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Preface

The International Semantic Web Conferences (ISWC) constitute the major in-
ternational venue where the latest research results and technical innovations on
all aspects of the Semantic Web are presented. ISWC brings together researchers,
practitioners, and users from the areas of artificial intelligence, databases, social
networks, distributed computing, Web engineering, information systems, nat-
ural language processing, soft computing, and human—computer interaction to
discuss the major challenges and proposed solutions, the success stories and fail-
ures, as well the visions that can advance research and drive innovation in the
Semantic Web.

This volume contains the main proceedings of ISWC 2010, including papers
accepted in the Research and Semantic-Web-in-Use Tracks of the conference, as
well as long papers accepted in the Doctoral Consortium, and information on
the invited talks.

This year the Research Track received 350 abstracts and 228 full papers
from around the world. The Program Committee for the track was recruited
from researchers in the field, and had world-wide membership. Each submitted
paper received at least three reviews as well as a meta-review. The reviewers
participated in many spirited discussions concerning their reviews. Authors had
the opportunity to submit a rebuttal, leading to further discussions among the
reviewers and sometimes to additional reviews. Final decisions were made during
a meeting between the Track Chairs and senior Program Committee members.
There were 51 papers accepted in the track, a 22% acceptance rate.

The Semantic-Web-in-Use Track, targeted at deployed applications with sig-
nificant research content, received 66 submissions, and had the same reviewing
process as the Research Track, except without the rebuttal phase. There were
18 papers accepted in this track, a 27% acceptance rate.

For the sixth consecutive year, ISWC also had a Doctoral Consortium Track
for PhD students within the Semantic Web community, giving them the oppor-
tunity not only to present their work but also to discuss in detail their research
topics and plans, and to receive extensive feedback from leading scientists in the
field, from both academia and industry. Out of 24 submissions, 6 were accepted
as long papers, and a further 7 were accepted for short presentations. Each stu-
dent was assigned a mentor who led the discussions following the presentation of
the work, and provided detailed feedback and comments, focusing on the PhD
proposal itself and presentation style, as well as on the actual work presented.

The ISWC program also included four invited talks given by leading fig-
ures from both the academic and business world. This year talks were given
by Li Xiaoming of Peking University, China; mc schraefel of the University of
Southampton, UK; Austin Haugen of Facebook; and Evan Sandhaus of the New
York Times.



VI Preface

The ISWC conference included the Semantic Web Challenge, as in the past.
In the challenge, organized this year by Christian Bizer and Diana Maynard,
practitioners and scientists are encouraged to showcase useful and leading-edge
applications of Semantic Web technology, either on Semantic Web data in gen-
eral or on a particular data set containing 3.2 billion triples. ISWC also included
a large tutorial and workshop program, organized by Philippe Cudré-Mauroux
and Bijan Parsia, with 13 workshops and 8 tutorials spread over two days. ISWC
again included a Poster and Demo session, organized by Axel Polleres and Hua-
jun Chen, for presentation of late-breaking work and work in progress, and a
series of industry talks.

A conference as complex as ISWC requires the services of a multitude of
people. First and foremost, we thank all the members of the Program Commit-
tees for the Research Track, the Semantic-Web-In-Use Track, and the Doctorial
Consortium. They took considerable time, during summer vacation season for
most of them, to read, review, respond to rebuttals, discuss, and re-discuss the
submissions. We also thank the people involved in the other portions of the con-
ference, particularly Birte Glimm, the Proceedings Chair; Lin Clark and Yuan
Tian, the webmasters; Axel Polleres and Huajun Chen, the Posters and De-
mos Chairs, and their Program Committee; Yong Yu, the Local Arrangements
Chair, Haofen Wang, who managed most aspects of the local arrangements, and
Dingyi Han, Gui-Rong Xue and Lei Zhang, the Local Arrangements Committee;
Sebastian Rudolph, the Publicity Chair; Jie Bao, the Metadata Chair; Anand
Ranganathan and Kendall Clark, the Sponsor Chairs; and Jeff Heflin, the Fel-
lowship Chair.

September 2010 Yue Pan and Peter F. Patel-Schneider
Program Chairs, Research Track Chairs

Pascal Hitzler, Peter Mika, and Lei Zhang
Semantic-Web-In-Use and Industry Track Chairs

Jeff Z. Pan
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Conference Chair
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Abstract. Building applications over Linked Data often requires a mapping be-
tween the application model and the ontology underlying the source dataset in
the Linked Data cloud. This mapping can be defined in many ways. For in-
stance, by describing the application model as a view over the source dataset,
by giving mappings in the form of dependencies between the two datasets, or
by inference rules that infer the application model from the source dataset. Ex-
plicitly formulating these mappings demands a comprehensive understanding of
the underlying schemas (RDF ontologies) of the source and target datasets. This
task can be supported by integrating the process of schema exploration into the
mapping process and help the application designer with finding the implicit re-
lationships that she wants to map. This paper describes Fusion - a framework
for closing the gap between the application model and the underlying ontologies
in the Linked Data cloud. Fusion simplifies the definition of mappings by pro-
viding a visual user interface that integrates the exploratory process and the
mapping process. Its architecture allows the creation of new applications
through the extension of existing Linked Data with additional data.

Keywords: semantic web, data interaction, data management, RDF mapping,
Linked Data.

1 Introduction

Nowadays, the Linked Data' cloud provides a new environment for building applica-
tions where many datasets are available for consumption. Although data in this cloud
is ready to use, applications over the Linked Data cloud have currently an intrinsic
characteristic: they consume RDF” data “as is”, since designers do not have write
permission over the data in the cloud which would enable them to change the data in
any way. This fact raises an important issue concerning the development of applica-
tions over Linked Data: how to fill the gap between the ontology associated with the
application model and the ontology used to represent the underlying data from the
Linked Data cloud? The main benefit of mapping these two models is that then

' Linked Data- http://linkeddata.org/
2 http://www.w3.0rg/TR/2004/REC-rdf-primer-20040210/
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Linked Data can be accessed through properties defined in the application model,
which is more convenient for the designer, consequently simplifying considerably the
development and maintenance of the application.

Although a number of techniques can be applied for mapping two RDF models,
such as ontology matching, or inference rules, or views over RDF data, they often do
not take into account that expressing the mapping rules themselves is a separate chal-
lenge, since in most cases Linked Data sources are represented using domain-specific
ontologies that do not explicitly offer all common properties in the domain. Take for
example DBLP® Linked Data, one of the best-known bibliography information
sources available as Linked Data. Its ontology does not have an explicit property that
connects directly co-authors, a common property in this domain. Although DBLP
Linked Data contains paths that represent this relationship, it is not trivial to find
them. Indeed, it requires understanding the schema behind the data and how this rela-
tionship is implicitly represented in this dataset. Similar examples can be found in any
dataset in the Linked Data cloud, where the required information is implicitly encoded
in the instance of data.

In this context, two specific and common scenarios often occur. The first is where
the designer needs to express a mapping between a property in her application model
(e.g. how a City is located in a Country) and a path in the RDF graph of the given
dataset (e.g. a City belongs to a Province which belongs to a Country). Another ex-
ample of this scenario can be given in the domain of government data. Suppose you
are building an application over the GovTrack.Us* dataset and its application model
requires a property isSenatorOf that directly connects instances of the class Politician
to instances of the class State (e.g: Christopher Bond is a senator from Missouri).
However, this relationship is not explicitly represented in the GovTrack.Us ontology.
In order to obtain this relationship, the designer has to use the path Senator -> has
Role-> forOffice-> represents -> State which, in this RDF graph, represents the rela-
tionship. Note that the designer needs a clear understanding of the GovTrack.Us
schema in order to find the corresponding path to be mapped. The second scenario
occurs when the mapping is in fact a computation over the existing data that produces
a new explicit data value. For instance, a mapping between a property screen resolu-
tion from the application model and the concatenation of the properties screen width
and screen height defined in the target dataset.

Note that in those scenarios for defining those mappings special attention should be
paid to the exploratory process, especially when it demands from the designer to dive
into the instances and the schema of the source dataset in order to find implicit rela-
tionships, which is not a straightforward task at all. Some authors have shown that
visual exploration [1, 9] can help users to understand an unknown schema used to
represent a known domain. Although those mechanisms help users to query an un-
known schema, it will be always easier to explore a schema that is closer to the appli-
cation models, often expressed in a specific application ontology. Although many
tools are available for exploring Linked Data and for expressing mapping rules be-
tween RDF models, there is still a lack of tools that integrate these processes.

Shttp://dblp.13s.de/d2r/
4http://www.govtrack.us/
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This paper presents Fusion’, a lightweight framework to support application de-
signers in building applications over Linked Data. It supports designers in mapping
the ontology of the used Linked Data sources to their application model by integrating
the process of exploration of the target schema with the task of expressing a mapping
rule itself. Fusion features a visual user interface that guides the designer in the
process of specifying a mapping rule. It uses a standard RDF query language and
allows Linked Data to be accessed using properties defined in the application model,
consequently simplifying the use of Linked Data in a specific context.

The remainder of this paper is organized as follows. Section 2 presents relevant re-
lated work. Section 3 describes how Fusion supports the designer in deriving rules;
while Section 4 describes Fusion’s architecture. Section 5 presents some examples
and shows how Fusion solves the problem of enriching access to Linked Data with
application model properties. Finally, Section 6 presents the conclusion of this work.

2 Related Work

2.1 Ontology Mapping

The problem of mapping data models can also be conceived as an ontology-mapping
problem, since it encompasses describing existing data in another vocabulary. In [8] a
SPARQL extension is proposed to achieve that. Their solution merges SPARQL++
[3] and PSPARQL [9], two extensions of the SPARQL specification. The first exten-
sion adds some functions for enabling SPARQL to translate one vocabulary to
another one by just using SPARQL CONSTRUCT. The second one adds path expres-
sions to SPARQL, allowing a better navigation through the graph. Together they
empower the SPARQL language to perform ontology mapping over two or more
ontologies. Although the theory is given, the authors do not provide a concrete im-
plementation especially because the proposed primitives have many implications for
the performance of the query over the distributed environment of Linked Data.

2.2 SPARQL Construct Queries and Their Extensions

Another way to solve the problem of mapping RDF datasets is by specifying a CON-
STRUCT query in SPARQL [2] that derives the triples in the target data set from the
source data set. The resulting graph can then be stored in an arbitrary RDF repository.
However, the CONSTRUCT query has limited expressive power, since some compu-
tation over the original RDF triples cannot be done, such as string manipulation and
aggregation. For instance, using this approach it is not possible to generate the triple
that would represent the mapping between the properties screen width and screen
height (shown in Fig. 1) to a property resolution (shown in Fig. 2) that is their simple
concatenation.

<http://sw.tv.com/id/2660> <http://sw.tv.com/screen_width> "128" .
<http://sw.tv.com/id/2660> <http://sw.tv.com/screen_height> "160" .

Fig. 1. A resource with predicates screen width and screen height

Shttp://www.wis.ewi.tudelft.nl/index.php/fusion
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<http://sw.tv.com/id/2660> <http://sw.tv.com/resolution> "128x160" .

Fig. 2. A resource with predicate resolution

Polleres et al. [3] have proposed an extension of CONSTRUCT that overcomes
such limitations, however this extension is limited to a specific RDF query engine that
implements this SPARQL extension. Therefore, at this moment, such a solution is not
feasible for the Semantic Web environment, which is very diverse in terms of query
engines - the majority of data is stored in repositories that implement variations of the
standard SPARQL specification that do not include the extensions discussed here.

2.3 Views over RDF Data

Another way to specify mappings between different representational models is by
defining views [5, 6, 7]. This concept is well known in the field of database theory,
and can be used to aggregate and personalize data. A view is a query accessible as a
virtual table composed of the result of the query. Although views are frequently used
in relational databases, building views over Linked Data presents many additional
challenges. Issues such as view maintenance (including updates) and querying over
virtual (non-materialized) views in the distributed environment of Linked Data are
still open problems, besides several other performance issues that arise.

Volz et al. [4] have proposed a language based on RQL [5] for specifying views
over RDF data. It defines views over RDF classes and views of RDF properties. Al-
though this proposal presents a complex specification of views over RDF, it cannot
solve the simple scenario described in Section 2.2, and its solution is based on RQL,
which is not the standard RDF query language used nowadays. Magkanaraki et al. [7]
have proposed a view specification language also based on RQL. Its processing model
is based on materialized views. Chen et al. [6] present a scenario of accessing rela-
tional data using RDF views. In their approach a query over a view result in query
rewriting that exploits the semantics of RDF primitives, such as, subPropertyOf or
subClassOf. While their approach enriches the access to the relational data, it does not
cover the transformations over the data that we are considering here, moreover it is
focused on mapping relational schema to an RDF/S ontology.

2.4 SWRL Rules

Hassanpour et. al [12] proposes a tool for supporting the user on creating SWRL®
rules. Their tool contains a visual interface that guides the user in visualizing, manag-
ing and eliciting SWRL specifications. Although this tool can be used to map two
models using SWRL rules, it does not integrate the process of specifying the rules
with the process of exploring an unknown schema, which is the main aim of Fusion.

2.5 RDF Exploration

RelFinder [1] is a visual tool for finding n-ary relationships between RDF resources.
It contains a visual interface that allows the user to visualize the relationship in a
directed graph layout. Basically, RelFinder issues a set of queries against a specific

6 http://www.w3.org/Submission/SWRL/



Fusion — Visually Exploring and Eliciting Relationships in Linked Data 5

SPARQL endpoint in order to find relationships between two or more RDF resources.
RelFinder aims to be a better mechanism for finding relationships among data than
any other exploratory mechanism. Explorator [9] is another tool that aims to facilitate
the querying of instances of an unknown RDF schema, consequently allowing the
user to discover relations between data instances even without previous knowledge of
the domain. These tools re-enforce the idea that accessing RDF data is not a trivial
task and demands a complex exploratory model behind it. In spite of the fact that they
support users in finding relationships between data, they do not solve the problem of
accessing the Linked Data through a schema associated with the application model.

2.6 Interlinking

From an operational point of view the mapping of two RDF models can be perceived
as the addition of new triples to the original dataset for any new relationship ex-
pressed in the target ontology. Clearly this task requires some sort of automation. For
instance, Silk [10] is a linking framework for discovering relationships between data
items within different Linked Data sources. By specifying rules, the application de-
signer can define how two distinct sets of resources, possibly belonging to distinct
endpoints, can be interlinked, and as a result it produces a graph with all discovered
connections. Although Silk automates the process of interlinking resources, Fusion
goes one step further, since it supports also the process of specifying the rule. They
solve two different problems: Silk interlinks two disconnected RDF graphs while
Fusion extends the knowledge for a single endpoint. Although Silk’s mapping lan-
guage can be used for materializing the rules defined in Fusion, it does not support the
full process supported by Fusion, which also includes, most notably, the discovery of
a path in the schema to be mapped. While Silk allows the user to serialize a rule, it
does not support her in finding it and expressing it.

3 Discovering and Deriving RDF Relationships

The main aim of Fusion is to help the designer in discovering relationships in RDF
graphs that exist in the Linked Data cloud and specifying rules for the derivation of
new properties for these relationships. We refer to this process as relationship deriva-
tion. The result of the relationship derivation process is a set of rules such that each
produces RDF triples based on queries over an existing RDF graph. The evaluation of
a rule results in a set of triples, each of which contains either a new object property’ or
a new datatype property. In the cases where it results in a new object property, the
triples produced connect existing resources, while in the case where it derives a new
datatype property the triples produced connect existing resources with values com-
puted by a function over the RDF graph being queried. In the remainder of this section
we describe how Fusion supports the designer in specifying these derivation rules.

3.1 Deriving Object Property Relationships

The main issue regarding the derivation of new object property relationship is to
specify the correspondence between resources. For example, if a user wants to create

7 http://www.w3.0org/TR/owl-ref/#0bjectProperty-def
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a new object property locatedIn that directly connects cities to their respective coun-
tries, she needs to specify the relationship between cities and countries in the existing
data, i.e. which cities are located in which country. Such a correspondence can be
obtained by following a certain path between two resources in the RDF graph of the
source dataset. For example, Fig. 3 shows a sub-graph of Geonames Linked Data® that
represents a path between the resource for the city of Delft and that of the country
The Netherlands. By using the predicates in this example path and generalizing the
intermediate nodes, it is possible to generalize such an example correspondence to
apply to all cities and respective countries in this dataset, and thus bring the corres-
pondence to the class level. By exploiting this resulting path, Fusion can map all cities
to their corresponding country and thereby add a new object property to the original
graph. Note that this process maps a newly added relationship that is defined in the
application model, onto an implicit relationship that exists in the original graph. In the
example above, the object property locatedIn defined in an application model could
be mapped to the generalization of the path between Delft and the Netherlands
geo:parentFeature — Province of Zuid-Holland — geo:parentFeature.

The Neiherlamis D

= Al

Geodaturelods _
T

Fig. 3. A path between the resources Delft and The Netherlands in Geonames Linked Data

3.1.1 A Path Discovery Algorithm

The first step in the mapping process is to find the paths that could potentially be used
in the mapping. Fusion automates this step by eliciting all possible paths in an RDF
graph that connect two example RDF resources (e.g. Delft and The Netherlands) that
have a specified maximum length. Thus, finding the relationship between two RDF
resources becomes finding a path in the RDF graph that would allow navigating from
the one resource to the other one. This process can be implemented as a modified
version of the breadth-first search algorithm (BFS) with a maximum limit on the
depth of the search and without the restriction that it should stop when the goal node
is reached. Consequently, it can be used to retrieve all paths in the graph within a
maximum length from the source to the target node. This algorithm is applied to the

8 http://www.geonames.org/ontology/



Fusion — Visually Exploring and Eliciting Relationships in Linked Data 7

RDF graph by interpreting each triple as an undirected edge between its subject and
object. Since this algorithm is a small variation on the standard BFS and retrieves all
possible paths from @ to b of a maximum length d, its complexity is O(c?), where c is
the maximum branching factor in the graph. This asymptotic complexity is in this
case the theoretical optimum since it describes the size of the output.

3.1.2 Implementing the Path Discovery Algorithm over a SPARQL Endpoint
Considering that Fusion searches for paths in a Linked Data dataset, the path discov-
ery algorithm needs to be implemented as a set of SPARQL queries, since the most
direct way to search in an RDF graph in the Linked Data cloud is by issuing SPARQL
queries over its remote SPARQL endpoint. In order to generate these queries we con-
sider the RDF graph as an undirected graph as previously described. Thus, all paths
with length n from node @ to node b in this graph can be obtained with a set of
SPARQL queries containing 2" queries. Since we want to ignore the direction in the
graph, we issue a distinct graph pattern for all possible choices of direction for each
triple pattern in the path. Each query in this set contains n connected triple patterns,
one for each edge in the path. For example, to obtain all paths between a and b
with length 3, 8 (= 2*) graph patterns, each containing 3 triple patterns, are generated.
Fig. 4 shows all these 8 patterns.

1 (:a,:pl,:a2), (:a2,:p2,:a3), (:a3, :p3, :b)
2 (:a2,:pl,:a), (a2, :p2,:a3), (:a3, :p3, :b)
3 (:a,:pl,:a2), (:a3, :p2,:a2), (:a3, :p3, :b)
4 (:a2,:pl,:a), (:a3,:p2,:a2), (:a3, :p3, :b)
5 (:a,:pl,:a2), (:a2, :p2,:a3), (:b, :p3, :a3)
6 (:a2,:pl,:a), (:a2, :p2,:a3), (:b, :p3, :a3)
7 (:a,:pl,:a2), (:a3,:p2,:a2), (:b, :p3, :a3)
8 (:a2,:pl,:a), (:a3,:p2,:a2), (:b, :p3, :a3)

Fig. 4. Graph patterns generated for path length 3

Each of these patterns will be transformed into a single SPARQL query, as shown
in Fig. 5 for pattern 1 from Fig. 4, where a and b were specified as the resource Chris-
topher Bond (http://www.rdfabout.com/rdf/usgov/congress/people/B000611) and the
resource Missouri (http://www.rdfabout.com/rdf/usgov/geo/us/mo.), respectively. In
this example, the path connects the US politician Christopher Bond with the state
(Missouri) that he represents.

PREFIX Geo: <http://www.rdfabout.com/rdf/usgov/geo/us/>
PREFIX Gov:
<http://www.rdfabout.com/rdf/usgov/congress/people>
SELECT DISTINCT ?pl ?a2 ?p2 ?a3 ?p3
WHERE {

Gov:B000611 ?pl ?a2

?a2 ?p2 a3

?a3 ?p3 Geo:mo

Fig. 5. Query performed for graph pattern 1 from Fig. 4



8 S. Araujo et al.

Thus, when all graph patterns are executed, all paths of length n are retrieved.
Fig. 6 shows a sample path found as result of the query from Fig. 5 being issued over
the GovTrack.Us endpoint.

— HasRole TorQifice represents
Qﬂslnpher o Senators for Missouri
Bond. MO
Fig. 6. A sample path found between the resources Christopher Bond (a senator) and Missouri
(a US state) in the GovTrack.Us dataset

This algorithm is similar to RelFinder’s, however RelFinder’s algorithm considers
the RDF graph as a directed graph and it searches only for 4 graph patterns, which
does not cover all possible paths between a and b.

3.1.3 Derivation Process

The algorithm described previously is used in the first stage of the derivation process.
The complete derivation process ends with the designer choosing one of the paths
found in the first stage and generalizing it to find correspondences between two
broader (more general) sets of resources. As a result of this procedure, a derivation
rule is produced.

In order to apply the chosen path to a broader set of resource pairs the designer
needs to generalize all nodes in the path. For instance, the path in Fig. 7 shows a ge-
neralization of the path in Fig. 6 that considers all sources and targets (their generali-
zation is indicated by the ?) that are connected through the path hasRole — RI (blank
node) — forOffice — Senators for MO — represents, i.e., it will find the correspon-
dence between all senators and the state of Missouri.

SONree Targei

hasRole TorDifice represents,
C T G ?
Lk
Fig. 7. A possible generalization between senator resources and the Missouri resource

Fig. 8 shows another (yet more general) generalization that can find the correspon-
dence between all senators and the respective state that they represent, since now all
intermediate nodes are variables.

Fig. 8. A possible generalization between senator resources and the respective US state that
they represent
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It should be noticed that the predicates in the path are not generalized and remain
fixed. These generalizations define derivation rules, which select the resources that
will be interconnected.

For the designer to control this generalization process, we provide a graphical user
interface that will be shown later.

3.2 Deriving New Datatype Properties

Fusion also supports application designers to extend the original dataset with datatype
properties. As Fusion’s goal is to allow application designers to map a property in
their application model to an existing Linked Data dataset, the values of the new data-
type properties are computed over the existing values in the original dataset.

Formally, a derivation rule that produces datatype properties is defined by a tuple
(g, p, /) with a query g, a predicate name p, and a function f. The query g defines a
function that maps an RDF graph to a set of URISs in that graph, which defines the set
of resources for which the new datatype property is defined. The predicate name p
defines the predicate name of the new property. Finally the function f maps an RDF
graph and a particular URI within that graph to an RDF value. The result of applying
such a rule to an RDF graph G is the addition of all tuples (s, p, 0) such that s € g(G)
and 0 = f(G, s).

4 Architecture Overview

Fusion’s implementation architecture provides a complete environment to specify and
execute a derivation rule. An overview of this architecture is shown in Fig. 9. The
specification of the rules is supported in Fusion’s user interface that will be explained
further in the section 5. Fusion’s server engine is responsible for executing the deriva-
tion rule itself. During the process of executing of a rule, it queries a source endpoint
in the Linked Data, processes the result, and produces a set of new triples that will be
added to the Fusion repository. Any RDF data store can be used as Fusion’s reposito-
ry. Currently, Fusion implements adapters for Sesame’ and Virtuoso'® data stores,
although other adapters can be easily added to its architecture. All derived triples in
Fusion contain as subject a resource that belongs to the queried dataset, so the derived
data is intrinsically interlinked with the Linked Data cloud. For this reason, a query
over a federation of endpoints, that includes the Fusion repository endpoint, will al-
low the designer to have a view over the Linked Data that also includes the properties
defined in her application model.

There are other approaches to how to store the derived triples. For example, it is
possible to use a user-defined namespace for the subjects of the derived triples, and
add an owl:sameAs statement linking it to the original URIs, as opposed to using the
original URIs directly as subject. The shortcoming of this alternative is that others
who want to find out about the new derived properties would not look for them in
Fusion’s local repositories, but in the original URI, which doesn't know about these
new derived properties. On the other hand, with the current approach, if the VolD

o http://www.openrdf.org/
10 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/
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description of Fusion’s local repository is updated to reflect the inclusion of informa-
tion about the original URI, then others would still find its SPARQL endpoint when
looking for endpoints containing information about that URI, thus having access to all
derived triples in the Fusion’s repository.

So it is really a modeling trade-off, with no clear advantage to either side, and our
solution requires less involvement from third parties (e.g., for owl:sameAs processing).

Although Fusion does not serialize a rule before executing it, any serialization me-
chanism could be used in its architecture. For example, its rules could be serialized as
inference rules, by using Spin Inference Notation'', which contains a collection of
RDF vocabularies enabling the use of SPARQL to define constraints and inference
rules on Semantic Web models. Although this configuration is theoretically possible,
executing inference rules, or even instantiating a virfual view over the Linked Data is
still an open problem, since it raises many performance issues. Such issues do not
occur in the current Fusion architecture because it materializes the result of the rules
as new triples in the Fusion repository. The performance of querying data that is al-
ready materialized is always faster than querying data that needs to be processed at
runtime. The main drawback with materializing the result of the rules is that once the
original source is updated, the rules have to be executed again. Furthermore, detecting
these changes in the Linked Data is not trivial. Such synchronizing or updating issues
are actually the realm of research (and practice) in (database) view definitions and
updates. The performance trade-offs in each case are well known, and are addressed
by researchers working in that area, which while relevant, is not the research focus for
Fusion at this state. Fusion is be able to benefit from whatever techniques are availa-
ble on this topic.

Fusion User Interface
Rubwy on Rails $ HTTP

‘ Fusion Server Engine

ActiveRDF
| Federated Query Engine

_‘.'_f"spmmismnu\
L Linked Data j ’.\ Fusion Repository

Fig. 9. Fusion’s architecture overview

Fusion is implemented in Ruby on Rails'> as a web application. It uses the
ActiveRDF API [11] that allows an RDF graph to be accessed in the object-oriented
paradigm. By using this API the properties of an RDF resource can be accessed
as an attribute of its corresponding Ruby' object. For instance, the predicate

"http://www.spinrdf.org/
12 http://rubyonrails.org/
13 http://www.ruby-lang.org/en/
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http://www.geonames.org/ontology#population can be accessed as <re-
source>.population. This architecture allows the designer to write complex functions
for computing a new datatype property value using the full power of the Ruby lan-
guage, which cannot be achieved simply by using the SPARQL language.

5 Examples of Use

This section describes two concrete scenarios that illustrate the use of Fusion to create
an application by extending Linked Data sources with additional properties.

5.1 Scenario 1 — Adding the isSenatorOf Object Property to GovIrack.Us

In this example, we suppose that the designer wants to establish the relationship
between US senators and the US state that they represent. Therefore she needs to
construct a derivation rule that will find and define such a correspondence between
politicians and states in GovTrack.Us’s Linked Data repository. In the first step in the
process, the designer provides an example of two resources in GovTrack.Us that she
knows in advance that are actually related, for instance, politician Christopher Bond
and the state of Missouri. Also, she needs to declare the GovTrack.Us endpoint to be
queried and the maximum depth of the path. This step is shown in Fig. 10.

.. FUSION Path Finder | Property Derivation | List Derived Properties | Configuration | Enable Repositories

Endpoint for searching:

| http:/ fwww.rdfabout.com/sparql |
Ex: http:#dblp.13s.deid2risparg|

Depth of the path to follow: [ 3 5]

Resource 1:

| http:/ fwww.rdfabout.com frdf/usgov/congress /people /BODDG L1 |

Ex: hitp:/fdblp.13s.defd2r/ jui-l_Hsiao

Resource 2:

| http:/ fwww.rdfabout.com/rdffusgov/geo/us/mo |

Ex: hitp:/fdblp.13s.defd2r/ ing-Syan_Chen

Fig. 10. Fusion’s interface for finding a path between two known resources

As the result of this first step, Fusion shows all the paths that connect these
two example resources satisfying the maximum path length. This result is shown in
Fig. 11. In this example, the paths found have a maximum length of 3.
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.:. FUSION Path Finder | Property Derivation | List Derived Properties  Configuration | Enable Repositorles.
A Giristophsr Gond hasRale " frOffice 5 " Epresants . :
— 23 — Senators ‘or MO — Missouri
Derwve Proper '

A Chiistopher Bond  SBONSO! 5 2024: Greer Spring Acquisition and Protecticn Act of 1981 (102nd Congress)  Sublec and Keyworcs  wissoyri THE @ pissouri

Derive Praperty
A Christopher g, S 658 A bill ' provide a land Iransfer to the Missour Housing Develonment Subject and " .
LATSIOAET - Sponsor k y Title .
Bond — Cornrrissicr. (102nd Congress Keywerds Missour o Missouri
Derive: Property
A Christooher Sponsor €. 2056: A bill to provide for the add ton of the Truman Farm Hona to the Harry §. Tn.man Subjectand Missouii  Tte L]
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Fig. 11. Fusion’s interface showing the discovered paths

In this view, the designer can now look for the path that has the intended seman-
tics. Note that with this view the tool assists the designer in this discovery process,
since she does not need to query the schema manually in order to find these paths.
The first path shown in Fig. 11 indicates that the politician Christopher Bond has a
role as senator representing the state Missouri, and in our example case the designer
can now infer that this is an instance of the path that she is looking for. After this
conclusion, the designer chooses that instance to be the template for the rule.
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Fig. 12. Generalizing the path for the property isSenatorOf in GovTrack.Us

In the next step, shown in Fig. 12, the designer will define the derivation rule itself,
which means that she visually formulates a query, which generalizes the selected path
from the first step into a query that selects the elements to be connected through the
property isSenatorOf. To complete this operation she also needs to define the graph
where the derived triples will be stored and a specific URI to be used as the predicate
of the new triples, which in this example will be http://example.org/isSenatorOf. Note
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that in this example 3 nodes were generalized such that only paths between resources
of the RDF type Politician and RDF type State that contain an intermediate node that
is part of the United States Senate will be considered during the derivation process.
Consequently, Fusion will derive the new property isSenatorOf for all instances of the
class Politician that are connected to an instance of the class State through the speci-
fied path. The whole process concludes with Fusion adding new triples to Fusion
repository.

5.2 Scenario 2 — Adding a Datatype Property citySize to Geonames

In this example, we suppose that the designer wants to derive a new property citySize
for cities in Geonames to distinguish small and large cities. Therefore she needs to
create a derivation rule that will compute the appropriate values for this new property.
She will want this property to have the value ‘small’ for cities with less than
1.000.000 inhabitants, and ‘large’ otherwise. As the first step in the process, she
needs to provide the Geonames Linked Data endpoint to be queried and a resource
(a city) in Geonames as an example. In this case she supplies the URI
http://sws.geonames.org/2757345/, which represents the city of Delft. This step is
shown in Fig. 13.

.:. FUSION Path Finder | Property Derivation | List Derived Properties | Configuration | Enable Repositories

Property Derivation

Endpoint for searching:

| http:/ /wisserver.st.ewi.tudelft.nl:B892 /spargl |
Ex: hitp:/fdblp.13s.defd2risparg]

Resource :

| http:/ /sws.geonames.org /2757345 |

Ex: http:/fdblp.|3s.deid2ri hors/Hui-_Hsiao

Find Properties

Fig. 13. Fusion’s interface for deriving a data type property

In the next step, Fusion uses the city URI to construct the visual interface where
the designer will express the derivation rule R=(g,p,f). In this interface, she visually
defines the query ¢, a URI for the new property p, and a Ruby expression that will
be used as the function f. In Fig. 14 we show Fusion’s datatype property derivation
view.

In this view the designer specifies that the new property is to be defined for all re-
sources for which the predicate parentFeature equals Province Zuid-Holland, i.e., it
will compute it for all cities in the province of Zuid-Holland. Also she defines that the
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Fig. 14. Fusion’s datatype property derivation interface

URI of the new property will be http://example.org/citySize. As Fusion was devel-
oped in Ruby, using the ActiveRDF API, the function f can be defined as a Ruby
expression that for this example is shown in Fig. 15.

resource.population.to.i > 1.000.000 ? ’large’:’small’

Fig. 15. Sample Ruby expression for computing the citySize value

This process ends with Fusion adding new triples to the Fusion repository.

6 Conclusion and Future Work

Linked Data is a cloud of distributed datasets that can be used “as is” for building
applications. However, its data is often expressed in a low-level ontology that does
not reflect the ontology associated with the application model. In order to fill the gap
between these two representational models it is necessary to somehow map them.
Although there exist approaches for solving this problem, such as ontology matching
techniques, views over RDF and inference rules, they do not consider this task as a
process that also involves Linked Data schema exploration. In others words, whatever
strategy is used, it will demand from the designer to identify in both models exactly
what to map and how to map it, which is not trivial, since it also demands a clear
understanding of the underlying schema in the used Linked Data. Fusion integrates
the exploratory task into the process of mapping, thereby helping the designer with
identifying the relationships between her application model and the Linked Data
schema, and also in providing a full architecture for expressing the mapping and ex-
tending the used Linked Data such that it implements the application model.

Fusion works by querying Linked Data and extending it by adding new data into
the cloud without directly altering the original dataset. Fusion also provides a visual
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interface that allows the user to explore Linked Data, express the rules and derive new
data, which in the end covers the whole process of mapping and extending. As Fusion
materializes the result of the mapping as new triples in an extra endpoint in the cloud,
it consequently allows the separation of the processes of building the application and
managing the mapping between models.
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Abstract. Companies, governmental agencies and scientists produce a
large amount of quantitative (research) data, consisting of measurements
ranging from e.g. the surface temperatures of an ocean to the viscosity
of a sample of mayonnaise. Such measurements are stored in tables in
e.g. spreadsheet files and research reports. To integrate and reuse such
data, it is necessary to have a semantic description of the data. However,
the notation used is often ambiguous, making automatic interpretation
and conversion to RDF or other suitable format difficult. For example,
the table header cell “f (Hz)” refers to frequency measured in Hertz, but
the symbol “f” can also refer to the unit farad or the quantities force
or luminous flux. Current annotation tools for this task either work on
less ambiguous data or perform a more limited task. We introduce new
disambiguation strategies based on an ontology, which allows to improve
performance on “sloppy” datasets not yet targeted by existing systems.

1 Introduction

In this paper we study how to convert and annotate unstructured, “raw” quan-
titative data stored in tables into a semantic representation in RDF(S). Quanti-
tative data are found in diverse sources, such as scientific papers, spreadsheets
in company databases and governmental agencies’ reports. The data consist of
observations such as the heart rate of a patient measured in beats per minute, the
viscosity of a sample of mayonnaise in pascal second, or the income of households
in dollars in the US. Usually the tables consist of a header row that indicates
which quantities and units are being measured and which objects; e.g. Sample
Nr. / Fat % / Visc. (Pa.s). Each content row then contains the values of one
actual measurement.

Current reuse and integration of such data is not optimal, because a semantic
description is not available. Researchers tend to write their data down in a
“sloppy” way, because it is not anticipated that the data will ever be reused.
This causes data to be “lost” and experiments to be needlessly repeated. To
enable integration of data from different tables with each other, a complete
description of all quantities and units in the table is necessary; annotation with

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 16-31, 2010.
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a few key concepts does not suffice. There are two main reasons why it is difficult
to automatically convert the original data to a semantic description. Firstly,
humans use different syntax for expressing quantities and units (e.g. separating
the quantity from the unit with either brackets or a space). Secondly, the symbols
and abbreviations used are highly ambiguous. For example, the symbol “g” can
refer to at least ten different quantities and units.

This problem is not tackled by existing systems for conversion of tabular data
to RDF, such as XLWrap [§]. These rely on a mapping specification constructed
by a human analyst that is specific to the header of one table. Creating such a
mapping is labour-intensive, especially if there are many differently structured
tables involved. This is the case in government repositories such as Data.gov
[4], and repositories of research departments of companies such as Unilever and
DSM (from experience we know these contain thousands of different tables).

A solution is to include an automated annotation system into the conversion
tool, as proposed by [9]. However, such an annotation system needs to tackle the
ambiguity problem if it is to be succesfully used in the domain of quantities and
units. We know of two existing annotation systems that target the domain of
quantities and units [7[T], and our research can be seen as a continuation of these
efforts. The results of these systems are good (over 90% F-measure), but they
target “clean” datasets such as patent specifications, or focus on part of the total
problem, such as detecting units only. In our work we focus on datasets with a
high degree of ambiguity and attempt to detect quantities and units (including
compound units).

The main contribution of our work is to show how ontology-based disam-
biguation can be used succesfully in several ways. Firstly, ambiguous quantity
and unit symbols can be disambiguated by checking which of the candidate
units/quantities are explicitly related to each other in the ontology. Secondly,
ambiguous unit symbols may refer to units in specific application areas (e.g.
nautical mile) or generic ones (meter). Some concepts act as indicators for a
particular area (e.g. the unit nautical mile for “shipping”). After the area is
identified by the presence or absence of indicators, we can disambiguate unit
symbols. Thirdly, ambiguous compound unit expressions such as g/l can refer
to gram per liter or gauss per liter. Only the former makes sense, as the ontology
allows to derive that it refers to the quantity density, while the latter matches
no known quantity. We show the benefits of ontology-based disambiguation by
measuring precision and recall on two datasets and comparing with the perfor-
mance achieved without these techniques. The datasets concerned are: (1) tables
from the Top Institute Food and Nutrition; and (2) diverse scientific/academic
tables downloaded from the Web.

The structure of this paper is as follows. We first present a detailed description
of the problem, followed by related work (Sections 2] and Bl). In Section [ the
datasets and ontology used in our experiment are described. Our approach is
given in Section Bl which we evaluate in Section[6l We conclude with a discussion
in Section [7
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2 Problem Description

Correct annotation of documents is faced with similar problems across many
domains, including homonymy (a cause of low precision) and synonymy (a cause
of low recall if the synonym is not known to the system). Below we discuss in
what way these problems play a role in this domain.

Homonymy is caused in several ways. Firstly, it is not known beforehand
whether cells contain a quantity (e.g. frequency), a unit (e.g. hertz), or both (e.g.
f (Hz)). Secondly, homonymous symbols such as f are used, which can refer to
quantities (frequency, force), units (farad) and prefixes (femto). The cell ms-1
might stand for either reciprocal millisecond or for meter per second (in the latter
case m and s-1 should have been separated by a multiplication sign or space).
This problem is aggravated because people often do not use official casing (e.g.
f for force instead of the official F).

There are several types of synonymy involved in this domain: partial names
(current for electric current), abbreviations (e.g. freq, Deg. C), plural forms (meters)
and contractions (ms-1 instead of the correct form m s-1 for meter per second).
Another type of synonym occurs when a quantity is prefixed with a term that de-
scribes the situation in more detail (“finalDiameter”, “start time”, “mouthTem-
perature”). People also use colloquial names for quantities which overlap with
other quantity names (i.e. confuse them). Two examples are weight (kg) and speed
(1/s). The former should be mass (weight is measured in newton), the latter should
be frequency.

A problem that is specific to this domain is the correct detection of compound
units. The system has to detect the right compound unit instead of returning
the units of which the unit is composed. For example, it should detect that km/h
means kilometer per hour, instead of returning the units kilometer and hour sep-
arately (these should be counted as wrong results). This problem is aggravated
by the fact that the number of compound units is virtually unlimited. For ex-
ample, the quantity speed can be expressed in km/h, mm/picosecond, mile/year,
etcetera. It is impractical to list them explicitly in an ontology. The interpreta-
tion of compound expressions is also difficult because of homonymy: g/ might
stand for gram per liter or gauss per liter. The annotation process must somehow
detect that gram per liter is the right compound unit (gauss per liter is not
used), without gram per liter being present in the ontology. Returning gram,
gauss and liter means returning three wrong results.

For correct detection of compound expressions, syntactic variations have to be
taken into account (multiplication signs, brackets, etcetera). Compound expres-
sions are also sometimes combined with substances, e.g. Conc. (g sugar/| water).
Taken together this means a flexible matching process is needed instead of a
strict grammar parser.

Particular to this domain is also that people tend to write down a quantity
that is too generic or specific for the situation. For example, velocity (m/s) is
too specific if the table contains scalar values only. The quantity velocity is only
appropriate when a vector or a direction is indicated (e.g. “180 km/h north”).
The other way around, the cell viscosity (stokes) should not be annotated with
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viscosity. The specific quantity kinematic viscosity (measured in stokes), is more
precise. These “underspecifications” need to be corrected before successful data
integration can take place.

3 Related Work

Annotation systems for quantitative data. As far as we know there are two
existing systems that focus on automated annotation of tables with quantities
and units. The system of [7] annotates table headers with both quantities and
units, focusing on the biological domain (it contains generic physical quantities
such as temperature and domain-specific ones such as colony count). The names
and symbols are matched against their own ontology of 18 quantities with their
associated unit symbols. Table headers and labels in the ontology are first lem-
matized, turned into a vector space model, and compared using cosine similarity.
Weights for terms are fixed beforehand: tokens that appear in the ontology get
a weight of 1, stopwords and single letter tokens get weight zero. The advantage
of this technique is that the order of tokens within terms is not important, so
that “celsius temperature” matches “temperature celsius”. This technique does
not take abbreviations and spelling errors into account (e.g. “temp cels” will not
match).

[1] present a system based on GATE/ANNIE for annotating measurements
found in patent specifications (natural language documents). Symbols found
in the documents are first tagged as possible unit matches using a flat listd.
Domain-specific pattern matching rules then disambiguate the results, using the
actual text plus detected types as input. For example, if a number is followed by
letter(s) that match a unit symbol (e.g. 100 g), then the letter(s) are classified
as a unit. It uses a similar rule to detect that 40-50mph refers to a range of
numbers. Thirty of such rules were defined using the JAPE pattern language,
but these cannot be inspected because the work is not open source. As far as we
can tell no use is made of features of an ontology.

Both systems make simplifications. [I] only aim to identify units, not quan-
tities. No techniques are provided to deal with homonymy and synonymy of
unit symbols. The matching step is based on a list of units that does not con-
tain homonymous symbols (e.g. uses “Gs” for gauss instead of the official “G”;
fahrenheit has symbol “degF”). Matching using this list will miss correct matches
(e.g. when “g” is used to refer to gauss).

Simplifications made by [7] include that they assume that quantities are only
written with their full name, and units only written with their symbol. Both
system’s high performance (over 90% F-measure) are not likely to be reached
on ambiguous data as found in repositories of research results. We conclude
that existing systems do not sufficiently target the homonymy and synonymy
problems. In the remainder of this section we discuss techniques used in other
domains that may help solve these.

! Obtained from http://www.gnu.org/software/units/
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Scoring functions. A usual technique for filtering out false positives and dis-
ambiguating between alternative candidates is to provide a scoring function and
a threshold. The candidate with the highest score is accepted (if it scores above
the threshold). We give two examples of scoring functions found in literature.

Firstly, the similarity of the whole document being annotated can be com-
pared to already correctly annotated documents. Their vector representations
are compared using cosine similarity. [5] uses this technique to disambiguate
matches for the same text fragment, and to find matches missed earlier in the
process (in the BioCreative effort where genes are detected in medical texts;
a task similar to ours). Unfortunately, the “documents” in our domain usually
contain little content (in natural language) to compare. Often there is no more
information available beyond the text in the header row, which is already am-
biguous itself. Secondly, an example of a scoring function specific to our domain
is proposed by [7]. They observe that sometimes the data cells in a column con-
tain units and can be used as evidence to disambiguate the column’s quantity.
Their function is composed of (1) cosine similarity of quantity to column header;
and (2) average cosine similarity of units in that column to the quantity’s units.
Cosine similarity is computed on a vector representation of the terms; terms
are first lemmatized. This function only works if the data cells in the column
contains units, which is relatively rare in our datasets.

Ontology-based filtering and disambiguation. A useful ontology-based scor-

ing technique is to use concepts related to the candidate concept. If these related

concepts are detected in the text near to the candidate concept, this increases

the likelihood that a candidate is correct. [5] implemented this technique so that

the candidate genes for string “P54” are disambiguated by comparing the gene’s

species, chromosomal location and biological process against occurrences of species,
location and process in the text surrounding “P54”. We implement this technique

for our domain through the relationship between units and their quantity listed in

our ontology.

[7] use the value range of units stored in the ontology to filter out false pos-
itives. They look up the data values (numbers) in the column. If the values lie
outside the unit’s value range, the candidate is removed. This works on their
data set and quantities, but this is not likely to work for large quantitative on-
tologies and varied datasets. For example, a temperature value of “-20” can only
rule out the unit kelvin (its scale starts from 0), but leaves celsius and fahrenheit
as possible interpretations. In case we are dealing with a relative temperature,
then “-20” can even not strike kelvin from the list of candidates. Celsius and
fahrenheit can only be disambiguated by a few actual values, which are unlikely
to appear in actual measurements.

None of the techniques mentioned above addresses the problem of ambigous
compound concepts (e.g. m/s might refer to meter per second or mile per siemens).
We developed a solution that uses an ontology to determine whether the units
together express a quantity that is defined in the ontology.
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4 Materials

The data, annotator instructions, gold standard and ontology used in our eval-
uation are available onlindd. We start by giving a more detailed description of
the problem.

4.1 Datasets

We use two datasets to develop and validate our approach. The first set is ob-
tained from a data repository of researchers at the Dutch Top Institute Food
and Nutrition

The second dataset was collected from the Web, especially from .edu, and .org
sites and sites of scientific/academic organizations. The files were found through
Google by querying for combinations of quantity names and unit symbols and
filtering on Excel files, such as in “speed (m/s)” filetype:xls”. Topics include:
chemical properties of elements, throughput of rivers, break times and energy
usage of motor cycles, length and weight of test persons.

Our datasets can be considered a “worst-case scenario”. The dataset of [7] is
simpler in that (1) quantities are always written in their full name and units with
symbols only; (2) no abbreviations or misspellings occur; (3) no compound units
appear; and (4) both data and ontology contain no ambiguous unit symbols. The
dataset used by [I] may be simpler because the documents (patent specifications)
are intended to be precise.

We make the assumption, like [7] and [I], that the header rows have already
been identified and separated from the content rows. We have effectuated this
assumption by deleting cells that do not belong to the table header from the
Excel files used in our experiment.

4.2 Ontology

We use an ontology we developed, the Ontology of Units of Measure and related
concepts (OUM) in the annotation process [I1]. OUM’s main classes are Quantity,
Unit of Measure, Dimension and Application Area. (see Figure [I for an overview).
OUM currently consists of approximately 450 quantities and about 1,000 units.
Concepts have English labels, an extension in Dutch is under development.

For each quantity the units in which it can be expressed are listed. For ex-
ample, speed can be expressed in (amongst others) km/s and mm/s. Each unit
belongs to one or more quantities. OUM groups similar quantities into classes.
For example, Kinetic energy and Heat are subclasses of Energy.

Units can be split into singular units, multiples and submultiples, and com-
pound units. Singular units (units with a special name) such as meter can be pre-
fixed to create so-called multiples and submultiples (e.g. kilometer, millimeter).

2 Seehttp://www.cs.vu.nl/~mark/iswc2010/. The food dataset was not included as
it is commercially sensitive data.
3http://www.tifn.nl
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Fig. 1. UML diagram of main OUM classes and properties

Compound units are constructed by multiplying, dividing, or exponentiating
units (e.g. m/s?). Unit multiplications are linked to their constituent units
through the properties term1 and term2, unit divisions are linked to their con-
stituents through numerator and denominator.

Because units can be prefixed and composed, the number of possible units is
almost endless. For example, units for the quantity velocity may be a combination
of any unit for length (e.g. kilometer, centimeter, nordic mile) and any unit for
time (hour, picosecond, sidereal year, etcetera). For practical reasons OUM only
lists the more common combinations, but the analysis of what is “common”
has not been finalised yet. As a consequence, for specific application areas some
compound units may be missing. Each quantity or unit has one full name and
one or more symbols. Each full name is unique, but words in the name can
overlap (e.g. “magnetic field intensity”, “luminous intensity”).

Humans regulary confuse some quantities with each other (e.g. weight and
mass). Our ontology records the concepts and their definitions as they are pre-
scribed in standards, but for automated annotation it is useful to know which
terms people use to denote these concepts. This dichotomy is well-known in the
vocabulary world, and reflected in the SKOS standard through the skos:hidden-
Label property@. It is used to record labels not meant for display but useful in
searching. We introduce a property confused with (subproperty of skos:hiddenLabel).
By attaching the label “weight” to mass our annotation system will be able to
generate mass as a candidate. In the same vein we introduce colloquial abbreviation
to denote often used abbreviations as “temp” and “freq” for temperature and
frequency. Less than ten of such abbreviations and confusions are currently
included.

4http://www.w3.org/TR/2009/NOTE- skos-primer-20090818/#sechidden
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Quantities and units are sometimes used primarily in a particular application
area. OUM specifies generic application areas, such as space and time (contains
units such as mile and second). OUM also contains specific areas like shipping
(contains nautical mile) and astronomy (contains sidereal second).

Quantities and units have dimensions, which are abstractions of quantities ig-
noring magnitude, sign and direction aspects. Analysis of dimensions is common
practice in science and engineering [2]. It allows for example to detect errors
in equations and to construct mathematical models of e.g. aircraft. OUM lists
all dimensions which occur in practice, which can be used in disambiguation of
compound units (see Section [5.4]). The dimension of a quantity or unit can be
viewed as a vector in a space spanned by an independent set of base vectors (i.e.
base dimensions). For example, the quantity speed has a dimension that can be
decomposed into base dimension length and base dimension time (with certain
magnitudes as we show below). In principle we could also have expressed time in
terms of base dimensions distance and speed. Each system of units used defines
such a set of base dimensions to span the dimensional space. Each other dimen-
sion can be expressed as a combination of these base dimensions, each with a
certain magnitude.

For example, the SI system of units has selected as its base dimensions
length (L), mass (M), time (T), electric current (I), thermodynamic tempera-
ture (©), amount of substance (N) and luminous intensity (J). Since all other
dimensions can be computed by multiplication and division of one or more of
these base dimensions, an arbitrary dimension can be expressed as multipli-
cation LOMPTYI°@°NCJ". If an exponent is 0, the respective basic quantity
does not play a role. For example, the quantity velocity and unit cm/hr have
SI-dimension L'M°T~1°@°NYJO, which is equivalent to L'7~! or length per
time. A quantity or unit with a dimension for which all powers are 0 is said to
be dimensionless. It is typically obtained as a ratio between quantities of equal
dimension, such as strain or Reynolds number, and expressed as for example
fractions or percentages.

5 Approach

We have divided the annotation process into the following steps: (0) table ex-
traction; (1) tokenization; (2) basic matching; (3) matching compounds listed in
OUM; (4) matching unknown compounds using dimensional analysis; (5) disam-
biguation. We do not treat the extraction step here; its output is a list of cells
and their contents. Our main assumption is that the identification of the header
row(s) has already been done.

5.1 Tokenization

The string value of a cell is separated into tokens by first splitting on spaces,
underscores (“start time”) and punctuation marks (brackets, dots, stars, etc.).
Number-letter combinations such as “100g” are separated, as are camel-cased
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tokens (“StartTime”). Basic classification of tokens into numbers, punctuation,
and words is performed. Punctuation tokens that may represent multiplication
(period, stars, dots), and division (slash) are also typed. Two other token types
are detected: stopwords and a list of “modifiers” that are particular to this
domain (e.g. mean, total, expected, estimated).

5.2 Basic Matching: Full Names and Symbols

Before matching takes place we generate several synonyms: plural forms of units
(e.g. “meters”), contractions of compound unit symbols (e.g. “Pas” for pascal
second), some alternative spellings (e.g. “C” for °C, s-1 vs. s"-1 vs. 1/s for recip-
rocal units, s*2 vs. s2 for exponentiated units). Because these can be generated
systematically this is easier than adding them to the ontology.

Matching starts by comparing the input to full names of quantities and units,
including confused with and colloquial abbreviations. The match with the highest
score above a threshold is selected. We have used a string distance metric to
overcome spelling mistakes, called Jaro-Winkler-TFIDF [3].

After full name matching is completed, a second matcher finds matches be-
tween input tokens and quantities/units based on their symbols, e.g. “f”, “km”,
“s”). This is a simple exact match that ignores case. The outcome of this step
will contain many ambiguous matches, especially for short unit and quantity
symbols.

5.3 Matching: Compounds in OUM

The matches obtained in the basic matching in some cases represent compound
units that are listed in OUM. For example, the previous step will return for the
cell C.m the matches calorie, coulomb, meter, nautical mile. We detect that this
is the compound coulomb meter by detecting that some of the unit matches are
constituents of a compound listed in OUM. Comparison to a unit multiplication
uses the properties term1 and term2, for comparing to unit division the properties
numerator and denominator. In the latter case the additional constraint is that
units have to appear in the input in the order prescribed (first numerator, then
denominator). The punctuation used in the input determines whether we are
dealing with a multiplication or a division. Notice that this step already helps to
disambiguate matches; in this case calorie and nautical mile could be excluded.

A special case are compounds consisting of (sub)multiple units, e.g. uNm
which stands for micronewton meter. Because OUM only lists newton meter, we
have to first detect the prefix (in this case u, other prefixes include m, M, k, T),
remove it and then perform the compound check described above.

5.4 Matching: Compounds Not in OUM

The previous step will miss compound units not listed in OUM. If the unit sym-
bols in the compound are not ambiguous, we can assume that this interpretation
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is correct. However, in many cases the symbols are ambiguous. For example, g/I
can either denote gauss per liter or gram per liter. A way to disambiguate is to find
out if the compound expresses a quantity that is listed in OUM. The quantity
implied by the compound can be computed using the dimensional properties of
the units (also listed in OUM).

The first step is to compute the overall dimension of the compound based on
the individual units, the second step is to check whether a quantity with that
dimension exists in OUM. Computing dimensions is a matter of subtracting
the dimension exponents of the underlying elementary dimensions. Each unit
is associated with an instance of Dimension, which in turn lists the dimension
exponents through the properties Sl length exponent, S| time exponent, etcetera. If,
for example, we interpret g/l as gram per liter, we retrieve the units’ dimen-
sions (mass-dimension and volume-dimension, respectively). Then we divide the
dimensional exponents of mass LOMT°1°0° N0 J9 by the dimensional exponents
of volume L3MOT 160N JO which gives L2 M'T~1°@° N°.J° These dimen-
sional exponents match exactly with the dimensions of the quantity density. On
the other hand, viewing g as gauss would yield L=3MT~2[-1@°N%J° for the
dimension of the compound unit, which does not correspond to the dimension
of any quantity in OUM.

This step is implemented by normalizing the input string, constructing a tree
representation of the compound through a grammar parser, assigning the units to
it, and sending it to a service that calculates the implied dimension components.

An interesting option in the future is to automatically enrich OUM with new
compounds that pass the above test, and add them to OUM. This would be a
valid way to continuously extend the set of compound units in OUM, not in
an arbitrary manner, but learning from actual occurrences in practice. If we
combine this with monitoring which compound units are never used in practice
(but were added for theoretical reasons or just arbitrarily), a reliable mechanism
for maintaining a relevant set of compound units in OUM would be created.

5.5 Disambiguation

The previous step will still contain ambiguous matches, e.g. for the cells f (Hz)
and wght in g. We have developed a set of heuristics or “rules” to remove the
remaining ambiguitiesﬁ First we list domain-specific pattern matching rules in
the style of [I], then three disambiguation rules that make use of relations in the
ontology (rules [7 B and [@).

Rule 1: SYMBOLS IN BRACKETS USUALLY REFER TO UNITS. For example, “s” in
delay (s) refers to second and not area or entropy.

Rule 2: PREFER SINGULAR UNITS OVER (SUB)MULTIPLES. Symbols for singular
units (e.g. pascal (Pa)) overlap with symbols for (sub)multiples (e.g. picoampere
(pA)). In these cases, select the singular unit because it is more likely.

® Formulated as “rules” for reading convenience, but both the rules and previous
“steps” can be implemented differently.
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Rule 3: A SsYMBOL THAT FOLLOWS A NUMBER USUALLY REFERS TO A UNIT. For
example, 100 g refers to gram. This disambiguation deletes six potential quantity
matches for “g”, and retains units gram and gauss. (Rule also used by [I].)

Rule 4: TAKE LETTER CASE INTO ACCOUNT FOR LONGER SYMBOLS. People are
sloppy in the correct letter case of symbols. One-letter symbols such as “t” may
stand for temperature (T) or tonne (t). Two-letter symbols as “Km” may stand
for kilometer (km) or maximum spectral luminous efficacy (Km). Casing used in
the text cannot be trusted to disambiguate; the context usually does make clear
which is meant. However, casing used in writing down units of three or more
letters is usually reliable. For example, (sub)multiples such as mPa and MPa
(milli/megapascal) are usually written correctly. Humans pay more attention to
submultiples because errors are hard to disambiguate for humans too. We thus
perform disambiguation based on case if the symbol is three letters or longer.

Rule 5: MODIFIER WORDS USUALLY APPEAR BEFORE QUANTITIES, NOT UNITS. For
example, mean t or avg t is an indication that “t” stands for the quantity Time
instead of the unit tonne. The idea of using specific types of tokens to improve
correct concept detection is due to [6] in the gene annotation domain.

Rule 6: Too MANY SYMBOL MATCHES IMPLIES IT IS NOT A QUANTITY OR UNIT. If
previous steps were not able to disambiguate a symbol that has many candidate
matches (e.g. “g” can match ten quantities and units), then the symbol prob-
ably does not refer to a quantity or unit at all (it might be a variable or e.g.
part of the code of product). For such an ambiguous symbol, humans usually
provide disambiguating information, such as the quantity. We therefore delete
such matches. This rule can hurt recall, but has a greater potential to improve
precision which will pay off in the F-measure. This rule should be executed after

all other rules.

Rule 7: SYMBOLS THAT REFER TO RELATED QUANTITIES AND UNITS ARE MORE LIKELY
THAN UNRELATED QUANTITIES AND UNITS. For example, T (C) is more likely to refer
to temperature and celsius than to time and coulomb. The former pair is connected
in OUM through property unit of measure (domain/range Quantity/Unit), while
the latter pair is not. We filter out the second pair of matches. We first apply
this rule on quantities and units in the same cell. This rule also allows to select
the quantity mass for cell weight (g) instead of the erroneous weight. Mass was
found in basic matching through its confused with label. We repeat application of
the rule on the whole table after application on single cells. A quantity mentioned
in one cell (e.g. mass) can thus be used to disambiguate cells where the quantity
was omitted (e.g. containing only “g”). During application of this rule we prefer
matches on preferred symbols over matches on non-preferred (“alternative”)
symbols. For example, cell Length (m) matches length-meter (meter has symbol
“m”) which we prefer over length-nautical mile (mile has alternative symbol “m”).
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Rule 8: CHOOSE THE MOST SPECIFIC QUANTITY THAT MATCHES THE EVIDENCE.
Generic quantities such as Viscosity and Temperature have specific instances such
as kinematic viscosity and celsius temperature. The user may have meant the spe-
cific quantity. If a unit is given, this can be disambiguated. For example, viscosity
expressed in stokes means that kinematic viscosity was meant. When poise is used,
dynamic viscosity was meant. In other cases, the units of the specific quantities
overlap, so that the proper quantity cannot be determined (e.g. diameter and
radius are forms of Length measured in units such as meter.

Rule 9: CHOOSE THE INTERPRETATION BASED ON THE MOST LIKELY APPLICATION
AREA. Symbols such as “m” can refer to units from a generic application area
or a specific application area (e.g. nautical mile in shipping or meter in space and
time). If there is evidence that the table contains measurements in a specific area
then all ambiguous units can be interpreted as a unit used in that area, instead
of those in more generic areas. If there is no such evidence, the unit from the
generic area is more likely. As evidence that the observations concern a specific
area we currently accept that the table contains at least one unambiguous unit
that is particular to that area (i.e. written in its full name). Other types of
evidence can be taken into account in the future (e.g. column name “distance to
star”).

5.6 Implementation

We developed a prototype implementation of our annotation approach in Java. It
provides a simple framework to implement matchers and disambiguation rules.
Our matchers and disambiguation rules can probably also be implemented as
JAPE rules on top of GATE; this is future work.

The Excel extractor uses the Apache POI libraryﬁ. The prototype can emit
the parsed and annotated tables as RDF files or as CSV files. For representing
and manipulating the OUM ontology and the output as objects in Java we used
the Elmo frameworK] with Sesame as RDF backend. For string metrics we use
the SecondStringE library developed by Cohen et al. The parser for compound
units was built using YACC.

6 Evaluation and Analysis

6.1 Evaluation Type and Data Selection

We evaluate our approach by measuring recall and precision against a gold stan-
dard for two datasets. We could not measure the performance of our system on
the data of [I] because it is not publicly available. Comparison against the data
of [7] is not useful as they identify only a few (unambiguous) quantities and
units.

Shttp://poi.apache.org/
" http://www.openrdf .org/doc/elmo/1.5/
8 http://secondstring.sourceforge.net/
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The tables were selected as follows. We randomly selected files from the food
dataset and removed those that were unsuitable for our experiment because they
were (1) written in Dutch; or (2) contained no physical quantities/units; or (3)
had the same header as an already selected file (this occurs because measuring
machines are used that produce the same table header each time). We kept
selecting until we obtained 39 files. Selection of 48 Web tables was also random;
no tables had to be removed.

The number of correctly and wrongly assigned URIs is counted on a per-
document basis, by comparing the set of URIs returned by the system with the
set of URIs of the human, ignoring the cell in which they were found. Based on
the total number of correct/wrong/retrieved URIs, the macro-averaged precision
and reéall is calculated (each correct/wrong URI contributes evenly to the total
score)

6.2 Gold Standard Creation

The files were divided over three annotators (the authors). They used an Excel
add-in [11] developed in earlier work that allows selection of concepts from OUM.
Each cell could be annotated with zero or one quantity, and zero or one unit.
The annotators were incouraged to use all knowledge they could deduce from the
table in creating annotations. If the exact quantity was not available in OUM,
a more generic quantity was selected. For example, the cell half-life (denoting
the quantity for substance decay) was annotated with Time. After that, each file
was checked on consistency by one of the authors.

Compound units that do not appear in OUM can not be annotated by assign-
ing a URI to them (simply because they have no URI in OUM). They were put
in a separate result file and were compared by hand.

6.3 Results

We have tested different configurations (Table[I]). Firstly, a baseline system that
only detects exact matches, including our strategies to enhance recall such as con-
traction of symbols and generation of plural forms (comparable to [7]’s system).
Secondly, with flexible string matching turned on. Thirdly, with pattern disam-
biguation rules turned on (rules[IHd); this may be comparable to the GATE-based
system [I]. We cannot be certain because their system is not open source. This
indicated what can be achieved with pattern matching only. Fourthly, with also
compound detection and ontology-based rules turned on (rules 73] .

The following points are of interest. Firstly, the baseline scores show that the
extent of the ambiguity problem is different for quantities and units. Performance

9 A comparison per cell would introduce a bias towards frequently occurring quanti-
ties/units, which either rewards or punishes the system for getting those frequent
cases right. Micro-averaging calculates precision/recall for each document and takes
the mean over all documents. A single annotation may contribute more or less to
the total precision or recall, depending on whether it appears in a document with
little or a lot of annotations.



Converting and Annotating Quantitative Data Tables 29

for quantities is not high (F-measure ranging from 0.09 to 0.20), while F-measure
for units is already reasonable (around 0.40). It turns out that the datasets in
our experiment relatively often use non-ambigous unit symbols, including “N”
for newton and “sec” for second. Secondly, flexible string matching does not help
to increase recall (threshold 0.90 was used but no clear increase was seen at
0.85 either). The results of the remaining two configurations are obtained with
flexible matching turned off. Thirdly, pattern matching rules help considerable,
improving F-measure with 0.15-0.60. Fourthly, ontology-based disambiguation
increases the F-measure further for units: 0.16-0.25. The results for quantities
are mixed: 0.07 increase in the Food dataset, no difference in the Web dataset.
Fifthly, in the Web dataset unit scores are higher than quantity scores, and the
other way around in the Food dataset.

Table 1. Results of evaluation. Separate precision (P), recall (R) and F-measure (F)
are given for both datasets, based on macro-averaging. Best F-measures are in bold.

Food Web
Quantities Units Quantities Units
P R F P R F P R F P R F
baseline 0.11 0.84 0.20 0.30 0.61 0.40 0.05 0.70 0.09 0.29 0.61 0.40
flex. match 0.11 0.84 0.20 0.29 0.61 0.39 0.05 0.72 0.09 0.28 0.61 0.39
pat. rules 0.78 0.82 0.80 0.50 0.57 0.53 0.63 0.64 0.63 0.50 0.57 0.53
full 0.83 0.93 0.87 0.72 0.83 0.78 0.59 0.67 0.63 0.63 0.76 0.69

6.4 Qualitative Analysis

We analyzed the causes for false positives and false negatives in the results. The
following should be highlighted. Firstly, the performance of the pattern rules is
not improved upon as much as we had expected in the case of quantities. One
explanation is that many of the symbols in the input did not represent a quantity,
and the pattern rules successfully filter these false positives out through rule [6l
In the future we will try our method on more varied datasets to determine if
this effect is consistent or not.

Secondly, some quantities are simply missing in OUM, such as half life and
resonance energy. The annotators used the more generic quantity (time and molar
energy) to annotate the cells where they appear. The generic quantities are not
not found because there is no lexical overlap. This can be solved by adding them
or importing them from another ontology. Thirdly, a number of quantities is
not found because they are not mentioned explicitly, but implied. For example,
letters X and Y are used to indicate a coordinate system, and thus imply length.
Failing to detect the quantity also causes loss of precision in unit detection:
the quantity would help to disambiguate the units through rule [l These issues
points to the importance of a high-coverage ontology.

Fourthly, another cause for missed quantities is that the object being measured
is stated, which together with the unit implies the quantity. For example, the
cell Stock (g), refers to quantity mass as the word “stock” implies a food product
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(stock is a basis for making soup). This can be solved by using more ontologies in
the matching step, and link concepts from those ontologies to OUM. For example,
a class Food product could be linked to quantities that are usually measured on
food products such as mass. Because field strength is not one of those quantities,
the erroneous match gauss could be removed.

Fifthly, some of the problems are difficult to solve as very case-specific back-
ground knowledge would be required. For example, cells Lung (L) and Lung (R)
produce false positive matches such as rontgen and liter and can only be solved
with knowledge on human fysiology.

Lastly, analysis of the detection of compounds not in OUM shows that this
step performed well at recognizing unit divisions (kilojoule per mole, newton per
square millimeter). However, its performance is degraded considerably by false
positives such as dP for decapoise and V c for volt coulomb.

7 Discussion

In this paper we have studied annotation of quantitative research data stored
in tables. This is relevant to today’s world because scientists, companies and
governments are accumulating large amounts of data, but these datasets are
not semantically annotated. We presented several ways in which an ontology
can help solve the ambiguity problems: (1) detection of compound units present
in the ontology; (2) dimensional analysis to correctly interpret compound units
not explicitly listed in the ontology; (3) identification of application areas to
disambiguate units; and (4) identification of quantity-unit pairs to disambiguate
them both. Especially the performance for unit detection is good. This is positive,
as correct unit detection is more important than correct quantity detection: the
quantity can be derived from the unit using the ontology. For example, time can
be derived from millisecond. Even when the right specific quantity is not known
(e.g. half-life), the more generic quantity that could be derived is a suitable
starting point for data integration. For example, to integrate two datasets about
the half-life of elements it is sufficient to know that columns are being merged
that deal with time (if the units are not the same they can be automatically
converted into each other).

However, performance is still far from perfect. We have suggested several ways
in which performance may be improved, of which linking ontologies about the
objects being measured is an attractive one. One promising line of future work
is the application of machine learning (ML) techniques to the disambiguation
problem. However, this is not straightforward since our domain lacks the typ-
ical features that ML approaches rely on, e.g. those based on the surrounding
natural language text. We do see possibilities to use the properties of the can-
didate concepts as features and thus combine our rule-based approach with a
machine learning approach — as e.g. proposed by [10]. This would require a larger
annotated dataset to serve as training and test set.

An implication of this work for the Web of Data is that conversion tools
need to be tuned to the domain at hand. Current tools target sources that are
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already structured to a large extent, but if the Web of Data is to grow, more
unstructured sources should be targeted. The work of [9] already suggests to
include an annotation system into a conversion tool, but the annotation system
is generic. As shown a generic system will fail to capture the semantics of this
domain. A system that can be configured for the domain is required.
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Abstract. Analysing the performance of OWL reasoners on expressive
OWL ontologies is an ongoing challenge. In this paper, we present a new
approach to performance analysis based on justifications for entailments
of OWL ontologies. Justifications are minimal subsets of an ontology that
are sufficient for an entailment to hold, and are commonly used to debug
OWL ontologies. In JustBench, justifications form the key unit of test,
which means that individual justifications are tested for correctness and
reasoner performance instead of entire ontologies or random subsets. Jus-
tifications are generally small and relatively easy to analyse, which makes
them very suitable for transparent analytic micro-benchmarks. Further-
more, the JustBench approach also allows us to isolate reasoner errors
and inconsistent behaviour. We present the results of initial experiments
using JustBench with FaCT++, HermiT, and Pellet. Finally, we show
how JustBench can be used by reasoner developers and ontology engi-
neers seeking to understand and improve the performance characteristics
of reasoners and ontologies.

1 Introduction

The Web Ontology Language (OWL) notoriously has very bad worse case com-
plexity for key inference problems, at least, OWL Lite (EXPTIME-complete
for satisfiability), OWL DL 1 & 2 (NEXPTIME-complete), and OWL Full (un-
decidable) (see [5] for an overview). While there are several highly optimised
reasoners (FaCT++4, HermiT, KAON2, Pellet, and Racer) for the NEXPTIME
logics, it remains the case that it is frustratingly easy for ontology developers
to get unacceptable or unpredictable performance from them on their ontolo-
gies. Reasoner developers continually tune their reasoners to user needs in order
to remain competitive with other reasoners. However, communication between
reasoner developers and users is tricky and, especially on the user side, often
mystifying and unsatisfying.

Practical OWL DL reasoners are significantly complex pieces of software, even
just considering the core satisfiability testing engine. The basic calculi underlying
them are daunting given that they involve over a dozen inference rules with com-
plex conditions to ensure termination. Add in the extensive set of optimisations

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 32-47, 2010.
© Springer-Verlag Berlin Heidelberg 2010
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and it is quite difficult for non-active reasoner developers to have a reasonable
mental model of the behaviour of reasoners. Middleware issues introduce ad-
ditional layers of complexity ranging from further optimisations (for example,
classification vs. isolated subsumption tests) to the surprising effects of different
parsers on system performance.

In this paper, we present a new approach to analysing the behaviour of rea-
soners by focusing on justifications of entailments. Justifications—minimal en-
tailing subsets of an ontology—already play a key role in debugging unwanted
entailments, and thus are reasonably familiar to users. They are small and clearly
defined subsets of the ontology that can be analysed manually if necessary, which
reduces user effort when attempting to understand the source of an error in the
ontology or unwanted reasoner behaviour. We present results from analysing six
ontologies and three reasoners and argue that justifications provide a reasonable
starting point for developing empirically-driven analytical micro-benchmarks.

2 Reasoner Behaviour Analysis

2.1 Approaches to Understanding Reasoner Behaviour

Consider five approaches to understanding the behaviour of reasoners on a given
ontology, especially by ontology modellers:

1. Training. In addition to the challenges of promulgating detailed under-
standing of the performance implications of the suite of calculi and asso-
ciated optimisations (remembering that new calculi or variants thereof are
cropping up all the time), it is unrealistic to expect even sophisticated users
to master the engineering issues in particular implementations. Furthermore,
it is not clear that the requisite knowledge is available to be disseminated:
New ontologies easily raise new performance issues which require substantial
fundamental research to resolve.

2. Tractable logics. In recent years, there has been a renaissance in the field
of tractable description logics which is reflected in the recent set of tractable
OWL 2 proﬁles These logics tend to not only have good worst case be-
haviour but to be “robust” in their performance profile especially with re-
gard to scalability. While a reasonable choice for many applications, they
gain their performance benefits by sacrificing expressivity which might be
required.

3. Approximation. Another approach is to give up on soundness or complete-
ness when one or the other is not strictly required by an application, or, in
general, when some result is better than nothing. Approximation [T7J3JI6]
can either be external (e.g., a tool which takes as input an OWL DL ontology
and produces an approximate OWL EL ontology) or internal (e.g., anytime
computation or more sophisticated profile approximation). A notable diffi-
culty of approximation approaches is that they require more sophistication

! http://www.w3.org/TR/2009/REC-owl2-profiles-20091027
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on the part of users and sophistication of a new kind. In particular, they
need to understand the semantic implications of the approximation. For ex-
ample, it would be quite simple to make existing reasoners return partial
results for classification—classification is inherently anytime. But then users
must recognise that the absence of an entailment no longer reliably indicates
non-entailment. In certain Uls (such as the ubiquitous tree representations),
it is difficult to represent this additional state.

4. Fixed rules of thumb. These may occur as a variant or result of training or
be embodied in so-called “lint” tools [I2]. The latter is to be much preferred
as such tools can evolve as reasoners do, whereas “folk knowledge” often
changes slowly or promulgates misunderstanding. For example, the rules of
thumb “inverses are hard” and “open world negation is less efficient than
negation as failure’® do not help a user determine which (if either) is causing
problems in their particular ontology/reasoner combination. This leads users
to start ripping out axioms with the “dangerous” constructs in them which,
e.g., for negation in the form of disjointness axioms, may in fact make things
worse. Lint tools fare better in this case but do not support exploration of
the behaviour of a reasoner/ontology combination, especially when one or
the other does not fall under the lint tools coverage. Finally, rules of thumb
lead to manual approximation which can distort modelling.

5. Analytical tools. The major families of analytical tools are profilers and
benchmarks. Obviously, one can use standard software profilers to analyse
reasoner/ontology behaviour, and since many current reasoners are open
source, one can do quite well here. This, however, requires a level of sophis-
tication with programming and specific code bases that is unreasonable to
demand of most users. While there has been some work on OWL specific
profilers [19], there are none, to our knowledge, under active development.
Benchmarks, additionally, provide a common target for reasoner develop-
ers to work for, hopefully leading to convergence in behaviour. On the flip
side, benchmarks cannot cover all cases and excessive “benchmark tuning”
can inflate reasoner performance with respect to the benchmarks without
improving general behaviour in real cases.

2.2 Benchmarks

Application and Analytical Benchmarks. For our current purposes, a
benchmark is simply a reasoning problem, typically consisting of an ontology
and an associated entailment. A benchmark suite, although often called a bench-
mark or benchmarks, is a set of benchmarks.

We can distinguish benchmark suites by three characteristics: their focus,
their realism, and their method of generation. With regard to focus, the classic
distinction is between analytical benchmarks and application benchmarks.

Analytical benchmarks attempt to determine the presence or absence of cer-
tain performance related features, e.g., the presence of a query optimiser in a

2 This latter rule of thumb is actually false in general. Non-monotonic features gen-
erally increase worst case complexity, often quite significantly.
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relational database can be detectedd by testing a query written in sub-optimal
form. More generally, they attempt to isolate particular behaviours of the system
being analysed.

Application benchmarks attempt to predict the behaviour of a system on cer-
tain classes of application by testing an example (or select examples) of that
class. The simplest form of an application benchmarking is retrospective record-
ing of the behaviour of the application on the system in question in real deploy-
ment (i.e., performance measurement). Analytical benchmarks aim to provide
a more precise understanding of the tested system, but that precision may not
help predict how the system will perform in production. After all, an analyti-
cal benchmark does not say which part of the system will be stressed by any
given application. Application benchmarks aim for better predictions of actual
behaviour in production, but often this is at the expense of understanding. Ac-
cidental or irrelevant features might dominate the benchmark, or the example
application may not be sufficiently representative.

In both cases, benchmark suites might target particular classes of problem, for
example, conjunctive query answering at scale in the presence of SHZ Q TBoxes.

Choice of Reasoning Problems. In order to be reasonably analytic, bench-
marks need to be understandable enough so that the investigator can correlate
the benchmark and features thereof with the behaviour observed either on the-
oretical grounds, e.g., the selectivity of a query, or by experimentation, e.g. by
making small modifications to the test and observing the result. If we have a
good theoretical understanding, then individual benchmarks need not be small.
However, we do not have a good theoretical understanding of the behaviour of
reasoners on real ontologies and, worse, real ontologies tend to be extremely het-
erogenous in structure, which makes sensible uniform global modifications rather
difficult. While we we can measure and compare the performance of reasoners on
real ontologies, we often cannot understand or analyse why some (parts of) on-
tologies are particularly hard for a certain reasoner—or even isolate these parts.
Thus, we turn to subsets of existing ontologies. However, arbitrary subsets of an
ontology are unlikely to be informative and there are too many for a systematic
exploration of them all. Thus, we need a selection principle for subsets of the
ontology. In JustBench, our initial selection principle is to select justifications of
atomic subsumptions, which will be discussed in section [Bl

Artificial subsets. Realism forms an axis with completely artificial problems at
one pole, and naturally occurring examples at the other. The classic example
of an artificial problem is the kSAT problem for propositional, modal, and de-
scription logics [AASTO/IT]. kSAT benchmark suites are presented in terms of
how to generate random formulae (to test for satisfiability) according to cer-
tain parameters. Some of the parameters can be fixed for any test situation (e.g.

3 The retrospective on the Wisconsin Benchmark [6] for relational databases has a
good discussion of this.
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clause length which is typically 3) and others are allowed to vary within bounds.
Such benchmarks are comparatively easy to analyse theoreticallyﬁ as well as
empirically.

However, these problems may not even look like real problems (kSAT formulae
have no recognisable subsumption or equivalence axioms), so extrapolating from
one to the other is quite difficult. One can always use naturally occurring ontolo-
gies when available, but they introduce many confounding factors. This includes
the fact that users tend to modify their ontologies to perform well on their rea-
soner of choice. Furthermore, it is not clear that existing ontologies will resemble
future ontologies in useful ways. This is especially difficult in the case of OWL
DL due to the fragility of reasoner behaviour: seemingly innocuous changes can
have severe performance effects. Also, for some purposes, existing ontologies are
not hugely useful—for example, for determining scalability, as existing ontologies
can only test for scalability up to their actual size.

The realism of a benchmark suite can constrain its method of generation.
While artificial problems (in general) can be hand built or generated by a pro-
gram, naturally occurring examples have to be found (with the exception of
naturally occurring examples which are generated e.g., from text or by reduc-
tion of some other problem to OWL). Similarly, application benchmarks must be
at least “realistic” in order to be remotely useful for predicting system behaviour
on real applications.

Modules. A module is a subset of an ontology which captures “everything” an
ontology has to say about a particular subsignature of the ontology [], that is,
a subset which entails everything that the whole ontology entails which can be
expressed in the signature of the module itself. Modules are attractive for a num-
ber of reasons including the fact that they capture all the relevant entailments
and support a principled removal of “slow” parts of an ontology. However, most
existing accounts of modularity are very fine grained with respect to signature
choice, which preclude blind examination of all modules of an ontology.

If we restrict attention to modules for the signature of an atomic subsumption
(which corresponds more closely to justifications for atomic subsumptions) we
find that modules can be too big. First, at least by current methods, modules
contain all justifications for all entailments expressible in their signature. As
we can see in the Not-Galen ontology, this can lead to very large sets even
just considering one subsumption. Second, current and prospective techniques
involve various sorts of approximation which brings in additional axioms. While
this excess is reasonable for many purposes, and might be more realistic as
a model for a stand alone ontology, it interferes with the analysability of the
derived benchmark. That being said, modules clearly have several potential roles
for benchmarking, and incorporating them into JustBench is part of our future
work.

4 “Easy” in the sense of possible and feasible enough that analyses eventually emerge.
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2.3 Existing OWL Benchmarks

The most popular reasoner benchmark, at least in terms of citation count, is
the Lehigh University Benchmark (LUBM) [9]. LUBM is designed primarily to
test the scalability of conjunctive query and consists of a small, simple, hand-
built “realistic” ontology, a program for generating data conforming to that
ontology, and a set of 14 hand-built “realistic” queries. LUBM is an application
focused, realistic benchmark suite with artificial generation. LUBM’s ontology
and data were notoriously weak, for example, the ontology lacked coverage of
many OWL features, a fact that the University Ontology Benchmark (UOBM)
[13] was invented to rectify. For an extensive discussion and critique of existing
synthetic OWL benchmarks see [20].

Several benchmarks suites, notable those described in [I4I8], make use of
naturally occurring ontologies, but do not attempt fine grained analysis of how
the reasoners and ontologies interact. Generally, it can be argued that the area
of transparent micro-benchmarks based on real (subsets of) OWL ontologies, as
opposed to comprehensive (scalabiliy-, system-, or application) benchmarks is
currently neglected.

3 Justification-Based Reasoner Benchmarking

Our goal is to develop a framework for benchmarking ontology TBoxes which
is analytic, uses real ontologies, and supports the generation of problems. In
order to be reasonably analytic, particular benchmarks need to be understand-
able enough so that the investigator can correlate the benchmark and features
thereof with the behaviour observed either on theoretical grounds, e.g., the se-
lectivity of a query, or by experimentation, e.g., by making small modifications
to the test and observing the result. If we have a good theoretical understand-
ing, then individual benchmarks need not be small. However, we do not have
a good theoretical understanding of the behaviour of reasoners on (arbitrary)
real ontologies and, worse, real ontologies tend to be extremely heterogenous
in structure, which makes sensible uniform global modifications rather difficult.
Thus, we turn to subsets of existing ontologies. However, arbitrary subsets of an
ontology are unlikely to be informative and there are too many for a systematic
exploration of them all. Thus, we need a selection principle for subsets of the
ontology. In JustBench, our initial selection principle is to select justifications of
entailments, e.g., of atomic subsumptions.

Definition 1 (Justification). A set of axioms J C O is a justification for
O Enif JEnand, for all J' C J, it holds that J' ¥ .

As an example, the following ontologyﬁ entails the atomic subsumption
C SubClassOf: owl:Nothing, but only the first three axioms are necessary for the

® We use the Manchester OWL Syntax for all examples, omitting auxiliary declarations
of entities for space and legibility reasons.
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entailment to hold. Therefore, the set { C' SubClassOf: A and D, A SubClassOf: E
and B, B SubClassOf not D and r some D} is a justification for this entailment.

O ={ C SubClassOf: A and D,
A SubClassOf: E and B,
B SubClassOf: not D and r some D,
F SubClassOf: r only A,
D SubClassOf: s some owl:Thing }

The size of a justification can range, in principle, from a single axiom to the num-
ber of all axioms in the ontology, with, in one study, an average of approximately
2 axioms per justification [I]. The number of justifications for an entailment can
be exponential in the size of the ontology, and multiple (potentially overlap-
ping) justifications for a single entailment occur frequently in ontologies used in
practice.

An explanation framework that provides methods to exhaustively compute all
justifications for a given entailment has been developed for the OWL API VSE
which we use in our benchmarking framework.

3.1 Limitations of this Selection Method

Justifications, while having several attractive features as benchmarks, also have
drawbacks including: First, we can only generate test sets if computing at least
some of the entailments and at least some of their justifications for them is feasi-
ble with at least one reasoner. Choice of entailment is critical as well, although,
on the one hand, we have a standard set of entailments (atomic subsumptions,
instantiations, etc.) and on the other hand we can analyse arbitrary sets of entail-
ments (e.g., conjunctive queries derived from an application). As the test cases
are generated by a reasoner, their correctness is determined by the correctness
of the reasoner, which itself is often at issue. This problem is mitigated by check-
ing individual justifications on all reasoners (for soundness) and using different
reasoners to generate all entailments and their justifications (for completeness).
The latter is very time consuming and infeasible for some ontologies.

Second, justification-based tests do not test scalability, nor do they test in-
teractions between unrelated axioms, nor do they easily test non-entailment
finding, nor do they test other global effects. With regard to scalability, we have
two points: 1) Not every performance analysis needs to tackle scalability. For
example, even if a reasoner can handle an ontology (thus, it scales to that ontol-
ogy), its performance might be less than ideal. 2) Analysis of scalability problems
needs to distinguish between reasoner weaknesses that are merely due to scale
and those that are not. For example, if a reasoner cannot handle a particular
two line ontology, it will not be able to handle that ontology with an additional
400 axioms. Thus, micro-benchmarks are still useful even if scalability is not
relevant.

Shttp://owlapi.sourceforge.net
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Finally, in the first instance, justification test successful entailment finding,
but much of what an OWL reasoner does is find non-entailments. Non-entailment
testing is a difficult matter to support analytically, however, even their justifica-
tions offer some promise. For example, we could work with repaired justifications.

3.2 JustBench: System Description

The JustBench framework is built in Java using the OWL API v3 and con-
sists of two main modules that generate the justifications for an ontology and
perform the benchmarks respectively. The generator loads an ontology from
the input directory, finds entailments using the InferredOntologyGenerator class
of the OWL API and generates justifications for these entailments with the
explanation interface. The entailments in question are by adding specific In-
ferredAziomGenerators to the ontology generator. For example, one can add In-
ferredSubClassAziomGenerator to get all subsumptions between named classes
and InferredClassAssertionAziomGenerator to get all atomic instantiations. By
default, we just look for atomic subsumptions and unsatisfiable classes. The jus-
tifications and entailments are saved in individual OWL files which makes them
ready for further processing by the benchmarking module.

For each performance measurement, a new instance of the OWLReasoner
class is created which loads the justification and checks whether it entails the
subsumption saved as SubClassOf axiom in the entailment ontology. We measure
the times to create the reasoner and load the ontology, the entailment check using
the isEntailed() call to the respective reasoner, and the removal of the reasoner
instance with dispose(). Regarding the small run-times of the entailment checks,
there exists a trade-off between fine-grained, transparent micro-benchmarks and
large test cases, where the results may be more robust to interference, but also
harder to interpret for users. Limiting the impact that actions in the Java run-
time and the operating system have on the measurements is an important issue
when benchmarking software performance [2], which we take into account in our
framework. In order to minimise measurement variation, the sequence of load,
check, dispose is repeated a large number of times (1000 in our current setting)
and the median of the values measured after a warm-up phase is taken as the
final result. In preliminary tests it was detected that the mean value of the mea-
surements was distorted due to a small number of outliers that differed from
the majority of the measured values by several orders of magnitude, which was
presumably caused by the JVM garbage collection. Basing the measurement on
the median instead proved to yield stable and more reliable results.

We also experimented with a slightly different test involving a one-off call
to prepareReasoner() is included before the measured entailment check. prepar-
eReasoner() triggers a complete classification of the justification. Thus, we can
isolate the time required to do a simple “lookup” for the atomic subsumption
in the entailment. The times for loading, entailment checking and disposing are
then saved along with the results of the entailment checks. Since the tested
ontologies are justifications for the individual entailments, this should naturally
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return true for all entailment checks if the reasoner works correctly. As we will
show in the next section, a false result here can indicate a reasoner error.

4 Experiments and Evaluation

4.1 Experimental Setup

The test sets were generated using JustBench and FaCT++ 1.4.0 on a Mac
Pro desktop system (2.66 GHz Dual-Core Intel Xeon processor, 16 GB physical
RAM) with 2GB of memory allocated to the Java virtual machine. The tested
ontologies were Building, Chemical, Not-Galen (a modified version of the Galen
ontology), DOLCE Lite, Wine and MiniTambis!] This small test set can already
be regarded as sufficient to demonstrate our approach and show how its trans-
parency and restriction to small subsets of the ontologies helps to isolate and
understand reasoner behavior, as well as quickly trace the sources of errors.

Most test sets could be generated by our system within a few minutes, how-
ever, for the Not-Galen ontology the process was aborted after it had generated
several hundred explanations for a single entailment. In order to limit the pro-
cessing time, a reasoner time out was introduced, as well as a restriction on the
number of justifications to be generated. Thus, the justifications for Not-Galen
are not complete, and we assume that generating all explanations for all entail-
ments of this particular ontology is not feasible in practical time. The number
of justifications for each entailment ranged from 1 to over 300, as in the case of
Not-Galen, with the largest containing 36 axioms.

The benchmarking was performed on the same system as the test set gener-
ation using three reasoners that are currently compatible with the OWL API
version 3, namely FaCT++ 1.4.0, HermiT 1.2.3, and Pellet 2.0.1.

4.2 Results and Discussion

Reasoner Performance. The measurements for the justifications generated
from our five test ontologies show a clear trend regarding the reasoner perfor-
mance. Generally, it has to be noted that the performance of all three reasoners
can be regarded as suitably on these ontolgoies, and there are no obvious hard
test cases in this test set. On average, FaCT++ consistently performs best in
almost all checks, with HermiT being slowest in most cases. Pellet exhibits sur-
prising behaviour, as it starts out with a performance close to that of FaCT++
for smaller justifications and then approximates or even “overtakes” HermiT for
justifications with a larger number of axioms. This behaviour, e.g., as shown in
figure[I] is seen in all the ontologies tested.

Generally, the time required for an entailment check grows with the size of
the justification for all three reasoners, as shown in figure Pl—justifications with
a size larger than 13 are all obtained from the Not-Galen ontology. Again, Pellet

" All ontologies that were used in the experiments may be found online:
http://owl.cs.man.ac.uk/explanation/justbenchmarks
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Fig. 1. Reasoner performance on justifications of the MiniTambis ontology

exhibits the behaviour mentioned above and eventually “overtakes” HermiT.
The dip at size 16 is caused by the existence of only one justification of this size
and can be neglected here.

HermiT in particular starts out with a higher baseline than the other reason-
ers, but only increases slowly with growing justification size. We are investigating
further to pinpoint the exact factors in play.

For the atomic subsumptions in our examples, the expressivity—which seems
quite wide ranging—does not significantly affect performance. The average time
for each size group indicates that the hardest expressivities for all reasoners are
ALCN and ALCON. We expect that a analysis of the laconic versions of these
justifications i.e., that only contain the axiom parts that are relevant to the
entailment) will reveal to which extent the performance is affected by the use of
expressive constructors.

Reasoner Errors. While the system returns true for nearly all entailment
checks, a small subset of Not-Galen is wrongly identified as not entailed by
Pellet after adding a call to prepareReasoner() to force a full classification of the
justification. All the misclassified justifications have the DL expressivity ALEH,
indicating that they contain subproperty hierarchies. On closer inspection it can
be found that Pellet produces an error for the justifications that have axioms of
the form

Tears SubClassOf:
NAMEDBodySubstance, isActedOnSpecificallyBy some
(Secretion and (isFunctionOf some LachrymalGland))
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Fig. 2. Performance of reasoners depending on size of justifications

where isActedOnSpecificallyBy is a subproperty of some other property that
is necessary for the entailment to hold. Communication with Pellet developers
revealed that the problem is due to an error in the optimizations of the classi-
fication process and not in the core satisfiability check. This demonstrates the
need to test all code paths.

By using justifications for the testing process, we detected and isolated and
error which affects the correctness of the reasoner but was not otherwise visible.
Performing an entailment check on the whole ontology would not exhibit this be-
haviour, as several other justifications for the entailment masked the entailment
failure.

Errors Caused by Signature Handling. We also identified a problem in how
FaCT++ handles missing class declarations when performing entailment checks.
For some justifications FaCT++ aborts the program execution with an “invalid
memory access error” , which is not shown by Pellet and HermiT. We isolated the
erroneous justifications and perform entailment checks outside the benchmarking
framework to verify that the problem was not caused by any of the additional
calls to the OWL API made by JustBench. We found that the subsumptions were
all entailed due to the superclass being equivalent to owl: Thing in the ontology.
Consider the following entailment:

NerveAgentSpecificPublished Work
SubClassOf: PublishedWork
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and the justification for it consists of the following three axioms:

refersToPrecursor
Domain: PublishedWork

NerveAgentRelatedPublished Work
SubClassOf: Published Work

VR RelatedPublishedWork
EquivalentTo: refersToPrecursor only VR Precursor
SubClassOf: NerveAgentRelatedPublished Work

The subclass NerveAgentSpecificPublished Work does not occur in the justifica-
tion, as the entailment follows from Class: Published Work EquivalentTo: owl: Thing
and therefore the subclass would not be declared in the justification. How should
an OWL reasoner handle this case? Pellet and HermiT accept the ontologies and
verify the entailment, whereas FaCT++ requires the signature of the entailment
to be a subset of the signature of the justification. This causes FaCT++ to not
even perform an entailment check and abort with the error “Unable to register
‘NerveAgentSpecificPublishedWork’ as a concept”. While this is not a correctness
bug per se, it is a subtle interoperability issue.

4.3 Additional Tests and Discussion

Performance for Full Classification. In order to compare our justification-
based approach to typical benchmarking methods, we measure a full classifica-
tion of each of our test ontologies. Therefore, an instance of the OWL API’s
InferredOntologyGenerator class is generated and the time required for a call to
its fillOntology() method is measured to retrieve all inferred atomic subsump-
tions from the respective ontology. Surprisingly, the rankings based on the indi-
vidual justifications are inverted here: FaCT++ performed worst for all tested
ontologies (except for Wine, where the reasoner cannot handle a “Positiveln-
teger” datatype and crashes), with an average of 1.84 s to retrieve all atomic
subsumptions. HermiT and Pellet do this form of classification in much shorter
time (0.98 s and 1.16 s respectively), but the loading times for HermiT (a call
to createReasoner()) are an order of magnitude larger than those of FaCT++.

Additional Entailments. Choice of entailments makes a big difference to the
analysis of the ontology. For example, we examined an additional ontology which
has a substantial number of individuals. For full classification of the ontology,
both HermiT and Pellet performed significantly worse than FaCT++. Using
JustBench with justifications for all entailed atomic subsumptions of the on-
tology did not lead to any explanation for this behaviour: all three reasoners
performed well on the justifications and the sum of their justification reasoning
times was much less than their classification time. However, after adding the jus-
tifications for inferred class assertions to the test set, the time HermiT takes for
entailment checks for these justifications is an order of magnitude larger than for
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the other reasoners. The isolation of the classes of entailment, as well as shared
characteristics of entailments in each class, falls out quite naturally by looking
at their justification. In this case, it is evident that there is a specific issue with
HermiT’s instantiation reasoning and we have small test cases to examine and
compare with each other.

An Artificially Generated Ontology. In an additional test with an arti-
ficially generated ontology we attempt to verify our claim about loading and
classification times of the three reasoners. The ontology contains over 200 sub-
sumptions of the form

AlEquivalentTo: A2
and (p some (not (A2)))

with entailments being atomic subsumptions of the type A1 SubClassOf: A2, A2
SubClassOf: A3 ... A1 SubClassOf: A210. Justifications for 62 of these entail-
ments were generated before the system ran out of memory, and the entailments
were checked against their respective justifications and the full ontology. The
right chart of figure B shows clearly how the performance of both Pellet and
FaCT++ for an entailment check worsens with growing ontology size, whereas
HermiT has an almost consistently flat curve. FaCT++ in particular shows al-
most exponential growth. In contrast, the loading times for larger ontologies only
grow minimally for Pellet and FaCT++4-, while HermiT’s loading time increases
rapidly, as can be seen in the left chart of figure 3

All three reasoners perform much worse on the artificial ontology than on the
“real-life” ones (except for Not-Galen). This is a bit surprising, considering that
the expressivity of this ontology is only ALC, as opposed to the more expressive
ALCF (D), SHIF,SHOIN (D), and ALCN respectively of the other ontologies.
The justifications for its entailments however are disproportionally large (up to
209 axioms for Class: A1 SubClassOf: A210) whereas those occurring in the
other “real” ontologies have a maximum size of only 13 axioms. This indicates
that a complex justificatory structure with a large number of axioms in the
justifications poses a more difficult challenge for the reasoners.

The measurements based on the artificial ontology indicate that HermiT per-
forms more preparations in its createReasoner() method and has only minimal
lookup times, which confirms our results from the entailment checks following a
call to prepareReasoner(). We can conclude that, once the ontology is loaded and
fully classified, HermiT performs well for larger ontologies, whereas FaCT++
suffers from quickly growing classification times. With respect to the lookup
performance of FaCT++, is very likely that the JNT used in order to access the
reasoner’s native C++ code over the OWL API acts as a bottleneck that affects
it negatively. The use of C++ code clearly affects the times for the calls to dis-
pose(), as the FaCT++ framework has to perform actual memory management
tasks in contrast to the two Java reasoners Pellet and HermiT which defer them
indefinitely.
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Fig. 3. Reasoner performance on an artificially generated ontology

4.4 Application of JustBench

We propose our framework as a tool that helps reasoner developers as well as on-
tology engineers check the correctness and performance of reasoners on specific
ontologies. With respect to ontology development, the framework allows ontol-
ogy engineers to carry out fine-grained performance analysis of their ontologies
and to isolate problems. While measuring the time for a full classification can
give the developer information about the overall performance, it does not as-
sist in finding out why the ontology is easy or hard for a particular reasoner.
JustBench isolates minimal subsets of the ontology, which can then be analysed
manually to find out which particular properties are hard for which reasoners.
One strategy for mitigating performance problems is to introduce redundancy.
Adding the entailments of particularly hard justifications to the ontology causes
them to “mask” other, potentially harder, justifications for the entailment. This
leads to the reasoner finding the easier justifications first, which may improve
its performance when attempting to find out whether an entailment holds in an
ontology.

Reasoner developers also benefit from the aforementioned level of detail of
justification-based reasoner analysis. By restricting the analysis to small subsets,
developers can detect reasoner weaknesses and trace the sources by inspecting
the respective justifications, which will help understanding and improving rea-
soner behaviour. Additionally, as shown in the previous section, the method also
detects unsound reasoning which may not be exhibited otherwise.

5 Conclusion and Future Work

To our knowledge, JustBench is the first framework for analytic, realistic bench-
marking of reasoning over OWL ontologies. Even though we have currently only
examined a few ontologies, we find the general procedure of using meaningful
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subsets of real ontologies to be insightful and highly systematic. At the very

least, it is a different way of interacting with an ontology and the reasoners.
Our current selection principle (i.e., selecting justifications) has proven fruit-

ful: While justifications alone are not analytically complete (e.g., they fail to

test non-entailment features), they score high on understandability and manip-

ulability and can be related to overall ontology performance. Thus, arguably,

justifications are a good “front line” kind of test for ontology developers.
Future work includes:

— Improving the software: While we believe we have achieved good inde-
pendence from irrelevant system noise, we believe this can be refined further,
which is critical given the typically small times we are working with. Further-
more, some OWL API functions (such as prepareReasoner()) do not have a
tightly specified functionality. We will work with reasoner developers to en-
sure the telemetry functions we use are precisely described and comparable
across reasoners.

— Testing more ontologies: We intend to examine a wide range of ontolo-
gies. Even our limited set revealed interesting phenomena. Working with
substantively more ontologies will help refine our methodology and, we ex-
pect, support broader generalisations about ontology difficulty and reasoner
performance.

— More analytics: Currently, we have been doing fairly crude correlations
between “reasoner performance” and gross features of justifications (e.g.,
size). This can be considerably improved.

— New selection principles: As we have mentioned, modules are an obvious
candidate, though there are significant challenges, not the least that the
actual number of modules in real ontologies tends to be exponential in the
size of the ontology [15]. Thus, we need a principle for determining and
computing “interesting” modules. Other possible selection principles include
“repaired” justifications and unions of justifications.

Furthermore, we intend to experiment with exposing users to our analysis method-
ology to see if this improves their experience of dealing with performance
problems.
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Abstract. Several projects have brought rich data semantics to collab-
orative wikis, but blogging platforms remain primarily limited to text.
As blogs comprise a significant portion of the web’s content, engagement
of the blogging community is crucial to the development of the semantic
web. We provide a study of blog content to show a latent need for better
data publishing and visualization support in blogging software. We then
present DataPress, an extension to the WordPress blogging platform that
enables users to publish, share, aggregate, and visualize structured infor-
mation using the same workflow that they already apply to text-based
content. In particular, we aim to preserve those attributes that make
blogs such a successful publication medium: one-click access to the infor-
mation, one-click publishing of it, natural authoring interfaces, and easy
copy and paste of information (and visualizations) from other sources.
We reflect on how our designs make progress toward these goals with a
study of how users who installed DataPress made use of various features.

1 Introduction

Recent efforts to generate and curate high-value structured datasets have made
great headway on several fronts, as exemplified by open government initiatives,
Facebook’s Open Graph project, and Freebase’s structured wiki. While these
centralized, top-down approaches are significant, we have yet to see wide adop-
tion of structured data publication at the grass-roots level. Taking note that the
development of hosted blogging platforms encouraged millions of web readers to
become content authors as well, we aim to entice these users to publish data by
building data-oriented features into their existing blogging software.

Large projects can rely on the promise of societal and technical benefits to
justify the costs required to curate and publish structured data. We believe
that for independent bloggers to take part in data publishing efforts of their
own, the promise of later portability and reuse is not enough. Instead, end-user-
focused data publishing tools should offer immediate gratification in the form
of useful visualizations and interesting data aggregation before they focus on
formal ontologies and namespaces. Only after the user has seen the benefit of
data publishing as part of their content authoring workflow can we take steps to
link, integrate, and further reuse the underlying data.

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 48-63, 2010.
© Springer-Verlag Berlin Heidelberg 2010
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We also take inspiration from efforts such as the Semantic MediaWiki project,
which has brought structured data publishing to wikis by exposing it in the Wiki-
Text format already familiar to wiki users. We aim to similarly provide bloggers
with data publishing tools that blend in with existing blogging environments.
The popular blog publishing platforms that we target differ from wikis in that
they depend more heavily on WYSIWYG editing, click-to-embed rich media,
and an easy-access copy-and-paste culture. To facilitate the adoption of grass-
roots data publishing, we must build tools that minimize the difference between
traditional text-based blogging and the future of publishing, in which all content
producers are data publishers.

To understand how to accommodate the data-blogger of the future, this paper
first examines the properties of blogging platforms that led to their popularity
among content authors on the web. We then demonstrate a latent need of, and
great potential for, data-centric blogging tools with a content study of 210 blog
entries on the web. This study quantifies the kinds of data-supported arguments
that blog authors make and shows that bloggers are already using structured
data in their content, but the tools they have to communicate it are limiting.

We then present DataPress, a plugin for the WordPress blogging platform
which facilitates data visualization from minimally structured files, allows blog-
gers to point at other data presentations as a starting point for their own,
and allows bloggers to publish and aggregate their own data sets. We build
into DataPress the ability to easily link to external data from spreadsheets,
RDF sources, and Semantic MediaWiki sites. We further demonstrate the abil-
ity to rely on Semantic MediaWiki as a community ontology server to encourage
schema convergence across data feeds produced by DataPress bloggers.

Finally, we examine the log data and interview the authors of real DataPress
deployments, one of which having seen over 55,000 page views. These users
provide insight into how web authors are using DataPress to publish data today
(not in their blogs, to our surprise) and where opportunities exist to improve
data publishing tools for tomorrow.

2 Requirements for the 21st Century Blogger

Our goal is to bring structured data publishing to the blogging community, and
to do so we must build tools appropriate to the environment that bloggers expect.
This section examines the properties of blogging platforms that made them such
a successful grass-roots medium of contribution to the web. We expect that by
preserving these traits in a data-oriented blogging tool, we are more likely to
gain traction from the blogging community. Of the many features of blogging
systems that make them popular, we highlight:

One-click Publishing. Though publishing through a blogging platform is equiv-
alent, from a technical standpoint, to uploading HTML documents over F'TP,
the increased usability and convenience that a web publishing interface pro-
vides encourages participation by a far wider audience.
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Visual Authoring Environment. Blog platforms offer users familiar, word-
processor-like WYSIWYG text editors, with HTML forms to guide them
through more complicated tasks. Notably, the author does not have to co-
ordinate her work through several distinct applications—all her authoring
needs are met within the editing environment of the blogging tool.

Copy and Paste. Web blogs have developed a publishing culture that makes
significant use of copy and paste, both to quote information found in other
sources and also to replicate layout or visualization functionality that the
author could not construct herself. Sometimes, such quoting is an end in
itself; at other times, the goal is to use the original content as a starting point
for publishing by modification. It is much easier to copy someone else’s nicely
formatted page and replace its content with your own than to understand
how to create such a layout in the first place.

Pre-Packaged Widgets. Blogging systems make it easy to include rich media
widgets—such as slide shows and video clips—in article text without having
to manually write code or configuration. By simply uploading several pictures
(in the case of a slide show) or adding a link (in the case of a YouTube video
clip), the blogger benefits from the platform’s ability to package up this
simple data into a rich format that entertains visitors.

These traits help blogging platforms turn the technical task of publishing web
content into an easy process accessible to the grassroots authors that provide so
much of the web’s “long tail” of content. If we wish to encourage these grassroots
authors to provide data as well, we must give them tools that work from within
these familiar environments and share their properties.

We use these traits as a guide to construct DataPress, and we argue that as a
result DataPress can support, for rich structured data, the same behaviors that
made the web’s text authoring tools so effective:

— It has the same “click and you see it” immediacy that made hosted blogging
such a big change over the FTP publishing workflow: it enables users to
insert data into a blog post the same way they insert an image, offers readers
embedded data visualizations inside article bodies, and it does so without
leaving the metaphor provided by the blogging platform

— It does not require the author to understand complex data models, but
instead can be based on concepts already familiar to end users: simple forms,
embedded media, and links to data-laden websites

— It offers the same copy-and-paste workflow as text, making it easy for authors
to “quote” both the data and the data visualizations authored by other users,
either to be used unchanging or as a starting point for authors (who may
not yet know how to author their own data or visualization) to make their
own points by authoring changes in the acquired data or visualizations

— It inspects a user’s data in order to better guide her through the creation of
rich, interactive visualizations. Users can add faceted navigation, interactive
maps and timelines, and search functionality all by selecting a few options
in the blogging editor.
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3 The Latent Potential for Grassroots Data

Blogging platforms facilitated the enormous growth of the web over the past
two decades, but the capabilities of these tools are primarily limited to text. In
contrast, professional publications often deal with rich, structured data: shop-
ping sites offer faceted browsing across their product databases; product review
sites let readers dynamically pit products against each other in feature-by-feature
tables; and news sites such as the New York Times (which runs its own Visualiza-
tion La) publish interactive presentations of complex information. Arguably,
these professionally managed web sites are significantly more expressive than
grassroots authors’ pages. One might think that this is because only large pro-
fessional publishers care for such expressivity, but we observe that the desire to
publish and present data extends far beyond large publishers.

In this section we present the results of a blog content study that indicates
that bloggers are in fact already frequently talking about data; they are just
doing it using text and static images, the best way that they can given their
current publishing platforms. We believe this is a hopeful result for the semantic
web community, for it suggests that grassroots bloggers would be eager to make
use of structured data if their tools made this process easy and beneficial to their
needs.

For the purposes of this study, we use the term blog to refer to any article-
style publication on the web, including both personal journals and professional
periodicals. A semantic entity refers to an object with one or more properties
described in structured or unstructured (natural language) form. A collection
of semantic entities refers to a sequence of semantic entities of the same type
described in a document. For example, a semantic entity might be a paragraph of
text or a table row that describes the technical specifications of a new camera. A
collection of semantic entities would be a text document or full table comparing
several cameras to each other.

We coded 210 blog articles across 21 blogs to measure the occurrence and
nature of semantic entities and semantic entity collections within their text?.
We generated this blog sample by selecting the 10 most recent entries (at time
of study) from a semi-random list of blogs taken from the Technorati[5] blog
indexing service. This list of blogs included:

— The top ten blogs according to Technorati’s “authority rank”
— Eleven blogs selected at random from Technorati’s list of “rising” articles

We used this selection method to attempt to capture both high quality, profes-
sional content (top ten blogs) and also blogs that varied in style and represented
the “long tail” of the web (top rising posts). For each blog in our sample, we
downloaded its RSS feed and coded each of its ten latest entries.

!ttp://vizlab.nytimes.com/
2 The data for this survey can be found at
http://projects.csail.mit.edu/datapress/content_survey
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Table 1. Number of occurrences overall and number of articles with various properties

Lone Semantic Collections of Visual Referenced Referenced
Entities Semantic Entities Collections Datasets Resources
Articles with
one or more 45 (21%) 64 (30%) 22 (10%) 67 (32%) 191 (91%)
occurrences (of 210)
Total Count 58 105 49 428 1061

Aggregating across the articles for each blog, we found that:

— 17 of 21 blogs contained at least one article in their latest 10 that enumerated
the properties of a single semantic entity.
— 18 of 21 blogs contained at least one article in their latest 10 that enumerated

the properties of a collection of semantic entities.
e Half of these blogs used natural language text to describe the collection.
e The other half used a table or a static image containing an info-graphic.

Aggregating across the articles for all blogs, we found that:
Table [l shows us that:

— 21% of articles surveyed contained at least one semantic entity.
— 30% of articles surveyed contained a collection of semantic entities (anecdo-
tally, these were things such as polling results in different states, economic

conditions in different countries, and professional sports records).
e Two-thirds of these collections were presented in natural language text

instead of a structured or visual format.

Finally, our data revealed that blog entries frequently refer to external sources
of data rather than present original content. Authors made reference to some
externally attributed datum or statistic in 91% of articles surveyed. In, 32% of
articles, this reference was to an explicit data set, often given by name (e.g.,
“A 2008 Zogby Poll reported that...”), while in the other 59% it simply referred
to a person or organization who had claimed the truth of the numerical fact.
In all, we counted 428 total references across the 67 articles which mentioned
data sets. These numbers are surprisingly high, perhaps influenced by the fact
that our study was done in the midst of an electoral season, but they serve to
reinforce the intuition that bloggers are in many respects serving as topic- or
geo-localized journalists. They are writing about issues, and these issues involve
data. We aim to make that data navigable, linked, and reusable.

Anecdotally, much of the presentation of semantic entities was inlined in text,
rather than in a structured tabular format. Interactive data visualizations were
rare—structured presentation tended to be either static tables or images. In fact,
most of these collections were included in an HTML table or rudimentary list
rather than a full-blown visualization. Data “links,” if at all present, tended to
be narrative references to a data set rather than resolvable URLs.

These results suggest significant latent potential for tools that allow bloggers
to publish data with the same ease with which they already publish text. These
authors are already interested in data, and at times they are publishing tables or
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images, indicating that they are willing to adopt non-prose presentation styles
if they are available.

Currently the only non-prose data presentation tools that blogging platforms
support are HTML tables and static images. We aim to fill this gap with DataPress,
which provides both interactive visualization capabilities as well as raw data pub-
lishing and linking.

4 DataPress

DataPresd] is our attempt to create a blogger’s tool to publish, share, and copy
data and data visualizations. We start from the premise that, from the stand-
point of content authors, visualizations are an end in themselves—if a picture
is worth a thousand words, surely a good interactive visualization is worth at
least tens of pictures. They allow anyone encountering that data to understand
it better by exploring it.

But DataPress is also a means to an end: making data more easily available
for reuse. DataPress’ rich data visualizations encourage authors to use it, but the
tool also exposes the data it is showing off, making it easy to link to or snapshot,
thus enabling the same reuse ecology already pervasive in textual blogs. With
this in mind, we will describe DataPress in its four distinct roles:

1. Authoring data

2. Consuming data originating elsewhere

3. Authoring visualizations

4. Exposing data for consumption by other tools

For the authoring roles, our key goal is to fit data and visualization authoring
naturally into the already existent workflow associated with WordPress. For the
data sharing roles, we arrange for our tool to offer, with no extra user labor,
JSON and RDF data “feeds” that can be consumed by others. We also facilitate
easy linking of diverse content on the web for aggregation and visualization
within a blog post.

DataPress is implemented as a plugin for the WordPress blogging platform.
We chose WordPress because it has a large install base (over 3,816,965 down-
loads in 2007 alone [3]) and because it is a blogging tool used widely for both
personal blogs and professional publications, including media outlets as large as
the Washington Post online edition. Like other blogging platforms, WordPress
places a high value on guided workflow and simple form-based configuration, so
the DataPress plugin exposes all of its features as enhancements to the existing
WordPress authoring interface.

This section describes the most recent version of DataPress. Our user study,
presented in Section [B] was conducted across users of a previous release of
DataPress. This previous release contained of all the features described below
except for individual item publishing (in Section 1)), data feeds (in Section {4,
and Semantic MediaWiki hooks (Section [H).

3 Downloadable source code, examples, and demo blog for testing available at:
http://projects.csail.mit.edu/datapress/
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4.1 Authoring and Uploading Data

DataPress allows authors to create individual data items to publish with a post
or upload entire datasets at a time. Both these option are accessible from buttons
added to the WordPress post editor, seen in Figure [l

Authoring a Data Item. By pressing the

Data Item button, bloggers can enter key-  p,uem & pataser — visualization 4
valued information to associate with a typed o e O TR P Y
semantic entity and publish this information

as metadata with a blog post. This usage sce- Fig. 1. DataPress Entry Points
nario fits the type of blogger who publishes

similarly themed articles over time and would like to benefit from being able
to aggregate their structured content for presentation purposes or export to the
community.

Consider the practice of blogging one’s academic reading list—some students
and professors enjoy blogging summaries of papers they have read so that they
can share their thoughts with others in the community. DataPress allows this
temporal stream of activity to be published as structured data as well. While
writing the blog post, the author clicks the “Data Item” button seen in Figure [T
and DataPress will bring up a selection of “data templates,” shown in the first
screenshot in FigurePl A data template is simply a blank form derived from the
schema of some item type.

Add a Data hem

Please Select a Data Template | | Add a new Academic Paper

Template Source
[ Semantic MediaWiki Templates § |
laikd Templ ) Title |social Search in “Smali-World™ Experiments

* Agademic Paper e
« Trip Publication_Date | 2009

= Agreement Venue |www2009
= Disagreement Save

J
Author 5. Goel, & Muhamad, and D. Wans |
J
J

Fig. 2. Choosing and filling in a Template

This list of data templates can draw from a variety of places. DataPress comes
with a collection of built-in data templates, such as academic papers, books,
and workouts, but it can also be configured to talk to Semantic Media Wiki
installations or other data template repositories on the web, allowing the blog
author to take advantage of communities that maintain such information and
encouraging schema convergence across web sites (this idea will be expanded in
Section ). If no template fits the item, DataPress allows users to create their own
by entering a custom class name and the properties that should be associated
with its instances.

Once the user has selected a data template, DataPress loads the template
schema (possibly from a remote repository) and transforms it into a web form
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for the user to fill out. One such form is shown in the right-hand side of Figure[2
From here, the data is stored in DataPress’ back-end database, while a visual
marker for the data is embedded into the text of the post as a small icon that
allows editing or removal of the item from the post, shown in Figure Bl

The Data Item interface allows a blogger to
follow their natural habit of writing a new arti- 1 oversimplification) of their

cle about each data item, while also producing ‘oftraits, and(3) a tendencyto Post Tag!
rithin the feature vector. &

an aggregate data set over time and across blog [dtpaa .,
posts for rich visualization. Our reading-list blog- Delete L
ger can place, sticky on their front page, a single Choose fr

rich “My Reading List” visualization showing all

articles they have read, with links to the individ- Fig.3. Data Item in a Blog
ual blog postings about the articles. This visual- Post

ization becomes a new, non-chronological index

into their blog content.

Uploading Data Sets. DataPress also lets users

associate entire data sets with a blog post. Using WordPress’ built-in file upload
tool, they can upload a file, and then using the Data Set button provided by
DataPress, they can associate that file with a blog post. DataPress utilizes the
data import mechanisms of the Exhibit framework [I2] and the MIT Babel [§]
data translation web service to accept a wide variety of formats, including RDF,
JSON, CSV, XML, Microsoft Excel, and Bibtex.

Once a data file is associated with a blog post, DataPress stores this infor-
mation in its database and provides the option of attaching Data Footnote links
at the end of the blog post, allowing the reader to visually see links to the data
that accompanies the writeup. These associated data sets are also used as inputs
for data visualizations, shown later.

4.2 Data Linking

DataPress also lets authors link to remote data sets via URL. In addition to sup-
porting a wide number of data formats that can be linked to directly, DataPress
contains a special importer that handles what we call approzimate links—URLs
that point to web pages that talk about data, rather than links to the raw data
itself. We currently support four such kinds of approximate links:

— URLs of DataPress-powered pages are automatically converted into data
links to that page’s data sources

— URLs of web pages containing an Exhibit-powered visualization are auto-
matically converted into data links to that page’s data sources

— URLSs of Google Spreadsheet files are automatically converted into API calls
into Google’s JSON data service

— URLs of third-party JSON data files are converted into JSONP calls routed
through a DataPress JSON-to-JSONP service
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We expect to grow support for approximate linking as we believe that it supports,
for data, the same copy-and-paste-ability that made blogging tools successful. If
a user sees a page with data they want to use, they should only have to copy
and paste that page’s URL to be able to remix and republish its data. As we
will show in the following section, we are currently also working on support for
easy import of Semantic MediaWiki data via remote ASK queries.

4.3 Visualization Authoring

The “Visualization” button, shown above the post editor in Figure [l provides
access to a wizard which walks the user through the creation of a data visual-
ization. DataPress uses the Exhibit framework for displaying interactive visual-
izations. This allows the plugin to benefit from the developer community that
builds data importers and visualization plugins for Exhibit. DataPress’ configu-
ration wizard, shown in Figure [d] contains many of the various options Exhibit
provides, as well as some blog-specific enhancements.

Add Visualizations > Add Faceti > Configure Display > Lemses (Advanced)

Map: President Birthplaces | remove Il edit |

Map T
A Map displays location -based data on a Coogle Map.
Visualization Titke [President Birthplaces ]
Location feld binhlailng % | contains a [Lating 2
Popup Size Width: (200 |px, Height: (200 ox
Marker Size wideh: (60 |p, Height: [60  |ox
Only show items of type [ President 3 (Dptienal)
feon [magemL 3 (Dptional)

Add Map

Sav

Fig. 4. Adding a Data Visualization

The wizard consists of four main steps:

Add Visualizations. Supported visualization types include lists, tables, maps,
timelines, scatter plots, and bar charts.

Add Facets. Add faceted navigation to the visualization. Supported facet types
include free-text search, list facets, range sliders, and tag clouds.

Configure Display. Many blogs follow a narrow-width article format while
some rich visualizations are wide, so DataPress includes an “lightbox” op-
tion which presents visualizations as YouTube-style previews that expand
to hover over the full web page when clicked. This step in the wizard also
allows the blogger to link custom CSS files to the visualization.
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Lenses. Lenses may be thought of as data style sheets—they are templates
that define how items of a particular type should be displayed. DataPress
provides a WYSIWYG lens editor that includes support for images whose
URLs appear in the data.

Because DataPress is aware of the data that has already been associated with
the blog post, it is able to suggest values for many of the configuration options
required to create a visualization. When each new data item is added to the blog
post, DataPress uses the Exhibit framework to parse the data in the background
and update a running list of the item types and properties relevant to the vi-
sualization. This is particularly useful if a user is linking to data from another
site on the web. Without even looking at the raw data or schema, the user is
able to immediately begin crafting a visualization, with data-aware autosuggest
fields providing the possible answers to necessary questions.

Once a visualization is configured, it can be inserted into the blog post by
clicking a button in the wizard. The visualization appears in the blog text editor
as the placeholder token {{Exhibit}} to mark its desired placement. Users can
always re-edit their visualization by clicking on the toolbar button once again
(we currently only support one visualization per blog post).

4.4 Data Sharing

After data has been associated with blog posts in DataPress, it can be shared
with others in two different ways. The first is by nature of the fact that blog
posts created with DataPress have links both visible (as optional data footnotes)
and invisible (as links embedded in the markup of the page) that allow others
to re-use the data associated with the post. Other bloggers with DataPress, for
example, need only reference the URL of a data-laden blog post to automatically
import all of its data and begin crafting visualizations to rebut, reinforce, or
simply echo the message.

The second, and more intriguing, form of data sharing is made possible via
data feeds. Just as WordPress allows RSS readers to fetch custom feeds specific
to a particular tag or category of post, DataPress responds to requests to as-
semble data item feeds along similar lines. This feed generator creates aggregate
collections of data items for a particular tag or category tracked by the blog.
It does so by grouping together all data items published with posts that are
marked with the specified tag or category. The following URL is an example of
such a request:

/.../datapress/feed.php?tag=Research+Paper

Using data feeds web users may fetch a feed (in either JSON or RDF) of the
structured data added to blog posts and incorporate that data into their own
visualizations. A research group, for example, could aggregate the individual
users’ reading blogs into a group-wide record of readings.

If we accept that many bloggers blog out of the hope that others will consume
what they blog, we can conclude that bloggers will be attracted to the idea of
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offering rich consumable data feeds with no additional effort on their part. We
believe that such an access methodology will encourage increased casual data
curation, as users who blog about similar items over time (trips, meals, workouts,
papers, etc.) will value the data feed more than the sum of each individual
annotated item once others can present the data in a visual, interactive manner.

5 DataPress in a Data Ecosystem

While the first step toward data publishing for bloggers is to give them value for
using structured data, we keep in view the eventual goal of integrating linked
data sources across the web. One natural link is the one between blogs run by
individuals and wikis curated by communities. Projects like Semantic MediaWiki
(SMW) and Freebase already offer several tools to support community-curated
datasets. This section describes DataPress’ features for integrating into such an
ecosystem of data publishing.

To demonstrate the possibilities of such an ecosystem, we extend SMW with a
plugin we have developed called Wibitl. Wibit enables interactive visualizations,
data sharing, and schema sharing using the data contained in the SMW knowl-
edge base. From a visualization perspective, Wibit provides a WikiText syntax
that enables SMW users to create Exhibit visualizations that aggregate the re-
sults of an ASK query (to be contrasted with approaches like Project Halo [10]
which make use of graphical interfaces). From a data perspective, our develop-
ment version of Wibit provides a data API that permits external services to
query the wiki knowledge base.

Working together with DataPress, the Wibit extension provides a number of
integration points between SMW and data-aware blogs. Using the Wibit API,
DataPress users can issue a remote ASK query and visualize its results from within
a blog post. As DataPress allows multiple data sets to be combined, this means
that a blogger can combine a wiki’s data set with their own data feeds. This
data flow also works in reverse: Wibit can aggregate data feeds across several
blogs to display a visualization of blogged items.

As the data web evolves, we believe this blog-wiki connection is also a mecha-
nism to encourage schema convergence within communities of interest. Users of
a community can collaborate on the common definition of an item type on their
community wiki, and then bloggers can use this schema to publish instances
with their blog articles. Wibit’s API exports SMW schemas in a JSON format
for the DataPress template loader to read. When DataPress users are adding
data items to their posts, they may pick from one of these community-defined
item schemas instead of creating their own.

By facilitating the transfer of visualizations, data and schemas across blogs
and wikis, data-oriented tasks can live closest to where they are natural: wikis
for crowd curation and blogs for individual publication and reflection.

4 A wiki running the introduced extensions and examples is available at:
http://projects.csail.mit.edu/wibit


http://projects.csail.mit.edu/wibit

Talking about Data: Sharing Richly Structured Information 59
6 Lessons Learned

DataPress is available as an open sourced plugin for WordPress. We now describe
initial observations about how early adopters have used DataPress and provide
lessons learned from phone interviews with three of these DataPress users. The
users in this study are all running DataPress 1.2 or earlier, which lacks individual
item publishing, data feeds, and Semantic MediaWiki hooks.

6.1 DataPress in the Wild

Since releasing DataPress, the tool has been downloaded 90 times. Of these
downloads, 21 users chose to participate in a statistic collection study the soft-
ware offers as an option, including one website whose DataPress-built exhibit
has seen over 55,000 page views. We present some observations about this log
data, though we stress that the number of users does not give our results statis-
tical significance. In total, 56 visualizations were created and reported back to
our servers, receiving 64,324 total page views. Of these, approximately half were
created as permanent pages on their site, while the other half were embedded in
blog entries.

Facets, or Lack Thereof. Facets are an important component for navigating
structured data, and many Exhibits found online are heavily faceted to support
deeper navigation of the data. One might expect highly-faceted Exhibit con-
figurations through DataPress, but many DataPress-based Exhibits we found
consisted of simply an unfaceted map or timeline for inline display of data.
This suggests that even simple tools without the interactive features Exhibit
provides—such as search, faceted navigation, and data lenses—are of great help
to bloggers with data to display.

Lightboxing. Because of the narrow-width layout of many blogs, we assumed
that the lightboxing feature of DataPress would be heavily used. However while
lightboxed visualizations received more pageviews than “inline” visualizations
in our data set, the lightbox setting was not frequently employed. User inter-
views indicated that some users might not have understood what the feature
provided. Additionally, the reduced use of facets might have resulted in less
space-constrained visualizations than we expected.

Data Footnotes. Finally, in our goal of exposing data for future reuse, we tried
to make data footnotes simple to embed in a blog entry. While data footnotes
are included by default as a textual token in any post that contains a DataPress-
configured visualization, most visualization authors removed the footnotes from
their entries; user interviews indicated the reasons are varied.

6.2 User Interviews

To better understand user motivations for seeking out DataPress and to learn
how they used the tool, we conducted e-mail and phone interviews with three
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DataPress users: a scientist managing a publications list, a large website owner
wishing to add dynamic features to HTML tables, and a hobbyist/entrepreneur
who maintains a website for his citys local music scene. None of the three users
were technical: the most experienced felt confident enough to edit CSS, but not
write JavaScript.

None of the three users indicated “data blogging” as their goal, and none of
them published a visualization inside a blog post. Rather, each used DataPress
to place visualizations on permanent, dedicated pages of their own, more like a
content management system than a blog. Time will tell whether this contradicts
our claims that blogs are a natural place for structured data publishing. Much as
Flash animations or audio files were once a destination of their own, while today
they are casually embedded in blog posts, one might expect a similar transition
for rich data objects.

Latent Data Needs. We claimed in Section [ that the prevalence of data in
natural language blog posts indicates a latent need for better data publishing
tools. For the three users we spoke with, the need was not so latent: each actively
sought a way to present dynamic data visualizations on their site. One had
heard of Exhibit, and installed WordPress and DataPress in order to create
Exhibits without having to edit HTML. The other two had actively searched for
a data visualization tool over the course of several months and eventually found
Exhibit. After trying unsuccessfully to integrate Exhibit into their WordPress
installations, they returned to the web looking for help and found DataPress.

The fact that some users are searching for months to find data visualization
tools suggests that the many APIs offering data visualization services have an
untapped audience of bloggers who want these services but dont know what to
do with an API. For each of these authors who found our tool, there are surely
more that have yet to find a tool to help them, and still more who haven’t
even thought to look for such tools because they believe data visualization to be
outside the reach of bloggers.

Crossing the Structured Data Chasm. We learned that tools which provide
a compelling reason for users to publish structured data can lead users to struc-
ture previously unstructured or poorly structured collections. One user said that
she previously maintained a list of her publications in a MS Word document,
but the ability to publish a faceted list of publications online motivated her to
structure this list in a Google Spreadsheet. Another user initially maintained
an HTML table to present a hand-curated collection of data, but moved this
data into a separate data file so that he could provide users the ability to better
explore the data.

Features without examples go unused. When we asked authors why they
did not use some of DataPress’ features, a common response was that our in-
terface did not show examples of what the result of those features would be.
This is food for thought from a design perspective: even though the high-level
function of these feature was often clear (“Add a map”, for example, or “Add a
search box”) the users still wanted to see usage examples first. After seeing (or
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hearing) these, they decided that the feature would be useful to them in many
cases. Our high-traffic user who was only publishing a dynamic table was so
enthused about the other configuration options after speaking with us that he
added a map, timeline, and several dynamic facets to his visualization the day
after our interview with him.

We must accommodate a spectrum of data ownership philosophies.
We also learned that users are well-aware of the potential perils of publishing
reusable datasets and easily-replicated visualizations. While not deeply technical,
all three users understood that someone could copy their dataset by linking
to it, and replicate their visualization by copying their Exhibit HTML. Their
reactions varied. One author felt ownership over his data and would want any
reuse negotiated beforehand, though he recognized that symbiotic relationships
could be built around collaborative data editing. This author took the time to
modify the CSS of his site to hide Exhibits bundled data copying interface.
Despite that, he was happy see his entire visualization embedded in another site
as long as the site drove traffic back to his. Another author was fine with reuse
of either her data or her visualization, but felt that reuse of both together would
be inexcusable copying. Finally, the third author was fine with his visualizations
and data being reused by others, as long as proper attribution and links were
provided. As tool builders, we must remember to try to accommodate both the
information sharer and the businessperson who seeks benefit in exclusivity.

Users want more data tools. The authors we spoke to also understood—
and requested—features related to the wider data ecosystem, apart from the
visualization capabilities. One mentioned encouraging other site owners to col-
laboratively maintain complimentary data sets so that they could display the
data in different ways on their sites. Two of the three authors specifically re-
quested the ability to communally maintain data on a wiki and then display
visualizations of it from within their blog environment. This is significant be-
cause these authors were using a version of DataPress without this feature and
were unaware that it existed.

7 Related Work

The past few years have seen a great number of projects devoted to visualiz-
ing and cataloging structured data on the web. Many Eyes [I3] allows users to
upload data files and create interesting data visualizations via a web interface.
These visualizations are both viewable on their site and embeddable into other
sites. While Many Eyes facilitates data visualization, it requires the user to step
outside their authoring tool of choice (such as a blog or wiki) and use a third-
party service to create and host their visualization. DataPress instead enables
authoring from within the blog environment and without third-party services.
Further, while Many Eyes focuses on numerical data and content modeling, we
target faceted navigation [9] across semi-structured data sets. Semi-structured
data opens doors to visualizations involving multiple datasets, allowing authors
to build on discussions with novel contributions from new data.
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Sense.us [I1] is a study in visualizations which facilitate asynchronous collab-
oration in a centralized fashion. We want to modify this model by decentralizing
the visualizations and data references, allowing collaboration to occur in the
native content publishing platform(s) of the user(s).

Exhibit [12] is a client-side web framework for creating rich visualizations of
data. Exhibit combines textual data files (such as RDF or JSON) with an HTML-
embedded configuration file to produce interactive faceted data displays. While
they needn’t be programmers, Exhibit authors must be comfortable editing raw
HTML and often must be familiar with data formats such as JSON. DataPress
relies on Exhibit to power its visualizations, but it relieves the need to understand
Exhibit’s configuration syntax by providing a wizard that integrates with the
blogging platform. In doing so, we aim to bring Exhibit’s effective visualization
capabilities to the broader class of users.

The Google Visualization API [4] enables programming-savvy webmasters to
create a variety of data visualizations. As we aim to bring such visualizations into
the realm of blog and wiki content, we see tools like this as potential components
to incorporate into our own framework.

While the New York Times Visualization Lab [6] does not appear to use a
generally-available framework for authoring displays, it deserves mention as an
organization which puts a lot of effort to embed rich information displays in
online content. The fact that the interactive data-driven diagrams appearing in
its online edition appear to be hand-coded only underscore the need for better
general-purpose visualization tools accessible to web authors.

Several projects have also risen to prominence to provide entry and catalogu-
ing of structured data on the web. DBpedia [7] curates the structured information
already present in Wikipedia taxonomies (categories) and Info Boxes. DBpedia
crawls Wikipedia weekly and coerces that information into an RDF database.
Semantic MediaWiki [14] is a MediaWiki extension that enables users to embed
key-value annotations about a wiki topic directly in its article text. An alter-
native approach to DBpedia, Semantic MediaWiki integrates awareness of the
inherent structure and types of data into the wiki, and thus the authorship pro-
cess, itself rather than attempting to recover structure from the natural-language
oriented MediaWiki database. Other tools, such as Freebase [2] and Factual [I]
provide many-to-many data authorship environments rather than attempting to
interweave structured data curation along with natural language information
repositories. These projects are an interesting new class of democratized data
management tools by themselves, and we see them as being another important
public data source in the connected data ecosystem that is evolving.

8 Conclusion

The design of DataPress reflects a belief that a data-aware web needs tools that
make grassroots authors want to work with data. We show the need for such
tools with a study of data-oriented blog content. DataPress makes progress on
this goal by fitting portions of the semantic web vision into a tool crafted specif-
ically for the blogging workflow. DataPress provides bloggers with an easy way
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to create, link, and publish data while preserving many of the properties that
make blogging an attractive publication platform: one-click publishing, flexible
format support, easy copy and paste, and immediate results. DataPress fur-
ther demonstrates a possible ecosystem of grassroots semantic web publishing in
which community wikis serve to centralize ontology management while bloggers
use these definitions to create feeds of data over time. We reflect on conversa-
tions with our users to better understand how this need is manifested and how
to build better tools to facilitate casual use of structured data on the web.
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Abstract. Biomedical ontologies and semantic web policy languages
based on description logics (DLs) provide fresh motivations for extending
DLs with nonmonotonic inferences—a topic that has attracted a signif-
icant amount of attention along the years. Despite this, nonmonotonic
inferences are not yet supported by the existing DL engines. One reason
is the high computational complexity of the existing decidable fragments
of nonmonotonic DLs. In this paper we identify a fragment of circum-
scribed ££1 that supports attribute inheritance with specificity-based
overriding (much like an object-oriented language), and such that rea-
soning about default attributes is in P.

Keywords: Nonmonotonic description logics, Defeasible inheritance.

1 Introduction

The ontologies at the core of the semantic web — as well as ontology languages
like RDF and OWL — are based on fragments of first-order logic and inherit
strengths and weaknesses of this well-established formalism. Limitations include
monotonicity, and the consequent inability to design knowledge bases (KBs) by
describing prototypes whose general properties can be later refined with suitable
exceptions. This natural approach is commonly used by biologists and calls for
an extension of DLs with defeasible inheritance with overriding (a mechanism
normally supported by object-oriented languages) [18,[19]. Another motivation
for nonmonotonic DLs stems from the recent development of policy languages
based on DLs [21[T3}22l[17]. DLs nicely capture role-based policies and facilitate
the integration of semantic web policy enforcement with reasoning about seman-
tic metadata (which is typically necessary in order to check policy conditions).
However, in order to formulate standard default policies such as open and closed
policiesand authorization inheritance with exceptions, it is necessary to adopt
a nonmonotonic semantics (see the survey [9] for more details).

Given the massive size of semantic web ontologies and RDF bases, it is manda-
tory that reasoning in nonmonotonic DLs be possible in polynomial time. Unfor-
tunately, in general nonmonotonic DL, reasoning can be highly complex [TIT2I8];

L If no explicit authorization has been specified for a given access request, then an
open policy permits the access while a closed policy denies it.

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 64-79, 2010.
© Springer-Verlag Berlin Heidelberg 2010
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the best approaches so far belong to the second level of the polynomial hierar-
chy [IO[7].

In this paper we identify a fragment of circumscribed DLs that extends £L
with default attributes and inheritance with overriding. Informally, the exten-
sion allows us to express defeasbile inclusions such as “the instances of C' are
normally in D”, for two concepts C' and D. Such axioms can be overridden by
more specific inclusions, according to a priority mechanism. Our strategy is pre-
serving the classical semantics of ££ as much as possible, in order to facilitate
the adaptation of the existing monotonic ontologies. Our framework restricts
nonmonotonic inferences to setting the default attributes of “normal” concept
instances, without changing the extension of atomic concepts. We define two
slightly nonstandard reasoning tasks to query the properties of normal instances.
In general, these reasoning tasks are NP-hard. The main cause of intractability
is the presence of conflicting defeasible inclusions, i.e., inclusions that give rise to
an inconsistency when applied to the same individual. However, if for all pairs
of conflicting inclusions é; and ds, with non-comparable priority, there exists
a disambiguating, higher priority inclusion that blocks at least one of §; and
02, then the time complexity of the reasoning tasks becomes polynomial. We
show that the identification of such é; and d2 can be carried out in polynomial
time; then the disambiguation can be left to the ontology engineer or performed
automatically by generating a default that blocks both §; and ds.

The paper is organized as follows. In Sec. Bl we recall the basics of circum-
scribed DLs with defeasible inclusions, using the notation adopted in [7]. In
Sec. 211 we motivate and define a new reasoning task, tailored to inferring the
default properties of concepts. Section [ is devoted to the complexity analysis
of this inference problem for the general case and for the restricted class of KBs
outlined above. In Sec. [ the new task and complexity results are extended to
instance checking. A section on related work (Sec. [Bl) and one summarizing our
results and discussing interesting future work (Sec. [B]) conclude the paper.

2 Preliminaries

In DLs, concept expressions are inductively defined using a set of constructors
(e.g. 3, —, M), starting with a set N¢ of concept names, a set Ng of role names,
a set Ny of individual names, and the constants top T and bottom L. In what
follows, we will deal with expressions

C,Du=A|T|L|CcnD|-C|3R.C,

where A is a concept name and R a role name. In particular, the logic ££%
supports all of the above expressions except negation (—C). Knowledge bases
consist in a (finite) set of concept inclusion assertions of the form C C D (TBox)
and a (finite) set of instance assertions of the form C(a), R(a,b) with a,b € N,
(ABox).

The semantics of the above concepts is defined in terms of interpretations 7 =
(AT, .T). The domain A% is a non-empty set of individuals and the interpretation



66 P.A. Bonatti, M. Faella, and L. Sauro

Name Syntax Semantics

negation -Cc AT\ T

conjunction cnbD ctfnp*

existential restriction IR.C' {d € AT | 3(d,e) € RT : e € C*}
top T TI=A%

bottom 1 1T=9

Fig. 1. Syntax and semantics of some DL constructs

function T maps each concept name A € N¢ to a set AZ C AZ, each role name

R € Ng to a binary relation RZ on AZ, and each individual name a € N; to
an individual aZ € AZ. The interpretation of arbitrary concepts is inductively
defined as shown in Figure[Il An interpretation Z is called a model of a concept
C if CT £ (. If T is a model of C, we also say that C is satisfied by 7.

An interpretation Z satisfies (i) an inclusion C C D if CT C D%, (ii) an
assertion C'(a) if aZ € CZ, and (iii) an assertion R(a,b) if (aZ,b?) € RZ. Then,
7 is a model of a knowledge base S iff 7 satisfies all the elements of S.

Here we consider defeasible €L knowledge bases KB = (8, D) that consist of
a (finite) set of classical axioms (inclusions and assertions) S and a (finite) set D
of defeasible inclusions (DIs for short). Hereafter, with C' Cxp D we mean that
D classically subsumes C, that is S | C T D. A classical axiom can be either
a normal form axiom [1] or an inclusion/disjointness of existential restrictions:

ACB A; C 3R Ay A1MA C B

JPAC B dR.A; C 35 A4, JRAMNMIRACL

where letters of type A can be either a concept name or T, whereas letters B
either a concept name or L. Defeasible axioms take the form A; C,, 3R.A> and
can be informally be read as the instances of Ay are normally in AR.As.

Ezxample 1. A well-known example of prototypical property in a biomedical do-
main is reported by Rector [I8[19]: “In humans, the heart is usually located on
the left-hand side of the body; in humans with situs inversus, the heart is lo-
cated on the right-hand side of the body”. A possible formalization in the above
language is:

Human C,, Jhas heart.LHeart

SitusInversus C Human 1 Jhas heart.RHeart
LHeart C Heart M Jposition.Left

RHeart C Heart [ Jdposition.Right.

In the absence of functional roles, we prevent humans to have both a LHeart
and a RHeart with the disjointness axiom:

Jhas heart.LHeart 1 Jhas heart.RHeart C | . O
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The nonmonotonic semantics summarized below follows the circumscriptive ap-
proach of [7].

Intuitively, a model of a knowledge base KB is a classical model of S that
maximizes the set of individuals satisfying the defeasible inclusions in D. For-
mally, for all defeasible inclusions 6 = (A C,, C) and all interpretations Z, the
set of individuals satisfying ¢ is:

sat7(0) = {z € AT |z ¢ AT or 2 € C7}.

How such sets can be mazimized depends on what is allowed to vary in an
interpretation. Here we assume that only the extension of roles can vary, whereas
the domain and the extension of concept names are assumed to be fixed. This
semantics is called Circy.

The reason of this choice is rooted in the goal of having a minimal impact on
the classical semantics of DLs. If a concept name A is allowed to vary and has
exceptional properties, then A may become empty as illustrated in [8]; in most
cases, however, it is undesirable to empty a concept only because it has non-
standard properties. It should be possible to extend an existing ontology with
default attributes without incurring in such side effects. With Circgy, a subsump-
tion A C B where A and B are atomic concepts is nonmonotonically valid iff it
is classically valid. At the same time, it is possible to infer new inclusions like
A C JR.B that specify default properties of A. In other words, Circgyx supports
default attributes without changing the extension of atomic concepts, as desired.

Maximizing defeasible inclusions may lead to conflicts between defeasible in-
clusions whose right-hand sides are mutually inconsistent. For this reason, it is
useful to provide a means to say that a defeasible inclusion §; has higher priority
than another defeasible inclusion do. This can be in general provided explicitly
by any partial order over D, but here we focus on an implicit way of defining
priorities, namely specificity, which is based on classically valid inclusions 3 For
all DIs 01 = (41 C,, C1) and dy = (A3 C,, Cs), we write

01 < 99 iff Ay T As and As ZLxp A;.

Ezxample 2. Consider the access control policy: “Normally users cannot read
project files; staff can read project files; blacklisted staff is not granted any ac-
cess”. In circumscribed £

Staff C Users

Blacklisted C Staff

UserRequest = dsubject.Usersl Jtarget.Projects 1 Jaction.Read
StaffRequest = Jsubject.Staff M Jtarget.Projects1Jaction.Read
UserRequest C,, ddecision.Deny

StaffRequest C,, ddecision.Grant

Jsubject.Blacklisted C Jdecision.Deny

Jdecision.Grant M Jdecision.Deny C L.

2 Since concept names are all fixed and retain their classical semantics, specificity can
be equivalently defined using nonmonotonically valid inclusions instead. The result
is the same, for all priority relations over defeasible inclusions.
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As usual, C = D abbreviates C T D and D T C. The two equivalences can
be reformulated using normal form axioms (see Example [). Clearly the two
defeasible inclusions cannot be simultaneously satisfied for any staff member
(due to the last inclusion above). According to specificity, the second defeasible
inclusion owverrides the first one and yields the intuitive inference that non-
blacklisted staff members are indeed allowed to access project files. a

We are finally ready to formalize the semantics of KBs with defeasible inclusions.
The maximization of the sets satz(d) is modelled by means of the following
preference relation <p over interpretations. Roughly speaking, Z <p J holds
iff 7 improves J by extending the set of individuals that satisfy some defeasible
inclusions. More precisely, if ;1 < d2 (i.e., d; has higher priority than d5), then
the set of individuals satisfying §; may be extended at the cost of restricting
those that satisfy ds.

Definition 1. For all interpretations T and J, let T <p J iff:

AL = AJ;

at = a7, for all a € Ny;

AT = A7 for all A€ Nc;  (concept name extensions are fived)

for all § € D, if satz(d) 2 sat7(9) then there exists &' € D such that &' < 6
and satz(0") D sats(0') ;

5. there exists a 0 € D such that satz(d) D saty(9).

™ oo =

The subscript D will be omitted when clear from the context. Now 7 is a model
of Circsix(KB) iff 7 is a model of S that cannot be further improved (defeasible
inclusions are satisfied “as much as possible”).

Definition 2 (Model). Let KB = (S,D), an interpretation Z is a model of
Circiix(KB) iff T is a (classical) model of S and for all models J of S, J £ T.

Ezample 3. Let KB be the knowledge base of Example 2l According to condi-
tion 2 in Def. [Tl model improvements cannot change the extension of atomic con-
ceptSE therefore, if Grant and Deny are empty in a model, then the two defeasible
inclusions of LB cannot possibly force any request to satisfy Jdecision.Grant
nor Jdecision.Deny. In order to “enable” the two Dls, it suffices to assert that
Grant and Deny are non-empty, by means of an auxiliary role aux and two simple
inclusions:
T C Jaux.Grant TC Elaux.DenyE

Now the two DIs can “fire” and, as a consequence, the models of Circsix(KB) are
all the models of the classical inclusions of KB such that for all individuals x
satisfying Jtarget.Projectsl Jaction.Read,

3 Recall that this is one of our requirements, aimed at controlling the side effects of
adding defeasible inclusions to existing classical ontologies.

4 These axioms are usually harmless and can be inserted with the help of automated
tools, that identify which concepts occurring in the right hand side of a DI can
possibly be empty.
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— if x satisfies Isubject.Blacklisted, then z satisfies 3decision.Deny;
— otherwise, if = satisfies Isubject.Staff, then = satisfies Jdecision.Grant;
— otherwise, if x satisfies dsubject.User, then x satisfies 3decision.Deny. 0O

The above example shows the need for declaring the non-emptyness of default
attribute ranges, such as B in A C,, AR.B. In theory, such declarations may be
inconsistent with the knowledge base; however, in practice, concept names are
usually meant to be non-empty and, accordingly, concept consistency checking
is a typical step in ontology validation. In other words, we only need to make
explicit some assumptions that are sometimes left implicit; this can be done
automatically for all default attribute ranges B. These additional axioms can
be easily checked for consistency: In ££%, if all non-emptyness statements are
individually consistent with the KB, then also the set of all non-emptyness state-
ments is collectively consistent; consequently, no combinatorial problems arise
and consistency checking remains polynomial. It is not difficult to extend this
framework with nominals and concrete datatypes; when default attributes range
over nominals or concrete domains, non-emptyness is implicit in the logic and
no explicit declarations are needed.

2.1 A New Reasoning Task

Now that we have provided constructs for associating concepts to default prop-
erties, we need a suitable reasoning task to retrieve them. For example, from
the formalization of human heart we would like to infer that typical humans
satisfy Jhas heart.LHeart. Subsumption queries, according to [8], are defined
as follows: Circq(KB) |= C C D iff for all models Z of Circs(KB), CT C DZ.
This reasoning method is not completely appropriate for our purposes, because
a standard subsumption query A C JR.C considers not only the typical mem-
bers of A, but also the typical members of A’s subconcepts, where A’s default
properties may be overridden. In this way, some of A’s default properties might
not be included in the answer. For instance, in the context of the situs inver-
sus example, it is generally not possible to entail Humans C Jhas heart.LHeart,
because the members of Humans comprise all the members of SitusInversus,
too, that are forced to satisfy Jhas heart.RHeart, instead. For this reason, in
this work we consider a slightly modified subsumption problem, according to
which a query A C JR.C' is interpreted as: “Do the individuals belonging to A
and no subconcepts of A satisfy AR.C?”. This is a sort of closed world assump-
tion. It is equivalent to interpreting A C IR.C' as CWAkg(A) C 3R.C, where
CWAkp(A) = AN[{=B | B € Nc and A Zxp B}. In ELF, this closure cannot
introduce any inconsistency:

Theorem 1. For all EL* knowledge bases KB, CWAxp(A) is satisfiable w.r.t.
KB iff A is satisfiable w.r.t. KCB.

CWAkp(A) can be equivalently defined in purely model theoretic terms not
involving — as the set | A|% that denotes the set of all individuals d € A% such
that, for all concept names B, d € B holds only if A Cxp B. Then, we define
the modified entailment problem as follows:
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Definition 3. Let Circix(KB) Eew A T D hold if and only if for all models T
of Cil’Cﬁx(lCB), |_AJI - DZ.

Ezample 4. Extend the knowledge base of Example [[l with T E Jaux.LHeart,
to ensure that there exists at least one normal heartﬁ Note that

CWAkp(Human) =Human [ —SitusInversus1—LHeart 1 —-RHeartl
—Heart N —Left M —-Right.

It is not hard to see that Circsx(ICB) =ov Human C Jhas heart.LHeart and
Circix(KB) Ecw SitusInversus C Jhas heart.RHeart, as desired. O

The reader may wonder whether in general the CWA can be too restrictive
and miss valid default properties. This might happen if a concept A’s extension
could be completely covered by n subconcepts A1, ..., A, sharing a same default
property dR.B. In this case, it would be natural to require A’s prototypical
members to satisfy IR.B, as they must necessarily fall into some A;. However,
in £L£* such coverings cannot be defined, i.e. there is always a model Z in which
there exists d € AT\ |JI_, AZ. Such d need not satisfy 3R.B, and hence it would
be inappropriate to list 3R.B among the default properties of A.

3 Complexity

3.1 NP-Hardness of the General Case

In general, deciding whether Circsi(KB) Eew A C D holds is NP-hard. This
can be proved by reducing SAT to our reasoning task. For each clause ¢; in the
SAT instance introduce two roles C; and C;. Intuitively, the meaning of 3C;
and 3C; is: ¢; is/is not satisfied, respectively. For each propositional symbol Dj
introduce two roles P; and Pj. Intuitively, 3P; and EIPJ- represent the truth of
the complementary literals p; and —p;, respectively. Then, we need two concept

names By and By, and a role F'. Intuitively, 3F' represents the falsity of the set
of clauses. The semantics of clauses is axiomatized by adding the inclusions

3p; C 3C;, 3P, C3C,

for all disjuncts p; and —pg in ¢;. The space of possible truth assignments is
generated by the following inclusions:

BoC,3P;, ByC,3P;, 3P,N3PC L.

All of the above defaults have the same priority. The defeasible inclusions with
the same index j “block” each other; we make at least one of them active by
assuming By; this “forces” a complete truth assignment. Then we introduce a
defeasible inclusion with lower priority:

ByC B, By LC,3C;.

® See Example Bl for an explanation of this kind of axioms.
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This defeasible inclusion “assumes” that ¢; is not satisfied. The first three groups
of axioms may defeat this assumption (if the selected truth assignment entails
3C;) thanks to the following disjointness axiom:

Ic;n3ac; L.

Finally, we need the inclusions 3C; T F to say that the set of clauses is not
satisfied when at least one of the clauses is false. Now let BB denote the above
set of inclusions. It can be proved that the given set of clauses is unsatisfiable
iff:

Circeix(KB) Eew Bo C 3F .
Consequently:

Theorem 2. Let KB range over EL knowledge bases. The problem of checking
whether Circax(KB) e C E D is NP-hard, even if C' is a concept name and D
an unqualified existential restriction.

3.2 A Polynomial Case

The above reduction of SAT is based on concepts with equally specific, conflict-
ing default properties. In our reference scenarios, we expect such situations to
be symptoms of representation errors. For instance, in modelling prototypical
entities, equally specific and conflicting default properties constitute a contra-
dictory prototype definition. In the access control domain, a class of requests
associated to conflicting decisions with the same priority constitutes an ambigu-
ous policy, with potentially dangerous consequences. In this section, we focus
on a class of KBs called conflict safe, where this kind of conflicts cannot occur.
This restriction turns out to reduce the computational complexity of reasoning.

Intuitively, the idea is that it is possible to check efficiently whether two
defaults d; and do block each other and none of them is more specific than the
other (as in the reduction from SAT). Such conflicts, that make the search space
grow, can be solved (either manually or automatically) by adding more specific
defaults that determine how to resolve the conflict (either in favor of one of the
;s or blocking them both). In the following, let KB = (S,D) be an arbitrary
knowledge base. The next definitions are all relative to KB.

We say that two defeasible inclusions are in conflict when they can be simulta-
neously activated (their premises are mutually consistent) and their conclusions
are mutually inconsistent. The formal definition follows.

Definition 4. Two defeasible inclusions 61 = A1 T, JR.A} and 62 = Ay T,
35.A4% are in conflict, denoted by 01 «» 02, iff A1 T Az Zxpl and IR.A| N
35. AL Crpl.

Since classical subsumption in £+ knowledge bases can be computed in poly-
nomial time [2], we have:

Proposition 1. Given an EL* knowledge base KB = (8,D) and two defaults
61 and 9 in D, the problem of checking whether 61 <~ o is in PTIME.
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A naive approach to listing all the conflicting pairs, consists in performing a
quadratic number of ££1 subsumptions. Better strategies can be obtained by
adapting the ideas behind efficient classification algorithms [6, Chap. 9] to reduce
the number of comparisons (the details lie beyond the scope of this paper). In
this section we assume that ICB is conflict safe in the following sense:

Definition 5. B is conflict safe iff whenever two defeasible inclusions ;1 =
Ay C, 3R.AY and 62 = Ay C,, 3S.A4) are incomparable and in conflict (i.e.
01 £ 02, 02 £ 01 and 61 «» d3), then (i) Ay Zxp Az, (ii) there exists a concept
name As such that As =xp A1 M As, and (iii) one of the following sets of
inclusions belongs to KB:

— A3 T, 3RA;
— A3 C, 3T and 3TN 3R.A] CL and 3T T13S. A C 1. O

Note that the above three DIs (whose priority is higher than d; and d2) corre-
spond to three possible ways of resolving the conflict between §; and &2, namely,
supporting the conclusion of §;, supporting the conclusion of d3, or blocking
both d; and d5. The third option constitutes a possible default conflict reso-
lution strategy that can be performed automatically by introducing fresh roles
T and the corresponding disjointness axioms. Note also that our two running
examples are conflict safe because all conflicting defaults are comparable and
specificity resolves the conflict.

We proceed towards a PTIME algorithm for reasoning with conflict safe KBs.
We first need some preliminary definitions. Given a concept C, SupCls(C') denotes
the set of superclasses of C:

SupCls(C) ={B | C Cxg B} U{3R.A| C Cxp IR.A}. (1)

We write C ~ A if C Cxp dR.A for some R, and we denote by 5 the transitive
closure of ~». Given a concept C, the operator NE(C) represents the set of
concepts that are forced to be non-empty whenever C' is. Notice that this set
includes some concepts that are forced to be non-empty by the ABox in KB,
independently of C'.

NG(C) ={C}u (J{A|KBEA@@}u ) {A|KBE (GRA)()} (2)
a€N, aeN|,RENR
NE(C)= |J {41454} (3)
AENG(C)

When trying to satisfy a certain defeasible inclusion A; C,, 3R.As, we have to
check two forms of consistency. First, the addition of an R edge to A, should
be possible without modifying the interpretation of the concepts names, that
are fixed. This check is realized by the following function Compg,. Second, the
addition of IR.As should not lead to classical inconsistencies, also considering
other defeasible inclusions that were previously satisfied. This check is realized
by the function Cons.
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Algorithm 1:

Data: C, KB = (S, D).
1 X « SupCls(C);
2 while D # () do

3 remove from D an inclusion § = (A1 C,, IR.A2) with maximal priority;
4 if A1 € SupCls(C) and § € Compg, (C) N Cons(X) then
5 X — XU SupCls(3R.A>);

6 return X;

For a concept C, Compg, (C) (for fized-atoms compatible) is the set of defeasi-
ble inclusions whose r.h.s. agree with C' on the inferred and non-empty concept
names. That is, a defeasible inclusion A; C,, 3R. A3 is in Compg, (C) if and only
if: (i) NE(3R.A2) C NE(C) and (ii) for all concept names A € SupCls(3R.A3),
it holds A € SupCls(C).

For a set of concepts X, Cons(X) is the set of defeasible inclusions whose r.h.s.
is logically consistent with X. That is, a defeasible inclusion A; C,, 3R.A5 is in
Cons(X) if and only if [,cx D M (3R.A2) ks L.

We claim that Algorithm [ when invoked over the concept C, returns the set
of all concepts C’ that are implied by C under the closed world assumption.

Theorem 3. Let X be the result of Algorithm [ on the concept C. If KB is
conflict safe and assertion—fr@tﬁ then X = {C" | Circix (KB) Eew C C C'}.

Proof. (C) Let C" € X. If C" was inserted in line 1 of the algorithm, then C’
is classically implied by C (i.e., C Cxg C’), and hence Circix(KB) e C C
C'’. Otherwise, C’ was inserted in line 5. Hence, there is a defeasible inclusion
0 = (A1 C,, 3R.Ay) such that A; € SupCls(C), § € Compg, (C) N Cons(X’) and
C’ € SupCls(3R.As), where X' is the value of the variable X when C’ was inserted.
By applying the definition of Compg,, we obtain that (i) NE(3R.A2) C NE(C),
and (%) for all concept names A’ € SupCls(3R.As), it holds A’ € SupCls(C).
Let Z be a model of Circgy (KB) with an individual d € [C'|%, we show that d €
C". Assume by contradiction that d & C'%. Since A, is a classical consequence
of C, we have d € AT. Since C’ € SupCls(3R.As3), we have d € (3R.A3)%. We
show that there exists a classical model J of B that improves Z, i.e., J <p Z.
To define J, for all 35.43 € SupCls(3R.A3) (including IR.A; itself), we add to
7 an S-arc from d to an individual = € Ay . The existence of such an individual
is guaranteed by the fact that NE(3R.A3) C NE(C). As a result, we have in
particular that d € (IR.A2)7. By (i), all atomic concepts that are classical
consequences of IR. A, are also consequences of C'. This, together with the fact
that ¢ € Cons(X'), ensures that J is a classical model of B. It remains to prove
that J <p Z. Since Z and J only differ on the arcs outgoing from d, we have

5 In DL jargon: the ABox is empty. The reason for considering ABox assertions in the
definition of NG(C) will be clear in the next section, when we deal with instance
checking.
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satz(d) C satz(0) and for all 6’ # 6 in D, we have satz(4’) = sat7(¢"). Therefore,
we obtain the thesis.

(2) Let C’" be a concept such that Circax(KB) Ew C C C’. Assume by
contradiction that C” does not belong to the output X of the algorithm. Clearly,
C Zxp C’, otherwise €’ would have been added to X in step 1 of the algorithm.
Since Circsix(KB) FEew C C €7, there is a defeasible inclusion Ay C,, 3R. Ay € D
such that A; € SupCls(C) and AR. Ay Cxp C' Let 5 € D be a defeasible inclusion
with the above property and maximal priority. At some point, § is extracted from
D at step 3 of the algorithm. Since C’ is never added to X, we have that either
6 & Compg, (C) or & & Cons(X'), where X' is the current value of the variable X.
In both cases, it is possible to define a model Z of Circqix(KB) with an individual
d € AT such that d € |C|* \ C'F, which is a contradiction.

We define 7 as follows.

— AT ={dc}yU{da| A€ NE(C)} U{d,|a €N}

— for each concept name A, AT = {dx | X Cxp A} U{d, | KB = A(a)};

— for each role name R, we start by putting all edges that are classically
required, i.e., R = {(dx,dy) | X Cxs IRY} U {(ds,dy) | R(a,b) €
KB} U {(ds,dx) | KB E (3R.X)(a)}. Moreover, for each IR.Y € X, we
add the edge (dc,dy) to R'. Extra edges starting from individuals other
than do are not relevant.

By construction, Z is a classical model of KB and, as C' ¢ X, d¢ € |C]%\ C"F.
It remains to prove that there is no model J that improves Z by making d¢
satisfy 5.

If 6 & Compg, (C), then either NE(3R.A3) € NE(C) or there exists a concept
name A’ such that A’ € SupCls(3R.A3) and A’ € SupCls(C) (hence, dc ¢ A'%).
Since any model J that is comparable with Z has the same interpretation for
the concept names, such model cannot have d¢ € H(R.AQ)J .

If instead § & Cons(X'), we have [Nprex: D' M3R.Ay Cip L. If this inconsis-
tency derives from classical consequences of C (i.e., IR. Az M SupCls(C) Cxp L),
the thesis is obvious. Otherwise, the inconsistency is due to one or more defeasible
inclusions § that were chosen in the previous iterations of the loop, on line 3. For
each such ¢, either its priority is higher than the one of ) , or it is incomparable with
it. In the first case, clearly it is not worth modifying § in order to improve 6. In
the latter case, we employ the assumption that KB is conflict safe. In particular,
we have that § and & are incomparable and in conflict. Let § = (A3 C,, IR.Ay).
There is a concept name As such that As =xp A M A3 and the defeasible inclu-
sion ¢/ = (A5 C,, 3R.A4) belongs to KB. Then, the priority of ¢’ is higher than
both § and §. Hence, it is not worth modifying ¢’ to improve 5. O

Theorem 4. Algorithm [l runs in polynomial time.

Proof. The main cycle of the algorithm performs as many iterations as the num-
ber of defeasible inclusions in IB. The polynomial complexity of the auxiliary
operators NE, SupCls, Compyg, and Cons derive from the polynomial complexity
of reasoning in £L. g
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The following example shows how to apply Algorithm []to the KB of Example[2

Ezample 5. Assume that KB is the knowledge base of ExampleBland we want to
check whether staff members can read project files. First, we have to reduce the
KB in normal form as follows. We introduce six new concept names — SubUsers,
SubStaff, TargProjects, AuxUsers, AuxStaff and ActRead — together with
the following equivalences.

Jsubject.Users = SubUsers

Jsubject.Staff = SubStaff
Jtarget.Projects = TargProjects

Jaction.Read = ActRead
SubUsers N TargProjects = AuxUsers
SubStaff [1TargProjects = AuxStaff
AuxUsers[1ActRead = UserRequest

StaffUsers(1ActRead = StaffRequest

The above equivalences replace the original definitions of UserRequest and
StaffRequest. The other inclusions remain unchanged. Recall that the KB

contains
T C Jaux.Grant

T C Jaux.Deny

Algorithm [l receives as input
C = Jdsubject.Staff N Jtarget.Projects 1 Jaction.Read.

On line 1, the superclasses of C' are computed. At that point, X contains, among
the others, StaffPolicy and NE(C) contains Grant. According to specificity, the
first defeasible inclusion removed from D is StaffPolicy T, Jdecision.Grant.
Since Jdecision.Grant has no proper superclasses and NE(3decision.Grant)
contains only Grant, the condition on line 4 is satisfied and X becomes X U
{3decision.Grant}. Thus, we have that

Circix(CB) Ecw
Jsubject.Staff M Jtarget.Projectsll Jaction.Read C Jdecision.Grant.

Note that the second defeasible inclusion UsersPolicy T, ddecision.Deny does
not belong to Cons(X) since Jdecision.Grant and IJdecision.Deny are
inconsistent. O

4 Reasoning about Individuals

The ideas illustrated so far can be naturally extended to reasoning about indi-
viduals, that is, instance checking. This task suffers from the same problem as
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subsumption: given an assertion A(a), the individual a might well be a mem-
ber of any subclass of A, which may prevent the default properties of A from
being inherited by a if the standard definition of instance checking [7] is used.
Therefore, some form of closure similar to CWAkp is needed. The closure, in this
case, applies to the atomic concepts that contain the individuals in the ABox,
as collected by the meta-function AtClsxp(a) =[1{A| KB = A(a)}.

Definition 6. Let KB be any defeasible ELT KB. CWA(KB) denotes the knowl-
edge base obtained from KB by adding the assertions CWAxg(AtClsig(a))(a),
for all individuals a occurring in KB.

Instance checking Circeix(CB) [Ecew C(a) is then defined as Circiix( CWA(KB)) =
C(a) or, in a model-theoretic view:

Definition 7. Circix(KB) | C(a) if and only if for all models T of Circex (KB)
if {A€Nc|al € AT} ={A e Nc | KB A(a)}, then a € C*.

Since Circsix preserves the classical semantics of atomic concepts and ELT KBs
behave like Horn theories in many respects, it can be proved that:

Proposition 2. For all defeasible EL knowledge bases KB, and all conjunc-
tions of atomic concepts C, Circix(KB) Ew C(a) iff CWAKB) E C(a) iff
KB = C(a) .

In other words, membership to atomic concepts and conjunctions thereof is fully
classical. Therefore, in this paper, we focus on the more interesting problem of
inferring the default properties of individuals. The reasoning task of our interest
is the following: Given an individual “a” and a concept AR.A, decide whether

Cil’CfiX(/CB) ):cw (HR.A)(G).

The NP-hardness proof for subsumption can be easily adapted to instance check-
ing (using the same reduction plus assertion By(a) and the query Circeix(KB) Fcw
(3F)(a)). So we get:

Theorem 5. Let KB range over EL knowledge bases. The problem of checking
whether Circix(KKB) [Eew C(a) is NP-hard, even if the existential restriction is
unqualified (i.e., A=T).

For conflict safe knowledge bases, the instance checking problem can be decided
using the same algorithm as for subsumption. What we need is to provide as
input a concept which is the conjunction of all the atomic concepts and existential
restrictions which a is classically an instance of. Let GenClsip(a) be such a
conjunction:

GenClsxp(a) =[ {A| KB = A(a)} N[ {3R.A| KBk (JR.A)(a)}.

The proof of the following theorem is analogous to Theorem [J] and is left to the
reader.
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Theorem 6. Let X be the result of Algorithm[dl on the concept GenClsip(a). If
KB is conflict safe then Circix(KB) Eew (3R.A)(a) iff (3R.A) € X.

Example 6. Let KB be a knowledge base obtained by adding to Example [] the

assertions:
Human(Mary)

SitusInversus(John)

Recall that B contains T C Jaux.LHeart, where aux is a new role name.

We want to check that Circix(KB) Eov (Jhas heart.LHeart)(Mary)
and Circix(KB) FEcw (Jhas heart.RHeart)(John). Let consider the first query,
the input of Algorithm [ is the concept C = Human. As Human has no proper
superclasses, at line 1 X = {Human}. The only defeasible inclusion to be checked
in lines 2-5 is Human C,, Jhas heart.LHeart. The set NE(Human) consists of all
the concept names occurring in the knowledge base, Fhas heart.LHeart is con-
sistent with Human and it does not force other concept names to be locally true.
Therefore, the condition in line 4 is satisfied and Jhas heart.LHeart is added
to X as expected.

For the second query, as seen before Fhas heart.RHeart classically derives from
SitusInversus and hence it is added to X directly in line 1. Note that, even if
Human C,, Jhas heart.LHeart is activated by the fact that SitusInversus Cxp
Human, the defeasible inclusion Human C,, Jhas heart.LHeart is not in Cons(X)
because Jhas heart.LHeart and Jhas heart.RHeart are inconsistent. O

5 Related Work

DLs have been extended with nonmonotonic constructs such as default rules [20,
3,4], autoepistemic operators [ITL[12], and circumscription [T0,8[7]. An advantage
of circumscription is that nonmonotonic properties apply to all individuals, while
the other approaches restrict nonmonotonic inferences to the individuals that are
explicitly denoted in the ABox, as observed in [§]. While [8] focusses on expressive
circumscribed description logics whose complexity may reach NEXPTIMENP | [10]
and [7] deal with lower-complexity DLs like ALE, DL-lite, and £L£; however, up-
per complexity bounds are all at the second level of the polynomial hierarchy or
harder, while here we have identified a tractable case. The two works [8][7] con-
sider more general forms of circumscription (with variable concept names) and
reasoning tasks (satisfiability and KB consistency) that we do not consider here.
However, they do not deal with the modified entailment |=.,, on which this paper is
focussed. Another recent attempt at low-complexity, nonmonotonic DL reasoning
is based on a modal typicality operator [15,[14], whose extension is maximized to
achieve nonmonotonic inferences. Unfortunately, reasoning is intractable in this
approach.

6 Conclusions and Perspectives

The need for supporting prototypical reasoning and exceptions in DLs can be ad-
dressed by restricting the expressiveness of the underlying DL and by selecting an
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appropriate form of inference (=cy). We have shown how to encode a recurring
example originated by the work on biomedical ontologies, and a representative
example related to semantic web policies. The adoption of Circsx makes it possi-
ble to add default attributes to the concepts of a given (classical) ontology in a
controlled way, without affecting the extension of atomic concepts. For conflict
safe KBs, the problem of reasoning about default attributes belongs to P; we pro-
vided an algorithm based on £L classification problems that enjoy efficient imple-
mentations [5]. This is a promising starting point for addressing the performance
challenges posed by the semantic web.

In the full version of this paper we will provide more details on the strategies
for making KBs conflict safe. We are also going to support more general queries
and more constructs from E£7, identifying the tractability threshold.

An interesting direction for further research consists in studying the impact
of variable concept names on the complexity of =y .
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Abstract. Systems based on statistical and machine learning methods have been
shown to be extremely effective and scalable for the analysis of large amount of
textual data. However, in the recent years, it becomes evident that one of the most
important directions of improvement in natural language processing (NLP) tasks,
like word sense disambiguation, coreference resolution, relation extraction, and
other tasks related to knowledge extraction, is by exploiting semantics. While
in the past, the unavailability of rich and complete semantic descriptions con-
stituted a serious limitation of their applicability, nowadays, the Semantic Web
made available a large amount of logically encoded information (e.g. ontologies,
RDF(S)-data, linked data, etc.), which constitutes a valuable source of semantics.
However, web semantics cannot be easily plugged into machine learning sys-
tems. Therefore the objective of this paper is to define a reference methodology
for combining semantic information available in the web under the form of logi-
cal theories, with statistical methods for NLP. The major problems that we have
to solve to implement our methodology concern (i) the selection of the correct
and minimal knowledge among the large amount available in the web, (ii) the
representation of uncertain knowledge, and (iii) the resolution and the encoding
of the rules that combine knowledge retrieved from Semantic Web sources with
semantics in the text. In order to evaluate the appropriateness of our approach,
we present an application of the methodology to the problem of intra-document
coreference resolution, and we show by means of some experiments on the stan-
dard dataset, how the injection of knowledge leads to the improvement of this
task performance.

1 Introduction

The two key aspects of natural language applications based on machine learning tech-
niques are the learning algorithm, and the feature extraction and representation of the
documents, entities, or words that have to be manipulated. Reviewing the relevant lit-
erature of the last years, one realizes that, typically, the diff