run in parallel. For each state, a large CSV file (≈100 MB) is unarchived. Next,
she analyzes all pairs of states, generating a third round of 1225 parallelizable
function executions.

The user starts a 10-node cluster on EC2 with StarCluster, opens a Python
terminal and initializes StarFlow. When she runs Update(), StarFlow executes
analyze.EPA(), which writes out ‘EPA_instances.py’. StarFlow automatically
detects the functions inside of this new module, determines their dependencies
and how to run them in parallel on 10 nodes, and then does so.

5 Future Directions

Although Starflow is currently Python-specific, we’d like to take the underly-
ing principles and design and apply them to other scripting languages, such as

StarFlow: A Script-Centric Data Analysis Environment 249

Perl and R, to determine how generally applicable the ideas are. We also would
like to to extend StarFlow to the interactive shell in two ways: (i) given a vari-
able, automatically update its value in response to upstream changes, and (ii)
given a sequence of commands, automatically generate a script from the mini-
mal sequence needed to produce a set of targets. We have developed and plan
to improve a GUI for StarFlow that integrates browsing of files, dependencies,
data and metadata. We are working on more comprehensive parallelization and
workflow tools. We will integrate StarFlow’s dependency tracking infrastructure
with a version control system such as Mercurial [19].

6 Conclusion

StarFlow provides a powerful, script-centric environment for data analysis. It
strategically combines dynamic runtime analysis, static analysis of code, and
user annotations to provide fine-grain propagation. StarFlow enables workflow
abstraction and automatic parallelization, and we have implemented StarFlow
in the cloud.

Acknowledgments. We thank P. C. Sabeti (Harvard), who supported our
initial effort, and whose students and collaborators provided us with a valuable
case study. In particular, I. Shlyakhter, a member of the Sabeti Lab, provided us
with valuable insight on workflow abstraction. Finally, we thank the reviewers,
members of the PASS group (Harvard), and P. J. Guo (Stanford) for many
helpful comments on this manuscript.

References

1. Proceedings of the 2010 USENIX Workshop on the Theory and Practice of Prove-
nance, San Jose, CA, USA. USENIX (February 22, 2010)

2. United States Environmental Protection Agency. Epa frs facilities state combined
csv files download,
http://epa.gov/enviro/html/frs demo/geospatial data/

geo data state combined.html

3. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kotter, T., Meinl, T., Ohl, P.,
Thiel, K., Wiswedel, B.: Knime - the konstanz information miner: version 2.0 and
beyond. SIGKDD Explor. Newsl. 11(1), 26–31 (2009)

4. Callahan, S.P., Freire, J., Santos, E., Scheidegger, C.E., Silva, C.T., Vo, H.T.:
Vistrails: visualization meets data management. In: SIGMOD 2006 Proceedings
of the 2006 ACM SIGMOD International Conference on Management of Data,
pp. 745–747. ACM, New York (2006), General Chair-Yu, Clement and General
Chair-Scheuermann, Peter and Program Chair-Chaudhuri, Surajit

5. clario Analytics. clario, http://clarioanalytics.com
6. Clifford, B., Freire, J., Gil, Y., Groth, P., Futrelle, J., Kwasnikowska, N.,

Miles, S., Missier, P., Myers, J., Simmhan, Y., Stephan, E., den Buss-
che, J.V.: The open provenance model core specification, v1.1 (2009),
http://eprints.ecs.soton.ac.uk/18332/1/opm.pdf

http://epa.gov/enviro/html/frs_demo/geospatial_data/geo_data_state_combined.html
http://epa.gov/enviro/html/frs_demo/geospatial_data/geo_data_state_combined.html
http://clarioanalytics.com
http://eprints.ecs.soton.ac.uk/18332/1/opm.pdf

250 E. Angelino, D. Yamins, and M. Seltzer

7. LinkedIn Corporation Azkaban, http://sna-projects.com/azkaban/
8. Pentaho Corporation, Kettle: Pentaho data integration,

http://kettle.pentaho.org

9. Deelman, E., Blythe, J., Gil, A., Kesselman, C., Mehta, G., Patil, S., Su, M.-h.,
Vahi, K., Livny, M.: Pegasus: Mapping scientific workflows onto the grid, pp. 11–20
(2004)

10. Elkabany, K., Staley, A., Park, K.: Picloud - cloud computing for science. simplified.
In: SciPy 2010 Python for Scientific Computing Conference, Austin, TX (July 2010)

11. Foster, I., Vckler, J., Wilde, M., Zhao, Y.: Chimera: A virtual data system for
representing, querying, and automating data derivation. In: Proceedings of the
14th Conference on Scientific and Statistical Database Management, pp. 37–46
(2002)

12. The Eclipse Foundation. Eclipse c/c++ development tooling project,
http://www.eclipse.org/cdt

13. Guo, P.J., Engler, D.: Towards practical incremental recomputation for scientists:
An implementation for the python language. In: TaPP 2010 [1] (2010)

14. Ikeda, R., Widom, J.: Panda: A system for provenance and data. In: TaPP 2010
[1] (2010)

15. Yahoo! Inc., Oozie, http://yahoo.github.com/oozie/
16. Kuehn, H., Liberzon, A., Reich, M., Mesirov, J.P.: Using genepattern for gene

expression analysis. Curr. Prot. in Bioinformatics, 7.12.1–7.12.39 (2008)
17. Amazon Web Services LLC. Amazon elastic compute cloud (ec2),

http://aws.amazon.com/ec2

18. McPhillips, T., Bowers, S., Zinn, D., Ludaschera, B.: Scientific workflow design for
mere mortals. Future Generation Computer Systems 25(5), 541–551 (2009)

19. Mercurial. Mercurial, http://mercurial.selenic.com
20. Missier, P., Belhajjame, K., Zhao, J., Roos, M., Goble, C.: Data lineage model for

taverna workflows with lightweight annotation requirements. In: Freire, J., Koop,
D., Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, pp. 17–30. Springer, Heidelberg
(2008)

21. Muniswamy-Reddy, K.-K., Holland, D.A., Braun, U., Seltzer, M.I.: Provenance-
aware storage systems. In: USENIX Annual Technical Conference, General Track,
pp. 43–56. USENIX (2006)

22. Oinn, T.M., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, R.M.,
Carver, T., Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the
composition and enactment of bioinformatics workflows. Bioinformatics 20(17),
3045–3054 (2004)

23. Pan, M.J.: pomsets: workflow management for your cloud. In: SciPy 2010 Python
for Scientific Computing Conference, , Austin, TX (July 2010)

24. The GNU Project, Gnu automake, http://www.gnu.org/software/automake
25. Riley, J.: Starcluster - numpy/scipy computing in the cloud. In: SciPy 2010: Python

for Scientific Computing Conference, Austin, TX (July 2010)
26. Taylor, J., Schenck, I., Blankenberg, D., Nekrutenko, A.: Using galaxy to perform

large-scale interactive data analyses. Curr. Prot. in Bioinformatics, 10.5.1–10.5.25
(2007)

http://sna-projects.com/azkaban/
http://kettle.pentaho.org
http://www.eclipse.org/cdt
http://yahoo.github.com/oozie/
http://aws.amazon.com/ec2
http://mercurial.selenic.com
http://www.gnu.org/software/automake

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 251–259, 2010.
© Springer-Verlag Berlin Heidelberg 2010

GExpLine: A Tool for Supporting
Experiment Composition*

Daniel de Oliveira1, Eduardo Ogasawara1, Fernando Seabra1, Vítor Silva1,
Leonardo Murta2, and Marta Mattoso1

1 COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
2 Fluminense Federal University, Niterói, Brazil

{danielc,ogasawara,fernando_seabra,silva,marta}@cos.ufrj.br,
leomurta@ic.uff.br

Abstract. Scientific experiments present several advantages when modeled at
high abstraction levels, independent from Scientific Workflow Management
System (SWfMS) specification languages. For example, the scientist can define
the scientific hypothesis in terms of algorithms and methods. Then, this high
level experiment can be mapped into different scientific workflow instances.
These instances can be executed by a SWfMS and take advantage of its prove-
nance records. However, each workflow execution is often treated by the
SWfMS as independent instances. There are no tools that allow modeling the
conceptual experiment and linking it to the diverse workflow execution in-
stances. This work presents GExpLine, a tool for supporting experiment com-
position through provenance. In an analogy to software development, it can be
seen as a CASE tool while a SWfMS can be seen as an IDE. It provides a con-
ceptual representation of the scientific experiment and automatically associates
workflow executions with the concept of experiment. By using prospective
provenance from the experiment, GExpLine generates corresponding work-
flows that can be executed by SWfMS. This paper also presents a real experi-
ment use case that reinforces the importance of GExpLine and its prospective
provenance support.

1 Introduction

Scientific workflows are a prominent solution to model scientific experiments [1].
One fundamental problem is representing and tracking the composition process.
Composing a scientific workflow involves many trials. Scientists usually execute
different tasks during composition, such as: establishing the logical sequence of ac-
tivities, planning variations that have to be explored, and defining the types of input
and output data for each activity. All these actions are taken before using a SWfMS
and are not registered.

Since scientists need to draw conclusions from a scientific experiment. During the
experiment life cycle, many different workflow executions need to be evaluated by
choosing different parameters, alternative data sets, programs, or even algorithms and

* This work was partially sponsored by CNPq and CAPES.

252 D. de Oliveira et al.

methods [2]. Additionally, some activities may be optional in the workflow, i.e., sci-
entists should explore the experiment by choosing to use (or not) a particular activity
in order to model the entire workflow in a suitable way for the experiment being con-
ducted. The exploration of all these different workflows represents trials that are per-
formed to evaluate the initial hypothesis. Nevertheless, existing approaches are not
conceived to relate two or more workflow trials as part of a single experiment. For
instance, a SWfMS such as VisTrails [3] offers a framework for controlling workflow
versions, which represent several modifications of the same executable workflow over
the time. In VisTrails, different versions of an executable workflow are related and
represented in an evolution version tree. Although these versions share common char-
acteristics, they do not necessarily represent alternatives for the same experiment. For
example, a new version of a workflow is generated by simply removing a specific
activity from the workflow. The reason for this removal could be a bug fix or the
exploration of a different type of result for the same experiment. Unless some annota-
tion is used to represent which actions are allowed to be performed over a workflow
(e.g., removing some specific activities), the decision regarding removing or choosing
activities can be extremely error prone and counterproductive.

These several composition tasks should be registered in addition to producing an
executable workflow. These composition tasks represent a significant amount of ef-
fort for the scientists. Representing a workflow in hierarchical abstract levels can help
the process of analyzing the experiment, but this kind of representation is an open
issue [4]. A conceptual workflow is a workflow where scientists define what they
want to do without specifying how to do it.

Representing a workflow at hierarchical levels of abstraction presents several ad-
vantages. For example, it is possible to add semantics to the executable level by regis-
tering the main algorithms and software that originated the concrete workflow. It is
also possible to group different concrete workflows as alternative (similar) solutions
to one experiment. Thus, provenance from workflow trials is registered as part of one
single experiment. Workflow reuse and generation of executable workflows from
conceptual representations become simpler than browsing executable workflow re-
positories or querying workflow provenance databases.

GExpLine is a tool for supporting experiment composition. GExpLine is comple-
mentary to existing SWfMS, thus offering extra representation layers to be coupled to
the existing workflow systems. Its goal is to provide a high abstraction level representa-
tion environment for scientists to model their scientific experiments and to automati-
cally generate corresponding executable workflows in pre-defined SWfMS specification
languages.

Provenance data is a key concept used to link the experiment of GExpLine to the
SWfMS workflow executions. GExpLine provides mechanisms to gather prospective
provenance data from the experiment definition. This prospective provenance data is
related to the retrospective provenance data produced by the SWfMS. In addition, by
coupling GExpLine to workflow ontologies, the experiment representation is boosted
with ontology concepts, such as algorithms or methods inherent to scientific experi-
ments, and the provenance may also be analyzed based on these concepts. The GEx-
pLine representation is based on the concept of experiment lines [2].

The use case presented in this paper is based on a real experiment of the deep water
oil exploitation domain to reinforce GExpLine’s representation of experiments at

 GExpLine: A Tool for Supporting Experiment Composition 253

higher abstraction levels, supporting workflow composition and the derivation [2] to
different SWfMS with prospective provenance support. This paper is organized in
four sections besides this introduction. Section 2 presents GExpLine architectural
features. Section 3 presents details of the use case that demonstrates how to model a
real experiment of deep water oil exploitation using GExpLine. Section 4 brings the
related work and Section 5 concludes the paper.

2 GExpLine

The concept of experiment lines [2] is an innovative approach to represent a scientific
experiment. It is based on the successful concept of software product lines [5]. An
experiment line may be defined as a conceptual workflow that is capable to derive
multiple workflows at the concrete level. It is a flow of activities where each activity
behaves like an independent component [6]. When an activity of the flow can be im-
plemented by any activity from a list of alternative activities, it is called a variation
point. It means that there is more than one alternative program, algorithm or method to
implement the variation point. Also, when an abstract activity can be suppressed when
deriving a concrete workflow, in order to represent a different type of result or analy-
sis, and not due to its incorrectness, it is defined as an optional activity. On the other
hand, a mandatory activity is an activity that must be present in all derived concrete
workflows. Experiment lines follow the optional, mandatory, and variant activities. In
addition, GExpLine presents a powerful configuration management mechanism that
allows the versioning of workflow elements to model the experiment.

The GExpLine tool is based on five main components: (i) Experiment Line Mod-
eler: designs experiment lines, (ii) Derivation: derives concrete workflows based on
abstract ones. The derivation process is based on the concept of cartridges, i.e. when
scientists are deriving their conceptual workflows (represented in our object model)
into concrete ones they have to choose one cartridge in a set of available cartridges,
where each cartridge of this set generates concrete workflows for different representa-
tion language and also in XPDL [7] which is agnostic from SWfMS, (iii) Import:
imports concrete workflows from Kepler [8], Taverna [9], and VisTrails [3]. This
import process is also based on the concept of cartridges. There is a different cartridge
implemented for each type of workflow language, and (iv) Version Control: controls
versions of abstract/concrete workflows [10]. (v) Query: queries prospective prove-
nance data using abstract/concrete information. In the current version, provenance
queries are executed directly in SQL using DBMS functionalities. The following
section explains in detail the GExpLine conceptual model that allows scientists to
extract prospective provenance data from the modeled experiments.

3 GExpLine Prospective Provenance Model

The GExpLine prospective provenance model defines the experiment, abstract and
concrete workflows, workflow components such as ports and relations, version identi-
fication and organization, as well as operations for retrieving existing versions and
constructing new versions [10]. The GExpLine prospective provenance model is

254 D. de Oliveira et al.

composed by three main parts: (i) workflow classes, in which workflow concepts are
represented; and (ii) version classes, which represent the way that versions are organ-
ized. Figure 1 presents the GExpLine prospective provenance model as UML class
diagram. Classes were colored differently since they represent different perspectives
on the model. The white classes, which are Experiment, Workflow, Activity, Relation-
ship, Port, AbstractActivity, ConcreteActivity, Derivation and MetaArtifact represent
the workflow classes, which is actually the workflow meta-model. Finally, light gray
classes, which are Version, Transaction, ConfigurationItem, User, and Project, repre-
sent the version classes. Workflow classes represent, in configuration management
terminology [11], the product space. The version classes are called, in configuration
management terminology, the version space [10]. The linking between the product
space and version space is defined by the VersionedElement class, which acts as an
interface between both spaces. All classes that are part of the workflow meta-model
just need to inherit from the VersionedElement class to be versioned and managed by
the configuration management mechanism.

A workflow (class Workflow) is composed of activities (class Activity) and rela-
tionships (class Relationship). The class Workflow may be specialized into conceptual
abstract workflows (class AbstractWorkflow) and concrete workflows (class Con-
creteWorkflow). An activity in a workflow has input and output ports (class Port).
The relationship between activities is a directed edge that establishes the dependency
between activities and also defines the workflow activity chaining. In addition, the
class Activity presents a self-relationship that indicates variability, i.e., the choices that
scientists make when modeling a workflow. There are two specializations for the
Activity class. The AbstractActivity class represents activities modeled in the abstract
level while ConcreteActivity represents activities modeled in the executable level.
Both AbstractActivity and ConcreteActivity inherit from the class Activity. Each Activ-
ity that is part of a Workflow produces and consumes a specific MetaArtifact. A
MetaArtifact is a type of artifact in a prospective provenance model. A generated
artifact obtained during workflow execution is actually an instance of a MetaArtifact.
The derivations performed by scientists are registered in the class Derivation. This
way, the activities and workflows derived are registered and provide important infor-
mation for future backtracking information.

It is possible to relate the GExpLine workflow meta-model with Open Provenance
Model (OPM) [12] nodes. For example, the class MetaArtifact is mapped to the Arti-
fact OPM node. Indeed, a MetaArtifact is a conceptual representation of an artifact
node in OPM. The class Activity is mapped to the Process OPM node, since both of
them are performed on artifacts. The class User is mapped to the Agent OPM node.
This way it is possible to discover which entity composed and derived the activity.
The composition and derivation actions can be mapped to the OPM Role, which in
this case are compose and derive, since they designate an artifact's or agent's function
in a process.

The version space is decoupled from the product space, allowing both spaces to
evolve independently. The version space is composed by six main classes: Configuratio-
nItem, Version, Transaction, User, VersionedElement, and Project. Each configuration
item (class ConfigurationItem) is composed by versions (class Version). Each version has
relationships to the next and previous versions, which can be null for the first and last
versions of a configuration item, respectively. A specific attribute differentiates versions

 GExpLine: A Tool for Supporting Experiment Composition 255

that were deleted by the user. Additionally, there is a relationship to branched versions,
which allows non-sequential development. Versions are queried or created by transac-
tions (class Transaction) made by users (class User). Finally, versions have relationships
to the versioned elements (interface VersionedElement).

Fig. 1. GExpLine Prospective Provenance Model

VersionedElement interface is not exclusive for the version space. It is also part of
the product space, since it connects the versioning space with the product space, as
presented in Figure 1. Although a configuration item does not know more than the
type and the hierarchy of one of the versioned element in the product space, it is used
to retrieve the product information. Also, from the project (class Project), which is a
representation of a compound object, it is possible to obtain the configuration item
that is actually associated with the whole workflow. The conceptual model of Figure
1 was instantiated in a relational schema in the PostgreSQL DBMS and it is used as
the prospective provenance schema for GExpLine. While using the information pre-
sented in this model, scientists are able to extract and analyze provenance data and

256 D. de Oliveira et al.

draw important conclusions about the entire experiment. The next section presents a
real experiment of the deep water oil exploitation scientific workflow modeled in
GExpLine.

4 Modeling a Deep Water Oil Exploitation Experiment

The scientific experiment used in this GExpLine demonstration is based on the Deep
Water Oil Exploitation Domain. Although the experiment is more complex and with
many alternatives, for sake of simplicity, we present a small fraction of the experi-
ment, which is composed by four conceptual activities that are sequentially
connected: (i) Pre-Processing (implemented by PreProc program); (ii) Intermediate
Processing (implemented by SigProc program), (iii) Structural Analysis (implemented
by StruCAD or S-Analyst programs), and (iv) Generation of tension histogram (im-
plemented by Histogram program). In this experiment, the fourth activity of the flow
is optional, which means that it can be suppressed in some derived workflows, and the
third activity is a variation point, which means that scientists have alternatives (Stru-
CAD and S-Analyst) as presented in Figure 2. When using a SWfMS directly, these
two workflows from Figure 2 would be managed independently by the SWfMS. Que-
rying provenance corresponding to all executions of the same experiment line would
require a significant effort through the SWfMS provenance support. It is not simple to
gather and combine the provenance results of these specific executions.

Based on the experiment definition, the initial step is to set up the versioning
mechanism in GExpLine. The scientist must create a workspace for this new experi-
ment line. A workspace in the GExpLine context is an environment where scientists
are able to model their experiment lines, isolated from the outside world, i.e., isolated
from each other’s work. The scientist is able to choose an experiment line version to
work with if there is any committed version available.

The second step to be performed is to model the experiment line. It may be created
from scratch (top-down) or by importing multiple concrete workflows and generaliz-
ing them (bottom-up). The experiment line is modeled just once and scientists may
derive or make annotations any time after that.

From the modeled experiment line, scientists may conduct experiments by deriving
concrete workflows associated to that experiment. In this demonstration, the first
concrete workflow is composed by the programs PreProc, SigProc, StruCAD, and
Histogram. Let us suppose that the scientists were not satisfied with the obtained
results, and want to experiment a different method or algorithm. GExpLine can derive
an alternative concrete workflow. In this second trial, the optional activity was sup-
pressed and the concrete workflow has three activities, represented by the programs
PreProc, SigProc, and S-Analyst. This change is part of the experimentation process
and all this information is gathered and stored in the prospective provenance schema
of GExpLine.

It is important to notice that the experiment line composition is highly dependent
on the expertise of senior scientists and is a knowledge intense activity. However,
using an existing experiment line to derive workflows is a less error prone activity
and can be performed even by novice scientists. This occurs due to the effective use
of composition rules (already adopted in software product lines) [13]. The essence of

 GExpLine: A Tool for Supporting Experiment Composition 257

experiment lines is the systematic and efficient composition of experiments. This
composition is made by chaining a series of programs in a coherent manner. How-
ever, not all programs are compatible. Composition rules are commonly used to de-
fine the legal combinations of programs in an experiment line. In addition to domain
constraints, there are low level implementation constraints that must also be satisfied.

Workflow
Derivation #1

Workflow
Derivation #2

Fig. 2. Derivation in GExpLine

The demonstration ends with queries on prospective provenance data related to the
experiment line using DBMS features. This query service allows analyzing informa-
tion about concrete workflows associated with one experiment. Using the provenance
query directly from the SWfMS, the user would have to gather the set of independent
workflow executions corresponding to the experiment line. Let us take the example
explained in this subsection. There are many generated concrete workflows for the
same experiment. Particularly, the activity Structural Analysis has two different pro-
grams that implement it (StruCAD and S-Analyst) where each one produced different
artifacts. If scientists want to discover which workflow produces the “tension ampli-
tude histogram”, using existing SWfMS, scientists are not able to discover the avail-
able workflows in the provenance schema (retrospective provenance is not available
since the query is prior to execution). A demonstration video can be found at
http://gexp.nacad.ufrj.br/news/gexpline-demo-ipaw.

5 Related Work

We have analyzed the literature and SWfMS support for workflow representation in
different abstraction levels. Current SWfMS are restricted to one workflow execution
at a time. In this way, the knowledge of which activities can be linked to each other is
still tacit, since there is no conceptual representation of the experiment as happens in

258 D. de Oliveira et al.

GExpLine. Currently, projects in many SWfMS force scientists to redefine, almost
from scratch, scientific workflows previously developed by other scientists, incurring
in the same composition trial and error. This occurs due to the absence of a systematic
approach for composition and lack of a conceptual workflow representation.

Ludäscher et al. [14] present an approach to relieve the scientists from directly de-
signing executable workflows. It represents an abstract workflow based on directed
acyclic graphs. It proposes to use database mediation techniques that automatically
map abstract workflow activities into executable ones. This mapping is powerful and
independent of SWfMS. However, this approach does not add represent optionalities
or variabilities that are important concepts for scientific experiments. Using those con-
cepts, scientists are able to identify similar workflows that share a common ancestor.

The task specification language (TSL) [15] is an initiative to represent scientific
workflows in different abstraction levels. The TSL approach is coupled to the VIEW
[16] SWfMS, but it does not represent alternative activities and it does not concern
about representing the concept of scientific experiment.

6 Conclusion

GExpLine allows scientists to model their experiments in a high abstraction level,
improving the management of the scientific experiment. GExpLine provides features
to associate different concrete workflows to a single conceptual definition of the ex-
periment. This experiment to concrete workflow mapping is fundamental for scien-
tific experiment management. It produces conceptual prospective provenance data for
analysis together with provenance data from SWfMS concrete workflow instances.
This prospective provenance data is thus complementary to the SWfMS provenance
data. Ongoing work includes developing a lightweight interface for querying prove-
nance data and incorporating composition rules in GExpLine.

References

[1] Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M. (eds.): Workflows for e-Science:
Scientific Workflows for Grids, 1st edn. Springer, Heidelberg (2007)

[2] Ogasawara, E., Paulino, C., Murta, L., Werner, C., Mattoso, M.: Experiment Line: Soft-
ware Reuse in Scientific Workflows. In: 21th SSDBM, New Orleans, LA, pp. 264–272
(2009)

[3] Callahan, S.P., Freire, J., Santos, E., Scheidegger, C.E., Silva, C.T., Vo, H.T.: VisTrails:
visualization meets data management. In: Proc. SIGMOD 2006, USA, pp. 745–747
(2006)

[4] Shoshani, A.: The Scientific Data Management Center: Providing Technologies for Large
Scale Scientific Exploration. Scientific and Statistical Database Management, 1–2 (2009)

[5] Northrop, L.: SEI’s software product line tenets. IEEE Software 19(4), 32–40 (2002)
[6] Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Addison-

Wesley Professional, Reading (1997)
[7] I. WfMC, Binding, WfMC Standards, WFMC-TC-1023 (2009),

http://www.wfmc.org (2000)

 GExpLine: A Tool for Supporting Experiment Composition 259

[8] Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler: an exten-
sible system for design and execution of scientific workflows. In: SSDBM, Greece, pp.
423–424 (2004)

[9] Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M.R., Li, P., Oinn, T.: Tav-
erna: a tool for building and running workflows of services. Nucleic Acids Re-
search 34(Web Server issue), 729–732 (2006)

[10] Ogasawara, E., Rangel, P., Murta, L., Werner, C., Mattoso, M.: Comparison and Version-
ing of Scientific Workflows. In: CVSM 2009, Vancouver, Canada, pp. 25–30 (2009)

[11] Conradi, R., Westfechtel, B.: Version Models for Software Configuration Management.
ACM Computing Surveys 30(2), 232–282 (1998)

[12] Moreau, L., Freire, J., Futrelle, J., McGrath, R., Myers, J., Paulson, P.: The Open Prove-
nance Model: An Overview. In: Provenance and Annotation of Data and Processes, pp.
323–326 (2008)

[13] Garg, A., Critchlow, M., Chen, P., Westhuizen, C.V.D., Hoek, A.V.D.: An Environment
for Managing Evolving Product Line Architectures. In: Proceedings of the International
Conference on Software Maintenance, pp. 358–366 (2003)

[14] Ludascher, B., Altintas, I., Gupta, A.: Compiling abstract scientific workflows into web
service workflows. In: Proceedings of the 15th International Conference on Scientific and
Statistical Database Management, Cambridge, MA, pp. 251–254 (2003)

[15] Lin, C., Lu, S., Fei, X., Pai, D., Hua, J.: A Task Abstraction and Mapping Approach to
the Shimming Problem in Scientific Workflows. In: Proc. Services 2009, pp. 284–291
(2009)

[16] Lin, C., Lu, S., Lai, Z., Chebotko, A., Fei, X., Hua, J., Fotouhi, F.: Service-Oriented Ar-
chitecture for VIEW: A Visual Scientific Workflow Management System. In: Services,
pp. 335–342 (2008)

Data Provenance in Distributed Propagator
Networks

Ian Jacobi

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139
jacobi@csail.mit.edu

Abstract. The heterogeneous and unreliable nature of distributed sys-
tems has created a distinct need for the inclusion of provenance within
their design to allow for error correction and redundancy. Many tradi-
tional distributed systems have limited provenance tracing abilities, usu-
ally included in generic workflow generation or in an application-specific
way. The novel programming paradigm of distributed propagator net-
works allows for the inclusion of provenance from the ground up.

In this paper, I present the concept of propagator networks and demon-
strate how provenance may be easily integrated into programs built using
them. I also demonstrate the possibility of converting non-provenance-
aware applications built using propagator networks into provenance-aware
applications by simply performing a transformation of the existing pro-
gram structure.

1 Introduction

Data provenance, that is, the derivation history of a piece of data [1], is an
integral need of distributed systems like Google’s MapReduce algorithm [2], or
BOINC [3]. In distributed systems such as these, it is difficult to infer provenance
of a particular result as the result may be generated by any one of thousands
of systems. As a result, provenance handling must be explicitly factored into
distributed system design.

Depending on how well an existing distributed architecture is designed, it
may be difficult to support many use cases of provenance in applications that
use the architecture. Such programs may need to explicitly include provenance
in the design of the application. It would be far easier for developers of dis-
tributed applications not to need to worry about how provenance is handled in
their distributed system; this would reduce complexity of program design. Data
propagation, a model of concurrent [4] and distributed computation [5], allows
for the transformation of programs that use it so they may track provenance.

2 Propagator Networks

Propagator networks, developed by Radul [4], are a general-purpose concurrent
programming paradigm. These bipartite networks are constructed by connecting

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 260–264, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Data Provenance in Distributed Propagator Networks 261

temp−converter temp−converter temp−converter temp−converter

(a) (b) (c) (d)

77−86F

20−30C

68−86F 68−86F

25−30C 25−30C

68−86F

25−30C

Fig. 1. A refinement of the contents of the top cell in (b) causes temp-converter to
fire in (c), which then refines the bottom cell in (d)

“cells” that permanently store state and stateless propagators which perform
computation and update the cells they are connected to.

Cells are a form of memory which may be assigned a partial value that can be
refined. Upon receiving an update to this value, a cell accumulates knowledge of
the value by applying a user-defined merge operation to unify the information
contained in the update with the partial value currently stored there.

After a cell has changed its state by merging an update, any propagators that
have registered an interest in the cell wake up and begin to process, as in (c)
in Figure 1. These propagators may then send updates to other cells (d) and
cause another cycle of cell merging and notification of propagators; this drives
continued computation.

Networks of propagators have no constraints on their topology and may con-
tain cycles. The order of operations in propagator networks is undefined other
than the ordering enforced by propagation itself (i.e. a cell must update before
propagators attached to it may fire). This, along with the separation of state
and computation makes propagation a flexible framework for concurrency.

2.1 Propagators in a Distributed System

The modularity of propagator networks makes it relatively simple to extend
their use to distributed systems. [5] In order to push updates across a network,
we may bridge the network with propagators that duplicate cells on different
computers. By implementing a “synchronization propagator” on each host to
forward updates between copies of cells, local updates can trigger remote ones,
effecting remote computation. This computation may update other cells that
then cause cell synchronization and update more remote cells.

To ensure that no inconsistencies arise due to network issues, we require four
properties of a cell merge operation: idempotency, associativity, commutativity,
and monotonicity. We also require all cell copies to have the same merge op-
eration. Although the only operations that adhere to these constraints may be
the operations of logical conjunction and disjunction or comparable operations

262 I. Jacobi

32

temp−converter

temp−converter 0

32

[UUID] [UUID]

0

[UUID] [UUID]

NOAA

[Remote]
NOAA

(b)

(a)
(c)

(d)

Fig. 2. We transform a propagator temp-converter (top) into a provenance-aware
propagator network (bottom). Solid arrows indicate the flow of computation in the
propagator network. Note that the provenance (c) and data (b) cells contain pointers
to the main identifier cell (a) (and vice versa), marked with dashed arrows.

over alternate domains, merge operations that do not adhere to these principles
may be modified into operations that do. Standard distributed database imple-
mentations account for the transitivity and implicit monotonicity of network
communications when performing non-transitive and non-monotonic deletions
[6]. Similar adaptations of other merge operations may be possible.

3 Adding Provenance to Propagator Networks

Provenance may be easily implemented on top of existing propagator networks
without adding any additional mechanisms or basic primitives to the propagator
paradigm. Rather than treating a cell as a single object with a number of simple
propagators attached to it, we may apply a simple transformation that adds the
cells and propagators needed to make the propagator provenance-aware.

We choose to separate provenance from the data itself, as in Figure 2. In that
example, a cell containing a measurement of 32 (degrees Fahrenheit) made by the
National Oceanic and Atmospheric Administration (NOAA) is divided into three
sub-cells. One cell contains the data (b), another the provenance (c), and a third
(a) that points to both sub-cells and contains a Universally Unique Identifier
(UUID) along with associated metadata, linking the three cells together.

Separating the sub-cells in this way allows these separate aspects of the data to
be refined separately. It also allows for separate access control of provenance and
data, as the auditors allowed to view provenance may be different from general
users. [7] Each of these three components, data, provenance, and metadata, are
placed into one of three sub-cells where they may be refined.

Transforming a propagator to be provenance-aware is even simpler; it requires
the propagator to be modified with an additional sub-propagator for each in-
put/output cell pair (d). This sub-propagator will only allow the provenance of

Data Provenance in Distributed Propagator Networks 263

an input to be sent to the output cell when data has been sent by the main
propagator to the output, effectively acting as a switch.

Provenance may be constructed by gradually aggregating the graph of prove-
nance stored in each provenance sub-cell. Contents of new provenance updates
may be added to an existing provenance graph, and then propagated through
other provenance-aware propagators. Changes to existing provenance will also
be forwarded through a provenance-aware propagator, and these changes may
be merged into the existing knowledge of the provenance sub-cell. Thus, data
propagation may be used for both computation and provenance construction.

4 Related Work

The work of Moreau, et al. [8] features the automatic construction of provenance,
much as provenance-aware data propagation does. However, Moreau focuses on
querying the provenance after its construction rather than detailing its genera-
tion. Moreau also assumes that provenance may be general in his system, able
to document the purpose of an action. Although propagator networks may be
able to do so, we make no claims about the creation of subjective provenance.

Altintas, et al.’s extension of the Kepler Scientific Workflow System [9] is also
similar to the work presented here. Just as we may extend existing propagator
networks to support provenance, Altintas demonstrates an extension of an exist-
ing framework, Kepler, to support provenance. Altintas’s centralized approach
for collecting provenance is not suitable for propagator networks however, as
propagator networks are inherently decentralized. Adapting Altintas’s approach
would scale poorly with the propagator network as the number of messages sent
to the propagator server grows.

The Matrioshka system presented by da Cruz, et al [10] proposes another
mechanism for provenance tracking in distributed workflows. Unlike provenance
propagation, Matrioshka requires a single centralized provenance store rather
than distributing the provenance with the data. Matrioshka is also somewhat
more brittle than the system proposed here, as it assumes that logging is aleady
performed, and relies on the generation of a log prior to constructing provenance.

5 Contributions and Future Work

The power of data propagation may resolve many of the difficulties encountered
in concurrent and distributed processing, and we should consider the role of
integrating provenance into systems that make use of this technique. In this
paper I have demonstrated the value of the data propagation paradigm not
only by allowing for the distribution of provenance, but also by permitting the
extension of existing programs to support provenance.

I have currently implemented the system described in this paper on top of a
distributed propagator framework (DProp) that I have designed. While the im-
plementation of both DProp and the provenance-aware component are Python-
based, the more generic nature of propagators allows this design to be useful

264 I. Jacobi

more generally. I hope to eventually test the system across a number of hosts to
ensure that the system is fully scalable.

Acknowledgements

I would like to thank Joe Pato of HP Labs, and Gerry Sussman and other
members of the Decentralized Information Group at MIT for their advice and
criticism. I would like to extend particular thanks to Alexey Radul for his assis-
tance with the architectural design of distributed propagation. Finally, I would
also like to acknowledge that this work was supported in part by the National
Science Foundation under NSF Cybertrust Grant award number CNS-0831442
and by IARPA under Grant FA8750-07-2-0031.

References

1. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science.
ACM SIGMOD Record 34(3), 31–36 (2005)

2. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: Proceedings of the 6th Symposium on Operating System Design and Imple-
mentation (OSDI 2004), USENIX Association (2004)

3. Anderson, D.P.: BOINC: A system for public-resource computing and storage. In:
Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,
pp. 4–10. IEEE Computer Society, Los Alamitos (2004)

4. Radul, A.: Propagation Networks: A Flexible and Expressive Substrate for Com-
putation. PhD thesis, Massachusetts Institute of Technology (2009)

5. Jacobi, I., Radul, A.: A RESTful messaging system for asynchronous distributed
processing. In: Proceedings of the First International Workshop on RESTful De-
sign, Raleigh, NC, USA. ACM, New York (2010)

6. Birrell, A.D., Levin, R., Needham, R.M., Schroeder, M.D.: Grapevine: An exercise
in distributed computing. Communications of the ACM 25(4), 260–274 (1982)

7. Braun, U., Shinnar, A.: A security model for provenance. Technical Report TR-
04-06, Computer Science Group, Harvard University (2006)

8. Moreau, L., Groth, P., Miles, S., Vazquez-Salceda, J., Ibbotson, J., Jiang, S.,
Munroe, S., Rana, O., Schreiber, A., Tan, V., Varga, L.: The provenance of elec-
tronic data. Communications of the ACM 51(4), 52–58 (2008)

9. Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance collection support in the
kepler scientific workflow system. In: Moreau, L., Foster, I. (eds.) IPAW 2006.
LNCS, vol. 4145, pp. 118–132. Springer, Heidelberg (2006)

10. da Cruz, S.M.S., Barros, P.M., Bisch, P.M., Campos, M.L.M., Mattoso, M.: Prove-
nance services for distributed workflows. In: Proceedings of the 2008 Eighth IEEE
International Symposium on Cluster Computing and the Grid, pp. 526–533. IEEE
Computer Society, Los Alamitos (2008)

Towards Provenance Aware Comment Tracking
for Web Applications

James R. Michaelis and Deborah L. McGuinness

Tetherless World Constellation
Rensselaer Polytechnic Institute

Troy, NY 12180
{michaj6,dlm}@cs.rpi.edu

Abstract. Provenance has been demonstrated as an important compo-
nent in web applications such as mashups, as a means of resolving user
questions. However, such provenance may not be usable by all members
of a given applications user base. In this paper, we discuss how crowd-
sourcing could be employed to allow individual users to get questions
answered by the greater user base. We begin by discussing a technology-
agnostic model for incorporating Provenance Aware Comment Trackers
(PACTs) into web applications. Following this, we present an example
of a PACT-extended application with accompanying two accompanying
use cases.

1 Introduction

On the Web, applications are continuously being created to serve communities
of users. These applications are capable of generating browsable content via an
interface for users to review and browse. In reviewing this content, users may
have questions about the content they see, which could impact their trust in the
application [1].

Provenance can provide information on the creation and history of artifacts,
such as web-based resources [8] and be used as an aid in question answering. How-
ever, for someone to work effectively work with the provenance of web content,
certain kinds of background are necessary. Examples of such background include
understanding how the individual components of an application’s workflow (e.g.,
code, supporting technologies) are supposed to function [7]. Personalized views
of provenance can help with this [2][12]. Yet these approaches are not guaranteed
to produce understandable provenance for a given user in all cases. While such a
user may be unable (or unwilling) to review this provenance, other members of
a web community may be able to it for them. The use of collective intelligence,
or crowdsourcing, has been applied previously in web applications [3]. Due to
differences in the backgrounds of individuals (i.e., different knowledge and expe-
riences), certain users may understand application output that a particular user
doesnt. As such, access to the insights of a greater community of users for a web
application could be a valuable aid to any single community member. Here, it

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 265–273, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

266 J.R. Michaelis and D.L. McGuinness

is important to emphasize the role of provenance in crowdsourcing driven ques-
tion answering. For web applications based on data and services that continually
change (e.g., an application that pulls in content from Wikipedia), what one user
sees in the interface may be quite different from what other users see. As such,
provenance can provide context to user questions on web applications, such that
other users can make sense of them.

1.1 Deliverables

This work discusses the idea of crowdsourcing provenance evaluation as a means
of addressing user questions on web application outputs, and is intended as a
starting point upon which more applied work can later follow. To help convey
our current views, three deliverables are provided in this paper:

– A model for extending web applications with provenance-based comment
tracking, known as the Provenance Aware Comment Tracker (PACT) model.
In the PACT model, users may comment on sections of a web application
interface, known as outputs. In turn, other web community members may
reply to this user, forming discussion threads in the process.

– An example of a PACT-extended web application, titled US Global Aid.
This application presents a mashup of user foreign aid contributions made
to individual countries by the US Agency for International Development
(USAID) with supplementary country facts provided by DBPedia.

– Based on this example application, two use cases are presented to illustrate
PACT usage.

Additionally, it is important to mention what this work doesn’t attempt to cover:

– User interface or usability issues for accessing a PACT from a web applica-
tion, or presenting provenance and presenting previously made comments to
end users.

– The usage of specific technologies for implementing PACTs in web applica-
tions. However, some recommendations on promising technologies are pro-
vided for this purpose at the end of the paper.

The outline of the remainder of the paper is as follows: Section 2 discusses related
work; Section 3 introduces the PACT model; Section 4 introduces the US Global
Aid mashup, and discusses corresponding use cases; finally, Section 5 provides
our discussion and concluding remarks.

2 Related Work

The use of provenance in mashups has received significant recent attention. For
instance, the documenting of application activities, based on models such as
the p-structure [5], has been explored. Additionally, frameworks for tracking the
provenance of mashup evolution, such as VISMASHUP [10], have been devel-
oped. Here, users can view multiple instances of a mashup, distinguished by

Towards Provenance Aware Comment Tracking for Web Applications 267

the provenance of their development by an end user. This work builds on the
VisTrails [4] approach of tracking the provenance of workflow evolution.

Likewise, the application of crowdsourcing toward problem solving has
received significant attention [3]. Examples of the kinds of problem solving ex-
plored include reviewing the quality of Wikipedia articles [6] and linguistic anno-
tation [13]. In both of these particular cases, communities of users are assigned
tasks, and complete them through the Amazon Mechanical Turk1 service. To
our knowledge, little work has been explored on applying crowdsourcing of any
kind toward provenance evaluation.

3 The Provenance Aware Comment Tracker (PACT)
Model

In this section, we discuss the PACT model model and its relationship to web
applications. Here, we assume the existence of:

– An application A consisting of a workflow W = {N, C, I} with:
• N: A set of all input parameters to the application, where |N| ≥ 0.
• P: A set of all processing stages carried out by the application, where
|P| ≥ 0.

• I: The interface of the application, consisting of a set of outputs viewable
by a user2, where |I| > 0.

– A user community U, where |U| ≥ 0.

Additionally, we assume that each user u ∈ U is capable of running A, resulting
in an execution of W. For each execution of W:

– The same set of input parameters is used, with possibly changing values (e.g.
if one of the parameters is an RSS feed).

– The same set of processing stages P are used, with possible variability in
execution sequence (based on factors such as variability in the input param-
eters).

– The same set of interface outputs are displayed, with possible variability
based on the execution sequence.

What this means is that while each execution of the application will follow a
common plan, different users may end up seeing different information in the
application outputs. With these assumptions in mind, we define the components
of a PACT based on the activities an end user can do for each application output:

– Inspect Provenance: A provenance trace detailing all activities managed
by the application to generate the output should be accessible (i.e. the trace
goes from the output to input parameters), should a user want to inspect
provenance themselves.

1 https://www.mturk.com/
2 Here, we are not attempting to define what constitutes an application output. For

the purpose of this paper, it is some discrete entity whose provenance is logged.

268 J.R. Michaelis and D.L. McGuinness

– Make a comment: Additionally, for each application output, a user should
be able to make a comment based on what they see. For each comment
made, the PACT should register the following things, in addition to the
comment itself: (i) information on the commenting user (e.g., name and
email address), (ii) a provenance trace of the output they saw, going from
the output to inputs, and (iii) an glimpse of the output as the user saw it,
which could either be an image or a fully functional output reproduced for
others to look at. These materials can help establish the context of a given
user’s comments for the greater web community.

– Review comments: Here, members of the web community can review com-
ments made by given users. For each comment, the users will be able to see
the comments, as well as three types of information described above.

– Reply to a comment: Upon reviewing a comment, users can reply to
comments - yielding child comments or to the children of comments yielding
discussion threads based on an original comment.

4 Exemplar Application: US Global Aid

Mashups are a kind of web-based application designed to integrate data and
web services from different sources, yielding new functionality in the process.
These kinds of web applications are particularly good candidates for provenance
usage as it can often be unclear what data sources used to create the information
presented in the interface [8]. To illustrate the use of PACTs in web applications,
we present a basic mashup called US Global Aid3. This mashup, shown in Fig.
1, is designed leverage Semantic Web based resources to display two kinds of
information:

– Foreign aid contributions made to individual countries in 2008 by the US
Agency for International Development (USAID), derived from data hosted
by the US Government website Data.gov4

– Facts for individual countries obtained from DBPedia.org. Here, population,
Human Development Index (HDI) and Failed State Index (FSI) are pre-
sented5.

To ensure the user community views this mashup as reliable, it needs to have
mechanisms to preserve transparency, as well as the accountability of data it
uses. This helps address two general issues: first, flaws may be present in mashup
workflow itself that misrepresent content; second, the mashup output may change
regularly due to changes in data sources.
3 This mashup is a simplified version of the foreign aid mashup US Global Aid, hosted

at http://www.data-gov.tw.rpi.edu/
4 Specifically, Dataset 1554 is referenced: http://www.data.gov/raw/1554
5 On DBPedia, these may be referenced for individual countries through the RDF

properties dbpprop:populationEstimate, dbpprop:hdi and dbpprop:fsi respectively,
where the namespace dbpprop is defined as http://dbpedia.org/property/

Towards Provenance Aware Comment Tracking for Web Applications 269

Fig. 1. Screenshots from the mashup US Global Aid. Top: A world map, shaded ac-
cording to the amount of aid received by individual countries, along with aid figures for
Afghanistan. This are the outputs seen by Alice in Use Case 1, in which Afghanistan is
shown as receiving about 1.6 trillion from USAID. Middle Left: The ”Make Comment”
form that Alice uses to make her comment in Use Case 1 Middle Right: Country facts
for Afghanistan that Carol Sees in Use Case 2, in which an HDI value of .945 is given.
Bottom: The ”Search Comments” interface used by Bob to find, and reply to, Alice
and Carol’s comments in Use Cases 1 and 2. Here, the search interface is displaying
comments for the two different outputs that were commented on.

270 J.R. Michaelis and D.L. McGuinness

4.1 Use Case 1: Problem in Mashup

Here, a user Alice runs the mashup and sees that Afghanistan received about
1.6 trillion in 2008 - an amount which would constitute a significant portion of
the US national debt 6. Alice has little background with what provenance is, so
she decides to simply make the comment: ”Is it true USAID gave Afghanistan
1.6 trillion in 2008?”. Following this, another user Bob decides to search for
comments made on the Afghanistan figures and finds Alice’s comment. Bob
looks at the glimpse of the output Alice viewed, which is exactly what he sees
on his execution of the application, and agrees the figure is suspicious. Since he
has some background in the structure of this mashup, he decides to inspect the
provenance of this output (Fig. 2). In doing this, he compares data retrieved as
the result of a SPARQL query to a version of the data formatted for use in the
visualization itself. Here, he notices the numerical values in the data record for
Afghanistan are multiplied by 1,000, following the process Format Data. Bob
concludes that the problem lies with this process, likely due to a unit conversion
error, and replies accordingly to Alice that it is an application-specific problem.

Fig. 2. An OPM-based[9] diagram of the provenance that Bob inspects in Use Case 1,
with artifact values illustrated. Here, Bob isolates the problem to the ”Format Data”
process.

4.2 Use Case 2: Problem with Data

Here, another user Carol runs the mashup and sees that Afghanistan had an HDI
value of .945 in 2007, which would place it among the world’s most developed
6 Approximately 13 trillion, as of June 2010.

Towards Provenance Aware Comment Tracking for Web Applications 271

countries. Like Alice from Use Case 1, Carol decides against viewing the prove-
nance of this output, instead leaving the comment ”How could Afghanistan have
an HDI value of .945 in 2007?” Following this, Bob decides to search for comments
made on the Afghanistan country facts and finds Carol’s comment. Bob looks at
the glimpse of the output Carol viewed, but it is different from what he sees - on his
screen, Afghanistan’s HDI is shown as .345, making it one of the least developed
countries. He inspects the provenance of this output (Fig. 3), comparing data re-
trieved as the result of a SPARQL query to a version of the data formatted for use
in the visualization itself. However, the HDI values in both data records are the
same - meaning that the HDI value of .945 was obtained as a result of the SPARQL
query to DBPedia7. Bob concludes that the problem most likely was with the data
on DBPedia, possibly due to a typo or vandalism that was subsequently corrected,
and replies to Carol that it is a data-specific problem. [9]

Fig. 3. An OPM-based diagram of the provenance that Bob inspects in Use Case 1,
with artifact values illustrated. Here, Bob determines the problem lies before the ”Raw
Data” artifact.

5 Discussion and Conclusion

Currently, the PACT model is defined to express functionality similar to Amazon
Mechanical Turk, and therefore faces similar requirements to effectively coordi-
nate the crowdsourcing of tasks. Some of these requirements are discussed in[6],
and include:
7 Here, the mention of any specific error in the DBPedia corpus is hypothetical and

done only for illustrative purposes.

272 J.R. Michaelis and D.L. McGuinness

– A need for constrained, verifiable problems for crowd members to solve. Else,
answers provided by crowd members could simply be a matter of opinion,
or guesses as to the answer.

– Determining the incentives for members of a web community to answer ques-
tions provided by other users.

– Mechanisms for preventing ineffective or malicious users from registering
comments (or replies to comments).

While this paper doesn’t discuss the implementation of specific technologies for
a PACT, some recommendations are made

– Information Structuring: The goal of this would be to categorize users, as
well as the comments/replies they make. Semantic Web languages, such as
RDF and OWL, provide such functionality, and can be used in the creation
of ontology-based classifications of information. In doing this, functionality

– Viewing Provenance: At present, a number of tools exist for reviewing prove-
nance. Among these are Probe-It and IWBrowser [11], which are designed
to view provenance encoded using the OWL-based Proof Markup Language
(PML).

Achieving these goals will be important future work for refining the PACT model,
as well as for implementing PACT instances in web applications.

References

1. Berners-Lee, T.: Cleaning up the User Interface (1997),
http://www.w3.org/DesignIssues/UI.html

2. Biton, O., Cohen-Boulakia, S., Davidson, S., Hara, C.: Querying and managing
provenance through user views in scientific workflows. In: Proceedings of ICDE
(2008)

3. Brabham, D.: Crowdsourcing as a model for problem solving: An introduction and
cases. Convergence 14(1), 75 (2008)

4. Freire, J., Silva, C., Callahan, S., Santos, E., Scheidegger, C., Vo, H.: Managing
rapidly-evolving scientific workflows. Provenance and Annotation of Data, 10–18
(2006)

5. Groth, P., Miles, S., Moreau, L.: A model of process documentation to determine
provenance in mash-ups. ACM Transactions on Internet Technology (TOIT) 9(1),
3 (2009)

6. Kittur, A., Chi, E., Suh, B.: Crowdsourcing user studies with Mechanical Turk. In:
Proceeding of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in
Computing Systems, pp. 453–456. ACM, New York (2008)

7. Miles, S., Groth, P., Deelman, E., Vahi, K., Mehta, G., Moreau, L.: Provenance:
The bridge between experiments and data. Computing in Science and Engineer-
ing 10(3), 38–46 (2008)

8. Moreau, L.: The Foundations for Provenance on the Web. Foundations and Trends
in Web Science (2009)

9. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska,
N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., den
Bussche, J.V.: The open provenance model — core specification (v1.1). Future
Generation Computer Systems (July 2010)

http://www.w3.org/DesignIssues/UI.html

Towards Provenance Aware Comment Tracking for Web Applications 273

10. Santos, E., Lins, L., Ahrens, J., Freire, J., Silva, C., et al.: VisMashup: Stream-
lining the Creation of Custom Visualization Applications. IEEE Transactions on
Visualization and Computer Graphics 15(6), 1539–1546 (2009)

11. Pinheiro da Silva, P., McGuinness, D., Del Rio, N., Ding, L.: Inference web in
action: Lightweight use of the proof markup language. In: Sheth, A.P., Staab,
S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.)
ISWC 2008. LNCS, vol. 5318, pp. 847–860. Springer, Heidelberg (2008)

12. Simmhan, Y., Plale, B., Gannon, D.: Query capabilities of the Karma provenance
framework. Concurrency and Computation: Practice and Experience 20(5), 441–
451 (2008)

13. Snow, R., O’Connor, B., Jurafsky, D., Ng, A.: Cheap and fast—but is it good?:
evaluating non-expert annotations for natural language tasks. In: Proceedings of
the Conference on Empirical Methods in Natural Language Processing, pp. 254–
263. Association for Computational Linguistics (2008)

Browsing Proof Markup Language Provenance:
Enhancing the Experience

Nicholas Del Rio, Paulo Pinheiro da Silva, and Hugo Porras

The University of Texas at El Paso, Computer Science,
500 W. University Ave. El Paso TX 79968 USA

1 Introduction

Probe-It! is a browser that allows users to navigate through Proof Markup Lan-
guage (PML) based provenance traces by interacting with a number of different
perspectives or views [1]. These views provide specific renderings or presentations
for the different kinds of provenance information defined in the PML ontology [2].
Throughout our three year experience with Probe-It! we have gathered require-
ments from users who have a need for browsing PML captured from theorem
provers in the Thousands of Problems for Theorem Provers (TPTP) and Home-
land Security domains as well as from scientific processes in areas such as solar
astronomy, seismology, and environmental science. This paper briefly describes
the enhancements made to Probe-It! to improve usability and performance with
regards to visualization.

2 Usability

Probe-It!’s global justification view grants users visual access to a PML based
provenance trace in its entirety. The global justification view renders PML jus-
tifications as a DAG, where nodesets are represented as graph nodes and the
hasAntecedent relationships are represented by the arcs connecting nodesets.
The nodesets composing the proof DAG are each represented as a box that con-
tains a nodeset’s conclusion. These DAGs have the potential to be very large,
especially in the Thousands of Problems for Theorem Provers (TPTP) domain,
where many of the proofs consist of hundreds of nodesets. In these cases provid-
ing users with options on how to navigate around these large provenance traces
becomes essential. In fact, it was noted by a member of the TPTP community
that his instinct was to “drag” around the global view justification canvas, which
Probe-It! was not capable of. Probe-It! now addresses this limitation by now sup-
porting Google Earth-like navigation capabilities rather than relying solely on
a scrollable pane to move the DAG around. In addition users now have the
ability to zoom in/out, abstract the information shown in the nodesets, a fea-
ture found in [4], or move around the graph by dragging on the canvas or using
the panner.

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 274–276, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Browsing Proof Markup Language Provenance: Enhancing the Experience 275

Another enhancement to Probe-It!, that we hope will increase the quality of
users’ experience, was the adoption of the Inference Web [3] group’s local view.
The local view presents both data transformation trace information (PML-J)
and transformation trace metadata (PMP-J) associated with a single nodeset,
where as the global justification view hides much of the PML-P information and
puts more emphasis on presenting the structure of a justification as a whole. The
information presented to users in the local view is categorized by: the selected
nodeset’s conclusion, how the selected nodeset was derived (antecedents, rule),
what its conclusion is used to derive (consequents of), and what it is used to
finally derive (final conclusion of proof). It is also possible to navigate to any
other nodesets that were used to derive or are derived from the currently selected
nodeset, through the use of links. Upon selection of new nodeset, the information
presented in the local view is updated to reflect the newly selected nodeset. We
are currently devising scenarios in which to measure the effectiveness of the local
view in a scientific context, where nodeset conclusions are visualizable datasets
rather than logical statements.

3 Performance: Preprocessed Views

In cases where PML traces are documenting derivations of scientific products
rather than derivations of logical conclusions, Probe-It! may be required to trans-
form nodeset conclusions captured in their raw form into a complex visualization
that a scientist is familiar with or expecting. Because performing these transfor-
mations in viewing time can really slow down the global justification browsing
experience, we have employed a preprocessing system that caches any visual-
ization that can be generated from nodeset conclusions. In fact, as soon as any
PML nodeset is written to our file system, the cacher can be initiated and thus
can be run in parallel with the execution of the workflow being audited.

The importance of such a caching system was first realized when we attempted
to browse the PML capturing a run of Hole’s code (an iterative process used for
modeling the Earth’s crust by seismologists) in the global view. In this case,
Probe-It! was required to generate a Visualization Toolkit (VTK) based visual-
ization for each of the 300 nodesets composing the trace. From our experiences,
we have learned that seismologists prefer to inspect Hole’s code datasets visually,
and so it is not useful for them to have access to provenance when verifying if
their models have converged, if they cannot visualize them.

References

1. del Rio, N., da Silva, P.P.: Probe-it! visualization support for provenance. In: Pro-
ceedings of the Second International Symposium on Visual Computing (ISVC 2),
Lake Tahoe, NV, pp. 732–741. Springer, Heidelberg (2007)

2. McGuinness, D., Ding, L., da Silva, P.P., Chang, C.: PML2: A Modular Explanation
Interlingua. In: Proceedings of the AAAI 2007 Workshop on Explanation-aware
Computing, Vancouver, British Columbia, Canada, July 22-23 (2007)

276 N. Del Rio, P. Pinheiro da Silva, and H. Porras

3. McGuinness, D.L., da Silva, P.P.: Inference Web: Portable and Sharable Explana-
tions for Question Answering. In: Proc. of the AAAI Spring Symposium Workshop
on New Directions for Question Answering, Stanford, CA, USA, March 2003, pp.
67–71. AAAI Press, Menlo Park (2003)

4. Trac, S., Puzis, Y., Sutcliffe, G.: An interactive derivation viewer. In: Proceedings of
the 7th Workshop on Workshop on User Interfaces for Theorem Provers, 3rd Inter-
national Joint Conference on Automated Reasoning. Electronic Notes in Theoretical
Computer Science, vol. 174, pp. 109–123 (2006)

Towards a Threat Model for Provenance in e-Science

Luiz M.R. Gadelha Jr.1, Marta Mattoso1, Michael Wilde2, and Ian Foster2

1 Computer and Systems Engineering Program
Federal University of Rio de Janeiro, Brazil
{gadelha,marta}@cos.ufrj.br

2 Computation Institute
University of Chicago / Argonne National Laboratory, USA

{wilde,foster}@mcs.anl.gov

Abstract. Scientists increasingly rely on workflow management systems to per-
form large-scale computational scientific experiments. These systems often col-
lect provenance information that is useful in the analysis and reproduction of such
experiments. On the other hand, this provenance data may be exposed to security
threats which can result, for instance, in compromising the analysis of these ex-
periments, or in illegitimate claims of attribution. In this work, we describe our
ongoing work to trace security requirements for provenance systems in the con-
text of e-Science, and propose some security controls to fulfill them.

1 Introduction

As an important paradigm of scientific research, computer simulations are increasingly
being used to perform computational scientific experiments. As the scale of these ex-
periments increase, scientific workflow management systems become a relevant tool to
specify, execute, and analyze them. These systems can collect provenance information,
often distributed in grids or remote clusters, that is useful in the analysis and reproduc-
tion of such experiments. If the appropriate security controls are not in place, provenance
systems may be exposed to threats that may compromise the integrity, confidentiality, or
availability of provenancedata. In this work, we describe our ongoing work to trace secu-
rity requirements for provenance systems in the context of e-Science, and propose some
security controls to fulfill them. The study of security issues in provenance systems is
relatively recent. However, some important security requirements, described in section
2, were not yet identified in related academic works, to our knowledge. In section 3, we
conclude describing subsequent steps in our provenance security research.

2 Security Requirements for Provenance Systems

The typical execution of a workflow involves specifying its flow using some mech-
anism, such as a parallel scripting language or a GUI-based workflow specification
tool. Later on, it can be executed by a workflow management system, this involves se-
lecting appropriate computational resources, submitting tasks to these resources, and
transferring data. After the experiment is executed, scientists typically face the chal-
lenge of analyzing a large number of output data files to understand the outcome of the

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 277–279, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

278 L.M.R. Gadelha Jr. et al.

experiment, provenance systems are useful in this context since they can help to de-
termine, for instance, which tasks where executed to generate a particular data object,
and which parameters were used for these tasks. This provenance data is usually col-
lected and stored during workflow execution, to describe causal relationships between
tasks and data (retrospective provenance); or during workflow specification, to describe
the planned tasks, and data flow (prospective provenance). In general, provenance data
is accessed and analyzed by scientists using a query language, such as SQL. In our
ongoing threat modeling effort, we are enumerating threats to each of these compo-
nents of a provenance system. Many of these are already taken into account by security
frameworks for underlying technologies used by provenance systems, such as databases
and grids. Provenance security is a relatively recent research issue [12] [7] [14], found
in different areas such as scientific workflows, databases, and storage systems. Prove-
nance data is useful in security audits [1], and there are cases in which the subject of
provenance data may lead to privacy concerns [3]. Braun et al. [2] analyze the problem
of providing adequate access control techniques to provenance data, observing that it
describes causal relationships, that are not adequately protected by commonly used ac-
cess control techniques. Hasan et al. [9] [8] propose a security solution with the goal
of protecting confidentiality and integrity of provenance data. They use asymmetric
cryptography for achieving confidentiality and signature-based checksums for achiev-
ing integrity. Nagappan et al. [10] present a model for sharing provenance data that uses
role-based access control techniques where the user dynamically select its confidential-
ity level. A common approach for protecting provenance information [2] [10] [11] is to
use access control mechanisms to prevent unauthorized access to this information. None
of these approaches allow for non-restricted dissemination of provenance information
with maintenance of correct attribution, a requirement in the context of e-Science. Sci-
entists, specially in the life sciences, often avoid sharing details of experiments prior to
publishing their results in some academic journal or event, to assure correct attribution
of scientific results. During this interval, scientific collaboration is prevented. Therefore,
security controls that prevent illegitimate claims of attribution are an important secu-
rity requirement for provenance systems. These controls must allow the verification of
not only who executed an experiment but also when it was executed. A combination of
digital signatures and cryptographic timestamps [6] were used in the Kairos [5] secu-
rity architecture for provenance systems to provide these properties. Another desirable
security property is fine-grained access control, where scientists can delegate to their
collaborators access to provenance data, so it can be read or modified.

3 Concluding Remarks

This work describes our progress in defining a threat model and proposing security con-
trols for provenance systems in the context of e-Science. We identify the assurance of
correct attribution of scientific results as an important security requirement for these
systems. For this purpose, we proposed Kairos [5], a security architecture for prove-
nance that uses cryptographic timestamps [6] and digital signatures. We are working
with the Swift [13] parallel scripting system to extend its provenance system [4] with
appropriate security controls. As future work, we will investigate fine-grained access
control techniques, and a data model to store and query security properties.

Towards a Threat Model for Provenance in e-Science 279

Acknowledgement

This work was supported in part by CAPES, CNPq, NSF grant OCI-0944332, and the
Office of Advanced Scientific Computing Research, Office of Science, U.S. Department
of Energy, under Contract DE-AC02-06CH11357.

References

1. Aldeco-Pérez, R., Moreau, L.: Provenance-based Auditing of Private Data Use. In: Proc. of
the BCS International Academic Research Conference, Visions of Computer Science (2008)

2. Braun, U., Shinnar, A., Seltzer, M.: Securing Provenance. In: Proc. 3rd USENIX Workshop
on Hot Topics in Security, HotSec 2008 (2008)

3. Davidson, S., Khanna, S., Roy, S., Cohen-Boulakia, S.: Privacy Issues in Scientific Workflow
Provenance. In: Proceedings of the 1st International Workshop on Workflow Approaches to
New Data-centric Science, WANDS 2010 (2010)

4. Gadelha, L., Clifford, B., Mattoso, M., Wilde, M., Foster, I.: Provenance Management in
Swift. Future Generation Computer Systems (2010) (in press, accepted manuscript)

5. Gadelha, L., Mattoso, M.: Kairos: An Architecture for Securing Authorship and Temporal
Information of Provenance Data in Grid-Enabled Workflow Management Systems. In: Proc.
4th IEEE International Conference on e-Science (e-Science 2008), pp. 597–602 (2008)

6. Haber, S., Stornetta, W.: How to Time-Stamp a Digital Document. Journal of Cryptol-
ogy 3(2), 99–111 (1991)

7. Hasan, R., Sion, R., Winslett, M.: Introducing Secure Provenance: Problems and Challenges.
In: Proc. 2007 ACM Workshop on Storage Security and Survivability (StorageSS 2009), pp.
13–18 (2007)

8. Hasan, R., Sion, R., Winslett, M.: Preventing history forgery with secure provenance. ACM
Transactions on Storage 5(4), 1–43 (2009)

9. Hasan, R., Sion, R., Winslett, M.: The Case of the Fake Picasso: Preventing History Forgery
with Secure Provenance. In: Proc. 7th USENIX Conference on File and Storage Technologies
(FAST 2009), pp. 1–14 (2009)

10. Nagappan, M., Vouk, M.: A Model for Sharing of Confidential Provenance Information
in a Query Based System. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS,
vol. 5272, pp. 62–69. Springer, Heidelberg (2008)

11. Ni, Q., Xu, S., Bertino, E., Sandhu, R., Han, W.: An Access Control Language for a General
Provenance Model. In: Jonker, W., Petković, M. (eds.) Secure Data Management. LNCS,
vol. 5776, pp. 68–88. Springer, Heidelberg (2009)

12. Tan, V., Groth, P., Miles, S., Jiang, S., Munroe, S., Tsasakou, S., Moreau, L.: Security Issues
in a SOA-Based Provenance System. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS,
vol. 4145, pp. 203–211. Springer, Heidelberg (2006)

13. Wilde, M., Foster, I., Iskra, K., Beckman, P., Espinosa, A., Hategan, M., Clifford, B., Raicu,
I.: Parallel Scripting for Applications at the Petascale and Beyond. IEEE Computer 42(11),
50–60 (2009)

14. Xu, S., Ni, Q., Bertino, E., Sandhu, R.: A Characterization of The Problem of Secure Prove-
nance Management. In: Proc. IEEE International Conference on Intelligence and Security
Informatics (ISI 2009), pp. 310–314 (2009)

Provenance Support for Content Management
Systems: A Drupal Example

Aı́da Gándara and Paulo Pinheiro da Silva�

University of Texas at El Paso, Computer Science Department,
El Paso, Texas 79968, USA

agandara1@miners.utep.edu, paulo@utep.edu

Abstract. Provenance helps with understanding data but without
proper tools to share and access content, its reusability is limited. This
paper describes the CI-Server framework currently being used to help
scientific teams seamlessly share data and provenance about scientific
research. CI-Server has been built using Drupal, a content management
server workbench, with a focus on publishing and understanding the se-
mantic content that is now available over the Web. By focusing on an
open framework, scientists publish provenance related to their scientific
research then leverage the semantic knowledge to understand and visu-
alize the information.

1 Introduction

Regardless of how useful provenance is for capturing knowledge related to scien-
tific research, how provenance is managed, e.g. how to access provenance-related
information, can greatly affect its reusability. For example, for some scientists,
research is performed on a single workstation and the results, data and data-
related provenance, are stored on the same system. Consequently, most informa-
tion including provenance is restricted to only scientists with specific privileges
to access that workstation. As a result of such isolated environments, data and
provenance are not shared. Web portals, Web sites focused on collecting and
sharing data and resources, normally within a particular domain, provide a so-
lution for scientists to share their data and make it available to other scientists.
For example, the Earthscope Data Portal[3] is a Web portal built to enable shar-
ing and discovery of geological data. One drawback to portals is that in many
cases publishing data on them is a manual process; a user interactively uploads
directly to a portal location or requests administrative support from the portal’s
webmaster. Portals can be quite unique in their presentation and usage, i.e. the
management of resources and the process of uploading files is different for every
portal. As searches span across multiple Web portals, scientists are forced into
understanding the multiple cultures of different Web portals. The GEO portal[4],
for example, has a similar focus as the Earthscope portal, yet the interface and
� This work was supported in part by DHS grant 2008-ST-062-000007 and by NSF

grant HRD-0734825.

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 280–282, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Provenance Support for Content Management Systems: A Drupal Example 281

structure of the site is quite different. The distinct steps of understanding the
culture of the portal and manually uploading information can be distracting to
scientists’ needs to share and discover information. One proposed solution is to
unify several related data archives onto one, e.g. the Earthscope portal. Our so-
lution is to focus more on building a structure into content management servers
so tools can access the needed information, data and provenance-related data,
without having to access one portal or understand the nuances of each portal’s
interface.

2 Provenance Support for Drupal

Drupal is an open source content management server framework used to build
Web sites and Web portals. The tool supports user security and multiple levels
of configuration, e.g. menu calls, forms, and event hooks. The Drupal Devel-
opment Community is currently a very active component of Drupal because
developers share software solutions that can be enabled in different Drupal
implementations.[2] We have built additional functionality in Drupal, provid-
ing provenance support based on the PML notation[5] in an open-portal based
infrastructure we call the CI-Server. Our implementation uses and extends var-
ious modules provided by the Drupal Development Community in an effort
to facilitate the sharing of information and reuse of provenance for scientific
research.

Fig. 1. The CI-Server Framework enables sharing of provenance

Figure 1 illustrates the provenance support enabled by the CI-Server frame-
work. Via a CI-Client module and CI-Client API that extend and expose internal
server functionality, scientific tools can be enabled to seamlessly publish data and
provenance (pmlj) files, moving data from the scientist’s workstation to any Dru-
pal based CI-Server. This avoids the manual step of file uploads or the nuances
of understanding different portal interfaces. In Figure 1, the top scientist has
published pmlj1, pmlj2, pmlj3, called a PML nodeset, and some correspond-
ing data. The pmlj documents are semantic documents, written in OWL. These
documents are built with knowledge about how a scientific process occurred and

282 A. Gándara and P. Pinheiro da Silva

they rely on links to available resources, e.g. data. The CI-Server uses modules
to support file management and url aliasing, enabling users to upload content
and then access it via url links. Since the pmlj documents contain references
to entities that it is capturing provenance about, provenance knowledge is im-
mediately available to traverse as a knowledge set. Furthermore, the CI-Server
manages content and information that is often useful in capturing provenance.
For example, user content on Drupal can be used to document source related
information, e.g. who published a data file. The CI-Server builds pmlp nodes for
users on the system. To see a user’s public information, the user’s pmlp page
would be accessed via a dynamically created OWL-based pmlp node. Building
provenance dynamically with internal CI-Server knowledge, aids in the collec-
tion of provenance and avoids scientists from having to supply that information
repetitively. Figure 1 shows that pmlj1 captures the knowledge that user 1 was
involved in creating Step 1 data and that pmlj2 captures the knowledge that
Step 1 data was an input to create Step 2 data and finally that pmlj3 captures
the knowledge that user 2 and Step 2 data were used to create the Final result.
Because pmlj3 is identified with an URL, the scientist reusing the information
can use the url link to access the entire provenance nodeset and visualize it using
context-related scientific tools. A PML nodeset, for example, can be visualized
via Probe-It[1] by simply providing the nodeset’s URI.

References

1. Del Rio, N., da Silva, P.P.: Probe-it! visualization support for provenance. In: Bebis,
G., Boyle, R., Parvin, B., Koracin, D., Paragios, N., Tanveer, S.-M., Ju, T., Liu, Z.,
Coquillart, S., Cruz-Neira, C., Müller, T., Malzbender, T. (eds.) ISVC 2007, Part
II. LNCS, vol. 4842, pp. 732–741. Springer, Heidelberg (2007)

2. Drupal community innitiatives, http://drupal.org/community-initiatives
3. Earthscope data portal, http://earthscope.data.porta
4. Geo-portal, http://geoportal.org
5. McGuinness, D., Ding, L., da Silva, P.P., Chang, C.: PML2: A Modular Explanation

Interlingua. In: Proceedings of the AAAI 2007 Workshop on Explanation-aware
Computing, Vancouver, British Columbia, Canada, July 22-23 (2007)

http://drupal.org/community-initiatives
http://earthscope.data.porta
http://geoportal.org

ProvenanceJS: Revealing the Provenance of Web
Pages

Paul Groth

VU University Amsterdam
De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands

pgroth@few.vu.nl

Abstract. Web pages are regularly constructed through combining con-
tent from multiple providers (e.g. photos from Flickr, quotes from the
New York Times). As a result, it is often difficult for users and pro-
grammers to retrieve the provenance of a web page. Here, we present a
JavaScript library, ProvenanceJS, that allows for the retrieval and visu-
alization of the provenance information within a Web page and its em-
bedded content. A key contribution is to demonstrate that provenance
can be supported using widely deployed browser-based technologies.

There has been a rapid proliferation of content sharing on the Web. Sites such
as Flickr, Slideshare.net, and YouTube make it easier to find and then integrate
images, video, and documents into web pages. Additionally, the cultural of the
Web, in particular the blogsphere, thrives on quoting and re-quoting information.
Because of this mash-up culture and infrastructure, most web pages consist of
content originating from multiple sources. Thus, when viewing a web page it is
often difficult to determine where its content came from and how it was produced.
This lack of provenance is seen as a critical issue in both the provenance and
Web communities as highlighted by the start of the W3C Provenance Incubator
Group and its recently produced report on requirements for provenance on the
Web [3]. In particular, provenance is one of the most import features users rely
on when determining whether to trust a Web page [4]. Indeed, Tim Berners-Lee
envisioned an “Oh, yeah?” button within Web browsers that when clicked on
would produce reasons why the user should trust the web page based on its
provenance [1].

To move towards the realization of such an “Oh, yeah?” button that is widely
distributed, we have developed a library, ProvenanceJS1, that allows for the
retrieval and visualization of the provenance of a web page. There are two key
contributions stemming from ProvenanceJS:

1. Browser-based technologies are capable of retrieving and rendering prove-
nance information without the need for additional software installation.

2. Embedding provenance information within content is a viable approach for
ensuring that the provenance information is available.

1 Source available at: http://code.google.com/p/opmv/source/browse/#svn/

trunk/js

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 283–285, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://code.google.com/p/opmv/source/browse/#svn/trunk/js
http://code.google.com/p/opmv/source/browse/#svn/trunk/js

284 P. Groth

Fig. 1. A visualization of the provenance of a Web page

1 Provenance Metadata and Implementation

In order to make provenance apparent to the user, ProvenanceJS must retrieve
provenance information from a Web page. It can acquire this information either
from interrogating the page’s metadata, extracting the metadata of the embed-
ded content (e.g. an image), or by consulting an outside service that maintains
the provenance. Because our aim was to develop a browser-based solution, we
chose to focus on the first two sources.

From a page’s markup, ProvenanceJS extracts RDFa metadata. RDFa is a
widely adopted standard for embedding structured data within web pages. Prove-
nanceJS recognizes RDFa published using the Open Provenance Model Vocab-
ulary [9]. This vocabulary is an RDF realization of the Open Provenance Model
(OPM) [8] with a number of extensions and is being actively developed to help
address the needs of data.gov.uk. Using this vocabulary, publishers can markup
their data with explicit statements about the provenance of the various parts of
their page.

While explicit provenance metadata within Web pages is advantageous, many
times it is not practically feasible to provide it explicitly. To address this concern,
ProvenanceJS aims to extract provenance metadata from a page’s content. For
example, ProvenanceJS can extract information from the EXIF metadata found
within JPEG images.

ProvenanceJS is implemented entirely in Javascript using the Javascript Info-
Vis Toolkit, rdfQuery, and exif.js. In addition to the extraction of the metadata
described above, it provides an API for building and manipulating OPM Graphs
and visualizing those graphs. A bookmarklet (‘Provenance?’) is included, which
visualizes the current web page’s provenance. An example is shown in Figure 1.
Triangle nodes are artifacts. Circle nodes are processes. It shows how the quote

ProvenanceJS: Revealing the Provenance of Web Pages 285

on a page was generated by an aggregation process controlled by John Smith. In
addition, it depicts that the image was modified by Adobe Photoshop and that
the copyright of the image belongs to Michael Dawes. The bookmarklet is a first
step towards a true “Oh, yeah?” button.

2 Related Work and Conclusion

Moreau provides an extensive review of the provenance literature from the per-
spective of the Web [7]. A number of authors have considered provenance on the
Semantic Web. In particular, Bizer et al. present a Semantic Web based policy
framework for information quality [2]. It included an implementation of the “Oh,
yeah?” button. However, this implementation required a browser plug-in. We
see ProvenanceJS as building on-top of such existing Semantic Web approaches.
Margo and Seltzer showed how by treating user interaction with a Web browser
as provenance, novel search functionality could be realized [6]. The closest work
to ProvenanceJS is the Provenance-Embedding Document approach [5]. This
approach uses Javascript to extract provenance from RDFa metadata. Our work
differs in that we support the extraction of provenance from embedded content
and use a community driven provenance vocabulary.

ProvenanceJScan be used to retrieve and visualize the provenance of a web page
using only browser-basedtechnology, namely Javascript.Additionally, provenance
metadata from page markup and embedded content can be integrated to provide
a full view of provenance.

References

1. Berners-Lee, T.: Cleaning up the User Interface (1997), http://www.w3.org/

DesignIssues/UI.html

2. Bizer, C., Cyganiak, R.: Quality-driven information filtering using the WIQA pol-
icy framework. Web Semantics: Science, Services and Agents on the World Wide
Web 7(1), 1–10 (2009)

3. Cheney, J., Gil, Y., Groth, P.E., Miles, S.: Requirements for Provenance on the Web
(2010), http://www.w3.org/2005/Incubator/prov/wiki/User_Requirements

4. Gil, Y., Artz, D.: Towards content trust of web resources. Journal of Web Seman-
tics 5(4), 227–239

5. Jones, H.C.: XHTML documents with inline, policy-aware provenance. M. eng.,
Massachusetts Institute of Technology (2007)

6. Margo, D.W., Seltzer, M.: The Case for Browser Provenance. In: 1st Workshop on
the Theory and Practice of Provenance, TaPP 2009 (2009)

7. Moreau, L.: Foundations of Provenance on the Web. Foundations and Trends in
Web Science (2009) (submitted)

8. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska, N.,
Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., den Bussche,
J.V.: The open provenance model — core specification (v1.1). In: Future Generation
Computer Systems (July 2010)

9. Zhao, J.: Guide to the Open Provenance Model Vocabulary (2010),
http://purl.org/net/opmv/guide

http://www.w3.org/DesignIssues/UI.html
http://www.w3.org/DesignIssues/UI.html
http://www.w3.org/2005/Incubator/prov/wiki/User_Requirements
http://purl.org/net/opmv/guide

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 286–288, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Integrating Provenance Data from Distributed Workflow
Systems with ProvManager*

Anderson Marinho¹, Leonardo Murta², Cláudia Werner¹, Vanessa Braganholo¹,
Eduardo Ogasawara¹, Sérgio Manuel Serra da Cruz¹, and Marta Mattoso¹

1 Federal University of Rio de Janeiro
2 Fluminense Federal University

{andymarinho,werner,ogasawara,serra,marta}@cos.ufrj.br,
leomurta@ic.uff.br, braganholo@dcc.ufrj.br

Abstract. Running scientific workflows in distributed environments is moti-
vating the definition of provenance gathering approaches that are loosely cou-
pled to the workflow execution engine. This kind of approach is interesting be-
cause it allows both storage and access to provenance data in an integrated way,
even in an environment where different workflow systems work together.
Therefore, we have proposed a provenance gathering strategy that is indepen-
dent from the workflow system technology. This strategy has evolved into a
provenance management system named ProvManager. In this paper we show
how provenance data is captured along in a distributed execution environment
with ProvManager and we show its web interface, in which scientists can reg-
ister experiments, monitor workflow execution, and query provenance data.

Keywords: provenance, scientific workflows, distributed environment.

1 Introduction

Provenance provides historical information about data manipulated in a workflow [1].
This historical information tells us how data products were generated, showing their
transformation processes from primary input and intermediary data. The management
of provenance information provides to the scientists a variety of data analyses, such as
data quality, audit trails, and experiment documentation [2]. Provenance gathering
becomes more complex when the workflow is executed among distributed and hete-
rogeneous execution environments, such as clusters, P2P, grids and clouds.

One can foresee several scenarios of workflow execution in a distributed environ-
ment [3]. Each one has its own characteristics that contribute to the complexity of
provenance management. In this paper we focus in a scenario where pre-existing
workflows were conceived independently, using different scientific workflow man-
agement systems (SWfMS). However, these independent workflows needed to be
integrated into a complex experiment, which entail some additional manual activities
that link such workflows. In this scenario, each SWfMS may manage provenance
information in a decentralized and isolated way, meaning that each system considers

* This work was partially sponsored by CNPq and CAPES.

 Integrating Provenance Data from Distributed Workflow Systems with ProvManager 287

provenance in a specific granularity, stores the information on a specific language, or
even worse, some SWfMS may not even provide a provenance solution at all.

Therefore, a solution to this heterogeneity is to transfer the responsibility of prove-
nance management to an independent provenance system. This system would be re-
sponsible for capturing, modeling, storing, and providing queries to an integrated
provenance management system of an experiment. The main difficulty of the SWfMS
agnostic strategy is that the SWfMS and the provenance management system need to
communicate to exchange information. In order to make this communication possible,
some solutions [4,5] propose a series of manual activity adaptations over the work-
flow specification. However, this solution introduces additional overhead to scientists.
Some workflow activities used by scientists are third-party codes, which make their
adaptation more complex. In many cases, these activities cannot be altered, but only
wrapped by other activities.

For that reason, in our previous work [3] we have proposed a strategy for gathering
provenance information in a distributed environment. This strategy is independent of
workflow system technology and tries to address some problems discussed here. This
strategy has evolved into a provenance management system named ProvManager. In
addition to the gathering mechanism, ProvManager provides means for modeling,
storing, and querying an integrated provenance repository.

2 ProvManager

The main focus of ProvManager system is to manage provenance in distributed envi-
ronments. The main idea is to work as a central repository that stores all the provenance
data generated from an experiment. The provenance data are collected by automatically
adapting the workflow. Workflow activities are thus configured to send this information
via a web services API during the workflow execution.

Figure 1.a illustrates the experiment structure that we use as an example for de-
scribing the ProvManager’s functionalities. This experiment is segmented in two
workflows: one workflow is instantiated in VisTrails, and the other in Kepler. Fig. 1.b
shows a fragment of the workflow in VisTrails with more details. The fragment is
composed by three activities: GetData, Validate, and Simulate, running on a remote
host with IP address 192.168.0.5. In order to capture provenance data from this work-
flow, the scientist has to publish it in ProvManager, uploading the workflow specifi-
cation (in the VisTrails case, a .VT file). At this moment, ProvManager configures the
workflow, automatically adding special activities that will be responsible for captur-
ing and publishing provenance data in ProvManager (this process is described in [3])
during workflow execution. This process of adding provenance components in the
workflow is called instrumentation. At present moment, ProvManager can instrument
only workflows executed in Kepler and VisTrails. However, ProvManager works
with the concept of plugin to be able to support future extensions of other SWfMS
instrumentation mechanisms. Finally, at the end of the instrumentation, a new .VT file
is returned to the scientist to be reloaded in VisTrails. During both the instrumentation
and execution of the workflow, ProvManager captures provenance data from the
workflow and publishes this data in the repository. This repository is a Prolog data-
base, so provenance data are mapped into Prolog predicates. Fig. 1.c shows the .VT
file mapped into prolog predicates.

288 A. Marinho et al.

Fig. 1. Experiment example (a), and VisTrails workflow (b) mapped to Prolog predicates (c)

With all the provenance data collected from the experiment, ProvManager makes
the experiment analysis process simpler to the scientist since it works as an integrated
place for accessing the provenance data, avoiding scientist to visit individually each
system responsible for gathering provenance (in our example, Kepler and VisTrails)
in a distributed execution environment. Besides, ProvManager provides func-
tionalities to help the scientist manipulate the experiment provenance data, such as
high-level provenance query interface, and workflow execution monitoring (Fig. 2).

Fig. 2. ProvManager’s screens: (a) Query interface; (b) Execution monitoring

References

[1] Freire, J., Koop, D., et al.: Provenance for Computational Tasks: A Survey. Computing in
Science and Engineering 10(3), 11–21 (2008)

[2] Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science. ACM
SIGMOD Record 34(3), 31–36 (2005)

[3] Marinho, A., Murta, L., et al.: A Strategy for Provenance Gathering in Distributed Scien-
tific Workflows. In: IEEE International Workshop on Scientific Workflows, Los Angeles,
California, United States (2009)

[4] Simmhan, Y., Plale, B., Gannon, D.: A Framework for Collecting Provenance in Data-
Centric Scientific Workflows. In: ICWS, pp. 427–436 (2006)

[5] Groth, P., Jiang, S., et al.: An Architecture for Provenance Systems (2006),
http://eprints.ecs.soton.ac.uk/13216/ (Visited in: July 19, 2010)

(b) (a)

(a)

(b)

(c)

Using Data Lineage for Sub-image Processing

Johnson Mwebaze1,2, John McFarland2, Danny Boxhoorn2,
Hugo Buddelmeijer2, and Edwin Valentijn2

1 Makerere University, P.O. Box 7062, Kampala, Uganda
2 University of Groningen, Landleven 12, 9700 AV Groningen, The Netherlands

Abstract. In the paper, we show that lineage data collected during the
processingandanalysis ofdatasets canbe reused toperformselective repro-
cessing (at sub-image level) on datasets while the remainder of the dataset
is untouched, a rather difficult process to automate without lineage.

1 Introduction

In some scientific applications, most often users are interested in a source (e.g.,
moving, variable, or extreme in some colour index) that lies on a few pixels
of an image. The approach adopted by most observation systems is processing
the entire image or set of images even when the sole source of interest may
exist on only a few pixels of one or a few images [6] [1]. Accordingly, out of
millions of images in a survey, it is nearly impossible and wasteful to process the
whole data volume. Instead of processing the whole dataset, a user should only
select, retrieve and process only relevant pixels on an image where the source
exists. However pipelines have been written and designed for instruments with
fixed detector properties (e.g.,image size, calibration frames, overscan regions,
etc.). All metadata and processing parameters are based on an instruments or a
detector, moreover some image operations can not be done on a sub-image level.

Therefore, to perform processing at sub-image level, we make use of lineage
data to assemble the sub-image processing pipeline and to select all necessary
inputs to the pipeline. By matching and retrieving existing pre-processed in-
formation in the system and knowing the relationship between what we want
to process and what has been processed before, we are then able to determine
the difference between pipelines (and objects). We can then modify any new
pipelines/objects/parameters so that the new processing follows the new user
processing requirements for a particular region on the image.

Data lineage (provenance) is a well-defined problem with known solutions
as pointed out in recent workshops [4] and surveys [5]. The use of provenance
has also gained significant attention [4]. Several workflow management systems
(e.g [2, 3, 7, 9]) do exploit provenance information for different purposes. To the
best of our knowledge, this is the first work that leverages lineage information
to support sub-image processing to simplify and automate the reprocessing of
objects. Since we are working with pixels, this framework required lineage at
pixel level. We extended our lineage model presented in [8] to trace lineage at
pixel level and then used pixel lineage for sub-image processing.

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 289–291, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

290 J. Mwebaze et al.

2 Sub-image Processing

Sub-image processing requires the ability to store and mine provenance data.
Since no input data, metadata and parameters exists for sub-images, we use data
from previous runs to enable sub-image processing. The underlying assumption
is that the target has been processed before as part of a full image and probably
a user would like to carry out a detailed analysis or a computation to a target
that lies on few pixels of an image (or sub-image). The pipeline for sub-image
processing is thus built based on lineage data. Likewise all input data, attributes
and parameters to be used in the subimage pipeline is selected from the same
lineage data. However, since we are processing a sub-image, some of the input
data, parameters and parts of the pipelines have to be modified. When such
changes occur then the part of pipeline affected by the changes must be re-run.
The rerun will take data dependencies into account and only execute those parts
of the workflow affected by the changes.

The starting point of sub-image processing is the selection of the target. i.e.
set of sky positions. The system then builds a directed graph representing the
data dependencies with nodes representing objects and edges representing all
dependencies attached to an object. The graph begins with the topmost node,
which is the target to be made. New edges are added starting at this trigger and
expanding outward, using the dependency logic derived from lineage data. The
dependency graph is built and checked recursively till the last dependency (in
this case raw data from the telescope).

Each node in the graph is associated to an object. Each object is identified
with a unique ID. Using this unique ID, we can query for all data that went into
the processing of the object. The queried data is modified and used as input to
the sub-image pipeline. This data also includes the software code and version
that was used. If a unique ID is associated with an image, a cutout is made
of the pixels of interest from this image and used as input to the module. The
pixels extracted as a cutout are determined through pixel lineage.

However, in some cases input to the sub-image pipeline might be selected
from any other related processing. For example, a critical step for astronomical
processing is deriving an astrometric solution. This is derived by fitting distortion
polynomials to images, taking into account the objects seen. For accurate results,
several reference stars are used to derive the final solution. For the case of sub-
image processing, such a process would fail since reference stars on the sub-image
will be very few. Therefore, in such cases, we use the astrometric solution of
another set of images of the same field, processed using the same parameters as
needed to process the sub-image. The solution is then modified and fitted to the
pixels of the sub-image.

After assembling the pipeline and collecting all necessary input data, the sub-
image is processed. Source extraction is then run on the sub-image resulting in
a new catalog of sky positions, and/or any other user specific processing done
on the sources extracted.

Using Data Lineage for Sub-image Processing 291

3 Use Case: Analyzing Transitioning Galaxies

We demonstrate the use of provenance using a usecase of analyzing transition-
ing galaxies. These are galaxies that fall into galaxy clusters that interact with
their environment. Initially a full image is processed and an initial photomet-
ric catalog of the sources on the image is extracted. The density of galaxies
around each source is calculated using the galaxy position. The magnitudes and
densities of galaxies that undergo a transitional phase can be identified. Dur-
ing processing of the full image the system records all lineage for this task and
therefore a provenance graph can be queried and displayed for this image. Out
of hundreds of galaxies that were observed in this processing only transitioning
galaxies will then be further analyzed by extracting sub-images from the raw
images where these galaxies lie and reprocessing only these sub-images to es-
timate more complex and time consuming parameters such as quantifications
of the internal structure of the galaxy. To identify the images required for this
task and the position of the galaxy in all images, we work backwards from the
galaxy through all the dependencies. The other inputs (any other sub-images,
calibration objects, processing parameters, etc) to the sub-image pipeline are
also selected from the initial lineage recorded during the initial processing of
the full image. By performing selective processing we save hours/days/weeks of
computational time.

References

1. Astro-wise portal, http://www.astro-wise.org/portal/aw_prompt.shtml
2. Anderson, E.W., Ahrens, J.P., Heitmann, K., Habib, S., Silva, C.T.: Provenance in

comparative analysis: A study in cosmology. Computing in Science and Engg. 10(3),
30–37 (2008)

3. Ellkvist, T., Koop, D., Anderson, E.W., Freire, J., Silva, C.: Using provenance to
support real-time collaborative design of workflows, pp. 266–279 (2008)

4. Freire, J., Koop, D., Moreau, L. (eds.): Provenance and Annotation of Data and
Processes: Second International Provenance and Annotation Workshop. Springer,
Heidelberg (2008)

5. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for computational tasks: A
survey. Computing in Science and Engineering 10(3), 11–21 (2008)

6. Greenfield, P.: Reaching for the stars with python. Computing in Science and
Engg. 9(3), 38–40 (2007)

7. Groth, P., Miles, S., Fang, W., Wong, S.C., Zauner, K.P., Moreau, L.: Recording and
using provenance in a protein compressibility experiment. In: HPDC 2005 Proceed-
ings of the High Performance Distributed Computing, pp. 201–208. IEEE Computer
Society, Washington (2005)

8. Mwebaze, J., Boxhoorn, D., Valentijn, E.: Astro-wise: Tracing and using lineage for
scientific data processing. In: International Conference on Network-Based Informa-
tion Systems, pp. 475–480 (2009)

9. Scheidegger, C., Vo, H., Koop, D., Freire, J., Silva, C.: Querying and creating vi-
sualizations by analogy. IEEE Transactions on Visualization and Computer Graph-
ics 13(6), 1560–1567 (2007)

http://www.astro-wise.org/portal/aw_prompt.shtml

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 292–294, 2010.
© Springer-Verlag Berlin Heidelberg 2010

I Think Therefore I Am Someone Else: Understanding
the Confusion of Granularity with Continuant/Occurrent

and Related Perspective Shifts

James D. Myers

National Center for Supercomputing Applications,
1205 W. Clark St, Urbana, IL 61801
jimmyers@illinois.edu

Abstract. Managing multiscale and multi-witness provenance is often assumed
to involve relatively straight-forward matters of matching identifiers and recog-
nizing composite processes and aggregate artifacts. However, the issue is much
more complex and related to millennia of debate over the nature of objects and
processes in the world. This work develops a set of concrete examples where
such issues arise in provenance, discusses the core conceptual distinctions in-
volved, and postulates a basic mechanism for extending provenance models to
enable integration across granularities and process types, recognizing the OPM
‘agent’ concept as a special case.

Keywords: provenance, multiscale, semantic integration.

1 Introduction

Over the past few years, there has been a broad effort to define common requirements
for provenance, to outline real-world use cases, to define core models of provenance,
and to assess interoperability of existing systems. In these discussions, there has been
recognition that there are a variety of levels of granularity and a variety of types of
processes for which provenance is important, as well as recognition that many use
cases of interest require integration of provenance information across these dimen-
sions. The issues involved in such integration have mostly been viewed as simple
matters of aggregation, i.e. requiring concepts such as ‘collections’ of artifacts and
composite processes. However, the need for constructs such as agents (as in the Open
Provenance Model) hint at deeper issues related to the concepts of identity and dis-
tinctions between continuant and occurrent (or endurant and perdurant respectively),
and of versions and replicas.

Consider the use case hinted at in the title: a person engages in a thought process
(or attends a class or participates in a discussion to include cases where the process is
external to the person). In OPM and similarly expressive languages, one could model
this as

NaiveArtifact (used) EduProcess (wasGeneratedBy) InformedArtifact,
or

Person (wasControlledBy) EduProcess

 I Think Therefore I Am Someone Else: Understanding the Confusion of Granularity 293

but neither is satisfactory. The first ignores the persistent identity of the person in-
volved (and indeed only talks about what we could call the frozen state of a person)
while the later fails to describe the effect of the process (why pay for education if you
are not changed by it in explicit ways?). One can see versions being edited (that we
would like to consider as being states of an evolving book), bits being moved through
storage hierarchies and network locations (that we would like to consider as a single
persistent logical ‘file’), and even workflows producing files (which we would like to
consider as discoveries made by a team, financed by sponsors, and leading to Nobel
prizes) as additional examples where the nominal notion of granularity of description
in fact obscures a perceptual shift in the nature of the artifacts (and processes) in-
volved. It is conceptually incorrect, for example, to consider a person and their naïve
state as aliases: combined with provenance that the person was issued a driver’s li-
cense one would erroneously conclude that driving home from class would be illegal.

The core of this issue has been debated for thousands of years and the question is
basically one of identity – what constitutes an object (artifact) – and the relationship
between state and change, object and process, continuant (a thing outside time) and
occurrent (an event in time). Much of the philosophical debate appears to center on
how far one can drive either perspective as a way to model the world, but at least
some groups [1,2] have attempted to define a practical view that is very relevant for
the development of a provenance model capable of handling multi-granularity, multi-
process-type use cases. Specifically, Galton and Mizoguchi [1] propose a definition of
objects (object identity) in terms of which processes are considered internal and
which external to that object; the chemical processes holding a rock together are in-
ternal to it whereas the processes that move it (falling under gravity, throwing) are
external to it, and, critically, it is this separation of processes that enables us to iden-
tify what we mean by the rock.

In this view, it is easy to recognize that the examples above, and many of the issues
involved in integrating accounts from different witnesses, involve perspectives where
the process being described in the provenance record is internal to objects in one view
and external in the other. This is not an issue of granularity in the sense of simply
ignoring intermediate states and processes. Consequently, the relationships needed to
provide crosswalks between these views are ones that connect one type of objects (A)
with another type (B) than can be considered as aspects/states of an A object that can
be used and generated by processes considered internal to A objects. Examples of
such relationship vocabularies include versioning (versions are states, connected by
editing processes, of a mutable (editable) book), copying (copies are physical instan-
tiations, connected by replication processes, of logical entities), and, less obviously,
collecting (a specific set of pictures, created by insert/delete processes, can be consid-
ered part of a living collection).

How does this affect provenance models? It suggests that a minimal model capable
of integrating accounts from witnesses observing at different granularities or who are
concerned with different processes, should include a construct to identify artifacts as
‘aspectsOf’ other types of artifacts that are ‘engagedIn’ a given process. I.e. a witness
could add to a statement that

B was ‘usedBy’ process P
that

B is an ‘aspectOf’ a (different type of) artifact A that is ‘engagedIn’ P

294 J.D. Myers

where A is a type of artifact for which processes of type P are part of their normal
lifecycle.

In the spirit of profiles in OPM, these relationships could be specialized to address
versioning, copying, etc. The current notion of Agent in OPM can be seen as a start in
this direction in which ‘engagedIn’ is specialized to represent control. In addition to
clarifying the need for Agent (Agents are minimally a different type of artifact that
has a different relationship with a process than its inputs and outputs, whose identity
is unaffected by participation in the process, and for whom participation in such proc-
esses is part of their normal lifecycle). The line of argument presented here suggests
that Agents in OPM should be allowed to have an additional relationship with arti-
facts that are ‘aspectsOf’/states of the Agent that enable a finer level of detail on how
Agents control processes.

A scalable provenance model sufficiently powerful to model real-world use cases
involving multiple type of processes and multiple granularities must include a mecha-
nism that recognizes when the notion of identity has shifted due to assumptions about
the set of processes that can change identity. Such a mechanism could be along the
lines of the “aspectOf”/“engagedIn” bridging vocabulary given here, which defines
artifact-to-artifact and artifact-to-process relationships but may also need to include
process-to-process relationships (Agents ‘live’ and processes they engageIn are part
of their overall ‘life’ process) and could potentially include inference rules (in the
spirit of OPM’s use of timestamps to validate/refute causality claims) that would
support assessment of the validity of integrated provenance claims.

References

1. Galton, A., Mizoguchi, R.: The water falls but the waterfall does not fall: New Perspectives
on objects, processes, and events. Applied Ontology 4, 71–107 (2009)

2. Grenon, P., Smith, B.: SNAP and SPAN: Towards Dynamic Spatial Ontology. Spatial Cog-
nition & Computation: An Interdisciplinary Journal 4(1), 69–104 (2004)

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 295–297, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Multi-faceted Provenance Solution for Science on the
Web

Edoardo Pignotti, Peter Edwards, and Richard Reid

School of Natural and Computing Sciences, University of Aberdeen
{e.pignotti,p.edwards,r.reid}@abdn.ac.uk

Abstract. To support the interface between scientific research and the wider
public policy agenda it is essential to make the provenance of research processes
and artefacts more transparent and subject to scrutiny. We outline the require-
ments for a multi-faceted approach to provenance and present a Web-based vir-
tual research environment (ourSpaces) to demonstrate how research artefacts,
projects, geographical locations and online communications can be linked in or-
der to facilitate collaborative research.

Keywords: provenance, VRE, collaboration.

1 Introduction

The PolicyGrid project1 is exploring how novel e-Science technologies can be used to
support researchers; in particular, the provision of support for evidence-based policy
research. De Roure [1] has argued that in order to assist collaboration among re-
searchers it is necessary to go beyond basic e-Science infrastructure and to develop
technologies to facilitate the discovery and interpretation of knowledge generated by
others and to allow connections between people, places, organisations, ideas, and
data. The Web has drastically improved this exchange. Scientists can now utilise
social networking tools as a way to convey ideas much like a person may want to
“Tweet” about his or her day. Similarly, virtual research environments enable users to
share scientific resources in much the same way as Facebook might be used to share
photos. However, provenance information is essential to enable researchers to assess
the accuracy, timeliness, reliability, and trustworthiness of information available on
the Web. To support science on the Web we require a representational framework for
provenance which goes beyond simple metadata descriptions of artefacts and proc-
esses. Based upon interactions over a number of years with several research groups
and communities, we have identified the following requirements for such a prove-
nance fabric:

1. It should describe and uniquely identify a range of entities: artefacts (digital &

physical); processes (services & human activities); people; organisational struc-
tures/membership; social networks.

1 http://www.policygrid.org

296 E. Pignotti, P. Edwards, and R. Reid

2. It should situate entities in time and space.
3. It should incorporate online communication (e.g. instant messaging, blog entries,

email) into the provenance record.
4. It should allow relationships (e.g. causal, social, organisational) to be defined be-

tween entities.
5. It should make explicit goals and constraints associated with processes and associ-

ated artefacts, in order to capture the ‘why?’ aspect of provenance.
6. It should facilitate reasoning about access control; documentation policies; com-

pleteness of the provenance record; trust and reputation.

While many of the existing provenance solutions [4,5] have focused on specific tech-
nologies to support narrow scientific domains, some recent research has focused on
interoperability of provenance information across different systems. Most notably the
Open Provenance Model was developed to address issues in managing provenance
information in science, independent from technology and domain. The aim of OPM is
to provide a technology-agnostic model supporting the digital representation of
provenance describing any “thing” that is produced by a computer system (or not).
OPM is based on three primary entities namely Artefact, Process and Agent and asso-
ciated causal relationships namely used, wasGeneratedBy, wasTriggeredBy and was-
ControlledBy. OPM also defines a core set of rules that specify inferences that can be
made on a provenance record (e.g. wasDerivedFrom, wasTriggeredBy).

In order to meet the much broader requirements of our provenance fabric an ap-
proach is required which integrates organisations, people, domains, technologies, sys-
tems and the physical and digital worlds. The Open Provenance Model has made an
important step towards realising this vision by allowing the provenance of individual
systems to be expressed in a coherent fashion. However, in order to realise a true prove-
nance fabric we need to go beyond just descriptions of agents, artefacts and processes.

2 ourSpaces - Supporting Provenance on the Web

ourSpaces (www.ourspaces.net) [6] has been developed as a working realisation of
various elements of the provenance fabric. Built using a number of Semantic Web
technologies [2], users are able to perform various activities such as uploading and
describing digital artefacts, maintaining personal profiles, initiating instant messaging
(IM) conversations, creating blog posts and calendar events, tagging and commenting
on other resources and forming groups (in the form of projects) with other research-
ers. At the heart of ourSpaces is an OWL representation of the Open Provenance
Model [3], used to express metadata regarding digital artefacts and processes. How-
ever, additional ontologies (including FOAF SIOC, GeoNames)2, are used to capture
information regarding people, organisations, social networks, geographical context
and online communications.

Through a system demonstration, we will present the following: (a) Resource man-
agement including resource upload and description; (b) How OPM can be enriched by
social context; (c) Project creation and management features; (d) Use of maps; (e)
Multiple approaches to metadata querying and browsing.

2 http://xmlns.com/foaf/spec/, http://rdfs.org/sioc/spec/, http://www.geonames.org/ontology/

 A Multi-faceted Provenance Solution for Science on the Web 297

Fig. 1. ourSpaces VRE home page

References

1. De Roure, D.: The new e-Science presentation (2008),
http://www.slideshare.net/dder/the-new-science-
bangalore-edution

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5),
34–43 (2001)

3. Moreau, L., Clifford, B., Freire, J., Gil, Y., Groth, P., Futrelle, J., Kwasnikowska, N., Miles,
S., Missier, P., Myers, J., Simmhan, Y., Stephan, E., Van den Bussche, J.: The Open Prove-
nance Model - Core Specification (v1.1). In: Future Generation Computer Systems (2009)
(submitted)

4. Simmhan, Y., Pale, B., Gannon, D.: A Survey of Data Provenance in e-Science. SIGMOD
Record 34(3), 31–36 (2005)

5. Bose, R., Foster, I., Moreau, L.: Report on the International Provenance and Annotation
Workshop (IPAW 2006). Sigmod Records (September 2006)

6. Reid, R., Pignotti, E., Edwards, P., Laing, A.: ourSpaces: Linking Provenance and Social
Data in a Virtual Research Environment. In: Proceedings of the World Wide Conference
(2010)

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 298–300, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Social Web-Scale Provenance in the Cloud

Yogesh Simmhan1 and Karthik Gomadam2

1 Microsoft Research
yoges@microsoft.com

2 University of Southern California
gomadam@usc.edu

Abstract. The lower barrier to entry for users to create and share resources
through applications like Facebook and Twitter, and the commoditization of so-
cial Web data has heightened issues of privacy, attribution, and copyright.
These make it important to track the provenance of social Web data. We outline
and discuss key engineering, privacy, and monetization challenges in collecting
and analyzing provenance of social Web resources.

Keywords: Provenance, social web, scalability, privacy, Cloud.

1 Introduction

The pervasiveness of social networks as an intrinsic part of users’ online presence
allows easy sharing of information among peers and the public at large. Social network
services such as Facebook allow sharing of free form comments, semi-structured hash-
tags, and resources like images with other users. External applica-tions can query these
user relationships and content through APIs, and publish feeds.

The ease of such portals that cause their success also masks privacy issues that
have unintended consequences for the users [1,4], ranging from plagiarism to mis-
representation. Tracking the provenance of shared social network resources becomes
crucial, yet challenging, given the ad hoc nature of the sharing model and the scalabil-
ity needed [6]. For e.g., an indie artist who shares a soundtrack on Facebook may like
to find out which of her friends or friends of friends (FOAFs) downloaded the music
or published “similar” albums on finding remixed versions of her work [2].

Provenance in social networks pose additional challenges to those in workflows
and databases, viz. (1) Identifying resources, relationships, and semantics from un-
structured information, (2) Online scaling with social network size, frequency of feed
updates, and popularity, (3) Ensuring privacy of aggregated provenance, and (4) In-
centivizing service use and revenue given the expectations of free online services.

Provenance information for resources on the social web can be characterized as:

1. Resource provenance: This traces the creation, publishing, reuse, and deletion
of social data artifacts like media and documents identified by URI/URLs.

2. Social provenance: This describes social operators such as “Like”, “Comment”,
and “Share” applied to resources to track activities beyond its creation and reuse.
Recording social relationships like Friends and FOAFs, over time, is also needed.

3. System provenance: This includes access statistics, download history and site
metrics of the resource automatically and passively tracked by the social network.

 Social Web-Scale Provenance in the Cloud 299

1.1 Engineering and Scalability Challenges

A provenance system for the social Web involves: (1) Integration of provenance from
social networks, and (2) Subscription to query provenance features of interest.

Architecture: Our proposed architecture employs a publish-subscribe model for
aggregating social network feeds from users based on Pubsubhubbub [7]. The aggre-
gator identifies resource entities and relationships in the feed using unstructured and
structured content – a challenging research problem, and integrates it with prior
provenance that is enhanced with specific resource metadata pulled from the network.

Provenance is accessed through user queries performed either on the feeds in near-
realtime, or on the aggregated provenance and metadata. The former standing queries
[9] have timeliness but restrict query attributes. The latter provide richer query terms
but is performed once or triggered on a schedule. The queries may be as broad as
requesting all updates to a resource or use heuristics to identify similar resources in a
FOAF network. The query results can themselves be pushed as feeds.

Scaling: Pubsubhubbub is a scalable protocol for publishing feeds and query results.
However, storage and query over the aggregated provenance has to scale too. Cloud
computing provides a model for scaling the aggregator and querying hubs. SQL Azure
[8] databases hosted in Virtual Machines (VMs) can store provenance metadata and
scale on demand as the number of users increase. The metadata is partitioned across
VM instances based on tight linkages in the friend network to ensure metadata local-
ity – trading better query performance within closely linked friends for costlier access
to distant friends or the public. Using a carousel approach that batches scheduled
queries across users and scans tables can also achieve load balancing. Scaling with the
rate of feeds and the number of queries is also key as service or resource popularity
increases (e.g. a leaked music video). On demand scale-out by Clouds combined with
dynamic repartitioning of stored provenance can address this.

1.2 Privacy and Monetization

Tracking provenance benefits privacy preservation and in determining its compro-
mise. Awareness of who is actually viewing your resource can help detect incorrect
privacy configurations, and bridge perceived and actual privacy. One challenge is to
collect the provenance transparently with user opt-in, rather than giving the sense of
yet another privacy invasion and harvest of personal information.

Another aspect of privacy is the social granularity of collected provenance. The
provenance service can be a private service for groups of friends who sign up and
track resources they publish. The group can even own the hosted provenance service
and data in the Cloud using their own account – paying for the private provenance
service and Cloud resources and ensuring no third party mines it. The diminished cost
per user for the Cloud service as more users join is an incentive for FOAFs to join.

The above approach can create disconnected provenance repositories for each user
group. These can be linked by exporting provenance through standards like Open
Provenance Model [5] and those evolving in the W3C Provenance Incubator [3]. Else,
third parties can provide a more connected, shared service across users in exchange
for payment, or for a free, Ad supported model that mines accumulated provenance.

300 Y. Simmhan and K. Gomadam

1.3 Related Work

Social networks provide users with system provenance on resource creation and use
to popularize their access. Tools studied to reuse data in social networks and blogs
enhance the metadata of republished resources with semantic annotations on their
provenance to support accountability and enforce usage right policies [2]. Others have
combined provenance of user assertions with their social network links to gauge the
trust rating of the assertion, used in movie recommendation systems [1]. The W3C
Provenance and Social Web Incubator groups have identified requirements of prove-
nance for social networks and surveyed technologies that can address them [3].

2 Conclusion

The commoditization of social Web data increases concerns about privacy and re-
source sharing in social networks that can be addressed through tracking provenance
of social Web resources. The issues around such provenance has a different quality
from provenance collection for workflows and databases, both due to the fungible
nature of the data and the scales involved. Our article highlights some of these issues
and proposes an architecture for addressing this in part. These form the basis for fur-
ther investigation into this important and emerging area of research.

Acknowledgments. The authors thank members of the W3C Provenance Incubator
and Social Web Incubator groups for discussions that motivated some of these issues.

References

1. Golbeck, J.: Combining Provenance with Trust in Social Networks for Semantic Web Con-
tent Filtering. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 101–108.
Springer, Heidelberg (2006)

2. Wagner, C., Motta, E.: Data Republishing on the Social Semantic Web. In: Workshop on
Trust and Privacy on the Social and Semantic Web (2009)

3. Requirements for Provenance on the Web. In: Cheney, J., Gil, Y., Groth, P., Miles, S. (eds.)
Working Report by the W3C Provenance Incubator Group, April 9 (2010)

4. Dwyer, C., Hiltz, S.R., Passerini, K.: Trust and privacy concern within social networking
sites. In: Americas Conference on Information Systems (2007)

5. Moreau, L., Clifford, B., Freire, J., Gil, Y., Groth, P., Futrelle, J., Kwasnikowska, N., Miles,
S., Missier, P., Myers, J., Simmhan, Y., Stephan, E., Van den Bussche, J.: The Open Prove-
nance Model - Core Specification (v1.1). Future Generation Computer Systems (in press
2010)

6. Moreau, L.: The Foundations for Provenance on the Web. Foundations and Trends in Web
Science (2009) (submitted)

7. Pubsubhubbub: A simple, open, web-hook-based pubsub protocol (June 4, 2010),
http://code.google.com/p/pubsubhubbub/

8. Microsoft SQL Azure, (June 4, 2010),
http://www.microsoft.com/windowsazure/sqlazure/

9. Data Stream Query Processing. Nick Koudas and Divesh Srivastava. In: International Con-
ference on Data Engineering, ICDE (2005)

Using Domain Requirements to Achieve
Science-Oriented Provenance

Eric Stephan1, Todd Halter1, Terence Critchlow1, Paulo Pinheiro da Silva2,
and Leonardo Salayandia2

1 Pacific Northwest National Laboratory, Richland WA, USA
2 University of Texas at El Paso, El Paso TX, USA

Abstract. The US Department of Energy (DOE) Atmospheric Radi-
ation Measurement Program (ARM) is adopting the use of formalized
provenance to support observational data products produced by ARM
operations and relied upon by researchers. Because of the diversity of
needs in the climate community provenance will need to be conveyed in
a domain-oriented context. This paper explores a use case where semantic
abstract workflows (SAW) are employed as a means to filter, aggregate,
and contextually describe the historical events responsible for the ARM
data product the scientist is relying upon.

1 Introduction

What is the right level of provenance, disseminated to the right audience, in the
right scientific context? This is a continual question facing the Department of
Energy’s Atmospheric Radiation Measurement (ARM) Program [1], especially
as a diversity of audiences such as climate modelers, and researchers use the
ARM data products in new and innovative ways. ARM is currently advancing
the way day-to-day tasks relating to data capture, processing, and reprocessing,
error detection, and troubleshooting in analytical methods by formally adding a
provenance component to preserve the workflow history of tasks. This year the
ARM Data Management Facility will manage the data flow for over 420 sensors
located around the world, and will be ingesting one half terabyte of observations
daily. As sensor data is collected, ARM transforms the ingested data into a uni-
form format, performs quality control, reprocessing, and transfers the finished
products to the ARM Archive. From an operational standpoint it is foreseen
that the number of ARM data products will continue to increase significantly,
dwarfing today’s complexity of algorithm interdependency. As demands on data
increase the need for provenance is challenging our capability of properly sup-
porting data and product attribution.

2 Issues with Scientific Outreach

For ARM sensor data stream processing and reprocessing, a standard Integrated
Software Development Environment (ISDE) workflow has been adapted that is

D.L. McGuinness, J.R. Michaelis, and L. Moreau (Eds.): IPAW 2010, LNCS 6378, pp. 301–303, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

302 E. Stephan et al.

comprised of all or a subset of the following steps: Initialize, Get, Translate,
Scientific Analysis, Translate, and Put. While on the surface these steps seem
trivial each step relies upon detailed algorithms for processing the data, and each
algorithm must iterate through the stream to operate on each sample. Part of the
provenance challenge is retaining knowledge about how the data was processed
that meets the needs of both operational staff and downstream researchers.

Provenance at multiple tiers [2] is required to provide relevant information
for operations and researchers. Each tier has a different focus and resolution.
The first tier that represents the lowest resolution of provenance depicts lineage
because ARM data products are highly interdependent. This information is not
only invaluable to the researcher in terms of knowing what went into making
a product, it is vital to addressing cascading errors produced when erroneous
products are relied upon by downstream data processes. The underlying tiers
depict provenance as a “hedge” or forest of ordered acyclic graphs. The hedge
tier provides provenance and referential information common to all samples being
processed at the component level within the ISDE workflow, and each acyclic
graph within the context of the hedge represents the third tier that we refer
to as the “branch”. The current approach is to capture provenance for every
step within the ISDE workflow, analyze the provenance from an operational
standpoint, and retain a subset of provenance to be used by researchers. A
challenge is that of only retaining provenance useful for scientific understanding
as data products are archived for future dissemination to researchers.

3 Developing Domain-Oriented Provenance
Requirements

One approach to retain provenance most useful for scientific means is to restrict
its capture to knowledge with a well-defined usage. Because provenance needs
will be diverse, a knowledge-driven strategy is suggested to identify provenance
in support of ARM’s diverse research community.

A common understanding of the ISDE workflow by domain experts and com-
puter scientists is a requirement to understand where and how provenance needs
to be permanently archived. For instance, many steps (and sub-steps) of the
workflow are required to support the execution of the workflow, and from an
operational standpoint need to verify datasets being pre-staged for translation.
However, from a scientific perspective, this information needs to be conveyed
in an aggregate perspective. In other cases, scientists need a high resolution
perspective of the samples being translated, but need a filtered view of what
actually occurred. In both cases, scientists need to be able to describe the ISDE
workflow in terms of scientific steps, and of using these scientific steps to identify
the ones that they need provenance.

Our strategy is to have different domain expert focus groups to describe their
understanding of the ISDE workflow through the use of semantic abstract work-
flows (SAW) [3] and for the computer scientists to map the SAW steps (i.e.,
SAW methods) into concrete ISDE workflow tasks. One immediate benefit of

Using Domain Requirements to Achieve Science-Oriented Provenance 303

this approach is that the workflow would be described in scientific terms. An-
other benefit is that non-scientific steps are going to be abstracted away from
the workflow. From the ISDE SAW, domain experts should be able to identify
(and rank) the steps of the workflow that require provenance. From the SAW,
it is possible to identify feasible provenance use cases and, by using the map-
pings between SAW methods and workflow tasks, to anticipate the content of
the provenance for each task of the workflow. Moreover, the SAW can be use
to determine provenance use cases that cannot be implemented because of un-
intentional uses of ARM data requiring knowledge not captured in the current
provenance encoding.

References

1. Atmospheric Radiation Measurement Climate Research Facility: ARM Annual Re-
port. U.S. Department of Energy, DOE/SC-ARM-0706 (2007)

2. Stephan, E.G., Halter, T.D., Ermold, B.D.: Leveraging The Open Provenance Model
as a Multi-Tier Model for Global Climate Research. In: Proc. of 3rd International
Provenance and Annotation Workshop, IPAW 2010 (2010)

3. Pinheiro da Silva, P., Salayandia, L., Gandara, A., Gates, A.Q.: CI-Miner: Semanti-
cally Enhancing Scientific Processes. Earth Science Informatics 2(4), 249–269 (2009)

Author Index

Aldeco-Pérez, Roćıo 148
Allen, M. David 98
Altintas, Ilkay 17, 42
Anand, Manish Kumar 17, 42
Angelino, Elaine 236

Bao, Jie 198
Barnett, Bruce 111
Belloum, Adam 42
Blaustein, Barbara 98
Bowers, Shawn 17, 42
Boxhoorn, Danny 289
Braganholo, Vanessa 286
Buddelmeijer, Hugo 289

Chapman, Adriane 98
Crapo, Andrew 111
Crawl, Daniel 42
Critchlow, Terence 301

da Cruz, Sérgio Manuel Serra 286
da Silva, Paulo Pinheiro 216, 274,

280, 301
Davidson, Susan B. 1
de Oliveira, Daniel 251
Difranzo, Dominic 73
Dill, Stephen J. 111
Ding, Li 198

Edwards, Peter 295
Ermold, Brian D. 34

Foster, Ian 277
Fox, Peter 165
Freire, Juliana 2
Frew, James 27

Gadelha Jr., Luiz M.R. 277
Gándara, Aı́da 280
Goble, Carole A. 42, 129
Gomadam, Karthik 298
Graves, Alvaro 91
Groth, Paul 283

Halter, Todd D. 34, 301
Hartig, Olaf 78

Jacobi, Ian 260
Janée, Greg 27

Koop, David 2
Kunde, Markus 59

Lebo, Timothy 182
Li, Xian 182
Ludäscher, Bertram 17, 42, 206

Marinho, Anderson 286
Mattoso, Marta 251, 277, 286
McCusker, Jamie P. 120
McFarland, John 289
McGuinness, Deborah L. 73, 120, 142,

165, 182, 198, 265
McVearry, Kenneth A. 174
Michaelis, James R. 198, 265
Miles, Simon 102
Missier, Paolo 42, 129
Moitra, Abha 111
Moreau, Luc 148, 221
Murta, Leonardo 251, 286
Mwebaze, Johnson 289
Myers, James D. 292

Naja, Iman 221

Ogasawara, Eduardo 251, 286

Patton, Evan W. 73
Pignotti, Edoardo 295
Porras, Hugo 274

Reid, Richard 295
Rio, Nicholas Del 274
Rogers, Alex 221
Runnalls, Andrew R. 64

Sahoo, Satya S. 129
Salayandia, Leonardo 216, 301
Scheidegger, Carlos E. 2
Schreiber, Andreas 59

306 Author Index

Seabra, Fernando 251
Seligman, Len 98
Seltzer, Margo 236
Shangguan, Zhenning 142
Sheth, Amit 129
Silles, Chris A. 64
Silva, Cláudio T. 2
Silva, Vı́tor 251
Simmhan, Yogesh 298
Slaughter, Peter 27
Slominski, Aleksander 231
Sloot, Peter M.A. 42
Stephan, Eric G. 34, 301

Valentijn, Edwin 289

Wendel, Heinrich 59
Werner, Cláudia 286
Wilde, Michael 277

Yamins, Daniel 236

Zednik, Stephan 165
Zhao, Jun 78, 129, 198
Zheng, Jinguang 142
Zinn, Daniel 206

	Title Page
	Preface
	Organization
	Table of Contents
	Keynotes
	On Provenance and Privacy

	Papers
	The Provenance of Workflow Upgrades
	Introduction
	Workflow Upgrades
	Background
	Detecting the Need for Upgrades
	Processing Upgrades
	Provenance Concerns

	Implementation
	Discussion
	Related Work
	Conclusion and Future Work

	Approaches for Exploring and Querying Scientific Workflow Provenance Graphs
	Introduction
	Model of Provenance and Query Language
	The Provenance Browser
	Related Work
	Conclusion

	Automatic Provenance Collection and Publishing in a Science Data Production Environment—Early Results
	Introduction
	A Non-intrusive Science Data System
	Identity Management
	Provenance Management
	Issues Raised

	Leveraging the Open Provenance Model as a Multi-tier Model for Global Climate Research
	Introduction
	Relevant Research
	Multi-tier Provenance Model
	Discussion
	Conclusion
	References

	Understanding Collaborative Studies through Interoperable Workflow Provenance
	Introduction
	Building Collaborative Views
	Expressing Collaborative Queries
	Filtering Dependency Views Using QLP
	Relation between the Collaborative Model and OPM

	Conceptual Interoperability Scenario
	Related Work
	Conclusion

	Provenance of Software Development Processes
	Introduction
	Software Development Processes
	Questions
	A Provenance-Aware Software Development Process
	Evaluation and Conclusions

	Provenance-Awareness in R
	Introduction
	CXXR
	History
	How R Works
	Making CXXR Provenance-Aware
	What Provenance?

	Implementation
	Storing
	Recording
	Retrieval
	Issues

	Conclusion
	Further Work

	SAF: A Provenance-Tracking Framework for Interoperable Semantic Applications
	Introduction
	Related Work
	Demonstration
	Implementation
	Architecture and Security Model
	Client-Side Implementation

	Summary
	Future Work
	References

	Publishing and Consuming Provenance Metadata on the Web of Linked Data
	Introduction
	The Web of Data
	The Need for Provenance Metadata in the Web of Data
	Contributions and Structure

	Describing Provenance of Linked Data
	Overview of the Provenance Vocabulary
	Design Principles of the Provenance Vocabulary

	Publishing Provenance Descriptions about Linked Data
	Adding Provenance to Linked Data Objects
	Adding Provenance to RDF Dumps
	Providing Provenance Information at SPARQL Endpoints
	Metadata Extensions that Simplify the Publication

	Consuming Provenance from the Web of Data
	Querying for Provenance Metadata
	The Example Scenario
	Comparing the Timeliness

	Related Work
	Conclusion

	POMELo: A PML Online Editor
	Introduction
	Proof Markup Language (PML)
	PML-P: Provenance
	PML-J: Justification
	PML-T: Trust

	Related Work
	Features of POMELo
	Examples of Use
	Example 1: Visualizing PML
	Example 2: Editing and Validating PML

	Future Work
	Conclusions

	Capturing Provenance in the Wild
	The Challenge of “Open World” Provenance Capture
	Provenance Capture at Distributed System Coordination Points
	Evaluation
	Conclusions
	References

	Automatically Adapting Source Code to Document Provenance
	Introduction
	Overview and Case Study
	Process Documentation
	Identifiers and Querying
	Granularity and Procedure Calls

	Adaptation
	Explicate and Identify Stages
	Augment Stage

	Conclusions

	Using Data Provenance to Measure Information Assurance Attributes
	Introduction
	Previous Work
	Subjective Logic
	Implementation Details
	Analyzing the Records
	Integrity
	Authenticity
	Confidentiality
	Non-repudiation
	Availability

	Summarizing Information with an Icon
	Sample Visualization
	Conclusion
	References

	Explorations into the Provenance of High Throughput Biomedical Experiments
	Introduction
	The Translational Research Provenance Vision
	High Throughput Experiments and Provenance

	Related Work
	MAGE
	Round Trip Analysis
	General Purpose Provenance Models

	Methods
	Evaluation

	Results
	Discussion
	Future Work

	Conclusion

	$Janus$: From Workflows to Semantic Provenance and Linked Open Data
	Introduction
	Paper Scope and Contributions
	Related Work

	A Concrete Example
	The $Janus$ Semantic Provenance Infrastructure
	Modeling Domain-Agnostic Provenance in $Janus$
	Modeling Semantic Provenance in $Janus$
	Provenance Query Infrastructure for $Janus$

	Taverna Provenance and Linked Data
	Publishing Taverna Provenance as Linked Data
	Consuming Taverna Provenance as Linked Data

	Conclusions and Further Work

	Provenance-Aware Faceted Search in Drupal
	Introduction
	Related Work
	Capturing and Publishing Provenance in Drupal
	Provenance-Aware Faceted Search in Drupal
	Conclusion and Future Work
	References

	Securing Provenance-Based Audits
	Introduction
	Provenance Model Overview
	Securing the Recording and Storage Stage
	Provenance-Based Auditing Architecture
	Data Request Protocol Formalisation
	Storage Stage

	Securing the Querying and Analysis Stage
	Secured Provenance Graph
	Secured Provenance Graph Integrity Checking

	Securing Provenance Based-Audits
	Related Work
	Conclusions

	System Transparency, or How I Learned to Worry about Meaning and Love Provenance!
	Introduction
	Use Cases
	System Requirements
	Knowledge Provenance
	Provenance Visualization
	Demonstration
	Discussion and Conclusions

	Pedigree Management and Assessment Framework (PMAF)
	Introduction to PMAF
	PMAF Background
	Provenance Model
	Resource
	Provenance Metadata
	Pedigree Fragment
	Root Pedigree
	Provenance Subgraph

	Provenance Represented in RDF
	PMAF Architecture
	Pedigree Assembler
	Assessment Query
	Subgraph Query
	Pedigree Publisher
	Publish API

	PMAF Interfaces
	PMAF Assessments
	PMAF Vocabularies
	PMAF Applications
	PMAF Demonstration
	References

	Provenance-Based Strategies to Develop Trust in Semantic Web Applications
	Introduction
	Related Work
	Supreme Court: Justices and Decision Making
	Application Domain
	Tools and Techniques: Advantages and Challenges

	Developing Trust through Provenance
	Provenance of Subject-Centric Queries
	Use Cases Addressed by Provenance of User Interface Invocation
	Use Case Addressed by Provenance of Subject Scope

	Conclusions

	Reflections on Provenance Ontology Encodings
	Introduction
	Semantic Web Provenance Ontologies
	Concept Coverage Analyses
	Concept Modeling Analyses
	Conclusion
	References

	Abstract Provenance Graphs: Anticipating and Exploiting Schema-Level Data Provenance
	Introduction
	Motivation
	Abstract Provenance Graphs
	Abstract Provenance Flowgraphs
	Variations of Abstract Provenance Graphs

	Related Work
	Conclusion

	On the Use of Semantic Abstract Workflows Rooted on Provenance Concepts
	Introduction
	Background
	Semantic Abstract Workflows
	Proof Markup Language

	Integrating Process and Provenance Concepts
	Discussion
	Conclusion

	Provenance of Decisions in Emergency Response Environments
	Introduction
	Provenance of Decisions: Tracing Decisions Made by Emergency Responders
	Decisions in RoboCup Rescue Simulation
	Provenance-Aware RoboCup Rescue Simulation
	OPM-Based RCRS Provenance Information
	Related Work
	Conclusion and Future Work

	An Approach to Enhancing Workflows Provenance by Leveraging Web 2.0 to Increase Information Sharing, Collaboration and Reuse
	Introduction
	Web 2.0 and Scientific Workflow Provenance
	Using the Open Provenance Model with ATOM
	Use Case Scenario
	Summary
	References

	StarFlow: A Script-Centric Data Analysis Environment
	Introduction
	Features of a Workflow Engine for Data Analysis
	Tracking Dependencies
	Using the Dependency Network
	Workflow Abstraction
	Integration with the Programming Environment

	StarFlow
	Design Principles
	Tracking Dependencies
	Exploring, Updating and Sharing
	Basic Use Case

	Workflow Abstraction
	Future Directions
	Conclusion

	GExpLine: A Tool for Supporting Experiment Composition
	Introduction
	GExpLine
	GExpLine Prospective Provenance Model
	Modeling a Deep Water Oil Exploitation Experiment
	Related Work
	Conclusion
	References

	Data Provenance in Distributed Propagator Networks
	Introduction
	Propagator Networks
	Propagators in a Distributed System

	Adding Provenance to Propagator Networks
	Related Work
	Contributions and Future Work

	Towards Provenance Aware Comment Tracking for Web Applications
	Introduction
	Deliverables

	Related Work
	The Provenance Aware Comment Tracker (PACT) Model
	Exemplar Application: US Global Aid
	Use Case 1: Problem in Mashup
	Use Case 2: Problem with Data

	Discussion and Conclusion

	Browsing Proof Markup Language Provenance: Enhancing the Experience
	Introduction
	Usability
	Performance: Preprocessed Views

	Towards a Threat Model for Provenance in e-Science
	Introduction
	Security Requirements for Provenance Systems
	Concluding Remarks

	Provenance Support for Content Management Systems: A Drupal Example
	Introduction
	Provenance Support for Drupal

	ProvenanceJS: Revealing the Provenance of Web Pages
	Provenance Metadata and Implementation
	Related Work and Conclusion

	Integrating Provenance Data from Distributed Workflow Systems with ProvManager
	Introduction
	ProvManager
	References

	Using Data Lineage for Sub-image Processing
	Introduction
	Sub-image Processing
	Use Case: Analyzing Transitioning Galaxies

	I Think Therefore I Am Someone Else: Understanding the Confusion of Granularity with Continuant/Occurrent and Related Perspective Shifts
	Introduction
	References

	A Multi-faceted Provenance Solution for Science on the Web
	Introduction
	ourSpaces - Supporting Provenance on the Web
	References

	Social Web-Scale Provenance in the Cloud
	Introduction
	Engineering and Scalability Challenges
	Privacy and Monetization
	Related Work

	Conclusion
	References

	Using Domain Requirements to Achieve Science-Oriented Provenance
	Introduction
	Issues with Scientific Outreach
	Developing Domain-Oriented Provenance Requirements

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

