

Lecture Notes in Computer Science 6496
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Peter F. Patel-Schneider Yue Pan
Pascal Hitzler Peter Mika
Lei Zhang Jeff Z. Pan
Ian Horrocks Birte Glimm (Eds.)

The Semantic Web –
ISWC 2010
9th International Semantic Web Conference, ISWC 2010
Shanghai, China, November 7-11, 2010
Revised Selected Papers, Part I

13

Volume Editors

Peter F. Patel-Schneider
Bell Labs Research, Murray Hill, NJ 07974, USA
E-mail: pfps@research.bell-labs.com

Yue Pan
IBM Research Labs, Beijing 100193, China
E-mail: panyue@cn.ibm.com

Pascal Hitzler
Wright State University, Dayton, OH 45435, USA
E-mail: pascal.hitzler@wright.edu

Peter Mika
Yahoo! Research, 08018 Barcelona, Spain
E-mail: pmika@yahoo-inc.com

Lei Zhang
IBM Research Labs, Shanghai 201203, China
E-mail: lzhangl@cn.ibm.com

Jeff Z. Pan
The University of Aberdeen, Aberdeen, AB24 3UE, UK
E-mail: jeff.z.pan@abdn.ac.uk

Ian Horrocks
University of Oxford, Oxford, OX1 3QD, UK
E-mail: ian.horrocks@comlab.ox.ac.uk

Birte Glimm
University of Oxford, Oxford, OX1 3QD, UK
E-mail: birte.glimm@comlab.ox.ac.uk

The cover photo was taken by Nicolas Rollier (flickr user nrollier).

Library of Congress Control Number: 2010940710

CR Subject Classification (1998): C.2, H.4, H.3, H.5, J.1, K.4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-17745-X Springer Berlin Heidelberg New York
ISBN-13 978-3-642-17745-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

The International Semantic Web Conferences (ISWC) constitute the major in-
ternational venue where the latest research results and technical innovations on
all aspects of the Semantic Web are presented. ISWC brings together researchers,
practitioners, and users from the areas of artificial intelligence, databases, social
networks, distributed computing, Web engineering, information systems, nat-
ural language processing, soft computing, and human–computer interaction to
discuss the major challenges and proposed solutions, the success stories and fail-
ures, as well the visions that can advance research and drive innovation in the
Semantic Web.

This volume contains the main proceedings of ISWC 2010, including papers
accepted in the Research and Semantic-Web-in-Use Tracks of the conference, as
well as long papers accepted in the Doctoral Consortium, and information on
the invited talks.

This year the Research Track received 350 abstracts and 228 full papers
from around the world. The Program Committee for the track was recruited
from researchers in the field, and had world-wide membership. Each submitted
paper received at least three reviews as well as a meta-review. The reviewers
participated in many spirited discussions concerning their reviews. Authors had
the opportunity to submit a rebuttal, leading to further discussions among the
reviewers and sometimes to additional reviews. Final decisions were made during
a meeting between the Track Chairs and senior Program Committee members.
There were 51 papers accepted in the track, a 22% acceptance rate.

The Semantic-Web-in-Use Track, targeted at deployed applications with sig-
nificant research content, received 66 submissions, and had the same reviewing
process as the Research Track, except without the rebuttal phase. There were
18 papers accepted in this track, a 27% acceptance rate.

For the sixth consecutive year, ISWC also had a Doctoral Consortium Track
for PhD students within the Semantic Web community, giving them the oppor-
tunity not only to present their work but also to discuss in detail their research
topics and plans, and to receive extensive feedback from leading scientists in the
field, from both academia and industry. Out of 24 submissions, 6 were accepted
as long papers, and a further 7 were accepted for short presentations. Each stu-
dent was assigned a mentor who led the discussions following the presentation of
the work, and provided detailed feedback and comments, focusing on the PhD
proposal itself and presentation style, as well as on the actual work presented.

The ISWC program also included four invited talks given by leading fig-
ures from both the academic and business world. This year talks were given
by Li Xiaoming of Peking University, China; mc schraefel of the University of
Southampton, UK; Austin Haugen of Facebook; and Evan Sandhaus of the New
York Times.

VI Preface

The ISWC conference included the Semantic Web Challenge, as in the past.
In the challenge, organized this year by Christian Bizer and Diana Maynard,
practitioners and scientists are encouraged to showcase useful and leading-edge
applications of Semantic Web technology, either on Semantic Web data in gen-
eral or on a particular data set containing 3.2 billion triples. ISWC also included
a large tutorial and workshop program, organized by Philippe Cudré-Mauroux
and Bijan Parsia, with 13 workshops and 8 tutorials spread over two days. ISWC
again included a Poster and Demo session, organized by Axel Polleres and Hua-
jun Chen, for presentation of late-breaking work and work in progress, and a
series of industry talks.

A conference as complex as ISWC requires the services of a multitude of
people. First and foremost, we thank all the members of the Program Commit-
tees for the Research Track, the Semantic-Web-In-Use Track, and the Doctorial
Consortium. They took considerable time, during summer vacation season for
most of them, to read, review, respond to rebuttals, discuss, and re-discuss the
submissions. We also thank the people involved in the other portions of the con-
ference, particularly Birte Glimm, the Proceedings Chair; Lin Clark and Yuan
Tian, the webmasters; Axel Polleres and Huajun Chen, the Posters and De-
mos Chairs, and their Program Committee; Yong Yu, the Local Arrangements
Chair, Haofen Wang, who managed most aspects of the local arrangements, and
Dingyi Han, Gui-Rong Xue and Lei Zhang, the Local Arrangements Committee;
Sebastian Rudolph, the Publicity Chair; Jie Bao, the Metadata Chair; Anand
Ranganathan and Kendall Clark, the Sponsor Chairs; and Jeff Heflin, the Fel-
lowship Chair.

September 2010 Yue Pan and Peter F. Patel-Schneider
Program Chairs, Research Track Chairs

Pascal Hitzler, Peter Mika, and Lei Zhang
Semantic-Web-In-Use and Industry Track Chairs

Jeff Z. Pan
Doctoral Consortium Chair

Ian Horrocks
Conference Chair

Conference Organization

Organizing Committee

Conference Chair
Ian Horrocks University of Oxford, UK

Program Chairs, Research Track Chairs
Yue Pan IBM Research Labs, China
Peter F. Patel-Schneider Bell Labs, USA

Semantic-Web-In-Use and Industry Chairs
Pascal Hitzler Wright State University, USA
Peter Mika Yahoo! Research, Spain
Lei Zhang IBM Research Labs, China

Posters and Demos Chairs
Axel Polleres National University of Ireland, Ireland
Huajun Chen Shanghai Jiao Tong University, China

Doctoral Consortium Chair
Jeff Z. Pan The University of Aberdeen, UK

Workshops and Tutorials Chairs
Philippe Cudré-Mauroux Massachusetts Institute of Technology, USA
Bijan Parsia University of Manchester, UK

Semantic Web Challenge Chairs
Chris Bizer Freie Universität Berlin, Germany
Diana Maynard University of Sheffield, UK

Metadata Chair
Jie Bao Rensselaer Polytechnic Institute, USA

Local Organization Chair
Yong Yu Shanghai Jiao Tong University, China

Local Organization Committee
Dingyi Han Shanghai Jiao Tong University, China
Gui-Rong Xue Shanghai Jiao Tong University, China
Haofen Wang Shanghai Jiao Tong University, China
Lei Zhang IBM Research Labs, China

VIII Conference Organization

Publicity Chair
Sebastian Rudolph Karlsruher Institut für Technologie, Germany

Webmasters
Lin Clark National University of Ireland, Ireland
Yuan Tian Shanghai Jiao Tong University, China

Proceedings Chair
Birte Glimm University of Oxford, UK

Sponsor Chairs
Anand Ranganathan IBM T.J. Watson Research Center, USA
Kendall Clark Clark & Parsia, LLC, USA

Fellowship Chair
Jeff Heflin Lehigh University, USA

Senior Program Committee — Research

Hassan Ait-Kaci
Abraham Bernstein
Paul Buitelaar
Ciro Cattuto
Vinay Chaudhri
Bob DuCharme
Michel Dumontier
Tim Finin
Asunción Gómez-Pérez
Claudio Gutierrez

Jeff Heflin
Aditya Kalyanpur
David Karger
Juanzi Li
Li Ma
Natasha Noy
Jacco van Ossenbruggen
Yuzhong Qu
Evren Sirin

Program Committee — Research

Sudhir Agarwal
Harith Alani
Paul André
Melliyal Annamalai
Kemafor Anyanwu
Knarig Arabshian
Marcelo Arenas
Jie Bao
Michael Benedikt
Chris Bizer
Eva Blomqvist
Kalina Bontcheva

Mark Burstein
Diego Calvanese
Enhong Chen
Key-Sun Choi
Philipp Cimiano
Lin Clark
Oscar Corcho
Melanie Courtot
Isabel Cruz
Claudia d’Amato
Mathieu d’Aquin
David De Roure

Conference Organization IX

Mike Dean
Stefan Decker
Ian Dickinson
Xiaoyong Du
Thomas Eiter
Robert H.P. Engels
Achille Fokoue
Enrico Franconi
Zhiqiang Gao
Nikesh Garera
Yolanda Gil
Stefan Gradmann
Michael Gruninger
Volker Haarslev
Harry Halpin
Siegfried Handschuh
Tom Heath
Nicola Henze
Martin Hepp
Nathalie Hernandez
Stijn Heymans
Kaoru Hiramatsu
Rinke Hoekstra
Andreas Hotho
Wei Hu
Zhisheng Huang
Jane Hunter
David Huynh
Eero Hyvönen
Zhi Jin
Lalana Kagal
Anastasios Kementsietsidis
Vladimir Kolovski
Markus Krötzsch
Ora Lassila
Georg Lausen
Faith Lawrence
Shengping Liu
Pankaj Mehra
Jing Mei
Riichiro Mizoguchi
Knud Moeller
Paola Monachesi
William Murray

Wolfgang Nejdl
Yuan Ni
Alexandre Passant
Chintan Patel
Alun Preece
Guilin Qi
Anand Ranganathan
Riccardo Rosati
Sebastian Rudolph
Uli Sattler
Ansgar Scherp
Daniel Schwabe
Yi-Dong Shen
Michael Sintek
Sergej Sizov
Kavitha Srinivas
Steffen Staab
Giorgos Stamou
Robert Stevens
Umberto Straccia
Heiner Stuckenschmidt
Mari Carmen Suárez-Figueroa
V.S. Subrahmanian
Xingzhi Sun
York Sure
Jie Tang
Christopher Thomas
Lieven Trappeniers
Tania Tudorache
Anni-Yasmin Turhan
Octavian Udrea
Michael Uschold
Haixun Wang
Haofen Wang
Fang Wei
Max Wilson
Katy Wolstencroft
Zhe Wu
Bin Xu
Peter Yeh
Yong Yu
Lei Zhang
Ming Zhang
Hai Zhuge

X Conference Organization

Program Committee — Semantic-Web-In-Use and
Industry

Harith Alani
Sören Auer
Mathieu d’Aquin
Dave Beckett
Chris Bizer
Boyan Brodaric
Vinay Chaudri
Huajun Chen
Gong Cheng
Kendall Clark
John Davies
Leigh Dodds
Michel Dumontier
Aldo Gangemi
Paul Gearon
Mark Greaves
Stephan Grimm
Peter Haase
Michael Hausenblas
Manfred Hauswirth
Ivan Herman
Rinke Hoekstra
David Huynh
Eero Hyvönen

Renato Iannella
Krzysztof Janowicz
Atanas Kiryakov
Markus Krötzsch
Mark Musen
Knud Möller
Chimezie Ogbuji
Daniel Olmedilla
Eric Prud’hommeaux
Yuzhong Qu
Yves Raimond
Marta Sabou
Satya S. Sahoo
Andy Seaborne
Susie Stephens
Hideaki Takeda
Jie Tang
Jamie Taylor
Andraz Tori
Holger Wache
Haofen Wang
Jan Wielemaker
David Wood
Guo-Qiang Zhang

Program Committee — Doctoral Consortium

Abraham Bernstein
Meghyn Bienvenu
Huajun Chen
Ying Ding
Jianfeng Du
Jérôme Euzenat
Giorgos Flouris
Zhiqiang Gao
Marko Grobelnik
Siegfried Handschuh
Andreas Harth
Stijn Heymans
Wei Hu
Zhisheng Huang
Roman Kontchakov

Diana Maynard
Enrico Motta
Lyndon Nixon
Guilin Qi
Manuel Salvadores
Guus Schreiber
Pavel Shvaiko
Yi-Dong Shen
Amit Sheth
Elena Simperl
Giorgos Stamou
Giorgos Stoilos
Heiner Stuckenschmidt
Vojtech Svatek
Anni-Yasmin Turhan

Conference Organization XI

Denny Vrandecic
Holger Wache
Haofen Wang

Shenghui Wang
Ming Zhang
Yuting Zhao

External Reviewers

Nor Azlinayati Abdul Manaf
Alessandro Adamou
Mark van Assem
Cosmin Basca
Sujoy Basu
Elena Botoeva
Jos de Bruijn
Carlos Buil-Aranda
Catherina Burghart
Jean Paul Calbimonte
Xiong Chenyan
DongHyun Choi
Alexandros Chortaras
Maria Copeland
Enrico Daga
Brian Davis
Renaud Delbru
Alexander DeLeon
Zhongli Ding
Laura Dragan
Fang Du
Liang Du
Alistair Duke
George Eadon
Jinan El-Hachem
Sean Falconer
Jun Fang
Nicola Fanizzi
Sébastien Ferré
Björn Forcher
Andrés Garćıa-Silva
Birte Glimm
Gunnar Aastrand Grimnes
Tudor Groza
Christian Hachenberg
Olaf Hartig
Norman Heino
Daniel Hienert
Aidan Hogan

Thomas Hornung
Matthew Horridge
Julia Hoxha
Gearoid Hynes
Robert Isele
Max Jakob
Martin Junghans
Aditya Kalyanpur
Kamal Kc
Malte Kiesel
Jörg-Uwe Kietz
Eun-Kyung Kim
Yoshinobu Kitamura
Pavel Klinov
Kouji Kozaki
Beate Krause
Thomas Krennwallner
Markus Krötzsch
Maurizio Lenzerini
Paea LePendu
Xuan Li
Yuan-Fang Li
Feiyu Lin
Maxim Lukichev
Sen Luo
Yue Ma
Frederick Maier
Theofilos Mailis
Michael Martin
Philipp Mayr
Anees ul Mehdi
Michael Meier
Pablo Mendes
Eleni Mikroyannidi
Fleur Mougin
Zhi Nie
Mathias Niepert
Nadejda Nikitina
Andriy Nikolov

XII Conference Organization

Vit Novacek
Andrea Nuzzolese
Jasmin Opitz
Magdalena Ortiz
Raul Palma
Rafael Peñaloza
Jorge Pérez
Danh Le Phuoc
Axel Polleres
Freddy Priyatna
Jörg Pührer
Guilin Qi
Timothy Redmond
Yuan Ren
Achim Rettinger
Vinny Reynolds
Ismael Rivera
Mariano Rodriguez-Muro
Dmitry Ryashchentsev
Anne Schlicht
Florian Schmedding
Michael Schmidt
Thomas Schneider
mc schraefel
Floarea Serban
Wei Shen
Rob Shearer
Fuming Shih
Andrey Simanovsky
Mantas Simkus
Evren Sirin
Sebastian Speiser
Giorgos Stoilos
Cosmin Stroe
Mari Carmen Suárez-Figueroa

Kewu Sun
Xiaoping Sun
Martin Szomszor
Christer Thörn
VinhTuan Thai
Christopher Thomas
Despoina Trivela
Eleni Tsalapati
Dmitry Tsarkov
Alexander Ulanov
Natalia Vassilieva
Tasos Venetis
Kunal Verma
Boris Villazón-Terrazas
Denny Vrandecic
Bo Wang
Xiaoyuan Wang
Zhe Wang
Zhichun Wang
Jens Wissmann
Gang Wu
Kejia Wu
Linhao Xu
Yixin Yan
Fangkai Yang
Amapali Zaveri
Benjamin Zapilko
Maciej Zaremba
Lei Zhang
Xiao Zhang
Dmitriy Zheleznyakov
Hai-Tao Zheng
Qian Zhong
Ming Zuo

Conference Organization XIII

Sponsors

Platinum Sponsors

AI Journal
Elsevier
OntoText

Gold Sponsors

fluid Operations AG
LarKC
SaltLux
Yahoo!

Silver Sponsors

IBM
EMC2

W3C
Amiando

Table of Contents – Part I

Research Track

Fusion – Visually Exploring and Eliciting Relationships in
Linked Data . 1

Samur Araujo, Geert-Jan Houben, Daniel Schwabe, and Jan Hidders

Converting and Annotating Quantitative Data Tables 16
Mark van Assem, Hajo Rijgersberg, Mari Wigham, and Jan Top

JustBench: A Framework for OWL Benchmarking . 32
Samantha Bail, Bijan Parsia, and Ulrike Sattler

Talking about Data: Sharing Richly Structured Information through
Blogs and Wikis . 48

Edward Benson, Adam Marcus, Fabian Howahl, and David Karger

EL with Default Attributes and Overriding . 64
Piero A. Bonatti, Marco Faella, and Luigi Sauro

Supporting Natural Language Processing with Background Knowledge:
Coreference Resolution Case . 80

Volha Bryl, Claudio Giuliano, Luciano Serafini, and
Kateryna Tymoshenko

Enabling Ontology-Based Access to Streaming Data Sources 96
Jean-Paul Calbimonte, Oscar Corcho, and Alasdair J.G. Gray

Evolution of DL-Lite Knowledge Bases . 112
Diego Calvanese, Evgeny Kharlamov, Werner Nutt, and
Dmitriy Zheleznyakov

Ontology Similarity in the Alignment Space . 129
Jérôme David, Jérôme Euzenat, and Ondřej Šváb-Zamazal

SameAs Networks and Beyond: Analyzing Deployment Status and
Implications of owl:sameAs in Linked Data . 145

Li Ding, Joshua Shinavier, Zhenning Shangguan, and
Deborah L. McGuinness

Deciding Agent Orientation on Ontology Mappings 161
Paul Doran, Terry R. Payne, Valentina Tamma, and
Ignazio Palmisano

XVI Table of Contents – Part I

One Size Does Not Fit All: Customizing Ontology Alignment Using
User Feedback . 177

Songyun Duan, Achille Fokoue, and Kavitha Srinivas

Compact Representation of Large RDF Data Sets for Publishing and
Exchange . 193

Javier D. Fernández, Miguel A. Mart́ınez-Prieto, and
Claudio Gutierrez

Assessing Trust in Uncertain Information . 209
Achille Fokoue, Mudhakar Srivatsa, and Rob Young

Optimising Ontology Classification . 225
Birte Glimm, Ian Horrocks, Boris Motik, and Giorgos Stoilos

SPARQL beyond Subgraph Matching . 241
Birte Glimm and Markus Krötzsch

Integrated Metamodeling and Diagnosis in OWL 2 257
Birte Glimm, Sebastian Rudolph, and Johanna Völker

Semantic Recognition of Ontology Refactoring . 273
Gerd Gröner, Fernando Silva Parreiras, and Steffen Staab

Finding the Achilles Heel of the Web of Data: Using Network Analysis
for Link-Recommendation . 289

Christophe Guéret, Paul Groth, Frank van Harmelen, and
Stefan Schlobach

When owl:sameAs Isn’t the Same: An Analysis of Identity in
Linked Data . 305

Deborah L. McGuinness, and Henry S. Thompson

Semantic Need: Guiding Metadata Annotations by Questions
People #ask . 321

Hans-Jörg Happel

SAOR: Template Rule Optimisations for Distributed Reasoning over
1 Billion Linked Data Triples . 337

Aidan Hogan, Jeff Z. Pan, Axel Polleres, and Stefan Decker

Justification Oriented Proofs in OWL . 354
Matthew Horridge, Bijan Parsia, and Ulrike Sattler

Toponym Resolution in Social Media . 370
Neil Ireson and Fabio Ciravegna

An Expressive and Efficient Solution to the Service Selection
Problem . 386

Daniel Izquierdo, Maŕıa-Esther Vidal, and Blai Bonet

Harry Halpin, Patrick J. Hayes, Jamie P. McCusker,

Table of Contents – Part I XVII

Ontology Alignment for Linked Open Data . 402
Prateek Jain, Pascal Hitzler, Amit P. Sheth, Kunal Verma, and
Peter Z. Yeh

SPARQL Query Optimization on Top of DHTs . 418
Zoi Kaoudi, Kostis Kyzirakos, and Manolis Koubarakis

Optimizing Enterprise-Scale OWL 2 RL Reasoning in a Relational
Database System . 436

Vladimir Kolovski, Zhe Wu, and George Eadon

Linked Data Query Processing Strategies . 453
Günter Ladwig and Thanh Tran

Making Sense of Twitter . 470
David Laniado and Peter Mika

Optimize First, Buy Later: Analyzing Metrics to Ramp-Up Very Large
Knowledge Bases . 486

Paea LePendu, Natalya F. Noy, Clement Jonquet,
Paul R. Alexander, Nigam H. Shah, and Mark A. Musen

Using Reformulation Trees to Optimize Queries over Distributed
Heterogeneous Sources . 502

Yingjie Li and Jeff Heflin

AnQL: SPARQLing Up Annotated RDFS . 518
Nuno Lopes, Axel Polleres, Umberto Straccia, and
Antoine Zimmermann

Using Semantics for Automating the Authentication of Web APIs 534
Maria Maleshkova, Carlos Pedrinaci, John Domingue,
Guillermo Alvaro, and Ivan Martinez

Representing and Querying Validity Time in RDF and OWL:
A Logic-Based Approach . 550

Boris Motik

Enhancing the Open-Domain Classification of Named Entity Using
Linked Open Data . 566

Yuan Ni, Lei Zhang, Zhaoming Qiu, and Chen Wang

Forgetting Fragments from Evolving Ontologies . 582
Heather S. Packer, Nicholas Gibbins, and Nicholas R. Jennings

Linking and Building Ontologies of Linked Data . 598
Rahul Parundekar, Craig A. Knoblock, and José Luis Ambite

A Feature and Information Theoretic Framework for Semantic
Similarity and Relatedness . 615

Giuseppe Pirró and Jérôme Euzenat

XVIII Table of Contents – Part I

Combining Approximation and Relaxation in Semantic Web Path
Queries . 631

Alexandra Poulovassilis and Peter T. Wood

EvoPat – Pattern-Based Evolution and Refactoring of RDF Knowledge
Bases . 647

Christoph Rieß, Norman Heino, Sebastian Tramp, and Sören Auer

How to Reuse a Faceted Classification and Put It on
the Semantic Web . 663

Bene Rodriguez-Castro, Hugh Glaser, and Leslie Carr

OWL-POLAR: Semantic Policies for Agent Reasoning 679
Murat Şensoy, Timothy J. Norman, Wamberto W. Vasconcelos, and
Katia Sycara

Query Strategy for Sequential Ontology Debugging 696
Kostyantyn Shchekotykhin and Gerhard Friedrich

Preference-Based Web Service Composition: A Middle Ground between
Execution and Search . 713

Shirin Sohrabi and Sheila A. McIlraith

A Self-Policing Policy Language . 730
Sebastian Speiser and Rudi Studer

Completeness Guarantees for Incomplete Reasoners 747
Giorgos Stoilos, Bernardo Cuenca Grau, and Ian Horrocks

Signal/Collect: Graph Algorithms for the (Semantic) Web 764
Philip Stutz, Abraham Bernstein, and William Cohen

Summary Models for Routing Keywords to Linked Data Sources 781
Thanh Tran, Lei Zhang, and Rudi Studer

Declarative Semantics for the Rule Interchange Format Production
Rule Dialect . 798

Carlos Viegas Damásio, José Júlio Alferes, and João Leite

Measuring the Dynamic Bi-directional Influence between Content and
Social Networks . 814

Shenghui Wang and Paul Groth

Author Index . 831

Table of Contents – Part II

Semantic-Web-In-Use Track

I18n of Semantic Web Applications . 1
Sören Auer, Matthias Weidl, Jens Lehmann,
Amrapali J. Zaveri, and Key-Sun Choi

Social Dynamics in Conferences: Analyses of Data from the Live Social
Semantics Application . 17

Alain Barrat, Ciro Cattuto, Martin Szomszor,
Wouter Van den Broeck, and Harith Alani

Using Semantic Web Technologies for Clinical Trial Recruitment 34
Paolo Besana, Marc Cuggia, Oussama Zekri, Annabel Bourde, and
Anita Burgun

Experience of Using OWL Ontologies for Automated Inference of
Routine Pre-operative Screening Tests . 50

Matt-Mouley Bouamrane, Alan Rector, and Martin Hurrell

Enterprise Data Classification Using Semantic Web Technologies 66
David Ben-David, Tamar Domany, and Abigail Tarem

Semantic Techniques for Enabling Knowledge Reuse in Conceptual
Modelling . 82

Jorge Gracia, Jochem Liem, Esther Lozano, Oscar Corcho,
Michal Trna, Asunción Gómez-Pérez, and Bert Bredeweg

Semantic Technologies for Enterprise Cloud Management 98
Peter Haase, Tobias Mathäß, Michael Schmidt,
Andreas Eberhart, and Ulrich Walther

Semantic MediaWiki in Operation: Experiences with Building a
Semantic Portal . 114

Daniel M. Herzig and Basil Ell

A Case Study of Linked Enterprise Data . 129
Bo Hu and Glenn Svensson

Linkage of Heterogeneous Knowledge Resources within In-Store
Dialogue Interaction . 145

Sabine Janzen, Tobias Kowatsch, Wolfgang Maass, and
Andreas Filler

XX Table of Contents – Part II

ISReal: An Open Platform for Semantic-Based 3D Simulations in the
3D Internet . 161

Patrick Kapahnke, Pascal Liedtke, Stefan Nesbigall,
Stefan Warwas, and Matthias Klusch

ORE – A Tool for Repairing and Enriching Knowledge Bases 177
Jens Lehmann and Lorenz Bühmann

Mapping Master: A Flexible Approach for Mapping Spreadsheets
to OWL . 194

Martin J. O’Connor, Christian Halaschek-Wiener, and
Mark A. Musen

dbrec — Music Recommendations Using DBpedia . 209
Alexandre Passant

Knowledge Engineering for Historians on the Example of the Catalogus
Professorum Lipsiensis . 225

Thomas Riechert, Ulf Morgenstern, Sören Auer,
Sebastian Tramp, and Michael Martin

Time-Oriented Question Answering from Clinical Narratives Using
Semantic-Web Techniques . 241

Cui Tao, Harold R. Solbrig, Deepak K. Sharma, Wei-Qi Wei,
Guergana K. Savova, and Christopher G. Chute

Will Semantic Web Technologies Work for the Development of
ICD-11? . 257

Tania Tudorache, Sean Falconer, Csongor Nyulas,
Natalya F. Noy, and Mark A. Musen

Using SPARQL to Test for Lattices: Application to Quality Assurance
in Biomedical Ontologies . 273

Guo-Qiang Zhang and Olivier Bodenreider

Doctoral Consortium

Exploiting Relation Extraction for Ontology Alignment 289
Elena Beisswanger

Towards Semantic Annotation Supported by Dependency Linguistics
and ILP . 297

Jan Dědek

Towards Technology Structure Mining from Scientific Literature 305
Behrang QasemiZadeh

Table of Contents – Part II XXI

Auto-experimentation of KDD Workflows Based on Ontological
Planning . 313

Floarea Serban

Customizing the Composition of Actions, Programs, and Web Services
with User Preferences . 321

Shirin Sohrabi

Adding Integrity Constraints to the Semantic Web for Instance Data
Evaluation . 330

Jiao Tao

Invited Talks

Abstract: The Open Graph Protocol Design Decisions 338
Austin Haugen

Evaluating Search Engines by Clickthrough Data . 339
Jing He and Xiaoming Li

Abstract: Semantic Technology at The New York Times: Lessons
Learned and Future Directions . 355

Evan Sandhaus

What Does It Look Like, Really? Imagining How Citizens Might
Effectively, Usefully and Easily Find, Explore, Query and Re-present
Open/Linked Data . 356

mc schraefel

Author Index . 371

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 1–15, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Fusion – Visually Exploring and Eliciting Relationships
in Linked Data

Samur Araujo1, Geert-Jan Houben1, Daniel Schwabe2, and Jan Hidders1

1 Delft University of Technology, PO Box 5031, 2600 GA Delft, The Netherlands
2 PUC-Rio, Rua Marques de Sao Vicente, 225, Rio de Janeiro, Brazil

{s.f.cardosodearaujo,g.j.p.m.houben,a.j.h.hidders}@tudelft.nl,
dschwabe@inf.puc-rio.br

Abstract. Building applications over Linked Data often requires a mapping be-
tween the application model and the ontology underlying the source dataset in
the Linked Data cloud. This mapping can be defined in many ways. For in-
stance, by describing the application model as a view over the source dataset,
by giving mappings in the form of dependencies between the two datasets, or
by inference rules that infer the application model from the source dataset. Ex-
plicitly formulating these mappings demands a comprehensive understanding of
the underlying schemas (RDF ontologies) of the source and target datasets. This
task can be supported by integrating the process of schema exploration into the
mapping process and help the application designer with finding the implicit re-
lationships that she wants to map. This paper describes Fusion - a framework
for closing the gap between the application model and the underlying ontologies
in the Linked Data cloud. Fusion simplifies the definition of mappings by pro-
viding a visual user interface that integrates the exploratory process and the
mapping process. Its architecture allows the creation of new applications
through the extension of existing Linked Data with additional data.

Keywords: semantic web, data interaction, data management, RDF mapping,
Linked Data.

1 Introduction

Nowadays, the Linked Data1 cloud provides a new environment for building applica-
tions where many datasets are available for consumption. Although data in this cloud
is ready to use, applications over the Linked Data cloud have currently an intrinsic
characteristic: they consume RDF2 data “as is”, since designers do not have write
permission over the data in the cloud which would enable them to change the data in
any way. This fact raises an important issue concerning the development of applica-
tions over Linked Data: how to fill the gap between the ontology associated with the
application model and the ontology used to represent the underlying data from the
Linked Data cloud? The main benefit of mapping these two models is that then

 1 Linked Data - http://linkeddata.org/
 2 http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

2 S. Araujo et al.

Linked Data can be accessed through properties defined in the application model,
which is more convenient for the designer, consequently simplifying considerably the
development and maintenance of the application.

Although a number of techniques can be applied for mapping two RDF models,
such as ontology matching, or inference rules, or views over RDF data, they often do
not take into account that expressing the mapping rules themselves is a separate chal-
lenge, since in most cases Linked Data sources are represented using domain-specific
ontologies that do not explicitly offer all common properties in the domain. Take for
example DBLP3 Linked Data, one of the best-known bibliography information
sources available as Linked Data. Its ontology does not have an explicit property that
connects directly co-authors, a common property in this domain. Although DBLP
Linked Data contains paths that represent this relationship, it is not trivial to find
them. Indeed, it requires understanding the schema behind the data and how this rela-
tionship is implicitly represented in this dataset. Similar examples can be found in any
dataset in the Linked Data cloud, where the required information is implicitly encoded
in the instance of data.

In this context, two specific and common scenarios often occur. The first is where
the designer needs to express a mapping between a property in her application model
(e.g. how a City is located in a Country) and a path in the RDF graph of the given
dataset (e.g. a City belongs to a Province which belongs to a Country). Another ex-
ample of this scenario can be given in the domain of government data. Suppose you
are building an application over the GovTrack.Us4 dataset and its application model
requires a property isSenatorOf that directly connects instances of the class Politician
to instances of the class State (e.g: Christopher Bond is a senator from Missouri).
However, this relationship is not explicitly represented in the GovTrack.Us ontology.
In order to obtain this relationship, the designer has to use the path Senator -> has
Role-> forOffice-> represents -> State which, in this RDF graph, represents the rela-
tionship. Note that the designer needs a clear understanding of the GovTrack.Us
schema in order to find the corresponding path to be mapped. The second scenario
occurs when the mapping is in fact a computation over the existing data that produces
a new explicit data value. For instance, a mapping between a property screen resolu-
tion from the application model and the concatenation of the properties screen width
and screen height defined in the target dataset.

Note that in those scenarios for defining those mappings special attention should be
paid to the exploratory process, especially when it demands from the designer to dive
into the instances and the schema of the source dataset in order to find implicit rela-
tionships, which is not a straightforward task at all. Some authors have shown that
visual exploration [1, 9] can help users to understand an unknown schema used to
represent a known domain. Although those mechanisms help users to query an un-
known schema, it will be always easier to explore a schema that is closer to the appli-
cation models, often expressed in a specific application ontology. Although many
tools are available for exploring Linked Data and for expressing mapping rules be-
tween RDF models, there is still a lack of tools that integrate these processes.

 3 http://dblp.l3s.de/d2r/
 4 http://www.govtrack.us/

 Fusion – Visually Exploring and Eliciting Relationships in Linked Data 3

This paper presents Fusion5, a lightweight framework to support application de-
signers in building applications over Linked Data. It supports designers in mapping
the ontology of the used Linked Data sources to their application model by integrating
the process of exploration of the target schema with the task of expressing a mapping
rule itself. Fusion features a visual user interface that guides the designer in the
process of specifying a mapping rule. It uses a standard RDF query language and
allows Linked Data to be accessed using properties defined in the application model,
consequently simplifying the use of Linked Data in a specific context.

The remainder of this paper is organized as follows. Section 2 presents relevant re-
lated work. Section 3 describes how Fusion supports the designer in deriving rules;
while Section 4 describes Fusion’s architecture. Section 5 presents some examples
and shows how Fusion solves the problem of enriching access to Linked Data with
application model properties. Finally, Section 6 presents the conclusion of this work.

2 Related Work

2.1 Ontology Mapping

The problem of mapping data models can also be conceived as an ontology-mapping
problem, since it encompasses describing existing data in another vocabulary. In [8] a
SPARQL extension is proposed to achieve that. Their solution merges SPARQL++
[3] and PSPARQL [9], two extensions of the SPARQL specification. The first exten-
sion adds some functions for enabling SPARQL to translate one vocabulary to
another one by just using SPARQL CONSTRUCT. The second one adds path expres-
sions to SPARQL, allowing a better navigation through the graph. Together they
empower the SPARQL language to perform ontology mapping over two or more
ontologies. Although the theory is given, the authors do not provide a concrete im-
plementation especially because the proposed primitives have many implications for
the performance of the query over the distributed environment of Linked Data.

2.2 SPARQL Construct Queries and Their Extensions

Another way to solve the problem of mapping RDF datasets is by specifying a CON-
STRUCT query in SPARQL [2] that derives the triples in the target data set from the
source data set. The resulting graph can then be stored in an arbitrary RDF repository.
However, the CONSTRUCT query has limited expressive power, since some compu-
tation over the original RDF triples cannot be done, such as string manipulation and
aggregation. For instance, using this approach it is not possible to generate the triple
that would represent the mapping between the properties screen width and screen
height (shown in Fig. 1) to a property resolution (shown in Fig. 2) that is their simple
concatenation.

<http://sw.tv.com/id/2660> <http://sw.tv.com/screen_width> "128" .
<http://sw.tv.com/id/2660> <http://sw.tv.com/screen_height> "160" .

Fig. 1. A resource with predicates screen width and screen height

 5 http://www.wis.ewi.tudelft.nl/index.php/fusion

4 S. Araujo et al.

<http://sw.tv.com/id/2660> <http://sw.tv.com/resolution> "128x160" .

Fig. 2. A resource with predicate resolution

Polleres et al. [3] have proposed an extension of CONSTRUCT that overcomes
such limitations, however this extension is limited to a specific RDF query engine that
implements this SPARQL extension. Therefore, at this moment, such a solution is not
feasible for the Semantic Web environment, which is very diverse in terms of query
engines - the majority of data is stored in repositories that implement variations of the
standard SPARQL specification that do not include the extensions discussed here.

2.3 Views over RDF Data

Another way to specify mappings between different representational models is by
defining views [5, 6, 7]. This concept is well known in the field of database theory,
and can be used to aggregate and personalize data. A view is a query accessible as a
virtual table composed of the result of the query. Although views are frequently used
in relational databases, building views over Linked Data presents many additional
challenges. Issues such as view maintenance (including updates) and querying over
virtual (non-materialized) views in the distributed environment of Linked Data are
still open problems, besides several other performance issues that arise.

Volz et al. [4] have proposed a language based on RQL [5] for specifying views
over RDF data. It defines views over RDF classes and views of RDF properties. Al-
though this proposal presents a complex specification of views over RDF, it cannot
solve the simple scenario described in Section 2.2, and its solution is based on RQL,
which is not the standard RDF query language used nowadays. Magkanaraki et al. [7]
have proposed a view specification language also based on RQL. Its processing model
is based on materialized views. Chen et al. [6] present a scenario of accessing rela-
tional data using RDF views. In their approach a query over a view result in query
rewriting that exploits the semantics of RDF primitives, such as, subPropertyOf or
subClassOf. While their approach enriches the access to the relational data, it does not
cover the transformations over the data that we are considering here, moreover it is
focused on mapping relational schema to an RDF/S ontology.

2.4 SWRL Rules

Hassanpour et. al [12] proposes a tool for supporting the user on creating SWRL6
rules. Their tool contains a visual interface that guides the user in visualizing, manag-
ing and eliciting SWRL specifications. Although this tool can be used to map two
models using SWRL rules, it does not integrate the process of specifying the rules
with the process of exploring an unknown schema, which is the main aim of Fusion.

2.5 RDF Exploration

RelFinder [1] is a visual tool for finding n-ary relationships between RDF resources.
It contains a visual interface that allows the user to visualize the relationship in a
directed graph layout. Basically, RelFinder issues a set of queries against a specific

 6 http://www.w3.org/Submission/SWRL/

 Fusion – Visually Exploring and Eliciting Relationships in Linked Data 5

SPARQL endpoint in order to find relationships between two or more RDF resources.
RelFinder aims to be a better mechanism for finding relationships among data than
any other exploratory mechanism. Explorator [9] is another tool that aims to facilitate
the querying of instances of an unknown RDF schema, consequently allowing the
user to discover relations between data instances even without previous knowledge of
the domain. These tools re-enforce the idea that accessing RDF data is not a trivial
task and demands a complex exploratory model behind it. In spite of the fact that they
support users in finding relationships between data, they do not solve the problem of
accessing the Linked Data through a schema associated with the application model.

2.6 Interlinking

From an operational point of view the mapping of two RDF models can be perceived
as the addition of new triples to the original dataset for any new relationship ex-
pressed in the target ontology. Clearly this task requires some sort of automation. For
instance, Silk [10] is a linking framework for discovering relationships between data
items within different Linked Data sources. By specifying rules, the application de-
signer can define how two distinct sets of resources, possibly belonging to distinct
endpoints, can be interlinked, and as a result it produces a graph with all discovered
connections. Although Silk automates the process of interlinking resources, Fusion
goes one step further, since it supports also the process of specifying the rule. They
solve two different problems: Silk interlinks two disconnected RDF graphs while
Fusion extends the knowledge for a single endpoint. Although Silk’s mapping lan-
guage can be used for materializing the rules defined in Fusion, it does not support the
full process supported by Fusion, which also includes, most notably, the discovery of
a path in the schema to be mapped. While Silk allows the user to serialize a rule, it
does not support her in finding it and expressing it.

3 Discovering and Deriving RDF Relationships

The main aim of Fusion is to help the designer in discovering relationships in RDF
graphs that exist in the Linked Data cloud and specifying rules for the derivation of
new properties for these relationships. We refer to this process as relationship deriva-
tion. The result of the relationship derivation process is a set of rules such that each
produces RDF triples based on queries over an existing RDF graph. The evaluation of
a rule results in a set of triples, each of which contains either a new object property7 or
a new datatype property. In the cases where it results in a new object property, the
triples produced connect existing resources, while in the case where it derives a new
datatype property the triples produced connect existing resources with values com-
puted by a function over the RDF graph being queried. In the remainder of this section
we describe how Fusion supports the designer in specifying these derivation rules.

3.1 Deriving Object Property Relationships

The main issue regarding the derivation of new object property relationship is to
specify the correspondence between resources. For example, if a user wants to create

 7 http://www.w3.org/TR/owl-ref/#ObjectProperty-def

6 S. Araujo et al.

a new object property loca
tries, she needs to specify t
data, i.e. which cities are l
obtained by following a ce
source dataset. For example
represents a path between
The Netherlands. By using
intermediate nodes, it is po
apply to all cities and resp
pondence to the class level.
to their corresponding coun
graph. Note that this proce
application model, onto an
example above, the object
be mapped to the general
geo:parentFeature ⎯ Prov

Fig. 3. A path between the r

3.1.1 A Path Discovery A
The first step in the mappin
in the mapping. Fusion aut
graph that connect two exa
have a specified maximum
resources becomes finding
the one resource to the oth
version of the breadth-firs
depth of the search and wit
is reached. Consequently,
maximum length from the

 8 http://www.geonames

tedIn that directly connects cities to their respective co
the relationship between cities and countries in the exist
located in which country. Such a correspondence can
rtain path between two resources in the RDF graph of
e, Fig. 3 shows a sub-graph of Geonames Linked Data8 t
the resource for the city of Delft and that of the coun

g the predicates in this example path and generalizing
ossible to generalize such an example correspondence
ective countries in this dataset, and thus bring the corr
 By exploiting this resulting path, Fusion can map all ci
ntry and thereby add a new object property to the origi
ess maps a newly added relationship that is defined in
implicit relationship that exists in the original graph. In
property locatedIn defined in an application model co

lization of the path between Delft and the Netherla
vince of Zuid-Holland ⎯ geo:parentFeature.

resources Delft and The Netherlands in Geonames Linked Dat

Algorithm
ng process is to find the paths that could potentially be u
tomates this step by eliciting all possible paths in an R
ample RDF resources (e.g. Delft and The Netherlands) t
m length. Thus, finding the relationship between two R

a path in the RDF graph that would allow navigating fr
her one. This process can be implemented as a modif
st search algorithm (BFS) with a maximum limit on
thout the restriction that it should stop when the goal n
it can be used to retrieve all paths in the graph withi
source to the target node. This algorithm is applied to

s.org/ontology/

oun-
ting

n be
the

that
ntry
the

e to
res-
ities
inal
the
the

ould
ands

ta

used
RDF
that

RDF
rom
fied
the

node
in a
the

 Fusion – Visually Exploring and Eliciting Relationships in Linked Data 7

RDF graph by interpreting each triple as an undirected edge between its subject and
object. Since this algorithm is a small variation on the standard BFS and retrieves all
possible paths from a to b of a maximum length d, its complexity is O(cd), where c is
the maximum branching factor in the graph. This asymptotic complexity is in this
case the theoretical optimum since it describes the size of the output.

3.1.2 Implementing the Path Discovery Algorithm over a SPARQL Endpoint
Considering that Fusion searches for paths in a Linked Data dataset, the path discov-
ery algorithm needs to be implemented as a set of SPARQL queries, since the most
direct way to search in an RDF graph in the Linked Data cloud is by issuing SPARQL
queries over its remote SPARQL endpoint. In order to generate these queries we con-
sider the RDF graph as an undirected graph as previously described. Thus, all paths
with length n from node a to node b in this graph can be obtained with a set of
SPARQL queries containing 2n queries. Since we want to ignore the direction in the
graph, we issue a distinct graph pattern for all possible choices of direction for each
triple pattern in the path. Each query in this set contains n connected triple patterns,
one for each edge in the path. For example, to obtain all paths between a and b
with length 3, 8 (= 23) graph patterns, each containing 3 triple patterns, are generated.
Fig. 4 shows all these 8 patterns.

1 (:a,:p1,:a2),(:a2,:p2,:a3),(:a3,:p3,:b)
2 (:a2,:p1,:a),(:a2,:p2,:a3),(:a3,:p3,:b)
3 (:a,:p1,:a2),(:a3,:p2,:a2),(:a3,:p3,:b)
4 (:a2,:p1,:a),(:a3,:p2,:a2),(:a3,:p3,:b)
5 (:a,:p1,:a2),(:a2,:p2,:a3),(:b,:p3,:a3)
6 (:a2,:p1,:a),(:a2,:p2,:a3),(:b,:p3,:a3)
7 (:a,:p1,:a2),(:a3,:p2,:a2),(:b,:p3,:a3)
8 (:a2,:p1,:a),(:a3,:p2,:a2),(:b,:p3,:a3)

Fig. 4. Graph patterns generated for path length 3

Each of these patterns will be transformed into a single SPARQL query, as shown
in Fig. 5 for pattern 1 from Fig. 4, where a and b were specified as the resource Chris-
topher Bond (http://www.rdfabout.com/rdf/usgov/congress/people/B000611) and the
resource Missouri (http://www.rdfabout.com/rdf/usgov/geo/us/mo.), respectively. In
this example, the path connects the US politician Christopher Bond with the state
(Missouri) that he represents.

PREFIX Geo: <http://www.rdfabout.com/rdf/usgov/geo/us/>
PREFIX Gov:
<http://www.rdfabout.com/rdf/usgov/congress/people>
SELECT DISTINCT ?p1 ?a2 ?p2 ?a3 ?p3
WHERE {

Gov:B000611 ?p1 ?a2 .
?a2 ?p2 ?a3 .
?a3 ?p3 Geo:mo .

}

Fig. 5. Query performed for graph pattern 1 from Fig. 4

8 S. Araujo et al.

Thus, when all graph p
Fig. 6 shows a sample path
the GovTrack.Us endpoint.

Fig. 6. A sample path found b
(a US state) in the GovTrack.U

This algorithm is similar
the RDF graph as a directe
does not cover all possible p

3.1.3 Derivation Process
The algorithm described pr
The complete derivation p
found in the first stage an
broader (more general) set
rule is produced.

In order to apply the ch
needs to generalize all node
neralization of the path in F
zation is indicated by the ?)
node) ⎯ forOffice ⎯ Sena
dence between all senators

Fig. 7. A possible general

Fig. 8 shows another (ye
dence between all senators
intermediate nodes are varia

Fig. 8. A possible generalizat
they represent

patterns are executed, all paths of length n are retriev
h found as result of the query from Fig. 5 being issued o

between the resources Christopher Bond (a senator) and Miss
Us dataset

r to RelFinder’s, however RelFinder’s algorithm consid
ed graph and it searches only for 4 graph patterns, wh
paths between a and b.

reviously is used in the first stage of the derivation proc
process ends with the designer choosing one of the pa
nd generalizing it to find correspondences between t
s of resources. As a result of this procedure, a derivat

hosen path to a broader set of resource pairs the desig
es in the path. For instance, the path in Fig. 7 shows a
Fig. 6 that considers all sources and targets (their gener
) that are connected through the path hasRole ⎯ R1 (bl

ators for MO ⎯ represents, i.e., it will find the corresp
and the state of Missouri.

lization between senator resources and the Missouri resource

et more general) generalization that can find the corresp
and the respective state that they represent, since now

ables.

tion between senator resources and the respective US state

ved.
over

souri

ders
hich

ess.
aths
two
tion

gner
ge-

rali-
lank
pon-

pon-
w all

that

 Fusion – Visually Exploring and Eliciting Relationships in Linked Data 9

It should be noticed that the predicates in the path are not generalized and remain
fixed. These generalizations define derivation rules, which select the resources that
will be interconnected.

For the designer to control this generalization process, we provide a graphical user
interface that will be shown later.

3.2 Deriving New Datatype Properties

Fusion also supports application designers to extend the original dataset with datatype
properties. As Fusion’s goal is to allow application designers to map a property in
their application model to an existing Linked Data dataset, the values of the new data-
type properties are computed over the existing values in the original dataset.

Formally, a derivation rule that produces datatype properties is defined by a tuple
(q, p, f) with a query q, a predicate name p, and a function f. The query q defines a
function that maps an RDF graph to a set of URIs in that graph, which defines the set
of resources for which the new datatype property is defined. The predicate name p
defines the predicate name of the new property. Finally the function f maps an RDF
graph and a particular URI within that graph to an RDF value. The result of applying
such a rule to an RDF graph G is the addition of all tuples (s, p, o) such that s ∈ q(G)
and o = f(G, s).

4 Architecture Overview

Fusion’s implementation architecture provides a complete environment to specify and
execute a derivation rule. An overview of this architecture is shown in Fig. 9. The
specification of the rules is supported in Fusion’s user interface that will be explained
further in the section 5. Fusion’s server engine is responsible for executing the deriva-
tion rule itself. During the process of executing of a rule, it queries a source endpoint
in the Linked Data, processes the result, and produces a set of new triples that will be
added to the Fusion repository. Any RDF data store can be used as Fusion’s reposito-
ry. Currently, Fusion implements adapters for Sesame9 and Virtuoso10 data stores,
although other adapters can be easily added to its architecture. All derived triples in
Fusion contain as subject a resource that belongs to the queried dataset, so the derived
data is intrinsically interlinked with the Linked Data cloud. For this reason, a query
over a federation of endpoints, that includes the Fusion repository endpoint, will al-
low the designer to have a view over the Linked Data that also includes the properties
defined in her application model.

There are other approaches to how to store the derived triples. For example, it is
possible to use a user-defined namespace for the subjects of the derived triples, and
add an owl:sameAs statement linking it to the original URIs, as opposed to using the
original URIs directly as subject. The shortcoming of this alternative is that others
who want to find out about the new derived properties would not look for them in
Fusion’s local repositories, but in the original URI, which doesn't know about these
new derived properties. On the other hand, with the current approach, if the VoID

 9 http://www.openrdf.org/
10 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/

10 S. Araujo et al.

description of Fusion’s loca
tion about the original URI
looking for endpoints conta
derived triples in the Fusion

So it is really a modelin
solution requires less involv

Although Fusion does no
chanism could be used in it
inference rules, by using S
RDF vocabularies enabling
rules on Semantic Web mo
executing inference rules, o
still an open problem, sinc
occur in the current Fusion
as new triples in the Fusion
ready materialized is alway
runtime. The main drawbac
original source is updated, t
these changes in the Linked
are actually the realm of r
updates. The performance t
by researchers working in th
Fusion at this state. Fusion
ble on this topic.

F

Fusion is implemented
ActiveRDF API [11] that a
paradigm. By using this A
as an attribute of its cor

11 http://www.spinrdf.
12 http://rubyonrails.
13 http://www.ruby-lan

al repository is updated to reflect the inclusion of inform
I, then others would still find its SPARQL endpoint w
aining information about that URI, thus having access to
n’s repository.
g trade-off, with no clear advantage to either side, and

vement from third parties (e.g., for owl:sameAs processin
ot serialize a rule before executing it, any serialization m
ts architecture. For example, its rules could be serialized
Spin Inference Notation11, which contains a collection
g the use of SPARQL to define constraints and infere
odels. Although this configuration is theoretically possib
or even instantiating a virtual view over the Linked Dat
ce it raises many performance issues. Such issues do
n architecture because it materializes the result of the ru
n repository. The performance of querying data that is
ys faster than querying data that needs to be processed
ck with materializing the result of the rules is that once
the rules have to be executed again. Furthermore, detect
d Data is not trivial. Such synchronizing or updating iss
research (and practice) in (database) view definitions
trade-offs in each case are well known, and are addres
hat area, which while relevant, is not the research focus
is be able to benefit from whatever techniques are ava

Fig. 9. Fusion’s architecture overview

in Ruby on Rails12 as a web application. It uses
allows an RDF graph to be accessed in the object-orien
API the properties of an RDF resource can be acces
rresponding Ruby13 object. For instance, the predic

org/
org/
ng.org/en/

ma-
when
o all

our
ng).
me-
d as
n of
ence
ble,
ta is
not

ules
s al-
d at
the

ting
sues
and

ssed
s for
aila-

the
nted
ssed
cate

 Fusion – Visual

http://www.geonames.org/o
source>.population. This a
for computing a new datat
guage, which cannot be ach

5 Examples of Use

This section describes two c
an application by extending

5.1 Scenario 1 – Adding t

In this example, we suppo
between US senators and
construct a derivation rule
politicians and states in Go
process, the designer provi
knows in advance that are
and the state of Missouri. A
queried and the maximum d

Fig. 10. Fusion’s int

As the result of this f
two example resources sati
Fig. 11. In this example, the

lly Exploring and Eliciting Relationships in Linked Data

ontology#population can be accessed as <
architecture allows the designer to write complex functi
type property value using the full power of the Ruby l
hieved simply by using the SPARQL language.

concrete scenarios that illustrate the use of Fusion to cre
g Linked Data sources with additional properties.

the isSenatorOf Object Property to GovTrack.Us

ose that the designer wants to establish the relations
the US state that they represent. Therefore she needs
that will find and define such a correspondence betw

vTrack.Us’s Linked Data repository. In the first step in
des an example of two resources in GovTrack.Us that
actually related, for instance, politician Christopher Bo

Also, she needs to declare the GovTrack.Us endpoint to
depth of the path. This step is shown in Fig. 10.

terface for finding a path between two known resources

first step, Fusion shows all the paths that connect th
isfying the maximum path length. This result is shown
e paths found have a maximum length of 3.

11

<re-
ions
lan-

eate

ship
s to

ween
the
she
ond
o be

hese
n in

12 S. Araujo et al.

Fig. 11. Fu

In this view, the designe
tics. Note that with this vie
since she does not need to
The first path shown in Fig
role as senator representing
can now infer that this is a
conclusion, the designer cho

Fig. 12. Generalizin

In the next step, shown i
which means that she visua
from the first step into a qu
property isSenatorOf. To c
where the derived triples w
of the new triples, which in

usion’s interface showing the discovered paths

er can now look for the path that has the intended sem
ew the tool assists the designer in this discovery proc

o query the schema manually in order to find these pa
g. 11 indicates that the politician Christopher Bond ha
g the state Missouri, and in our example case the desig
an instance of the path that she is looking for. After
ooses that instance to be the template for the rule.

g the path for the property isSenatorOf in GovTrack.Us

n Fig. 12, the designer will define the derivation rule its
ally formulates a query, which generalizes the selected p
uery that selects the elements to be connected through

complete this operation she also needs to define the gr
will be stored and a specific URI to be used as the predic
n this example will be http://example.org/isSenatorOf. N

man-
ess,

aths.
as a
gner
this

self,
path
the

raph
cate

Note

 Fusion – Visual

that in this example 3 node
of the RDF type Politician
is part of the United States
Consequently, Fusion will d
class Politician that are con
fied path. The whole proc
repository.

5.2 Scenario 2 – Adding a

In this example, we suppos
for cities in Geonames to
create a derivation rule that
She will want this proper
1.000.000 inhabitants, and
needs to provide the Geon
(a city) in Geonames a
http://sws.geonames.org/27
shown in Fig. 13.

Fig. 13. Fus

In the next step, Fusion
the designer will express th
defines the query q, a URI
be used as the function f. I
view.

In this view the designe
sources for which the pred
will compute it for all cities

lly Exploring and Eliciting Relationships in Linked Data

es were generalized such that only paths between resour
and RDF type State that contain an intermediate node t

s Senate will be considered during the derivation proc
derive the new property isSenatorOf for all instances of
nnected to an instance of the class State through the spe
cess concludes with Fusion adding new triples to Fus

a Datatype Property citySize to Geonames

se that the designer wants to derive a new property cityS
distinguish small and large cities. Therefore she needs
t will compute the appropriate values for this new prope
rty to have the value ‘small’ for cities with less t

d ‘large’ otherwise. As the first step in the process,
names Linked Data endpoint to be queried and a resou
as an example. In this case she supplies the U
757345/, which represents the city of Delft. This step

ion’s interface for deriving a data type property

uses the city URI to construct the visual interface wh
he derivation rule R=(q,p,f). In this interface, she visua
I for the new property p, and a Ruby expression that w
In Fig. 14 we show Fusion’s datatype property derivat

er specifies that the new property is to be defined for all
dicate parentFeature equals Province Zuid-Holland, i.e
s in the province of Zuid-Holland. Also she defines that

13

rces
that
ess.

f the
eci-
sion

Size
s to

erty.
than
she

urce
URI
p is

here
ally
will
tion

l re-
e., it

the

14 S. Araujo et al.

Fig. 14. Fu

URI of the new property w
oped in Ruby, using the A
expression that for this exam

resource.popul

Fig. 15. Sample

This process ends with F

6 Conclusion and Fu

Linked Data is a cloud of
applications. However, its
not reflect the ontology ass
between these two represe
Although there exist approa
techniques, views over RD
process that also involves L
strategy is used, it will dem
what to map and how to m
understanding of the under
the exploratory task into th
identifying the relationship
schema, and also in provid
tending the used Linked Da

Fusion works by queryin
the cloud without directly a

usion’s datatype property derivation interface

will be http://example.org/citySize. As Fusion was dev
ActiveRDF API, the function f can be defined as a Ru
mple is shown in Fig. 15.

lation.to.i > 1.000.000 ? ’large’:’small’

e Ruby expression for computing the citySize value

Fusion adding new triples to the Fusion repository.

uture Work

distributed datasets that can be used “as is” for build
data is often expressed in a low-level ontology that d

sociated with the application model. In order to fill the
entational models it is necessary to somehow map th
aches for solving this problem, such as ontology match

DF and inference rules, they do not consider this task a
Linked Data schema exploration. In others words, whate
mand from the designer to identify in both models exac
map it, which is not trivial, since it also demands a cl
rlying schema in the used Linked Data. Fusion integra
he process of mapping, thereby helping the designer w
ps between her application model and the Linked D

ding a full architecture for expressing the mapping and
ata such that it implements the application model.
ng Linked Data and extending it by adding new data i
altering the original dataset. Fusion also provides a vis

vel-
uby

ding
does
gap
em.

hing
as a
ever
ctly
lear
ates
with
Data

ex-

into
sual

 Fusion – Visually Exploring and Eliciting Relationships in Linked Data 15

interface that allows the user to explore Linked Data, express the rules and derive new
data, which in the end covers the whole process of mapping and extending. As Fusion
materializes the result of the mapping as new triples in an extra endpoint in the cloud,
it consequently allows the separation of the processes of building the application and
managing the mapping between models.

References

1. Heim, P., Lohmann, S., Stegemann, T.: Interactive Relationship Discovery via the Seman-
tic Web. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H.,
Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 303–317. Springer,
Heidelberg (2010)

2. SPARQL Specification, http://www.w3.org/TR/rdf-SPARQL-query/
3. Polleres, A., Scharffe, F., Schindlauer, R.: SPARQL++ for mapping between RDF voca-

bularies. In: Proceedings of the 6th International Conference on Ontologies, DataBases,
and Applications of Semantics (ODBASE 2007), Vilamoura, Algarve, Portugal, Novem-
ber 27-29 (2007)

4. Volz, R., Oberle, D., Studer, R.: Views for light-weight Web ontologies. In: Proceedings
of the 2003 ACM Symposium on Applied Computing (SAC 2003), Melbourne, Florida,
March 9-12 (2003)

5. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.: RQL: a
declarative query language for RDF. In: Proceedings of the 11th International Conference
on World Wide Web, Honolulu, Hawaii, USA, May 7-11 (2002)

6. Chen, C., Wu, Z., Wang, H., Mao, Y.: RDF/RDFS-based Relational Database Integration.
In: Proceedings of the 22nd International Conference on Data Engineering (ICDE 2006),
April 3-7 (2006)

7. Magkanaraki, A., Tannen, V., Christophides, V., Plexousakis, D.: Viewing the semantic
web through RVL lenses. Web Semant. 1(4), 359–375 (2004)

8. Euzenat, J., Polleres, A., Scharffe, F.: Processing ontology alignments with SPARQL. In:
Proceedings of the 2008 International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS 2008), Washington, DC, USA, March 4-7 (2008)

9. Araujo, S., Schwabe, D.: Explorator: a tool for exploring RDF data through direct manipu-
lation. In: Proceedings of Linked Data on the Web (LODW 2009) Workshop at WWW
2009, Madrid, Spain, April 20 (2009)

10. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk – A Link Discovery Framework for
the Web of Data. In: Proceedings of Linked Data on the Web (LODW 2009) Workshop at
WWW 2009, Madrid, Spain, April 20 (2009)

11. Oren, E., Delbru, R., Gerke, S., Haller, A., Decker, S.: ActiveRDF: ObjectOriented Se-
mantic Web Programming. Digital Enterprise Research Institute National University of
Ireland, Galway Galway, Ireland (2007)

12. Hassanpour, S., O’Connor, M.J., Das, A.K.: A Software Tool for Visualizing, Managing
and Eliciting SWRL Rules. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A.,
Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS,
vol. 6088, pp. 381–385. Springer, Heidelberg (2010)

Converting and Annotating Quantitative Data
Tables

Mark van Assem1, Hajo Rijgersberg3, Mari Wigham2,3, and Jan Top1,2,3

1 VU University Amsterdam, The Netherlands

mark@cs.vu.nl
2 Top Institute Food and Nutrition, The Netherlands

3 Wageningen University and Research Centre, The Netherlands

first.last@wur.nl

Abstract. Companies, governmental agencies and scientists produce a

large amount of quantitative (research) data, consisting of measurements

ranging from e.g. the surface temperatures of an ocean to the viscosity

of a sample of mayonnaise. Such measurements are stored in tables in

e.g. spreadsheet files and research reports. To integrate and reuse such

data, it is necessary to have a semantic description of the data. However,

the notation used is often ambiguous, making automatic interpretation

and conversion to RDF or other suitable format difficult. For example,

the table header cell “f (Hz)” refers to frequency measured in Hertz, but

the symbol “f” can also refer to the unit farad or the quantities force

or luminous flux. Current annotation tools for this task either work on

less ambiguous data or perform a more limited task. We introduce new

disambiguation strategies based on an ontology, which allows to improve

performance on “sloppy” datasets not yet targeted by existing systems.

1 Introduction

In this paper we study how to convert and annotate unstructured, “raw” quan-
titative data stored in tables into a semantic representation in RDF(S). Quanti-
tative data are found in diverse sources, such as scientific papers, spreadsheets
in company databases and governmental agencies’ reports. The data consist of
observations such as the heart rate of a patient measured in beats per minute, the
viscosity of a sample of mayonnaise in pascal second, or the income of households
in dollars in the US. Usually the tables consist of a header row that indicates
which quantities and units are being measured and which objects; e.g. Sample
Nr. / Fat % / Visc. (Pa.s). Each content row then contains the values of one
actual measurement.

Current reuse and integration of such data is not optimal, because a semantic
description is not available. Researchers tend to write their data down in a
“sloppy” way, because it is not anticipated that the data will ever be reused.
This causes data to be “lost” and experiments to be needlessly repeated. To
enable integration of data from different tables with each other, a complete
description of all quantities and units in the table is necessary; annotation with

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 16–31, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Converting and Annotating Quantitative Data Tables 17

a few key concepts does not suffice. There are two main reasons why it is difficult
to automatically convert the original data to a semantic description. Firstly,
humans use different syntax for expressing quantities and units (e.g. separating
the quantity from the unit with either brackets or a space). Secondly, the symbols
and abbreviations used are highly ambiguous. For example, the symbol “g” can
refer to at least ten different quantities and units.

This problem is not tackled by existing systems for conversion of tabular data
to RDF, such as XLWrap [8]. These rely on a mapping specification constructed
by a human analyst that is specific to the header of one table. Creating such a
mapping is labour-intensive, especially if there are many differently structured
tables involved. This is the case in government repositories such as Data.gov
[4], and repositories of research departments of companies such as Unilever and
DSM (from experience we know these contain thousands of different tables).

A solution is to include an automated annotation system into the conversion
tool, as proposed by [9]. However, such an annotation system needs to tackle the
ambiguity problem if it is to be succesfully used in the domain of quantities and
units. We know of two existing annotation systems that target the domain of
quantities and units [7,1], and our research can be seen as a continuation of these
efforts. The results of these systems are good (over 90% F-measure), but they
target “clean” datasets such as patent specifications, or focus on part of the total
problem, such as detecting units only. In our work we focus on datasets with a
high degree of ambiguity and attempt to detect quantities and units (including
compound units).

The main contribution of our work is to show how ontology-based disam-
biguation can be used succesfully in several ways. Firstly, ambiguous quantity
and unit symbols can be disambiguated by checking which of the candidate
units/quantities are explicitly related to each other in the ontology. Secondly,
ambiguous unit symbols may refer to units in specific application areas (e.g.
nautical mile) or generic ones (meter). Some concepts act as indicators for a
particular area (e.g. the unit nautical mile for “shipping”). After the area is
identified by the presence or absence of indicators, we can disambiguate unit
symbols. Thirdly, ambiguous compound unit expressions such as g/l can refer
to gram per liter or gauss per liter. Only the former makes sense, as the ontology
allows to derive that it refers to the quantity density, while the latter matches
no known quantity. We show the benefits of ontology-based disambiguation by
measuring precision and recall on two datasets and comparing with the perfor-
mance achieved without these techniques. The datasets concerned are: (1) tables
from the Top Institute Food and Nutrition; and (2) diverse scientific/academic
tables downloaded from the Web.

The structure of this paper is as follows. We first present a detailed description
of the problem, followed by related work (Sections 2 and 3). In Section 4 the
datasets and ontology used in our experiment are described. Our approach is
given in Section 5, which we evaluate in Section 6. We conclude with a discussion
in Section 7.

18 M. van Assem et al.

2 Problem Description

Correct annotation of documents is faced with similar problems across many
domains, including homonymy (a cause of low precision) and synonymy (a cause
of low recall if the synonym is not known to the system). Below we discuss in
what way these problems play a role in this domain.

Homonymy is caused in several ways. Firstly, it is not known beforehand
whether cells contain a quantity (e.g. frequency), a unit (e.g. hertz), or both (e.g.
f (Hz)). Secondly, homonymous symbols such as f are used, which can refer to
quantities (frequency, force), units (farad) and prefixes (femto). The cell ms-1
might stand for either reciprocal millisecond or for meter per second (in the latter
case m and s-1 should have been separated by a multiplication sign or space).
This problem is aggravated because people often do not use official casing (e.g.
f for force instead of the official F).

There are several types of synonymy involved in this domain: partial names
(current for electric current), abbreviations (e.g. freq, Deg. C), plural forms (meters)
and contractions (ms-1 instead of the correct form m s-1 for meter per second).
Another type of synonym occurs when a quantity is prefixed with a term that de-
scribes the situation in more detail (“finalDiameter”, “start time”, “mouthTem-
perature”). People also use colloquial names for quantities which overlap with
other quantity names (i.e. confuse them). Two examples are weight (kg) and speed
(1/s). The former should be mass (weight is measured in newton), the latter should
be frequency.

A problem that is specific to this domain is the correct detection of compound
units. The system has to detect the right compound unit instead of returning
the units of which the unit is composed. For example, it should detect that km/h
means kilometer per hour, instead of returning the units kilometer and hour sep-
arately (these should be counted as wrong results). This problem is aggravated
by the fact that the number of compound units is virtually unlimited. For ex-
ample, the quantity speed can be expressed in km/h, mm/picosecond, mile/year,
etcetera. It is impractical to list them explicitly in an ontology. The interpreta-
tion of compound expressions is also difficult because of homonymy: g/l might
stand for gram per liter or gauss per liter. The annotation process must somehow
detect that gram per liter is the right compound unit (gauss per liter is not
used), without gram per liter being present in the ontology. Returning gram,
gauss and liter means returning three wrong results.

For correct detection of compound expressions, syntactic variations have to be
taken into account (multiplication signs, brackets, etcetera). Compound expres-
sions are also sometimes combined with substances, e.g. Conc. (g sugar/l water).
Taken together this means a flexible matching process is needed instead of a
strict grammar parser.

Particular to this domain is also that people tend to write down a quantity
that is too generic or specific for the situation. For example, velocity (m/s) is
too specific if the table contains scalar values only. The quantity velocity is only
appropriate when a vector or a direction is indicated (e.g. “180 km/h north”).
The other way around, the cell viscosity (stokes) should not be annotated with

Converting and Annotating Quantitative Data Tables 19

viscosity. The specific quantity kinematic viscosity (measured in stokes), is more
precise. These “underspecifications” need to be corrected before successful data
integration can take place.

3 Related Work

Annotation systems for quantitative data. As far as we know there are two
existing systems that focus on automated annotation of tables with quantities
and units. The system of [7] annotates table headers with both quantities and
units, focusing on the biological domain (it contains generic physical quantities
such as temperature and domain-specific ones such as colony count). The names
and symbols are matched against their own ontology of 18 quantities with their
associated unit symbols. Table headers and labels in the ontology are first lem-
matized, turned into a vector space model, and compared using cosine similarity.
Weights for terms are fixed beforehand: tokens that appear in the ontology get
a weight of 1, stopwords and single letter tokens get weight zero. The advantage
of this technique is that the order of tokens within terms is not important, so
that “celsius temperature” matches “temperature celsius”. This technique does
not take abbreviations and spelling errors into account (e.g. “temp cels” will not
match).

[1] present a system based on GATE/ANNIE for annotating measurements
found in patent specifications (natural language documents). Symbols found
in the documents are first tagged as possible unit matches using a flat list1.
Domain-specific pattern matching rules then disambiguate the results, using the
actual text plus detected types as input. For example, if a number is followed by
letter(s) that match a unit symbol (e.g. 100 g), then the letter(s) are classified
as a unit. It uses a similar rule to detect that 40-50mph refers to a range of
numbers. Thirty of such rules were defined using the JAPE pattern language,
but these cannot be inspected because the work is not open source. As far as we
can tell no use is made of features of an ontology.

Both systems make simplifications. [1] only aim to identify units, not quan-
tities. No techniques are provided to deal with homonymy and synonymy of
unit symbols. The matching step is based on a list of units that does not con-
tain homonymous symbols (e.g. uses “Gs” for gauss instead of the official “G”;
fahrenheit has symbol “degF”). Matching using this list will miss correct matches
(e.g. when “g” is used to refer to gauss).

Simplifications made by [7] include that they assume that quantities are only
written with their full name, and units only written with their symbol. Both
system’s high performance (over 90% F-measure) are not likely to be reached
on ambiguous data as found in repositories of research results. We conclude
that existing systems do not sufficiently target the homonymy and synonymy
problems. In the remainder of this section we discuss techniques used in other
domains that may help solve these.

1 Obtained from http://www.gnu.org/software/units/

http://www.gnu.org/software/units/

20 M. van Assem et al.

Scoring functions. A usual technique for filtering out false positives and dis-
ambiguating between alternative candidates is to provide a scoring function and
a threshold. The candidate with the highest score is accepted (if it scores above
the threshold). We give two examples of scoring functions found in literature.

Firstly, the similarity of the whole document being annotated can be com-
pared to already correctly annotated documents. Their vector representations
are compared using cosine similarity. [5] uses this technique to disambiguate
matches for the same text fragment, and to find matches missed earlier in the
process (in the BioCreative effort where genes are detected in medical texts;
a task similar to ours). Unfortunately, the “documents” in our domain usually
contain little content (in natural language) to compare. Often there is no more
information available beyond the text in the header row, which is already am-
biguous itself. Secondly, an example of a scoring function specific to our domain
is proposed by [7]. They observe that sometimes the data cells in a column con-
tain units and can be used as evidence to disambiguate the column’s quantity.
Their function is composed of (1) cosine similarity of quantity to column header;
and (2) average cosine similarity of units in that column to the quantity’s units.
Cosine similarity is computed on a vector representation of the terms; terms
are first lemmatized. This function only works if the data cells in the column
contains units, which is relatively rare in our datasets.

Ontology-based filtering and disambiguation. A useful ontology-based scor-
ing technique is to use concepts related to the candidate concept. If these related
concepts are detected in the text near to the candidate concept, this increases
the likelihood that a candidate is correct. [5] implemented this technique so that
the candidate genes for string “P54” are disambiguated by comparing the gene’s
species, chromosomal location and biologicalprocess against occurrencesof species,
location and process in the text surrounding “P54”. We implement this technique
for our domain through the relationship between units and their quantity listed in
our ontology.

[7] use the value range of units stored in the ontology to filter out false pos-
itives. They look up the data values (numbers) in the column. If the values lie
outside the unit’s value range, the candidate is removed. This works on their
data set and quantities, but this is not likely to work for large quantitative on-
tologies and varied datasets. For example, a temperature value of “-20” can only
rule out the unit kelvin (its scale starts from 0), but leaves celsius and fahrenheit
as possible interpretations. In case we are dealing with a relative temperature,
then “-20” can even not strike kelvin from the list of candidates. Celsius and
fahrenheit can only be disambiguated by a few actual values, which are unlikely
to appear in actual measurements.

None of the techniques mentioned above addresses the problem of ambigous
compound concepts (e.g. m/s might refer to meter per second or mile per siemens).
We developed a solution that uses an ontology to determine whether the units
together express a quantity that is defined in the ontology.

Converting and Annotating Quantitative Data Tables 21

4 Materials

The data, annotator instructions, gold standard and ontology used in our eval-
uation are available online2. We start by giving a more detailed description of
the problem.

4.1 Datasets

We use two datasets to develop and validate our approach. The first set is ob-
tained from a data repository of researchers at the Dutch Top Institute Food
and Nutrition.3

The second dataset was collected from the Web, especially from .edu, and .org
sites and sites of scientific/academic organizations. The files were found through
Google by querying for combinations of quantity names and unit symbols and
filtering on Excel files, such as in “speed (m/s)” filetype:xls”. Topics include:
chemical properties of elements, throughput of rivers, break times and energy
usage of motor cycles, length and weight of test persons.

Our datasets can be considered a “worst-case scenario”. The dataset of [7] is
simpler in that (1) quantities are always written in their full name and units with
symbols only; (2) no abbreviations or misspellings occur; (3) no compound units
appear; and (4) both data and ontology contain no ambiguous unit symbols. The
dataset used by [1] may be simpler because the documents (patent specifications)
are intended to be precise.

We make the assumption, like [7] and [1], that the header rows have already
been identified and separated from the content rows. We have effectuated this
assumption by deleting cells that do not belong to the table header from the
Excel files used in our experiment.

4.2 Ontology

We use an ontology we developed, the Ontology of Units of Measure and related
concepts (OUM) in the annotation process [11]. OUM’s main classes are Quantity,
Unit of Measure, Dimension and Application Area. (see Figure 1 for an overview).
OUM currently consists of approximately 450 quantities and about 1,000 units.
Concepts have English labels, an extension in Dutch is under development.

For each quantity the units in which it can be expressed are listed. For ex-
ample, speed can be expressed in (amongst others) km/s and mm/s. Each unit
belongs to one or more quantities. OUM groups similar quantities into classes.
For example, Kinetic energy and Heat are subclasses of Energy.

Units can be split into singular units, multiples and submultiples, and com-
pound units. Singular units (units with a special name) such as meter can be pre-
fixed to create so-called multiples and submultiples (e.g. kilometer, millimeter).

2 See http://www.cs.vu.nl/~mark/iswc2010/. The food dataset was not included as

it is commercially sensitive data.
3 http://www.tifn.nl

http://www.cs.vu.nl/~mark/iswc2010/
http://www.tifn.nl

22 M. van Assem et al.

Fig. 1. UML diagram of main OUM classes and properties

Compound units are constructed by multiplying, dividing, or exponentiating
units (e.g. m/s2). Unit multiplications are linked to their constituent units
through the properties term1 and term2, unit divisions are linked to their con-
stituents through numerator and denominator.

Because units can be prefixed and composed, the number of possible units is
almost endless. For example, units for the quantity velocity may be a combination
of any unit for length (e.g. kilometer, centimeter, nordic mile) and any unit for
time (hour, picosecond, sidereal year, etcetera). For practical reasons OUM only
lists the more common combinations, but the analysis of what is “common”
has not been finalised yet. As a consequence, for specific application areas some
compound units may be missing. Each quantity or unit has one full name and
one or more symbols. Each full name is unique, but words in the name can
overlap (e.g. “magnetic field intensity”, “luminous intensity”).

Humans regulary confuse some quantities with each other (e.g. weight and
mass). Our ontology records the concepts and their definitions as they are pre-
scribed in standards, but for automated annotation it is useful to know which
terms people use to denote these concepts. This dichotomy is well-known in the
vocabulary world, and reflected in the SKOS standard through the skos:hidden-

Label property4. It is used to record labels not meant for display but useful in
searching. We introduce a property confused with (subproperty of skos:hiddenLabel).
By attaching the label “weight” to mass our annotation system will be able to
generate mass as a candidate. In the same vein we introduce colloquial abbreviation

to denote often used abbreviations as “temp” and “freq” for temperature and
frequency. Less than ten of such abbreviations and confusions are currently
included.
4 http://www.w3.org/TR/2009/NOTE-skos-primer-20090818/#sechidden

http://www.w3.org/TR/2009/NOTE-skos-primer-20090818/#sechidden

Converting and Annotating Quantitative Data Tables 23

Quantities and units are sometimes used primarily in a particular application
area. OUM specifies generic application areas, such as space and time (contains
units such as mile and second). OUM also contains specific areas like shipping
(contains nautical mile) and astronomy (contains sidereal second).

Quantities and units have dimensions, which are abstractions of quantities ig-
noring magnitude, sign and direction aspects. Analysis of dimensions is common
practice in science and engineering [2]. It allows for example to detect errors
in equations and to construct mathematical models of e.g. aircraft. OUM lists
all dimensions which occur in practice, which can be used in disambiguation of
compound units (see Section 5.4). The dimension of a quantity or unit can be
viewed as a vector in a space spanned by an independent set of base vectors (i.e.
base dimensions). For example, the quantity speed has a dimension that can be
decomposed into base dimension length and base dimension time (with certain
magnitudes as we show below). In principle we could also have expressed time in
terms of base dimensions distance and speed. Each system of units used defines
such a set of base dimensions to span the dimensional space. Each other dimen-
sion can be expressed as a combination of these base dimensions, each with a
certain magnitude.

For example, the SI system of units has selected as its base dimensions
length (L), mass (M), time (T), electric current (I), thermodynamic tempera-
ture (Θ), amount of substance (N) and luminous intensity (J). Since all other
dimensions can be computed by multiplication and division of one or more of
these base dimensions, an arbitrary dimension can be expressed as multipli-
cation LαMβT γIδΘεN ζJη. If an exponent is 0, the respective basic quantity
does not play a role. For example, the quantity velocity and unit cm/hr have
SI-dimension L1M0T−1l0Θ0N0J0, which is equivalent to L1T−1 or length per
time. A quantity or unit with a dimension for which all powers are 0 is said to
be dimensionless. It is typically obtained as a ratio between quantities of equal
dimension, such as strain or Reynolds number, and expressed as for example
fractions or percentages.

5 Approach

We have divided the annotation process into the following steps: (0) table ex-
traction; (1) tokenization; (2) basic matching; (3) matching compounds listed in
OUM; (4) matching unknown compounds using dimensional analysis; (5) disam-
biguation. We do not treat the extraction step here; its output is a list of cells
and their contents. Our main assumption is that the identification of the header
row(s) has already been done.

5.1 Tokenization

The string value of a cell is separated into tokens by first splitting on spaces,
underscores (“start time”) and punctuation marks (brackets, dots, stars, etc.).
Number-letter combinations such as “100g” are separated, as are camel-cased

24 M. van Assem et al.

tokens (“StartTime”). Basic classification of tokens into numbers, punctuation,
and words is performed. Punctuation tokens that may represent multiplication
(period, stars, dots), and division (slash) are also typed. Two other token types
are detected: stopwords and a list of “modifiers” that are particular to this
domain (e.g. mean, total, expected, estimated).

5.2 Basic Matching: Full Names and Symbols

Before matching takes place we generate several synonyms: plural forms of units
(e.g. “meters”), contractions of compound unit symbols (e.g. “Pas” for pascal
second), some alternative spellings (e.g. “C” for ◦C, s-1 vs. sˆ-1 vs. 1/s for recip-
rocal units, sˆ2 vs. s2 for exponentiated units). Because these can be generated
systematically this is easier than adding them to the ontology.

Matching starts by comparing the input to full names of quantities and units,
including confused with and colloquial abbreviations. The match with the highest
score above a threshold is selected. We have used a string distance metric to
overcome spelling mistakes, called Jaro-Winkler-TFIDF [3].

After full name matching is completed, a second matcher finds matches be-
tween input tokens and quantities/units based on their symbols, e.g. “f”, “km”,
“s”). This is a simple exact match that ignores case. The outcome of this step
will contain many ambiguous matches, especially for short unit and quantity
symbols.

5.3 Matching: Compounds in OUM

The matches obtained in the basic matching in some cases represent compound
units that are listed in OUM. For example, the previous step will return for the
cell C.m the matches calorie, coulomb, meter, nautical mile. We detect that this
is the compound coulomb meter by detecting that some of the unit matches are
constituents of a compound listed in OUM. Comparison to a unit multiplication
uses the properties term1 and term2, for comparing to unit division the properties
numerator and denominator. In the latter case the additional constraint is that
units have to appear in the input in the order prescribed (first numerator, then
denominator). The punctuation used in the input determines whether we are
dealing with a multiplication or a division. Notice that this step already helps to
disambiguate matches; in this case calorie and nautical mile could be excluded.

A special case are compounds consisting of (sub)multiple units, e.g. μNm
which stands for micronewton meter. Because OUM only lists newton meter, we
have to first detect the prefix (in this case μ, other prefixes include m, M, k, T),
remove it and then perform the compound check described above.

5.4 Matching: Compounds Not in OUM

The previous step will miss compound units not listed in OUM. If the unit sym-
bols in the compound are not ambiguous, we can assume that this interpretation

Converting and Annotating Quantitative Data Tables 25

is correct. However, in many cases the symbols are ambiguous. For example, g/l
can either denote gauss per liter or gram per liter. A way to disambiguate is to find
out if the compound expresses a quantity that is listed in OUM. The quantity
implied by the compound can be computed using the dimensional properties of
the units (also listed in OUM).

The first step is to compute the overall dimension of the compound based on
the individual units, the second step is to check whether a quantity with that
dimension exists in OUM. Computing dimensions is a matter of subtracting
the dimension exponents of the underlying elementary dimensions. Each unit
is associated with an instance of Dimension, which in turn lists the dimension
exponents through the properties SI length exponent, SI time exponent, etcetera. If,
for example, we interpret g/l as gram per liter, we retrieve the units’ dimen-
sions (mass-dimension and volume-dimension, respectively). Then we divide the
dimensional exponents of mass L0M1T 0l0Θ0N0J0 by the dimensional exponents
of volume L3M0T−1l0Θ0N0J0 which gives L−3M1T−1l0Θ0N0J0 These dimen-
sional exponents match exactly with the dimensions of the quantity density. On
the other hand, viewing g as gauss would yield L−3M1T−2l−1Θ0N0J0 for the
dimension of the compound unit, which does not correspond to the dimension
of any quantity in OUM.

This step is implemented by normalizing the input string, constructing a tree
representation of the compound through a grammar parser, assigning the units to
it, and sending it to a service that calculates the implied dimension components.

An interesting option in the future is to automatically enrich OUM with new
compounds that pass the above test, and add them to OUM. This would be a
valid way to continuously extend the set of compound units in OUM, not in
an arbitrary manner, but learning from actual occurrences in practice. If we
combine this with monitoring which compound units are never used in practice
(but were added for theoretical reasons or just arbitrarily), a reliable mechanism
for maintaining a relevant set of compound units in OUM would be created.

5.5 Disambiguation

The previous step will still contain ambiguous matches, e.g. for the cells f (Hz)
and wght in g. We have developed a set of heuristics or “rules” to remove the
remaining ambiguities.5 First we list domain-specific pattern matching rules in
the style of [1], then three disambiguation rules that make use of relations in the
ontology (rules 7, 8 and 9).
Rule 1: Symbols in brackets usually refer to units. For example, “s” in
delay (s) refers to second and not area or entropy.

Rule 2: Prefer singular units over (sub)multiples. Symbols for singular
units (e.g. pascal (Pa)) overlap with symbols for (sub)multiples (e.g. picoampere
(pA)). In these cases, select the singular unit because it is more likely.

5 Formulated as “rules” for reading convenience, but both the rules and previous

“steps” can be implemented differently.

26 M. van Assem et al.

Rule 3: A symbol that follows a number usually refers to a unit. For
example, 100 g refers to gram. This disambiguation deletes six potential quantity
matches for “g”, and retains units gram and gauss. (Rule also used by [1].)

Rule 4: Take letter case into account for longer symbols. People are
sloppy in the correct letter case of symbols. One-letter symbols such as “t” may
stand for temperature (T) or tonne (t). Two-letter symbols as “Km” may stand
for kilometer (km) or maximum spectral luminous efficacy (Km). Casing used in
the text cannot be trusted to disambiguate; the context usually does make clear
which is meant. However, casing used in writing down units of three or more
letters is usually reliable. For example, (sub)multiples such as mPa and MPa
(milli/megapascal) are usually written correctly. Humans pay more attention to
submultiples because errors are hard to disambiguate for humans too. We thus
perform disambiguation based on case if the symbol is three letters or longer.

Rule 5: Modifier words usually appear before quantities, not units. For
example, mean t or avg t is an indication that “t” stands for the quantity Time
instead of the unit tonne. The idea of using specific types of tokens to improve
correct concept detection is due to [6] in the gene annotation domain.

Rule 6: Too many symbol matches implies it is not a quantity or unit. If
previous steps were not able to disambiguate a symbol that has many candidate
matches (e.g. “g” can match ten quantities and units), then the symbol prob-
ably does not refer to a quantity or unit at all (it might be a variable or e.g.
part of the code of product). For such an ambiguous symbol, humans usually
provide disambiguating information, such as the quantity. We therefore delete
such matches. This rule can hurt recall, but has a greater potential to improve
precision which will pay off in the F-measure. This rule should be executed after
all other rules.

Rule 7: Symbols that refer to related quantities and units are more likely

than unrelated quantities and units. For example, T (C) is more likely to refer
to temperature and celsius than to time and coulomb. The former pair is connected
in OUM through property unit of measure (domain/range Quantity/Unit), while
the latter pair is not. We filter out the second pair of matches. We first apply
this rule on quantities and units in the same cell. This rule also allows to select
the quantity mass for cell weight (g) instead of the erroneous weight. Mass was
found in basic matching through its confused with label. We repeat application of
the rule on the whole table after application on single cells. A quantity mentioned
in one cell (e.g. mass) can thus be used to disambiguate cells where the quantity
was omitted (e.g. containing only “g”). During application of this rule we prefer
matches on preferred symbols over matches on non-preferred (“alternative”)
symbols. For example, cell Length (m) matches length-meter (meter has symbol

“m”) which we prefer over length-nautical mile (mile has alternative symbol “m”).

Converting and Annotating Quantitative Data Tables 27

Rule 8: Choose the most specific quantity that matches the evidence.

Generic quantities such as Viscosity and Temperature have specific instances such
as kinematic viscosity and celsius temperature. The user may have meant the spe-
cific quantity. If a unit is given, this can be disambiguated. For example, viscosity
expressed in stokes means that kinematic viscosity was meant. When poise is used,
dynamic viscosity was meant. In other cases, the units of the specific quantities
overlap, so that the proper quantity cannot be determined (e.g. diameter and
radius are forms of Length measured in units such as meter.

Rule 9: Choose the interpretation based on the most likely application

area. Symbols such as “m” can refer to units from a generic application area
or a specific application area (e.g. nautical mile in shipping or meter in space and
time). If there is evidence that the table contains measurements in a specific area
then all ambiguous units can be interpreted as a unit used in that area, instead
of those in more generic areas. If there is no such evidence, the unit from the
generic area is more likely. As evidence that the observations concern a specific
area we currently accept that the table contains at least one unambiguous unit
that is particular to that area (i.e. written in its full name). Other types of
evidence can be taken into account in the future (e.g. column name “distance to
star”).

5.6 Implementation

We developed a prototype implementation of our annotation approach in Java. It
provides a simple framework to implement matchers and disambiguation rules.
Our matchers and disambiguation rules can probably also be implemented as
JAPE rules on top of GATE; this is future work.

The Excel extractor uses the Apache POI library6. The prototype can emit
the parsed and annotated tables as RDF files or as CSV files. For representing
and manipulating the OUM ontology and the output as objects in Java we used
the Elmo framework7 with Sesame as RDF backend. For string metrics we use
the SecondString8 library developed by Cohen et al. The parser for compound
units was built using YACC.

6 Evaluation and Analysis

6.1 Evaluation Type and Data Selection

We evaluate our approach by measuring recall and precision against a gold stan-
dard for two datasets. We could not measure the performance of our system on
the data of [1] because it is not publicly available. Comparison against the data
of [7] is not useful as they identify only a few (unambiguous) quantities and
units.
6 http://poi.apache.org/
7 http://www.openrdf.org/doc/elmo/1.5/
8 http://secondstring.sourceforge.net/

http://poi.apache.org/
http://www.openrdf.org/doc/elmo/1.5/
http://secondstring.sourceforge.net/

28 M. van Assem et al.

The tables were selected as follows. We randomly selected files from the food
dataset and removed those that were unsuitable for our experiment because they
were (1) written in Dutch; or (2) contained no physical quantities/units; or (3)
had the same header as an already selected file (this occurs because measuring
machines are used that produce the same table header each time). We kept
selecting until we obtained 39 files. Selection of 48 Web tables was also random;
no tables had to be removed.

The number of correctly and wrongly assigned URIs is counted on a per-
document basis, by comparing the set of URIs returned by the system with the
set of URIs of the human, ignoring the cell in which they were found. Based on
the total number of correct/wrong/retrieved URIs, the macro-averaged precision
and recall is calculated (each correct/wrong URI contributes evenly to the total
score).9

6.2 Gold Standard Creation

The files were divided over three annotators (the authors). They used an Excel
add-in [11] developed in earlier work that allows selection of concepts from OUM.
Each cell could be annotated with zero or one quantity, and zero or one unit.
The annotators were incouraged to use all knowledge they could deduce from the
table in creating annotations. If the exact quantity was not available in OUM,
a more generic quantity was selected. For example, the cell half-life (denoting
the quantity for substance decay) was annotated with Time. After that, each file
was checked on consistency by one of the authors.

Compound units that do not appear in OUM can not be annotated by assign-
ing a URI to them (simply because they have no URI in OUM). They were put
in a separate result file and were compared by hand.

6.3 Results

We have tested different configurations (Table 1). Firstly, a baseline system that
only detects exact matches, including our strategies to enhance recall such as con-
traction of symbols and generation of plural forms (comparable to [7]’s system).
Secondly, with flexible string matching turned on. Thirdly, with pattern disam-
biguation rules turned on (rules 1-6); this may be comparable to the GATE-based
system [1]. We cannot be certain because their system is not open source. This
indicated what can be achieved with pattern matching only. Fourthly, with also
compound detection and ontology-based rules turned on (rules 7-9) .

The following points are of interest. Firstly, the baseline scores show that the
extent of the ambiguity problem is different for quantities and units. Performance
9 A comparison per cell would introduce a bias towards frequently occurring quanti-

ties/units, which either rewards or punishes the system for getting those frequent

cases right. Micro-averaging calculates precision/recall for each document and takes

the mean over all documents. A single annotation may contribute more or less to

the total precision or recall, depending on whether it appears in a document with

little or a lot of annotations.

Converting and Annotating Quantitative Data Tables 29

for quantities is not high (F-measure ranging from 0.09 to 0.20), while F-measure
for units is already reasonable (around 0.40). It turns out that the datasets in
our experiment relatively often use non-ambigous unit symbols, including “N”
for newton and “sec” for second. Secondly, flexible string matching does not help
to increase recall (threshold 0.90 was used but no clear increase was seen at
0.85 either). The results of the remaining two configurations are obtained with
flexible matching turned off. Thirdly, pattern matching rules help considerable,
improving F-measure with 0.15-0.60. Fourthly, ontology-based disambiguation
increases the F-measure further for units: 0.16-0.25. The results for quantities
are mixed: 0.07 increase in the Food dataset, no difference in the Web dataset.
Fifthly, in the Web dataset unit scores are higher than quantity scores, and the
other way around in the Food dataset.

Table 1. Results of evaluation. Separate precision (P), recall (R) and F-measure (F)

are given for both datasets, based on macro-averaging. Best F-measures are in bold.

Food Web

Quantities Units Quantities Units

P R F P R F P R F P R F
baseline 0.11 0.84 0.20 0.30 0.61 0.40 0.05 0.70 0.09 0.29 0.61 0.40

flex. match 0.11 0.84 0.20 0.29 0.61 0.39 0.05 0.72 0.09 0.28 0.61 0.39

pat. rules 0.78 0.82 0.80 0.50 0.57 0.53 0.63 0.64 0.63 0.50 0.57 0.53

full 0.83 0.93 0.87 0.72 0.83 0.78 0.59 0.67 0.63 0.63 0.76 0.69

6.4 Qualitative Analysis

We analyzed the causes for false positives and false negatives in the results. The
following should be highlighted. Firstly, the performance of the pattern rules is
not improved upon as much as we had expected in the case of quantities. One
explanation is that many of the symbols in the input did not represent a quantity,
and the pattern rules successfully filter these false positives out through rule 6.
In the future we will try our method on more varied datasets to determine if
this effect is consistent or not.

Secondly, some quantities are simply missing in OUM, such as half life and
resonance energy. The annotators used the more generic quantity (time and molar
energy) to annotate the cells where they appear. The generic quantities are not
not found because there is no lexical overlap. This can be solved by adding them
or importing them from another ontology. Thirdly, a number of quantities is
not found because they are not mentioned explicitly, but implied. For example,
letters X and Y are used to indicate a coordinate system, and thus imply length.
Failing to detect the quantity also causes loss of precision in unit detection:
the quantity would help to disambiguate the units through rule 7. These issues
points to the importance of a high-coverage ontology.

Fourthly, another cause for missed quantities is that the object being measured
is stated, which together with the unit implies the quantity. For example, the
cell Stock (g), refers to quantity mass as the word “stock” implies a food product

30 M. van Assem et al.

(stock is a basis for making soup). This can be solved by using more ontologies in
the matching step, and link concepts from those ontologies to OUM. For example,
a class Food product could be linked to quantities that are usually measured on
food products such as mass. Because field strength is not one of those quantities,
the erroneous match gauss could be removed.

Fifthly, some of the problems are difficult to solve as very case-specific back-
ground knowledge would be required. For example, cells Lung (L) and Lung (R)
produce false positive matches such as röntgen and liter and can only be solved
with knowledge on human fysiology.

Lastly, analysis of the detection of compounds not in OUM shows that this
step performed well at recognizing unit divisions (kilojoule per mole, newton per
square millimeter). However, its performance is degraded considerably by false
positives such as dP for decapoise and V c for volt coulomb.

7 Discussion

In this paper we have studied annotation of quantitative research data stored
in tables. This is relevant to today’s world because scientists, companies and
governments are accumulating large amounts of data, but these datasets are
not semantically annotated. We presented several ways in which an ontology
can help solve the ambiguity problems: (1) detection of compound units present
in the ontology; (2) dimensional analysis to correctly interpret compound units
not explicitly listed in the ontology; (3) identification of application areas to
disambiguate units; and (4) identification of quantity-unit pairs to disambiguate
them both. Especially the performance for unit detection is good. This is positive,
as correct unit detection is more important than correct quantity detection: the
quantity can be derived from the unit using the ontology. For example, time can
be derived from millisecond. Even when the right specific quantity is not known
(e.g. half-life), the more generic quantity that could be derived is a suitable
starting point for data integration. For example, to integrate two datasets about
the half-life of elements it is sufficient to know that columns are being merged
that deal with time (if the units are not the same they can be automatically
converted into each other).

However, performance is still far from perfect. We have suggested several ways
in which performance may be improved, of which linking ontologies about the
objects being measured is an attractive one. One promising line of future work
is the application of machine learning (ML) techniques to the disambiguation
problem. However, this is not straightforward since our domain lacks the typ-
ical features that ML approaches rely on, e.g. those based on the surrounding
natural language text. We do see possibilities to use the properties of the can-
didate concepts as features and thus combine our rule-based approach with a
machine learning approach – as e.g. proposed by [10]. This would require a larger
annotated dataset to serve as training and test set.

An implication of this work for the Web of Data is that conversion tools
need to be tuned to the domain at hand. Current tools target sources that are

Converting and Annotating Quantitative Data Tables 31

already structured to a large extent, but if the Web of Data is to grow, more
unstructured sources should be targeted. The work of [9] already suggests to
include an annotation system into a conversion tool, but the annotation system
is generic. As shown a generic system will fail to capture the semantics of this
domain. A system that can be configured for the domain is required.

Acknowledgements

This work was carried out within the Food Informatics subprogram of the Vir-
tual Laboratory for e-Science, a BSIK project of the Dutch government. We
thank Jeen Broekstra for implementation advice, Remko van Brakel for the Ex-
cel export tool, and Laura Hollink and Tuukka Ruotsalo for their comments.

References

1. Agatonovic, M., Aswani, N., Bontcheva, K., Cunningham, H., Heitz, T., Li, Y.,

Roberts, I., Tablan, V.: Large-scale, parallel automatic patent annotation. In: Con-

ference on Information and Knowledge Management (2008)

2. Bridgman, P.: Dimensional Analysis. Yale University Press, New Haven (1922)

3. Cohen, W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance metrics

for name-matching tasks. In: Proc. of IJCAI 2003 Workshop on Inf. Integration,

pp. 73–78 (2003)

4. Ding, L., DiFranzo, D., Magidson, S., McGuinness, D.L., Hendler, J.: The Data-

gov Wiki: A Semantic Web Portal for Linked Government Data. In: Bernstein, A.,

Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan,

K. (eds.) ISWC 2009. LNCS, vol. 5823. Springer, Heidelberg (2009)

5. Hakenberg, J., Royer, L., Plake, C., Strobelt, H., Schroeder, M.: Me and my friends:

gene mention normalization with background knowledge. In: Proc. 2nd BioCreative

Challenge Evaluation Workshop, pp. 1–4 (2007)

6. Hanisch, D., Fundel, K., Mevissen, H., Zimmer, R., Fluck, J.: ProMiner: rule-based

protein and gene entity recognition. BMC bioinformatics 6(Suppl. 1), S14 (2005)

7. Hignette, G., Buche, P., Dibie-Barthélemy, J., Haemmerlé, O.: Fuzzy Annotation

of Web Data Tables Driven by a Domain Ontology. In: Aroyo, L., Traverso, P.,

Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E.,

Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, p. 653. Springer,

Heidelberg (2009)

8. Langegger, A., Woss, W.: Xlwrap - querying and integrating arbitrary spreadsheets

with sparql. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,

D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 359–374.

Springer, Heidelberg (2009)

9. Lynn, S., Embley, D.W.: Semantically Conceptualizing and Annotating Tables. In:

Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 345–359.

Springer, Heidelberg (2008)

10. Medelyan, O., Witten, I.: Thesaurus-based index term extraction for agricultural

documents. In: Proc. of the 6th Agricultural Ontology Service (AOS) Workshop at

EFITA/WCCA (2005)

11. Rijgersberg, H., Wigham, M., Top, J.L.: How semantics can improve engineering

processes - a case of units of measure and quantities (2010); accepted for publication

in Advanced Engineering Informatics

JustBench: A Framework for OWL
Benchmarking

Samantha Bail, Bijan Parsia, and Ulrike Sattler

The University of Manchester

Oxford Road, Manchester, M13 9PL

{bails,bparsia,sattler}@cs.man.ac.uk

Abstract. Analysing the performance of OWL reasoners on expressive

OWL ontologies is an ongoing challenge. In this paper, we present a new

approach to performance analysis based on justifications for entailments

of OWL ontologies. Justifications are minimal subsets of an ontology that

are sufficient for an entailment to hold, and are commonly used to debug

OWL ontologies. In JustBench, justifications form the key unit of test,

which means that individual justifications are tested for correctness and

reasoner performance instead of entire ontologies or random subsets. Jus-

tifications are generally small and relatively easy to analyse, which makes

them very suitable for transparent analytic micro-benchmarks. Further-

more, the JustBench approach also allows us to isolate reasoner errors

and inconsistent behaviour. We present the results of initial experiments

using JustBench with FaCT++, HermiT, and Pellet. Finally, we show

how JustBench can be used by reasoner developers and ontology engi-

neers seeking to understand and improve the performance characteristics

of reasoners and ontologies.

1 Introduction

The Web Ontology Language (OWL) notoriously has very bad worse case com-
plexity for key inference problems, at least, OWL Lite (EXPTIME-complete
for satisfiability), OWL DL 1 & 2 (NEXPTIME-complete), and OWL Full (un-
decidable) (see [5] for an overview). While there are several highly optimised
reasoners (FaCT++, HermiT, KAON2, Pellet, and Racer) for the NEXPTIME
logics, it remains the case that it is frustratingly easy for ontology developers
to get unacceptable or unpredictable performance from them on their ontolo-
gies. Reasoner developers continually tune their reasoners to user needs in order
to remain competitive with other reasoners. However, communication between
reasoner developers and users is tricky and, especially on the user side, often
mystifying and unsatisfying.

Practical OWL DL reasoners are significantly complex pieces of software, even
just considering the core satisfiability testing engine. The basic calculi underlying
them are daunting given that they involve over a dozen inference rules with com-
plex conditions to ensure termination. Add in the extensive set of optimisations

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 32–47, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

JustBench: A Framework for OWL Benchmarking 33

and it is quite difficult for non-active reasoner developers to have a reasonable
mental model of the behaviour of reasoners. Middleware issues introduce ad-
ditional layers of complexity ranging from further optimisations (for example,
classification vs. isolated subsumption tests) to the surprising effects of different
parsers on system performance.

In this paper, we present a new approach to analysing the behaviour of rea-
soners by focusing on justifications of entailments. Justifications—minimal en-
tailing subsets of an ontology—already play a key role in debugging unwanted
entailments, and thus are reasonably familiar to users. They are small and clearly
defined subsets of the ontology that can be analysed manually if necessary, which
reduces user effort when attempting to understand the source of an error in the
ontology or unwanted reasoner behaviour. We present results from analysing six
ontologies and three reasoners and argue that justifications provide a reasonable
starting point for developing empirically-driven analytical micro-benchmarks.

2 Reasoner Behaviour Analysis

2.1 Approaches to Understanding Reasoner Behaviour

Consider five approaches to understanding the behaviour of reasoners on a given
ontology, especially by ontology modellers:

1. Training. In addition to the challenges of promulgating detailed under-
standing of the performance implications of the suite of calculi and asso-
ciated optimisations (remembering that new calculi or variants thereof are
cropping up all the time), it is unrealistic to expect even sophisticated users
to master the engineering issues in particular implementations. Furthermore,
it is not clear that the requisite knowledge is available to be disseminated:
New ontologies easily raise new performance issues which require substantial
fundamental research to resolve.

2. Tractable logics. In recent years, there has been a renaissance in the field
of tractable description logics which is reflected in the recent set of tractable
OWL 2 profiles.1 These logics tend to not only have good worst case be-
haviour but to be “robust” in their performance profile especially with re-
gard to scalability. While a reasonable choice for many applications, they
gain their performance benefits by sacrificing expressivity which might be
required.

3. Approximation. Another approach is to give up on soundness or complete-
ness when one or the other is not strictly required by an application, or, in
general, when some result is better than nothing. Approximation [17,3,16]
can either be external (e.g., a tool which takes as input an OWL DL ontology
and produces an approximate OWL EL ontology) or internal (e.g., anytime
computation or more sophisticated profile approximation). A notable diffi-
culty of approximation approaches is that they require more sophistication

1 http://www.w3.org/TR/2009/REC-owl2-profiles-20091027

http://www.w3.org/TR/2009/REC-owl2-profiles-20091027

34 S. Bail, B. Parsia, and U. Sattler

on the part of users and sophistication of a new kind. In particular, they
need to understand the semantic implications of the approximation. For ex-
ample, it would be quite simple to make existing reasoners return partial
results for classification—classification is inherently anytime. But then users
must recognise that the absence of an entailment no longer reliably indicates
non-entailment. In certain UIs (such as the ubiquitous tree representations),
it is difficult to represent this additional state.

4. Fixed rules of thumb. These may occur as a variant or result of training or
be embodied in so-called “lint” tools [12]. The latter is to be much preferred
as such tools can evolve as reasoners do, whereas “folk knowledge” often
changes slowly or promulgates misunderstanding. For example, the rules of
thumb “inverses are hard” and “open world negation is less efficient than
negation as failure”2 do not help a user determine which (if either) is causing
problems in their particular ontology/reasoner combination. This leads users
to start ripping out axioms with the “dangerous” constructs in them which,
e.g., for negation in the form of disjointness axioms, may in fact make things
worse. Lint tools fare better in this case but do not support exploration of
the behaviour of a reasoner/ontology combination, especially when one or
the other does not fall under the lint tools coverage. Finally, rules of thumb
lead to manual approximation which can distort modelling.

5. Analytical tools. The major families of analytical tools are profilers and
benchmarks. Obviously, one can use standard software profilers to analyse
reasoner/ontology behaviour, and since many current reasoners are open
source, one can do quite well here. This, however, requires a level of sophis-
tication with programming and specific code bases that is unreasonable to
demand of most users. While there has been some work on OWL specific
profilers [19], there are none, to our knowledge, under active development.
Benchmarks, additionally, provide a common target for reasoner develop-
ers to work for, hopefully leading to convergence in behaviour. On the flip
side, benchmarks cannot cover all cases and excessive “benchmark tuning”
can inflate reasoner performance with respect to the benchmarks without
improving general behaviour in real cases.

2.2 Benchmarks

Application and Analytical Benchmarks. For our current purposes, a
benchmark is simply a reasoning problem, typically consisting of an ontology
and an associated entailment. A benchmark suite, although often called a bench-
mark or benchmarks, is a set of benchmarks.

We can distinguish benchmark suites by three characteristics: their focus,
their realism, and their method of generation. With regard to focus, the classic
distinction is between analytical benchmarks and application benchmarks.

Analytical benchmarks attempt to determine the presence or absence of cer-
tain performance related features, e.g., the presence of a query optimiser in a
2 This latter rule of thumb is actually false in general. Non-monotonic features gen-

erally increase worst case complexity, often quite significantly.

JustBench: A Framework for OWL Benchmarking 35

relational database can be detected3 by testing a query written in sub-optimal
form. More generally, they attempt to isolate particular behaviours of the system
being analysed.

Application benchmarks attempt to predict the behaviour of a system on cer-
tain classes of application by testing an example (or select examples) of that
class. The simplest form of an application benchmarking is retrospective record-
ing of the behaviour of the application on the system in question in real deploy-
ment (i.e., performance measurement). Analytical benchmarks aim to provide
a more precise understanding of the tested system, but that precision may not
help predict how the system will perform in production. After all, an analyti-
cal benchmark does not say which part of the system will be stressed by any
given application. Application benchmarks aim for better predictions of actual
behaviour in production, but often this is at the expense of understanding. Ac-
cidental or irrelevant features might dominate the benchmark, or the example
application may not be sufficiently representative.

In both cases, benchmark suites might target particular classes of problem, for
example, conjunctive query answering at scale in the presence of SHIQ TBoxes.

Choice of Reasoning Problems. In order to be reasonably analytic, bench-
marks need to be understandable enough so that the investigator can correlate
the benchmark and features thereof with the behaviour observed either on the-
oretical grounds, e.g., the selectivity of a query, or by experimentation, e.g. by
making small modifications to the test and observing the result. If we have a
good theoretical understanding, then individual benchmarks need not be small.
However, we do not have a good theoretical understanding of the behaviour of
reasoners on real ontologies and, worse, real ontologies tend to be extremely het-
erogenous in structure, which makes sensible uniform global modifications rather
difficult. While we we can measure and compare the performance of reasoners on
real ontologies, we often cannot understand or analyse why some (parts of) on-
tologies are particularly hard for a certain reasoner—or even isolate these parts.
Thus, we turn to subsets of existing ontologies. However, arbitrary subsets of an
ontology are unlikely to be informative and there are too many for a systematic
exploration of them all. Thus, we need a selection principle for subsets of the
ontology. In JustBench, our initial selection principle is to select justifications of
atomic subsumptions, which will be discussed in section 3.

Artificial subsets. Realism forms an axis with completely artificial problems at
one pole, and naturally occurring examples at the other. The classic example
of an artificial problem is the kSAT problem for propositional, modal, and de-
scription logics [7,18,10,11]. kSAT benchmark suites are presented in terms of
how to generate random formulae (to test for satisfiability) according to cer-
tain parameters. Some of the parameters can be fixed for any test situation (e.g.

3 The retrospective on the Wisconsin Benchmark [6] for relational databases has a

good discussion of this.

36 S. Bail, B. Parsia, and U. Sattler

clause length which is typically 3) and others are allowed to vary within bounds.
Such benchmarks are comparatively easy to analyse theoretically4 as well as
empirically.

However, these problems may not even look like real problems (kSAT formulae
have no recognisable subsumption or equivalence axioms), so extrapolating from
one to the other is quite difficult. One can always use naturally occurring ontolo-
gies when available, but they introduce many confounding factors. This includes
the fact that users tend to modify their ontologies to perform well on their rea-
soner of choice. Furthermore, it is not clear that existing ontologies will resemble
future ontologies in useful ways. This is especially difficult in the case of OWL
DL due to the fragility of reasoner behaviour: seemingly innocuous changes can
have severe performance effects. Also, for some purposes, existing ontologies are
not hugely useful—for example, for determining scalability, as existing ontologies
can only test for scalability up to their actual size.

The realism of a benchmark suite can constrain its method of generation.
While artificial problems (in general) can be hand built or generated by a pro-
gram, naturally occurring examples have to be found (with the exception of
naturally occurring examples which are generated e.g., from text or by reduc-
tion of some other problem to OWL). Similarly, application benchmarks must be
at least “realistic” in order to be remotely useful for predicting system behaviour
on real applications.

Modules. A module is a subset of an ontology which captures “everything” an
ontology has to say about a particular subsignature of the ontology [4], that is,
a subset which entails everything that the whole ontology entails which can be
expressed in the signature of the module itself. Modules are attractive for a num-
ber of reasons including the fact that they capture all the relevant entailments
and support a principled removal of “slow” parts of an ontology. However, most
existing accounts of modularity are very fine grained with respect to signature
choice, which preclude blind examination of all modules of an ontology.

If we restrict attention to modules for the signature of an atomic subsumption
(which corresponds more closely to justifications for atomic subsumptions) we
find that modules can be too big. First, at least by current methods, modules
contain all justifications for all entailments expressible in their signature. As
we can see in the Not-Galen ontology, this can lead to very large sets even
just considering one subsumption. Second, current and prospective techniques
involve various sorts of approximation which brings in additional axioms. While
this excess is reasonable for many purposes, and might be more realistic as
a model for a stand alone ontology, it interferes with the analysability of the
derived benchmark. That being said, modules clearly have several potential roles
for benchmarking, and incorporating them into JustBench is part of our future
work.

4 “Easy” in the sense of possible and feasible enough that analyses eventually emerge.

JustBench: A Framework for OWL Benchmarking 37

2.3 Existing OWL Benchmarks

The most popular reasoner benchmark, at least in terms of citation count, is
the Lehigh University Benchmark (LUBM) [9]. LUBM is designed primarily to
test the scalability of conjunctive query and consists of a small, simple, hand-
built “realistic” ontology, a program for generating data conforming to that
ontology, and a set of 14 hand-built “realistic” queries. LUBM is an application
focused, realistic benchmark suite with artificial generation. LUBM’s ontology
and data were notoriously weak, for example, the ontology lacked coverage of
many OWL features, a fact that the University Ontology Benchmark (UOBM)
[13] was invented to rectify. For an extensive discussion and critique of existing
synthetic OWL benchmarks see [20].

Several benchmarks suites, notable those described in [14,8], make use of
naturally occurring ontologies, but do not attempt fine grained analysis of how
the reasoners and ontologies interact. Generally, it can be argued that the area
of transparent micro-benchmarks based on real (subsets of) OWL ontologies, as
opposed to comprehensive (scalabiliy-, system-, or application) benchmarks is
currently neglected.

3 Justification-Based Reasoner Benchmarking

Our goal is to develop a framework for benchmarking ontology TBoxes which
is analytic, uses real ontologies, and supports the generation of problems. In
order to be reasonably analytic, particular benchmarks need to be understand-
able enough so that the investigator can correlate the benchmark and features
thereof with the behaviour observed either on theoretical grounds, e.g., the se-
lectivity of a query, or by experimentation, e.g., by making small modifications
to the test and observing the result. If we have a good theoretical understand-
ing, then individual benchmarks need not be small. However, we do not have
a good theoretical understanding of the behaviour of reasoners on (arbitrary)
real ontologies and, worse, real ontologies tend to be extremely heterogenous
in structure, which makes sensible uniform global modifications rather difficult.
Thus, we turn to subsets of existing ontologies. However, arbitrary subsets of an
ontology are unlikely to be informative and there are too many for a systematic
exploration of them all. Thus, we need a selection principle for subsets of the
ontology. In JustBench, our initial selection principle is to select justifications of
entailments, e.g., of atomic subsumptions.

Definition 1 (Justification). A set of axioms J ⊆ O is a justification for
O |= η if J |= η and, for all J ′ ⊂ J , it holds that J ′ � η.

As an example, the following ontology5 entails the atomic subsumption
C SubClassOf: owl:Nothing, but only the first three axioms are necessary for the
5 We use the Manchester OWL Syntax for all examples, omitting auxiliary declarations

of entities for space and legibility reasons.

38 S. Bail, B. Parsia, and U. Sattler

entailment to hold. Therefore, the set {C SubClassOf: A and D, A SubClassOf: E
and B, B SubClassOf not D and r some D} is a justification for this entailment.

O = { C SubClassOf: A and D,
A SubClassOf: E and B,
B SubClassOf: not D and r some D,
F SubClassOf: r only A,
D SubClassOf: s some owl:Thing }

The size of a justification can range, in principle, from a single axiom to the num-
ber of all axioms in the ontology, with, in one study, an average of approximately
2 axioms per justification [1]. The number of justifications for an entailment can
be exponential in the size of the ontology, and multiple (potentially overlap-
ping) justifications for a single entailment occur frequently in ontologies used in
practice.

An explanation framework that provides methods to exhaustively compute all
justifications for a given entailment has been developed for the OWL API v3,6

which we use in our benchmarking framework.

3.1 Limitations of this Selection Method

Justifications, while having several attractive features as benchmarks, also have
drawbacks including: First, we can only generate test sets if computing at least
some of the entailments and at least some of their justifications for them is feasi-
ble with at least one reasoner. Choice of entailment is critical as well, although,
on the one hand, we have a standard set of entailments (atomic subsumptions,
instantiations, etc.) and on the other hand we can analyse arbitrary sets of entail-
ments (e.g., conjunctive queries derived from an application). As the test cases
are generated by a reasoner, their correctness is determined by the correctness
of the reasoner, which itself is often at issue. This problem is mitigated by check-
ing individual justifications on all reasoners (for soundness) and using different
reasoners to generate all entailments and their justifications (for completeness).
The latter is very time consuming and infeasible for some ontologies.

Second, justification-based tests do not test scalability, nor do they test in-
teractions between unrelated axioms, nor do they easily test non-entailment
finding, nor do they test other global effects. With regard to scalability, we have
two points: 1) Not every performance analysis needs to tackle scalability. For
example, even if a reasoner can handle an ontology (thus, it scales to that ontol-
ogy), its performance might be less than ideal. 2) Analysis of scalability problems
needs to distinguish between reasoner weaknesses that are merely due to scale
and those that are not. For example, if a reasoner cannot handle a particular
two line ontology, it will not be able to handle that ontology with an additional
400 axioms. Thus, micro-benchmarks are still useful even if scalability is not
relevant.
6 http://owlapi.sourceforge.net

http://owlapi.sourceforge.net

JustBench: A Framework for OWL Benchmarking 39

Finally, in the first instance, justification test successful entailment finding,
but much of what an OWL reasoner does is find non-entailments. Non-entailment
testing is a difficult matter to support analytically, however, even their justifica-
tions offer some promise. For example, we could work with repaired justifications.

3.2 JustBench: System Description

The JustBench framework is built in Java using the OWL API v3 and con-
sists of two main modules that generate the justifications for an ontology and
perform the benchmarks respectively. The generator loads an ontology from
the input directory, finds entailments using the InferredOntologyGenerator class
of the OWL API and generates justifications for these entailments with the
explanation interface. The entailments in question are by adding specific In-
ferredAxiomGenerators to the ontology generator. For example, one can add In-
ferredSubClassAxiomGenerator to get all subsumptions between named classes
and InferredClassAssertionAxiomGenerator to get all atomic instantiations. By
default, we just look for atomic subsumptions and unsatisfiable classes. The jus-
tifications and entailments are saved in individual OWL files which makes them
ready for further processing by the benchmarking module.

For each performance measurement, a new instance of the OWLReasoner
class is created which loads the justification and checks whether it entails the
subsumption saved as SubClassOf axiom in the entailment ontology. We measure
the times to create the reasoner and load the ontology, the entailment check using
the isEntailed() call to the respective reasoner, and the removal of the reasoner
instance with dispose(). Regarding the small run-times of the entailment checks,
there exists a trade-off between fine-grained, transparent micro-benchmarks and
large test cases, where the results may be more robust to interference, but also
harder to interpret for users. Limiting the impact that actions in the Java run-
time and the operating system have on the measurements is an important issue
when benchmarking software performance [2], which we take into account in our
framework. In order to minimise measurement variation, the sequence of load,
check, dispose is repeated a large number of times (1000 in our current setting)
and the median of the values measured after a warm-up phase is taken as the
final result. In preliminary tests it was detected that the mean value of the mea-
surements was distorted due to a small number of outliers that differed from
the majority of the measured values by several orders of magnitude, which was
presumably caused by the JVM garbage collection. Basing the measurement on
the median instead proved to yield stable and more reliable results.

We also experimented with a slightly different test involving a one-off call
to prepareReasoner() is included before the measured entailment check. prepar-
eReasoner() triggers a complete classification of the justification. Thus, we can
isolate the time required to do a simple “lookup” for the atomic subsumption
in the entailment. The times for loading, entailment checking and disposing are
then saved along with the results of the entailment checks. Since the tested
ontologies are justifications for the individual entailments, this should naturally

40 S. Bail, B. Parsia, and U. Sattler

return true for all entailment checks if the reasoner works correctly. As we will
show in the next section, a false result here can indicate a reasoner error.

4 Experiments and Evaluation

4.1 Experimental Setup

The test sets were generated using JustBench and FaCT++ 1.4.0 on a Mac
Pro desktop system (2.66 GHz Dual-Core Intel Xeon processor, 16 GB physical
RAM) with 2GB of memory allocated to the Java virtual machine. The tested
ontologies were Building, Chemical, Not-Galen (a modified version of the Galen
ontology), DOLCE Lite, Wine and MiniTambis.7 This small test set can already
be regarded as sufficient to demonstrate our approach and show how its trans-
parency and restriction to small subsets of the ontologies helps to isolate and
understand reasoner behavior, as well as quickly trace the sources of errors.

Most test sets could be generated by our system within a few minutes, how-
ever, for the Not-Galen ontology the process was aborted after it had generated
several hundred explanations for a single entailment. In order to limit the pro-
cessing time, a reasoner time out was introduced, as well as a restriction on the
number of justifications to be generated. Thus, the justifications for Not-Galen
are not complete, and we assume that generating all explanations for all entail-
ments of this particular ontology is not feasible in practical time. The number
of justifications for each entailment ranged from 1 to over 300, as in the case of
Not-Galen, with the largest containing 36 axioms.

The benchmarking was performed on the same system as the test set gener-
ation using three reasoners that are currently compatible with the OWL API
version 3, namely FaCT++ 1.4.0, HermiT 1.2.3, and Pellet 2.0.1.

4.2 Results and Discussion

Reasoner Performance. The measurements for the justifications generated
from our five test ontologies show a clear trend regarding the reasoner perfor-
mance. Generally, it has to be noted that the performance of all three reasoners
can be regarded as suitably on these ontolgoies, and there are no obvious hard
test cases in this test set. On average, FaCT++ consistently performs best in
almost all checks, with HermiT being slowest in most cases. Pellet exhibits sur-
prising behaviour, as it starts out with a performance close to that of FaCT++
for smaller justifications and then approximates or even “overtakes” HermiT for
justifications with a larger number of axioms. This behaviour, e.g., as shown in
figure 1, is seen in all the ontologies tested.

Generally, the time required for an entailment check grows with the size of
the justification for all three reasoners, as shown in figure 2—justifications with
a size larger than 13 are all obtained from the Not-Galen ontology. Again, Pellet
7 All ontologies that were used in the experiments may be found online:

http://owl.cs.man.ac.uk/explanation/justbenchmarks

http://owl.cs.man.ac.uk/explanation/justbenchmarks

JustBench: A Framework for OWL Benchmarking 41

Fig. 1. Reasoner performance on justifications of the MiniTambis ontology

exhibits the behaviour mentioned above and eventually “overtakes” HermiT.
The dip at size 16 is caused by the existence of only one justification of this size
and can be neglected here.

HermiT in particular starts out with a higher baseline than the other reason-
ers, but only increases slowly with growing justification size. We are investigating
further to pinpoint the exact factors in play.

For the atomic subsumptions in our examples, the expressivity—which seems
quite wide ranging—does not significantly affect performance. The average time
for each size group indicates that the hardest expressivities for all reasoners are
ALCN and ALCON . We expect that a analysis of the laconic versions of these
justifications i.e., that only contain the axiom parts that are relevant to the
entailment) will reveal to which extent the performance is affected by the use of
expressive constructors.

Reasoner Errors. While the system returns true for nearly all entailment
checks, a small subset of Not-Galen is wrongly identified as not entailed by
Pellet after adding a call to prepareReasoner() to force a full classification of the
justification. All the misclassified justifications have the DL expressivity ALEH,
indicating that they contain subproperty hierarchies. On closer inspection it can
be found that Pellet produces an error for the justifications that have axioms of
the form

Tears SubClassOf:
NAMEDBodySubstance, isActedOnSpecificallyBy some
(Secretion and (isFunctionOf some LachrymalGland))

42 S. Bail, B. Parsia, and U. Sattler

Fig. 2. Performance of reasoners depending on size of justifications

where isActedOnSpecificallyBy is a subproperty of some other property that
is necessary for the entailment to hold. Communication with Pellet developers
revealed that the problem is due to an error in the optimizations of the classi-
fication process and not in the core satisfiability check. This demonstrates the
need to test all code paths.

By using justifications for the testing process, we detected and isolated and
error which affects the correctness of the reasoner but was not otherwise visible.
Performing an entailment check on the whole ontology would not exhibit this be-
haviour, as several other justifications for the entailment masked the entailment
failure.

Errors Caused by Signature Handling. We also identified a problem in how
FaCT++ handles missing class declarations when performing entailment checks.
For some justifications FaCT++ aborts the program execution with an “invalid
memory access error”, which is not shown by Pellet and HermiT. We isolated the
erroneous justifications and perform entailment checks outside the benchmarking
framework to verify that the problem was not caused by any of the additional
calls to the OWL API made by JustBench. We found that the subsumptions were
all entailed due to the superclass being equivalent to owl:Thing in the ontology.
Consider the following entailment:

NerveAgentSpecificPublishedWork
SubClassOf: PublishedWork

JustBench: A Framework for OWL Benchmarking 43

and the justification for it consists of the following three axioms:

refersToPrecursor
Domain: PublishedWork

NerveAgentRelatedPublishedWork
SubClassOf: PublishedWork

VR RelatedPublishedWork
EquivalentTo: refersToPrecursor only VR Precursor
SubClassOf: NerveAgentRelatedPublishedWork

The subclass NerveAgentSpecificPublishedWork does not occur in the justifica-
tion, as the entailment follows fromClass: PublishedWork EquivalentTo: owl:Thing
and therefore the subclass would not be declared in the justification. How should
an OWL reasoner handle this case? Pellet and HermiT accept the ontologies and
verify the entailment, whereas FaCT++ requires the signature of the entailment
to be a subset of the signature of the justification. This causes FaCT++ to not
even perform an entailment check and abort with the error “Unable to register
‘NerveAgentSpecificPublishedWork’ as a concept”. While this is not a correctness
bug per se, it is a subtle interoperability issue.

4.3 Additional Tests and Discussion

Performance for Full Classification. In order to compare our justification-
based approach to typical benchmarking methods, we measure a full classifica-
tion of each of our test ontologies. Therefore, an instance of the OWL API’s
InferredOntologyGenerator class is generated and the time required for a call to
its fillOntology() method is measured to retrieve all inferred atomic subsump-
tions from the respective ontology. Surprisingly, the rankings based on the indi-
vidual justifications are inverted here: FaCT++ performed worst for all tested
ontologies (except for Wine, where the reasoner cannot handle a “PositiveIn-
teger” datatype and crashes), with an average of 1.84 s to retrieve all atomic
subsumptions. HermiT and Pellet do this form of classification in much shorter
time (0.98 s and 1.16 s respectively), but the loading times for HermiT (a call
to createReasoner()) are an order of magnitude larger than those of FaCT++.

Additional Entailments. Choice of entailments makes a big difference to the
analysis of the ontology. For example, we examined an additional ontology which
has a substantial number of individuals. For full classification of the ontology,
both HermiT and Pellet performed significantly worse than FaCT++. Using
JustBench with justifications for all entailed atomic subsumptions of the on-
tology did not lead to any explanation for this behaviour: all three reasoners
performed well on the justifications and the sum of their justification reasoning
times was much less than their classification time. However, after adding the jus-
tifications for inferred class assertions to the test set, the time HermiT takes for
entailment checks for these justifications is an order of magnitude larger than for

44 S. Bail, B. Parsia, and U. Sattler

the other reasoners. The isolation of the classes of entailment, as well as shared
characteristics of entailments in each class, falls out quite naturally by looking
at their justification. In this case, it is evident that there is a specific issue with
HermiT’s instantiation reasoning and we have small test cases to examine and
compare with each other.

An Artificially Generated Ontology. In an additional test with an arti-
ficially generated ontology we attempt to verify our claim about loading and
classification times of the three reasoners. The ontology contains over 200 sub-
sumptions of the form

A1EquivalentTo: A2
and (p some (not (A2)))

with entailments being atomic subsumptions of the type A1 SubClassOf: A2, A2
SubClassOf: A3 . . .A1 SubClassOf: A210. Justifications for 62 of these entail-
ments were generated before the system ran out of memory, and the entailments
were checked against their respective justifications and the full ontology. The
right chart of figure 3 shows clearly how the performance of both Pellet and
FaCT++ for an entailment check worsens with growing ontology size, whereas
HermiT has an almost consistently flat curve. FaCT++ in particular shows al-
most exponential growth. In contrast, the loading times for larger ontologies only
grow minimally for Pellet and FaCT++, while HermiT’s loading time increases
rapidly, as can be seen in the left chart of figure 3.

All three reasoners perform much worse on the artificial ontology than on the
“real-life” ones (except for Not-Galen). This is a bit surprising, considering that
the expressivity of this ontology is only ALC, as opposed to the more expressive
ALCF(D), SHIF , SHOIN (D), andALCN respectively of the other ontologies.
The justifications for its entailments however are disproportionally large (up to
209 axioms for Class: A1 SubClassOf: A210) whereas those occurring in the
other “real” ontologies have a maximum size of only 13 axioms. This indicates
that a complex justificatory structure with a large number of axioms in the
justifications poses a more difficult challenge for the reasoners.

The measurements based on the artificial ontology indicate that HermiT per-
forms more preparations in its createReasoner() method and has only minimal
lookup times, which confirms our results from the entailment checks following a
call to prepareReasoner(). We can conclude that, once the ontology is loaded and
fully classified, HermiT performs well for larger ontologies, whereas FaCT++
suffers from quickly growing classification times. With respect to the lookup
performance of FaCT++, is very likely that the JNI used in order to access the
reasoner’s native C++ code over the OWL API acts as a bottleneck that affects
it negatively. The use of C++ code clearly affects the times for the calls to dis-
pose(), as the FaCT++ framework has to perform actual memory management
tasks in contrast to the two Java reasoners Pellet and HermiT which defer them
indefinitely.

JustBench: A Framework for OWL Benchmarking 45

Fig. 3. Reasoner performance on an artificially generated ontology

4.4 Application of JustBench

We propose our framework as a tool that helps reasoner developers as well as on-
tology engineers check the correctness and performance of reasoners on specific
ontologies. With respect to ontology development, the framework allows ontol-
ogy engineers to carry out fine-grained performance analysis of their ontologies
and to isolate problems. While measuring the time for a full classification can
give the developer information about the overall performance, it does not as-
sist in finding out why the ontology is easy or hard for a particular reasoner.
JustBench isolates minimal subsets of the ontology, which can then be analysed
manually to find out which particular properties are hard for which reasoners.
One strategy for mitigating performance problems is to introduce redundancy.
Adding the entailments of particularly hard justifications to the ontology causes
them to “mask” other, potentially harder, justifications for the entailment. This
leads to the reasoner finding the easier justifications first, which may improve
its performance when attempting to find out whether an entailment holds in an
ontology.

Reasoner developers also benefit from the aforementioned level of detail of
justification-based reasoner analysis. By restricting the analysis to small subsets,
developers can detect reasoner weaknesses and trace the sources by inspecting
the respective justifications, which will help understanding and improving rea-
soner behaviour. Additionally, as shown in the previous section, the method also
detects unsound reasoning which may not be exhibited otherwise.

5 Conclusion and Future Work

To our knowledge, JustBench is the first framework for analytic, realistic bench-
marking of reasoning over OWL ontologies. Even though we have currently only
examined a few ontologies, we find the general procedure of using meaningful

46 S. Bail, B. Parsia, and U. Sattler

subsets of real ontologies to be insightful and highly systematic. At the very
least, it is a different way of interacting with an ontology and the reasoners.

Our current selection principle (i.e., selecting justifications) has proven fruit-
ful: While justifications alone are not analytically complete (e.g., they fail to
test non-entailment features), they score high on understandability and manip-
ulability and can be related to overall ontology performance. Thus, arguably,
justifications are a good “front line” kind of test for ontology developers.

Future work includes:

– Improving the software: While we believe we have achieved good inde-
pendence from irrelevant system noise, we believe this can be refined further,
which is critical given the typically small times we are working with. Further-
more, some OWL API functions (such as prepareReasoner()) do not have a
tightly specified functionality. We will work with reasoner developers to en-
sure the telemetry functions we use are precisely described and comparable
across reasoners.

– Testing more ontologies: We intend to examine a wide range of ontolo-
gies. Even our limited set revealed interesting phenomena. Working with
substantively more ontologies will help refine our methodology and, we ex-
pect, support broader generalisations about ontology difficulty and reasoner
performance.

– More analytics: Currently, we have been doing fairly crude correlations
between “reasoner performance” and gross features of justifications (e.g.,
size). This can be considerably improved.

– New selection principles: As we have mentioned, modules are an obvious
candidate, though there are significant challenges, not the least that the
actual number of modules in real ontologies tends to be exponential in the
size of the ontology [15]. Thus, we need a principle for determining and
computing “interesting” modules. Other possible selection principles include
“repaired” justifications and unions of justifications.

Furthermore, we intend to experiment with exposing users to our analysis method-
ology to see if this improves their experience of dealing with performance
problems.

References

1. Bail, S., Parsia, B., Sattler, U.: The justificatory structure of OWL ontologies. In:

OWLED (2010)

2. Boyer, B.: Robust Java benchmarking (2008),

http://www.ibm.com/developerworks/java/library/j-benchmark1.html

3. Brandt, S., Küsters, R., Turhan, A.-Y.: Approximation and difference in description

logics. In: Proc. of KR 2002. Morgan Kaufmann Publishers, San Francisco (2002)

4. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontolo-

gies: Theory and practice. J. of Artificial Intelligence Research 31, 273–318 (2008)

5. Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler,

U.: OWL 2: The next step for OWL. J. of Web Semantics 6(4), 309–322 (2008)

http://www.ibm.com/developerworks/java/library/j-benchmark1.html

JustBench: A Framework for OWL Benchmarking 47

6. Dewitt, D.J.: The Wisconsin benchmark: Past, present, and future. In: Gray, J.

(ed.) The Benchmark Handbook for Database and Transaction Processing Systems.

Morgan Kaufmann Publishers Inc., San Francisco (1992)

7. Franco, J.V.: On the probabilistic performance of algorithms for the satisfiability

problem. Inf. Process. Lett. 23(2), 103–106 (1986)

8. Gardiner, T., Tsarkov, D., Horrocks, I.: Framework for an automated compari-

son of description logic reasoners. In: Cruz, I., Decker, S., Allemang, D., Preist,

C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS,

vol. 4273, pp. 654–667. Springer, Heidelberg (2006)

9. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-

tems. Web Semantics: Science, Services and Agents on the World Wide Web 3(2-3),

158–182 (2005)

10. Horrocks, I., Patel-Schneider, P.F.: Evaluating optimized decision procedures for

propositional modal K(m) satisfiability. J. Autom. Reasoning 28(2), 173–204 (2002)

11. Hustadt, U., Schmidt, R.A.: Scientific benchmarking with temporal logic decision

procedures. In: Fensel, D., Giunchiglia, F., McGuinness, D.L., Williams, M.-A.

(eds.) KR, pp. 533–546. Morgan Kaufmann, San Francisco (2002)

12. Lin, H., Sirin, E.: Pellint - a performance lint tool for pellet. In: Dolbear, C.,

Ruttenberg, A., Sattler, U. (eds.) OWLED. CEUR Workshop Proceedings, vol. 432.

CEUR-WS.org. (2008)

13. Ma, L., Yang, Y., Qiu, Z., Xie, G.T., Pan, Y., Liu, S.: Towards a complete OWL on-

tology benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011,

pp. 125–139. Springer, Heidelberg (2006)

14. Pan, Z.: Benchmarking DL reasoners using realistic ontologies. In: OWLED (2005)

15. Parsia, B., Schneider, T.: The modular structure of an ontology: An empirical

study. In: Lin, F., Sattler, U., Truszczynski, M. (eds.) KR. AAAI Press, Menlo

Park (2010)

16. Rudolph, S., Tserendorj, T., Hitzler, P.: What is approximate reasoning? In: Cal-

vanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 150–164. Springer,

Heidelberg (2008)

17. Schaerf, M., Cadoli, M.: Tractable reasoning via approximation. Artificial Intelli-

gence 74, 249–310 (1995)

18. Selman, B., Mitchell, D.G., Levesque, H.J.: Generating hard satisfiability problems.

Artif. Intell. 81(1-2), 17–29 (1996)

19. Wang, T., Parsia, B.: Ontology performance profiling and model examination:

first steps. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon,

L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-

Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, p. 595. Springer,

Heidelberg (2007)

20. Weithöner, T., Liebig, T., Luther, M., Böhm, S.: What’s wrong with OWL bench-

marks? In: SSWS (2006)

Talking about Data: Sharing Richly Structured
Information through Blogs and Wikis

Edward Benson, Adam Marcus, Fabian Howahl, and David Karger

MIT CSAIL

{eob,marcua,fabian,karger}@csail.mit.edu

Abstract. Several projects have brought rich data semantics to collab-

orative wikis, but blogging platforms remain primarily limited to text.

As blogs comprise a significant portion of the web’s content, engagement

of the blogging community is crucial to the development of the semantic

web. We provide a study of blog content to show a latent need for better

data publishing and visualization support in blogging software. We then

present DataPress, an extension to the WordPress blogging platform that

enables users to publish, share, aggregate, and visualize structured infor-

mation using the same workflow that they already apply to text-based

content. In particular, we aim to preserve those attributes that make

blogs such a successful publication medium: one-click access to the infor-

mation, one-click publishing of it, natural authoring interfaces, and easy

copy and paste of information (and visualizations) from other sources.

We reflect on how our designs make progress toward these goals with a

study of how users who installed DataPress made use of various features.

1 Introduction

Recent efforts to generate and curate high-value structured datasets have made
great headway on several fronts, as exemplified by open government initiatives,
Facebook’s Open Graph project, and Freebase’s structured wiki. While these
centralized, top-down approaches are significant, we have yet to see wide adop-
tion of structured data publication at the grass-roots level. Taking note that the
development of hosted blogging platforms encouraged millions of web readers to
become content authors as well, we aim to entice these users to publish data by
building data-oriented features into their existing blogging software.

Large projects can rely on the promise of societal and technical benefits to
justify the costs required to curate and publish structured data. We believe
that for independent bloggers to take part in data publishing efforts of their
own, the promise of later portability and reuse is not enough. Instead, end-user-
focused data publishing tools should offer immediate gratification in the form
of useful visualizations and interesting data aggregation before they focus on
formal ontologies and namespaces. Only after the user has seen the benefit of
data publishing as part of their content authoring workflow can we take steps to
link, integrate, and further reuse the underlying data.

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 48–63, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Talking about Data: Sharing Richly Structured Information 49

We also take inspiration from efforts such as the Semantic MediaWiki project,
which has brought structured data publishing to wikis by exposing it in the Wiki-
Text format already familiar to wiki users. We aim to similarly provide bloggers
with data publishing tools that blend in with existing blogging environments.
The popular blog publishing platforms that we target differ from wikis in that
they depend more heavily on WYSIWYG editing, click-to-embed rich media,
and an easy-access copy-and-paste culture. To facilitate the adoption of grass-
roots data publishing, we must build tools that minimize the difference between
traditional text-based blogging and the future of publishing, in which all content
producers are data publishers.

To understand how to accommodate the data-blogger of the future, this paper
first examines the properties of blogging platforms that led to their popularity
among content authors on the web. We then demonstrate a latent need of, and
great potential for, data-centric blogging tools with a content study of 210 blog
entries on the web. This study quantifies the kinds of data-supported arguments
that blog authors make and shows that bloggers are already using structured
data in their content, but the tools they have to communicate it are limiting.

We then present DataPress, a plugin for the WordPress blogging platform
which facilitates data visualization from minimally structured files, allows blog-
gers to point at other data presentations as a starting point for their own,
and allows bloggers to publish and aggregate their own data sets. We build
into DataPress the ability to easily link to external data from spreadsheets,
RDF sources, and Semantic MediaWiki sites. We further demonstrate the abil-
ity to rely on Semantic MediaWiki as a community ontology server to encourage
schema convergence across data feeds produced by DataPress bloggers.

Finally, we examine the log data and interview the authors of real DataPress
deployments, one of which having seen over 55,000 page views. These users
provide insight into how web authors are using DataPress to publish data today
(not in their blogs, to our surprise) and where opportunities exist to improve
data publishing tools for tomorrow.

2 Requirements for the 21st Century Blogger

Our goal is to bring structured data publishing to the blogging community, and
to do so we must build tools appropriate to the environment that bloggers expect.
This section examines the properties of blogging platforms that made them such
a successful grass-roots medium of contribution to the web. We expect that by
preserving these traits in a data-oriented blogging tool, we are more likely to
gain traction from the blogging community. Of the many features of blogging
systems that make them popular, we highlight:

One-click Publishing. Thoughpublishing through a blogging platform is equiv-
alent, from a technical standpoint, to uploading HTML documents over FTP,
the increased usability and convenience that a web publishing interface pro-
vides encourages participation by a far wider audience.

50 E. Benson et al.

Visual Authoring Environment. Blog platforms offer users familiar, word-
processor-like WYSIWYG text editors, with HTML forms to guide them
through more complicated tasks. Notably, the author does not have to co-
ordinate her work through several distinct applications—all her authoring
needs are met within the editing environment of the blogging tool.

Copy and Paste. Web blogs have developed a publishing culture that makes
significant use of copy and paste, both to quote information found in other
sources and also to replicate layout or visualization functionality that the
author could not construct herself. Sometimes, such quoting is an end in
itself; at other times, the goal is to use the original content as a starting point
for publishing by modification. It is much easier to copy someone else’s nicely
formatted page and replace its content with your own than to understand
how to create such a layout in the first place.

Pre-Packaged Widgets. Blogging systems make it easy to include rich media
widgets—such as slide shows and video clips—in article text without having
to manually write code or configuration. By simply uploading several pictures
(in the case of a slide show) or adding a link (in the case of a YouTube video
clip), the blogger benefits from the platform’s ability to package up this
simple data into a rich format that entertains visitors.

These traits help blogging platforms turn the technical task of publishing web
content into an easy process accessible to the grassroots authors that provide so
much of the web’s “long tail” of content. If we wish to encourage these grassroots
authors to provide data as well, we must give them tools that work from within
these familiar environments and share their properties.

We use these traits as a guide to construct DataPress, and we argue that as a
result DataPress can support, for rich structured data, the same behaviors that
made the web’s text authoring tools so effective:

– It has the same “click and you see it” immediacy that made hosted blogging
such a big change over the FTP publishing workflow: it enables users to
insert data into a blog post the same way they insert an image, offers readers
embedded data visualizations inside article bodies, and it does so without
leaving the metaphor provided by the blogging platform

– It does not require the author to understand complex data models, but
instead can be based on concepts already familiar to end users: simple forms,
embedded media, and links to data-laden websites

– It offers the same copy-and-paste workflow as text, making it easy for authors
to “quote” both the data and the data visualizations authored by other users,
either to be used unchanging or as a starting point for authors (who may
not yet know how to author their own data or visualization) to make their
own points by authoring changes in the acquired data or visualizations

– It inspects a user’s data in order to better guide her through the creation of
rich, interactive visualizations. Users can add faceted navigation, interactive
maps and timelines, and search functionality all by selecting a few options
in the blogging editor.

Talking about Data: Sharing Richly Structured Information 51

3 The Latent Potential for Grassroots Data

Blogging platforms facilitated the enormous growth of the web over the past
two decades, but the capabilities of these tools are primarily limited to text. In
contrast, professional publications often deal with rich, structured data: shop-
ping sites offer faceted browsing across their product databases; product review
sites let readers dynamically pit products against each other in feature-by-feature
tables; and news sites such as the New York Times (which runs its own Visualiza-
tion Lab1) publish interactive presentations of complex information. Arguably,
these professionally managed web sites are significantly more expressive than
grassroots authors’ pages. One might think that this is because only large pro-
fessional publishers care for such expressivity, but we observe that the desire to
publish and present data extends far beyond large publishers.

In this section we present the results of a blog content study that indicates
that bloggers are in fact already frequently talking about data; they are just
doing it using text and static images, the best way that they can given their
current publishing platforms. We believe this is a hopeful result for the semantic
web community, for it suggests that grassroots bloggers would be eager to make
use of structured data if their tools made this process easy and beneficial to their
needs.

For the purposes of this study, we use the term blog to refer to any article-
style publication on the web, including both personal journals and professional
periodicals. A semantic entity refers to an object with one or more properties
described in structured or unstructured (natural language) form. A collection
of semantic entities refers to a sequence of semantic entities of the same type
described in a document. For example, a semantic entity might be a paragraph of
text or a table row that describes the technical specifications of a new camera. A
collection of semantic entities would be a text document or full table comparing
several cameras to each other.

We coded 210 blog articles across 21 blogs to measure the occurrence and
nature of semantic entities and semantic entity collections within their text2.
We generated this blog sample by selecting the 10 most recent entries (at time
of study) from a semi-random list of blogs taken from the Technorati[5] blog
indexing service. This list of blogs included:

– The top ten blogs according to Technorati’s “authority rank”
– Eleven blogs selected at random from Technorati’s list of “rising” articles

We used this selection method to attempt to capture both high quality, profes-
sional content (top ten blogs) and also blogs that varied in style and represented
the “long tail” of the web (top rising posts). For each blog in our sample, we
downloaded its RSS feed and coded each of its ten latest entries.

1 http://vizlab.nytimes.com/
2 The data for this survey can be found at

http://projects.csail.mit.edu/datapress/content_survey

http://vizlab.nytimes.com/
http://projects.csail.mit.edu/datapress/content_survey

52 E. Benson et al.

Table 1. Number of occurrences overall and number of articles with various properties

Lone Semantic Collections of Visual Referenced Referenced

Entities Semantic Entities Collections Datasets Resources

Articles with

one or more 45 (21%) 64 (30%) 22 (10%) 67 (32%) 191 (91%)

occurrences (of 210)

Total Count 58 105 49 428 1061

Aggregating across the articles for each blog, we found that:
– 17 of 21 blogs contained at least one article in their latest 10 that enumerated

the properties of a single semantic entity.
– 18 of 21 blogs contained at least one article in their latest 10 that enumerated

the properties of a collection of semantic entities.
• Half of these blogs used natural language text to describe the collection.
• The other half used a table or a static image containing an info-graphic.

Aggregating across the articles for all blogs, we found that:
Table 1 shows us that:

– 21% of articles surveyed contained at least one semantic entity.
– 30% of articles surveyed contained a collection of semantic entities (anecdo-

tally, these were things such as polling results in different states, economic
conditions in different countries, and professional sports records).
• Two-thirds of these collections were presented in natural language text

instead of a structured or visual format.

Finally, our data revealed that blog entries frequently refer to external sources
of data rather than present original content. Authors made reference to some
externally attributed datum or statistic in 91% of articles surveyed. In, 32% of
articles, this reference was to an explicit data set, often given by name (e.g.,
“A 2008 Zogby Poll reported that...”), while in the other 59% it simply referred
to a person or organization who had claimed the truth of the numerical fact.
In all, we counted 428 total references across the 67 articles which mentioned
data sets. These numbers are surprisingly high, perhaps influenced by the fact
that our study was done in the midst of an electoral season, but they serve to
reinforce the intuition that bloggers are in many respects serving as topic- or
geo-localized journalists. They are writing about issues, and these issues involve
data. We aim to make that data navigable, linked, and reusable.

Anecdotally, much of the presentation of semantic entities was inlined in text,
rather than in a structured tabular format. Interactive data visualizations were
rare—structured presentation tended to be either static tables or images. In fact,
most of these collections were included in an HTML table or rudimentary list
rather than a full-blown visualization. Data “links,” if at all present, tended to
be narrative references to a data set rather than resolvable URLs.

These results suggest significant latent potential for tools that allow bloggers
to publish data with the same ease with which they already publish text. These
authors are already interested in data, and at times they are publishing tables or

Talking about Data: Sharing Richly Structured Information 53

images, indicating that they are willing to adopt non-prose presentation styles
if they are available.

Currently the only non-prose data presentation tools that blogging platforms
support areHTML tables and static images. We aim to fill this gap with DataPress,
which provides both interactive visualization capabilities as well as raw data pub-
lishing and linking.

4 DataPress

DataPress3 is our attempt to create a blogger’s tool to publish, share, and copy
data and data visualizations. We start from the premise that, from the stand-
point of content authors, visualizations are an end in themselves—if a picture
is worth a thousand words, surely a good interactive visualization is worth at
least tens of pictures. They allow anyone encountering that data to understand
it better by exploring it.

But DataPress is also a means to an end: making data more easily available
for reuse. DataPress’ rich data visualizations encourage authors to use it, but the
tool also exposes the data it is showing off, making it easy to link to or snapshot,
thus enabling the same reuse ecology already pervasive in textual blogs. With
this in mind, we will describe DataPress in its four distinct roles:

1. Authoring data
2. Consuming data originating elsewhere
3. Authoring visualizations
4. Exposing data for consumption by other tools

For the authoring roles, our key goal is to fit data and visualization authoring
naturally into the already existent workflow associated with WordPress. For the
data sharing roles, we arrange for our tool to offer, with no extra user labor,
JSON and RDF data “feeds” that can be consumed by others. We also facilitate
easy linking of diverse content on the web for aggregation and visualization
within a blog post.

DataPress is implemented as a plugin for the WordPress blogging platform.
We chose WordPress because it has a large install base (over 3,816,965 down-
loads in 2007 alone [3]) and because it is a blogging tool used widely for both
personal blogs and professional publications, including media outlets as large as
the Washington Post online edition. Like other blogging platforms, WordPress
places a high value on guided workflow and simple form-based configuration, so
the DataPress plugin exposes all of its features as enhancements to the existing
WordPress authoring interface.

This section describes the most recent version of DataPress. Our user study,
presented in Section 6, was conducted across users of a previous release of
DataPress. This previous release contained of all the features described below
except for individual item publishing (in Section 4.1), data feeds (in Section 4.4),
and Semantic MediaWiki hooks (Section 5).
3 Downloadable source code, examples, and demo blog for testing available at:

http://projects.csail.mit.edu/datapress/

http://projects.csail.mit.edu/datapress/

54 E. Benson et al.

4.1 Authoring and Uploading Data

DataPress allows authors to create individual data items to publish with a post
or upload entire datasets at a time. Both these option are accessible from buttons
added to the WordPress post editor, seen in Figure 1.

Fig. 1. DataPress Entry Points

Authoring a Data Item. By pressing the
Data Item button, bloggers can enter key-
valued information to associate with a typed
semantic entity and publish this information
as metadata with a blog post. This usage sce-
nario fits the type of blogger who publishes
similarly themed articles over time and would like to benefit from being able
to aggregate their structured content for presentation purposes or export to the
community.

Consider the practice of blogging one’s academic reading list—some students
and professors enjoy blogging summaries of papers they have read so that they
can share their thoughts with others in the community. DataPress allows this
temporal stream of activity to be published as structured data as well. While
writing the blog post, the author clicks the “Data Item” button seen in Figure 1
and DataPress will bring up a selection of “data templates,” shown in the first
screenshot in Figure 2. A data template is simply a blank form derived from the
schema of some item type.

Fig. 2. Choosing and filling in a Template

This list of data templates can draw from a variety of places. DataPress comes
with a collection of built-in data templates, such as academic papers, books,
and workouts, but it can also be configured to talk to Semantic Media Wiki
installations or other data template repositories on the web, allowing the blog
author to take advantage of communities that maintain such information and
encouraging schema convergence across web sites (this idea will be expanded in
Section 5). If no template fits the item, DataPress allows users to create their own
by entering a custom class name and the properties that should be associated
with its instances.

Once the user has selected a data template, DataPress loads the template
schema (possibly from a remote repository) and transforms it into a web form

Talking about Data: Sharing Richly Structured Information 55

for the user to fill out. One such form is shown in the right-hand side of Figure 2.
From here, the data is stored in DataPress’ back-end database, while a visual
marker for the data is embedded into the text of the post as a small icon that
allows editing or removal of the item from the post, shown in Figure 3.

Fig. 3. Data Item in a Blog

Post

The Data Item interface allows a blogger to
follow their natural habit of writing a new arti-
cle about each data item, while also producing
an aggregate data set over time and across blog
posts for rich visualization. Our reading-list blog-
ger can place, sticky on their front page, a single
rich “My Reading List” visualization showing all
articles they have read, with links to the individ-
ual blog postings about the articles. This visual-
ization becomes a new, non-chronological index
into their blog content.

Uploading Data Sets. DataPress also lets users
associate entire data sets with a blog post. Using WordPress’ built-in file upload
tool, they can upload a file, and then using the Data Set button provided by
DataPress, they can associate that file with a blog post. DataPress utilizes the
data import mechanisms of the Exhibit framework [12] and the MIT Babel [8]
data translation web service to accept a wide variety of formats, including RDF,
JSON, CSV, XML, Microsoft Excel, and Bibtex.

Once a data file is associated with a blog post, DataPress stores this infor-
mation in its database and provides the option of attaching Data Footnote links
at the end of the blog post, allowing the reader to visually see links to the data
that accompanies the writeup. These associated data sets are also used as inputs
for data visualizations, shown later.

4.2 Data Linking

DataPress also lets authors link to remote data sets via URL. In addition to sup-
porting a wide number of data formats that can be linked to directly, DataPress
contains a special importer that handles what we call approximate links—URLs
that point to web pages that talk about data, rather than links to the raw data
itself. We currently support four such kinds of approximate links:

– URLs of DataPress-powered pages are automatically converted into data
links to that page’s data sources

– URLs of web pages containing an Exhibit-powered visualization are auto-
matically converted into data links to that page’s data sources

– URLs of Google Spreadsheet files are automatically converted into API calls
into Google’s JSON data service

– URLs of third-party JSON data files are converted into JSONP calls routed
through a DataPress JSON-to-JSONP service

56 E. Benson et al.

We expect to grow support for approximate linking as we believe that it supports,
for data, the same copy-and-paste-ability that made blogging tools successful. If
a user sees a page with data they want to use, they should only have to copy
and paste that page’s URL to be able to remix and republish its data. As we
will show in the following section, we are currently also working on support for
easy import of Semantic MediaWiki data via remote ASK queries.

4.3 Visualization Authoring

The “Visualization” button, shown above the post editor in Figure 1, provides
access to a wizard which walks the user through the creation of a data visual-
ization. DataPress uses the Exhibit framework for displaying interactive visual-
izations. This allows the plugin to benefit from the developer community that
builds data importers and visualization plugins for Exhibit. DataPress’ configu-
ration wizard, shown in Figure 4, contains many of the various options Exhibit
provides, as well as some blog-specific enhancements.

Fig. 4. Adding a Data Visualization

The wizard consists of four main steps:

Add Visualizations. Supported visualization types include lists, tables, maps,
timelines, scatter plots, and bar charts.

Add Facets. Add faceted navigation to the visualization. Supported facet types
include free-text search, list facets, range sliders, and tag clouds.

Configure Display. Many blogs follow a narrow-width article format while
some rich visualizations are wide, so DataPress includes an “lightbox” op-
tion which presents visualizations as YouTube-style previews that expand
to hover over the full web page when clicked. This step in the wizard also
allows the blogger to link custom CSS files to the visualization.

Talking about Data: Sharing Richly Structured Information 57

Lenses. Lenses may be thought of as data style sheets—they are templates
that define how items of a particular type should be displayed. DataPress
provides a WYSIWYG lens editor that includes support for images whose
URLs appear in the data.

Because DataPress is aware of the data that has already been associated with
the blog post, it is able to suggest values for many of the configuration options
required to create a visualization. When each new data item is added to the blog
post, DataPress uses the Exhibit framework to parse the data in the background
and update a running list of the item types and properties relevant to the vi-
sualization. This is particularly useful if a user is linking to data from another
site on the web. Without even looking at the raw data or schema, the user is
able to immediately begin crafting a visualization, with data-aware autosuggest
fields providing the possible answers to necessary questions.

Once a visualization is configured, it can be inserted into the blog post by
clicking a button in the wizard. The visualization appears in the blog text editor
as the placeholder token {{Exhibit}} to mark its desired placement. Users can
always re-edit their visualization by clicking on the toolbar button once again
(we currently only support one visualization per blog post).

4.4 Data Sharing

After data has been associated with blog posts in DataPress, it can be shared
with others in two different ways. The first is by nature of the fact that blog
posts created with DataPress have links both visible (as optional data footnotes)
and invisible (as links embedded in the markup of the page) that allow others
to re-use the data associated with the post. Other bloggers with DataPress, for
example, need only reference the URL of a data-laden blog post to automatically
import all of its data and begin crafting visualizations to rebut, reinforce, or
simply echo the message.

The second, and more intriguing, form of data sharing is made possible via
data feeds. Just as WordPress allows RSS readers to fetch custom feeds specific
to a particular tag or category of post, DataPress responds to requests to as-
semble data item feeds along similar lines. This feed generator creates aggregate
collections of data items for a particular tag or category tracked by the blog.
It does so by grouping together all data items published with posts that are
marked with the specified tag or category. The following URL is an example of
such a request:

/.../datapress/feed.php?tag=Research+Paper

Using data feeds web users may fetch a feed (in either JSON or RDF) of the
structured data added to blog posts and incorporate that data into their own
visualizations. A research group, for example, could aggregate the individual
users’ reading blogs into a group-wide record of readings.

If we accept that many bloggers blog out of the hope that others will consume
what they blog, we can conclude that bloggers will be attracted to the idea of

58 E. Benson et al.

offering rich consumable data feeds with no additional effort on their part. We
believe that such an access methodology will encourage increased casual data
curation, as users who blog about similar items over time (trips, meals, workouts,
papers, etc.) will value the data feed more than the sum of each individual
annotated item once others can present the data in a visual, interactive manner.

5 DataPress in a Data Ecosystem

While the first step toward data publishing for bloggers is to give them value for
using structured data, we keep in view the eventual goal of integrating linked
data sources across the web. One natural link is the one between blogs run by
individuals and wikis curated by communities. Projects like Semantic MediaWiki
(SMW) and Freebase already offer several tools to support community-curated
datasets. This section describes DataPress’ features for integrating into such an
ecosystem of data publishing.

To demonstrate the possibilities of such an ecosystem, we extend SMW with a
plugin we have developed called Wibit4. Wibit enables interactive visualizations,
data sharing, and schema sharing using the data contained in the SMW knowl-
edge base. From a visualization perspective, Wibit provides a WikiText syntax
that enables SMW users to create Exhibit visualizations that aggregate the re-
sults of an ASK query (to be contrasted with approaches like Project Halo [10]
which make use of graphical interfaces). From a data perspective, our develop-
ment version of Wibit provides a data API that permits external services to
query the wiki knowledge base.

Working together with DataPress, the Wibit extension provides a number of
integration points between SMW and data-aware blogs. Using the Wibit API,
DataPress users can issue a remote ASK query and visualize its results from within
a blog post. As DataPress allows multiple data sets to be combined, this means
that a blogger can combine a wiki’s data set with their own data feeds. This
data flow also works in reverse: Wibit can aggregate data feeds across several
blogs to display a visualization of blogged items.

As the data web evolves, we believe this blog-wiki connection is also a mecha-
nism to encourage schema convergence within communities of interest. Users of
a community can collaborate on the common definition of an item type on their
community wiki, and then bloggers can use this schema to publish instances
with their blog articles. Wibit’s API exports SMW schemas in a JSON format
for the DataPress template loader to read. When DataPress users are adding
data items to their posts, they may pick from one of these community-defined
item schemas instead of creating their own.

By facilitating the transfer of visualizations, data and schemas across blogs
and wikis, data-oriented tasks can live closest to where they are natural: wikis
for crowd curation and blogs for individual publication and reflection.

4 A wiki running the introduced extensions and examples is available at:

http://projects.csail.mit.edu/wibit

http://projects.csail.mit.edu/wibit

Talking about Data: Sharing Richly Structured Information 59

6 Lessons Learned

DataPress is available as an open sourced plugin for WordPress. We now describe
initial observations about how early adopters have used DataPress and provide
lessons learned from phone interviews with three of these DataPress users. The
users in this study are all running DataPress 1.2 or earlier, which lacks individual
item publishing, data feeds, and Semantic MediaWiki hooks.

6.1 DataPress in the Wild

Since releasing DataPress, the tool has been downloaded 90 times. Of these
downloads, 21 users chose to participate in a statistic collection study the soft-
ware offers as an option, including one website whose DataPress-built exhibit
has seen over 55,000 page views. We present some observations about this log
data, though we stress that the number of users does not give our results statis-
tical significance. In total, 56 visualizations were created and reported back to
our servers, receiving 64,324 total page views. Of these, approximately half were
created as permanent pages on their site, while the other half were embedded in
blog entries.

Facets, or Lack Thereof. Facets are an important component for navigating
structured data, and many Exhibits found online are heavily faceted to support
deeper navigation of the data. One might expect highly-faceted Exhibit con-
figurations through DataPress, but many DataPress-based Exhibits we found
consisted of simply an unfaceted map or timeline for inline display of data.
This suggests that even simple tools without the interactive features Exhibit
provides—such as search, faceted navigation, and data lenses—are of great help
to bloggers with data to display.

Lightboxing. Because of the narrow-width layout of many blogs, we assumed
that the lightboxing feature of DataPress would be heavily used. However while
lightboxed visualizations received more pageviews than “inline” visualizations
in our data set, the lightbox setting was not frequently employed. User inter-
views indicated that some users might not have understood what the feature
provided. Additionally, the reduced use of facets might have resulted in less
space-constrained visualizations than we expected.

Data Footnotes. Finally, in our goal of exposing data for future reuse, we tried
to make data footnotes simple to embed in a blog entry. While data footnotes
are included by default as a textual token in any post that contains a DataPress-
configured visualization, most visualization authors removed the footnotes from
their entries; user interviews indicated the reasons are varied.

6.2 User Interviews

To better understand user motivations for seeking out DataPress and to learn
how they used the tool, we conducted e-mail and phone interviews with three

60 E. Benson et al.

DataPress users: a scientist managing a publications list, a large website owner
wishing to add dynamic features to HTML tables, and a hobbyist/entrepreneur
who maintains a website for his citys local music scene. None of the three users
were technical: the most experienced felt confident enough to edit CSS, but not
write JavaScript.

None of the three users indicated “data blogging” as their goal, and none of
them published a visualization inside a blog post. Rather, each used DataPress
to place visualizations on permanent, dedicated pages of their own, more like a
content management system than a blog. Time will tell whether this contradicts
our claims that blogs are a natural place for structured data publishing. Much as
Flash animations or audio files were once a destination of their own, while today
they are casually embedded in blog posts, one might expect a similar transition
for rich data objects.

Latent Data Needs. We claimed in Section 3 that the prevalence of data in
natural language blog posts indicates a latent need for better data publishing
tools. For the three users we spoke with, the need was not so latent: each actively
sought a way to present dynamic data visualizations on their site. One had
heard of Exhibit, and installed WordPress and DataPress in order to create
Exhibits without having to edit HTML. The other two had actively searched for
a data visualization tool over the course of several months and eventually found
Exhibit. After trying unsuccessfully to integrate Exhibit into their WordPress
installations, they returned to the web looking for help and found DataPress.

The fact that some users are searching for months to find data visualization
tools suggests that the many APIs offering data visualization services have an
untapped audience of bloggers who want these services but dont know what to
do with an API. For each of these authors who found our tool, there are surely
more that have yet to find a tool to help them, and still more who haven’t
even thought to look for such tools because they believe data visualization to be
outside the reach of bloggers.

Crossing the Structured Data Chasm. We learned that tools which provide
a compelling reason for users to publish structured data can lead users to struc-
ture previously unstructured or poorly structured collections. One user said that
she previously maintained a list of her publications in a MS Word document,
but the ability to publish a faceted list of publications online motivated her to
structure this list in a Google Spreadsheet. Another user initially maintained
an HTML table to present a hand-curated collection of data, but moved this
data into a separate data file so that he could provide users the ability to better
explore the data.

Features without examples go unused. When we asked authors why they
did not use some of DataPress’ features, a common response was that our in-
terface did not show examples of what the result of those features would be.
This is food for thought from a design perspective: even though the high-level
function of these feature was often clear (“Add a map”, for example, or “Add a
search box”) the users still wanted to see usage examples first. After seeing (or

Talking about Data: Sharing Richly Structured Information 61

hearing) these, they decided that the feature would be useful to them in many
cases. Our high-traffic user who was only publishing a dynamic table was so
enthused about the other configuration options after speaking with us that he
added a map, timeline, and several dynamic facets to his visualization the day
after our interview with him.

We must accommodate a spectrum of data ownership philosophies.
We also learned that users are well-aware of the potential perils of publishing
reusable datasets and easily-replicated visualizations. While not deeply technical,
all three users understood that someone could copy their dataset by linking
to it, and replicate their visualization by copying their Exhibit HTML. Their
reactions varied. One author felt ownership over his data and would want any
reuse negotiated beforehand, though he recognized that symbiotic relationships
could be built around collaborative data editing. This author took the time to
modify the CSS of his site to hide Exhibits bundled data copying interface.
Despite that, he was happy see his entire visualization embedded in another site
as long as the site drove traffic back to his. Another author was fine with reuse
of either her data or her visualization, but felt that reuse of both together would
be inexcusable copying. Finally, the third author was fine with his visualizations
and data being reused by others, as long as proper attribution and links were
provided. As tool builders, we must remember to try to accommodate both the
information sharer and the businessperson who seeks benefit in exclusivity.

Users want more data tools. The authors we spoke to also understood—
and requested—features related to the wider data ecosystem, apart from the
visualization capabilities. One mentioned encouraging other site owners to col-
laboratively maintain complimentary data sets so that they could display the
data in different ways on their sites. Two of the three authors specifically re-
quested the ability to communally maintain data on a wiki and then display
visualizations of it from within their blog environment. This is significant be-
cause these authors were using a version of DataPress without this feature and
were unaware that it existed.

7 Related Work

The past few years have seen a great number of projects devoted to visualiz-
ing and cataloging structured data on the web. Many Eyes [13] allows users to
upload data files and create interesting data visualizations via a web interface.
These visualizations are both viewable on their site and embeddable into other
sites. While Many Eyes facilitates data visualization, it requires the user to step
outside their authoring tool of choice (such as a blog or wiki) and use a third-
party service to create and host their visualization. DataPress instead enables
authoring from within the blog environment and without third-party services.
Further, while Many Eyes focuses on numerical data and content modeling, we
target faceted navigation [9] across semi-structured data sets. Semi-structured
data opens doors to visualizations involving multiple datasets, allowing authors
to build on discussions with novel contributions from new data.

62 E. Benson et al.

Sense.us [11] is a study in visualizations which facilitate asynchronous collab-
oration in a centralized fashion. We want to modify this model by decentralizing
the visualizations and data references, allowing collaboration to occur in the
native content publishing platform(s) of the user(s).

Exhibit [12] is a client-side web framework for creating rich visualizations of
data. Exhibit combines textual data files (such as RDF or JSON) with an HTML-
embedded configuration file to produce interactive faceted data displays. While
they needn’t be programmers, Exhibit authors must be comfortable editing raw
HTML and often must be familiar with data formats such as JSON. DataPress
relies on Exhibit to power its visualizations, but it relieves the need to understand
Exhibit’s configuration syntax by providing a wizard that integrates with the
blogging platform. In doing so, we aim to bring Exhibit’s effective visualization
capabilities to the broader class of users.

The Google Visualization API [4] enables programming-savvy webmasters to
create a variety of data visualizations. As we aim to bring such visualizations into
the realm of blog and wiki content, we see tools like this as potential components
to incorporate into our own framework.

While the New York Times Visualization Lab [6] does not appear to use a
generally-available framework for authoring displays, it deserves mention as an
organization which puts a lot of effort to embed rich information displays in
online content. The fact that the interactive data-driven diagrams appearing in
its online edition appear to be hand-coded only underscore the need for better
general-purpose visualization tools accessible to web authors.

Several projects have also risen to prominence to provide entry and catalogu-
ing of structured data on the web. DBpedia [7] curates the structured information
already present in Wikipedia taxonomies (categories) and Info Boxes. DBpedia
crawls Wikipedia weekly and coerces that information into an RDF database.
Semantic MediaWiki [14] is a MediaWiki extension that enables users to embed
key-value annotations about a wiki topic directly in its article text. An alter-
native approach to DBpedia, Semantic MediaWiki integrates awareness of the
inherent structure and types of data into the wiki, and thus the authorship pro-
cess, itself rather than attempting to recover structure from the natural-language
oriented MediaWiki database. Other tools, such as Freebase [2] and Factual [1]
provide many-to-many data authorship environments rather than attempting to
interweave structured data curation along with natural language information
repositories. These projects are an interesting new class of democratized data
management tools by themselves, and we see them as being another important
public data source in the connected data ecosystem that is evolving.

8 Conclusion

The design of DataPress reflects a belief that a data-aware web needs tools that
make grassroots authors want to work with data. We show the need for such
tools with a study of data-oriented blog content. DataPress makes progress on
this goal by fitting portions of the semantic web vision into a tool crafted specif-
ically for the blogging workflow. DataPress provides bloggers with an easy way

Talking about Data: Sharing Richly Structured Information 63

to create, link, and publish data while preserving many of the properties that
make blogging an attractive publication platform: one-click publishing, flexible
format support, easy copy and paste, and immediate results. DataPress fur-
ther demonstrates a possible ecosystem of grassroots semantic web publishing in
which community wikis serve to centralize ontology management while bloggers
use these definitions to create feeds of data over time. We reflect on conversa-
tions with our users to better understand how this need is manifested and how
to build better tools to facilitate casual use of structured data on the web.

References

1. Factual, http://www.factual.com/ (accessed October 13, 2009)

2. Freebase, http://www.freebase.com/ (accessed October 13, 2009)

3. About Wordpress, http://wordpress.org/about/ (accessed October 29, 2009)

4. Google visualization API, http://code.google.com/apis/visualization/

(accessed October 29, 2009)

5. Technorati, http://technorati.com/ (accessed October 29, 2009)

6. The New York Times Visualization Lab, http://vizlab.nytimes.com/ (accessed

October 29, 2009)

7. Auer, S., Bizer, C., Lehmann, J., Kobilarov, G., Cyganiak, R., Ives, Z.: Dbpe-

dia: A nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Alle-

mang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi,

R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS,

vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

8. Butler, M., Gilbert, J., Seaborne, A., Smathers, K.: Data conversion, extraction

and record linkage using XML and RDF tools in Project SIMILE. Technical report,

HP Laboratories Bristol (2004)

9. Elliott, A.: Flamenco image browser: using metadata to improve image search

during architectural design. In: CHI 2001 Extended Abstracts on Human Factors

in Computing Systems, CHI 2001, pp. 69–70. ACM, New York (2001)

10. Friedland, N.S., Allen, P.G.: The Halo Pilot: Towards A digital Aristotle. Technical

report, Vulcan (2009)

11. Heer, J., Viégas, F.B., Wattenberg, M.: Voyagers and voyeurs: supporting asyn-

chronous collaborative information visualization. In: Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI 2007, pp. 1029–1038.

ACM, New York (2007)

12. Huynh, D., Miller, R., Karger, D.: Exhibit: Lightweight structured data publishing.

In: Proceedings of the 16th International Conference on World Wide Web, WWW

2007. ACM, New York (2007)

13. Viégas, F., Wattenberg, M.: Shakespeare, god, and lonely hearts: transforming data

access with many eyes. In: Proceedings of the 8th ACM/IEEE-CS Joint Conference

on Digital Libraries, JCDL 2008, pp. 145–146. ACM, New York (2008)

14. Völkel, M., Krötzsch, M., Vrandecic, D., Haller, H., Studer, R.: Semantic wikipedia.

In: Proceedings of the 15th International Conference on World Wide Web, WWW

2006, pp. 585–594. ACM, New York (2006)

http://www.factual.com/
http://www.freebase.com/
http://wordpress.org/about/
http://code.google.com/apis/visualization/
http://technorati.com/
http://vizlab.nytimes.com/

EL with Default Attributes and Overriding

Piero A. Bonatti, Marco Faella, and Luigi Sauro

Università di Napoli Federico II, Napoli, Italy

{bonatti,mfaella,sauro}@na.infn.it
http://people.na.infn.it/~bonatti

Abstract. Biomedical ontologies and semantic web policy languages

based on description logics (DLs) provide fresh motivations for extending

DLs with nonmonotonic inferences—a topic that has attracted a signif-

icant amount of attention along the years. Despite this, nonmonotonic

inferences are not yet supported by the existing DL engines. One reason

is the high computational complexity of the existing decidable fragments

of nonmonotonic DLs. In this paper we identify a fragment of circum-

scribed EL⊥ that supports attribute inheritance with specificity-based

overriding (much like an object-oriented language), and such that rea-

soning about default attributes is in P.

Keywords: Nonmonotonic description logics, Defeasible inheritance.

1 Introduction

The ontologies at the core of the semantic web — as well as ontology languages
like RDF and OWL — are based on fragments of first-order logic and inherit
strengths and weaknesses of this well-established formalism. Limitations include
monotonicity, and the consequent inability to design knowledge bases (KBs) by
describing prototypes whose general properties can be later refined with suitable
exceptions. This natural approach is commonly used by biologists and calls for
an extension of DLs with defeasible inheritance with overriding (a mechanism
normally supported by object-oriented languages) [18, 19]. Another motivation
for nonmonotonic DLs stems from the recent development of policy languages
based on DLs [21,13,22,17]. DLs nicely capture role-based policies and facilitate
the integration of semantic web policy enforcement with reasoning about seman-
tic metadata (which is typically necessary in order to check policy conditions).
However, in order to formulate standard default policies such as open and closed
policies,1and authorization inheritance with exceptions, it is necessary to adopt
a nonmonotonic semantics (see the survey [9] for more details).

Given the massive size of semantic web ontologies and RDF bases, it is manda-
tory that reasoning in nonmonotonic DLs be possible in polynomial time. Unfor-
tunately, in general nonmonotonic DL, reasoning can be highly complex [11,12,8];

1 If no explicit authorization has been specified for a given access request, then an

open policy permits the access while a closed policy denies it.

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 64–79, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://people.na.infn.it/~bonatti

EL with Default Attributes and Overriding 65

the best approaches so far belong to the second level of the polynomial hierar-
chy [10,7].

In this paper we identify a fragment of circumscribed DLs that extends EL
with default attributes and inheritance with overriding. Informally, the exten-
sion allows us to express defeasbile inclusions such as “the instances of C are
normally in D”, for two concepts C and D. Such axioms can be overridden by
more specific inclusions, according to a priority mechanism. Our strategy is pre-
serving the classical semantics of EL as much as possible, in order to facilitate
the adaptation of the existing monotonic ontologies. Our framework restricts
nonmonotonic inferences to setting the default attributes of “normal” concept
instances, without changing the extension of atomic concepts. We define two
slightly nonstandard reasoning tasks to query the properties of normal instances.
In general, these reasoning tasks are NP-hard. The main cause of intractability
is the presence of conflicting defeasible inclusions, i.e., inclusions that give rise to
an inconsistency when applied to the same individual. However, if for all pairs
of conflicting inclusions δ1 and δ2, with non-comparable priority, there exists
a disambiguating, higher priority inclusion that blocks at least one of δ1 and
δ2, then the time complexity of the reasoning tasks becomes polynomial. We
show that the identification of such δ1 and δ2 can be carried out in polynomial
time; then the disambiguation can be left to the ontology engineer or performed
automatically by generating a default that blocks both δ1 and δ2.

The paper is organized as follows. In Sec. 2, we recall the basics of circum-
scribed DLs with defeasible inclusions, using the notation adopted in [7]. In
Sec. 2.1 we motivate and define a new reasoning task, tailored to inferring the
default properties of concepts. Section 3 is devoted to the complexity analysis
of this inference problem for the general case and for the restricted class of KBs
outlined above. In Sec. 4 the new task and complexity results are extended to
instance checking. A section on related work (Sec. 5) and one summarizing our
results and discussing interesting future work (Sec. 6) conclude the paper.

2 Preliminaries

In DLs, concept expressions are inductively defined using a set of constructors
(e.g. ∃, ¬, �), starting with a set NC of concept names, a set NR of role names,
a set NI of individual names, and the constants top � and bottom ⊥. In what
follows, we will deal with expressions

C, D ::= A | � |⊥| C �D | ¬C | ∃R.C ,

where A is a concept name and R a role name. In particular, the logic EL⊥

supports all of the above expressions except negation (¬C). Knowledge bases
consist in a (finite) set of concept inclusion assertions of the form C � D (TBox)
and a (finite) set of instance assertions of the form C(a), R(a, b) with a, b ∈ NI

(ABox).
The semantics of the above concepts is defined in terms of interpretations I =

(ΔI , ·I). The domain ΔI is a non-empty set of individuals and the interpretation

66 P.A. Bonatti, M. Faella, and L. Sauro

Name Syntax Semantics

negation ¬C ΔI \ CI

conjunction C � D CI ∩ DI

existential restriction ∃R.C {d ∈ ΔI | ∃(d, e) ∈ RI : e ∈ CI}
top � �I = ΔI

bottom ⊥ ⊥I = ∅

Fig. 1. Syntax and semantics of some DL constructs

function ·I maps each concept name A ∈ NC to a set AI ⊆ ΔI , each role name
R ∈ NR to a binary relation RI on ΔI , and each individual name a ∈ NI to
an individual aI ∈ ΔI . The interpretation of arbitrary concepts is inductively
defined as shown in Figure 1. An interpretation I is called a model of a concept
C if CI
= ∅. If I is a model of C, we also say that C is satisfied by I.

An interpretation I satisfies (i) an inclusion C � D if CI ⊆ DI , (ii) an
assertion C(a) if aI ∈ CI , and (iii) an assertion R(a, b) if (aI , bI) ∈ RI . Then,
I is a model of a knowledge base S iff I satisfies all the elements of S.

Here we consider defeasible EL⊥ knowledge bases KB = (S,D) that consist of
a (finite) set of classical axioms (inclusions and assertions) S and a (finite) set D
of defeasible inclusions (DIs for short). Hereafter, with C �KB D we mean that
D classically subsumes C, that is S |= C � D. A classical axiom can be either
a normal form axiom [1] or an inclusion/disjointness of existential restrictions:

A � B A1 � ∃R.A2 A1 �A2 � B

∃P.A � B ∃R.A1 � ∃S.A2 ∃R.A1 � ∃R.A2 �⊥

where letters of type A can be either a concept name or �, whereas letters B
either a concept name or ⊥. Defeasible axioms take the form A1 �n ∃R.A2 and
can be informally be read as the instances of A1 are normally in ∃R.A2.

Example 1. A well-known example of prototypical property in a biomedical do-
main is reported by Rector [18, 19]: “In humans, the heart is usually located on
the left-hand side of the body; in humans with situs inversus, the heart is lo-
cated on the right-hand side of the body”. A possible formalization in the above
language is:

Human �n ∃has heart.LHeart
SitusInversus� Human� ∃has heart.RHeart
LHeart � Heart� ∃position.Left
RHeart � Heart� ∃position.Right .

In the absence of functional roles, we prevent humans to have both a LHeart
and a RHeart with the disjointness axiom:

∃has heart.LHeart� ∃has heart.RHeart� ⊥ . ��

EL with Default Attributes and Overriding 67

The nonmonotonic semantics summarized below follows the circumscriptive ap-
proach of [7].

Intuitively, a model of a knowledge base KB is a classical model of S that
maximizes the set of individuals satisfying the defeasible inclusions in D. For-
mally, for all defeasible inclusions δ = (A �n C) and all interpretations I, the
set of individuals satisfying δ is:

satI(δ) = {x ∈ ΔI | x
∈ AI or x ∈ CI} .

How such sets can be maximized depends on what is allowed to vary in an
interpretation. Here we assume that only the extension of roles can vary, whereas
the domain and the extension of concept names are assumed to be fixed. This
semantics is called Circfix.

The reason of this choice is rooted in the goal of having a minimal impact on
the classical semantics of DLs. If a concept name A is allowed to vary and has
exceptional properties, then A may become empty as illustrated in [8]; in most
cases, however, it is undesirable to empty a concept only because it has non-
standard properties. It should be possible to extend an existing ontology with
default attributes without incurring in such side effects. With Circfix, a subsump-
tion A � B where A and B are atomic concepts is nonmonotonically valid iff it
is classically valid. At the same time, it is possible to infer new inclusions like
A � ∃R.B that specify default properties of A. In other words, Circfix supports
default attributes without changing the extension of atomic concepts, as desired.

Maximizing defeasible inclusions may lead to conflicts between defeasible in-
clusions whose right-hand sides are mutually inconsistent. For this reason, it is
useful to provide a means to say that a defeasible inclusion δ1 has higher priority
than another defeasible inclusion δ2. This can be in general provided explicitly
by any partial order over D, but here we focus on an implicit way of defining
priorities, namely specificity, which is based on classically valid inclusions.2 For
all DIs δ1 = (A1 �n C1) and δ2 = (A2 �n C2), we write

δ1 ≺ δ2 iff A1 �KB A2 and A2
�KB A1.

Example 2. Consider the access control policy: “Normally users cannot read
project files; staff can read project files; blacklisted staff is not granted any ac-
cess”. In circumscribed EL⊥:

Staff � Users
Blacklisted � Staff
UserRequest ≡ ∃subject.Users� ∃target.Projects� ∃action.Read
StaffRequest≡ ∃subject.Staff� ∃target.Projects� ∃action.Read
UserRequest �n ∃decision.Deny
StaffRequest�n ∃decision.Grant
∃subject.Blacklisted� ∃decision.Deny
∃decision.Grant� ∃decision.Deny � ⊥ .

2 Since concept names are all fixed and retain their classical semantics, specificity can

be equivalently defined using nonmonotonically valid inclusions instead. The result

is the same, for all priority relations over defeasible inclusions.

68 P.A. Bonatti, M. Faella, and L. Sauro

As usual, C ≡ D abbreviates C � D and D � C. The two equivalences can
be reformulated using normal form axioms (see Example 5). Clearly the two
defeasible inclusions cannot be simultaneously satisfied for any staff member
(due to the last inclusion above). According to specificity, the second defeasible
inclusion overrides the first one and yields the intuitive inference that non-
blacklisted staff members are indeed allowed to access project files. ��

We are finally ready to formalize the semantics of KBs with defeasible inclusions.
The maximization of the sets satI(δ) is modelled by means of the following
preference relation <D over interpretations. Roughly speaking, I <D J holds
iff I improves J by extending the set of individuals that satisfy some defeasible
inclusions. More precisely, if δ1 ≺ δ2 (i.e., δ1 has higher priority than δ2), then
the set of individuals satisfying δ1 may be extended at the cost of restricting
those that satisfy δ2.

Definition 1. For all interpretations I and J , let I <D J iff:

1. ΔI = ΔJ ;
2. aI = aJ , for all a ∈ NI;
3. AI = AJ , for all A ∈ NC; (concept name extensions are fixed)
4. for all δ ∈ D, if satI(δ)
⊇ satJ (δ) then there exists δ′ ∈ D such that δ′ ≺ δ

and satI(δ′) ⊃ satJ (δ′) ;
5. there exists a δ ∈ D such that satI(δ) ⊃ satJ (δ).

The subscript D will be omitted when clear from the context. Now I is a model
of Circfix(KB) iff I is a model of S that cannot be further improved (defeasible
inclusions are satisfied “as much as possible”).

Definition 2 (Model). Let KB = (S,D), an interpretation I is a model of
Circfix(KB) iff I is a (classical) model of S and for all models J of S, J
< I.

Example 3. Let KB be the knowledge base of Example 2. According to condi-
tion 2 in Def. 1, model improvements cannot change the extension of atomic con-
cepts;3 therefore, if Grant and Deny are empty in a model, then the two defeasible
inclusions of KB cannot possibly force any request to satisfy ∃decision.Grant
nor ∃decision.Deny. In order to “enable” the two DIs, it suffices to assert that
Grant and Deny are non-empty, by means of an auxiliary role aux and two simple
inclusions:

� � ∃aux.Grant � � ∃aux.Deny .4

Now the two DIs can “fire” and, as a consequence, the models of Circfix(KB) are
all the models of the classical inclusions of KB such that for all individuals x
satisfying ∃target.Projects� ∃action.Read,
3 Recall that this is one of our requirements, aimed at controlling the side effects of

adding defeasible inclusions to existing classical ontologies.
4 These axioms are usually harmless and can be inserted with the help of automated

tools, that identify which concepts occurring in the right hand side of a DI can

possibly be empty.

EL with Default Attributes and Overriding 69

– if x satisfies ∃subject.Blacklisted, then x satisfies ∃decision.Deny;
– otherwise, if x satisfies ∃subject.Staff, then x satisfies ∃decision.Grant;
– otherwise, if x satisfies ∃subject.User, then x satisfies ∃decision.Deny. ��

The above example shows the need for declaring the non-emptyness of default
attribute ranges, such as B in A �n ∃R.B. In theory, such declarations may be
inconsistent with the knowledge base; however, in practice, concept names are
usually meant to be non-empty and, accordingly, concept consistency checking
is a typical step in ontology validation. In other words, we only need to make
explicit some assumptions that are sometimes left implicit; this can be done
automatically for all default attribute ranges B. These additional axioms can
be easily checked for consistency: In EL⊥, if all non-emptyness statements are
individually consistent with the KB, then also the set of all non-emptyness state-
ments is collectively consistent; consequently, no combinatorial problems arise
and consistency checking remains polynomial. It is not difficult to extend this
framework with nominals and concrete datatypes; when default attributes range
over nominals or concrete domains, non-emptyness is implicit in the logic and
no explicit declarations are needed.

2.1 A New Reasoning Task

Now that we have provided constructs for associating concepts to default prop-
erties, we need a suitable reasoning task to retrieve them. For example, from
the formalization of human heart we would like to infer that typical humans
satisfy ∃has heart.LHeart. Subsumption queries, according to [8], are defined
as follows: Circfix(KB) |= C � D iff for all models I of Circfix(KB), CI ⊆ DI .
This reasoning method is not completely appropriate for our purposes, because
a standard subsumption query A � ∃R.C considers not only the typical mem-
bers of A, but also the typical members of A’s subconcepts, where A’s default
properties may be overridden. In this way, some of A’s default properties might
not be included in the answer. For instance, in the context of the situs inver-
sus example, it is generally not possible to entail Humans � ∃has heart.LHeart ,
because the members of Humans comprise all the members of SitusInversus,
too, that are forced to satisfy ∃has heart.RHeart, instead. For this reason, in
this work we consider a slightly modified subsumption problem, according to
which a query A � ∃R.C is interpreted as: “Do the individuals belonging to A
and no subconcepts of A satisfy ∃R.C?”. This is a sort of closed world assump-
tion. It is equivalent to interpreting A � ∃R.C as CWAKB(A) � ∃R.C, where
CWAKB(A) = A �

�
{¬B | B ∈ NC and A
�KB B}. In EL⊥, this closure cannot

introduce any inconsistency:

Theorem 1. For all EL⊥ knowledge bases KB, CWAKB(A) is satisfiable w.r.t.
KB iff A is satisfiable w.r.t. KB.
CWAKB(A) can be equivalently defined in purely model theoretic terms not
involving ¬ as the set �A�I that denotes the set of all individuals d ∈ AI such
that, for all concept names B, d ∈ BI holds only if A �KB B. Then, we define
the modified entailment problem as follows:

70 P.A. Bonatti, M. Faella, and L. Sauro

Definition 3. Let Circfix(KB) |=cw A � D hold if and only if for all models I
of Circfix(KB), �A�I ⊆ DI.

Example 4. Extend the knowledge base of Example 1 with � � ∃aux.LHeart,
to ensure that there exists at least one normal heart.5 Note that

CWAKB(Human) =Human� ¬SitusInversus� ¬LHeart � ¬RHeart�
¬Heart � ¬Left � ¬Right.

It is not hard to see that Circfix(KB) |=cw Human � ∃has heart.LHeart and
Circfix(KB) |=cw SitusInversus� ∃has heart.RHeart, as desired. ��

The reader may wonder whether in general the CWA can be too restrictive
and miss valid default properties. This might happen if a concept A’s extension
could be completely covered by n subconcepts A1, . . . , An sharing a same default
property ∃R.B. In this case, it would be natural to require A’s prototypical
members to satisfy ∃R.B, as they must necessarily fall into some Ai. However,
in EL⊥ such coverings cannot be defined, i.e. there is always a model I in which
there exists d ∈ AI \

⋃n
i=1 AI

i . Such d need not satisfy ∃R.B, and hence it would
be inappropriate to list ∃R.B among the default properties of A.

3 Complexity

3.1 NP-Hardness of the General Case

In general, deciding whether Circfix(KB) |=cw A � D holds is NP-hard. This
can be proved by reducing SAT to our reasoning task. For each clause ci in the
SAT instance introduce two roles Ci and C̄i. Intuitively, the meaning of ∃Ci

and ∃C̄i is: ci is/is not satisfied, respectively. For each propositional symbol pj

introduce two roles Pj and P̄j . Intuitively, ∃Pj and ∃P̄j represent the truth of
the complementary literals pj and ¬pj , respectively. Then, we need two concept
names B0 and B1, and a role F̄ . Intuitively, ∃F̄ represents the falsity of the set
of clauses. The semantics of clauses is axiomatized by adding the inclusions

∃Pj � ∃Ci , ∃P̄k � ∃Ci ,

for all disjuncts pj and ¬pk in ci. The space of possible truth assignments is
generated by the following inclusions:

B0 �n ∃Pj , B0 �n ∃P̄j , ∃Pj � ∃P̄j � ⊥ .

All of the above defaults have the same priority. The defeasible inclusions with
the same index j “block” each other; we make at least one of them active by
assuming B0; this “forces” a complete truth assignment. Then we introduce a
defeasible inclusion with lower priority:

B0 � B1 , B1 �n ∃C̄i .

5 See Example 3 for an explanation of this kind of axioms.

EL with Default Attributes and Overriding 71

This defeasible inclusion “assumes” that ci is not satisfied. The first three groups
of axioms may defeat this assumption (if the selected truth assignment entails
∃Ci) thanks to the following disjointness axiom:

∃Ci � ∃C̄i � ⊥ .

Finally, we need the inclusions ∃C̄i � F̄ to say that the set of clauses is not
satisfied when at least one of the clauses is false. Now let KB denote the above
set of inclusions. It can be proved that the given set of clauses is unsatisfiable
iff:

Circfix(KB) |=cw B0 � ∃F̄ .

Consequently:

Theorem 2. Let KB range over EL⊥ knowledge bases. The problem of checking
whether Circfix(KB) |=cw C � D is NP-hard, even if C is a concept name and D
an unqualified existential restriction.

3.2 A Polynomial Case

The above reduction of SAT is based on concepts with equally specific, conflict-
ing default properties. In our reference scenarios, we expect such situations to
be symptoms of representation errors. For instance, in modelling prototypical
entities, equally specific and conflicting default properties constitute a contra-
dictory prototype definition. In the access control domain, a class of requests
associated to conflicting decisions with the same priority constitutes an ambigu-
ous policy, with potentially dangerous consequences. In this section, we focus
on a class of KBs called conflict safe, where this kind of conflicts cannot occur.
This restriction turns out to reduce the computational complexity of reasoning.

Intuitively, the idea is that it is possible to check efficiently whether two
defaults δ1 and δ2 block each other and none of them is more specific than the
other (as in the reduction from SAT). Such conflicts, that make the search space
grow, can be solved (either manually or automatically) by adding more specific
defaults that determine how to resolve the conflict (either in favor of one of the
δis or blocking them both). In the following, let KB = (S,D) be an arbitrary
knowledge base. The next definitions are all relative to KB.

We say that two defeasible inclusions are in conflict when they can be simulta-
neously activated (their premises are mutually consistent) and their conclusions
are mutually inconsistent. The formal definition follows.

Definition 4. Two defeasible inclusions δ1 = A1 �n ∃R.A′
1 and δ2 = A2 �n

∃S.A′
2 are in conflict, denoted by δ1 � δ2, iff A1 � A2
�KB⊥ and ∃R.A′

1 �
∃S.A′

2 �KB⊥.

Since classical subsumption in EL⊥ knowledge bases can be computed in poly-
nomial time [2], we have:

Proposition 1. Given an EL⊥ knowledge base KB = (S,D) and two defaults
δ1 and δ2 in D, the problem of checking whether δ1 � δ2 is in PTIME.

72 P.A. Bonatti, M. Faella, and L. Sauro

A naive approach to listing all the conflicting pairs, consists in performing a
quadratic number of EL⊥ subsumptions. Better strategies can be obtained by
adapting the ideas behind efficient classification algorithms [6, Chap. 9] to reduce
the number of comparisons (the details lie beyond the scope of this paper). In
this section we assume that KB is conflict safe in the following sense:

Definition 5. KB is conflict safe iff whenever two defeasible inclusions δ1 =
A1 �n ∃R.A′

1 and δ2 = A2 �n ∃S.A′
2 are incomparable and in conflict (i.e.

δ1
≺ δ2, δ2
≺ δ1 and δ1 � δ2), then (i) A1
≡KB A2, (ii) there exists a concept
name A3 such that A3 ≡KB A1 � A2, and (iii) one of the following sets of
inclusions belongs to KB:

– A3 �n ∃R.A′
1;

– A3 �n ∃S.A′
2;

– A3 �n ∃T and ∃T � ∃R.A′
1 �⊥ and ∃T � ∃S.A′

2 �⊥. ��

Note that the above three DIs (whose priority is higher than δ1 and δ2) corre-
spond to three possible ways of resolving the conflict between δ1 and δ2, namely,
supporting the conclusion of δ1, supporting the conclusion of δ2, or blocking
both δ1 and δ2 . The third option constitutes a possible default conflict reso-
lution strategy that can be performed automatically by introducing fresh roles
T and the corresponding disjointness axioms. Note also that our two running
examples are conflict safe because all conflicting defaults are comparable and
specificity resolves the conflict.

We proceed towards a PTIME algorithm for reasoning with conflict safe KBs.
We first need some preliminary definitions. Given a concept C, SupCls(C) denotes
the set of superclasses of C:

SupCls(C) = {B | C �KB B} ∪ {∃R.A | C �KB ∃R.A}. (1)

We write C � A if C �KB ∃R.A for some R, and we denote by ∗
� the transitive

closure of �. Given a concept C, the operator NE(C) represents the set of
concepts that are forced to be non-empty whenever C is. Notice that this set
includes some concepts that are forced to be non-empty by the ABox in KB,
independently of C.

NG(C) = {C} ∪
⋃

a∈NI

{A | KB |= A(a)} ∪
⋃

a∈NI,R∈NR

{A | KB |= (∃R.A)(a)} (2)

NE(C) =
⋃

A∈NG(C)

{A′ | A ∗
� A′}. (3)

When trying to satisfy a certain defeasible inclusion A1 �n ∃R.A2, we have to
check two forms of consistency. First, the addition of an R edge to A2 should
be possible without modifying the interpretation of the concepts names, that
are fixed. This check is realized by the following function Compfix. Second, the
addition of ∃R.A2 should not lead to classical inconsistencies, also considering
other defeasible inclusions that were previously satisfied. This check is realized
by the function Cons.

EL with Default Attributes and Overriding 73

Algorithm 1:
Data: C, KB = 〈S ,D〉.
X ← SupCls(C);1

while D �= ∅ do2

remove from D an inclusion δ = (A1 n ∃R.A2) with maximal priority;3

if A1 ∈ SupCls(C) and δ ∈ Compfix(C) ∩ Cons(X) then4

X ← X ∪ SupCls(∃R.A2);5

return X;6

For a concept C, Compfix(C) (for fixed-atoms compatible) is the set of defeasi-
ble inclusions whose r.h.s. agree with C on the inferred and non-empty concept
names. That is, a defeasible inclusion A1 �n ∃R.A2 is in Compfix(C) if and only
if: (i) NE(∃R.A2) ⊆ NE(C) and (ii) for all concept names A ∈ SupCls(∃R.A2),
it holds A ∈ SupCls(C).

For a set of concepts X, Cons(X) is the set of defeasible inclusions whose r.h.s.
is logically consistent with X. That is, a defeasible inclusion A1 �n ∃R.A2 is in
Cons(X) if and only if

�
D∈X D � (∃R.A2)
�KB ⊥.

We claim that Algorithm 1, when invoked over the concept C, returns the set
of all concepts C′ that are implied by C under the closed world assumption.

Theorem 3. Let X be the result of Algorithm 1 on the concept C. If KB is
conflict safe and assertion-free6 then X = {C′ |Circfix(KB) |=cw C � C′}.

Proof. (⊆) Let C′ ∈ X. If C′ was inserted in line 1 of the algorithm, then C′

is classically implied by C (i.e., C �KB C′), and hence Circfix(KB) |=cw C �
C′. Otherwise, C′ was inserted in line 5. Hence, there is a defeasible inclusion
δ = (A1 �n ∃R.A2) such that A1 ∈ SupCls(C), δ ∈ Compfix(C) ∩ Cons(X′) and
C′ ∈ SupCls(∃R.A2), where X′ is the value of the variable X when C′ was inserted.
By applying the definition of Compfix, we obtain that (i) NE(∃R.A2) ⊆ NE(C),
and (ii) for all concept names A′ ∈ SupCls(∃R.A2), it holds A′ ∈ SupCls(C).

Let I be a model of Circfix(KB) with an individual d ∈ �C�I , we show that d ∈
C′I . Assume by contradiction that d
∈ C′I . Since A1 is a classical consequence
of C, we have d ∈ AI

1 . Since C′ ∈ SupCls(∃R.A2), we have d
∈ (∃R.A2)I . We
show that there exists a classical model J of KB that improves I, i.e., J <D I.
To define J , for all ∃S.A3 ∈ SupCls(∃R.A2) (including ∃R.A2 itself), we add to
I an S-arc from d to an individual x ∈ AJ

3 . The existence of such an individual
is guaranteed by the fact that NE(∃R.A2) ⊆ NE(C). As a result, we have in
particular that d ∈ (∃R.A2)J . By (ii), all atomic concepts that are classical
consequences of ∃R.A2 are also consequences of C. This, together with the fact
that δ ∈ Cons(X′), ensures that J is a classical model of KB. It remains to prove
that J <D I. Since I and J only differ on the arcs outgoing from d, we have
6 In DL jargon: the ABox is empty. The reason for considering ABox assertions in the

definition of NG(C) will be clear in the next section, when we deal with instance

checking.

74 P.A. Bonatti, M. Faella, and L. Sauro

satI(δ) ⊂ satJ (δ) and for all δ′
= δ in D, we have satI(δ′) = satJ (δ′). Therefore,
we obtain the thesis.

(⊇) Let C′ be a concept such that Circfix(KB) |=cw C � C′. Assume by
contradiction that C′ does not belong to the output X of the algorithm. Clearly,
C
�KB C′, otherwise C′ would have been added to X in step 1 of the algorithm.
Since Circfix(KB) |=cw C � C′, there is a defeasible inclusion A1 �n ∃R.A2 ∈ D
such that A1 ∈ SupCls(C) and ∃R.A2 �KB C′ Let δ̂ ∈ D be a defeasible inclusion
with the above property and maximal priority. At some point, δ̂ is extracted from
D at step 3 of the algorithm. Since C′ is never added to X, we have that either
δ̂
∈ Compfix(C) or δ̂
∈ Cons(X′), where X′ is the current value of the variable X.
In both cases, it is possible to define a model I of Circfix(KB) with an individual
d ∈ ΔI such that d ∈ �C�I \ C′I , which is a contradiction.

We define I as follows.

– ΔI = {dC} ∪ {dA | A ∈ NE(C)} ∪ {da | a ∈ NI};
– for each concept name A, AI = {dX | X �KB A} ∪ {da | KB |= A(a)};
– for each role name R, we start by putting all edges that are classically

required, i.e., RI = {(dX , dY) | X �KB ∃R.Y } ∪ {(da, db) | R(a, b) ∈
KB} ∪ {(da, dX) | KB |= (∃R.X)(a)}. Moreover, for each ∃R.Y ∈ X, we
add the edge (dC , dY) to RI . Extra edges starting from individuals other
than dC are not relevant.

By construction, I is a classical model of KB and, as C′
∈ X, dC ∈ �C�I \ C′I .
It remains to prove that there is no model J that improves I by making dC

satisfy δ̂.
If δ̂
∈ Compfix(C), then either NE(∃R.A2)
⊆ NE(C) or there exists a concept

name A′ such that A′ ∈ SupCls(∃R.A2) and A′
∈ SupCls(C) (hence, dC
∈ A′I).
Since any model J that is comparable with I has the same interpretation for
the concept names, such model cannot have dC ∈ ∃(R.A2)J .

If instead δ̂
∈ Cons(X ′), we have
�

D′∈X′ D′ � ∃R.A2 �KB ⊥. If this inconsis-
tency derives from classical consequences of C (i.e., ∃R.A2 � SupCls(C) �KB ⊥),
the thesis is obvious. Otherwise, the inconsistency is due to one or more defeasible
inclusions δ that were chosen in the previous iterations of the loop, on line 3. For
each such δ, either its priority is higher than the one of δ̂, or it is incomparable with
it. In the first case, clearly it is not worth modifying δ in order to improve δ̂. In
the latter case, we employ the assumption that KB is conflict safe. In particular,
we have that δ and δ̂ are incomparable and in conflict. Let δ = (A3 �n ∃R.A4).
There is a concept name A5 such that A5 ≡KB A1 � A3 and the defeasible inclu-
sion δ′ = (A5 �n ∃R.A4) belongs to KB. Then, the priority of δ′ is higher than
both δ and δ̂. Hence, it is not worth modifying δ′ to improve δ̂. ��

Theorem 4. Algorithm 1 runs in polynomial time.

Proof. The main cycle of the algorithm performs as many iterations as the num-
ber of defeasible inclusions in KB. The polynomial complexity of the auxiliary
operators NE, SupCls, Compfix and Cons derive from the polynomial complexity
of reasoning in EL. ��

EL with Default Attributes and Overriding 75

The following example shows how to apply Algorithm 1 to the KB of Example 2.

Example 5. Assume that KB is the knowledge base of Example 3 and we want to
check whether staff members can read project files. First, we have to reduce the
KB in normal form as follows. We introduce six new concept names — SubUsers,
SubStaff, TargProjects, AuxUsers, AuxStaff and ActRead — together with
the following equivalences.

∃subject.Users≡ SubUsers

∃subject.Staff≡ SubStaff

∃target.Projects≡ TargProjects

∃action.Read ≡ ActRead

SubUsers� TargProjects≡ AuxUsers

SubStaff� TargProjects≡ AuxStaff

AuxUsers� ActRead ≡ UserRequest

StaffUsers� ActRead ≡ StaffRequest

The above equivalences replace the original definitions of UserRequest and
StaffRequest. The other inclusions remain unchanged. Recall that the KB
contains

� � ∃aux.Grant
� � ∃aux.Deny

Algorithm 1 receives as input

C = ∃subject.Staff� ∃target.Projects� ∃action.Read.

On line 1, the superclasses of C are computed. At that point, X contains, among
the others, StaffPolicy and NE(C) contains Grant. According to specificity, the
first defeasible inclusion removed from D is StaffPolicy�n ∃decision.Grant.
Since ∃decision.Grant has no proper superclasses and NE(∃decision.Grant)
contains only Grant, the condition on line 4 is satisfied and X becomes X ∪
{∃decision.Grant}. Thus, we have that

Circfix(KB) |=cw

∃subject.Staff� ∃target.Projects� ∃action.Read � ∃decision.Grant.

Note that the second defeasible inclusion UsersPolicy �n ∃decision.Deny does
not belong to Cons(X) since ∃decision.Grant and ∃decision.Deny are
inconsistent. ��

4 Reasoning about Individuals

The ideas illustrated so far can be naturally extended to reasoning about indi-
viduals, that is, instance checking. This task suffers from the same problem as

76 P.A. Bonatti, M. Faella, and L. Sauro

subsumption: given an assertion A(a), the individual a might well be a mem-
ber of any subclass of A, which may prevent the default properties of A from
being inherited by a if the standard definition of instance checking [7] is used.
Therefore, some form of closure similar to CWAKB is needed. The closure, in this
case, applies to the atomic concepts that contain the individuals in the ABox,
as collected by the meta-function AtClsKB(a) =

�
{A | KB |= A(a)}.

Definition 6. Let KB be any defeasible EL⊥ KB. CWA(KB) denotes the knowl-
edge base obtained from KB by adding the assertions CWAKB(AtClsKB(a))(a),
for all individuals a occurring in KB.

Instance checking Circfix(KB) |=cw C(a) is then defined as Circfix(CWA(KB)) |=
C(a) or, in a model-theoretic view:

Definition 7. Circfix(KB) |=cw C(a) if and only if for all models I of Circfix(KB)
if {A ∈ NC | aI ∈ AI} = {A ∈ NC | KB |= A(a)}, then aI ∈ CI .

Since Circfix preserves the classical semantics of atomic concepts and EL⊥ KBs
behave like Horn theories in many respects, it can be proved that:

Proposition 2. For all defeasible EL⊥ knowledge bases KB, and all conjunc-
tions of atomic concepts C, Circfix(KB) |=cw C(a) iff CWA(KB) |= C(a) iff
KB |= C(a) .

In other words, membership to atomic concepts and conjunctions thereof is fully
classical. Therefore, in this paper, we focus on the more interesting problem of
inferring the default properties of individuals. The reasoning task of our interest
is the following: Given an individual “a” and a concept ∃R.A, decide whether

Circfix(KB) |=cw (∃R.A)(a) .

The NP-hardness proof for subsumption can be easily adapted to instance check-
ing (using the same reduction plus assertion B0(a) and the query Circfix(KB) |=cw

(∃F̄)(a)). So we get:

Theorem 5. Let KB range over EL⊥ knowledge bases. The problem of checking
whether Circfix(KB) |=cw C(a) is NP-hard, even if the existential restriction is
unqualified (i.e., A = �).

For conflict safe knowledge bases, the instance checking problem can be decided
using the same algorithm as for subsumption. What we need is to provide as
input a concept which is the conjunction of all the atomic concepts and existential
restrictions which a is classically an instance of. Let GenClsKB(a) be such a
conjunction:

GenClsKB(a) =
�
{A | KB |= A(a)} �

�
{∃R.A | KB |= (∃R.A)(a)} .

The proof of the following theorem is analogous to Theorem 3 and is left to the
reader.

EL with Default Attributes and Overriding 77

Theorem 6. Let X be the result of Algorithm 1 on the concept GenClsKB(a). If
KB is conflict safe then Circfix(KB) |=cw (∃R.A)(a) iff (∃R.A) ∈ X.

Example 6. Let KB be a knowledge base obtained by adding to Example 4 the
assertions:

Human(Mary)
SitusInversus(John)

Recall that KB contains � � ∃aux.LHeart , where aux is a new role name.
We want to check that Circfix(KB) |=cw (∃has heart.LHeart)(Mary)

and Circfix(KB) |=cw (∃has heart.RHeart)(John). Let consider the first query,
the input of Algorithm 1 is the concept C = Human. As Human has no proper
superclasses, at line 1 X = {Human}. The only defeasible inclusion to be checked
in lines 2-5 is Human �n ∃has heart.LHeart. The set NE(Human) consists of all
the concept names occurring in the knowledge base, ∃has heart.LHeart is con-
sistent with Human and it does not force other concept names to be locally true.
Therefore, the condition in line 4 is satisfied and ∃has heart.LHeart is added
to X as expected.

For the second query, as seen before ∃has heart.RHeart classically derives from
SitusInversus and hence it is added to X directly in line 1. Note that, even if
Human �n ∃has heart.LHeart is activated by the fact that SitusInversus �KB
Human, the defeasible inclusion Human �n ∃has heart.LHeart is not in Cons(X)
because ∃has heart.LHeart and ∃has heart.RHeart are inconsistent. ��

5 Related Work

DLs have been extended with nonmonotonic constructs such as default rules [20,
3,4], autoepistemic operators [11,12], and circumscription [10,8,7]. An advantage
of circumscription is that nonmonotonic properties apply to all individuals, while
the other approaches restrict nonmonotonic inferences to the individuals that are
explicitly denoted in the ABox, as observed in [8]. While [8] focusses on expressive
circumscribed description logics whose complexity may reach NEXPTIMENP, [10]
and [7] deal with lower-complexity DLs like ALE , DL-lite, and EL; however, up-
per complexity bounds are all at the second level of the polynomial hierarchy or
harder, while here we have identified a tractable case. The two works [8, 7] con-
sider more general forms of circumscription (with variable concept names) and
reasoning tasks (satisfiability and KB consistency) that we do not consider here.
However, they do not deal with the modified entailment |=cw on which this paper is
focussed. Another recent attempt at low-complexity, nonmonotonic DL reasoning
is based on a modal typicality operator [15, 14], whose extension is maximized to
achieve nonmonotonic inferences. Unfortunately, reasoning is intractable in this
approach.

6 Conclusions and Perspectives

The need for supporting prototypical reasoning and exceptions in DLs can be ad-
dressed by restricting the expressiveness of the underlying DL and by selecting an

78 P.A. Bonatti, M. Faella, and L. Sauro

appropriate form of inference (|=cw). We have shown how to encode a recurring
example originated by the work on biomedical ontologies, and a representative
example related to semantic web policies. The adoption of Circfix makes it possi-
ble to add default attributes to the concepts of a given (classical) ontology in a
controlled way, without affecting the extension of atomic concepts. For conflict
safe KBs, the problem of reasoning about default attributes belongs to P; we pro-
vided an algorithm based on EL classification problems that enjoy efficient imple-
mentations [5]. This is a promising starting point for addressing the performance
challenges posed by the semantic web.

In the full version of this paper we will provide more details on the strategies
for making KBs conflict safe. We are also going to support more general queries
and more constructs from EL++, identifying the tractability threshold.

An interesting direction for further research consists in studying the impact
of variable concept names on the complexity of |=cw .

Acknowledgements. This work is partially supported by the national project
LoDeN (http://loden.fisica.unina.it/). The authors are grateful to the
anonymous referees for their constructive comments that helped improving the
paper.

References

1. Baader, F.: The instance problem and the most specific concept in the descrip-

tion logic EL w.r.t. terminological cycles with descriptive semantics. In: Günter,

A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 64–78.

Springer, Heidelberg (2003)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of the Nine-

teenth International Joint Conference on Artificial Intelligence, IJCAI 2005, pp.

364–369. Professional Book Center (2005)

3. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-

resentation formalisms. J. Autom. Reasoning 14(1), 149–180 (1995)

4. Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their ap-

plication in treating specificity in terminological default logic. J. Autom. Reason-

ing 15(1), 41–68 (1995)

5. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL - a polynomial-time reasoner for

life science ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS

(LNAI), vol. 4130, pp. 287–291. Springer, Heidelberg (2006)

6. Baader, F., McGuiness, D.L., Nardi, D., Patel-Schneider, P.: The Description Logic

Handbook: Theory, implementation and applications. Cambridge University Press,

Cambridge (2003)

7. Bonatti, P.A., Faella, M., Sauro, L.: Defeasible inclusions in low-complexity DLs:

Preliminary notes. In: Boutilier, C. (ed.) IJCAI, pp. 696–701 (2009)

8. Bonatti, P.A., Lutz, C., Wolter, F.: The complexity of circumscription in dls. J.

Artif. Intell. Res. (JAIR) 35, 717–773 (2009)

9. Bonatti, P.A., Samarati, P.: Logics for authorization and security. In: Chomicki,

J., van der Meyden, R., Saake, G. (eds.) Logics for Emerging Applications of

Databases, pp. 277–323. Springer, Heidelberg (2003)

http://loden.fisica.unina.it/

EL with Default Attributes and Overriding 79

10. Cadoli, M., Donini, F., Schaerf, M.: Closed world reasoning in hybrid systems. In:

Proc. of ISMIS 1990, pp. 474–481. Elsevier, Amsterdam (1990)

11. Donini, F.M., Nardi, D., Rosati, R.: Autoepistemic description logics. In: IJCAI

(1), pp. 136–141 (1997)

12. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and

negation as failure. ACM Trans. Comput. Log. 3(2), 177–225 (2002)

13. Finin, T.W., Joshi, A., Kagal, L., Niu, J., Sandhu, R.S., Winsborough, W.H.,

Thuraisingham, B.M.: ROWLBAC: representing role based access control in OWL.

In: Ray, I., Li, N. (eds.) SACMAT, pp. 73–82. ACM, New York (2008)

14. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Prototypical reasoning with

low complexity description logics: Preliminary results. In: Erdem, E., Lin, F.,

Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 430–436. Springer, Hei-

delberg (2009)

15. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Reasoning about typicality

in ALC and EL. In: Grau, et al. (eds.) [16]

16. Grau, B.C., Horrocks, I., Motik, B., Sattler, U. (eds.): Proceedings of the DL Home

22nd International Workshop on Description Logics (DL 2009), Oxford, UK, July

27-30. CEUR Workshop Proceedings, vol. 477. CEUR-WS.org. (2009)

17. Kolovski, V., Hendler, J.A., Parsia, B.: Analyzing web access control policies. In:

Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.) WWW,

pp. 677–686. ACM, New York (2007)

18. Rector, A.L.: Defaults, context, and knowledge: Alternatives for OWL-indexed

knowledge bases. In: Altman, R.B., Dunker, A.K., Hunter, L., Jung, T.A., Klein,

T.E. (eds.) Pacific Symposium on Biocomputing, pp. 226–237. World Scientific,

Singapore (2004)

19. Stevens, R., Aranguren, M.E., Wolstencroft, K., Sattler, U., Drummond, N., Hor-

ridge, M., Rector, A.L.: Using OWL to model biological knowledge. International

Journal of Man-Machine Studies 65(7), 583–594 (2007)

20. Straccia, U.: Default inheritance reasoning in hybrid KL-ONE-style logics. In: IJ-

CAI, pp. 676–681 (1993)

21. Uszok, A., Bradshaw, J.M., Jeffers, R., Suri, N., Hayes, P.J., Breedy, M.R., Bunch,

L., Johnson, M., Kulkarni, S., Lott, J.: KAoS policy and domain services: Towards a

description-logic approach to policy representation, deconfliction, and enforcement.

In: 4th IEEE International Workshop on Policies for Distributed Systems and

Networks (POLICY), Lake Como, Italy, pp. 93–96. IEEE Computer Society, Los

Alamitos (June 2003)

22. Zhang, R., Artale, A., Giunchiglia, F., Crispo, B.: Using description logics in rela-

tion based access control. In: Grau, et al. (eds.) [16]

Supporting Natural Language Processing with
Background Knowledge: Coreference Resolution Case

Volha Bryl, Claudio Giuliano, Luciano Serafini, and Kateryna Tymoshenko

Fondazione Bruno Kessler, via Sommarive 18, 38123 Trento, Italy
{bryl,giuliano,serafini,tymoshenko}@fbk.eu

Abstract. Systems based on statistical and machine learning methods have been
shown to be extremely effective and scalable for the analysis of large amount of
textual data. However, in the recent years, it becomes evident that one of the most
important directions of improvement in natural language processing (NLP) tasks,
like word sense disambiguation, coreference resolution, relation extraction, and
other tasks related to knowledge extraction, is by exploiting semantics. While
in the past, the unavailability of rich and complete semantic descriptions con-
stituted a serious limitation of their applicability, nowadays, the Semantic Web
made available a large amount of logically encoded information (e.g. ontologies,
RDF(S)-data, linked data, etc.), which constitutes a valuable source of semantics.
However, web semantics cannot be easily plugged into machine learning sys-
tems. Therefore the objective of this paper is to define a reference methodology
for combining semantic information available in the web under the form of logi-
cal theories, with statistical methods for NLP. The major problems that we have
to solve to implement our methodology concern (i) the selection of the correct
and minimal knowledge among the large amount available in the web, (ii) the
representation of uncertain knowledge, and (iii) the resolution and the encoding
of the rules that combine knowledge retrieved from Semantic Web sources with
semantics in the text. In order to evaluate the appropriateness of our approach,
we present an application of the methodology to the problem of intra-document
coreference resolution, and we show by means of some experiments on the stan-
dard dataset, how the injection of knowledge leads to the improvement of this
task performance.

1 Introduction

The two key aspects of natural language applications based on machine learning tech-
niques are the learning algorithm, and the feature extraction and representation of the
documents, entities, or words that have to be manipulated. Reviewing the relevant lit-
erature of the last years, one realizes that, typically, the difference between the results
obtained by different learning algorithms (e.g., support vector machines vs. decision
trees) is significant when they are fed with the same information. On the other hand,
the feature extraction and representation methods play a crucial role for the accuracy
of the system. Simple representations, e.g., the bag-of-words, and more complex ones,
e.g., tree kernels, have been exploited in different tasks and their difference has been
proved to be significant as well. For example, in relation extraction approaches that

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 80–95, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Supporting NLP with Background Knowledge: Coreference Resolution Case 81

exploit deep syntactic parsing outperform the ones that represent only shallow syntac-
tic analysis. Until now, the majority of the approaches focus on representing syntactic
information while background knowledge extracted from knowledge bases has been
restricted to WordNet and ad-hoc gazetteers [12,7]. The main reasons are due to the
low coverage of the available knowledge resources and the difficulty to match text and
ontology elements.

Nowadays, the Semantic Web made available a large amount of logically encoded in-
formation (e.g., ontologies, RDF(S)-data, linked data, etc.), which constitute a valuable
source of semantic knowledge. However, extending the state-of-the-art natural language
applications to use these resources is not a trivial task due to the following reasons: (i)
The heterogeneity and the ambiguity of the schemes adopted by the different resources
of the Semantic Web. This means, e.g., that the same relation can be encoded by differ-
ent URIs, and that URIs are used by different resources for denoting different relations.
(ii) The irregular coverage of the knowledge available in the Web. This means that for
some “famous” entities the Semantic Web contains a large amount of knowledge, and
only a little is relevant for solving a specific task (e.g., coreference resolution or rela-
tion extraction), while for other entities there is no knowledge at all. (ii) The logical-
statistical knowledge integration problem, i.e., the fact that algorithms for coreference
resolution are based on statistical feature models, while background knowledge in the
Semantic Web is encoded in some logical form.

In this paper, we define a general methodology for supporting natural language pro-
cessing by exploiting background knowledge available in the Web, by proposing prac-
tical solutions for the before mentioned problems. First, we map terms in text to URIs
through Wikipedia mediation. Since most of the resources available in the Semantic
Web are linked to Wikipedia, we can use it as a semantic mediator. So we propose to
link text with Wikipedia entries and then to exploit the linking between Wikipedia and
the other resources to access the knowledge encoded in them. Wikipedia represents a
practical choice, as it is playing a central role in the development of the Semantic Web,
given the large and growing number of resources linked to it, which makes Wikipedia
one of the central interlinking hubs of the emerging Web of Data. Second, we query
the Semantic Web using the URIs to obtain the background knowledge expressed in
the RDF/OWL formalism and apply feature selection techniques to retrieve the rele-
vant knowledge for the specific task. In this way we do not assume to have any a priori
knowledge of the specific task but we delegate to the feature selection phase the respon-
sibility of finding the relevant information from an arbitrary Semantic Web resource to
model it. Differently, in our previous work [5] we experimented with the small pre-
defined subset of properties from one specific knowledge source (YAGO ontology) to
support the coreference resolution task. Finally, as we presented in more details in [5],
we use the Alchemy tool [1] for the integration of uncertain knowledge, and facts ex-
pressed in first-order language. Alchemy provides both reasoning and learning func-
tionalities, though we only use the reasoning part. The extension of this work, however,
could require learning capabilities.

To evaluate the methodology, we run a number of experiments in coreference res-
olution, which are reported in Section 5. The experiments consist in selecting a set of
features relevant for the given task from three large-scale Semantic Web resources and

82 V. Bryl et al.

then testing the coreference resolution model extended with the selected features. The
results show that our method performs in the order of the state-of-the-art coreference
algorithms, and, importantly, that the use of background knowledge provides a tangible
advantage for coreference resolution.

2 Coreference Resolution: Task Definition and Related Work

The task of coreference resolution consists in identifying mentions that refer to the same
real-world entity. E.g., it is required to identify that the mentions Barack Obama and
president are coreferent in the text “Barack Obama will make an appearance on the TV
show. The president is scheduled to come on Friday evening.” This constitutes an im-
portant subtask in many natural language processing (NLP) applications such as infor-
mation extraction, textual entailment, and question answering. Machine learning (ML)
is widely used to approach the coreference task. State-of-the-art coreference resolvers
are mostly extensions of the Soon et al. approach in which a mention-pair classifier is
trained using solely surface-level features to determine whether two mentions are core-
ferring or not [25]. In the last decade, two independent research lines have extended the
Soon et al. approach yielding significant improvements in accuracy.

The first aims at defining a more sophisticated ML framework to overcome the limits
of the mention-pair model. Entity-mention and mention-ranking models and their com-
bination cluster-ranking are some of the relevant approaches proposed (e.g. [9,16]).
An entity-mention model considers candidate pairs, which consist of a cluster of men-
tions, referring to the same entity, and a new mention. [18] motivate the entity-mention
model using an example of a mention set such as “Mr. Obama”, “Obama” and “she”. A
mention-pair model might first predict that “Mr. Obama” and “Obama” are coreferent,
then it might predict that “Obama” and “she” are coreferent as well, and finally cluster
all these mentions as referring to the same entity. An entity-mention model first classi-
fies “Mr. Obama” and “Obama” as coreferent, and then immediately clusters them into
an entity cluster. Then the model considers the entity cluster (“Mr. Obama”, “Obama”)
and the mention “she” as the coreference candidates. In this case “she” is unlikely to
be added to the given cluster, as there is a gender disagreement between “Mr.” and
“she”. The mention-ranking models attempt to choose the most probable candidate an-
tecedent for a mention, among all the preceding mentions within a given scope. E.g., if
a text contains the mentions “she”, “Barack Obama” and “Michele Obama”, the set of
candidate antecedents for the mention ”Michele Obama” includes ”she” and ”Barack
Obama”. The models ranks them and chooses the most probable one.

The second research line investigates the usage of semantic knowledge sources to aug-
ment the feature space [25,20,17,27]. Here the majority of the approaches exploit Word-
Net [11] and, more recently, Wikipedia1 or corpora annotated with semantic classes. E.g.,
in [25] a candidate pair of mentions was represented as a vector of twelve features, two
of which, namely the semantic class agreement and alias, were of semantic nature. The
alias feature contributed greatly to the performance of the system. It was obtained using
a set of heuristics, e.g. it was considered true if one mention was an acronym of another.
Therefore, its value could be evaluated only in a limited number of cases. The semantic

1 http://wikipedia.org/

http://wikipedia.org/

Supporting NLP with Background Knowledge: Coreference Resolution Case 83

class agreement feature did not impact the performance of the system, which may be due
to the fact that the most frequent sense of a mention in the WordNet lexical database was
employed as its semantic class. Therefore, the possible ambiguity of a mention was not
taken into account. In [19] a set of features from [25] was expanded, with the semantic
relatedness features based on WordNet taxonomy. However, they did not perform the dis-
ambiguation as well, and the new semantic features did not impact the final performance
of the system either. Recently, Wikipedia has also started to be exploited as a source of
semantic knowledge for coreference resolution [20,27]. E.g., its category structure and
article texts are used in [20] in order to obtain a set of six features based on the seman-
tic relatedness of mentions. In order to find the Wikipedia articles which correspond to
a mention, Wikipedia is queried for pages titled as the head lemma of the mention. If
the disambiguation page is hit, an heuristic algorithm is employed. However, such ap-
proach is likely to return the Wikipedia page that corresponds to the most frequent sense
of a mention. The problem of possible noun mention ambiguity was taken into account
in [17]. In this work a special classifier was trained on the BBN entity corpus to assign
one of five semantic classes to the mentions. Even though the set of semantic classes
is not large, the features based on usage of these classes gave an improvement of the
precision of the common noun resolution by 2-6% over [25]. These results show that
taking into account the ambiguity of the mentions is crucial for obtaining the semantic
knowledge relevant for coreference resolution. Knowledge representation format and the
structure of the knowledge sources used by the above described approaches are differ-
ent, therefore, in each specific case information from a resource has to be extracted and
processed differently. In the following section we present an approach that allows us to
overcome this issue and work with knowledge from heterogeneous sources with only
minimal assumptions on their representation and structure.

3 Background Knowledge Acquisition

3.1 Sources of Background Knowledge

Our approach is concerned with using background knowledge from multiple resources
in a unified way. We propose to acquire it from collections of RDF data, made avail-
able by the members of the Linked Data Community, e.g., DBpedia [2], Freebase [4],
YAGO [26], and, perspectively, many others. In order to obtain semantic knowledge
about a mention in plain text, we need to map it to a Linked Data resource entry. We
benefit from the fact that some of the Linked Data resources are aligned with Wikipedia.
Therefore, we link a mention to Wikipedia, using an approach described in Section 3.2,
and then exploit this link to obtain data from the specific Linked Data resource. More-
over, Linked Data datasets are interconnected by means of RDF links and in future these
inter-dataset links can be exploited as well. In the current work, we limit the scope of our
research to the following resources, that can be directly accessed by using a Wikipedia
link:

DBpedia is a structured twin of Wikipedia. Currently it describes more than 3.4 million
entities. DBpedia resources bear the names of the Wikipedia pages, from which
they have been extracted.

84 V. Bryl et al.

YAGO is an automatically created ontology, with taxonomy structure derived from
WordNet, and knowledge about individuals extracted from Wikipedia. Therefore,
the identifiers of resources describing individuals in YAGO are named as the corre-
sponding Wikipedia pages. YAGO contains knowledge about more than 2 million
entities and 20 million facts about them.

Freebase is a collaboratively constructed database. It contains knowledge automati-
cally extracted from a number of resources including Wikipedia, MusicBrainz,2

and NNDB,3 as well as the knowledge contributed by the human volunteers. Free-
base describes more than 12 million interconnected entities. Each Freebase entity
is assigned a set of human-readable unique keys, which are assembled of a value
and a namespace. One of the namespaces is the Wikipedia namespace, in which a
value is the name of the Wikipedia page describing an entity.

3.2 Linking to Wikipedia

The linking problem is cast as a word sense disambiguation (WSD) exercise, in which
each mention in the text (excluding pronouns) has to be disambiguated using Wikipedia
to provide the sense inventory and the training data. The idea of using Wikipedia to train
a supervised WSD system was first proposed in [6]. The proposed approach, called The
Wiki Machine,4 is summarized as follows.

Training Set. To create the training set, for each mention m, we collect from the
English Wikipedia dump5 all contexts where m is an anchor of an internal link, where
a context corresponds to a line of text in the Wikipedia dump and it is represented as a
paragraph in a Wikipedia article. The set of target articles represents the senses of m in
Wikipedia and the contexts are used as labeled training examples. E.g., the proper noun
Bush is a link anchor in 17, 067 different contexts that point to 20 different Wikipedia
pages, George_W._Bush, Bush_(band), and Dave_Bush are some example of
possible senses. The set of contexts with their corresponding senses is then used to train
the WSD system described below. E.g., the context “Alternative Rock bands from the
mid-90 ’s , including Bush , Silverchair , and Sponge.” is a training instance for the
sense defined by the Wikipedia entry Bush_(band).

Learning Algorithm. To disambiguate mentions in text, we implemented a kernel-
based approach originally proposed in [13]. Different kernel functions are employed
to integrate syntactic, semantic, and pragmatic knowledge sources typically used in
the WSD literature. Kernel methods are theoretically well founded in statistical learn-
ing theory and shown good empirical results in many applications [24]. The strategy
adopted consists in splitting the learning problem into two parts. They first embed the
input data in a suitable feature space, and then use a linear algorithm (e.g., support vec-
tor machines) to discover nonlinear patterns in the input space. The kernel function is

2 http://musicbrainz.org/
3 http://www.nndb.com/
4 http://thewikimachine.fbk.eu/
5 http://download.wikimedia.org/enwiki/20100312

George_W._Bush
Bush_(band)
Dave_Bush
Bush_(band)
http://musicbrainz.org/
http://www.nndb.com/
http://thewikimachine.fbk.eu/
http://download.wikimedia.org/enwiki/20100312

Supporting NLP with Background Knowledge: Coreference Resolution Case 85

the only task-specific component of the learning algorithm. For each knowledge source
a specific kernel has been defined. By exploiting the property of kernels, basic kernels
are then combined to define the WSD kernel. Specifically, we used a linear combination
of gap-weighted subsequences, bag-of-words, and latent semantic kernels .

Gap-weighted subsequences kernel. This kernel learns syntactic and associative re-
lations between words in a local context. We extended the gap-weighted subsequences
kernel to subsequences of word forms, stems, part-of-speech tags, and orthographic
features (capitalization, punctuation, numerals, etc.). We defined gap-weighted subse-
quences kernels to work on subsequences of length up to 5. E.g., suppose we have to
disambiguate the verb to score in the context “Maradona scored Argentina’s third goal”,
given the labeled example “Ronaldo scored two goals in the second half” as training,
a traditional approach, that only consider contiguous ngrams, has no clues to return
the correct answer because the two contexts have no features in common. The use of
gap-weighted subsequences allows us to overcame this problem and extract the feature
“score goal”, shared by the two examples.

Bag-of-words kernel. This kernel learns domain, semantic, topical information. Bag-
of-words kernel takes as input a a wide context window around the target mention.
Words are represented using stems. The main drawback of this approach is the need of
a large amount of training data to reliably estimate model parameters. E.g., despite the
fact that the examples “People affected by AIDS” and “HIV is a virus” express concepts
related, their similarity is zero using the bag-of-words model since they have no words
in common (they are represented by orthogonal vectors). On the other hand, due to the
ambiguity of the word virus, the similarity between the contexts “the laptop has been
infected by a virus” and “HIV is a virus is greater than zero”, even though they convey
very different messages.

Latent semantic kernel. To overcome the drawback of the bag-of-words, we incor-
porate semantic information acquired from English Wikipedia in an unsupervised way
by means of latent semantic kernel. This kernel extracts semantic information through
co-occurrence analysis in the corpus. The technique used to extract the co-occurrence
statistics relies on a singular value decomposition of the term-by-document matrix. E.g.,
the similarity in the latent semantic space of the two examples “People affected by
AIDS” and “HIV is a virus” is higher than in the bag-of-words representation, because
the terms AIDS, HIV and virus very often co-occur in the medicine domain.

Implementation Details. The latent semantic model is derived from the 200,000 most
visited Wikipedia articles. After removing terms that occur less than 5 times, the re-
sulting dictionary contain about 300,000 and 150,000 terms respectively. We used the
SVDLIBC package to compute the SVD, truncated to 400 dimensions.6 To classify each
mention in Wikipedia entries, we used a LIBSVM package.7 No parameter optimization
was performed.

6 http://tedlab.mit.edu/˜dr/svdlibc/
7 http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

http://tedlab.mit.edu/~dr/svdlibc/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

86 V. Bryl et al.

Evaluation. We evaluate The Wiki Machine on the ACE05-WIKI Extension [3]. This
dataset extends the the English Automatic Content Extraction (ACE) 2005 dataset with
ground-truth links to Wikipedia.8 ACE 2005 is composed of 599 articles assembled
from a variety of sources selected from broadcast news programs, newspapers, newswire
reports, internet sources and from transcribed audio. It contains the annotation of a series
of entities (person, location, organization) and their mentions. In the extension each
nominal or named entity mention (in total 29,300 entity mentions) is manually assigned
a Wikipedia link(s). The results of the evaluation are reported in the first line of Table 1.
The training sets were collected from the English Wikipedia dump of March, 2010.

We have compared our approach with the state-of-the-art system described in [15].
In this approach, a plain text is wikified, i.e. terms in the text are linked to Wikipedia and
then keywords are selected among them. We are interested only in the linking step. In
this step a set of candidate Wikipedia pages (senses) for all terms in the text is collected
as described in Section 3.2, when possible. The pages to which terms in the text can
be linked unambiguously form the context. Different senses of an ambiguous term are
evaluated using a classifier, based on three features, namely commoness of a sense, its
relatedness to the context and the context quality.

The approach is implemented in the Wikipedia Miner tool.9 We used it with the de-
fault parameters. The tool requires a Wikipedia dump preprocessed in a special way.
We used the preprocessed Wikipedia dump of July, 2008, made available by the au-
thors of the tool. The results are reported in the second line of Table 1. The Wikipedia
Miner achieves six points better precision, however, its recall is considerably lower,
thus making the F1 13 points less than that of The Wiki Machine. The performance

Table 1. Comparisons of the two linking methods on the ACE05-WIKI Extension

Approach Precision Recall F1

The Wiki Machine 0.716 0.714 0.715
Wikipedia Miner 0.779 0.471 0.587

difference between the two systems could not be only due to the use of different ver-
sion of Wikipedia, as the ACE corpus contains references to entities dated before 2005
and Wikipedia covered most of them in 2008. On the other hand, varying the Wiki
Miner free parameters did not produce significant improvement.

4 Selecting Relevant Background Knowledge

The amount of information obtained from a Semantic Web resource even for a single
named entity can be very big. For instance, DBpedia alone contains around 600 RDF
triples describing Barack Obama. Most of this information is irrelevant to the NLP
task at hand (e.g. Obama’s website, residence, the name of his spouse, etc.), and only

8 http://www.itl.nist.gov/iad/mig//tests/ace/ace05/index.html
9 http://wikipedia-miner.sourceforge.net/

http://www.itl.nist.gov/iad/mig//tests/ace/ace05/index.html
http://wikipedia-miner.sourceforge.net/

Supporting NLP with Background Knowledge: Coreference Resolution Case 87

some of the triples can be useful to resolve coreferences (e.g. type properties stating
that Obama is a politician and a president).

Indeed, many learning algorithms are originally not designed to deal with large
amounts of irrelevant information, consequently, combining them with the feature se-
lection techniques has become necessary in many applications. This is particularly true
when the information needed is retrieved from heterogeneous knowledge sources as
the ones made available on the Semantic Web. Recall that we do not assume any prior
knowledge on the nature of the background knowledge that can be obtained, barring the
availability in RDF.

We use the chi-square test to assess the relevance of background knowledge for the
coreference resolution task by looking only at the intrinsic properties of the data. The
chi-square test is a test for dependence between a feature and a class. Specifically, chi-
square metric is calculated for each feature, and low-scoring features are removed. Af-
terwards, this subset of features is presented as input to the learning algorithm. Benefits
of the chi-square test are that it easily scales to very high-dimensional data sets, it is
computationally simple and fast, and the search in the feature space is separated from
the search in the hypothesis space. The next sections describe the feature extraction and
selection methods.

4.1 Feature Extraction

We obtain feature sets for coreference candidates, in which mentions are either a proper
noun and a common noun (NAM-NOM), or both are common nouns (NOM-NOM).
We denote a coreference candidate pair by (m1, m2). In the case of a NAM-NOM pair
m1 refers to the proper noun mention and m2 to the common noun mention. As regards
NOM-NOM, we consider two (m1, m2), pairs which differ by the order of the men-
tions, e.g. for the coreference candidate (“state”, “country”) we consider (m1=“state”,
m2 = “country”) and (m1 = “country”, m2 = “state”).

An (m1, m2) pair is processed as follows. We extract all RDF triples referring to m1
from a knowledge source, using the methodology described in Section 3. In average we
obtain 200 triples per mention. An RDF triple consists of subject, predicate and object.
If m1 is the object of the triple, we check if there is a string match between m2 and the
subject. In the other case, we check whether there is a string match between m2 and the
object. If the string match is observed, then the coreference candidate pair has a feature
named as the predicate of the RDF triple, and the feature is included into the feature
set. If for RDF-triples with a given predicate the string match never occurs in the entire
training set, then the corresponding feature is not included into the feature set.

Examples of features for some of the mention pairs are presented in Table 2. Each
mention is composed of the number of a document, the position in the document and
the mention string itself. We select distinct sets of features for NAM-NOM and NOM-
NOM mentions of person (PER) and geopolitical entities (GPE). Consequently from
each of three background knowledge sources we extract four sets of features, namely
NAM-NOM-GPE, NOM-NOM-GPE, NAM-NOM-PER, and NOM-NOM-PER. They
typically contain 10-50 features. We apply the feature selection technique to each set.

88 V. Bryl et al.

Table 2. Feature examples

Mention pair Feature
1-225-Clinton, 1-87-president http://www.w3.org/2004/02/skos/core#subject
529-324-Yasser Arafat, 529-402-leader http://www.w3.org/2004/02/skos/core#subject
410-23-state, 410-109-country http://www.w3.org/2004/02/skos/core#subject
2-637-Kuwait, 2-956-city http://rdf.Freebase.com/ns/location.country.capital
3-10-U.S.,3-892-States http://www.w3.org/2002/07/owl#sameAs

4.2 Feature Selection

In machine learning coreference candidates are called instances. We say than an in-
stance belongs to class 1 if the mentions in the candidate pair are coreferent; 0 other-
wise. Let us introduce some notation.

n1f number of instances in class 1 with feature f
n1f̄ number of instances in class 1 without feature f
n0f number of instances in class 0 with feature f
n0f̄ number of instances in class 0 without feature f
n1 total number of instances in class 1

n0 total number of instances in class 0

nf total number of instances with feature f
nf̄ total number of instances without feature f
n total number of instances

The chi-square feature selection metric, χ2(f, c), measures the dependence between
feature f and class c ∈ {0, 1}. If f and c are independent, then χ2(f, c) is equal to zero.
To select a relevant set of features, we utilized the following metric

χ2
(f, c) =

n(n1f n0f̄ − n0f n1f̄)2

n1nfn0nf̄

,

by averaging over the classes we obtain the metric for selecting a subset of features

χ2
(f) =

1∑
i=0

Pr(ci)χ
2
(f, c).

E.g., we extract from Freebase a set of 22 features for the NAM-NOM pairs of mentions
which refer to a GPE entity. After feature selection, the scores of 9 features are near to
zero, consequently only 13 features should be considered. The two top-scoring features
in this case are http://www.w3.org/2002/07/owl#sameAs and http://
www.w3.org/1999/02/22-rdf-syntax-ns#type. These features and their
equivalents in other knowledge sources turned out to be highly relevant for other kinds
of coreference as well.

5 Evaluation: Coreference Resolution with Background
Knowledge

In this section we report on our experiments with the coreference resolution task. Namely,
we give some hints on the implementation of the model we used as a baseline (more

http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

Supporting NLP with Background Knowledge: Coreference Resolution Case 89

details can be found in [5]), explain how the background knowledge is plugged into the
model, and present the results of the experiments.

5.1 Baseline Model Definition

Tool Selection. A recently introduced family of approaches to the task of coreference
resolution try to represent the coreference task into some logical theory that supports
the representation of uncertain knowledge. Among these approaches we can find a num-
ber of works [22,14,8] based on the formalism called Markov logic [10], which is a
first-order probabilistic language which combines first-order logic with probabilistic
graphical models.

In essence, Markov logic model is a set of first-order rules with weights associated to
each rule. Weights can be learned from the available evidence (training data) or other-
wise defined, and then inference is performed on a new (test) data. Such a representation
of the model is intuitive and allows for the background knowledge be integrated nat-
urally into it. It has been shown that the Markov logic framework is competitive in
solving NLP tasks (see, for instance, [21,23], and [1] for more references). Another
advantage of the weighted first-order representation is that the model can be easily ex-
tended with extra knowledge by simply adding logical axioms, thus minimizing the
engineering effort and making the knowledge enrichment step more straightforward
and intuitive.

Given the above, the inference tool we have selected to be used in the coreference
resolution tasks is the inference module of the Alchemy system [1], with Markov logic
as a representation language.

The Alchemy inference module takes as inputs (i) a Markov logic model, that is,
a list of weighted first-order rules, and (ii) an evidence database, that is, the list of
known properties (true of false values of predicates) of domain objects. In the case
of coreference resolution, domain objects are the entity mentions, and the properties
they might have are gender, number, distance, semantic class, etc. In the following we
discuss how these two parts of input are constructed.

Markov Logic Model. In defining a model for coreference resolution, we were in-
spired by Soon et al baseline [25], which uses the following features: pairwise distance
(in terms of number of sentences), string match, alias, number, gender and semantic
class agreement, pronoun, definite/demonstrative noun phrase and both proper names
feature. This approach achieves an F-measure of 62.2% in the MUC-6 coreference task
and of 60.4% on the MUC-7 coreference task.

A Markov logic model consists of a list of predicates and a set of weighted first-order
formulae. Some predicates in our model correspond to Soon et al features: binary pred-
icates such as distance between two entity mentions (in terms of sentences) and string
match, and unary predicates such as proper name, semantic class, number (singular or
plural) and gender (male, female or unknown). Also, we use string overlap in addition
to string match and define yet another predicate to describe distance, which refers to
the number of named entities of the same type between two given ones (e.g. if there are
no other named entities classified as “person” between “Obama” and “President”, the
distance is 0). The predicate corefer(mention,mention) describes the relation of interest,

90 V. Bryl et al.

and is called query predicate in Alchemy terminology, that is, we are interested in eval-
uating the probability of each grounding of this predicate given the known properties of
all the mentions.

The second part of the model definition concerns constructing the first-order rules
appropriate for a given task. We have defined the rules that connect the above properties
of the mentions with the coreference property. Some of the examples are given below10.

String match is very likely to indicate coreference for proper names, while for com-
mon nouns it is still likely but makes more sense in combination with a distance property:

20 match(x, y) ∧ proper(x)∧ proper(y) → corefer(x, y)

3 match(x, y) ∧ noun(x) ∧ noun(y) ∧ dist0(x, y) → corefer(x, y)

The number before a formula corresponds to the weight assigned to it.
Gender and number agreement between two neighboring mentions of the same type

provides a relatively strong evidence for coreference:

4 male(x) ∧ male(y) ∧ singular(x) ∧ singular(y) ∧ follow(x, y) → corefer(x, y)

We also define hard constraints, that is, crisp first-order formulae that should hold in
any given world. Fullstop after the formula refers to an infinite weight, which, in turn,
means that the formula holds with the probability equal to 1.

¬corefer(x, x).

corefer(x, y)∧ → corefer(y, x).

In this paper we do not consider weight learning, so weights are assigned manually. We
do not consider pronoun mentions as the background knowledge is relevant for proper
name/common noun pairs in the first place.

Evidence Database. The second input to the Alchemy inference module is an evidence
database, i.e. the known values of non-query predicates listed in the previous section.
Normally, the coreference resolution task is performed on a document corpus, in which
each document is firstly preprocessed. Preprocessing consists in identifying the named
entities (persons, locations, organization, etc.), as well as their syntactic properties, such
as part of speech, number, gender, pairwise distance, etc.

The data corpus we use for the experiments is ACE 2005 data set, with around 600
documents from the news domain. We work on a corpus in which each word is anno-
tated with around 40 features (token and document ID, Part of Speech tags by TextPro11,
etc.). This allowed us to extract the syntactic properties of the mentions presented be-
fore. Note that for the gender property, we used male/female name lists to annotate
proper names in the corpus. For common nouns, we defined two lists of gender tokens
(which included “man”,“girl”, “wife”, “Mr.”, etc.). Some examples of the properties we
obtained are given below.

10 Full model is available at
https://copilosk.fbk.eu/images/1/1f/Coreference2.txt

11 TextPro – http://textpro.fbk.eu/

https://copilosk.fbk.eu/images/1/1f/Coreference2.txt
http://textpro.fbk.eu/

Supporting NLP with Background Knowledge: Coreference Resolution Case 91

semclass (“2-83-Bob Dornan”, “person”)
neihgbourNouns (“2-82-Congressman”,“2-83-Bob Dornan”)
propername (“2-83-Bob Dornan”)
male (“2-83-Bob Dornan”)
singular (“2-83-Bob Dornan”)
pmatch (“2-740-Bob”, “2-83-Bob Dornan”)
match (“2-83-Bob Dornan”, “2-942-Bob Dornan”)
DBPedia NAM-NOM PER 2 type (“2-83-Bob Dornan”, “2-62-Congressman”)
YAGO NAM-NOM PER 1 type (“2-83-Bob Dornan”, “2-86-Republican”)

We worked on the gold standard annotation for named entities, and considered five
named entity types: PERson, LOCation, GeoPoliticalEntity, FACility and ORGaniza-
tion (although only the first two types were used in the experiments presented later in
this section). Alchemy inference was performed separately for each named entity type.
Note that the size of the document corpus does not impact the quality of the results as
documents are processed independently, one by one.

The Alchemy inference module, which takes as input the weighted Markov logic
model and the database containing the properties of mentions, produces as a result the
probabilities of coreference for each of NxN possible pairs of mentions, where N is
the number of mentions:

corefer(mi, mj) pij , 0 ≤ pij ≤ 1, i, j = 1, N

After having obtained this, we setup a probability threshold (e.g. p = 0.9) and consider
only those pairs for which pij ≥ p. On these pairs, we perform a transitive closure.
Then the pairwise scores and, after a simple clustering step, MUC scores [28] are cal-
culated. The resulting output consists of the list of coreference chains for each of the
processed documents, and the measures of the efficiency, namely, recall, precision and
their harmonic mean (F1).

5.2 Injecting Background Knowledge into Coreference Model

In the Markov logic model, in addition to the syntactic predicates and rules described
above, a set of predicates and rules that deal with background knowledge were intro-
duced. The predicates, or pairwise semantic properties of mentions, are the most rel-
evant features selected according to the methodology described in Section 4 from the
DBpedia, YAGO and Freebase knowledge sources. The list of the selected features is
given in Table 3.

The Markov logic model is extended with the rules relating these semantic predicates
with the coreference property. The arguments of a semantic predicate should be of the
same named entity type (person or geopolicical entity), and the distance relation relation
must hold between them.

For the experiments, the ACE data set was first ordered by the number of named
entities linked to Wikipedia and split into two subsets of equal size (ACE-SUBSET-
1 and ACE-SUBSET-2): odd documents from the ordered list formed the first subset,
even formed the second one. ACE-SUBSET-1 was used for feature selection, while on
ACE-SUBSET-2 the Markov logic model extended with background knowledge was

92 V. Bryl et al.

Table 3. Selected features

KB name NE type Pair type Property name
Freebase GPE NAM-NOM http://www.w3.org/1999/02/22-rdf-syntax-ns#type
Freebase GPE NAM-NOM http://www.w3.org/2002/07/owl#sameAs
Freebase PER NAM-NOM http://www.w3.org/2002/07/owl#sameAs
Freebase PER NAM-NOM http://rdf.freebase.com/ns/people.person.profession
Freebase PER NOM-NOM http://www.w3.org/2002/07/owl#sameAs

YAGO GPE NAM-NOM type
YAGO GPE NAM-NAM means
YAGO PER NAM-NOM type

DBPedia GPE NAM-NOM http://dbpedia.org/property/reference
DBPedia GPE NAM-NOM http://www.w3.org/2004/02/skos/core#subject
DBPedia GPE NAM-NOM http://www.w3.org/1999/02/22-rdf-syntax-ns#type
DBPedia PER NAM-NOM http://www.w3.org/2004/02/skos/core#subject
DBPedia PER NAM-NOM http://www.w3.org/1999/02/22-rdf-syntax-ns#type
DBPedia PER NAM-NOM http://dbpedia.org/property/title

tested. For the latter experiments, we have created yet another document set, ACE-
SUBSET-3, which contains 50 documents from ACE-SUBSET-2 with the highest back-
ground knowledge coverage (i.e. with the highest number of entity mentions linked to
Wikipedia).

Tables 4 and 5 present MUC scores of the experiments for ACE-SUBSET-2 and ACE-
SUBSET-3, accordingly. Each table reports the values of MUC recall, precision and
F1 for the models without and with the use of background knowledge extracted from
DBpedia, YAGO and Freebase. Experiments were conducted for geopolitical entities
(GPE) and persons (PER). Compared to the other three NE types (locations, organiza-
tions and facilities), persons and geopolitical entities constitute the major part of the
corpus, so we do not report these results here. Also, we do not report the experiments
for geopolitical entities with knowledge obtained from Freebase and DBpedia as the
corresponding improvement for these cases was insignificant.

Table 4. MUC scores for GPE and PER NE types, ACE-SUBSET-2 document set

NE type KB R P F1
GPE none 0.7446 0.9371 0.8298
GPE YAGO 0.8314 0.9308 0.8783

PER none 0.7003 0.7302 0.7149
PER DBpedia 0.7125 0.7196 0.7160
PER Freebase 0.7178 0.7343 0.7259
PER YAGO 0.7208 0.7348 0.7277

The improvement in F1 is 5% for GPE due to the use of YAGO on both datasets.
The improvement in F1 for PER with the use of YAGO and Freebase is a bit higher
for ACE-SUBSET-3 (1.5% versus 2%) due to the increase of coverage in the latter. The

Supporting NLP with Background Knowledge: Coreference Resolution Case 93

Table 5. MUC scores for GPE and PER NE types, ACE-SUBSET-3 document set

NE type KB R P F1
GPE none 0.7763 0.9380 0.8495
GPE YAGO 0.8536 0.9335 0.8918

PER none 0.7447 0.6946 0.7188
PER DBpedia 0.7669 0.6852 0.7238
PER Freebase 0.7749 0.7024 0.7369
PER YAGO 0.7785 0.7039 0.7393

results for YAGO and Freebase are comparable to the ones presented in [5], while lower
improvement for DBpedia is most probably due to the fact that this knowledge source
is much less structured and polished with respect to YAGO and Freebase.

6 Conclusion and Future Work

In this paper we have defined a methodology for supporting a natural language pro-
cessing task with semantic information available in the Web under the form of logical
theories. In order to empower an NLP task with the knowledge from publicly available
large scale knowledge sources, we map the terms in the text to concepts in Wikipedia
and then, to other knowledge resources linked to Wikipedia (DBpedia, Freebase and
YAGO). An important aspect of the mapping that was addressed in the paper is word
sense disambiguation. We have applied the proposed approach to the task of intra-
document coreference resolution. We have proposed a method for selecting a subset
of knowledge relevant for a given text for solving the coreference task, which is based
on feature selection algorithms. We have implemented the coreference resolution pro-
cess with the help of the inference module of the Alchemy tool. The latter is based on
Markov logic formalism and allows combining logical and statistical representation and
inference. The results were evaluated on the ACE 2005 data set.

To the best of our knowledge, there are no approaches nor to coreference resolution,
neither to other NLP tasks, which make use of structured semantic knowledge available
in the Web. One of the key points in addressing this problem is combining the logic
based representation of the model with statistical reasoning. Such model representa-
tion and the available Semantic Web knowledge resources “speak the same language”,
which is the language of logic. Another important point of our approach is that no prior
assumptions on the structure of the Semantic Web knowledge sources are needed for
them to be used to support an NLP task.

Future work directions include further exploiting the Linked Data resources (includ-
ing the one not used in this paper, e.g. Cyc12) to extract more properties and rules to
support coreference resolution, as well as using the links between different Linked Data
resources to obtain more knowledge. Also, we are interested in experimenting with the
full task, which includes named entity recognition module and learning the weights
of the formulae of the model from the training data. Testing the proposed reference

12 http://www.cyc.com

http://www.cyc.com

94 V. Bryl et al.

methodology on the other NLP task, like semantic relation extraction, is another chal-
lenging future work direction.

Acknowledgments

The research leading to these results has received funding from the ITCH project
(http://itch.fbk.eu), sponsored by the Italian Ministry of University and Re-
search and by the Autonomous Province of Trento, and the Copilosk project (http://
copilosk.fbk.eu), a Joint Research Project under Future Internet – Internet of
Content program of the Information Technology Center, Fondazione Bruno Kessler.

References

1. Alchemy, http://alchemy.cs.washington.edu/
2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: Dbpedia: A nucleus

for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon,
L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux,
P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg
(2007)

3. Bentivogli, L., Forner, P., Giuliano, C., Marchetti, A., Pianta, E., Tymoshenko, K.: Extend-
ing English ACE 2005 Corpus Annotation with Ground-truth Links to Wikipedia. In: 23rd
International Conference on Computational Linguistics, pp. 19–26 (2010)

4. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively cre-
ated graph database for structuring human knowledge. In: Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, pp. 1247–1250. ACM, New
York (2008)

5. Bryl, V., Giuliano, C., Serafini, L., Tymoshenko, K.: Using background knowledge to support
coreference resolution. In: 19th European Conference on Artificial Intelligence (ECAI 2010),
pp. 759–764 (2010)

6. Cucerzan, S.: Large-scale named entity disambiguation based on Wikipedia data. In: Pro-
ceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning (EMNLP-CoNLL), pp. 708–716 (2007)

7. Culotta, A., Sorensen, J.: Dependency tree kernels for relation extraction. In: Proceedings
of the 42nd Annual Meeting on Association for Computational Linguistics, pp. 423–431.
Association for Computational Linguistics (2004)

8. Culotta, A., Wick, M.L., McCallum, A.: First-order probabilistic models for coreference
resolution. In: Human Language Technology Conference of the North American Chapter
of the Association of Computational Linguistics, pp. 81–88 (2007)

9. Denis, P., Baldridge, J.: Joint determination of anaphoricity and coreference resolution using
integer programming. In: Human Language Technologies 2007: The Conference of the North
American Chapter of the Association for Computational Linguistics, pp. 236–243 (2007),
http://www.aclweb.org/anthology/N/N07/N07-1030

10. Domingos, P., Kok, S., Lowd, D., Poon, H., Richardson, M., Singla, P.: Markov logic. In: De
Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic Inductive Logic
Programming. LNCS (LNAI), vol. 4911, pp. 92–117. Springer, Heidelberg (2008)

11. Fellbaum, C., et al.: WordNet: An electronic lexical database. MIT Press, Cambridge (1998)
12. Giuliano, C., Lavelli, A., Pighin, D., Romano, L.: FBK-IRST: Kernel methods for semantic

relation extraction. In: Proceedings of the 4th International Workshop on Semantic Evalua-
tions, pp. 141–144. Association for Computational Linguistics (2007)

http://itch.fbk.eu
http://copilosk.fbk.eu
http://copilosk.fbk.eu
http://alchemy.cs.washington.edu/
http://www.aclweb.org/anthology/N/N07/N07-1030

Supporting NLP with Background Knowledge: Coreference Resolution Case 95

13. Giuliano, C., Gliozzo, A.M., Strapparava, C.: Kernel methods for minimally supervised wsd.
Computational Linguistics 35(4), 513–528 (2009)

14. Huang, S., Zhang, Y., Zhou, J., Chen, J.: Coreference resolution using Markov Logic Net-
works. In: Proceedings of CICLing, pp. 157–168 (2009)

15. Milne, D., Witten, I.H.: Learning to link with Wikipedia. In: Proceedings of the 17th ACM
Conference on Information and Knowledge Management, CIKM 2008, pp. 509–518. ACM,
NY (2008)

16. Ng, V.: Learning noun phrase anaphoricity to improve coreference resolution: issues in rep-
resentation and optimization. In: Proceedings of the 42nd Annual Meeting on Association
for Computational Linguistics, ACL 2004, pp. 151–158 (2004)

17. Ng, V.: Semantic class induction and coreference resolution. In: Proceedings of the ACL,
vol. 45, pp. 536–543 (2007)

18. Ng, V.: Supervised noun phrase coreference research: The first fifteen years. In: Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, Uppsala, Swe-
den, pp. 1396–1411 (July 2010),
http://www.aclweb.org/anthology/P10-1142

19. Ng, V., Cardie, C.: Improving machine learning approaches to coreference resolution. In:
Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp.
104–111 (2002)

20. Ponzetto, S.P., Strube, M.: Exploiting semantic role labeling, wordnet and wikipedia for
coreference resolution. In: Human Language Technology Conference of the North Ameri-
can Chapter of the Association of Computational Linguistics, pp. 192–199 (2006)

21. Poon, H., Domingos, P.: Joint inference in information extraction. In: Proceedings of the
22nd National Conference on Artificial Intelligence, AAAI 2007, pp. 913–918 (2007)

22. Poon, H., Domingos, P.: Joint unsupervised coreference resolution with Markov Logic. In:
Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing,
pp. 650–659 (2008)

23. Riedel, S., Meza-Ruiz, I.: Collective semantic role labelling with markov logic. In: Proceed-
ings of the Twelfth Conference on Computational Natural Language Learning, pp. 193–197
(2008)

24. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge Univer-
sity Press, Cambridge (2004)

25. Soon, W.M., Ng, H.T., Lim, D.C.Y.: A machine learning approach to coreference resolution
of noun phrases. Computational Linguistic 27(4), 521–544 (2001)

26. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proceed-
ings of the 16th International Conference on World Wide Web, WWW 2007, pp. 697–706.
ACM Press, New York (2007)

27. Versley, Y., Ponzetto, S.P., Poesio, M., Eidelman, V., Jern, A., Smith, J., Yang, X., Moschitti,
A.: Bart: a modular toolkit for coreference resolution. In: Proceedings of the 46th Annual
Meeting of the Association for Computational Linguistics on Human Language Technolo-
gies, pp. 9–12 (2008)

28. Vilain, M., Burger, J., Aberdeen, J., Connolly, D., Hirschman, L.: A model-theoretic coref-
erence scoring scheme. In: Proceedings of the 6th Conference on Message Understanding,
MUC6 1995, pp. 45–52 (1995)

http://www.aclweb.org/anthology/P10-1142

Enabling Ontology-Based Access to Streaming
Data Sources

Jean-Paul Calbimonte1, Oscar Corcho1, and Alasdair J.G. Gray2

1 Ontology Engineering Group, Departamento de Inteligencia Artificial,

Facultad de Informática, Universidad Politécnica de Madrid,

Campus de Montegancedo s/n 28660, Boadilla del Monte, Spain

jp.calbimonte@upm.es, ocorcho@fi.upm.es
2 School of Computer Science, The University of Manchester,

Oxford Road, Manchester M13 9PL, United Kingdom

a.gray@cs.man.ac.uk

Abstract. The availability of streaming data sources is progressively in-

creasing thanks to the development of ubiquitous data capturing technolo-

gies such as sensor networks. The heterogeneity of these sources introduces

the requirement of providing data access in a unified and coherent man-

ner, whilst allowing the user to express their needs at an ontological level.

In this paper we describe an ontology-based streaming data access ser-

vice. Sources link their data content to ontologies through s2o mappings.

Users can query the ontology using sparqlStream, an extension of sparql

for streaming data. A preliminary implementation of the approach is also

presented. With this proposal we expect to set the basis for future efforts

in ontology-based streaming data integration.

1 Introduction

Recent advances in wireless communications and sensor technologies have opened
the way for deploying networks of interconnected sensing devices capable of
ubiquitous data capture, processing and delivery. Sensor network deployments
are expected to increase significantly in the upcoming years because of their
advantages and unique features. Tiny sensors can be installed virtually anywhere
and still be reachable thanks to wireless communications. Moreover, these devices
are inexpensive and can be used for a wide variety of applications including
security surveillance, healthcare provision, and environmental monitoring.

As an example, consider a web application which aids an emergency planner
to detect and co-ordinate the response to a forest fire in Spain. This involves
retrieving relevant data from multiple sources, e.g. weather data from aemet

(Agencia Española de Meteoroloǵıa)1, sensor data from sensor networks deployed
in the region, and any other relevant sources of data such as the esa satellite

1 http://www.aemet.es accessed 15 September 2010.

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 96–111, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.aemet.es

Enabling Ontology-Based Access to Streaming Data Sources 97

imagery providing fire risks2. Typically sources are managed autonomously and
model their data according to the needs of the deployment. To integrate the
data requires linking the sources to a common data model so that conditions
that are likely to cause a fire can be detected, and presented to the user in terms
of their domain, e.g. fire risk assessment. We propose that ontologies can be used
as such a common model. For the scenario presented here, we use an ontology
that extends ontologies from sweet

3 and the W3C incubator group’s semantic
sensor network ontology4.

The work presented in this paper considers advances done by the semantic
web and database communities over the last decade. On the one hand, the se-
mantic web research has produced mapping languages and software for enabling
ontology-based access to stored data sources, e.g. r2o [1] and d2rq [2]. These
systems provide semantic access to traditional (stored) data sources by pro-
viding mappings between the elements in the relational and ontological models
[3]. However, similar solutions for streaming data mapping and querying using
ontology-based approaches have not been explored yet.

On the other hand, the database research community have investigated data
stream processing where the data is viewed as an append-only sequence of tuples.
Systems such as stream [4] and Borealis [5] have focused on query evaluation
and optimisation over streams with high, variable, data rates. Other systems
such as snee [6] and TinyDB [7], have focused on data generated by sensor net-
works, which tends to be at a lower rate, and query processing in the sensor net-
work where resources are more constrained and energy efficiency is the primary
concern. There have also been proposals for query processing over streaming
rdf data [8,9]. However there is still no bridging solution that connects these
technologies coherently in order to answer the requirements of i) establishing
mappings between ontological models and streaming data source schemas, and
ii) accessing streaming data sources through queries over ontology models.

In this paper we focus on providing ontology-based access to streaming data
sources, including sensor networks, through declarative continuous queries. We
build on the existing work of r2o for enabling ontology-based access to rela-
tional data sources, and snee for query evaluation over streaming and stored
data sources. This constitutes a first step towards a framework for the integration
of distributed heterogeneous streaming and stored data sources through onto-
logical models. In Section 2 we provide more detailed descriptions of r2o and
stream query processing in order to present the foundations of our approach in
Section 3. In Section 4 we present the syntactic extensions for sparql to enable
queries over rdf streams, and present s2o for stream-to-ontology mappings. The
semantics of these extensions are detailed in Section 5 and a first implementation
of the execution of the streaming data access approach is explained in Section 6.
Related work is discussed in Section 7 and our conclusions in Section 8.

2 http://dup.esrin.esa.int/ionia/wfa/index.asp accessed 15 September 2010.
3 http://sweet.jpl.nasa.gov/ accessed 15 September 2010.
4 http://www.w3.org/2005/Incubator/ssn/wiki/

Semantic Sensor Network Ontology accessed 15 September 2010.

http://dup.esrin.esa.int/ionia/wfa/index.asp
http://sweet.jpl.nasa.gov/
http://www.w3.org/2005/Incubator/ssn/wiki/Semantic_Sensor_Network_Ontology
http://www.w3.org/2005/Incubator/ssn/wiki/Semantic_Sensor_Network_Ontology

98 J.-P. Calbimonte, O. Corcho, and A.J.G. Gray

2 Background

This section describes the existing work upon which our approach for enabling
ontology-based access to streaming data sources is based, viz. r2o which provides
ontology-based access to stored relational data, and snee, a query processing
engine over relational data streams. A full discussion of related work can be
found in Section 7.

2.1 Ontology-Based Access to Stored Relational Data

The goal of ontology-based data access is to generate semantic web content
from existing relational data sources available on the web [3]. The objective of
these systems is to allow users to construct queries over an ontology (e.g. in
sparql), which are then rewritten into a set of queries expressed in the query
language of the data source (typically sql), according to the specified mappings.
The query results are then converted back from the relational format into rdf,
which is returned to the user. odemapster is one such system which uses r2o

(Relational-to-Ontology) to express the mappings between the relational data
source and the ontology [1].

The mapping definition language r2o defines relationships between a set of
ontologies and relational schemas [1]. The mappings are expressed in terms of
selections and transformations over database relations following a Global-as-
View (GAV) approach [10], and can be created either manually or with the help
of a mapping tool. The resulting mappings are saved as xml which enables them
to be independent of any specific DBMS or ontology language.

Mapping relations to ontologies often requires performing operations on the
relational sources. Several cases are handled by r2o and detailed below.

Direct Mapping. A single relation maps to an ontology class and the at-
tributes of the relation are used to fill the property values of the ontol-
ogy instances. Each row in the relation will generate a class instance in the
ontology.

Join/Union. A single relation does not correspond alone to a class, but it has
to be combined with other relations. The result of the join or union of the
relations will generate the corresponding ontology instances.

Projection. Not all the attributes of a relation are always required for the
mapping. The unnecessary attributes can simply be ignored. In order to do
so, a projection on the needed attributes can be performed.

Selection. Not all rows of a relation correspond to instances of the mapped
ontology class. A subset of the rows must be extracted. To do so, selection
conditions can be applied to choose the desired subset for the mapping.

It is possible to combine joins, unions, projections and selections for more com-
plex mapping definitions. r2o also enables the application of functions, e.g. con-
catenation, sub-string, or arithmetic functions, to transform the relational data
into the appropriate form for the ontology.

Enabling Ontology-Based Access to Streaming Data Sources 99

2.2 Querying Relational Data Streams

A relational data stream is an append only, potentially infinite, sequence of
timestamped tuples [11], examples of which include stock market tickers, heart
rate monitors, and sensor networks deployed to monitor the environment. Data
streams can be classified into two categories:

Event-streams. A tuple is generated each time an event occurs, e.g. the sale
of shares, and can have variable, potentially very high, data rates.

Acquisitional-streams. A tuple is measured at a predefined regular interval,
e.g. the readings made by a sensor network.

Users are typically interested in being informed continuously about the most re-
cent stream values, with older tuples being less relevant. Classical database query
processing is not adequate since data must first be stored and then queried with
one-off evaluation. Hence, query languages [12,13] and data stream management
systems (DSMS) [4,5,6,7] have been developed to process continuous long-lived
queries over data streams as tuples arrive.

One existing approach is sneeql, which has a well defined, unified seman-
tics for declarative expressions of data needs over event-streams, acquisitional-
streams, and stored data [12]. sneeql can be viewed as extending sql for
processing data streams. The additional constructs are explained below.

Window. A window over a data stream transforms the infinite sequence of tuples
into a bounded bag of tuples over which traditional relational operators can
be applied. A window is specified as ‘FROM start TO end [SLIDE int unit]’,
where start and end are of the form ‘NOW − literal’ and define the range of
the window with respect to the evaluation time. The optional SLIDE parameter
specifies how often windows are evaluated.

Window-to-Stream. Window-to-stream operators are used to convert a stream
of windows into a stream of tuples. sneeql supports three such operators:
RSTREAM for all tuples appearing in the window, ISTREAM for tuples that
have been added since the last window evaluation, and DSTREAM for tuples
that have been deleted since the last window evaluation.

Queries expressed in the sneeql language are optimized for evaluation within
a sensor network over acquisitional-streams by the snee compiler [6]. snee has
recently been extended to enable query evaluation over event-streams either
within the sensor network (in-network query processing) or on computational
hardware outside of the sensor network.

3 Ontology-Based Streaming Data Access

Our approach to enable ontology-based access to streaming data is depicted in
Fig 1. The service receives queries specified in terms of the classes and prop-
erties5 of the ontology using sparqlStream, an extension of sparql that sup-
ports operators over rdf streams (see Section 4.1). In order to transform the
5 We use the owl nomenclature of classes, and object and datatype properties for

naming ontology elements.

100 J.-P. Calbimonte, O. Corcho, and A.J.G. Gray

Fig. 1. Ontology-based streaming data access service

sparqlStream query, expressed in terms of the ontology, into queries in terms
of the data sources, a set of mappings must be specified. These mappings are
expressed in s2o, an extension of the r2o mapping language, which supports
streaming queries and data, most notably window and stream operators (see
Section 4.2). This transformation process is called query translation, and the
target is the continuous query language sneeql, which is expressive enough to
deal with both streaming and stored sources.

After the continuous query has been generated, the query processing phase
starts, and the evaluator uses distributed query processing techniques [14] to
extract the relevant data from the sources and perform the required query pro-
cessing, e.g. selection, projection, and joins. Note that query execution in sources
such as sensor networks may include in-network query processing, pull or push
based delivery of data between sources, and other data source specific settings.
The result of the query processing is a set of tuples that the data translation
process transforms into ontology instances.

This approach requires several contributions and extensions to the exist-
ing technologies for continuous data querying, ontology-based data access, and
sparql query processing. This paper focuses on a first stage that includes the
process of transforming the sparqlStream queries into queries over the streaming
data sources using sneeql as the target language. The following sections provide
the syntax and semantics for the querying of streaming rdf data and the map-
pings between streaming sources and an ontology. We will then provide details
of an actual implementation of this approach.

4 Query and Mapping Syntax

In this section we introduce the sparqlStream query language, an extension to
sparql for streaming rdf data, which has been inspired by previous propos-
als such as c-sparql [9] and sneeql [12]. However, significant improvements

Enabling Ontology-Based Access to Streaming Data Sources 101

have been made that correct the types supported and the semantics of win-
dowing operations, which can be summarised as: (i) we only support windows
defined in time, (ii) the result of a window operation is a window of triples, not a
stream, over which traditional operators can be applied, as such we have added
window-to-stream operators, and (iii) we have adopted the sparql 1.1 defini-
tion for aggregates. We also present s2o for the definition of stream-to-ontology
mappings.

4.1 SPARQLStream

Just as in c-sparql we define an rdf stream as a sequence of pairs (Ti, τi)
where Ti is an rdf triple 〈si, pi, oi〉 and τi is a timestamp which comes from a
monotonically non-decreasing sequence. An rdf stream is identified by an iri,
which provides the location of the data source6.

Window definitions are of the form ‘FROM Start TO End [STEP] [Literal]’,
where the Start and End are of the form NOW or NOW – Literal, and Literal
represents some number of time unit (DAYS, HOURS, MINUTES, or SECONDS)7.
The optional STEP indicates the gap between each successive window evaluation.
Note, if the size of the step is smaller than the range of the window, then the
windows will overlap, if it coincides with the size of the window then every triple
will appear in one and only one window, and if the step is larger than the range
then the windows sample the stream. Also note that the definition of a window
can be completely in the past. This is useful for correlating current values on a
stream with values that have previously occurred.

The result of applying a window over a stream is a timestamped bag of triples
over which conjunctions between triple patterns, and other “classical” operators
can be evaluated. Windows can be converted back into a stream of triples by
applying one of the window-to-stream operators in the SELECT clause: ISTREAM

for returning all newly inserted answers since the last window, DSTREAM for
returning all deleted answers since the last window, and RSTREAM for returning
all answers in the window.

Listing 1 shows a complete sparqlStream query which, every minute, returns
the average of the last 10 minutes of wind speed measurements for each sensor,
if it is higher than the average speed from 2 to 3 hours ago.

Note, sparqlStream only supports time-based windows. c-sparql also has the
notion of a triple-based window. However, such windows are problematic since
the number of triples required to generate an answer may be greater than the
size of the triple window. For example, consider a window size of 1 triple and
the graph pattern from the example query in Listing 1. Only one of the triples
that form the graph pattern would be kept by the window, and hence it would
not be possible to compute the query answer.

6 Note in our work the iri’s identify virtual rdf streams since they are derived from

the streaming data sources.
7 Note that the parser will also accept the non-plural form of the time units and is

not case sensitive.

102 J.-P. Calbimonte, O. Corcho, and A.J.G. Gray

PREFIX f i r e : <ht tp ://www. s emso rg r i d4env . eu#>
PREFIX r d f : <ht tp ://www.w3 . org /1999/02/22− r d f−syntax−ns#>
SELECT RSTREAM ?WindSpeedAvg
FROM STREAM <www. s emso rg r i d4env . eu / Senso rRead i ng s . s r d f> [FROM NOW − 10

MINUTES TO NOW STEP 1 MINUTE]
FROM STREAM <www. s emso rg r i d4env . eu / Senso rArch i v eRead i ng s . s r d f> [FROM NOW − 3

HOURS TO NOW −2 HOURS STEP 1 MINUTE]
WHERE {

{
SELECT AVG(? speed) AS ?WindSpeedAvg
WHERE
{

GRAPH <www. s emso rg r i d4env . eu / Senso rRead i ng s . s r d f> {
?WindSpeed a f i r e : WindSpeedMeasurement ;

f i r e : hasSpeed ? speed ; }
} GROUP BY ?WindSpeed

}
{

SELECT AVG(? a r ch i vedSpeed) AS ?WindSpeedHistoryAvg
WHERE
{

GRAPH <www. s emso rg r i d4env . eu / Senso rArch i v eRead i ng s . s r d f> {
?ArchWindSpeed a f i r e : WindSpeedMeasurement ;
f i r e : hasSpeed ? a r ch i vedSpeed ; }

} GROUP BY ?ArchWindSpeed
}
FILTER (?WindSpeedAvg > ?WindSpeedHistoryAvg)

}

Listing 1. An example sparqlStream query which every minute computes the average

wind speed measurement for each sensor over the last 10 minutes if it is higher than

the average of the last 2 to 3 hours

4.2 S2O: Expressing Stream-to-Ontology Mappings

The mapping document that describes how to transform the data source elements
to ontology elements is written in the s2o mapping language, an extended version
of r2o [1]. An r2o mapping document includes a section that describes the
database relations, dbscehma-desc. In order to support data streams, r2o has
been extended to also describe the data stream schema. A new component called
streamschema-desc has been created, as shown in the top part of Listing 2.

The description of the stream is similar to a relation. An additional attribute
streamType has been added, it denotes the kind of stream in terms of data acqui-
sition, i.e. event or acquistional. In the same way as key and non-key attributes
are defined, a new timestamp-desc element has been added to provide support for
declaring the stream timestamp attribute. Since s2o extends r2o, relations can
also be specified using the existing r2o mechanism. For the class and property
mappings, the existing r2o definitions can be used for stream schemas just as
it was for relational schemas. This is specified in the conceptmap-def element as
shown in the bottom part of Listing 2.

In addition, although they are not explicitly mapped, the timestamp attribute
of stream tuples could be used in some of the mapping definitions, for instance in
the uri construction (uri-as element). Finally, a sparqlStream streaming query
requires an rdf stream to have an iri identifier. s2o creates a virtual rdf stream

Enabling Ontology-Based Access to Streaming Data Sources 103

streamschema−desc
name MeteoSensors
has−stream SensorWind

streamType pushed
documentation ”Wind measurements ”
keyco l−desc measurementId

columnType i n t e g e r
timestamp−desc measureTime

columnType da te t ime
nonkeycol−desc measureSpeed

columnType f l o a t
nonkeycol−desc mea s u r eD i r e c t i o n

columnType f l o a t
. . .
conceptmap−def Wind

v i r t u a l S t r e am <ht tp :// s emso rg r i d4env . eu/ Senso rRead i ng s . s r d f>
u r i−as

conca t (SensorWind . measurementID)
a pp l i e s− i f

<cond−expr>
de sc r i bed−by

attr ibutemap−def hasSpeed
v i r t u a l S t r e am ht tp :// s emso rg r i d4env . eu/ Senso rRead i ng s . s r d f>
ope ra t i on con s tan t

has−column SensorWind . measureSpeed

Listing 2. An example s2o declaration of a data stream schema and mapping from a

stream schema to an ontology concept

and its iri is specified in the s2o mapping using the virtualStream element. It
can be specified at the conceptmap-def level or at the attributemap-def level.

5 Semantics of the Streaming Extensions

Now that the syntax of sparqlStream and s2o have been presented, we define
their semantics.

5.1 SPARQLStream Semantics

The sparql extensions presented here are based on the formalisation of Pérez
et al. [15]. An rdf stream S is defined as a sequence of pairs (T, τ) where T is
a triple 〈s, p, o〉 and τ is a timestamp in the infinite set of timestamps T. More
formally,

S = {(〈s, p, o〉, τ) | 〈s, p, o〉 ∈ ((I ∪B)× I × (I ∪B ∪ L)), τ ∈ T},

where I, B and L are sets of iris, blank nodes and literals. Each of these pairs
can be called a tagged triple.

We define a stream of windows as a sequence of pairs (ω, τ) where ω is a set
of triples, each of the form 〈s, p, o〉, and τ is a timestamp in the infinite set of
timestamps T, and represents when the window was evaluated. More formally,
we define the triples that are contained in a time-based window evaluated at
time τ ∈ T, denoted ωτ , as

ωτ
ts,te,δ(S) = {〈s, p, o〉 | (〈s, p, o〉, τi) ∈ S, ts ≤ τi ≤ te}

104 J.-P. Calbimonte, O. Corcho, and A.J.G. Gray

where ts, te define the start and end of the window time range respectively, and
may be defined relative to the evaluation time τ . Note that the rate at which
windows get evaluated is controlled by the STEP defined in the query, which is
denoted by δ.

We define the three window-to-stream operators as

RStream((ωτ , τ)) = {(〈s, p, o〉, τ) | 〈s, p, o〉 ∈ ωτ}
IStream((ωτ , τ), (ωτ−δ, τ − δ)) = {(〈s, p, o〉, τ) | 〈s, p, o〉 ∈ ωτ , 〈s, p, o〉 /∈ ωτ−δ}

DStream((ωτ , τ), (ωτ−δ, τ − δ)) = {(〈s, p, o〉, τ) | 〈s, p, o〉 /∈ ωτ , 〈s, p, o〉 ∈ ωτ−δ}

where δ is the time interval between window evaluations. Note that RStream
does not depend on the previous window evaluation, whereas both IStream and
DStream depend on the contents of the previous window.

We have provided a brief explanation of the semantics of sparqlStream. This
is particularly useful in the sense that users may know what to expect when they
issue a query using these new operators. However, as the actual data source is not
an rdf stream but a sensor network or an event-based stream, e.g. exposed as
a sneeql endpoint, we need to transform the sparqlStream queries into sneeql
queries. The next section describes the semantics of the transformation from
sparqlStream to sneeql using the s2o mappings.

5.2 S2O Semantics

In this section we will present how we can use the s2o mapping definitions
to transform a set of conjunctive queries over an ontological schema, into the
streaming query language sneeql that is used to access the sources. This work
is based on extensions to the odemapster processor [1] and the formalisation
work of Calvanese et al. [16] and Poggi et al. [17].

A conjunctive query q over an ontology O can be expressed as:

q(x)← ϕ(x, y)

ϕ(x, y) :
∧

i=1...k

Pi, with Pi

⎧⎪⎨⎪⎩
Ci(x), C is an atomic class.
Ri(x, y), R is an atomic property.
x = y

x, y are variables either in x, y or constants.

where x is a tuple of distinct distinguished variables, and y a tuple of non-
distinguished existentially quantified variables. The answer to this query consists
in the instantiation of the distinguished variables [16]. For instance consider:

q1(x)←WindSpeedMeasurement(x) ∧measuredBy(x, y) ∧WindSensor(y)

It requires all instances x that are wind speed measurements captured by wind sen-
sors. In this example x is a distinguished variable and y a non-distinguished one.

Enabling Ontology-Based Access to Streaming Data Sources 105

The query has three atoms: WindSpeedMeasurement(x), measuredBy(x, y),
and WindSensor(y).

Concerning the formal definition of the query answering, let I = (ΔI , �I) be an
interpretation, where ΔI is the interpretation domain and �I the interpretation
function that assigns an element of ΔI to each constant, a subset of ΔI to each
class and a subset of ΔI ×ΔI to each property of the ontology. Given a query
q(x) ← ϕ(x, y) the answer to q is the set qIx of tuples c ∈ ΔI × · · · ×ΔI that
substituted to x, make the formula ∃y.ϕ(x, y) true in I [16,17,18]. Now we can
introduce the definition of the mappings. LetM be a set of mapping assertions
of the form:

Ψ � Φ

where Ψ is a conjunctive query over the global ontology O, formed by terms of
the form C(x), R(x, y), A(x, z), with C, R, and A being classes, object properties
and datatype properties respectively in O; x, y being object instance variables,
and z being a datatype variable. Φ is a set of expressions that can be translated
to queries in the target continuous language (e.g. sneeql) over the sources.

A mapping assertion C(f Id
C (x)) � ΦS1,...,Sn(x) describes how to construct

the concept C from the source streams (or relations) S1, . . . , Sn. The function
f Id

C creates an instance of the class C, given the tuple x of variables returned
by the Φ expression. More specifically this function will construct the instance
identifier (uri) from a set of attributes from the streams and relations. In this
case the expression Φ has a declarative representation of the form:

ΦS1,...,Sn(x) = ∃y.pProj
S1,...,Sn

(x) ∧ pJoin
S1,...,Sn

(v) ∧ pSel
S1,...,Sn

(v)

where v is a tuple of variables in either x, y. The term pJoin denotes a set of join
conditions over the streams and relations Si. Similarly the term pSel represents a
set of condition predicates over the variables v in the streams Si (e.g. conditions
using <,≤,≥, >, = operators).

A mapping assertion R(f Id
C1

(x1), f Id
C2

(x2)) � ΦS1,...,Sn(x1, x2) describes how
to construct instances of the object property R from the source streams and
relations Si. The declarative form of Φ is:

ΦS1,...,Sn(x1, x2) = ∃y.ΦS1,...,Sk
(x1) ∧ ΦSk+1,...,Sn(x2) ∧ pJoin

S1,...,Sn
(v)

where ΦS1,...,Sk
, ΦSk+1,...,Sn describe how to extract instances of C1 and C2 from

the streams S1, . . . , Sk and Sk+1, . . . , Sn respectively. The term pJoin is the set
of predicates that denotes the join between the streams and relations S1, . . . , Sn.

Finally an expression A(f Id
C (x), fTrf

A (z)) � ΦS1,...,Sn(x, z) describes how to
construct instances of the datatype property A from the source streams and
relations S1, . . . , Sn. The function fTrf

A executes any transformation over the
tuple of variables z to obtain the property value (e.g. arithmetic operations, or
string operations). The declarative form of Φ in this case is:

ΦS1,...,Sn(x, z) = ∃y.ΦS1,...,Sk
(x) ∧ ΦSk+1,...,Sn(z) ∧ pJoin

S1,...,Sn
(v)

106 J.-P. Calbimonte, O. Corcho, and A.J.G. Gray

The definition follows the same idea as the previous one. The variables of z will
contain the actual values that will be used to construct the datatype property
value using the function fTrf

A .
When a conjunctive query is issued against the global ontology, the proces-

sor first parses it and transforms it into an abstract syntax tree and then uses
the expansion algorithm described in [1] (that is based on the PerfectRef algo-
rithm of [16]) to produce an expanded conjunctive query based on the TBox of
the ontology. Afterwards the rewritten query can be translated to an extended
relational algebra.

A query QO(x)[ts, te, δ] is a conjunctive query with a window operator (where
ts, te are the start and end points of the window range and δ is the slide) in
order to narrow the data set according to a given criteria. For a query:

QO(x)[ts, te, δ] = (C1(x) ∧R(x, y) ∧A(x, z))[ts, te, δ]

the translation is given by λ(Φ), following the mapping definition:

λ(ΦS1,...,Sn(x)[ts, te, δ]) = πpP roj (�pJoin (σpSel(ωts,te,δS1), . . .
, σpSel(ωts,te,δSn)))

The expression denotes first a window operation ωts,te,δ over the relations or
streams S1, . . . , Sn, with ts, te, and δ being the time range and slide. A selec-
tion σpSel is applied over the result, according to the conditions defined in the
mapping. A multi-way join �pJoin is then applied to the selection, also based
on the corresponding mapping definition. Finally a projection πpP roj is applied
over the results. For any conjunctive query with more atoms, the construction
of the algebra expression will follow the same direct translation using the GAV
approach.

6 Implementation and Walkthrough

The presented approach of providing ontology-based access to streaming data
has been implemented as an extension to the odemapster processor [1]. This
implementation generates sneeql queries that can be executed by the streaming
query processor.

windsamples: (sensorId INT PK, ts DATETIME PK, speed FLOAT , direction FLOAT)
sensors : (sensorId INT PK, sensorName CHAR(45), lat FLOAT , long FLOAT)

Listing 3. Relational schema of the data source

Consider the motivating example where a sensor network generates a stream
windsamples of wind sensor measurements. The associated stored information
about the sensors, e.g. location and type, are stored in a relation sensors. The
schemas are presented in Listing 3. Also consider the following ontological view:

Enabling Ontology-Based Access to Streaming Data Sources 107

conceptmap−def WindSpeedMeasurement
v i r t u a l S t r e am <ht tp :// s emso rg r i d4env . eu/ Senso rRead i ng s . s r d f>
u r i−as

conca t (’ h t tp :// s emso rg r i d4env . eu/WindSpeedMeasurement ’ , w indsamples .
s e n s o r I d , windsamples . t s)

de sc r i bed−by
attr ibutemap−def hasSpeed

ope ra t i on con s tan t
has−column windsamples . speed

dbre lat ionmap−def i sProducedBy
toConcept Senso r
j o i n s−v i a

cond i t i o n equ a l s
has−column s e n s o r s . s e n s o r I d
has−column windsamples . s e n s o r I d

conceptmap−def Senso r
u r i−as

conca t (’ h t tp :// s emso rg r i d4env . eu/ Senso r ’ , s e n s o r s . s e n s o r I d)
de sc r i bed−by

attr ibutemap−def h a s Sen s o r I d
ope ra t i on con s tan t

has−column s e n s o r s . s e n s o r I d

Listing 4. s2o mapping from the data stream windsamples to the ontology concepts

WindSpeedMeasurement

SpeedMeasurement Measurement

WindSpeedMeasurement SpeedMeasurement

WindDirectionMeasurement Measurement

SpeedMeasurement ∃hasSpeed

Measurement ∃isProducedBy.Sensor

Sensor ∃hasName

We can define an s2o mapping that splits the windsamples stream tuples into in-
stances of two different concepts WindSpeedMeasurement and WindDirection-
Measurement. Listing 4 is an extract of the s2o mapping document concerning
the WindSpeedMeasurement. The mapping extract defines how to construct
the WindSpeedMeasurement and Sensor class instances from the windsamples
stream and the sensors table: ΨWindSpeedMeasurement � Φwindsamples and
ΨSensor � Φsensors. In the case of the WindSpeedMeasurement the function
f Id

WindSpeedMeasurement produces the uri’s of the instances by concatenating the
sensorId and ts attributes. Now we can pose a query over the ontology using
sparqlStream, for example to obtain the wind speed measurements taken in the
last 10 minutes (See the query in Listing 5).

A class query atom WindSpeedMeasurement(x) and a datatype property
atom hasSpeed(x, z) can be extracted from the sparqlStream query. The win-
dow specification [ts = NOW − 10, te = NOW, δ = 1] is also obtained8. The s2o

mapping defines that WindSpeedMeasurment instances are generated based on
8 For the simplicity of presentation, we assume that the system rewrites all time

specifications to minutes. The implemented system uses milliseconds as the common

time unit.

108 J.-P. Calbimonte, O. Corcho, and A.J.G. Gray

PREFIX f i r e : <ht tp ://www. s sg4env . eu#>
PREFIX r d f : <ht tp ://www.w3 . org /1999/02/22− r d f−syntax−ns#>
SELECT RSTREAM ? speed
FROM STREAM <www. s sg4env . eu/ Senso rRead ing s . s r d f> [FROM NOW − 10 MINUTES TO

NOW STEP 1 MINUTE]
WHERE {

?WindSpeed a f i r e : WindSpeedMeasurement ;
f i r e : hasSpeed ? speed ;

}

Listing 5. sparqlStream query which every minute returns the wind speed for the last

ten minutes

SELECT RSTREAM concat(’http://ssg4env .eu# WindSpeedMeasurement’,windsamples.
sensorId , windamples.ts) AS id, windsamples.speed AS speed

FROM windsamples[FROM NOW - 10 MINUTES TO NOW SLIDE 1 MINUTE];

Listing 6. The sneeql query that is generated for the input query in Listing 5

the sensorId and ts attributes of the windsamples stream, using a concatena-
tion function to generate each instance uri. Similarly the s2o mapping defines
that hasSpeed properties are generated from the values of the speed attribute
of the windsamples stream. The processor will evaluate this as:

λ(Φwindsamples(xsensorId, xts, zspeed)[now − 10, now, 1]) =
πsensorId,ts,speed(ωnow−10,now,1(windsamples))

In this case no joins and other selection conditions are needed, and only one stream
has to be queried to produce the results. The query generated in the sneeql lan-
guage is shown in Listing 69. The relational answer stream that results from eval-
uating the query in Listing 6 are transformed by the Data Transformation module
depicted in Figure 1 according to the s2o mappings. This results in a stream of
tagged triples which are instances of the class WindSpeedMeasurement.

7 Related Work

Several systems exist to provide ontology-based access to stored data, mainly in
the form of relational databases, as described in [3].

A simple approach is to first generate a syntactical translation of the database
schema to an ontological representation. Although the resulting ontology has no
real semantics, it may be argued that this is a first step through an ontology
model and could later be mapped to a real domain ontology [18]. Virtuoso [19]
and d2rq [2], like r2o, use mappings between the source relational schema to
rdf ontologies enabling users to issues queries over a semantically rich domain
ontology. The expressiveness of the queries supported by these systems is limited
to conjunctive queries, and none of the approaches takes into account streaming
data and continuous queries.
9 Although the current available implementation of the SNEE processor lacks the

concat operator, we include the sample query in its complete form here.

Enabling Ontology-Based Access to Streaming Data Sources 109

Several stream processing and querying engines have been built in the last
decade and can be grouped in two main areas: event stream systems (e.g. Au-
rora/Borealis [5], stream [4], TelegraphCQ [20]), and acquisitional stream sys-
tems (e.g. TinyDB [7], snee [6], Cougar [21]). For the first, the stream system
does not have control over the data arrival rate, which is often potentially high
and usually unknown and the query optimization goal is to minimize latency.
For acquisitional streams, it is possible to control when data is obtained from
the source, typically a sensor network, and the query optimisation goal is to
maximize network lifetime. All these systems have their own continuous query
language, generally based on sql, although most of them share the same fea-
tures. cql (Continuous Query Language) [13] is the best known of these lan-
guages, but there is still no common standard language for stream queries. The
sneeql [12] language for querying streaming data sources is inspired by cql,
but it provides greater expressiveness in queries, including both event and ac-
quisitional streams, and stored extents. Our work does not aim to improve on
relational stream query processing, but to enable these systems to be accessible
via ontology-based querying.

Finally, there are two existing proposals for extending sparql with stream-
based operators: streamingsparql [8] and c-sparql [9]. Both languages intro-
duce extensions for the support of rdf streams, and both define time-based
and triple-based window operators where the upper bound is fixed to the cur-
rent evaluation time. The sparqlStream windowing operator enables windows
to be defined in the past so as to support correlation with historic data. We
have not included triple-based windows in sparqlStream due to the problems
with their semantics, discussed in Section 4.1. Window-to-stream operators are
also missing in both existing approaches, which provides ambiguous semantics
for the language. In sparqlStream the result of a window operator is a bag to
triples over which traditional operators can be applied. We have introduced three
window-to-stream operators inspired by sneeql and cql. The aggregate seman-
tics introduced in c-sparql follow an approach of extending the data, which
differs from standard aggregation semantics of summarising the data. We have
opted to support the aggregation semantics being defined for sparql 1.1 [22],
which summarise the data.

Table 1. Summary of key contributions

Extension Base Approach Summary

sparqlStream sparql 1.1 Window definitions with variable upper boundary

Window-to-stream operators

s2o r2o Stream definitions in mapping

Streaming data types

Virtual rdf stream iris

odemapster Translation of sparqlStream queries into sneeql

110 J.-P. Calbimonte, O. Corcho, and A.J.G. Gray

8 Conclusions and Future Work

We have presented an approach for providing ontology-based access to stream-
ing data, which is based on sparqlStream, a sparql extension for rdf streams,
and s2o, an extension to r2o for expressing mappings from streaming sources
to ontologies. We have shown the semantics of the proposed extensions and the
mechanism to generate data source queries from the original ontological queries
using the mappings. The case presented here generated sneeql queries but the
techniques are independent of the target stream query language, although is-
sues of stream data model and language evaluation semantics would need to be
considered for each case. Finally the prototype implementation, which extends
odemapster, has shown the feasibility of the approach. This work constitutes a
first effort towards ontology-based streaming data integration, relevant for sup-
porting the increasing number of sensor network applications being developed
and deployed in the recent years. The extensions presented in this paper can be
summarised in Table 1.

Although we have shown initial results querying the underlying snee engine
with basic queries, we expect to consider in the near future more complex query
expressions including aggregates, and joins involving both streaming and stored
data sources. Another important strand of future work is the optimization of
distributed query processing [14] and the streaming queries [5,6]. It is also our
goal to provide a characterization of our algorithms. In the scope of a larger
streaming and sensor networks integration framework, we intend to achieve the
following goals: i) integrating streaming and stored data sources through an on-
tological unified view; ii) combining data from event-based and acquisition-based
streams, and stored data sources; iii) considering quality-of-service requirements
for query optimization and source selection during the integration.

Acknowledgments. This work has been supported by the European Com-
mission project SemSorGrid4Env (FP7-223913). We also thank Alvaro A. A.
Fernandes, Ixent Galpin, and Norman W. Paton, from the University of Manch-
ester, for their valuable ideas and suggestions.

References

1. Barrasa, J., Corcho, O., Gómez-Pérez, A.: R2O, an extensible and semantically

based database-to-ontology mapping language. In: SWDB 2004, pp. 1069–1070

(2004)

2. Bizer, C., Cyganiak, R.: D2RQ. Lessons Learned. In: W3C Workshop on RDF

Access to Relational Databases (October 2007)

3. Sahoo, S.S., Halb, W., Hellmann, S., Idehen, K., Thibodeau Jr, T., Auer, S., Se-

queda, J., Ezzat, A.: A survey of current approaches for mapping of relational

databases to RDF. W3C (January 2009)

4. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani, R.,

Srivastava, U., Widom, J.: Stream: The stanford data stream management system.

In: Garofalakis, M., Gehrke, J., Rastogi, R. (eds.) Data Stream Management (2006)

Enabling Ontology-Based Access to Streaming Data Sources 111

5. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang,

J.H., Lindner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y.,

Zdonik, S.: The Design of the Borealis Stream Processing Engine. In: CIDR 2005

(2005)

6. Galpin, I., Brenninkmeijer, C.Y., Jabeen, F., Fernandes, A.A., Paton, N.W.: Com-

prehensive optimization of declarative sensor network queries. In: SSDBM 2009,

pp. 339–360 (2009)

7. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: an acqui-

sitional query processing system for sensor networks. ACM Trans. Database

Syst. 30(1), 122–173 (2005)

8. Bolles, A., Grawunder, M., Jacobi, J.: Streaming SPARQL - extending SPARQL to

process data streams. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis,

M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 448–462. Springer, Heidelberg (2008)

9. Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment for

C-SPARQL queries. In: EDBT 2010, Lausanne, Switzerland, pp. 441–452 (March

2010)

10. Lenzerini, M.: Data integration: a theoretical perspective. In: PODS 2002, pp.

233–246 (2002)

11. Golab, L., Özsu, M.T.: Issues in data stream management. SIGMOD Record 32(2),

5–14 (2003)

12. Brenninkmeijer, C.Y., Galpin, I., Fernandes, A.A., Paton, N.W.: A semantics for a

query language over sensors, streams and relations. In: Gray, A., Jeffery, K., Shao,

J. (eds.) BNCOD 2008. LNCS, vol. 5071, pp. 87–99. Springer, Heidelberg (2008)

13. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic

foundations and query execution. The VLDB Journal 15(2), 121–142 (2006)

14. Kossmann, D.: The state of the art in distributed query processing. ACM Comput.

Surv. 32(4), 422–469 (2000)

15. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM

Trans. Database Syst. 34(3), 1–45 (2009)

16. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:

Tractable description logics for ontologies. In: AAAI 2005, pp. 602–607 (2005)

17. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.:

Linking data to ontologies. J. Data Semantics 10, 133–173 (2008)

18. Lubyte, L., Tessaris, S.: Supporting the development of data wrapping ontologies.

In: 4th Asian Semantic Web Conference (December 2009)

19. Erling, O., Mikhailov, I.: RDF support in the Virtuoso DBMS. In: Conference on

Social Semantic Web. LNI, vol. 113, pp. 59–68. GI (2007)

20. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M.,

Hong, W., Krishnamurthy, S., Madden, S.R., Reiss, F., Shah, M.A.: TelegraphCQ:

continuous dataflow processing. In: SIGMOD 2003, p. 668 (2003)

21. Yao, Y., Gehrke, J.: The Cougar approach to in-network query processing in sensor

networks. SIGMOD Rec. 31(3), 9–18 (2002)

22. Harris, S., Seaborne, A. (eds.): SPARQL 1.1 query language. Working draft, W3C

(2010)

Evolution of DL-Lite Knowledge Bases

Diego Calvanese, Evgeny Kharlamov
, Werner Nutt, and Dmitriy Zheleznyakov

KRDB Research Centre, Free University of Bozen-Bolzano, Italy
last name@inf.unibz.it

Abstract. We study the problem of evolution for Knowledge Bases (KBs) ex-
pressed in Description Logics (DLs) of the DL-Lite family. DL-Lite is at the basis
of OWL 2 QL, one of the tractable fragments of OWL 2, the recently proposed re-
vision of the Web Ontology Language. We propose some fundamental principles
that KB evolution should respect. We review known model and formula-based
approaches for evolution of propositional theories. We exhibit limitations of a
number of model-based approaches: besides the fact that they are either not ex-
pressible in DL-Lite or hard to compute, they intrinsically ignore the structural
properties of KBs, which leads to undesired properties of KBs resulting from such
an evolution. We also examine proposals on update and revision of DL KBs that
adopt the model-based approaches and discuss their drawbacks. We show that
known formula-based approaches are also not appropriate for DL-Lite evolution,
either due to high complexity of computation, or because the result of such an ac-
tion of evolution is not expressible in DL-Lite. Building upon the insights gained,
we propose two novel formula-based approaches that respect our principles and
for which evolution is expressible in DL-Lite. For our approaches we also devel-
oped polynomial time algorithms to compute evolution of DL-Lite KBs.

1 Introduction

Description Logics (DLs) provide excellent mechanisms for representing structured
knowledge, and as such they constitute the foundations for the various variants of OWL,
the standard ontology language of the Semantic Web1. DLs have traditionally been used
for modeling at the intensional level the static and structural aspects of application do-
mains [1]. Recently, however, the scope of ontologies has broadened, and they are now
used also for providing support in the maintenance and evolution phase of information
systems. Moreover, ontologies are considered to be the premium mechanism through
which services operating in a Web context can be accessed, both by human users and by
other services. Supporting all these activities, makes it necessary to equip DL systems
with additional kinds of inference tasks that go beyond the traditional ones of satisfiabil-
ity, subsumption, and query answering provided by current DL inference engines. The
most notable one, and the subject of this paper, is that of knowledge base evolution [2],
where the task is to incorporate new knowledge into an existing knowledge base (KB)
so as to take into account changes that occur in the underlying domain of interest. In
general, the new knowledge to incorporate is represented by a set of formulas denoting

� The author is co-affiliated with INRIA Saclay.
1 http://www.w3.org/TR/owl2-overview/

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 112–128, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.w3.org/TR/owl2-overview/

Evolution of DL-Lite Knowledge Bases 113

those properties that should be true after the KB has evolved. In the case where the new
knowledge interacts in an undesirable way with the knowledge in the KB, e.g., by caus-
ing the KB or relevant parts of it to become unsatisfiable, the new knowledge cannot
simply be added to the KB. Instead, suitable changes need to be made in the KB so as to
avoid the undesirable interaction, e.g., by deleting parts of the KB that conflict with the
new knowledge. Different choices are possible, corresponding to different semantics
for KB evolution [3–8].

In the literature, two main types of KB evolution have been considered: namely revi-
sion and update [4]. Both have a precise formal grounding in terms of postulates [4, 5]
and a number of update and revision operators were proposed in the literature [5, 6].
This work has been carried out for propositional logic, providing a thorough under-
standing of the various options, both wrt semantics and wrt computational properties.

Work relevant to KB evolution has been carried out initially in schema evolution
in databases, cf., [9], and more recently for expressive DLs [7, 8]. However, for such
richer representation formalisms, the picture is much less clear, and the various possi-
bilities are far from being completely explored. (i) The fundamental distinction in DLs
between TBox (for terminological, or intensional knowledge) and ABox (for asser-
tional, or extensional knowledge), calls for distinguishing these two components (both
in the existing and in the new knowledge) also in the study of evolution. (ii) Going from
propositional letters to first-order predicates and interpretations, on the one hand calls
for novel principles underlying the semantics of evolution, and on the other hand broad-
ens the spectrum of possibilities for defining such semantics. (iii) The combination of
constructs of the considered DL will obviously affect the complexity of computing the
result of evolution, independently of the chosen semantics. (iv) While in propositional
logic the result of an evolution step is always expressible in the same formalism, this
does not hold in general for DLs [10, 11].

In this paper we address several of the points raised by the above observations, thus
contributing substantially to a clarification of the problem.

In line with Item (i), we carry out our investigation and establish our results by con-
sidering separately the role of the ABox and of the TBox in evolution.

Regarding Item (ii), we propose some fundamental principles that KB evolution
should respect. We review known model and formula-based approaches for evolution
of propositional theories [5, 6], and we lift them to the first-order case in two natural
ways (by considering symmetric difference on symbol interpretations vs. interpretation
atoms). Previous proposals for KB evolution, such as ABox updates under Winslett’s
semantics [10, 11], and the approaches proposed in [8], fit nicely into our classification.

Regarding Items (iii) and (iv), we concentrate our technical development on the DL-
Lite family [12], which is at the basis of OWL 2 QL, one of the tractable profiles of
OWL 2. We exhibit limitations of a number of model-based approaches for the logics
of the DL-Lite family: besides the fact that evolution under such approaches is either
not expressible in DL-Lite or hard to compute, they intrinsically ignore the structural
properties of KBs, which leads to undesired properties of KBs resulting from such an
evolution. We also examine proposals on update and revision of DL KBs that adopt the
model-based approaches and discuss their drawbacks. We show that known formula-
based approaches are also not appropriate for DL-Lite evolution, either due to high

114 D. Calvanese et al.

complexity of computation, or because the result of such an action of evolution is not ex-
pressible in DL-Lite. Building upon the insights gained, we propose two novel formula-
based approaches that respect our principles and for which evolution is expressible in
DL-Lite. For our approaches we also developed polynomial time algorithms to compute
evolution of DL-Lite KBs.

2 Preliminaries and Problem Definition

Description Logics. We introduce some basic notions of Description Logics (DLs),
more details can be found in [13]. A DL knowledge base (KB) K = T ∪A is the union
of two sets of assertions, those representing the intensional-level of the KB, that is, the
general knowledge, and constituting the TBox T , and those providing information on
the instance-level of the KB, and constituting the ABox A. In our work we consider a
family of DLs, DL-Lite [12], which form a tractable fragment of OWL 2.

All the logics of the DL-Lite family have the following constructs for (complex) con-
cepts and roles: (i) B ::= A | ∃R, (ii) C ::= B | ¬B, (iii) R ::= P | P−, where
A and P stand for an atomic concept and role, respectively, which are just names. A
DL-Litecore TBox consists of concept inclusion assertions B � C. DL-LiteFR extends
DL-Litecore by allowing in a TBox role inclusion assertions R1 � R2 and function-
ality assertions (funct R), in a way that if R1 � R2 appears in a TBox, then neither
(funct R2) nor (funct R−

2) appears in the TBox. This syntactic restriction keeps the
logic tractable. ABoxes in DL-Litecore and DL-LiteFR consist of membership asser-
tions of the form B(a) and P (a, b). When we write in this paper DL-Lite without a
subscript, specifying a concrete language, we mean any language of this family. The
DL-Lite family has nice computational properties, for example, KB satisfiability has
polynomial-time complexity in the size of the TBox and logarithmic-space in the size
of the ABox [14, 15].

The semantics of DL-Lite KBs is given in the standard way, using first order interpre-
tations, all over the same infinite countable domain Δ. An interpretation I is a function
·I that assigns to each concept C a subset CI of Δ, and to each role R a binary relation
RI over Δ in such a way that (¬B)I = Δ \BI , (∃R)I = {a | ∃a′.(a, a′) ∈ RI}, and
(P−)I = {(a2, a1) | (a1, a2) ∈ P I}. We assume that Δ contains the constants and
that cI = c, i.e., we adopt standard names. Alternatively, we view an interpretation as
a set of atoms and say that A(a) ∈ I iff a ∈ AI and P (a, b) ∈ I iff (a, b) ∈ P I . An
interpretation I is a model of a membership assertion B(a) if a ∈ BI , and of P (a, b)
if (a, b) ∈ P I , of an inclusion assertion D1 � D2 if DI

1 ⊆ DI
2 , and of a functionality

assertion (funct R) if the relation RI is a function.
As usual, we use I |= F to denote that I is a model of an assertion F , and I |= K

to denote that I |= F for each assertion F in K. We use Mod(K) to denote the set of
all models of K. A KB is satisfiable if it has at least one model and it is coherent2 if for
every concept and role S occurring in K there is an I ∈ Mod(K) such that SI
= ∅. We
use entailment on KBsK |= K′ in the standard sense. We say that an ABoxA T -entails
an ABoxA′, denotedA |=T A′, if T ∪A |= A′, andA is T -equivalent to A′, denoted
A ≡T A′, if A |=T A′ and A′ |=T A. The deductive closure of a TBox T (of an

2 Coherence is often called full satisfiability.

Evolution of DL-Lite Knowledge Bases 115

ABoxA), denoted cl(T) (resp., clT (A)), is the set of all TBox (resp., ABox) assertions
F such that T |= F (resp., T ∪ A |= F). It is easy to see that in DL-Lite cl(T) (and
clT (A)) is computable in quadratic time in the size of T (resp., T and A). In our work
we assume that all TBoxes and ABoxes are closed.

Ontology Evolution. Let K = T ∪ A be a DL-Lite KB and N a set of “new” (TBox
and/or ABox) assertions. We want to study how to incorporate the assertions N into
K, that is, how K evolves [2] underN . More practically, we want to develop evolution
operators that takeK andN as input and return, possibly in polynomial time, a DL-Lite
KB K′ that captures the evolution, and which we call the evolution of K underN .

In the Semantic Web context, update and revision [4, 5], the two classical understand-
ings of ontology evolution, are too restrictive from the intuitive and formal perspective:
in many applications we know neither the status of the real world, nor how accurateN
is wrt to the world. For example, if in K we store knowledge from Web sources, say,
online newspapers that we collected using RSS feeds or Web crawling, then there is
no chance to say how this information is related to the state of the real world. When a
new portion of knowledgeN arrives to K and conflicts withK, then it might be unclear
whether the conflict is due to outdated or wrong information in K. This situation does
not fit in the formalisms of update and revision and, therefore, we propose now some
new postulates to be adopted in the context of evolution in the Semantic Web.

First, we assume that the KBs we are dealing with make sense, that is, they are
coherent (and hence also satisfiable), and we want evolution to preserve this property:

EP1: Evolution should preserve coherence of the KB, that is, K′ is coherent.

The same postulate is stipulated in [8]. Notice that in DL-Lite3 coherence can be reduced
to satisfiability. Moreover, when N may contain ABox assertions, one can enforce co-
herence by adding to N for each atomic concept A an assertion A(dA), and for each
atomic role P an assertion P (dP , d′P), where dA, dP , d′P are fresh individuals.

For example, if our online newspapers KBK = T ∪A records that John is married to
Mary and that a person can be married to at most one person, and if the new knowledge
N says that John is married to Patty, then K ∪ N is unsatisfiable (and hence incoher-
ent) and does not comply with EP1. This can be resolved by either (i) discarding the
old information about John’s marriage, that is, by changing A, or (ii) weakening the
constraint in K on the number of spouses, that is, by changing T , or (iii) discardingN .
What to do depends on the application. In data-centric applications, the most valuable
information is the (extensional) data and we would have to discard the constraint on
the number of spouses from T . In Web data integration, the constraints of T define the
global schema and the data coming from different Web sources may be contradictive
by nature. Thus, it makes more sense to discard one of the two assertions about John’s
spouses using, for example, the trust we have in the sources of the data. To formalize
this consideration we introduce the notion of protected part of a KB, which is simply
a subset Kpr ⊆ K that is preserved by evolution. This is sanctioned by our second
postulate:

EP2: Evolution should entail the new knowledge and preserve the protected part,
that is, K′ |= Kpr ∪ N .

3 Actually, in all logics enjoying the disjoint-union model property.

116 D. Calvanese et al.

This postulate is different from the classical ones of update and revision where it is
only required that the new KB K′ should entail the new knowledge N . We observe,
however, that evolution of K with a protected part Kpr wrt N is conceptually the same
as evolution of K with the empty protected part wrt Kpr ∪ N .

Another principle that is widely accepted [4, 5] is the one of minimality of change:

EP3: The change to K should be minimal, that is, K′ is minimally different from K.

There are different approaches to define minimality, suitable for particular applications,
and the current belief is that there is no general notion of minimality that will “do the
right thing” under all circumstances [6].

Based on these principles, we will study evolution operators. We will consider the
classical update and revision operators coming from AI [5] and also operators proposed
for DLs [8, 15], and try to adapt them to our needs. In the following we distinguish
three types of evolution: TBox evolution, whenN consists of TBox assertions only, and
we denote it NT , ABox evolution, when N consists of ABox assertions only, and we
denote it NA, KB evolution, whenN includes both TBox and ABox assertions.

Running Example. In our online-newspapers KB we have structural knowledge that
wives (W) are exactly those individuals who have husbands (hh) and that some wives
are employed (E). Singles (S) cannot be husbands. Priests (P) are clerics (C) and
clerics are singles. Both clerics and wives are receivers of rent subsidies (R). We also
know that Adam (a) and Bob (b) are priests, Mary (m) is a wife who is employed and
her husband is John (j). Also, Carl (c) is a catholic minister (M). This knowledge can
be expressed in DL-Lite by the KB Kex, consisting of the following assertions:

T : W � ∃hh , ∃hh �W , E �W , S � ¬∃hh−, P � C , C � S , C � R, W � R;
A: P(a), P(b), E (m), hh(m, j), M (c).

By crawling some Web sources we found out that John is now single (that is, S (j)),
in the Oxford Dictionary we discovered that catholic ministers are superiors of some
religious orders and hence clerics (M � C), and from economic news we found out that
the current crisis affects people receiving rent subsidies in that subsidies were canceled
for wives (W � ¬R) and for clerics (C � ¬R), since the former may receive support
from their husbands and the latter from their church. In the rest of the paper we will
discuss how to incorporate this new knowledge into our KB.

3 Approaches to Evolution

A number of candidate semantics for evolution operators have been proposed in the lit-
erature [3, 6, 8, 15, 16]. They can be divided into two groups, model-based approaches
(MBAs) and formula-based approaches (FBAs).

3.1 Model-Based Approaches

In model-based approaches (MBAs) the result of evolution of a KB K wrt new knowl-
edgeN is a setK�N of models. The general idea of MBAs is to choose as the result of
evolution some models of N depending on their distance to the models of K. Katsuno
and Mendelzon [4] considered two ways of choosing these models ofN .

Evolution of DL-Lite Knowledge Bases 117

The idea of the first one, which we call local, is to go over all models I of K and for
each I to take those models J ofN that are minimally distant from I. Formally,

K � N =
⋃

I∈Mod(K)

arg min
J∈Mod(N)

dist(I,J),

where dist(·, ·) is a function whose range is a partially ordered domain and argmin
stands for the argument of the minimum, that is, in our case, the set of models J for
which the value of dist(I,J) reaches its minimum value, given I. The distance function
dist varies from approach to approach and commonly takes as values either numbers or
subsets of some fixed set.

The idea of the second way, called global, is to choose those models J ofN that are
minimally distant from the entire set of models of K. Formally,

K � N = argmin
J∈Mod(N)

dist(Mod(K),J), (1)

where dist(Mod(K),J) = minI∈Mod(K) dist(I,J).
The classical MBAs were developed for propositional theories. In this context, an

interpretation was identified with the set of propositional atoms that it makes true and
two distance functions were introduced, respectively based on symmetric difference and
on the cardinality of symmetric difference,

dist⊆(I,J) = I � J and dist�(I,J) = |I � J |. (2)

where the symmetric difference of two sets is defined as I�J = (I\J)∪(J \I). Dis-
tances under dist⊆ are sets and are compared by set inclusion, that is, dist⊆(I1,J1) ≤
dist⊆(I2,J2) iff dist⊆(I1,J1) ⊆ dist⊆(I2,J2). Distances under dist� are natural num-
bers and are compared in the standard way.

One can extend these distances to DL interpretations in two different ways. One
way is to consider interpretations I, J as sets of atoms. Then I � J is again a set
of atoms and we can define distances as in Equation (2). We denote these distances as
dista⊆(I,J) and dista� (I,J). While in the propositional case distances are always finite,
this may not be the case for DL interpretations that are infinite. Another way is to define
distances at the level of the concept and role symbols in the underlying signature Σ:

dists⊆(I,J) = {S ∈ Σ | SI
= SJ }, and dists�(I,J) = |{S ∈ Σ | SI
= SJ }|.

Summing up across the different possibilities, we have three dimensions, which give
eight possibilities to define a semantics of evolution according to MBAs by choosing:
(1) the local or the global approach, (2) atoms or symbols for defining distances, and
(3) set inclusion or cardinality to compare symmetric differences.

We denote each of these eight possibilities by a combination of three symbols, indi-
cating the choice in each dimension. By L we denote local and by G global semantics.
We attach the superscripts a or s to indicate whether distances are defined in terms
of atoms or symbols. We use the subscripts ⊆ or � to indicate whether distances are
compared in terms of set inclusion or cardinality. For example, La

� denotes the local
semantics where the distances are expressed in terms of cardinality of sets of atoms.

118 D. Calvanese et al.

Considering that in the propositional case a distinction between atom and symbol-
based semantics is meaningless, we can also use our notation, without superscripts, to
identify MBAs in that setting. Interestingly, the two classical local MBAs proposed by
Winslett [6] and Forbus [17] correspond, respectively, to L⊆, and L�, while the one by
Borgida [18] is a variant of L⊆. The two classical global MBAs proposed by Satoh [5]
and Dalal [19] correspond, respectively, to G⊆, and G�.

Under each of our eight semantics, evolution results in a set of interpretations. In the
propositional case each set of interpretations over finitely many symbols can be captured
by a formula whose models are exactly those interpretations. In the case of DLs this is
no more necessarily the case, since on the one hand, interpretations can be infinite and
on the other hand logics may miss some connectives like disjunction or negation.

Let D be a DL and M one of the eight MBAs introduced above. We say D is closed
under evolution wrt M (or evolution wrt M is expressible in D) if for any KBs K and
N written in D, there is a KB K′ written in D such that Mod(K′) = K � N . We study
now whether the logics of the DL-Lite family are closed under the various semantics.

Global Model-Based Approaches. We start with an example showing that wrt all four
semantics Gs

⊆, Gs
� , Ga

⊆ and Ga
� , TBox evolution is not expressible in DL-Lite.

The observation underlying these results is that on the one hand, the minimality of
change principle introduces implicit disjunction in the evolved KB. On the other hand,
DL-Lite can be embedded into a slight extension of Horn logic [20] and therefore does
not allow one to express genuine disjunction. Technically, this can be expressed by
saying that every DL-Lite KB that entails a disjunction of DL-Lite assertions entails
one of the disjuncts. The lemma gives a contrapositive formulation of this statement.
Although DL-Lite does not have a disjunction operator, by abuse of notation we write
J |= φ ∨ ψ as a shorthand for “J |= φ or J |= ψ” for DL-Lite assertions φ, ψ.

Lemma 1. Let M be a set of interpretations. Suppose there are DL-Lite assertions
φ, ψ such that (1) J |= φ ∨ ψ for every J ∈ M; (2) there are J1, J2 ∈ M such that
J1
|= φ and J2
|= ψ. Then there is no DL-Lite KB K such thatM = Mod(K).

Example 2. Consider the KB Kex of our running example and assume that the new
informationNT = {W � ¬R} arrived. We explore evolution wrt the Gs

� semantics of
�, which counts for how many symbols the interpretation changes.

Consider three assertions, (derived) from K, that are essential for this example: E �
W , E � R, and E (m). One can show that the minimum of dists�(I,J) for I ∈ Mod(K)
and J ∈ Mod(NT) equals 1. LetJ ∈ K�NT . Then there exists I ∈ Mod(K) such that
dists�(I,J) = 1. Hence, there is only one symbol S ∈ {E ,W ,R}whose interpretation
has changed from I to J , that is SI
= SJ . Observe that S cannot be E . Otherwise,
W and R would be interpreted identically under I and J , and W and R would not be
disjoint under J , since m is an instance of both, thus contradicting NT . Now, assume
that W has not changed. Then J |= E � W , since this held already for I. However,
J
|= E � R, since m ∈ EJ , but m /∈ RJ , due to the disjointness of W and
R with respect to J . Similarly, if we assume that R has not changed, it follows that
J |= E � R, but J
|= E � W . By Lemma 1 we conclude that K � NT is not
expressible in DL-Lite.

Evolution of DL-Lite Knowledge Bases 119

Analogously one can also show inexpressibility for Gs
⊆, Ga

⊆, and Ga
� .

From the example we conclude our first inexpressibility result.

Theorem 3. DL-Lite is not closed under TBox evolution wrt Gs
⊆, Gs

� , Ga
⊆, and Ga

� .

With a similar argument one can show that the operator �M ′ of Qi and Du [8] (and its
stratified extension �S), is not expressible in DL-Lite. This operator is a variant of Gs

�

where in Equation (1) one considers only models J ∈ Mod(N) that satisfy AJ
= ∅
for every A occurring in K ∪ N . The modification does not affect the inexpressibility,
which can again be shown using Example 2. We note that �M ′ was developed for KB
revision with empty ABoxes and the inexpressibility comes from the non empty ABox.

Local Model-Based Approaches. We start with an example showing that both ABox
and TBox evolution wrt the La

⊆ and La
� semantics are not expressible in DL-Lite.

Example 4. We turn again to our KB Kex and consider the scenario where we are in-
formed that John is now a single, formallyNA = {S (j)}. Suppose we want to perform
ABox evolution where the TBox of Kex is protected. The TBox assertions essential for
this example are W � ∃hh , ∃hh � W , and P � ¬∃hh−, that is, an individual is a
wife iff she has a husband, and a priests is not a husband. The essential ABox assertions
are W (m), P(a), and P(b). We show the inexpressibility of evolution wrt La

⊆ using
Lemma 1.

Under La
⊆, in every J ∈ K � NA one of four situations holds: (i) Mary is not a

wife, that is, J
|= W (m), and both Adam and Bob are priests, that is, J |= P(a) ∧
P(b). Hence, J |= P(a) ∨ P(b). (ii) Mary is a wife and her husband is different from
Adam and Bob. Due to minimality of change, both Adam and Bob are still priests, as
in Case (i), and again J |= P(a)∨P(b). (iii) Mary is a wife and her husband is Adam.
Then Bob, due to mininality of change, is still a priest. Hence, J |= P(a) ∨ P(b).
Moreover, the new husband cannot stay priest any longer and J
|= P(a). (iv) Mary is a
wife and her husband is Bob. Analogously to Case (iii), we have J |= P(a)∨P(b) and
J
|= P(b). We are in the conditions of Lemma 1, that is, for every model J ∈ K �NA

it holds that J |= P(a) ∨ P(b), and there are J ′ ∈ K � N ′
A s.t. J ′
|= P(a) and

J ′′ ∈ K�NA s.t.J ′′
|= P(b). Consequently, the set of modelsK�NA is not expressible
in DL-Lite.

To show that the example works also for La
� , we need extra arguments. Intuitively, if

a model I |= Kex contains individuals that are single, but not clerics, then the models
J |= NA closest to I in terms of dist� are such that Mary, if she remains a wife, marries
one of these individuals and Adam and Bob remain priests, since this involves the fewest
changes of atoms. However, this is no more the case if we consider a model I0 |= Kex

where everyone, except John, is a priest, that is PI0 = Δ \ {j}. Reasoning as before,
one can see that among the models J of NA closest to I0, there are some such that
J
|= P(a) and others such that J
|= P(b), while all of them satisfy J |= P(a)∨P(b).
Then Lemma 1 implies that K � NA under La

� is not expressible in DL-Lite.
Now, we consider TBox evolution, which means that the ABox of Kex is protected.

Suppose we found out that ministers are clerics, formally NT = {M � C}. The
assertions of Kex essential for this example are C � S and M (c). Assume there is a
representationK′ of the Kex � NT under La

⊆. Since K1 = Kex ∪ NT is fully satisfiable,

120 D. Calvanese et al.

one might expect that K′ = K1. It turns out this is not the case. Indeed, since every
model J ∈ Kex � NT is such that J |= NT ∪ {M(c)}, it holds that c ∈ MJ ⊆ CJ .
Moreover, if I ∈ Mod(K) is such that c /∈ SI , then c /∈ SJ ′

for any J ′ ∈ Mod(NT)
minimally different from I. At the same time K1 |= S (c), hence, such a J ′ is not a
model of K1 and K1 cannot be K′. Since the inclusion C � S caused the problem
above, it might be the case that K′ is K2 = K1 \ {C � S}. It turns out this is not the
case either, since K2 has models that are not in K � NT . Can we resolve this by adding
some assertion to K2? No, again. If one adds any DL-Lite TBox assertion to K2 that is
not entailed byK2 or not C � S , one gets a KB with models not in K�NT . Hence, no
representation K′ of K � NT exists. Analogously, one can show that K � NT under La

�

is also not expressible in DL-Lite.

This example proves our second inexpressibility result, which follows.

Theorem 5. DL-Lite is not closed under evolution wrt La
⊆ and La

� . This holds already
for the special cases of TBox evolution and ABox evolution with protected TBox.

De Giacomo et al. [21] considered ABox evolution with protected TBox wrt La
⊆ seman-

tics. They presented an algorithm to compute DL-LiteFR KBs that represent K � NA

for DL-LiteFR KBs K and NA. As a consequence of Theorem 5, their algorithm is not
complete.

A strange effect of evolution underLa
� semantics is that new information may “erase”

completely the previous KB.

Proposition 6. Let K be a KB with at least one finite model and let N be a satisfiable
KB such that all its models are infinite. Then under La

� we have that K � N = N .

Since the DL-Lite logics without role functionality have the finite model property, that
is, every satisfiable KB in these logics has a finite model, the above situation cannot
occur for them. At the same time, in every DL-Lite logic with role functionality there
are KBs all of whose models are infinite and such an erasure can take place.

The properties of the Ls
⊆ and Ls

� semantics are still an open problem for us.

We now discuss conceptual problems with all the local semantics. Recall Example 4
for local MBAs La

⊆ and La
� . We note two problems. First, the divorce of Mary from

John had a strange effect on the priests Bob and Adam. The semantics questions their
celibacy and we have to drop the information that they are priests. This is counterintu-
itive, since Mary and her divorce have nothing to do with any of these priests. Actually,
the semantics also erases from the KB assertions about all other people belonging to
concepts whose instances are not married, since potentially each of them is Mary’s new
husband. Second, a harmless clarification introduced to the TBox that ministers are in
fact clerics strangely affects the whole class of clerics. The semantics of evolution “re-
quires” one to allow marriages for clerics. This appears also strange, because intuitively
the clarification on ministers does not contradict by any means the celibacy of clerics.

Also the four global MBAs have conceptual problems that were exhibited in Exam-
ple 2. The restriction on rent subsidies that cuts the payments for wives introduces a
counterintuitive choice for employed wives. Under the symbol-based global semantics,
they must either collectively get rid of their husbands or collectively lose the subsidy.
Under atom-based semantics the choice is an individual one.

Evolution of DL-Lite Knowledge Bases 121

Summing up on both the global and the local MBAs that we have considered, they
focus on minimal change of models of KBs and, hence, introduce choices that cannot
be captured in DL-Lite, which owes its good computational properties to the absence
of disjunction. This mismatch with regard to the structural properties of KBs leads to
counterintuitive and undesired results, like inexpressibility in DL-Lite and erasure of the
entire KB. Therefore, we think that these semantics are not suitable for the evolution of
DL-Lite KBs, whether or not they satisfy EP1-EP3, and now study evolution according
to formula-based approaches.

3.2 Formula-Based Approaches

Under formula-based approaches, the objects of change are sets of formulas. Given a
KB K and new knowledge N , a natural way to define the result of evolution seems to
choose a maximal subset Km of K that is consistent with N . The result of evolution in
this case is a set of formulasK �N = Km ∪N However, a problem with this is that in
general such a Km is not unique.

Let M(K,N) be the set of all such maximal Km. In the past, researchers have
proposed a number of approaches to combine all elements of M(K,N) into one set
of formulas, which is then added to N [5, 6]. The two main ones are known as Cross-
Product, or CP for short, and When In Doubt Throw It Out, or WIDTIO for short. The
corresponding sets KCP and KWIDTIO are defined as follows:

KCP :=
{ ∨
Km∈M(K,N)

(
∧

φ∈Km

φ)
}

. KWIDTIO :=
⋂

Km∈M(K,N)

Km,

In CP one adds to N the disjunction of all Km, viewing each Km as the conjunction
of its assertions, while in WIDTIO one adds to N those formulas present in all Km. In
terms of models, every model of KWIDTIO is also a model of KCP, whose models are
exactly the interpretations satisfying some of the Km.

Example 7. We consider again our running example. Suppose, we obtain the new in-
formation that priests no longer obtain rental subsidies. This can be captured by the
set of TBox assertions NT = {P � ¬R}. We now incorporate this information
into our KB, under both CP and WIDTIO semantics. Clearly, Kex ∪ NT is not co-
herent and to resolve the conflict one can drop either P � C or C � R. Hence,
M(Kex,NT) = {K(1)

m ,K(2)
m }, where K(1)

m = K \{P � C}, andK(2)
m = K \ {C � R}.

Consequently, the results of evolvingK with respect toNT under the two semantics are

NT ∪ KCP = NT ∪ ((K \ {P � C}) ∨ (K \ {C � R})) (3)

NT ∪ KWIDTIO = NT ∪
(
K(1)

m ∩ K(2)
m

)
= NT ∪ Kex \ {P � C ,C � R},

where in (3) we have combined DL notation with first order logic notation.

Intuitively, CP does not lose information, but the price to pay is that the resulting KB
can be exponentially larger than the original KB, since there can exist exponentially
many Km. In addition, as the example shows, even if K is a DL-Lite KB, the resulting
KCP may not be representable in DL-Lite anymore since it requires disjunction. This
effect is also present if the new knowledge involves only ABox assertions.

122 D. Calvanese et al.

WIDTIO, on the other extreme, is expressible in DL-Lite. However, it can lose many
assertions, which may be more than one is prepared to tolerate. Even, if one deems
this loss acceptable, one has to cope with the fact that it is generally difficult to decide
whether an assertion belongs toKWIDTIO. This problem is already difficult if our KBs are
TBoxes that are specified in the simplest variant of DL-Lite. We note that the following
theorem can be seen as a sharpening of a result about WIDTIO for propositional Horn
theories in [5], obtained with a different reduction than ours.

Theorem 8. Given DL-Lite TBoxes T and NT and an inclusion assertion A � B,
deciding whether A � B ∈

⋂
Km∈M(T ,NT)Km, is coNP-complete. Hardness holds

already for DL-Litecore .

Against this backdrop we conclude that neither CP nor WIDTIO are good for practical
solutions. As a pragmatic alternative we will explore the approach to nondeterministi-
cally choose some K(0)

m among the Km. We call this semantics bold semantics.

4 Bold Semantics

We define as bold semantics the approach to evolution where, given a KB K = T ∪ A
and new knowledgeN , we add to N a maximal compatible subset K(0)

m ⊆ cl(K), that

is, a set such that N ∪ K(0)
m is coherent and such that that K(0)

m is maximal wrt to this
property. Note that now we choose a subset of the deductive closure of K and not of K
alone. By abuse of notation, we will use a binary operator to denote any result of bold
evolution and write

K �b N = N ∪K(0)
m ,

althoughK �b N is not uniquely defined.

Example 9. Consider the KB and the update request from Example 7. As shown there,
M(Kex,NT) = {K(1)

m ,K(2)
m }. According to bold semantics the result of the update is

a KB K′ = N ∪ K(0)
m for some K(0)

m ∈ M(Kex,NT). Thus, the result of the update is
either NT ∪ Kex \ {P � C} or NT ∪ Kex \ {C � R}. Whether to select one or the
other of these two options depends on preferences, which we do not consider here.

Choosing an arbitrary Km has the advantage that K �b N can be computed in polyno-
mial time. In Fig. 1 we present a nondeterministic algorithm that, given a KB K and
new knowledgeN , returns a set Km ⊆ cl(K) that is a maximal compatible set of asser-
tions for K and N . The algorithm loops as many times as there are assertions in cl(K).
The number of such assertions is at most quadratic in the number of constants, atomic
concepts, and roles. The crucial step is the check for coherence, which is performed
once per loop. If this test is polynomial in the size of the input then the entire runtime of
the algorithm is polynomial. For DL-LiteFR TBoxes T , coherence can be checked in
time quadratic in the number of assertions in the TBox, that is, O(|T |2). Satisfiability
of an ABox A with respect to T can be checked in time O(|T |2 × |A|), where |A| is
the number of assertions of A. The O(|T |2) complexity can be shown by reduction to
satisfiability of sets of propositional Horn clauses (see [22] for details).

Evolution of DL-Lite Knowledge Bases 123

INPUT: KBs K and N
OUTPUT: a set Km ⊆ cl (K) of TBox and ABox assertions
[1] Km := N ; S := cl(K)

[2] repeat
[3] choose some φ ∈ S ; S := S \ {φ}
[4] if {φ} ∪ Km is coherent then Km := Km ∪ {φ}
[5] until S = ∅

Fig. 1. Algorithm BoldEvol(K,N) for nondeterministic computation of Km

Theorem 10. The algorithm BoldEvol runs in polynomial time and computes evolution
wrt bold semantics, that is, K �b N = BoldEvol(K,N).

This shows that bold semantics has the great advantage that evolution can be computed
in polynomial time. However, its nondeterminism is a disadvantage. Clearly, we can
avoid nondeterminism if we impose a linear order on the assertions in cl(K), and let
BoldEvol choose them in this order. The question how to define such an order depends
on the characteristics of the application, and we cannot discuss it here.

One may wonder whether it is possible to efficiently compute a Km with maximal
cardinality. (Recall that our algorithm is only guaranteed to compute a Km that is max-
imal wrt set inclusion.) Unfortunately, it turns out, using various reductions from the
Independent Set problem, that under this requirement computation is hard, even for K
and N that consist only of TBox or only of ABox assertions, except when both, K and
N , are ABoxes, in which case no conflicts can arise.

Theorem 11. Given DL-Lite KBs K and N and an integer k > 0, to decide whether
there exists a subsetK0 ⊆ K such thatK0∪N is coherent and |K0| ≥ k is NP-complete.
NP-hardness already holds for DL-Litecore if (1) both K and N are TBoxes, or (2) K
is an ABox andN is a TBox, or (3) K is a TBox andN is an ABox.

In the next section we will see that nondeterminism is not present in ABox evolution
with a protected TBox and that there is always a single maximal compatible ABox.

5 ABox Evolution

We study ABox evolution assuming that the new knowledgeNA is satisfiable with the
old TBox T , may only conflict with the old ABox A, and that T is protected.

ABox Evolution under Bold Semantics. In DL-Lite, unsatisfiability of a KB is caused
either by a single ABox assertion, which will be a membership assertion for an unsatis-
fiable concept or role, or by a pair of assertions contradicting either a disjointness or a
functionality assertion of the TBox.

Lemma 12. Let T ∪A be a DL-Lite KB. If T ∪A is unsatisfiable, then there is a subset
A0 ⊆ A with at most two elements, such that T ∪ A0 is unsatisfiable.

124 D. Calvanese et al.

INPUT: TBox T , and ABoxes A, D, each satisfiable with T
OUTPUT: finite set of membership assertions Aw

[1] Aw := A
[2] for each B1(c) ∈ D do
[3] Aw := Aw \ {B1(c)} and
[4] for each B2 B1 ∈ cl(T) do Aw := Aw \ {B2(c)}
[5] if B2(c) = ∃R(c) then
[6] for each R(c, d) ∈ Aw do D := D ∪ {R(c, d)}
[7] for each R1(a, b) ∈ D do
[8] Aw := Aw \ {R1(a, b)} and
[9] for each R2 R1 ∈ cl(T) do Aw := Aw \ {R2(a, b)}

Fig. 2. Algorithm Weeding(T ,A,D) for DL-LiteFR

INPUT: TBox T , and ABoxes A, NA, each satisfiable with T
OUTPUT: finite set of membership assertions Am

[1] A0 := clT (A∪NA), NA := clT (NA), CA := ∅
[2] for each B ¬B′ ∈ cl(T) do
[3] if {B(c), B′(c)} ⊆ A0 then
[4] if B(c) /∈ NA then CA := CA ∪ {B(c)}
[5] otherwise CA := CA ∪ {B′(c)}
[6] for each (funct R) ∈ T do
[7] if {R(a, b), R(a, c)} ⊆ A0 then
[8] if R(a, b) /∈ NA then CA := CA ∪ {R(a, b)}
[9] otherwise CA := CA ∪ {R(a, c)}
[10] Am := Weeding(T , clT (A), CA)

Fig. 3. Algorithm FastEvol(A,NA, T) for DL-LiteFR

The lemma implies that if T ∪ NA ∪ A is unsatisfiable, then there are two assertions
φ ∈ NA and ψ ∈ A such that T ∪ {φ, ψ} is unsatisfiable. In other words, whether or
not ψ ∈ A needs to be eliminated from A as a result of evolution depends on ψ alone.
As a consequence, ABox evolution wrt bold semantics is deterministic.

Theorem 13. The result of ABox evolution (T ∪ A) �b NA is uniquely defined.

In principle, BoldEvol can be used to compute ABox evolution and regardless of the
order in which it selects the assertions, it will always return the same result, due to
Theorem 13. A drawback of BoldEvol is that it performs a coherence check during each
loop, which is not needed in that form, since ABox evolution does not affect coherence
of the TBox. We exhibit now a new algorithm FastEvol that replaces the coherence
check with implicit satisfiability checks.

The algorithm FastEvol computes the set Am ⊆ clT (A) of all assertions that do not
conflict with T andN and is based on Lemma 12. It exploits the algorithm Weeding (see
Fig. 2), which takes as input T ,A, and a setD of membership assertions to be “deleted”
fromA. For every assertion φ ∈ D, Weeding deletes fromA φ and also all the assertions
that T -entail φ. The algorithm FastEvol (see Fig. 3) takes as input T , A, and NA. It

Evolution of DL-Lite Knowledge Bases 125

detects assertions in the closure of A ∪ NA that conflict with the new data and stores
them in CA. Finally, it resolves the conflicts by deleting CA fromA using Weeding.

Theorem 14. The algorithm FastEvol computes ABox evolution wrt bold semantics,
that is, (T ∪ A) �b NA = T ∪NA ∪ FastEvol(K,NA), and runs in polynomial time.

Note that, although FastEvol may look similar to the algorithm ComputeUpdate in
[21], it is actually different. Our algorithm always keeps at least as many assertions as
ComputeUpdate. In some cases, however, ComputeUpdate drops an existential restric-
tion of the form ∃R(a), although it would not cause a contradiction.

Careful Semantics. We start with an example illustrating drawbacks of bold semantics.
Apparently, the drawbacks come from the minimality of evolution principle EP3.

Example 15. Coming back to Kex, consider evolution wrt bold semantics for the news
that John is getting single, formally,NA = {S (j)}. One can see that the only assertion
to be dropped fromKex is that John is the husband of Mary, that is, Kex �bNA = Kex ∪
NA \ {hh(m, j)}. This implies that Kex �bNA |= W (m) and, consequently, Mary still
has a husband who is not John, despite the divorce with John, that is, Kex �b NA |= φ,
where φ = ∃x(hh(m, x) ∧ (x
= j)). The only option that bold semantics offers to
Mary is to find another husband immediately after the divorce. It does not consider it
an option for her to become single. We are interested in a semantics that allows for both
possibilities. Note that the entailment Kex �b NA |= φ is unexpected in the sense that
neither Kex norNA entail φ, that is, Kex
|= φ andNA
|= φ hold.

As the example shows, the situation when the result of evolution entails unexpected
information, that is, information coming neither from the original KB, nor from the new
knowledge, may be counterintuitive. In our example, the unexpected information is the
formula ∃x(hh(m, x) ∧ (x
= j)), which has a specific form: it restricts the possible
values in the second component of the role hh . Our next semantics prohibits these role
restrictions from being unexpectedly entailed from the result of evolution.

We say that a formula is role-constraining, or an RCF for short, if it is of the form
∃x(R(a, x) ∧ (x
= c1) ∧ · · · ∧ (x
= cn)), where a and all ci are constants. Let T
be a TBox, and A, NA be ABoxes. A subset A1 ⊆ A is careful if for every RCF ϕ,
wheneverA1 ∪ NA |=T ϕ holds, either A1 |=T ϕ orNA |=T ϕ holds.

Theorem 16. Let T be a DL-Lite TBox and A, NA DL-Lite ABoxes, and suppose that
both T ∪ A and T ∪ NA are satisfiable. Then, the set

{A0 ⊆ clT (A) | A0 is careful andA0 ∪ NA is T -satisfiable}

has a unique maximal element wrt set inclusion.

We can exploit the maximal set Ac
m of assertions (where c stands for careful), whose

uniqueness is guaranteed by Theorem 16, to define the careful evolution:

(T ∪ A) �c NA := T ∪ NA ∪ Ac
m. (4)

126 D. Calvanese et al.

INPUT: TBox T , and ABoxes A, NA, each satisfiable with T
OUTPUT: finite set of membership assertions Ac

m

[1] Ac
m := FastEvol(T ,A,NA), UF := ∅

[2] for each ∃R(a) ∈ PreclT (NA) do
[3] if R(a, b) �∈ Ac

m for every b then
[4] for each ∃R− ¬C ∈ cl(T) do
[5] for each C(d) ∈ clT (A) \ clT (NA) do
[6] UF := UF ∪ {C(d)}
[7] for each ∃R(a) ∈ Ac

m \ PreclT (NA) do
[8] if R(a, b) �∈ Ac

m for every b then
[9] if there is a concept C in T ∪ A ∪NA s.t.
[10] (∃R− ¬C) ∈ cl(T) and C(d) ∈ clT (NA) \ clT (A) for some d then
[11] UF := UF ∪ {∃R(a)}
[12] Ac

m := Weeding(T ,Ac
m, UF)

Fig. 4. Algorithm CarefulEvol(T ,A,NA) for DL-LiteFR

One can see that, by its definition, careful semantics satisfies the principles EP1, EP2,
and EP3, where for EP3 the minimality should take into account carefulness. We ex-
hibit now the algorithm CarefulEvol, which computes the uniquely determined set Ac

m

of Equation (4). The preclosure of A wrt T , denoted PreclT (A), is a subset of clT (A)
obtained as follows: one removes from clT (A) all the assertions of the form ∃R(a),
whenever there is an assertion of the form R(a, c) in clT (A), for some constant c.
The preclosure is needed to detect unexpected RCFs. The algorithm CarefulEvol (see
Fig. 4) takes as input ABoxes A, NA, and a TBox T . It first computes the evolu-
tion wrt bold semantics. Then, it computes the set UF of assertions that cause unex-
pectedness in FastEvol(T ,A,NA) and belong to clT (A). Then it removes UF from
FastEvol(T ,A,NA) by means of Weeding.

Theorem 17. The algorithm CarefulEvol computes ABox evolution wrt careful seman-
tics, that is, (T ∪A)�cNA = T ∪NA∪CarefulEvol(T ,A,NA) and runs in polynomial
time.

Again, CarefulEvol differs from ComputeUpdate in [21]. Sometimes the first may drop
an existential restriction ∃R(a) and the second keep it, while sometimes it may be the
other way round.

We defer a detailed discussion on how bold and careful semantics are related to the
classical update and revision postulates of [4] to an extended version of this paper.

6 Conclusion

We studied evolution of DL-Lite KBs. There are two main families of approaches to evo-
lution: model-based and formula-based ones. We singled out and investigated a three-
dimensional space of model-based approaches, and proved that most of them are not
appropriate for DL-Lite due to their counterintuitive behavior and the inexpressibility
of evolution results. Thus, we examined formula-based approaches, showed that the

Evolution of DL-Lite Knowledge Bases 127

classical ones are again inappropriate for DL-Lite, and proposed a novel bold semantics.
We showed that this semantics can be computed in polynomial time, but the result is,
in general, non-deterministic. Then, we studied ABox evolution under bold semantics
and showed that the result in this case is unique. We developed a polynomial time al-
gorithm for DL-Lite KB evolution under this semantics, and an alternative optimized
one for ABox evolution. We presented a conceptual drawback of ABox evolution under
bold semantics and introduced careful semantics, which repairs the drawback. For this
approach we proved that the evolution result is unique and developed a polynomial time
algorithm to compute it.

Acknowledgements. The authors are partially supported by the EU projects ACSI (FP7-
ICT-257593) and Ontorule (FP7-ICT-231875). The second author is also supported by
the European Research Council grant Webdam (under FP7), agreement n. 226513.

References

1. Borgida, A., Brachman, R.J.: Conceptual modeling with description logics. In: [13], ch.10,
pp. 349–372

2. Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.: Ontology
change: Classification and survey. Knowledge Engineering Review 23(2), 117–152 (2008)

3. Abiteboul, S., Grahne, G.: Update semantics for incomplete databases. In: Proc. of VLDB
1985 (1985)

4. Katsuno, H., Mendelzon, A.: On the difference between updating a knowledge base and
revising it. In: Proc. of KR 1991, pp. 387–394 (1991)

5. Eiter, T., Gottlob, G.: On the complexity of propositional knowledge base revision, updates
and counterfactuals. Artificial Intelligence 57, 227–270 (1992)

6. Winslett, M.: Updating Logical Databases. Cambridge University Press, Cambridge (1990)
7. Flouris, G.: On belief change in ontology evolution. AI Communications 19(4) (2006)
8. Qi, G., Du, J.: Model-based revision operators for terminologies in description logics. In:

Proc. of IJCAI 2009, pp. 891–897 (2009)
9. Peters, R.J., Özsu, M.T.: An axiomatic model of dynamic schema evolution in objectbase

systems. ACM Trans. on Database Systems 22(1), 75–114 (1997)
10. De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On instance-level update and erasure

in description logic ontologies. J. of Logic and Computation, Special Issue on Ontology
Dynamics 19(5), 745–770 (2009)

11. Liu, H., Lutz, C., Milicic, M., Wolter, F.: Updating description logic ABoxes. In: Proc. of
KR 2006, pp. 46–56 (2006)

12. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3), 385–429 (2007)

13. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The De-
scription Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press, Cambridge (2003)

14. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and rela-
tions. J. of Artificial Intelligence Research 36, 1–69 (2009)

15. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking
data to ontologies. J. on Data Semantics X, 133–173 (2008)

128 D. Calvanese et al.

16. Ginsberg, M.L., Smith, D.E.: Reasoning about action I: A possible worlds approach. Techni-
cal Report KSL-86-65, Knowledge Systems, AI Laboratory (1987)

17. Forbus, K.D.: Introducing actions into qualitative simulation. In: Proc. of IJCAI 1989 (1989)
18. Borgida, A.: Language features for flexible handling of exceptions in information systems.

ACM Trans. on Database Systems 10(4), 565–603 (1985)
19. Dalal, M.: Investigations into a theory of knowledge base revision. In: Proc. of AAAI 1988,

pp. 475–479 (1988)
20. Calvanese, D., Kharlamov, E., Nutt, W.: A proof theory for DL-Lite. In: Proc. of DL 2007.

CEUR, vol. 250, pp. 235–242 (2007), ceur-ws.org
21. De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On the update of description logic

ontologies at the instance level. In: Proc. of AAAI 2006, pp. 1271–1276 (2006)
22. Zheleznyakov, D., Calvanese, D., Kharlamov, E., Nutt, W.: Updating TBoxes in DL-Lite. In:

Proc. of DL 2010. CEUR, vol. 573, pp. 102–113 (2010), ceur-ws.org

ceur-ws.org
ceur-ws.org

Ontology Similarity in the Alignment Space

Jérôme David1, Jérôme Euzenat1, and Ondřej Šváb-Zamazal2

1 INRIA & LIG
Grenoble, France

{Jerome.David,Jerome.Euzenat}@inrialpes.fr
2 University of Economics

Prague, Czech Republic
ondrej.zamazal@vse.cz

Abstract. Measuring similarity between ontologies can be very useful for differ-
ent purposes, e.g., finding an ontology to replace another, or finding an ontology
in which queries can be translated. Classical measures compute similarities or dis-
tances in an ontology space by directly comparing the content of ontologies. We
introduce a new family of ontology measures computed in an alignment space:
they evaluate the similarity between two ontologies with regard to the available
alignments between them. We define two sets of such measures relying on the ex-
istence of a path between ontologies or on the ontology entities that are preserved
by the alignments. The former accounts for known relations between ontologies,
while the latter reflects the possibility to perform actions such as instance import
or query translation. All these measures have been implemented in the OntoSim
library, that has been used in experiments which showed that entity preserving
measures are comparable to the best ontology space measures. Moreover, they
showed a robust behaviour with respect to the alteration of the alignment space.

1 Introduction

There are many uses for measuring the proximity between ontologies, such as finding
a representation in which some assertions can be translated or queried. In [1], we com-
pared distances between ontologies based on ontology content. In this paper, we extend
this work by distinguishing between measures in an ontology space, obtained by com-
paring the content of ontologies, and measures in an alignment space, obtained with
regard to how the ontologies are related by alignments.

We call alignment space a structure populated by ontologies related by alignments.
An alignment expresses relations between entities in the ontologies [2]. More specifi-
cally, a distance or similarity measure is alignment-based if it is computed without rely-
ing on the content of ontologies, but only on that of the alignments. So, such measures
can only be applied when alignments are available, but we assume that the semantic
web will have the characteristic of such a space with many ontologies already available
and some alignments, sometimes competing, between them.

Alignment space measures may seem more remote from the true distance between
ontologies because they do not directly consider ontology content. However, there are
cases in which they can be very useful. This is obviously the case when ontologies
are not available, e.g., because they are on a closed server, but alignments between

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 129–144, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

130 J. David, J. Euzenat, and O. Šváb-Zamazal

these ontologies and others exist. Such unavailable ontologies may be used as a target
ontology or as an intermediate ontology (and then alignments may be composed).

This is also the case when the similarity between ontologies has to reflect the abil-
ity to transform a statement or a query from one ontology to another, e.g., in semantic
peer-to-peer systems or dynamic composition of semantic web services. Since align-
ment spaces are structured by actual alignments, an alignment space measure is indeed
reflecting to some extent the capacity to translate ontology expressions. Such measures
are as useful as they can be computed quickly with respect to a particular query or
formula. On the other hand, distances in an ontology space only provide a measure of
closeness, and an alignment or a mediator remains to be produced.

In addition, even if ontologies are available, such measures may be useful as ap-
proximations of the “real distance” which are easier to compute than comparing the
ontologies: alignment-based measures can quickly provide a hint on what are the most
promising options. Indeed, because they already provide the structure to compute the
measure, alignments are faster to compare than elaborate comparison of two ontologies
as a whole.

In this paper we investigate the design of proximity measures in alignment spaces.
We introduce two families of measures and evaluate them with regard to other measures
in ontology spaces. We show that some of these are worth considering.

In the remainder, we first briefly consider the work designed for measuring a distance
or a similarity between ontologies (§2) showing that it is exclusively based on the con-
tent of ontologies. We then provide general definitions about ontologies, alignments and
similarities (§3). This introduces alignment spaces. We then define two families of align-
ment space measures: measures based on paths (§4) and measures based on coverage
(§5). Finally, we provide an experimental evaluation of these measures (§6), showing in
particular that coverage-based measures behave comparably to the best ontology-based
measures and that they are reasonably robust to data alteration. Complements to this
work can be found in [3].

2 Related Works

Most of the work dealing with ontology measures [4,5,6] is in reality concerned with
concept distances. Such measures are widely used in ontology matching algorithms [2].

[4] introduced a concept similarity based on terminological and structural aspects of
ontologies. This very precise proposal combines an edit distance on strings and a struc-
tural distance on hierarchies (the cotopic distance). The ontology similarity strongly
relies on the terminological similarity. OLA [7] uses a concept similarity for ontol-
ogy matching. This measure takes advantage of most of the ontological aspects (labels,
structure, extension) and selects the maximum similarity. It is thus a good candidate for
ontology similarity. The framework presented in [8] provides a similarity combining
string similarity, concept similarity – considered as sets – and similarity across usage
traces. [5] presents an elaborate framework for comparing concepts in a vector space
in which dimensions are primitive concepts. It is said to be extensible to ontologies as
well.

Ontology Similarity in the Alignment Space 131

Finally, [6] more directly considered metrics evaluating ontology quality. This is
nevertheless one step towards semantic measures since they introduce normal forms for
ontologies which could be used for developing syntactically neutral measures.

These works generally rely on elaborate distance or similarity measures between
concepts and they extend these measures to distances between ontologies. This exten-
sion is often considered as straightforward, although, there are many ways to do so. In
[1], we have explicitly proposed and evaluated a collection of ontology distances and
similarities based on the comparison of the content of ontologies.

[9] investigated ontology agreement which is used as a measure for choosing com-
patible ontologies. It can be seen as another kind of distance or similarity between
ontologies. However, the way agreement/disagreement is computed is still based on on-
tology content; alignments are only used for identifying connected entities which are
not immediately comparable, hence they are neutral. Link frequency – inverse dataset
frequency [10] is a “popularity” measure which relies on references between datasets.
Although it does not consider explicitly alignments and is not meant to be a similarity,
it uses techniques related to our coverage-based measures.

The present paper provides and evaluates measures which, contrary to all the cited
ones, are based on alignments between ontologies, hence the term “alignment space”.

3 Ontologies, Alignment Spaces and Similarities

In this section, we introduce the ingredients which will be used for defining alignment
space measures: ontologies and alignments, alignment spaces and finally the notion of
similarity.

3.1 Ontologies and Alignments

We will use very simple definitions of ontologies and alignments. In particular, we will
consider an ontology o represented as a set of named entities QL(o). These entities
could be classes (C), properties (P) or individuals (I): QL(o) = C ∪ P ∪ I .

Alignments express correspondences between entities belonging to different ontolo-
gies. Here we will only use a simplified version of alignments; a more complete defi-
nition and discussion can be found in [2]. Simple alignments contain correspondences
in which entities are the ontology vocabulary and the relations between entities are
equivalence (=) or subsumption (�,�).

Definition 1 (Simple alignment). Given two ontologies o and o′, a simple alignment
is a set of triples 〈e, e′, r〉, such as:

– e ∈ QL(o) and e′ ∈ QL′(o′) are named entities issued from the ontologies;
– r ∈ {=,�,�}.

The correspondence 〈e, e′, r〉 asserts that the relation r holds between the ontology
entities e and e′.

132 J. David, J. Euzenat, and O. Šváb-Zamazal

Example 1. In Figure 1, the alignments are as follows:

A1,2 is {〈a1, a2, =〉, 〈b1, b2, =〉, 〈c1, c2, =〉}
A1,3 is {〈d1, d3, =〉, 〈e1, e3, =〉}
A2,3 is {〈c2, c3, =〉, 〈d2, d3,�〉, 〈e2, e3,�〉}
A2,4 is {〈a2, a4, =〉, 〈b2, b4, =〉, 〈c2, c4, =〉}
A3,4 is {〈c3, c4, =〉, 〈d3, d4, =〉, 〈e3, e4, =〉}

We use the notation A(s) for the action of replacing any ontology entity of a set of enti-
ties s by the term it is in correspondence through A if any (otherwise, the entity is simply
skipped). More precisely, the replacement is performed if there is a unique correspon-
dence for each entity in s with a relation belonging to a set of relations θ. Depending on
the task for which the measure is performed θ may be different. For instance, if the task
is to transform a query, then taking θ = {=} provides exact transformations. However,
if completeness is not a concern but correctness is, using θ = {=,�} provides more
options for transforming entities which remain correct (because it selects a subclass of
the initial one). This is the value of θ used in the examples.

Definition 2 (Application of an alignment). Given A a functional alignment, i.e., an
alignment in which each entity appears at most once, θ a set of relations and s a set of
ontology entities, the application of A to s denoted by A(s) is1:

A(s) = {e′|∃!〈e, e′, r〉 ∈ A such that e ∈ s ∧ r ∈ θ}

Example 2. Given the alignments of Example 1, A1,2({a1, c1, e1}) = {a2, c2} Align-
ments can be used in both ways through the inverse operation (−1), such that�−1 is�,
and =−1 is =. For instance, A−1

2,3 = {〈c3, c2, =〉, 〈d3, d2,�〉, 〈e3, e2,�〉} can be used
for converting queries from o3 to o2.

3.2 Alignment Space

We call “alignment space” a set of ontologies and a set of alignments between these
ontologies. Measuring proximity in a frozen alignment space allows for grounding the
measure on actual alignments instead of non existing potential alignments.

Definition 3 (Alignment space). An alignment space 〈Ω, Λ〉 is made of a set Ω of
ontologies and a set Λ of simple alignments between ontologies in Ω. We denote as
Λ(o, o′) the set of alignments in Λ between o and o′.

An alignment space can be represented as a multigraph2 GΩ,Λ in which ontologies are
vertices and alignments are edges. Figure 2 (left) represents the graph corresponding to
the alignments and ontologies of Figure 1.

1 The notation ∃! stands for “there exists a unique”.
2 A multigraph is needed, because there may be several alignments available between two

ontologies.

Ontology Similarity in the Alignment Space 133

o1

a1

b1 c1

d1 e1

o3

a3

b3

f3 g3

c3

d3 e3

o2

a2

b2

f2 g2

c2

d2 e2

o5

b5

f5

h5 j5

g5

o4

a4

b4

f4 g4

c4

d4 e4

A1,3

A1,2

A2,3

�

A2,4

A3,4

Fig. 1. Five ontologies (o1, o2, o3, o4 and o5) and five alignments (A1,2, A1,3, A2,3, A2,4 and
A3,4)

It is possible to define the operation of inverse of an alignment (−1), composition
of two consecutive alignments (·) and union of two alignments between the same on-
tologies (∪) [11]. The inverse, composition or union closure of an alignment space is
obtained by applying these operations to all possible (pairs of) alignments within the
space until they do not generate any new alignments. The semantics of a closed space
is the same as the initial space.

A path is simply defined as a path in GΩ,Λ.

Definition 4 (Path). Given a set of alignments Λ, a path π in Λ is a finite sequence of
alignments A1 · . . . An such that for each i ∈ [1, n − 1], Ai ∈ Λ(oi, o

′
i) and Ai+1 ∈

Λ(oi+1, o
′
i+1), o′i = oi+1. The set of paths in an alignment space is named Π and

the set of paths starting at an ontology o and ending at an ontology o′ is identified by
Π(o, o′).

Example 3. For instance, Π(o1, o4) contains the four following acyclic paths: A1,2 ·
A2,4, A1,3 · A3,4, A1,2 ·A2,3 ·A3,4 and A1,3 ·A−1

2,3 · A2,4.

We extend the notation A(s) to paths. If π = A1 · . . . An, then |π| = n and π(s) =
An(. . . A1(s) . . .).

Definition 5 (Application of a path). Given π = A1 · . . . An a functional path, θ a set
of relations and s a set of ontology entities, the application of π to s denoted by π(s) is:

π(s) = {en|∀i∃!〈ei−1, ei, r〉 ∈ Ai such that e0 ∈ s ∧ r ∈ θ}

By convention, we introduce the empty path ε from one ontology to itself, such that
ε(s) = s and |ε| = 0. We note o∈̇π if o is one of the ontologies involved in an alignment
of the path π. There may be an infinite number of paths due to circuits in the graph.

134 J. David, J. Euzenat, and O. Šváb-Zamazal

3.3 Algebraic Similarity Properties

We consider ontology measures which are functions from two ontologies to a scalar
domain. We use the term “measure” for both similarities and dissimilarity. A similarity
is a a real positive function σ of two ontologies which is as large as ontologies are
similar. It is defined as follows.

Definition 6 (Similarity). A similarity σ : Ω × Ω → R is a function from a pair of
entities to a real number expressing the similarity between two objects such that:

∀o, o′ ∈ Ω, σ(o, o′) ≥ 0 (positiveness)

∀o ∈ Ω, ∀o′, o′′ ∈ Ω, σ(o, o) ≥ σ(o′, o′′) (maximality)

∀o, o′ ∈ Ω, σ(o, o′) = σ(o′, o) (symmetry)

Some authors consider a ‘non symmetric (dis)similarity’ [12]; we then use the term non
symmetric measure or pre-similarity. All the measures presented in this paper are pre-
similarities and labelled as such. However, if applied to a symmetrically closed space,
they become similarities.

Very often, the measures are normalised. This is especially useful when the dissimi-
larity of different kinds of entities must be compared. Reducing each value to the same
scale in proportion to the size of the considered space is the common way to normalise.

Definition 7 (Normalised measure). A measure is said to be normalised if it ranges
over the unit interval of real numbers [0 1].

We consider only normalised measures and assume that a measure between two ontolo-
gies returns a real number between 0 and 1.

In the remainder, we define measures based on the structure of alignment spaces in-
stead of relying directly on the ontology content. A first approach, considers alignment
spaces as graphs and the proximity between ontologies is based on their topology (§4).
Another family of measures is based on the capacity of alignments to cover a large
proportion of the ontology entities as well as to keep them distinct (§5).

4 Path-Based Measures

The first kind of similarity between two ontologies may be based on paths between
these ontologies in the graph GΩ,Λ. In fact, the existence of a path guarantees that it
is possible to transform queries from one ontology to another. This can be refined by
considering different values if the path is made of zero, one or several alignments:

Definition 8 (Alignment path pre-similarity)

σap(o, o′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if o = o′

2/3 if o
= o′ and Λ(o, o′)
= ∅
1/3 if o
= o′ and Λ(o, o′) = ∅ and Π(o, o′)
= ∅
0 otherwise

Ontology Similarity in the Alignment Space 135

Example 4. From the alignment space of Figure 1, we can see that σap(o1, o2) = 2/3
because there is an alignment between o1 and o2, σap(o1, o4) = 1/3 because there are
paths between o1 and o4, and σap(o4, o1) = 1/3 because there are also paths using
inverse operations. All the values are given in Figure 2.

Such a measure is minimal between two non connected ontologies and it is normalised.
It is symmetric as long as alignments are considered symmetric, i.e., as soon as an
alignment A is available, it is assumed that A−1 is available as well. It is relatively
easy to compute and it reflects the possibility to propagate information between two
ontologies. However, it is not very precise in the number of transformations that may
have to be performed to propagate this information.

So, a natural measure depends on the shortest path in the graph GΩ,Λ. Indeed, the
fewer alignments are applied to a query, the more it is expected that it is an accurate
translation (in first approximation).

Definition 9 (Shortest alignment path pre-similarity). Given an alignment space
〈Ω, Λ〉, the shortest alignment path pre-similarity σsap between two ontologies o, o′ ∈
Ω is the complement to 1 of the length of the shortest path between o and o′ in GΩ,Λ:

σsap(o, o′) =

{
1− minπ∈Π(o,o′) |π|

∅Ω,Λ
if Π(o, o′)
= ∅

0 otherwise

In order to normalise the similarity, ∅Ω,Λ can either be the size of |Ω|, or the diameter
of GΩ,Λ, i.e., the length of the longest shortest path, plus 1.

Example 5. From the alignment space of Figure 1, if we take the size of the network as
(∅Ω,Λ = |Ω| = 5), σsap(o1, o2) = 4/5 because there is an alignment between o1 and
o2 which is a path of length 1, σsap(o1, o4) = 3/5 because the shortest path between
o1 and o4, e.g., through o2, is of length 2, and σsap(o4, o1) = 3/5 because one can take
the converse of the previous path. All the values are given in Figure 2.

The computation of this measure is not significantly more expensive than the computa-
tion of the alignment path pre-similarity. The shortest alignment path pre-similarity is
more precise because it depends on the minimum necessary transformations between
the two ontologies.

However, an alignment between two ontologies can be just empty: this does not
mean that the ontologies are very close but rather that they are very different. Even
if alignments are not empty, this measure does not tell how much of an ontology is
preserved through the translation. Indeed, considering the alignment space of Figure 2,
it shows that for both measures, o4 is farther from o1 than o3, however, if one looks at the
alignments in Figure 1, the composition of A1,2 and A2,4 preserves more information
than the alignment A1,3. This is the reason why we consider more precise measures.

5 Coverage-Based Measures

If we want to go further in measuring the precise proximity for querying applications,
it may be useful to consider the ratio of elements of the ontology which are covered by

136 J. David, J. Euzenat, and O. Šváb-Zamazal

o1

o2

o3

o4

o5

A1,
2 A

2,4

A
1,3

A
2
,3

A3,
4

σap o1 o2 o3 o4 o5
o1 1 2/3 2/3 1/3 0
o2 2/3 1 2/3 2/3 0
o3 2/3 2/3 1 2/3 0
o4 1/3 2/3 2/3 1 0
o5 0 0 0 0 1

σsap o1 o2 o3 o4 o5
o1 1 4/5 4/5 3/5 0
o2 4/5 1 4/5 4/5 0
o3 4/5 4/5 1 4/5 0
o4 3/5 4/5 4/5 1 0
o5 0 0 0 0 1

Fig. 2. Alignment space (left) corresponding to Figure 1 and the corresponding path-based mea-
sures (right). σsap is computed with ∅Ω,Λ = |Ω| = 5 (using the length of the longest shortest
path (2) plus 1 would have given the same results as σap in this case).

an alignment. In fact this can be applied to any set of elements, not just an ontology.
Hence the coverage can be given with regard to an ontology entity (the ratio is 1 or 0),
to a query or to an ontology. It corresponds to the percentage of entities which have an
image through the alignment.

Definition 10 (Alignment coverage). Given a set of ontology entities s over an ontol-
ogy o, a set of relations θ, and an alignment A ∈ Λ(o, o′), the coverage of s by A is
given by:

cov(s, A) =
|{e ∈ s|∃〈e, e′, r〉 ∈ A ∧ r ∈ θ}|

|s|

Example 6. In Figure 3, the coverage of alignment A0−4 is 2/3 because out of a, b and
c, only b and c are covered by the alignment.

There is a second important notion which is the ability for the alignment to preserve
the difference between entities which are deemed different in the source ontology. The
alignment distinguishability measure is the proportion of matched entities which are
kept distinct. This could be considered as preservation of information.

Definition 11 (Alignment distinguishability). Given a set of ontology entities s over
an ontology o, a set of relations θ, and an alignment A ∈ Λ(o, o′), the distinguishability
(or separability) of s by A is given by:

sep(s, A) =
|{e′|∃〈e, e′, r〉 ∈ A ∧ e ∈ s ∧ r ∈ θ}|
|{e ∈ s|∃〈e, e′, r〉 ∈ A ∧ r ∈ θ}|

Example 7. In Figure 3, the distinguishability of alignment A0−4 is 1/2 because out of
b and c covered by the alignment, there remain only one image in A0−4({b, c}).

For functional alignments, separability remains smaller than 1. These two notions are
obviously tied to the concepts of existence and injectivity of a function. cov depends
on QL(o) alone, while sep also depends on QL′(o′), hence these measures cannot be
reduced to one another.

In the following, we use a measure which accounts for both coverage and distin-
guishability at once: instead of making the count of ontology entities which have an
image by the alignment, we only count those distinct images. Hence the lack of distin-
guishability automatically lowers the returned value.

Ontology Similarity in the Alignment Space 137

Definition 12 (Alignment coverage distinguishability). Given a set of ontology enti-
ties s over an ontology o and an alignment A ∈ Λ(o, o′), the coverage distinguishability
of s by A is given by:

covdis(s, A) = cov(s, A)× sep(s, A) =
|A(s)|
|s|

Example 8. In Figure 3, the coverage distinguishability of alignment A0−4 is 1/3 be-
cause out of a, b and c, there remain only one image in A0−4({a, b, c}). Other examples,
are provided in Figure 3.

This measure can easily be extended to paths. If we still retain functional paths, the
relation between cov, sep and covdis of Definition 12 still holds for paths. Figure 3
shows the differences between the three measures.

a
b
c

0

1
2

3

4

measure coverage distinguishability covdis
0-1 1 1 1
0-2 1/3 1 1/3
0-3 1 2/3 2/3
0-4 2/3 1/2 1/3

Fig. 3. Simple alignments (left) and the corresponding coverage and distinguishability measures
(right)

5.1 Largest Coverage

The natural measure is that of largest coverage.

Definition 13 (Largest covering pre-similarity). Given an alignment space 〈Ω, Λ〉,
the largest covering pre-similarity σlc between two ontologies o, o′ ∈ Ω is

σlc(o, o′) = max
A∈Λ(o,o′)

covdis(o, A)

Such a measure is clearly not symmetric, even if the alignment is only made of equal-
ities: the ratio depends on the size of the source ontology, independently of the target
ontology. It is not definite either: if all information is preserved and distinguishable, the
similarity will be 1 though the ontologies are not the same.

We have applied this measure to direct alignments and not to paths. However, it may
be that a path better covers and preserves the ontology entities than a direct alignment.

For instance, if there were a direct alignment A1,4 = {〈a1, a4, =〉} from o1 to o4.
Then the coverage would be 1/5, while the coverage provided by the path A1,2 · A2,4
is 3/5. In that respect, o4 is closer to o1 than o3 is.

Hence, it is necessary to apply the measure to the paths which lead to an ontology.
Composing the measures obtained by the alignments in order to get the measure for the
path is not sufficient. Indeed, if two alignments have a similarity of 80%, the similarity

138 J. David, J. Euzenat, and O. Šváb-Zamazal

of their compound alignment can be anything between 0% and 80%. We have computed
the product of the similarity as the σ×lc in Table 1.

It is thus necessary to evaluate path coverage distinguishability. In order to address
this problem, we introduce measures which are based on path instead of simple align-
ments. The first one is the largest covering preservation pre-similarity:

Definition 14 (Largest covering preservation pre-similarity). Given an alignment
space 〈Ω, Λ〉, the largest covering preservation pre-similarity σlcp between two ontolo-
gies o, o′ ∈ Ω is:

σlcp(o, o′) = max
π∈Π(o,o′)

covdis(o, π)

Example 9. From the alignment space of Figure 1, σlcp(o1, o2) = 3/5 because over 5
entities in o1 the alignment A1,2 preserves 3, σlcp(o1, o4) = 3/5 because the path A1,2 ·
A2,4 between o1 and o4 also preserves the same 3 entities (other paths of Example 3
preserve less entities). This time σlcp(o4, o1) = 3/8 because o4 contains 8 entities and
the A−1

2,4 · A−1
1,2 path preserves 3 entities. All the values of measures from o1 are given

in Table 1.

5.2 Union Path Coverage

So far, we only considered that a query would take one path at a time and that the
query would be entirely evaluated through this path. In this case, the above measure
is perfectly accurate. However, very often a query is split into parts which are sent to
different peers and the results are composed through join or union depending on the
query.

In this case, the measure above does not reflect the semantics of alignment spaces
and does not provide a measure of the proximity of the two ontologies for evaluating
queries. The meaning of alignment spaces can basically be rendered by the transitive
and union closure of this alignment space3. In consequence, the coverage distinguisha-
bility should be computed not on the path that brings the maximal coverage but on the
coverage provided by the combination of all the possible paths.

Definition 15 (Union path coverage pre-similarity). Given an alignment space
〈Ω, Λ〉, the union path coverage σupc between two ontologies o, o′ ∈ Ω is:

σupc(o, o′) =
|(
⋃

π∈Π(o,o′) π)(s)|
|s|

The set of paths, eventually containing cycles, may be infinite; but what they preserve
of s is necessarily finite, hence a finite subset of these paths is sufficient for computing
σupc.

This measure takes full advantage of all the alignments provided within the align-
ment space. In particular, it is able to account for the fact that, in the example of
Figure 1, any query expressed with regard to entities of ontology o1 can be evaluated in
ontology o4, yet through different paths depending on the considered entities.

3 We assume here that this alignment space is consistent.

Ontology Similarity in the Alignment Space 139

Example 10. From the alignment space of Figure 1, σupc(o1, o2) = 4/5 because over 5
entities in o1 the alignment A1,2 preserves 3 but in addition the path A1,3·A−1

2,3 preserves
d1. σupc(o1, o4) = 1 because the path A1,2 ·A2,4 between o1 and o4 also preserves the
same 3 entities and the path A1,3 · A3,4 preserves the two remaining ones. This time
σupc(o4, o1) = 5/8 because out of the 8 entities in o4, the A−1

2,4 · A−1
1,2 path preserves

3 entities and A−1
3,4 · A−1

1,3 preserves two other ones. All the values of measures from o1
are given in Table 1.

Table 1. Coverage and distinguishability based similarities with regard to o1 for the ontologies
of Figure 1 (with θ = {=,�})

measure o1 o2 o3 o4 o5
σlc 1 3/5 2/5 0 0
σ×lc 1 3/5 2/5 9/35 0
σlcp 1 3/5 2/5 3/5 0
σupc 1 4/5 3/5 1 0

5.3 OntoSim

OntoSim is a Java library for computing distance or similarity measures between on-
tologies4. It can be used by other tools, such as matchers, through its API.

OntoSim implements the measures described in [1] and here. The alignment space
measures presented here usually rely on the sets of paths between two nodes in a graph
which is a highly complex problem (the number of acyclic paths being n! in a com-
plete graph). However, because we have a quantity to optimise (the degree of cover-
age), this provides a ground for implementing branch-and-bound strategies (even for
the union path coverage). In addition, we have developed a focussed search heuris-
tics aiming at maximising the potentially preserved coverage (preservation can only
decrease monotonously). Both approaches put together are really efficient in practice.

6 Comparison of Presented Measures

In order to better understand how these measures behave, we have performed experi-
ments. These experiments follow those comparing measures in ontology spaces on the
ontology alignment evaluation initiative (OAEI) benchmark ontologies [1]. They es-
pecially offered a separate evaluation of entity similarity measures and set similarity
measures. The following experiment compares ontology space measures and alignment
space measures on the OntoFarm data set (OAEI conference data set). Two experiments
have been carried out for evaluating respectively the agreement between different mea-
sures and the robustness of alignment space measures.

6.1 Dataset Description

There are very few datasets available which have the structure of an alignment space:
many ontologies and alignments. The OntoFarm dataset5 [13] is made of a collection of

4 http://ontosim.gforge.inria.fr
5 http://nb.vse.cz/~svatek/ontofarm.html

http://ontosim.gforge.inria.fr
http://nb.vse.cz/~svatek/ontofarm.html

140 J. David, J. Euzenat, and O. Šváb-Zamazal

15 ontologies dealing with the conference organisation domain. Ontologies are based
upon three types of underlying resources:

– actual conference (series) and its web pages,
– actual software tool for conference organisation support,
– experience of people with personal participation in organisation of actual

conference.

This dataset has been used several times in the OAEI evaluation campaigns. We have
used those of 2009. For the experiment purpose, we have used a set of 105 alignments
obtained as a majority vote between 7 matchers (Aroma, ASMOV, DSSim, Falcon, Lily,
OLA, TaxoMap). We have suppressed empty alignments, resulting in 91 alignments
containing 827 correspondences. Alignments are non-oriented: they can be traversed in
both ways.

6.2 Agreement

The first experiment aims at comparing rank correlation between measures. Its goal is
to compare if the proximity orders induced by alignment space measures can be corre-
lated with the proximity orders induced by ontology space measures. We compare the
alignment space measures with the measures that have been found the best in our pre-
vious study [1]. JaccardVM and CosineVM are measures between vectors determined
by the terms used to describe entities in both ontologies, EntityLexicalMeasure com-
putes a similarity between entities from their annotations, e.g., labels and comments,
and extract a similarity between ontologies, while TripleBasedEntitySim compares en-
tities on the basis of the RDF triples that involve them and extract a similarity between
ontologies.

We use the standard Kendall τb rank correlation for computing the correlation be-
tween compared measures. In these experiments, the significance test at level of 5%
gives a confidence interval of [−0.09; 0.09].

Agreement results. The resulting agreement is shown in Table 2 using the Kendall τb

correlation coefficient [14]. It ranges between −1 and 1, hence all these measures are
correlated to some extent.

More interesting information is found when using these data for clustering the mea-
sures with respect to their agreement. Hierarchical clustering from agreement provides
the dendrogram of Figure 4 (we have used single linkage, but the other linkage measures
give the same results).

The two path measures, i.e., σap and σsap, do not agree with other measures. This
can be easily explained because the graph of alignments is very connected (91 align-
ments out of 105 possible ones) so these measures are not very informative: the on-
tologies come in few groups depending on how they are connected to the others, most
of them being reachable through one alignment. This is not discriminating enough and
it is penalised by the τb variant. As expected, this shows that these measures are very
dependent on the topology of the alignment space.

The most interesting aspect of this test is that coverage-based measures, i.e., σlcp

and σupc, are far more correlated with the content based measures than to the path-
based measures. They are even more correlated to the vector-space measures than the

Ontology Similarity in the Alignment Space 141

Table 2. Agreement results between measures

σsap σlcp σupc Ja
cc

ar
dV

M

C
os

in
eV

M

E
nt

it
yL

ex
ic

al
M

ea
su

re

T
ri

pl
eB

as
ed

E
nt

it
yS

im

Alignment path (σap) 0.881 0.147 0.147 0.418 0.315 0.117 0.115
Shortest path (σsap) - 0.138 0.138 0.414 0.32 0.099 0.092

Largest covering (σlcp) - - 0.237 0.169 0.127 0.086 0.081
Union path coverage (σupc) - - - 0.169 0.127 0.086 0.081

JaccardVM - - - - 0.681 0.288 0.272
CosineVM - - - - - 0.196 0.158

EntityLexicalMeasure - - - - - - 0.902

σap

σsa
p

σ lc
p

σu
pc

Ja
cc

ard
VM

Cos
ine

VM

Enti
tyL

ex
ica

lM
ea

su
re

Trip
leB

as
ed

Enti
tyS

im

.237

.881

.681

.418

.288
.169

.902

Fig. 4. Cluster dendrogram for measures based on alignment and ontology space (figures indicate
agreement)

vector space measures agree with the entity-based measures. This is a very good sign
especially that in our previous experiments we saw that JaccardVM and TripleBasedEn-
titySim were the best ontology space measures. This shows that these measures, which
do not have access to the content of ontologies, are meaningful with regard to this
content.

6.3 Robustness

The second experiment focuses on robustness of alignment space measures. For that
purpose, alignment spaces are altered in a systematic manner. We have retained two
variants for this degradation:

variant 1: Randomly remove n% of alignments in an alignment space
variant 2: Randomly remove n% of correspondences in all alignments

142 J. David, J. Euzenat, and O. Šváb-Zamazal

The experiment consisted of evaluating, for each measure, the agreement between the
alignment space measure without degradation and the same measure computed on the
altered alignment space. This experiment has been done with several levels of degrada-
tion, from 10% to 100% with a step of 10%. Since this procedure is based on random
degradation, we repeated it 10 times for each level and averaged the results.

Agreement is still measured by the Kendall τb rank correlation between the measure
obtained on the initial alignment space and that obtained on the degraded alignment
space.

For the second variant, we only compare the two coverage measures because this
type of degradation has no impact on path measures since it preserves the topology of
alignment spaces.

We expect that the degradation obtained with the first variant will have a more nega-
tive impact on the robustness of measures.

Results of Variant 1. Results of this first variant are given in Figure 5 (left). Path-based
measures do not have good results for the same reason as before: the graph being very
connected, most ontologies are at the same distance to one another, then the τb coeffi-
cient penalises this behaviour. Still the correlation remains positive (0 means random).

Coverage-based measures have a linearly decreasing curves. This result shows the
strong dependency of all these measures on available alignments. Both measures are
very close, and indeed, we have observed this in other experiments as well.

Results of Variant 2. Results of the second variant are given in Figure 5 (right). Both
measures show a sub-linear degradation: this shows that they are quite robust to corre-
spondence degradation. We replicated these experiments with different datasets, differ-
ent modus operandi and different agreement measures. The results are the same with
a different amplitude of the robustness to the correspondence degradation (which is

degradation0. 1.0.

a
g
re

em
en

t

1.

degradation0. 1.0.

a
g
re

em
en

t

1.

alignment path
σap

shortest alignment path
σsap

largest covering
σlcp

union path coverage
σupc

Fig. 5. Robustness of measures in function of the degree of degradation (Variant 1: alignment
degradation and 2: correspondence degradation)

Ontology Similarity in the Alignment Space 143

sometimes better and sometimes worse than the one observed here, but always more
resistant than linear).

Results of σlcp (degree of agreement with non-degraded variant) seems higher, there-
fore we can conclude that it is less dependent on particular correspondences (this does
not mean that they are better, just more robust).

The robustness tests show that alignment space measures are indeed correlated with
the quality of the alignment space (so they are not random measures). In both cases,
the measures are rather robust since their agreement with their initial behaviour de-
creases less than the degradation. The coverage-based measures shows some indepen-
dence from correspondences degradation.

7 Conclusion

We have introduced a new way to measure similarity between ontologies adapted to a
context in which alignments are available, such as the semantic web or semantic peer-
to-peer systems [15]. Such measures rely on the available alignments instead of the
content of the ontologies. They are useful when some ontologies are not available or
when the proximity must denote the ability to transfer information from one ontology
to another.

We have defined precisely some possible such measures. Path-based measures take
into account the topology of alignment spaces. Coverage-based measures are based
on the coverage and distinguishability of alignments and can account for combined
alignment paths for transforming queries. This allows global reasoning on alignments
alone which is something less easy in local environments.

The proposed measures have been implemented in the OntoSim library and com-
pared to measures taking advantage of ontology content in order to detect similarity.
Although not strongly correlated with the best measures, the coverage-based measures
provide results comparable to these. Moreover, in addition to not depend on the on-
tology content, they have proved to be reasonably robust to errors in the alignments,
especially if individual correspondences are missing. This is very encouraging.

The proposed measures have been designed with simplifying hypotheses that re-
quires further investigation in order to relax them. This mostly concerns taking into
account different alignment relations and alignment confidence, in the style of [11], as
well as considering more closely non functional alignments. It would also be interesting
to look further into the joint use of ontology space and alignment space measures.

Acknowledgements. This work has been partly supported by the European Commis-
sion IST project NeOn (IST-2006-027595). Ondřej Šváb-Zamazal has been partly sup-
ported by grant no. P202/10/1825 of the Grant Agency of the Czech Republic.

References

1. David, J., Euzenat, J.: Comparison between ontology distances (preliminary results). In:
Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K.
(eds.) ISWC 2008. LNCS, vol. 5318, pp. 245–260. Springer, Heidelberg (2008)

144 J. David, J. Euzenat, and O. Šváb-Zamazal

2. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
3. Euzenat, J., Allocca, C., David, J., d’Aquin, M., Le Duc, C., Svab-Zamazal, O.: Ontology

distances for contextualisation. deliverable 3.3.4, NeOn (2009)
4. Mädche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A.,

Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer,
Heidelberg (2002)

5. Hu, B., Kalfoglou, Y., Alani, H., Dupplaw, D., Lewis, P., Shadbolt, N.: Semantic metrics. In:
Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 166–181. Springer,
Heidelberg (2006)

6. Vrandečić, D., Sure, Y.: How to design better ontology metrics. In: Franconi, E., Kifer, M.,
May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 311–325. Springer, Heidelberg (2007)

7. Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in OWL-lite. In: Proc. 16th
European Conference on Artificial Intelligence (ECAI), Valencia (ES), pp. 333–337 (2004)

8. Ehrig, M., Haase, P., Hefke, M., Stojanovic, N.: Similarity for ontologies – a comprehen-
sive framework. In: Proc. 13th European Conference on Information Systems, Information
Systems in a Rapidly Changing Economy (ECIS), Regensburg, DE (2005)

9. d’Aquin, M.: Formally measuring agreement and disagreement in ontologies. In: Proc. 5th
International Conference on Knowledge Capture (K-CAP), Redondo Beach (CA US), pp.
145–152 (2009)

10. Delbru, R., Toupikov, N., Catasta, M., Tummarello, G., Decker, S.: Hierarchical link analy-
sis for ranking web data. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stucken-
schmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6089, pp. 225–239.
Springer, Heidelberg (2010)

11. Euzenat, J.: Algebras of ontology alignment relations. In: Sheth, A.P., Staab, S., Dean, M.,
Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318,
pp. 387–402. Springer, Heidelberg (2008)

12. Tverski, A.: Features of similarity. Psychological Review 84(2), 327–352 (1977)
13. Šváb, O., Svátek, V., Berka, P., Rak, D., Tomášek, P.: Ontofarm: Towards an experimental

collection of parallel ontologies. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.)
ISWC 2005. LNCS, vol. 3729. Springer, Heidelberg (2005)

14. Kendall, M.: Rank correlation methods, Griffin, London, UK (1970)
15. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.: Contextual-

izing ontologies. Journal of Web Semantics 1(1), 325–343 (2004)

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 145–160, 2010.
© Springer-Verlag Berlin Heidelberg 2010

SameAs Networks and Beyond: Analyzing Deployment
Status and Implications of owl:sameAs in Linked Data

Li Ding, Joshua Shinavier, Zhenning Shangguan, and Deborah L. McGuinness

Tetherless World Constellation, Rensselaer Polytechnic Institute
{dingl,shinaj,shangz,dlm}@cs.rpi.edu

Abstract. Millions of owl:sameAs statements have been published on the Web
of Data. Due to its unique role and heavy usage in Linked Data integration,
owl:sameAs has become a topic of increasing interest and debate. This paper
provides a quantitative analysis of owl:sameAs deployment status and uses
these statistics to focus discussion around its usage in Linked Data.

Keywords: owl:sameAs, Linked Data, Network.

1 Introduction

The Web of Data is growing rapidly, with an ever-expanding set of inter-connected
datasets depicted in the Linking Open Data (LOD) cloud diagram [1]. In the Web of
Data, an increasing number of owl:sameAs statements have been published to support
merging distributed descriptions of equivalent RDF resources. Although these state-
ments are just binary relations, when all of these owl:sameAs statements are taken
together, they form a very large directed graph connecting RDF resources to each
other. We will refer to this large graph of RDF resources connected by sameAs
statements as a SameAs network. SameAs networks are interesting both for their
structural properties, e.g. size, diameter and in/out-degree and their semantic proper-
ties, e.g. reflexivity, symmetry and transitivity.

According to OWL semantics [2], all RDF resources in a single sameAs network
are indistinguishable, such that they can be merged into one RDF resource and change
the structure of RDF graph. However, recent literature [3-7], mainly from the Linked
Data community, reports many issues related to owl:sameAs usage in the Web of
Data: owl:sameAs is often used in ways that do not strictly agree with the official
semantics of owl:sameAs in OWL. Some researchers [4, 6] further called for new
ontological semantic relations to complement owl:sameAs in capturing similarity
relations between RDF resources. To the best of our knowledge, most reported results
on owl:sameAs are derived from very small sample datasets, and no statistically sig-
nificant analysis has been conducted on the deployment status and implications of
owl:sameAs in the Web of Data.

We conducted a large scale analysis on SameAs networks extracted from the
Web of Data to answer two types of key questions: (i) How is owl:sameAs actually
deployed? How many SameAs networks have been published? Do these SameAs

146 L. Ding et al.

networks have interesting topological properties? (ii) What are the implications of
owl:sameAs inference in Linked Data integration? How can owl:sameAs be used to
connect the ontologies of the datasets in the LOD cloud? In order to reduce the bias
caused by a small sample dataset, we use the Billion Triple Challenge (BTC) 2010
dataset which covers a significant portion of the Web of Data.

This work provides contributions related to the definition and analysis of SameAs
networks. We highlight the practical value of our work in network settings focusing
on (1) how Linked Open Datasets are connected and (2) how sameAs networks may
be used for automated ontology mapping and error detection. The rest of this paper is
structured as follows. Section 2 defines SameAs networks and identifies research
problems. Section 3 describes the sample dataset extracted from the BTC 2010 dataset
and experiment settings. Sections 4, 5 and 6 report the analytical discoveries on
SameAs networks, along with two special classes of networks (Pay-Level Domains
and Class-Level Similarity). Section 7 reviews related work. Section 8 concludes our
work with future directions.

2 SameAs Networks

The importance of owl:sameAs in Linked Data integration is widely recognized,
however there have not been many studies characterizing its usage in very large data-
sets. The goal of our work was to review existing usage of owl:sameAs in a dataset
that contains a significant number of sameAs statements and also to analyze usage in
a practical Linked Data integration setting. We therefore will define the notion of a
SameAs network and then show a selection of research problems derived from the
motivating questions from Section 1.

2.1 Definitions and Notations

Definition 1. SameAs statement. A SameAs statement is an RDF triple which con-
nects two RDF resources by means of an owl:sameAs predicate.

Definition 2. Predicate-based Sub-graph Filter. A Predicate-based Sub-graph Fil-
ter is a function H = psf(G, P), where H and G are RDF graphs and P is a set of RDF
properties. This function returns H which is a sub-graph of G, and the predicate of any
triple in H is a member of P.

Definition 3. SameAs network. Given an RDF graph G, a SameAs network SN in G is
a weakly connected component1 of psf(G, {owl:sameAs}).

Figure 1 illustrates an example SameAs Network, where an RDF resource
“dbpedia:Paul_Allen”2 is denoted as a node, and a SameAs statement

 1 A weakly connected component is a maximum sub-graph where all pairs of nodes are by an

undirected path. See
http://mathworld.wolfram.com/WeaklyConnectedComponent.html

 2 Throughout this paper, we use QName to encode URI reference and Turtle to encode RDF
triples and RDF graphs. See http://www.w3.org/TeamSubmission/turtle/

 SameAs Networks and Beyond 147

“dbpedia:Paul_Allen owl:sameAs umbel:Paul_Allen” is denoted as a directed arc.
This figure also exhibits additional interesting structural patterns: (i) two RDF re-
sources could be linked by one-way or and reciprocal owl:sameAs statements; and (ii)
there exist authority nodes (with high in-degree, e.g. dbpedia:Paul_Allen) and hub
nodes (with high out-degree, e.g. freebase:guid.9202a8c04000641f800000000002e633).

Fig. 1. An example SameAs network about “Paul Allen”

The official semantics of owl:sameAs is specified in OWL [2]: “an owl:sameAs
statement indicates that two URI references actually refer to the same thing.” Recent
studies reported diverse usage that is NOT consistent with the official semantics:

• Is owl:sameAs symmetric? Vatant [7] suggested that owl:sameAs, when used
in mashup, is not necessarily a symmetric property, i.e., “X owl:sameAs Y”
does not imply “Y owl:sameAs X”. Therefore, two RDF resources X and Y
are considered to be strongly equivalent only when their owners make recipro-
cal SameAs statements.

• Is owl:sameAs transitive? Jaffri et al [5] reported that the equivalence relation-
ship represented by owl:sameAs is often context-dependent, and is accurate
only within the context of particular applications. While transitivity is auto-
matically granted by OWL semantics, SameAs statements asserted in the Web
of Data seldom guarantee transitivity.

2.2 SameAs Networks Analysis

In order to analyze the deployment status and implications of SameAs Networks, we
identify the following three research problems:

How have SameAs Networks been deployed on the Web of Data? Since we are not
the owners of the SameAs statements in the Web of Data, it would be quite subjective
to speculate the intended semantics of owl:sameAs. In order to produce objective and

148 L. Ding et al.

convincible reports, we focus on the structural properties of SameAs networks. In
order to avoid the bias caused by small sample datasets, we collected a large sample
dataset from the real world Web of Data. Section 3 provides a quantitative analysis of
the dataset.

What are the common interests among Linked Data publishers? Since there are
many URIs using “dbpedia” for a namespace in the example SameAs network in
Figure 1, it is possible to summarize SameAs statements to higher level connections
to provide an overview of SameAs networks. We are particularly interested in “pay-
level domain” (PLD)3 as it is frequently used to identify Linked Data publishers and
can often be connected to LOD datasets via one-to-one mappings. Now, with such
summarization, users can analyze how and why Linked Data publishers (or LOD
datasets) are inter-connected via SameAs statements.

How will Web ontologies be affected by owl:sameAs inference? Mapping Web
ontologies is a well-known difficult problem due to the high cost of manually assert-
ing mapping relations among ontological terms. Instance-based approaches have been
used in mapping RDFS/OWL classes, i.e. two classes are considered “associated” if
they share common instances. Now, with owl:sameAs inference, users may merge
different RDF resources and thus find more associated classes.

3 Building ESameNet Dataset and Experiment Settings

In order to study the three problems identified in section 2.2, we will extend SameAs
networks with additional information:

• PLD statements, each RDF resource can be connected to a literal name iden-
tifying a PLD. PLD statements can be pre-computed before the creation of
SameAs networks and stored in triples using ex:hasPLD as predicate.

• Type statements, each RDF is connected to zero-to-many RDFS/OWL
classes via rdf:type. Type statements are already asserted in the RDF graph
from which SameAs networks were obtained.

Definition 4: Extended SameAs network. Given an RDF graph G, an extended
SameAs network ESN is constructed by extending a SameAs network SN of G with
additional nodes and arcs. Besides the RES world, i.e. the world of all RDF resources
in SN, two more worlds of nodes will be added: (i) the CLS world, i.e. a world of
RDFS/OWL classes; (iii) the PLD world, i.e. a world of PLD names. A new node n
will be added when there exists a PLD (or Type) statement s that links from a node in
SN to n. Meanwhile, the corresponding statement s will be added as a new arc.

 3 A PLD is an internet domain that requires payment at a generic top-level domain (gTLD) or

country code top-level domain (ccTLD) registrar. PLDs are usually one level below the cor-
responding gTLD (e.g., dbpedia.org vs. org), with certain exceptions for cc-TLDs (e.g.,
ebay.co.uk, det.wa.edu.au) [8].

 SameAs Networks and Beyond 149

Figure 2 illustrates an example fragment of an extended SameAs network, including:
RDF resources, e.g. dbpedia:Virginia and fbase:en.virginia; PLD statements, e.g.
“dbpedia:Virginia ex:hasPLD “dbpedia.org.” and CLS statements, e.g. “dbpe-
dia:Virginia rdf:type yago:StatesOfTheUnitedStates, dbpedia-owl:Place.”

Fig. 2. An example fragment of an extended SameAs network

Our study is based on the ESameNet dataset (a collection of extended SameAs
networks) extracted from the BTC 2010 dataset. We chose this dataset for two rea-
sons: (i) With approximately 9 million SameAs statements, it constitutes a large-scale
sample dataset which is suitable for providing statistical results with high confidence;
(ii) Since the BTC 2010 dataset was gathered by crawling the Web based on seeding
datasets provided by major Semantic Web search engines, it can be considered as a
representative sample of the Web of Data, with relatively low sample distribution
bias.

The ESameNet dataset is publicly available4 in N-Quads5 format and it consists of
the following three subsets:

• SameAs statements. We copied all SameAs statements in the BTC 2010 data-
set and removed invalid and duplicate statements. A few SameAs statements
do not comply with Definition 1 (SameAs statement), e.g. some simply con-
nect an RDF resource to a literal string6. From 9,358,227 valid SameAs state-
ments, we obtained 8,711,398 triples after removing duplications. These
statements covered 6,932,678 unique RDF resources with URI (aka. URI re-
source) and 645,400 blank nodes.

• Type statements. We copied all rdf:type statements for RDF resources men-
tioned in BTC 2010 dataset and found 552,622,105 such statements. These

 4 See http://tw.rpi.edu/2010/ESameNet
 5 http://sw.deri.org/2008/07/n-quads/
 6 E.g. http://sw.nokia.com/language-1/zh-CH owl:sameAs "zh_CH"^^xsd:lang.

150 L. Ding et al.

statements covered 488,138,983 distinct RDF resources, and 168,503 distinct
RDFS/OWL classes.

• PLD statements: We extracted PLD (pay-level domain) statements by parsing
the URI of RDF resources in SameAs networks using regular expression. For
RDF resource with HTTP URI, we can directly extract its PLD and create the
PLD statement. For blank nodes (or RDF resources with non-HTTP URI), we
assume they share the same PLDs as the named graphs which host the corre-
sponding SameAs statements. These statements covered 967 distinct PLDs.

In our experiments, we used the AllegroGraph triple store (version 4.0)7 and the Al-
legro Common Lisp (version 8.2)8 programming environment to load the entire BTC
2010 dataset and extract the ESameNet dataset. All of the computational tasks de-
scribed in this paper were executed on a server with 2x Quad-Core Intel Xeon CPU
2.33GHz CPU, 64GB physical memory and 4 TB hard disk space.

4 Basic Properties of SameAs Networks

We first analyze the basic properties of SameAs Networks in the ESameNet dataset.
Each SameAs network is essentially a graph of URIs connected by non-redundant
owl:sameAs statements. Due to the difficulties and limitations of automatic entity
resolution, the creation of owl:sameAs statements is usually costly and requires man-
ual efforts. Therefore, there are fewer owl:sameAs statements in the Web of Data than
one might expect.

Weakly connected components. Overall, the ESameNet dataset contains 6,932,678
URI resources connected by 8,711,398 unique owl:sameAs statements. The graph
consists of 2,890,027 weakly connected components, each of which covers on aver-
age 2.4 URI resources. The average path length of the graph is only 1.07, which is
consistent with this very small average component size (see Figure 3); most compo-
nents are simply pairs of nodes joined by (usually reciprocal) owl:sameAs links.
There are a small number of larger components, including 41 components with hun-
dreds of resources, and two components with thousands of resources. This observa-
tion implies that the typical size of SameAs networks is either a small constant or
growing slowly; therefore, performing transitive inference on individual SameAs
networks is not expensive and could be parallelized. A manual inspection of individ-
ual components revealed that the vast majority were star-like in structure, consisting
of a single central resource connected to a number of peripheral resources. SameAs
networks are not large and complex networks like those of foaf:knows, or even shal-
low tree-like structures like those of rdfs:subClassOf. Furthermore, SameAs networks
tends to have small size components: 24,559 persons were found in the largest com-
ponent of the foaf:knows network in 2005 [9] vs. 5000 resources were found in the

 7 http://www.franz.com/agraph/allegrograph/
 8 http://www.franz.com/products/allegrocl/

 SameAs Networks and Beyond 151

largest component in SameAs networks in 2010. One potential explanation could be
that Linked Data principles are in favor of reusing URIs rather than duplicating
resource decriptions in many distinct LOD datasets. An alternative explanation is
that people simply haven’t done enough large-scale linking yet9 due to technology
limitations.

Fig. 3. Histogram of the size of SameAs Networks in the ESameNet dataset

Degree distribution. We investigated the overall in-degree distribution of ESameNet
as it measures the popularity (or authority) of resources in sameAs networks10. Hav-
ing plotted the in-degree distribution on a log-log scale, we can see that it exhibits the
power law pattern characteristic of scale-free networks. We also noticed that there are
slightly more resources with an owl:sameAs in-degree of 1 (that is, 2,974,914 re-
sources) than one would expect of a power law distribution (see Figure 4), and there
are also slightly more resources in the 10 to 20 range of in-degree than one would
expect. The resources at the high end of the distribution contain on the order of 4,000
inbound owl:sameAs links. Note that we omitted resources with no inbound links.

 9 This alternative explanation is kindly suggested by reviewers of this paper.
10 We skipped out-degree analysis to save space. The out-degree is typically controlled by the

publishers for sameAs statements, but the in-degree shows how many publishers are willing
to link to a resource using owl:sameAs.

152 L. Ding et al.

Fig. 4. The in-degree distribution of RDF resources in ESameNet

5 Pay-Level-Domain (PLD) Network Analysis

In order to gain deeper understanding of the common interests between different
Linked Data publishers, users may demand a high-level meaningful network to ab-
stract the SameAs networks. The PLD statements provide an ideal opportunity to
meet this demand because a PLD can often be used to identify Linked Data publishers
and millions of RDF resources in ESameNet can be reduced to hundreds of PLDs.

5.1 Definitions and Notations

Definition 5. PLD network. A PLD network is a weighted directed graph where (i)
each node denotes a unique PLD (labeled by PLD name); (ii) each arc links two
PLDs. The weight of an arc <pld1, pld2> is calculated by counting the unique
SameAs statements between any possible pair of u1 and u2, where (u1 ex:hasPLD
pld1) and (u2 ex:hasPLD pld2), normalized by the out degree of pld1.

Intuitively, the PLD network is an abstraction of SameAs Networks where each PLD
groups some RDF resources. Arcs in PLD network are created using the following
SPARQL query:

SELECT ?pld1 ?pld2
WHERE { ?u1 ex:hasPLD ?pld1 . ?u2 ex:hasPLD ?pld2 . ?u1 owl:sameAs? u2 . }

 SameAs Networks and Beyond 153

Figure 5 shows the largest (also the most interesting) cluster in the PLD network11
generated from the ESameNet dataset, plotted using Cytoscape [10]. In this diagram,
the size of a node is determined by the sum of the weights of both its incoming and
outgoing arcs. The thickness of an arc is determined only by its weight. For the pur-
pose of visual clarity, we omit arcs whose weight is less than a threshold (0.00001 in
this study with 0.069 being the maximum weight), and self-loops (arcs linking from a
node to the node itself). The color of a node is randomly assigned, with the guarantee
that no two nodes have the same color. We adopt the “Organic” graph layout provided
by Cytoscape to render this diagram to visually highlight clusters.

Fig. 5. The largest cluster in the PLD Network generated from ESameNet

11 Due to space limitations, only the most significant cluster is shown. Other clusters can also

be generated using the same method and tools as discussed.

154 L. Ding et al.

5.2 Implications of the PLD Network

The PLD network is an abstraction of SameAs networks in that it establishes connec-
tions at PLD level based on instance-level SameAs statements, while retaining the
basic structure of one-per-dataset nodes connected by links in a star-like fashion. It
can help us gain better insights to the following research problems:

How are data publishers connected? The PLD network provides intuitive and
straightforward insights into how publishers are connected via owl:sameAs assertions
and what communities are potentially emerging. Figure 5 shows a clear depiction of
the associations between different data publishers, in which thicker arcs reflect inten-
sive occurrences of owl:sameAs assertions between corresponding domains. By using
appropriate clustering algorithms which apply to any generic graph (e.g., social net-
work), communities of data publishers can be easily identified by eyes. Nodes inside
such a cluster can be considered as covering similar topics from possibly different
perspectives. In Figure 5, some clusters can be visually identified. The cluster with
the set of PLD nodes {ls3.de, rkbexplorer.com, uni-tier.de, sciencedirect.com,
acm.org, gbv.de, doi.org} represents a community whose members publish data about
scientific publications. Other clusters centering on bioinformatics and Semantic Web
communities can also be easily identified. In general, we believe that applying novel
clustering algorithms to this large-scale PLD network will facilitate detection of
communities that share common knowledge and interests. We perceive this as an
interesting future research direction.

Why are data publishers connected? After determining which Linked Data publish-
ers are connected via owl:sameAs assertions, it is natural to further investigate why
they are connected. Although it is possible to achieve this goal by manually analyzing
Figure 5, it usually requires strong expertise in Linked Data, and thus is labor-
intensive and error-prone. With the help of rdf:type information, semi-automatic or
even automatic ways of explaining such connectivity is possible.

For all owl:sameAs statements between the source PLD d1 and target PLD d2, we
can retrieve the rdf:type information for u and v using the following SPARQL query:

SELECT ?subj_type ?obj_type
WHERE {

?s ex:hasPLD “d1”.
?o ex:hasPLD “d2”.
?s a ?sub_type.
?o a ?obj_type.

}

Then comparing the k-most frequently used types in d1 with the k-most frequently
used types in d2 can help us to understand how the instance resources served by d1
and d2 are connected. Table 1 lists the top five (if exists) type labels for the source
and target PLD of arcs.

 SameAs Networks and Beyond 155

Table 1. Top five most frequently used types for each arc in Table 1

Arc Top-5 Types in Source PLD Top-5 Types in Target PLD

<dbtune.org,
zitgist.com>

rdfs:Resource: 2864
mo:Track: 2382
mo:Record: 280
mo:MusicArtist: 202

mo:MusicArtist: 99515
mo:MusicGroup: 61368
foaf:Group: 61368
mo:Record: 58245
mo:SoloMusicArtist: 26058

<l3s.de,
bibsonomy.org>

foaf:Document: 366416
swrc:InProceedings: 254905
swrc:Article: 104295
swrc:Proceedings: 4164
swrc:Book: 550

N/A

<l3s.de,
rkbexplorer.com>

foaf:Document: 366073
swrc:InProceedings: 254567
swrc:Article: 104294
swrc:Proceedings: 4161
swrc:Book: 549

N/A

<bibsonomy.org,
 uni-trier.de>

swrc:InProceedings: 308486
swrc:Article: 13339
swrc:Proceedings: 3216
swrc:InCollection: 1284
owl:Ontology: 89

N/A

<freebase.com,
 dbpedia.org>

freebase:base.intellectualproperty.
valuable_item: 240685
freebase:medicine.hospital: 51587
freebase:user.morrowjtm.default_

 domain.sexuality: 46726
freebase:base.onlineadvertising.ad

 _pricing_model: 24968
freebase:user.ericqianli.default_do

 main.css: 24123

yago:NeighbourhoodsOfLewisham: 4312
RailwayStationsInLewisham: 638
dbpedia-owl:ProtectedArea: 564
yago:HighSchoolsInCentralPennsylvania: 524
yago:IndigenousPeoplesOfEurope: 519

The first row in Table 1 indicates that both PLD d1 = dbtune.org and PLD d2 =

zitgist.com are publishing data about music, because the top five types related to all
owl:sameAs links between them are generally well aligned and are using concepts
from the Music Ontology12. Row 2, 3, and 4 are all missing the type information in
the target PLD, which indicates that cross-PLD owl:sameAs links do not have type
information for resources in the target PLD. Finally, the top five types in the source
and target PLD do not align very well in the last row. This might be due to the vast
amount of general human knowledge encoded by dbpedia.org and freebase.com, as
well as the unique role of "knowledge hubs" that they have been playing on the Web.
Actually, the top-k types discussed here can also be used to form a more complete
view of either the source or the target PLD, in which case the owl:sameAs statements
function as a clue for discovering more information for either side.

6 CLS Network Analysis

In order to show how Web ontologies are affected by owl:sameAs inference, we se-
lect an ontology mapping use-case: detecting the relations between two RDFS/OWL

12 Music Ontology: http://musicontology.com/

156 L. Ding et al.

classes. Two classes are considered overlapping when they share common instances.
Classes inter-connected by such “class-overlap” relation form a Class-Level Similar-
ity (CLS) network. With the CLS network, users can automatically detect clusters of
classes and ontology mappings using machine learning techniques.

6.1 Definitions and Notation

Definition 6: CLS network. A CLS network is a weighted directed graph of classes
where (i) each node denotes a unique RDFS/OWL class; (ii) each arc links two
classes using one of the following relations: equivalence, subclass-of, disjointness and
class-overlap. While the first three types of relations can be mapped to OWL proper-
ties, the last one cannot. The weight of an arc is calculated based on the number of
common instances shared by the two classes linked by the arc.

As shown in Table 2, A CLS network can be constructed using SPARQL queries,
namely Query A and Query B. Note that Query B leverages owl:sameAs inference to
derive additional class-overlap relations, and it simply assumes that owl:sameAs is
neither symmetric nor transitive. Other possible assumptions are left for future study.

Table 2. Two SPARQL queries for generating class-overlap relations

Query A CONSTRUCT ?C1 ex:overlaps ?C2

WHERE { ?s a ?C1, ?C2. filter (?C1!=?C2) }

Query B CONSTRUCT ?C1 ex:overlaps ?C2

WHERE { ?u1 a ?C1 . ?u2 a ?C2 . ?u1 owl:sameAs ?u2. filter (?C1 != ?C2) }

6.2 CLS Network and Enhancement

We executed Query A on all Type statements in ESameNet to build a CLS network
CLS-ALL, which contains 168,503 unique nodes (RDFS/OWL classes) and hundreds
of millions of arcs. Overall, the in-degree of classes (i.e. how many instances the
classes have) follows a power-law distribution: about 45% (77 K) classes only have
one instance, while a few have over 100 million instances each.

Focusing on the RDF resources connected by SameAs statements, we created a
smaller CLS network CLS-SAME, which contains 6,555 unique nodes (RDFS/OWL
classes) and 21,628 arcs (weighted differently) using Query B. Although CLS-SAME
is much smaller than CLS-ALL, it helps users to quickly gather additional pairs of
classes for determining class-level relations. Table 3 lists 20 class pairs in the CLS-
SAME dataset. We found a couple of interesting observations:

• The rows with type [EQ] show that some class pairs could be mapped via
equivalence relation because their URIs have the same local-name. This kind
of class pairing can be used to guess equivalence relations.

• The rows with type [ERR] show that some class pairs may also be inappro-
priate mappings after checking their ontological definitions. Although this
kind of class pairing does not help ontology mapping, it does help users to
detect potential errors in Linked Data.

 SameAs Networks and Beyond 157

• The rows without a type label show that it is hard to determine the mapping
relations between the class pairs by checking their URIs or ontological defi-
nitions. This kind of case usually involves a general-purpose class, such as
<http://semantic-mediawiki.org/swivt/1.0#Subject>. This kind of class par-
ing may be used to guess sub-class relations.

Table 3. List of 20 class pairs in CLS-SAME dataset

type FROM TO
 <http://semantic-mediawiki.org/swivt/1.0#Subject> <http://xmlns.com/foaf/0.1/Person>
EQ <http://www.w3.org/2002/07/owl#Class> <http://www.w3.org/2000/01/rdf-schema#Class>
ERR <http://www.w3.org/2002/07/owl#Class> <http://www.w3.org/2002/07/owl#Thing>
 <http://www.geonames.org/ontology#Code> <http://www.w3.org/2004/02/skos/core#Concept>
 <http://www.w3.org/2004/02/skos/core#Concept> <http://www.geonames.org/ontology#Code>
EQ <http://www.daml.org/2001/09/countries/iso-3166-

ont#Country> <http://rdf.geospecies.org/ont/geospecies#Country>
EQ <http://www.geonames.org/ontology#Country> <http://rdf.geospecies.org/ont/geospecies#Country>

<http://semantic-mediawiki.org/swivt/1.0#Subject>
<http://referata.com/wiki/Special:URIResolver/Categ
ory-3APeople>

 <http://referata.com/wiki/Special:URIResolver/Categ
ory-3APeople> <http://semantic-mediawiki.org/swivt/1.0#Subject>

 <http://www.w3.org/1999/02/22-rdf-syntax-
ns#Property> <http://www.w3.org/2002/07/owl#ObjectProperty>

 <http://semantic-mediawiki.org/swivt/1.0#Subject> <http://xmlns.com/foaf/0.1/Agent>

<http://semantic-mediawiki.org/swivt/1.0#Subject>
<http://discoursedb.org/wiki/Special:URIResolver/Ca
tegory-3APositions>

 <http://discoursedb.org/wiki/Special:URIResolver/Cat
egory-3APositions> <http://semantic-mediawiki.org/swivt/1.0#Subject>

EQ <http://www.rdfabout.com/rdf/schema/usgovt/State> <http://rdf.geospecies.org/ont/geospecies#State>
EQ <http://data.linkedmdb.org/resource/movie/country> <http://rdf.geospecies.org/ont/geospecies#Country>
 <http://xmlns.com/foaf/0.1/Person> <http://semantic-mediawiki.org/swivt/1.0#Subject>
 <http://sw.opencyc.org/2008/06/10/concept/Mx4rqEY

nNVMqEdaSKAACs0x8nw> <http://www.w3.org/2002/07/owl#Class>

<http://semantic-mediawiki.org/swivt/1.0#Subject>
<http://discoursedb.org/wiki/Special:URIResolver/Ca
tegory-3ASources>

 <http://discoursedb.org/wiki/Special:URIResolver/Cat
egory-3ASources> <http://semantic-mediawiki.org/swivt/1.0#Subject>

ERR <http://xmlns.com/foaf/0.1/PersonalProfileDocument
> <http://xmlns.com/foaf/0.1/Person>

The above observations about the class pairs in the CLS network reflect that the

BTC 2010 dataset is quite heterogenous and the current Semantic Web vocabularies
are largely orthogonal. They also enlighten the potential use of the CLS network: with
effective classification techniques, we may appropriately label class pairs in the CLS
network and then support automated class alignment and error detection. In our fu-
ture work will also try other combinations of assumptions including the assumption
that owl:sameAs is transitive.

7 Related Work

Various recent literature [4-6] investigating pragmatic issues of owl:sameAs in the
context of the Web of Data can be considered as directly related to our study. They
provide valuable insights into the essential research problem of whether the ubiqui-
tous use of owl:sameAs to inter-linked datasets is correct. Some of them identify

158 L. Ding et al.

incorrect usages of owl:sameAs in the Web of Data [5], leading to the explicit need
for a co-reference management infrastructure for the Semantic Web. Others carry out
in-depth discussions of the issues with the current semantics of owl:sameAs. For
example, McCusker and McGuinness [6] discuss how and why using owl:sameAs
could possibly result in confusions of provenance and ground truths in the bioinfor-
matics context. Halpin and Hayes [4] view owl:sameAs statements as a special type
of “identity link”, and analyze the more general problem of identity links on the Se-
mantic Web from a philosophical and knowledge representation perspective. They
also outline four alternative interpretations of owl:sameAs, which all differ from the
canonical OWL semantics as defined by W3C documents. Our work differs from all
of the above in that, to the best of our knowledge, we are the first to conduct this type
of large-scale empirical study on the deployment status of owl:sameAs using datasets
from the Web of Data.

Another related research effort is the analysis of the graph structure of the Seman-
tic Web. Some recent work [13-17] presents important graph metrics that reflect the
basic shape, structure, and even dynamics of the whole Semantic Web viewed as a
giant graph. It is reported in [14] that ontologies on the Semantic Web, like many
natural and social networks, are scale-free. Some earlier [16, 17] and later [15] studies
show more structural features of the Semantic Web, such as size, diameter and power-
law degree distribution of the graph. In one of the more recent efforts that falls into
this category, Ge et al [13] propose the notion of an Object Link Graph (OLG) for the
Semantic Web, and show that it is also scale-free and has a small diameter. Our work
is similar to these research efforts in the sense that we also present critical graph
structure metrics. However, the subject of research focus, i.e., the owl:sameAs state-
ments, and the scale are two major factors that differentiate our work with theirs.

Some of the existing endeavors, which make use of instance-level links to derive
potential alignments and associations at the schema level, are also related to our work.
Qu et al [18] propose the notion of a Class Association Graph (CAG), which is ob-
tained from the Object Link Graph (OLG) defined in [13]. Similarly, Nikolov et al
[19] illustrate how to establish schema-level mappings based on existing instance-
level mappings in the Web of Data. Our study shares essentially the same idea of
deriving schema-level relations using vast amounts of instance-level data.

8 Conclusion and Future Work

In order to better understand and use owl:sameAs in Linked Data, it is useful to study
how owl:sameAs is actually deployed, which has implications for how data should be
consumed. To the best of our knowledge, this work is the first study on SameAs net-
works extracted from the real world Web of Data, and it has reported statistically
significant results based on the BTC 2010 dataset. The experiment results are the core
of this work, and they support the goal of this paper – to highlight the uniqueness,
interestingness and utility of SameAs networks to Linked Data researchers as well as
practitioners.

• Section 4 shows that SameAs networks have unique graph properties in
comparison with other networks in the Semantic Web. The graph properties
also lead to nice computational properties of the SameAs network.

 SameAs Networks and Beyond 159

• Section 5 explains the interestingness of SameAs networks by showing the
similarity between the PLD network and the LOD graph. We also showed
that the PLD network could be used to explain how LOD datasets are
actually linked by common topics.

• Section 6 shows one practical use of SameAs networks, where classes can be
linked by means of common instances (derived by owl:sameAs inference).
The CLS network has a great potential in detecting schema-level
inconsistencies in interlinked datasets and supporting ontology alignment.

The results reported in this study can be easily extended with additional data, seman-
tics and applications. For example, we can enrich the ESameNet dataset with SameAs
statements generated using OWL inference on the entire BTC dataset (e.g. inferring
owl:sameAs using owl:InverseFunctionalProperty) [11] and then evaluate the impact
on the diameter of SameAs networks. Although this study does not assume the transi-
tivity of owl:sameAs for the purpose of deriving the CLS network, future work may
explore the alternative - evaluating the impact of transitive inference on SameAs
networks. Another potential research direction is to follow up on our previous discus-
sions on the operational semantics of owl:sameAs [12]. Last but not least, it is worth
noting that owl:sameAs has implications not only for the two networks mentioned in
this study, but rather, we can use BTC datasets from consecutive years to evaluate the
evolution of SameAs Networks over time, and use owl:sameAs statements to compute
property-level mappings.

References

[1] Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. International Jour-
nal on Semantic Web and Information Systems (IJSWIS) 5(3), 1–22 (2009)

[2] Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P., Stein, L.A.: OWL Web Ontology Language Reference. W3C Recommen-
dation (February 2004)

[3] Cyganiak, R.: Linked data at the New York Times: Exciting, but buggy,
http://dowhatimean.net/2009/10/
linked-data-at-the-new-york-times-exciting-but-buggy
(last retrieved September 2010)

[4] Halpin, H., Hayes, P.J.: When owl:sameAs isn’t the same: An analysis of identity links
on the semantic web. In: Proceedings of the International Workshop on Linked Data on
the Web (2010)

[5] Jaffri, A., Glaser, H., Millard, I.: URI disambiguation in the context of linked data. In:
Proceedings of the 1st International Workshop on Linked Data on the Web (2008)

[6] McCusker, J., McGuinness, D.L.: owl:sameAs considered harmful to provenance. In:
Proceedings of the ISCB Conference on Semantics in Healthcare and Life Sciences
(2010)

[7] Vatant, B.: Using owl:sameAs in linked data,
http://blog.hubjects.com/2007/07/
using-owlsameas-in-linked-data.html (last retrieved September 2010)

[8] Lee, H., Leonard, D., Wang, X., Loguinov, D.: IRLbot: scaling to 6 billion pages and be-
yond. In: Proceeding of the 17th International Conference on World Wide Web (2008)

160 L. Ding et al.

[9] Ding, L., Zhou, L., Finin, T., Joshi, A.: How the Semantic Web is Being Used: An
Analysis of FOAF Documents. In: HICSS38 (2005)

[10] Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N.,
Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)

[11] Williams, G.T., Weaver, J., Atre, M., Hendler, J.A.: Scalable Reduction of Large Datasets
to Interesting Subsets. Journal of Web Semantics: Science, Services and Agents on the
World Wide Web 8 (2010)

[12] Ding, L., Shinavier, J., Finin, T., McGuinness, D.L.: owl:sameAs and Linked Data: An
Empirical Study. In: Proceedings of the WebSci10: Extending the Frontiers of Society
On-Line (2010)

[13] Ge, W., Chen, J., Hu, W., Qu, Y.: Object Link Structure in the Semantic Web. In: Aroyo,
L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache,
T. (eds.) ESWC 2010. LNCS, vol. 6089, pp. 257–271. Springer, Heidelberg (2010)

[14] Zhang, H.: The Scale-Free Nature of Semantic Web Ontology. In: Proceeding of the 17th
International Conference on World Wide Web, WWW (2008)

[15] Theoharis, Y., Tzitzikas, Y., Kotzinos, D., Christophides, V.: On Graph Features of
Semantic Web Schemas. IEEE Transactions on Knowledge and Data Engineering 20(5)
(May 2008)

[16] Ding, L., Finin, T.: Characterizing the Semantic Web on the Web. In: Cruz, I., Decker, S.,
Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC
2006. LNCS, vol. 4273, pp. 242–257. Springer, Heidelberg (2006)

[17] Ding, L.: Enhancing Semantic Web Data Access. Ph.D Thesis. Department of Computer
Science and Electrical Engineering, University of Maryland, Baltimore County (2006)

[18] Qu, Y., Ge, W., Cheng, G., Gao, Z.: Class Association Structure Derived From Linked
Objects. In: Proceedings of the WebSci 2009: Society On-Line (2009)

[19] Nikolov, A., Uren, V., Motta, E.: Data Linking: Capturing and Utilising Implicit Schema-
level Relations. In: Proceedings of the Linked Data on the Web Workshop, 19th Interna-
tional World Wide Web Conference, WWW (2010)

Deciding Agent Orientation on Ontology
Mappings

Paul Doran1, Terry R. Payne1, Valentina Tamma1, and Ignazio Palmisano2

1 Department of Computer Science, University of Liverpool,

Liverpool L69 3BX, United Kingdom

{P.Doran,T.R.Payne,V.Tamma}@liverpool.ac.uk
2 School of Computer Science, University of Manchester M13 9PL, UK

ignazio.palmisano@cs.manchester.ac.uk

Abstract. Effective communication in open environments relies on the

ability of agents to reach a mutual understanding of the exchanged mes-

sage by reconciling the vocabulary (ontology) used. Various approaches

have considered how mutually acceptable mappings between correspond-

ing concepts in the agents’ own ontologies may be determined dynami-

cally through argumentation-based negotiation (such as Meaning-based

Argumentation, MbA). In this paper we present a novel approach to

the dynamic determination of mutually acceptable mappings, that al-

lows agents to express a private acceptability threshold over the types

of mappings they prefer. We empirically compare this approach with

the Meaning-based Argumentation and demonstrate that the proposed

approach produces larger agreed alignments thus better enabling agent

communication. Furthermore, we compare and evaluate the fitness for

purpose of the generated alignments, and we empirically demonstrate

that the proposed approach has comparable performance to the MbA
approach.

1 Introduction

The problem of dynamic reconciliation of ontologies (vocabularies) used by
agents during interactions has received significant attention [8,10,12], due to the
growing adoption of mobile and service computing. In these scenarios, agents
situated in open environments encounter unknown agents offering new services
as a user’s context or location changes. As the heterogeneity that permeates
these environments increases, fewer assumptions on the vocabulary and content
of these ontologies can be made, thus hindering seamless interaction between the
agents.

The reconciliation of heterogeneous vocabularies has been investigated at
length by research efforts in ontology alignment [7], which tries to determine
suitable mappings between two ontologies. However, there are few traditional
alignment approaches suitable for use in purely dynamic interaction scenarios
as most require human intervention, or they align the ontologies at design time
[11]. Although recent systems [6] have emerged that can generate alignments at

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 161–176, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

162 P. Doran et al.

run time, these are often machine-learning based, requiring pre-labelled training
data to guide the learning process.

Whilst this has been demonstrated to be effective when such data is available,
it is not always suitable for all dynamic problems. Two agents may encounter
each other for the first time with the aim of interacting to achieve some goal
(where each agent may have its own preferences or policies over the terms and
axioms used within a specific interaction). Whilst alignments may exist between
the agents’ ontologies, these may have been determined under different con-
texts or assumptions, and thus may not necessarily satisfy the current agents’
preferences or policies. In order to address this limitation, and to consider the
context within which the alignment is to be used, Laera et. al. [8] proposed
in their Meaning-based Argumentation (MbA) approach the use of argumenta-
tion to select a set of mappings (i.e. an alignment) that is mutually acceptable
to the negotiating agents, from the union of disparate, precomputed alignments
where different alignments may have previously been generated (e.g. for previous
agent-agent interactions) and then published or retained for future use.

Therefore, the problem can be cast as a search for a mutually acceptable
set of mappings between two ontologies O1 and O2 (in the union of mappings
previously computed), given the agents’ individual, private preferences over the
mapping type (i.e. terminological, extensional, etc.). Approaches such as those
proposed by Laera et al. [8] and dos Santos et al. [10] assume that mappings have
an associated confidence value, and based on this, utilise both an acceptance
threshold, ε, and their preferences to determine whether or not a candidate
mapping is suitable for a task.

The search is conducted collaboratively, through the use of argumentation. By
specifying arguments that support (or refute) different mappings, the negotiating
agents identify a subset of mappings that are considered mutually acceptable,
which can subsequently be used to support further communication between the
agents. The arguments are determined from the individual agent’s preferences
over the mapping types (which can vary, depending on the agents task or the
expressive power of ontology it commits to) and its acceptance threshold. The
argumentation converges on a set of agreed mappings, i.e. mappings that are
mutually acceptable to the negotiating agents.

As the generation of arguments is directed by a single preference and accep-
tance threshold specified by each agent, this approach is susceptible to rejecting
those mappings which, whilst not optimal, may still be considered acceptable
to all the agents involved. This results in smaller alignments, which may fail to
sufficiently support the agent’s subsequent communication. This approach may
also fail to reflect the true preference of an agent, as the different grounds sup-
porting the choice or type of mapping may actually generate similar mappings
in some cases.

In this paper, we demonstrate the effect of this limitation on the resulting align-
ment empirically, and propose a novel approach for generating arguments for each
of the candidate mappings, utilising a weaker notion of suitability than that origi-
nally proposed. The flexible approach for determining agents’ orientation on

Deciding Agent Orientation on Ontology Mappings 163

ontology mappings (FDO) proposed here provides a flexible mechanism for agents
to decide whether they support or refute an argument about a mapping, and hence
it allows agents to compromise over the suitable mappings; i.e by arguing in favour
of an assertion that may not be amongst the preferred ones, but that facilitates
the negotiation process in converging on a mutually acceptable solution. In this
way, the agents create a larger consensus base, by increasing the number of argu-
ments over which the agents negotiate, and that better reflect the agents’ pref-
erences over the type of mappings deemed to facilitate the exchange of messages.
Whilst this approach results in agents relaxing some of their preferences over suit-
able mappings, we demonstrate that it produces a larger consensus over possible
mappings due to the generation of a greater number of arguments in favour of
the candidate mappings (compared to Laera et al.’s MbA approach), and better
reflects the agents preferences than when only a single threshold and preference
value is used. We also demonstrate that allowing the negotiation to take place over
a larger set of arguments does not degrade the quality of the alignment produced,
measured in terms of precision and recall over query answering tasks. Therefore,
the contribution of this paper is twofold: we provide a novel approach to the de-
termination of whether an agent supports or refutes an argument, and we provide
an evaluation of this novel approach against the MbA approach.

The paper is organised as follows: the MbA approach is briefly summarised,
followed by the description of our novel FDO approach for determining an agent’s
orientation on a mapping. This approach is then illustrated by means of an
example, before being evaluated empirically. The results of the evaluation are
then discussed, before concluding.

2 Arguing over Ontology Mappings

Meaning-based Argumentation (MbA), as proposed by Laera et al. [8], assumes
that a number of precomputed alignments (i.e. sets of mappings) exist within
some publicly available repository. A similar assumption is also made by dos
Santos et al. [10], whereby such alignments are known (possibly computed on-
the-fly) by different agents. Before presenting our flexible approach for determin-
ing agent orientation, we first give the formal definition of these alignments, and
summarise the MbA approach1.

A mapping between two agent ontologies O1 and O2 is described as a tu-
ple: m = 〈e, e′, n, r〉, where e ∈ O1 and e′ ∈ O2 are the entities (concepts,
properties or individuals) between which a relation, r, is asserted, such as equiv-
alence, or subsumption, and n is a degree of confidence in this correspondence
[7]. These mappings can either be computed offline and stored by a dedicated
server, an Ontology Alignment Service, that provides the set of available candi-
date mappings the agents need to argue over [8], or they can be determined on
the fly [10]. Whatever the approach used to generate the mappings, the argu-
mentation process considers as input a set of pre-computed mappings, and a set
1 We focus primarily on the MbA approach since the negotiation phase in dos Santos

et al. is the same as the one used in MbA.

164 P. Doran et al.

of justifications that motivate the existence of a mapping, that are provided by
the mapping generation approach.

The Meaning-based Argumentation (MbA) process is based on the Value-
Based Argumentation Framework (VAF) [3], which introduced the notions of
audience and preference values. An audience represents a group of agents who
share the same preferences over a set of values, with a single value being assigned
to each argument. This framework extends the seminal work by Dung on the
use of argumentation theory [5]. In Dung’s framework, attacks always succeed; in
essence they are all given equal value. For deductive arguments this suffices, but
within the ontology alignment negotiation scenario [8] the persuasiveness of an
argument could change depending on the audience, where an audience represents
a certain set of preferences. Thus, the Value-Based Argumentation Framework
(VAF) facilitates the assignment of different strengths to arguments on the basis
of the values they promote and the ranking given to these values by the audi-
ence for the argument. Hence, it is possible to systematically relate strengths of
arguments to their motivations and to accommodate different audience interests.

Definition 1. A Value-Based Argumentation Framework (VAF) is defined as
〈AR, A,V , η〉, where:

– 〈AR, A〉 is an argumentation framework;
– V is a set of k values which represent the types of arguments;
– η : AR → V is a mapping that associates a value η(x) ∈ V with each

argument x ∈ AR.

The types of arguments represented by V typically varies, depending upon the
application. Within the MbA process, the values of V correspond to five dif-
ferent types of ontological mismatches that can occur between ontologies, as
represented in Table 1.

In order to model the notion of different agents having different perspectives
on the same candidate mappings, we define an audience, i.e. the representation
of a preference ordering of V . The notion of audience is central to the VAF. Au-
diences are individuated by their preferences over the values. Thus, potentially,
there are as many audiences as there are orderings2 of V . The set of arguments
is assessed by each audience in accordance to its preferences. An audience is
defined as follows:

Definition 2. An audience for a VAF is a binary relation R ⊆ V × V whose
irreflexive transitive closure, R∗, is asymetric, i.e. at most one of (v, v′), (v′, v)
are members of R∗ for any distinct v, v′ ∈ V. We say that vi is preferred to vj

in the audience R, denoted vi !R vj, if (vi, vj) ∈ R∗.

As this notion allows different agents (represented by an audience) to have dif-
ferent perspectives on the same candidate mapping, we need to model what
it means for an argument to be acceptable relative to some audience. This is
defined within the VAF as follows:
2 Number of audiences corresponds to the different combinations of the elements in

V; i.e. Number of audiences = |V|!

Deciding Agent Orientation on Ontology Mappings 165

Table 1. The classification of different types of ontological alignment approaches

Semantic M These methods utilise model-theoretic semantics to determine
whether or not there is a correspondence between two entities, and
hence are typically deductive. Such methods may include proposi-
tional satisfiability and modal satisfiability techniques, or logic based
techniques.

Internal Structural IS Methods for determining the similarity of two entities based on the
internal structure, which may use criteria such as the range of their
properties (attributes and relations), their cardinality, and the tran-
sitivity and/or symmetry of their properties to calculate the simi-
larity between them.

External Structural ES Methods for determining external structure similarity may evaluate
the position of the two entities within the ontological hierarchy, as
well as comparing parent, sibling or child concepts.

Terminological T These methods lexically compare the strings (tokens or n-grams)
used in naming entities, or in the labels and comments concerning
entities. Such methods may employ normalisation techniques (often
found in Information Retrieval systems) such as stemming or elimi-
nating stop-words, etc.

Extensional E Extension-based methods which compare the extension of classes,
i.e., their set of instances. Such methods may include determining
whether or not the two entities share common instances, or may use
alternate similarity based extension comparison metrics.

Definition 3. Let 〈AR, A,V , η〉 be a VAF, with R and S as subsets of AR, and
an audience R :

(a) For x, y ∈ AR, x is a successful attack on y with respect to R if (x, y) ∈ A
and η(y)
!R η(x).

(b) x ∈ AR is acceptable with respect to S with respect to R if for every y ∈
AR that successfully attacks x with respect to R, there is some z ∈ S that
successfully attacks y with respect to R.

(c) S is conflict-free with respect to R if for every (x, y) ∈ S×S, either (x, y)
∈ A
or η(y) !R η(x)

(d) A conflict-free set S is admissible with respect to R if every x ∈ S is accept-
able to S with respect to R

(e) S is a preferred extension for the audience R if it is a maximal admissible
set with respect to R

(f) x ∈ AR is subjectively acceptable if and only if x appears in the preferred
extension for some specific audience.

(g) x ∈ AR is objectively acceptable if and only if x appears in the preferred
extension for every specific audience.

(h) x ∈ AR is indefensible if it is neither subjectively nor objectively acceptable.

Laera et. al. [8] subsequently adopted the VAF for the Meaning-based Argumen-
tation (MbA) process, allowing agents to express preferences for different map-
ping types, and restricting the arguments to those concerning ontology mappings
allowing agents to explicate their mapping choices. The definition of an agent
and an argument are as follows:

Definition 4. An agent, Agi, is characterised by the tuple 〈Oi, V AFi, P refi, εi〉
such that Oi is an ontology, V AFi is a instance of a VAF, Prefi is an ordering
over the possible values in V and εi is a private threshold between 0 and 1.

166 P. Doran et al.

Definition 5. An argument x ∈ AR is a triple x = 〈G, m, σ〉 where m is a
mapping, G is the grounds justifying the prima facie belief that the mapping does
or does not hold and σ is one of {+,−} depending on whether the argument is
that m does or does not hold.

Thus, when arguing over ontology mappings using the VAF, an argument x ∈ AR
either supports or refutes a mapping m, depending on the value of σ. An agent
determines this σ (i.e. decides whether to argue for or against a mapping) based
on its preferences and threshold. Given the set of mappings M = {m}j=1,...,p,
such that p is the number of mappings, and the function3 τ : M → V | τ(m) =
v ∈ V then an agent can set the value of σ for an argument, x, about a mapping,
m, as follows:

σ =

{
+, if max(Prefi) = τ(m) ∧ nm ≥ εi

−, otherwise
(1)

The notion of an attack and counter-attack is also formally defined, whereby x
is attacked by the assertion of its negation, ¬x.

Definition 6. An argument x ∈ AR attacks an argument y ∈ AR if x and y
are arguments for the same mapping, m, but with different σ. For example, if
x = 〈G1, m, +〉 and y = 〈G1, m,−〉, x counter-argues y and vice-versa.

The agents can now express, and exchange, their arguments about ontology
mappings and decide from their perspective, audience, what arguments are in
their preferred extension; but the agents still need to reach a mutually acceptable
position with regards to what ontology alignment they actually agree upon.
Laera et. al. define the notion of agreed and agreeable alignment as follows:

Definition 7. An agreed alignment is the set of mappings supported by those
arguments which are in every preferred extension of every agent.

Definition 8. An agreeable alignment extends the agreed alignments with those
mappings supported by arguments in some preferred extensions of every agent.

Thus, a mapping is rejected if it is in neither the agreed nor agreeable alignment.
Given the context of agent communication it is rational for the agents to accept
as many candidate mappings as possible [8], thus both sets of alignments are
considered. The agents should only completely disagree when they want the
opposite, indeed, the agents gain little by arguing and not reaching some kind
of agreement.

The definition of audience is central to the notion of acceptability of an ar-
gument, since given a set of arguments, and their respective counter-arguments,
the agents in an audience need to consider which of them they should accept.
The acceptability of some arguments with respect to some audience, depends on
the agents ability to determine a preferred extension that represents a consistent
3 In some cases τ (m) = η(xm), however in general this assumption does not hold.

Deciding Agent Orientation on Ontology Mappings 167

position within an argumentation framework that can be defended against all
attacks, and cannot be further extended without causing it to be inconsistent or
open to attacks. The mappings supported in the preferred extensions form the
mutually agreed set of mappings [8].

3 A Flexible Approach for Determining Agents’
Orientation on Mappings

The meaning based negotiation approach by Laera et al. is the first attempt to
tackle the problem of dynamic reconciliation of heterogeneous agent ontologies.
Whilst the approach has the merit of having highlighted an important problem,
the proposed solution presents a serious limitation, primarily due to the way σ
is obtained.

In Laera’s approach an agent argues only in favour of those arguments whose
grounds have the highest ranking in the ordering of agent preferences, whilst all
the other mappings are argued against. Hence, effectively the agents can only
express one preference towards one type of mapping, and will argue against
any other type of mapping, therefore greatly reducing the possibility to find a
suitable agreement on a set of mappings. In other words, this approach fails to
distinguish mappings that are less preferred from those mappings for which an
agent is against.

In addition, this type of strict decision process could potentially increase the
chance that inconsistent mappings are determined by the VAF. The walkthrough
example presented in the next section illustrates an occurrence of this unlikely
but possible event.

In this paper, we present an alternative approach that aims at recognising
how agents can have different preferences over the types of mappings to use
in interactions with other agents, and that these preferences can influence the
decision making process behind the negotiation. An agent would ideally try
to maximise the use of those types of mappings with the highest preferences,
however, since it needs to interact with other agents (with their own preferences)
then it might decide to compromise, i.e. to agree to use a less preferred mapping
type if this facilitates communication.

This is the main motivation behind the novel approach to mapping selection
that we present here. It builds on some of the notions presented in the previous
section for the MbA approach, but gives agents more flexibility in deciding their
orientation, i.e. whether to support or refute a mapping.

Given two agents ontologies O1 and O2, a mapping between e ∈ O1 and
e′ ∈ O2 is a tuple m = 〈e, e′, n, r〉, as defined in the previous section. Analo-
gously to MbA we define a VAF as a tuple 〈AR, A,V , η〉 that is similar to the
definition given in the previous section (likewise for the definition of mapping
m). In the flexible approach for determining agents’ orientation on a mapping
(FDO) proposed here, we define an agent as a tuple Agi = 〈Oi, V AFi, P refi, φi〉,
where Oi is an ontology, V AFi is a instance of a VAF, Prefi is an ordering of
the values in V and φi : V → [0, · · · , 1] maps each v in V to a value 0 ≤ z ≤ 1.

168 P. Doran et al.

φi(v) represents the minimum confidence threshold for Agi to argue in favour of
a mapping of type v.

Let us consider the function τ :M→ V that assigns a v ∈ V to every m ∈M,
then the agent decides whether to be in favour or against the mapping as follows:

σ =

{
+, if nm ≥ φi(τ(m))
−, otherwise

(2)

In our approach, an agent determines its orientation on a mapping solely on the
basis of the minimum confidence threshold for arguing in favour of a mapping
type, and no longer on the ordering of preferences. In this way, the agents express
how much they prefer each of the possible mapping types, and how willing they
are to argue in their favour. The ordering of preferences is now only used by the
VAF when dealing with arguments and their attacks.

4 Illustrative Example

The following example illustrates how the proposed FDO approach differs from
the original MbA approach, assuming the two ontologies illustrated in Figure 1,
with the mappings given with their relevant mapping types. Mapping m1 is a Ter-
minological equivalence mapping between concepts A and C, with a confidence
of 0.75, whereas mappings m2 and m3 are External Structural equivalence map-
pings: m2 between concepts B and D (confidence 0.85); and m3 between concepts
B and E (confidence 0.65). Note that concepts D and E are disjoint, and thus an
alignment containing both mappings m2 and m3 would be inconsistent.

Given two agents that wish to communicate: Ag1 has the preference ordering
ES!T; whereas Ag2 has the preference ordering T!ES. Table 2 shows the sets
of mappings that will be argued in favour of (+) or against (-). With the MbA
approach, we assume that the acceptance threshold ε1 = ε2 = 0.5. Ag1 will argue
in favour of m2 and m3, and against m1; whereas Ag2 will argue against m2 and
m3, but in favour of m1. This is due to the fact that, in the case of Ag1, only

C

D E

A

B

rdfs:subClassOf rdfs:subClassOf

owl:disjointWith

m1 = {A, C, ≡, 0.75} : T
O O'

m3 = {B, E, ≡, 0.65} : ES

m2 = {B, D, ≡, 0.85} : ES

Fig. 1. An alignment between O and O′

Deciding Agent Orientation on Ontology Mappings 169

Table 2. The arguments that support (+) or refute (-) different mappings, given

thresholds and preferences

Mapping Type Acceptance Arguments

Approach Preference Threshold in favor of + against -

MbA ES � T 0.5 {m2, m3} {m1}
T � ES 0.5 {m1} {m2, m3}

FDO ES � T ES=0.5, T=0.7 {m1, m2, m3} {}
T � ES T=0.5, ES=0.7 {m1, m2} {m3}

mappings of the first preference ordering were considered (subject to exceeding
the acceptance threshold), and all other mappings were automatically refuted.
The resulting attack graph is illustrated in Figure 2 (left), where each argument
is assigned a label corresponding to its mapping, and the mapping type. These
types are the values in the VAF, with each agent having a private preference
ordering over them.

The FDO approach, however, assigns a separate acceptance threshold for each
mapping type. Ag1 assumes a 0.5 threshold for ES, but a 0.7 threshold for T ,
whereas Ag2 assumes a 0.7 threshold for ES, and a 0.5 threshold for T . In this
case, arguments are generated by Ag1 in favour of all three mappings, whereas
Ag2 generates mappings in favour of m1 and m2, but against m3. Although
Ag1 expresses a preference ordering for ES ! T, the confidence value of all three
mappings exceeds the acceptance threshold for the different mapping types. The
resulting attack graph is illustrated in Figure 2 (right).

+
T

m1

-
ES

+
ES

m2

-
T

+
ES

m3

-
T

Attack Graph for the MbA Approach

+
T

m1

+
ES

m2

+
ES

m3

-
T

Attack Graph for the FDO Approach

Fig. 2. Attack graphs for the MbA and FDO procedures

From the attack graphs shown in Figure 2 the preferred extensions for each
audience can be computed for the MbA approach (see below). This does not
produce an agreed alignment, but does produce an agreeable alignment, cor-
responding to {m1, m2, m3}. However, as mentioned earlier, if this agreeable
alignment were to be accepted by both agents, their ontologies would become
inconsistent, thus making the ontologies and the resulting alignment unusable.

– T ! ES = {m1+, m2-, m3-}
– ES ! T = {m1-, m2+, m3+}

170 P. Doran et al.

In contrast, the FDO approach produces an agreed alignment {m1, m2}, whereas
mapping {m3} would only appear in an agreeable alignment. Thus, if the agreed
alignment is accepted by both agents, they would be able to communicate with
respect to concepts A, B, C, and D, but not with concept E.

5 Empirical Evaluation

The aim of the evaluation is to contrast the proposed FDO approach with the
original MbA approach presented in [8]. Two hypotheses are explored: that the
FDO approach generates a larger number of supporting arguments, resulting
in more selected mappings that MbA; and that the increased number of map-
pings will better support communication tasks such as query answering (i.e. the
resulting alignments are fit for purpose).

5.1 Evaluating the Generated Arguments

To explore the first hypothesis, the ratio of arguments in favour of mappings to
those against was computed for both approaches, and the resulting mappings
examined. This requires multiple candidate mappings based on different onto-
logical grounds (and hence different mapping types) between ontologies of the
same domain. Eleven ontologies were therefore taken from the OAEI 2007 and
2008 Conference Track repositories (with three exceptions4), as they represent
different domain theories for the same, real-world domain (thus reflecting real-
world heterogeneity) and can be used generate better pairwise alignments than
ontologies from other tracks5. These ontologies (originally developed as part of
the OntoFarm Project6) are listed in Table 3, complete with a brief characteri-
sation in terms of the number of classes (named and anonymous) and properties
(object and datatype), and their Description Logic expressivity7.

For the evaluation, a total of 55 ontology pairs were identified8. The align-
ments between each ontology pair were generated using the Alignment API
[7], which only produces mappings of type internal structural (IS), external
structural (ES) and terminological (T); thus for our evaluation, we assume
V = {ES, IS, T }.

In order to investigate the differences depending on the threshold, 4 thresh-
olds have been identified for each mapping type. The first, ε1 = 0 corresponds
to the case where the agent will argue in favour of all arguments. The remaining
4 These ontologies have memory requirements of >1.5GB.
5 http://oaei.ontologymatching.org/2007/conference/
6 http://nb.vse.cz/~svatek/ontofarm.html
7 The expressivity of an ontology (and hence complexity of a reasoner) for a De-

scription Logic is indicated by the concatenation of letters representing different DL

operators [1].
8 Note that the ordering of the ontologies in each pair is irrelevant; thus rendering an

evaluation on the symmetric pairs unnecessary. Therefore, a total of N(N − 1)/2
ontology pairs were used, where N correspond to the 11 ontologies listed in Table 3.

http://oaei.ontologymatching.org/2007/conference/
http://nb.vse.cz/~svatek/ontofarm.html

Deciding Agent Orientation on Ontology Mappings 171

Table 3. Characteristics for the ontology test set

Ontology Named Object Datatype Anon. Expressivity

Classes Prop. Prop. Classes

cmt 29 49 10 11 ALCHIF(D)

Conf 59 46 18 33 ALCHIF(D)

confOf 38 13 23 42 SHIF(D)

crs dr 14 15 2 0 ALCHIF(D)

edas 103 30 20 30 ALCHIF(D)

ekaw 73 33 0 27 SHIN
MICRO 31 17 9 33 ALCHOIF(D)

OpenConf 62 24 21 63 ALCHOI(D)

paperdyne 45 58 20 109 ALCHOIF(D)

PCS 23 24 14 26 ALCHIF(D)

sigkdd 49 17 11 15 ALCHI(D)

thresholds are generated by determining the mean x̄ and standard deviations of
the confidence values for all the mappings for each of the types in V , generated
for the evaluation. Thus, ε2 = x̄ − stdev(x), ε3 = x̄, and ε4 = x̄ + stdev(x).
Whilst the upper limit (ε = 1) was considered, this would have resulted in the
agents arguing against all the mappings, resulting in empty alignments. The four
levels have been varied independently, producing four actual preferences for each
ordering; this produces 144 preferences for each pair of ontologies (again, dis-
carding duplicates). The total number of argumentation situations is, therefore,
7920.

Each experimental argumentation scenario (AS) is defined by the following
tuple:

AS = (O1, O2, P1, P2, A
σ+, Aσ−, Macc)

where the set of mappings over which to argue is determined univocally by
the ontologies O1 and O2, together with the alignment technique used, with P1
and P2 representing the actual sets used depending on the approach. For MbA,
P1 = (Pref1, ε1), P2 = (Pref2, ε2), i.e. for each agent we use the pair composed
of the preference ordering and the threshold. For FDO, Px = (Prefx, φx), but
in this case the Prefx is used only by the VAF (not in determining the agent
orientation). Aσ+ and Aσ− represent the set of arguments in favour and against
any of the mappings in the argumentation respectively, while Macc represents the
set of accepted mappings, i.e., the mappings belonging to at least one preferred
extension of one agent. These latter three parameters are recorded for each
evaluation.

To compare the results between different ontologies, an index relating Aσ− to
the total number of arguments used has been defined; NegArgs(AS) : AS →
[0, 1], where:

NegArg =
|Aσ−|

(|Aσ−|+ |Aσ+|)
The results have been grouped into nine scenarios based on the first mapping
type of each agent preference Prefx. Thus, each row entry in Table 4 is labeled

172 P. Doran et al.

by an Argument Scenario (AS) pair, such that the two values correspond to the
first preferred mapping type of Ag1 and Ag2 respectively. The results present
the averages9 over each of the subsequent preference values; i.e. the pair (ES,IS)
averages values for Ag1 preferences ES ! (IS ! T | T ! IS), whereas for Ag2,
IS ! (ES ! T | T ! ES), etc. To compare scenarios based on these pairs, a
comparison was made between FDO and MbA by pairing same ordering and
same thresholds, since the structure of the preferences is the same for both
approaches.

Table 4. Average number of arguments for each scenario

Argument FDO Approach MbA Approach
Scenario Aσ+ Aσ− Macc NegArgs Aσ+ Aσ− Macc NegArgs

(ES, ES) 5230 2591 1364 0.34 1498 6533 739 0.8

(ES, IS) 5685 2896 1325 0.35 2560 6310 33 0.72

(ES, T) 5720 2698 1358 0.33 1209 7680 92 0.84

(IS, ES) 4626 2216 1136 0.33 1802 4640 20 0.73

(IS, IS) 5230 2591 1364 0.34 3032 4752 439 0.64

(IS, T) 6413 3132 1490 0.33 2177 6388 175 0.76

(T, ES) 4416 2479 1050 0.36 987 5828 73 0.85

(T, IS) 4237 2170 1036 0.35 1488 5135 111 0.77

(T, T) 5230 2591 1364 0.34 700 6880 418 0.89

When using MbA, the proportion of arguments against mappings averaged
78%, significantly greater than the 34% average of arguments that were gen-
erated against mappings with FDO. This can be clearly seen when examining
the number of mappings that were generated when using FDO (for example,
1325 mappings on average for (ES, IS), compared to only 32.67 with MbA). This
higher number of negative arguments generated by MbA suggests that it may
result in a higher probability of generating empty alignments, thus resulting in
unnecessary communication failure. Whilst these results support our hypoth-
esis, it raises questions as to the suitability and hence fitness of the accepted
mappings for a given task, which is addressed below.

5.2 Fitness Evaluation

The above evaluation demonstrated that the FDO approach produced a greater
number of arguments in favour of mappings being generated than when using
MbA, resulting in a larger number of mutually acceptable mappings. However,
it is unclear whether the increase in mappings will result in a better alignment
between two ontologies. To address this, new alignments were generated and
evaluated (in terms of precision and recall) for a typical query-answering task.
An alignment was selected to answer simple queries against one of the ontologies
9 Note that these results include the arguments generated by both agents over all the

mappings considered.

Deciding Agent Orientation on Ontology Mappings 173

involved in the alignment, and the results compared to that achieved when a
set of hand-crafted reference mappings (from the OAEI Alignment Challenge)
were used. To investigate how the availability of different alignments affects the
task, four alignment systems (Asmov, Falcon, Lily and OntoDNA [13] were used
to generate the alignments, and the evaluations were conducted over different
alignment combinations.

Table 5. Precision(P), Recall (R) and F-Measure (FM) values for a selection of com-

binations of alignments (where each alignment system is referenced by their initials)

Base FDO MbA

O1, O2 R P FM R P FM R P FM

A
/
L
/
O (cmt, ekaw) 0.60 1 0.75 0.60 1 0.75 0.58 1 0.74

(cmt, sigkdd) 0.19 1 0.32 0.19 1 0.32 0.10 0.81 0.18

(confOf, ekaw) 0.55 1 0.71 0.55 1 0.71 0.43 1 0.60

A
/
F
/
L (cmt, confOf) 0.83 0.94 0.88 0.83 0.99 0.91 0.77 1 0.87

(confOf, ekaw) 0.90 0.93 0.91 0.9 0.99 0.94 0.75 1 0.85

(confOf, sigkdd) 1 0.96 0.98 1 0.99 1 0.59 0.61 0.60

A
/
O

(cmt, ekaw) 0.60 1 0.75 0.60 1 0.75 0.58 1 0.74

(cmt, sigkdd) 0.19 1 0.32 0.19 1 0.32 0.10 0.81 0.18

(confOf, ekaw) 0.55 1 0.71 0.55 1 0.71 0.43 1 0.60

A
/
F

(cmt, confOf) 0.83 0.94 0.88 0.83 0.99 0.91 0.77 1 0.87

(confOf, ekaw) 0.90 0.93 0.91 0.90 0.99 0.94 0.75 1 0.85

(confOf, sigkdd) 1 0.96 0.98 1 0.99 1 0.59 0.61 0.60

L
/
O

(cmt, ekaw) 0.60 1 0.75 0.60 1 0.75 0.58 1 0.74

(cmt, sigkdd) 0.19 1 0.32 0.19 1 0.32 0.10 0.81 0.18

(confOf, ekaw) 0.55 1 0.71 0.55 1 0.71 0.43 1 0.60

F

(cmt, confOf) 0.83 0.94 0.88 0.83 0.99 0.91 0.77 1 0.87

(confOf, ekaw) 0.90 0.93 0.91 0.90 0.99 0.94 0.75 1 0.85

(confOf, sigkdd) 1 0.96 0.98 1 0.99 1 0.59 0.61 0.60

O

(cmt, ekaw) 0.60 1 0.75 0.60 1 0.75 0.58 1 0.74

(cmt, sigkdd) 0.19 1 0.32 0.19 1 0.32 0.10 0.81 0.18

(confOf, ekaw) 0.55 1 0.71 0.55 1 0.71 0.43 1 0.60

F
/
L

(cmt, confOf) 0.83 0.94 0.88 0.83 0.99 0.91 0.77 1 0.87

(confOf, ekaw) 0.90 0.93 0.91 0.90 0.99 0.94 0.75 1 0.85

(confOf, sigkdd) 1 0.96 0.98 1 0.99 1 0.59 0.61 0.60

The query-answering tasks were evaluated by querying instances from vari-
ous knowledge-bases (KBs) defined using the different ontologies. In each case,
queries were constructed by considering each named concept in one ontology
O1, and querying the KB for O2. To overcome the ontological heterogeneity, the
query was resolved using O2∪M , where M was the alignment used. As the result-
ing instance set depends on the generated alignment, a reference “gold standard”
instance set was constructed by using the hand-crafted reference alignment. To
evaluate scenarios where alternate alignments were available from the different
alignment systems used, alignments were generated by all of the systems, result-
ing in 12 different alignments, where each one was partitioned between three or

174 P. Doran et al.

five ontology pairs. Query answering tasks were performed for three cases: when
all the mappings in the alignments were aggregated and used without any use of
the argumentation process (i.e. Base); when MbA was used; and when FDO was
used. In each case, the answers generated for each query were analysed and com-
pared with that obtained when using the Gold Standard set, and the Precision
(P), Recall (R) and F-measure (FM) results (using these classical Information
Retrieval measures) are reported in Table 510.

The results suggest that in most cases, there is a slight improvement in the
success of a task when FDO is used (compared to Base) for the scenarios listed
in Table 5, with an average F-measure of 0.83 (compared to 0.82 for Base).
This contrasts sharply with MbA, which achieves only an average F-measure
of 0.72. In general, the precision of FDO is higher or comparable with that
exhibited by MbA. Interestingly, when FDO is compared with the base case in
general, a marked increase in precision is observed. Base already represents a
best-case scenario, in which the different alignment systems are tuned in order to
provide the best accuracy when computing the mappings, and therefore typically
generate only those mappings for which the system has the highest level of
confidence. These results suggest that the further filtering of results due to the
use of FDO pays off in terms of the increase in precision.

6 Related Work

A number of solutions have been proposed that attempt to resolve ontological
mismatches within open environments [14,4,8,9]. An ontology mapping negoti-
ation [14] was proposed to establish a consensus between different agents using
the MAFRA alignment framework. It was based on the utility and meta-utility
functions used by the agents to establish if a mapping is accepted, rejected or ne-
gotiated, making it highly dependent on the MAFRA framework and unsuitable
for other environments.

Bailin and Truszkowski [2] present an ontology negotiation protocol that en-
abled agents to exchange parts of their ontology, by a process of successive
interpretations, clarifications, and explanations. The result was that each agent
would converge on a single, shared ontology. However, within an open environ-
ment, agents may not always want to modify their own ontologies, as this may
affect subsequent communication with other agents.

The work by van Diggelen et al. [4] dynamically generates a minimal shared
ontology, where minimality is evaluated against the ability of the different compo-
nents to communicate with no information loss. The agents can explain concepts
to each other via the communication mechanism; either by defining the concept
in terms already understood or by invoking an extensional learning mechanism.

10 In eight cases, the recall and precision of the Base and FDO evaluations were of

value 1 (i.e. they returned only those instances in the “gold standard” instance set),

and thus have not been included in the Table. In these cases, the precision of MbA
was also 1, but the recall varied between 0.9 and 0.99.

Deciding Agent Orientation on Ontology Mappings 175

However, the ontological model used here is limited and non-standard, as its ex-
pressivity supports only simple taxonomic structures, with no properties and few
restrictions other than disjointness and partial overlap, and does not correspond
to any of the OWL flavours11. As a consequence, its applicability to the augmen-
tation of existing real-world, published, OWL ontologies on the web is limited.

dos Santos et al. [9,10] address the problem of generating a canonical align-
ment using an extended version of the VAF, which considers both the strength
and value of an argument. They do not consider the problem of dynamically
aligning two agent ontologies to facilitate communication and fail to consider
the preferences of the agents.

7 Conclusions

This paper presents a novel mechanism for determining whether agents are in
favour or against ontology mappings during a process of dynamic selection of
mutually acceptable alignements. The flexible approach for determining agents’
orientation on ontology mappings (FDO) allows agents to express a minimum
acceptability thresholds for each of the mapping types to include in the align-
ment used during communication. In this respect FDO provides a more flexible
framework the Meaning-based argumentation (MbA) approach in order to decide
whether agents support or refute a mapping.

A systematic evaluation has been presented, aiming at assessing the perfor-
mance of this novel mechanism over the 11 ontologies used in the OAEI 2007
initiative. In particular, the evaluation investigated whether the FDO approach
generates larger set of mutually acceptable mappings than the original MbA ap-
proach, thus improving the possibility of finding an alignment agents can use to
interact. In addition, we investigated whether these mappings are fit for purpose
for a query answering task.

The results obtained suggest that the FDO approach produces a considerably
larger set of mutually acceptable mappings by reducing the number of mappings
an agent argues against when compared with MbA. The fitness for purpose
evaluation shows that the FDO approach has a comparable if not higher F-
measure than the case when no argumentation is used, and definitely outperforms
MbA.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.

(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-

tions. Cambridge University Press, Cambridge (2003)

2. Bailin, S.C., Truszkowski, W.: Ontology negotiation: How agents can really get

to know each other. In: Truszkowski, W., Hinchey, M., Rouff, C.A. (eds.) WRAC

2002. LNCS, vol. 2564, pp. 320–334. Springer, Heidelberg (2003)

11 The authors mention a reformulation of their model using Description Logics, but

provide no formal proof of its soundness [4].

176 P. Doran et al.

3. Bench-Capon, T.: Value based argumentation frameworks. In: Proceedings of Non

Monotonic Reasoning, pp. 444–453 (2002)

4. van Diggelen, J., Beun, R.J., Dignum, F., van Eijk, R., Meyer, J.J.: Ontology

negotiation in heterogeneous multi-agent systems: The anemone system. Applied

Ontology 2(3-4), 267–303 (2007)

5. Dung, P.: On the Acceptability of Arguments and its Fundamental Role in Non-

monotonic Reasoning, Logic Programming and n-person Games. In: Artificial In-

telligence, vol. 77, pp. 321–358 (1995)

6. Eckert, K., Meilicke, C., Stuckenschmidt, H.: Improving ontology matching using

meta-level learning. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath,

T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC

2009. LNCS, vol. 5554, pp. 158–172. Springer, Heidelberg (2009)

7. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)

8. Laera, L., et al.: Argumentation over ontology correspondences in mas. In: 6th

International Joint Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2007), Honolulu, Hawaii, USA, May 14-18, p. 228 (2007)

9. dos Santos, C.T., Quaresma, P., Vieira, R.: Conjunctive queries for ontology

based agent communication in mas. In: 7th International Joint Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS 2008), Estoril, Portugal, May

12-16, vol. 2, pp. 829–836 (2008)

10. dos Santos, C.T., et al.: A cooperative approach for composite ontology mapping.

Journal of Data Semantics 10, 237–263 (2008)

11. dos Santos, C.T., Euzenat, J., Tamma, V., Payne, T.R.: Argumentation for recon-

ciling agent ontologies. In: SASFA 2010. Springer, Heidelberg (2010) (in press)

12. Sensoy, M., Yolum, P.: A cooperation-based approach for evolution of service

ontologies. In: 7th International Joint Conference on Autonomous Agents and Mul-

tiagent Systems (AAMAS 2008), Estoril, Portugal, May 12-16, vol. 2, pp. 837–844

(2008)

13. Shvaiko, P., Euzenat, J., Giunchiglia, F., He, B. (eds.): Proceedings of the 2nd In-

ternational Workshop on Ontology Matching (OM-2007) Collocated with the 6th

International Semantic Web Conference (ISWC 2007) and the 2nd Asian Seman-

tic Web Conference (ASWC 2007), Busan, Korea, CEUR Workshop Proceedings,

November 11, vol. 304. CEUR-WS.org (2008)

14. Silva, N., Maio, P., Rocha, J.: An approach to ontology mapping negotiation. In:

Proceedings of the Workshop on Integrating Ontologies (2005)

One Size Does Not Fit All: Customizing Ontology
Alignment Using User Feedback

Songyun Duan, Achille Fokoue, and Kavitha Srinivas

IBM T.J. Watson Research Center, NY, USA
{sduan,achille,ksrinivs}@us.ibm.com

Abstract. A key problem in ontology alignment is that different ontological fea-
tures (e.g., lexical, structural or semantic) vary widely in their importance for
different ontology comparisons. In this paper, we present a set of principled tech-
niques that exploit user feedback to customize the alignment process for a given
pair of ontologies. Specifically, we propose an iterative supervised-learning ap-
proach to (i) determine the weights assigned to each alignment strategy and use
these weights to combine them for matching ontology entities; and (ii) determine
the degree to which the information from such matches should be propagated to
their neighbors along different relationships for collective matching. We demon-
strate the utility of these techniques with standard benchmark datasets and large,
real-world ontologies, showing improvements in F-scores of up to 70% from the
weighting mechanism and up to 40% from collective matching, compared to
an unweighted linear combination of matching strategies without information
propagation.

1 Introduction

Ontology alignment and the related problem of schema matching is a richly studied area
[9, 10, 14], with significant advances of alignment techniques in recent years. There are
a number of systems that perform pretty well on the ontology alignment evaluation
initiative (OAEI) benchmarks (for most recent examples, see Lily [17], ASMOV [8],
Anchor-Flood [11], and RiMOM [12]).

A common aspect of most alignment systems is that they combine semantic and
lexical features of ontology entities with structural propagation (e.g., as in similarity
flooding [13] or in iterative structural propagation of QOM [6]). When such structural
propagation is applied, two key assumptions dominate the literature: (i) Structural prop-
agation is beneficial to ontology alignment; and (ii) The alignment results at the last
iteration are the best to be produced as the final results. Due to the lack of a principled
way to determine the optimal number of iterations, most systems perform structural
propagation either to a fixed number of iterations, or until further propagation does not
produce additional matchings [6, 7].

Our key observation, based on work with real-world ontologies, is that the impor-
tance of any of these features (lexical, semantic or structural) varies widely across dif-
ferent ontology alignments. Furthermore, the degree of structural propagation required
for optimal performance also varies widely. More structural propagation does not neces-
sarily lead to better alignment results; in some cases, any structural propagation actually
impairs alignment quality.

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 177–192, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

178 S. Duan, A. Fokoue, and K. Srinivas

More recently, collective matching approaches (e.g., [1]) have been proposed to take
structural information into account, in a principled manner, for matching ontology en-
tities. These approaches typically use sophisticated statistical models such as Markov
Networks [15] to explicitly represent interdependencies between various matching
choices. In a sense, they do not optimize the quality of individual matching decisions
(i.e., matching between individual pairs of ontology entities); instead, they optimize the
quality of the whole collection of matching decisions. However, a serious drawback
with these approaches to ontology alignment using complex models is their high com-
putational cost; thus making such systems hard to use with large, real-world ontologies.

In this paper, we propose a principled and scalable technique to incorporate lexical,
semantic and structural features, using iterative supervised structural propagation. Our
approach relies on customizing two key components of ontology alignment. First, at
a lexical level, alignment depends on a number of different alignment strategies (e.g.,
alignment based on the names of ontology entities as encoded in a URI, or the associated
documentation in terms of rdfs:label, rdfs:comment). For a given pair of ontologies,
empirical evaluation may find out that an alignment strategy based on name may be
more appropriate than that based on documentation. Our approach uses user feedback to
learn the relative importance of these different alignment strategies for a given ontology
pair, which is similar to the approach taken by APFEL [7]. Specifically, we use logistic
regression [2] to determine the weights assigned to different strategies based on user
feedback.

Second, we address the issue of how to systematically propagate lexical-level and
user-specified matches along structural relations in the ontology. Here, we diverge from
previous iterative structural propagation approaches such as [13] and [6] in that we
adopt iterative supervised learning to estimate the optimal number of iterations needed
for a given ontology pair. Specifically, we use the training phase to observe exactly
which iteration yields maximal benefits in alignment, and use this information to de-
termine the stopping condition for structural propagation at test. Our experimental
evaluation shows clear advantages of our approach over previous approaches (e.g.,
APFEL [7]) that do not take user feedback as guidance across iterations during the
structural propagation phase.

Our contributions in this paper are as follows:

– We use supervised learning to customize the weights for different alignment strate-
gies for a given ontology pair, and to customize the degree to which those matches
at an entity level get propagated to its neighbors for collective matching.

– We demonstrate the effectiveness of this approach on two benchmark datasets, and
6 other large, real-world ontology alignments. The experimental results show good
scalability of our approach, and confirm the hypotheses about great variability in
features across ontology alignments. Our results also show dramatic improvements
in alignment from the weighting (up to 70% increase in F-scores), and collective
matching (up to 40% increase in F-scores).

– We demonstrate that incorporating supervision into the process of structural prop-
agation is key to the selection of the relevant features. Weighting features using
supervision after the process of unsupervised structural propagation yields poor
results in some cases.

One Size Does Not Fit All: Customizing Ontology Alignment 179

The rest of the paper is organized as follows. Section 2 gives an overview of the frame-
work for ontology alignment. Section 3 describes the ontological features and similarity
metrics. Section 4 presents a supervised-learning technique for similarity aggregation
and interpretation. Section 5 presents the technique of iterative supervised structural
propagation. Section 6 presents experimental results. Section 7 discusses related work,
and Section 8 concludes.

2 Overview of Ontology Alignment

In this section, we briefly introduce important notations, and present the overall struc-
ture of our approach to ontology alignment. We use the terms alignment/matching and
element/entity interchangeably when there is no confusion.

An ontology O is represented as a labeled graph G = (V, E, vlabel, elabel). The
set of vertices V contains ontology entities such as concepts and properties. Edges
in E (E ⊆ V × V) represent structural relationships between entities. The edge la-
beling function elabel, which maps an edge (v, v′) ∈ E to a subset of the set SL
of structural labels, which in turn specify the nature of the structural relationships
between entities (e.g., subclassOf). Let LL denote the set of lexical labels associ-
ated with entities (e.g., name, documentation). Finally, the vertex labeling function,
vlabel : V × LL→ String, maps a pair (e, l) ∈ V × LL to a string corresponding to
the value of the lexical label l (e.g., name) associated with the entity e.

Given two ontologies O and O′, the ontology alignment problem consists of find-
ing a set of matchings (e, e′), where e and e′ are entities in O and O′, respectively.
Additionally, a similarity measure, denoted simagg , which maps the pair of entities
(e, e′) ∈ O × O′ to a real number in [0, 1], provides the confidence in a matching. We
assume that for any entity in O, there is at most one matching entity in O′.

The alignment approach presented in this paper is similar in its overall structure to
the process adopted by many existing matching engines such as [6]:

1. Generation of Candidate Matchings: This step includes feature engineering (i.e.,,
the extraction of the relevant characteristics of ontology entities in both the source
and the target ontology) and the selection of candidate matchings (to avoid consid-
ering the Cartesian product of entities in the two ontologies).

2. Similarity Aggregation and Interpretation: This step computes various similar-
ity metrics on candidate matchings identified in the previous step. Each individual
similarity metric is a function of only the features extracted from the two ontology
entities being compared. The similarity scores are then aggregated into a single
similarity score for each candidate matching. Interpretation is then based on the
aggregated similarity scores, and involves a decision about which candidate match-
ings should be selected as valid matchings — typically using a threshold.

3. Structural Propagation. This step propagates matching information along ontol-
ogy structure, by repeating the previous steps, typically, either to a fixed number of
iterations or until no additional matchings are produced.

Our approach significantly differs from previous work in two ways. First, our similarity
aggregation step is not based on an unsupervised (thus ad-hoc) weighted combination

180 S. Duan, A. Fokoue, and K. Srinivas

of similarity scores. We use a fully supervised-learning approach (described in more
details in Section 4) to learn, at each iteration, from user feedback an optimal combina-
tion of similarity scores. Second, our stopping condition for the structural propagation is
more principled. Note that previous work stop propagation based on an arbitrary num-
ber of iterations or the absence of additional matchings, which assumes that matching
quality monotonically improves over successive iterations (this assumption does not
hold in many cases, as shown in the experiment section). We stop iterations when there
is no significant improvement in information gain at training, and select only the match-
ings produced at the iteration where the matching result has the best consistency with
user feedback (see Section 5 for more details).

3 Generation of Candidate Matchings

In this section, we describe the features that can be extracted from ontologies, and the
lexical similarity metrics we consider in this paper (structural similarities are discussed
in Section 5).

3.1 Feature Engineering

In our approach, the feature engineering step is essentially responsible for transforming
models in various representations (e.g., XML Schemas, UML models, OWL ontologies,
etc) into an ontology O represented as the labeled graph G = (V, E, vlabel, elabel).
Structural features are represented as edge labels.

In this section, we present features extracted from models encoded as OWL ontologies
or OBO ontologies.

Lexical features (i.e., elements of the set LL) extracted from ontology entities (con-
cepts or properties) are as follows:

– name, which corresponds to the last segment of the ontology entity’s URI (e.g.,
‘Person’ for ‘http://www.ibm.com/hr/Person’).

– documentation, which consists of the concatenation of the values of rdfs:label,
rdfs:comment, obo:def, obo:comment, and obo:synonym.

Structural features (i.e., elements of the set SL) are shown in the first column of Table 1.
The second column of Table 1 indicates the condition under which an edge (e0, e1)
is assigned a given label. Note that, although these structural features do not capture
all the structural and semantic constructs of OWL ontologies (e.g., union, disjointWith,
complementOf, and nested structures are not currently taken into account), they are
sufficient to produce robust structural improvements on the ontologies we tested with
(see Section 6 for more details).

3.2 Lexical Similarities and Initial Selection of Candidate Matchings

Similarity Metrics. Various similarity metrics can be employed to compare entities
from different perspectives. In an abstract form, a similarity metric is a function that
maps a pair of entities to a value between 0 and 1.

sim(e, e′)→ [0, 1] (1)

One Size Does Not Fit All: Customizing Ontology Alignment 181

Table 1. Structural Labels

Label Label ∈ elabel(e0, e1) iff.

subclassOf e0 is a direct subclass of e1.
superclassOf e0 is a direct superclass of e1.
isRangeOf The concept e0 is the range of the property e1.
isDomainOf The concept e0 is the domain of the property e1.
subPropertyOf e0 is a direct subproperty of e1
superPropertyOf e0 is a direct superproperty of e1
hasRange The range of the property e0 is the concept e1.
hasDomain The domain of the property e0 is the concept e1.
hasExistRestrictionOnProperty The property e1 is used to define the concept e0

in terms of an existential or minimal cardinality restriction
(e.g., e0 is defined as e0 ∃e1.C)

hasForAllRestrictionOnPropertyThe property e1 is used to define the concept e0
in terms of a universal restriction (e.g., e0 is defined as
e0 ∀e1.C))

hasExistRestrictionOnClass The concept e1 is used to define e0
in terms of an existential or minimal cardinality restriction
(e.g., assuming normalization to NNF, e0 is defined as
e0 ∃R.e1).

hasForAllRestrictionOnClass The concept e1 is used to define e0
in terms of a universal restriction (e.g, assuming normal-
ization to NNF, e0 is defined as e0 ∀R.e1).

existRestrictionUsedFor The concept e1 is defined as an existential
or minimum cardinality restriction using the property e0
(e.g., if e1 is defined as e1 ∃e0.C)

forAllRestrictionUsedFor The concept e1 is defined as a universal
restriction using the property e0
(e.g., if e1 is defined as e1 ∀e0.C)

For a given pair of entities (e, e′), multiple similarity metrics can be applied. The sim-
ilarity metrics are denoted as simi(e, e′) (i = 1, 2, . . .). Note that the similarity metric
can be as general as a matching technique.

For lexical similarity, standard similarity metrics exist for strings such as Leven-
shtein similarity or Jaccard similarity on n-grams. This works fine for lexical features,
such as name, whose values are expected to consist of only a few words. However,
for lexical features such as documentation, the values may consist of many paragraphs.
Therefore, as explained in [3], we cast the problem into a classical information retrieval
problem. We transform entities (e.g., concepts and properties) into virtual documents. A
virtual document consists of fields corresponding to the two lexical features described
in the previous section, namely, name and documentation. These virtual documents
are stored and indexed by a high-performance text search engine such as Lucene1. A
Vector Space Model (VSM) [16] is adopted for comparison: each field F (name or
documentation) of a virtual document is represented as a vector in a NF -dimensional
space, with NF denoting the number of distinct words in field F of all documents.

1 http://lucene.apache.org/java/docs/index.html

http://lucene.apache.org/java/docs/index.html

182 S. Duan, A. Fokoue, and K. Srinivas

Traditional TF-IDF (Term Frequency-Inverse Document Frequency) values are used
as the weights of coordinates associated with terms. The lexical similarity on a field
F ∈ {name, documentation} between two entities e and e′ is referred to as simF (e, e′),
and is computed as the cosine of the angle formed by their F vectors. We adjust for
slight syntactic variations by using a term similarity metric (such as Levenshtein or
Jaccard over n-grams) between terms as explained in [3].

Candidate Selection. In the first iteration (i.e., before any structural propagation is
performed), we use the text search engine, for each entity e in the source ontology O,
to select top-k candidate matchings of e in the target ontology O′, by retrieving the
virtual documents representing entities in O′ that match well with e in terms of lexical
similarity (e.g., based on Lucene score).

4 Similarity Aggregation and Interpretation

4.1 User Feedback

In this paper, we assume that for any entity in O, there is at most one matching entity
in O′. Also, we assume a simple format for user feedback (users specify which pairs
of entities should be matched) that is fed to our system through a file of gold standard
matchings. For a matching (e, e′) specified by the user, we will label the matching (e,
e′) as true. For any candidate matching (e, e′′) generated in Section 3, where e′′ is
not equal to e′, we label it as false. Thus, we generate a set of training tuples in the
following form:

〈 sim1(e, e′), . . . ,simn(e, e′),true〉 (2)

〈 sim1(e, e′′), . . . ,simn(e, e′′),false〉(∀e′′
= e′)

4.2 Weighted Aggregation

To interpret the matching result, a common practice is to aggregate the similarity met-
rics with a linear combination and set a threshold to decide which matchings are esti-
mated to be true. However, it is well accepted that linearly (unweighted) combining
the similarity metrics (or matching strategies) may adversely affect the overall match-
ing quality. With user feedback, we can infer which similarity metrics are more reliable
than others, and assign higher weights to the more reliable ones. A natural extension is
to get a weighted sum (with the weight vector −→ω) of the similarity measures and apply
a threshold ω0 to predict whether a matching is true or false. The prediction is done
with a decision boundary f (−→ω , sim) = 0, where the function f is defined as follows:

f(−→ω ,sim) = ω0 + ω1 × sim1 + . . . + ωn × simn (3)

4.3 Probabilistic Matching

For a candidate matching, the above decision boundary produces a binary value indi-
cating the matching is true or false. However, it is more important to also produce
a probability (between 0 and 1) along with the binary prediction, such that the match-
ing result can be easily incorporated in other matching strategies (we will see such an

One Size Does Not Fit All: Customizing Ontology Alignment 183

Algorithm 1. Learning of Weights for Ontology Matching

Input: ontologies O and O′, gold standard matchings M from user feedback, similarity
metrics simi

Output: a list of matchings, 〈(e, e′), P ((e, e′) = true)〉
1. for each matching m = (e, e′) in gold standard M do

(i) Label candidate matchings for e: (e, e′) as true and (e, e′′) (∀e′′ �= e′) as
false;
(ii) Compute the similarities of each candidate matching with given similarity metrics
simi;
(iii) Generate the training tuples in the way described in Section 4.1;

2. Learn the weights for combining the similarities and the threshold to decide whether a
matching should be produced or not;
3. Use the learned weights and the threshold to generate the matching result.

example in Section 5). In statistics, the output of the real-valued function f can be
mapped to a probability value, using the sigmoid function P (t) = 1

1+e−t . Specifically,
given a candidate matching (e, e′) with similarity measures sim, the probability of this
matching is true is:

P ((e, e′) = true) =
1

1 + e−f(−→ω ,sim)
(4)

The probability that the matching is false is P ((e, e′) = false) = 1 − P ((e, e′) =
true). The key issue is how to determine the weight vector −→ω based on user
feedback. Recall that the user feedback can be represented in the form of tuples
〈sim,true/false〉. The weight vector −→ω that maximizes the likelihood of observ-
ing these tuples is the one that is most consistent with user feedback. In statistics,−→ω can
be determined using the MLE (maximum likelihood estimation) technique for logistic
regression [2]. Algorithm 1 describes the key steps of the supervised-learning approach
to ontology alignment.

5 Iterative Supervised Structural Propagation of User Feedback

In this section, we make the internal linkages of entities within ontologies explicit for
learning. Specifically, for a candidate matching (e, e′), we take into account the match-
ing results of e’s neighbors in the ontology O when making the matching decision for
(e, e′). The intuition is, for example, the matching of e’s subclass with e′’s subclass may
add evidence that e and e′ should be matched.

5.1 Structure-Based Similarity

For a candidate matching (e, e′), we extend the list of similarity metrics introduced in
Section 3 with structure-based metrics as follows. Consider a structural label l (e.g.,
subclassOf) in the ontologies. Suppose there is a set of entities SE(e, l) that are con-
nected to e with the structural label l in O (i.e., SE(e, l) = {x|l ∈ elabel(e, x)});
correspondingly, SE(e′, l) for e′ in O′. It is important to aggregate the similarity val-
ues between the two sets, i.e., SE(e, l) and SE(e′, l), and extend the list of similarity

184 S. Duan, A. Fokoue, and K. Srinivas

metrics for (e, e′) with the aggregation metrics. Below we briefly describe two types
of aggregation metrics. (We considered other types of aggregation metrics such as min
and sum, but empirically observed that max and avg are more effective.)

– max(S1, S2,sim) is the maximum similarity between any pair of entities, from
two sets of entities S1 and S2 respectively, in the Cartesian product of S1×S2. For
instance, S1 can be SE(e, l), S2 can be SE(e′, l), and sim can be a lexical similarity
metric, as described in Section 3.

max(S1, S2,sim) = max
(e1,e2)∈S1×S2

sim(e1, e2)

– avg(S1, S2,sim) is the average similarity of pairs of entities in the Cartesian prod-
uct S1 × S2:

avg(S1, S2,sim) =

∑
(e1,e2)∈S1×S2

sim(e1, e2)

(|S1|+ |S2|)/2

For a candidate matching (e, e′), we can generate various structure-based similarity
metrics based on their sets of neighborsSE(e, l) and SE(e′, l). Concretely, the structure-
based similarity metrics can be:

– max(SE(e, l),SE(e′, l),simname)
– avg(SE(e, l),SE(e′, l),simname)
– max(SE(e, l),SE(e′, l),simdoc)
– avg(SE(e, l),SE(e′, l),simdoc)
– max(SE(e, l),SE(e′, l),simagg)
– avg(SE(e, l),SE(e′, l),simagg)

In the above metrics, simname is lexical similarity on the name field of two entities,
simdoc is the lexical similarity on the documentation/comment field of two entities,
and simagg can be the aggregated score of similarity metrics in Algorithm 1 (i.e.,
simagg(e, e′) = P ((e, e′) = true)).

5.2 Determining the Degree of Structural Propagation

At the bootstrapping step, we generate the aggregated similarity for a candidate match-
ing (e, e′) in the following way: If (e, e′) is part of the ground truth (i.e., provided by
user feedback), its value is 1; otherwise, its value is 0. At the following iterations, we
can utilize the matching result from the previous iteration. Note that for the pairs of
entities that appear as training tuples (see Formula 3), we replace their matching scores
with the ground truth (1 for true, and 0 for false).

The above structural similarity metrics allow the propagation of information con-
veyed by user feedback along the structure of the two ontologies. We thus extend the
initial set of similarity metrics (Section 3) with the six structure-based similarity met-
rics per relation type. As a result, the number of similarity metrics that can be used
for ontology matching is large. Since the amount of user feedback is limited, we adopt
dimensionality reduction techniques to avoid the overfitting problem in Section 5.4.

At each iteration, the selection of matching candidates is extended to include pairs
of entities having at least one non-zero structural similarity measure. The impact of the
neighbor matching scores on the candidate matching in consideration is learned based

One Size Does Not Fit All: Customizing Ontology Alignment 185

Algorithm 2. Iterative Supervised Structural Propagation for Ontology Matching

Input: ontologies O and O′

Output: a list of matchings, 〈(e, e′), P ((e, e′) = true)〉
1. Bootstrapping: Generate training tuples with basic similarity metrics and
structure-based similarity metrics;
2. Learn a weight vector to integrate similarity metrics that maximize the likelihood of
user feedback being correct;
3. Generate a new list of matchings by combining the similarity metrics using the newly
learned weight vector;
4. Update the training tuples with the aggregated similarities from Step 3, and add
candidate matchings whose structure-based similarity measures become nonzero;
5. If it does not meet stopping condition, go to Step 2.

on user feedback, as described in Section 4. This process iterates until some stopping
condition is satisfied; the following describes a metric to define the stopping condition.

5.3 Determining the Right Number of Iterations

We observe that too many iterations may be detrimental to matching quality (see the
experiment section). Therefore, we propose a metric G, which is the training error, to
decide the optimal number of iterations. G is computed as the absolute difference of
the matching result (in the form of 〈(e, e′), P ((e, e′) = true)〉) at each iteration with
regard to the ground truth (i.e., user feedback).

G =
∑

(e,e′)∈Ground Truth

(1−P ((e, e′) = true))+
∑

(e,e′)/∈Ground Truth

P ((e, e′) = true)

The hypothesis is that the smaller the value of G, the better the matching result. This
hypothesis will be verified with experiments in the next section.

5.4 Techniques for Scalability

Dimensionality Reduction. For large ontologies, possibly with many edge-labels, the
generated attribute list (of similarity metrics) can be huge. Due to the limited amount
of user feedback, it is necessary to reduce the dimensionality of the attribute space, to
avoid the well-known overfitting problem. We use a standard unsupervised dimension-
ality reduction technique, principle component analysis (PCA) [2], to extract the most
important dimensions for learning from the originally high dimensional space.

Blocking Unreliable Information Propagation. In Algorithm 2, the number of can-
didate matchings will monotonically increase after each iteration, since new candidate
matchings are generated if their neighbors have confident matchings. To avoid propa-
gating noisy information from neighbors, we set a threshold on the matching scores to
keep the low-confidence matchings from propagating to neighbors. A side benefit of
such blocking is efficiency; the number of tuples in the training data generated based
on user feedback will increase slowly, thus saving the time to learn the weight vector
(in Section 4.2) for each iteration. Note that if there is no blocking of propagation, the
number of tuples in the training data may increase exponentially during iterations.

186 S. Duan, A. Fokoue, and K. Srinivas

6 Experimental Evaluation

The focus of our experimental evaluation is to determine whether the great variability
in ontology alignments can be reduced by using (i) a supervised-learning technique
to customize the weights assigned to lexical features, and (ii) an iterative supervised-
learning approach to determine the appropriate degree of structural propagation for each
ontology alignment.

6.1 Experimental Setting

We focused on parts of the OAEI benchmark suite that are most suited for evaluating
the effects of structural propagation. Test 202 was selected because it modifies the orig-
inal ontology by obfuscating all names and documentations,and is a test of alignment
based on structural similarity. We also selected the anatomy segment of the benchmark
because the pair of ontologies in that benchmark encode structural information within
an extensive part-of hierarchy. We also added 6 other ontology alignments from Bio-
Portal into the evaluation to ensure that our results generalize well to different types of
ontology alignments. Table 2 shows the characteristics of these 6 additional ontology
alignments, and the number of matchings manually discovered by domain experts.

To evaluate the effects of training on similarity combination and structural propaga-
tion2, we performed random sampling to split the reference matchings in the following
way: we assigned 50% of the matchings to the ’test’ group, and from the rest we further
sampled 50% of the matchings to create the ’training’ group (i.e.,, training ratio was
25% of the total number of matchings for the ontology alignment). Note that the actual
number of matchings used for learning is small with respect to ontology size. For both
training and testing, we varied the number of iterations used for structural propagation
to a maximum of about 10 iterations for each ontology alignment.

The experiments were performed on a server with 8 way machine with 4 dual-core
Intel Xeon chips at 3.20 GHz, with 20 GB of memory. For all the experiments, we used
a maximum Java heap size of 10 GB.

6.2 Evaluation Metric

In our experimental evaluation, we had a complete gold standard for Test 202; for all
other ontology alignments, we only had partial reference alignments3. We therefore
measured F-scores in the standard manner only on Test 202. For all other ontology
matching tasks, we computed an F-score only on the partial alignments available to
us, and only considered ontology entities that were in the reference alignments (all other
matchings we produced for entities in the source ontology not present in the partial
alignment were not taken into account for precision or recall estimates). We
assumed that there is at most one matching entity in the target ontology for each entity
in the source ontology.

2 The threshold we used for blocking unreliable information (Section 5.4) is 0.5.
3 The lack of complete reference alignments is a frequent problem in real world ontology align-

ments. The matchings in Bioportal, for example, are almost always partial because the ontolo-
gies are large, and cannot be perfectly aligned manually.

One Size Does Not Fit All: Customizing Ontology Alignment 187

Table 2. BioPortal Ontology alignments

Ontology 1 #Classes Ontology 2 #Classes #matchings
Mosquito gross anatomy
(TGMA)

2,404 Drosophilia gross anatomy
(FBbt)

8,742 324

Human devt. anatomy (EHDA) 11,575 Amphibian gross anatomy
(AAO)

833 684

BRENDA tisse source (BTO) 4,950 Experimental Factor Ontology
(EFO)

2,891 366

Experimental Factor Ontology
(EFO)

2,891 Mouse Adult Gross Anatomy
(MA)

3,504 212

ABA Adult Mouse Brain
(ABA)

915 Mouse Adult Gross Anatomy
(MA)

3,504 90

BIRNLex (birnlex) 3,582 UBER anatomy ontology
(UBERON)

3,619 744

precision =
|M ∩MGS|
|M| ,recall =

|M ∩MGS|
|MGS|

F-score =
2× precision× recall
precision+ recall

where M is the matchings discovered by our technique and the first ontology entity of
each matching appears in the reference alignment MGS.

In the following experimental results, we report F-score at the specific thresh-
olds of (0.7, 0.8, 0.9), which are used to filter out low-confidence matchings, as users
typically do not trust matchings with low matching confidence in practice.

6.3 Effect of Learning for Weighted Combination

Given the enormous variability in the importance of lexical and structural features to
different ontology alignments, our hypothesis is that there is a principled way to weight
these features appropriately using limited user feedback. We begin by examining the
effect of learning to combine lexical features. Table 3 reports the F-score from our
learning technique for weighted combination, compared with unweighted linear com-
bination of similarity metrics for matching. For some ontology alignments (e.g., BTO -
EFO), there is a significant improvement in F-score (from 5% to around 70%); which
clearly shows the effect of learning.

6.4 Effect of Iterative Supervised Structural Propagation

Figures 1 - 8 plot the changes in F-score as the structural propagation is iterated (in
a supervised fashion), along with the corresponding training errors at iterations. These
figures show:

– There is in fact a great deal of variability across ontologies, with lexical matches
contributing to accuracy in the range of 10% to well above 90%.

188 S. Duan, A. Fokoue, and K. Srinivas

Table 3. Effect of learning on F-scores at different thresholds

ontology alignment Unweighted combination Weighted combination
0.7 (%) 0.8 (%) 0.9 (%) 0.7 (%) 0.8 (%) 0.9 (%)

OAEI Anatomy 93 93 94 93 94 94
TGMA - FBbt 9 7 5 26 21 15
EHDA - AAO 99 99 99 99 99 99
BTO - EFO 5 1 1 74 72 68
EFO - MA 88 90 86 91 90 88
ABA - MA 93 90 85 94 92 90
BIRNLex - UBERON 77 66 46 83 81 73

– Structural propagation shows similar variability in its importance, with it improving
accuracy by up to 40% in some cases (e.g.,, Figures 1, 3, 5, 8), but as shown in
Figure 4, propagation of any structure in some ontologies causes a precipitous drop
in accuracy by almost 25%, at high confidence thresholds (0.9).

– The number of iterations required to maximize the effects of structural propagation
varies widely as well. In some cases (e.g., Figure 1), a greater number of iterations
of structural propagation is required, with peak matching quality being reached at
about 5 iterations. In other cases (e.g.,, Figure 8), just one iteration is sufficient to
maximize the benefits of structural propagation.

0 5 10 15 20

5
2
0

#Iterations

D
if
fe

re
n
c
e

Difference wrt gold standard during training at different thresholds

0.7
0.8
0.9

0 5 10 15 20

0
4
0

Iterations

F
−

s
c
o
re

s

0.7
0.8
0.9

F−Scores at different thresholds

Fig. 1. OAEI 202

0 2 4 6 8 10

3
0

4
0

#Iterations

D
if
fe

re
n
c
e

Difference wrt gold standard during training at different thresholds

0.7
0.8
0.9

0 2 4 6 8 10

9
0

9
3

Iterations

F
−

s
c
o
re

s

0.7
0.8
0.9

F−Scores at different thresholds

Fig. 2. OAEI Anatomy

Picking the Right Number of Iterations. For structural features, we hypothesized
that the training error (i.e.,, the absolute difference between the matching results and
reference matchings at training) can be used to estimate (i) whether structural propa-
gation is useful, and (ii) to what degree structure needs to be propagated to maximize
the overall matching quality. Because training error conceptually reflects goodness of
fit [2], F-score at test is expected to be the best when training error is minimal. The
general trend in Figures 1- 8 validated this hypothesis, therefore, we can pick the right
number of iterations, in a principled way, to maximize the quality of matchings for a
given pair of ontologies.

Comparison with Previous Work. We compare our approach with the technique pro-
posed in [7] by simulating their process of matching in the following steps: (i) perform

One Size Does Not Fit All: Customizing Ontology Alignment 189

0 2 4 6 8 10

5
5

7
5

#Iterations

D
if
fe

re
n
c
e

Difference wrt gold standard during training at different thresholds

0.7
0.8
0.9

0 2 4 6 8 10

1
5

3
0

Iterations

F
−

s
c
o
re

s

0.7
0.8
0.9

F−Scores at different thresholds

Fig. 3. TGMA-FBbt

0 2 4 6 8 10

1
0

5
0

#Iterations

D
if
fe

re
n
c
e

Difference wrt gold standard during training at different thresholds

0.7
0.8
0.9

0 2 4 6 8 10

7
5

9
0

Iterations

F
−

s
c
o
re

s

0.7
0.8
0.9

F−Scores at different thresholds

Fig. 4. EHDA-AAO

0 2 4 6 8 10

2
0

4
0

#Iterations

D
if
fe

re
n
c
e

Difference wrt gold standard during training at different thresholds

0.7
0.8
0.9

0 2 4 6 8 10

6
8

7
6

Iterations

F
−

s
c
o
re

s

0.7
0.8
0.9

F−Scores at different thresholds

Fig. 5. BTO-EFO

0 2 4 6 8 10

6
1
2

#Iterations

D
if
fe

re
n
c
e

Difference wrt gold standard during training at different thresholds

0.7
0.8
0.9

0 2 4 6 8 10

8
6

9
4

Iterations

F
−

s
c
o
re

s

0.7
0.8
0.9

F−Scores at different thresholds

Fig. 6. EFO-MA

iterative unsupervised structural propagation from iterations 1 to 8, and (ii) apply super-
vised learning to determine weighted combination of both lexical and structural similarity
measures returned from the last iteration. The result of this matching approach is shown
in Figures 9 and 10. Several points to note here include: (i) The unsupervised structural
propagation actually affects the F-score adversely, thus highlighting the importance
of supervised propagation; and (ii) At the last iteration (with supervised learning), we get
mixed results; in the case of BTO-EFO the F-score at the last iteration improves over
the matching results based on purely lexical similarity measures (from 2% to 71%), while
in another case structural propagation hurts F-score compared to lexical similarity
measures (from 85% to 78%). Note that this is in contrast to our result. For the same two
cases, we observed (in Figures 5 and 6) a significant improvement in F-score. Specif-
ically, with our approach, the F-score for BTO-EFO increases from 67% to 81%; and
the F-score for EFO-MA increases from 87% to 92%. In any of the two cases, our
approach outperforms that of the previous work, due to iterative supervised structural
propagation. One lesson we learned here is iterative structural propagation without the
guidance of user feedback is not reliable and can be harmful.

For OAEI 202, our best F-score (84%) across all thresholds makes our approach
competitive to the top 5 matching engines with best F-score between 80% and 90%.

190 S. Duan, A. Fokoue, and K. Srinivas

0 2 4 6 8 10

0
4

8

#Iterations

D
if
fe

re
n
c
e

Difference wrt gold standard during training at different thresholds

0.7
0.8
0.9

0 2 4 6 8 10

9
0

9
6

Iterations

F
−

s
c
o
re

s

0.7
0.8
0.9

F−Scores at different thresholds

Fig. 7. ABA-MA

0 2 4 6 8

4
0

7
0

#Iterations

D
if
fe

re
n
c
e

Difference wrt gold standard during training at different thresholds

0.7
0.8
0.9

0 2 4 6 8

7
4

8
2

Iterations

F
−

s
c
o
re

s

0.7
0.8
0.9

F−Scores at different thresholds

Fig. 8. BIRNLex-UBERON

0 2 4 6 8 10

3
0

7
0

#Iterations

D
if
fe

re
n
c
e

Difference wrt gold standard during training at different thresholds

0.7
0.8
0.9

0 2 4 6 8 10

0
4
0

Iterations

F
−

s
c
o
re

s

0.7
0.8
0.9

F−Scores at different thresholds

Fig. 9. BTO-EFO

0 2 4 6 8 10

1
0

4
0

#Iterations

D
if
fe

re
n
c
e

Difference wrt gold standard during training at different thresholds

0.7
0.8
0.9

0 2 4 6 8 10

0
6
0

Iterations

F
−

s
c
o
re

s

0.7
0.8
0.9

F−Scores at different thresholds

Fig. 10. EFO-MA

6.5 Discussion and Future Work

How much training data do we need to observe the beneficial results reported in this
paper? We ran experiments with a smaller training ratio (10%) of the reference match-
ings, and observed a big variation in F-scores for the matching of BTO-EFO. The
reason is that the absolute number of matchings (in this case, 36) used for training is too
small considering the ontology size (in this case, 4,950). Our hypothesis is that when
the sample sizes are too small (relative to the size of the ontology), careful selection
of candidate matchings for user feedback is needed to ensure that enough structure is
maintained for learning. Better sampling techniques (instead of random sampling) to
reduce user feedback is an issue we leave for future work.

Another issue we observed is that for each ontology alignment in Table 2, our ap-
proach generates thousands of extra matchings with scores above 0.9, and these are not
in the reference matchings. Based on the effectiveness of our technique on the reference
alignments, we expect these extra matchings to be valuable to domain users, if only to
recommend matchings for user validation.

One final point is about the scalability of our technique of iterative supervised struc-
tural propagation. The running time of each iteration was less than 3 minutes. Com-
pared to existing collective matching based on sophisticated statistical models (e.g., [1]),
which have issues of scalability, our approach has a clear advantage in performance.

One Size Does Not Fit All: Customizing Ontology Alignment 191

7 Related Work

Our approach, which applies an iterative supervised-learning technique to combine both
lexical and structural similarities, can be contrasted with previous work that adopt either
(unsupervised) iterative structural propagation technique (e.g., similarity flooding [13]
and its variants) or collective matching approaches (e.g., [1]).

Similar to those systems (e.g., [6] [12]) that apply variants of similarity flooding tech-
nique [13], our approach also iteratively propagates similarity metrics along ontology
structures. However, our approach differs from them in two significant aspects. First,
at each iteration, those systems aggregate various similarity metrics in an unsupervised
(thus ad-hoc) fashion. In contrast, our approach applies supervised learning to learn
from user feedback an optimal combination of both lexical and structural similarity
metrics at each iteration; thus the information propagated across iterations is more reli-
able. Second, unlike those systems that assume matching result at the last iteration is the
best (which is not necessarily true), we propose a novel and sound metric to estimate the
matching quality at each iteration, based on the consistency of matching result with user
feedback. Reference [7] views a matching engine (such as [6]) as a black box that returns
its matching results and the similarity measures; it applies a supervised-learning tech-
nique to decide the optimal combination of the similarity measures returned by such a
matching engine. Unlike our approach, the aggregation step occurring within the black-
box matching engine remains unsupervised. As a result, the final structural similarities
returned by the black-box engine may be less accurate; their iterative structural prop-
agation misses the guidance from user feedback. Hence, the value of the supervised-
learning approach to decide the weights of similarity measures is limited, resulting in
sub-optimal matching results (we verified this point in the experiment section).

Recently, collective matching approaches (e.g., [1]) have been proposed to take struc-
tural information into matching decisions using sophisticated statistical models. In a
nutshell, those approaches use complex statistical models such as Markov Network [15]
to explicitly represent interdependencies between matchings of interconnected ontology
entities. Our approach is similar to this category of work in the sense that supervised
learning techniques are applied to combine lexical and structural similarities in a prin-
cipled way. However, due to the high computational complexity, in both learning and
inference, of the complex statistical models used for encoding structural dependen-
cies, those approaches based on sophisticated statistical models typically scale poorly
to large ontologies4.

Meta-learning (i.e., integration of multiple alignment strategies) has also been im-
plemented by GLUE [4] and other systems (e.g., [5]). GLUE uses a supervised learning
approach to build concept classifiers based on the associated instances (our approach
does not assume instance information), but the way it combines inputs from various
classifiers and performs structural propagation through relaxation labeling is unsuper-
vised. Reference [5] also applies supervised learning to optimize the combination of
multiple matching strategies, but it makes matching decisions for each entity indepen-
dently, thus lacking the favor of collective matching.

4 Simpler statistical models (e.g., Markov Chain, Linear-chain Conditional Random Field, etc.)
with scalable learning and inference algorithms are not sufficiently expressive to faithfully
capture the structural dependencies.

192 S. Duan, A. Fokoue, and K. Srinivas

8 Conclusion

To address the great variability in the importance of various features across ontology
alignments, we have presented a principled and scalable technique to customize ontol-
ogy alignment for a given pair of ontologies based on user feedback. We have shown
how iterative supervised structural propagation, where each step is guided by user in-
put, can optimally incorporate and propagate lexical-level and user-specified matches
through the structure of the ontologies. Our experimental evaluation demonstrates the
effectiveness of the new approach on both benchmark datasets and large, real-world
bio-ontologies.

As future work, we plan to tackle the important, but orthogonal, problem of reduc-
ing user feedback by picking the most informative matches through active learning
techniques.

References

1. Albagli, S., Ben-Eliyahu-Zohary, R., Shimony, S.E.: Markov network based ontology match-
ing. In: IJCAI 2009 (2009)

2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2007)
3. Byrne, B., Fokoue, A., Kalyanpur, A., Srinivas, K., Wang, M.: Scalable matching of industry

models - a case study. In: OM (2009)
4. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Ontology matching: A machine learning

approach. In: Handbook on Ontologies in Information Systems. Springer, Heidelberg (2003)
5. Eckert, K., Meilicke, C., Stuckenschmidt, H.: Improving ontology matching using meta-

level learning. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen,
E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554,
pp. 158–172. Springer, Heidelberg (2009)

6. Ehrig, M., Staab, S.: QOM – quick ontology mapping. In: McIlraith, S.A., Plexousakis, D.,
van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 683–697. Springer, Heidelberg
(2004)

7. Ehrig, M., Staab, S., Sure, Y.: Bootstrapping ontology alignment methods with APFEL. In:
Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp.
186–200. Springer, Heidelberg (2005)

8. Jean-Mary, Y.R., et al.: ASMOV: Results for OAEI 2009. In: OM (2009)
9. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)

10. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-match: an algorithm and an implementation
of semantic matching. In: ESWC (2004)

11. Hanif, M.S., Aono, M.: Anchor-Flood: Results for OAEI 2009. In: OM (2009)
12. Li, J., Tang, J., Li, Y., Luo, Q.: RiMOM: A dynamic multistrategy ontology alignment frame-

work. IEEE Trans. Knowl. Data Eng. (2009)
13. Melnik, S., Garcia-molina, H., Rahm, E.: Similarity flooding: A versatile graph matching

algorithm. In: ICDE (2002)
14. Noy, N.F.: Semantic integration: a survey of ontology-based approaches. SIGMOD Rec.

(2004)
15. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference

(1988)
16. Raghavan, V.V., Wong, S.K.M.: A critical analysis of vector space model for information

retrieval. Journal of the American Society for Information Science (1999)
17. Wang, P., Xu, B.: Lily: Ontology alignment results for OAEI 2009. In: OM (2009)

Compact Representation of Large RDF Data Sets for
Publishing and Exchange�

Javier D. Fernández1, Miguel A. Martínez-Prieto1,2, and Claudio Gutierrez2

1 Department of Computer Science, Universidad de Valladolid, Spain
{jfergar,migumar2}@infor.uva.es

2 Department of Computer Science, Universidad de Chile, Chile
cgutierr@dcc.uchile.cl

Abstract. Increasingly huge RDF data sets are being published on the Web. Cur-
rently, they use different syntaxes of RDF, contain high levels of redundancy and
have a plain indivisible structure. All this leads to fuzzy publications, inefficient
management, complex processing and lack of scalability. This paper presents a
novel RDF representation (HDT) which takes advantage of the structural proper-
ties of RDF graphs for splitting and representing, efficiently, three components
of RDF data: Header, Dictionary and Triples structure. On-demand management
operations can be implemented on top of HDT representation. Experiments show
that data sets can be compacted in HDT by more than fifteen times the current
naive representation, improving parsing and processing while keeping a consis-
tent publication scheme. For exchanging, specific compression techniques over
HDT improve current compression solutions.

1 Introduction and Related Work

The intended goal of the original RDF/XML representation design was to add small
descriptions (metadata) to documents, to protocols, to mark web pages or to describe
services. Representations like N3, Turtle and RDF/JSON, although having improved,
in several respects, the original format, are still dominated by a document-centric view.
Today, when one of the major trends in the development of the Web is RDF publishing
at large scale, i.e. make RDF data publicly available for unknown purposes and users,
the need to consider RDF under a data-centric view is becoming indispensable.

An analysis of published RDF data sets (the 2000 US Census, DBpedia, GeoNames,
Uniprot, DBLP, etc.) reveals several undesirable features. First, the provenance and
metadata about contents are barely present, and their information is neither complete
nor systematic. Second, the files have neither internal structure nor a summary of their
content. Basic data operations have to deal with the sequentiality of the information
in the file, thus parsing the whole data and in most cases including human operation
because the metadata is outside the file. For mashups of different sources, the situa-
tion is worse. Currently, the effort to prepare the data to be published is so costly, that

� Partially funded by MICINN (TIN2009-14009-C02-02), Millennium Institute for Cell Dy-
namics and Biotechnology (ICDB) (Grant ICM P05-001-F), and Fondecyt 1090565. The first
author is granted by a fellowship from Erasmus Mundus, the Regional Government of Castilla
y Leon (Spain) and the European Social Fund. Special thanks to Margaret Gagie.

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 193–208, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

194 J.D. Fernández, M.A. Martínez-Prieto, and C. Gutierrez

files commonly have no design, no plan and no user in mind. They resemble unwanted
creatures whose owners are keen to be rid of them.

This state of affairs does not scale to a Web where large data sets will soon, increas-
ingly, be produced dynamically and automatically. Furthermore, most data would have
to be machine-understandable in line with the aim of the original Semantic Web project.
Thus, scaling the process of publishing and exchanging large RDF data sets should
comply with some basic features. At the logical level, a large-scale data set should have
standard metadata, like provenance (source, providers, publication date, etc.), editorial
metadata (publisher, date, version, etc.), data set statistics (size, quality, type of data,
basic parameters of the data) and intellectual property (types of copy[left|right]s). At
the physical level, RDF representation at large scale should permit efficient process-
ing, managing and exchanging (between systems and memory-disk movements). At
the format level, desirable features include simple checks for triple existence, redun-
dancy minimization and modular construction. Imagine a user who wants to publish or
exchange a large data set from her preferred RDF data store. She would first need to
dump the data into one RDF format, and then, due to the large size of the data, possibly
compress it with a generic compressor. The resultant file has no structure, no metadata
and it is hardly usable natively, i.e. without an appropriate external tool (another RDF
data store, a visualization software, etc.).

This paper addresses these challenges, and shows that there are feasible and simple
solutions. In particular, we introduce a new representation format (Header-Dictionary-
Triples: HDT) that modularizes the data and uses the skewed structure of big RDF graphs
[10,19,21] to achieve large spatial savings. It is based on three main components:

- A header, including logical and physical metadata describing the RDF data set. It
serves as an entrance point to the information on the data set.

- A dictionary, organizing all the identifiers in the RDF graph. It provides a catalog
of the information entities in the RDF graph with high levels of compression.

- A set of triples, which comprises the pure structure of the underlying RDF graph
while avoiding the noise produced by long labels and repetitions.

We make use of succinct data structures and simple compression notions to approach
a practical implementation for HDT. Our design, besides gaining modularity and com-
pactness, also addresses other important features: 1) it allows on-demand indexed access
to the RDF graph, and 2) it is used to develop a specific technique for RDF compression
(referred to as HDT-Compress) able to outperform universal compressors.

Figure 1 shows a step-by-step description of the process to obtain an HDT representa-
tion of an RDF graph. The first three steps extract basic RDF features necessary to build
the dictionary and the underlying graph, as well as information that will be included in
the header. The fourth step covers some practical decisions in order to have the HDT
concrete implementation for publication and exchange of RDF.

If we go back to the example of the user who wants to publish or exchange large
RDF data, the advantages of HDT can be summarized as follows: 1) More compact
and compressible: uses much less space, thus saving storing space and communication
bandwidth and time; 2) Is clean and modular: it separates dictionary from triples (the
graph structure), includes a header with metadata about the data; 3) Permits basic data
operations by allowing access to parts of the graph without needing to process all of it.

Compact Representation of Large RDF Data Sets 195

Extraction of
RDF Features

Dictionary
Building

Triples
Encoding

RDF

1

3

2

HDT
Practical

HDT
4

Exchange

Publication
Management

RDF stats

Dictionary
…

Compression

Fig. 1. A Step-by-step construction of the HDT format from a set of triples

The paper is organized as follows. Section 2 starts defining the set of metrics to char-
acterize the structural RDF features used in HDT. Next, the HDT format is presented by
an individual description of each component: Header, Dictionary, and Triples. Section 3,
firstly details the practical implementation approach for HDT. Then, we detail the HDT
management and compression. This section ends with an empirical study which ana-
lyzes the current HDT features on real-world data sets. Section 4 gives a brief discussion
and addresses some future work. Finally, the appendix provides a study of the structural
features of the data sets used in our experimentation, analyzing their impact onHDT. Ad-
ditional resources and examples are available at http://hdt.dcc.uchile.cl.

Related Work. Today there are several representations for RDF data, e.g. RDF/XML
[3], N31,Turtle2, and RDF/JSON [1]. None of these proposals, though, seems to have
considered data volume as a primary goal. RDF/XML, due to its verbosity is good for
exchanging data, but only on a small scale. Turtle (a sub-language of N3) is a more
compact and readable alternative. Although these formats present features to “abbrevi-
ate” constructions like URIs, groups of triples, common datatypes or RDF collections,
the compactness of the representation definitively was not the main concern of their
design. RDF/JSON resembles Turtle, with the advantage of being coded in a language
easier to parse and more widely accepted in the programming world.

Regarding the structure of RDF real-world data, several studies point to the presence
of power-law distribution, in term frequencies [10], resources [19] and schemas [21].

RDF compression capabilities have been studied [11] but have not been applied in
a concrete format or implementation. The situation is not better for splitting RDF into
components. Neither RDF/XML nor N3 (and their subsets Turtle and N-Triples) have
the basic constructors to design modular files. To the best of our knowledge, none of
these results have been applied in the design of RDF data sets. There is little work on
the design of large RDF data sets. There have been projects discussing design issues
of RDF3, and a working group on design issues of translation from relational databases
to RDF4. However, none of these works have touched the problem of RDF publication

1 http://www.w3.org/DesignIssues/Notation3
2 http://www.w3.org/TeamSubmission/turtle/
3 Best Practices Publishing Vocab. W3C WG:
http://www.w3.org/2001/sw/BestPractices/, and the Wordnet case http://
www.w3.org/2001/sw/BestPractices/WNET/wn-conversion.html

4 http://www.w3.org/2001/sw/rdb2rdf/

http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/2001/sw/BestPractices/
http://www.w3.org/2001/sw/BestPractices/WNET/wn-conversion.html
http://www.w3.org/2001/sw/BestPractices/WNET/wn-conversion.html
http://www.w3.org/2001/sw/rdb2rdf/

196 J.D. Fernández, M.A. Martínez-Prieto, and C. Gutierrez

and exchange at large. The project that is currently systematically addressing the issue
of publication of RDF at large, Linked Data, is starting to face some of these issues.

2 Compacting RDF with HDT: The Concepts

2.1 Taking Advantage of the Skewed Structure of Real-World RDF Data

Although power-law5 distribution validation in RDF data remains an open field, in prac-
tice it is assumed as a common characteristic of RDF real-world data. Ding and Finn
[10] reveal that Semantic Web graphs fit power-law distribution within some metrics
such as the size of documents and term frequency use; most terms are described through
few triples. Regarding the use of an RDF schema (RDFS[5]), the space of instances
is sparsely populated, since most classes and properties have never been instantiated.
By crawling the Web, Oren[19] comes to similar conclusions, showing that resources
(URIs) in different documents fit to a power-law distribution. Theoharis [21] studies
these properties for Semantic Web schemas, RDFS and OWL[16]. Similar distribu-
tion is found in the descendants of a class, as well as other schema features, such as
the existence of few classes interconnecting schemas, or non-balanced hierarchies. The
presence of star and chaining nodes has been also described in data and queries (star-
and chain-shaped join queries) [17,18]. This schema analysis has contributed to syn-
thetic schema generation for benchmarking [21]. These results motivate the adaptation
to RDF of the well-known Web distribution, where power-law is present in successors
list of a given domain, playing an important role in Web graphs compression [4,6].

For our purposes, a few indicators of the graph structure will be sufficient. RDF
graph notation will follow [13,20], with no distinction between URIs, Blank nodes and
Literals. A triple then, (s, p, o), is represented as a labeled graph s

p−→ o. Let G be an
RDF graph, and SG, PG, OG be the sets of subjects, predicates and objects in G.

Definition 1 (out-degrees). Let G be an RDF graph, and let s ∈ SG and p ∈ PG.

1. The out-degree of s, denoted deg−(s), is defined as the number of triples of G in
which s occurs as subject. Formally, deg−(s) = |{(s, y, z)/(s, y, z) ∈ G}|. The
maximum out-degree, deg−(G), and the mean out-degree, deg−(G), are defined
as the maximum and mean out-degrees of all subjects in SG.

2. The partial out-degree of s respect to p, denoted deg−−(s, p), is defined as the
number of triples of G in which s occurs as subject and p as predicate. Formally,
deg−−(s, p) = |{(s, p, z)/(s, p, z) ∈ G}|. The maximum partial out-degree of G,
deg−−(G), and mean partial out-degree, deg−−(G), are defined as the maximum
(resp. the mean) partial out-degrees of all pairs of subject-predicates of G.

3. The labeled out-degree of s, denoted degL−(s), is defined as the number of differ-
ent predicates (labels) of G with which s is related as a subject in a triple of G.
Formally, degL−(s) = |{p/p ∈ PG, (s, p, z) ∈ G}|. The maximum labeled out-
degree of G, degL−(G), and mean labeled out-degree, degL−(G), are defined as
the maximum (resp. the mean) labeled out-degrees of all subjects of G.

5 A power law is a function with scale invariance, which can be drawn as a line in the log-log
scale with a slope equal to a scaling exponent, e.g. f(x) = ax−β, thus f(cx) ∝ f(x), with
a, c, β constants.

Compact Representation of Large RDF Data Sets 197

<../wikipage1> <../#wikilink> <../ wikipage2> .
<../wikipage1> <../#wikilink> <../ wikipage3> .
<../wikipage1> <../#title> “Title 1” .
<../wikipage2> <../#redirectsTo> <../ wikipage4> .
<../wikipage2> <../#title> “Title 2” .

RDF

<../wikipage2>

<../wikipage1>

<../wikipage3>
<../wikipage4>
“Title 1”
“Title 2”

<../#redirectsTo>
<../#title>
<../#wikilink>

1

2

2
3
4
5

1
2
3

S-O

S

O

P

Dictionary

2 3 1 .
2 3 2 .
2 2 4 .
1 1 3 .
1 2 4 .

1 1 3; 2 4 .
2 2 4; 3 1 2 .

Predicates:

Objects:

1 2 0 2 3 0

3 0 4 0 4 0 1 2 0

subject 1 subject 2

ID

Dictionary
Building

ID-based
Replacement

Subject
Grouping

Triples

Triples Encoding

Adjacency
Lists Splitting

Fig. 2. Incremental representation of an RDF data set with HDT

Symmetrically, we define for objects the in-degree, denoted deg+(o), partial in-degree,
deg++(o, p) and labeled in-degree, degL+(o). Their corresponding maximums and
means are denoted as deg+(G), deg++(G), degL+(G), deg+(G), deg++(G) and
degL+(G). An additional property will be needed in what follows:

Definition 2 (subject-object ratio αs−o). It is defined as the proportion of common
subjects and objects in the graph G. Formally, αs−o = |SG∩OG|

|SG∪OG| .

Out-degree indicates the relevance of a subject node. A node with high out-degree,
also called star, will have hundreds, or even thousands, of arcs (labeled edges in RDF).
In conjunction with maximum and mean values, this constitutes good evidence of the
existence of these types of nodes in a given graph. Similar reasoning can be made for
in-degree, where the node is not a source, but is a common destination object node.
Partial and labeled out- and in- degrees are meant to give information on the different
types of edges coming out from (or going into) a node. Partial out-degree provides
a metric of the multi evaluation of pairs (subject-predicate or predicate-object), while
labeled degree refines the star-nodes categorization. Finally, subject-object ratio is a
good measure of the percentage of nodes along which there are incoming and outgoing
edges. These are the key edges to index, because of the different roles they play, either
as subjects which are described elsewhere, or as objects describing other resources. In
the final Appendix we illustrate these parameters for three real-world data sets.

In what follows, we will use these characteristics to provide a compact structure
that represents, succinctly, the information of an RDF data set. Figure 2 outlines the
incremental processing of our proposal. The result splits the RDF data set into three
components that are represented and managed efficiently.

2.2 Header

The Header component is responsible for providing metadata information about the
RDF collection. Although the most used RDF syntaxes consider the possibility of in-
cluding metadata information, they present several drawbacks. Metadata is provided in

198 J.D. Fernández, M.A. Martínez-Prieto, and C. Gutierrez

the same RDF syntax as the data set, inheriting some of its problems and making diffi-
cult the automatic distinction between data and metadata. The metadata of the collection
remains unclear and its management is inefficient.

We consider the Header as a flexible component in which the provider includes a
desired set of features. We distinguish four types of metadata:

– Source and provider information. This includes all kind of authority information
about the source (or sources) of data and the provider of the data set, which can dif-
fer from the creator of data (e.g. in mashup applications). Note that this information
can be shared between several data sets of a provider.

– Publication data. This collects the metadata about the publication act, such as the
site of publication, dates of creation and modification, version of the data set (which
could be useful for updating notification), language, encoding, namespaces, etc.

– Data set statistics. When managing huge collections, one could consider including
some precomputed statistic about what follows in the data sets. For instance, it
could be useful to include an estimation of the parameters presented in Section 2.1,
or a subset of them used in the concrete design.

– Other information. A provider can take into account other metadata for the under-
standing and management of the data.

2.3 Dictionary

In general terms, a data dictionary is a centralized repository of information about data
such as meaning, relationships to other data, origin, usage, and format [15]. Current
RDF formats use elementary versions of dictionaries for namespaces and prefixes. This
allows for the abbreviation of long and repeated strings (URIs, Literals, etc.). A good ex-
ample is “http://www.w3.org/1999/02/22-rdf-syntax-ns#type” re-
peated hundreds to thousands of times in the Billion Triple data set. Note that XML has
this functionality in the form of namespaces in conjunction with XML Base, and several
RDF formats allow abbreviations of this kind (@base, @prefix in N3 and Turtle).

Large RDF data sets are supposed to be managed by automatic processes, so that a
more effective replacement can be done. The Dictionary component assigns a unique
ID to each element in the data set. This way, the dictionary contributes to the goal of
compactness, by replacing the long repeated strings in triples by their short IDs. In fact,
the assignment of IDs, named as mapping [7], is usually the first step in RDF indexing.

The sets of subjects, predicates and objects in RDF are not disjoint. In order to assign
shorter IDs, we distinguish between four sets (in an RDF graph G):

– Common subject-objects, denoted as the set SOG, are mapped to [1, |SOG|].
– The non common subjects, SG − SOG, are mapped to [|SOG|+ 1, |SG|].
– The non common objects, OG − SOG, are mapped to [|SOG|+ 1, |OG|].
– Predicates are mapped to [1, |PG|].

Figure 2 shows an example of these four sets within a dictionary building process. Note
that a given ID can belong to different sets, but the disambiguation of the correct set is
trivial when we know if the ID to search is a subject, a predicate or an object. A similar
partitioning is taken in some RDF indexing approaches [2].

Compact Representation of Large RDF Data Sets 199

The subject-object ratio defined in Section 2.1, αs−o, characterizes the ratio of the
subject-object set in the dictionary, composed of nodes with out-degree and in-degree
greater than 0, deg−(a), deg+(a) > 0. We have noted that, in those data sets with a
noticeable value of αs−o, common subject-object identification has and advantage over
a disjoint assignment, thus reducing the dictionary size. The set of predicates are treated
independently because of their low number and the infrequent overlapping with other
sets. Due to the sequential mapping of each set, the dictionary only has to include the
strings, supposing an implicit order of IDs and some form of distinction between sets.

The Dictionary component allows multiple configurations. The order of the elements
within each set could be random or sorted by some property, e.g the frequency of use or
the alphabetical order. Prefixes and shared strings (specially for URIs) could be iden-
tified and written once and then reference the unshared portions incrementally. These
design decisions should be declared in the Header component.

2.4 Triples

By means of the Dictionary component, an original RDF triple can now be expressed
by three IDs, replacing each element in triples with the reference in the dictionary (ID-
based replacement in Figure 2). As we transform a stream of strings into a stream of
IDs, we can take advantage of some interesting properties.

Adjacency List is a compact data structure that facilitates managing and searching.
For example, the set of triples:

{(s, p1, o11), · · · , (s, p1, o1n1), (s, p2, o21), · · · (s, p2, o2n2), · · · (s, pk, oknk
)}

can be written as the adjacency list:

s→ [(p1, (o11, · · · , o1n1), (p2, (o21, · · · , o2n2)), · · · (pk, (oknk
))].

Turtle (and hence N3) allows such generalized adjacency lists for triples. For example
the set of triples {(s, p, oj)}nj=1 can be abbreviated as (s p o1, · · · , on).

The Triples component performs a subject ordered grouping, that is, triples are re-
organized in adjacency lists, in sequential order of subject IDs. Due to this order, an
immediate saving can be achieved by omitting the subject representation, as we know
the first list corresponds to the first subject, the second list to the following, and so on.

In the notation above, all the data is represented by one stream, in which the list of
objects associated with a subject (s) and a predicate (p) is represented just after the p.
Instead, we decide to split this representation into two coordinated streams of Predi-
cates and Objects. The first stream of Predicates corresponds to the lists of predicates
associated with subjects, maintaining the implicit grouping order. The end of a list of
predicates implies a change of subject, and must be marked with a separator, e.g. the
non-assigned zero ID. The second stream (Objects) groups the lists of objects for each
pair (s, p). These pairs are formed by the subjects (implicit and sequential), and coor-
dinated predicates following the order of the first stream. In this case, the end of a list
of objects (also marked in the stream) implies a change of (s, p) pair, moving forward
in the first stream processing.

Figure 2 exemplifies the subject grouping and the final adjacency lists splitting into
two coordinated streams. For instance, consider the list [1, 2] in Objects stream. This

200 J.D. Fernández, M.A. Martínez-Prieto, and C. Gutierrez

is the fourth list in the stream, so it refers to the fourth predicate in Predicates: the ID
3. This predicate belongs to the second list in the stream; that is, it is related with the
second subject. Thus, the considered list develops the triples (2, 3, 1) and (2, 3, 2).

The parameters defined in Section 2.1 characterize the streams. Labeled out-degree,
degL−(s), indicates the size of the list of predicates for a given subject s. Therefore, the
maximum size of any list in Predicates is limited by the maximum degL−(G), and the
mean is given by degL−(G). Symmetrically, partial out-degree, deg−−(s, p) delimits
the corresponding list in Objects for a given subject and predicate. Maximum and mean
values, deg−−(G) and deg−−(G) characterize the Objects stream.

This proposal leads to a compact dictionary-based triple representation in which the
classical three-dimensional view of RDF has been reduced into two by the coordinated
streams, considering implicit the third dimension of subjects. In the next section we
introduce appropriate structures to effectively implement the HDT proposal.

3 Compacting RDF with HDT: Practical Aspects

HDT allows RDF data sets to be represented in a compact form, with no restriction
on how it should be implemented. This feature allows HDT to be optimized in specific
applications. In this section, we approach a practical HDT implementation focused on
RDF publication and exchange. The optimization is based on high HDT compressibility
and efficient management processes.

3.1 Implementation

The final HDT comprises the concrete implementation of the three complementary rep-
resentations of the header, the dictionary, and the set of triples.

Header. Header information can include multiple types of metadata, and the selected
configuration can vary between different data sets and different providers. In order to
reach a mutual understanding between providers and consumers, in final implementa-
tion we restrict the Header to be one RDF-valid format and we provide a specific hdt vo-
cabulary (http://hdt.dcc.uchile.cl/hdt#) to describe the Header through
four top-level statements (containers): (1) hdt:publicationInformation describes publi-
cation, source and provider information, (2) hdt:statisticalInformation includes statis-
tics about the data, e.g. the parameters defined in Section 2.1, (3) hdt:formatInformation
groups the specification of the location and concrete Dictionary and Triples repre-
sentation, and (4) hdt:additionalInformation contains further information given by the
provider.

Dictionary. The final Dictionary configuration is encoded on a single stream in which
all strings (ended with a reserved character, e.g ’\2’) are concatenated. Thus, the se-
quence represents the order of the strings in their correspondent vocabulary of subject-
objects (S-O), subjects (S), objects (O), and predicates (P). An empty word (also ended
with the reserved character) is appended to the end of each vocabulary in order to de-
limit its size.

Compact Representation of Large RDF Data Sets 201

Predicates:

Objects:

1 2 0 2 3 0

3 0 4 0 4 0 1 2 0

subject 1 subject 2

Predicates

Objects

1 2 2 3

3 4 4 1 2

0 0 1 0 0 1

0 1 0 1 0 1 0 0 1

Sp

Bp

So

Bo

Bitsequence-based
reorganization

Fig. 3. Practical HDT Implementation

Triples. As we have previously explained, two coordinated ID-based streams, Predi-
cates and Objects, draw the RDF graph, representing the triples with an implicit subject-
grouping strategy. Both streams can be seen as sequences of non-negative integers in
which 0-values mark the endings of predicate and object adjacency lists respectively.
This means that positive integers represent predicates and objects, whereas 0’s are aux-
iliary values embed in each stream to represent, implicitly, the graph structure. Our
final implementation splits both parts in order to improve the HDT usability and to en-
hance its compactness. The graph structure is extracted from the original Predicates
and Objects streams, so the 0-values can be deleted from them. The resultant sequences
(respectively called Sp and So) hold the original ordering for the positive integers. In
turn, the graph structure is indexed with two bitsequences (Bp and Bo, for predicates
and objects) in which 0-bits mark IDs in the correspondingSp or So sequence, whereas
1-bits are used to mark the end of an adjacency list.

Figure 3 shows a simple example of how the current approach reorganizes the origi-
nal ID-based streams through the bitsequences. On the one hand, Predicates
= {1, 2, 0, 2, 3, 0} evolves to the sequence Sp = {1, 2, 2, 3} and the bitsequence Bp =
{001001} whereas, on the other hand, Objects= {3, 0, 4, 0, 4, 0, 1, 2, 0} is reorganized
in So = {3, 4, 4, 1, 2} and Bo = {010101001}.

The triples structure can be interpreted as follows. The i-th 1-bit in Bp marks the end
of the predicate adjacency list for the i-th subject (it is referred to as Pi), whereas the
length of the 0-bit sequences between two consecutive 1-bit represents the number of
predicates in the corresponding list. For instance, the second 1-bit in Bp marks the end
of the predicate adjacency list for the second subject (P2). As we can see, a sequence of
two 0-bit exists in between the previous and the current 1-bit. This means P2 contains
two predicates, which are represented by the third and fourth IDs in Sp by considering
that the third and fourth 0-bit in Bp correspond to P2. Thus, P2 = {2, 3}.

Data in So and Bo are related in the same way. Hence, the j-th 1-bit in Bo marks
the end of the object adjacency list for the j-th predicate. This predicate is represented
by the j-th 0-bit in Bp and it is retrieved from the j-th position of Sp. For example,
the third 1-bit in Bo refers the end of the object adjacency list for the third predicate in
Sp which is related to the second subject as we have previously explained. Thus, this
adjacency list stores all objects o in triples (2, 3, o) ∈ G.

Each element in Sp and So is encoded, respectively, with a fixed-length code of
log(|PG|) and log(|OG|) bits, by considering that the data set comprises |PG| and |OG|
different predicates and objects. The bitsequences used to represent Bp and Bo make
use of succinct structures. They are able to support rank/select operations over a
sequence S of length n drawn from an alphabet Σ = {0, 1}:

202 J.D. Fernández, M.A. Martínez-Prieto, and C. Gutierrez

Algorithm 1. Check&Find operation for a triple (s, p, o)
1. begin ← select1(Bp, s − 1) + 2;
2. end ← select1(Bp, s) − 1;
3. sizePs ← end − begin;
4. Ps ← retrieve(Sp, 1 + rank0(Bp, begin), sizePs);
5.
6. plist ← binary_search(Ps, p);
7. pseq ← rank0(Bp, begin) + plist;
8.
9. begin ← select1(Bo, pseq − 1) + 2;

10. end ← select1(Bo, pseq) − 1;
11. sizeOsp ← end − begin;
12. Osp ← retrieve(So, 1 + rank0(Bo, begin), size);
13.
14. plist ← binary_search(Osp, o);

- ranka(S,i) counts the occurrences of a symbol a ∈ {0, 1} in S[1, i].
- selecta(S,i) finds the i-th occurrence of symbol a ∈ {0, 1} in S.

This problem has been solved using n + o(n) bits of space while answering the queries
in constant time [8]. We choose the González, et al. [12] approach to implement our
bitsequences. This adds 5% of extra space to the original length of Bp and Bo, and
achieves constant time for the required select/rank operations, which constitutes
the basis for accessing to the structure of the graph.

3.2 HDT Management

A really huge RDF data set contains a volume of triples that becomes unmanageable
when it is finally published. Let us suppose a very large data set has been published
on any of the existing RDF syntaxes. Basic operations, e.g. check a triple existence or
access to a subset of triples, are optimized in RDF storage systems, but this implies,
firstly, configuring the system and then loading the full data set for the triple indexing.
On the one hand, huge amounts of memory are required to render an efficient-time
service when operating on the full data set. On the other hand, simple on-demand access
to subsets of triples does not profit from the internal structure of RDF and suffers the
cost of loading and searching the full data set.

Our current approach proposes an on-demand loading strategy able to take advantage
of the structure indexed in Bp and Bo and accessible by fast rank/ select opera-
tions. A functional prototype is implemented in order to test basic operations. An initial
stage loads both the dictionary (in a hash table) and the bitsequences; we consider that
these structures always fit into memory. The sequences Sp and So remain stored in disk,
queried by using the Check&Find operation described in Algorithm 1.

Lines 1-4 describe the steps performed to retrieve the predicate adjacency list for
the subject s (Ps). First, we obtain its size by locating its begin/end positions in Bp.
Next, we retrieve its sequence of predicate IDs from Sp. This operation seeks the
position where Ps begins in Sp (by using the rank0 operation in line 4), and, next,

Compact Representation of Large RDF Data Sets 203

retrieves the sequence of sizePs predicates that composed it. Once Ps is available in
memory, we need to identify the position (pseq) where s and p are related in Sp. Lines
6-7 describe it. First, p is located in Ps with a binary_search, and, next, this
local position (plist) is used to obtain its global rank in Sp. In this step, we are able to
retrieve the object adjacency list for s, p (Osp), by considering that it is indexed through
the pseq−th predicate. Osp is retrieved (lines 9-12) similarly to Ps, considering Bo

and So. Finally, o is located with a binary_search on Osp.
The cost of the Check&Find operation for a triple (s, p, o) is O(sizePs +sizeOsp),

assuming at most sizePs = degL−(s) and sizeOsp = deg−−(s, p). The distribution of

lists assures an amortized cost in (degL−(G) + deg−−(G)). Note that this operation
does not just find the required triple (s, p, o), but also the triples (s, p, z) ∈ G. Besides,
Ps contains all predicates from s, so the next operations on triples from s begin the
Check&Find operation by identifying the position of p in Sp (from line 6).

Efficient access is obtained through Check&Find. If a triple (s, p, o) /∈ G, it can
be detected in step 6 (the predicate p is not in the predicate adjacency list for s: Sp)
or in step 14 (the object o is not in the object adjacency list for s and p: Osp). On the
contrary, if (s, p, o) ∈ G, once the triple is found, the strings associated with s, p, and o
are retrieved from the dictionary in time O(1).

In addition, the Check&Find operation sets the basis for building efficient insertion
and deletion. In both cases, the adjacency lists to be updated are already available in
memory after the Check&Find. Thus, the changes can be performed in an efficient
logarithmic time, and the final performance of the operations will depend on the strategy
for writing the updated information on disk. Besides, as we explain, Check&Find
checks the triple existence, i.e the insertion is only performed if the triple does not exist
and the deletion is carried out over the found triple.

We have assumed, in the initial step, that the dictionary fits into memory, a common
assumption in the world of indexing regarding the size of the vocabulary. Our current
development achieves reducing, in one order of magnitude, the original size by simply
applying a prefix extraction. Other optimizations can be applied, such as a hierarchical
treatment of URIs.

3.3 HDT Compression

RDF exchange is a common process in the global Web of data with the aim of sharing
knowledge. The data-centric evolution of the Web will tend to demand even more ex-
haustive exchange processes in which efficiency is highly desirable. The performance
of this task is directly related with the size of the data set, so large RDF data sets can
overhead communication channels causing lengthy transmission delays. The use of uni-
versal compressors can alleviate this problem, although they are not able to detect and
delete all the underlying redundancies of RDF.

We show, in Section 3.4, that our HDT representation (referred to as Plain HDT
henceforth) is able to compact the RDF data set up to 15 times with respect to its
original size. This compacting ability proves capable of achieving very large savings
in communication bandwidth and transmission delays. However, Plain HDT is even
more compressible with very little effort. HDT-Compress makes specific decisions
for each component:

204 J.D. Fernández, M.A. Martínez-Prieto, and C. Gutierrez

Table 1. Compression results

Data set
Triples Size HDT Universal Compressors

(millions) (MB) Plain Compress gzip bzip2 ppmdi

Billion Triples 106.9 15081.74 31.87% 3.91% 9.54% 6.83% 5.32%
Uniprot RDF 79.2 7083.22 14.33% 3.23% 8.71% 5.04% 3.99%

Wikipedia 47 6882.20 6.62% 2.22% 6.97% 5.11% 4.10%

Header: we keep this component in plain form as it should always be available to any
receiving agent for processing.

Dictionary: it is compressed by considering that it stores all strings used in the RDF
data set. Thus, we take advantage of repeated prefixes in URIs, specific n-gram
distributions in literals, etc. This class of redundancy is able to be identified with a
predictive high-order compressor. We chose PPM [9] to encode the dictionary.

Triples: the set of triples compression is independently attempted on each structure.
On one hand, Sp comprises an integer sequence drawn from [1, |PG|]. A Huffman
[14] code is used to compress it. On the other hand, the compression of So (drawn
from [1, |OG|]) takes advantage of the power-law distribution of objects (see the
right dispersion graph in Figure 5) through a second Huffman code. Finally, we
hold a plain representation for bitsequences because of the small improvement ob-
tained with specific techniques for bitsequence compression.

We chose shuff6 and ppmdi7 to implement, respectively, the Huffman and PPM-
based encoding.

3.4 Experimental Results

This section shows the experimental results of the practical applications previously de-
scribed for HDT. These tests were performed on a Debian 4.1.1 operating system, run-
ning on a computer with an AMD Opteron(tm) Processor 246 at 2 GHz and 4 GB of
RAM. We used a g++ 4.1.2 compiler with -09 optimization. This experimentation was
run on the data sets described in the final Appendix.

First, we study the HDT performance with incremental size of the Uniprot data set,
from 1 to 40 million triples. This is shown in Figure 4. The left table studies the HDT
effectiveness evolution. As can be seen, it is distributed between 14− 15% for Plain
HDT, and by around 3.5% for HDT-Compress (the percentage is always given with
regard to the original file size). This proves the scalability of the HDT effectiveness by
considering that the results do not directly depend on the size of the data set.

The right graph of Figure 4 shows relevant times for HDT. On the one hand, the
creation time stands for the time required to transform an RDF data set (from plain
N3) into HDT. This process is only performed once at publishing and shows a sublinear
growth. On the other hand, after the loading time, the minimum information required
for HDTmanagement is in memory and available to be accessed with the Check&Find

6 http://www.cs.mu.oz.au/~alistair/mr_coder/
7 http://pizzachili.dcc.uchile.cl/experiments.html

http://www.cs.mu.oz.au/~alistair/mr_coder/
http://pizzachili.dcc.uchile.cl/experiments.html

Compact Representation of Large RDF Data Sets 205

Triples Size HDT
(millions) (MB) Plain Compress

1 89.07 15.11% 3.73%
5 444.71 14.54% 3.48%
10 893.39 14.04% 3.27%
20 1790.41 14.43% 3.31%
30 2680.51 14.39% 3.27%
40 3574.59 14.34% 3.26%

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30 35 40

tim
e

(s
ec

on
ds

)

#triples (millions)

HDT Times

Creation
Loading

Compression
Decompression

Fig. 4. Performance of HDT (Plain and Compress) with incremental size data sets from
Uniprot. The left table shows effectiveness, whereas the right figure draws significative times.

mechanism (Algorithm 1). As can be seen, this time is only a very small fraction (≈ 3%)
of the creation one. Additionally, symmetrical compression and decompression times
are achieved with HDT-Compress. This guarantees real time exchange processes by
considering that the receiver is able to start the decompression as soon as the beginning
of the compressed data set starts to arrive. In absolute terms, both compression and
decompression times are slightly worse than the loading ones.

Table 1 compares HDT with respect to four well-known universal compressors. We
choose gzip as a dictionary-based technique on LZ77, bzip2 based on the Burrows-
Wheeler Transform, and ppmdi as a predictive high-order compressor. We consider a
heterogeneous corpora of RDF data sets shown in the final Appendix: Billion Triples,
Uniprot RDF and Wikipedia with 106.9, 79.2, and 47 million of triples respectively.

The most effective universal compressors for all data sets are ppmdi and bzip2
which achieve ratios of around 4% and 5% respectively. A very interesting result shows
that Plain HDT is able to outperform gzip for the Wikipedia data set. This demon-
strates the previously cited ability of HDT to obtain compact representations of RDF.
HDT-Compress achieves the most effective results with ratios between 2 − 4% for
the considered data sets. This supposes reductions between 3 − 4 times with respect to
Plain HDT, and consequently proportional improvements on exchanging processes.
In turn, HDT-Compress also outperforms universal compressors by improving the
best results, achieved on ppmdi, of between 20− 45%.

4 Conclusions and Future Work

RDF publication and exchange at large scale are seriously compromised by the scalabil-
ity drawbacks of current RDF formats and the lack of modular structure, internal meta-
data information and native operations over the data. HDT addresses these problems by
approaching a more compact representation format, decomposing an RDF data source
into three main parts: Header, Dictionary, and Triples. Besides, this representation can
be implemented by succinct structures and simple compression notions. This results in a
very compact RDF representation able to support an on-demand Check&Find mech-
anism currently used to implement indexed access to the RDF graph. Our experimental

206 J.D. Fernández, M.A. Martínez-Prieto, and C. Gutierrez

results show the scalability ofHDT for incremental data set sizes, being able to compact a
data set up to 15 times current naive representations and providing efficient access to the
data. In turn, a specific compression technique for RDF, HDT-Compress, outperforms
universal compressors, which can serve as an essential choice in exchange processes in-
volving huge data sets.

Current results open some interesting opportunities for future work. HDT compact-
ness and the on-demand operations set the basis for developing an RDF storage system
over HDT. The Check&Find mechanism and its ability to perform indexed access to
the RDF graph will guide the design of efficient insertion and deletion (thus, also updat-
ing) which establish a full set of management operations. Additionally, we are currently
analyzingSp and So to be reorganized following a wavelet-tree-like strategy. This keeps
the current spatial requirements of HDT but also provides indexed access inside both
sequences, suggesting a full compressed index able to solve basic SPARQL queries
natively. The resolution of a basic SPARQL join query can be performed through a se-
ries of wavelet-tree and bitsequences operations and dictionary accesses. Subject-object
JOINs resolution can also profit from the common naming in the dictionary, as the ele-
ments are correctly and quickly localized in the top IDs.

References

1. Alexander, K.: RDF in JSON: A Specification for serialising RDF in JSON. In: SFSW 2008
(2008), http://www.semanticscripting.org/SFSW2008 (retrieved September
2010)

2. Atre, M., Chaoji, V., Zaki, M.J., Hendler, J.A.: Matrix "Bit" loaded: a scalable lightweight
join query processor for RDF data. In: WWW 2010, pp. 41–50 (2010)

3. Beckett, D.: RDF/XML syntax specification (Revised). Technical report, W3C (February
2004)

4. Boldi, P., Vigna, S.: The webgraph framework I: compression techniques. In: WWW 2004,
pp. 595–602 (2004)

5. Brickley, D.: RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recomm.
(2004), http://www.w3.org/TR/rdf-schema/ (retrieved September 2010)

6. Chierichetti, F., Kumar, R., Raghavan, P.: Compressed web indexes. In: WWW 2009, pp.
451–460 (2009)

7. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An efficient sql-based rdf querying scheme.
In: VLDB 2005, pp. 1216–1227 (2005)

8. Clark, D.: Compact PAT trees. PhD thesis, University of Waterloo (1996)
9. Cleary, J.G., Witten, I.H.: Data Compression Using Adaptive Coding and Partial String

Matching. IEEE Transactions on Communications 32(4), 396–402 (1984)
10. Ding, L., Finin, T.: Characterizing the Semantic Web on the Web. In: Cruz, I., Decker, S.,

Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC
2006. LNCS, vol. 4273, pp. 242–257. Springer, Heidelberg (2006)

11. Fernández, J.D., Gutierrez, C., Martínez-Prieto, M.A.: RDF compression: basic approaches.
In: WWW 2010, pp. 1091–1092 (2010)

12. González, R., Grabowski, S., Makinen, V., Navarro, G.: Practical implementation of rank and
select queries. In: WEA 2005, pp. 27–38 (2005)

13. Gutierrez, C., Hurtado, C., Mendelzon, A.O.: Foundations of semantic web databases. In:
PODS 2004, pp. 95–106 (2004)

http://www.semanticscripting.org/SFSW2008
http://www.w3.org/TR/rdf-schema/

Compact Representation of Large RDF Data Sets 207

14. Huffman, D.A.: A Method for the Construction of Minimum-Redundancy Codes. Proceed-
ings of the IRE 40(9), 1098–1101 (1952)

15. IBM. IBM Dictionary of Computing. McGraw-Hill, New York (1993)
16. McGuinness, D., van Harmelen, F.: OWL Web Ontology Language Overview. W3C Recom-

mendation (2004), http://www.w3.org/TR/owl-features/ (retrieved September
2010)

17. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. Proceedings of the VLDB
Endowment 1(1), 647–659 (2008)

18. Neumann, T., Weikum, G.: Scalable join processing on very large rdf graphs. In: COMAD
2009, pp. 627–640 (2009)

19. Oren, E., et al.: Sindice.com: a document-oriented lookup index for open linked data. Inter-
national Journal of Metadata, Semantics and Ontologies 3(1), 37–52 (2008)

20. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. ACM Transac-
tions on Database Systems 34(3), 1–45 (2009)

21. Theoharis, Y., Tzitzikas, Y., Kotzinos, D., Christophides, V.: On Graph Features of Semantic
Web Schemas. IEEE Trans. on Know. and Data Engineering 20(5), 692–702 (2008)

Appendix: The Data Sets Used in the Study

This appendix comprises an experimental study on real-world data sets in order to
characterize RDF structure and redundancy by applying the parameters presented in
Section 2.1. We chose three data sets based on the huge amount of triples, different
application domains and previous uses in benchmarking:

– Billion Triples Challenge: One of the largest RDF data sets (∼3.2 billion state-
ments) available at the moment of writing, given as part of the Semantic Web Chal-
lenge8. Data is collected from Sindice, Swoogle, DBpedia and others.

– Uniprot RDF9: huge, freely-accessible RDF data set of protein sequence data, as
part of the Uniprot project (∼0.7 billion statements).

– Wikipedia triple-set10: English Wikipedia in RDF (∼47 million statements).

A preprocessing step is first applied. Billion Triples data was parsed from N-Quads
format11 to NTriples by eliminating context information. We generated an N3 format
from the original RDF/XML of Uniprot by using the tool SemWeb12. For Billion Triples
and Uniprot, we used a random sample of the data, respecting the order of appearance
and eliminating repeated triples.

Table 2 summarizes the statistical data, focusing on the most relevant parameters
for our approach. Several comments are in order. First of all, note the high variability
of values among the data sets. Billion Triple data set is a mashup of diverse sources,
whereas Wikipedia triple-set and Uniprot are designed with one main purpose. The spe-
cial condition of Billion Triple increments the number of different predicates, although
they remain proportionally small to the number of triples, as well as decreasing the

8 http://challenge.semanticweb.org/
9 http://dev.isb-sib.ch/projects/uniprot-rdf/

10 http://labs.systemone.at/wikipedia3
11 http://sw.deri.org/2008/07/n-quads/
12 http://razor.occams.info/code/semweb/semweb-current/doc/
index.html

http://www.w3.org/TR/owl-features/
http://challenge.semanticweb.org/
http://dev.isb-sib.ch/projects/uniprot-rdf/
http://labs.systemone.at/wikipedia3
http://sw.deri.org/2008/07/n-quads/
http://razor.occams.info/code/semweb/semweb-current/doc/index.html
http://razor.occams.info/code/semweb/semweb-current/doc/index.html

208 J.D. Fernández, M.A. Martínez-Prieto, and C. Gutierrez

Table 2. Data sets statistic summary

Data Set # triples # pred. deg− deg− deg−− deg−− degL− degL− αs−o

Billion Triple 106.9M 50516 27387 2.74 27386 1.11 3293 2.46 6.54%
Uniprot RDF 79M 99 2030 4.80 2010 1.27 22 3.78 58.49%

Wikipedia 47M 9 7408 21.76 7400 3.95 7 5.51 17.61%

Fig. 5. Wikipedia triple-set distribution of subjects (left) and objects (right), e.g. a point (X,Y) in
the rightmost graphic says that there are Y different objects each occurring in X triples. Both axis
are logarithmic. The power laws have exponent −2.181 and −2.366 respectively.

subject-object ratio. In this case, out-degrees reveal that subjects are related with few
predicates (a mean of 2.46) and each of these pairs match with a single object (a mean
of 1.11). In turn, the design of Uniprot has more cohesion, with a high subject-object
ratio and a smaller number of very frequent predicates (each subject is related with a
mean of 3.78 predicates over a total of 99). This reveals a star chained design in which
a subject is strongly characterize and interlinked with others. A similar interpretation
could be done for the Wikipedia triple-set, although the number of predicates is ex-
tremely low. In this case, the high partial degree suggests that a pair (subject,predicate)
is repeated within several objects (a mean of 3.95). This affirmation is consistent with
the interlinked design of pages in Wikipedia.

Figure 5 shows the distribution of subjects and objects of the Wikipedia triple-set. As
we expected, a power-law distribution is remarkably present in both cases, suggesting
an implicit significant redundancy. The other data sets reveal the same distribution for
subject and object as well as a lack of statistical distribution of predicates.

These results immediately point to possible compact design models of RDF. Our
approach, HDT, exploits the significant correlation and the inherent redundancy in data
and structure. In particular, the Dictionary component takes advantage of subject-object
ratio characterization and groups the references to the same node. The Triples compo-
nent represents the graph compacting the distribution with implicit and coordinated
adjacency lists, parametrized by out-degree means.

Assessing Trust in Uncertain Information

Achille Fokoue1, Mudhakar Srivatsa1, and Rob Young2

1 IBM Research, USA
{achille,msrivats}@us.ibm.com

2 Defense Science and Technology Lab, UK
riyoung@dstl.gov.uk

Abstract. On the Semantic Web, decision makers (humans or software agents
alike) are faced with the challenge of examining large volumes of information
originating from heterogeneous sources with the goal of ascertaining trust in var-
ious pieces of information. While previous work has focused on simple models
for review and rating systems, we introduce a new trust model for rich, complex
and uncertain information.We present the challenges raised by the new model,
and the results of an evaluation of the first prototype implementation under a
variety of scenarios.

1 Introduction

Decision makers (humans or software agents alike) relying on information available
on the web are increasingly faced with the challenge of examining large volumes of
information originating from heterogeneous sources with the goal of ascertaining trust
in various pieces of information. Several authors have explored various trust compu-
tation models (e.g., eBay recommendation system [14], NetFlix movie ratings [13],
EigenTrust [10], PeerTrust [15], etc.) to assess trust in various entities. A common data
model subsumed by several trust computation models (as succinctly captured in Kuter
and Golbeck [11]) is the ability of an entity to assign a numeric trust score to another
entity (e.g., eBay recommendation, Netflix movie ratings, etc.). Such pair-wise numeric
ratings contribute to a (dis)similarity score (e.g., based on L1 norm, L2 norm, cosine
distance, etc.) which is used to compute personalized trust scores (as in PeerTrust) or
recursively propagated throughout the network to compute global trust scores (as in
EigenTrust).

A pair-wise numeric score based data model may impose severe limitations in several
real-world applications. For example, let us suppose that information sources {S1, S2,
S3} assert axioms φ1 = all men are mortal, φ2 = Socrates is a man and φ3 = Socrates is
not mortal respectively. While there is an obvious conflict when all the three axioms are
put together, we note that: (i) there is no pair-wise conflict, and (ii) there is no obvious
numeric measure that captures (dis)similarity between two information sources.

This problem becomes even more challenging because of uncertainty associated with
real-world data and applications. Uncertainty manifests itself in several diverse forms:
from measurement errors (e.g., sensor readings) and stochasticity in physical processes
(e.g., weather conditions) to reliability/trustworthiness of data sources; regardless of
its nature, it is common to adopt a probabilistic measure for uncertainty. Reusing the

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 209–224, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

210 A. Fokoue, M. Srivatsa, and R. Young

Socrates example above, each information source Si may assert the axiom φi with a
certain probability pi = 0.6. Further, probabilities associated with various axioms need
not be (statistically) independent. In such situations, the key challenge is develop trust
computation models for rich (beyond pair-wise numeric ratings) and uncertain (proba-
bilistic) information.

The contributions of this paper are three fold. First, our approach offers a rich data
model for trust. We allow information items to be encoded in inconsistency-tolerant
extension of Bayesian Description Logics [3] (BDL)1 with axioms of the form φ : X2

where φ is a classical axiom (in Description Logics (DL [1])) that is annotated with a
boolean random variable from a Bayesian network [7]. Intuitively, φ : X can be read as
follows: the axiom φ holds when the Boolean random variable X is true. Dependencies
between axioms (e.g., φ1 : X1 and φ2 : X2) are captured using the Bayesian network
that represents a set of random variables (corresponding to the annotations; e.g., X1,
X2) and their conditional probability distribution functions (e.g., Pr(X2|X1)).

Second, our approach offers a trust computation model over uncertain information
(encoded as BDL axioms). Intuitively, our approach allows us to compute a degree of
inconsistency over a probabilistic knowledge base. We note that inconsistencies corre-
spond to conflicts in information items reported by one or more information sources.
Our approach assigns numeric weights to the degree of inconsistency using the possi-
ble world semantics (the formal semantics is given in section 3). Revisiting the Socrates
example, three probabilistic axioms φi : pi

3 correspond to eight possible worlds (the
power set of the set of axioms without annotations) corresponding to {{φ1, φ2, φ3},
{φ1, φ2}, · · · , ∅}. Each possible world has probability measure that can be derived from
pi. For instance, the probability of a possible world {φ1, φ2} is given by p1∗p2∗(1−p3).
The degree of inconsistency of a knowledge base is then computed as the sum of the
probabilities associated with possible worlds that are inconsistent.

In the presence of inconsistencies, our approach extracts justifications − minimal
sets of axioms that together imply an inconsistency [9]. Our trust computation model
essentially propagates the degree of inconsistency as blames (or penalties) to the axioms
contributing to the inconsistency via justifications. This approach essentially allows us
to compute trust in information at the granularity of an axiom. Indeed one may ag-
gregate trust scores at different levels of granularity; e.g., axioms about a specific topic
(e.g., birds), one information source (e.g., John), groups of information sources (e.g., all
members affiliated with ACM), etc. Intuitively, our trust computation model works as
follows. First, we compute a probability measure for each justification as the sum of the
probabilities associated with possible worlds in which the justification holds (namely,
all the axioms in the justification are present). Second, we partition the degree of in-
consistency across all justifications; for instance, if a justification J1 holds in 80% of
the possible worlds then it is assigned four times the blame as a justification J2 that
holds in 20% of the possible worlds. Third, we partition the penalty associated with a

1 BDL is a simple probabilistic extension of Description Logics, the foundation of OWL DL.
2 This is a very simplified version of the BDL formulation given here for ease of the presentation.

The complete and formal definition of BDL is presented in section 2.
3 φi : pi is a shorthand notation for φi : Xi and Pr(Xi = true) = pi for some independent

random variable Xi.

Assessing Trust in Uncertain Information 211

justification across all axioms in the justification using a biased (on prior trust assess-
ments) or an unbiased partitioning scheme. We note that there may be alternate ap-
proaches to derive trust scores from inconsistency measures and justifications; indeed,
our approach is flexible and extensible to such trust computation models.

A naive implementation of our trust computation model requires all justifications.
While computing a justification is an easy problem, exhaustively enumerating all pos-
sible justifications is known to be hard problem [9]. We formulate exhaustive enumer-
ation of justifications as a tree traversal problem and develop an importance sampling
approach to uniformly and randomly sample justifications without completely enumer-
ating them. Unbiased sampling of justifications ensures that the malicious entities can-
not game the trust computation model; say, selectively hide justifications that include
axioms from malicious entities (and thus evade penalties) from the sampling process.
For scalability reasons, our trust computation model operates on a random sample of
justifications. A malicious entity may escape penalties due to incompleteness of justi-
fications; however, across multiple inconsistency checks a malicious entity is likely to
incur higher penalties (and thus lower trust score) than the honest entities.

Third, we have developed a prototype of our trust assessment system by implement-
ing a probabilistic extension, PSHER, to our publicly available highly scalable DL rea-
soner SHER [6]. To avoid the exponential blow up due to the fact that the number of
possible worlds in the worst case is exponential in the number of axioms, we use an
error-bounded approximation algorithm to compute the degree of inconsistency of a
probabilistic knowledge base and the weight of its justifications. Finally, we empiri-
cally evaluate the efficacy of our scheme (on a publicly available UOBM dataset) when
malicious sources use an oscillating behavior to milk the trust computation model and
when honest sources are faced with measurement errors (high uncertainty) or commit
honest mistakes.

The remainder of the paper is organized as follows. After a brief introduction of
Bayesian Description Logics (BDL) in Section 2, Section 3 describes an inconsistency-
tolerant extension of BDL and presents solutions to effectively compute justifications (a
proxy for (dis)similarity scores in our trust computation model). Section 4 describes our
trust computation model. Section 5 presents an experimental evaluation of our system.
We finally conclude in Section 6.

2 Background

In this section, we briefly describe our data model for uncertain information.

2.1 Bayesian Network Notation

We briefly recall notations for a Bayesian Network, used in the remainder of the paper.
V : set of all random variables in a Bayesian network (e.g., V = {V1, V2}). D(Vi) (for
some variable Vi ∈ V): finite set of values that Vi can take (e.g., D(V1) = {0, 1} and
D(V2) = {0, 1}). v: assignment of all random variables to a possible value (e.g., v =
{V1 = 0, V2 = 1}). v|X (for some X ⊆ V): projection of v that only includes the random
variables in X (e.g., v|{V2} = {V2 = 1}). D(X) (for some X ⊆ V): Cartesian product
of the domains D(Xi) for all Xi ∈ X .

212 A. Fokoue, M. Srivatsa, and R. Young

2.2 Bayesian Description Logics

Bayesian Description Logics [3] is a class of probabilistic description logic wherein
each logical axiom is annotated with an event which is associated with a probability
value via a Bayesian Network. In this section, we describe Bayesian DL at a syntactic
level followed by a detailed example. A probabilistic axiom over a Bayesian Network
BN over a set of variables V is of the form φ : e, where φ is a classical DL axiom, and
the probabilistic annotation e is an expression of one of the following forms: X = x
or X
= x where X ⊆ V and x ∈ D(X). Intuitively, every probabilistic annotation
represents a scenario (or an event) which is associated with the set of all value assign-
ments V = v with v ∈ D(V) that are compatible with X = x (that is, v|X = x) and
their probability value PrBN (V = v) in the Bayesian network BN over V . Simply
put, the semantics of a probabilistic axiom φ : X = x is as follows: when event X = x
occurs then φ holds. φ : p, where p ∈ [0, 1], is often used to directly assign a probability
value to an classical axiom φ. This is an abbreviation for φ : X0 = true, where X0 is
a boolean random variable which is independent from all other variables and such that
PrBN (X0 = true) = p. We abbreviate the probabilistic axiom of the form� : e (resp.
φ : �) as e (resp. φ).

A probabilistic knowledge base (KB) K = (A, T , BN) consists of: 1) a Bayesian
Network BN over a set of random variables V , 2) a set of probabilistic Abox axiomsA
of the form φ : e, where φ is a classical Abox axiom, and 3) a set of probabilistic Tbox
axioms T of the form φ : e, where φ is a classical Tbox axiom. The following example
illustrates how this formalism can be used to describe road conditions influenced by
probabilistic events such as weather conditions:

T = {SlipperyRoad � OpenedRoad HazardousCondition,

Road SlipperyRoad : Rain = true}

A = {Road(route9A),OpenedRoad(route9A) : TrustSource = true}

In this example, the Bayesian network BN consists of three variables: Rain, a boolean
variable which is true when it rains; TrustSource, a boolean variable which is true
when the source of the axiom OpenedRoad(route9A) can be trusted; and Source,
a variable which indicates the provenance of the axiom OpenedRoad(route9A). The
probabilities specified by BN are as follows:

PrBN (TrustSource = true|Source = ‘Mary′
) = 0.8, PrBN(Rain = true) = 0.7

PrBN (TrustSource = true|Source = ‘John′
) = 0.5, PrBN(Source = ‘John′

) = 1

The first Tbox axiom asserts that a opened road that is slippery is a hazardous condi-
tion. The second Tbox axiom indicates that when it rains, roads are slippery. The Abox
axioms assert that route9A is a road and, assuming that the source of the statement
OpenedRoad(route9A) is trusted, route9A is opened.

Informally, probability values computed through the Bayesian network ‘propagate’
to the ‘DL side’ as follows. Each assignment v of all random variables in BN (e.g.,v =
{Rain = true, TrustSource = false, Source= ‘John’}) corresponds to a primitive event
ev (or a scenario). A primitive event ev is associated, through BN , to a probability

Assessing Trust in Uncertain Information 213

value pev and a classical DL KB Kev
4 which consists of all classical axioms annotated

with a compatible probabilistic annotation (e.g., SlipperyRoad �OpenedRoad �
HazardousCondition, Road � SlipperyRoad, Road(route9A)). The probability
value associated with the statement φ (e.g., φ = HazardousCondition(route9A)) is
obtained by summing pev for all ev such that the classical KB Kev entails φ
(e.g., Pr(HazardousCondition(route9A)) = 0.35).

3 Inconsistency and Justification

The ability to detect contradicting statements and measure the relative importance of
the resulting conflict is a key prerequisite to estimate the (dis)similarity between infor-
mation sources providing rich, complex and probabilistic assertions expressed as BDL
axioms. Unfortunately, in the traditional BDL semantics [3], consistency is still cate-
gorically defined, i.e., a probabilistic KB is either completely satisfied or completely
unsatisfied. In this section, we address this significant shortcoming by using a refined
semantics which introduces the notion of degree of inconsistency. We start by present-
ing the traditional BDL semantics, which does not tolerate inconsistency.

For v ∈ V , we say that v is compatible with the probabilistic annotation X = x
(resp. X
= x), denoted v |= X = x (resp. v |= X
= x), iff v|X = x (resp. v|X
= x).

Recall that BDL axioms (φ : e) are extensions of classical axioms (φ) with a proba-
bilistic annotation (e). BDL semantics defines an annotated interpretation as an exten-
sion of a first-order interpretation by assigning a value v ∈ D(V) to V . An annotated
interpretation I = (ΔI , .I) is defined in a similar way as a first-order interpretation ex-
cept that the interpretation function .I also maps the set of variables V in the Bayesian
Network to a value v ∈ D(V). An annotated interpretation I satisfies a probabilis-
tic axiom φ : e, denoted I |= φ : e, iff V I |= e ⇒ I |= φ5. Now, a probabilistic
interpretation is defined as a probabilistic distribution over annotated interpretations.

Definition 1. (From [3]) A probabilistic interpretation Pr is a probability function over
the set of all annotated interpretations that associates only a finite number of annotated
interpretations with a positive probability. The probability of a probabilistic axiom φ :
e in Pr, denoted Pr(φ : e), is the sum of all Pr(I) such that I is an annotated
interpretation that satisfies φ : e. A probabilistic interpretation Pr satisfies (or is a
model of) a probabilistic axiom φ : e iff Pr(φ : e) = 1. We say Pr satisfies (or is a
model of) a set of probabilistic axioms F iff Pr satisfies all f ∈ F .

Finally, we define the notion of consistency of a probabilistic knowledge base.

Definition 2. (From [3]) The probabilistic interpretation Pr satisfies (or is a model of)
a probabilistic knowledge base K = (T ,A, BN) iff (i) Pr is a model of T ∪ A and
(ii) PrBN (V = v) =

∑
I s.t. V I=v Pr(I) for all v ∈ D(V). We say KB is consistent iff

it has a model Pr.

We note that condition (ii) in the previous definition ensures that the sum of probability
values for annotated interpretations mapping V to v ∈ D(V) is the same probability
value assigned to V = v by the Bayesian Network.

4 Kev was informally referred to as a ‘possible world’ in the introduction.
5 This more expressive implication semantics differs from the equivalence semantics of [3].

214 A. Fokoue, M. Srivatsa, and R. Young

3.1 Degree of Inconsistency

In the previously presented traditional BDL semantics, consistency is still categorically
defined. We now address this significant shortcoming for our trust application using a
refined semantics which introduces the notion of degree of inconsistency.

First, we illustrate using a simple example the intuition behind the notion of de-
gree of inconsistency for a KB. Let K be the probabilistic KB defined as follows:
K = (T ,A ∪ {� � ⊥ : X = true}, BN) where T is a classical Tbox and A
is a classical Abox such that the classical KB cK = (T ,A) is consistent; BN is
a Bayesian Network over a single boolean random variable X , and the probability
PrBN (X = true) = 10−6 that X is true is extremely low. Under past probabilis-
tic extensions to DL, the K is completely inconsistent, and nothing meaningful can be
inferred from it. This stems from the fact that when X is true, the set of classical axioms
that must hold (i.e., T ∪A∪{� � ⊥}) is inconsistent. However, the event X = true is
extremely unlikely, and, therefore, it is unreasonable to consider the whole probabilistic
KB inconsistent. Intuitively, the likelihood of events, whose set of associated classical
axioms is inconsistent, represents the degree of inconsistency of a probabilistic KB.

We now formally define a degree of inconsistency and present an inconsistency-
tolerant refinement of the semantics of a Bayesian DL.

Definition 3. An annotated interpretation I is an annotated model of a probabilistic
KB K = (T ,A, BN) where BN is a Bayesian Network over a set of variables V iff
for each probabilistic axiom φ : e, I satisfies φ : e.

In order, to measure the degree of inconsistency, we first need to find all primitive events
v (i.e., elements of the domain D(V) of the set of variables V) for which there are no
annotated models I such that V I = v.

Definition 4. For a probabilistic KB K = (T ,A, BN) where BN is a Bayesian Net-
work over a set of variables V , the set of inconsistent primitive events, denoted U(K),
is the subset of D(V), the domain of V , such that v ∈ U(K) iff there is no annotated
model I of K such that V I = v.

Finally, the degree of inconsistency of a probabilistic knowledge base is defined as the
probability of occurrence of an inconsistent primitive event.

Definition 5. Let K = (T ,A, BN) be a probabilistic KB such that BN is a Bayesian
Network over a set of variables V . The degree of inconsistency of K , denoted DU(K),
is a real number between 0 and 1 defined as follows:

DU(K) =
∑

v∈U(K)

PrBN (V = v)

A probabilistic interpretation Pr (as per Definition 1) satisfies (or is a model of) a
probabilistic KB K = (T ,A, BN) to a degree d, 0 < d ≤ 1 iff.:

– (i) Pr is a model as T ∪ A (same as in Definition 2)
– (ii) for v ∈ V , ∑

I s.t. V I=v

Pr(I) =

{
0 if v ∈ U(K)
PrBN (V =v)

d
if v /∈ U(K)

– (iii) d = 1 − DU(K)

Assessing Trust in Uncertain Information 215

A probabilistic knowledge base K = (T ,A, BN) is consistent to the degree d, with
0 < d ≤ 1, iff there is a probabilistic interpretation that satisfies K to the degree d. It
is completely inconsistent (or satisfiable to the degree 0), iff DU(K) = 1.

Informally, by assigning a zero probability value to all annotated interpretations corre-
sponding to inconsistent primitive events, (ii) in Definition 5 removes them from consid-
eration, and it requires that the sum of the probability value assigned to interpretations
mapping V to v for v /∈ U(K) is the same as the joint probability distribution PrBN

defined by BN with a normalization factor d.
In practice, computing the degree of inconsistency of a Bayesian DL KB can be

reduced to classical description logics consistency check as illustrated by Theorem 1.
First we introduce an important notation used in the remainder of the paper:

Notation 1. Let K = (T ,A, BN) be a probabilistic KB. For every v ∈ D(V), let Tv

(resp., Av) be the set of all axioms φ for which there exists a probabilistic axiom φ : e
in T (resp., A), such that v |= e. Kv denotes the classical KB (Tv,Av). Informally,
Kv represents the classical KB that must hold when the primitive event v occurs. K�
denotes the classical KB obtained from K after removing all probabilistic annotations:
K� = (∪v∈D(V)Tv. ∪v∈D(V) Av).

Theorem 1. A probabilistic KB K = (T ,A, BN) is consistent to the degree d iff.

d = 1 −
∑

v s.t. Kv inconsistent

PrBN(V = v)

The proof of Theorem 1 is a consequence of Lemma 1.

Lemma 1. Let K be a probabilistic KB. v ∈ U(K) iff Kv is inconsistent.

3.2 Inconsistency Justification

A conflict or contradiction is formally captured by the notion of an inconsistency justi-
fication − minimal inconsistency preserving subset of the KB.

Definition 6. Let K = (T ,A, BN) be a probabilistic KB consistent to the degree d
such that BN is a Bayesian Network over a set of variables V . J is an inconsistency
justification iff. 1) J ⊆ (T ,A), 2) (J , BN) is probabilistic KB consistent to the degree
d′ such that d′ < 1, and 3) for all J ′ ⊂ J , (J ′, BN) is probabilistic KB consistent to
the degree 1 (i.e. (J ′, BN) is completely consistent). The degree DU(J) of an incon-
sistency justification J is defined as the degree of inconsistency of the probabilistic KB
made of its axioms: DU(J) = DU((J , BN)).

Justification computation in a probabilistic KB reduces to justification computation in
classical KBs as shown by the following theorem, which is a direct consequence of
Theorem 1 and Definition 6:

Theorem 2. Let K = (T ,A, BN) be a probabilistic KB, where BN is a Bayesian
network over a set V of random variables. J is an inconsistency justification of K iff.
there exists v ∈ D(V) such that PrBN (V = v) > 0 andJ�, the classical KB obtained

216 A. Fokoue, M. Srivatsa, and R. Young

from J by removing all probabilistic annotations, is an inconsistency justification of
Kv. Furthermore, the degree, DU(J), of an inconsistency justification J is as follows:

DU(J) =
∑

v s.t. J�⊆Kv

PrBN(V = v)

Thus, once we have found a classical justification in a classical KB Kv for v ∈ D(V)
using, for example, the scalable approach described in our previous work [4], the de-
gree of the corresponding probabilistic justification can be obtained through simple set
inclusion tests.

Theorems 1 and 2 provide a concrete mechanism to compute degree of inconsistency
of a probabilistic KB, and a degree of inconsistency of a justification. However, they are
highly intractable since they require an exponential number, in the number of variables
in BN, of corresponding classical tasks. We will address this issue in the next section.

3.3 Error-Bounded Approximate Reasoning

A Bayesian network based approach lends itself to fast Monte Carlo sampling algo-
rithms for scalable partial consistency checks and query answering over a large prob-
abilistic KB. In particular, we use a forward sampling approach described in [2] to
estimate pr =

∑
v∈Π PrBN (V = v) (recall theorem 1 and 2). The forward sampling

approach generates a set of samples v1, · · · , vn from BN (each sample is generated in
time that is linear in the size of BN) such that the probability pr can be estimated as p̂rn

= 1
n*
∑n

i=1I(vi ∈ Π), where I(z) = 1 if z is true; 0 otherwise. One can show that p̂rn

is an unbiased estimator of pr such that limn→∞
√

n ∗ (p̂rn − pr)→N (0, σ2
z), where

N (μ, σ2) denotes a normal distribution with mean μ and variance σ2 and σ2
z denotes

the variance of I(z) for a boolean variable z. Hence, the sample size n which guaran-
tees an absolute error of ε or less with a confidence level η is given by the following

formula: n = 2∗(erf−1(η))2∗σ2
zmax

ε2 , where erf−1 denotes the inverse Gauss error func-
tion (σ2

zmax
= 0.25 for a boolean random variable). For example, to compute the degree

of consistency of a probabilistic KB within ±5% error margin with a 95% confidence,
the sample size n = 396 is necessary.

3.4 Sampling Justifications in a Classical KB

Ideally, it is desirable to find all classical justifications. Computing a single justifica-
tion can be done fairly efficiently by 1) using tracing technique to obtain a significantly
small set S of axioms that is responsible for an inconsistency discovered by a single
consistency test, and 2) performing additional |S| consistency check on KBs of size
at most |S| − 1 to remove extraneous elements from S. In our previous work [4], we
presented a scalable approach to efficiently compute a large number of − but not all −
justifications in large and expressive KBs through the technique of summarization and
refinement [5]. The idea consists in looking for patterns of justifications in a dramati-
cally reduced summary of the KB, and retrieve concrete instances of these patterns in
the real KB.

Unfortunately, computing all justifications is well known to be intractable even for
small and medium size expressive KBs [9]. [9] establishes a connection between the

Assessing Trust in Uncertain Information 217

Fig. 1. Computing all justifications using Reiter’s Hitting Set Tree Algorithm from [9]

problem of finding all justifications and the hitting set problem (i.e., given n sets Si,
find sets that intersect each Si). The intuition behind this result is the fact that in order
to make an inconsistent KB consistent at least one axiom from each justification must
be removed. Therefore, starting from a single justification a Reiter’s Hitting Tree can be
constructed in order to get all justifications as illustrated in Figure 1 from [9]: Starting
from the first justification J = {2, 3, 4} computed in the KB K (J is set to be the root
v0 of the tree), the algorithm arbitrary selects an axiom in J , say 2, and creates a new
node w with an empty label in the tree and a new edge < v0, w > with axiom 2 in its
label. The algorithm then tests the consistency of the K−{2}. If it is inconsistent, as in
this case, a justification J ′ is obtained for K − {2}, say {1, 5}, and it is inserted in the
label of the new node w. This process is repeated until the consistency test is positive in
which case the new node is marked with a check mark. As an important optimization,
we stop exploring super set of path discovered earlier and marked the node with ’X’.

In order to avoid the high cost associated with exploring the whole Hitting Set Tree
to find all conflicts. One can find the first K conflicts by exploring the Reiter’s Hitting
Set Tree (HST) until K distinct justifications are found. The problem with this approach
is that nodes in the HST are not equally likely to be selected with such a scheme: the
probability π(vd) of a node vd in a path < v0v1...vd > to be selected is π(vd) =∏

0≤i<d(1/|vi|), where |vi| denotes the number of axioms in the justification vi. As a
result, a malicious source can use the bias in the sampling to ‘hide’ its conflicts.

However, since the bias can be precisely quantified, one can obtain an unbiased sam-
ple as follows. We select K nodes in the HST by exploring the HST in the normal way,
but each time a node vi is encountered, it is selected iff. a random number r generated
uniformly from [0,1] is such that r ≤ min(β/π(vi), 1), where β is a strictly positive
real number. The following Proposition shows that, in this approach, for a sample of K
HST nodes, if β is properly chosen, then the expected number of time a node is selected
is identical for all nodes.

Proposition 1. Let Nv denotes the random variable representing the number of time
the node v appears in a HST sample of size K . The expected value E(Nv) of Nv is:

218 A. Fokoue, M. Srivatsa, and R. Young

E(Nv) =

{
K ∗ π(v) if β ≥ π(v)

K ∗ β if 0 < β < π(v)

Thus, if β is chosen such that 0 < β < minv∈HST (π(v)), then we obtain an unbiased
sample from the HST. Unfortunately, the minimum value of π(v) depends on the tree
structure (branching factor and maximum depth), and cannot be computed precisely
without exploring the whole HST. In practice, we use the following sampling approach
to select K nodes (the trade-off between computation cost and bias in the sample is
controlled by a parameter of the algorithm, α):

1. Let visited denote the set of visited nodes. Set visited to ∅,
2. Traverse the HST in any order, and add the first max(K−|visited|, 1) nodes visited

to visited
3. Let πmin be the minimum value of π(v) for v ∈ visited.
4. Set β = πmin/α, where α > 1 is a parameter of the sampling algorithm which

controls the trade-off between computation cost and biased in the sampling. Higher
values of α, while reducing the bias in our sampling, increase the computation cost
by reducing the probability of a node selection − hence, increasing the length of
tree traversal.

5. For each v ∈ visited, add it to the result set RS with a probability of β/π(v)
6. If |RS| < K and the HST has not been completely explored, then set RS = ∅ and

continue the exploration from step 2; otherwise return RS

4 Trust Computation Model

We now briefly formalize the problem of assessing trust in a set IS consisting of n in-
formation sources. The trust value assumed or known prior to any statement made by an
information source i is specified by a probability distribution PrTV (i) over the domain
[0, 1]. For example, a uniform distribution is often assumed for new information source
for which we have no prior knowledge. Statements made by each source i is specified
in the form of a probabilistic KB Ki = (T i,Ai, BN i). The knowledge function C
maps an information source i to the probabilistic KB Ki capturing all its statements.
The trust update problem is a triple (IS, PrTV, C) whose solution yields a posterior
trust value function PoTV . PoTV maps an information source i to a probability dis-
tribution over the domain [0, 1], which represents our new belief in the trustworthiness
of i after processing statements in

⋃
j∈IS C(j).

In this paper, we only focus on trust computation based on direct observations, that
is, on statements directly conveyed to us by the information sources. Inferring trust
from indirect observations (e.g., statements conveyed to us from IS1 via IS2) is an
orthogonal problem; one could leverage solutions proposed in [10], [15], [11] to infer
trust from indirect observations.

4.1 Trust Computation

We model prior and posterior trust of a source i (PrTV (i) and PoTV (i)) using a beta
distributionB(α, β) as proposed in several other trust computation models including [8].
Intuitively, the reward parameter α and the penalty parameter β correspond to good

Assessing Trust in Uncertain Information 219

(non-conflicting) and bad (conflicting) axioms contributed to an information source re-
spectively. The trust assessment problem now reduces to that of (periodically) updating
the parameters α and β based on the axioms contributed by the information sources.
One may bootstrap the model by setting PrTV (i) to B(1, 1) − a uniform and random
distribution over [0, 1], when we have no prior knowledge. In the rest of this section we
focus on computing the reward (α) and penalty (β) parameters.

We use a simple reward structure wherein an information source receives unit reward
for every axiom it contributes if the axiom is not in a justification for inconsistency6. We
use a scaling parameter' to control the relative contribution of reward and penalty to
the overall trust assessment; we typically set ' > 1, that is, penalty has higher impact
on trust assessment than the reward. The rest of this section focuses on computing
penalties from justifications for inconsistency.

Section 3.4 describes solutions to construct (a random sample of) justifications that
explain inconsistencies in the KB; further, a justification J is associated with a weight
DU(J) that corresponds to the possible worlds in which the justification J holds (see
section 3.2 for formal definition of DU(J) and an algorithm to compute it). For each
justification Ji we associate a penalty '(Ji) = ' ∗ DU(Ji). The trust computation
model traces a justification Ji, to conflicting information sources S = {Si1 , · · · , Sin}
(for some n≥ 2) that contributed to the axioms in Ji. In this paper we examine three so-
lutions to partition'(Ji) units of penalty amongst the contributing information sources
as shown below. We use tij to denote the expectation of PrTV (ij) for an information

source ij , that is, tij =
αij

αij
+βij

.

�(Sij) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�(Ji)

n
unbiased

�(Ji)
n−1

∗ (1 −
tij∑

n
k=1 tik

) biased by trust in other sources

�(Ji) ∗
1

tij∑n
k=1

1
tik

biased by inverse self trust

The unbiased version distributes penalty for a justification equally across all conflict-
ing information sources; the biased versions tend to penalize less trustworthy sources
more. One possible approach is to weigh the penalty for a source Sij by the sum
of the expected prior trust values for all the other conflicting sources, namely, S −
{Sij}. For instance, if we have three information sources Si1 , Si2 and Si3 with ex-
pected prior trust ti1 = 0.1 and ti2 = ti3 = 0.9 then the penalty for source i1 must be
weighted by 1

2* 0.9+0.9
0.1+0.9+0.9 = 0.47, while that of sources i2 and i3 must be weighted by

0.265. Clearly, this approach penalizes the less trustworthy source more than the trusted
sources; however, we note that even when the prior trust in i1 is arbitrarily close to zero,
the penalty for the honest source i2 and i2 is weighted by 0.25. A close observation re-
veals that a malicious source (with very low prior trust) may penalize honest nodes
(with high prior trust) by simply injecting conflicts that involve the honest nodes; for
instance, if sources i2 and i3 assert axioms φ2 and φ3 respectively, then the malicious
source i1 can assert an axiom φ1 = ¬φ2∨¬φ3 and introduce an inconsistency whose
justification spans all the three sources. To overcome this problem, this paper uses a
third scheme that weights penalties for justifications by the inverse value of prior trust
in the information source.

6 A preprocessing step weeds out trivial axioms (e.g., sun rises in the east).

220 A. Fokoue, M. Srivatsa, and R. Young

5 Experimental Evaluation

To evaluate our approach, we have developed a prototype implementation, PSHER, that
extends SHER reasoner [6] to support Bayesian SHIN (the core of OWL 1.0 DL) rea-
soning. SHER was chosen for its unique ability to scale reasoning to very large and
expressive KBs [5], and to efficiently detect large number of inconsistency justifica-
tions in a scalable way [4]. PSHER uses the results of sections 3.1, 3.2 and 3.3 to
reduce the problem of computing justifications on a probabilistic KB to detecting those
justifications on classical KBs using SHER.

Axioms asserted by various information sources in our experiments were taken from
the UOBM benchmark [12] which was modified to SHIN expressivity, and its Abox
was modified by randomly annotating half of the axioms with probability values. Fur-
thermore, we inserted additional Abox assertions in order to create inconsistencies in-
volving axioms in the original UOBM KB. Note that not all axioms in the original
UOBM KB end up being part of an inconsistency, which introduces an asymmetry in
information source’s knowledge (e.g., a malicious source is not assumed to have com-
plete knowledge of all axioms asserted by other sources).

Due to space limitations, we only present an evaluation of our trust model un-
der different scenarios. Scalability was already demonstrated in our previous work on
SHER [4], where we presented a scalable approach to efficiently compute a large num-
ber of − but not all − justifications in large and expressive KBs through the technique

Fig. 2. Trust under single PuMS attack (No
duplication)

Fig. 3. Trust under 50% PuMS attack (No
duplication)

Fig. 4. Trust under 90% PuMS attack (No
duplication)

Fig. 5. Trust under single PuMS attack (25%
duplication)

Assessing Trust in Uncertain Information 221

of summarization and refinement [5]. Scalability of PSHER is achieved through par-
allelism since each probabilistic reasoning task performed by PSHER is reduced to n
corresponding classical tasks evaluated using SHER, where n depends on the desired
precision as explained in Section 3.3. In the rest of this section, we report experiments
conducted on UOBM1 (one department∼ 74,000 axioms, including added inconsistent
axioms and excluding duplication across sources).

Fig. 6. Trust under single PuMS attack (50%
duplication)

Fig. 7. Trust under single PuMS attack (100%
duplication)

Fig. 8. Trust under 50% PuMS attack (25%
duplication)

Fig. 9. Trust under 50% PuMS attack (50%
duplication)

In our experiments, we considered 4 types of information sources:

– Perfect honest sources (PHS) whose axioms are taken from the UOBM KB before
the introduction of inconsistencies.

– Purely malicious sources (PuMS) whose axioms are selected from the ones added
to UOBM KB in order to create inconsistencies.

– Imperfect honest sources (IHS) have the majority of their axioms (more than 90%)
from the UOBM KB before the introduction of inconsistencies. They allow us to
simulate the behavior of our approach when honest sources are faced with mea-
surement errors or commit honest mistakes.

– Partially malicious sources (PaMS) are such that between 10% to 90% of their
axioms are selected from the axioms added to UOBM KB to create inconsistency.
They are primarily used to simulate the behavior of our approach when malicious
sources use an oscillating behavior to milk our trust computation scheme.

222 A. Fokoue, M. Srivatsa, and R. Young

Axioms were randomly assigned to various sources without violating the proportion of
conflicting vs. non-conflicting axioms for each type of source.

Our first experiment (Figure 2) measures the impact of a single purely malicious
source (PuMS) on the trust values of 9 perfect honest sources. The PuMS asserts more
and more incorrect axioms contradicting PHS’s axioms (at each steps, each source as-
serts about 100 additional statements until all their axioms have been asserted) while the
PHSs continue to assert more of what we consider as correct axioms. Axioms asserted
by the PuMS do not necessarily yield an inconsistency in the same step in which they
are asserted, but, by the end of the simulation, they are guaranteed to generate an incon-
sistency. For this experiment, there is no duplication of axioms across sources, and we
do not assume any prior knowledge about the trustworthiness of the sources. Since each
justification creates by the malicious source also involves at least one PuMS, initially,
it manages to drop significantly the absolute trust value of some PHSs (up to 50% for
PHS-3). However, a PuMS hurts its trust value significantly more than he hurts those
of other sources. As a result of the fact that our scheme is such that less trustworthy
sources get assigned a large portion of the penalty for a justification, the single PuMS
eventually ends up receiving almost all the penalty for its inconsistencies, which allows
the trust values of honest sources to recover. Due to information asymmetry (malicious
sources do no have complete knowledge of informations in other sources and thus can-
not contradict all the statements of an PHS), our scheme remains robust, in the sense
that honest sources would recover, even when the proportion of PuMS increases (see
Fig. 3 where 50% of the sources are PuMS and Fig. 4 where 90% of sources are PuMS).

In the previous experiments, although honest sources manage to recover from the
attack, they can still be severely hurt before the credibility of the malicious sources de-
creased enough to enable a recovery for honest sources. This problem can be addressed
in two ways: 1) by increasing the degree of redundancy between sources as illustrated
in Figures 5, 6, 7, 8 and 9; and 2) by taking into account a priori knowledge of each
source as illustrated in Figure 10.

In case of moderate to high redundancy between sources (Figures 5, 6, 7, 8 and 9),
a justification generated by a malicious source to compromise a honest source is likely
to hurt the malicious much more than the honest source because the axioms in the
justification coming from the honest source are likely to be confirmed by (i.e. duplicated
in) other honest sources. Therefore, the malicious source will be involved in as many
justifications as there are corroborating honest sources, while each corroborating source
will be involved in a single justification.

In Figure 10, we assume that we have a high a priori confidence in the trustworthiness
of the honest sources: the prior distribution of the trust value of PHS in that experiment
is a beta distribution with parameter α = 2000 and β = 1. As expected, in Figure 10, the
damage inflicted by the malicious source is significantly reduced compared to Figure 2
where no prior knowledge about the source trustworthiness was taken into account.

The next experiment evaluates the behavior of our scheme when partially malicious
sources use an oscillating behavior. They alternate periods where they assert incorrect
axioms, contradicting axioms asserted in the same period by other sources, with periods
in which they assert only correct axioms. As opposed to previous experiments where
malicious axioms asserted in a step were not guaranteed to yield an inconsistency in the

Assessing Trust in Uncertain Information 223

Fig. 10. Trust under single PuMS attack: No
duplication - Prior = B(2000,1)

Fig. 11. Oscillating experiment - 90% PHS &
10% PaMS (No duplication)

Fig. 12. Oscillating experiment - 50% PHS &
50% PaMS (No duplication)

Fig. 13. Oscillating experiment - 30% PHS,
20% PuMS, 30% IHS & 20% PaMS

same step, in the oscillation experiments, the inconsistency is observed at the same step.
As shown in Figure 11 and 12, in absence of prior knowledge, the trust values of par-
tially malicious sources (PaMS) and honest sources drop significantly at the first period
in which incorrect axioms are stated. However, malicious sources, which due to infor-
mation asymmetry, can only contradict limited set of statements from honest sources,
never recover significantly, while honest sources quickly improve their trust values by
asserting more axioms not involved in conflicts. As in the previous non-oscillating ex-
periments, the negative impact on honest sources can be reduced considerably through
axiom duplication and prior strong confidence in their trustworthiness.

The last experiment simulates an oscillating scenario where all four types of sources
are present: 30% PHS, 20% PuMS, 30% IHS and 20%PaMS. Figure 13 shows how our
scheme correctly separates the 4 types of sources as expected.

6 Conclusion

In this paper, we have introduced a new trust framework for rich, complex and uncertain
information by leveraging the expressiveness of Bayesian Description Logics. We have
demonstrated the robustness of the proposed framework under a variety of scenarios, and
shown how duplication of assertions across different sources as well as prior knowledge
of the trustworthiness of sources can further enhance it.

224 A. Fokoue, M. Srivatsa, and R. Young

Acknowledgements. Research was sponsored by the U.S. Army Research Laboratory
and the U.K. Ministry of Defence and was accomplished under Agreement Number
W911NF-06-3-0001. The views and conclusions contained in this document are those
of the author(s) and should not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Army Research Laboratory, the U.S. Government, the
U.K. Ministry of Defence or the U.K. Government. The U.S. and U.K. Governments
are authorised to reproduce and distribute reprints for Government purposes notwith-
standing any copyright notation hereon.

References

[1] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description
Logic Handbook. Cambridge University Press, Cambridge (2003)

[2] Cheng, J., Druzdzel, M.J.: AIS-BN: An Adaptive Importance Sampling Algorithm for Evi-
dential Reasoning in Large Bayesian Networks. Journal of AI Research (2000)

[3] D’Amato, C., Fanizzi, N., Lukasiewicz, T.: Tractable reasoning with bayesian description
logics. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 146–
159. Springer, Heidelberg (2008)

[4] Dolby, J., Fan, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Ma, L., Murdock, J.W.,
Srinivas, K., Welty, C.A.: Scalable cleanup of information extraction data using ontologies.
In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J.,
Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007
and ISWC 2007. LNCS, vol. 4825, pp. 100–113. Springer, Heidelberg (2007)

[5] Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas, K., Ma, L.:
Scalable semantic retrieval through summarization and refinement. In: AAAI, pp. 299–304
(2007)

[6] Dolby, J., Fokoue, A., Kalyanpur, A., Schonberg, E., Srinivas, K.: Scalable highly expres-
sive reasoner (sher). J. Web Sem. 7(4), 357–361 (2009)

[7] Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining,
Inference and Prediction. In: Springer Series in Statistics (2009)

[8] Josang, A., Ismail, R.: The beta reputation system. In: 15th Conference on Electronic Com-
merce (2002)

[9] Kalyanpur, A.: Debugging and Repair of OWL-DL Ontologies. PhD thesis, Univer-
sity of Maryland (2006), https://drum.umd.edu/dspace/bitstream/1903/
3820/1/umi-umd-3665.pdf

[10] Kamvar, S., Schlosser, M., Garcia-Molina, H.: EigenTrust: Reputation management in P2P
networks. In: WWW Conference (2003)

[11] Kuter, U., Golbeck, J.: SUNNY: A New Algorithm for Trust Inference in Social Networks,
using Probabilistic Confidence Models. In: AAAI 2007 (2007)

[12] Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y.: Towards a complete owl ontology benchmark.
In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 124–139. Springer,
Heidelberg (2006)

[13] Netflix. Netflix Prize, http://www.netflixprize.com/
[14] Schafer, J.B., Konstan, J., Riedl, J.: Recommender Systems in E-Commerce. In: ACM Con-

ference on Electronic Commerce (1999)
[15] Xiong, L., Liu, L.: Supporting reputation based trust in peer-to-peer communities. IEEE

Transactions on Knowledge and Data Engineering (TKDE) 71, 16(7) (July 2004)

https://drum.umd.edu/dspace/bitstream/1903/3820/1/umi-umd-3665.pdf
https://drum.umd.edu/dspace/bitstream/1903/3820/1/umi-umd-3665.pdf
http://www.netflixprize.com/

Optimising Ontology Classification

Birte Glimm, Ian Horrocks, Boris Motik, and Giorgos Stoilos

Oxford University Computing Laboratory, UK

Abstract. Ontology classification—the computation of subsumption hi-

erarchies for classes and properties—is one of the most important tasks

for OWL reasoners. Based on the algorithm by Shearer and Horrocks [9],

we present a new classification procedure that addresses several open is-

sues of the original algorithm, and that uses several novel optimisations

in order to achieve superior performance. We also consider the classifica-

tion of (object and data) properties. We show that algorithms commonly

used to implement that task are incomplete even for relatively weak on-

tology languages. Furthermore, we show how to reduce the property clas-

sification problem into a standard (class) classification problem, which

allows reasoners to classify properties using our optimised procedure. We

have implemented our algorithms in the OWL HermiT reasoner, and we

present the results of a performance evaluation.

1 Introduction

Ontology classification—the computation of subsumption hierarchies for classes
and properties—is a core reasoning service provided by all OWL reasoners known
to us. The resulting class and property hierarchies are used in ontology engineer-
ing, where they help users to navigate through the ontology and identify errors,
as well as in tasks such as explanation and query answering.

Significant attention has been devoted to the optimisation of individual sub-
sumption tests; however, most OWL reasoners solve the classification problem
using an enhanced traversal (ET) classification algorithm similar to the one used
in early description logic reasoners [1]. This can be inefficient when classifying
large ontologies: even if each subsumption test is very efficient, the extremely
large number of tests performed by ET can make classification an expensive oper-
ation. Moreover, with the exception of HermiT, all OWL reasoners we are aware
of construct property hierarchies simply by computing the reflexive-transitive
closure of the subproperty axioms occurring in the ontology—a procedure that
is incomplete for each ontology language that supports existential restrictions
(someValuesFrom), functional properties, and property hierarchies.

In order to address some of the problems of ET on large ontologies, an alter-
native classification algorithm, called KP, was proposed recently [9]. Unlike ET,
KP does not construct the hierarchy directly; instead, it maintains the sets of
known (K) and possible (P) subsumer pairs, and it performs subsumption tests
to augment K and reduce P until the two sets coincide. To further reduce the
number of tests, KP exploits the transitivity of the subclass relation to propagate
(non-)subsumptions and thus speed up the convergence of K and P .

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 225–240, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

226 B. Glimm et al.

In this paper we address several issues that were left open in the work on
KP, we present an optimised version of the resulting algorithm, and we evaluate
its implementation in the HermiT reasoner. The new algorithm exhibits a con-
sistent performance improvement over ET, and in some cases it reduces overall
classification times by a factor of more than ten.

We then turn our attention to the classification of object and data properties.
We show that merely computing the reflexive-transitive closure of the asserted
hierarchies produces an incomplete hierarchy, and we discuss why the ET and
KP algorithms do not perform well when applied to property classification. We
then present a novel encoding of the property classification problem into a class
classification problem, which allows us to exploit our new classification algorithm
to correctly and efficiently compute property hierarchies. We have implemented
our property classification algorithm in HermiT, thus making HermiT the only
OWL reasoner we are aware of that correctly classifies object and data properties.

2 Preliminaries

An OWL 2 ontology consists of a set of axioms that describe the domain being
modelled. For a full definition of OWL 2, please refer to the OWL 2 Structural
Specification and Direct Semantics [7,6]; here we present only several examples
of typical OWL axioms in the OWL 2 Functional Syntax:

SubClassOf(Human Animal) (1)
DataPropertyAssertion(age Alex “27”ˆˆxsd:integer) (2)

ObjectPropertyRange(colour ObjectOneOf(red green blue)) (3)

Axiom (1) states that the class Human is a subclass of the class Animal (i.e., that
all Humans are Animals); axiom (2) states that the individual Alex is related to
the integer 27 by the data property age (i.e., that the age of Alex is 27); finally,
axiom (3) states that the range of the object property colour consists of red,
green, and blue (i.e., that the colour of an object can only be red, green, or blue).
Concrete values such as the literal “27”ˆˆxsd:integer in the above example are
taken from the OWL 2 datatype map, which contains most of the XML Schema
datatypes plus certain OWL-specific datatypes.

The interpretation of axioms in an OWL ontology O is given by means of
two-sorted interpretations over the object domain and the data domain, where
the latter contains concrete values such as integers, strings, and so on. An in-
terpretation maps classes to subsets of the object domain, object properties to
pairs of elements from the object domain, data properties to pairs of elements
where the first element is from the object domain and the second one is from
the data domain, individuals to elements in the object domain, a datatype to a
subset of the data domain, and a literal (a data value) to an element in the data
domain. For an interpretation to be a model of the ontology, several conditions
have to be satisfied [6]. For example, if O contains SubClassOf(C D), then the
interpretation of C must be a subset of the interpretation of D. If the axioms

Optimising Ontology Classification 227

of O cannot be satisfied in any interpretation (i.e., if O has no model), then O
is inconsistent ; otherwise, O is consistent. If the interpretation of a class C is
necessarily a subset of the interpretation of a class D in all models of O, then
we say that O entails C � D and write O |= C � D. If the interpretations of
C and D necessarily coincide, we write O |= C ≡ D. A class C is satisfiable if
a model of O exists in which the interpretation of C is non-empty; otherwise,
C is unsatisfiable. We use analogous notations for object and data properties.
For full details of the OWL 2 Direct Semantics, please refer to the OWL 2 Di-
rect Semantics specification [6]. We use CO to denote the set of classes that
occur in O extended with owl:Thing and owl:Nothing; similarly, we use OPO
(resp. DPO) to denote the sets of object (resp. data) properties occurring in
O extended with owl:TopObjectProperty and owl:BottomObjectProperty (resp.
owl:TopDataProperty and owl:BottomDataProperty).

We next illustrate these definitions by means of an example. Let O be an
ontology containing axioms (4) and (5); then, O entails C � E even though this
is not stated explicitly. This is because axiom (4) ensures that in every model
of O, an instance i of C must be related to an instance of the class D with the
property op. Since i has an op-successor, the property domain axiom (5) ensures
that i is also an instance of the class E, and hence that C is contained in E.

SubClassOf(C ObjectSomeValuesFrom(op D)) (4)
ObjectPropertyDomain(op E) (5)

2.1 The KP Classification Algorithm

Classification of an ontology O computes all pairs of classes 〈C, D〉 such that
{C, D} ⊆ CO and O |= C � D; similarly, object (resp. data) property classifi-
cation of O computes all pairs of object (resp. data) properties 〈R, S〉 such that
{R, S} ⊆ OPO (resp. {R, S} ⊆ DPO) and O |= R � S. For example, given an
ontology containing (4) and (5), a classification algorithm should compute

{〈owl:Nothing, C〉, 〈owl:Nothing, D〉, 〈C, E〉, 〈E, owl:Thing〉, 〈D, owl:Thing〉}.

The recently proposed KP algorithm [9] extends the standard ET algorithm [1].
The KP algorithm maintains two binary relations K and P over CO such that,
at any point during algorithm’s execution, 〈C, D〉 ∈ K implies that O |= C � D
is known for certain, and 〈C, D〉 ∈ P implies that O |= C � D is possible (i.e., no
evidence to the contrary has been uncovered thus far). In particular, 〈C, D〉
∈ P
means that O
|= C � D is known, so P \K contains all pairs 〈C, D〉 such that
C � D is possible but not yet known. The algorithm expands K and reduces P
until K = P , at which point O |= C � D iff 〈C, D〉 ∈ K. Roughly speaking, the
algorithm chooses an unclassified class C (i.e., one where a class D exists such
that 〈C, D〉 ∈ P \K), generates a partial hierarchy HC of all unknown possible
subsumers of C, and applies the standard ET procedure to insert C into HC .
The newly computed subsumption and non-subsumption relations are then used
to extend K and reduce P .

228 B. Glimm et al.

Algorithm 1. Prune Additional Possible Subsumptions
Algorithm: pruneNonPossible(P, K, V, N)

Input: P : a set of possible subsumptions to be pruned, K: a set of known subsump-

tions, V : a set of new positive subsumptions, N : a set of new non-subsumptions

1 for each 〈C, D〉 ∈ N do
2 for each E, F such that 〈C, E〉 ∈ K and 〈F, D〉 ∈ K remove 〈E, F 〉 from P
3 for each 〈C, D〉 ∈ V do
4 for each 〈D, E〉 ∈ P do
5 if 〈E, F 〉 ∈ K and 〈C, F 〉 �∈ P then remove 〈D, E〉 from P
6 for each 〈E,C〉 ∈ P do
7 if 〈F, E〉 ∈ K and 〈F, D〉 �∈ P then remove 〈E, C〉 from P

The algorithm exploits the transitivity of � to reduce the number of sub-
sumption tests needed to make K and P converge: whenever K is extended
with fresh tuples it is also transitively closed, and a pruning strategy is used to
remove tuples from P that correspond to obvious non-subsumptions. For exam-
ple, if {〈C, D〉, 〈E, F 〉} ⊆ K, then 〈D, E〉 ∈ P implies 〈C, F 〉 ∈ P since, by the
transitivity of �, adding 〈D, E〉 to K requires 〈C, F 〉 to be added as well; but
then, 〈C, F 〉
∈ P implies 〈D, E〉
∈ P . Analogously, if 〈C, D〉 ∈ P , 〈E, F 〉 ∈ K
and 〈C, F 〉
∈ P , then 〈C, D〉 ∈ K implies 〈D, E〉
∈ P . The complete pruning
strategy of KP is shown in Algorithm 1. Note that this algorithm consists of
several nested loops that iterate over potentially very large relations, which can
make the algorithm inefficient in practice.

An important question when using KP is how to initialise K and P . The
authors suggested to exploit the information generated by (hyper)tableau rea-
soners. In particular, when testing the satisfiability of a class A, (hyper)tableau
algorithms usually initialise a node s0 with the label L(s0) = {A} and then
apply expansion rules in order to try to construct a pre-model—an abstraction
of a model for A; if a pre-model is constructed, then the (possibly expanded)
label L(s0) may provide information about subsumers and non-subsumers of A
(if a pre-model cannot be constructed, then A is unsatisfiable and is equivalent
to owl:Nothing). More precisely, if L(s0) does not contain a class B, then we can
infer the non-subsumption A
� B. Similarly, if B was deterministically added
to L(s0) (i.e., if no non-deterministic expansion was involved), then we can infer
A � B. Consequently, one can initially perform a satisfiability test for all the
classes in CO and use the resulting pre-models to initialise K and P . It is not
clear, however, whether it is generally efficient to perform all these tests.

3 Optimised Classification

We now present a new classification algorithm that we have implemented in
the HermiT reasoner. Our algorithm is based on KP, but it addresses several
open problems and incorporates numerous refinements and optimisations. The
latter include, for example, a more efficient strategy for initialising K and P , a

Optimising Ontology Classification 229

practical approach to pruning P , and several heuristics. We next describe our
new algorithm and then contrast it with the relevant parts of KP.

Our approach is shown in Algorithm 2. Like KP, our algorithm maintains a
set K of known and a set P of possible subsumption pairs. The algorithm uses an
OWL reasoner to check satisfiability of classes (line 6) or subsumption between
classes (line 25) using the well-known reduction of class subsumption to class
satisfiability. In lines 2, 16, 24, 35 and 37, the algorithm manipulates K and P
using operations that are defined next.

Definition 1. Let U be a set of elements and let R ⊆ U × U be a binary relation
over U . The set reachable(C, R) of elements reachable from C ∈ U in R contains
all D ∈ U for which a path {〈C, C1〉, 〈C1, C2〉, . . . , 〈Cn, D〉} ⊆ R exists.

Let ∼ be a relation over U defined as follows: C ∼ D if and only if D = C, or
D ∈ reachable(C, R) and C ∈ reachable(D, R). Let [C] := {D ∈ U | D ∼ C} be
the set of elements equivalent to C under ∼, and let U∼ := {[C] | C ∈ U}. The
relation R∼ induced by ∼ on R is defined as R∼ := {〈[C], [D]〉 | 〈C, D〉 ∈ R}.

The hierarchy in R is the triple hierarchy(R) = (V,H, ρ) where V ⊆ U con-
tains exactly one arbitrarily chosen element C ∈ [D] for each [D] ∈ U∼, ρ maps
each C ∈ V into ρ(C) = [C], and H is a transitively-reduced strict partial order
over V such that 〈C, D〉 ∈ H if and only if 〈ρ(C), ρ(D)〉 ∈ R∼.

The projection project(R, S) of R to a set S ⊆ U , and the range R[C] of an
element C ∈ U in R are defined as follows:

project(R, S) = {〈C, D〉 | C, D ∈ S and D ∈ reachable(C, R)}
R[C] = {D | 〈C, D〉 ∈ R}

Intuitively, hierarchy(K) extracts from K sets of classes for which O |= C ≡ D
is known and then chooses one representative from each set to construct a
transitively-reduced strict partial older.

Our algorithm can be roughly divided into two parts. Lines 1–15 are respon-
sible for the initialisation of K and P using a novel heuristic, and lines 16–37
are responsible for extending K and reducing P using a mixture of the ET
algorithm—as in KP—and a new technique for pruning P .

The Initialisation Phase. In KP, relations K and P are initialised by perform-
ing a satisfiability test for each atomic class in O. Although modern reasoners
can usually perform individual tests quite efficiently, the initialisation time can
become large if there are many classes, so it is beneficial to avoid unnecessary
tests whenever possible. For example, if C � D and C is satisfiable, then the
pre-model constructed by a (hyper)tableau satisfiability test for C will also be
a pre-model for D and for every other class occurring in the pre-model. We can
thus avoid performing satisfiability tests for the classes outlined above, and from
the pre-model for C we can read off information about the possible subsumers
of all classes occurring in the pre-model. In order to maximise the effect of this
optimisation, we first check the satisfiability of classes that are likely to be clas-
sified near the bottom of the hierarchy: such classes are likely to produce larger

230 B. Glimm et al.

Algorithm 2. New Classification Algorithm
Algorithm: Classify(O)

Input: O: an ontology to be classified

1 K := performStructuralSubsumption(O)

2 (V,H, ρ) := hierarchy(K)

3 Initialise a list ToTest := {C | 〈owl:Nothing, C〉 ∈ H}, Unsat := ∅, and P := ∅
4 while ToTest �= ∅ do
5 Iteratively remove the head C from ToTest until C is found such that P [C] = ∅
6 A := buildModelFor(C(s0))
7 if A = ∅ then // C is unsatisfiable

8 for each 〈C, D〉 ∈ H do add D to the front of ToTest
9 for each descendant E of C in H that is not already in Unsat do
10 Add 〈E, owl:Nothing〉 to K, add E to Unsat, and remove E from ToTest
11 else
12 for each D ∈ L(s0) that was derived deterministically do add 〈C, D〉 to K
13 for each s in A and for each D ∈ L(s) do
14 if P [D] = ∅ then P [D] := L(s) ∩CO
15 else P [D] := P [D] ∩ L(s)
16 for each D ∈ CO and for each E ∈ reachable(D, K) do set P [D] := P [D] \ {E}
17 UnClass := {C ∈ CO | P [C] �= ∅}
18 while UnClass �= ∅ do
19 Choose some C ∈ UnClass and set B := P [C]

20 A := buildModelFor((C � ¬F)(s0)) with F the conjunction of all concepts in B
21 if A �= ∅ then // all possible subsumers of C are non-subsumers

22 for each s in A and each D ∈ L(s) do set P [D] := P [D] ∩ L(s)
23 else
24 (V,H, ρ) := hierarchy(project(K, B ∪ {owl:Nothing, owl:Thing}))
25 Initialise a queue Q with Q := {owl:Thing}
26 while Q �= ∅ do
27 Remove the head H from Q
28 for each D such that 〈D, H〉 ∈ H and D ∈ P [C] do
29 A := buildModelFor((C � ¬D)(s0))
30 if A �= ∅ then // C � ¬D was satisfiable—that is, C � D
31 for each s in A and each D ∈ L(s) do set P [D] := P [D] ∩ L(s)
32 else
33 Add 〈C, D〉 to K, and add D to the end of Q
34 P [C] := ∅
35 for each D ∈ UnClass and E ∈ reachable(D, K) do set P [D] := P [D] \ {E}
36 Remove from UnClass each D such that P [D] := ∅
37 return hierarchy(K)

Optimising Ontology Classification 231

pre-models that are richer in (non-)subsumption information and that can be
used as pre-models for many other classes.

Our algorithm implements this idea as follows. First, it applies a simple struc-
tural subsumption algorithm to identify the obvious subsumptions in O and
thus instantiate K. Then, it extracts a class hierarchy H from K and collects
all classes C such that 〈owl:Nothing, C〉 ∈ H (i.e., all ‘leaves’ of H). Then, for
each such C, the algorithm performs a satisfiability test; if C is satisfiable, then
the constructed pre-model can be used to determine new known and possible
subsumers as illustrated in lines 11–15. Note, however, that C is tested for satis-
fiability only if P [C] = ∅ (line 5), which avoids the test if a pre-model for C has
been generated previously. The pre-model for C is used to update K[C]: if D was
added to L(s0) deterministically (which can easily be checked in reasoners that
use dependency-directed backtracking), then D is guaranteed to be a subsumer
of C [8], so 〈C, D〉 is added to K. The pre-model for C is also used to update
P [D] for each class D occurring in (any part of) the pre-model: if D(s) ∈ A
and no possible subsumer for D is known yet, then P [D] is initialised to L(s);
otherwise, P [D] is restricted to the elements in L(s). Note that P [D] cannot
become empty as it necessarily contains D.

Consider, for example, an ontology O containing axioms (4)–(7). Initially,
structural subsumption initialises K by setting K[X] = {X, owl:Thing} for each
X ∈ CO, and K[owl:Nothing] = CO. At this point, ToTest contains C, D, E, F
and G. Let us assume that C is chosen first, and a pre-model for C(s0) is gener-
ated. Due to axiom (4), s0 must be related to an instance of D, say s1, by prop-
erty op. Since D ∈ L(s1), the pre-model is also a pre-model for D. Due to axiom
(6) and the ObjectUnionOf constructor, the reasoner can non-deterministically
add E or F to L(s1). Let us assume that the reasoner chooses E and then
terminates returning A; this pre-model can be used to infer that P [C] = {C}
and P [E] = P [D] = {D, E}. In the next iteration, D is chosen from the list, but
P [D]
= ∅ (information for D is already known), so no test is performed for D. At
some point G is chosen and a model for G(s0) is constructed. Due to axiom (7),
the reasoner relates s0 with some fresh s1 by property op2 such that D ∈ L(s1).
Let us assume, however, that to satisfy axiom (6), the reasoner now adds F to
L(s1). Since P [D]
= ∅, L(s1) can be used to prune P [D]; more precisely, since
E
∈ L(s1), E is removed from P [D].

SubClassOf(D ObjectUnionOf(E F)) (6)
SubClassOf(G ObjectSomeValuesFrom(op2 D)) (7)

Note that neither K nor P are updated if C is unsatisfiable, so little infor-
mation is obtained from a satisfiability test for C. Hence, if O contains many
unsatisfiable classes, initialisation might not provide enough initial information
for K and P . Consequently, whenever our algorithm finds an unsatisfiable class
C, it traverses H “upwards” until it finds a satisfiable class; furthermore, the
unsatisfiability is propagated to all descendants of C in H (lines 7-10). Apart
from making initialisation more robust, such an approach potentially identifies
unsatisfiable classes without performing actual satisfiability tests (e.g., if D is

232 B. Glimm et al.

discovered to be unsatisfiable and O contains C � D). An example of such an
ontology is FMA [2], which can be classified using our algorithm much more
efficiently than with ET (see Section 6).

The Classification Phase. It is possible that all subsumers of a class D are
identified after the initialisation phase, and this can happen even if the satisfia-
bility of D had not been tested explicitly (in line 6). In our running example, all
possible subsumers of D are already known (since P [D] ⊆ K[D]). For memory as
well as for performance reasons, our algorithm next identifies only those classes
for which there are unknown possible subsumers (lines 16-17), and operates only
on them.

For these classes our algorithm proceeds as follows. It iteratively chooses a
class C with P [C]
= ∅ and checks C � D for each D ∈ P [C]. In order to
perform these checks as efficiently as possible, the algorithm does not test each
subsumption separately. Instead, inspired by the clustering optimisation [3], our
algorithm tries to build a model for C � ¬F , where F is the conjunction of all
possible subsumers of C (line 20). If a model exists, then C
� F and so all
concepts in P [C] are non-subsumers of C.

If a model for C � ¬F does not exist, then at least one concept in P [C] is
a subsumer of C, so a more detailed check is needed. The algorithm then pro-
ceeds as follows. It computes a transitively-reduced strict partial order H of the
subsumers ‘induced’ by C. The standard ET algorithm is then applied to C
over H in order to identify the (non-)subsumers of C. In contrast to KP, our
algorithm introduces the following optimisation: if C � ¬D is satisfiable for D
a possible unknown subsumer of C (i.e., if O
|= C � D), then the constructed
pre-model can again be used to prune non-subsumers as was done in the initial-
isation phase. This process is performed in place of Algorithm 1, as it provides
a more efficient pruning strategy. Another interesting and useful consequence of
interleaving pruning with subsumption checking is that it can lead to the pruning
of other possible subsumers of C that might otherwise be tested in a subsequent
iteration. Therefore, the algorithm checks whether D is still a possible subsumer
of C (line 28) before trying to construct a pre-model for C � ¬D (line 29).

After the classification phase, all unknown possible subsumers will have been
tested, and K contains all subsumption relations, so it is used to construct the
final class hierarchy.

3.1 Further Comparisons with the KP Algorithm

We have already illustrated the major differences between Algorithm 2 and KP,
such as the initialisation of K and P , and our new technique for pruning relations
from P . In the following, we point out some additional differences, and we discuss
further the pruning technique.

– Memory Efficiency: Our algorithm uses memory much more efficiently
than KP. Recall that KP transitively closes K, which is not a good strat-
egy on large ontologies such as FMA or SNOMED that contain thousands of

Optimising Ontology Classification 233

classes. Furthermore, KP assumes that P ⊇ K—that is, all known subsump-
tions (including those derived by the transitive closure) are contained in P .
In contrast, our algorithm uses a graph reachability algorithm to identify
whether 〈C, D〉 belongs to the transitive closure of K, and removes the in-
formation about the classified classes from P , both of which can significantly
reduce the algorithm’s memory footprint.

– Pruning: Although our classification algorithm does not directly use Al-
gorithm 1, it indirectly implements parts of Algorithm 1. For example, if
B ∈ P [A], but tests show that O
|= A � B, then B can also be inferred to
be a non-subsumer of all the subsumers of A as in the first loop of Algo-
rithm 1. The second loop of Algorithm 1 prunes possible subsumptions when
new positive subsumptions are inferred. However, our experience has shown
that this strategy rarely identifies new non-subsumptions in practice. Con-
sequently, the cost of applying such an expensive algorithm rarely outweighs
the cost of performing a couple of additional subsumption tests.

– Bottom-up Phase: As in the ET algorithm, KP includes a bottom-up
phase where the subsumees of an unclassified class C are identified in order to
correctly place C into the class hierarchy. Our algorithm, however, does not
include a bottom-up phase, which considerably simplifies the implementation
as one does not need doubly-linked data structures for efficient retrieval of
both successors and predecessors of C in K and P . Note that our algorithm
is still complete since, if C is a possible but not yet known child of D, then
C ∈ P [D] and the relevant subsumption is tested when D is selected.

4 Object Property Classification

Classification of properties has, to the best of our knowledge, not been discussed
in the literature. Apart from HermiT, all ontology reasoners that we are aware
of construct the property hierarchy simply by computing the reflexive-transitive
closure of the asserted property hierarchy. Such an algorithm is cheap to imple-
ment and requires no complex reasoning; however, it is incorrect for OWL as
well as for considerably weaker ontology languages. Consider, for example, an
ontology containing the following axioms:

SubClassOf(ObjectSomeValuesFrom(op1 owl:Thing)
ObjectSomeValuesFrom(op2 owl:Thing)) (8)

SubObjectPropertyOf(op1 op3) (9)
SubObjectPropertyOf(op2 op3) (10)
FunctionalObjectProperty(op3) (11)

These axioms entail op1 � op2: given op1(i1, i2), axiom (8) requires the existence
of an op2-successor for i1; since both op1 and op2 are subproperties of op3 and op3
is functional, then i2 must also be the op2-successor for i1, so we have op2(i1, i2).

234 B. Glimm et al.

Property chains and nominals can also imply implicit property subsumptions.
The problems with property chains are demonstrated by the following example.

SubClassOf(owl:Thing ObjectSomeValuesFrom(op owl:Thing)) (12)

SubObjectPropertyOf(ObjectPropertyChain(
op1 op ObjectInverseOf(op)) op2)

(13)

Whenever i1 has an op1-successor i2, axiom (12) ensures that i2 has an op-
successor i3; hence, we have op1(i1, i2), op(i2, i3) and ObjectInverseOf(op)(i3, i2),
and from axiom (13) we can infer op2(i1, i2), so the ontology implies op1 � op2.
Property classification in HermiT was initially based on the ET algorithm. Sim-
ilarly to class subsumption testing, we concluded that O |= op1 � op2, for op1
and op2 object properties, iff O ∪ {op1(a, b),¬op2(a, b)} is not satisfiable, where
a, b were individuals not occurring in O. However, this is correct only for simple
properties [7], where simple properties are roughly those that do not occur in
property chains and transitivity axioms.

The problem with complex properties (i.e., non-simple ones) is that com-
plex property assertions are not necessarily made explicit in the constructed
pre-models. To ensure decidability, property chains and transitivity axioms are
typically encoded into subclass axioms that propagate classes along paths in
the pre-model in a way such that adding all missing property relationships does
not violate any ontology axiom. Roughly speaking, given the property axiom
SubObjectPropertyOf(ObjectPropertyChain(op op) op) (which states that op is
transitive), each axiom containing a universal quantifier over op is rewritten in
a particular way; for example, axiom (14) is replaced with axioms (15)–(17)

SubClassOf(C ObjectAllValuesFrom(op D) (14)
SubClassOf(C ObjectAllValuesFrom(op Dop)) (15)

SubClassOf(Dop D) (16)
SubClassOf(Dop ObjectAllValuesFrom(op Dop)) (17)

where Dop is a fresh class. In order to compute all axioms required to eliminate
all property inclusions, a non-deterministic finite automaton is constructed for
each complex property, and subclass axioms are then extracted from automa-
ton’s transitions [4]. In order for the elimination to work as desired, negative
property assertions with complex properties must be rewritten. For example,
assertion (18) must be rewritten as (19)

NegativeDataPropertyAssertion(op a b) (18)

ClassAssertion(ObjectAllValuesFrom(op
ObjectComplementOf(ObjectOneOf(b))) a) (19)

where (19) states that a belongs to the class of individuals for which all op-
successors are not b. The universal quantifier then triggers the generation of
further axioms in the property chain elimination as described above.

Optimising Ontology Classification 235

Since complex property assertions are not necessarily made explicit in the
pre-models, we cannot read off non-subsumptions from pre-models; that is, when
op1(a, b) occurs but op2(a, b) does not occur in a pre-model, we cannot conclude
op1
� op2 if op2 is a complex property. This significantly reduces the opportuni-
ties for pruning the search space, which makes property classification harder than
standard (class) classification. We point out that, in the case described above, the
publicly available 1.2.2 version of HermiT incorrectly concludes op1
� op2. We
corrected this error in the version of HermiT used for evaluation (see Section 6),
which significantly decreased the performance of property classification.

In order to address these issues, we developed a new property classification
technique that reduces property classification to standard (class) classification.
Any classification algorithm, such as the one described in Section 3, can then be
used to classify the property hierarchy, and it can use all relevant optimisations
for pruning the search space. The reduction is defined as follows.

Definition 2. Let O be an OWL 2 ontology and let OPE be the object properties
and inverse object properties occurring in O. An object property to class map-
ping w.r.t. O is a total and injective function τ from OPE to classes not occurring
in O. Let Cf be a class occurring neither in O nor in the range of τ . The object
property hierarchy induced by τ w.r.t. O, written Hτ

O, is the transitive reduction
of the relation {〈op1, op2〉 | op1, op2 ∈ OPE and Oτ |= τ(op1) � τ(op2)}, where
Oτ is an extension of O with axioms of the following form for each object property
op ∈ OPE.

EquivalentClasses(τ(op) ObjectSomeValuesFrom(op Cf))

We write (Hτ
O)∗ to denote the reflexive-transitive closure of Hτ

O.

Intuitively, to test op1 �? op2, we test C1 �? C2, where C1 and C2 are the
representative classes introduced by τ for op1 and op2, respectively. As in stan-
dard classification, the reasoner checks this subsumption by trying to construct
a pre-model containing C1(i) and ¬C2(i) for some individual i. The axioms in
Oτ then cause the addition of an op1-successor of i, say i′, with Cf (i′). If, due
to other axioms in O, i′ is necessarily an op2-successor of i as well, then the
corresponding axiom in Oτ for op2 causes the addition of C2(i), which leads to
a clash, which confirms the subsumption. Complex properties are handled us-
ing the transformation described earlier, so reading off non-subsumptions and
pruning the set of possible subsumers works exactly as for classes.

The following theorem shows that this reduction of the object property clas-
sification problem to a standard classification problem is indeed correct.1

Theorem 1. Let O be an OWL 2 ontology with op1, op2 ∈ OPE, let τ be an
object property to class mapping w.r.t. O, and let Hτ

O be the object property
hierarchy induced by τ w.r.t. O. Then O |= op1 � op2 iff 〈op1, op2〉 ∈ (Hτ

O)∗.

1 A complete proof is available in the accompanying technical report at

http://www.hermit-reasoner.com/2010/classification/Classification.pdf

http://www.hermit-reasoner.com/2010/classification/Classification.pdf

236 B. Glimm et al.

5 Data Property Classification

Problematic constructors such as property chains do not apply to data proper-
ties, so one might think that data properties can be classified by just computing
the reflexive-transitive closure of the asserted data property subsumptions. This,
however, is not the case since we can easily adjust axioms (8)–(11) to work with
data properties and rdfs:Literal instead of owl:Thing.

Another problem is that data property subsumption tests are difficult to im-
plement. Since data properties are always simple, to testO |= dp1 � dp2 with dp1
and dp2 data properties, we might try to check whether O∪{dp1(i, n),¬dp2(i, n)}
is unsatisfiable for i a fresh individual and n a fresh data value. We cannot, how-
ever, simply choose n to be any data value that does not occur in the input
ontology. Assume, for example, that we selected an integer that does not occur
in the input ontology O; there are infinitely many integers, so there is always
one not occurring in O. This, however, might lead to conclusions that depend
on the chosen integer: unlike for a fresh individual that can be interpreted as
an arbitrary element of the object domain, the interpretation of a data value is
fixed a priori. This problem can be solved by inventing a dummy datatype D
that is considered to be non-disjoint with all datatypes in the OWL 2 datatype
map (i.e., its value space can be intersected with any other data range without
causing a contradiction); the only constraint for D is that a data value cannot
belong to D and its complement. In order to check if O |= dp1 � dp2, the reasoner
now checks the satisfiability of O extended with the following axioms, where i
is a fresh individual:

ClassAssertion(DataSomeValuesFrom(dp1 D) i) (20)
ClassAssertion(DataAllValuesFrom(dp2 DataComplementOf(D)) i) (21)

There is, however, still a problem with this approach. Datatype reasoning is
typically implemented using a procedure such as the one presented by Motik
and Horrocks [5]. If an individual i has a data property successor n, then one
must check whether there are only finitely many values that n can take; if that is
the case, one must find data values for n and the ‘relevant’ siblings of n that are
related to the same individual i as n. A sibling n′ is relevant if it can also have
only finitely many possible data values and the assignment must be different from
the one for n due to an inequality between n and n′ (e.g., the inequality can be
introduced by an at-least restriction). Thus, to handle D properly, an inequality
must be generated between siblings n and n′ if one of them must belong to D
while the other must belong to the complement of D, which guarantees that the
two nodes are not assigned the same data value in the procedure by Motik and
Horrocks. Furthermore, note that even if n and n′ must be assigned the same
values, n and n′ are not merged; for example, if an individual is required to
have the integer 1 both as a dp1- and a dp2-successor, the two successors will be
represented as separate objects in a pre-model. This again prevents the reading
off of non-subsumptions between data properties. We should point out that this
problem was also overlooked in HermiT 1.2.2, and correcting the error again
significantly increased data property classification times.

Optimising Ontology Classification 237

We can, however, reduce data property classification to standard classifi-
cation similarly as for object properties. This reduction allows us to read off
subsumptions and non-subsumptions between data properties, because such
(non-)subsumptions are reflected in the classes introduced by the encoding.

Definition 3. Let O be an OWL 2 ontology and let D be a dummy datatype
as discussed above. A data property to class mapping w.r.t. O is a total and
injective function σ from DP to classes not occurring in O. The data property
hierarchy induced by σ w.r.t. O, written Hσ

O, is the transitive reduction of the
relation {〈dp1, dp2〉 | dp1, dp2 ∈ DP and Oσ |= σ(dp1) � σ(dp2)}, where Oσ

is an extension of O with axioms of the following form for each data property
dp ∈ DP.

EquivalentClasses(σ(dp) DataSomeValuesFrom(dp D))

We write (Hσ
O)∗ to denote the reflexive-transitive closure of Hσ

O.

The following theorem shows that the reduction is indeed correct. The proof is
a straightforward adaptation of the proof of Theorem 1.

Theorem 2. Let O be an OWL 2 ontology with dp1, dp2 ∈ DPO, let σ be a data
property to class mapping w.r.t. O, and let Hσ

O be the data property hierarchy
induced by σ w.r.t. O. Then O |= dp1 � dp2 iff 〈dp1, dp2〉 ∈ (Hσ

O)∗.

6 Evaluation

We have implemented Algorithm 2 and the property classification encodings in
the HermiT 1.3 (hyper)tableau reasoner. To evaluate the effectiveness of our
technique, we compared the performance of HermiT 1.3 against HermiT 1.2.2a
(which implements the ET strategy, but with bugs related to property classi-
fication corrected as described in Sections 4 and 5). In our tests, we used two
versions of the GALEN ontology, several ontologies from the Open Biological
Ontologies (OBO) Foundry, the Food and Wine ontology from the OWL Guide,
the Foundational Model of Anatomy (FMA), and ontologies from the Gardiner
ontology suite. All ontologies and both HermiT versions are available online.2

Table 1 summarises the numbers of classes and properties in each of the test
ontologies.

The tests consisted of classifying the classes and properties of our test ontolo-
gies. We measured the classification time (in seconds) as well as the number of
actual reasoning tests performed (including both satisfiability and subsumption
tests). All experiments were performed on a UNIX machine of an Intel x86 64bit
Cluster on one node with two quad core 2.8GHz processors and Java 1.5 allow-
ing 2GB of heap memory. The results are summarised in Table 2. The upper
part of the table contains all the deterministic ontologies (that is, the ontologies
that do not use disjunctive constructors), while the lower part contains all the
non-deterministic ontologies. For ontologies without data properties, we write ‘-’
in Table 2 and OoM stands for Out of Memory.
2 http://www.hermit-reasoner.com/2010/classification/Evaluation.zip

http://www.hermit-reasoner.com/2010/classification/Evaluation.zip

238 B. Glimm et al.

Table 1. Number of classes and properties in the evaluated ontologies

classes object data classes object data

prop. prop. prop. prop.

GALEN-d 2 748 413 0 AEO 760 47 16

GALEN-und 2 748 413 0 substance 1 721 112 33

GO 19 528 1 0 ProPreO 482 30 0

GO XP 27 883 5 0 OBI 2 638 77 6

chebi 20 979 10 0 Food-Wine 139 17 1

NCI 27 652 70 0 FMA 2.0 41 648 148 20

Table 2. Evaluation results for class and property classification (time in seconds)

Ontology Classes Object Properties Data Properties
1.2.2a (ET) 1.3 (KP) 1.2.2a (ET) 1.3 (KP) 1.2.2a (ET) 1.3 (KP)
Tests Time Tests Time Tests Time Tests Time Tests Time Tests Time

GALEN-d 2 744 3.6 3 380 2.9 6 073 439.2 197 < 1 - - - -
GALEN-und 2 744 28.3 4 009 7.2 6 001 459.5 198 < 1 - - - -

GO 19 260 43.0 14 288 3.7 4 < 1 3 < 1 - - - -
GO XP 27 880 119 20 029 14.4 9 10.4 6 4.8 - - - -
chebi 20 693 69.8 13 484 7.6 26 59.9 12 18.1 - - - -
NCI 27 652 71.1 21 367 10.5 71 < 1 72 < 1 - - - -
AEO 2285 2.1 364 1.7 214 6.0 34 < 1 223 4.6 28 < 1

substance 4 569 15.9 2 730 12.8 962 23.6 107 < 1 957 22.5 40 < 1
ProPreO 1 441 7.3 1 157 6.8 518 3 33 < 1 - - - -

OBI 12 444 254.7 3 047 170.1 2 278 310.5 52 3.4 39 6.0 7 < 1
Food-Wine 382 18.8 243 11.7 65 11.6 13 2.0 4 < 1 3 < 1
FMA 2.0 49 716 7 973.8 10 980 731.8 8 281 16 668.3 128 8.4 283 469.9 29 < 1

As Table 2 shows, the new classification strategy of HermiT 1.3 is in all
cases significantly faster than the ET strategy of HermiT 1.2.2a, sometimes
by one or even two orders of a magnitude. This is particularly the case for
property classification where, as we have explained in the previous section, none
of HermiT’s standard optimisations can be applied, and one relies completely
on the insertion strategy of ET to reduce the number of subsumption tests.
In contrast, our property classification encoding can reuse the standard (class)
classification optimisations, thus achieving a very good and robust performance.
These results show that it is practically feasible to perform correct property
classification through reasoning, instead of the cheap but incomplete transitive
closure algorithms. The results for standard classification are similar: the new
algorithm has significantly reduced the classification time in most cases. The
significant performance gain in the classification of FMA is due in part to the
heuristic implemented in lines 7–10 of Algorithm 2, which prevents HermiT from
repeatedly performing class satisfiability tests for unsatisfiable classes.

The good performance results are also confirmed by the significant reduction
in the number of required reasoning tests. The only case where HermiT 1.3
performs more tests is on GALEN, which is due to the fact that, on deterministic
ontologies, HermiT 1.2.2a uses satisfiability tests and the pre-model reading
technique [8] which identifies all subsumers of the tested class. In contrast, our
method does not test the satisfiability of each class, so after the first phase there

Optimising Ontology Classification 239

Table 3. Number of tests performed by HermiT 1.3 compared to KP

GO� GALEN� NCI�

KP 32 614 4 657 48 389

HermiT 1.3 27 250 4 983 41 094

are unknown possible subsumers that need to be checked in the second phase.
Especially in GALEN, most of them are subsumers, so the pruning step in lines
30–31 is rarely applicable. Nevertheless, such reasoning tests are usually very
fast, so the overall system still performs better than HermiT 1.2.2a. On GALEN-
und, where satisfiability tests are expensive, the benefits of not performing a
satisfiability test for every class are particularly noticeable.

As a final experiment, we compared the performance of our system with the
one that implements the KP algorithm [9]. We tested our system on three spe-
cially constructed ontologies that were used in [9] to evaluate the KP algorithm,
and we compared the number of tests performed by our method with the number
of tests published in [9]; Table 3 summarises the results. We can again see that
for all ontologies but GALEN, our system performs fewer tests; furthermore,
the same observations as above explain this difference. Unfortunately, the origi-
nal implementation of KP was not available, so we were unable to compare the
performance of HermiT with that of KP on the ontologies from Table 2.

7 Conclusions

In this paper, we considered the problem of efficiently classifying OWL ontolo-
gies. Unlike in previous approaches, we consider all classification tasks, including
class, object and data property classification. To the best of our knowledge, prop-
erty classification has not previously been discussed in the literature.

We presented a new classification algorithm that is based on KP [9], but
that solves several open problems and that incorporates numerous refinements
and optimisations. The latter include, for example, a novel heuristic strategy
for initialising relations K and P , an efficient pruning strategy, and a novel
heuristic for pruning unsatisfiable classes. Additionally, our new algorithm is
more memory efficient than KP.

We presented examples that show why traditionally used algorithms based on
the reflexive-transitive closure of the asserted property hierarchy are incomplete
for property classification in OWL. We then discussed the difficulties in reusing
well-known optimisations in the context of property classification, and we pre-
sented a novel reduction of the property classification problem to a standard
classification problem. This reduction allows us to reuse all the optimisations
applicable to the classification of classes.

Finally, we have implemented all our algorithms and reductions in version
1.3 of the HermiT reasoner, and have compared its performance with earlier
versions using the standard classification method. Our results are very encour-
aging, showing significant improvements in classification times. Moreover, in the

240 B. Glimm et al.

case of properties, our experiments show for the first time that complete property
classification can be effectively implemented in practice.

We are currently working on extending our algorithm to handle realisation—
the task of computing, for each individual i in an ontology, the most specific
classes C such that i is an instance of C—and for realising property instances.
Our preliminary results suggest that the performance of realisation can be sig-
nificantly improved by applying the ideas outlined in this paper.

Acknowledgements. The presented work is funded by the EPSRC project
HermiT: Reasoning with Large Ontologies. The evaluation has been performed
on computers of the Oxford Supercomputing Centre.

References

1. Baader, F., Hollunder, B., Nebel, B., Profitlich, H.J., Franconi, E.: An empirical

analysis of optimization techniques for terminological representation systems, or

making kris get a move on. In: KR, pp. 270–281 (1992)

2. Golbreich, C., Zhang, S., Bodenreider, O.: The foundational model of anatomy in

OWL: Experience and perspectives. Web Semantics 4(3), 181–195 (2006)

3. Haarslev, V., Möller, R.: High performance reasoning with very large knowledge

bases: A practical case study. In: IJCAI, pp. 161–168 (2001)

4. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc.

KR 2006, pp. 57–67 (2006)

5. Motik, B., Horrocks, I.: OWL datatypes: Design and implementation. In: Sheth,

A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K.

(eds.) ISWC 2008. LNCS, vol. 5318, pp. 307–322. Springer, Heidelberg (2008)

6. Motik, B., Patel-Schneider, P.F., Cuenca Grau, B.: OWL 2 web ontology language

direct semantics. W3C Recommendation (2009),

http://www.w3.org/TR/owl2-direct-semantics/

7. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 web ontology language struc-

tural specification and functional-style syntax. W3C Recommendation (2009),

http://www.w3.org/TR/owl2-syntax/

8. Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Logics.

Journal of Artificial Intelligence Research 36, 165–228 (2009)

9. Shearer, R., Horrocks, I.: Exploiting partial information in taxonomy construction.

In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta,

E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 569–584. Springer,

Heidelberg (2009)

http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-syntax/

SPARQL beyond Subgraph Matching

Birte Glimm and Markus Krötzsch

Oxford University Computing Laboratory, UK

Abstract. We extend the Semantic Web query language SPARQL by defining
the semantics of SPARQL queries under the entailment regimes of RDF, RDFS,
and OWL. The proposed extensions are part of the SPARQL 1.1 Entailment
Regimes working draft which is currently being developed as part of the W3C
standardization process of SPARQL 1.1. We review the conditions that SPARQL
imposes on such extensions, discuss the practical difficulties of this task, and ex-
plicate the design choices underlying our proposals. In addition, we include an
overview of current implementations and their underlying techniques.

1 Introduction

SPARQL provides a query language for querying RDF data that has gained significant
popularity since its standardization by the World Wide Consortium (W3C) in January
2008 [12]. Almost all RDF stores support SPARQL either directly or via dedicated
SPARQL wrappers. The main mechanism for computing query results in SPARQL is
subgraph matching: RDF triples in both the queried RDF data and the query pattern
are interpreted as nodes and edges of directed graphs, and the resulting query graph is
matched to the data graph using variables as wild cards.

Various W3C standards, including RDF [3] and OWL [9], provide semantic inter-
pretations for RDF graphs that allow additional RDF statements to be inferred from
explicitly given assertions. It is desirable to utilize SPARQL as a query language in
these cases as well, but this requires basic graph pattern matching to be defined using
semantic entailment relations instead of explicitly given graph structures. Such exten-
sions of the SPARQL semantics are known as entailment regimes.

The subject of this paper is to introduce SPARQL entailment regimes for RDF and
RDFS entailment [3], OWL Direct Semantics [7], and OWL RDF-Based Semantics
[14]. The proposed extensions are part of the SPARQL 1.1 Entailment Regimes specifi-
cation, which is currently being developed by the W3C SPARQL working group.1 The
goal of this paper is to provide a detailed outline of these proposals that is valuable to
practitioners and researchers alike. We provide extended discussions of the considera-
tions that have led to our design, and we survey principal implementation techniques.

Although SPARQL has been designed to allow for the definition of entailment
regimes, their precise definition is not straightforward. Naive approaches easily lead to
infinite query results that are of no practical interest. Possible reasons include trivial re-
namings of blank nodes, RDFS’s infinitely many axiomatic triples, and the entailment
of arbitrary consequences from inconsistent inputs, each of which suggests different

1 http://www.w3.org/2009/sparql/wiki/

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 241–256, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.w3.org/2009/sparql/wiki/

242 B. Glimm and M. Krötzsch

handling as discussed below. A second problem is that OWL is not primarily based on
RDF triples but defines entailments in terms of ontological objects. Thus, triples can be
genuine input data or merely part of the encoding of a complex object.

The paper is structured as follows. Section 2 gives a short introduction to RDF(S) and
OWL, and Section 3 reviews the basics of SPARQL subgraph matching. In Section 4,
we offer our interpretation of the conditions that SPARQL 1.0 defines for entailment
regimes. The entailment regimes for RDF and RDFS are defined in Section 5, and the
extensions of SPARQL with OWL’s RDF-Based Semantics and the OWL Direct Se-
mantics are presented in Section 6. Finally, Sections 7 and 8 explain basic implementa-
tion techniques for SPARQL entailment regimes and discuss further related work.

2 RDF Graphs and Their Semantics

SPARQL queries are evaluated over RDF graphs which remain the basic data structure
even when adopting a more elaborate semantic interpretation. RDF is based on the set
I of all International Resource Identifiers (IRIs), the set RDF-L of all RDF literals, and
the set RDF-B of all blank nodes. The set RDF-T of RDF terms is I∪RDF-L∪RDF-B.
We generally abbreviate IRIs using prefixes rdf, rdfs, owl, and xsd to refer to the RDF,
RDFS, OWL, and XML Schema Datatypes namespaces, respectively. The prefix ex is
used for an imaginary example namespace.

An RDF graph is a set of RDF triples of the form (subject, predicate, object) ∈
(I∪RDF-B)× I×RDF-T. We normally omit “RDF” in our terminology if no confusion
is likely, and we use Turtle syntax [1] for all examples. The vocabulary Voc(G) of a
graph G is the set of all terms that occur in G.

Semantically, RDF graphs can be interpreted in a number of ways based on various
W3C recommendations. The simple semantics [3] considers only the graph structure of
RDF, whereas more elaborate semantics such as RDFS entailment [3] or OWL Direct
Semantics [7] provide a special meaning to certain RDF terms.

The common basis for all such semantics is that they were specified by defining a
model theory: one defines a suitable kind of interpretation, and specifies necessary and
sufficient conditions for one such interpretation to satisfy a given RDF graph. When
defining a semantics E (such as RDF, RDFS, etc.) one often speaks of E-interpretations
and E-satisfaction. The set of all E-interpretations that E-satisfy a graph G are called
the E-models of G. Semantic entailment follows from this notion: a graph G E-entails a
graph G′, written G |=E G′, if and only if every E-model of G is also an E-model of G′.

In this work, we encounter the simple semantics, RDF semantics, and RDFS seman-
tics [3], as well as the OWL Direct Semantics [7] and OWL RDF-Based Semantics [14].
This order roughly mirrors the amount of entailments obtained under each of these se-
mantics, e.g., all RDF-entailments are also RDFS-entailments. This ideal compatibility
is not always given, especially since the OWL Direct Semantics is defined in the tradi-
tion of first-order logic, whereas the other semantics are based on a specific notion of
interpretation introduced for RDF. The latter was found difficult to extend to expressive
languages like OWL, and indeed entailment under the OWL RDF-Based Semantics is
undecidable and is mostly used by tools that restrict to a sub-language of OWL.

SPARQL beyond Subgraph Matching 243

On the other hand, the OWL Direct Semantics is only defined for graphs that respect
certain additional conditions. This is so since this semantics is defined based on OWL
objects of which RDF graphs are but an indirect representation. The OWL 2 functional-
style syntax (FSS) directly corresponds to the OWL objects [8]. For example, the triple

ex:a owl:sameAs ex:b corresponds to SameIndividual(ex:a ex:b).

Since the mapping from RDF triples to OWL objects is not defined for arbitrary RDF
graphs, the OWL 2 Direct Semantics makes restrictions on the well-formedness of RDF
graphs that can be used with the semantics. OWL 2 DL describes the largest subset of
RDF graphs for which the OWL 2 Direct Semantics is defined.

3 The SPARQL Query Language

We do not recall the complete surface syntax of SPARQL here but simply introduce
the underlying algebraic operations using our notation. A detailed introduction to the
relationship of SPARQL queries and their algebra is given in [4].

Queries are built using a countably infinite set V of query variables disjoint from
RDF-T. SPARQL supports a variety of filter expressions, or just filters, built from RDF
terms, variables, and a number of built-in functions and operators; see [12] for details.

Definition 1. A triple pattern is member of the set (RDF-T∪V)× (I∪V)× (RDF-T∪V),
and a basic graph pattern (BGP) is a set of triple patterns. More complex graph pat-
terns are inductively defined to be of the form BGP, Join(GP1,GP2), Union(GP1,GP2),
LeftJoin(GP1,GP2, F), and Filter(F,GP), where BGP is a BGP, F is a filter, and GP(i)

are graph patterns that share no blank nodes.2 The sets of variables and blank nodes in
a graph pattern GP are denoted by V(GP) and B(GP), respectively.

SPARQL allows literals to be used as triple subjects although RDF graphs cannot cur-
rently contain such triples. This is meant to support (future) extensions of RDF.

We exclude a number of SPARQL features from our discussion. First, we disregard
any of the new SPARQL 1.1 query constructs since their syntax and semantics are still
under discussion in the SPARQL working group. Second, we do not consider output for-
mats (e.g., SELECT or CONSTRUCT) and solution modifiers (e.g., LIMIT or OFFSET)
which are not affected by entailment regimes. Third, we exclude SPARQL datasets that
allow SPARQL endpoints to cluster data into several named graphs and a default graph.
For simpler presentation, we omit dataset clauses and assume that queries are evaluated
over the default graph, called the active graph for the query.

Evaluating a SPARQL graph pattern results in a solution sequence that lists possible
bindings of query variables to RDF terms in the active graph. Such bindings are repre-
sented by partial functions μ from V to RDF-T, called solution mappings. For a solution
mapping μ – and more generally for any (partial) function – the set of elements on which
μ is defined is the domain dom(μ) of μ, and the set ran(μ) � {μ(x) | x ∈ dom(μ)} is
the range of μ. For a graph pattern GP, we use μ(GP) to denote the pattern obtained by

2 As in [12], disallowing GP1 and GP2 to share blank nodes is important to avoid unintended
co-references. This was not needed in [10] where blank nodes were not considered.

244 B. Glimm and M. Krötzsch

Table 1. Evaluation of algebraic operators in SPARQL

�Union(GP1,GP2)�G �
{
(μ, n) | n = M1(μ) + M2(μ) > 0

}

�Join(GP1,GP2)�G �
{(
μ, n
)
| n =

∑
(μ1,μ2)∈J(μ)

(
M1(μ1) ∗ M2(μ2)

)
> 0
}

where

J(μ) �
{
(μ1, μ2) | μ1, μ2 compatible and μ = μ1 ∪ μ2

}

�Filter(F,GP)�G �
{
(μ, n) | M(μ) = n > 0 and �μ(F)� = true

}

�LeftJoin(GP1,GP2,F)�G � �Filter(F, Join(GP1,GP2))�G ∪{(
μ1,M1(μ1)

)
| for all μ2 with M2(μ2) > 0 : μ1 and μ2 are

incompatible or �(μ1 ∪ μ2)(F)� = false
}

applying μ to all elements of GP in dom(μ). This convention is extended in the obvious
way to filter expressions, and to all functions that are defined on variables or terms.

The order of solution sequences is relevant for later processing steps in SPARQL, but
not for obtaining the solutions for a graph pattern. To disregard the order formally, we
use solution multisets. A multiset over an underlying set S is a total function M : S →
IN+ ∪ {ω} where IN+ are the positive natural numbers, and ω > n for all n ∈ IN+. The
value M(s) is the multiplicity of s ∈ S , and ω denotes a countably infinite number of
occurrences. Infinitely many occurrences of individual solution mappings are indeed
possible when considering SPARQL entailment regimes, and a major concern of this
work is to avoid this for the entailment regimes we define.

We often represent a multiset M with underlying set S by the set {(s,M(s)) | s ∈ S }.
Accordingly, we may write (s, n) ∈ M if M(s) = n. Also, we assume that M(s) denotes
0 whenever s � S . In some cases, it is also convenient to use a set-like notation where
repeated elements are allowed, e.g. writing {̇a, b, b}̇ for the multiset M with underlying
set {a, b}, M(a) = 1, and M(b) = 2.

To define the solution multiset for a BGP under the simple semantics, we still need to
consider the effect of blank nodes. Intuitively, these act like variables that are projected
out of a query result, and thus they may lead to duplicate solution mappings. This is
accounted for using RDF instance mappings as follows:

Definition 2. An RDF instance mapping is a partial function σ : RDF-B → RDF-T
from blank nodes to RDF terms. We extend σ to pattern graphs and filters as done for
solution mappings above. The solution multiset �BGP�G for a basic graph pattern BGP
over the active graph G is the following multiset of solution mappings:

{(μ, n) | dom(μ) = V(BGP), and n is the maximal number such that
σ1, . . . , σn are distinct RDF instance mappings such that, for all 1 ≤ i ≤ n,
dom(σi) = B(BGP) and μ(σi(BGP)) is a subgraph of G}.

Note that the number n in the definition of �BGP�G is always finite.
The algebraic operators that are required for evaluating non-basic graph patterns

correspond to operations on multisets of solution mappings which are the same for all
entailment regimes. To take infinite multiplicities into account, we assume ω + n =
n + ω = ω for all n ≥ 0, ω ∗ n = n ∗ ω = ω for all n > 0 and ω ∗ 0 = 0 ∗ ω = 0. To

SPARQL beyond Subgraph Matching 245

Table 2. Conditions for extending BGP matching to E-entailment (quoted from [12])

1. The scoping graph SG, corresponding to any consistent active graph AG, is uniquely speci-
fied and is E-equivalent to AG.

2. For any basic graph pattern BGP and pattern solution mapping P, P(BGP) is well-formed
for E.

3. For any scoping graph SG and answer set {P1, . . . ,Pn} for a basic graph pattern BGP, and
where BGP1, . . . ,BGPn is a set of basic graph patterns all equivalent to BGP, none of which
share any blank nodes with any other or with SG

SG |=E (SG ∪ P1(BGP1) ∪ . . . ∪ Pn(BGPn)).
4. Each SPARQL extension must provide conditions on answer sets which guarantee that every

BGP and AG has a finite set of answers which is unique up to RDF graph equivalence.

incorporate the effect of filters, it suffices to know that SPARQL assigns to any filter F
an effective truth value that we will denote by �F�.

Definition 3. Two solution mappings μ1 and μ2 are compatible if μ1(v) = μ2(v) for all
v ∈ dom(μ1) ∩ dom(μ2). If this is the case, a solution mapping μ1 ∪ μ2 is defined by
setting (μ1 ∪ μ2)(v) � μ1(v) if v ∈ dom(μ1), and (μ1 ∪ μ2)(v) � μ2(v) otherwise.

The evaluation of a graph pattern over G, denoted � · �G, is defined as in Table 1,
where we abbreviate multisets �GP�G / �GP1�G / �GP2�G by M / M1 / M2 for readability.

Note that two mappings with disjoint domains are always compatible.Intuitively,
Join(GP1,GP2) represents all possible combinations of mappings from �GP1�G with
compatible mappings from �GP2�G, as accounted for by taking the product of multi-
plicities. One mapping in a join may result from various combinations of compatible
mappings, so that we need to compute a sum of their multiplicities. The expression
LeftJoin(GP1,GP2,F) combines the filtered join of the inputs with all mappings of
�GP1�G which are not represented in this filtered join.

4 Extending Basic Graph Pattern Matching

To extend SPARQL for entailment regimes like RDFS or OWL Direct Semantics, it
suffices to modify the evaluation of BGPs accordingly, while the remaining algebra op-
erations can still be evaluated as in Definition 3. When considering E-entailment, we
thus define solution multisets �BGP�E

G. The SPARQL Query 1.0 specification [12] al-
ready envisages the extension of the BGP matching mechanism, and provides a set of
conditions for such extensions that we recall in Table 2. We found these conditions hard
to interpret since their terminology is not aligned well with the remaining specifica-
tion. In the following, we discuss our reading of these conditions, leading to a revised
clarified version presented in Table 3.3

Condition (1) forces an entailment regime to specify a so-called scoping graph based
on which query answers are computed instead of using the active graph directly. Since

3 The current SPARQL working group is not chartered to revise the existing specification, so
the ongoing work on entailment regimes is based on the assumption that the conditions were
meant to be in the revised form.

246 B. Glimm and M. Krötzsch

Table 3. Clarified conditions for extending BGP matching to E-entailment

An entailment regime E provides conditions on BGP evaluation such that for any evaluation �·�E
G

that satisfies these conditions, any basic graph pattern BGP, and any graph G, the multiset of
graphs

{
(μ(BGP), n) | (μ, n) ∈ �BGP�E

G

}
is uniquely determined up to RDF graph equivalence.

1. For any consistent active graph AG, the entailment regime E uniquely specifies a scoping
graph SG that is E-equivalent to AG.

2. A set of well-formed graphs for E is specified such that, for any basic graph pattern BGP,
scoping graph SG, and solution mapping μ in the underlying set of �BGP�E

SG, the graph
μ(BGP) is well-formed for E.

3. For any basic graph pattern BGP, and scoping graph SG, if S denotes the underlying set of
�BGP�E

SG, then there is a family of RDF instance mappings (σμ)μ∈S such that

SG |=E SG ∪
⋃

μ∈S
μ(σμ(BGP)).

4. Entailment regimes should provide conditions to prevent trivial infinite solution multisets.

an entailment regime’s definition of BGP matching is free to refer to such derived graph
structures anyway, the additional use of a scoping graph does not increase the freedom
of potential extensions. We assume, therefore, that the scoping graph is the active graph
in the remainder. If the active graph is E-inconsistent, entailment regimes specify the
intended behavior directly, e.g., by requiring that an error is reported.

Condition (2) refers to a “pattern solution mapping” though what is probably meant
is a pattern instance mapping P, defined in [12] as the combination of an RDF instance
mapping σ and a solution mapping μ where P(x) = μ(σ(x)). We assume, however,
that (2) is actually meant to refer to all solution mappings in �BGP�E

G. Indeed, even for
simple entailment where well-formedness only requires P(BGP) to be an RDF graph,
condition (2) would be violated when using all pattern instance mappings. To see this,
consider a basic graph pattern BGP = {_:a ex:b ex:c}. Clearly, there is a pattern instance
mapping P with P(_:a) = "1"ˆˆxsd:int, but P(BGP) = {"1"ˆˆxsd:int ex:b ex:c} is not
an RDF graph. Similar problems occur when using all solution mappings. Hence we
assume (2) to refer to elements of the computed solution multiset �BGP�E

G. The notion
of well-formedness in turn needs to be specified explicitly for entailment regimes.

Condition (3) uses the term “answer set” to refer to the results computed for a BGP.
To match the rest of [12], this has to be interpreted as the solution multiset �BGP�E

G.
This also means mappings Pi are solution mappings (not pattern instance mappings as
their name suggests). The purpose of (3), as noted in [12], is to ensure that if blank node
names are returned as bindings for a variable, then the same blank node name occurs
in different solutions only if it corresponds to the same blank node in the graph. To
illustrate the problem, consider the following graphs:

G : ex:a ex:b _:c. G1 : ex:a ex:b _:b1. G2 : ex:a ex:b _:b2. G3 : ex:a ex:b _:b1.
_:d ex:e ex:f. _:b2 ex:e ex:f. _:b1 ex:e ex:f. _:b1 ex:e ex:f.

Clearly, G simply entails G1 and G2, but not G3 where the two blank nodes are iden-
tified. Now consider a basic graph pattern BGP = {ex:a ex:b ?x.?y ex:e ex:f}. A so-
lution multiset for BGP could comprise two mappings μ1 : ?x �→ _:b1, ?y �→ _:b2 and

SPARQL beyond Subgraph Matching 247

μ2 : ?x �→ _:b2, ?y �→ _:b1. So we have μ1(BGP) = G1 and μ2(BGP) = G2, and both
solutions are entailed. However, condition (3) requires that G ∪ μ1(BGP) ∪ μ2(BGP) is
also entailed by G, and this is not the case in our example since this union contains G3.
The reason is that our solutions have unintended co-references of blank nodes that (3)
does not allow. SPARQL’s basic subgraph matching semantics respects this condition
by requiring solution mappings to refer to blank nodes that actually occur in the active
graph, so blank nodes are treated like (Skolem) constants.4 The revised condition in
Table 3 has further been modified to not implicitly require finite solution multisets
which may not be appropriate for all entailment regimes. In addition, we use RDF
instance mappings for renaming blank nodes instead of requiring renamed variants of
the BGP.

Finally, condition (4) requires that solution multisets are finite and uniquely deter-
mined up to RDF graph equivalence, again using the “answer set” terminology. Our
revised condition clarifies what it means for a solution multiset to be “unique up to
RDF graph equivalence.” We move the uniqueness requirement above all other condi-
tions, since (2) and (3) do not make sense if the solution multiset was not defined in this
sense. The rest of the condition was relaxed since entailment regimes may inherently
require infinite solution multisets, e.g., in the case of the Rule Interchange Format RIF
[6]. It is desirable that this only happens if there are infinite solutions that are “inter-
esting,” so the condition has been weakened to merely recommend the elimination of
infinitely many “trivial” solution mappings in solution multisets. The requirement thus
is expressed in an informal way, leaving the details to the entailment regime. Within this
paper, we will make sure that the solution multisets are in fact finite (both regarding the
size of the underlying set, and regarding the multiplicity of individual elements).

5 The RDF and RDFS Entailment Regimes

We focus on specifying the RDFS entailment regime, since the case of RDF is an obvi-
ous simplification of this entailment regime. The major problem for RDFS entailment
is to avoid trivially infinite solution multisets as suggested by Table 3 (4), where three
principal sources of infinite query results have to be addressed:

1. An RDF graph can be inconsistent under the RDFS semantics in which case it
RDFS-entails all (infinitely many) conceivable triples.

2. The RDFS semantics requires all models to satisfy an infinite number of axiomatic
triples even when considering an empty graph.

3. Every non-empty graph entails infinitely many triples obtained by using arbitrary
blank nodes in triples.

We now discuss each of these problems, and derive a concrete definition for BGP match-
ing in the proposed entailment regime at the end of this section.

4 Yet, SPARQL allows blank nodes to be renamed when loading documents, so there is no
guarantee that blank node IDs used in input documents are preserved.

248 B. Glimm and M. Krötzsch

5.1 Treatment of Inconsistencies

SPARQL does not require entailment regimes to yield a particular query result in cases
where the active graph is inconsistent. As stated in [12], “[the] effect of a query on an
inconsistent graph [. . .] must be specified by the particular SPARQL extension.” One
could simply require that implementations of the RDFS entailment report an error when
given an inconsistent active graph. However, a closer look reveals that inconsistencies
are extremely rare in RDFS, so that the requirement of checking consistency before
answering queries would impose an unnecessary burden on implementations.

Indeed, graphs can only be RDFS-inconsistent due to improper use of the datatype
rdf:XMLLiteral. A typical example for this is the following graph:

ex:a ex:b "<"ˆˆrdf:XMLLiteral. ex:b rdfs:range rdfs:Literal.

The literal in the first triple is ill-typed as it does not denote a value of rdf:XMLLiteral.
This does not cause an inconsistency yet but forces "<"ˆˆrdf:XMLLiteral to be inter-
preted as a resource that is not in the extension of rdfs:Literal, which in turn cannot
be the case in any model that satisfies the second triple. Ill-typed literals are the only
possible cause of inconsistency in RDFS and as such not a frequent problem.5 More-
over, inconsistencies of this type are inherently “local” as they are based on individual
ill-typed literals that could easily be ignored if not related to a given query.

It has thus been decided in the SPARQL working group that systems only have to
report an error if they actually detect an inconsistency. Until this happens, queries can
be answered as if all literals were well-typed. Our exact formalization corresponds to a
behavior where tools simply assume that all strings are well-typed for rdf:XMLLiteral,
and hence does not put additional burden on implementers.

5.2 Treatment of Axiomatic Triples

Every RDFS model is required to satisfy an infinite number of axiomatic triples. The
reason is that the RDF vocabulary for encoding lists includes property names rdf:_i for
all i ≥ 1, with several (RDFS) axiomatic triples for each rdf:_i. For instance, we find a
triple rdf:_i rdf:type rdf:Property for all i ∈ IN. Thus, the query ?x rdf:type rdf:Property
could have infinitely many results. We consider such results trivial in the sense of Ta-
ble 3 (4), and thus we want avoid them in the RDFS entailment regime.

We therefore propose that axiomatic triples with a subject of the form rdf:_i are only
taken into account if the subject’s IRI explicitly occurs in the active graph. This ensures
that only finitely many axiomatic triples are considered, since there is only a finite
number of axiomatic triples whose subjects do not have the form rdf:_i. To conveniently
formalize this, Definition 5 below still refers to the standard RDFS entailment with all
axiomatic triples, and restricts the range of solution mappings to an answer domain
instead. Ignoring axiomatic triples for IRIs rdf:_i that occur only in a query but not in
the active graph ensures that the total number of entailments that are relevant for query
answering is finite. This would not be the case if new entailments would be required

5 Implementations may support additional datatypes that can lead to similar problems. Such
extensions go beyond the RDFS semantics we consider here, yet inconsistencies remain rare
even in these cases.

SPARQL beyond Subgraph Matching 249

whenever a given query contains a hitherto unused IRI. This distinguishes our approach
from [5] where a partial closure algorithm is used to decide RDFS entailment for a set
of axiomatic triples based on both the given graph and the query graph.

5.3 Treatment of Blank Nodes

Even if condition (3) in Table 3 holds, solution multisets could include infinitely many
results that only differ in the identifiers for blank nodes. Simple entailment avoids this
problem by restricting results to blank nodes that occur in the active graph. For entail-
ment regimes, however, one must take entailed triples into account. This already leads
to triples with different blank nodes, as illustrated in the graphs G1 and G2 in Section 4.

Restricting the range of solution mappings to blank nodes in the active graph would
ensure finiteness but is not a satisfactory solution. To see why, consider the graph

G : ex:a ex:b ex:c. ex:d ex:e _:f.

The query BGP = {ex:a ex:b ?x} yields only one solution mapping μ : ?x �→ ex:c
under simple entailment. Yet, the mapping μ′ : ?x �→ _:f uses only blank nodes from G,
and satisfies G |= μ′(BGP) even under simple semantics. This shows that the latter two
conditions are not sufficiently specific for handling blank nodes in entailment regimes.
A more adequate approach is the use of Skolemization:

Definition 4. Let the prefix skol refer to a namespace IRI that does not occur as the
prefix of any IRI in the active graph or query. The Skolemization sk(_:b) of a blank
node _:b is defined as sk(_:b) � skol:b. We extend sk(·) to graphs and filters just like
other (partial) functions on RDF terms.

Intuitively, Skolemization changes blank nodes into resource identifiers that are not
affected by entailment. Clearly, we do not want Skolemized blank nodes to occur in
query results, but it is useful to restrict to solution mappings μ for which sk(G) |=
sk(μ(BGP)). In the above example, this condition is indeed satisfied by μ but not by μ′.

5.4 Defining the RDF(S) Entailment Regimes

The set of well-formed graphs for the RDFS entailment regime is simply the set of all
RDF graphs. BGP matching for RDFS is defined as follows.

Definition 5. Let Voc(RDFS) be the RDFS vocabulary, G an RDF graph, and BGP
a basic graph pattern. The answer domain w.r.t. G under RDFS entailment, written
ADRDFS(G), is the set Voc(G) ∪

(
Voc(RDFS) \ {rdf:_i | i ∈ IN}

)
. The evaluation of BGP

over G under RDFS entailment �BGP�RDFS
G is the solution multiset

{(μ, n) | dom(μ) = V(BGP), and n is the maximal number such that
σ1, . . . , σn are distinct RDF instance mappings such that, for each 1 ≤ i ≤ n,
sk(G) |=RDFS sk(μ(σi(BGP))) and (ran(μ) ∪ ran(σi)) ⊆ ADRDFS(G)}.

Other types of graph patterns are evaluated as in Definition 3. If the active graph is
RDFS-inconsistent, implementations may compute solution multisets based on the as-
sumption that all literals of type rdf:XMLLiteral are well-typed, so that no inconsistency
occurs. When the inconsistency is detected, implementations should report an error.

250 B. Glimm and M. Krötzsch

Since computing a partial RDFS closure for an RDF graph can be done in polyno-
mial time [5] and BGP evaluation then amounts to subgraph matching over the partial
closure, it follows that the complexity of the evaluation problem under the RDFS regime
is the same as for standard SPARQL. For set semantics instead of multiset semantics
this is known to be PSPACE-complete [10].

The entailment regime for RDF is defined similarly, but using RDF entailment and
the RDF vocabulary instead. Note that the above definition can also be restricted to
simple entailment, yielding the same solution multisets as Definition 2.

6 The OWL Entailment Regimes

In contrast to the RDFS semantics, a graph does no longer admit a unique canonical
model that can be used to compute answers under the RDF-Based Semantics (RBS)
and Direct Semantics (DS) of OWL, i.e., we can no longer imagine queries to act on a
unique “completed” version of the active graph. This affects reasoning algorithms (see
Section 7), but has only little effect on our definitions. The main new challenges for
OWL are its expressive datatype constructs that may lead to infinite answers, and the
fact that the OWL DS is defined in terms of OWL objects to which a given RDF graph
and query must first be translated. The problems discussed for RDF(S) also require
slightly different solutions for OWL:

1. Inconsistent input ontologies are required to be rejected with an error.
2. The axiomatic triples of RDFS are used only by the RBS and can again be handled

by suitably restricting solutions to an answer domain.
3. The problem of blank nodes occurs for both semantics and can again be addressed

by Skolemization, but for DS the blank nodes that are used to encode OWL objects
must not be Skolemized.

The main difference to RDFS is the stricter first item which no longer permits deferred
inconsistency detection. Inconsistencies in RDFS were easy to ignore since they always
related to single literals. Neither OWL semantics suggests such simple reasoning under
inconsistencies. Although proposals exists for addressing this, they disagree on the in-
ferred entailments and tend to require complex computations. On the other hand, typical
OWL reasoning algorithms are model building procedures which detect inconsistencies
as part of their normal operation. Hence, reporting errors in this case can usually be
done without additional effort.

6.1 Infinite Entailments in Datatype Reasoning

In order to see how datatype reasoning in OWL can cause infinite entailments, consider
the graph and query in Table 4. Recall that a abbreviates rdf:type, [. . .] denotes an
implicit blank node, and (. . .) denotes an RDF list. G states that all data values to which
Peter is related via ex:dp are in the singleton set of the integer 5. The query asks for all
data values to which ex:Peter cannot be related with ex:dp. Without suitable restrictions,
all (infinitely many) integers other than 5 could be used in solution mappings for ?x.

SPARQL beyond Subgraph Matching 251

Table 4. A query with infinitely many entailed solutions

G : ex:Peter a [a owl:Restriction; BGP : ex:Peter a [a owl:Restriction;
owl:onProperty ex:dp; owl:onProperty ex:dp;
owl:allValuesFrom [a rdfs:Datatype; owl:allValuesFrom [a rdfs:Datatype;

owl:oneOf ("5"ˆˆxsd:integer)]] owl:datatypeComplementOf [
a rdfs:Datatype; owl:oneOf (?x)]]]

Moreover, it is currently unknown how to compute all mappings for literal variables
even for cases where there number is finite – testing all literals is clearly not an option.6

We therefore restrict the answer domain for the OWL entailment regimes to include
only literals that are explicitly mentioned in the input graph. Like for the IRIs rdf:_i, this
may lead to unexpected behavior, since mentioning a literal in the input may lead to
new query results even for queries not directly related to this literal. Yet, we think this
problem is so rare in practice that a more detailed analysis of the problematic datatype
expressions is not worthwhile, even if it could further limit unintuitive behavior.

6.2 The OWL 2 RDF-Based Semantics Entailment Regime

The OWL 2 RDF-Based Semantics treats classes as individuals that refer to elements
of the domain. Each such element is then associated with a subset of the domain, called
the class extension. This means that semantic conditions on class extensions are only
applicable to those classes that are actually represented by an element of the domain
which can lead to less consequences than expected. An example is given by the follow-
ing graph and BGP:

G : ex:a rdf:type ex:C BGP : ?x rdf:type [rdf:type owl:Class ;
owl:unionOf (ex:C ex:D)]

G states that ex:a has type ex:C, while BGP asks for instances of the complex class de-
noting the union of ex:C and ex:D. One might expect μ : ?x �→ ex:a to be a solution, but
this is not the case under the OWL 2 RDF-Based Semantics (see also [14, Sec. 7.1]). It
is guaranteed that the union of the class extensions for ex:C and ex:D exists as a subset
of the domain; no statement in G implies, however, that this union is the class extension
of any domain element. Thus, μ(BGP) is not entailed by G.

The entailment holds, however, when the statement ex:E owl:unionOf (ex:C ex:D)
is added to G. In the OWL Direct Semantics, in contrast, classes denote sets and not do-
main elements, so G entails μ(BGP) under DS where, formally, G must first be extended
with an ontology header to become well-formed for DS. Note that a similar situation
occurs for the example in Section 6.1, but the problem still occurs if the necessary
expressions are introduced.

Summing up, the RBS handles blank nodes just like RDFS, even in cases where they
are needed for encoding OWL class expressions. This allows us to use Skolemization
just like in the case of RDFS in the next definition.

6 Hence one cannot call such solutions “trivial” in the sense of Table 3. Indeed, our restrictions
are motivated by pragmatic considerations, not by formal requirements of SPARQL.

252 B. Glimm and M. Krötzsch

Table 5. Grammar extension for extended OWL objects

Class � IRI | Var ObjectProperty � IRI | Var DataProperty � IRI | Var
Individual � NamedIndividual | AnonymousIndividual | Var

Literal � typedLiteral | stringLiteralNoLanguage | stringLiteralWithLanguage | Var

Definition 6. Let Voc(OWL2) be the OWL 2 vocabulary, G a graph, and BGP a basic
graph pattern. We write |=RBS to denote the OWL 2 RDF-Based Semantics entailment
relation. The answer domain w.r.t. G under RDF-Based Semantics entailment, written
ADRBS(G), is the set Voc(G) ∪ (Voc(OWL2) \ {rdf:_i | i ∈ IN}). The evaluation of BGP
over G under RDF-Based Semantics entailment �BGP�RBS

G is the solution multiset

{(μ, n) | dom(μ) = V(BGP), and n is the maximal number such that
σ1, . . . , σn are distinct RDF instance mappings such that, for each 1 ≤ i ≤ n,
sk(G) |=RBS sk(μ(σi(BGP))) and (ran(μ) ∪ ran(σi)) ⊆ ADRBS(G)}.

6.3 The OWL 2 Direct Semantics Entailment Regime

The OWL 2 Direct Semantics is not defined in terms of triples, but in terms of OWL
objects that constitute an ontology. The OWL 2 recommendation specifies how to con-
struct an ontology OG from a graph G that satisfies some further conditions [9]. Thus
G is well-formed for the OWL DS entailment regime if OG is defined. In the follow-
ing, we conveniently identify ontologies with their unique canonical representation in
Functional-Style Syntax [8]. Some RDF triples are mapped to so-called non-logical ax-
ioms such as annotations, declarations, or import directives. Such axioms can only have
indirect effect on DS entailment, e.g., since imported axioms are taken into account,
but they do not directly lead to entailments. In particular, annotations do not contribute
query results under DS.

Like the active graph, also the BGP of the query is mapped into an OWL 2 DL
ontology, extended to allow variables in place of class names, object property names,
datatype property names, individual names, or literals. Table 5 shows how productions
of the OWL 2 functional-style syntax grammar [8] are extended to allow variables as
defined by the Var production from the SPARQL grammar [12]. Solution mappings in a
query result are applied to such extended ontologies to obtain a set of OWL DL axioms
that is compatible with the queried ontology and also entailed by it under DS.

The construction of ontologies from graphs requires type declarations for properties,
classes, and (custom) datatypes to avoid ambiguities, and we need similar typing infor-
mation for terms and variables in BGPs. For example, the BGP {?s ?p ?o} could refer
to DataPropertyAssertion(?p ?s ?o) or ObjectPropertyAssertion(?p ?s ?o) if the type
of ?p is not given. We take type declarations from the queried ontology into account, so
that only variables may require further typing.

Formally, an extended ontology OG
BGP is constructed for a basic graph pattern BGP

and graph G using the parsing process for RDF graphs as defined in [9] with three
modifications: variable identifiers are allowed in place of IRIs and literals in all parsing
steps, an ontology header may be added to BGP if not given, and the type declarations
given in BGP are augmented with the declarations in G (denoted AllDecl(G) in [9]). The

SPARQL beyond Subgraph Matching 253

complete parsing process is detailed in the latest entailment regimes working draft.7

BGP is well-formed for the OWL DS entailment regime and a graph G if OG
BGP can be

obtained in this way and is an extended OWL DL ontology.
We can now define the evaluation of graph patterns. Skolemization is now applied to

OG, which ensures that only blank nodes that represent anonymous OWL individuals
are Skolemized, not blank nodes used for encoding complex OWL syntax in RDF.

Definition 7. Consider a graph G that is well-formed for the OWL 2 DS entailment
regime, and a basic graph pattern BGP that is well-formed for DS and G. With sk(OG)
we denote the result of replacing each blank node b in OG with sk(b). The answer do-
main w.r.t. G under OWL 2 Direct Semantics entailment, written ADDS(G), is Voc(OG).
If OG is inconsistent, queries must be rejected with an error. Otherwise, we write |=DS

for the OWL 2 Direct Semantics entailment relation and define the evaluation of BGP
over G under OWL 2 Direct Semantics entailment �BGP�DS

G as the solution multiset

{(μ, n) | dom(μ) = V(BGP), and n is the maximal number such that
σ1, . . . , σn are distinct RDF instance mappings such that, for each 1 ≤ i ≤ n,
OG ∪ μ(σi(OG

BGP)) is an OWL 2 DL ontology, and
sk(OG) |=DS sk(μ(σi(OG

BGP))) and (ran(μ) ∪ ran(σi)) ⊆ ADDS(G)}.

Since ADDS(G) is finite, clearly the solution multiset and each multiplicity is finite too.
Although the restriction to ADDS(G) avoids infinite results as discussed in Section 6.1,
reasoners may have to consider a large number of literals as potential variable bindings
and we expect that not all systems will provide a complete implementation for queries
with literal variables.

The complexity of standard reasoning problems in OWL are well-understood and
BGP evaluation can be implemented using the standard reasoning techniques. The com-
plexity of OWL reasoning usually outweighs that of the SPARQL algebra operations,
i.e., checking whether a solution mapping is a solution is complete for nondeterministic
exponential time in OWL DL and undecidable for the RDF-Based semantics.

7 Implementations of SPARQL Entailment Regimes

We now discuss how the interplay between SPARQL query processing and semantic
inference can be implemented in practice. Three principal approaches for this task are
reviewed below. An overview of optimized implementation techniques for SPARQL
algebra operators or specific reasoning algorithms is beyond the scope of this work.

Materialization and Partial Closure. One can often extend the input graph with all rele-
vant semantic consequences, pre-computed at load time, and evaluate SPARQL queries
on this extended graph under the simple semantics. The approach is not applicable to
entailment regimes for which one cannot pre-compute all relevant consequences, e.g.,
for OWL DS entailment where arbitrarily complex class expressions may be required.
In the case of RDF(S) and OWL RDF-Based Semantics, however, our definitions en-
sure that the relevant consequences are finite and depend on the input graph only.8

7 http://www.w3.org/TR/2010/WD-sparql11-entailment-20100601/
8 Computing all such consequences for OWL RBS is of course still undecidable.

http://www.w3.org/TR/2010/WD-sparql11-entailment-20100601/

254 B. Glimm and M. Krötzsch

Materialization is the most common implementation technique, supported in systems
such as AllegroGraph, Jena, BigOWLIM and SwiftOWLIM, Mulgara, OntoBroker, or
Virtuoso.9 The partial closure algorithm proposed in [5] for checking RDF(S) entail-
ment can be adapted to implement the RDF(S) regime: Blank nodes in the initial graph
have to marked since only they can be used in solution and instance mappings, whereas
new blank nodes introduced by the partial closure algorithm cannot be used for variable
bindings. Blank nodes in the query are treated as variables that are projected out imme-
diately after BGP evaluation; the multiplicity of a solution is then given by the number
of original solutions from which it can be obtained through this projection.

Query Rewriting. These techniques change the query rather than the queried graph.
One or more, possibly more complex queries are then evaluated over the original graph.
More expressive query features may be needed, e.g., by using regular expressions to
capture the transitivity of rdfs:subClassOf. To the best of our knowledge a pure query
rewriting techniques has so far only be proposed for a subset of RDFS [11]. A com-
bination with materialization, however, is also possible and successfully used, e.g., to
realize RDFS entailment in Sesame [17].

Modified Query Evaluation. The most direct approach for implementing our definitions
is to modify existing SPARQL processors to evaluate BGPs differently. This can be ac-
complished, e.g., with the free ARQ library (http://jena.sourceforge.net/ARQ/).
While this offers much flexibility, computing BGP matches on demand may preclude
many optimizations for evaluating algebra operators. Yet, this method is a good ap-
proach for adding SPARQL support to systems that perform complex inferencing. The
Hermit OWL reasoner (http://hermit-reasoner.com/) is currently being extended
accordingly to support the proposed DS entailment regime. This work also includes the
modification of the OWL API for parsing BGPs into extended OWL ontologies.

8 Related Work

Section 7 listed various efforts that are closely related to the implementation of our
proposals. Here we focus on alternative proposals for querying expressive semantic
data sources, especially for OWL.

OWL DS queries that ask for individuals and literals only are closely related to con-
junctive queries (CQs) on description logic (DL) knowledge bases; see [4] for a ba-
sic introduction. An important difference is that CQs admit full existential variables
that can represent any domain element which can be (indirectly) inferred to exist. In
contrast, variables and blank nodes under OWL DS entailment may only bind to indi-
viduals that are represented by a given blank node or IRI in the input, corresponding
to so-called distinguished variables in CQs. As of today, decidability of CQ entail-
ment has only been established for a sublanguage of OWL 2 [13]. Restricted CQ an-
swering still is the most common query service provided by OWL reasoners today.
For example, KAON2 (http://kaon2.semanticweb.org/) and the TrOWL system

9 See http://en.wikipedia.org/wiki/Triplestore for more information on the men-
tioned systems.

http://jena.sourceforge.net/ARQ/
http://hermit-reasoner.com/
http://kaon2.semanticweb.org/
http://en.wikipedia.org/wiki/Triplestore

SPARQL beyond Subgraph Matching 255

(http://trowl.eu/) support the CQ subset of the OWL DS regime, whereas Rac-
erPro (http://racer-systems.com/) has its proprietary query language for CQs,
called nRQL [2]. Similarly, OWLgres [16] and Quonto10 support the CQ fragment, but
they implement the OWL QL profile, which restricts the expressivity of the input ontol-
ogy to allow for a more efficient implementation based on standard database techniques.

We are not aware of a complete implementation of the DS entailment regime. As
of today, the Pellet OWL 2 DL reasoner (http://clarkparsia.com/pellet) is the
most advanced system. The subset of SPARQL that Pellet supports – called SPARQL-
DL [15] – consists of queries that can be translated into a pre-defined set of query atoms
in an abstract syntax; with the semantics defined per abstract query atom.

Explicitly listing admissible queries has the advantage that one can focus on queries
that are well supported by OWL reasoners. Our definition of OWL DS entailment, in
contrast, uses a more general approach based on a direct mapping of BGPs to extended
OWL ontologies. This allows for queries that are not typically supported by reasoners,
e.g., when using variables to represent class names in complex class expressions.

Furthermore, SPARQL-DL treats blank nodes in queries like non-distinguished CQ
variables with full existential meaning, whereas the DS regime treats such blank nodes
like SPARQL variables that are projected out after BGP evaluation. Blank nodes under
DS entailment thus are largely like distinguished CQ variables, though we allow blank
nodes in the input to occur in results via Skolemization. Our design choice makes the
treatment of blank nodes more uniform across all SPARQL entailment regimes, and it
avoids the computational problems with non-distinguished variables in OWL.

9 Conclusions

We have presented extensions for SPARQL to incorporate RDF, RDFS, OWL RDF-
Based semantics, and OWL Direct Semantics entailment. When comparing the individ-
ual entailment regimes, we find that a surprisingly high level of compatibility can be
achieved between the different formalisms.

The presented regimes are closely related to the SPARQL Entailment Regimes docu-
ment currently developed in the W3C SPARQL working group and we believe that our
extended discussions and the resulting definitions provide a useful resource for imple-
menters and users of SPARQL.

Our work also provides a basis for further extensions of SPARQL. Entailment regimes
such as D-entailment can easily be added. A RIF entailment regime is also currently
under development in the SPARQL Working Group, although some preliminaries still
have to be clarified, e.g., how an RDF graph can import or encode a RIF rule set. An
integration of new SPARQL operators, which are defined algebraically such as the mi-
nus operator currently under discussion, is straightforward. SPARQL modifications that
introduce extension points besides BGP matching, in contrast, would require more con-
siderations. Depending on the outcome of current discussions, this might be the case for
path expressions in SPARQL 1.1. Yet, our overall impression is that SPARQL is ready
– both theoretically and practically – for taking the step beyond sub-graph matching.

10 http://www.dis.uniroma1.it/quonto/

http://trowl.eu/
http://racer-systems.com/
http://clarkparsia.com/pellet
http://www.dis.uniroma1.it/quonto/

256 B. Glimm and M. Krötzsch

Acknowledgements. This work was supported by EPSRC in the project HermiT: Rea-
soning with Large Ontologies and RInO: Reasoning Infrastructure for Ontologies and
Instances, and by DFG in the project ExpresST. We thank the members of the SPARQL
working group for valuable comments and suggestions.

References

1. Beckett, D., Berners-Lee, T.: Turtle – Terse RDF Triple Language. W3C Team Submission
(January 14, 2008), http://www.w3.org/TeamSubmission/turtle/

2. Haarslev, V., Möller, R., Wessel, M.: Querying the semantic web with Racer + nRQL. In:
Proc. KI 2004 International Workshop on Applications of Description Logics (2004)

3. Hayes, P. (ed.): RDF Semantics. W3C Recommendation (February 10, 2004),
http://www.w3.org/TR/rdf-mt/

4. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman
& Hall/CRC (2009)

5. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF Schema
and a semantic extension involving the OWL vocabulary. J. of Web Semantics 3(2-3), 79–115
(2005)

6. Kifer, M., Boley, H. (eds.): RIF Overview. W3C Working Group Note (June 22, 2010),
http://www.w3.org/TR/rif-overview/

7. Motik, B., Patel-Schneider, P.F., Cuenca Grau, B. (eds.): OWL 2 Web Ontology Language:
Direct Semantics. W3C Recommendation (October 27, 2009),
http://www.w3.org/TR/owl2-direct-semantics/

8. Motik, B., Patel-Schneider, P.F., Parsia, B. (eds.): OWL 2 Web Ontology Language: Struc-
tural Specification and Functional-Style Syntax. W3C Recommendation (October 27, 2009),
http://www.w3.org/TR/owl2-syntax/

9. Patel-Schneider, P.F., Motik, B. (eds.): OWL 2 Web Ontology Language: Mapping to RDF
Graphs. W3C Recommendation (October 27, 2009),
http://www.w3.org/TR/owl2-mapping-to-rdf/

10. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Transac-
tions on Database Systems 34(3), 1–45 (2009)

11. Pérez, J., Arenas, M., Gutierrez, C.: nSPARQL: A navigational language for RDF. J. of Web
Semantics (to appear, 2010), http://web.ing.puc.cl/~jperez/papers/jws2010.pdf

12. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C Recom-
mendation (January 15, 2008), http://www.w3.org/TR/rdf-sparql-query/

13. Rudolph, S., Glimm, B.: Nominals, inverses, counting, and conjunctive queries. J. of Artifi-
cial Intelligence Research 39, 429–481 (2010),
http://www.comlab.ox.ac.uk/files/2175/paper.pdf

14. Schneider, M. (ed.): OWL 2 Web Ontology Language: RDF-Based Semantics. W3C Recom-
mendation (October 27, 2009), http://www.w3.org/TR/owl2-rdf-based-semantics/

15. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL query for OWL-DL. In: Golbreich, C., Kalyan-
pur, A., Parsia, B. (eds.) Proc. OWLED 2007 Workshop on OWL: Experiences and Direc-
tions. CEUR Workshop Proceedings, vol. 258. CEUR-WS.org (2007)

16. Stocker, M., Smith, M.: Owlgres: A scalable OWL reasoner. In: Dolbear, C., Ruttenberg,
A., Sattler, U. (eds.) Proc. OWLED 2008 Workshop on OWL: Experiences and Directions.
CEUR Workshop Proceedings, vol. 432. CEUR-WS.org (2008)

17. Stuckenschmidt, H., Broekstra, J., Amerfoort, A.: Time – space trade-offs in scaling up RDF
Schema reasoning. In: Dean, M., Guo, Y., Jun, W., Kaschek, R., Krishnaswamy, S., Pan,
Z., Sheng, Q.Z. (eds.) WISE 2005 Workshops. LNCS, vol. 3807, pp. 172–181. Springer,
Heidelberg (2005)

http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rif-overview/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-mapping-to-rdf/
http://web.ing.puc.cl/~jperez/papers/jws2010.pdf
http://www.w3.org/TR/rdf-sparql-query/
http://www.comlab.ox.ac.uk/files/2175/paper.pdf
http://www.w3.org/TR/owl2-rdf-based-semantics/

Integrated Metamodeling and Diagnosis in OWL 2

Birte Glimm1, Sebastian Rudolph2, and Johanna Völker3

1 Oxford University Computation Laboratory, UK
birte.glimm@comlab.ox.ac.uk

2 Institute AIFB, Karlsruhe Institute of Technology, DE
rudolph@kit.edu

3 KR & KM Research Group, University of Mannheim, DE
voelker@informatik.uni-mannheim.de

Abstract. Ontological metamodeling has a variety of applications yet only very
restricted forms are supported by OWL 2 directly. We propose a novel encod-
ing scheme enabling class-based metamodeling inside the domain ontology with
full reasoning support through standard OWL 2 reasoning systems. We demon-
strate the usefulness of our method by applying it to the OntoClean methodology.
En passant, we address performance problems arising from the inconsistency di-
agnosis strategy originally proposed for OntoClean by introducing an alternative
technique where sources of conflicts are indicated by means of marker predicates.

1 Introduction

Applications of metamodeling in Ontology Engineering are manifold, including the
representation of provenance or versioning information as well as the documentation of
modeling decisions. Roughly speaking, metamodeling allows for referring to predicates
(classes and properties in OWL) as if they were domain individuals. This way it is
possible to assert the membership of classes in metaclasses and interconnect them via
metaroles.

Consider, for example, the following extract of a knowledge base about animals and
the respective species they belong to.

(GoldenEagle HaastsEagle)(harry) HouseMouse(jerry)

Intuitively, we specify that the individual harry is a golden or a Haast’s eagle and jerry
is a common house mouse. Now, assume the knowledge base also expresses taxonomic
relationships assigning species to orders of animals.1

GoldenEagle � Falconiformes HouseMouse � Rodentia
HaastsEagle � Falconiformes

If, additionally, we were to specify which of the zoological terms actually denote
species and which denote orders, we could introduce the classes Species and Order.

1 Species is the most specific level within the biological classification and order is a more general
one, e.g., Golden Eagle (A. chrysaetos) is a species, whereas Falconiformes is the order of
Golden Eagle. In Europe the Falconiformes order is commonly split into Falconiformes and
Accipitriformes, but we neglect that here.

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 257–272, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

258 B. Glimm, S. Rudolph, and J. Völker

Treating those classes on a level with Rodentia etc. by subclass statements like
Rodentia � Order leads to consequences that are doubtful (like Order(jerry)) or out-
right unwanted (like HouseMouse � Order). Therefore, species and order should be
treated as metaclasses the members of which are themselves classes, i.e., we would like
to make statements such as

Species(GoldenEagle) Order(Falconiformes)
Species(HaastsEagle) Order(Rodentia)
Species(HouseMouse)

Likewise we may think of metaroles that interrelate classes instead of individuals. In
particular, the subclass relationship between classes can be seen as such a metarole (one
with a built-in meaning instead of one that can be freely defined). In fact, many evalu-
ation or design criteria for ontologies [12,4] directly refer to the hierarchy of classes in
an ontology. Considering our example, one obvious design criterion would be that for A
a species and B an order, B � A must not hold as this would contradict the conventional
organization of zoological taxonomies.

Current ontology languages differ with respect to their support for metamodeling.
While it is supported by OWL Full, this high expressivity leads to undecidability as
shown by Motik [9], who also discusses milder variants of metamodeling. One variant,
which is also supported by OWL 2 DL, is called punning. Punning allows for using
the same identifier, e.g., for an individual and a class. The class and its correspond-
ing individual are, however, treated as entirely independent, which disallows many of
the intended usage scenarios of metamodeling. As another lightweight metamodeling
feature, OWL 2 allows for annotation properties, which may associate information to
classes, roles, and even axioms. In OWL 2 DL and all its subprofiles, these properties
do not carry any semantics and are not used for reasoning.

One way to facilitate more expressive metamodeling while still supporting the use
of off-the-shelf reasoning tools for OWL is to maintain two (or more) ontologies, keep-
ing the basic domain knowledge separate from the meta knowledge. In that case, the
two ontologies must be kept in sync by additional external mechanisms. Thereby, in-
formation obtained from reasoning in the basic ontology (like its subclass hierarchy)
is fed into the metaontology as explicit statements. Based on this, reasoning in the en-
riched metaontology can be carried out. Clearly, this approach comes with increased
maintenance efforts. Examples for this strategy are [10] and [14].

We extend this state of the art in two ways, which are independent from each other,
but can be combined:

1. We introduce a technique that enables class-based metamodeling within one ontol-
ogy. Thereby, subclass relationships between classes are axiomatically synchronized
with role memberships of class-representing individuals. Meta-level constraints on
classes and their subsumption relationships can then be expressed as OWL axioms
in the same ontology as the actual content.

2. We propose a way of expressing meta-level constraints in a way that does not lead
to inconsistency, but rather indicates constraint violations by auxiliary classes or
roles. Thus, the origins of these violations can be localized by comparably cheap
instance retrieval operations instead of costly debugging strategies.

Integrated Metamodeling and Diagnosis in OWL 2 259

We proceed as follows: The next section introduces the necessary preliminaries of the
description logic SROIQ underlying the OWL 2 standard. We use the DL notation for
its brevity. Section 3 introduces our technique enabling ontology-inherent metamod-
eling. Section 4 sketches the OntoClean methodology as one possible metamodeling
use case. Section 5 describes the original OWL-based OntoClean constraint checking
approach as well as our metamodeling-based modification of it. Section 6 introduces an-
other modification of the methodology by suggesting to use marker predicates instead
of explanations. Finally, Section 7 provides an evaluation of the proposed techniques
before we conclude in Section 8. A more detailed treatise can be found in the extended
version of the paper [3].

2 Preliminaries

We just recall the basic definitions for the description logic SROIQ [6]. For further
details on DLs we refer interested readers to the Description Logic Handbook [1].
As our definitions are based on DLs, we use the terms ontology and knowledge base
interchangeably.2

Definition 1. Let NR, NC, and NI be three disjoint sets of role names containing the
universal role U ∈ NR, class names, and individual names, respectively. A SROIQ
RBox for NR is based on a set R of roles defined as R � NR ∪ {R− | R ∈ NR}, where we
set Inv(R) � R− and Inv(R−) � R to simplify notation. In the sequel, we will use the
symbols R, S , possibly with subscripts, to denote roles.

A generalised role inclusion axiom (RIA) is a statement of the form S 1 ◦ . . .◦S n � R,
and a set of such RIAs is a generalised role hierarchy. A role will be called non-simple
for some role hierarchy if it can be implied by some role chain, otherwise it is simple.

A role disjointness assertion is a statement of the form Dis(S , S ′), where S and S ′ are
simple. A SROIQ RBox is the union of a set of role disjointness assertions together
with a role hierarchy. A SROIQ RBox is regular if its role hierarchy is regular.

For brevity, we omit a precise definition of simple roles and role hierarchy regularity,
and refer interested readers to [6]. Note that number restrictions (defined below) can
only be formed with simple roles to guarantee the decidability of the standard reasoning
tasks such as checking knowledge base consistency.

Definition 2. Given a SROIQ RBox R, the set of class expressions C is defined as
follows:

– NC ⊆ C, � ∈ C, ⊥ ∈ C,
– if C,D ∈ C, R ∈ R, S ∈ R a simple role, a ∈ NI , and n a non-negative integer, then
¬C, C � D, C D, {a}, ∀R.C, ∃R.C, ∃S .Self, ≤n S .C, and ≥n S .C are also class
expressions.

2 Moreover, we use the term classes instead of concepts for unary predicates, whereas we refer
to binary predicates as roles instead of properties in order to avoid confusion with the term
metaproperties introduced by OntoClean.

260 B. Glimm, S. Rudolph, and J. Völker

Table 1. Semantics of class expressions in SROIQ for an interpretation I = (ΔI, ·I)

Name Syntax Semantics
inverse role R− {〈x, y〉 ∈ ΔI × ΔI | 〈y, x〉 ∈ RI}
universal role U ΔI × ΔI
top � ΔI

bottom ⊥ ∅
negation ¬C ΔI \ CI

conjunction C � D CI ∩ DI

disjunction C D CI ∪ DI

nominals {a} {aI}
univ. restriction ∀R.C {x ∈ ΔI | 〈x, y〉 ∈ RI implies y ∈ CI}
exist. restriction ∃R.C {x ∈ ΔI | for some y ∈ ΔI , 〈x, y〉 ∈ RI and y ∈ CI}
Self construct ∃S .Self {x ∈ ΔI | 〈x, x〉 ∈ S I}
qualified number ≤n S .C {x ∈ ΔI | #{y ∈ ΔI | 〈x, y〉 ∈ S I and y ∈ CI} ≤ n}
restriction ≥n S .C {x ∈ ΔI | #{y ∈ ΔI | 〈x, y〉 ∈ S I and y ∈ CI} ≥ n}

In the remainder, we use C and D to denote class expressions. A SROIQ TBox is a
set of general class inclusion axioms (GCIs) of the form C � D. We use C ≡ D to
abbreviate C � D and D � C. An individual assertion can have the form C(a) or R(a, b)
with a, b ∈ NI individual names. A SROIQ ABox is a set of individual assertions.

A SROIQ ontologyO is the union of a regular RBox R, an ABoxA and TBox T for
R. The vocabulary of an ontology, denoted voc(O), is a triple (OC ,OR,OI) with OC the
set of class names occurring in O, OR the set of role names occurring in O, and OI the
set of individual names occurring in O.

The semantics of SROIQ ontologies is given by means of interpretations.

Definition 3. An interpretation I consists of a set ΔI called domain (the elements of
it being called individuals) together with a function ·I mapping individual names to
elements of ΔI, class names to subsets of ΔI, and role names to subsets of ΔI × ΔI.

The function ·I is inductively extended to role and class expressions as shown in
Table 1. An interpretation I satisfies an axiom ϕ if we find that I |= ϕ:

– I |= S � R if S I ⊆ RI,
– I |= S 1 ◦ . . . ◦ S n � R if S I1 ◦ . . . ◦ S In ⊆ RI (◦ being overloaded to denote the

standard composition of binary relations here),
– I |= Dis(R, S) if RI and S I are disjoint,
– I |= C � D if CI ⊆ DI.

An interpretation I satisfies C(a) if aI ∈ CI and R(a, b) if (aI, bI) ∈ RI. An interpreta-
tion I satisfies an ontologyO (we then also say that I is a model of O and write I |= O)
if it satisfies all axioms of O. An ontology O is satisfiable if it has a model. An ontology
O entails an axiom ϕ, if every model of O is a model of ϕ.

Further details on SROIQ can be found in [6]. We have omitted here several syntactic
constructs that can be expressed indirectly, especially RBox assertions for transitivity,
reflexivity of simple roles, and symmetry.

Integrated Metamodeling and Diagnosis in OWL 2 261

In the remainder, we use the following notational convention: individual names are
written in italic, e.g., jerry. Class names are written in sans serif font, e.g., HouseMouse
and role names are written in normal serif font, e.g., eats, unless they are used to
denote metaclasses or metaroles for which we use typewriter font, e.g., Species or
subClassOf.

3 Ontology-Inherent Metamodeling for Classes

We will now show how to define a metamodeling-enabled version Ometa for a given
ontologyO. The converted ontologyOmeta will be such that each model of the converted
ontology has two different kinds of individuals: the class individuals are individuals
that represent classes and each such individual is an instance of the newly introduced
metaclass Class. On the other hand, the model also contains proper individuals and all
these are instances of the newly introduced class Inst. Subclass relationships between
a class C and a class D in the given ontology O are materialized as role instances:
the individual that represents the class C, say oC, and the individual that represents D,
say oD, are interconnected by the newly introduced metarole subClassOf. Similarly,
a class membership of an individual a in a class C in the given ontology becomes
manifest in a type relationship between a and oC, for type also a freshly introduced
role in Ometa. We further introduce an auxiliary role RInst, which is used to localize the
universal role. These correspondences can then be used to check for modeling errors
and to examine quality properties of the ontology.

Definition 4. Let O be a domain ontology with vocabulary voc(OC ,OR,OI). The vo-
cabulary of the metamodeling-enabled version Ometa of O is:

Ometa
C := OC ∪ {Inst, Class}

Ometa
R := OR ∪ {type, subClassOf,RInst}

Ometa
I := OI ∪ {oC | C ∈ OC}

where all the newly introduced names are fresh, i.e., they are not part of voc(O).
We define the functions bound(·), SepDom(·), Typing(·), and MatSubClass(·), which

take an ontology, i.e., a set of axioms, and return a set of axioms. The function bound(·)
returns its input after rewriting it as follows: first, every occurrence of X having one of
the forms �, ¬C, ∀R.C, ≤n R.C, ∃U.Self is substituted by Inst�X, where we explicitly
allow for complex classes C. Next, the universal role is localized by substituting every
∀U.C by ∀U.(¬Inst C) and every U occurring on the left hand side of a role chain
axiom by RInst ◦ U ◦ RInst where RInst is axiomatized via ∃RInst.Self ≡ Inst.3 We
extend bound(·) in the obvious way to also rewrite an axiom or a class expression. The
functions SepDom, Typing, and MatSubClass return a set of axioms as specified in
Table 2. The metamodeling-enabled version Ometa of O is

bound(O) ∪ SepDom(O) ∪ Typing(O) ∪MatSubClass(O)

3 It is not hard to check that none of these transformations harms the global syntactic constraints.

262 B. Glimm, S. Rudolph, and J. Völker

Table 2. Returned axioms for an ontology O by SepDom, Typing, and MatSubClass

SepDom(O) : Inst ≡ ¬Class (1)
Class(oC) for all C ∈ OC (2)
Inst(i) for all i ∈ OI (3)
∃R.� � Inst for all R ∈ OR (4)
� � ∀R.Inst for all R ∈ OR (5)
∃type.� � Inst (6)
� � ∀type.Class (7)
∃subClassOf.� � Class (8)
� � ∀subClassOf.Class (9)

Typing(O) : C ≡ ∃type.{oC} for all C ∈ OC (10)

MatSubClass(O) : Class � ∀type−.∃type.{oC} ≡ Class � ∃subClassOf.{oC}
for all C ∈ OC (11)

Roughly speaking, given an ontologyO, the function bound(O) ensures that the com-
plete domain ofO is “squeezed” into the class Inst and also class construction is forced
to only involve individuals from Inst. The axioms constructed by SepDom(O) have
the following purpose: Axiom (1) makes sure that the newly established metalayer does
not interfere with the instance layer. Axiom (2) ensures that all class-representative in-
dividuals lie in the metalayer. Axiom (3) forces every named individual of the original
ontology to be in the instance layer. Axioms (4) and (5) state that every role of the orig-
inal ontology is forced to start and end only in the instance layer. Axioms (6) and (7)
stipulate that the type-role starts in the instance layer and ends in the metalayer. Finally,
Axiom (8) and (9) specify that the subClassOf(O) role is allowed to interconnect only
individuals from the metalayer. The axioms from Typing(O) ensure that class members
of C are exactly those domain individuals which are connected to C’s representative
oC via the type role, while axioms from MatSubClass(O) finally synchronize actual
subclass relationships in the instance layer with the subClassOf links between the
corresponding representatives in the metalayer.

Note that the size of Ometa is linearly bounded by the size of O. Intuitively, the con-
version from O to Ometa realizes a model conversion: given a model of O, the transfor-
mation endows the model with a metalayer containing reified atomic classes oC. As in
RDF, class membership of the original individuals is now indicated by the newly intro-
duced type role and class subsumption by the subClassOf role which is axiomatically
synchronized with the actually valid subclass relation in the considered model. Thereby,
we materialize the hierarchy among classes of a particular model in the metalayer.
Figure 1 depicts the established correspondences in a schematic way.

Note that no original model is ruled out by this process which also ensures that the
conversion does not cause new (unwanted) consequences. In the sequel, we characterize
the above mentioned properties of Ometa more formally:

Theorem 1. Let O be an OWL ontology and Ometa its metamodeling-enabled version
as specified in Definition 4. Then the following properties hold:

Integrated Metamodeling and Diagnosis in OWL 2 263

C
D

C
D

Inst

Class

t
y
p
e

subClassOf

t
y
p
e

ty
pe

oC oD

m
et

al
ay

er

in
st

an
ce

 l
ay

er

Model of O. Corresponding model of Ometa.

Fig. 1. Sketch of the established interdependencies in the models of Ometa

1. For any OWL axiom a containing only names from OC, OR and OI , we have that
O |= a iff Ometa |= bound(a).

2. For any class name C ∈ OC and instance name i ∈ OI , we have that O |= C(i) iff
Ometa |= type(i, oC).

3. For any two named classes C,D ∈ OC, we have that O |= C � D iff Ometa |=
subClassOf(oC, oD).

Proof. For the first claim, given a model I of O, we construct a model meta(I) = J of
Ometa as follows:

ΔJ = ΔI ∪ {δC | C ∈ OC}
ςJ = ςI for all ς ∈ OC ∪ OR ∪ OI

typeJ = {〈δ, δC〉 | δ ∈ CI} InstJ = ΔI

ClassJ = {δC | C ∈ OC} subClassOfJ = {〈δC, δD〉 | CI ⊆ DI}

By construction J satisfies all axioms from SepDom(O) ∪ Typing(O) ∪
MatSubClass(O). By induction, we obtain, for every class C containing only
names from voc(O), that bound(C)J = CI (claim †). This in turn guarantees that, for
every axiom Ax using only terms from voc(O), we obtain I |= Ax iff J |= bound(Ax).
In particular,J also satisfies bound(O), whence it is a model of Ometa as claimed.

Using this transformation, we can show that Ometa |= bound(Ax) implies O |= Ax. We
demonstrate the case for GCIs. SupposeOmeta |= bound(C) � bound(D) butO �|= C � D.
Then there is a model I of O with CI � DI. But then there is a model J = meta(I)
with bound(C)J � bound(D)J (according to †) contradicting our assumption. For the
other axiom types, the correspondence can be shown along the same lines.

The other direction (O |= Ax implying Ometa |= bound(Ax)) is shown analogously
using the transformation converting modelsJ of Ometa to models I of O as follows:

ΔI = InstJ ςI = ςJ for all ς ∈ OC ∪ OR ∪ OI

Note that the additional axioms of Ometa ensure that only individuals from ΔI occur
in every ςJ , whence I is well-defined. Again we can establish bound(C)J = CI by
induction and use this to show Ometa |= bound(Ax) implying O |= Ax.

264 B. Glimm, S. Rudolph, and J. Völker

Table 3. An example ontology O and its metamodeling-enabled version Ometa

Ontology O :
HouseMouse � ∃eats−.GoldenEagle Prey ≡ ∃eats−.�
HouseMouse(jerry) (GoldenEagle HaastsEagle)(harry)

Metaontology Ometa :
bound(O) : HouseMouse � ∃eats−.(Inst � ¬GoldenEagle) Prey ≡ ∃eats−.Inst

HouseMouse(jerry) (GoldenEagle HaastsEagle)(harry)
SepDom(O) : Inst ≡ ¬Class

Class(oHouseMouse) Class(oGoldenEagle) Class(oPrey) Class(oHaastsEagle)
Inst(jerry) Inst(harry)
∃eats.� � Inst � � ∀eats.Inst ∃type.� � Inst � � ∀type.Class
∃subClassOf.� � Class � � ∀subClassOf.Class

Typing(O) : HouseMouse ≡ ∃type.{oHouseMouse} Prey ≡ ∃type.{oPrey}
GoldenEagle ≡ ∃type.{oGoldenEagle} HaastsEagle ≡ ∃type.{oHaastsEagle}

MatSubClass(O) : Class � ∀type−.∃type.{oHouseMouse} ≡ Class � ∃subClassOf.{oHouseMouse}
Class � ∀type−.∃type.{oPrey} ≡ Class � ∃subClassOf.{oPrey}
Class � ∀type−.∃type.{oGoldenEagle} ≡ Class � ∃subClassOf.{oGoldenEagle}
Class � ∀type−.∃type.{oHaastsEagle} ≡ Class � ∃subClassOf.{oHaastsEagle}

For the second claim, given O |= C(i) we can conclude Ometa |= bound(C(i)) and
hence Ometa |= C(i) from which by Typing(O) follows type(i, oC). The argument holds
in both directions.

For the third claim, we have that from O |= C � D follows Ometa |= bound(C) �
bound(D) and, therefore, Ometa |= C � D. Considering a model J of Ometa,
MatSubClass(O) ensures that J |= subClassOf(oC, oD) iff oC ∈ (Class �
∀type−.∃type.{oD})J . This can be simplified to {δ | 〈δ, oJC 〉 ∈ type

J} ⊆ {δ | 〈δ, oJD 〉 ∈
typeJ} which, by Typing(O), coincides with CJ ⊆ DJ and is true by assumption.
Again, the argument holds in both ways. �

As an example, consider the ontology O and its metamodeling-enabled version Ometa

from Table 3. We find that HouseMouse � Prey is a consequence of O, whence Ometa

entails subClassOf(oHouseMouse, oPrey). In Ometa we can further make statements such
as ExtinctSpecies(oHaastsEagle) where ExtinctSpecies is a metaclass used to state
that Haast’s eagle is an extinct species. If we then add the axiom ExtinctSpecies �
∀type−.⊥ to say that extinct species cannot have instances, an OWL 2 DL reasoner can
deduce GoldenEagle(harry).

In the following, we will illustrate the benefits of our approach on the basis of a
more concrete application scenario: the evaluation of ontologies with respect to the
OntoClean methodology.

4 OntoClean

This section gives a brief introduction to OntoClean (for a more thorough description
refer, e.g., to Guarino and Welty [4]), a methodology developed in order to ensure the
correctness of taxonomies with respect to the philosophical principles of Formal Ontol-
ogy. Central to OntoClean are the notions of rigidity, unity, dependence and identity,

Integrated Metamodeling and Diagnosis in OWL 2 265

commonly known as metaproperties. Note that in the OntoClean terminology, proper-
ties are what is called classes in OWL. Metaproperties are, therefore, “properties of
properties.” Consequently, OntoClean can be considered a very natural application of
metamodeling in ontology engineering and evaluation.

In the following, we will explain the process of applying the OntoClean methodology
by making reference to the OntoClean example ontology introduced by Guarino and
Welty ([4], Figure 1). This ontology, which consists of 22 classes such as Apple, Food,
Person or Agent, illustrates some of the most frequent modeling errors in terms of
OntoClean.

The process of applying the OntoClean methodology to a given ontology consists of
two essential phases:

Phase 1: First, every single class of the ontology to be evaluated or redesigned is
tagged with respect to the aforementioned metaproperties. This way, every class
gets assigned a particular tagging such as +R-D+I+U, denoting the fact that this
class is rigid (+R), non-dependent (-D), a sortal (+I, i.e. it carries an identity crite-
rion) and that it has unity (+U).

Phase 2: In the second phase, after the metaproperty tagging has been completed, all
the subsumption relationships of the ontology are checked according to a prede-
fined set of OntoClean constraints. Any violation of such a constraint potentially
indicates a fundamental misconceptualization in the subsumption hierarchy.

Hence, after performing the two steps, the result is a tagged ontology and a (potentially
empty) list of misconceptualizations by whose means an ontology engineer can “clean”
the ontology. In a nutshell, the key idea underlying OntoClean is to constrain the pos-
sible taxonomic relationships by disallowing subsumption relations between specific
combinations of tagged classes. Welty et al. [13] show that analyzing and modifying
an ontology according to the quality criteria defined by OntoClean can have a positive
impact on the performance of an ontology-based application.

Metaproperties. As mentioned above, the original version of OntoClean is based on
four metaproperties: rigidity, unity, identity and dependence – abbreviated as R, U, I
and D, respectively. For brevity, we focus on rigidity omitting detailed explanations of
the other metaproperties and referring the interested reader to, e.g., [4].

Rigidity is based on the notion of essence. A class is essential for an individual iff
the individual is necessarily a member of this class, in all worlds and at all times. Iff a
class is essential to all of its individuals, the class is called rigid and is tagged with +R.
Non-rigid classes, i.e., classes which are not essential to some of their individuals, are
tagged with -R. An anti-rigid class is one that is not essential to all of its individuals
and thus tagged with ~R. Hence, every anti-rigid class is also a non-rigid class. Apple is
a typical example for a rigid class, because the property of being an apple is essential
to all of its individuals, or to put it differently: an apple is necessarily an apple and
cannot stop being one. In this respect, Apple differs from classes such as Food which is
mostly considered anti-rigid. Note, however, that the tagging of Food crucially hinges
on the intended semantics of this class. Welty [14] nicely illustrates this by an example:
If Food is the class of all things edible by humans then it should be tagged as rigid (+R).
If, in contrast, Food is a role that can be played by any individual while it is being eaten,

266 B. Glimm, S. Rudolph, and J. Völker

we must consider it anti-rigid (~R). The latter sense was assumed by Guarino and Welty
when they designed the aforementioned example ontology.

Constraints. The following formulation of the OntoClean constraints is literally taken
from Welty [14]. We adhere to this version rather than to the more stringent formulation
provided by Guarino and Welty [4] as it directly maps to the axiomatization in the
original OntoClean metaontology (cf. Section 5).

1. A rigid class (+R) cannot be a subclass of an anti-rigid class (~R).
2. A class with unity (+U) cannot be a subclass of a class with anti-unity (~U).
3. All subclasses of a sortal are sortals (+I).
4. All subclasses of a dependent class are dependent (+D).

What seems a matter of merely philosophical consideration can in fact have practi-
cal implications. Imagine, for instance, that a rigid class Apple is subsumed by Food
which is tagged as anti-rigid. Thus, Apple(a) would imply Food(a). It might also appear
reasonable to model the class Poisoned as disjoint to Food. But now, as the ontology
evolves and further class instantiations are added, we could state, for example, that a has
been poisoned (formally, Poisoned(a)) – and the ontology turns logically inconsistent.

5 OWL-Based Constraint Checking

Despite the fact that OntoClean is the single most well-known and theoretically founded
methodology for evaluating the formal correctness of subsumption hierarchies, there
has always been a lot of criticism regarding the high costs for tagging and constraint
checking. To address this criticism and to make the OntoClean methodology more eas-
ily applicable in practical ontology engineering settings, Welty suggested an OWL-
based formalization of metaproperty assignments and constraints [14], which leverages
logical inconsistencies as indicators of constraint violations. We discuss this framework
next and then introduce our novel metamodeling in this setting.

5.1 The Original OntoClean Metaontology

Welty’s formalization, occasionally referred to as OntOWLClean, axiomatizes the
aforementioned OntoClean constraints as domain-range restrictions on a transitive ob-
ject property subClassOf, which serves as a replacement for the normal subclass rela-
tion (�) and enables a reification of every subsumption relationship in a given domain
ontology. For example, instead of writing Apple � Food to state that Apple is a sub-
class of Food, we write subClassOf(oApple, oFood) introducing fresh individuals for the
classes (e.g., oApple for Apple). Metaproperty assignments then become class member-
ship assertions, e.g., we write RigidClass(oApple). Similarly, we can state that oApple

is a class by adding the assertion Class(oApple). Note that in order to have true meta-
modeling one would have to state that subClassOf is the same as � and that Class
really implies that its instances are classes. This is possible in OWL Full, but not in
OWL DL. Since the reasoning support for OWL Full is limited, the axioms required
to equate subClassOf and Class with their OWL modeling constructs are available

Integrated Metamodeling and Diagnosis in OWL 2 267

Table 4. Fragment of the OntoClean metaontology [14]

RigidClass � Class

NonRigidClass � Class

AntiRigidClass � NonRigidClass

Class ≡ (NonRigidClass RigidClass)�
(NonDependentClass DependentClass)�
(SortalClass NonSortalClass)�
(UnityClass NonUnityClass)

NonRigidClass � RigidClass � ⊥
RigidClass � ∀subClassOf.¬AntiRigidClass

...

as a complementary OWL Full ontology, which is kept separate from the core of the
OntOWLClean ontology.4 Table 4 shows an excerpt from the OWL DL part of the on-
tology focussing on the axioms for rigidity.

Note that if we now state that Apple is rigid and Food is anti-rigid the metaontology
becomes inconsistent as witnessed by the following set of axioms:

RigidClass � ∀subClassOf.¬AntiRigidClass RigidClass(oApple)
subClassOf(oApple, oFood) AntiRigidClass(oFood)

OntOWLClean has been a great step forward when it comes to the practical applicabil-
ity of the OntoClean methodology, because it enables the use of standard DL reason-
ing for detecting constraint violations (see also [11]). However, the axiomatization of
metaproperty assignments and constraints suggested by Welty has at least two draw-
backs which can be overcome now that OWL 2 is available:

First, while syntactically metaproperty assignments and constraints could be part
of the same ontology as classes and subsumption axioms, there is no semantic link
between a class and its corresponding individual (e.g., the class Apple and the individual
oApple being a member of RigidClass in the metaontology). Hence without the OWL
Full part of the axiomatization, OntOWLClean does not allow for integrated reasoning
over classes and their metaproperties. Furthermore, any changes to the subsumption
hierarchy (in case of constraint violations, for example) involve modifications of two
logically unrelated taxonomies, possibly maintained in two different files.

Second, the computational costs of determining the reasons for logical inconsistencies
and thus constraint violations can be very high. The typical way of debugging an incon-
sistent ontology is to compute minimal subsets of the ontological axioms, which preserve
the inconsistency. These subsets are called explanations, justifications, or minAs. In or-
der to compute the explanations, axioms are removed from the original ontology in a
step by step manner, while after each removal a reasoner is used to check whether the
remaining set of axioms is still inconsistent. This process is repeated until no further
axiom can be removed without turning the ontology consistent. Users presented with

4 Note that the last axiom in Table 4 is specified as an equivalence in http://www.ontoclean.
org/ontoclean-dl-v1.owl. We assumed this to be a mistake as equivalence is not used for
modeling any of the constraints in Welty’s paper [14], and corrected the ontology accordingly.

http://www.ontoclean.org/ontoclean-dl-v1.owl
http://www.ontoclean.org/ontoclean-dl-v1.owl

268 B. Glimm, S. Rudolph, and J. Völker

Table 5. An explanation for the conflict caused by Apple being rigid and Food being anti-rigid

Apple � Food
RigidClass � ∀subClassOf.(¬AntiRigidClass)
∃type.� � Inst

Apple ≡ ∃type.{oApple}
Food ≡ ∃type.{oFood}

Class � ∀type−.∃type.{oFood} ≡ Class � ∃subClassOf.{oFood}
RigidClass(oApple)
AntiRigidClass(oFood)
Class(oApple)

the explanations can then decide how to fix the ontology. In particular computing all
such explanations is a computationally hard task. Due to the high costs, only limited
tool support for inconsistency diagnosis in OWL is available.

5.2 Towards OntOWL2Clean

In order to address the first issue, we extend Ometa from Table 3 by a set of classes and
axioms which enable us to express all of the OntoClean metaproperty assignments and
constraints. In particular, we have the following axioms for the constraints:

RigidClass � ∀subClassOf.¬AntiRigidClass (C1)
UnityClass � ∀subClassOf.¬AntiUnityClass (C2)

SortalClass � ∀subClassOf−.SortalClass (C3)
DependentClass � ∀subClassOf−.DependentClass (C4)

We can now add the OntoClean taggings to the classes making use of the class individ-
uals in Ometa. For example, since we assume Food to be anti-rigid while Apple is rigid,
we add the following facts to Ometa:

AntiRigidClass(oFood) RigidClass(oApple)

Note that we do not have to add subClassOf(oApple, oFood) explicitly since the
subClassOf role between oApple and oFood is implied in Ometa. Since constraint (C1)
prevents an anti-rigid class from being a subclass of a rigid one, the ontology becomes
inconsistent, witnessed by the explanation shown in Table 5.

One should be aware that adding constraints might have a “backward” impact on
the semantics of the “original part” of the ontology in that they could rule out certain
models thereby leading to additional consequences. To see this, assume our ontology
has been corrected by removing Apple � Food. Axiom (C1) still enforces that Apple
must not be a subclass of Food and we have as a consequence that the extension of
Apple must be nonempty in every model. This is because the empty set is trivially a
subset of every set and, in particular, a subset of the extension of Food. Depending on
the concrete scenario, these ramifications might be unwanted or intended. They can be
avoided by using the approach based on marker predicates described next.

Integrated Metamodeling and Diagnosis in OWL 2 269

6 Marker Predicates for Pinpointing Constraint Violations

The above method implements Welty’s approach of specifying the constraints in a way
that their violation results in an inconsistent knowledge base. In order to actually find
and identify the reasons for these inconsistencies, diagnosis techniques [7,5] have to be
employed. Typically these diagnosis techniques are rather costly as they require numer-
ous calls to a reasoning system.

We argue that in certain cases, an alternative approach can be employed, wherein
violations of OntoClean constraints do not cause the ontology to become inconsistent
but lead to the creation of marker classes or roles that indicate which ontology elements
are involved in a constraint violation. This alternative method can be combined with the
original two-ontology approach as well as with our metamodeling technique.

Consider a constraint that prohibits C � D whenever C is endowed with
the metaproperty T1 and D is endowed with T2. By specifying the axiom T1 �
∀subClassOf.¬T2, we would turn an ontology inconsistent whenever it entails T1(oC),
T2(oD), and subClassOf(oC, oD). Consequently, diagnosis would be required to lo-
cate the violated constraint. Instead, we propose to establish an auxiliary marker role
conflictsWith between oC and oD in this case. Thereby, all conflicts can be read-
ily spotted by simply retrieving all entailed conflictsWith role memberships. This
wanted correspondence can be logically enforced in OWL 2 using an encoding intro-
duced independently in [8] and [2] which makes use of additional auxiliary roles t1, t2
as well as some of the advanced features of SROIQ:

T1 � ∃t1.Self T2 � ∃t2.Self t1 ◦ subClassOf ◦ t2 � conflictsWith

In order to axiomatize the OntoClean constraints, we introduce a fresh role mp for each
OntoClean metaproperty mpClass (e.g., rigid for RigidClass) and an axiom

mpClass � ∃mp.Self (M1)

where mp is the fresh role associated with mpClass. We can then axiomatize the four
OntoClean constraints (C1) to (C4) with the following role chain axioms, where we use
one marker per conflict type:

rigid ◦ subClassOf ◦ antiRigid � rigidityConflict (M2)

unity ◦ subClassOf ◦ antiUnity � unityConflict (M3)

nonDependent ◦ subClassOf ◦ dependent � dependencyConflict (M4)

nonSortal ◦ subClassOf ◦ sortal � sortalConflict (M5)

For each role r on the right-hand side of Axioms (M2) to (M5)

r � conflictsWith (M6)

Note that for (C3) and (C4) we use an equivalent formulation which is better suited
for using the marker properties. In order to allow for retrieving all conflicts at once, we
further introduce conflictsWith as a superrole of all the roles on the right-hand side
of the above axioms.

270 B. Glimm, S. Rudolph, and J. Völker

7 Evaluation

We used the OntoClean example ontology [4] to test the different approaches. This
leaves us with four settings: we first test Welty’s metamodeling (see Section 5) and
our metamodeling (see Section 3) with Explanations for discovering the modeling mis-
takes in settings Ex1 and Ex2, then we test the two approaches with the new Marker
predicates (see Section 6) in settings Ma1 and Ma2.

Ex1 Our baseline is the metamodeling part of the example OntoClean ontology, i.e.,
we use the metamodeling as proposed by Welty. It is worth noting that we use the
weakened OWL DL version of the original OWL Full meta ontology to be able to
use OWL DL reasoners. For each axiom, e.g., Apple � Food in the original ontol-
ogy, the meta version contains an assertion subClassOf(oApple, oFood) with oApple

and oFood individuals and subClassOf a role. Furthermore, the meta ontology
contains the taggings such as RigidClass(oApple) and the OntoClean constraints
from Axioms (C1) to (C4).

Ex2 The second ontology is the metamodeling version of the OntoClean ontology
according to our novel metamodeling technique. Since we have no separation
between the metamodeling part and the original axioms, the ontology contains
assertions of either kind: adjusted axioms from the source ontology as well as the
taggings and the OntoClean constraints from Axioms (C1) to (C4).

Ma1 In this setting, we use the marker predicates to manifest modeling errors instead
of inconsistencies. The ontology uses Welty’s metamodeling as in setting Ex1
and contains the taggings, but instead of causing inconsistencies by adding Ax-
ioms (C1) to (C4), we use marker predicates as described in Section 6 and add
Axioms (M1) to (M6).

Ma2 The last setting uses our novel metamodeling approach in combination with the
marker predicates, i.e., we use an ontology as in setting Ex2, but instead of causing
inconsistencies by adding Axioms (C1) to (C4), we again use marker predicates
and add Axioms (M1) to (M6).

In order to find all potential modeling errors in the settings Ex1 and Ex2, we use the
explanation framework by Horridge et al. [5] and we generate all minimal subsets O′
of the ontology such that O′ is inconsistent. For the settings Ma1 and Ma2, we retrieve
instances of the roles that indicate a conflict. All tests have been performed using the
OWL 2 DL reasoner HermiT. The ontologies, HermiT 1.2.4, the obtained results, and
the program used to produce the results are available online.5 The tests have been per-
formed on a MacBook Air with Java 1.6, assigning 1GB memory to Java.

Both explanation approaches ran out of memory after 2.5 days, generating 51 ex-
planations for setting Ex1 and 46 explanations for setting Ex2, making the approach
not really feasible in practice. Although the first explanations are generated quickly, the
later ones can take significant time and memory. We repeated the tests of setting Ex1
and Ex2 on a node of the Oxford Supercomputing Centre, assigning 24GB of main
memory to Java. We terminated the programs after one week, getting 53 explanations
for setting Ex1 and 66 for setting Ex2. By analyzing the ontology manually, we find that

5 http://www.hermit-reasoner.com/2010/metamodeling/metamodeling.zip

http://www.hermit-reasoner.com/2010/metamodeling/metamodeling.zip

Integrated Metamodeling and Diagnosis in OWL 2 271

Table 6. Time in seconds for retrieving instances of the marker properties

conflict
setting rigidity unity dependency sortal all
Ma1 < 1 < 1 < 1 < 1 < 1
Ma2 21 355 20 56 452

there should be 53 explanations for setting Ex1 and we assume that the code attempted
to find more explanations without success.

There are more explanations for the new metamodeling approach since an explana-
tion might contain the meta axioms for the involved classes only partially. In such a
case, the explanation contains additional axioms that are not directly related to the con-
flict, but which contain enough meta axioms to cause the clash for the only partially
axiomatized real inconsistency cause.

The novel marker approaches (Ma1 and Ma2) both find 40 conflicts: 10 rigidity con-
flicts, 16 unity conflicts, 12 dependency conflicts, and 2 identity conflicts. The timings
are given in Table 6 and were averaged over 3 runs of the reasoner. It can be observed
that the times for our new metamodeling approach are significantly slower than the ones
for the original approach. This is a consequence of the more complex axiomatization
that is required in order to achieve real metamodeling in OWL 2 DL, whereas in set-
ting Ma1, the reasoner only works on a part of the ontology that suffices to detect these
conflicts. Full metamodeling in the settings Ex1 and Ma1 requires an OWL Full rea-
soner and, as Welty states [14], a satisfactory implementation that can handle the full
meta ontology is not (yet) available.

The number of marker conflicts is lower than the number of explanations because
for several indirect subclass relationships, there are different ways of deriving the sub-
sumption. E.g., the ontology contains:

Organisation � SocialEntity SocialEntity �Agent

Organisation � LegalAgent LegalAgent �Agent

In both cases, we have that Organisation is a subclass of Agent. Since we further have
that Organisation is a rigid class, while Agent is anti-rigid, we have one explanation
using the first set of subclass axioms and another explanation using the second set of
subclass axioms, whereas the marker approach does not distinguish the two cases.

8 Conclusion

We have presented a novel approach to ontology-inherent metamodeling for classes in
OWL based on an axiomatization of class reification. This approach allows for associ-
ating information to classes and asserting constraints on the subclass hierarchy in a way
that allows for the usage of standard OWL reasoning tools. We demonstrated our ap-
proach by applying it to the OntoClean methodology. We found that the benefits of our
approach in terms of maintenance and tight logical integration may come at the cost of
runtime performance. On the other hand, we showed that performance can be increased
by several orders of magnitude if the explanation-based diagnosis originally proposed

272 B. Glimm, S. Rudolph, and J. Völker

for OntoClean is substituted by a novel consistency-preserving approach working with
marker predicates that indicate potential modeling flaws in the ontology. The runtime
improvements thus obtained outweigh the metamodeling-induced slowdown by far.

Acknowledgements. Birte Glimm is funded by the EPSRC project HermiT: Reasoning
with Large Ontologies. Sebastian Rudolph is supported by the German Research Foun-
dation (DFG) under the ExpresST project. Johanna Völker is financed by a Margarete-
von-Wrangell scholarship of the European Social Fund (ESF) and the Ministry of
Science, Research and the Arts Baden-Württemberg. The evaluation has been per-
formed on computers of the Oxford Supercomputing Centre.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press, Cambridge (2007)

2. Gasse, F., Sattler, U., Haarslev, V.: Rewriting rules into SROIQ axioms. In: Poster at 21st
International Workshop on Description Logics, DL (2008)

3. Glimm, B., Rudolph, S., Völker, J.: Integrated metamodeling and diagnosis in owl 2. Tech.
Rep. 3006, Institut AIFB, KIT, Karlsruhe (September 2010), http://www.aifb.kit.edu/
web/Techreport3006

4. Guarino, N., Welty, C.A.: An Overview of OntoClean. In: International Handbook on Infor-
mation Systems, 2nd edn., pp. 201–220. Springer, Heidelberg (2009)

5. Horridge, M., Parsia, B., Sattler, U.: Explaining inconsistencies in OWL ontologies. In:
Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 124–137. Springer, Hei-
delberg (2009)

6. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc. 10th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 57–67.
AAAI Press, Menlo Park (2006)

7. Ji, Q., Haase, P., Qi, G., Hitzler, P., Stadtmüller, S.: RaDON – Repair and diagnosis in on-
tology networks. In: Proceedings of the European Semantic Web Conference (ESWC), pp.
863–867. Springer, Heidelberg (2009)

8. Krötzsch, M., Rudolph, S., Hitzler, P.: Description logic rules. In: Ghallab, M., Spyropou-
los, C.D., Fakotakis, N., Avouris, N.M. (eds.) ECAI. Frontiers in Artificial Intelligence and
Applications, vol. 178, pp. 80–84. IOS Press, Amsterdam (2008)

9. Motik, B.: On the properties of metamodeling in OWL. Journal of Logic and Computa-
tion 17(4), 617–637 (2007)

10. Tran, T., Haase, P., Motik, B., Grau, B.C., Horrocks, I.: Metalevel information in ontology-
based applications. In: Fox, D., Gomes, C.P. (eds.) AAAI, pp. 1237–1242. AAAI Press,
Menlo Park (2008)

11. Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: AEON – An approach to the automatic evalu-
ation of ontologies. Journal of Applied Ontology 3(1-2), 41–62 (2008)

12. Vrandečić, D.: Ontology Evaluation. In: International Handbook on Information Systems,
2nd edn., pp. 293–313. Springer, Heidelberg (2009)

13. Welty, C., Mahindru, R., Chu-Carroll, J.: Evaluating ontology cleaning. In: McGuinness,
D.L., Ferguson, G. (eds.) Proc. 19th National Conf. on AI (AAAI) and 16th Conf. Innovative
Applications of AI (IAAI). MIT Press, Cambridge (July 2004)

14. Welty, C.: OntOWLClean: Cleaning OWL ontologies with OWL. In: Bennet, B., Fellbaum,
C. (eds.) Proceedings of Formal Ontologies in Information Systems (FOIS), pp. 347–359.
IOS Press, Amsterdam (2006)

http://www.aifb.kit.edu/web/Techreport3006
http://www.aifb.kit.edu/web/Techreport3006

Semantic Recognition of Ontology Refactoring

Gerd Gröner, Fernando Silva Parreiras, and Steffen Staab

WeST — Institute for Web Science and Technologies

University of Koblenz-Landau

{groener,parreiras,staab}@uni-koblenz.de

Abstract. Ontologies are used for sharing information and are often col-

laboratively developed. They are adapted for different applications and

domains resulting in multiple versions of an ontology that are caused

by changes and refactorings. Quite often, ontology versions (or parts of

them) are syntactical very different but semantically equivalent. While

there is existing work on detecting syntactical and structural changes

in ontologies, there is still a need in analyzing and recognizing ontology

changes and refactorings by a semantically comparison of ontology ver-

sions. In our approach, we start with a classification of model refactorings

found in software engineering for identifying such refactorings in OWL

ontologies using DL reasoning to recognize these refactorings.

1 Introduction

Ontologies share common knowledge and are often developed in distributed en-
vironments. They are combined, extended and reused by other users and knowl-
edge engineers in different applications. In order to support reuse of existing
ontologies, remodeling and changes are unavoidable and lead to different ontol-
ogy versions. Quite often, ontology engineers have to compare different versions
and analyze or recognize changes. In order to improve and ease the understand-
ability of changes, it is more beneficial for an engineer to view a more abstract
and high-level change description instead of a large number of changed axioms
(elementary changes) or ontology version logs like in [1]. Combinations of ele-
mentary syntactic changes into more intuitive change patterns are described as
refactorings [2] or as composite changes [3].

However, the recognition of refactorings (or changes in general) is difficult due
to the variety of possible changes that may be applied to an ontology. Especially
if the comparison of different ontology versions is not only realized by a pure
syntactical comparison, e.g. a comparison of triples of an ontology, but rather
by a semantic comparison of entities in an ontology and their structure.

The need to detect high-level changes is already stated in [1,4,5]. High-level
understanding of changes provides a foundation for further engineering support
like visualization of changes and extended pinpointing focusing on entailments
of refactorings rather than individual axiom changes. In order to tackle the
described problem, the following issues need to be thoroughly investigated: (i) A
high-level categorization of ontology changes like the well established refactoring

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 273–288, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

274 G. Gröner, F. Silva Parreiras, and S. Staab

patterns in software engineering. (ii) An automatic recognition of refactorings
for OWL ontologies that goes beyond mere syntactic comparisons.

The recognition of refactorings is a challenging task due to the variety of
possible changes and insufficient means for a semantic comparison of ontology
versions. In particular, we identify the issue that we require a semantic com-
parison of different versions of classes rather than their syntactical comparison.
Semantic comparison allows for taking available background knowledge into ac-
count while abstracting from elementary changes.

There are different approaches that detect ontology changes by a syntactical
comparison like in [4,6] or the combination of adding and deleting RDF-triples
to high-level changes in [5]. A structural comparison using matching algorithms
is considered in [7]. More related to our research is the work on version reasoning
for ontologies in [8,9]. However, their focus is on integrity checking, entailment
propagation between versions and consistency checking of ontology mappings.

In this paper, we tackle the problem of refactoring recognition using descrip-
tion logics (DL) reasoning in order to semantically compare different versions of
an OWL DL ontology. We apply the semantic comparison in heuristic algorithms
to recognize refactoring patterns. Extrapolating from [2,3] we have defined dif-
ferent refactoring patterns of how OWL ontologies may evolve.

We organize this paper as follows. Sect. 2 motivates the problem of schema
changes and describes shortcomings of existing approaches. In Sect. 3, we give
an overview of the considered refactoring patterns and describe in detail two of
them. The comparison of ontology versions and the recognition of the refactoring
patterns using DL reasoning is demonstrated in Sect. 4 and 5. The evaluation is
given in Sect. 6. We analyze related work in Sect. 7, followed by the conclusion.

2 An Ontology Refactoring Scenario

In order to clarify the problem we tackle, we start with a motivating example that
highlights the problem followed by some argumentation in favor of a semantic
version comparison for recognizing refactorings.

2.1 Motivating Example

In this section, we consider an ontology change from version V to V ′ including
multiple elementary changes. An example is displayed in Fig. 1 and 2. Snippets of
the corresponding ontology versions are depicted below. In order to highlight the
changed axioms in the example, we mark axioms that are deleted from version
V with (d) and axioms that are added are marked with (a) at the end of the line.
Person, Employee, Project, ContactData and Department are OWL classes,
Employee is a subclass of Person. The properties name, SSN , telephone and
address are datatype properties with range string and project, department and
contact are object properties.

We recognize three refactorings from version V to V ′. First: the pattern Move
Of Property moves a datatype property restriction SSN from class Employee to

Semantic Recognition of Ontology Refactoring 275

Employee Person

Employee ∃ project.P roject (d)

Employee ∃ department.Department

Employee ∃=1 SSN.string (d)

Person ∃ name.string

Person ∃ address.string (d)

Person ∃ telephone.string (d)

Fig. 1. Ontology Version V

Employee Person

Employee ∃ department.Department

Employee ∃≥1SSN.string (a)

Person ∃ name.string

Person ∃≤1 SSN.string (a)

Person ∃ contact.ContactData (a)

ContactData ∃ telephone.string (a)

ContactData ∃ address.string (a)

Department ∃ project.P roject (a)

Fig. 2. Ontology Version V ′

its superclass Person. In version V there are implicitly two cardinality restric-
tions in the property restriction ∃=1 SSN.string. This is semantically equiva-
lent with the restrictions ∃≤1 SSN.string and ∃≥1 SSN.string. The datatype
property restriction with the maximal cardinality restriction is moved to the
superclass Person. Second: Extract Class moves the datatype properties address
and telephone to a newly created class ContactData that does not contain fur-
ther properties. In version V ′ the class Person has a further object property
restriction on contact with range ContactData. Third: Move Of Property moves
an object property project from the class Employee to the class Department.

As demonstrated in the ontology excerpt below the diagrams, the refac-
torings are syntactically represented by a number of added and deleted ax-
ioms from version V to V ′. E.g., the movement of the property SSN from
Employee to its superclass is represented in the ontology by the deleted axiom
Employee � ∃=1 SSN.string and the added axioms Person � ∃≤1 SSN.string
and Employee � ∃≥1 SSN.string. In order to improve the understanding and
recognition of changes between ontology versions, we argue that it is more in-
tuitive for the ontology engineer to characterize changes at a higher abstraction
level like by the recognition of refactorings instead of indicating a large collec-
tion of added and deleted axioms. For instance, consider the second mentioned
refactoring which extracts the datatype properties address and telephone to the
newly created class ContactData. Obviously, such a high-level change charac-
terization is more intuitive for an ontology engineer than a listing of changed
axioms. In this refactoring at least two axioms are deleted and three axioms are
added to the ontology.

276 G. Gröner, F. Silva Parreiras, and S. Staab

2.2 Discussion of Shortcomings

We already argued for the need of a semantic comparison of the versions rather
than a syntactic or a purely structural comparison. This is mainly due to the
various possibilities of defining classes in OWL compared to RDF(S) like class
definitions using intersection, union or property restrictions. We give two exam-
ples of shortcomings for syntactical and structural comparisons.

Consider again the third refactoring (Move Of Property) from Fig. 1 and 2.
Breaking down this refactoring to axiom changes, we would delete the ax-
iom Employee � ∃ project.Project and add the axiom Department �
∃ project.Project. Now, we slightly extend this refactoring. Suppose there are
two subclasses of Department, InternalDepartment and ExternalDepartment
and the property restriction ∃ project.Project is moved to both subclasses
InternalDepartment and ExternalDepartment rather than to the superclass
Department. In this case, the ontology contains two new axioms and one is
still removed. If there is a further axiom in the ontology describing that each
department is either an internal or an external department (Department ≡
InternalDepartment � ExternalDepartment) and there is no other depart-
ment, we can conclude that after the refactoring project is still a property of
Department. Hence, we identify a refactoring that moves a property (project)
from a class to another class (Department) but without changing an axiom that
contains the class itself.

As a second example, we demonstrate shortcomings of structural (and frame-
based) comparisons which compare classes and their connections, i.e. domain
and range of properties. Consider again the move of the datatype property SSN
with maximal cardinality restriction from the class Employee to Person. Here,
we compare the class Employee in both versions. The cardinality restriction that
restricts the class Employee to exactly one SSN is explicitly stated in version V .
Semantically, in version V ′ the restriction for class Employee is exactly the same
due to inheritance and the conjunction of the minimal and maximal restrictions
which also results in exactly one SSN property. This equivalence of the class
Employee in both versions is not detected by a purely structural comparison.

3 Modeling and Categorizing Refactoring Patterns

A first step towards the recognition of refactoring patterns is the categoriza-
tion of well-known patterns, adopted from [2] and also presented as composite
changes for ontology evolution in RDF(S) [3]. Hereafter, we demonstrate two
such refactoring patterns in detail.

3.1 Modeling Foundations and Assumptions

For a more compact notation, we describe a class in version V with C and we
use C′ to refer to this class in version V ′. The class of the range of an object
property restriction is called the referenced class. A refactoring pattern is an

Semantic Recognition of Ontology Refactoring 277

abstract description of an ontology change or evolution that is applied to realize
a certain ontology remodeling. The kind of remodeling is mainly a collection of
best practise ontology remodeling steps. A refactoring is an instantiation of a
refactoring pattern, i.e. a concrete change of an ontology.

Our recognition approach works correctly for a slightly restricted subset of
OWL DL where we add two restrictions (Def. 1). The second restriction is also
known from OWL Lite (cf. [10]). Both restrictions are necessary in order to
avoid exponential computation complexity or even infinite computations in the
proposed algorithms that are used in Sect. 4.2 like the ExtractReferenceClasses-
Algorithm, e.g., if there are further object property restrictions that appear in
the range of another object property restriction.

Definition 1 (Language Restrictions). We restrict OWL DL (SHOIN (D))
by the following additional conditions:

1. In each property restriction ∃p.E and ∀p.E, E is a named class. The same
condition is also required for cardinality restrictions.

2. Individuals are not allowed in class definitions, i.e. no oneOf constructor.

3.2 Overview of Refactoring Pattern

We start with an overview of the analyzed refactoring patterns and describe how
they change an ontology (cf. Table 1). They are adopted from [2,3].

The first group of refactorings (No. 1-6) extract or merge classes and move
properties to or from the extracted or deleted class. Extract Subclass and Extract
Superclass are specializations of Extract Class. The refactorings in the second
group (No. 7-9) move properties between existing classes. In No. 8 and 9, the
properties are moved within a class hierarchy. Finally, the third group collects
refactorings that add, delete or modify object property restrictions. Either the
inverse object property is added or removed to a class description (No. 10, 11)
or in No. 12 cardinality restrictions are modified.

3.3 Detailed Refactoring Descriptions

In this subsection, we give detailed descriptions of two refactoring patterns
(Extract Class and Move of Property) and example representations in OWL in
order to substantiate our approach. The recognition algorithms and the results
for these two examples are given later on in Sect. 4. A comprehensive descrip-
tion of the other considered patterns from Table 1 and the recognition of them
is presented in [11]. A refactoring pattern consists of the following elements:

1. Each pattern has a Name (cf. pattern overview in Table 1).
2. The Problem Description characterizes a modeling structure of an ontology

and indicates when this pattern is applicable.
3. The Solution describes how the problem is (or could be) solved. This contains

the required remodeling steps in order to realize the refactoring.
4. The Example demonstrates the technical details of this refactoring.

278 G. Gröner, F. Silva Parreiras, and S. Staab

Table 1. Analyzed Refactoring Patterns

No. Pattern Name Description

1. Extract Class Properties of a class are extracted to a newly created class.

2. Extract Subclass Properties of a class are extracted to a newly created subclass.

3. Extract Superclass Properties of a class are extracted to a newly created superclass.

4. Collapse Hierarchy A subclass and its superclass are merged to one class.

5. Extract Hierarchy A class is divided into a class hierarchy. Properties are

extracted to the newly created sub- and superclasses.

6. Inline Class A class that is referenced by another

class is deleted and all its properties are

moved to the class that had referenced this class.

7. Move Of Property At least one property is moved from a class

to a referenced class.

8. Pull-Up Property At least one property is moved from a class to its superclass.

9. Push-Down Property At least one property is moved from a class to its subclass.

10. Unidirectional An object property restriction is added to the target

to bidirectional class of an existing object property restriction,

Reference where the object property is the inverse property.

11. Bidirectional to The inverse property restriction of an object property

unidirectional Ref. restriction is removed.

12. Cardinality The cardinality restriction of a property

Change restriction is changed.

Extract Class Refactoring Pattern. An example of the Extract Class refac-
toring and the corresponding DL representation is already given in the running
example from Fig. 1 and 2 in Sect. 2.

Problem Description. In version V , there is a named class C with property
restrictions containing the properties p1, . . . , pn. An ontology engineer identifies
some of the properties pi1 , . . . , pin ({pi1 , . . . , pin} ⊆ {p1, . . . , pn}) that are related
to this class but should be grouped together and extracted into a new class D.
Finally, a property restriction from class C to the new class D is needed.

Solution. A new class D is created and all the selected property restrictions on
pi1 , . . . , pin are moved from C to D. An axiom for the object property restriction
on p to the new class D is added, e.g. the axiom C � ∃ p.D.

Example. In the example of Fig. 1 and 2, the engineer identifies the property
restrictions containing the properties address and telephone of the class Person
in V that should be extracted to a new class. The new class ContactData is cre-
ated in version V ′ and the identified property restrictions are added by adding
axioms to the new class like ContactData � ∃ address.string. The correspond-
ing axioms of the moved properties are removed from the class definition of the
class Person. Finally, the object property restriction to the new class is added
to Person, e.g., by the new axiom Person � ∃ contact.ContactData.

Move of Property Refactoring Pattern. An example of the Move Of Prop-
erty refactoring and the corresponding description of the ontologies in OWL are
already described in the running example of Sect. 2 (Fig. 1 and 2).

Semantic Recognition of Ontology Refactoring 279

Problem Description. A named class C has a property restriction on the property
p and on the object property r, with the named class D in the range of the
definition. The ontology engineer would like to move this property restriction
from the class C to the referenced class D.

Solution. The identified property restriction on the property p is moved to the
class D. The range of this moved property p is unchanged.

Example. In the example of Fig. 1 and 2, the property project should be moved
from the class Employee to Department. The class Department is already ref-
erenced by Employee with the object property department. In version V ′, the
corresponding axiom Employee � ∃project.Project is deleted and the axiom
Department � ∃project.Project is added to the ontology.

4 DL-Reasoning for Ontology Comparison

In this section, we describe the usage of DL reasoning in order to semantically
compare ontology versions. We distinguish between three types of comparisons:
(i) A syntactic comparison checks whether for a class or property in the ontology
V there is an entity with the same name in V ′. (ii) The structural comparison
compares classes and their structure, i.e. sub- and superclass relations and object
property restrictions of this class. Hence, a class with all ”connected” classes
is compared in both versions. (iii) In a semantic comparison, classes of both
versions are compared using subsumption checking, testing the equivalence, sub-
and superclass relations between a class by comparing the interpretations.

4.1 Combining Knowledge Bases

The first step towards a semantic version comparison (Sect. 4.2) is to allow
reasoning on two versions of an ontology, e.g., by checking class subsumption
of classes from two versions. This requires a renaming of classes that appear
in both versions with the same name, otherwise we can not compare them by
reasoning. Hence, we start with comparing the names of classes and properties
of both versions and rename them. We build a combined, additional knowledge
base that captures both, the original version V and the new version V ′. This
combined ontology is only a technical mean that is used in order to enable
a semantic comparison of classes that appear in both versions. The ontology
versions V and V ′ remain unchanged and the semantics given by both versions
is also not affected.

For each named class C that occurs in both versions V and V ′, we build the
combined knowledge base as follows: (i) The class C is renamed, e.g., C1 for the
class in version V and a class C2 for the class in version V ′. (ii) Both classes
C1 and C2 are subclasses of the superclass C. With this step, we guarantee that
C1 and C2 are still related to each other. C1 and C2 are not disjoint. (iii) In
every class expression (anonymous class) if Ci occurs as a class in the range of
a property restriction, the class Ci is replaced by its superclass C.

280 G. Gröner, F. Silva Parreiras, and S. Staab

4.2 Semantic Version Comparison

We distinguish between the name or label of a class (C) and the intensional
description of the class, i.e. the object and datatype properties that describe
the class. The extension of a class, i.e. the set of inferred instances of this class,
is denoted using semantic brackets [[C]]. A statement like [[C]] � A means the
subsumption C � A can be inferred.

We use Ĉ as a representation of the class C in a conjunctive normal form,
i.e. Ĉ ≡ C1 � . . . � Cn where ∀i = 1, . . . , n there is an axiom in the ontology
C � Ci and Ci is a class expression. Hence, C is subsumed by each Ci. In order
to ease the comparison of classes in two versions, we apply a normalization and
reduction of Ĉ resulting in a reduced conjunctive normal form C̃.

Definition 2 (Reduced Conjunctive Normal Form). A class definition in
conjunctive normal form Ĉ is reduced to C̃ by the following steps:

1. Nested conjunctions are flattened, i.e. A � (B � C) becomes A �B � C.
2. Negations are normalized such that in all negations ¬C, C is a named class.
3. If B � A can be inferred and A�B is a class expression in Ĉ, the expression

is replaced by A in C̃.

The main advantage of the normalization is a unique representation that can
be assumed for the class definition C which is exploited in the comparison later
on. This unique representation is ensured by Lemma 1. The reduced conjunctive
normal form C̃ is used in the comparison algorithms later on. We will see, that
we are only interested in class expressions Ci that are either property restrictions
or named superclasses.

Lemma 1 (Uniqueness of the Reduced Conjunctive Normal Form).
Ĉ ≡ C1�. . .�Cn is a class in conjunctive normal form and C̃ is the reduced con-
junctive normal form of the class C. For each class expression Ci (i = 1, . . . , n)
one of the following conditions hold: (i) Ci is a named class, (ii) Ci is a datatype
or object property restriction or (iii) Ci is a complex class definition that can
neither be a named superclass of C nor a property restriction.

Proof. It is easy to see whether Ci satisfies the first or second condition, i.e.
either Ci is a named class or a property restriction (including qualified property
restrictions). In the following, we prove the third condition, assumed that Ci

is neither a named class nor a property restriction. We consider the remaining
possible class constructors that are allowed according to the language restriction
from Def. 1. We show that either the third condition is satisfied or the expression
is not allowed after the reduction:

– if Ci ≡ ¬D then Ci cannot be a named superclass of C and (iii) is satisfied.
– Ci ≡ ¬∀R.D or Ci ≡ ¬∃R.D is not allowed after the reduction according

No. 2 in Def. 2
– Ci ≡ D � E is not allowed as restricted in No. 1 in Def. 2 (flattening).
– Ci ≡ D � E then Ci cannot be a named superclass of C. Trivial equivalent

representations like Ci ≡ D � E and E � D are not allowed (cf. No. 3). ��

Semantic Recognition of Ontology Refactoring 281

Algorithm: Diff(Class C, Ontology versions V , V ′)
Input: Class C and two ontology versions (V , V ′)
Output: Set of class expressions that subsume C′ in V ′ but not C in V

1: /* Compute the new additional class expressions in C′ of V ′ */

2: D := ∅
3: for each asserted class expression A of C̃′ (C̃′ A is asserted in V ′) do
4: if [[C]] � A in V then
5: D := D ∪ {A}
6: end if
7: end for
8: Return D.

Fig. 3. The Diff-Algorithm

We use two algorithms to compare versions V and V ′. The Diff-Algorithm
(Fig. 3) computes all class expressions that subsume the class C′ in version
V ′, but not C in V . To compute the difference1, the Diff-Algorithm is used
twice. Diff(C, V, V ′) returns all class expressions that subsume C′ in V ′. Class
expressions that subsume C of V are the result of Diff(C, V ′, V). C̃′ is a class
in reduced conjunctive normal form, the expression A is a conjunct that appears
in C̃′. We can extract the conjuncts due to the normal form representation. In
line 4, it is checked whether the subsumption is inferred in version V .

The Common-Algorithm in Fig. 4 extracts the common class expressions of
a class C in both versions. Therefore, the subsumption of the class expressions
from one version compared with the other is checked in both directions, i.e. D1
are class expressions from version V that are subsumed by V ′ and D1′ vice versa.
D is the intersection of D1 and D1′ and consists of all class expressions A from
C in both versions. As in the Diff-Algorithm, A is a conjunct of the reduced
conjunctive normal forms (C̃, C̃′).

We use the ExtractReferenceClasses-Algorithm from Fig. 5 to obtain the
classes that are referenced by a class, i.e. we are looking for the class in the range
of a property restriction in a class definition. The algorithm uses set operations
and returns a set of classes. However, in the considered refactoring patterns,
only one class is extracted. If multiple classes are extracted from one class, this
is considered as multiple refactorings in succession. The input class expression C
is an object property restriction like ∃contact.ContactData (line 2). The result
is the class that is referenced (R in line 4), e.g., ContactData.

The method getProperty returns the object property (object property name)
of the given object property restriction (class expression) C. Such methods are
provided by OWL-APIs like [13]. The referenced class can not directly be ex-
tracted from the expressions using API operations, since in general the expression
could be more complex than just a single OWL class as in our applications with
language restrictions. Therefore, we have to implement this algorithm. Methods

1 This definition is different from the stronger definition of DL difference of [12], where

the difference requires that the minuend is subsumed by the subtrahend.

282 G. Gröner, F. Silva Parreiras, and S. Staab

Algorithm: Common(Class C, Ontology versions V , V ′)
Input: Class C and two ontology versions (V , V ′)
Output: Set of class expressions that subsume C in V and C′ in V ′

1: /* Common class expressions D of C and C′ in both ontology versions V , V ′ */

2: /* D1 are class expressions of C in V subsumed in V ′, and D1′ are class expressions

of C′ in V ′ subsumed in V . */

3: D1 := ∅ and D1′ := ∅
4: for each asserted class expression A of C̃ (C̃ A is asserted in V) do
5: if [[C′]] A in V ′ then
6: D1 := D1 ∪ {A}
7: end if
8: end for
9: for each asserted class expression A of C̃′ (C̃′ A is asserted in V ′) do

10: if [[C]] A in V then
11: D1′ := D1′ ∪ {A}
12: end if
13: end for
14: Return D := D1 ∩ D1′.

Fig. 4. The Common-Algorithm

Algorithm: ExtractReferenceClasses(Class expression C, Ontology version V)

Input: Class expression C that is an object property restriction,

e.g., ∃contact.ContactData and an ontology version (V)

Output: Set of classes which are referenced by the object property restriction C
(e.g., the class ContactData)

1: D := ∅ /* for the referenced classes */

2: if IsObjectPropertyRestriction(C) then
3: for each class R of version V do
4: if [[C]] ∃ getProperty(C). R then
5: D := D ∪ {R}
6: end if
7: end for
8: end if
9: Return D.

Fig. 5. The ExtractReferenceClasses-Algorithm

like IsObjectPropertyRestriction or IsPropertyRestriction are provided by
APIs as well. For property restrictions with universal quantifiers, the referenced
class can be extracted likewise, but this is not required in our approach.

The Diff- and Common-Algorithm compute for a class C, the class expressions
Ci that subsume C. These class expressions are expressions Ci of the reduced
conjunctive normal form C̃. Hence, all class expressions of the result of the Diff-
and Common-Algorithm are in reduced conjunctive normal form too.

The focus of our approach is to recognize the introduced refactorings rather
than identifying arbitrary ontology changes. Hence, we can neglect some of the

Semantic Recognition of Ontology Refactoring 283

class expressions that are in the result of the Diff- and Common-Algorithm.
All the considered refactoring patterns only change sub- and superclass rela-
tions and property restrictions in class definitions. Therefore, the only relevant
class expressions in the result set of the Diff- and Common-Algorithm are those
class expressions that are named classes (representing superclasses) and property
restrictions. According to Lemma 1, we can easily determine whether a class ex-
pression Ci of the result of the algorithms is a superclass, a property restriction
or another complex class expression that can be neglected in the comparison.

5 Refactoring Pattern Recognition

In this section, we demonstrate the recognition of the already introduced refac-
toring patterns Extract Class and Move of Property. The recognition description
of the other patterns can be found in [11].

Extract Class. This refactoring is illustrated in Fig. 1 and 2. One recognizes
the refactoring according to the algorithm in Fig. 6.

The algorithm in Fig. 6 returns the extracted class if the refactoring is suc-
cessfully recognized, otherwise the result is the empty class (⊥). The algorithm
works as follows. All named classes C and C′ that exist in both versions and
are different are compared (line 2). In line 3 the difference is computed. For
instance, the set D1 consists of all class expressions which are only in [[C′]] of V ′
but not in V . C′ of V ′ contains exactly one additional object property restriction
to another class, i.e. a change only extracts one class. Therefore, we require that
D1 is a singleton (line 4) and that D1 is an object property restriction (line 6).

Algorithm: Recognize-ExtractClass(Ontology versions V , V ′)

Input: Ontology versions V and V ′
Output: Extracted Class E

1: E := ⊥
2: for all classes C and C′ that are different in version V and V ′ do
3: D1 := Diff(C, V, V ′) AND D2 := Diff(C, V ′, V)

4: if |D1| = 1 then
5: D1 ∈ D1:

6: if IsObjectPropertyRestriction(D1) then
7: RC := ExtractReferenceClasses(D1, V ′)
8: if |RC| = 1 AND ∀ D2 ∈ D2 : ∃ RC ∈ RC : [[RC]] D2 AND

∀ D2 ∈ D2 : IsPropertyRestriction(D2) then
9: E := RC

10: end if
11: end if
12: end if
13: end for
14: Return E

Fig. 6. Algorithm for Recognizing Extract Class

284 G. Gröner, F. Silva Parreiras, and S. Staab

Algorithm: Recognize-MoveOfProperty(Ontology versions V , V ′)

Input: Ontology versions V and V ′
Output: Set of moved property restrictions P

1: P := ∅
2: for all classes A and A′ in version V and V ′ that are different do
3: for all referenced classes B and B′ do
4: if B and B′ are also different in version V and V ′ then
5: C1 := Common(A, V, V ′) AND C2 := Common(B, V, V ′) AND

6: A1 := Diff(A, V, V ′) AND A2 := Diff(A, V ′, V) AND

7: B1 := Diff(B, V, V ′) AND B2 := Diff(B, V ′, V)

8: if A1 = ∅ AND B2 = ∅ AND A2 = B1 AND ∀E ∈ A2 :

IsPropertyRestriction(E) then
9: P := A2

10: end if
11: end if
12: end for
13: end for
14: Return P

Fig. 7. Algorithm for Recognizing Move of Property

In line 7, the new class that is referenced by C is extracted. In line 8, we ensure
that property restrictions are only moved to one class, i.e. RC is a singleton.
Finally, it is required that all property restrictions are moved correctly to the
new class RC (subsumption in line 8). The second and third conditions in line 8
ensure that only property restrictions and no other class expressions are moved
and that they are moved to the correct class RC. The result is the referenced
class RC (RC is a singleton).

The recognition algorithms for other extract and merge class refactorings work
in the same way. E.g., to recognize an Extract Subclass refactoring, we just replace
the referenced class (RC) by the corresponding subclass. The recognition result
for the example in Fig. 1 and 2 is as follows:

D1 = {∃contact.ContactData} (object property restriction in V ′)
D2 = {∃address.string, ∃telephone.string} (property restrictions in V)
RC = {ContactData} (only one restriction in D1 (∃contact.ContactData))
RC = ContactData and [[RC]] � D2 is inferred for all D2 ∈ D2

Move of Property. The algorithm in Fig. 7 recognizes the Move of Property
refactoring by the following steps. In lines 2-4, it is checked for all classes whether
the classes A and A′ are different in both versions V and V ′ and the referenced
classes (range of property) B and B′ are also different in V and V ′. The common
and different class expressions of class A and B in both versions are computed
(lines 5-7). If all property restrictions are moved correctly from class A to B
the four conditions of line 8 have to be satisfied. Finally, the moved property
restrictions are the result of the algorithm (line 9 and 14). Algorithms to detect

Semantic Recognition of Ontology Refactoring 285

the other move refactorings like the movement of property restrictions within a
class hierarchy work similarly. The recognition of the Move of Property example
from Fig. 1 and 2 is as follows:

Common property restrictions of the classes Employee and Department:
C1 = {∃=1 SSN.string, ∃ department.Department}, C2 = {}

Department is referenced by Employee: ∃ department.Department ∈ C1
Moved property restrictions (from Employee to Department):

A1 = {}, A2 = {∃ project.Project}, B1 = {∃ project.Project} and B2 = {}

6 Evaluation and Discussion

Analysis: We evaluated refactorings for the described refactoring patterns on
two ontologies. The DOLCE Lite Plus ontology2 is the smaller ontology with an
average version size of 240 classes and 360 subclass axioms. For each pattern,
8 concrete refactorings were applied. The second ontology is a bio-medical on-
tology OBI3 with an average size of 1200 classes, 1700 subclass axioms, and 14
concrete refactorings for each pattern. For both ontologies, we changed the orig-
inal ontology V by adding and deleting classes, properties and axioms according
to the pattern description and applied our recognition algorithms. All recog-
nized refactorings were correctly recognized. The performance result is depicted
in Table 2.

For the evaluation, we used the Pellet 2.0.0 reasoner in Java 1.6 on a computer
with 2.5 GHz CPU and 2 GB RAM. In Table 2 only the time for the recognition
is displayed. The time for matching and combining the ontologies (first step of
the comparison) is on average 570 msec for the models with about 240 classes
and 2900 msec for models with an average size of 1200 classes.

Limitations: We identified the following limitations that are further challenges
for future work. (i) The refactoring patterns are adopted from existing work
on ontology evolution (cf. [3]), but also on object-oriented modeling (cf. [2]).
Therefore, we only recognize those elementary ontology changes that are speci-
fied in the refactoring recognition. However, there might be a couple of further
ontology changes that are not considered in our approach. For instance, we do
not consider changes of the property range yet which would lead to difficul-
ties in the current approach in the combination step (cf. Sect. 4). (ii) We need
a language restriction as described in Definition 1 and reduction according to
Definition 2. Otherwise, we can not ensure the recognition.

Lessons Learned: Although the proposed semantic comparison between classes
of different versions is the main benefit of our work, the comparison is rather a
structural-semantic comparison than a purely semantical comparison. The Diff-
and Common-Algorithms iterate and compare class expressions that are either
superclasses or property restrictions which is a structural class comparison. The
2 http://www.loa-cnr.it/DOLCE.html
3 http://obi-ontology.org/page/Main_Page

http://www.loa-cnr.it/DOLCE.html
http://obi-ontology.org/page/Main_Page

286 G. Gröner, F. Silva Parreiras, and S. Staab

Table 2. Analyzed Refactoring Patterns

No. Refactoring Recognition (Avg. 240) Recognition (Avg. 1200)

Avg.[msec] Max.[msec] Avg.[msec] Max.[msec]

1. Extract Class 493 605 2050 2520

2. Extract Subclass 412 480 1910 2430

3. Extract Superclass 473 580 1860 2540

4. Collapse Hierarchy 1062 1154 2260 2480

5. Extract Hierarchy 886 1042 2170 2410

6. Inline Class 1042 1075 2330 2590

7. Move Attribute 1085 1240 2680 3230

8. Pull-Up Attribute 864 1065 2150 2840

9. Push-Down Attribute 840 957 2820 3360

10. Unidirectional 1170 1254 1820 2140

to bidirectional Ref.

11. Bidirectional 1135 1174 1950 2280

to unidirectional Ref.

12. Cardinality Change 1180 1265 1740 1870

algorithms work properly even for more expressive OWL languages that do not
satisfy the restrictions and reductions. However, we need these restrictions in
order to guarantee a correct recognition.

7 Related Work

We group the related work into three categories. Firstly, the syntactical com-
parisons are analyzed. Secondly, related work on structural comparisons is pre-
sented. Finally, we consider OWL reasoning for ontology comparison.

The detection of changes of RDF knowledge bases is considered in [14]. High-
level changes of RDF-graphs and version differences (RDF triples) are repre-
sented and detected in [5]. They categorize elementary changes like add and
delete operations to high-level changes which are similar to refactoring patterns.
Basically, they analyze the difference of RDF-triples of two RDF-graphs instead
of OWL ontologies and the detection is based on a (syntactical) triple compar-
ison, i.e. the high-level change is detected if all its required low-level changes
(RDF-triples) are recognized.

Related work on ontology mappings and the computation of structural differ-
ences between OWL ontologies is given in [7,15,16]. In [7] a fix-point algorithm
is used for comparing and mapping related classes and properties based on their
names and structure (references to other entities). A heuristic matching is ap-
plied to detect structural differences. Benefits of the heuristics are mainly the
identification of related classes and properties if their names have changed.

A framework for tracking ontology changes is introduced in [17]. It is im-
plemented as a plug-in for Protégé [18] that creates a change and annotation

Semantic Recognition of Ontology Refactoring 287

ontology to record the changes and meta information on changes. This change
ontology is used to display the applied changes to the user. Similarly, change
logs are used to manage different ontology versions in [1]. The change logs are
realized by a version ontology that represents instances for each class, property
and individual of the analyzed ontology. The usage of version ontologies (meta
ontology) for change representation is also proposed in [19].

More closely related to our work are the approaches on DL reasoning apply-
ing semantic comparison for versioning and ontology changes in OWL. OWL
ontology evolution is analyzed in [20]. However, the focus of this work is not on
detecting changes. They tackle inconsistency detection caused by already iden-
tified changes and in case of an inconsistency, additional changes are generated
to result again in a consistent ontology. In [9] and [21], OWL reasoning on mod-
ular ontologies is considered in order to tackle the problem of consistency on
mappings between ontologies. While the focus in [21] is on reasoning for consis-
tency of ontology mappings and different from our work, in [9] the problem of
consistency management for ontology modules is considered. The ontology mod-
ules are connected by conjunctive queries instead of merging based on syntactic
matching as in our work. Although, subsumption checking is used to compare
classes of versions, a classification and especially a recognition of refactoring
pattern or complex changes is missing. The main difference to the related work
on semantic comparison is the ability of our approach on recognizing ontology
refactoring patterns based on change operations in OWL ontologies.

8 Conclusion and Future Work

In this paper, we have demonstrated a structural-semantic comparison approach
to recognize specified refactoring patterns using standard DL reasoning. We pro-
vide technical information on the version comparison and recognition algorithms.
One can apply the results of this work for schema versioning, semantic differ-
ence and conflict detection. Additionally, it paves the way for application of
reasoning technologies in change prediction of ontologies as well as for guidance
in versioning and evolution of ontologies. In future, we plan to cover additional
refactoring patterns and plan to extend our approach by a heuristic mapping
between classes and properties to handle name changes.

Acknowledgements. This work has been supported by the EU Project MOST
(ICT-FP7-2008 216691).

References

1. Plessers, P., Troyer, O.D.: Ontology Change Detection Using a Version Log. In: Gil,

Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,

pp. 578–592. Springer, Heidelberg (2005)

2. Fowler, M., Beck, K., Brant, J., Opdyke, W.: Refactoring: Improving the Design

of Existing Code. Addison-Wesley, Reading (1999)

288 G. Gröner, F. Silva Parreiras, and S. Staab

3. Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: User-Driven Ontology Evo-

lution Management. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002.

LNCS (LNAI), vol. 2473, pp. 285–300. Springer, Heidelberg (2002)

4. Klein, M., Fensel, D., Kiryakov, A., Ognyanov, D.: Ontology Versioning and

Change Detection on the Web. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW

2002. LNCS (LNAI), vol. 2473, pp. 197–212. Springer, Heidelberg (2002)

5. Papavassiliou, V., Flouris, G., Fundulaki, I., Kotzinos, D., Christophides, V.: On

Detecting High-Level Changes in RDF/S KBs. In: Bernstein, A., Karger, D.R.,

Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC

2009. LNCS, vol. 5823, pp. 473–488. Springer, Heidelberg (2009)

6. Noy, N.F., Kunnatur, S., Klein, M.C.A., Musen, M.A.: Tracking Changes During

Ontology Evolution. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)

ISWC 2004. LNCS, vol. 3298, pp. 259–273. Springer, Heidelberg (2004)

7. Noy, N.F., Musen, M.A.: PROMPTDIFF: A Fixed-Point Algorithm for Comparing

Ontology Versions. In: AAAI/IAAI, pp. 744–750 (2002)

8. Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Repairing ontology mappings. In:

AAAI, pp. 1408–1413 (2007)

9. Stuckenschmidt, H., Klein, M.: Reasoning and Change Management in Modular

Ontologies. Data & Knowledge Engineering 63(2), 200–223 (2007)

10. Horrocks, I., Patel-Schneider, P.F., Harmelen, F.V.: From SHIQ and RDF to OWL:

The Making of a Web Ontology Language. J. of Web Semantics 1, 7–26 (2003)

11. Gröner, G., Staab, S.: Categorization and Recognition of Ontology Refactor-

ing Pattern. Technical Report 9/2010, University of Koblenz-Landau (2010),

http://www.uni-koblenz.de/~groener/documents/TR092010.pdf

12. Teege, G.: Making the Difference: A subtraction Operation for Description Logics.

In: 4th Int. Conference on Knowledge Representation (KR), pp. 540–550 (1994)

13. The OWL API (2010), http://owlapi.sourceforge.net

14. Zeginis, D., Tzitzikas, Y., Christophides, V.: On the Foundations of Computing

Deltas between RDF Models. In: Aberer, K., Choi, K.-S., Noy, N., Allemang,

D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi,

R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS,

vol. 4825, pp. 637–651. Springer, Heidelberg (2007)

15. Klein, M., Noy, N.: A Component-Based Framework for Ontology Evolution. In:

Proc. of the IJCAI 2003 Workshop on Ontologies and Distributed Systems. CEUR-

WS, vol. 71. Citeseer (2003)

16. Ritze, D., Meilicke, C., Sváb-Zamazal, O., Stuckenschmidt, H.: A Pattern-based

Ontology Matching Approach for Detecting Complex Correspondences. In: Proc.

of Int. Workshop on Ontology Matching, OM (2009)

17. Noy, N., Chugh, A., Liu, W., Musen, M.: A Framework for Ontology Evolution

in Collaborative Environments. In: Cruz, I., Decker, S., Allemang, D., Preist,

C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS,

vol. 4273, pp. 544–558. Springer, Heidelberg (2006)

18. Protégé - Ontology Editor (2010), http://protege.stanford.edu
19. Palma, R., Haase, P., Wang, Y., dAquin, M.: D1.3.1 Propagation Models and

Strategies. Technical report, NeOn Project Deliverable 1.3.1 (2007)

20. Haase, P., Stojanovic, L.: Consistent Evolution of OWL Ontologies. In: Gómez-

Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 182–197. Springer,

Heidelberg (2005)

21. Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Reasoning Support for Mapping

Revision. J. Log. Comput. 19(5), 807–829 (2009)

http://www.uni-koblenz.de/~groener/documents/TR092010.pdf
http://owlapi.sourceforge.net
http://protege.stanford.edu

Finding the Achilles Heel of the Web of Data:
Using Network Analysis for

Link-Recommendation

Christophe Guéret, Paul Groth, Frank van Harmelen, and Stefan Schlobach

VU University Amsterdam

De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands

{cgueret,pgroth,Frank.van.Harmelen,schlobac}@few.vu.nl

Abstract. The Web of Data is increasingly becoming an important in-

frastructure for such diverse sectors as entertainment, government, e-

commerce and science. As a result, the robustness of this Web of Data

is now crucial. Prior studies show that the Web of Data is strongly de-

pendent on a small number of central hubs, making it highly vulnerable

to single points of failure. In this paper, we present concepts and al-

gorithms to analyse and repair the brittleness of the Web of Data. We

apply these on a substantial subset of it, the 2010 Billion Triple Chal-

lenge dataset. We first distinguish the physical structure of the Web of

Data from its semantic structure. For both of these structures, we then

calculate their robustness, taking betweenness centrality as a robustness-

measure. To the best of our knowledge, this is the first time that such

robustness-indicators have been calculated for the Web of Data. Finally,

we determine which links should be added to the Web of Data in order

to improve its robustness most effectively. We are able to determine such

links by interpreting the question as a very large optimisation problem

and deploying an evolutionary algorithm to solve this problem. We be-

lieve that with this work, we offer an effective method to analyse and

improve the most important structure that the Semantic Web commu-

nity has constructed to date.

1 Introduction

The rapidly growing Web of Data increasingly resembles the Web in its network
properties. It resembles a small world network that relies on central hubs to
provide connectivity between resources on the Web of Data [10]. Such central
hubs are potential points of failure. This is particularly dangerous for the Web
of Data, which, unlike the Web, is designed to be used by automated agents that
have less capability to recover from lack of access to resources than human users
might have on the regular Web.

Current approaches to ensure robustness of the Web of Data are based on
anecdotal observations. In this work, we propose a systematic approach for
analysing the Web of Data and recommending where links can be added to

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 289–304, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

290 C. Guéret et al.

help ensure robustness against both infrastructure failure and semantic devia-
tion. An example of the first is: how can we ensure that automated agents can
still traverse the network if DBpedia is down? An example of the second is: if the
SIOC ontology is updated, where do links need to be introduced to re-establish
connectivity?

Our systematic approach uses well known network properties to characterise
the robustness of both the infrastructure and semantic networks within the Web
of Data. Based on these properties, we present an optimisation algorithm that
produces recommendations about where links should be added to the Web of
Data. The algorithm takes into account whether additional links would be se-
mantically meaningful.

The contributions of this paper are (i) a characterisation of the strength of
the current Web of Data in terms of its infrastructure and semantic network.;
(ii) a recommendation algorithm for adding links to the Web of Data to increase
its robustness; and (iii) applying this algorithm in order to determine how many
(and which) links are required to obtain different levels of robustness.

Our main findings are that (a) the current Web of Data is indeed highly
sensitive to failure of individual nodes, both at the infrastructure level and as a
semantic network, and (b) this situation can be remedied by adding a surprisingly
small number of links, provided that these links are chosen well, as calculated
by our recommendation algorithm.

The paper is organised as follows. In Section 2, we discuss related work and
argue why it is useful to distinguish infrastructural connectivity and semantic
connectivity. This leads to Section 3 where the robustness of the current Web
of Data is measured, followed by Section 4, which presents an algorithm to
recommend how best to increase that robustness. Section 5 concludes.

2 Background

2.1 Related Work

The use of network properties to study complex systems has grown in a wide
range of fields (e.g. biology, social science and web science) because it provides a
mechanism to extract global properties of systems [12]. In terms of robustness,
the classic result is from Barabasi, which shows that scale-free networks are
robust against random failure, but not against targeted attacks [1]. The robust-
ness of scale-free networks is important because they are widely seen in nature
including power grids, the World Wide Web and social networks [2].

The application of such network analysis to the Web of Data has until now
been limited, and has been performed on a wide variety of graph-structures: [10]
analysed the 2009 BTC dataset1 and showed that, interpreted as a sample of
the Web of Data, it is scale-free and that semanticdesktop.org and purl.org
are central in it. The same paper also analysed the well-known “bubble-graph”
of the Web of Data, consisting of the datasets published and interlinked by the
1 http://vmlion25.deri.ie/index.html

semanticdesktop.org
purl.org
http://vmlion25.deri.ie/index.html

Finding the Achilles Heel of the Web of Data 291

Linking Open Data project2. It showed the existence of topic-oriented hubs,
with DBPedia connected to 50% of all the other datasets, and over 50% of all
the shortest paths in the graph being routed through either DBPedia or DBLP.

In recent work, [8] analysed the “object link graph”: the Web of Data restricted
to its object-to-object links, i.e. after removing all links from objects to classes,
and all class- and property-hierarchies. They found that this object-link graph
also has a scale-free nature, with a diameter value of 12, which is small compared
to the size of the graph, although the link density is rather low. Such a small
diameter of a large but low density graph again points to the presence of central
hubs that provide the main connectivity between many resources.

Other work, such as [9], also use network analysis tools, but apply them only to
networks of ontologies, and do not consider the much more substantial collection
of instances that form the real content of the Web of Data. At an even smaller
scale, [13] applies concepts from network analysis to individual ontologies.

Summarising, only a handful of analyses have been performed on the network
properties of the Web of Data. Furthermore, all these works have only analysed
the Web of Data, but nobody has used the results of their analysis to effectively
compute improvements to the Web of Data.

2.2 Infrastructure Failure and Semantic Failure

Connectivity on the Web of Data can be disrupted in two different ways: infras-
tructural failure or semantic failure. For the infrastructure, the problem is server
unavailability, e.g. the dbpedia.org server is down. In the semantic network, the
problem is robustness against change, for example still using sioc:User instead
of the current sioc:UserAccount.

The robustness of an infrastructure is commonly improved by the use of mir-
rors and caches. Our approach is complimentary to using these techniques. In
order to detect hosts that function as infrastructure hubs, and whose unavail-
ability would hence break many paths, we aggregate the Web of Data into a
hostname graph:

Definition 1 (hostnames graph). The hostname graph H is a 〈V, E〉 where
h ∈ V is a node of H iff h is used as a hostname in any URI on the Web of
Data, and e ∈ E, e = 〈h1, h2〉 is an edge of H from node h1 to node h2 iff there
is a triple 〈s, p, o〉 anywhere on the Web of data with h1 the hostname referred
to in the URI of s and h2 the hostname referred to in the URI of o.

Thus, the hostname graph has as many nodes as there are hostnames mentioned
in all the triples on the Web of Data.

Similarly, the namespace graph is an aggregation of the semantic structure of
the Web of Data:

Definition 2 (namespaces graph). The namespace graph S is a tuple 〈V, E〉
where n ∈ V is a node of S iff n is used as a namespace anywhere on the Web of
2 http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

dbpedia.org
sioc:User
sioc:UserAccount
http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

292 C. Guéret et al.

Data, and e ∈ E, e = 〈n1, n2〉 is an edge of S from node n1 to node n2 iff there
is a 〈s, p, o〉 anywhere on the Web of Data with n1 the namespace of s and n2
the namespace of o.

Thus, the namespace graph has as many nodes as there are namespaces men-
tioned in all the triples on the Web of Data.

Definition 3 (content of nodes). The content cont(n) of a node n is defined
as the set of URI such that there is a 〈r, p, o〉 anywhere on the Web of Data and
n is the namespace of r for a namespaces graph or n is the hostname of r for
an hostnames graph.

3 Analysing the Web of Data

The networks and the programs described in this section are all publicly available
at http://linkeddata.few.vu.nl/wod_analysis/.

3.1 Measures of Robustness

By robustness of a graph, we mean the degree to which connectivity in a graph
is maintained after a node is removed from the graph. There are a number of
network measures that can be used for measuring the robustness of a graph. For
example, the diameter of a graph3 provides information about connectivity. A
smaller diameter implies that there are a large number of connections within
the network while a larger diameter means that the network is less connected.
While the diameter provides a reasonable global summary statistic, centrality
statistics allow one to investigate the graph on a per node basis. In particular,
betweenness centrality measures how often a node occurs on a shortest path any
pair of nodes:

Definition 4 (Betweenness centrality). For a graph G = (N, E) with a set
of nodes N and a set of edges E, the betweenness centrality B(n) of a node
n ∈ N is defined as

B(n) =
∑

s�=n�=t∈N

S(s, n, t)
S(s, t)

where S(s, t) is the number of shortest paths from s to t, and S(s, n, t) is the
number of shortest paths from s to t that pass through node n. Instead of B(n)
we will often report on its non-normalised version, B′(n).

B′(n) =
∑

s�=n�=t∈N

S(s, n, t),

Instead of “betweenness centrality” we will often simply speak of “betweenness”.

3 The diameter of a graph is the longest shortest path in the graph.

http://linkeddata.few.vu.nl/wod_analysis/

Finding the Achilles Heel of the Web of Data 293

Betweenness is a measure of the importance of a node for the connectivity
between other nodes. The intuition is that if a node lies on many shortest paths
it is an important node, since removal of such a node will directly influence
the cost of the connectivity between other nodes, as other (i.e., longer) shortest
paths will have to be followed.4

A completely connected network has the maximal robustness, and correspond-
ingly the lowest betweenness centrality: B(n) = 0 for every n ∈ N , and removing
one node does not impact the overall connectivity of the network greatly.

If we want to improve the robustness of the Web of Data, we will want to
lower the number of nodes that have high betweenness centrality, since these
are important potential points of failure. For this, we will first need to analyse
which nodes actually have a high betweenness centrality. This is obviously com-
putationally intensive, since it involves calculating the shortest paths between
all pairs of nodes on the Web of Data. This robustness analysis will be topic of
the remainder of this section. Deciding how to improve the robustness will be
tackled in Section 4.

3.2 Dataset

The 2010 Billion Triple Challenge (BTC) Dataset5 was used as a representative
sample of the Web of Data. It contains roughly 3.2 billion statements. From this
dataset, the hostname graph and namespace graph were constructed. Given that
namespaces cannot be systematically identified given a URL alone, we used a
predefined list of widely used namespaces as defined by the prefix.cc service.
Out of the 330 namespaces registered on the services, 198 were found to be used
in the snapshot used to create the networks.

We removed from the BTC all triples where the object was a literal, all triples
containing blank nodes, and all triples that refer only to URI’s from the same
dataset, since none of these triples would contribute to the objects of our study,
namely the hostname graph and the namespace graph. Surprisingly, this reduced
the BTC dataset to 530 million triples, showing that the vast majority of the
Web of Data (or at least the BTC snapshot of it) does not contribute to it being
a “web”. Of those remaining 530 million triples, the vast majority (389 million)
were covered by the namespace list built from prefix.cc. This gives us some
confidence that the namespace list is sufficiently representative set of namespaces
for building our namespace graph.

As a further characterisation of our dataset, Figure 1 shows the degree dis-
tribution of both the hostname graph (infrastructure) and the namespace graph
(semantic links). Both distributions exhibit a pattern that is not linear. The

4 Of course, if we are interested in connectivity, it is only an approximation to as-

sume that connections only happen along shortest paths; variations of betweenness

centrality such as “flow betweenness” and “random walk betweenness” have been

proposed to allow for this. In many practical cases however, the simple (shortest

path) betweenness centrality gives quite informative answers [12].
5 http://km.aifb.kit.edu/projects/btc-2010/

prefix.cc
prefix.cc
http://km.aifb.kit.edu/projects/btc-2010/

294 C. Guéret et al.

Table 1. Size of the two studied networks

Network name Number of nodes Number of edges

Hostnames 558841 656012

Namespaces 198 936

(a) Namespaces (b) Hostnames

Fig. 1. Degree distribution of the namespaces and hostnames networks

degree shown in distribution does not follow a power law. From this we can con-
clude that that these two networks are not scale-free. However, they still have a
few strongly connected hubs.

3.3 Robustness Results

Based on the extracted graphs, we calculated the betweenness centrality for all
nodes in both graphs using the Small-world Network Analysis and Partitioning
software (SNAP) [4]. Given the size of the hostname graph, we used an approx-
imation algorithm implemented by SNAP and set the sampling percentage to
10% of all nodes. This is double the 5% percentage suggested for use in [4]. For
more details on the algorithm used, see [3].

Infrastructure Analysis. Table 2(a) shows the non-normalised betweenness
distribution (B′(n)) among the hostnames on the Web of Data, in ten bins start-
ing from the maximal centrality and working down to zero. We note that the
distribution does not follow a power-law curve but is in fact more extreme: essen-
tially, almost all infrastructural connectivity on the Web of Data is mediated by
only 3 servers. Table 2(b) reveals which hosts these are: xmlns.org, dbpedia.
org and purl.org. All this points to an extreme brittleness of the infrastruc-
ture underlying the Web of Data: only taking out a handful of servers would
completely cripple the entire network.

xmlns.org
dbpedia.org
dbpedia.org
purl.org

Finding the Achilles Heel of the Web of Data 295

Figure 2 provides a good example of the potential impact that the dominance
of hubs could have on the Web of Data. Recently, Radar Networks which owned
www.twine.com was sold to another company Evri6. While the transition of
twine.com to Evri was smooth, it is entirely possible that www.twine.com could
have ceased to exist or no longer supported Web of Data content as a result of
this takeover. Our analysis shows that this would have had a substantial impact
on the infrastructural connectivity of the Web of Data.

Table 2. Histogram of betweenness for hostnames and the top ten hostnames with the

highest betweenness

B′(n)7 #Nodes

5 − 6 × 109 2

4 − 5 × 109 0

3 − 4 × 109 0

2 − 3 × 109 1

1 − 2 × 109 0

0.5 − 1 × 109 4053

0 − 0.5 × 109 554785

(a) Distribution of the be-

tweenness results

Hostname B′(n)

xmlns.com 5 693 379 049

dbpedia.org 5 432 125 038

purl.org 2 163 504 423

www.kanzaki.com 532 149 372

www.w3.org 470 113 796

dbtune.org 323 796 691

identi.ca 318 896 524

www.twine.com 299 237 555

semanticweb.org 277 374 029

dblp.l3s.de 225 602 575

(b) Top 10 hostnames and their

betweenness result

The 554 785 hostnames with a betweenness of 0 are dead ends in the network.
Some of these hosts may be used to serve only non semantic content, such as
images. Thus, they do not provide resources that can be interlinked and used
to walk through the network. The 4056 other hosts are more representative of
the interlinkage status of the graph. This number is much higher than the 198
nodes in the namespaces network (these namespaces account for 60 different
hostnames).

Semantic Network analysis. Similar to the infrastructure network analysis,
Table 3a shows the betweenness distribution of the namespaces, again arranged
in 10 bins. The majority of nodes are not in-between at all and the overall
distribution mirrors that of the hostnames graph. The semantic network of the
Web of Data, like its infrastructure network, also relies heavily on hubs. Table 3b
shows these hubs. These are indeed the hubs one would expect, perhaps with
the exception of example.org, which, by definition, can provide no connectivity
to other namespaces because it is reserved for examples8.

6 http://www.novaspivack.com/uncategorized/evri-ties-the-knot-with-twine
7 Non-normalised betweenness.
8 See RFC2606, http://www.rfc-editor.org/rfc/rfc2606.txt

www.twine.com
twine.com
www.twine.com
xmlns.com
dbpedia.org
purl.org
www.kanzaki.com
www.w3.org
dbtune.org
identi.ca
www.twine.com
semanticweb.org
dblp.l3s.de
example.org
http://www.novaspivack.com/uncategorized/evri-ties-the-knot-with-twine
http://www.rfc-editor.org/rfc/rfc2606.txt

296 C. Guéret et al.

Table 3. Histogram of betweenness for namespaces and the top ten namespaces with

the highest betweenness

B′(n) #Nodes

8001-9000 1

7001-8000 1

6001-7000 0

5001-6000 2

4001-5000 0

3001-4000 1

2001-3000 0

1001-2000 6

1-1000 70

0 117

(a) Distribution of the

betweenness results

Namespace B′(n)

www.w3.org/1999/02/22-rdf-syntax-ns# 8783

example.org/ 7191

dbpedia.org/resource/ 5428

xmlns.com/foaf/0.1/ 5030

www.w3.org/2002/07/owl# 3926

sw.opencyc.org/concept/ 1764

www.w3.org/2007/uwa/

context/deliverycontext.owl# 1737

www.w3.org/2003/01/geo/wgs84_pos# 1609

www.semanticdesktop.org/

ontologies/2007/11/01/pimo# 1300

ontologies.ezweb.

morfeo-project.org/eztag/ns# 1225

(b) Top 10 namespaces and their betweenness result

4 Improving the Web of Data

The previous section has shown that the Web of Data is extremely brittle, and
relies on a very small number of hubs that are crucial to its connectivity. Both
the infrastructure network and the semantic network could be be strengthened
by judiciously adding links to the network The expected impact of such new links
is to reduce the variation of the centrality among the nodes of a graph, thereby
diminishing the importance of hubs. The variation of betweenness centrality
within a graph is termed the centralisation betweenness index [7]:

Definition 5 (centralisation betweenness index). Given a graph, G =
(N, E) with a set of nodes N and a set of edges E, the centralisation betweenness
index C(G) of G is defined as

C(G) =
G∑

i=1

[maxn∈N (B(n)) −B(i)]
(|N | − 1)

where B(n) is the betweenness of node n in the graph.

4.1 The Cost of Fixing the WoD

The simplest way of reducing C(G) would be to make G a fully connected graph,
resulting in an optimal value of C(G) = 0. Of course, for the Web of Data this is
neither feasible nor desirable, because only semantically meaningful links should
be added. Besides, the creation of new edges has a cost. As is well known from
the ontology mapping domain, establishing new relations between two ontologies
is no easy task. Similarly, finding equivalent instances that can be related by a
sameAs triple is challenging.

www.w3.org/1999/02/22-rdf-syntax-ns#
example.org/
dbpedia.org/resource/
xmlns.com/foaf/0.1/
www.w3.org/2002/07/owl#
sw.opencyc.org/concept/
www.w3.org/2007/uwa/
context/deliverycontext.owl#
www.w3.org/2003/01/geo/wgs84_pos#
www.semanticdesktop.org/
ontologies/2007/11/01/pimo#
ontologies.ezweb.
morfeo-project.org/eztag/ns#

Finding the Achilles Heel of the Web of Data 297

We have therefore chosen to characterise the problem of recommending where
to introduce edges in the Web of Data as an optimisation problem that minimises
the centralisation index C(G) while at the same time minimising the cost of
introducing an edge.

In the following, we estimate the cost of adding an edge as the inverse of the
overlap between the used vocabularies. This estimates the chances of finding
pairs of concepts or resources based on the shared usage of predicates by the
respective nodes. Intuitively, this cost measure favours “meaningful” edges, i.e.
edges between nodes with overlapping vocabularies. Of course, this is a very
rough estimation, that could be changed for a more accurate one without im-
pairing the applicability of our algorithms.

Definition 6 (vocabulary of a node). The vocabulary of a node n from either
a hostnames graph H or a namespaces graph S is the set of predicates used to
describes the resources contained in the node.

vocab(n) = {p | ∃〈r, p, o〉, r ∈ cont(n)}

Our semantic cost for a link between two nodes will be based on the similarity
of the vocabularies used in the nodes. We used the standard Jaccard measure to
quantify the similarity between vocabularies. This is a measure commonly used
in the ontology mapping domain.

Definition 7 (Vocabulary Similarity). The similarity S(n1, n2) between two
nodes n1 and n2 from either the hostname graph or the namespace graph is
defined as:

S(n1, n2) =
|vocab(n1) ∩ vocab(n2)|
|vocab(n1) ∪ vocab(n2)|

The corresponding cost of the edge, 〈n1, n2〉, is defined as the complementary of
the similarity between the nodes:

cost(〈n1, n2〉) = 1− S(n1, n2)

Of course, we could use any other measure for semantic overlap from work in on-
tology alignment [6], and again these could be easily plugged into the algorithms
we will describe next.

Using these calculations as our basis we now define the optimisation problem
as follows:

minimize B(< N, E′ >) subject to min
∑
e∈E′

cost(e), where E′ = E ∪ (N ×N)

Note, that E′ is the union of the existing edges with some set of newly introduced
edges from the space of all possible edges in the graph.

4.2 Strategies for Adding New Edges

In order to put this strengthening of the WoD into a reasonable setting, the
recommended fixes proposed hereby give an answer to the following question:

298 C. Guéret et al.

Cost Count

0.0 54

0.1 56

0.2 126

0.3 408

0.4 1018

0.5 2780

0.6 5276

0.7 8194

0.8 10994

0.9 8246

1.0 1854

(a) numerical

 0

 2000

 4000

 6000

 8000

 10000

 12000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
um

be
r

of
 e

dg
es

Cost

(b) graphic

Fig. 2. Distribution of the costs for the edges than can be added to the namespaces

graph

If I have computing resource available to create X new edges, what is the best
way to spend them? In the following sections, we highlight some of the strategies
that can be considered to give an answer. All the strategies have in common that
they work on a finite set of edges that can be added. A graph made of n nodes
can only have, at most, n ∗ (n − 1) directed edges if loops are avoided. When
computing the list of edges to add, those already existing are not considered.

Note that, in this paper, we focus on the identification of links rather than
their publication. The publication of links could be done by the data publishers
or by a third party service (as done by Jaffri, Glaser and Millard in [11]).

Greedy Strategies

Start with the cheapest. This first strategy consists in sorting all the edges by
their increasing cost and adding them one by one, stopping after X edges have
been added. The rationale is that focusing on the cheapest connections will get
the best reward/cost ratio for spending the resources available. This nodes are
estimated to share the same vocabulary to describe their resources, linking them
should increase the density of the clusters they are part of.

The implementation of this strategy requires the enumeration of all of the
possible edges and sorting of them according to their cost. We implemented this
as a greedy algorithm that computes the cost of all new edges, sorting them and
inserting them one by one, measuring the centrality gain after each insertion.

Start with the most expensive. This second strategy is the exact inverse of the
previous one. Instead of adding the new edges by increasing cost, the most ex-
pensive are added first. Linking nodes which are dissimilar should create bridges
among different clusters, thereby diminishing the importance of the existing hubs
already connecting these islands. The algorithm implementing this strategy is
similar to the previous one and has the same scalability constraint.

Finding the Achilles Heel of the Web of Data 299

Selective Strategies

Choose randomly. Rather than focusing on the cheapest or the most expensive
nodes, it could be interesting to select a sample of X of them with different costs.
The expected result is to mix bridging some clusters and increasing the density
of others. The easiest most straightforward approach is then to randomly select
the set of edges to create.

The algorithm implementing this strategy simply creates a set of new edges
by sampling two random values between 1 and n. If the drawn edge is already
present in the graph or in the set of edges to add, the process is repeated.

Choose wisely. This last strategy accounts for a property ignored by all other
strategies: the fact that some edges could be nice to add in combination with
others. Indeed, the centrality gain is likely not to depend only on how many new
edges are created but also on which ones. The idea then is not to only select the
edges to add one by one but to focus on a group of edges of size X , all at once.

Instead of creating only one set of edges like in the random selection, several
sets are investigated in parallel and iteratively improved. This search strategy
is done by an evolutionary algorithm, a population based class of algorithm
known to perform well on combinatorial optimisation problems [5]. The outline
of the evolutionary algorithm, a standard one, is detailed in Algorithm 1. It is
a generational evolution with an elitism of 1: every new generation replaces the
previous set of candidates with the exception of the best one which is kept.

4.3 Repair of the Namespaces Network

The namespaces network contains 198 nodes for 936 edges, leaving room for
198 ∗ 197 − 936 = 38070 new edges. The Figures 3 and 4 reports the result of
the previously introduced strategies on that network.

The two greedy strategies are compared in figure 3. It can be observed that
none of these baselines perform very well in two aspects: (1) many links must be
added before obtaining a reasonable improvement of the centrality. 2500 links
have to be added to halve the centrality. (2) both strategies first create more
damage than improvements. The centrality first increases before going down
again. Also, this behaviour is monotonic only after a minimum of edges have been
added meaning that these strategies are only applicable if a minimum amount of
resources are available. There is however a clear winner on this picture: adding
edges by increasing cost is the best approach, damaging less of the network and
decreasing its centrality starting at 125 edges. It can thus be concluded that
focusing on the easiest pairs is best idea when one can not do better and X is
large enough.

Choosing which edges to add is one way to do better than the greedy strate-
gies. The results from the two selective strategies are reported in Figure 4. Our
first observation is that both strategies outperform the greedy approaches: they
are less damaging and reduce centrality faster. The random choice technique has
some uncertain behaviour when less than 250 edges are added but is guaranteed

300 C. Guéret et al.

Algorithm 1. Main loop of evolutionary search strategy. The ⊕ is a “one-point

crossover” operation than mixes two candidate solutions.

Initialise population P ;

while not terminated do

/* Evaluation of current sets */

foreach Candidate set of edges s in P do

compute
CB(<N,E∪s>)

CB(<N,E>)

/* Creation of new sets */

P ′ ← best individual from P ;

while Size of P ′ different than size of P do
switch with a probability of 0.1 do

s ← tournament selection from P ;

s′ ← tournament selection from P ;

P ′ ← P ′ ∪ s ⊕ s′′

switch with a probability of 0.8 do
s ← tournament selection from P ;

foreach edge si of s do
switch with a probability of 0.1 do

si ← randomly created new edge

P ′ ← P ′ ∪ s;

/* Generation replacement */

P ← P ′;

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 5 10 25 50 100 250 500 1000 2500 10000 25000

C
en

tr
al

ity
 r

at
io

Number of edges added to the graph

target
Increasing cost

Decreasing cost

Fig. 3. Comparison of the two greedy strategies that consist in sorting all the edges

according to their cost and insert them one by one, by (in/de)creasing cost

Finding the Achilles Heel of the Web of Data 301

to decrease the centrality by almost 60% if at least 1000 edges are created (e.g.
2% of the amount of possible new edges). Both algorithms monotonically im-
prove the centrality as soon as more than 250 edges are added. That is around
30% of the existing 936 edges. Above 10000 new edges, there is no difference in
the results. For less than 250 new edges, the evolutionary algorithm finds the
best sets. It achieves the best performance, decreasing the centrality by almost
60%, with a set of only 64 edges.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 5 10 25 50 100 250 500 1000 2500 10000 25000

C
en

tr
al

ity
 r

at
io

Size of the set of edges added

target
Random choice

Evolutionary algorithm

Fig. 4. Comparison of the two selective strategies applied to the namespaces network.

They consist in creating a set of edges to add, either by random choice or iterative

construction (evolutionary algorithm). The goal is to bring the ratio, at least, below

1.0 and, at best, close to 0.

Table 4 shows the four links recommended to create in order to decrease
the centrality of the network by 30%. We now discuss whether the addition of
the suggested links is feasible. Row ➊ suggests creating a link from the Lifecycle
Schema to Freebase. The Lifecycle Schema describes the specification of a generic
lifecycle for a resource. It defines notions such state, transition and task. Links
could easily be created from this schema to descriptions of the corresponding
concepts in Freebase. For example, one could link to the definition of Finite-
state machine in Freebase (i.e. http://rdf.freebase.com/ns/finite_state_
machine). Row ➋ recommends creating a link between annotations about papers
from ISWC 2004 to the Ubiquitous Applications Location Ontology. This seems
reasonable since one could describe the papers as having been presented at a par-
ticular geolocation, which this location ontology supports. An important note is
that the given link for ISWC 2004 annotations is no longer operative. It should
probably be updated to the Semantic Web Dogfood site. This is another exam-
ple where old links cause the Web of Data to break. The third recommendation,
Row ➌, suggests adding a link between a site describing labels for about 1 mil-
lion commodities to SKOS-XL (an ontology for describing labels). A connection

http://rdf.freebase.com/ns/finite_state_machine
http://rdf.freebase.com/ns/finite_state_machine

302 C. Guéret et al.

between these sites again seems reasonable as one could possibly describe these
commodity labels as subclasses of skosxl:Label. Finally, the recommendation,
Row ➍, to link the Dublin Core types to the Cyc Ontology also could be done
given that the Dublin Core types describe generic types such as Event, Image,
Sound, which also appear in Cyc.

Table 4. When added all together to the namespaces graph, these 4 edge brings the

centrality to 70% of its original value

From namespace To namespace Cost

➊ http://purl.org/vocab/

lifecycle/schema#

http://rdf.freebase.com/ns/ 0.999803

➋ http://annotation.semanticweb.

org/2004/iswc#

http://www.w3.org/2007/uwa/

context/location.owl#

0.892857

➌ http://openean.kaufkauf.net/id/ http://www.w3.org/2008/05/

skos-xl#

1.0

➍ http://purl.org/dc/dcmitype/ http://sw.opencyc.org/concept/ 1.0

4.4 Repair of the Hostnames Network

The hostnames network contains 558784 nodes for 656012 edges, leaving room
for 558784 ∗ 558784− 656012 = 312238902644, 312 Billions, new edges. Unfor-
tunately, such a huge number of edges makes search by enumeration impossible
and the greedy approaches inapplicable. Instead, we only apply the selective
strategies.

For the random strategy, as long as the number of edges added reaches 100M
(that is, 0.03% of the 312B possibilities), it does not matter which ones are added.
In every case, the centrality is diminished by at least 90%, going to 10% of the
original value. This applies similarly for the evolutionary strategy, however, that
strategy performs slightly better than the random strategy. Unfortunately, both
strategies have a significant adverse impact on the hostname network before any
improvement is seen for less than 100M edges added and no impact for less than
10k edges.

5 Conclusion

We can divide the conclusions of this paper into two categories: (i) generic
methods for analysing the Web of Data, and (ii) specific observations on the
state of the current Web of Data.

Generic methods for analysing the Web of Data

– We have defined two useful abstractions over the Web of Data, the hostname
graph and the namespace graph, allowing us to analyse both the infrastruc-
tural and its semantic connectivity of the Web of Data.

http://purl.org/vocab/lifecycle/schema#
http://purl.org/vocab/lifecycle/schema#
http://rdf.freebase.com/ns/
http://annotation.semanticweb.org/2004/iswc#
http://annotation.semanticweb.org/2004/iswc#
http://www.w3.org/2007/uwa/context/location.owl#
http://www.w3.org/2007/uwa/context/location.owl#
http://openean.kaufkauf.net/id/
http://www.w3.org/2008/05/skos-xl#
http://www.w3.org/2008/05/skos-xl#
http://purl.org/dc/dcmitype/
http://sw.opencyc.org/concept/

Finding the Achilles Heel of the Web of Data 303

– Following insights from network analysis, we have proposed betweenness
centrality as the key metric for measuring network robustness (= the ability
to maintain connectivity after removal of nodes).

– We have phrased the problem of improving the robustness as an optimisation
problem, aiming to minimise the graph’s centrality index under minimal cost
of adding links. We proposed as a cost-function the Jaccard distance measure
based on vocabulary overlap, but our approach is neutral as to the choice of
the cost-function.

– We investigated the feasibility of a number of algorithms to solve this opti-
misation problem, and showed that, in particular, the use of an evolutionary
algorithm was successful in identifying a small number of links that substan-
tially increase the robustness of the graph.

Observations on the state of the current Web of Data. Assuming that
the BTC dataset is indeed a representative snapshot, the following facts have
been revealed by our analysis:

– The vast majority of triples on the Web of Data do not contribute to it being
a web, but instead point to literals or blank nodes, or refer only to URI’s
internal to the same dataset. This concerns as much as 80% of all triples.

– The Web of Data is currently not a scale-free network. It shows a more
extreme distribution, although it has some of the typical properties of a
scale free network, in particular the presence of hub-nodes.

– Almost all infrastructural connectivity on the WoD is mediated by 3 servers,
xmlns.com, dbpedia.org and purl.org, making the system very brittle.

– Similarly, almost all semantic connectivity is provided through a small num-
ber of namespaces, again a very brittle structure.

– On the positive side, the robustness of the Web of Data can be improved
drastically: the centrality of the namespace graph can be improved by a
factor of 2 by adding just 4 edges to the namespace graph.

– For the hostnames graph, we were not able to find any such easy fixes. In
fact, it seems that the hostnames graph will need substantial (and hence
automated) extension for it to become more robust.

Future Work. A first task would of course be to extend this work to larger
snapshots of the Web of Data, to see if our methods scale and if our findings
generalise. Currently, the hostname graph is already at the limits of what is
computationally feasible to solve the link-optimisation problem. In particular,
repeatedly testing the centrality index of candidate graphs that are generated
by our evolutionary algorithm is very expensive. An incremental algorithm cal-
culating the centrality index of a slightly modified graph would be helpful here.

A more fundamental extension to our work would be to change our analysis
into a real-time monitoring engine that would constantly monitor the state of the
Web of Data, e.g. by taking as input a stream of modifications, and produce as
output a set of suggestions for useful links to add in order to maintain or improve

xmlns.com
dbpedia.org
purl.org

304 C. Guéret et al.

robustness. Unlike the regular Web, where failure is tolerated, the Web of Data
is meant for machine consumption, implying that it is more in need of constant
and machine-assisted upkeep. In this paper, we have provided the necessary
abstractions for such quality control, and we have shown that the Web of Data
in its current form has severe vulnerabilities. We have also proposed effective
algorithms for determining repairs. With these results our paper opens the way
towards continuous and machine-assisted repairs to the Web of Data.

In some cases adding a link may be less expensive than deploying a mirror.
While studying the cost of adding links versus that of deploying mirrors goes
beyond the scope of this work, we plan to work on the automated identification
and connection to cached data.

References

1. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex net-

works. Nature 406(6794), 378–382 (2000)

2. Amaral, L.a., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world net-

works. Proceedings of the National Academy of Sciences of the USA 97(21), 11149–

11152 (2000)

3. Bader, D., Kintali, S., Madduri, K., Mihail, M.: Approximating betweenness cen-

trality. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp.

124–137. Springer, Heidelberg (2007)

4. Bader, D., Madduri, K.: SNAP, Small-world Network Analysis and Partitioning: an

open-source parallel graph framework for the exploration of large-scale networks.

In: IEEE International Symposium on Parallel and, pp. 1–12. IEEE, Los Alamitos

(April 2008)

5. Eiben, A., Smith, J.: Introduction to evolutionary computing. Springer, Heidelberg

(2003)

6. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)

7. Freeman, L.C.: A Set of Measures of Centrality Based on Betweenness. Sociome-

try 40(1), 35 (1977)

8. Ge, W., Chen, J., Qu, Y.: Object Link Structure in the Semantic Web. In: Aroyo,

L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tu-

dorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 257–271. Springer,

Heidelberg (2010)

9. Gil, R., Garcia, R.: Measuring the semantic web. In: Advances in Metadata Re-

search, Proceedings of MTSR 2005. Rinton Press (2006) ISBN 1-58949-053-3

10. Guéret, C., Wang, S., Schlobach, S.: The web of data is a complex system - first

insight into its multi-scale network properties. In: Proceedings of the European

Conference on Complex Systems, ECCS (2010) (to appear)

11. Jaffri, A., Glaser, H., Millard, I.: Uri identity management for semantic web data

integration and linkage. In: 3rd International Workshop On Scalable Semantic Web

Knowledge Base Systems. Springer, Heidelberg (2007)

12. Newman, M.E.J.: The Structure and Function of Complex Networks. SIAM Re-

view 45(2), 167–256 (2003)

13. Zhang, X., Cheng, G., Qu, Y.: Ontology summarization based on rdf sentence

graph. In: Proceedings of the 16th International Conference on World Wide Web,

WWW 2007, pp. 707–716. ACM, New York (2007)

When owl:sameAs Isn’t the Same: An Analysis
of Identity in Linked Data

Deborah L. McGuinness3, and Henry S. Thompson1

1 School of Informatics

University of Edinburgh

10 Crichton St. EH8 9LW Edinburgh, UK

{hhalpin,ht}@inf.ed.ac.uk
2 Institute for Human and Machine Cognition

40 South Alcaniz St.

Pensacola, FL 32502 USA

phayes@ihmc.us
3 Tetherless World Constellation

Department of Computer Science

Rensselaer Polytechnic Institute

110 8th Street, Troy, NY 12180 USA

{mccusj,dlm}@cs.rpi.edu

Abstract. In Linked Data, the use of owl:sameAs is ubiquitous in in-

terlinking data-sets. There is however, ongoing discussion about its use,

and potential misuse, particularly with regards to interactions with in-

ference. In fact, owl:sameAs can be viewed as encoding only one point on

a scale of similarity, one that is often too strong for many of its current

uses. We describe how referentially opaque contexts that do not allow

inference exist, and then outline some varieties of referentially-opaque

alternatives to owl:sameAs. Finally, we report on an empirical experi-

ment over randomly selected owl:sameAs statements from the Web of

data. This theoretical apparatus and experiment shed light upon how

owl:sameAs is being used (and misused) on the Web of data.

Keywords: linked data, identity, coreference.

1 Introduction

As large numbers of independently developed data-sets have been introduced
to the Web as Linked Data, the vexing problem of identity has returned with
a vengeance to the Semantic Web. As the ubiquitous owl:sameAs property is
used as the RDF property to connect these data-sets, it has been dubbed the
‘owl:sameAs problem’ by publishers and users of Linked Data. However, the
problem of identity lies not within Linked Data per se, but is a long-standing
and well-known issue in philosophy, the problem of identity and reference. What
precisely is new in the recent appearance of this problem on the Web of Linked
Data is that this is the first time the problem is being encountered by different

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 305–320, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Harry Halpin , Patrick J. Hayes , Jamie P. McCusker ,1 2 3

306 H. Halpin et al.

individuals attempting to independently knit their knowledge representations
together using the same standardized language. Much of the supposed “crisis”
over the proliferation of sameAs in Linked Data can be traced to the fact that
many mutually incompatible intuitions motivate the use of owl:sameAs in Linked
Data. These intuitions almost always violate the rather strict logical semantics
of identity demanded by owl:sameAs as officially defined.

To review, the owl:sameAs (abbreviated from hereon simply sameAs) con-
struct is defined as stating “that two URI references actually refer to the same
thing” [3]. For example, the city of Paris is referenced in a number of different
Linked data-sets: ranging from OpenCyc to the New York Times. For example,
we find that dbpedia:Paris is asserted to be sameAs both cyc:CityOfParisFrance
and cyc:Paris DepartmentFrance (and five other URIs). Yet OpenCyc explicitly
states (in English!) that these two are distinct. Is there a contradiction here?
Is DBPedia misusing sameAs? In this paper we will explore the origins of this
(very common) situation, and suggest some ways forward.

As the Semantic Web is a project in development, it is always possible to
specify anew various constructs. The project of inspecting alternative readings of
sameAs has been begun by us in the past by looking at context [9] and proposed
ontologies [12]. In this work we bring our research together and validate it empir-
ically. We begin by reviewing the philosophical origin of the problem of identity
from Leibnitz’s Law in Section 2 and its implementation as sameAs in Section
3. In Section 4 we demonstrate a number of theoretically-motivated distinctions
that are ‘kind of close’ to sameAs and then systematize these into an ontology
in Section 5. Finally, test see if humans can reliably use these distinctions in
Section 6, and conclude with recommendations for the future development of
RDF in Section 7.

2 What Is Identity?

The father of knowledge representation, Leibnitz, was also the first to phrase a
coherent and formalizable definition of identity, often called ‘Leibnitz’s Law’ or
the ‘The Identity of Indiscernables,’ namely that that if x is not identical to y,
then there must be some property that they do not share [11]. Or put another
way, if x and y share all properties (i.e. if they are indiscernable) then they are
identical. This law can then stated logically as ∀x∀y∃P.x
= y → P (x) ∧ ¬P (y).
The inverse of this is the more trivial law of substitutivity, which can then be
stated as ∀x∀y.P (x)∧P (y)→ x = y. Leibnitz’s law and the law of substitutivity,
which are obvious from a logical perspective, have a number of very practical
engineering reprecussions in a distributed knowledge representation system such
as the Semantic Web.

A number of classical problems already crop up in this analysis of identity.
For example consider changes over time. Should things with different temporal-
spatial co-ordinates be counted as different, even if they share the rest of their
properties? While that sounds like a common-sense distinction, is Tim Berners-
Lee as an adult is the same as Tim Berners-Lee five minutes ago? Or as a child?

When owl:sameAs Isn’t the Same: An Analysis of Identity in Linked Data 307

Or if he lost his arm? This leads straight in to arguments about perdurance
and endurance in philosophy. In any engineering discipline such as knowledge
representation (as opposed to say, metaphysical thought experiments), we can
never enumerate all possible properties.

Instead, we consider only a subset of possible properties. As a result identity
based on propery matching is under-determined. One solution is to have some
properties count as those necessary for identity, namely an explicit theory of
identity criteria. Are there two different kinds of properties, properties that are
somehow intrinsic to identity and others that are extrinsic, i.e. purely relative to
other things?1 However, this does not mean that all such criteria-based theories
are compatible. One can imagine theories of identity based on different criteria,
where some theories of identity subsume weaker or stronger ones, but others
are simply incommensurable. Problems also arise with respect to (comparing)
property values, for example when values are vague (is “purple” the same as
“rgb(255,0,255)”) or imprecise (is “2 inches” the same as “5 cm”).

Regardless of these well-known issues, the point of a logical analysis of identity
is clear in terms of inference: When someone says two things are the same, the
two things share all the same properties and so every property of one thing can
be inferred to be a property of the other. The quesion is: Does such a definition
of identity work in a decentralized environment such as the Web of Linked Data?

3 The Identity Crisis of Linked Data

Just because a construct in a knowledge representation language is explicitly and
formally defined does not necessarily mean that people will follow that definition
when actually using that construct ‘in the wild.’ This can be for a wide variety
of reasons. In particular, the language may not provide the facilities needed by
people as they actually try to encode knowledge, so they may use a construct
that appears to be close enough to what they need. A combination of not reading
specifications—especially formal semantics, which even most software developers
and engineers lack training in—and the labeling of constructs with “English-like”
mnemonics, will naturally lead the use of a knowledge representation language by
actual users to vary from what its designers intended. In decentralized systems
such as the Semantic Web, this problem is amplified. Far from being a sign of
abuse, it is a sign of success, as it means that the Semantic Web is actually being
deployed outside academia and research labs.

At first glance, sameAs seems to be harmless. Its informal definition is that
“the built-in OWL property owl:sameAs links an individual to an individual”
and “Such an owl:sameAs statement indicates that two URI references actually
refer to the same thing: the individuals have the same identity” [1]. OWL states
that “It is unrealistic to assume everybody will use the same name to refer to
1 For example, using a single pre-defined criterion to define identity has been a success

in terms of primary keys in databases. OWL also allows us to deploy such a property

using the owl:inverseFunctionalProperty construct, although this is a rather simple

approximation of a full-fledged theory of identity criterion.

308 H. Halpin et al.

individuals. That would require some grand design, which is contrary to the spirit
of the web” [1]. The problems with sameAs start when we apply the principle
of substitution to it, by inferring from a sameAs assertion that its subject and
object share all the same properties.

Despite efforts such as OKKAM which attempt to get the Semantic Web to
re-use URIs [4], with the distributed growth of Linked Data projects new URIs
are often being minted for new data-sets independently and then sameAs links
are added manually or automatically. Furthermore, the entire transitive closure
of all individuals that are connected by sameAs share all the same properties,
if the official (substitutive) definition is respected.

There is the possibility that sameAs could turn the Semantic Web from a
web of interconnected data to the semantic equivalent of mushy peas. Of course
identity is transitive and substitutive. If all the uses of sameAs are semantically
correct, all these entailments would be exactly correct. The problem is not that
sameAs itself is mushing up Linked Data, but that it’s being used to mean other
things than what the specification says it means.

While there have been heroic efforts to deal with these ‘co-reference’ bun-
dles by the KnoFuss architecture [15] and the Consistent Reference Service [7],
these have both been deployed only in certain domains. While there has been
much related work in the database community on assessing information quality
from uncertain sources of information [16], and some work in the Semantic Web
community such as the work of WIQA [2] and Inference Web [13], this work
has yet to be widely deployed for Linked Data. As imaginable, this has led to
considerable discussion in the Linked Data community that such use of sameAs
is dangerous and potentially ‘wrong’ as regards the formal semantics of OWL
1.0. However, since inference is rarely used with Linked Data, these problems
are not always noticed. Does the possibility of incorrect inferences even matter
if one’s application does not use inference? With frameworks such as SiLK in-
creasing the number of sameAs [17] statements, is the use of sameAs a potential
time-bomb for Linked Data, or just a harmless convention?

4 Varieties of Identity and Similarity

What kinds of uses of sameAs inconsistent with its strict logical definition may
be found in the wild? The kind of uses we find suggest that in some cases the
context (which can be given on the Semantic Web as a named graph) of the use
of name of is referentially opaque despite both names denoting a single thing.
In other cases the two things are just similar. In neither case is it implied that
either name can be freely substituted for the other (the Principle of Substitution
does not hold), nor can all the properties of either name be inferred to hold of
the other.

4.1 Identical but Referentially Opaque

The first case is when things are identical, that is the two names do identify to
the same thing, but all the properties ascribed to one name are not necessarily

When owl:sameAs Isn’t the Same: An Analysis of Identity in Linked Data 309

appropriate for the other, so their names can not be substituted. In this case, the
context of use, like a named graph on the Semantic Web, is referentially opaque.
While this may appear to violate the very definition of identity, there are two
general cases where this may hold.

The first case is when indeed the two names do identify the same thing, but
not all properties asserted using one of the names may be asserted using the
other name. This is the case when the particular name used to refer to an object
matters in some important way. A typical example of referential opacity arises
when we have an explicit representation of an agent’s knowledge or belief, and
the agent doesn’t know that the names co-refer. If the agent believes that the
‘Morning Star’ refers to Venus, but does not know that the ‘Evening Star’ also
refers to Venus, then an equality substitution (such as using sameAs) between
the ‘Evening Star’ and ‘Morning Star’ will give a false representation of their
beliefs, even though this equation is factually true.

Another case is when two names may refer to the same thing and all properties
do hold of both names, but it is socially inappropriate to re-use the name in
a different context (a context can be given as a named graph in RDF). The
central intuition here is there are ’forms of reference’ appropriate to a context,
especially in social contexts. To use an informal example, when at an event of
the Royal Society, Tim Berners-Lee is Professor Sir Tim Berners-Lee of MIT
and Southhampton, not timbl on IRC. This does not mean that in an IRC chat
Tim Berners-Lee is somehow not a professor, but that within that context those
properties do not matter. This property is exceedingly important for Linked
Data, as contrary to popular doctrine, URIs are uused often as kinds of names
and it is possible that the Web is full of referentially opaque contexts.

4.2 Identity as Claims

One could attempt to avoid the entire problem by simply treating all statements
of identity as claims, where the statement of identity is not necessarily true, but
only stated by a particular agent. As different agents may have different sets of
claims they accept, different agents may accept different identity statements and
so have different inferences. These issues also apply to the Semantic Web insofar
as it uses any kind of inference as once an agent accepts an identity claim, the
agent is bound to all its valid inferences. Informally, it is one thing for me to
link to your URI, but its another thing for me to believe what you say about
it as though you were talking about my URI. Put another way, one should be
wary of accepting conclusions over here that could have been drawn over there,
so to speak.

In particular, this issue comes into play when different agents describe the world
at different levels of granularity.For example, different sources of Linked Data may
make subtley different claims about some common-sense term like ‘sodium.’ This
occurs in the case of the concept of sodium in DBPedia, which has a sameAs link to
the concept of sodium in OpenCyc. The OpenCyc ontology says that an element
is the set of all pieces of the pure element, so that sodium in Cyc has a member
which is a lump of pure metallic sodium with exactly twenty-three neutrons. On

310 H. Halpin et al.

the other hand, sodium as defined by DBPedia includes all isotopes, which have
different number of neutrons than ‘standard’ sodium, and in this particular case
are unstable. So, one should not state the number of neutrons in DBPedia’s use of
sodium, but one can with OpenCyc. At least in web settings with little inference
or reliance on detailed structures, it is unlikely that most deployers of Linked Data
actually check whether or not all the properties and their associated inferences are
shared amongst linked data-sets.

4.3 Matching

As inspired by skos:exactMatch, which states “indicates a high degree of con-
fidence that two concepts can be used interchangeably across a wide range of
information retrieval applications.” [14], one can imagine a kind of strong sim-
iliarity relationship called matching where different things share enough prop-
erties enough to substitute for each other, at least for some purposes. Unlike
skos:exactMatch this property would apply to things themselves, not just con-
cepts of things. Two descriptions of things can share all the same properties due
to only a finite and incomplete number of these properties being described. For
example, while a wine-glass is identical to itself, it would match another wine-
glass from the same set in a Semantic Web description...at least for the purposes
of laying a table. We should also be careful not to mix up names and things. The
“Department of Paris” and “District of Paris” may share the same geographical
extent, but by what act of civil engineering on a grand scale or legal act in court
could such things actually be substituted for each other? Obviously they are not
identical and only strongly similar, even if the knowledge representation of them
lists all the same properties by virtue of being incomplete.

4.4 Similar

Another relationship is a kind of weaker notion of being similar, which is when
two different things share some but not all properties in their given incomplete
description. A wine glass and a coffee-cup are similar as regards holding liquids,
but they hold entirely different kinds of liquid usually and are different shapes, so
Leibnitz’s Law would not hold obviously as they are different things. A real-world
example from Linked Data would be the relationship between two biospecimens
coming from the same cell line in an experiment [12]. We have observed scientists
inclination in practice to connect them with sameAs, as the two biospecimens are
part of the same cell line. However, this creates inferential problems including
causing the specimen to be derived from itself, and important experimental
properties to be duplicated! Therefore, it makes more sense to have an identifier
that only causes some (but perhaps not all) properties to be shared.

4.5 Related

The final relationship is related, when two different things share no properties in
common in a given description but are nonethless closely aligned in some fashion.

When owl:sameAs Isn’t the Same: An Analysis of Identity in Linked Data 311

For example, the relationship between a wine-glass and wine. Such complex, struc-
tured, yet hard-to-specify relationships between things that are ‘kind of close to
identity’ often arise, such as the relationship between a quantity and a measure-
ment of a quantity and between sodium and a isotope. One example of this from
Linked Data is the use of a drug in a clinical trial and the drug itself, which is
currently connected via sameAs in a Linked Data drug study [10]. Although on
some trivial level ‘everything is related’, there are degrees of relatedness. A drug
may be related to many things (such as certain plants it derived from), that fact
may have little relevance to, much less identity with, the clinical trial that tested
its properties, as these properties could also be synthetically brought about. One
is also tempted to engage with some sort of “fuzzy” or numerical weighted un-
certainty measure between one and zero of identity, but the real hard questions
of precisely where these real values come from and their relationship to actual
probability theory muddy these conceptual waters very quickly. It seems that be-
neath these predicates there is likely to be a whole family of heterogeneous and
semi-structured relationships that should be studied more carefully and empiri-
cally observed before any hasty judgments are made.

5 The Similarity Ontology

Although in Section 4 we demonstrate a need for a notion of identity that does
not have any entailments and the possibility that various forms of similarity
are being confused with the notion of identity, we did not explicitly explore the
details. One possibility as originally proposed and discussed in [12] would be to
propose a number of new relationships of identity based on permutations around
each of the properties of transitivity, symmetry, and reflexivity. A new ontology
called the Similarity Ontology (SO) has been defined that separates each of these
out as a new kind of relationship.2 While one could use these properties to make
inferences about the relationship in certain domain-specific cases, one would not
thereby necessarily be claiming that any two objects having this new kind of
relationship would share properties.

The properties of the Similarity Ontology are shown in Table 1. Unlike identity,
similarity properties are not necessarily transitive and symmetric. Note that non-
symmetric is not equivalent to asymmetric, but simply not necessarily symmetric.
The same applies to non-reflexivity and irreflexivity, and non-transitivity and in-
transitivity. Domain-specific properties can be created as sub-properties of one
of the eight SO properties in order to maximize interoperability while maintain-
ing distinctions among future concepts of similarity. We have also defined a map-
ping ontology that shows examples of mappings with existing similarity properties
from RDFS, OWL, and SKOS3 and show the sub-property relationship among the
new and existing similarity properties in Fig. 1. These properties cover the wide
range of relationships from “a is the same thing as b” to “b has more information
about a” and allow the expression of precise concepts of similarity.
2 http://purl.org/twc/ontologies/similarity.owl
3 http://purl.org/twc/ontologies/similarity-mapping.owl

http://purl.org/twc/ontologies/similarity.owl
http://purl.org/twc/ontologies/similarity-mapping.owl

312 H. Halpin et al.

Table 1. The proposed Identity Ontology. Eight new identity properties derived from

the original meta-properties of sameAs: Reflexivity, Symmetry, and Transitivity. The

prefix “sim” is used for the ontology.

Transitive Non-transitive

Reflexive Symmetric so:identical so:similar
Non-Symmetric so:claimsIdentical so:claimsSimilar

Non-Reflexive Symmetric so:matches so:related
Non-Symmetric so:claimsMatches so:claimsRelated

Fig. 1. Sub-property relationships between the properties of the Similarity Ontology

and existing properties from OWL, RDFS, and SKOS

so:identical: Two URIs refer to the same thing and so share all the properties,
but the reference is opaque. This is the most restrictive property of similarity
in SO. It follows the same definition as sameAs, which “indicates that two
URI references actually refer to the same thing: the individuals have the same
identity”, but it is referentially opaque and so does not follow Leibnitz’s Law
[1] As this is the most restrictive property, no other SO properties are sub-
properties of it. sameAs is defined to be a sub-property so that existing valid
assertions of identity are preserved.

so:claimsIdentical: Since this property is transitive and reflexive, but not nec-
essarily symmetric, it serves as a way for one agent to claim two URIs are
identical, without the inverse needing to be true. As a super-property of
so:identical, everything that is actually identical makes the claim of identity,
with both sides of the claim being made due to the symmetry of so:identical.
This property is transitive because if an entity a claims to be entity b and b
claims to be entity c, then a cannot deny that it is claiming to be c as well.

so:matches: Two URIs refer to possibly distinct things that share all the prop-
erties needed to substitute for each other in some graphs. This property is
symmetric but not necessarily reflexive. so:matches is a super-property of
so:identical.

so:claimsMatches: This is the same as so:matches, but is not necessarily sym-
metric, so that things can be claimed to match without reciprocation.

When owl:sameAs Isn’t the Same: An Analysis of Identity in Linked Data 313

so:similar: Two URIS refer to possibly different things that share some
properties but not enough to substitute for each other. so:similar is a
super-property of so:matches. This is a super-property of so:identical since
everything that is identical is also similar. It is also a super-property of
skos:closeMatch[14].

so:claimsSimilar: This is the same as so:similar but is not necessarily sym-
metric. Agents can therefore use this property to claim similarity without
reciprocation. As a statement of similarity is in actuality two claims of sim-
ilarity, so so:claimsSimilar is a super-property of so:similar. In symmetry
with so:similar, claims of identity and matching imply a claim of similarity.

so:related: Two URIS refer to possibly distinct things, and share no proper-
ties necessarily but are associated somehow. As it is only symmetric, there
are no claims to any sort of similarity, matching, or identity. Because of
this, so:related is a super-property of only so:matches, as so:similar and
so:identical are reflexive, which would make so:related reflexive by proxy.
This property is closely related to skos:related [14].

so:claimsRelated: This is the loosest sense of identity in SO. It is a sim-
ilar property to rdfs:seeAlso, which is “used to indicate a resource that
might provide additional information about the subject resource.” [5] We
define rdfs:seeAlso to be a sub-property of so:claimsRelated. so:related and
so:claimsMatches are both super-properties of so:claimsRelated.

5.1 Inference

There is a real opportunity here for doing inference. How is this done? It can
be said that a particular property or set of properties are isomorphic across a
particular kind of similarity. This kind of entailment can be performed through
introduction of a property chain, introduced in OWL 2. What people obviously
want to express is ‘same cell line as,’ or more generally, ‘same relevant property
as’ (One could imagine a number of relevant properties and sub-properties).
This is much more structured than a vague notion of matching and similarity,
and probably more useful. We could do this in OWL now by having a class of
identity-restrictions, along these lines:
sameAsClass a IDRestriction.
samePropertyAs relevantProperty P.
A samePropertyAs B.
A P X. B P Y. →
X sameAs Y.

6 Experiment

We have carried out an empirical study of sameAs “in the wild”. Examples of
sameAs were taken from the Linked Data Web in order to determine how ro-
bust the distinctions offered above are in practice. That is, do people actually use
sameAs in the different ways that are outlined in the Similarity Ontology? Can

314 H. Halpin et al.

people recognize these kinds of distinctions reliably? If at least some of the dis-
tinctions between similarity relationships that are currently conflated by sameAs
can be made in a robust manner, then these distinctions may be candidates for
standardization.

6.1 Data

For our experiment we retrieved all sameAs triples from the copy of the Linked
Open Data Cloud hosted by OpenLink, which totalled 58,691,520 sameAs triples
from 1,202 unique domain names. The top eight providers of triples show a heavy
slant towards biology, being in order: bio2rdf (26 million), uniprot (6 million),
DBPedia (4.3 million), Freebase (3.2 million), Max Planck Institute (.85 million),
OpenCyc (.2 million), Geonames (.1 million), Zemanta (.05 million). As shown
in Figure 2, when the domain of each URI in the subject and object is plotted by
rank-frequency in log-log space, these triples display what appears to be power-
law behavior. This is in line with earlier results [8] that show that Linked Data
does not necessarily follow a power-law, but something relatively close that does
exhibit a somewhat fore-shortened long-tail and nearly exponential behavior in
the head. When we used the standard method of Clauset et al. to detect a power-
law, the exponent was estimated to be 2.42, but the Monte-Carlo generation of
synthetic distributions showed that the distribution failed significantly (p =
.08, p ≤ .1, no power-law found) to be a power-law. Nonetheless, it is seemingly
exponential and almost certainly non-parametric.

In order to select a subset for an initial experiment, we first eliminated some
classes of triples, and then took a weighted random sample. As the data was to
be rated by non-specialists, all biomedical data with bio2rdf and uniprot links
was excluded from the random sampling. Furthermore, the two linked data-sets

10
0

10
1

10
2

10
3

10
4

10
0

10
2

10
4

10
6

10
8

Rank−ordered domains

N
um

be
r

of
 s

am
eA

s
lin

ks

Fig. 2. Frequency of domains in sameAs statements in rank-order, logarithmic (base

10) scale

When owl:sameAs Isn’t the Same: An Analysis of Identity in Linked Data 315

that just copied data (DBPedia) blindly, namely zemanta and Freebase, were
also excluded.

We then drew approximately 500 sample sameAs statements at random from
the remaining 2.3 million triples. In order to prevent the major data-providers
from unfairly dominating the sample, the samples were chosen so that the fre-
quency of URIs in the resulting triples from major providers (those in the expo-
nential head of the distribution) was scaled down by the logarithm of their raw
frequency. This down-weighting is intended to result in a balanced and diverse
sample of sameAs statements. Finally, we attempted to retrieve RDF triples
whose subjects were the subject and object URIs of those statements. The 250
cases where this retrieval was successful provided the material for our initial
evaluation experiment.

6.2 Experimental Design

We used the Amazon Mechanical Turk4 as a platform for a pilot experiment.
Tasks that require some amount of human judgement (such as the judgement
about identity) are broken into what are termed Human Intelligence Tasks
(HITs) for presentation via the Web to three of the authors. Each HIT covered
10 sameAs pairs, as shown in Figure 3, with a standard sample of properties
and values from each retrieved RDF triple displayed in two side-by-side tables.
We hope to later repeat this experiment on a larger scale using crowd-sourcing
via this platform.

The following instructions were given for the forced choice response: The
same: clearly intended to identify the same thing, without necessarily using the
same properties e.g. two different descriptions of a live performance by Queen
of Bohemian Rhapsody. Matches: identifies two copies or versions of the same
thing, with the same fundamental properties and differing only with regards
to incidental properties, e.g. descriptions of two live performances by Queen of
Bohemian Rhapsody, but at different locations. Similar: Identifies two funda-
mentally distinct things, but with some properties in common e.g. descriptions
of two live performances of Bohemian Rhapsody, by two different bands. Re-
lated: not intended to identify the same thing, but related. E.g. descriptions
of the band Queen and of a live performance by Queen of Bohemian Rhapsody.
Unrelated: None of the above. Also, a ‘Can’t tell’ response was available.

As a step towards creating a gold standard, three of the authors assessed
all 250 samples. We plotted the results for each judge per category in Figure
4, revealing what appears to be substantial disagreement with respect to some
categories. Merging the results of each judge, a table is given in Table 2 that
gives raw agreement and disagreement frequencies.

First of all, the vast majority of sameAs statements were indeed judged to
be correctly identical, and only a relatively small amount were judged to be
incorrect. Interestingly enough, a relatively large amount were unknown. Only a
small amount were judged as similar, while the amount judged to be matches and

4 https://www.mturk.com/

https://www.mturk.com/

316 H. Halpin et al.

Fig. 3. Mechanical Turk Interface for identity rating

Same Matching Similar Related Unrelated Don’t Know
0

50

100

150

200

250

300

350

400

Fig. 4. Number of category assignments per judge. Total across all judges blue, each

individual judge is red (1), black (2), and green (3). Y -axis is their frequency in the

data-set.

related were modest. To return to Figure 4, it is very clear that the judges have
different styles of judgement, with one judge preferring sameAs where another
judge would be much more strict by usually answering that they can’t tell. The
remaining judge is in between these two extremes. The amount of disagreement
shows that the categories are fairly unstable. However, there is clearly something
in between not knowing if two URIs are identical and knowing that they are.

Since each question could be considered a binary response over nominal data,
we employed the κ statistic to determine agreement between the judges. The κ
statistic takes into account agreement between annotators that is greater than
chance, and is only valid over nominal data (although our data could be considered

When owl:sameAs Isn’t the Same: An Analysis of Identity in Linked Data 317

ordinal, it is strictly speaking nominal, as each choice is a different relationship
rather than a single identity gradient).5 The κ for the six-way forced choice is
0.158, which is non-accidental but considered ‘poor’ agreement. Notice that while
there was substantial disagreement, there were elements (particularly of identi-
cal) where nearly half the data-set was labelled in agreement, likewise for the ‘re-
lated’ category and a substantial portion of ‘don’t know’. However, the rest of the
categories appear to be terminally prone to error. By optimizing and recombin-
ing categories, we were able to reach a κ of .319, which indicates ‘fair’ agreement.
This was accomplished by merging the ‘similar’, ‘matching’, and ‘related’ cate-
gories, and then merging the ‘can’t tell’ with ‘not related’ categories, and leaving
the ‘same as’ category to itself. The results, as given per judge in Figure 5, are
much more clear. However, there is still substantial disagreement. The main dis-
agreement seems to consist of, rather surprisingly, an inability to agree on ‘same
as’ versus ‘can’t tell’.

Table 2. Raw numbers of Similarity Categories before optimization

Categories-Rater Rater 1 Rater 2 Rater 3

Identical 73 132 181

Matching 31 16 20

Similar 7 9 2

Related 22 23 28

Not Related 24 5 2

Can’t Tell 93 65 17

The differing habits of the raters in this regard are actually more unstable
than their ability to link something using a ‘sort of similar or related’ category,
as shown by inspection of Table 3. It is not in the categories themselves that
the problem surfaces, but in the lack of appropriate knowledge for use in deter-
mining whether two things are in some context-free manner actually identical.
This brings into some doubt the concept of whether or not two things can be
declared identical in a context-free manner, and also highlights the importance
of background knowledge in determining accurate sameAs statements. In this
regard, it should not be surprising that there was such high disagreement on
manual judging of identity and similarity in Linked Data. However, there are a
number of positive results that we can make a guess at by taking the mean of
the collapsed categories per rater (and their standard deviation):

– The most postive result is that approximately 51% (± 21%) percent of the
usage of sameAs seems correct.

– While the distinctions made in the Similarity Ontology likely require special
training beyond that of even RDF experts, a relatively coarse-grained refer-
entially opaque ‘kind-of-similar-and-related-to’ relationship can be reliably

5 The derivation of the κ statistic is described in mathematical detail elsewhere [6].

318 H. Halpin et al.

used instead of sameAs for intermediate cases (around 21% (± 3%) of our
data);

– Approximately 27% (± 19%) of the sameAs cannot be reliably judged based
only on the RDF retrieved.

Same As Similar or Related Don’t Know or Not Related
0

50

100

150

200

250

300

350

400

Fig. 5. Frequency of categories in trained expert judges after optimization. Total across

all judges blue, each individual judge is red (1), black (2), and green (3). X-axis is

categories, Y -axis is their frequency in the data-set.

Table 3. Raw numbers of Similarity Categories after optimization

Categories-Rater Rater 1 Rater 2 Rater 3

Identical 73 132 181

Similar, Matching, Related 60 48 50

Can’t Tell or Not Related 117 70 19

7 Conclusion

The issue of how to express relationships of identity and similarity on Linked
Data is more complex than just applying sameAs. We believe the extent of
disagreement and inaccurate usage as observed in practice at least calls for addi-
tional documentation providing clearer guidance on when to use sameAs. Further
studies on much larger scales using crowd-sourcing need to be employed to see
if the ‘default’ behaviors of the judges in our experiment generalizes. A further
extension of our experiment will test whether the closures of sameAs produce
surprising and incorrect inferences. This can be done by merging inferred triples
with the sameAs statements used in the current experiment.

When owl:sameAs Isn’t the Same: An Analysis of Identity in Linked Data 319

The proposed Similarity Ontology solution has a number of distinctions that
may be difficult to deploy consistently in open-ended domains. In fact, like
many ontologies, the initial distinctions proposed capture an important intu-
ition, namely that there is a nuanced heterogeneous structure of similarity in-
stead of a strict notion of identity in the use of sameAs on the Web, one that
will likely result in an asymmetric flow of inference. However, the Similarity
Ontology explores too large of a design space to be reliably deployed. A simple
similarity property would be quite useful to add to RDF, such as sub-property
of rdfs:seeAlso. Further study of approaches beyond sameAs would be useful if
not provocative for the Linked Data community. Solving the issue of identity in
Linked Data may require a certain refactoring of some core constructs of RDF,
including relating identity to a fully-worked out semantics for named graphs.
Furthermore, individuals could be thought of as being composed of differing
aspects at different levels of granularity rather than the notion of individuals
traditionally used in semantics. In future work, we will also continue investiga-
tions into the notion of aspects and named graphs and continue to be inspired
by the use cases presenting themselves from the current abundance of misuse of
sameAs in Linked Data space. The (ab)use of sameAs in Linked Data is not a
threat, it’s an opportunity.

Acknowledgements

We would like to thank reviewers of earlier versions of this work in OWLED
2010, LDOW 2010, and RDF Next Steps for their helpful feedback. Also, special
thanks to Kingsley Idehen for helping provide the data-set.

References

1. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-

Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference (2004)

2. Bizer, C., Cyganiak, R.: Quality-driven information filtering using the wiqa pol-

icy framework. Web Semantics: Science, Services and Agents on the World Wide

Web 7(1), 1–10 (2009)

3. Bizer, C., Cygniak, R., Heath, T.: How to publish Linked Data on the Web (2007),

http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/ (last ac-

cessed on May 28, 2008)

4. Bouquet, P., Stoermer, H., Giacomuzzi, D.: OKKAM: Enabling a Web of Entities.

In: I3: Identity, Identifiers, Identification. Proceedings of the WWW 2007 Workshop

on Entity-Centric Approaches to Information and Knowledge Management on the

Web, Banff, Canada, May 8. CEUR Workshop Proceedings (2007) ISSN 1613-0073,

http://CEUR-WS.org/Vol-249/submission_150.pdf

5. Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema

(2004)

6. Carletta, J.: Assessing agreement on classification tasks: The kappa statistic. Com-

putational Linguistics 22, 249–254 (1996)

http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/
http://CEUR-WS.org/Vol-249/submission_150.pdf

320 H. Halpin et al.

7. Glaser, H., Millard, I., Jaffri, A.: RKBExplorer.com: A knowledge driven infras-

tructure for Linked Data providers. In: Bechhofer, S., Hauswirth, M., Hoffmann,

J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 797–801. Springer,

Heidelberg (2008)

8. Halpin, H.: A query-driven characterization of linked data. In: Proceedings of the

Linked Data Workshop at the World Wide Web Conference, Madrid, Spain (2009)

9. Halpin, H., Hayes, P.: When owl: sameas isn’t the same. In: Proceedings of the

WWW 2010 Workshop on Linked Data on the Web, Raleigh, USA (April 25, 2010),

http://events.linkeddata.org/ldow2010/papers/ldow2010_paper09.pdf

10. Jentzsch, A., Hassanzadeh, O., Bizer, C., Andersson, B., Stephens, S.: Enabling

tailored therapeutics with linked data. In: Proceedings of the WWW 2009 Work-

shop on Linked Data on the Web, April 20th, 2010, Madrid, Spain (April 2009),

http://events.linkeddata.org/ldow2009/papers/ldow2009_paper9.pdf

11. Leibniz, G., Loemker, L.: Philosophical papers and letters. Springer, Heidelberg

(1976)

of OWL: Experience and Directions, San Francisco, USA (June 21-22, 2010),

http://www.webont.org/owled/2010/papers/owled2010_submission_12.pdf

13. Mcguinness, D.L., Silva, P.P.: Explaining answers from the semantic web: The

inference web approach. Journal of Web Semantics 1, 397–413 (2004)

14. Miles, A., Bechhofer, S.: SKOS Simple Knowledge Organization System Reference

(2009)

15. Nikolov, A., Uren, V., Motta, E.: Knofuss: a comprehensive architecture for knowl-

edge fusion. In: Proceedings of the 4th International Conference on Knowledge

Capture, K-CAP 2007, pp. 185–186. ACM, New York (2007)

16. Pipino, L.L., Lee, Y.W., Wang, R.Y.: Data quality assessment. Communications

of the ACM 45(4), 211–218 (2002)

17. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links

on the web of data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,

Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,

pp. 650–665. Springer, Heidelberg (2009)

12. McCusker, J.P., McGuinness, D.: Towards identity in linked data. In: Proceedings

http://events.linkeddata.org/ldow2010/papers/ldow2010_paper09.pdf
http://events.linkeddata.org/ldow2009/papers/ldow2009_paper9.pdf
http://www.webont.org/owled/2010/papers/owled2010_submission_12.pdf

Semantic Need: Guiding Metadata Annotations
by Questions People #ask

Hans-Jörg Happel

FZI Research Center for Information Technology, Karlsruhe, Germany

happel@fzi.de

Abstract. In its core, the Semantic Web is about the creation, collec-

tion and interlinking of metadata on which agents can perform tasks for

human users. While many tools and approaches support either the cre-

ation or usage of semantic metadata, there is neither a proper notion of

metadata need, nor a related theory of guidance which metadata should

be created. In this paper, we propose to analyze structured queries to

help identifying missing metadata. We conduct a study on Semantic Me-

diaWiki (SMW), one of the most popular Semantic Web applications to

date, analyzing structured “ask”-queries in public SMW instances. Based

on that, we describe Semantic Need, an extension for SMW which guides

contributors to provide semantic annotations, and summarize feedback

from an online survey among 30 experienced SMW users.

1 Introduction

Berners-Lee et al. [3] envisioned a Semantic Web populated by machine-under-
standable metadata based on which agents can reason and act to fulfill tasks for
human users. Accordingly, one can distinguish two different roles: the users and
the providers of semantic metadata.

Semantic Web research has addressed both roles and their corresponding work
processes to a considerable extent. The usage of semantic metadata is supported
by various tools ranging from semantic web service frameworks to ontology-based
information retrieval systems. The creation and provision of semantic metadata
has been studied in terms of manual and (semi-)automatic annotation systems
(e.g. [8]) and with respect to exposing existing structured content on the Se-
mantic Web (e.g. [4]). Surprisingly, only few research has studied topics such
as incentives or methods for guiding the creation of semantic metadata so far.
Since the provision of semantic metadata remains a costly process, several au-
thors thus call for better means to “support users in the creation of metadata”
[6][p. 148] and “to create incentives for annotations” [8][p. 198].

In this paper we propose to guide metadata provision by actual metadata
needs. In previous research [11], we coined the term Need-driven Knowledge
Sharing (NKS) to outline a framework connecting the usage and provision of
information. We describe how NKS can be applied on the Semantic Web, taking
Semantic MediaWiki (SMW) as a concrete example.

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 321–336, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

322 H.-J. Happel

After introducing NKS, we present two heuristics for identifying missing anno-
tations in SMW and describe their application in an exploratory empirical study
with SMW installations running on the public internet. Then we present the im-
plementation of Semantic Need, an extension for SMW which uses structured
queries to guide users in contributing semantic metadata. In a second study, we
asked 30 experienced SMW administrators to provide feedback on our general
concept and on Semantic Need in particular. Based on the analysis of this data,
we discuss further improvements and application scenarios of our approach.

2 Need-Driven Knowledge Sharing

Ultimately, the Semantic Web can be seen as a specialized system for sharing
codified information. As when sharing texts and documents, users and providers
of information are separated due to the asynchrony of the technology, resulting
in reduced motivation and contribution [12]. To address this, we developed the
concept of Need-driven Knowledge Sharing (NKS) [11].

It is based on the assumption that information needs re-occur over time and
across different information seekers, and can thus be used as a means to guide
the creation and improvement of information. NKS rejects viewing information
sharing as a linear process where all information has to be created prior to
any request. In turn, it embraces that an information repository is never 100%
complete, but grows and evolves over time. This perspective acknowledges the
real world experience that individual requests might even fail to deliver any
appropriate result, if some information is not yet known to the repository [13].

In a similar fashion, the logical formalisms underlying the Semantic Web share
that “information [...] is in general viewed as being incomplete” [2, p. 68] and
thus make a so-called Open World Assumption (OWA). In opposite to “closed
world”-systems such as relational databases, facts that cannot be derived are not
considered false but (yet) unknown under the OWA. Thus, a semantic knowledge
base (KB) usually describes only a limited subset of what is considered true in
a domain (see Fig. 1) and might grow over time.

A KB can be generally considered as a set of logical statements or axioms1.
Such axioms might be used to state so-called terminological knowledge which
describes classes and properties of the domain (i.e. “Professor is a subclass of
Teacher”) or about named individuals (i.e. “Rudi Studer is a Professor”)2. If
a KB cannot answer a request that is considered to have true results, this can
either be due to missing assertions [2, p. 68] but also due to an incomplete
specification of the terminology.

Although this evolutionary nature of captured knowledge is a fundamental
principle underlying the Semantic Web, there do not exist appropriate meth-
ods providing guidance on how a knowledge base should evolve – i.e. which
axioms should be added to satisfy information needs. We thus propose to use
1 In RDF these axioms are called triples [16].
2 The terminological and assertional part of a KB are usually referred to as TBox,

respectively ABox [2, p. 46].

Semantic Need 323

KB XKB

Fig. 1. KB denotes the set of all axioms in the knowledge base. XKB denotes the set

of all axioms which have to be added to the KB to satisfy all structured queries.

structured queries for this purpose. While there is no universal definition of
structured queries, we consider so-called conjunctive queries3 [14, p. 294] which
are composed of conjunctive query atoms. These atoms may contain variables
(i.e. “Professor(x) ∧ worksAt(x, y)”) which will be assigned concrete instance
values from the KB if suitable results can be derived from the axioms in KB.
Formally, a query q can be satisfied by a knowledge base KB, if ∃μ : KB |= μ(q).
The function μ maps every variable of the query to the name of an individual,
ensuring that only known individuals are returned by a query [14, p. 295].

We choose QBox as the set of all structured queries that have been formulated
against a knowledge base KB. Due to the inherent incompleteness of the KB,
we expect that there is a set of unsatisfied queries UQ (UQ ⊆ QBox) for which
holds: ¬∃μ : ∀q ∈ UQ : KB |= μ(q). UQ′ is the subset of UQ, for which true
results can be assumed4. We thus choose a set of logical axioms XKB such that
∃μ : ∀q ∈ UQ′ : XKB ∪KB |= μ(q). We assume that KB and KB ∪XKB are
consistent knowledge bases. Note that XKB thus loosely corresponds to the set
of axioms filling the “semantic gap between supply and demand on the Semantic
Web” as described by [15].

Finally, we choose a set of partially unsatisfied queries PUQ′ (PUQ′ ⊆ UQ′)
by requiring that ∃μ : ∀q ∈ PUQ′ : ∃atom ∈ q : KB |= μ(atom). We consider
PUQ′ a particularly relevant subset of the QBox, since in opposite to queries in
UQ \ PUQ′, queries in PUQ′ (“PUQs”) have at least one query atom that can
be satisfied from KB. Using PUQs, axioms contributing yet missing knowledge
can thus be related to existing KB statements.

3 Semantic Need Heuristics

We now want to investigate if “semantic gaps” as described in the previous
section really occur on the Semantic Web. Since query data is not widely available
3 In particular, we only consider the case of “DL-safe” conjunctive queries in this

paper – i.e. we do not allow for non-distinguished variables in query atoms.
4 For instance, a query for “All volcanoes in Karlsruhe” would not be contained in

UQ′ since there cannot be any true result (at least if we consider the real world as

our domain).

324 H.-J. Happel

for analysis, we decided to analyze Semantic MediaWiki (SMW) installations,
since they contain persisted structured queries on Wiki pages (so called “inline
queries”).

In the following section, we thus give a brief introduction to SMW. We then
apply the NKS concept to SMW, describing incomplete and sparse result sets
as two heuristics for identifying PUQs. Finally, we apply these heuristics to
structured queries extracted from public SMW installations.

3.1 Semantic MediaWiki

Semantic MediaWiki (SMW)5 is an extension to the widespread MediaWiki
engine6. It allows users to semantically annotate content on Wiki pages such
that data can be exported and queried in a structured way.

– A list of conditions (basically categories and property values but also named
instances) which should be matched against the knowledge base to constrain
the result set

– A list of printout statements from which values should be contained in the
result set

PUQs, as introduced in section 2, may either lead to incomplete or sparse result
sets for queries in Semantic MediaWiki. We will now elaborate both cases in
more detail and introduce heuristics for identifying axioms that should be added
to the KB to satisfy PUQs.

3.2 Incomplete Result Set

An incomplete result set denotes the situation that an expected result is not
returned by a structured query. There are several reasons why this can be the
case. First, a result instance might no yet be captured – e.g. a query for all
instances of the class employee ([[Category:Employee]]) would not yield em-
ployees that are not yet known to the system. Second, instance annotations
might be incomplete – e.g. a query for all employees with a salary >40.000
([[Category:Employee]][[salary::>40000]]) would not yield Employee in-
stances that lack any information about their salary.

Clearly, it is not obvious to decide if a given result set is incomplete. One
option could be to leverage ontological background knowledge such as cardinality
statements on properties. However, such statements are only possible in more
feature-rich formalisms such as OWL, but not in RDF or SMW. Thus, another
option is to heuristically infer missing results. In the following we present one
particular heuristic for this purpose.

5 http://www.semantic-mediawiki.org
6 http://www.mediawiki.org

http://www.semantic-mediawiki.org
http://www.mediawiki.org

Semantic Need 325

Fig. 2. An example of a sparse result set

Near matches. As stated before, structured queries often contain multiple condi-
tions to select particular subsets of an ontology class. The previously mentioned
query for employees with a certain salary is an example for this. We define near
matches as instances in the knowledge base which are potentially relevant re-
sults for a given query, but which do not appear in its result set due to missing
semantic metadata.

To identify such cases, we only consider queries with at least two conditions.
Technically, a candidate “near match” has to match at least one condition of a
query and must not match at least one other condition, for which it lacks any
annotation. This is to avoid considering instances which are properly described
(e.g. an employee with a salary of 30.000, which does not match the query by
purpose).

Near matches can thus help indicating missing annotations that prevent in-
stances from appearing as a query result. The underlying assumption is, that
these instances potentially could match the information need if metadata would
have been properly annotated. Accordingly, we consider them near matches and
assume that this might offer valuable insights on required metadata to people
contributing to a knowledge base.

3.3 Sparse Result Set

In SMW-QL, a cell in the result set will remain empty by default if there is no
appropriate binding for that variable (see Fig. 2)7. We define sparse result set
as a case, when at least one cell in a result set remains empty.

Missing Result Values. For SMW queries, empty cells can be considered an
unsatisfied information need, since the query requests a variable binding which

7 Note that e.g. in SPARQL the default behaviour will not show the entire result

set tuple, if at least one variable can not be bound. This default behaviour can be

changed using the OPTIONAL modifier [16]. However, in this case, we would end

up with an incomplete result set as discussed before.

326 H.-J. Happel

can not be satisfied from the knowledge base. Thus, we define missing result
values as a heuristic to infer missing annotations. They can easily be derived by
simply counting empty cells in query result sets. For the maintainer of a Wiki
page it might be interesting to know which printout statements are missing on
a particular page in order to help delivering additional information for queries.

3.4 Public SMW Analysis

We now investigate if “missing result values” and “near matches” can be useful
heuristics to identify PUQs in real-world settings. Since SMW is a popular Me-
diaWiki extension, there exists a large number of publicly accessible installations
which we could use for this purpose.

Design. To check our heuristics we follow the basic research interests how many
missing result values respectively near matches exist for real world structured
queries. In terms of information need indicators, we will rely on the analysis of in-
line queries, since these are the only information needs in SMW which currently
have a persistent representation. To select public SMW instances for analysis,
we derived an initial list by consulting overview pages and search engines. By
dismissing Wikis with only few semantic data (less than 3 queries and 250 anno-
tations), we cut down our list from around 200 to 100. We then ruled out Wikis
which were not accessible via a public API or difficult to crawl due to connec-
tion problems during the test runs of our evaluation tooling. Out of these, we
randomly selected 26 Wikis, which we crawled. Due to the massive amount of
data we decided to carry out deeper investigations on eight Wikis described in
Table 1.

Table 1. Overview of surveyed SMW installations

Sitename Pages ANN8 PGANN
9 IQ10 IQEC IQECPO IQECCJ

CS Wiki (CS) 195 1.591 67 5 5 5 4

Eroge Wiki (ER) 340 1.853 182 3 1 0 0

HAR2009 (HA) 2.892 3.468 940 38 0 0 0

Historiographus (HI) 998 2.724 390 19 14 10 8

Mount Wiki (MN) 2.662 1.422 833 199 0 0 0

Protege Wiki (PR) 1.545 253 367 11 10 6 4

Sharing Buttons (SH) 122 590 18 7 0 0 0

territoile (TR) 1.801 3.135 502 3 1 1 1

Σ 10.564 15.036 3.299 285 31 22 17

8 Overall number of semantic annotations.
9 Number of pages containing at least one semantic annotation.

10 Number of inline queries. Further columns indicate subsets of IQ constrained by

evaluation conditions as described in the text.

Semantic Need 327

Process. In order to retrieve data for our analysis, we wrote a crawler11 which
accesses the MediaWiki API. It extracts all semantic annotations and structured
queries from the pages and stores it into a database. After retrieving the data, we
applied further processing in order to restrict the number of queries for analysis.
First, we chose an evaluation condition (“EC”) which selects queries that a)
are “ask”-queries (ruling out “show” queries) and that b) have either “table”
(=default) or “broadtable” as output format (ruling out, e.g., RSS exports of
query results). The number of queries satisfying the evaluation condition is shown
in Table 1 as IQEC . In order to further align the set of queries to our analysis, we
applied a final selection step. For the analysis of missing result values, we selected
those queries that actually contain printout statements (IQECPO). Accordingly,
we selected only conjunctive queries for the analysis of near matches (IQECCJ).

Overall, this processing resulted in 22 queries satisfying IQECPO and 17
queries satisfying IQECCJ . Due to overlaps of both sets (see Table 2 and 3)
this results in 25 distinct queries12. As a first step of analysis, we derived the
number of results for all queries. Since many queries were located on Template
pages, the corresponding fields in Table 2 and 3 denote “n.a.”, since the num-
ber of results would depend on the page embedding the template. Instead, we
computed the number of instances for the [[Category:]] part of the query
(ResultsCAT).

Results

Missing result values. Table 2 summarizes the analysis of the IQECPO query
set. We computed the number of missing result values (e.g. empty cells) in the
result set. For queries on normal pages, this is the actual number. For queries
on template pages, we summarized the number of missing result values across
all instances (ResultsCAT).

As it can be seen from the results, all queries on normal pages provide a com-
plete result set. However, for queries on template pages, up to 63% of cells in the
query result set were empty. To estimate if these empty cells were really due to
missing information (instead of consciously ommitted), we manually investigated
three empty cells for each of five different queries. It turned out, that only two
of the 15 empty cells could not be considered missing information. This shows
that queries lack result values to a considerable extent. In average, 16% of cells
remained empty across all queries surveyed.

Near matches. For the conjunctive queries, we first observed that all 17 queries
under consideration consisted of exactly two conjunctions. In most cases, this is
a category stametement combined with a restriction on one property (e.g. PR2:
[[Category:Plugin]] [[For Application::PAGENAME]]). In order to derive
near matches, we computed the number of instances which completly lack the

11 Available at http://www.teamweaver.org/wiki/index.php/MediaWikiTools
12 See http://www.teamweaver.org/downloads/data/sneed/sneed-smw-queries.pdf

http://www.teamweaver.org/wiki/index.php/MediaWikiTools
http://www.teamweaver.org/downloads/data/sneed/sneed-smw-queries.pdf

328 H.-J. Happel

Table 2. Empty/missing result values for the surveyed queries

ID Results ResultsCAT
13 Empty cells Printout

requests

% Empty

cells

CS1 n.a. 8 19 4 59%

CS2 n.a. 7 0 3 0%

CS3 n.a. 1 0 1 0%

CS4 n.a. 16 0 2 0%

CS5 7 7 0 4 0%

HI1 1 18 0 3 0%

HI2 28 65 0 2 0%

HI4 n.a. 18 27 3 50%

HI5 n.a. 65 22 2 17%

HI7 n.a. 24 60 4 63%

HI8 n.a. 4 1 3 8%

HI9 n.a. 35 6 4 4%

HI10 n.a. 15 3 4 5%

HI11 n.a. 14 2 4 4%

HI12 n.a. 15 9 4 15%

PR1 72 80 0 1 0%

PR2 n.a. 80 13 1 16%

PR3 n.a. 91 1 1 1%

PR5 n.a. 91 75 2 41%

PR6 n.a. 91 1 1 1%

PR4 n.a. 91 57 1 63%

TR1 70 102 0 1 0%

Σ 938 Σ 296 Ø2,5 Ø16%

annotation of the restricted property. The rationale behind this is, that these
instances might qualify to appear in the query result set, once a correct value
for the property is annotated.

As described in the last column of Table 3, up to 94% of instances lacked the
annotation on the selection property in extreme cases. Again, we performed a
deeper investigated on three near matches for each of five different queries. Out
of these 15, five turned out be “false positives” - i.e. were lacking annotations by
purpose. While near matches might thus not be a strict indicator for “missing”
annotations, they are nevertheless a strong hint. On average, across all queries, a
value of 22% turns out. This is a rather high number, considered that this rules
out the instances from appearing in the results of the surveyed queries.

Although our analysis is based on a rather small set of queries, this selection
can already help to identify up to 296 missing printout statements and up to
147 missing selection properties within the surveyed Wikis. Given the fact that
we only analyzed around 9% of the overall inline queries (due to our evaluation
conditions), this stresses the potential for using “missing result values” and “near
matches” as heuristics for guiding semantic annotations.

13 Number of instances for the [[Category:]] part of the query.

Semantic Need 329

Table 3. Near matches for the surveyed queries

ID Results ResultsCAT
13 Missing selection property % Missing selection property

CS1 n.a. 8 6 75%

CS2 n.a. 7 0 0%

CS3 n.a. 1 0 0%

CS4 n.a. 16 4 25%

HI1 1 18 17 94%

HI2 28 65 10 15%

HI3 1 3 1 33%

HI4 n.a. 18 17 94%

HI5 n.a. 65 10 15%

HI6 n.a. 3 0 0%

HI7 n.a. 24 13 54%

HI8 n.a. 4 2 50%

PR1 72 80 8 10%

PR2 n.a. 80 9 11%

PR3 n.a. 91 0 0%

PR4 n.a. 91 18 20%

TR1 70 102 32 31%

Σ 676 Σ 147 Ø22%

4 Semantic Need Implementation

In this section, we first discuss how semantic gaps in a knowledge base can be
resolved. Then we present our prototypical implementation of Semantic Need as
an extension for SMW and summarize results of a survey conducted among 30
SMW administrators.

4.1 Resolving Semantic Gaps

Semantic gaps in the knowledge base, as indicated in the previous paragraphs,
can either be resolved by capturing or by sharing knowledge.

Capturing is necessary, if knowledge is not yet formalized at all. This can
involve both, schema-level knowledge or data/annotations. Concerning annota-
tions, “near matches” and “missing result values” can help identifying concrete
properties which are not yet annotated for a knowledge base instance. Thus,
users can be provided with an interface denoting all missing properties for a
given instance as derived by these heuristics. Similarly, one can try to identify if
“near matches” and “missing result values” are due to missing schema mappings.
This denotes the case if query atoms do not correspond to existing categories or
properties in the Wiki. This can either imply that parts of the domain knowledge
are missing in the ontology of the Wiki, or it can be an indictor of synonyms –
e.g. if a user asks for [[Category:Worker]] instead of [[Category:Employee]].
Thus, the system might assist users in finding candidate mappings to improve
the ontology schema and thus help satisfying information needs.

330 H.-J. Happel

Sharing knowledge can be done if information is already formally captured,
but not available at query time, since it is hidden in a yet unknown or not
accessible knowledge base. Information needs might thus be satisfied by either
sharing (i.e. copying) semantic information into the queried knowledge base,
or by introducing suitable mappings, which allow the query engine to retrieve
semantic information from distributed spaces.

4.2 Semantic Need for MediaWiki

Our current implementation adresses the capturing of semantic annotations,
while the sharing of semantic information and the provision schema-level knowl-
edge are foreseen in the system design, but not yet realized. We also currently
focus on so-called “inline queries” embedded in Wiki pages. We consider them
the most relevant, since many end users might not be able or willing to formulate
ad hoc structured queries on their own. Basic information about inline queries
is stored in a “semantic query log” which includes the conditions and printout
statements of the query. Due to space restrictions, we will skip details on the
storage by now14. Based on the query log, a so-called Need API offers metadata
need information such as “near matches” and “missing result values”.

One consumer of such need information is the Capturing UI, a special user
interface which allows knowledge engineers, domain experts or end users to con-
tribute potentially missing facts to the knowledge base. We realized two different
types of implementation so far. First, we provide “global” overview pages which
list all queries – in particular those without results – and a Wiki-wide overview
of pages and their missing annotations. Second, the same feature is applied to
individual pages, resulting in an overview of missing annotations for a specific
Wiki page. This can be considered a semantic counterpart to the MediaWiki
page Special:WhatLinksHere, which helps users to find out how a Wiki page
is syntactically embedded (i.e. linked).

Although usability issues are not a core focus of this paper, we also thought
about how to address actual end users who might contribute to the Wiki more
directly (see Fig. 3). Besides this, several other ways to inform users about contri-
bution possibilities can be imagined – including integration in Java-Script based
annotation UIs15, game-based interfaces (e.g. [17]) or identifying and approach-
ing potential contributors directly (e.g., by E-Mail).

4.3 Semantic Need Survey

While an initial implementation of the Semantic Need extension is already avail-
able, it is not yet robust enough for an evaluation in the field. We thus decided
to evaluate the current version based on an expert survey among experienced
SMW administrators, which we describe in the following.

14 Initial (but more general) ideas have been presented in [9].
15 Such as http://smwforum.ontoprise.com/smwforum/index.php/

Help:Introduction to Advanced Annotation Mode

http://smwforum.ontoprise.com/smwforum/index.php/Help:Introduction_to_Advanced_Annotation_Mode
http://smwforum.ontoprise.com/smwforum/index.php/Help:Introduction_to_Advanced_Annotation_Mode

Semantic Need 331

Hint

Fig. 3. In-page display and input form for missing annotations

Design and Process. The main goal of the survey was to gather feedback
on our current concept and its realization. We thus decided to include a small
example scenario with screenshots of SMW and our extension. Since this requires
a) prior knowledge of SMW, b) a holistic view of an existing SMW installation
and its usage and c) results in a rather large questionnaire, our main target
group consists of experienced SMW administrators rather than end users.

The questionnaire consists of five major components. Two parts address the
problems of a sparse and incomplete result set, asking respondents about the
frequency and severity of these issues. Another part deals with semantic anno-
tation practices. People are asked how they find out missing annotations in a
standard SMW. Afterwards, screenshots of Semantic Need are shown (including
Fig. 3) and people are asked if they agree that Semantic Need might be effective
to a) generally help maintaining annotations, b) focus annotation effort and c)
motivate users to provide contributions. Two other parts of the survey address
the usage context of SMW. We asked about the knowledge domain captured in
the Wiki and the structure and content of the knowledge base.

The final questionnaire has 34 questions16. It was pre-tested by 5 persons
resulting in some minor modifications and clarifications. To gather participants
for the survey, we followed two strategies. Since we were interested in frequent
SMW users, we advertised our survey on the official SMW user and developer
mailinglists. Furthermore, we directly contacted 15 persons which are known to
drive own SMW projects.

Results. We received 30 complete answers. A majority of 15 answers came from
Germany, 7 from the US while the remaining participants are scattered across
eight different (mostly European) countries. Concerning their experience with

16 See http://www.teamweaver.org/downloads/data/sneed/sneed-survey.pdf

http://www.teamweaver.org/downloads/data/sneed/sneed-survey.pdf

332 H.-J. Happel

SMW, 15 respondents describe themselves as “intermediate”, 11 as “expert”
and 4 as “novice”. On average, they are using SMW for 2.3 years.

The knowledge domain captured in SMW is characterized as “fixed/standar-
dized” in 8 cases, as a “generally open domain without many predetermined enti-
ties and properties” in 6 cases and as a mix of both options in 15 cases. Accordingly,
the semantic data model is largely prescribed by Semantic Forms/Templates in 19
cases. Only 7 SMWs have an equal level of prescribed and ad hoc structure and
another 4 rely mostly on free-form annotations. None of the Wikis surveyed do
not use Semantic Forms/Templates at all. 12 people answered that no particular
methodologies, practices or tools are used to maintain the semantic data, while 5
people claim to follow simple informal practices and 7 people implement changes
based on more advanced measures such as scripts, documentation and team deci-
sions. In 7 cases, the data stored in SMW is driven by the structure from external
data and systems.

The problem of sparse result set was observed “often” or “sometimes” by 18
people, while 12 indicated “rarely” or “never”. 15 people rate the issue as “not
problematic” while 12 answered “somehow problematic”. No one rated query
result sparseness as “very problematic”. In their free text justification, people
made the point that the application context (4 answers) and the nature of the
data itself (5) have an impact on if query result sparseness is an actual problem.

For incomplete result sets, 19 people answered to have observed the issue
“often” or “sometimes” while 9 observed it “rarely” or “never”. Furthermore,
only 5 people consider the issue “not problematic”, while 18 answered “somehow
problematic” and 5 even “very problematic”. This is stressed by the free text
justifications in which 16 respondents repeated that query result incompleteness
is a problematic issue. Key aspects are the “invisiblility” of the issue (which
makes it worse than sparse query results) which is quantified if the dataset
grows large: “due to the nature of our wiki (IT company) it is hard to know
when a query is incomplete. For example, there are hundreds of pages on servers
so impossible to know when one or several are missing.”

We also asked how people would deal with finding out missing annotations
for a particular Wiki page and clustered the free-form answers in four main
categories. 6 answers suggest to make a comparison with annotations on similar
Wiki pages. Related to that, 7 people would check the schema (i.e. properties)
and forms related to that page. Another 4 people would do an analysis of the
page text to identify additional content that could be formalized. Finally, 10
answers suggested to create specific ask-queries for this purpose. It turns out
that decisions are a core part of this process – as one answer puts it: “Write
down a list of all the quantifiable data on the page. - Then decide if any of these
are excessive in depth for most users. - In this case I would add part of africa,
size, population, and currency.”

The global overview about Wiki pages and their missing annotations is gener-
ally appreciated in the survey. On a 5-point scale ranging from “strongly diagree”
to “strongly agree”, most respondents agree that this feature can be effective

Semantic Need 333

to maintain semantic annotations in SMW (8/18/2/2/017). The agreement is
slightly less on if it can help to guide annotation efforts towards most crucial
information needs (5/18/6/1/0) and on if it can motivate users to provide miss-
ing annotations (9/13/5/2/1). The page-specific features of Semantic Need are
even more appreciated. 15 respondents strongly agree that it can be effective to
maintain semantic annotations in SMW (15/11/2/2/0). Concerning annotation
guidance and user motivation, 26 respondents at least chose “agree” in both
cases (12/14/3/1/0). Finally, 20 participants (66%) are interested in using the
Semantic Need extension on their own Wiki.

Summarizing we can observe that SMW usage differs largely – ranging from
prescribed data structures to more open, Semantic Web-inspired scenarios. While
the first group argues that data quality and completeness is crucial in their
case and thus considers missing annotations a serious problem, others stress the
evolving nature of Semantic Web applications: “I don’t see this is a ’problem’ -
it’s the way things are, always in flux, always perfecting, always coming to stasis.
Law of Thermodynamics.” Semantic Need however, was considered helpful by
both groups – either to help raising data quality or to provide guidance in less
predefined settings.

5 Design Implications

In this section we reflect on our overall approach, the Semantic Need prototype
and the data we have gathered to validate it. We identified a number of design
parameters which we consider useful for our own future work but also for other
people developing Semantic Web applications.

The need for need specification: Surprisingly the Semantic Web, which is all
about expressing knowledge in a formal way, has not yet done much in terms of
expressing information needs. We thus consider an ontology which helps users to
characterize their information needs more precisely (e.g., duration or urgency)
helpful. This should be complemented by appropriate semantic query log stan-
dards and storage mechanisms.

Data quality modeling: Several people in our survey argued that some of the
identified “problems” might just be intended states: “I have seen instances in
which sparseness was intentional, i.e., a query is created specifically to show
the absence of data - it can be useful in the right circumstances.”. Thus, the
precision of information need heuristics depends on assumptions and background
knowledge of the application domain. While some people suggested to specify
properties e.g. as mandatory, these features are either not part of the knowledge
representation formalism18 or hardly used (such as cardinality constraints).

17 Amount of answers stating: strongly agree/agree/neutral/disagree/strongly disagree.
18 In the case of SMW, some are artificially enforced by the Semantic Forms extension.

334 H.-J. Happel

A scattered Semantic Web: While we focus on single SMW instances in this
paper, we think that our concepts are also useful on a larger scale. The Semantic
Web is decentralized and heterogeneous and so are the “semantic intranets” of
some of our survey partcipants: “because my data comes from ExternalData, I
wouldn’t ENTER those properties on the Wiki itself, but this extension would
help us to go back to the source and add it.”. A Semantic Need-enabled SMW
could thus pull data (and information needs) from external systems, capture
mappings and share data in external places. While an interconnected set of SMW
instances would be a straightforward idea, we also think that our approach could
be implemented in other Semantic Web applications, given a set of standards
for information need description and exchange.

Ontology evolution vs. maturing: Much research on ontology dynamics has a
technical spin under the label of ontology evolution. However, our survey results
show that data integrity is not the only concern in this field. While the Semantic
Forms extension, which helps to “freeze” parts of the data structure, has been
quickly adopted by many SMW administrators, the process for dealing with
emerging entities is not yet well adressed. We thus argue that methodological
considerations such as the ontology maturing concept [5] should be given more
attention in the design of Semantic Web applications.

6 Related Work

Since our main goal is to guide the creation of semantic metadata, work in the
area of semantic annotation is partly relevant for us. However, most systems,
such as CREAM [8] are inspired by the linear perspective of the information
foodchain [7] and thus drive the annotation process by the pre-defined ontology
structure. While guidance and incentives for annotation are considered major
open issues ([8][p. 198], [6][p. 148]), we are not aware of other approaches con-
sidering queries for guiding the annotation process.

The probably most directly related work to ours is a recent study by Mika et al.
[15]. Similar to our NKS framework, they contrast and connect the perspectives
of semantic metadata provision and usage. However, they use a slightly different
approach by taking keyword queries from Yahoo query logs and mapping those
to entity/property pairs, which they compare to actual semantic metadata from
DBPedia. Thus, the work is primarily of descriptive nature and does not suggest
actual technical solutions. The evaluation track of the SemSearch workshop19

and the evaluation campaign of the SEALS project [18] are recently emerging
initiatives to capture and analyze structured query data.

The work presented in this paper might also be considered related to ap-
proaches for maintaining or gardening semantic knowledge bases. A particular
example is the Semantic Gardening Extension20 for SMW. However, it is focused
19 http://km.aifb.kit.edu/ws/semsearch10/
20 http://smwforum.ontoprise.com/smwforum/index.php/

Help:Semantic Gardening Extension

http://km.aifb.kit.edu/ws/semsearch10/
http://smwforum.ontoprise.com/smwforum/index.php/Help:Semantic_Gardening_Extension
http://smwforum.ontoprise.com/smwforum/index.php/Help:Semantic_Gardening_Extension

Semantic Need 335

on knowledge base instances without properly defined ontology classes or ontol-
ogy classes without instances. A need dimension, taking into account the actual
usage of semantic data is currently not part of this work.

As for the core idea of driving knowledge sharing by user requests, the seminal
Answer Garden system [1] deserves credit. While Answer Garden uses experts to
filter and answer requests, so called “Collaborative Question Answer Systems”
(such as Yahoo Answers21) and our Woogle system [10] embrace all users as
potential contributors.

7 Summary

This paper has described three major contributions. First, we have argued for
considering information needs – and in particular structured queries – as drivers
for the process of creating semantic metadata. To this end we introduced the
Semantic Need approach which guides contributors to create metadata which is
of the most value for other users in the Semantic Web. Second, we introduced an
extension for SMW as a proof-of-concept realization of this approach. While this
stresses the general feasibility of our ideas, we think that a realization within a
larger Semantic Web scope is possible as well (see also [9]).

Third, we conducted two empirical studies to validate our claims. Our anal-
ysis of public SMW installations shows, that the current application areas of
Semantic Need – missing result values and near matches – occur in the surveyed
dataset to a considerable extent and are thus of practical relevance. This is also
stressed by the result of an expert survey among 30 experienced SMW adminis-
trators. Their feedback provides initial evidence that Semantic Need can be an
effective tool to support the guided growth of semantic knowledge bases.

Beyond that, our framework and our empirical data will enable us to pursue
further studies of that kind. Obvious directions would be to guide ontology
schema evolution and mapping or query refinements based on information needs.

Acknowledgements

This work was partially supported by the THESEUS project, which is funded by
the German Federal Ministry of Economics (BMWi) under grant 01MQ07019,
and the GlobaliSE project, which is funded by the Baden-Württemberg Stiftung.
Thanks go to Andreas Abecker, Markus Krötzsch, Sebastian Rudolph, Stephan
Grimm, Athanasios Mazarakis and Heiko Haller for helpful feedback and to Paul
Hübner and Hristo Valev for their implementation of the MediaWiki crawler and
the Semantic Need extension.

References

1. Ackerman, M.S., Malone, T.W.: Answer garden: a tool for growing organizational

memory. In: Proceedings of the ACM SIGOIS Conference on Office Information

Systems, pp. 31–39. ACM, New York (1990)

21 http://answers.yahoo.com/

http://answers.yahoo.com/

336 H.-J. Happel

2. Baader, F., Nutt, W.: Basic description logics. In: Baader, F., Calvanese, D.,

McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.) Description Logic Hand-

book, pp. 43–95. Cambridge University Press, Cambridge (2003)

3. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic Web. Scientific Ameri-

can 284(5), 34–43 (2001)

4. Bizer, C., Cyganiak, R.: D2r server-publishing relational databases on the semantic

web (poster). In: International Semantic Web Conference (2006)

5. Braun, S., Schmidt, A., Walter, A., Nagypal, G., Zacharias, V.: Ontology matur-

ing: a collaborative web 2.0 approach to ontology engineering. In: Proceedings of

the Workshop on Social and Collaborative Construction of Structured Knowledge

(CKC 2007), CEUR Workshop Proceedings, vol. 273 (2007)

6. Decker, S.: Semantic web methods for knowledge management. Ph.D. thesis, Uni-

versity of Karlsruhe (2002)

7. Decker, S., Jannink, J., Melnik, S., Mitra, P., Staab, S., Studer, R., Wiederhold, G.:

An information food chain for advanced applications on the www. In: Borbinha,

J.L., Baker, T. (eds.) ECDL 2000. LNCS, vol. 1923, pp. 490–493. Springer, Hei-

delberg (2000)

8. Handschuh, S.: Creating ontology-based metadata by annotation for the semantic

web. Ph.D. thesis, University of Karlsruhe (2005)

9. Happel, H.J.: Growing the semantic web with inverse semantic search. In: 1st

Workshop on Incentives for the Semantic Web (INSEMTIVE 2008), pp. 1–12 (2008)

10. Happel, H.J.: Social search and need-driven knowledge sharing in wikis with

woogle. In: Proceedings of the 5th International Symposium on Wikis and Open

Collaboration, WikiSym 2009, pp. 1–10. ACM, New York (2009)

11. Happel, H.J.: Towards need-driven knowledge sharing in distributed teams. In:

Proceedings of the 9th International Conference on Knowledge Management, pp.

128–139. JUCS (2009)

12. Happel, H.J.: Semantic need: An approach for guiding users contributing metadata

to the semantic web. Int. J. Knowledge Engineering and Data Mining (to appear,

2010)

13. Happel, H.J., Mazarakis, A.: Considering information providers in social search.

In: Proceedings of the 2nd International Workshop on Collaborative Information

Seeking (CIS 2010), pp. 1–5 (2010)

14. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.

Chapman & Hall/CRC (2009)

15. Mika, P., Meij, E., Zaragoza, H.: Investigating the semantic gap through query log

analysis. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,

D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 441–455.

Springer, Heidelberg (2009)

16. Prud’Hommeaux, E., Seaborne, A.: SPARQL query language for RDF. World

Wide Web Consortium, Recommendation REC-rdf-sparql-query-20080115 (Jan-

uary 2008)

17. Siorpaes, K., Hepp, M.: Ontogame: weaving the semantic web by online games. In:

Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.

LNCS, vol. 5021, pp. 751–766. Springer, Heidelberg (2008)

18. Wrigley, S.N., Reinhard, D., Elbedweihy, K., Bernstein, A., Ciravegna, F.: Method-

ology and Campaign Design for the Evaluation of Semantic Search Tools. In: Pro-

ceedings of the Semantic Search 2010 Workshop, SemSearch 2010 (2010)

SAOR: Template Rule Optimisations for Distributed
Reasoning over 1 Billion Linked Data Triples�

Aidan Hogan1, Jeff Z. Pan2, Axel Polleres1, and Stefan Decker1

1 Digital Enterprise Research Institute, National University of Ireland, Galway
{firstname.lastname}@deri.org

2 Dpt. of Computing Science, University of Aberdeen
jeff.z.pan@abdn.ac.uk

Abstract. In this paper, we discuss optimisations of rule-based materialisation
approaches for reasoning over large static RDF datasets. We generalise and re-
formalise what we call the “partial-indexing” approach to scalable rule-based
materialisation: the approach is based on a separation of terminological data,
which has been shown in previous and related works to enable highly scalable
and distributable reasoning for specific rulesets; in so doing, we provide some
completeness propositions with respect to semi-naı̈ve evaluation. We then show
how related work on template rules – T-Box-specific dynamic rulesets created
by binding the terminological patterns in the static ruleset – can be incorporated
and optimised for the partial-indexing approach. We evaluate our methods using
LUBM(10) for RDFS, pD* (OWL Horst) and OWL 2 RL, and thereafter demon-
strate pragmatic distributed reasoning over 1.12 billion Linked Data statements
for a subset of OWL 2 RL/RDF rules we argue to be suitable for Web reasoning.

1 Introduction

More and more structured data is being published on the Web in conformance with the
Resource Description Framework (RDF) for disseminating machine-readable informa-
tion, forming what is often referred to as the “Web of Data”. This data is no longer
purely academic: in particular, the Linked Data community – by promoting pragmatic
best-practices and applications – has overseen RDF exports from, for example, corpo-
rate bodies (e.g., BBC, New York Times, Freebase), community driven efforts (e.g.,
Wikipedia, GeoNames), the biomedical domain (e.g., DrugBank, Linked Clinical Tri-
als) and governmental bodies (e.g., data.gov, data.gov.uk). At a conservative estimate,
there now exists tens of billions of RDF statements on the Web.

Sitting atop RDF are the RDF Schema (RDFS) and Web Ontology Language (OWL)
standards. Primarily, RDFS and OWL allow for defining the relationships between the
classes and properties used to organise and describe entities, providing a declarative
and extensible domain of discourse through use of rich formal semantics. One could
thereafter view the Web of Data as a massive, heterogeneous, collaboratively edited

� The work presented in this paper has been funded in part by Science Foundation Ireland under
Grant No. SFI/08/CE/I1380 (Lion-2), by the EU MOST project, the EPSRC LITRO project,
and by an IRCSET Scholarship.

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 337–353, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

338 A. Hogan et al.

knowledge-base amenable for reasoning: however, the prospect of applying reasoning
over (even subsets of) the Web of Data raises unique challenges, the most obvious of
which are the need for scale, and tolerance to noisy, conflicting and impudent data [6].

Inspired by requirements for the Semantic Web Search Engine (SWSE) project [9]
– which aims to offer search and browsing over Linked Data – in previous work we in-
vestigated pragmatic and scalable reasoning for Web data through work on the Scalable
Authoritative OWL Reasoner (SAOR) [7,8]; we discussed the formulation and suitabil-
ity of a set of rules inspired by pD* [16] for materialisation over Web data. We gave
particular focus to scalability and Web tolerance showing that by abandoning complete-
ness, materialisation over a diverse Web dataset – in the order of a billion statements
– is entirely feasible wrt. a significant fragment of OWL semantics. From the scala-
bility perspective, we introduced a partial-indexing approach based on a separation of
terminological data from assertional data in our rule execution model: terminological
data – the most frequently accessed segment of the knowledge base for reasoning which
in our scenario represents only a small fraction of the overall data [8] – is stored and
indexed in-memory for fast access, whereas the bulk of (assertional) data is processed
by file-scans. Related approaches have since appeared in the literature which use a sep-
aration of terminological data for applying distributed RDFS and pD* reasoning over
datasets containing hundreds of millions, billions and hundreds of billions of state-
ments [19,18,17]. However, each of these approaches has discussed completeness and
implementation/optimisation based on the specific ruleset at hand.

In this paper, we reformulate the partial-indexing approach – generalising to arbi-
trary rulesets – and discuss when it is (i) complete with respect to standard rule closure;
and (ii) appropriate and scalable. We then introduce generic optimisations based on
“template rules” – where terminological data is bound by the rules prior to accessing
the A-Box – and provide some initial evaluation over a small LUBM dataset for RDFS,
pD*, and OWL 2 RL/RDF. Thereafter, we look to apply our optimisations for scalable
and distributed Linked Data reasoning, initially reintroducing our authoritative reason-
ing algorithm which incorporates provenance, detailing distribution of our approach,
and then providing evaluation for reasoning over 1.12b Web triples.

2 Preliminaries

Before we continue, we briefly introduce some concepts prevalent throughout the paper.
We use notation and nomenclature as is popular in the literature (cf. [4,8]). Herein, we
denote infinite sets by S and corresponding finite subsets by S.

2.1 RDF and Rules

RDF Constant. Given the set of URI references U, the set of blank nodes B, and the
set of literals L, the set of RDF constants is denoted by C := U ∪B ∪ L.

RDF Triple. A triple t := (s, p, o) ∈ (U∪B)×U×C is called an RDF triple, where s is
called subject, p predicate, and o object. A triple t := (s, p, o) ∈ G,G := C×C×C is
called a generalised triple, which allows any RDF constant in any triple position: hence

SAOR: Template Rule Optimisations for Distributed Reasoning 339

forth, we assume generalised triples [2]. We call a finite set of triples G ⊂ G a graph.
(For brevity, we sometimes use r: for the RDFS namespace, o: for OWL namespace,
and f: for the well-known FOAF namespace; we use ‘a’ as a shortcut for rdf:type.)

Triple Pattern, Basic Graph Pattern. A triple pattern is a generalised triple where vari-
ables from the set V are allowed; i.e.: tv := (sv, pv, ov) ∈ GV, GV := (C∪V)×(C∪
V)× (C ∪V). We call a set (to be read as conjunction) of triple patterns GV ⊂ GV a
basic graph pattern. We denote the set of variables in graph pattern GV by V(GV).

Variable Bindings. Let M be the set of endomorphic variable binding mappings V ∪
C → V ∪ C which map every constant c ∈ C to itself and every variable v ∈ V to
an element of the set C ∪ V. A triple t is a binding of a triple pattern tv := (sv, pv,
ov) iff there exists μ ∈ M, such that t = μ(tv) = (μ(sv), μ(pv), μ(ov)). A graph
G is a binding of a graph pattern GV iff there exists a mapping μ ∈ M such that⋃

tv∈GV μ(tv) = G; we use the shorthand μ(GV) = G. We use M(GV,G) := {μ |
μ(GV) ⊆ G, μ(v) = v if v /∈ V(GV)} to denote the set of variable binding mappings
for graph pattern GV in graph G which map variables outside GV to themselves.

Inference Rule. We define an inference rule r as the pair (Anter, Conr), where the
antecedent (or body)Anter ⊂ GV and the consequent (or head) Conr ⊂GV are basic
graph patterns such that V(Conr) ⊆ V(Anter) (range restricted) – rules with empty
antecedents model axiomatic triples. We write inference rules as Anter ⇒ Conr.

Rule Application and Standard Closure. A rule application is the immediate conse-
quences Tr(G) :=

⋃
μ∈M(Anter ,G)(μ(Conr) \ μ(Anter)) of a rule r on a graph G;

accordingly, for a ruleset R, TR(G) :=
⋃

r∈R Tr(G). Now, let Gi+1 := Gi ∪ TR(Gi)
and G0 := G; the exhaustive application of the TR operator on a graph G is then the
least fixpoint (the smallest value for n) such that Gn = TR(Gn). We call Gn the closure
of G wrt. rulesetR, denoted as ClR(G) , or succinctly G where the ruleset is obvious.

The above closure takes a graph and a ruleset and recursively applies the rules over
the union of the original graph and the inferences until a fixpoint. Usually, this would
consist of indexing all input and inferred triples; however, the cost of indexing and per-
forming query-processing over large graphs can become prohibitively expensive. Thus,
in [7] we originally proposed an alternate method based on a separation of terminolog-
ical data, which we now generalise and discuss.

3 Partial Indexing Approach: Separating Terminological Data

In the field of Logic Programming, the notion of a ‘linear program’ refers loosely to
a ruleset where only one pattern in each rule is recursive [12]. Our partial indexing
approach is optimised for linear rules, where the non-recursive segment of the data is
identified, separated and prepared, and thereafter each recursive pattern can then be
bound via a triple-by-triple stream: we cater for non-linear rules, but as the number
of recursive rules, the amount of recursion, and the amount of recursive data involved
increases, our approach performs worse than the “full-indexing” approach.

340 A. Hogan et al.

Specifically regarding RDFS and OWL, the terminological segment of the data
presents itself as relatively small and ‘non-recursive’ (or at least, mostly only recur-
sive within itself), which can be leveraged for partial indexing. Herein, we define our
notion of RDF(S)/OWL terminological data. (To generalise the following, the reader
can consider terminological data as the RDFS/OWL archetype for any non-recursive
and sufficiently small element of the data commonly required during rule application.)

Meta-class. We consider a meta-class as a class specifically of classes or properties;
i.e., the members of a meta-class are themselves either classes or properties. Herein, we
restrict our notion of meta-classes to the set defined in RDF(S) and OWL specifications,
where examples include rdf:Property, rdfs:Class, owl:Restriction, owl:-
DatatypeProperty, owl:TransitiveProperty, etc.; rdfs:Resource, rdfs:-
Literal, e.g., are not meta-classes.

Meta-property. A meta-property is one which has a meta-class as its domain; again, we
restrict our notion of meta-properties to the set defined in RDF(S) and OWL specifi-
cations, where examples include rdfs:domain, rdfs:subClassOf, owl:hasKey,
owl:inverseOf, owl:oneOf, owl:onProperty, owl:unionOf, etc.; rdf:type,
owl:sameAs, rdfs:label, e.g., do not have a meta-class as domain.

Terminological Triple. We define the set of terminological triples T ⊂ G as the union
of (i) triples with rdf:type as predicate and a meta-class as object; (ii) triples with
a meta-property as predicate; (iii) triples forming a valid RDF list whose head is the
object of a meta-property (e.g., a list used for owl:unionOf, etc.).

Terminological/Assertional Pattern. We refer to a terminological -triple/-graph pattern
as one whose instance can only be a terminological triple or, resp., a set thereof. An
assertional pattern is any pattern which is not terminological.

Given the above notions of terminological data/patterns, we now define a T -split
inference rule where part of the rule body is strictly matched by terminological data.

Definition 1. T -split inference rule: Given a rule r := (Anter, Conr), we define
a T -split rule r

τ

as the triple (AnteT
rτ ,AnteG

rτ , Con) where AnteT
rτ is the set of

terminological patterns in Anter, and AnteG
rτ := Anter \ AnteT

rτ . We denote the
set of all T -split rules by Rτ , and the mapping of a rule to its T -split version as
τ : R → Rτ ; r)→ r

τ

. We additionally give the convenient sets R∅ := {rτ |
AnteTrτ = ∅,AnteG

rτ = ∅}, RT∅ := {rτ | AnteTrτ
= ∅,AnteG
rτ = ∅}, R∅G :=

{rτ | AnteT
rτ = ∅,AnteG

rτ
= ∅}, RTG := {rτ | AnteT
rτ
= ∅,AnteG

rτ
= ∅},
RG := RTG ∪R∅G and RT := RT∅ ∪ RTG as the set of all T -split rules with an
empty antecedent, only terminological patterns, only assertional patterns, both types
of patterns, some terminological patterns, and some assertional pattern respectively,
where Rτ = R∅ ∪ RT∅ ∪ R∅G ∪ RTG = R∅ ∪ RT ∪ RG. We also give the sets
RG1

:= {rτ ∈ RG : |AnteG
rτ | = 1}, RGn

:= {rτ ∈ RG : |AnteG
rτ | > 1}, denoting

the set of linear and non-linear rules respectively. Given a T -split ruleset Rτ , herein
we may use, e.g.,RG to denoteRτ ∩RG.

SAOR: Template Rule Optimisations for Distributed Reasoning 341

Example 1. For the rule r := (?c1,r:subClassOf,?c2) ∧ (?x,a,?c1)⇒ (?x,a,?c2),
AnteT := {(?c1,r:subClassOf,?c2)} and AnteG := {(?x,a,?c1)}. Underlining
AnteT , we write τ(r) := r

τ

:= (?c1,r:subClassOf,?c2)∧ (?x,a,?c1)⇒ (?x,a,?c2).

We then define our T-Box as the set of terminological triples in a given graph which are
required by the terminological patterns of a given ruleset.

Definition 2. T-Box/A-Box: Given a graph G and a T -split ruleset Rτ , let RT :=
Rτ ∩ RT represent the subset of rules in Rτ which require terminological data; the
T-Box of G wrt. Rτ is then T(G,Rτ) :=

⋃
rτ ∈RT

⋃
tv∈AnteT

r
τ

⋃
μ∈M({tv},G) μ(tv),

representing the subset of terminological triples in G which satisfy a terminological
pattern of a rule antecedent (AnteT

rτ) in Rτ ; where ruleset and graph are obvious, we
may abbreviate T(G,Rτ) to simply T . Our A-Box is synonymous with G: i.e., we also
consider our T-Box as part of our A-Box in a form of unidirectional meta-modelling.

Given the notion of a T -split rule and our T-Box, we can now define how T -split rules
are applied, and how T -split closure is achieved wrt. a static T-Box.

Definition 3. T -split rule application and closure. We define a T -split rule applica-
tion for a T -split rule r

τ

wrt. a graph G to be:

Trτ (T ,G) :=
⋃

μ0∈M(AnteT
r

τ ,T)

⋃
μ1∈M(μ0(AnteG

r
τ),G)

(μ0 ◦ μ1)(Conrτ) (1)

here formalising the notion that the terminological patterns of the rule are strictly in-
stantiated from a separate T-Box T . Again, for a T -split ruleset Rτ , TRτ (T ,G) :=⋃

rτ ∈Rτ Trτ (T ,G). Now, let Ax denote the set of axiomatic triples given by Rτ (the
same set as forR), and T0 := T(G ∪Ax,Rτ) be our initial T-Box derived from G and
axiomatic triples, and Ti+1 := Ti ∪ T(TRT∅(Ti, ∅),Rτ); we define our closed T-Box
as Tn for the least value of n such that Tn = Tn ∪TRT∅(Tn, ∅), denoted T τ

, represent-
ing the closure of our initial T-Box wrt. rules requiring only terminological knowledge.
Finally, let Gτ

0 := G ∪ T τ ∪ Ax and Gτ
i+1 := Gτ

i ∪ TRG(T τ
,Gτ

i); we now define the
exhaustive application of the TRτ operator on a graph G wrt. a static T-Box T as being
upto the least fixpoint such that Gτ

n = TRG(T τ
,Gτ

n). We call Gτ
n the T -split closure of

G with respect to the T -split ruleset Rτ , denoted as ClRτ (T ,G) or simply Gτ
.

The T -split closure algorithm consists of two main steps: (i) deriving the closed T-Box
from axiomatic triples, the input graph, and recursively applied RT∅ rules; (ii) apply-
ing ‘A-Box’ reasoning for all triples wrt. the RG rules and the static T-Box. We now
give some propositions relating the T -split closure with the standard rule application
closure described in the preliminaries; firstly, we must give an auxiliary proposition
which demonstrates how mappings for sub-graphs-patterns can be combined to give
the mappings for the entire graph pattern, which relates to the T -split rule application.

Proposition 1. For any graph G and graph pattern GV := GVa ∪ GVb , it holds that
M(GV,G) = {μb ◦ μa | μa ∈M(GVa ,G), μb ∈M(μa(GVb),G)}.

Proof. Firstly, μb ◦ μa ∈ M since μa and μb are endomorphic. By definition, (μb ◦
μa)(c) = c for c ∈ C. Next, we need to show that (μa ◦ μb)(v) = v if v /∈ V(GV):

342 A. Hogan et al.

since by definition μa(v) = v if v /∈ GVa and μb(v) = v if v /∈ μa(GVb), and since
V(μa(GVb)) ⊆ V(GVb) and V(GV) = V(GVa)∪V(GVb), then (μb ◦ μa)(v) = v if v /∈
V(GV). By definition, μa(GVa) ⊆ G and thus we have V(μa(GVa)) = ∅, and μa(GVa) =
(μb◦μa)(GVa); again by definition we have (μb◦μa)(GVb) ⊆ G, and so (μb◦μa)(GVa)∪
(μb ◦ μa)(GVb) = (μb ◦μa)(GVa ∪GVb) = (μb ◦ μa)(GV) ⊆ G. We now have μb ◦μa ∈
M(GV,G) for every μa ∈ M(GVa ,G), μb ∈ M(μa(GVb),G), and need to show that
for every μ ∈M(GV,G), there exists a (μb ◦ μa) such that (μb ◦ μa)(GV) = μ(GV);
by definition, we know that there exists a μa such that μa(GVa) = μ(GVa) for any μ
as defined, and that for every such μa there exists a μb such that (μb ◦ μa)(GVb) =
(μ ◦ μa)(GVb) = μ(GVb), and hence the proposition holds. ��

Theorem 1. Soundness: For any given ruleset R ⊂ R, its T -split version Rτ :=
τ(R), and any graph G, it holds that Gτ ⊆ G.

Proof. Clearly, Ax gives the same set of triples for Rτ and R, and thus T0 ⊆ G since
T(G ∪ Ax,Rτ) ⊆ G ∪ Ax ⊆ G. From Proposition 1, it follows that M(Anter,G) =
M(AnteT

rτ ∪AnteG
rτ ,G) = {μ0◦μ1 |μ0 ∈M(AnteT

rτ ,G), μ1∈M(μ0(AnteG
rτ),G)};

we can then show that Tr(G) = Trτ (G,G) by replacing T with G in Equation 1, from
which follows TR(G) = TRτ (G,G). Given that TRτ

a
(G,G) ⊆ TRτ (G,G) if Rτ

a ⊆ Rτ ,
and TRτ (Ga,Gb) ⊆ TRτ (G,G) if Ga ⊆ G and Gb ⊆ G – i.e., that our rule applications
are monotonic – we can show by induction that T τ ⊆ G: given T0 ⊆ G from above, we
can say that Ti+1 ⊆ G iff Ti ⊆ G since T(TRT∅(Ti, ∅)) ⊆ TRT∅(Ti, Ti) ⊆ TR(Ti) ⊆
G. Now, clearly Gτ

0 ⊆ G, and since TRG(T τ
,Gτ

i) ⊆ TRτ (Gτ
i ,Gτ

i) = TR(Gτ
i) ⊆ G, we

can say that if Gτ
i ⊆ G, then Gτ

i+1 ⊆ G; by induction, Gτ ⊆ G. ��

Theorem 2. Conditional Completeness: If T τ
= T(Gτ

,Rτ), then Gτ
= G.

Proof. First, TRτ (T(G,Rτ),G) = TRτ (G,G) since by definition T(G,Rτ) only re-
moves triples from G that cannot be bound by terminological patterns inRτ . Given the
criteria Gτ

= Gτ ∪TRG(T τ
,Gτ

) – or, rephrasing, TRG(T τ
,Gτ

) ⊆ Gτ
– we first know

that Ax ∪ T τ ∪ G = Gτ
0 ⊆ G

τ
. Thus, TRτ (T τ

,Gτ
) = TRG(T τ

,Gτ
) ⊆ Gτ

. If T τ
=

T(Gτ
,Rτ), then TRτ (T τ

,Gτ
) = TRτ (T(Gτ

,Rτ),Gτ
) = TRτ (Gτ

,Gτ
) = TR(Gτ

),
which gives G0 ⊆ G

τ ⊆ G: i.e., Gτ
is known to be the partial closure of G. Given the

fixpoint condition G = G ∪ TR(G), then Gτ
must be the fixpoint: Gτ

= G. ��

Proposition 2. A triple t ∈ T(Gτ
,Rτ) \ T τ

can only be produced for Gτ
through an

inference for a rule in RG.

Proof. Any T-Box triples in the original graph, or T-Box triples produced by the ‘clo-
sure’ of R∅ rules are added to the initial T-Box T0. Any T-Box triples produced by
the closure of RT∅ rules over T0 are added to the closed T-Box T τ

. Since Rτ :=
R∅ ∪ RT∅ ∪ RG, the only new triples – terminological or not – that can arise in the
computation of Gτ

after deriving T τ
are from rules in RG. ��

We have shown that for an arbitrary ruleset and graph, the T -split closure is sound
wrt. the standard closure, and that if no T-Box triples are produced by rules requiring
assertional knowledge, then T -split closure is complete wrt. the standard closure. So,
when are T-Box triples produced by RG rules? Analysis must be applied per ruleset,

SAOR: Template Rule Optimisations for Distributed Reasoning 343

Algorithm 1. Partial indexing approach for T -split closure
Required: R, G
Rτ := τ(R); T0 := T(Ax,Rτ); n := 0; /* get t-split rules & ax. T-Box triples */1
for t ∈ G do T0 := T0 ∪ T({t},Rτ) ; /* SCAN 1: extract T-Box from main data */2
while Tn+1 �= Tn do Tn+1 := Tn ∪ T(TRT∅ (Ti, ∅),Rτ); n++ ; /* do T-Box reasoning */3
T τ := Tn+1; Gτ := Gτ

0 := G ∪ T τ ∪ Ax; A := ∅; /* initialise A-Box structures */4
for tI ∈ Gτ

0 do /* SCAN 2: A-Box reasoning over all data */5
GI
0 := ∅; GI

1 := {tI}; n := 1; /* initialise set to hold inferences from tI */6
while GI

n �= GI
n−1 do /* while we find new triples to reason over */7

for t ∈ GI
n \ GI

n−1 do /* scan new triples */8
GI

n+1 := GI
n ∪ T

RG1 (T τ
, {t}); /* do all ‘no A-Box join’ rules for t */9

for r ∈ RGn
do /* for each ‘A-Box join’ rule */10

for tv ∈ AnteG
r do /* for each assertional pattern */11

if ∃μ ∈ M : μ(tv) = t then A := A ∪ {t} ; /* index t if needed */12

GI
n+1 := GI

n+1 ∪ Tr(T τ
,A); /* apply ‘A-Box join’ rule over index */13

n++; /* recurse */14

Gτ := Gτ ∪ GI
n; /* write set of recursive inferences for tI to output */15

Return : Gτ

but for RDFS, pD* and OWL 2 RL/RDF, we informally posit that by inspection, one
can show that such a condition can only arise through so called non-standard usage [8]:
the assertion of terminological triples which use meta-classes and meta-properties in
positions other than the object of rdf:type triples or predicate position respectively –
e.g., my:subPropertyOf rdfs:subPropertyOf rdfs:subPropertyOf .

The T -split approach can be implemented through partial indexing using two scans
of the data: the first separates and builds the T-Box and the second reasons over the
A-Box – note that the first scan can be over a separate T-Box graph. Algorithm 1 details
this approach, which largely follows the formalisms in Definition 3: the major variance
consists of the application of rules inRG, which one can convince themselves is equiv-
alent since all triples encountered are passed through every rule in RG. For brevity,
we omit some implementational details such as partial duplicate detection implemented
using an LRU locality cache. The “non-trivial” aspects of the implementation include
the indexing of the T-Box T τ

, and the indexing of the A-Box A. Again, as A is re-
quired to store more data, the two-scan approach becomes more inefficient than the
“full-indexing” approach; in particular, a rule inRGn

with an open pattern – e.g., OWL
2 RL/RDF rule eq-rep-s: (?s,o:sameAs,?s′) ∧ (?s,?p,?o) ⇒ (?s′,?p,?o) – will re-
quire indexing of all data, negating the benefits of the approach. Again, partial-indexing
performs well if A remains small and performs best ifRGn

= ∅ – i.e., no rules require
A-Box joins and thus A-Box indexing is not required.

4 Template Rules

We now discuss optimisations for deriving T -split closure based on template rules,
which are currently used by DLEJena [13] and also used in RIF for supporting OWL
2 RL/RDF [15]; however, instead of manually specifying a set of template rules, we
leverage our general notion of terminological data to create a generic template func-
tion: after separating and closing the T-Box, we bind the T-Box patterns of rules before

344 A. Hogan et al.

accessing the A-Box to create a set of new templated rules (or T -ground rules) which
themselves ‘encode’ the T-Box, thus avoiding repetitive T-Box pattern bindings during
the A-Box reasoning process. We now formalise these notions.

Definition 4. Template Function: For a T -split rule r
τ

, the template function is given
as α : Rτ × 2G → 2R; (r

τ

, T))→ {(μ(AnteG
rτ), μ(Conrτ)) | μ ∈M(AnteT

rτ , T)}.

Example 2. Given a simple T-Box T := {(f:Person,r:subClassOf,f:Agent)} and
a rule r

τ

:= (?c1,r:subClassOf,?c2)∧(?x,a,?c1)⇒ (?x,a,?c2), then the template
function is given as α(r

τ

, T) := {(?x,a,f:Person)⇒ (?x,a,f:Agent)}.

Templated rule application is synonymous with standard rule application. We may use
α as intuitive shorthand to map a set of T -split rules to the union of the set of resulting
templated rules. We now (i) propose that applying a T -split rule gives the same result as
applying the respective set of templated rules wrt. arbitrary graphs T & G; (ii) describe
the closure of a graph using templated rules; (iii) show that the templated-rule closure
equals the T -split closure previously outlined.

Proposition 3. For any graphs T ,G and for any rule r with a T -split rule r
τ

= τ(r),
it holds that Trτ (T ,G) = Tα(rτ ,T)(G).

Proof. Trτ (T ,G) =
⋃

μ0∈M(AnteT
r

τ ,T)
⋃

μ1∈M(μ0(AnteG
r

τ),G)(μ0 ◦ μ1)(Conrτ) =⋃
r∈α(rτ ,T)

⋃
μ∈M(Anter ,G) μ(Conr) = Tα(rτ ,T)(G). ��

Definition 5. Templated rule closure: Given a ruleset R, its T -split version Rτ :=
τ(R), and a graph G, let T τ

represent the closed T-Box as derived in the T -split
closure, and let Rα := α(RG, T τ

). Again, let Gα
0 := G ∪ T τ ∪ Ax, but this time

Gα
i+1 := Gα

i ∪ TRα(Gα
i); as before, the templated rule closure is Gn for the smallest

value of n such that Gα
n = TRα(Gα

n), denoted as ClRα(T ,Gα), or simply Gα
.

Theorem 3. For any graph G, and any rulesetR ⊂ R, its T -split versionRτ , and the
respective templated rulesetRα, we can say that Gα

= Gτ
.

Proof. The only divergence between the T -split closure and templated-rule closure is in
the fixpoint calculation: Gα

i+1 := Gα
i ∪TRα(Gα

i) versus Gτ
i+1 := Gτ

i ∪TRG(T τ
,Gτ

i). Us-
ing induction, by def.Gτ

0 = Gα
0 ; if Gτ

i = Gα
i , then Gτ

i+1 = Gα
i ∪

⋃
rτ ∈RG Trτ (T τ

,Gα
i) =

Gα
i ∪

⋃
r∈α(RG,T τ) Trτ (Gα

i) = Gα
i ∪ TRα(Gα

i) = Gα
i+1. ��

The templated rules can be applied in lieu of the RG rules in Algorithm 1. Indeed,
a large number of rules can be templated for a sufficiently complex T-Box, and naı̈ve
application of all such rules on all triples could worsen performance; however, the tem-
plated rules are more amenable to further optimisations, which we now discuss.

4.1 Merging Equivalent Template Rules

The templating procedure may result in rules with equivalent antecedents – which can
be aligned by variable rewriting – being produced; these rules can subsequently be
merged. We formalise such notions here.

SAOR: Template Rule Optimisations for Distributed Reasoning 345

Definition 6. Equivalent Graph Patterns: Let N be the set of automorphic variable
rewrite mappings containing all ν as follows:

ν : V ∪C �� V ∪C; x)→
{

x if x ∈ C
v ∈ V otherwise

(2)

(Note: N ⊂M). We denote by ∼ν an equivalence relation for graph patterns such that
GVi ∼ν GVj iff there exists a mapping ν ∈ N such that ν(GVi) = GVj .

Proposition 4. The relation ∼ν is reflexive, symmetric and transitive.

Proof. Reflexivity is trivially given by the identity morphism ν(x) = x, symmetry
is given by the inverse morphism ν−1(GVj) where ν−1 ∈ N if ν ∈ N since ν is
automorphic, and transitivity is given by the presence of the composite morphism (νa ◦
νb)(GV) where again νa ◦ νb ∈ N since νa and νb are automorphic. ��
Definition 7. Rule Merge: Let ∼R be an equivalence relation – slightly abusing no-
tation – which holds between two rules such that ri ∼R rj iff Anteri ∼ν Anterj .
Given an equivalence class [r] – a set of rules between which ∼R holds – select a
canonical rule r ∈ [r]; we can now describe the merge of the equivalence class as
β([r]) := (Anter, Con[r]) where Con[r] :=

⋃
ri∈[r] νi(Conri) for some νi ∈ N such

that νi(Anteri) = Anter. Now lettingR/∼R := {[r] | r ∈ R} denote the quotient set
ofR by∼R – the set of all equivalent classes [r] wrt. ∼R inR – we can generalise the
rule merge function for a set of rules as β : 2R → 2R,R)→

⋃
{β([r]) | [r] ∈ R/∼R}.

Example 3. Taking the two templated rules: (?x,f:img,?y)⇒ (?x,a,f:Person) and
(?s,f:img,?o) ⇒ (?s,f:depicts,?o); they can be merged by ν where ν(?s) = ?x,
ν(?o) = ?y, giving (?x,f:img,?y)⇒ (?x,a,f:Person) ∧ (?x,f:depicts,?y).

The choice of canonical rule is unimportant since ν is automorphic; we now show that
the application of any ruleset and the respective merged ruleset are extensionally equal.

Proposition 5. For any graph G and ∼R equivalence class [r], T[r](G) = Tβ([r])(G);
for any rulesetR, TR(G) = Tβ(R)(G); wrt. closure, ClRα(T ,G) = Clβ(Rα)(T ,G).
Proof. We denote β([r]) as (Anteβ , Conβ). If GVi ∼ν GVj , then by def. ν(GVi) =
GVj , and for any graph G and any mapping μ ∈ M, μ(ν(GVi)) = μ(GVj); i.e., if
GVi ∼ν GVj , M(ν(GVi),G) = M(GVj ,G). Thus we give Mβ := {μ | μ(Anteβ) ⊆
G} =

⋃
ri∈[r]{μ | μ(νi(Anteri)) ⊆ G}. Let Mi := {μ | μ(Anteri) ⊆ G}; now,

it follows that Tβ([r])(G) =
⋃

μ∈Mβ
μ(Conβ) =

⋃
ri∈[r]

⋃
μ∈Mβ

μ(νi(Conri)) =⋃
ri∈[r]

⋃
μ∈Mi

μ(Conri) = T[r](G). The rest of the proposition follows naturally. ��

4.2 Rule Index

We have reduced the amount of templated rules through merging; however, given a
sufficiently complex T-Box, we may still have a prohibitive number of rules for efficient
recursive application. We now look at the use of a rule index which maps a triple t
to rules containing an antecedent pattern which t is a binding for, thus enabling the
efficient identification and application of only relevant rules for a given triple.

346 A. Hogan et al.

Definition 8. Rule Lookup: Given a triple t and rulesetR, the rule lookup function is
ω : G× 2R → 2R, (t,R))→ {r ∈ R | ∃μ ∈M : ∃tv ∈ Anter : (μ(tv) = t)}.

Example 4. Given a triple t := (ex:me,a,f:Person), and a simple example ruleset
R := {(?x,f:img,?y) ⇒ (?x,a,f:Person); (?x,a,f:Person) ⇒ (?x,a,f:Agent);
(?x,a,?y)⇒ (?y,a,r:Class)}, ω(t,R) returns a set containing the latter two rules.

A triple pattern has 23 = 8 possible forms: (?, ?, ?), (s, ?, ?), (?, p, ?), (?, ?, o), (s, p, ?),
(?, p, o), (s, ?, o), (s, p, o). Thus, we require eight indices for antecedent triple patterns,
and eight lookups to perform ω(t,R) – to find all relevant rules for a triple. We use
seven in-memory hashtables storing the constants of the rule antecedent patterns as key,
and a set of rules containing such a pattern as value; e.g., {(?x,a,f:Person)} is put
into the (?, p, o) index with {a,f:Person} as key. Rules containing patterns without
constants are stored in a set, as they are relevant to all triples.

4.3 Rule Dependency – Labelled Rule Graph

Within our rule index, there may exist rule dependencies: the application of one rule
may/will lead to the application of another. Thus, instead of performing lookups for
rules for each recursively inferred triple, we can model dependencies in our rule index
using a rule graph. In Logic Programming, a rule graph is defined as a directed graph
H := (R, Ω) where (ri, rj) ∈ Ω (i.e., ri Ω rj , read “rj follows ri”) iff there exists a
mapping μ ∈M such that μ(tv) ∈ Conri for tv ∈ Anterj (cf. [14]).

By building and encoding such a rule graph into our index, we can “wire” the re-
cursive application of rules for a given triple. However, from the merge function (or
otherwise) there may exist rules with large consequent sets. We therefore extend the
notion of the rule graph to a directed labelled graph with inclusion of the labelling
function λ : R×R→ 2G

V

; (ri, rj))→ {tv ∈ Conri | ∃μ ∈M : μ−1(tv) ∈ Anterj};
in simpler terms, λ(ri, rj) gives the set of consequent triple patterns in ri that would
be matched by patterns in the antecedent of rj , labelling the edges Ω of the rule graph
with the consequent patterns that give the dependency.

Example 5. For a rule ri := (?x,f:img,?y) ⇒ (?x,a,f:Person) ∧ (?y,a,f:Image),
and a rule rj := (?s,a,f:Person) ⇒ (?s,a,f:Agent), we say that ri Ω rj , where
λ(ri, rj) = {(?x,a,f:Person)}.

In practice, our rule index stores sets of elements of a linked list, where each element
contains a rule and links to rules which are relevant for that rule’s consequent pat-
terns. Thus, for each input triple, we can retrieve all relevant rules for all eight possible
patterns, apply those rules, and if successful, follow the respective labelled links to
recursively find relevant rules without re-accessing the index until the next input triple.

4.4 Rule Saturisation

We very briefly describe one final and intuitive optimisation technique we investigated
– which later evaluation demonstrates to be mostly disadvantageous – involving the sa-
turisation of rules; we say that a subset of dependencies in the rule graph are strong

SAOR: Template Rule Optimisations for Distributed Reasoning 347

Algorithm 2. Partial-indexing approach using templated rule optimisations
Required: R, G
derive T τ

and Rτ as in Algorithm 1; /* SCAN 1: See Algorithm 1 */1
Rα := α(RG); Rβ := β(Rα); /* template and merge T -split rules */2
build ω index for Rβ encoding graph H with edges λ; /* build rule index w/ dependencies */3
Gτ := Gτ

0 := G ∪ T τ ∪ Ax; A := ∅; /* init A-Box structures */4
for tI ∈ Gτ

0 do /* SCAN 2: A-Box reasoning over all data */5
RGI

0 := ∅; RGI
1 := {(r, tI) | r ∈ ω(tI ,Rβ)}; n := 1; /* initialise relevant rules for tI */6

while RGI
n �= RGI

n−1 do /* while we find new rule/triple pairs to reason over */7
for (r, t) ∈ RGI

n \ RGI
n−1 do /* scan new rule/triple pairs */8

Grt := ∅; RGI
n+1 := RGI

n; /* initialise state for rule triple pair */9
if |Anter | >1 then /* if rule requires A-Box join */10

for tv ∈ AnteG
r do /* for each assertional pattern */11

if ∃μ ∈ M : μ(tv) = t then A := A ∪ {t} ; /* index t if needed */12

Grt := Tr(T τ
,A); /* apply ‘A-Box join rule’ over index */13

else14
Grt := Tr(T τ

, {t}); /* apply ‘non A-Box join rule’ for t */15

if Grt �= ∅ then /* if rule creates inference */16
for r+ : (r, r+) ∈ Ω do /* find successive rules in graph */17

for tv
n ∈ λ(r, r+) do /* for the consequent patterns bound */18
RGI

n+1 := RGI
n+1 ∪ {(r+, tn) | tn ∈ Grt)}; /* add rule/triple pair */19

n++; /* recurse for unique rule/triple pair */20

Gτ := Gτ ∪ {t | (r, t) ∈ RGI
n}; /* write recursive inferences for tI to output */21

Return : Gτ

dependencies, where the successful application of one rule will always lead to the suc-
cessful application of another. For linear rules, we can saturate rules by pre-computing
the recursive rule application of its dependencies; we give the gist with an example:

Example 6. Take rules ri := (?x,f:img,?y)⇒ (?x,a,f:Person) ∧ (?y,a,f:Image),
rj := (?s,a,f:Person) ⇒ (?s,a,f:Agent), rk := (?x,a,?y) ⇒ (?y,a,r:Class)}.
We can see that ri Ω rj , ri Ω rk, rj Ω rk. We can remove the links from ri to rj and rk

(and similarly from rj to rk) by saturating ri to (?x,f:img,?y)⇒ (?x,a,f:Person)∧
(?y,a,f:Image)∧ (?x,a,f:Agent)∧(f:Person,a,r:Class)∧(f:Image,a,r:Class)
∧ (f:Agent,a,r:Class)}.
As we will see in Sections 4.6 & 5.2, saturisation produces more duplicates and thus
puts more load on the duplicate-removal cache, negatively affecting performance.

4.5 Optimised Partial Indexing Approach Using Template Rules

We now integrate the above notions as optimisations for the partial indexing approach,
with the new procedure detailed in Algorithm 2. We no longer need to bind T-Box
patterns during A-Box access; we mitigate the cost of extra templated rules by first
merging rules, and instead of brute-force applying all rules to all triples in the A-Box
reasoning scan, we use our linked rule index to retrieve only relevant rules for a given
triple and to find recursively relevant rules. We now initially evaluate our methods.

348 A. Hogan et al.

Table 1. Details of reasoning for LUBM(10) given different reasoning configurations

input LUBM(10) - 1.27M data triples, 295 ontology triples

fragment RDFS pD* OWL 2 RL

inferred 748k 1,328k 1,597k
tmpl. rules 149 175 378
after merge 87 108 119

config. N NI T TI TIM TIMS N NI T TI TIM TIMS N NI T TI TIM TIMS
time (s) 99 117 404 89 81 69 365 391 734 227 221 225 858 940 1,690 474 443 465

rule apps (m) 16.5 15.5 308 11.3 9.9 7.8 62.5 50 468 22.9 21.1 13.9 149 110 1,115 81.8 78.6 75.6
% success 43.4 46.5 2.4 64.2 62.6 52.3 18.8 23.4 2.6 51.5 48.7 61.3 4.2 5.6 0.8 10.5 6.8 15

cache hit (m) 10.8 10.8 8.2 8.2 8.2 8.1 19.1 19.1 15.1 15.1 14.9 38.7 16.5 16.5 13.1 13 12.7 34.4

4.6 Preliminary Performance Evaluation

In order to initially evaluate the above optimisations, we applied small-scale reasoning
for RDFS (minus the infinite rdf: n axiomatic triples [4]), pD* and OWL 2 RL/RDF
over LUBM(10) [3], consisting of about 1.3m triples – note that we do exclude lg/gl
rules for RDFS/pD* since we allow generalised triples [2]. All evaluation in this pa-
per has been run on single-core 2.2GHz Opteron x86-64 machine(s) with 4GB of main
memory. Table 1 gives the performance for the following partial-indexing configura-
tions: (i) N: ‘normal’ T -split closure; (ii) NI: normal T -split closure with linked rule
index; (iii) T: T -split closure wrt. templated rules; (iv) TI: T -split closure wrt. linked
templated rule index; (v) TIM: T -split closure wrt. linked & merged templated rule
index; (vi) TIMS: T -split closure wrt. linked, merged & saturated templated rule index.

In all approaches, exhaustively applying templated rules demonstrates the worst per-
formance; after indexing the approach becomes the most efficient. RDFS gains little in
the way of improvement, but in fact only contains 8 rules requiring A-Box data: the
reduction in rule applications given by templating and indexing is modest. OWL 2 RL
and pD* take just over half the time for TI* vs. N* approaches. A correlation between
increased rule applications and increased inferencing time is evident, but sometimes
fails: e.g., for pD*, TIMS gives less rule applications than TIM, but takes more time –
in such cases, we see the cache encountering more duplicates – as mentioned, saturated
rules can immediately produce a batch of duplicates that would otherwise halt a chain
of inferences mid-way. OWL 2 RL creates more templated rules than pD* due to ex-
panded T-Box level reasoning, but these are merged to a number just above pD*: OWL
2 RL supports intersection-of inferencing used by LUBM and not in pD*. LUBM does
not contain OWL 2 constructs, but redundant rules are factored out during templating.

Although we improve the performance of pD* and OWL 2 RL/RDF inferencing, we
perform A-Box joins in-memory, and in fact cannot scale much beyond the limited scale
above for these fragments: again our optimisations focus on linear rules. We now reunite
with our original use-case of Linked Data reasoning, focussing on the application of
linear rules and shifting up three orders of magnitude.

5 Reasoning for Linked Data

Again, we aim at reasoning over Linked Data for the SWSE project. In previous works,
we have investigated the unique challenges of reasoning over the open Web, and
identified the need for scale, incompleteness, and consideration of the source of data.

SAOR: Template Rule Optimisations for Distributed Reasoning 349

In [8], we applied reasoning over 1 billion Linked Data triples using T-Box optimisa-
tions specific to a subset of pD*; we (i) demonstrated that aside from equality reasoning,
pD* rules which do not require A-Box joins covered 99% of inferences possible in our
Web dataset, based on the observation that the most commonly instantiated vocabular-
ies on the Web typically use lightweight RDFS and OWL terms supportable by linear
rules; (ii) discussed the dangers of applying materialisation over open Web data, which
can naı̈vely lead to an explosion of inferences: for example, one document1 defines
owl:Thing to be a member of 55 union classes, another defines nine properties as the
domain of rdf:type2, etc. Observation (i) ties in with our linear-rule optimisations;
however, equality reasoning requires A-Box joins: we see owl:sameAs related infer-
encing as very important for data integration within the Linked Data use-case, but prefer
a decoupling of such reasoning – which entails its own requirements and challenges –
and have analysed the issue separately in previous works [10]. Observation (ii) moti-
vates our next discussion: we now reintroduce our notion of authoritative reasoning.

5.1 Authoritative Reasoning

In order to curtail the possible side-effects of open Web data publishing, we include
the source of data in inferencing. Our methods are based on the view that a publisher
instantiating a vocabulary’s term (class/property) thereby accepts the inferencing man-
dated by that vocabulary (and recursively referenced vocabularies) for that term. Thus,
once a publisher instantiates a term from a vocabulary, only that vocabulary and its
references should influence what inferences are possible through that instantiation.

Firstly, we must define the relationship between a term and a vocabulary. We view
a term as an RDF constant, and a vocabulary as a Web document: we give the function
http : U → 2G as the mapping from a URI (a Web location) to an RDF graph it may
provide by means of a given HTTP lookup. In Linked Data principles, dereferencable
URIs are encouraged; dereferencing can be seen as a function deref : U→ U which
maps one URI to another by means of HTTP dereferencing mechanisms (this may in-
clude removal of a URI fragment identifier and recursive but finite redirects, and maps a
URI to itself in case of failure; such functions are fixed to the time the data was crawled).

We then give the authoritative function:

auth : U→ 2C; u)→ {c | c ∈ B, c ∈ t ∈ http(u) or c ∈ U, deref(c) = u} (3)

where a Web document is authoritative for URIs which dereference to it and the blank
nodes it contains; e.g., the FOAF vocabulary is authoritative for terms in its namespace.

To negate the effects of non-authoritative axioms on reasoning over Web data, we
apply restrictions to the T -split rule application of rules in RTG, whereby, for the
mapping μ of the rule application as before, there must additionally exist a μ(v) such
that v ∈ V(AnteT) ∩V(AnteG), μ(v) ∈ auth(u), μ(AnteT) ⊆ http(u).3

1 http://lsdis.cs.uga.edu/˜oldham/ontology/wsag/wsag.owl
2 http://www.eiao.net/rdf/1.0
3 Note here that we restrict the T-Box segment of a RTG rule to be instantiated by one doc-

ument; this is not so restrictive where in OWL 2 RL/RDF, all such rules contain one ‘T-Box
axiom’, possibly described using multiple triples; cf. [8]. Also, we do not consider the results
of T-Box level reasoning as authoritative.

http://lsdis.cs.uga.edu/~oldham/ontology/wsag/wsag.owl
http://www.eiao.net/rdf/1.0

350 A. Hogan et al.

Example 7. Take rule r
τ

:= (?c1,r:subClassOf,?c2)∧(?x,a,?c1) ⇒ (?x,a,?c2).
Here, V(AnteT

rτ)∩V(AnteG
rτ) = {?c1}. Take an A-Box triple (ex:me,a,f:Person);

μ(?c1) = f:Person. Let deref (f:Person) = f: the FOAF spec; now, {u | μ(?c1) ∈
auth(u)} = {f:}. Any triple of the form (f:Person,r:subClassOf,?c2) must come
from f: for the rule to be authoritatively applied. Note that ?c2 can be arbitrarily bound;
i.e., FOAF can extend any classes they like.

We refer the reader to [8] for more detail on authoritative reasoning. Note that the previ-
ous two examples from documents in Footnotes 1 & 2 are ignored by the authoritative
reasoning. Since authoritativeness is on a T-Box level, we can apply the above addi-
tional restriction to our templating function when binding the terminological patterns
of the rules to derive a set of authoritative templated rules.

5.2 Linked Data Reasoning Evaluation

We now give evaluation over 1.12b quads (947m unique triples) of Linked Data crawled
for SWSE in May 2010. Note that we use a GZip compressed file of quadruples as input
to the reasoning process: the fourth element element encodes the provenance (Web
source) of the contained triple; we also require information about redirects encountered
in the crawl to reconstruct the deref function. We output a flat file of GZipped triples.
We perform reasoning over a subset of OWL 2 RL/RDF containing 42 rules: firstly, we
omit datatype reasoning which can lead to the inference of near-infinite triples (e.g.,
1.000∧∧xsd:float owl:sameAs 1.00∧∧xsd:float); secondly, we currently omit
inconsistency checking rules (we will examine use-cases for these rules in later work);
thirdly, we omit rules which infer ‘tautologies’ – statements that hold for every term
in the graph, such as reflexive owl:sameAs statements (we also filter these from the
output). Given our use-case SWSE, we wish to infer a circumspect amount of data
with utility for query-answering – completeness is not a requirement (cf. [5] for related
discussion). For reasons of efficiency as described, we omit rules which require A-
Box joins. Thus, our subset consists of the OWL 2 RL/RDF axiomatic rules, ‘schema
rules’[2, Table 9], and rules with one assertional pattern which we give in Table 3.

Reasoning over the dataset described inferred 1.58b raw triples, which were filtered
to 1.14b triples removing non-RDF generalised triples and ‘tautological statements’ –
post-processing revealed that 962m (∼61%) were unique and had not been asserted
(roughly a 1:1 reasoned:asserted ratio). The first step – extracting 1.1m T-Box triples
from the dataset – took 8.2 hrs. Subsequently, Figure 1 gives the results for reasoning
on one machine for each approach as before. T-Box level processing – e.g., templating,
rule indexing, etc. – took roughly the same time. For A-Box reasoning, saturation causes
the same problems with extra duplicate triples as before, and so the fastest approach is
TIM, which takes ∼15% of the time for the naı̈ve T -split closure algorithm; we also
show the linear performance of TIM in Figure 1 (we would expect all methods to be
similarly linear). 301k templated rules with 2.23m links are merged to 216k with 1.15m
links; after saturation, each rule has an average of 6 consequent patterns and all links are
successfully removed. Note that with 301k templated rules without indexing, applying
all rules to all statements would take approx. 19 years.

Since all of our rules are linear, we can also distribute our approach by flooding
the templated rules to all machines. In Table 2, we give the performance of such an

SAOR: Template Rule Optimisations for Distributed Reasoning 351

T-Box (min) A-Box (hr)

N 8.9 118.4
NI 8.9 121.3
T 8.9 171609a

TI 8.9 22.1
TIM 8.9 17.7
TIMS 8.9 19.5

a Estimated as a linear product from
one day of reasoning.

 0

 2e+008

 4e+008

 6e+008

 8e+008

 1e+009

 1.2e+009

 1.4e+009

 1.6e+009

 0 200 400 600 800 1000
#

 s
ta

te
m

e
n

ts

time (min)

input
output

Fig. 1. Performance for reasoning over 1.1B statements on one machine for all approaches (left),
and detailed throughput performance for A-Box reasoning using the fastest approach TIM (right)

Table 2. Distributed reasoning in minutes using TIM for 1, 2, 4 & 8 machines

Machines Extract T-Box Build T-Box Reason A-Box Total

1 492 8.9 1062 1565
2 240 10.2 465 719
4 131 10.4 239 383
8 67 9.8 121 201

approach for 1, 2, 4, and 8 machines using a simple RMI architecture [9]. Note that
the most expensive aspects of the reasoning process – extracting the T-Box from the
dataset and reasoning over the A-Box – can be executed independently in parallel. The
only communication required between machines is the aggregation of the T-Box, and
creation of the shared templated-rule index: this takes∼10 mins, and becomes the lower
bound for time taken for distributed evaluation with arbitrary machine count. In sum-
mary, we perform reasoning over 1.12b Linked Data triples in 3.35 hours using 8 ma-
chines, deriving 1.58b inferred triples, of which 962m are novel and unique.

6 Related Work

We have discussed our previous work on SAOR throughout the paper. Following initial
work on SAOR – which had not yet demonstrated distribution – a number of scalable
distributed reasoners adopted a similar approach to partial indexing herein reformalised.
Weaver et al. [19] discuss a similar approach for distributed reasoning over RDFS;
however, their experiments were solely over LUBM and their discussion was specific
to RDFS. Urbani et al. [18] use MapReduce for distributed reasoning for RDFS over
850m Linked Data triples; they do not consider authority and produce 30b triples which
is too much for our SWSE use-case – interestingly, they also tried pD* on 35m Web
triples and stopped after inferring 3.8b inferences in 12 hours, lending strength to our
arguments for authoritative reasoning. In very recent work, the same authors [17] ap-
ply incomplete but comprehensive pD* to 100b LUBM triples, discussing rule-specific

352 A. Hogan et al.

optimisations for performing join rules over pD*: however, we feel that materialisation
wrt. rules over 1b triples of arbitrary Linked Data is still an open research goal.

A viable alternative approach to Web reasoning employed by Sindice [1] – the rela-
tion to which is discussed in depth in [8] – is to consider merging small “per-document”
closures which quarantines reasoning to a given document and the related documents it
either implicitly or explicitly imports. Works on LDSR select clean subsets of Linked
Data∼0.9b triples and apply reasoning using the proprietary BigOWLIM reasoner [11].

With respect to template rules, DLEJena [13] uses the Pellet DL reasoner for T-Box
level reasoning, and uses the results to template rules for the Jena rule engine; they
only demonstrate methods on synthetic datasets up to a scale of ∼1M triples. We take
a somewhat different direction, discussing optimisations for partial-indexing.

Table 3. OWL 2 RL/RDF rules we apply for Web reasoning with exactly one assertional pattern.
Authoritative variable positions are given in bold. Not shown are axiomatic and schema rules [2].

RG1
: only one assertional pattern in antecedent

OWL2RL Antecedent Consequent
terminological assertional

eq-sym - ?x owl:sameAs ?y . ?y owl:sameAs ?x .
prp-dom ?p rdfs:domain ?c . ?x ?p ?y . ?x a ?c .
prp-rng ?p rdfs:range ?c . ?x ?p ?y . ?y a ?c .
prp-symp ?p a owl:SymmetricProperty . ?x ?p ?y . ?y ?p ?x .
prp-spo1 ?p1 rdfs:subPropertyOf ?p2 . ?x ?p1 ?y . ?x ?p2 ?y .
prp-eqp1 ?p1 owl:equivalentProperty ?p2 . ?x ?p1 ?y . ?x ?p2 ?y .
prp-eqp2 ?p1 owl:equivalentProperty ?p2 . ?x ?p2 ?y . ?x ?p1 ?y .
prp-inv1 ?p1 owl:inverseOf ?p2 . ?x ?p1 ?y . ?y ?p2 ?x .
prp-inv2 ?p1 owl:inverseOf ?p2 . ?x ?p2 ?y . ?y ?p1 ?x .
cls-int2 ?c owl:intersectionOf (?c1 ... ?cn) . ?x a ?c . ?x a ?c1...?cn .
cls-uni ?c owl:unionOf (?c1 ... ?ci ... ?cn) . ?x a ?ci ?x a ?c .
cls-svf2 ?x owl:someValuesFrom owl:Thing ; owl:onProperty ?p . ?u ?p ?v . ?u a ?x .
cls-hv1 ?x owl:hasValue ?y ; owl:onProperty ?p . ?u a ?x . ?u ?p ?y .
cls-hv2 ?x owl:hasValue ?y ; owl:onProperty ?p . ?u ?p ?y . ?u a ?x .
cax-sco ?c1 rdfs:subClassOf ?c2 . ?x a ?c1 . ?x a ?c2 .
cax-eqc1 ?c1 owl:equivalentClass ?c2 . ?x a ?c1 . ?x a ?c2 .
cax-eqc2 ?c1 owl:equivalentClass ?c2 . ?x a ?c2 . ?x a ?c1 .

7 Conclusion

We have introduced the notion of terminological data for RDF(S)/OWL, and have gen-
eralised and formalised the notion of partial indexing techniques which are optimised
for application of linear rules and which rely on a separation of terminological data –
a non-recursive segment of the data; we then related the derived closure to semi-naı̈ve
evaluation. We subsequently discussed inclusion of a template function in such an algo-
rithm, showing that naı̈vely, templated rules worsen performance, but with rule merging,
indexing and linking techniques, templated rules outperform the base-line T -split clo-
sure esp. for a complex T-Box. This work, along with DLEJena, supports uncited claims
within the recently standardised RIF working group that rule templating offers a more
efficient solution for supporting OWL 2 RL than a direct translation of OWL 2 RL/RDF
rules [15, Section 1]. We then reintroduced some discussion relating to reasoning over
Linked Data, including our notion of authoritativeness, and demonstrated scalable dis-
tributed reasoning over a subset of OWL 2 RL for 1.1b quads (without need for manual

SAOR: Template Rule Optimisations for Distributed Reasoning 353

T-Box massaging or pre-selection). The SAOR system is actively used to provide rea-
soned data to the SWSE system [9] for live search and browsing over Linked Data:
http://swse.deri.org/.

References

1. Delbru, R., Polleres, A., Tummarello, G., Decker, S.: Context Dependent Reasoning for Se-
mantic Documents in Sindice. In: Proc. of 4th SSWS Workshop (October 2008)

2. Grau, B.C., Motik, B., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology Language:
Profiles. W3C Recommendation (October 2009)

3. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. J. Web
Sem. 3(2-3), 158–182 (2005)

4. Hayes, P.: RDF semantics. W3C Recommendation (February 2004)
5. Hitzler, P., van Harmelen, F.: A Reasonable Semantic Web. Semantic Web Journal 1(1) (to

appear 2010), http://www.semantic-web-journal.net/
6. Hogan, A., Harth, A., Passant, A., Decker, S., Polleres, A.: Weaving the Pedantic Web. In:

Proc. of 3rd Workshop (April 2010)
7. Hogan, A., Harth, A., Polleres, A.: SAOR: Authoritative Reasoning for the Web. In:

Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 76–90. Springer,
Heidelberg (2008)

8. Hogan, A., Harth, A., Polleres, A.: Scalable Authoritative OWL Reasoning for the Web. Int.
J. Semantic Web Inf. Syst. 5(2) (2009)

9. Hogan, A., Harth, A., Umbrich, J., Kinsella, S., Polleres, A., Decker, S.: Searching and
Browsing Linked Data with SWSE: the Semantic Web Search Engine. Technical Report
DERI-TR-2010-07-23 (2010)

10. Hogan, A., Polleres, A., Umbrich, J., Zimmermann, A.: Some entities are more equal than
others: statistical methods to consolidate Linked Data. In: Proc. of NeFoRS Workshop (2010)

11. Kiryakov, A., Ognyanoff, D., Velkov, R., Tashev, Z., Peikov, I.: LDSR: a Reason-able View
to the Web of Linked Data. In: Proc. of 7th Semantic Web Challenge (2009)

12. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)
13. Meditskos, G., Bassiliades, N.: DLEJena: A practical forward-chaining OWL 2 RL reasoner

combining Jena and Pellet. J. Web Sem. 8(1), 89–94 (2010)
14. Ramakrishnan, R., Srivastava, D., Sudarshan, S.: Rule Ordering in Bottom-Up Fixpoint Eval-

uation of Logic Programs. In: Proc. of 16th VLDB, pp. 359–371 (1990)
15. Reynolds, D.: OWL 2 RL in RIF. W3C Working Group Note (June 2010)
16. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF Schema

and a semantic extension involving the OWL vocabulary. J. Web Sem. 3, 79–115 (2005)
17. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.E.: OWL reasoning with

WebPIE: Calculating the closure of 100 billion triples. In: Aroyo, L., Antoniou, G., Hyvönen,
E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) The Semantic Web:
Research and Applications. LNCS, vol. 6088, pp. 213–227. Springer, Heidelberg (2010)

18. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable Distributed Reasoning Using
MapReduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta,
E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 634–649. Springer, Heidelberg
(2009)

19. Weaver, J., Hendler, J.A.: Parallel Materialization of the Finite RDFS Closure for Hundreds
of Millions of Triples. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,
D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 682–697. Springer,
Heidelberg (2009)

http://swse.deri.org/
http://www.semantic-web-journal.net/

Justification Oriented Proofs in OWL

Matthew Horridge, Bijan Parsia, and Ulrike Sattler

School of Computer Science,

The University of Manchester

Abstract. Justifications — that is, minimal entailing subsets of an on-

tology — are currently the dominant form of explanation provided by

ontology engineering environments, especially those focused on the Web

Ontology Language (OWL). Despite this, there are naturally occurring

justifications that can be very difficult to understand. In essence, justifi-

cations are merely the premises of a proof and, as such, do not articulate

the (often non-obvious) reasoning which connect those premises with the

conclusion. This paper presents justification oriented proofs as a poten-

tial solution to this problem.

1 Introduction and Motivation

Modern ontology development environments such as Protégé-4, the NeOn Toolkit,
Swoop, and Top Braid Composer, allow users to request explanations for entail-
ments (inferences) that they encounter when editing or browsing ontologies. In-
deed, the provision of explanation generating functionality is generally seen as
being a vital component in such tools. Over the last few years, justifications have
become the dominant form of explanation in these tools. This paper examines
justifications as a kind of explanation and highlights some problems with them.
It then presents justification lemmatisation as a non-standard reasoning service,
which can be used to augment a justification with intermediate inference steps,
and gives rise to a structure known as a justification oriented proof. Ultimately, a
justification oriented proof could be used as an input into some presentation de-
vice to help a person step though a justification that is otherwise too difficult for
them to understand.

1.1 Justifications as Explanations

A justification is a minimal subset of an ontology (a set of axioms) that is
sufficient for a given entailment to hold. As an example, consider the small
ontology O = {A � B, A(i), C � D}, which entails B(i), written O |= B(i)1. A
justification J for O |= B(i) is a minimal subset of O that entails B(i), in this
case J = {A � B, A(i)}.

The major benefit of justifications is that they pinpoint and isolate the hand-
fuls of axioms, in what could be a very large ontology, that cause the entailment
1 B(i) means i is an instance of B.

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 354–369, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Justification Oriented Proofs in OWL 355

Person � ¬Movie

RRated � CatMovie

CatMovie � Movie

RRated ≡ (∃hasScript.ThrillerScript)
� (∀hasViolenceLevel.High)

Domain(hasViolenceLevel, Movie)

Fig. 1. A justification for Person ⊥

InverseProperties(hasPet, isPetOf)

isPetOf(Rex,Mick)

Domain(hasPet, Person)

Male(Mick)

reads(Mick,DailyMirror)

drives(Mick,Q123ABC)

Van(Q123ABC)

Van � Vehicle

WhiteThing(Q123ABC)

Driver ≡ Person � ∃drives.Vehicle
Driver � Adult

Man ≡ Adult � Male � Person

WhiteVanMan ≡ Man � ∃drives.(Van � WhiteThing)

WhiteVanMan � ∀reads.Tabloid
Tabloid � Newspaper

Fig. 2. A justification for

Newspaper(DailyMirror)

to hold. For example, the SNOMED medical ontology contains roughly 400,000
axioms, but a justification for an entailment in this ontology is on average less
than ten axioms in size [2].

Unlike full blown proofs, justifications are conceptually simple structures with
a natural relation to the ontology development process—they are directly related
to what has been asserted or stated in an ontology. Justifications require very
little additional knowledge beyond the semantics of the language. This concep-
tual simplicity, coupled with the fact that the computation of justifications for
real ontologies tends to be practical [10], and the fact that off-the-shelf imple-
mentations of justification finding services exist, has most likely lead to the large
uptake of justifications as a type of explanation.

1.2 Problems with Justifications

However, despite the fact that justifications are a popular form of explanation
in the OWL world, observations show there are justifications that people find
difficult or impossible to understand. Indeed, the justifications shown in Figure 1
and Figure 2, both from real ontologies, gave many users trouble when trying to
understand how they lead to their respective entailments. Indeed, some people
questioned whether the justification shown in Figure 1 was a justification at all.

In the case of the justification shown in Figure 1, which is a justification for
Person � ⊥2 spotting that the justification entails Movie ≡ �3 is key to under-
standing how the justification works. Since everything is entailed to be a Movie,
and Person is disjoint with Movie, Person is disjoint with �, hence Person is

2 ⊥ is read as “bottom” and is the same as owl:Nothing.
3 � is read as “top” and is the same as owl:Thing.

owl:Nothing
owl:Thing

356 M. Horridge, B. Parsia, and U. Sattler

unsatisfiable. People who fail to realise that Movie ≡ � is also entailed generally
fail to understand how the justification gives rise to the entailment.

Similarly, the justification shown in Figure 2, is also rather difficult for people
to work through. There are fifteen axioms of many different types in the justifica-
tion. It is far from obvious how these axioms interplay with each other to result in
the entailment Tabloid(DailyMirror). When a user works through this justification,
they have to spot intermediate entailments, for example, WhiteVanMan(Mick) and
Person(Mick), in order to arrive at the conclusion Tabloid(DailyMirror)).

In a exploratory study [5], it was observed that many justifications for entail-
ments of interest in real ontologies can be understood by people with a variety
of backgrounds, and these kinds of justifications serve extremely well as explana-
tions. However, it was also observed that there are justifications that are difficult
or impossible for people to work through. Two obvious reasons for this are: (1)
People do not spot key entailments within justifications, that are necessary for
them to understand how the justification works (as is the case with the justifi-
cation in Figure 1, and (2) People find large justifications, with many types of
axioms, tedious and therefore difficult to work through (as is the case with the
justification in Figure 2). In other words, when people fail, or find it difficult,
to spot intermediate entailments, conclusions or steps they can fail to under-
stand why a justification supports the entailment in question, and hence fail to
understand why the entailment in question holds in their ontology.

1.3 From Justifications towards Proofs

The above notion of “intermediate steps” that could guide a person through
understanding a justification, raises the question of whether full blown proofs,
such as natural deduction style proofs with inference rules, should be used for
explaining entailments in OWL ontologies.

One of the typical claims about natural deduction is that it mimics human
reasoning—that is, it has a strong cognitive adequacy [18]. However, there is
ongoing debate in the field of cognitive psychology about how human reasoning
actually works. Some camps favour a “logic” or rule based account [16], while
others favour a “model” based account [8]. Even for simple cases of natural
language based deduction, it is unclear which account is correct. Moreover, other
research [14] shows that relatively untrained people—clearly without having a
complete set of deduction rules at their disposal—can successfully work through
surprisingly complex reasoning puzzles. It is therefore impossible to say whether
or not natural deduction and similar proof systems mimic human reasoning.
What is clear, is that representations that have a strong cognitive adequacy are
not necessarily useable. Hence, even if natural deduction has a strong cognitive
adequacy, there is no guarantee that it is usable as a form of explanation for
entailments in ontologies.

In summary, it is likely that natural deduction style proofs are not necessarily
the best form of explanation. On the other hand, justifications are an appealing
type of explanation. It is known that that a wide range of people can cope with
justifications [5]. This includes domain experts who have very little training or

Justification Oriented Proofs in OWL 357

background with the Description Logics that underpin OWL. Justifications ap-
peal to these kinds of people because they are conceptually simple—very little
training is needed in order to understand how justifications work. The same can-
not be said about natural deduction style proofs. Additionally, people are used
to seeing axioms, albeit in a frame-based style of presentation, and justifications
reflect this familiarity. If natural deduction style proofs were presented to people
such as domain experts, they would require special training in order to read the
proofs.

1.4 Justification Oriented Proofs

What is needed, is something that lies between justifications and proofs. Given
the popularity and conceptual simplicity of justifications, the work presented in
this paper uses them as building blocks for structures that begin to look like
proofs, but are independent of any calculus or deduction rules. In essence, inter-
mediate steps are introduced into a justification, which are themselves explained
with justifications. This results in a directed acyclic proof graph of the form
shown in Figure 3. Ultimately a justification is extended with “lemmas” into a
justification oriented proof.

The main idea behind a justification oriented proof is depicted in Figure 3.
The numbered lozenges represent axioms, with the leftmost lozenge, labelled η,
representing the entailment of interest. The white lozenges labelled with “1”
– “6” represent exactly the axioms that appear in the original justification J
for the entailment (and are therefore in the ontology as asserted axioms). Grey
shaded lozenges represent lemmas that are entailed by the deductive closure of J
but are not in J as asserted axioms. For a given node, its direct predecessors con-
stitute a justification for that node. This produces a weakly connected directed
acyclic graph, with one sink node that represents the entailment of interest and
a source node for each axiom in the justification. Hence, in the example shown in
Figure 3, J = {1, 2, 3, 4, 5, 6} is a justification for η with respect to the ontology
that entails η. Axiom 7 is a lemma for axioms 1, 2 and 3 (conversely, axioms 1,
2 and 3 are a justification for axiom 7). Axiom 8 is a lemma for axioms 3, 4 and
5 (conversely axioms 3, 4 and 5 are a justification for axiom 8). Together axioms
6, 7 and 8 constitute a justification for η i.e. the entailment. Notice that axiom
3 participates in different justifications for different lemmas.

Ultimately, the justification oriented proof guides a person through the un-
derstanding of the original justification. In essence, lemmas are intermediate
steps that may be non-obvious, but may be significant to understanding how
the justification results in the entailment. They also provide a chunking mech-
anism, which can help guide a user through a large and tedious to understand
justification.

1.5 Contributions

The main contribution of this paper is the novel framework that is presented for
constructing justification oriented proofs. This framework is rather different to

358 M. Horridge, B. Parsia, and U. Sattler

7

8

1

2

3

4

5

6η

Key:

= Axiom in original justification

= Justification entailment
= Lemma (not in original justification)

Fig. 3. A schematic of a Justification Oriented Proof — Predecessors of a node repre-

sent a justification for that node

other approaches: First, the framework does not use any deduction rules per se
to derive the intermediate steps or conclusions. The choice of steps is ultimately
governed by a pluggable justification complexity model which is used to choose
one justification over another during the proof construction. Details of a practical
model are supplied in this paper, but it is important to realise that this paper
shows that the idea of using a model to select intermediate steps works well in
practice. Second, the framework is entirely black-box based. Any reasoner, such
as FaCT++, HermiT, Pellet or Racer, that implements a decision procedure for
entailment checking for OWL 2 (or any other monotonic logic) may be used for
generating the proofs. In other words, the internals of the reasoner need not
be modified to extract some kind of intermediate proof. Third, and finally, the
presented framework ought to be easily adaptable to deal with other fragments
of First Order Logic that may or may not overlap the fragment that corresponds
to OWL 2.

2 Related Work

The idea of using proofs as forms of explanation is obviously not new. Indeed, in
some camps [3,11], proofs are essentially regarded as the main form of explana-
tion. However, the work that is presented in this paper is based on the intuitions
mentioned in the introduction. That is, it is arguably more practical and more
helpful to not show full blown proofs because (1) users already know and un-
derstand justifications, and (2) it avoids having to teach users a new calculus or
deduction rules.

In [7], Huang acknowledges that Natural Deduction proofs are too fine-grained
to be used as explanations, and introduces Natural Deduction Style Proofs at
the assertional level, where trivial steps are eliminated from proofs. Parallels
may be drawn with the basic motivations presented here. The main difference
here is that the proofs here are arguably targeted at an even higher level of
abstraction, and that an entirely black-box complexity model based approach is
used to generate the proofs rather than extracting them from a theorem prover.

Finally, in [17] Schlobach introduces optimal interpolants, and so called illus-
trations that are intended to bridge the gap between subsumee and subsumer
class expressions. The notion of lemmas and justifications oriented proofs as
presented here are in the spirit of Schlobach’s illustrations. However, the main

Justification Oriented Proofs in OWL 359

Table 1. OWL 2 Class, Object Property and Individual Axioms

C D C ≡ D DisjointClasses(C1, . . . , Cn)

DisjointUnion(C, D1, . . . , Dn)

R S R ≡ S DisjointProperties(R1, . . . , Rn)

InverseProperties(R, S) Domain(R, C) Range(R,C)

Functional(R) InverseFunctional(R) Transitive(R)

Symmetric(R) Asymmetric(R) Reflexive(R)

Irreflexive(R)

C(a) R(a, b) DifferentIndividuals(a, ..., an)

SameIndividual(a1, . . . , an)

difference is that Schlobach’s work primarily deals with subsumption between
two class expressions in isolation, whereas the work presented here deals with
arbitrary entailments that arise from a sets of axioms.

3 Preliminaries

OWL 2 and Description Logics The work presented in this paper focuses on
OWL 2. OWL 2 [12] is the latest standard in ontology languages from the W3C.
An OWL 2 ontology roughly corresponds to a SROIQ(D) [6] knowledge base.
For the purposes of this paper, an ontology is regarded as a finite set of axioms
{α0, . . . , αn} of the form shown in Table 14, where C and D are (possibly com-
plex) class expressions, R and S are (possibly inverse or complex) properties,
and a and b are individuals. (Note that subscripts are used to represent different
occurrences, or class expressions, properties etc.).

Definition 1 (Justification). J is a justification for O |= η if J ⊆ O, J |= η
and for all J ′ � J J ′
|= η.

By a slight abuse of notation, the nomenclature used in this paper also refers
to a minimally entailing set of axioms (that is not necessarily a subset of an
ontology) as a justification.

The Structural Transformation — δ Much of the work presented in the remain-
der of the paper uses the “well known” structural transformation — referred to
here as δ. This transformation takes a set of axioms and flattens out each axiom
by introducing names for sub-concepts, transforming the axioms into an equi-
satisfiable set of axioms. The structural transformation was first described in
Plaisted and Greenbaum [15], with a version of the rewrite rules for description
logics given in [13]. For the sake of brevity, the structural transformation is not
defined here — the interested reader is referred to [13,4] for a full definition.

4 For the sake of brevity, axioms involving data properties and data ranges are not

presented here. However, the framework extends to these axioms in the obvious way.

360 M. Horridge, B. Parsia, and U. Sattler

4 Proof Generation Framework

In what follows the framework for generating justification oriented proofs is
presented. The framework consists of two main ideas: (1) The notion of justi-
fication lemmatisation. Subsets of a justification may be replaced with simple
summarising axioms, which are known as lemmas. One justification is lemma-
tised into another justification. (2) The notion of stitching a series of lemmatised
justifications into a justification oriented proof. First a definition of justification
lemmatisation is presented and then a definition for justification oriented proofs
is given.

4.1 Justification Lemmatisation

Given a justification J for an entailment η, the aim is to lemmatise J into J ′, so
that J ′ is less complex by some measure and for some purpose than J . With this
notion in hand, lemmas for justifications can now be defined. First, an informal
description is given, then a more precise definition is given in Definition 3.

Informally, a set of lemmas ΛS for a justification J for η is a set of axioms
that is entailed by J which can be used to replace some set S ⊆ J to give a
new justification J ′ = (J \S)∪ΛS for η. If, additionally, J ′ is less complex, by
some measure, than J . J ′ is called a lemmatisation of J .

Various restrictions are placed on the generation of the set of lemmas ΛS that
can lemmatise a justification J . These restrictions prevent “trivial” lemmati-
sations, an example of which will be given below. Before these restrictions are
discussed, it is useful to introduce the notion of a tidy set of axioms.

Intuitively, a set of axioms is tidy if it is consistent, contains no synonyms of
⊥ (where a class name is a synonym of ⊥ with respect to a set of axioms S if
S |= A � ⊥), and contains no synonyms of � (where a class name is a synonym
of � with respect to a set of axioms S if S |= � � A).

Definition 2 (Tidy sets of axioms). A set of axioms S is tidy if S
|= � �
⊥, S
|= A � ⊥ for all A ∈ Signature(S), and S
|= � � A for all A ∈
Signature(S).

The definition of lemmatisation that follows, mandates that a set of lemmas ΛS
must only be drawn from (i) the deductive closure of tidy subsets of the set
S ⊆ J , (ii) from the exact set of synonyms of ⊥ or � over S.

Without the above restrictions on the axioms in ΛS , it would be possible to
lemmatise a justification J to produce a justification J ′ that, in isolation, is
simple to understand, but otherwise bears little or no resemblance to J . For
example, consider J = {A � ∃R.B, B � E � ∃S.C, B � D � ∀S.¬C} as a
justification for A � ⊥. Suppose that any axioms entailed by J , could be used
as lemmas (i.e. there are no restrictions on the axioms that make up ΛS). In
this example, A is unsatisfiable in J , meaning that it would be possible for
J ′ = {A � E, A � ¬E} to be a lemmatisation of J . Here, J ′ is arguably easier
to understand than J , but bears little resemblance to J . In other words, A � E

Justification Oriented Proofs in OWL 361

and A � ¬E are not helpful lemmas for J |= A � ⊥. Similarly unhelpful results
arise if lemmas are drawn from inconsistent sets of axioms, or sets of axioms
that contain synonyms for �.

Given the above intuitions and the notion of tidy sets of axioms, the notion
of justification lemmatisation is defined as follows:

Definition 3 (Justification Lemmatisation). Let J be a justification for η
and S a set of axioms such that S ⊆ J . Let ΘS be the set of tidy subsets of
(S ∪ δ(S)). Recall that T
 is the deductive closure of a set of axioms T . Let

ΛS ⊆
⋃

T ∈ΘS

T
 ∪ {α |α is of the form A � ⊥ or � � A,
and ∃K ⊆ (S ∪ δ(S)) that is consistent and K |= α}

ΛS is a set of lemmas for a justification J for η if, for J ′ = (J \ S) ∪ ΛS

1. J ′ is a justification for η over J
, and,
2. Complexity(η,J ′) < Complexity(η,J).

The ability to lemmatise one justification into another justification is a key
process in constructing a justification oriented proof. Given a regular justification
J for η, J can be lemmatised into J1 for η. The axioms in J1 may then be
inspected to determine which of them are lemmas – lemmas are axioms that
are not in J . Given a lemma α ∈ J1 (α
∈ J) a new justification J2 ⊆ J
for α can be identified. If necessary, J2 can then be lemmatised into a simpler
justification for α. Axioms in J2 can then be inspected and the process can be
repeated as necessary. Ultimately the process builds up a justification oriented
proof. Justification oriented proofs are defined as follows:

Definition 4 (Justification Oriented Proof). A justification oriented proof
for a justification J for an entailment η in O is a weakly connected directed
acyclic graph G = (V, E) such that J ⊆ V ⊂ J
 and either, G = ({η}, {〈η, η〉})
or,

1. η is the one and only sink node in G,
2. J is the exact set of source nodes in G, and
3. For a given node, the set of predecessor nodes are a justification for the node

over J
.

In summary, as shown in Figure 3, a node in a justification oriented proof that
has incoming edges, is either a lemma or the entailment (sink node) itself. Source
nodes (nodes with no predecessors) are the axioms in the original justification.
Finally, given one justification J for η, there may be multiple justification ori-
ented proofs, even if the set of lemmas in the proof is fixed.

It should be noted that, in the same way that raw unordered justifications
are not presented directly to end users, it is unlikely the graph which constitutes
a justification oriented proof should be presented directly to end users. Instead,
the graph can be used as an input into some interactive presentation device.

362 M. Horridge, B. Parsia, and U. Sattler

4.2 Complexity Models

As can be seen from Definition 3, justification lemmatisation depends upon the
notion of justification complexity. More specifically, it depends upon whether
one justification is more complex, by some measure and for some purpose, than
another justification. In this framework, complexity models are used to assign
complexity scores to justifications and determine whether one justification is
more complex, than another. The framework makes no commitment to a par-
ticular complexity model. Indeed, models are intended to be pluggable. A model
may depend upon the application in question and the intended audience. In the
work presented here, the primary aim is to produce justification oriented proofs,
which pick out difficult to spot lemmas, and chunk and summarise sets of het-
erogeneous axioms in justifications. With these goals in mind, a simple model is
presented later in this paper. However, before this model is presented, models
that deal with special use cases are first discussed. The main intention here, is to
give a feel for how different models can be appropriate for different applications,
and how different models may be plugged into the framework.

A Model for Deriving Proofs for Laconic Justifications. A laconic justi-
fication [4] is a justification whose axioms have no superfluous parts and whose
parts are as weak as possible. Given O |= η, a laconic justification oriented proof
consists of a sink node η, and predecessors of η which are either (1) leaf nodes rep-
resenting axioms contained in O, or (2) are nodes representing axioms entailed
by O, for which each one has a predecessor representing an axiom contained in
O. Given a justification J for η, a simple complexity model for computing such
proofs assigns a score of zero to (J ′, η) if J ′ is a laconic justification for η, a
score of zero to (J ′, α) if α
= η and α is in the laconic justification in question,
and J ′ is a singleton set containing an axiom from the original ontology, and
otherwise, a score of one.

A Model for Deriving Proofs for Root/Derived Unsatisfiable Classes.
Given an ontology O which contains unsatisfiable classes (O |= A � ⊥ for some
class name A in the signature of O), a root unsatisfiable class [9] is a class in
the signature of O whose unsatisfiability does not depend on the unsatisfiability
of any other class in the signature of O. A derived unsatisfiable class is a class
whose unsatisfiability depends on the unsatisfiability of some other class in the
signature of O. More precisely, given O |= A � ⊥, A is a derived unsatisfiable
class if there exists some class B such thatO |= B � ⊥ and there is a justification
JA |= A � ⊥ and another justification JB |= B � ⊥ such that JB � JA,
otherwise, A is a root unsatisfiable class.

A suitable model that will lemmatise and “collapse” a subset that corresponds
to a justification for a root unsatisfiable class (corresponding to JB above) is
as follows: Given O |= A � ⊥, the model assigns a score of 1 to a justification
JA for O |= η if there exists a justification J ′ ⊂ J for J |= B � ⊥, where
J ′
= {B � ⊥} and J ′′ = J \ J ′ ∪ {B � ⊥} is a justification for A � ⊥ over
the deductive closure of O, the model otherwise assigns a score of 0.

Justification Oriented Proofs in OWL 363

4.3 A General Model for Deriving Justification Oriented Proofs

For the purposes of introducing non-obvious and summarising intermediate steps
into justifications, a simple justification complexity model is presented in Table
2. This model was derived partly from intuitions on what makes justifications
difficult to understand, and partly from the observations made during a pi-
lot/exploratory study [5] in which people attempted to understand justifications
from real ontologies. The model uses various components to produce complexity
scores which are summed to produce an overall complexity score for a justi-
fication. Broadly speaking, there are two types of components: (1) Structural
components, such as C1, which require a syntactic analysis of a justification,
and (2) Semantic components, such as C4, which require entailment checking
to reveal non-obvious phenomena. Although the model presented in Table 2 is
rather simple, it is surprisingly effective in that it produces pleasing justification
oriented proofs.

5 An Algorithm for Generating Proofs

Given the above definitions, the main algorithms for generating proofs are pre-
sented below. There are three main algorithms: 1) GenerateProof, which takes
a justification as an input and outputs a proof; 2) LemmatiseJustification, which
takes a justification as an input and outputs either a lemmatised justification or
the justification itself; 3) ComputeJPlus, which takes a justification and computes
a set of axioms that are in the deductive closure of tidy subsets of the justifica-
tion from which lemmas may be drawn. The GenerateProof algorithm uses the
LemmatiseJustification as a sub-routine, and the LemmatiseJustification algorithm
uses the ComputeJPlus algorithm as a sub-routine. Note that due to space limi-
tations, the ComputeJPlus algorithm is not specified line by line in this paper—
instead, a definition of J + (Definition 5) is given below, and it is assumed that
the algorithm simply computes J + in accordance with this definition.

5.1 GenerateProof

The GenerateProof algorithm for computing justification oriented proofs is de-
picted in Figure 4. The basic idea is that, given an input of a justification J for
η, a lemmatised justification J ′ for η is computed. J ′ is then used to initialise
a justification oriented proof P . For each node λ in the proof corresponding to
an axiom in J ′, if λ is not in J then it is a lemma and a justification needs to
be computed for it. In this case a new justification J ′′ is computed for α′ over
J . Next, J ′′ is lemmatised to give J ′′′ which is inserted into the proof P . The
process then repeats for lemmas in P that do not have any predecessors until
none of the leaves in the proof are lemmas. Although not depicted in Figure 4,
it is important to note that, in order to comply with Definition 4, there is a test
in step 6 to determine whether inserting J ′′′ as a result of the lemmatisation
process into P would result in a cyclic graph instead of a DAG. If this is the

364 M. Horridge, B. Parsia, and U. Sattler

Table 2. A Simple Complexity Model for Generating Justification Oriented Proofs

Name Description

C1 AxiomTypes Counts the axiom types in J and η. The count is

multiplied by a weighting (10.0) and added to the

overall complexity score.

C2 ClassConstructors Counts the class constructors in J and η. The

count is multiplied by a weighting (10.0) and

added to the overall complexity score.

C3 UniversalImplication If α ∈ J and α is of the form ∀R.C D or

D ≡ ∀R.C a constant (50.0) is added to the overall

complexity score.

C4 SynonymOfThing If J |= � A for some A ∈ Signature(J) and

� A �∈ J and � A �= η then a constant

(50.0) is added to the complexity score.

C4 SynonymOfNothing If J |= A ⊥ for some A ∈ Signature(J) and

A ⊥ �∈ J and A ⊥ �= η then a constant

(50.0) is added to the complexity score.

C5 DomainAndNoExistential If Domain(R,C) ∈ J and J �|= E ∃R.D for

some class expressions E and D then a constant

(50.0) is added to the complexity score.

C6 ModalDepth The maximum modal depth of all class expres-

sions in J is multiplied by a weighting (50.0) and

added to the overall complexity score

C7 SignatureDifference For each A ∈ Signature(η), where A �∈
Signature(J) a weighting (50.0) is added to the

overall complexity score

C8 AxiomTypeDifference If the axiom type of η is not the set of axiom

types of J then a weighting (50.0) is added to the

overall complexity score

C9 ClassConstructorDifference For each class constructor in η that is not in the

set of class constructors of J , a weighting (50.0)

is added to the overall complexity score

case, then an alternative lemmatisation of J ′′ must be chosen (or if there are no
alternatives then J ′′ itself must be chosen) to insert into P . This enforcement of
non-cyclical proofs is also part of the mechanism that ensures the GenerateProof
algorithm terminates. A discussion on termination is presented later.

5.2 LemmatiseJustification

The LemmatiseJustification algorithm is presented in Algorithm 1. The algorithm
takes a justification J for η as its input and returns a justification L as its
output. Either L is a lemmatisation of J or L is equal to J . In essence, the
algorithm produces a lemmatised justification by computing a filter S on the
deductive closure of tidy subsets of J , which obviously includes axioms that
could lemmatise J . Justifications for η are then computed with respect to S.

Justification Oriented Proofs in OWL 365

Input J

λ

J'

Lemmatise J
to give J'

Initialise Proof
P with J'

Choose a lemma λ in P
without predecessors

and compute a justification
J'' (w.r.t. J) for it

Insert J'''
into P

Does P contain
lemmas without
predecessors?

J''

λ

Proof P
λ

λ

Lemmatise
J'' to give J'''

Final Proof

Key:

= Entailment for original justification

= Axiom in original justification

= Lemma (does not appear in original justification)

J'''

Finish

No

Yes

Fig. 4. GenerateProof – A Depiction of an Algorithm for Generating Justification Ori-

ented Proofs. Justification Lemmatisation is used as a Sub-routine.

A complexity score is computed for each justification L ⊆ S, which is compared
to the complexity of J . If the difference between the score for J and the score
for L is positive then L is selected as a lemmatisation of J . Algorithm 1 always
terminates due to the fact that S is finite in size and hence there are a finite
number of justifications for η with respect to S.

5.3 ComputeJPlus

Definition 3 mandates that, for a justification J , lemmas must be drawn from
the deductive closure of tidy subsets of J . However, the deductive closure of a
set of axioms is infinite. For practical purposes it is necessary to work with a
finite representative of the deductive closure that suffices for computing pleasing
lemmatisations and pleasing justification oriented proofs. In addition to these
practicalities, a finite representation of the deductive closure is needed because
the ability to draw lemmas from an infinite set of axioms could lead to non-
termination of the GenerateProof algorithm. In order to ensure termination, not
only is it necessary to disallow cycles in the proof, but it is also necessary to
introduce a filter on the deductive closure that produces a finite set of axioms,
J+ from which lemmas may be drawn. In essence, J+ is some finite subset of
the deductive closure of J .

Algorithm 1. LemmatiseJustification(J, η)
Function-1: LemmatiseJustification(J, η)
1: S ← ComputeJPlus(J, η) \ {η}
2: justs ← ComputeJustifications(S, η)
3: c1 ← ComputeComplexity(J, η)
4: L ← J
5: for J′ ∈ justs do
6: c2 ← ComputeComplexity(J′, η)
7: if c2 < c1 then
8: L ← J′

9: return L

366 M. Horridge, B. Parsia, and U. Sattler

The question is, given a justification J , what axioms should J + contain?
Although there is no definitive answer to this, it must be remembered that the
ultimate goal is to include enough in J+ so that it is possible to produce a series
of candidate lemmatised justifications, from which a “nice” one may be chosen
using a complexity model. With this in mind, there are a number of possible
options for J + generation:

Generation with Sub-Concepts. One possibility is to specify J+ so that it
contains axioms of the forms specified in Table 1, which are build up from sub-
concepts of axioms in J . However, while such a strategy can go a long way to
producing a set of axioms containing lemmas that could result in pleasing proofs,
there could be axioms, which might be lemmas of choice, that are not be con-
tained in the set. For example, given O = {A � ∃R.B, ∃R.B � C, Trans(R)} |=
A � C, a lemma of choice might be ∃R.A � ∃R.∃R.B (entailed by A � ∃R.B).
However, with the above schema, based on sub-concepts, the class expression on
the right hand side of the axiom (∃R.∃R.B) does not exists as a sub-concept in
J and so the axiom would never be generated. What is needed is a set of class
expressions that is rich enough so as to be able to build a rich set of axioms that
constitute candidate lemmas. This is achieved using nested sub-concepts:

Generation with Nested Sub-Concepts

Definition 5 (J +). For a justification J for η, let S be the set of sub-concepts
occurring in the axioms in J ∪ {η} plus � and ⊥. Let S′ be the smallest set of
class expressions such that S′ ⊇ S and S′ contains class expressions of the form:

– ¬C where C ∈ S′ and C is not negated.
– C1�· · ·�Ci or C1�· · ·�Ci for 2 ≤ i ≤ |S| and for any Cj ∈ {C1, . . . , Ci} it

is the case that Cj ∈ S or Cj = ¬C for some C ∈ S where C is not negated.

Now, let d = |J | × c where c is the maximum modal depth [1] of the class
expressions in S. Let R be a property in the signature of J and m be the sum
of all numbers occurring in cardinality restrictions. Let S′′ be the smallest set
of class expressions such that S′′ ⊇ S′ and S′′ contains class expressions of the
form:

– ∃R.C, ∀R.C, ≥ nR.C or ≤ nR.C, where C ∈ S′′, the modal depth of C is
no greater than d, and n ≤ m.

– ∃R.{a}, where a and R are in the signature of J or η.
– ¬C where C ∈ S′′ and C is not negated.

Given S′′, J + is now defined as the set of axioms of the form given in Table
1, where C and D are substituted for class expressions in S′′, R and S are
substituted for property expressions in J , a and b are substituted for individuals
in the signature of J , and for each axiom α ∈ J +, there exists a tidy subset
J ′ ⊆ J such that J ′ |= α.

Justification Oriented Proofs in OWL 367

The ComputeJPlus algorithm in now defined to compute J+ in accordance with
Definition 5. Since S is finite, S′′ is also finite and therefore J + is also finite.
Therefore, there are finite number of justifications for an entailment η with
respect to J+, hence GenerateProof algorithm is guaranteed to terminate.

6 The Feasibility of Computing Justification Oriented
Proofs

The GenerateProof algorithm and its sub-routines, and the complexity model
shown in Table 2 were implemented in Java using the OWL API. The algorithm
has two basic, but necessary, optimisations. First, J + is computed incremen-
tally and the number of entailment checks is minimised in the obvious way, for
example, if J
|= A � B then an entailment test is not performed for A � B�C.
Second, justifications in the LemmatiseJustification algorithm are computed one
by one rather than all at once. This means that if a justification J ′ is found as
a lemmatisation of J this justification is selected rather than continuing to look
for one of lower complexity. If necessary, J ′ could be lemmatised to produce a
justification of possibly lower complexity.

The implemented algorithm, with the Pellet reasoner, was tested against the
ontologies listed in Table 3. For each ontology, a maximum of 5 justifications for
entailments of the form A � B, A � ⊥ and A(a) were computed. Proofs were
then computed for these justifications. Times for computing the justifications,
and times for computing proofs were measured and averaged.

The implementation, although naive, with plenty of room for further opti-
misation, shows that it can be practical to compute proofs for entailments in
real ontologies. Generally speaking, if it is possible to compute a justification for
an entailment, it is possible to compute a justification oriented proof for that
justification and entailment. In all cases, the time required to compute the proof
is at least an order of magnitude higher than the time required to compute
a justification. The difference is particularly striking for the Tambis ontology,
where there were several justifications for which it took a significant time to per-
form entailment checking while computing J + and then compute justifications
over J+.

7 Examples

A selection of videos showing examples of justification oriented proofs may
be found online at http://www.cs.man.ac.uk/~horridgm/2010/iswc/proofs/
examples/. The examples illustrate the kinds of lemmas that get introduced into
proofs and illustrate what is possible using the complexity model presented in
Table 2. Figure 5 shows a justification oriented proof for the justification shown
in 1. It should be noted that the presentation style used for the examples is
merely for illustrative purposes. In the tree presentation used, the children of an
axiom represent a justification for that axiom.

http://www.cs.man.ac.uk/~horridgm/2010/iswc/proofs/examples/
http://www.cs.man.ac.uk/~horridgm/2010/iswc/proofs/examples/

368 M. Horridge, B. Parsia, and U. Sattler

Table 3. Mean Times for Computing Justifications and Proofs

Ontology Just. Size Just. Time Proof Time
Expressivity/Axioms (Mean/SD/Max) (mean ms) (mean ms)

Generations (ALCOIF/38) 4 / 2.1 / 8 31 2034

Economy (ALCH/1625) 2 / 0.6 / 6 32 144

People+Pets (ALCHOIN/108) 4 / 2.5 / 16 31 801

Tambis (SHIN/595) 8 / 4.1 / 21 1047 244987

Nautilus (ALCF/38) 3 / 2.0 / 6 20 758

Transport (ALCH/1157) 5 / 2.1 / 9 19 469

University (SOIN/52) 5 / 2.1 / 9 21 1738

PeriodicTable (ALU/100) 4 / 9.9 / 36 72 1026

Chemical (ALCHF/114) 8 / 1.2 / 11 38 3690

Entailment : Person � ⊥

Person � ¬Movie

� � Movie

∀hasViolenceLevel.⊥ � Movie

∀hasViolenceLevel.⊥ � RRated

RRated ≡ (∃hasScript.ThrillerScript)� (∀hasViolenceLevel.High)

RRated � Movie

RRated � CatMovie

CatMovie � Movie

∃hasViolenceLevel.� � Movie

Domain(hasViolenceLevel,Movie)

Fig. 5. A schematic of a justification oriented proof for the justification shown in

Figure 1

8 Conclusions and Future Work

This paper has presented justification oriented proofs as possible solution to the
problem of people understanding justifications. Justification lemmatisation has
been introduced as a new non-standard reasoning service, which is a key compo-
nent of for producing justification oriented proofs. Justification lemmatisation
is based on the notion of a justification having a certain complexity for a given
task. In the approach taken here, a simple complexity model based on various
structural and non-structural phenomena was used as a basis for producing jus-
tification oriented proofs for entailments in real ontologies. Although, there is
plenty of room for optimisation, some initial experiments on a series of published
ontologies indicate that it is practical to compute justification oriented proofs
for entailments in real ontologies.

It must be emphasised that the main contribution of this paper has been
to formalise the notions of justification lemmatisation, justification oriented
proofs and using complexity models to generate pleasing proofs. Preliminary user
feedback, garnered from poster presentations at various conferences, has been

Justification Oriented Proofs in OWL 369

very positive. However, as future work, a series of detailed user studies will be
carried out to ascertain the specific benefit of justification oriented proofs to
end users. Smooth presentation and interaction mechanisms will be designed to
support this evaluation.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The

Description Logic Handbook (2003)

2. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-

ing in the description logic EL+. In: KR-MED 2008 (2008)

3. Borgida, A., Calvanese, D., Rodriguez, M.: Explanation in DL-Lite. In: DL 2008

(2008)

4. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL.

In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.,

Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338. Springer, Hei-

delberg (2008)

5. Horridge, M., Parsia, B., Sattler, U.: Lemmas for justifications in OWL. In: DL

2009 (2009)

6. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: KR

2006 (2006)

7. Huang, X.: Reconstructing proofs at the assertion level. In: Bundy, A. (ed.) CADE

1994. LNCS, vol. 814, pp. 738–752. Springer, Heidelberg (1994)

8. Johnson-Laird, P.N., Byrne, R.M.J.: Deduction. Psychology Press, San Diego (1991)

9. Kalyanpur, A.: Debugging and Repair of OWL Ontologies. PhD thesis, The Grad-

uate School of the University of Maryland (2006)

10. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of

OWL DL entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,

K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,

G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp.

267–280. Springer, Heidelberg (2007)

11. Kwong, F.K.H.: Practical approach to explaining ALC subsumption. Technical

report, The University of Manchester (2005)

12. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Web Ontology Language struc-

tural specification and functional style syntax. W3C Recommendation, W3C –

World Wide Web Consortium (October 2009)

13. Motik, B., Shearer, R., Horrocks, I.: Optimized reasoning in description logics using

hypertableaux. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp.

67–83. Springer, Heidelberg (2007)

14. Newstead, S.E., Brandon, P., Handley, S.J., Dennis, I., Evans, J.S.B.: Predicting

the Difficult of Complex Logical Reasoning Problems, vol. 12. Psychology Press,

San Diego (2006)

15. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation.

Journal of Symbolic Computation (1986)

16. Rips, L.J.: The Psychology of Proof. MIT Press, Cambridge (1994)

17. Schlobach, S.: Explaining subsumption by optimal interpolation. In: Alferes, J.J.,

Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 413–425. Springer,

Heidelberg (2004)

18. Strube, G.: The role of cognitive science in knowledge engineering. In: Proc. of

Contemporary Knowledge Engineering and Cognition (1992)

Toponym Resolution in Social Media

Neil Ireson and Fabio Ciravegna

University of Sheffield, UK

Abstract. Increasingly user-generated content is being utilised as a

source of information, however each individual piece of content tends

to contain low levels of information. In addition, such information tends

to be informal and imperfect in nature; containing imprecise, subjec-

tive, ambiguous expressions. However the content does not have to be

interpreted in isolation as it is linked, either explicitly or implicitly, to

a network of interrelated content; it may be grouped or tagged with

similar content, comments may be added by other users or it may be re-

lated to other content posted at the same time or by the same author or

members of the author’s social network. This paper generally examines

how ambiguous concepts within user-generated content can be assigned

a specific/formal meaning by considering the expanding context of the

information, i.e. other information contained within directly or indirectly

related content, and specifically considers the issue of toponym resolution

of locations.

Keywords: Concept Disambiguation, Social networks, Information

Extraction.

1 Introduction

The growth in the use of social media for sharing content (text, images or video)
to other individuals who can be close personal associates or random strangers,
is staggering. If the latest statistics from Facebook1 are to be believed, around
7% of the world’s population are active users and they spend on average 40
minutes per day on this one site. Whilst the value of this User-Generated Content
(UGC) is being realised, utilising the information it contains poses a number of
challenges. Contributions to social media sites (blogs, forums, Twitter, etc.) are
conversational in nature and thus tend to be brief and informal, containing
imprecise, subjective and ambiguous information. The provider of the content
may make assumptions about the receivers’ ability to interpret the meaning,
despite the fact that the message (i.e. content and any associated metadata) may
imperfectly represent their intended meaning. For example, incidental finding in
a recent study on photo retrieval [1] indicated that people are unable to retrieve
their own content due to their inconsistent descriptions.

One solution to this issue would be to facilitate the user in providing clear
semantics defining any potential ambiguous concept they use. Recently a number
1 http://www.facebook.com/press/info.php?statistics

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 370–385, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.facebook.com/press/info.php?statistics

Toponym Resolution in Social Media 371

of services (such as OpenCalais2) attempt to guide the user providing content
to link concepts in their text to some URI, e.g. to Wikipedia or IMDB3 articles.
If such approaches are to be useful they must make suggestion which match the
content provider’s intentions. In order to determine the correct resolution of an
ambiguous concept it is necessary to consider its context, whilst this context is
most readily provided by the other information contained in the content (i.e.
other text, image features, tags, etc.) the conversational nature of social media
means that this information might well be limited and imperfect. However the
interrelated nature of social media means that the disambiguation process may
be able to use more distant but still related context, for example content posted
around the same time or by the same user or by members of the user’s social
network.

In this paper we examine the use of this expanding context to resolve ambigu-
ous concepts in social media and specifically consider the issue of toponym reso-
lution, i.e. the allocation of specific geolocations to target location terms. Section
2 considers the related work; the disambiguation of both generic and location
concepts in text and social media. Section 3 then outlines the methodology used
to determine the expanding information context and discusses measurements for
determining the degree of term ambiguity. Section 4 describes the experiment;
the data used and generation of the disambiguation classification model. Sec-
tion 5 presents the results and Section 6 discusses the short-comings of the work
and how these might be addressed in the future. Section 7 then summarises the
findings of the paper.

2 Related Work

The automatic disambiguation of concepts in social media has concentrated on
the issue of ambiguous textual tags, this work can be broadly divided into two
areas. The first approach disambiguates a target concept (tag) by creating clus-
ters a frequently co-occurring tags, where each cluster is assumed to provide
a separate meaning, defined by the tags it contains [2]. Such an approach has
the advantage of being applicable to any tag, however as no specific meaning is
assigned to each tag cluster it limits its usefulness and the ability to evaluate the
approach. Although further processing has been used to assign a unique URI to
the clusters based on the co-occurrence between cluster tags and terms found
in an ontology [3], the work suffers from a limited evaluation of the techniques
performance.

The second approach attempts to identify the correct meaning of tag given
its use for a specific resource (i.e. image, web page). The co-occurring tags are
used to provide context, these tags are compared with some tag-concept model
to determine the most likely meaning. Angeletou [4] used WordNet [5] to iden-
tify ambiguous tags, however other work claims that WordNet tends to produce

2 http://www.opencalais.com/
3 Internet Movie Database: http://www.imdb.com

http://www.opencalais.com/
http://www.imdb.com

372 N. Ireson and F. Ciravegna

overly generic concepts [3]. Other approaches use purpose built tag-concept mod-
els based on Wikipedia/DBpedia [6,7,8].

The principal difficulty with these approaches is the issue of evaluating whether
the disambiguation processes used actually assigns the correct meaning. All the
studies perform post-experiment, human review of the results, and in general do
not specify the nature of the evaluation (i.e. number of reviewers, inter-annotator
agreement, etc.). The generation of “Gold-Standards” for the disambiguation of
generic concepts in (multilingual) text has been undertaken by the SENSEVAL4

evaluation exercises. However, this data is concerned with the identification of
concepts in natural language, whilst in social media text, and particularly with
tags, concepts have little or no grammatical context.

Toponym resolution has the advantage over general concept resolution that
user-generated, gold standard data is available, and especially in social media
data. This is due to the ability to, and interest in, geotagging UGC. In addition,
in a limited context it is highly likely that a given location will have only one
meaning [9], a hypothesis which is shown to be true for the data used in this
experiment in respect to a given user context. A number of researchers have ex-
amined the disambiguation of locations in text, for example; in news articles [10],
in Wikipedia articles [11] and general Web pages [12,13,14,15]. The disambigua-
tion processes generally combine a number of techniques, including; statistical
likelihood (selecting the most probable location), textual context (considering
the surrounding text of a location) and co-referent locations within the docu-
ment and, for web pages, hypertext-linked documents. The use of co-occurring
locations to provide disambiguating context is stressed as a key technique which
generally provides high precision, but low recall, when compared with other tech-
niques. This is due to the requirement for related locations to occur, which may
not be satisfied for a given document. One of the key issues in this technique
is deriving a function to determine how co-occurrence of locations affects the
disambiguation. Most frequently this involves using some heuristics to propa-
gate toponym likelihood (based on location similarity, i.e. the spatial distance or
the relative distance in some location taxonomy, between co-occurring locations
and possible toponym resolutions), but more recent work forms a feature vector
based on the co-occurrences and uses machine learning to calculate the most
predictive function [11].

Crandall, et al. [16] combine image features and temporal context to geolocate
Flickr images, and in their conclusion they indicate the potential advantage
which could be derived from also considering social context. Davis, et al. [17]
explore the combination of user and temporal context to determine the location
of an uploaded photograph, but unfortunately do not provide enough description
of the experimental results to determine the relative effects of these two contexts.

The recent work by Serdyukov, et al. [18], examines the issue of geolocating
Flickr photos using the associated tags. Although their work does use the GeoN-
ames5 database to boost the importance of location names, the predictive model

4 http://www.senseval.org/
5 http://www.geonames.org

http://www.senseval.org/
http://www.geonames.org

Toponym Resolution in Social Media 373

incorporates all the photo tags. Their aim is not specifically toponym resolution,
instead they attempt to calculate the actual latitude/longitude of a photo. The
resultant model provides an association between a tag (or set of tags) and a
location. This is similar to previous work looking at Flickr data to determine
the location (and event) related semantics of a tag [19], i.e. the degree to which
a given tag could be associated with a given location, and Wang et al.’s work on
finding the relationships between news/blog tags and countries [20].

Weinberger, et al. [21] explore the general issue of tag ambiguity. The work
defines ambiguity in terms of the probability of observing a given tag in a given
context (i.e. set of tags). They then determine the two tags, if added to the set of
tags, that give rise to maximally different probability distributions. For example
the tags “UK” AND “MA” significantly effect the probability distributions of
the tag “Cambridge”. It is interesting to note that the research, which considers
tag from 100 million images, indicates that 16% of tag ambiguity is explained
by other geographic metadata. This emphasises the importance of determining
the correct location associated with tags not only to geolocate UGC but also
to disambiguate other tags. Indeed there has been work exploring the use of
the known location (and time) of UGC to build a recommendation classifier to
suggest other tags to the user [22,23].

Perhaps a surprising feature of the previous work on toponym resolution in
social media, is that the social context has generally not been exploited. User
models have been utilised in the disambiguation of general tags [6], and recent
work, on tag recommendations [24] and determining the quality of reviews [25],
have demonstrate that using social contextual information, i.e. information re-
lating to a user and their social network, can help improve prediction especially
overcoming the issue of data sparsity. The work in this paper examines how such
information can be applied to improve the toponym resolution process.

3 Methodology

This section describes the techniques applied in toponym resolution (and appli-
cable to concept disambiguation in general) and how social context can be used
to improve performance.

3.1 Information Context

Similar to previous work the surrounding context is used to disambiguate the
target concept. This context is provided by the tags associated with the UGC
or the users themselves. There are both advantages and disadvantages in using
tags over actual textual content; in text you can exploit grammatical structures
and term proximity, whilst tags are, in effect, a “bag-of-words”. However tags
are intended to provide an overall description of the content so, if efficacious
tagging is performed, tags should provide a valuable source of descriptive in-
formation. However not all tags will be equally informative and the degree of
relevance of a given tag will depend upon the application. For toponym reso-
lution the target concepts (tags) are locations and therefore it is necessary to

374 N. Ireson and F. Ciravegna

determine those tags which influence the location description of content. The ap-
proach adopted was to limit the tags by only considering location names, whilst
there are a number of freely-available geographic resources, Yahoo! GeoPlanet6

was selected due to it providing a semantically structured lexical database. Its
specified aim is to provide “geo-referencing data on the Internet”, which it does
by providing a common naming convention (each location is allocated a URI in
the form of a Where-On-Earth Identifier (WOEID)) and a framework or tax-
onomy describing the relative geography of these locations. The version7 used
contains over 5 million locations/toponyms, but more importantly the data pro-
vides an analogous structure to that found in general concept resources, such
as WordNet. Each location is a node in a hierarchy from which it is possible to
determine the parental locations (hypernyms) which contain the location, the
child locations (hyponyms) that the location contains and also locations that
share the same parent (coordinate terms). In addition it is possible to extract
neighbouring locations, which are coordinate terms which are adjacent to the
target location. A further attractive feature of Yahoo! GeoPlanet is the work
on namespace concordance8 which maps between the WOEID and a variety of
other namespaces (e.g. location identifiers from; Geonames9, OpenStreetMap10,
Wikipedia11). This means that it become possible to link content identified by
a WOEID to information from multifarious providers including that from the
Linked Data community.

The specific application scenario is a classic Information Retrieval problem
whereby a user wishes to retrieve all the UGC which relates to a given instance
of a concept, e.g. Sheffield, South Yorkshire, UK (WOEID:34503). The user can
apply three strategies to retrieve the desired information:

1. Query for the ambiguous term and sift through the results. The effectiveness
of this strategy is dependent upon the likelihood of content being tagged with
the desired instance. If the user is looking for an obscure location, i.e. one
which is relatively infrequently tagged, or the search term is highly ambigu-
ous then many of the results will be irrelevant. In addition, if the location
can be tagged with several synonyms (e.g. New York, NY, Big Apple) then
relevant results may be missed.

2. Rely on the user to have tagged the content with the actual location URI.
Note that with location it is also possible to use the geocoding coordinates of
the content, if they are provided, although this does not necessarily uniquely
identify the location, for example a point location (latitude/longitude) may
refer to the immediate surroundings or it may simply be the central point
of some wider area, e.g. city, county, country.

6 http://developer.yahoo.com/geo/geoplanet/
7 Version 7.5.1 released 2010-06-03
8 http://developer.yahoo.com/geo/geoplanet/guide/

api-reference.html#api-concordance
9 http://www.geonames.org

10 http://www.openstreetmap.org
11 http://en.wikipedia.org

http://developer.yahoo.com/geo/geoplanet/
http://developer.yahoo.com/geo/geoplanet/guide/api-reference.html#api-concordance
http://developer.yahoo.com/geo/geoplanet/guide/api-reference.html#api-concordance
http://www.geonames.org
http://www.openstreetmap.org
http://en.wikipedia.org

Toponym Resolution in Social Media 375

3. Form a query which is likely to return content relating to the desired instance.
This strategy is reliant on the user’s ability to form the complex query and
the content being tagged with the disambiguating information. Weinberger,
et al.’s [21] work on determining the most disambiguating tag would be
relevant to directing the content provider tagging by suggesting the most
effective tags.

The approach adopted, in effect, applies the third strategy by automatically con-
structing the complex query. In practice the process is applied offline allocating
a location URI to every occurrence of a target location tag by considering all
the co-occurring related location name tags: used to tag content, used by the
tagging user and used by the users in their social network. Note that is is also
possible to allocate a “non-location” URI, indicating that the target location
term does not relate to any of the possible toponyms. Thus, information context
is provided by a vector of related term frequencies:

IC = freq(T)1, freq(T)2, . . . , freq(T)l (1)

and the meaning of any given term is provided by some function combining all
the term’s information contexts:

M(T) = f(IC1, IC2, . . . , ICn) (2)

3.2 Ambiguity

The traditional types of ambiguity include lexical, syntactic, semantic, and prag-
matic ambiguity (for a detailed discussion of ambiguity in natural language see
[26]). This current work is only concerned with lexical ambiguity, that is where
a term (i.e. a text string) has several different meanings. Lexical ambiguity can
be subdivided into homonymy and polysemy. Homonymy occurs when a term
can have a number of unrelated meanings, whilst polysemy occurs when a term
has several related meanings. However this distinction is subtle and it is often
unclear which type of ambiguity to apply, and is not considered in this work.

Mich [27] provides two measures for lexical ambiguity:

lexical ambiguity of a term T:

a(T) = the number of meanings of T (3)

frequency-weighted lexical ambiguity of a term T:

a∗(T) =
a(T)∑
i=1

log2freq(Mi(T)), (4)

where Mi(T) is the ith meaning of T, and freq(m) is the observed frequency of
that meaning.

376 N. Ireson and F. Ciravegna

The meanings are provided by some lexical resource (e.g. WordNet) and the
weighted function is calculated from the frequency of occurrences of meanings
found in some text corpus. However the use of frequency seems erroneous; as a
frequently used term with a single meaning is still deemed ambiguous. A pre-
ferred measure would be to use Shannon’s information entropy, which more
accurately measures the degree to which the occurrence of a term determines its
meaning.

H(T) = −
a(T)∑
i=1

P (Mi(T))log2P (Mi(T)), (5)

where P(Mi(T)) is the probability of observing the ith meaning of T.
Whilst a term may appear to be highly ambiguous due to a multitude of possi-

ble meanings (i.e. a high value according to Equation 3), in a given usage context
only a limited set of those possibilities may be likely to occur. For example whilst
there are 54 possible toponym resolutions of the location name Cambridge, any
given user is only likely to refer to a single one of those possibilities. Although
users may be unlikely to refer to multiple toponyms with the same name, they
may use the term for meanings other than location names. For example, the
term Barry can be associated with: 14 distinct toponyms, a common first name
and can be used to describe a particular striped pattern in heraldry. Thus an
individual user may use one of the non-geographic meanings in addition to using
a single locational meaning for a given term. In the experiments report below
the relative effect of term ambiguity on performance is considered.

4 Experiment

4.1 Data

The experiments were performed using Flickr data, a summary of the data is
provided in Table 1. Three location areas were chosen; Cambridge, including Ely,
Newmarket and Haverhill (as a classical example of an ambiguous location);
Sheffield, including, Chesterfield, Barnsley, Hope Valley and Rotherham (for
which an accurate local geographic database is available which can be used
to assess the quality of the Geoplanet database); and Cardiff, including Barry,
Ferndale, Sully, Penarth, Porth, Bridgend, Aberdare, Mountain Ash, Pentre,
Cowbridge (which offers a number of highly non-ambiguous location names, and
location names which are ambiguous due to also being common terms, namely
Barry, Sully and Mountain Ash). These 20 target location names can be resolved
into 268 toponyms. In total 1,143,529 photos were tagged with at least one of
the these terms (after removing duplicates), of which 123,124 (10.8%) have an
associated geolocation (latitude/longitude), these were uploaded by 12,326 users
(approximately 10 photos per user). These geolocated photos are used to provide
the gold standard.

The geolocated photos contain 165,389 target location name tags, note that
each photo must contain at least one target location tag to be retrieved. The

Toponym Resolution in Social Media 377

users’ 580,296 contacts produce 1,140,668 target location tags and the contacts’
5,700,749 contacts produce 3,998,763 target location tags. Whilst all the collected
data was limited to an upload date before the end of 2009, all the contact and
tag values are up-to-date at the time of retrieve (March 2010).

Each geolocation was then assigned to its nearest toponym, or, if it is greater
than 30km away from any toponym it was assigned a null (i.e. non-location)
value, this resulted in 99,215 photos assigned to toponyms and 23,909 “other”
non-location meanings. When compared to Overell’s [28] work on geolocation
of Wikipedia articles, where the data contained 1,395 locations and 7,660 non-
locations, the Flickr data contains over 22 times the proportion of location to
non-location references. This may well be due to the fact tags are less likely to
contain proper names (e.g. Person and Organisation names) when compared to
free-text, as they are intended as a generic label. It is worth noting that in the
experimental data for a given user all the occurrences of a specific target location
term (e.g. Sheffield) resolve to a single toponym (e.g. WOEID:34503). However
1,229 (10%) of the users use the same term for both location and non-location
meanings.

Table 1 shows the number of photos and users for each target location, note
that the row values are not mutually exclusive, as a single document can con-
tain to multiple location tags, therefore the totals are less than the sum of the
rows. The final three columns provide measures for the term ambiguity, the first
column, Num, gives the total number of meanings (toponyms) provided by the
lexical database. The next two columns give the information entropy measures,
computed from Equation 5, for the term ambiguity, the Location column con-
siders the ambiguity with respect to the toponyms, whilst the Term column
also includes the occurrence of non-location meanings. In general the inclusion
of the non-location meaning increases the term ambiguity, however for the term
Barry it is reduced due to the fact 85.1% of the occurrences of Barry refer to
non-location meanings.

4.2 Classification

In order to resolve the location names it is necessary to determine their con-
textual information. As stated above this is provided by the co-occurrence of
related location names, which are gleaned from the Yahoo! Geoplanet API. For
each toponym the related location names are determined by: their ancestors
(hypernyms), children (hyponyms) and neighbours (adjacent coordinate terms).
However, whilst all the 268 toponyms have ancestors, only 36 possess children
and 203 possess neighbours. In general the larger and more populous locations
have a highly number of children, this is in part due to the fact such locations
actual contain more child locations and also possible due to them being more
accurately represented in the Geoplanet data. As a relatively accurate resource
was available for the Sheffield area this was used to provide a basic analysis of
the Geoplanet data. For Sheffield Geoplanet provides 43 child (suburbs) loca-
tions, whilst the more accurate resource provides 99 possibilities. In addition
two of the suburb names provided by Geoplanet have incorrect spellings. Whilst

378 N. Ireson and F. Ciravegna

Table 1. Summary of location term data (number of photos, users and term ambiguity)

Location Photos Users Ambiguity
Name All Geo All Geo Num Location Term

Cambridge 159969 29467 11881 2200 54 1.408 1.574

Ely 5953 1515 1608 301 13 1.388 1.852

Newmarket 4940 1020 664 154 16 2.135 2.384

Haverhill 3637 210 286 43 7 1.378 1.670

Cardiff 255012 36546 14337 2080 19 0.141 0.389

Barry 225629 29503 39337 3588 14 1.559 0.839

Ferndale 29722 6795 1953 299 30 1.515 1.801

Sully 26905 4450 6347 718 10 1.275 1.394

Penarth 12980 2652 1011 212 2 0.000 0.068

Porth 10060 2284 1785 384 2 0.392 1.154

Bridgend 5626 1109 654 140 14 0.857 1.109

Aberdare 5528 527 394 64 2 0.105 0.909

Mountain Ash 4222 392 1923 257 2 0.000 0.236

Pentre 1657 287 454 93 6 1.413 1.526

Cowbridge 1195 224 184 43 2 0.060 0.354

Sheffield 290253 39368 13424 2015 26 0.209 0.717

Chesterfield 40799 5907 4137 591 30 1.812 2.056

Barnsley 29589 6824 1460 240 7 0.022 0.554

Hope Valley 15692 1216 981 198 10 1.537 1.584

Rotherham 13970 2068 971 170 2 0.007 0.460

Total 1143529 123124 96109 12326 268

such missing and erroneous data will adversely effect the absolute performance
of the disambiguation process, the aim of the current work is to examine the
relative performance of using an expanding context, rather than maximise the
performance on the given data.

The co-occurrence between each of the 20 target location names and their
related (i.e. ancestor, child and neighbour) locations is calculated. The document
context is provided by all the related tags assigned to the photo. The user context
is provided by all the related tags added by the user who uploads the photo, these
tags are weighted by their frequency. The (uploading) user contacts’ context
is provided by all the related location tags added by the contacts, with tags
weighted by the number of contacts who have used that tag. Similarly each of
the contacts’ contacts’ tag usage provides further context. Although tags can
be assigned any user, the vast majority of tags are provided by the uploading
user, of the 8,193,877 location tags observed in the data only 23,534 (0.28%) are
provided by other users. Thus four experiments are performed:

D : using only the related tags in the immediate document (photo) context
U : as D, including all the (uploading) user related tags as context

Toponym Resolution in Social Media 379

C : as U, including all the (uploading) user contacts’ related tags as context
CC : as C, including all the (uploading) user contacts’ contacts’ related tags as

context

For each experiment the set of co-occurring related location name frequencies
provides a feature vector, from which a classification model is constructed. A
Support Vector Machine (SVM) classifier used is (LibSVM [29]), applying a
Radial-Basis Function kernel. For each experiment the feature vector values are
normalised (between [0,1]) and a ten-fold cross-validation was performed. The
photos uploaded by a specific user are placed in a single fold to prevent the
classifier learning a user specific rather than generic classification model. For
each fold the cost parameter was optimised using a three-fold cross-validation
experiment on the training data. Note that along with the possible toponyms
associated to a location term the classifier also learns to predict non-location
references.

5 Results

Table 2 provides an overview of the experimental results, showing the location
names, ordered according to increasing term ambiguity and the f-measure for
the four experiments. Note that the reported f-measure for the locations is the
micro-average of all the classes (toponyms), calculated by summing the one-
versus-all matrices, as a result precision equals recall equals f-measure. The final
row provides the macro-average of these micro averages.

The current approaches to concept disambiguation tend to rely on related in-
formation found solely within the context of the document, shown by the results
in the second column. From these results it can be seen that including informa-
tion from the creator of the content can significantly improve the disambiguation
(paired t-test confidence <0.004), in addition including information from their
social network contacts does produce some advantage but not highly significant
(paired t-test confidence <0.42), whilst including information from the contacts’
social network produces a slight detrimental effect over just using contacts’ in-
formation. This trend can be observed in the macro-average values in the final
row.

Note that the three location names where solely using the document context
produced the best results have by far the three highest proportions of non-
location meanings (i.e. Mountain Ash (0.961), Barry (0.851) and Sully (0.643)).
Therefore the performance of such disambiguation techniques, which rely on the
co-occurrence of related location names, are likely to be adversely affected by
the presence of a significant proportion of non-location meanings.

Figure 1 and 2 examine the relationship between disambiguation performance
and term ambiguity for the four experiments. Figure 1 shows the actual perfor-
mance which indicates the expected decrease in performance with increasing
ambiguity, this effect can be more clearly in Figure 2 which shows the trend
lines for the data. The graphs indicate that for the experiments including user

380 N. Ireson and F. Ciravegna

Fig. 1. Performance in relation to Word Ambiguity

Fig. 2. Linear Trend in Performance in relation to Word Ambiguity

(U) and their social network contacts (C) as context the fall in performance is
less sensitive to increase in term ambiguity.

Finally the overall results are depicted in Figure 3, which shows a generalised
Precision-Recall curve for all classes (toponyms). The curve is formed using

Toponym Resolution in Social Media 381

Table 2. Performance measure for expanding social context

Location Term Performance (F-Measure)
Name Ambiguity Document User Contacts Contacts’

Contacts

Penarth 0.068 0.992 0.992 0.992 0.992

MountainAsh 0.236 0.981 0.970 0.974 0.979

Cowbridge 0.354 0.947 0.934 0.954 0.941

Cardiff 0.389 0.949 0.952 0.960 0.951

Rotherham 0.460 0.910 0.941 0.941 0.938

Barnsley 0.554 0.911 0.935 0.931 0.932

Sheffield 0.717 0.885 0.909 0.913 0.918

Barry 0.839 0.894 0.863 0.867 0.873

Aberdare 0.909 0.760 0.949 0.889 0.882

Bridgend 1.109 0.836 0.915 0.922 0.889

Porth 1.154 0.796 0.856 0.852 0.801

Sully 1.394 0.792 0.762 0.742 0.728

Pentre 1.526 0.662 0.796 0.756 0.692

Cambridge 1.574 0.828 0.882 0.879 0.880

HopeValley 1.584 0.850 0.896 0.882 0.880

Haverhill 1.670 0.880 0.860 0.880 0.687

Ferndale 1.801 0.617 0.833 0.860 0.858

Ely 1.852 0.776 0.827 0.857 0.844

Chesterfield 2.056 0.845 0.873 0.867 0.859

Newmarket 2.384 0.696 0.789 0.840 0.673

Macro-Average 0.832 0.891 0.892 0.860

a similar generalisation approach as outlined by Hand and Till [30] for ROC
curves, whereby each of the individual Precision-Recall curves are combined
with a weight according to the number of instances they represent, and missing
points on each curve are calculate by linear interpolation.

The curve indicates that at low-recall values, where only highly probable
instances are classified, considering more proximate contextual information (i.e.
in the document rather than user tags, or user rather than contact tags) produces
higher precision, which would be intuitively expected. However as recall increases
utilising more distant context becomes more beneficial.

6 Discussion

The experiment and results described above indicate the importance of consid-
ering the user context when disambiguating location terms used to tag their
content. In addition a potential benefit in considering the information provided
by the user’s social network contacts is shown. However the major limitation of
the work is that it only uses a single data source, namely Flickr. Within this
single domain an attempt was made to apply the techniques employed to a wide
variety of concept types, varying the levels of term ambiguity and contextual

382 N. Ireson and F. Ciravegna

Fig. 3. Precision-Recall Curve

information available, and analyse the resultant performance. However drawing
any conclusions outside the domain of toponym resolution in photo sharing lo-
cation tags must be made with care, in particular for concepts where the user
is more likely to use multiple meanings. Recently Twitter12 have introduced the
ability to geotag user content, which could be used to provide a comparison for
toponym resolution in a different form of social media. For other, more generic
concept types, the issue of creating an experimental gold standard to provide an
objective evaluation needs to be addressed.

Although the experimental data described above provides a large number of
labelled instances, a number of assumptions have been made. It is presumed that
the user has accurately geocoded their content and any erroneous geocoding will
provide a low level of noise, not significantly affecting the results. Although
the experiment was mainly concerned with determining the relative probability
of resolving a location term to competing toponyms, the limit of 30km set to
determine that a geocoded photo was related to a given toponym is arbitrary
and in practice this limit should be related to the toponym concept type, i.e.
country, county, city, town, suburb, etc. In addition it should be noted that in
their usage location terms do not have strict boundaries and the allocation of a
given point to a toponym depends upon user context [31].

Whilst the main performance variability can be explained by the ambigu-
ity of a given term (shown in the Figures 1 and 2), there is certain variation
from the general trend. Other variables which potentially influence performance
are the number of documents/users available for each target location, the num-
ber/type of related location tags (children, neighbours, ancestors) provided by

12 http://twitter.com/

http://twitter.com/

Toponym Resolution in Social Media 383

the GeoPlanet resource and the number of non-location references for each target
location name. In addition, whilst Yahoo! Geoplanet was used as a semantically
structured lexical database to provide a set of terms related to a concept, the re-
source is shown to contain missing and erroneous information. Further research
should examine how such data and resource variables and imperfections influence
the disambiguation process. The recent work on linking the various namespaces
used to identify geolocations means it is possible to combine the information
contained in these linked resources.

In this experiment related information is provided by the user and their social
context, however a fairly näıve approach was adopted whereby all the user’s in-
formation is assumed to relate equally to all their content. Similarly all the user’s
social network is assumed to have an equal impact. A more realistic approach
would be to consider a temporal dimension, where information relatedness is de-
pendent on temporal proximity, which previous work has shown to be effective
[16]. If it is possible to determine the relative strength of social ties, e.g. with
some measure of the degree of mutual interaction, this may also prove signif-
icant in determining the relative impact of information provided by the user’s
contacts. While the experiments showed that considering the information from
the user’s contacts’ social network is detrimental to performance, considering the
impact of social ties may allow information to be utilised from more distance
social context.

7 Conclusion

This paper considers the issue of disambiguating concepts in social media. The
approach adopted links the location concepts, found in user-generated content,
to a URI defining its intended meaning; enabling the content to be retrieved
according to a specific semantic query. Due to the nature of social media, the
content containing the ambiguous concept may possess limited contextual in-
formation with which to disambiguate, however the interrelationship between
content and users in social media means it is possible to exploit more distant,
related contextual information. The paper shows the importance of considering
user context when disambiguating the location terms they use to describe their
content, and indicates that this is more important for terms with a higher degree
of ambiguity. The information provided by a user’s social network contacts can
also provide some advantage although further work is required to determine if
a more sensitive consideration of context, i.e. considering a temporal aspect or
the strength of social ties, might improve the significance of using such social
context.

Acknowledgments

This work has been supported by the European Commission as part of the
WeKnowIt project (FP7-215453).

384 N. Ireson and F. Ciravegna

References

1. Whittaker, S., Bergman, O., Clough, P.: Easy on that trigger dad: a study of long

term family photo retrieval. Personal Ubiquitous Comput 14(1), 31–43 (2010)

2. Yeung, C.m.A., Gibbins, N., Shadbolt, N.: Tag meaning disambiguation through

analysis of tripartite structure of folksonomies. In: Web Intelligence/IAT Work-

shops, pp. 3–6. IEEE, Los Alamitos (2007)

3. Specia, L., Motta, E.: Integrating folksonomies with the semantic web. In: Franconi,

E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 624–639. Springer,

Heidelberg (2007)

4. Angeletou, S.: Semantic enrichment of folksonomy tagspaces. In: Sheth, A.P.,

Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.)

ISWC 2008. LNCS, vol. 5318, pp. 889–894. Springer, Heidelberg (2008)

5. Fellbaum, C.: WordNet: An Electronic Lexical Database. Bradford Books (1998)

6. Tesconi, M., Ronzano, F., Marchetti, A., Minutoli, S.: Semantify del.icio.us: Auto-

matically turn your tags into senses. In: Social Data on the Web (2008)

7. Garcia, A., Szomszor, M., Alani, H., Corcho, O.: Preliminary results in tag disam-

biguation using dbpedia. In: Knowledge Capture (K-Cap 2009) - First International

Workshop on Collective Knowledge Capturing and Representation - CKCaR 2009

(September 2009)

8. Overell, S., Sigurbjörnsson, B., van Zwol, R.: Classifying tags using open content

resources. In: Proceedings of the Second ACM International Conference on Web

Search and Data Mining, WSDM 2009, pp. 64–73. ACM, New York (2009)

9. Yarowsky, D.: One sense per collocation. In: Proceedings of the workshop on Hu-

man Language Technology, Morristown, NJ, USA, Association for Computational

Linguistics, HLT 1993, pp. 266–271 (1993)

10. Garbin, E., Mani, I.: Disambiguating toponyms in news. In: Proceedings of the

conference on Human Language Technology and Empirical Methods in Natural

Language Processing, HLT 2005, Morristown, NJ, USA, Association for Compu-

tational Linguistics, pp. 363–370 (2005)

11. Overell, S., Rüger, S.: Using co-occurrence models for placename disambiguation.

International Journal of Geographical Information Science 22, 265–287 (2008)

12. Ding, J., Gravano, L., Shivakumar, N.: Computing geographical scopes of web

resources. In: Proceedings of the 26th International Conference on Very Large

Data Bases, VLDB 2000, pp. 545–556. Morgan Kaufmann Publishers Inc., San

Francisco (2000)

13. Amitay, E., Har’El, N., Sivan, R., Soffer, A.: Web-a-where: geotagging web con-

tent. In: Proceedings of the 27th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, SIGIR 2004, pp. 273–280.

ACM, New York (2004)

14. Clough, P., Sanderson, M., Joho, H.: Extraction of semantic annotations from

textual web pages. Deliverable D15 6201, EU Project: SPIRIT (2004)

15. Zong, W., Wu, D., Sun, A., Lim, E.P., Goh, D.H.L.: On assigning place names

to geography related web pages. In: Proceedings of the 5th ACM/IEEE-CS Joint

Conference on Digital libraries, JCDL 2005, pp. 354–362. ACM, New York (2005)

16. Crandall, D.J., Backstrom, L., Huttenlocher, D., Kleinberg, J.: Mapping the world’s

photos. In: Proceedings of the 18th International Conference on World Wide Web,

WWW 2009, pp. 761–770. ACM, New York (2009)

Toponym Resolution in Social Media 385

17. Davis, M., King, S., Good, N., Sarvas, R.: From context to content: leveraging

context to infer media metadata. In: Proceedings of the 12th Annual ACM In-

ternational Conference on Multimedia, MULTIMEDIA 2004, pp. 188–195. ACM,

New York (2004)

18. Serdyukov, P., Murdock, V., van Zwol, R.: Placing flickr photos on a map. In:

Proceedings of the 32nd international ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR 2009, pp. 484–491. ACM, New York

(2009)

19. Rattenbury, T., Naaman, M.: Methods for extracting place semantics from flickr

tags. ACM Trans. Web 3(1), 1–30 (2009)

20. Wang, C., Wang, J., Xie, X., Ma, W.Y.: Mining geographic knowledge using loca-

tion aware topic model. In: Proceedings of the 4th ACM Workshop on Geographical

Information Retrieval, GIR 2007, pp. 65–70. ACM, New York (2007)

21. Weinberger, K.Q., Slaney, M., Van Zwol, R.: Resolving tag ambiguity. In: Pro-

ceeding of the 16th ACM International Conference on Multimedia, MM 2008, pp.

111–120. ACM, New York (2008)

22. Naaman, M., Paepcke, A., Garcia-Molina, H.: From where to what: Metadata shar-

ing for digital photographs with geographic coordinates. In: Meersman, R., Tari,

Z., Schmidt, D.C. (eds.) CoopIS 2003, DOA 2003, and ODBASE 2003. LNCS,

vol. 2888, pp. 196–217. Springer, Heidelberg (2003)

23. Sarin, S., Nagahashi, T., Miyosawa, T., Kameyama, W.: On the design and ex-

ploitation of user’s personal and public information for semantic personal digital

photograph annotation. Adv. MultiMedia 2008(2), 1–16 (2008)

24. Rae, A., Sigurbjrnsson, B., van Zwol, R.: Improving tag recommendation using

social networks. In: RIAO 2010, Paris, France (2010)

25. Lu, Y., Tsaparas, P., Ntoulas, A., Polanyi, L.: Exploiting social context for review

quality prediction. In: 19th International World Wide Web Conference, WWW

2010 (April 2010)

26. Ceccato, M., Kiyavitskaya, N., Zeni, N., Mich, L., Berry, D.M.: Ambiguity iden-

tification and measurement in natural language texts. Technical Report Technical

Report DIT-04-111, Univeristy of Trento (December 2004)

27. Mich, L.: On the use of ambiguity measures in requirements analysis. In: Proceed-

ings of the 6th International Workshop on Applications of Natural Language to

Information Systems, NLDB 2001, pp. 143–152. GI (2001)

28. Overell, S.: Geographic Information Retrieval: Classification, Disambiguation and

Modelling. PhD thesis, Imperial College London (2009)

29. chung Chang, C., Lin, C.J.: Libsvm: a library for support vector machines (2001)

Software available at, http://www.csie.ntu.edu.tw/~cjlin/libsvm

30. Hand, D.J., Till, R.J.: A simple generalisation of the area under the roc curve for

multiple class classification problems. Mach. Learn. 45(2), 171–186 (2001)

31. Jones, C.B., Purves, R.S., Clough, P.D., Joho, H.: Modelling vague places with

knowledge from the web. Int. J. Geogr. Inf. Sci. 22(10), 1045–1065 (2008)

http://www.csie.ntu.edu.tw/~cjlin/libsvm

An Expressive and Efficient Solution to the
Service Selection Problem

Daniel Izquierdo, Maŕıa-Esther Vidal, and Blai Bonet

Departamento de Computación

Universidad Simón Boĺıvar

Caracas 89000, Venezuela

{idaniel,mvidal,bonet}@ldc.usb.ve

Abstract. Given the large number of Semantic Web Services that can

be created from online sources by using existing annotation tools, expres-

sive formalisms and efficient and scalable approaches to solve the service

selection problem are required to make these services widely available to

the users. In this paper, we propose a framework that is grounded on

logic and the Local-As-View approach for representing instances of the

service selection problem. In our approach, Web services are semantically

described using LAV mappings in terms of generic concepts from an on-

tology, user requests correspond to conjunctive queries on the generic

concepts and, in addition, the user may specify a set of preferences that

are used to rank the possible solutions to the given request. The LAV

formulation allows us to cast the service selection problem as a query

rewriting problem that must consider the relationships among the con-

cepts in the ontology and the ranks induced by the preferences. Then,

building on related work, we devise an encoding of the resulting query

rewriting problem as a logical theory whose models are in correspondence

with the solutions of the user request, and in presence of preferences,

whose best models are in correspondence with the best-ranked solutions.

Thus, by exploiting known properties of modern SAT solvers, we provide

an efficient and scalable solution to the service selection problem. The

approach provides the basis to represent a large number of real-world

situations and interesting user requests.

1 Introduction

Existing Web infrastructures support the publication and access to a tremendous
amount of Web data sources, some of which can be labeled and converted into
Semantic Web Services by using existing annotation tools like the one proposed
by Ambite et al. [3]. Once a large dataset of Semantic Web Services become
available, users require techniques to effectively select the services that meet
their requirements. In order to achieve this goal, the services in the dataset
must be tagged with their functional and non-functional properties, and the
user preferences and requirements must be formally described as well. In this
paper, we extend an approach traditionally used in the area of data integration

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 386–401, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Expressive and Efficient Solution to the Service Selection Problem 387

to solve the problem of selecting the best services that meet a user request, a
problem that we call in this paper the Service Selection Problem (SSP).1

As in other approaches, we use domain ontologies for describing the services in
the dataset, yet we differ in how the services are described. In this paper, we use
the recent approach of Ambite et al. [3] that describes services as views on the
generic concepts of the ontology following the Local-As-View (LAV) approach
that is widely used in integration systems [21], instead of the traditional Global-
As-View (GAV) approach where the generic concepts are expressed in terms of
the services. The adoption of the LAV approach instead of GAV is not acci-
dental. LAV descriptions are tailored towards systems with constantly changing
datasets and a relatively stable set of generic concepts, while GAV descriptions
are tailored towards systems with a constantly changing set of generic concepts
but a relatively stable dataset of services.

As it is shown below, LAV descriptions of services correspond to mappings
that define services as conjunctive queries involving the generic concepts in the
ontology. Thus, every time that a service changes or a new one becomes avail-
able, only a tiny fraction of the mappings must be updated, usually just one
mapping. Likewise, user requests can be modeled as conjunctive queries over the
generic concepts in a way that the SSP can be cast as the problem of rewriting a
query in terms of a set of views, the so-called Query Rewriting Problem (QRP)
that is well-known in the area of data integration [8,16], query optimization and
data maintenance [1,21], and for which several scalable approaches have been
proposed [4,12,13,21,23]. Furthermore, user preferences and constraints on the
possible solutions for a given request may be specified with a simple yet expres-
sive language for preferences. These preferences and constraints refine and rank
the set of valid rewritings of the posed query so that the best solution to the
SSP corresponds to the best-ranked rewritings of the QRP.

Our solution extends the recent approach of Arvelo et al. [4] for QRPs that is
based on the efficient enumeration of models for a propositional logic theory. In
our case, an input instance of the SSP is converted into an instance of a QRP with
preferences and constraints that is further translated into a (weighted) logical
theory for which its models are in correspondence with the solutions of the SSP,
and the rank of the models induced by the propositional weights corresponds to
the rank of the solutions induced by the user preferences and constraints. These
translations, from SSP to QRP to logic, are performed efficiently, in (low) poly-
nomial time, and the best models are found using off-the-shelf SAT tools. Thus,
we are able to exploit the benefits of modern SAT techniques such as conflict-
directed backtracking and caching and decomposition of common subproblems
to perform the necessary search in the combinatorial space of solutions.

In summary, we make the following crisp contributions to the problem of ser-
vice selection and composition: (1) advocate the LAV approach as it provides an
scalable solution for describing the continuously changing set of available Web
Services, (2) propose a simple yet powerful language for expressing preferences

1 We assume that a discovery service previously crawled the Web and located the

services, and that an annotation tool stored their descriptions in our catalog.

388 D. Izquierdo, M.-E. Vidal, and B. Bonet

and constraints on the valid solutions of the SSP, (3) describe how to transform
the SSP to the QRP extended with preferences and constraints, and (4) describe
how to change an efficient and scalable solution to the QRP, based on propo-
sitional logic and SAT tools, to handle preferences and constraints. The rest of
this paper is as follows. The next two sections describe the SSP and the language
of preferences and constraints, and the proposed solution to the SSP. Then, we
present preliminary experiments, related work and finish with a discussion.

2 Service Selection Problem

An SSP consists of a description IS of the integration framework and a user
request R. Formally, the integration framework is a tuple IS = 〈D, S, M〉 where
D is the ontology of generic concepts, S is the set of available services, and M is
the collection of LAV mappings that semantically describe the services in terms
of the ontology. On the other hand, a user request is a tuple R = 〈Q, P 〉 that is
made of a query Q expressed as a conjunctive query over the generic concepts
and a set of preferences P . In the following, we describe all these elements in
detail and illustrate the framework through a number of examples.

2.1 Domain Ontology

The domain ontology D is a tuple 〈σ, A〉 where σ is a signature for a logical
language and A is a collection of axioms describing the ontology. A signature
σ is a set of relational and constant symbols from which logical formulas can
be constructed; it corresponds to a tuple 〈Rr1

1 , . . . , Rrn
n , c1, . . . , cm〉 where each

Ri is a relational symbol of arity ri,2 and each cj is a constant symbol. The
axioms describe the ontology by defining the relationships between the ontol-
ogy concepts. For the present work, we only consider subsumption relationships
between concepts that are expressed with rules of the form:

R(x̄, ȳ, ā) � P (x̄, b̄) , (1)

where R and P are predicates in σ (of appropriate arity), x̄ and ȳ are lists
of variables (repetitions allowed), and ā and b̄ are lists of constant symbols
(repetitions allowed). All these lists may be empty except x̄ ∪ b̄.

Although limited in appearance, subsumption rules are quite expressive as
they allow us to specify diverse relationships between concepts; e.g.,

– Hierarchy of classes and subclasses (or types and subtypes): classes are
specified with unary predicates. A subclass relationship can be specified with
a simple rule; e.g., penguin(x) � bird(x) tells that penguins are birds.

– Subrelations via specialization: A subrelation of Rr can be specified by
constraining another relation P s (r < s). For example, the rule:

descendant(Elizabeth II, x) � noble(x) (2)

tells that the descendants of Queen Elizabeth II are noble.
2 We use the notation Rr to say that R is a relational symbol of arity r.

An Expressive and Efficient Solution to the Service Selection Problem 389

– Indirect subsumption: it is even possible to specify a subrelation via
another seemingly unrelated predicate. For example, the rule:

citizen-of(x,Montreal) � lives-in(x,Canada)

says that when the second argument of ‘citizen-of ’ is fixed to the constant
‘Montreal ’, the tuples in the relation ‘citizen-of ’ are contained in the set of
tuples in the relation ‘lives-in’ whose second component is ‘Canada’.

However, we require that the dependency graph G(D) of the ontology to be a
forest of trees. The dependency graph is a labeled directed graph that is con-
structed as follows: the nodes of the graph are the relational symbols in the
signature, and there is an edge (R, P) in the graph iff there is a rule of the
form (1). The edge is labeled with the bindings induced by the rule; e.g., if
descendant(x, y) and noble(z) are two predicates in the signature and there is
the rule (2), then there is an edge from descendant to noble labeled with the
bindings {x = Elizabeth II, y = z}.

2.2 Services and Mappings

The available services are represented by means of another signature S = τ =
〈Ss1

1 , . . . , Ssk

k 〉 called the services signature, where each symbol Si represents a
concrete service in the Internet that “offers” some information.

The semantic description of services is expressed with the LAV paradigm in
terms of mappings that describe the services in terms of concepts in the domain
ontology [26]: for each service Si, there is a mapping that describes Si as a
conjunctive query on the concepts in the ontology that also distinguish input
and output attributes of the service. For example, a service S(x, y) that returns
information about flights originating at a given US city can be described as:

S($x, y) :− flight(x, y), uscity(x) .

where flight2 and uscity1 are relational symbols in the ontology. The symbol ‘$’
denotes that x is an input attribute. The semantic interpretation of a mapping
like this one enforces the following:

– the service represented by S provides information in the form of tuples (x, y),
– the service is called with x as input attribute and returns (x, y),
– each tuple (x, y) returned by the service satisfies the rhs of the view; i.e.,

flight(x, y) and uscity(x), and
– the views are not necessarily complete; i.e., there may be other tuples (x, y)

that satisfy the rhs of the view but which are not available through S.

The LAV approach is commonly used in integration systems because it permits
the scalability of the system as new services become available [26]. Under LAV,
the appearance of a new service only causes the addition of a new mapping de-
scribing the service in terms of the concepts in the ontology. Under GAV, on
the other hand, the ontology concepts are semantically described using views in

390 D. Izquierdo, M.-E. Vidal, and B. Bonet

terms of the sources of information. Thus, the extension or modification of the
ontology is an easy task in GAV as it only involves the addition or local mod-
ification of few descriptions [26]. Therefore, the LAV approach is best suited
for applications with a stable ontology but with changing data sources whereas
the GAV approach is best suited for applications with stable data sources and
a changing ontology. For the Semantic Web, we assume that the ontology of
concepts is the stable component. We believe that this is a reasonable assump-
tion since, once a common language is agreed upon to describe Web resources,
the only changing characteristic is the number and nature of resources which
constantly pop up or disappear from the Web.

Up to here, we have described all elements in the integration framework
IS = 〈D, S, M〉 where D = 〈σ, A〉 is an ontology of concepts, S = τ repre-
sent the available services in the Web and M is a collection of LAV mappings
describing the services in terms of the concepts in D. The integration framework
can be thought as the “knowledge base” (KB) in a system designed for answering
requests about the selection and composition of Web services. Ideally, the KB
should support the efficient processing of user requests.

2.3 User Requests

A user request is a tuple R = 〈Q, P 〉 where Q is a conjunctive query in terms of
concepts in the ontology that describes how these concepts must be combined
to resolve a given task, and a set P of preferences. For example, the query:

Q(x) :− flight(LA, x),flight(x, Paris).

finds all cities on which a two-leg flight from Los Angeles to Paris stop. This
query can be answered using the view S($x, y) as I(x) :−S(LA, x), S(x, Paris).
Observe that this rewriting is correct yet not necessarily complete because there
may be two-leg flights from Los Angeles to Paris that stop at non-US cities
(which are not available through the service S($x, y)) or because there may be a
two-leg flight from Los Angeles to Paris that stops at a US city that is unknown
to S($x, y).

The preferences are used to rank the collection of valid rewritings. Once this
ranking is obtained, the solution for the request R is any best-ranked valid rewrit-
ing. In this work, we consider a simple yet expressive language for preferences
in which preferences are “soft constraints” on valid rewritings.

A soft constraint is a tuple π = 〈ϕ, c〉 where ϕ is a propositional formula and c
is the cost associated with ϕ. The idea is that each valid rewriting is associated
with a cost equal to the sum of the costs of the preferences violated by the
rewriting, and that these costs induce a ranking on valid rewritings. Thus, a
best-ranked valid rewriting is one that has minimum cost.

It only remains to say what type of propositional formulas ϕ are allowed
and when a preference is violated by a rewriting. The set of propositions for
constructing preferences is L(IS) = {R : R ∈ σ} ∪ {S : S ∈ τ} that cor-
responds to the relational symbols either in the ontology signature or in the

An Expressive and Efficient Solution to the Service Selection Problem 391

services signature. Elements of L(IS) are propositional symbols that should not
be confused with their relational interpretation in IS; indeed, if the reader is
more comfortable, he may think on a different symbol altogether such as PR,
[R], or other. The validity of a preference is defined with respect to the propo-
sitional model M(I) (truth assignment for the symbols in L(IS)) constructed
from a valid rewriting I(x̄): M(I) � S for S ∈ τ iff the service S appears in
I(x̄), and M(I) � R for R ∈ σ iff the concept R appears in the unique path
from a concept R′ to the root in the dependency graph where R′ is a con-
cept in a service S(ȳ) used in I(x̄). That is, the model makes true the service
symbols used in I(x̄), or the ontology symbols used in services in I(x̄), or the
ontology symbols that can be reached from the latter in the dependency graph
G(D). For example, the rewriting I(x) :−S(LA, x), S(x, Paris) defines the model
M(I) = {S = true,flight = true, uscity = true}. Finally, a preference ϕ holds
in an answer I(x̄) iff M(I) � ϕ.

This simple language permits us to express interesting preferences such as:

– Hard constraints: a soft constraint of the type π = 〈ϕ,∞〉 can be thought
as a hard constraint that must be satisfied by every rewriting because if the
best rewriting has infinite cost, we know that there is no valid rewritig that
satisfies ϕ.

– QoS preferences: this type of preferences can be used to assign absolute
quantities of reward/cost to single services as the one used for integrated
QoS parameters. For example, if each service Si is associated with a QoS
reward of ri, then the collection of preferences πi = 〈¬Si,−ri〉 selects a valid
rewriting with services that have the highest combined QoS,

– Conditional preferences: a user preference of the type ‘if service S is
used, then service R should be used as well’ can be modeled with the ‘hard’
constraint S ⇒ R,

– Preferences of the type at-least-one: a user preference of the type that
at least one of the services S1, . . . , Sn should be used in the rewriting, can
be modeled with the ‘hard’ constraint S1 ∨ · · · ∨ Sn, and

– Preferences of the type at-most-one: a user preference of the type that
at most one of the services S1, . . . , Sn should be used in the rewriting, can
be modeled with the collection {¬Si ∨ ¬Sj : i = j} of ‘hard’ constraints.

2.4 Examples

Consider a travel-information system that contains information about flight and
train trips between cities and information about which cities are in the US. The
domain ontology is comprised of the predicates trip2, flight3, train3 and uscity1,
and the constants AA, UA, AT, UP, LA, NY, and Paris. The first predicate
relates cities (x, y) if there is a direct trip either by plane or train between them.
The flight predicate relates (x, y, t) whenever there is a direct flight from x to y
operated by airline t, and similarly for train, and uscity indicates when a given
city is a US city or not. The ontology axioms capture two subsumption relations:

flight(x, y, t) � trip(x, y) ,

392 D. Izquierdo, M.-E. Vidal, and B. Bonet

train(x, y, t) � trip(x, y) .

For the services, assume that the available data sources on the Internet contain
the following information:

– national-flight(x, y) relates two US cities that are connected by a direct flight,
– AA-flight(x, y) relates cities that are connected by American flights,
– UA-flight(x, y) relates cities that are connected by United flights,
– one-way-flight(x, y) relates two cities that are connected by a one-way flight,
– one-stop(x, y) relates two cities that are connected by a one-stop flight,
– to-pa(x) tells if there is a direct flight from x to Paris,
– from-la(x) tells if there is a flight from Los Angeles to x,
– national-train(x, y) relates US cities that are connected by a direct train,
– AT-train(x, y) relates cities that are connected by Amtrak trains, and
– UP-train(x, y) relates cities that are connected by Union Pacific Railway trains.

These services are semantically described using the concepts in the ontology by
the following LAV mappings:

national-flight($x, y) :− flight(x, y, t), uscity(x), uscity(y) ,

AA-flight($x, y) :− flight(x, y, AA) ,

UA-flight($x, y) :− flight(x, y, UA) ,

one-way-flight(x, y) :− flight(x, y, t) ,

one-stop(x, z) :− flight(x, y, t), flight(y, z, t) ,

to-pa($x) :− flight(x, Paris, AA) ,

from-la($x) :− flight(LA, x, UA) ,

national-train($x, y) :− train(x, y, t), uscity(x), uscity(y) ,

AT-train($x, y) :− train(x, y, AT) ,

UP-train($x, y) :− train(x, y, UP) .

Observe that each tuple produced by each service satisfies the semantic descrip-
tion given in the body of the rule; e.g., the tuples that satisfy national-flight(x, y)
meet the conjunctive formula:

∃t(flight(x, y, t) ∧ uscity(x) ∧ uscity(y)) .

However, there may be tuples that satisfy this formula that are not produced by
national-flight(x, y), i.e., this service is not necessarily complete.

Consider now a user who is interested in identifying the services able to re-
trieve one-stop round trips from a US city x to any city y in the world. Notice
that the trip from x to y stops at a city u, that the back trip from y to v stops
at a city v, and that u may not be equal to v. This request can be modeled with
the conjunctive query:

Q(x, y) :− uscity(x), trip(x, u), trip(u, y), trip(y, v), trip(v, x) .

An Expressive and Efficient Solution to the Service Selection Problem 393

Any rewriting of the ontology predicates in terms of the services that respect
the input/output constraints on the parameters correspond to a composition of
services that implements the request. For example, the following rewriting is a
valid solution to the request:

I(x, y) :− national-flight(x, u), to-pa(u),
one-way-flight(Paris, v), national-flight(v, x) .

But, the following two rewritings are not valid solutions:

I ′(x, y) :− national-flight(x, u), to-pa(u), from-la(v), national-flight(v, x) ,

I ′′(x, y) :− one-stop(x, y), one-way-flight(y, v), national-flight(v, x) .

The first is not valid because it maps the query variable y into two different
constants Paris and LA that denote different cities, and the second rewriting is
not valid because the service one-stop(x, y) does not receive as input, or produce
as output, the middle city u where the flight from x to y must stop.

As shown, one can use a system for rewriting queries in terms of views for
computing solutions to the SSP, since the valid solutions correspond to the valid
rewritings of the query. However, in the presence of user preferences, the solutions
must be ranked according to the preferences and the best solutions should be
returned. To illustrate the use of preferences, consider the following request:

Q(x, y) :− trip(LA, x), trip(x, NY), trip(NY, y), trip(y, LA).

that looks for round-trips between Los Angeles and New York such that each
direction is a one-stop trip. Observe that the query is posed in a way that there
are no restrictions whatsoever on the use of planes or trains for any leg of the
trip. However, users typically have preferences about using planes or trains. For
this example, we study four different scenarios for user preferences and show
how to model them in the proposed framework:

P1. The user prefers to fly rather than to travel by train. This can be modeled
by assigning a high reward to the symbol flight. Likewise, a preference of
trains over airplanes is obtained by assigning a high reward to train.

P2. The user is indifferent with respect to trains or airplanes, yet she does not
want to mix both. This preference is an at-most-one preference over the set
{flight, train} that corresponds to the formula ¬flight∨¬train and a cost for
the violation of the preference.

P3. If the user travels by airplane, she prefers to always use the same airline.
This preference can be modeled with the formula ¬AA-flight ∨ ¬UA-flight
together with a cost. Additionally, the other means of air transportation
should be ‘disabled’ since they may return flights operated by any airline;
e.g., add the constraint ¬national-flight with a high cost.

P4. Finally, if the user travels by airplane, she prefers to use UA. This is a
non-trivial preference that can be modeled with the formula:

(flight ⇒ UA-flight) ∧ (¬UA-flight ∨ ¬AA-flight) .

394 D. Izquierdo, M.-E. Vidal, and B. Bonet

The first part says that if a leg of the trip is done by plane, then UA must be
used, while the second part says that whenever UA is used, AA should not
be used. Also, the services that do not guarantee airline operators should
be disabled as in the previous case.

All these preferences correspond to formulas over the propositional language
L(IS). The formulas for all but the first case involve preferences that can be
treated as hard constraints if they are associated with infinite cost, or soft con-
straints meaning the user prefers, but is not limited to, solutions that do not
violate the preferences.

3 Solution and System Architecture

We extend the McdSat system of Arvelo et al. [4] for QRP. An instance of
QRP consists of a collection of views and a query on abstract concepts. The
problem consists in rewriting the query in terms of the views such that each
tuple produced by the rewriting is a tuple of the solution [26]. McdSat reduces
QRP to the problem of finding the models of a propositional logic theory that
satisfies the following properties: (1) there is a 1-1 correspondence between the
valid rewritings of the query and the models of the logical theory, (2) given
a model of the theory, one can recover the corresponding rewriting in linear
time, and (3) the theory can be constructed in polynomial time from the QRP
instance. Once the logical theory is constructed, one can be interested in finding
all minimal rewritings of the query as done in data integration systems with
incomplete sources, or just one rewriting as done when sources are complete
[26]. For the former, off-the-shelf model enumeration tools such as c2d [9] and
Relsat [5] can be used, while off-the-shelf SAT solvers such as Minisat [14] or
Rsat [22] can be used in the latter case.

In this section, we have just enough space to explain how the logical the-
ory constructed by McdSat can be extended to capture the features associated
with SSPs that are not present in QRPs; namely, handling constant symbols,
input and output attributes, the ontology of concepts with subsumption rela-
tionships, and user preferences. The result is an extended theory whose models
are in correspondence with the valid solutions of the SSP and, in the presence of
preferences, whose best models are in correspondence with the best-ranked valid
solutions of the SSP.

Constant Symbols. McdSat does not provide support for constant symbols,
yet incorporating this functionality is straightforward. Basically, one only has to
track the unification of variables with constants using new propositional symbols,
and to propagate such unifications transitively using implications in order to
avoiding the unification of different constant symbols. This modification involves
the addition of a small number of propositional symbols and clauses to the CNF
generated by McdSat.

An Expressive and Efficient Solution to the Service Selection Problem 395

Input and Output Attributes. The general principle for properly handling
input and output attributes is that every input attribute of a service must unify
either with a constant symbol or with an output attribute of another service,
while avoiding the cycles in the dependencies among the services that ‘produce’
(output) and ‘consume’ (input) attributes.

This principle can be enforced by adding propositional symbols to the theory
of the form In(z, R) and Out(z, R), where z is a variable and R is a service, and
symbols Prec(R, S) for each pair of services R and S. The intended interpreta-
tion for these symbols is that In(z, R) holds iff attribute z is an input attribute
of R, that Out(z, R) holds iff attribute z is an output attribute of R, and that
Prec(R, S) holds iff the service R produces an attribute that is consumed by S.
Accordingly, the theory is extended with clauses that enforce this interpretation
plus rules of the form Prec(R, S) ∧ Prec(S, T) ⇒ Prec(R, T) that propagate
the precedence relation via transitivity, and ¬Prec(S, S) that prunes rewritings
containing cycles.

Ontology. The subsumption relationships make the rewriting process more
complex as now one needs to consider unification among predicate symbols of
different name and arity. Indeed, consider the following four concepts, where a,
b, c and d are constant symbols, and x, y and z are variables:

P (b, y, z) � R(a, y) ,

R(a, y) � T (c, y) ,

P (d, x, z) � M(a, x) ,

M(a, x) � N(d, x) ,

and the user request Q(x, y) with services S1, S2 and S3:

Q(x, y) :− T (z, y), N(z, x) ,

S1(y) :− R(a, y) ,

S2(x, z) :− N(z, x) ,

S3(x, z) :− P (d, x, z) .

Then, the system must be able to infer that the query can be rewritten as
I(x, y) :−S1(y), S2(x, c) since R(a, y) unifies with T (z, y) producing the binding
{z = c}, and S2(x, z) unifies with N(z, x) and becomes S2(x, c) once the binding
is propagated. On the other hand, the system must also infer that Q(x, y) cannot
be rewritten as I(x, y) :−S1(y), S3(x, z) because R(a, y) unifies with T (z, y) with
binding {z = c}, P (d, x, z) unifies with N(z, x) with binding {z = d}, and these
two bindings are non-unifiable since constants denote unique objects.

We incorporate the subsumption relation into McdSat by means of the de-
pendency graph G(D). Once the graph is built using the subsumption rules,
its transitive closure is computed along with the bindings associated with each
edge: edges generated by the transitive closure have labels that correspond to
the union of the bindings along the edges that generate this edge (if the set of

396 D. Izquierdo, M.-E. Vidal, and B. Bonet

bindings is inconsistent, then the label is assigned the binding {false}). These
labels are unique and well defined as G(D) is assumed to be a forest of trees.
Once the transitive closure G(D)∗ is computed, all edges with inconsistent la-
bels can be dropped. The transitive closure is then used to extend the rules in
the logical theory that permit the cover of relational symbols in the query with
symbols in the views: a predicate P is allowed to cover a predicate R whenever
there is an edge from P to R in G(D)∗, and when this covering becomes active,
the bindings associated with it become active as well.

Preferences. To incorporate preferences, we use the concepts of literal-ranking
function and best-ranked models for propositional logic. A literal ranking func-
tion r is a function that assign ranks (weights) to literals. Given a literal-ranking
function r, the rank r(ω) of a model ω is the aggregation of the ranks for each
literal made true by the model; i.e., r(ω) =

∑
ω�� r(�) [11]. Thus, the models

can be ordered by their rank and the best-ranked models are the models with
minimum rank. Some model enumerators like c2d can be used to compute all
the best-ranked models of a propositional theory. Likewise, Weighted-Max-SAT
solvers such as MiniMaxSAT [15] can be used to find a best ranked model.

For SSPs, we accommodate the preferences by using a suitably defined literal-
ranking function r∗ and by computing best-ranked models. First, a new proposi-
tional variable is created for each relational symbol in the ontology and services
signatures along with clauses that turn this proposition true whenever the cor-
responding symbol become active (true). Second, for each preference π = 〈ϕ, c〉,
a new propositional symbol pπ is created along with the formula pπ ⇔ ϕ. Thus,
pπ is true iff ϕ is satisfied in the model (rewriting). Finally, the literal-ranking
function r∗ is defined as r∗(¬pπ) = c for each such preference. Clearly, the rank
of a model corresponds to the sum of the costs associated with the preferences
violated by the model, and thus a best-ranked model corresponds to a rewriting
of minimum regret.

3.1 System Architecture

We define an architecture for solving SSPs that is comprised of a Catalog of
service descriptions, an Ontology Reasoner, the Encoder, the best model Finder,
and the Decoder. Figure 1 depicts the overall architecture of the system. In this
framework, an instance of SSP consists of an integration framework IS and a
user request R. The Catalog of the system is populated with the components
of the integration system, i.e., the domain ontology including the subsumption
rules, the services and the LAV mappings between them.

The input instance is then translated into a CNF theory and a literal-ranking
function r∗ by the Encoder module. The Encoder makes use of the transitive
closure G(D)∗ that is calculated by the Ontology Reasoner together with the
bindings associated with the edges. Once the theory is obtained, it is fed to
the Finder that returns a best model. The model is given to the Decoder that
reconstructs the solution to the input instance.

An Expressive and Efficient Solution to the Service Selection Problem 397

Encoder Service
RewritingsFinder Decoder

CNF
Theory

Models

Ontology
reasoner

SI=<D,S,M>

Service Views

www.aa.com
www.united.com

Catalog

User
Request
R=<Q,P>

Fig. 1. System Architecture

4 Preliminary Experiments

We have developed a system prototype that implements the above ideas except for
the support to distinguish input and output attributes of services (all attributes
are assumed to be output), and with partial support for handling preferences; a
complete implementation is ongoing work. With this prototype, we conducted ex-
periments on two type of domains: airline domains of the type seen before and
random domains. The Finder module is built using c2d (http://reasoning.cs.
ucla.edu/c2d) that compiles (transforms) the CNF formula for the propositional
theory into deterministic and decomposable negation normal form (d-DNNF) from
which all models or just the best models can be efficiently enumerated in linear
time [10]. The compilation process from CNF into d-DNNF is intractable in the
worst case, yet this is not always the case as the experiments below show.

The objective of the experiments is to test several features of the approach
and to see the scalability of the approach. The main benefit of the approach is
that one can compile the logical theory for a problem instance and then calculate
all the rewritings, or the best ones, any number of times, and the cost/rewards
associated with the preferences can also be changed without the need to recom-
pile the theory. Therefore, the time complexity of our approach is basically the
time to compile the CNF theory into d-DNNF since calculating the CNF from
the SSP and decoding the models is negligible. Thus, we only report the time to
compile the CNF into d-DNNF.

4.1 Airline Experiments

The first benchmark consists of problems for air-travel queries. Service views
are of the form Vi(x, y) :−flight(x, y, ALi) where ALi is a constant that denotes
the name of an airline and the view is assumed to return flights between two
cities served by the airline ALi. For the query, we consider a request to find trips
between Paris and New York with a number of stops. The query returns the
stops and has the form:

Q(x1, . . . , xn) :− flight(Paris, x1, t), flight(x1, x2, t), . . . , flight(xn, NY, t) .

Observe that the existentially quantified variable, t, is the same for each flight
meaning that it can only be unified with the same constant; i.e., each leg of the

http://reasoning.cs.ucla.edu/c2d
http://reasoning.cs.ucla.edu/c2d

398 D. Izquierdo, M.-E. Vidal, and B. Bonet

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90 100

number of airlines
 (a)

Experiment I

2 goals in query
3 goals in query
4 goals in query
5 goals in query

 10 20 30 40 50 60 70 80 90 100
 0.1

 1

 10

 100

 1000

number of airlines
 (b)

Experiment II

2 goals in query
3 goals in query
4 goals in query
5 goals in query

Fig. 2. Compilation times for experiments I and II for different number of goals and

different number of views. Experiment II involves n(n− 1)/2 preferences of a problem

with n views. The plots are in logarithmic scale, and the time is in seconds.

flight is served by the same airline. We solved several instances for this type of
query with a number of stops from 2 to 5 and a number of services from 10 to
100. Fig. 2(a) shows the results of the compilations: the vertical axis refers to
the time in seconds in logarithmic scale and the horizontal axis to the number
of views in the benchmark. The results show good performance since realistic
instances of the problem (sets of 100 airlines with 5-stop flights) can be compiled
in 328 seconds. The size in disk of the d-DNNF for 100 airlines and 5-stop flights
is 3.4Mb from which the best model can be computed in 0.29 seconds, and the
enumeration of all models can be done in 0.47 seconds.

In the second experiment, we test our system with user preferences. The query
is the same except that the existentially quantified variables are all distinct for
each flight meaning that any combination of airlines can fulfill the user request.
As user preferences, we consider the set {¬Vi∨¬Vj : 1 ≤ i = j ≤ n} of n(n−1)/2
constraints each with cost ci,j , for a problem with n services. Thus, a best model
is one that violates the minimum number of preferences and this is equivalent
to using the same airline for each leg of the flight. Fig.2(b) shows the result
for the compilation also in logarithmic scale. As it can be seen, the compilation
times are very similar for the Experiment I where there are no preferences. The
largest instance is a complex problem involving 100 views, 5 subgoals in the
query and 4,950 user preferences; the total number of rewritings is 1005, yet it
can be compiled in 600 seconds.

In the third experiment, we test the system with ontologies of different sizes.
Ontologies corresponding to full binary trees of depth 2 to 7 were generated with
the predicate trip(x, y) at the root. Then, for each node in the tree, there is a
view that is described by the predicate at that node. The user request is:

Q(x1, . . . , x4) :− uscity(x1), trip(x1, x2), trip(x2, x3), trip(x3, x4), trip(x4, x1).

In all cases, the compilation time was always less than 13 seconds.

4.2 Random Experiments

For the last experiments, we generated random unstructured instances of SSPs
as follows: each user request contains 6 subgoals, 10 distinct variables and 10

An Expressive and Efficient Solution to the Service Selection Problem 399

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80

tim
e

in
 s

ec
on

ds

number of views

Random Experiment

2 goals in views
3 goals in views
4 goals in views
5 goals in views

Fig. 3. Compilation times for random experiments with different number of views. The

plots are in logarithmic scale and the time is in seconds.

distinct constant symbols, while each service view contains between 2 and 5
subgoals. The constants were randomly placed on the subgoals arguments with
a 50% probability. Fig. 3 shows the compilation time for these instances. The size
of the compiled theories and number of models does not increase monotonically
with the number of views given the random nature of the instances. As it can
be seen, these are complex instances and the approach is able to solve them in
reasonable time.

5 Related Work

The problem of selecting the services that satisfy a user request is a combinatorial
optimization problem and several heuristics have been proposed to find a good
solution in a reasonably period of time [2,6,17,18,19,20,24,25,27].

In a series of papers, Berardi and others [6,7] describe services and user requests
in terms of deterministic finite-state machines that are encoded using Description
Logics theories whose models correspond to solutions of the problem, yet there
are no efficient methods to compute these models as in the case of SAT.

Ko et al. [18] propose a constraint-based approach that encodes the non-
functional permissible values as a set of constraints whose violation needs to be
minimized. Alrifai and Risse [2] develop a two-fold solution that uses a hybrid in-
teger programming algorithm to find the decomposition of global QoS into local
constraints, and then, selects the services that best meet the local constraints.

Recently, two planning-based approaches have been proposed. Kuter and Gol-
beck [19] extend the SHOP2 planning algorithm to select the trustworthy com-
position of services that implement a given OWL-S process model, while Sohrabi

400 D. Izquierdo, M.-E. Vidal, and B. Bonet

and McIlraith [25] propose a HTN planning-based solution where user preference
metrics and domain regulations are used to guide the planner into the space of
relevant compositions. Finally, Lécué [20] develops a genetic-based algorithm to
identify the composition of services that best meet the quality criteria for a set
of QoS parameters.

These existing solutions scale up to a number of abstract concepts. In addition
to scalability, our approach provides a more expressive framework where services
are semantically described in terms of domain ontology concepts, user preferences
restrict the space of solutions, and ontology relationships augment the space of
possible solutions. Finally, our approach is sound and complete in the sense
that every solution produced by the system is a valid solution, that every valid
solution can be produced by the system, and that the best-ranked valid solution
is the best solution in terms of the user preferences.

6 Discussion

We proposed a novel formalism for expressing Service Selection Problems in-
volving an ontology of generic concepts, services described using views in terms
of the concepts, following the LAV approach, and user preferences. This is a
general, well-defined and scalable framework since it is based on logic, the LAV
approach, and permits the modeling of real-life scenarios and preferences.

We also showed how the propositional theory used in McdSat for solving the
QRP can be extended to handle SSPs. This formulation allows us to exploit the
properties of modern SAT solvers to provide an efficient and scalable solution.

The preliminary experiments show that the approach can be applied to real-
sized problems. We are currently working on a complete implementation of the
formalism in order to offer its full expressiveness. In the future, we plan to use
other off-the-shelf SAT tools such as MiniMaxSat that is able to find a best
model without the need to compile the CNF into d-DNNF.

References

1. Afrati, F.N., Li, C., Ullman, J.D.: Using views to generate efficient evaluation plans

for queries. J. Comput. Syst. Sci. 73(5), 703–724 (2007)

2. Alrifai, M., Risse, T.: Combining global optimization with local selection for effi-

cient qos-aware service composition. In: WWW, pp. 881–890 (2009)

3. Ambite, J.L., Darbha, S., Goel, A., Knoblock, C.A., Lerman, K., Parundekar, R.,

Russ, T.A.: Automatically constructing semantic web services from online sources.

In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta,

E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 17–32. Springer,

Heidelberg (2009)

4. Arvelo, Y., Bonet, B., Vidal, M.-E.: Compilation of query-rewriting problems into

tractable fragments of propositional logic. In: AAAI (2006)

5. Bayardo, R.: Relsat: A Propositional Satisfiability Solver and Model Counter,

http://code.google.com/p/relsat/

6. Berardi, D., Cheikh, F., Giacomo, G.D., Patrizi, F.: Automatic Service Composi-

tion via Simulation. Int. J. Found. Comput. Sci. 19(2), 429–451 (2008)

http://code.google.com/p/relsat/

An Expressive and Efficient Solution to the Service Selection Problem 401

7. Berardi, D., Giacomo, G.D., Mecella, M., Calvanese, D.: Composing Web Services

with Nondeterministic Behavior. In: ICWS, pp. 909–912 (2006)

8. Chen, H., Wu, Z., Mao, Y.: Rewriting queries using views for rdf-based relational

integration. In: ICTAI, pp. 260–264 (2005)

9. Darwiche, A.: The c2d compiler, http://reasoning.cs.ucla.edu/c2d/
10. Darwiche, A.: New advances in compiling cnf into decomposable negation normal

form. In: ECAI, pp. 328–332 (2004)

11. Darwiche, A., Marquis, P.: Compiling propositional weighted bases. Artif. In-

tell. 157(1-2), 81–113 (2004)

12. Duschka, O.M., Genesereth, M.R.: Answering recursive queries using views. In:

PODS, pp. 109–116 (1997)

13. Duschka, O.M., Genesereth, M.R.: Query planning in infomaster. In: SAC, pp. 109–

111 (1997)

14. Een, N., Sorensson, N.: Minisat, http://minisat.se/
15. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSAT: An efficient Weighted Max-SAT

Solver. Journal of Artificial Intelligence Research 31, 1–32 (2008)

16. Jaudoin, H., Petit, J.-M., Rey, C., Schneider, M., Toumani, F.: Query rewriting

using views in presence of value constraints. In: Description Logics (2005)

17. Junghans, M., Agarwal, S., Studer, R.: Towards practical semantic web service

discovery. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt,

H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089, pp.

15–29. Springer, Heidelberg (2010)

18. Ko, J.M., Kim, C.O., Kwon, I.-H.: Quality-of-Service Oriented Web Service Com-

position Algorithm and Planning Architecture. Journal of Systems and Soft-

ware 81(11), 2079–2090 (2008)

19. Kuter, U., Golbeck, J.: Semantic web service composition in social environments.

In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta,

E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 344–358. Springer,

Heidelberg (2009)

20. Lécué, F.: Optimizing qos-aware semantic web service composition. In: Bernstein,

A., Karger, D.R., Heath,T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan,

K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 375–391. Springer, Heidelberg (2009)

21. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying heterogeneous information

sources using source descriptions. In: VLDB, pp. 251–262 (1996)

22. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-

isfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,

vol. 4501, pp. 294–299. Springer, Heidelberg (2007)

23. Pottinger, R., Halevy, A.Y.: Minicon: A scalable algorithm for answering queries

using views. VLDB J 10(2-3), 182–198 (2001)

24. Rahmani, H., GhasemSani, G., Abolhassani, H.: Automatic Web Service Composi-

tion Considering User Non-functional Preferences. Next Generation Web Services

Practices 0, 33–38 (2008)

25. Sohrabi, S., McIlraith, S.A.: Optimizing web service composition while enforcing

regulations. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,

D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 601–617.

Springer, Heidelberg (2009)

26. Ullman, J.D.: Information integration using logical views. Theor. Comput.

Sci. 239(2), 189–210 (2000)

27. Wada, H., Champrasert, P., Suzuki, J., Oba, K.: Multiobjective Optimization of

SLA-aware Service Composition. In: IEEE Congress on Services, Workshop on

Methodologies for Non-functional Properties in Services Computing (2008)

http://reasoning.cs.ucla.edu/c2d/
http://minisat.se/

Ontology Alignment for Linked Open Data

Prateek Jain1, Pascal Hitzler1, Amit P. Sheth1, Kunal Verma2, and Peter Z. Yeh2

1 Kno.e.sis Center, Wright State University, Dayton, OH
2 Accenture Technology Labs, San Jose, CA

Abstract. The Web of Data currently coming into existence through the Linked
Open Data (LOD) effort is a major milestone in realizing the Semantic Web vi-
sion. However, the development of applications based on LOD faces difficul-
ties due to the fact that the different LOD datasets are rather loosely connected
pieces of information. In particular, links between LOD datasets are almost exclu-
sively on the level of instances, and schema-level information is being ignored. In
this paper, we therefore present a system for finding schema-level links between
LOD datasets in the sense of ontology alignment. Our system, called BLOOMS,
is based on the idea of bootstrapping information already present on the LOD
cloud. We also present a comprehensive evaluation which shows that BLOOMS
outperforms state-of-the-art ontology alignment systems on LOD datasets. At the
same time, BLOOMS is also competitive compared with these other systems on
the Ontology Evaluation Alignment Initiative Benchmark datasets.

1 Introduction

The Linked Open Data (LOD) community effort is a cornerstone in the realization of
the Semantic Web vision [1]. So far it has resulted in an openly available ”Web of
Data” comprising several billion RDF triples. LOD captures knowledge from diverse
domains and is constantly growing. Some of the domains include: information from
Wikipedia, governmental and geospatial data, entertainment, bio-informatics and pub-
lications. However, in terms of practical usability, LOD is still in its infancy. Several
central issues remain to be investigated and solved, and discussions of these are ongo-
ing among researchers (see, e.g., [2,3,4]). Our own preliminary investigations into LOD
querying [2] in particular exposed a need for schema-level integration of LOD datasets,
an issue which has also been pointed out in [1], and elsewhere, as a core challenge.

While LOD datasets are well interlinked on the instance level, they are very loosely
connected on the schema level (see also Table 3). Since our work involves schema
alignment for our work, we investigated the most competitive state-of-the-art ontology
alignment systems available in order to use them for the integration task. However, it
turned out that the performance of these systems on LOD schema datasets was rather
poor, even though they performed fine on established benchmarks. We were thus left
with finding our own solution to LOD schema alignment, on which we report here. Our
resulting system, BLOOMS, in fact outperforms state-of-the-art ontology alignment
systems in LOD schema alignment, while is roughly on par with these systems on
established ontology alignment benchmarks (see Section 4).

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 402–417, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Ontology Alignment for Linked Open Data 403

Conceptually a key strength of BLOOMS is that we utilize a bootstrapping approach
(see Section 3). The system computes alignments with the help of noisy community-
generated data available on the Web. Currently, BLOOMS uses Wikipedia and the
Wikipedia category hierarchy for this purpose. However there is no conceptual reason
why one would not be able to use other inputs (or even existing upper-level ontologies
or upper-level domain-specific ontologies) instead. This would simply result in a dif-
ferent bias for the alignment, which could potentially be exploited, e.g., for alignment
tasks on narrower thematic domains (see also our discussion of future work, Section 6).
Furthermore BLOOMS utilizes the Alignment API [5] as a base system by exploiting
its capabilities which complement the native BLOOMS bootstrapping approach.

The structure of the paper is as follows. In Section 2, we clarify some notions and
explain the background. In Section 3, we give details about our bootstrapping approach.
In Section 4, we give a detailed quantitative evaluation of BLOOMS by comparing
it with state-of-the-art ontology alignment systems, for LOD schema alignment and
for the Ontology Alignment Evaluation Initiative benchmark. In Section 5, we discuss
related work. In Section 6, we conclude with a summary and ideas for future work.

Further details on the evaluation, and the BLOOMS system for download, can be
found at http://wiki.knoesis.org/index.php/BLOOMS.

2 Preliminaries

An overview of LOD appears in [1]. Although different LOD datasets are interlinked,
it should be noted that interlinks are still relatively scarce. Interlinks are mainly on
the instance level (using owl:sameAs), and are clustered within three major thematic
domains which are hardly connected by links—see [6]. Schema-level information, by
which we mean taxonomies built using rdfs:subClassOf (possibly enriched with further
RDF Schema or OWL axioms not involving instance data), is also relatively scarce. In
particular there is a lack of interlinks between the different schemas.

DBpedia [7] is an LOD dataset which is based on Wikipedia infoboxes. Our boot-
strapping approach employs noisy community-generated data, and we have chosen to
use Wikipedia and DBPedia. A central role is played by the Wikipedia category hier-
archy, which is a user-generated class hierarchy for Wikipedia pages. It is important to
notice that this category hierarchy is not a taxonomy in any reasonable sense. In particu-
lar, many of the ”sub-category” relations are semantically not rdfs:subClassOf relations
[8]. We will discuss our reasons for choosing Wikipedia/DBpedia later on in Section 3.

BLOOMS is a system for schema alignment. For the purpose of this paper, we mean
by schema alignment the generation of links between class hierarchies (taxonomies),
which are rdfs:subClassOf relations. For an example, if ”Human” occurs in some
dataset and ”Woman” occurs in some other dataset, then we would expect BLOOMS
(or any other ontology alignment system) to create a relation between these two classes
in the form of an RDF triple ”Woman rdfs:subClassOf Human”. Note that two classes
A and B will always be related by one out of four relationships: A rdfs:subClassOf B,
B rdfs:subClassOf A, A owl:equivalentClass1 B, or none of the previous three.

1 This is semantically equivalent to stating both A rdfs:subClassOf B and B rdfs:subClassOf
A, and we abstract from the (syntactic) difference.

404 P. Jain et al.

3 The BLOOMS Approach

At the core of the BLOOMS bootstrapping approach is the utilization of the Wikipedia
category hierarchy. In essence, BLOOMS constructs a forest (i.e., a set of trees) TC

(which we call the BLOOMS forest for C) for each matching candidate class name C,
which roughly corresponds to a selection of supercategories of the class name. Com-
parison of the forests TC and TB for matching candidate classes C and B then yields a
decision whether or not (and with which of the candidate relations) C and B should be
aligned. We next spell this out in detail.

BLOOMS accepts as input two ontologies which are assumed to contain schema
information. It then proceeds with the following steps.

1. Pre-processing of the input ontologies in order to (i) remove property restrictions,
individuals, and properties, and to (ii) tokenize composite class names to obtain a
list of all simple words contained within them, with stop words removed.

2. Construction of the BLOOMS forest TC for each class name C, using informa-
tion from Wikipedia.

3. Comparison of constructed BLOOMS forests, which yields decisions which
class names are to be aligned.

4. Post-processing of the results with the help of the Alignment API and a reasoner.

We now give more details and examples on the key steps just described. As a running
example, we use the class names Event and JazzFestival taken from the LOD datasets
DBpedia and Music Ontology, respectively.

Pre-processing of the input ontologies. This involves a straightforward algorithm
which normalizes each input class name C into a string C′ obtained by replacing under-
scores and hyphens2 by spaces, splitting at capital letters, and the like.3 For stop word
removal we used the 319 stop words defined by the Information Retrieval Research
Group of Glasgow University.4

For our running example, JazzFestival is transformed to ”Jazz Festival”, whereas
Event is not modified at all.

Construction of the BLOOMS forest TC from C. The first step in constructing TC

is to invoke a call to the Wikipedia Web service using C′ as input. This Web service
returns a set of Wikipedia pages5 WC as results of a search on Wikipedia for the words
in the string. If a returned result is a Wikipedia disambiguation page, it is then removed
from WC and replaced by all Wikipedia pages mentioned in the disambiguation page.
We call the elements of the resulting set WC senses for C.

Concerning our running example, for Event, the Web service returns Event, Event-
ing, Sport, NFL Draft, News, Festival, Event-driven programming, Rodeo, Athletics at
the Summer Olympics, and Extinction event.

2 We actually did the hyphens manually, because they occurred only in one of our test ontologies,
namely the AKT Portal Ontology (see Section 4).

3 There was no need to make use of a dictionary, mainly because the resulting strings are used
as input to Wikipedia search, which works well without stemming etc.

4 http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words
5 More precisely, their URLs.

http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words

Ontology Alignment for Linked Open Data 405

Fig. 1. BLOOMS trees for Jazz Festival with sense Jazz Festival and for Event with sense Event.
To save space, some categories are not expanded to level 4.

In the next step, for each sense s ∈ WC , a tree Ts ∈ TC , called the BLOOMS tree
for C with sense s, is constructed, as follows.

– The root of the tree is s.
– Children of s are exactly all the Wikipedia categories into which the Wikipedia

page s is categorized.
– Subsequently, for each category c which is a node in the tree, its children are exactly

all Wikipedia categories of which c is a subcategory.
– Ts is the resulting tree, which is cut at level 4 (i.e., branches of Ts have maximally

5 nodes, including the root).

We decided to cut the tree at level 4 because we found that deeper levels involve
Wikipedia categories which are very general, like ”Humanities”, and thus would be
ineffective for our purposes.

Figure 1 shows the BLOOMS tree for Event with sense Event and for Jazz Festival
with sense Jazz Festival.

Comparison of constructed BLOOMS forests. Any concept name C in the one input
ontology is now matched against any concept name D in the other input ontology. This
is done by comparing each Ts ∈ TC with each Tt ∈ TD. For this, we define a function
o, which assigns a real number in the unit interval to each (ordered) pair of BLOOMS
trees. The value o(Ts, Tt), called the overlap of Tt with Ts, is defined as follows.

1. Remove from Ts all nodes for which there is a parent node which occurs in Tt. All
leaves of the resulting tree T ′

s are either of level 4 or occur in Tt. Note that due to
the way BLOOMS trees are constructed, we removed only nodes from Ts which
actually occur in Tt—we remove them because they do not give us any essential
additional information for comparing Ts with Tt.

2. o(Ts, Tt) = n
k−1 , where n is the number of nodes in T ′

s which occur also in Tt, and
k is the total number of nodes in T ′

s (we do not count the root).

406 P. Jain et al.

In our running example, the BLOOMS trees in Figure 1 are pruned beneath the dark
gray nodes. We obtain o(TEvent, TJazz Festival) = 3

4 and o(TJazz Festival, TEvent) = 3
5 .

The decision on an alignment is then made as follows.

– If, for any choice of Ts ∈ TC and Tt ∈ TD, we have that Ts = Tt, then we set C
owl:equivalentClass D.

– If min{o(Ts, Tt), o(Tt, Ts)} ≥ x for any choice of Ts ∈ TC and Tt ∈ TD, and
for some pre-defined threshold x,6 then set C rdfs:subClassOf D if o(Ts, Tt) ≤
o(Tt, Ts), and set D rdfs:subClassOf C if o(Ts, Tt) ≥ o(Tt, Ts).

For our running example, we have o(TEvent, TJazz Festival) > o(TJazz Festival, TEvent), and
therefore obtain Jazz Festival rdfs:subClassOf Event.

Post-processing. For post-processing, we first invoke the Alignment API for finding
alignments between the original input ontologies. Those alignments returned with a
confidence value of at least 0.95 are kept, and added to the results previously obtained.7

We then invoke a reasoner (in fact, Jena) which finds inferred alignments. E.g., if A is a
subclass of B in one of the input ontologies, and an alignment B rdfs:subClassOf C has
already been found, then the alignment A rdfs:subClassOf C is also added, and finding
these alignments is done using a reasoner. We finally output the alignment results, in
the Alignment API format.

The BLOOMS approach as just described makes heavy use of Wikipedia/DBPedia
for bootstrapping. It is natural to ask, if Wikipedia could be replaced with something
else. In general, we think so. In fact, any upper level ontology or thesaurus could be
used, and perhaps there are even more options we did not think of. BLOOMS currently
uses Wikipedia because it seemed an intuitive choice due to a number of reasons.

– Wikipedia provides wide thematic coverage.
– The Wikipedia category hierarchy is community-built and thus seemed a natural

choice for an alignment system for community-built LOD datasets.
– Wikipedia provides a search feature which we could exploit. This search feature

makes it possible to naturally include trees in BLOOMS forests which would be
difficult to associate with the input concept name in a more controled setting, e.g.,
when using an upper level ontology.

We have not systematically investigated any alternatives yet. The evaluation in Section 4
shows that the current approach using Wikipedia is already rather strong. It is left for
future work to investigate to what extent alternatives would bring an increase in perfor-
mance. We hypothesize that alternatives should indeed be very helpful for alignment in
more specialized thematic domains, e.g., for life science data in the LOD Cloud. Po-
tential alternatives include the following: Ontologies such as Cyc or SUMO, as used,
e.g., in [9]; Thesauri such as WordNet;8 Taxonomies created from Wikipedia, such as
the one reported in [8]; or efforts like the Open Directory Project9 or YAGO [10].

6 This threshold was typically 0.8 or 0.6 in our experiments in Section 4, where we will discuss
how to set suitable thresholds.

7 0.95 seems to be the lowest threshold generally giving indisputable results.
8 WordNet is used by the Alignment API [5], and thus is indirectly utilized by our approach.
9 http://www.dmoz.org/

http://www.dmoz.org/

Ontology Alignment for Linked Open Data 407

4 Evaluation

We have implemented our approach in the BLOOMS10 system in Java on top of the
Alignment API framework [11]. We utilize the Jena Framework11 for parsing the on-
tologies, extracting the concepts and for the mentioned reasoning step. The input for
BLOOMS is two different ontologies serialized using RDF/XML or OWL.

We performed a comprehensive evaluation of BLOOMS using third party datasets
and other state-of-the-art systems in ontology matching. More specifically, we evaluated
BLOOMS in two different ways. Firstly, we examined the ability of BLOOMS to serve
as a general purpose ontology matching system, by comparing it with other systems
on the Ontology Alignment Evaluation Initiative (OAEI) benchmarks.12 Secondly, we
evaluated BLOOMS for the purpose of LOD schema integration and compared it with
other systems for ontology matching on LOD schema alignment.

Established in 2004 by leading researchers in the area of ontology matching, the
OAEI aims at forging consensus on methods available for schema matching/ontology
integration. As a part of this initiative various datasets and reference alignments be-
tween these datasets have been made available for evaluating the performance of the
participating systems. The systems are evaluated on various parameters such as preci-
sion, recall, endurance to lack of structure in the ontologies and absence of properly
named concepts.

The initiative consists of various tracks such as a benchmark track, instance matching
and oriented matching. The datasets mainly belong to the very narrow domain of bib-
liographic information with a number of alternative ontologies of the same domain for
which alignments are provided. We decided to evaluate BLOOMS on both the bench-
mark track and the oriented matching track. In the former the task is to identify (only)
equivalence relationships. In the latter the task is to identify subclass relationships. The
objective of the BLOOMS system is naturally aligned with these two tracks. Further-
more, the OAEI provides us with baselines, and results from the previous version of the
oriented matching track are available on the web.13

In the 2009 initiative, there were five major systems in the oriented matching track:
ASMOV [12], CSR [13], RiMOM [14], AROMA [15] and TaxoMAP [16]. We picked
RiMOM and AROMA, for the following reasons: (1) RiMOM was the top system in
the oriented track in terms of f-measure and available for download. It was one of the
consistent performers in the past two years. (2) AROMA ranked second in the 2008
event. (3) Another important factor was the availability of systems for download in
order to run experiments on LOD datasets using them.14 (4) RiMOM and AROMA

10 BLOOMS is available from http://wiki.knoesis.org/index.php/BLOOMS
11 http://www.openjena.org/
12 http://oaei.ontologymatching.org/
13 http://oaei.ontologymatching.org/2009/results/oriented/
14 In the OAEI 2009 initiative there were other systems which performed better than RiMOM,

namely ASMOV, Lily and CSR. However, ASMOV is a commercial system and the free ver-
sion runs only on OAEI 2009 datasets and therefore we cannot use it on LOD datasets. CSR
is not available for download and our requests for an evaluation copy remained unanswered.
TaxoMAP and Lily we could not get working due to platform incompatibility issues, and our
support requests were not answered in time.

http://wiki.knoesis.org/index.php/BLOOMS
http://www.openjena.org/
http://oaei.ontologymatching.org/
http://oaei.ontologymatching.org/2009/results/oriented/

408 P. Jain et al.

utilize different techniques and hence this gives good variety in the techniques utilized
for the purpose of matching. RiMOM, in fact, automatically determines which ontology
alignment methods to use for a particular matching task, and what kinds of information
to use in the similarity calculation and how to combine multiple methods as necessary.
AROMA is an ontology matcher which utilizes association rule mining.

In order to achieve more breadth in our evaluation, we also included recent systems
which have not participated in the OAEI. OMViaUO [9] utilizes upper level ontolo-
gies such as SUMO and DOLCE as semantic bridges in the ontology matching process.
S-Match [17] is another novel approach in which semantic correspondences are discov-
ered by computing and returning, (as a result) the semantic information implicitly or
explicitly codified in the labels of nodes and arcs.

Some of the systems had tunable parameters. As mentioned in Section 3, we used
BLOOMS with a threshold value of 0.8 for the ontologies belonging to the same do-
main, and used a value of 0.6 where one of the ontologies was an abstract ontology
such as DBpedia or SUMO. This was done for the following reasons: (1) We expect
BLOOMS trees for concepts belonging to the same domain to have higher overlap. (2)
Relations between an abstract and a domain specific ontology can be found using a
lower overlap. This is because BLOOMS trees constructed for concepts in the domain
specific ontology will usually require more nodes to become generic enough in order to
match a concept of the more generic ontology.

For RiMOM, while evaluating on LOD datasets, based on our understanding we
specified a number of thresholds in the ”MatchThreshold” parameter, which range from
0.3 to 0.8. However, the execution with the different parameters always resulted in
the same output. On inspection of the results, we found that there were entries with
threshold values as low as 0.01 in the output file.

For AROMA, we utilized a threshold of 0.6 for ”lexicalThreshold”. While param-
eters below 0.5 were too low and resulted in very poor precision, higher thresholds
such as 0.8 resulted in identification of very few results. If guidelines were available for
deciding the thresholds, we might have been able to tune the system in a better way.

We could not tune S-Match since the S-Match GUI does not provide for this.
We consulted the OMViaUO literature to get information related to setting suitable

thresholds. However, we found no discussion related to this. Further, with respect to the
Alignment API and OMViaUO, altering the threshold values (even to 0) did not result
in any significant improvement of results on LOD datasets. For the Alignment API
and OMViaUO we kept the threshold at 0.5 to achieve an optimum balance between
precision and recall.

4.1 Evaluation: Ontology Alignment Evaluation Initiative Oriented Track

In order to test the quality of mappings generated using BLOOMS, we ran our system on
the oriented datasets using the reference alignment and compared its performance with
the other systems mentioned above. Table 1 presents our results on the oriented match-
ing track of the OAEI. The different tests 1XX, 2XX, and 3XX comprise of matching a
single source ontology (101) to other ontologies beginning with the prefix digit of the
test. Thus, test 1XX comprises of matching ontology 101 to ontologies 101, 103, and so
forth. Similarly 2XX comprises of matching ontology 101 to ontologies 201, 202, and

Ontology Alignment for Linked Open Data 409

Table 1. Results on the oriented matching track. Results for RiMOM and AROMA have been
taken from the OAEI 2009 website. Legends: Prec=Precision, Rec=Recall, A-API=Alignment
API, OMV=OMViaUO, NaN=division by zero, likely due to empty alignment.

Ontology Alignment Initiative—Oriented Matching Track

A-API OMV S-Match AROMA RiMoM BLOOMS
Test Prec Rec Prec Rec Prec Rec Prec Rec Prec Rec Prec Rec
1XX 0 0 0.02 0.06 0.01 0.71 NaN 0 1 1 1 1
2XX 0 0 0.01 0.03 0.05 0.30 0.84 0.08 0.67 0.85 0.52 0.51
3XX 0.01 0.03 0.02 0.047 0.01 0.14 0.72 0.11 0.59 0.81 1 0.84
Avg. 0.00 0.01 0.02 0.04 0.03 0.38 0.63 0.07 0.75 0.88 0.84 0.78

so forth. Unlike the ontologies used in the tests 1XX and 2XX which are created by the
organizers, the test 3XX comprises of ontologies which have been created by other or-
ganizations and are used in the real world. We computed the precision and recall figures
using the baselines and results made available on the OAEI website.

In the oriented matching track, BLOOMS along with RiMOM provided superior
results in the test 1XX. For the test 2XX, all systems including BLOOMS show a drop
in the performance. We fathom that the reasons for this drop are the following. (1)
Some ontologies in test 2XX contain concepts from French. Thus systems which rely
on lexico-syntactic tools obviously have difficulties with these ontologies.15 (2) Some
of these ontologies consist of concepts with random names where the matching has to
be done on the basis of structure alone.

For the test 3XX, BLOOMS outperforms the other systems in its recall without com-
prising on its precision. The reasons for the superior performance of BLOOMS could
be the following: (1) Wikipedia has a large number of articles with a rich category hier-
archy in which the articles and categories summarize the concepts mentioned in the real
world ontologies. (2) The ontologies in these tests are of related domains (e.g. Scientific
Publishing) and therefore, require a higher overlap between the BLOOMS trees for two
concepts to be related. A higher overlap threshold enforces that the concepts and their
corresponding BLOOMS trees have to be very similar. This reduces the number of false
positives. (3) The mentioned invocation of a reasoner allows us to identify some of the
concepts which otherwise have to be found using the structure of the ontology.

The other systems (besides RiMOM) suffer from poor precision and recall due to a
variety of reasons. (1) A number of systems such as OMViaUO generate only equiv-
alence mappings. In the oriented matching track, the provided reference alignments
consist mainly of subsumption relationships. (2) While S-Match provides good results
for the recall, its precision is affected by a plethora of results which are generated for
the ontologies. S-Match produces two different output files. We utilized the ”default
results” file, since it gives a larger number of results. The other file ”minimal results”
produces a very small set of results, which one could expect to have a higher preci-
sion but lower recall, but this is not necessarily the case. For example, for matching

15 In future investigations, one could attempt to exploit the fact that Wikipedia is available in
many languages, and that the different-language versions are in fact interlinked.

410 P. Jain et al.

Table 2. Comparison of various systems on the benchmark track. Results for RiMOM and
AROMA have been reused from the OAEI 2009 website. Legends: Prec=Precision, Rec=Recall.

Ontology Alignment Initiative—Benchmark Track

S-Match OMViaUO Alignment API BLOOMS AROMA RiMoM
Test Prec Rec Prec Rec Prec Rec Prec Rec Prec Recall Prec Rec
1XX 0.11 1 0.26 0.37 0.59 0.96 0.71 1 1 1 1 1
2XX 0.1 0.2 0.21 0.31 0.3 0.54 0.38 0.49 0.88 0.65 0.93 0.81
3XX 0.1 0.2 0.28 0.28 0.45 0.77 0.62 0.84 0.80 0.76 0.81 0.82
Avg. 0.1 0.46 0.25 0.33 0.45 0.76 0.57 0.78 0.88 0.81 0.91 0.88

ontologies 101 and 103, S-Match produced 267 results in the default file (precision:
0.46; recall: 0.50), and 57 in the minimal file (precision: 0; recall: 0). (3) OMViaUO
could not produce satisfactory results due to poor matching performance. We believe
the reason for this is the absence of required ontological concepts in WordNet and in
the upper level ontologies utilized by OMViaUO. (4) The Alignment API also suffered
from poor precision and recall due to reasons similar to those for OMViaUO. (5) We
think AROMA suffers from poor results due to difficulties in identifying association
rules related to the ontologies.

4.2 Evaluation: Ontology Alignment Evaluation Initiative Benchmark Track

To test the quality of mappings generated using BLOOMS, we ran it on the benchmark
datasets using the reference alignment and compared its performance with the other
systems mentioned above. Table 2 presents our results on the benchmark track of the
ontology alignment initiative. As in the oriented matching track, the different tests 1XX,
2XX and 3XX comprise of matching a source ontology to other ontologies beginning
with the prefix digit of the test. This test utilizes a larger number of ontologies than the
oriented matching track. However, to a large extent the ontologies involved are identical.

In the benchmark track, BLOOMS is able to retrieve all results in 1XX, however, it
results in loss of precision. In the 1XX track, the other systems gave varying perfor-
mances. RiMOM and AROMA are impressive with their excellent precision and recall,
whereas S-Match and OMViaUO suffer from retrieval of few and incorrect results.

BLOOMS does a better job in 3XX than 2XX due to the involvement of real world
ontologies. It ranks right behind RiMOM and AROMA in its recall and does a decent
job with respect to precision. The Alignment API does a significantly better job in
retrieving the results and matching the ontologies, probably due to the fact, that this
track involves finding equivalence relations between ontological concepts. The reasons
for poor performance of the other systems are identical to those in the oriented track.

For the 3XX test, BLOOMS outperforms RiMOM and the other systems in finding
the correct results. However, the increase in recall goes with a dip in precision. AROMA
performs the best in terms of precision.

Ontology Alignment for Linked Open Data 411

4.3 Evaluation: LOD Schema Alignment

For a comparative evaluation of BLOOMS on LOD schema alignment, it was necessary
to provide a baseline for the alignment task. Since there are no established benchmarks
or available baselines for measuring precision and recall for LOD schema alignment,
we asked human experts familiar with the domains to create reference alignments.16

The experts were asked to identify if the concepts belonging to the to-be-matched pairs
of schemas are related to each other via a subclass or an equivalence relationship. In
case the experts were not familiar with the terms they utilized descriptions of the con-
cepts (if available in the ontology) or other appropriate references for identifying the
relationships. The experts identified all possible subclass and equivalence mappings
between the concepts of different ontologies. This process may result in some redun-
dancy if equivalence has already been established at a top level concept C1 and C2.
As a result of this mapping, subclass relationships between can be inferred between C1
and subclasses of C2 using this equivalence relationship automatically. This process is
obviously subjective to some extent, but in the absence of a community agreed refer-
ence alignment, there is no other way to identify the accuracy of any of the systems.
However, this phenomenon A similar methodology has been utilized previously in [9].

Table 3. LOD datasets=LOD datasets utilizing this schema, D=taxonomic depth, # C=number of
classes, Linked datasets=LOD datasets they are linked to at the instance level

Schema LOD datasets D # C Linked datasets
DBpedia17 DBpedia 4 204 Geonames, US Census, Freebase
Geonames18 Geonames,

Geospecies
2 11 DBpedia, Jamendo, FOAF Profiles

Music Ontology19 Jamendo, Music
Brainz, DBTunes

4 136 GovTrack, DBpedia, Geonames

BBC Program20 BBC Programs,
BBC Music

4 100 BBC Music, BBC Playcount Data

FOAF Profiles21 FOAF, Music
Brainz

3 16 Crunch Base, QDOS, SIOC Sites

SIOC22 DBpedia,
LinkedMDB

2 14 Virtuoso Sponger, FOAF Profiles,
SemanticWeb.org

AKT Reference Ontology23 ACM, DBLP 5 17 Pisa, IEEE, eprints
Semantic Web Conference
Ontology24

SW Conference
Corpus

5 177 SemanticWeb.org, Revyu

16 The reference alignments and the other material related to this work are available for download
at http://wiki.knoesis.org/index.php/BLOOMS

17 http://wiki.dbpedia.org/Downloads351/#dbpediaontology
18 http://www.geonames.org/ontology/
19 http://musicontology.com/
20 http://purl.org/ontology/po/
21 http://xmlns.com/foaf/spec/
22 http://rdfs.org/sioc/ns#
23 http://www.aktors.org/ontology/support
24 http://data.semanticweb.org/ns/swc/ontology

http://wiki.knoesis.org/index.php/BLOOMS
http://wiki.dbpedia.org/Downloads351/#dbpediaontology
http://www.geonames.org/ontology/
http://musicontology.com/
http://purl.org/ontology/po/
http://xmlns.com/foaf/spec/
http://rdfs.org/sioc/ns#
http://www.aktors.org/ontology/support
http://data.semanticweb.org/ns/swc/ontology

412 P. Jain et al.

Table 4. Results of various systems for LOD Schema Alignment. Legends: Prec=Precision,
Rec=Recall, M=Music Ontology, B=BBC Program Ontology, F=FOAF Ontology, D=DBpedia
Ontology, G=Geonames Ontology, S=SIOC Ontology, W=Semantic Web Conference Ontology,
A=AKT Portal Ontology, err=System Error, NA=Not Available.

Linked Open Data Schema Ontology Alignment

Alignment API OMViaUO RiMoM S-Match AROMA BLOOMS
Test Prec Rec Prec Rec Prec Rec Prec Rec Prec Rec Prec Rec
M,B 0.4 0 1 0 err err 0.04 0.28 0 0 0.63 0.78
M,D 0 0 0 0 err err 0.08 0.30 0.45 0.01 0.39 0.62
F,D 0 0 0 0 err err 0.11 0.40 0.33 0.04 0.67 0.73
G,D 0 0 0 0 err err 0.23 1 0 0 0 0
S,F 0 0 0 0 0.3 0.2 0.52 0.11 0.30 0.20 0.55 0.64
W,A 0.12 0.05 0.16 0.03 err err 0.06 0.4 0.38 0.03 0.42 0.59
W,D 0 0 0 0 err err 0.15 0.50 0.27 0.01 0.70 0.40
Avg. 0.07 0.01 0.17 0 NA NA 0.17 0.43 0.25 0.04 0.48 0.54

Since the LOD cloud consists of more than 100 datasets, we had to make a selection
for the purpose of evaluation. Table 3 gives the brief core data about the various LOD
datasets which we used. We decided to use the schemas mentioned above due to the
following reasons: (1) As specified in the second column of table 3, instance data on
LOD are often created using a few well known schemas. For example, Jamendo, Mu-
sic Brainz and AudioScrobbler primarily utilize concepts from the Music Ontology.
The chosen datasets give significant coverage of the LOD cloud. (2) These datasets
cover different domains such as Music, Publication and the Web. Thus they allow us to
identify connections between ontologies belonging to different thematic domains. (3)
Some of the dataset providers such as LinkedMDB have not made their schema publicly
available. To eliminate any unfair advantage we might obtain as a result of ”self created
schemas”, we decided not to include the datasets where the schema was not explicitly
provided. Please note that the choice of the datasets was made a priori. The selection is
not tailored to favor any specific system.

Discussion of Results: LOD Schema Alignment. The precision and recall values of
the various systems performed on combinations of the various LOD schemas are listed
in Table 4. The reasons for picking these combinations are the following: (1) The com-
binations correspond to datasets which are of related domains. For example, the Music
Ontology and BBC Program both belong to the entertainment domain. Similarly, the
Semantic Web Conference Ontology and the AKT Reference Ontology are for the sci-
entific publication domain. (2) DBpedia schema is generic enough to encapsulate var-
ious kinds of domains and it can be matched to a large number of schemas. In a sense
DBpedia can be understood as having an ”umbrella” function.25

On LOD schema matching, BLOOMS outperforms the other state of the art systems,
as seen in Table 4. In the following paragraph, we examined each of the individual pairs
and discuss possible reasons for the performance of the various systems next.

25 This mirrors the central position which DBPedia currently has in the LOD Cloud.

Ontology Alignment for Linked Open Data 413

(1) Music Ontology and BBC Program: These two datasets are very closely re-
lated to each other due to the reuse of concepts and similarity in domain. Unfortu-
nately, RiMOM failed to work on these two ontologies, possibly because of their size.26

AROMA did not find any relevant relations. OMViaUO finds only a few correct an-
swers. OMViaUO was only able to match identical concepts being used across the two
ontologies. The Alignment API also found same concepts, but there were also other
concepts which were wrongly matched, which lead to a lower precision than that of
OMViaUO. S-Match retrieves some of the results, but again due to the vast number of
results computed by S-Match, its precision is low. BLOOMS performed significantly
better, we think for the following reasons: (1) Concepts used in these ontologies are not
commonly used English language terms (e.g., ”DAT”). They belong to the domain of
signal recording and cannot be found in common thesauri. However, since Wikipedia
contains many domains, they are properly categorized as well. (2) It is hard to match
domains just on the basis of linguistic and structural matching.

(2) Music Ontology and DBpedia: For the matching of the Music Ontology with
DBpedia, other than S-Match and BLOOMS all systems fail to deliver any noteworthy
results. While S-Match identifies plenty of relevant relations, again due to the large
number of erroneous results its precision is low. The Alignment API and OMViaUO
fail to find any matching concepts besides alignments to owl:Thing. For the purpose of
this evaluation, this particular correspondence (of concepts to owl:Thing) was excluded
due to its highly obvious nature and lack of usefulness. Again we could not get RiMOM
to work. AROMA identifies a few correspondences but few of them are correct.

(3) FOAF Ontology and DBpedia: The results in this case are similar to that of
Music Ontology and DBpedia. S-Match registers a slight increase in both precision and
recall. Similarly for AROMA there is an increase in the recall, but its precision drops.
BLOOMS registers an increase in both precision and recall due to (a) the fact that
concepts in FOAF are very specific and limited, such as ”PersonalProfileDocument”,
and (b) the knowledge about these concepts is very well categorized in Wikipedia.

(4) Geonames and DBpedia: This is an interesting category, since apart from S-
Match, all systems fail to deliver any results. This is partly due to the modeling of
the Geonames ontology which is (a) very limited in nature, and (b) consists of con-
cepts which are hard to understand and identify using only their names—examples are
”Code” and ”Feature”. It is hard to relate them to concepts in DBpedia due to their
ambiguous meaning and absence of corresponding concepts in DBpedia.

(5) FOAF and SIOC: The FOAF and SIOC Ontologies consist of data related to
on-line communities and social networks. RiMOM, which outperforms all the other
systems on the ontology alignment initiative benchmarks, suffers from poor precision
and recall on these ontologies. The performance of AROMA is identical to that of Ri-
MOM. While they identify about a fifth of the relevant relations, they do so at the cost
of low precision. S-Match, on the other hand, does a significantly good job at picking
a few correct relations. The other two systems, OMViaUO and the Alignment API, fail
to find any relevant relations.

26 We contacted the authors for assistance in resolving the issue, but at the time of writing of this
paper, they had not replied to our request with a solution for the problem.

414 P. Jain et al.

(6) The Semantic Web Conference Ontology and the AKT Reference Ontology:
These two datasets belong to the domain of scientific publications and hence consist of
terms which are somewhat related to some of the terms in the OAEI. Correspondingly,
BLOOMS performs well by retrieving more than half of the relations while S-Match
retrieves about 40% of the relations. Again due to the vast number of correspondences
retrieved by S-Match, its precision is low. AROMA retrieves largely correct but few
relations. Due to its excellent performance in the OAEI track, we expected RiMOM to
do well in this category. However, because of similar problems as above, RiMOM did
not execute on this pair of ontologies. The Alignment API delivers better results than
AROMA, whereas OMViaUO retrieves few results with a large number of wrong ones.

(7) The Semantic Web Conference Ontology and DBpedia: Using this pair we
created alignment between the domain of scientific publication and general information.
The overlapping concepts in the two ontologies consist of terms describing professions
of people, events, and places. BLOOMS retrieves close to half of the correspondences
with about 70% precision. S-Match retrieves half of the relations with a low precision.
The other systems either do not retrieve any results or their results are insignificant.

Summary of the Results on LOD Schema Alignment. The results illustrate that on an
average BLOOMS performs significantly better (40% better recall with at least twice
the precision of the other systems) than the other state-of-the-art systems when it comes
to ontology matching on the LOD cloud. Even individually, BLOOMS gives one of the
highest recalls in 5 out of 7 pairs utilized for the purpose of evaluation. BLOOMS is a
close second in one of the pairs. Of the other systems S-Match is impressive with its
consistency in retrieving correct relations, however it comes at the cost of low precision.
With regards to precision, BLOOMS leads in 6 out of the 7 pairs. Hence, by providing
high recall, with high precision, BLOOMS makes it easy to curate the results for high
quality mappings, thus making the results useful for practical purposes. 27

Although S-Match gives decent recall, its low precision makes it difficult to work
with the output. This is due to the vast number of mappings retrieved by S-Match,
containing only relatively few correctly found ones. For example, S-Match found 3120
relations between concepts of BBC Program and the Music Ontology, of which only
4% were correct.

Of the other systems, AROMA gives decent precision but suffers from poor recall
on LOD datasets. OMViaUO and the Alignment API suffer from both poor precision
and recall on LOD datasets.

To summarize, these results indicate that state-of-the-art systems fail to provide the
support required for a practically useful alignment of ontologies on the LOD cloud.
On the other hand, BLOOMS provides significantly better precision and recall. The
reasons for this significantly better performance lie in the fact that the BLOOMS ap-
proach is much better suited to handling the diverse domains of the LOD cloud datasets.

27 A reviewer pointed out the advantage which BLOOMS might be obtaining due to the use of
reasoner. Possibly other systems could also be improved by adding suitable post-processing by
a reasoner. However, our experiments demonstrated that even without the reasoner BLOOMS
is superior than other system on LOD schema alignment. For example, for Music Ontology and
BBC Program schema alignment without using a reasoner results in precision and recall figures
of 0.63 and 0.60 which are still significantly better than those obtained by other systems.

Ontology Alignment for Linked Open Data 415

Thus, it significantly utilizes its advantage of using Wikipedia, a community-created
data source, in dealing with community-created LOD datasets.

5 Related Work

To the best of our knowledge, this is the first work which exploits a generic and noisy
categorization system such as Wikipedia in the context of ontology matching. In [18,19]
the authors present a survey in the area of ontology matching.28 Previously, Wikipedia
categorization has been utilized for creating and restructuring taxonomies [8,20]. A tax-
onomy that covers popular approaches in database schema matching was presented in
[21]. A generic algorithm for the same was presented in [22]. In [23] ontology schema
matching was used to improve instance co-reference resolution. This helps in cleaning
up the data and improving the quality of links at the instance level, but the issue of iden-
tifying appropriate relationships at the schema level has not been addressed. The voiD
Framework [24] along with the SILK Framework [25] automate the process of link dis-
covery between LOD datasets at the instance level. At the schema level, a notable effort
for creating a unified reference point for LOD schemas is UMBEL [26], which is a co-
herent framework for ontology development which can serve as a reference framework.

6 Conclusion and Future Work

We have presented our approach—BLOOMS—for bootstrapping ontology alignment
using the LOD cloud. Our results demonstrate that BLOOMS does not only signifi-
cantly outperform state-of-the-art ontology alignment systems in LOD schema align-
ment; it also outperforms most other systems on the Ontology Alignment Initiative
benchmark, and is roughly on par with the other best performing other system, Ri-
MoM. We believe that BLOOMS draws its strength from (1) bootstrapping noisy data,
and (2) the richness of Wikipedia which is used for the bootstrapping.

The fact that BLOOMS does so well on the benchmark is a rather pleasing result, in
particular since it was developed solely with LOD schema alignment in mind. Indeed
the initial motivation for BLOOMS came from a bottleneck in the LOD querying ap-
proach we are currently following—as outlined in [2]—which requires significant tool
support for LOD schema matching in order to be scalable, in order to keep up with the
growth of the LOD cloud. With BLOOMS we have made a major step towards solving
this bottleneck; progress on our LOD querying approach will be reported elsewhere.

We can only hypothesize that BLOOMS will be able to keep up in the future, with
the expanding LOD cloud. Our optimism is based on two core observations:

– The high precision and recall values which BLOOMS achieves on the LOD cloud,
have in fact been achieved without significant fine-tuning. This gives ample op-
timism that there is room for improvement and future development, e.g., through
adjusting the system to large thematic subdomains of the LOD cloud (e.g., life sci-
ences), or by substituting the current use of DBPedia in our system by some other
dataset which may only come into existence in the future.

28 The ontology matching portal at http://www.ontologymatching.org/ gives a good
review of the state-of-the-art research in this area.

http://www.ontologymatching.org/

416 P. Jain et al.

– Due to the central use of DBPedia, i.e., of information exported from Wikipedia,
it can be expected that the performance of BLOOMS will increase with the expan-
sion of DBPedia/Wikipedia, since we will then have more data to bootstrap. So in
a sense, assuming that DBPedia/Wikipedia will keep growing as the LOD cloud
keeps growing, one might be tempted to say that BLOOMS has a bit of what some
people call the ”Google property”—namely that a system is getting better the more
data it gets.

As future work we intend to identify other kinds of relationships such as partonomical
relationships or disjointness on the LOD cloud. We therefore focused on the perfor-
mance evaluation. We also intend to publicly release an upper level ontology for LOD
based on existing upper level ontologies such as SUMO and DOLCE, created with
significant but curated input of BLOOMS. We would also like to evaluate BLOOMS
using other platforms such as OWL-API and other reasoners besides Jena. This will be
the next few steps in our quest to LOD querying as outlined in [2]. Further, we would
like to evaluate BLOOMS w.r.t scalability on ontologies larger than used for evaluation
presented in Table 3.

Acknowledgement. This work is funded primarily by NSF Award:IIS-0842129, titled
”III-SGER: Spatio-Temporal-Thematic Queries of Semantic Web Data: a Study of Ex-
pressivity and Efficiency”. Pascal Hitzler acknowledges support by the Wright State
University Research Council. We would like to sincerely thank Jérôme Euzenat for
his insightful comments about the work which were extremely helpful in refining our
manuscript.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked data – the story so far. International Journal On
Semantic Web and Information Systems 5(3), 1–22 (2009)

2. Jain, P., Hitzler, P., Yeh, P.Z., Verma, K., Sheth, A.P.: Linked Data is Merely More Data. In:
Brickley, D., Chaudhri, V.K., Halpin, H., McGuinness, D. (eds.) Linked Data Meets Artificial
Intelligence, pp. 82–86. AAAI Press, Menlo Park (2010)

3. Polleres, A., Hogan, A., Harth, A., Decker, S.: Can we ever catch up with the Web? Semantic
Web—Interoperability, Usability, Applicability (to appear),
http://www.semantic-web-journal.net/

4. Hitzler, P., van Harmelen, F.: A reasonable Semantic Web. Semantic Web—Interoperability,
Usability, Applicability (to appear), http://www.semantic-web-journal.net/

5. Euzenat, J.: An API for ontology alignment. In: McIlraith, S.A., Plexousakis, D., van Harme-
len, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 698–712. Springer, Heidelberg (2004)

6. Guéret, C., Wang, S., Schlobach, S.: The Web of Data is a complex system—first insight into
its multi-scale network properties. In: Proceedings of the ECCS 2010 European Conference
on Complex Systems, Lisbon, Portugal (September 2010)

7. Bizer, C., et al.: DBpedia—A crystallization point for the Web of Data. Journal of Web
Semantics 7(3), 154–165 (2009)

8. Ponzetto, S.P., Strube, M.: Deriving a large scale taxonomy from Wikipedia. In: Proceedings
of the 22nd National Conference on Artificial Intelligence, pp. 1440–1445. AAAI Press,
Menlo Park (2007)

http://www.semantic-web-journal.net/
http://www.semantic-web-journal.net/

Ontology Alignment for Linked Open Data 417

9. Mascardi, V., Locoro, A., Rosso, P.: Automatic Ontology Matching via Upper Ontologies: A
Systematic Evaluation. IEEE Trans. on Knowledge and Data Engr. 22(5), 609–623 (2010)

10. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge. In:
Williamson, C.L., et al. (eds.) Proceedings of the 16th International Conference on World
Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12. ACM Press, New York (2007)

11. David, J., Euzenat, J., Scharffe, F., dos Santos, C.T.: The Alignment API 4.0 Semantic Web—
Interoperability, Usability, Applicability (to appear),
http://www.semantic-web-journal.net/

12. Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: Ontology matching with semantic veri-
fication. Journal of Web Semantics 7(3), 235–251 (2009)

13. Spiliopoulos, V., Valarakos, A.G., Vouros, G.A.: CSR: Discovering Subsumption Rela-
tions for the Alignment of Ontologies. In: Bechhofer, S., et al. (eds.) ESWC 2008. LNCS,
vol. 5021, pp. 418–431. Springer, Heidelberg (2008)

14. Li, J., Tang, J., Li, Y., Luo, Q.: RiMOM: A dynamic multistrategy ontology alignment frame-
work. IEEE Transactions on Knowledge and Data Engineering 21, 1218–1232 (2009)

15. David, J., Guillet, F., Briand, H.: Matching directories and OWL ontologies with AROMA.
In: Proceedings of the 15th ACM International Conference on Information and Knowledge
Management, CIKM 2006, pp. 830–831. ACM, New York (2006)

16. Hamdi, F., Safar, B., Niraula, N.B., Reynaud, C.: Taxomap in the OAEI 2009 Alignment
Contest. In: Shvaiko, P., et al. (eds.) Proceedings of the 4th International Workshop on On-
tology Matching (OM 2009) at the 8th International Semantic Web Conference (ISWC 2009)
Chantilly, USA, October 25 (2009)

17. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-Match: an algorithm and an implementation of
semantic matching. In: Kalfoglou, Y., et al. (eds.) Semantic Interoperability and Integration.
Number 04391 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany (2005)

18. Euzenat, J., Shvaiko, P.: Ontology matching (DE). Springer, Heidelberg (2007)
19. Choi, N., Song, I.Y., Han, H.: A survey on ontology mapping. SIGMOD Rec 35(3), 34–41

(2006)
20. Ponzetto, S.P., Navigli, R.: Large-scale taxonomy mapping for restructuring and integrating

wikipedia. In: Boutilier, C. (ed.) Proceedings of the 21st International Joint Conference on
Artificial Intelligence, Pasadena, California, USA, July 11-17, pp. 2083–2088 (2009)

21. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The
VLDB Journal 10(4), 334–350 (2001)

22. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with Cupid. In: Proceed-
ings of the 27th International Conference on Very Large Data Bases, VLDB 2001, pp. 49–58.
Morgan Kaufmann Publishers Inc., San Francisco (2001)

23. Nikolov, A., Uren, V.S., Motta, E., Roeck, A.N.D.: Overcoming schema heterogeneity be-
tween linked semantic repositories to improve coreference resolution. In: Gómez-Pérez, A.,
Yu, Y., Ding, Y. (eds.) ASWC 2009. LNCS, vol. 5926, pp. 332–346. Springer, Heidelberg
(2009)

24. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing Linked Datasets – On
the Design and Usage of voiD, the ’Vocabulary of Interlinked Datasets’. In: WWW 2009
Workshop on Linked Data on the Web (LDOW 2009), Madrid, Spain (2009)

25. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links on the web
of data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E.,
Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 650–665. Springer, Heidelberg
(2009)

26. Bergman, M.K., Giasson, F.: UMBEL ontology, volume 1, technical documentation,
http://umbel.org/doc/UMBELOntology_vA1.pdf

http://www.semantic-web-journal.net/
http://umbel.org/doc/UMBELOntology_vA1.pdf

SPARQL Query Optimization on Top of DHTs�

Zoi Kaoudi, Kostis Kyzirakos, and Manolis Koubarakis

Dept. of Informatics and Telecommunications

National and Kapodistrian University of Athens, Greece

Abstract. We study the problem of SPARQL query optimization on top

of distributed hash tables. Existing works on SPARQL query processing

in such environments have never been implemented in a real system, or

do not utilize any optimization techniques and thus exhibit poor perfor-

mance. Our goal in this paper is to propose efficient and scalable algo-

rithms for optimizing SPARQL basic graph pattern queries. We augment

a known distributed query processing algorithm with query optimization

strategies that improve performance in terms of query response time and

bandwidth usage. We implement our techniques in the system Atlas and

study their performance experimentally in a local cluster.

1 Introduction

With interest in the Semantic Web rising rapidly, the problem of SPARQL query
processing and optimization has received a lot of attention. This paper concen-
trates on the optimization of SPARQL queries over RDF data stored on top
of distributed hash tables (DHTs). The first such implemented P2P system is
RDFPeers [1] where only a restricted query class is supported (conjunctive multi-
predicate queries). In [11], we have extended the work of RDFPeers and presented
two algorithms for the distributed evaluation of conjunctions of triple patterns.
The algorithms in [11] have been evaluated only by simulations and no query op-
timization techniques or an implemented system has been presented. Motivated
by [1, 11], our group has been developing Atlas (http://atlas.di.uoa.gr),
a full-blown open source P2P system for the distributed processing of RDF(S)
data stored on top of DHTs. The RDFS reasoning functionality, the architecture
and various applications of Atlas are presented in [7–9].

In this paper, we present for the first time the query optimization techniques
we have developed in Atlas, and evaluate them experimentally. Although query
optimization has been extensively studied and is widely used in the database
area, SPARQL query optimization has been addressed only recently even in
centralized environments [12, 13, 23]. The first works that dealt with distributed
query optimization of SPARQL queries are [17, 24]. However, the architecture
proposed in these papers is very different from the one offered by a DHT. In [10]
a DHT-based system is presented which supports a SPARQL-like query language
and utilizes optimization techniques complementary to the ones we propose.

� This work was partially supported by the European project SemsorGrid4Env.

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 418–435, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://atlas.di.uoa.gr

SPARQL Query Optimization on Top of DHTs 419

In this work, we address SPARQL query optimization over RDF data stored
on top of DHTs and target the minimization of the time required to answer a
query and the network bandwidth consumed during query evaluation. Our work
starts from the QC algorithm of [11] which we enhance with a query graph repre-
sentation to avoid Cartesian products and with a distributed mapping dictionary
(Section 3). Although mapping dictionaries are by now standard in centralized
RDF stores [2, 12, 27], our paper is the first that discusses how to implement
one in a DHT environment. In addition, we fully implement and evaluate a
DHT-based optimizer which is used to find the best ordering of a query’s triple
patterns. We describe three greedy optimization algorithms for this purpose:
two static and one dynamic. These algorithms utilize selectivity estimates to
determine the order with which triple patterns should be evaluated in order to
improve query response time and network bandwidth consumption (Section 4).
We also propose methods for estimating selectivities of SPARQL basic graph
pattern queries utilizing techniques from relational databases (Section 5). We
discuss which statistics should be kept at each peer and use histograms for esti-
mating data distributions. We demonstrate that it is sufficient for a peer to create
and maintain local statistics, i.e., statistics about the data values for which it is
responsible. These statistics can be obtained by other peers by sending low cost
messages (Section 6). We implement all our techniques in the system Atlas and
present an extensive experimental evaluation in a local cluster using the widely
used LUBM benchmark [4] (Section 7).

2 System and Data Model

System Model. We assume a structured overlay network where peers are or-
ganized according to a DHT protocol. DHTs are structured P2P systems which
try to solve the lookup problem; given a data item x, find the peer which holds
x. Each peer and each data item are assigned a unique m-bit identifier by using
a hash function. The identifier of a peer can be computed by hashing its IP
address. For data items, we first have to determine a key k and then hash this
key to obtain an identifier idk. A Lookup(idk) operation returns a pointer to
the peer responsible for the identifier idk. Atlas uses the Bamboo DHT [18] but
our algorithms can be implemented on top of any DHT network. When a peer
receives a Lookup request, it efficiently routes the request to a peer with an
identifier that is numerically closest to idk. This peer is responsible for storing
the data item with key k and we will call it responsible peer for key k.

Data Model and Query Language. We assume that the reader is familiar
with the notions of RDF triple and triple pattern. We deal with RDF triples
with no blank nodes and SPARQL queries of basic graph patterns (BGP). A
SPARQL query with filter expressions involving equality operators can be easily
rewritten to a BGP query. In the following, we define an internal representation
of a query extending the graph-based approach used in [12, 23].

420 Z. Kaoudi, K. Kyzirakos, and M. Koubarakis

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub:<http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?x ?y ?z
WHERE {
?x rdf:type ub:Student . (tp1)
?y rdf:type ub:Faculty . (tp2)
?z rdf:type ub:Course . (tp3)
?x ub:advisor ?y. (tp4)
?x ub:takesCourse ?z . (tp5)
?y ub:teacherOf ?z . } (tp6)

(a) SPARQL query

tp1

tp2

tp3

tp4

tp6

tp5

(b) Initial graph

tp2

tp3

tp6H

tp1 tp4 tp5

(c) Intermediate graph

Fig. 1. Query example

Definition 1. A query graph g is a tuple (N, H, E), where N is the set of nodes
in g, H is the set of hypernodes in g and E is the set of undirected edges in g.
Each node in N denotes a single triple pattern and each node in H denotes a
conjunction of triple patterns. Two nodes from N ∪ H are connected with an
edge in E if and only if the triple pattern or the conjunction of triple patterns
represented by these two nodes share at least one variable.

Initially, the query graph of a query consists only of simple nodes. During query
processing, evaluated triple patterns are merged into hypernodes. In the rest of
the paper, we focus only on connected graphs. The evaluation of unconnected
graphs is straightforward since each connected subgraph can be evaluated in-
dependently, and then the union of the results can be created at the peer that
posed the query. A query plan qg for graph g is a total order of the nodes in
N of g. In Fig. 1(a), we present an example SPARQL query which will be used
throughout the paper (LUBM Q9 [4]). The initial query graph is shown in Fig.
1(b). Figure 1(c) shows an intermediate query graph where the hypernode H
represents the conjunction of triple patterns tp1∧ tp4 ∧ tp5 (i.e., triple patterns
tp1, tp4 and tp5 have already been evaluated).

3 Query Evaluation

We start by first explaining the triple indexing scheme we have adopted from
[1], where each triple is indexed in the DHT three times. The hash values of the
subject, predicate and object of each triple are used to compute the identifiers
that will indicate the peers responsible for storing the triple. The peer that
receives a store request for a set of RDF triples uses a multiSend message as
in [11] to distribute the triples among the peers. Each peer keeps its triples in a
local database consisting of a single relation with four columns (triple relation).
The first three columns correspond to the three components of the triples stored,
while the fourth column indicates which of the three components is the key that
led the triple to this peer.

Query processing. The algorithm we use (QC*) is based on algorithm QC of
[11]. Unlike [11] that uses lists of triple patterns, we employ the query graph
representation, which ensures that no Cartesian product will be computed and
transferred through the network.

SPARQL Query Optimization on Top of DHTs 421

1 event p.QEval(id, g, interRes, vars, retIP)
2 lR:=MATCH (g.marked_node().triplepattern());
3 if interRes = {} then interRes':=lR;
4 else interRes':=lR join interRes;
5 if interRes' = {} then
6 sendto retIP.queryResp({ });
7 return;
8 end
9 g':=g.MERGE(g.hypernode, g.marked_node);
10 if g'.N={} then //all triple patterns are evaluated
11 answer := project interRes' on vars;
12 sendto retIP.queryResp(answer);
13 return;
14 end
15 project out unnecessary vars from interRes';
16 g'.MARKNEXTNODE();
17 key':=FINDKEY(g'.marked_node().triplepattern());
18 id':=HASH(key');
19 sendto id'.QEval(id',g',inteRes',vars, retIP);
20 end event

Algorithm 1: QC*

Fig. 2. QC* algorithm

When a peer receives a query request,
it translates it into a query graph g. Based
on the query plan generated by the opti-
mizer, the peer also marks the node of the
query graph which represents the triple
pattern that should be evaluated first and
sends a QEval message to the peer that
will start the query evaluation. Figure 2
shows the pseudocode when such a mes-
sage arrives at a peer p. Keyword event is
used for handling messages also indicating
the peer where the handler is executed.
Keyword sendto prefixed by an identifier
declares that the message should be sent
to the peer which is responsible for this
identifier. In this case, a Lookup opera-
tion is performed first to discover the peer responsible for this identifier and then
the message is sent directly to this peer.

First, peer p evaluates the triple pattern which correspond to the marked
node of query graph g and forms a temporary relation lR by posing a selection
query to its triple relation. If relation interRes, which holds the intermediate
results so far, is empty, peer p is the first peer of the query evaluation and
assigns lR to interRes′. Otherwise, p assigns to interRes′ the natural join of
lR and interRes. If the result of the join is an empty relation, p returns an
empty set to the peer that posed the query (peer with IP address retIP) and
query evaluation terminates. Otherwise, query evaluation continues and peer p
merges the marked node with the hypernode in g creating a new query graph
g′. In case peer p is the first peer participating in the query evaluation, p just
transforms the marked node n into a hypernode. If the new graph g′ consists
only of a hypernode, all triple patterns have been evaluated and p computes the
projection of interRes′ on the answer variables vars and sends the answer to
the peer with IP address retIP . Otherwise, query evaluation continues and p
projects out from interRes′ variables that neither appear in vars nor in the rest
of the triple patterns. Then, a new node in g′ is marked as the next triple pattern
that should be evaluated and p sends a new QEval message to the next peer1.
Local procedure MarkNextNode ensures that the chosen node is connected
with the hypernode of g′, so that no Cartesian product will be computed.

Mapping dictionary. QC* utilizes a distributed mapping dictionary which
replaces long strings (URIs and literals) by unique integer values. Triple storage
and query evaluation is, then, performed more efficiently using these integers.

1 We assume that each triple pattern has at least one bound component. The case

where all three components of a triple pattern are variables requires a slightly dif-

ferent implementation which we do not discuss here.

422 Z. Kaoudi, K. Kyzirakos, and M. Koubarakis

The uniqueness of the integer values used in the mapping dictionary could
be ensured in various ways. We propose the following scheme which is fully
distributed (thus scalable and fault tolerant) and does not require any kind of
coordination between the peers. Each peer keeps a local integer counter consist-
ing of l bits which is initially set to 0. l is incremented by 1 everytime a new
integer value needs to be generated. Each peer that joins the network is assigned
a unique m-bit identifier by hashing its IP address. We create an n-bit identifier
for a triple component by concatenating the m bits of the peer’s unique identifier
with the l bits of the current local counter. Depending on the network setting
and the application requirements, we can determine an appropriate value for l
so that each n-bit identifier is of reasonable space.

When a peer receives a store request, it transforms the given triples into
new triples containing integers. The peer, then, sends the new set of triples to
be stored in the network using multiSend. Together with the new triples, it
also sends the mapping from strings to integers that created these triples. Note
that we use the string values of the triple’s components as keys to create the
identifiers. Each peer that receives a multiSend message, stores in its triple
relation the triples it is responsible for. Each such peer also maintains a two-
column relation which serves as a local dictionary which holds the mappings for
all the components of its local triples (dictionary relation).

During query evaluation, each string appearing in the triple patterns of a
query is transformed into the corresponding unique integer. This transformation
is performed during the lookup operation as follows. Whenever peer y wants to
send a QEval message for triple pattern tp, it first sends a Lookup request to
determine the peer responsible for this triple pattern (peer p). Peer p, which
receives the Lookup request, retrieves the integers corresponding to the strings
of tp from its local dictionary relation and sends them to y together with its IP
address. Then, peer y replaces the strings of tp with the integers sent from peer p
and continues query processing. In case any of the strings has no assigned integer,
the answer to the query is empty and query processing terminates. Finally, the
peer which computes the answer to the query is responsible for replacing integers
in the triples of the answer set with their string values. To achieve this, it contacts
the least possible number of peers that have already participated in the query
evaluation and have the appropriate values in their dictionary relation. During
query evaluation, the IP address of these peers is appended within the QEval
message (using an extra parameter).

4 Query Optimization Algorithms

The goal of query optimization is to find a query plan that optimizes the per-
formance of a system with respect to a metric of interest. In our work, we are
interested in improving the time required to answer a query (query response
time) and the network bandwidth consumed. The query response time of our
algorithm can be improved if the time spent for query evaluation locally by each
peer and the time required for network messages to reach relevant peers is im-
proved. One way to accomplish this is by minimizing the size of intermediate

SPARQL Query Optimization on Top of DHTs 423

relations produced during query evaluation (interRes′ in QC*). In this case,
we benefit in two ways: first, we achieve lower bandwidth consumption and sec-
ond, we accomplish the computation of joins with smaller intermediate relations
locally at peers. Lessons learned from earlier versions of Atlas persuaded us to
concentrate on optimizing these metrics to improve the scalability of our system.

In the following, we present three greedy optimization algorithms which try
to minimize the size of intermediate relations produced by the query process-
ing algorithm utilizing selectivity-based heuristics. We describe both static and
dynamic optimization algorithms. The two static query optimization algorithms
are completely executed by the peer that receives the initial query request and
output a fully specified query plan (an ordered list of triple patterns). In the dy-
namic query optimization algorithm, optimization decisions take place at each
step of the query processing algorithm. Using standard terminology from rela-
tional systems, the selectivity of a triple pattern tp, sel(tp), is the fraction of the
total number of triples in the network that match tp. Similarly, if H is a con-
junction of triple patterns, the selectivity of the conjunction of triple patterns,
sel(H), is the fraction of total number of triples in the network that match H .
We later discuss how we can estimate these selectivities (Section 5).

Naive static algorithm. The naive algorithm (NA) orders triple patterns based
on their selectivity (from the most selective to the least selective) and in a fashion
where a Cartesian product computation will not be required. The optimization
algorithm works as follows. Using the initial query graph representation, each
node is assigned with the selectivity of the corresponding triple pattern. The
algorithm firstly selects the query graph node n0 with the minimum selectivity
and adds it to the query plan. Then, it marks the nodes that are connected with
n0 and removes n0 from the graph. The algorithm iteratively chooses the node
nmin with the minimum selectivity, selecting only from the marked ones, adds it
to the query plan, marks the nodes connected with nmin and removes nmin from
the graph. The algorithm terminates when no nodes are left in the graph. NA
is based on the assumption that after joining two very selective triple patterns,
the joining result will also be selective. Certainly, this assumption is not always
true, but the algorithm often performs in a satisfactory way, as we will see in
the experimental section.

Semi-naive static algorithm. The semi-naive algorithm (SNA) is a variation
of the minimum selectivity algorithm [22] and has also been used in [23]. SNA
goes beyond NA by taking into account the selectivity of pairs of triple patterns.
Besides assigning each node of the graph with the selectivity of its triple pattern,
each edge of the graph is also assigned with the selectivity of the conjunction of
the connected triple patterns. The algorithm begins by selecting the edge with
the minimum selectivity, orders its nodes based on their selectivity and adds
them to the query plan. Then, SNA iteratively chooses the edge that has the
minimum selectivity, but also has one of its nodes in the query plan, and adds
the other node to it. SNA terminates when all nodes have been added to the

424 Z. Kaoudi, K. Kyzirakos, and M. Koubarakis

H1

at query requestor peer at peer responsible for tp1 at peer responsible for tp4

at peer responsible for tp6 at peer responsible for tp2
at peer responsble

for tp3
at peer responsible

for tp5

tp1

tp2

tp3

tp4

tp6

tp5

0,01

0,06

0,03

0,04

0,05

0,02

0,1

0,2 0,2
0,5

0,3

0,4

0,3
0,1

0,2

tp2

tp3

tp4

tp6

tp5

0,06

0,03

0,04

0,05

0,02

0,1

0,2

H2

tp2

tp3

tp6

tp5

0,030,05

0,02

0,35

0,25

0,3

0,06

tp2

tp3tp5
0,030,05

0,06
0,1

0,2
0,3

tp5

0,030,05

0,1

0,2

tp5
0,050,1

tp3

H3 H4 H5 H6

tp1 tp4 tp6 tp2 tp3 tp5

tp1 tp4

tp1 tp4 tp6 tp2

tp1 tp4 tp6 tp2 tp3

tp1

tp1 tp4 tp6

Fig. 3. Dynamic query optimization example

query plan. In case of a tie between the selectivities of two edges, the algorithm
chooses the one that has the node with the smaller selectivity.

Dynamic algorithm. Finally, we propose a dynamic optimization algorithm
(DA) which seeks to construct query plans that minimize the number of in-
termediate results during query evaluation. Initially, the peer that received the
query request, assigns all edges and nodes of the query graph with the corre-
sponding selectivities and chooses the first triple pattern to be evaluated as in
SNA. Then, the optimization step is carried out at each peer p which receives
a QEval message. After the new query graph g′ with the new hypernode H ′

has been created at peer p, p selects the triple pattern that should be evaluated
next. The candidate triple patterns are the triple patterns of the query graph
nodes which are directly connected with the hypernode H ′. In this way, the
computation of a Cartesian product is avoided. Peer p estimates the selectivity
of the join between the intermediate results so far (which correspond to H ′) and
each candidate triple pattern and assigns the corresponding edges. Then, peer p
selects the node which is connected to H ′ with the minimum edge selectivity. In
case a tie between the selectivities of two edges emerges, p chooses the node with
the smaller selectivity. Figure 3 shows an example execution of DA. The query
requestor peer assigns the edges and nodes of the query graph and chooses tp1
as the first node. At each query processing step, each peer finds the edge with
the minimum selectivity from the set of edges connected to the hypernode and
marks the corresponding node (shown with a double circle). In the last step, the
query graph consists only of the hypernode.

5 Selectivity Estimation

In this section, we propose methods for estimating the selectivity of single triple
patterns as well as the selectivity of a conjunction of triple patterns. To achieve
this, we need to compute statistics from the data stored in the network. Section
6 describes how these statistics are generated.

SPARQL Query Optimization on Top of DHTs 425

5.1 Single Triple Patterns

We present two ways to estimate the selectivity of a single triple pattern; one
based on a simple heuristic also presented in [23] and one based on an analytical
estimation technique using the attribute value independence assumption [20].

Bound-is-easier heuristic. We consider a simple variation of the standard
bound-is-easier heuristic of relational and datalog query processing [25], also
used in [23], and assume that the more bound components a triple pattern
has, the more selective it is. We further enrich this heuristic by considering the
position of the bound components of a triple pattern, if two triple patterns have
the same number of bound components. In this case, we assume that subjects
are more selective than objects, which in turn are more selective than predicates.

Analytical estimation. Given a triple pattern tp = (s, p, o), where s, p, o are
variables or constants, the selectivity of tp using the attribute value independence
assumption [20] is computed by the formula sel(tp) = sel(s) × sel(p) × sel(o),
where sel(s), sel(p), sel(o) are the selectivities of the triple pattern’s components.
We assume a selectivity of 1.0 for the triple pattern components which are vari-
ables as well as for the predicate value rdf:type. The selectivity of the other
components depends on the frequency with which their value appears in the set
of triples stored in the network. We define the frequency of a triple component
c with value v (denoted by freqc(v) where c ∈ {S, P, O}) as the total number
of occurrences of value v as a triple component c in the set of triples stored in
the network. For example, freqS(ub:zoi) is the number of occurrences of value
ub:zoi as a subject, while freqO(ub:zoi) denotes the number of occurrences of
value ub:zoi as an object in the set of triples stored in the network.

The selectivity of a triple pattern component c ∈ {S, P, O} with value v can
now be computed by the formula selc(v) = freqc(v)

T , where freqc(v) is the fre-
quency of value v as a component c and T is the total number of triples. Although
in [23], the attribute value independence assumption is also used, their method
assumes a uniform distribution for subjects and requires a bound predicate for
the objects. In Section 6, we describe how freqc(v) is computed. For the com-
putation of the total number of triples indexed in the network (T), we use a
broadcast protocol. More elegant solutions for distributed counting in P2P are
proposed in [14], but adopting such a method is out of the scope of the paper.

5.2 Conjunction of Triple Patterns

The selectivity of the conjunction of two triple patterns tp1 and tp2 is
joinCard(tp1,tp2)

T 2 , where joinCard is the number of tuples (cardinality) of the
relation that results from joining tp1 and tp2 and T is the number of triples
stored in the network.

To compute the expression joinCard, we adopt a method proposed for rela-
tional systems in [25]. Assume that we have two triple patterns tp1 and tp2 and
the corresponding relations R1 and R2 which contain all the tuples formed with

426 Z. Kaoudi, K. Kyzirakos, and M. Koubarakis

values existing in the triples stored in the network that satisfy tp1 and tp2. Re-
lations R1 and R2 have as attributes the variables of triple patterns tp1 and tp2,
respectively. Since we deal with triple patterns that have at least one constant
component, two triple patterns can share at most two variables. The cardinality
of joining R1 with R2 is computed by the formula:

joinCard(R1, R2) =
TR1 × TR2

max(IR1(?x1), IR2(?x1)) × max(IR1(?x2), IR2(?x2))

where TR1 and TR2 are the number of tuples of R1 and R2 respectively, ?x1 and
?x2 are the variables shared by tp1 and tp2, and IRi(?xj) is the size of the domain
of attribute ?xj of relation Ri. In other words, TRi is the number of triples that
match tpi, and IRi(?xj) is the number of distinct values that variable ?xj has in
the bindings of tpi. This formula can easily be adapted to the case that tp1 and
tp2 share less than two variables. In [23], the authors propose to precompute the
join cardinality by executing the actual SPARQL queries which can become a
very expensive operation, especially in a distributed environment.

We can easily determine the number of triples TR that match a triple pattern
tp. If tp has one bound component c with value v, then the number of triples
that match tp is equal to the number of occurrences of value v as a component
c, i.e., TR = freqc(v). If a triple pattern tp has two bound components, then we
compute the number of triples that match tp using the selectivity of the triple
pattern as explained earlier, i.e., TR = sel(tp)× T , where T is the total number
of triples stored in the network. For the computation of the size of the domain of
a variable ?x in a triple pattern tp, namely IR(?x), we distinguish two cases. If tp
has one variable, then IR(?x) is equal to the number of bindings of variable ?x.
Since no duplicate triples exist in the network and ?x is the only variable in the
triple pattern, each binding will be unique. In this case, we have IR(?x) = TR.
In the case where tp has two variables, the corresponding domain size for the
shared variable can be determined using the techniques of Section 6.

We now discuss the use of the above selectivity estimation techniques by the
optimization algorithms of Section 4. While NA requires only the selectivity
of single triple patterns and thus both the bound-is-easier heuristic and the
analytical estimation can be applied, SNA and DA require also the selectivity of
conjunctions of triple patterns and hence only the analytical estimations will be
used. Especially in DA, the estimation of the selectivity of the join between the
intermediate results (R1) and one triple pattern (R2) is required. The formulas
are the same as described above with the exception that relation R1 is already
formed. Therefore, the number of tuples of R1 and the domain size of any variable
in the attributes of R1 can be computed on the fly by examining relation R1.

6 Statistics for RDF

In this section, we present an efficient DHT-based scheme for collecting and
using the statistics that enable the estimation of the selectivities described in
Section 5. These statistics are the frequency of a triple component and the size of

SPARQL Query Optimization on Top of DHTs 427

subject predicate object object-class

 freqs freqp freqo freqc

 dps dsp dso
 _

 dos dpp dpo
 _

Fig. 4. Statistics kept at each peer

the domain of a variable in a triple pattern.
Peers keep statistics only from their local data
and specifically for the data values for which
they are responsible (i.e., values that are the
keys that led a triple to a specific peer). These
turn out to be global statistics required by the
optimization algorithms and can be obtained by sending low cost messages. This
is a very good property of the indexing scheme and has not been pointed out in
the literature before.

Creating statistics. Let us first introduce some new notation which is use-
ful for keeping statistics for the sizes of the domain of the variables appearing
in a query. We will denote by dsc(v) (dpc(v) and doc(v), respectively) the to-
tal number of distinct subject (predicate and object, respectively) values that
exist in the triples stored in the network which contain value v as compo-
nent c. For example, let tp be the triple pattern (?x,ub:advisor,?y). Then,
dsp(ub:advisor) denotes the number of the distinct subject values in the triples
with predicate ub:advisor, i.e., the size of the domain of variable ?x. Similarly,
dop(ub:advisor) denotes the number of the distinct object values in the triples
with predicate ub:advisor, i.e., the size of the domain of variable ?y.

The following observation allows us to collect local statistics at each peer of
a DHT. Let v be the value of a bound subject of a triple pattern and pv the peer
responsible for key v. Then, peer pv is capable of computing the exact frequency
of v as a subject, (freqs(v)), the exact number of the distinct predicate values
with subject v (dps(v)), and the exact number of the distinct object values with
subject v (dos(v)) in the set of triples stored by looking only in its local database.
Given that peer pv is responsible for key v, our indexing scheme forces all triples
that contain v either as a subject, predicate or object to be stored at peer pv.
Therefore, peer pv can retrieve from its local triple relation all triples that contain
v as a subject and hence it can compute the occurrences of v as a subject in
the set of all triples stored in the network, i.e., freqs(v). In addition, peer pv

can compute the number of the distinct predicate values and object values for
subject v by projecting the triples that contain v as subject on the predicate
and object attribute respectively. The same holds for a triple pattern’s bound
predicate or object. Following that, it is sufficient for each peer to create and
maintain statistics of its locally stored RDF data only, and more precisely only
of the triple components’ values which are the keys that led to the peer.

For each triple component, a peer keeps the statistics shown in Fig. 4. A
data structure which would keep the exact distribution of each triple compo-
nent would require excessive memory space for very large amount of data. A
commonly used method dating back from relational systems is estimating the
frequency distribution of an attribute by creating histograms [16]. Given a space
budget B for each statistical structure, each peer decides if the exact distri-
bution can be kept in memory or an estimation of the distribution is required
by creating a histogram. We use v-optimal-end-biased histograms [16] which we

428 Z. Kaoudi, K. Kyzirakos, and M. Koubarakis

experimentally found to be more suitable. As shown in Fig. 4, we differentiate
between objects of triples of the form (s,rdf:type,o), which are classes, and
objects of triples (s,p,o) with p �= rdf:type since we discovered that a more
accurate estimation for the objects statistics can be achieved in this way.

Retrieving statistics. Whenever the query optimizer of peer x needs statistics
for the selectivity estimation of one triple pattern or a conjunction of triple
patterns, it sends a StatsReq(vi, ci) message for each bound component value vi

appearing in the triple patterns to the peer responsible for key vi specifying also
the type ci of the component value (i.e., subject, predicate, object or class). The
peer that receives such a message retrieves the required statistics for value vi from
the corresponding statistical structure (depending on the value ci) and sends
them back to peer x. The time required to retrieve the statistics is negligible
compared to the time required for evaluating a query, as we will see in the
experimental section. The cost of sending these messages is very low since: (a)
messages are small in size, (b) messages are sent in parallel, (c) each message
requires only O(logn) hops to reach the destination peer, and (d) the statistics
at the destination peer are kept in main memory.

7 Experimental Evaluation

In this section, we present an experimental evaluation of our optimization tech-
niques. All algorithms have been implemented as an extension to our prototype
system Atlas. In the latest version of Atlas, we have adopted SQLite as the local
database of each peer since the Berkeley DB included in the Bamboo implemen-
tation was inefficient. For our experiments, we used as a testbed both the Plan-
etLab network as well as a local shared cluster (http://www.grid.tuc.gr/).
Although we have extensively tested our techniques on both testbeds, here we
present results only from the cluster where we achieve much better performance.
The cluster consists of 41 computing nodes, each one being a server blade ma-
chine with two processors at 2.6GHz and 4GB memory. We used 30 of these
machines where we run up to 4 peers per machine, i.e., 120 peers in total.

For our evaluation, we use the Lehigh University benchmark (LUBM) [4]. In
each experiment we first infer all triples and then store them in the network.
We present results only for queries with more than 4 triple patterns so that the
benefits of the proposed optimizations can be clearly demonstrated. We omit
query Q12 since it always produces an empty result set and does not exhibit
interesting results. All measurements are averaged over 10 runs using the geo-
metric mean which is more resilient to outliers. In the following, QG denotes
that the query graph is used to avoid Cartesian products but no other opti-
mization is utilized. The naive algorithm using the bound-is-easier heuristic is
denoted by NA−, while the naive and semi-naive algorithm using the analytical
estimation is denoted by NA and SNA, respectively. Finally, DA denotes the
dynamic optimization algorithm.

http://www.grid.tuc.gr/

SPARQL Query Optimization on Top of DHTs 429

0

20

40

60

80

Q2 Q4 Q7 Q8 Q9
LUBM Query

Q
R

T
 (

s
e
c
)

QG NA¯ NA SNA DA

(a) Total query response time

0

5

10

15

20

25

30

Q2 Q4 Q7 Q8 Q9

LUBM Query

B
a
n

d
w

id
th

 (
M

B
)

QG NA¯ NA SNA DA

(b) Total bandwidth usage

1

10

100

1000

Q2 Q4 Q7 Q8 Q9

LUBM Query

O
p

ti
m

iz
a
ti

o
n

 (
m

s
e
c
)

NA SNA DA

(c) Optimization time

Fig. 5. Query optimization performance for LUBM-50

7.1 Comparing the Optimization Algorithms

In this section, we compare and evaluate the optimization algorithms described
in Section 4. For this set of experiments, we store all the inferred triples of the
LUBM-50 dataset (9, 437, 221 triples) in a network of 120 peers. Then, using each
optimization algorithm, we run the queries. In all graphs of Fig. 5, the x-axis
shows the LUBM queries while the y-axis depicts the metric of interest. Figure
5(a) shows the query response time (QRT) for the different LUBM queries. QRT
is the total time required to answer a query and it also includes the time required
by the query optimizer for determining a query plan (optimization time). Figure
5(b) shows the total bandwidth consumed during query evaluation.

Queries Q2 and Q9 consist of 6 triple patterns having only their predicates
bound. In both queries, there exists a join among the last three triple patterns
(in the order given by the benchmark) and the combination of all three triple
patterns is the one that yields a small result set. DA finds a query plan that
combines these three triple patterns earlier than the other algorithms. This re-
sults in producing smaller intermediate result sets, as it is also shown by the
bandwidth consumption in Fig. 5(b), and thus results in better QRT. Although
NA and SNA perform close to DA for query Q2, they fail to choose a good
query plan for Q9 affecting both the QRT and the bandwidth consumption. At
this point, we should note that QG and NA− depend on the initial order of a
query’s triple patterns. For this reason, both algorithms choose a relatively good
query plan for query Q9 since the order in which its triple patterns are given by
the benchmark is a good one. Q4 is a star-shape query with all its triple pat-
terns sharing the same subject variable, while only the first two triple patterns
have two bound components. Therefore, since these two triple patterns are the
more selective ones, all optimization algorithms choose the same query plan and
perform identically in terms of both QRT and bandwidth. The same holds for
query Q7 where QRT is significantly reduced when using either optimization
technique compared to QG. Q8 is a query similar to Q7.

In Fig. 5(c), we show the total optimization time in msec on a logarithmic
scale. For QG and NA− the optimization overhead is negligible and is not shown
in the graph. The optimization time contains the time for retrieving the required
statistics from the network, the time for the selectivity estimation and the time

430 Z. Kaoudi, K. Kyzirakos, and M. Koubarakis

DA

NA
SNA

QG

NA-

0

2

4

6

8

10

12

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321

Query plan

Q
R

T
 (

se
c)

(a) LUBM Q2 query plan space

LUBM Query Min QRT Max QRT DA QRT

 Q2 0.91 s 10.06 s 0.96 s

 Q4 2.54 s 17.39 s 2.89 s

 Q7 1.53 s 16.62 s 1.55 s

 Q8 2.88 s 10.20 s 3.06 s

 Q9 3.30 s 64.06 s 4.41 s

(b) QRT of LUBM query plans

Fig. 6. Exploring the query plan space for LUBM-10

spent by the optimization algorithm. As expected, DA spends more time than
the other optimization algorithms since it runs at each query processing step.
However, the optimization time is still one order of magnitude smaller than the
time required by the query evaluation process. Therefore, although DA requires
more time than the other optimization algorithms, the system manages to per-
form efficiently for all queries when DA is used. We observe similar results for the
bandwidth consumed by the query optimizer. NA and SNA consume ∼ 2KB
while DA consumes∼ 7KB, still one order of magnitude less than the bandwidth
spent during query evaluation. We omit this graph due to space limitations.

7.2 Effectiveness of Query Optimization

In this section, we explore the query plan space of the LUBM queries to show
how effective the optimization algorithms are. The size of the query plan space
of a query consisting of N triple patterns is N !. Since query plans that involve
Cartesian products are very inefficient to evaluate in a distributed environment,
we consider only triple pattern permutations which do not produce any Cartesian
product. In this experiment, we store the LUBM-10 dataset in a network of 120
peers and run all possible query plans for several LUBM queries. In Fig. 6(a),
we depict the QRT of all possible query plans for query Q2 in ascending order.
The query plan space of Q2 consists of 335 query plans which do not involve any
Cartesian product. In this figure, we highlight the position of the query plans
chosen by the different optimization algorithms. We observe that DA chooses
one of the best query plans, while NA and SNA perform worse choosing the
27th best query plan. NA− performs poorly choosing one the worst query plans.
Similar results are observed for the other queries as well. In Fig. 6(b), we list
the QRT for all queries of the best and the worst query plan together with the
QRT when using DA. We observe that the QRT when using DA is very close to
the QRT of the optimal query plan for all queries. Note that without the query
plans that involve Cartesian products, the difference between the min and the
max QRT of all queries is not very large.

SPARQL Query Optimization on Top of DHTs 431

0

4

8

12

16

20

0 2 4 6 8 10

Triples stored (x1000000)

Q
R

T
 (

s
e

c
)

QG NA¯ NA SNA DA

(a) Varying dataset size for query Q2

0

2

4

6

8

10

0 20 40 60 80 100 120
Network size (#peers)

Q
R

T
 (

s
e

c
)

QG NA¯ NA SNA DA

(b) Varying network size for query Q2

Fig. 7. Varying dataset and network size

7.3 Varying the Dataset and Network Size

In these sets of experiments, we study the performance of our system when
varying the number of triples stored in the network and the number of peers.
We show results only for Q2 which involves a join among three triple patterns.

Figure 7(a) shows the behavior of our system using each optimization algo-
rithm as the dataset stored in the network grows. In a network of 120 peers, we
stored datasets from LUBM-1 to LUBM-50. Every time we measured the QRT
of query Q2 using each optimization algorithm. As expected, QRT increases as
the number of triples stored in the network grows. This is caused by two factors.
Firstly, the local database of each peer grows and as a result local query process-
ing becomes more time-consuming. Secondly, the result set of query Q2 varies as
the dataset changes. For example, for LUBM-1 the result set is empty, while for
LUBM-50 the result set contains 130 answers. This results in transferring larger
intermediate result sets through the network which also affects the QRT of the
query. Besides, this experiment brings forth an interesting conclusion regarding
the optimization techniques. While query plans chosen by NA, SNA and DA
perform similarly up to approximately 1.8M triples stored (i.e., LUBM-10), we
observe that for bigger datasets the query plan chosen by DA outperforms the
others. This shows that the system becomes more scalable with respect to the
number of triples stored in the network when using DA. Similar results are ob-
served for Q9, while for the rest queries all optimization algorithms choose the
same query plan independently of the dataset size.

In the next set of experiments, we start networks of 5, 10, 30, 60, 90 and 120
peers and store the LUBM-10 dataset. We then run the queries using all opti-
mization techniques. In Fig. 7(b), we show the QRT for Q2 as the network size
increases. We observe that QRT improves significantly as the network size grows
up to 60, while it remains almost the same for bigger network sizes. The decrease
in the QRT for small networks is caused by the fact that the more peers join
the network the less triples are stored in each peer’s database and thus local
processing load is reduced. The same result was observed in other queries where
QRT either improved or remained unaffected as the number of peers increased.

432 Z. Kaoudi, K. Kyzirakos, and M. Koubarakis

Statistics Min size Max size Avg size

histograms (x6) 580 580 580

 predicate 44 448

 object-class 44 288

71.47

61.80

(a) Size of statistics per peer (bytes)

0.0

0.5

1.0

1.5

2.0

2.5

1 21 41 61 81 101

Network size (#peers)

A
vg

 A
b

so
lu

te
 E

rr
o

r

freq_s histogram
freq_o histogram
dp_s histogram
do_s histogram
ds_o histogram
dp_o histogram

(b) Histograms error

Fig. 8. Statistics

7.4 Statistics

We present measurements concerning the size of the statistics kept by each peer.
We set a space budget of 500 bytes per statistical structure per peer leading
to using histograms of 10 buckets only for values appearing in the subjects and
objects of triples. Each statistical structure for the subjects and objects is kept
in a separate histogram resulting in a total of six histograms per peer. For the
predicates and object classes, we keep the exact distributions of their values.
This is typical of a large DHT network where a peer is responsible for very few
predicate or class values. Figure 8(a) shows the size of the generated statistics
for each peer for the LUBM-50 dataset in a network of 120 peers. Histograms
always occupy the same amount of space, while the exact statistics for predicate
and object-class vary depending on the amount of values the peer is responsible
for. The total statistics kept at each peer result in a total amount of memory of
4K in average which is negligible compared to today’s powerful machines.

In order to show that it is sufficient to maintain local statistics at each peer
and only for the values for which the peer is responsible, we have computed
the average absolute error for each histogram for different network sizes ranging
from 1 to 120 peers for LUBM-5. A network consisting of a single peer resembles
a centralized system where a global histogram is created from all data stored.
For every value vi appearing in the dataset as a component c, we have measured
its real frequency freqc(vi) and the estimated frequency f r̂eqc(vi) taken from
the corresponding histogram of the peer responsible for value vi. The absolute
error for vi equals to eabs(vi) = |freqc(vi)− f r̂eqc(vi)|. If N is the total number
of distinct values of component c in the dataset, the average absolute error
is computed as 1

N

∑N
i=1 eabs(vi). The same holds for the estimated number of

distinct subjects, predicates and objects. Results for each statistical structure
that is estimated by a histogram are shown in Fig. 8(b). We observe that as
the number of peers increases the error drops significantly. This shows that the
values of each triple component are independent and hence the more peers join
the network (i.e., more histograms created), the better the estimation becomes.

SPARQL Query Optimization on Top of DHTs 433

7.5 Discussion

We have also experimented with different datasets using the SP2B benchmark
[19] as well as a real world dataset of the US Congress vote results presented in
[26]. The results were similar to the ones observed using LUBM. For all datasets,
DA consistently chooses a query plan close to the optimal regardless of the
query type or dataset stored and without posing a significant overhead neither
to the total time for answering the query nor to the bandwidth consumed. On
the contrary, the static optimization methods are dependent on the type of
the query and the dataset, which make them unsuitable in various cases (as
shown earlier for query Q9). In addition, we have also tested indexing all possible
combinations of the triples’ components, as proposed in [11]. In this case, we have
used histograms at each peer for combinations of triples’ components as well.
However, we did not observe any difference in the choice of the query plan and
thus, showed results only with the triple indexing algorithm. This results from
the nature of the LUBM queries which mostly involve bound predicates and
object-classes for which we kept an exact distribution in both cases.

8 Related Work

Earlier works that consider SPARQL query processing on top of DHTs such
as [1, 6, 7, 11] lack optimization techniques resulting in handling very small
datasets (only thousands of triples). Another DHT-based system is UniStore
where a triple-based model and a SPARQL-like query language is supported
[10]. In UniStore, a cost-based optimizer is implemented which estimates the
cost of physical operators in terms of the number of hops and messages required
for each operator. The evaluation presented in [10] is conducted in PlanetLab
and hence only small datasets are used. The work of [10] is complementary
to ours and the two approaches could actually be combined by an appropriate
cost model. Early works that studied query optimization in a distributed en-
vironment, although not a DHT, are [17, 24]. In [17], the authors present an
engine for federated SPARQL databases and make use of query rewriting and
cost-based optimization techniques. For the cost-based optimization, they use it-
erative dynamic programming but fail to estimate the selectivity of conjunctions
of triple patterns and set it to a fixed value instead. Other works in the area of
distributed SPARQL query processing are studied in [3, 5, 15]. However, these
papers focus on distributed computing platforms based on powerful clusters and
do not discuss any optimization techniques.

Finally, a lot of attention has been given to SPARQL query optimization in
centralized environments [12, 13, 23]. In [23], the authors present a selectivity-
based framework for optimizing SPARQL BGP queries. In RDF-3X [12], the
authors propose two kinds of statistics for the selectivity estimation of the joins:
specialized histograms which can handle both triple patterns and joins by lever-
aging the aggregated indexes built, and the computation of frequent join paths in
the RDF graphs. In [13], the authors of RDF-3X go one step further to propose
more accurate selectivity estimations by precomputing exact join cardinalities

434 Z. Kaoudi, K. Kyzirakos, and M. Koubarakis

for all possible choices of one or two constants in a triple pattern and material-
izing the results in additional indexes. This can be a very expensive operation in
a distributed setting such as a DHT. Finally, a method for the cardinality esti-
mation of SPARQL queries using a probability distribution is presented in [21].

9 Conclusions and Future Work

We studied the problem of distributed SPARQL query optimization on top of
DHTs. We discussed the query optimization techniques we have developed in
our system Atlas, and presented an experimental evaluation. Our current re-
search is focused on the implementation and evaluation of algorithm SBV [11],
which achieves a better load balancing, in the presence of the query optimization
framework that we have developed.

References

1. Cai, M., Frank, M.R., Yan, B., MacGregor, R.M.: A Subscribable Peer-to-Peer

RDF Repository for Distributed Metadata Management. Journal of Web Semantics

(2004)

2. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An Efficient SQL-based RDF

Querying Scheme. In: VLDB 2005

3. Erling, O., Mikhailov, I.: Towards Web Scale RDF. In: SSWS 2008

4. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base

Systems. Journal of Web Semantics (2005)

5. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A Federated Repository for

Querying Graph Structured Data from the Web. In: Aberer, K., Choi, K.-S., Noy,

N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D.,

Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC

2007. LNCS, vol. 4825, pp. 211–224. Springer, Heidelberg (2007)

6. Heine, F.: Scalable P2P based RDF Querying. In: InfoScale 2006

7. Kaoudi, Z., Koubarakis, M., Kyzirakos, K., Magiridou, M., Miliaraki, I., Papadakis-

Pesaresi, A.: Publishing, Discovering and Updating Semantic Grid Resources using

DHTs. In: CoreGRID Workshop on Grid Programming Model, Grid and P2P Sys-

tems Architecture 2006

8. Kaoudi, Z., Koubarakis, M., Kyzirakos, K., Miliaraki, I., Magiridou, M., Papadakis-

Pesaresi, A.: Atlas: Storing, Updating and Querying RDF(S) Data on Top of DHTs.

Journal of Web Semantics (System paper) (2010)

9. Kaoudi, Z., Miliaraki, I., Koubarakis, M.: RDFS Reasoning and Query Answering

on Top of DHTs. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard,

D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 499–516.

Springer, Heidelberg (2008)

10. Karnstedt, M.: Query Processing in a DHT-Based Universal Storage - The World

as a Peer-to-Peer Database. PhD thesis (2009)

11. Liarou, E., Idreos, S., Koubarakis, M.: Evaluating Conjunctive Triple Pattern

Queries over Large Structured Overlay Networks. In: Cruz, I., Decker, S., Alle-

mang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC

2006. LNCS, vol. 4273, pp. 399–413. Springer, Heidelberg (2006)

SPARQL Query Optimization on Top of DHTs 435

12. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. In: VLDB 2008

13. Neumann, T., Weikum, G.: Scalable Join Processing on Very Large RDF Graphs.

In: SIGMOD 2009

14. Ntarmos, N., Triantafillou, P., Weikum, G.: Distributed Hash Sketches: Scalable,

Efficient, and Accurate Cardinality Estimation for Distributed Multisets. ACM

TOCS (2009)

15. Owens, A., Seaborne, A., Gibbins, N., schraefel, m.: Clustered TDB: A Clustered

Triple Store for Jena. Technical Report (2008) (Unpublished)

16. Poosala, V., Ioannidis, Y., Haas, P., Shekita, E.: Improved Histograms for Selec-

tivity Estimation of Range Predicates. In: ACM SIGMOD 1996

17. Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources with SPARQL. In:

Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.

LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008)

18. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling Churn in a DHT. In:

USENIX Annual Technical Conference 2004

19. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Perfor-

mance Benchmark. In: ICDE 2009

20. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access

Path Selection in a Relational Database Management System. In: SIGMOD (1979)

21. Shironoshita, E.P., Ryan, M.T., Kabuka, M.R.: Cardinality Estimation for the

Optimization of Queries on Ontologies. SIGMOD Record (2007)

22. Steinbrunn, M., Moerkotte, G., Kemper, A.: Heuristic and Randomized Optimiza-

tion for the Join Ordering Problem. VLDB Journal (1997)

23. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL Basic

Graph Pattern Optimization using Selectivity Estimation. In: WWW 2008

24. Stuckenschmidt, H., Vdovjak, R., Broekstra, J., jan Houben, G., Eindhoven, T.,

Amersfoort, A.: Towards Distributed Processing of RDF Path Queries. Int. J. Web

Eng. and Tech. (2005)

25. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. I and II.

Computer Science Press, Rockville (1988)

26. Vidal, M.-E., Ruckhaus, E., Lampo, T., Mart́ınez, A., Sierra, J., Polleres, A.: Effi-

ciently Joining Group Patterns in SPARQL Queries. In: Aroyo, L., Antoniou, G.,

Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.)

ESWC 2010. LNCS, vol. 6088, pp. 228–242. Springer, Heidelberg (2010)

27. Weiss, C., Karras, P., Bernstein, A.: Hexastore: Sextuple Indexing for Semantic

Web Data Management. In: VLDB 2008

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 436–452, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Optimizing Enterprise-Scale OWL 2 RL Reasoning in a
Relational Database System

Vladimir Kolovski1, Zhe Wu2, and George Eadon1

Oracle
1 1 Oracle Drive, Nashua, NH 03062 USA

2 400 Oracle Parkway, Redwood City, CA 94065 USA
{vladimir.kolovski,alan.wu,george.eadon}@oracle.com

Abstract. OWL 2 RL was standardized as a less expressive but scalable subset
of OWL 2 that allows a forward-chaining implementation. However, building
an enterprise-scale forward-chaining based inference engine that can 1) take
advantage of modern multi-core computer architectures, and 2) efficiently up-
date inference for additions remains a challenge. In this paper, we present an
OWL 2 RL inference engine implemented inside the Oracle database system,
using novel techniques for parallel processing that can readily scale on multi-
core machines and clusters. Additionally, we have added support for efficient
incremental maintenance of the inferred graph after triple additions. Finally, to
handle the increasing number of owl:sameAs relationships present in Semantic
Web datasets, we have provided a hybrid in-memory/disk based approach to
efficiently compute compact equivalence closures. We have done extensive
testing to evaluate these new techniques; the test results demonstrate that our in-
ference engine is capable of performing efficient inference over ontologies with
billions of triples using a modest hardware configuration.

1 Introduction

As part of the OWL 2 [9] standardization effort, three new, less expressive OWL sub-
sets were proposed that have polynomial (or less) complexity and are suitable for effi-
cient and scalable reasoning over large datasets [12]. These profiles are OWL 2 EL,
based on the EL++ description logic [7], OWL 2 QL based on DL-Lite [5] and OWL
2 RL, which was designed with rule-based implementations in mind.

Since it is described as a collection of positive Datalog rules, OWL 2 RL can be
theoretically implemented on top of semantic stores that already provide rule-based
reasoning. One of these semantic inference engines is Oracle’s Semantic Technolo-
gies offering [10], which has supported inference over scalable rule-based subsets of
OWL since Oracle Database 11g Release 1. Oracle’s inference engine pre-computes
and materializes all inferences using forward chaining, and later uses the materialized
graph for query answering1.

1 Note that our focus is not on query time inference; therefore we have not incorporated tech-

niques such as magic sets rewriting.

 Optimizing Enterprise-Scale OWL 2 RL Reasoning in a Relational Database System 437

There are several challenges in handling enterprise-scale OWL 2 RL reasoning:

− OWL 2 RL supports equivalence relations such as owl:sameAs or
owl:equivalentClass. With the emergence of inter-connected Linked Data
and its heavy use of owl:sameAs, it becomes increasingly difficult to fully
materialize owl:sameAs closures. A naïve representation of the closure could
be O(N2) in the size of the original triple set; we have observed these
owl:sameAs blowups using UniProt[2] and OpenCyc [24] data.

− New RDF data is being published at an increasing rate; efficiently reasoning
through such updates becomes a bottleneck if the inference closure needs to
be maintained. There exists previous work on optimizing Datalog reasoning
through updates using semi-naïve evaluation (see [21] for a survey); however
it has neither been applied nor evaluated in an OWL setting using large-scale
datasets and complex rule sets.

− Since OWL 2 RL has more than 70 rules, performing RL inference on bil-
lion-triple sized datasets could take hours to finish. With the proliferation of
multi-core and multi-CPU machines, an approach is needed that could effi-
ciently parallelize OWL 2 RL inference so that it could readily scale by add-
ing more processors to the inference engine.

In this paper, we present a new2 version of the inference engine built inside Oracle
Database that supports OWL 2 RL and addresses the above challenges. The main con-
tributions are the following:

Compact Materialization of Equivalence Closures – We address the challenge of
efficiently computing owl:sameAs equivalence closures on massive scales by provid-
ing a hybrid (memory and disk-based) algorithm for generating compressed closures
and integrating it with the general forward chaining inference engine.

Incremental Maintenance of Inferred Closure – We have developed a technique to
efficiently update the inferred graph after triple additions to the underlying data
model. Our technique is based on semi-naïve evaluation, with additional optimiza-
tions such as lazy duplicate elimination and dynamic semi-naïve evaluation.

Parallel Inference – We have parallelized the rules engine by leveraging Oracle’s
support for parallel SQL execution [17], which scales well with modern multi-core
and multi-CPU architectures. To this end, we developed novel rule optimization tech-
niques specifically aiming at parallel execution of queries. We also developed a
source table design to align the structure of the table that stores semantic models with
the table that stores intermediate temporary data generated during inference. Finally,
we developed optimizations to reduce the data storage footprint of inference to reduce
memory and I/O consumption.

Note that no knowledge of Oracle internals is needed to apply the techniques pre-
sented in this paper. Thus, they should be applicable to any RDBMS-based OWL 2
RL implementation (except for parallel inference, which assumes that the underlying
database has support for parallel query evaluation).

2 The algorithms described in this paper along with full support for the OWL 2 RL/RDF en-

tailment and validation rules are available in an Oracle Database 11g Release 2 patch and will
be part of the next release.

438 V. Kolovski, Z. Wu, and G. Eadon

We evaluated the new features using datasets with billions of triples, including ver-
sions of the LUBM ontology benchmark, UniProt ontology and various other real
world datasets. With the optimized handling of equivalence closures, inference over
owl:sameAs-heavy datasets that was extremely time and space consuming in previous
versions of Oracle can now be done in minutes. We also show that our incremental
OWL 2 RL inference over graphs of 1 billion triples takes less than 30 seconds to up-
date the inferred graph. Finally, in the empirical evaluation section, we demonstrate
the advantages of using parallel inference; this allows us to perform inference faster
on less powerful hardware than well-known triple store vendors [3].

2 Preliminaries

2.1 OWL 2 RL

OWL 2 RL is a profile of OWL 2 aiming at applications that require scalable reason-
ing, efficient query answering, and more expressiveness than RDF(S), without need-
ing the full expressive power of OWL 2. The specification [12] provides a partial
axiomatization of the OWL 2 RDF-Based Semantics in the form of first order impli-
cations, called the OWL 2 RL/RDF rules.

The OWL 2 RL/RDF rule set is a superset of the non-trivial RDF(S) rules [22]; to-
tal number of rules in the partial axiomatization of OWL 2 RL is 78, compared to the
14 rules defined for RDF(S). In addition to supporting all of the RDF(S) constructs
(except for axiomatic triples which are omitted for performance reasons), OWL 2 RL
also supports inverse and functional properties, keys, existential and value restric-
tions, and owl:intersectionOf, owl:unionOf to some extent. For a lack of space, we
will not enumerate all of the OWL 2 RL rules; we refer the reader to the standard
specification [12] for more information. Inference and query answering has polyno-
mial data complexity for OWL 2 RL.

2.2 Oracle Semantic Technologies

Oracle Semantic Technologies [23] provides a semantic data management framework
in Oracle Database that supports storing, querying, and inferencing of RDF/OWL data
via either SQL or Java APIs. It allows users to create one or more semantic models to
store an RDF dataset or OWL ontology. The built-in native inference engine allows
inference on semantic models using OWL, SKOS, RDF(S), and user-defined rules.
The semantic model (and/or entailed semantic model, that is, model data plus inferred
data) is materialized and can be queried using either SPARQL query patterns embed-
ded in SQL or standard SPARQL query interface in Java. Oracle also supports
ontology-assisted querying over enterprise relational data and semantic indexing of
documents.

Inference Engine: The semantic inference engine [10] in Oracle 11g Database is
based on forward chaining. It compiles entailment rules directly to SQL and uses
Oracle’s native cost-based SQL optimizer to choose an efficient execution plan for
each rule. Various optimizations were added to improve performance and scalability:

 Optimizing Enterprise-Scale OWL 2 RL Reasoning in a Relational Database System 439

− Dependency Graph – We developed a dependency graph such that we only ap-
ply a rule in round n if in round n-1 there have been new inferences for at least
one of the predicates contained in the rule’s body.

− Using a Partitioned, Un-indexed Table – A temporary table is used to material-
ize all inferences while applying the inference rules. This table is partitioned by
predicate to allow efficient queries, but is not indexed, since inserting inferred
triples in an indexed table significantly slows down total inference time.

− Optimized Transitive Closure Evaluation – this optimization is critical for
predicates such as rdfs:subClassOf. Instead of using hierarchical queries
natively provided by Oracle Database, we discovered that implementing semi-
naïve evaluation [21] to compute transitive closure results in better performance.

The following notation is used throughout this paper to refer to various data structures
maintained in the semantic store: M refers to a single semantic model, i.e., an RDF
graph containing asserted instance and schema triples. I(M), or I for short, refers to
the entailed OWL 2 RL graph for M which contains only the materialized inferred tri-
ples. PTT is the partitioned, un-indexed temporary table that stores inferred triples
during inference. D and DI are related to incremental inference: D stores the triples
added to M since the last inference call, and DI contains the triples inferred in the cur-
rent inference round.

3 Optimized Equivalence Reasoning

For equivalence relations such as owl:sameAs, owl:equivalentProperty or
owl:equivalentClass, fully materializing the equivalence closures can be problematic
for large datasets. In general, given a connected RDF graph with N resources using
only owl:sameAs relationship, there will be O(N2) inferred owl:sameAs triples. Note
that the alternative of searching the RDF graph at query time to determine if two URIs
are equivalent is not feasible because of the interactions among owl:sameAs infer-
ences with other rules in OWL 2 RL. This will require a query rewriting approach,
which given the large number of rules in OWL 2 RL will slow down queries.

Each group of owl:sameAs-connected resources represents a clique; when doing
full materialization the cliques’ sizes (number of owl:sameAs triples) can grow quite
large. For instance, the Oracle 11g inference engine [10] exhausts disk space (500GB)
before completing the owl:sameAs closure for the benchmark ontology UniProt 80M
[2]. Note that this version of UniProt80 contains a clique of size 22,000+ individuals
so that a full materialization generates more than 480 million triples.

Our approach to handling equivalence closures is based on partial materialization.
Instead of materializing the cliques, we choose one resource (individual) from each
clique as a representative and all of the inferences for that clique are consolidated us-
ing that representative. The idea behind this partial materialization has been explored
in previous work [3, 6, 8]; our novel contribution is in developing a hybrid (memory
and disk-based), scalable approach for building the owl:sameAs3 cliques.

3 For brevity, we will only be discussing owl:sameAs closures in the rest of this paper, but our

approach is applicable to other equivalence relations such as (owl:equivalentClass).

440 V. Kolovski, Z. Wu, and G. Eadon

Following, we discuss how we solve the technical challenge of large scale clique
building, that is: given an arbitrarily large input of owl:sameAs pairs, efficiently
build a map IDID →:ρ which will take an ID4 of a subject, a property or an ob-

ject as input and return the corresponding clique representative ID. Note while build-
ing ρ , we maintain an invariant that)(xx ρ≥ .

3.1 Large Scale Clique Building

The main challenges in building owl:sameAs cliques are that 1) a pure memory based
approach does not scale due to memory size limitations, and 2) a pure SQL based ap-
proach is not efficient because of the performance implications of many joins on input
required to build ρ .

Our proposed solution uses a hybrid approach – we load batches of owl:sameAs
assertions (where the batch size is a tunable parameter) from the input table, merge
each batch in memory and then append the generated cliques to ρ , which is stored as

a table. After all batches are processed, there may be owl:sameAs relationships across
different cliques. To capture these cases, we again employ batch processing on the ρ
table itself, merging where needed, until we reach a fixpoint.

The flow of the algorithm is as follows:

 function build_cliques (I)
 I : input table containing owl:sameAs pairs

ρ : empty map (resource_id -> clique_id)

1. Read batch B from I

a. ρ B = Merge(B); b. Append ρ B to ρ
2. Repeat 1 until no batches left in I
3. Loop

a. Select batch of merge candidates B from ρ

b. ρ B = Merge(B)
c. Update ρ with ρ B

4. Repeat 3 until no more merges possible in ρ

5. return ρ

Merge is done in memory using the Union-Find algorithm [8, 27]. Given an input of
equivalence relations (i.e., owl:sameAs assertions), Merge builds a map of resources
to clique representatives such that given a resource, retrieving its representative is
done using only one lookup. The algorithm has time complexity of O(N log N) and
polynomial space complexity, however using path compression [8] we achieved al-
most linear performance in our testing.

After steps 1 and 2, ρ is not fully merged since there may be inter-clique merges

remaining. For instance, if one clique contains A owl:sameAs B and another contains
A owl:sameAs C, then B and C should belong to the same clique and they will be

4 Note that in our internal storage structures, URIs and literals are mapped to number-based IDs

for performance reasons.

 Optimizing Enterprise-Scale OWL 2 RL Reasoning in a Relational Database System 441

selected as merge candidates. Additionally, if one clique contains A owl:sameAs B
and another contains B owl:sameAs C, then A and C should be in the same clique and
they will also be selected as merge candidates. In step 3c, ρ is updated with the

merged in-memory map ρ B. This is done using an OUTER JOIN where, for each

key x in ρ B, ρ (x) is replaced by ρ B(x).

After ρ has been built, we update the asserted and inferred graph with the new in-

formation, replacing resources x with their clique representatives ρ (x).

Performance: On a UniProt 80 million triple sample, the optimized owl:sameAs ap-
proach took 26 minutes to finish inference, producing 61 million consolidated triples.
More than 100,000 cliques were generated with an average membership size of 5.6;
the largest owl:sameAs clique had 22,064 resources. The storage savings compared to
a full materialization of the owl:sameAs closure are more than 95%. More evaluation
results are shown in Section 6.

4 Parallel OWL Inference

An extensive performance evaluation of the previous version of Oracle’s inference
engine (11g Release 1) on a server class machine with solid-state disk based storage
revealed that the inference process is CPU-bound in such a setup. Thus, the native
OWL inference engine needs to be parallelized to fully leverage hardware configura-
tions that have multiple CPUs (cores) and high I/O throughput.

We explored several schemes to parallelize the native OWL inference process.
Simply applying Oracle SQL engine’s parallel execution capability to each inference
rule (which is translated to a SQL query) without any modification to the inference
algorithm did not produce any performance benefits. In the following subsections, we
propose several new inference optimization techniques that successfully leverage
Oracle’s parallel execution engine. We believe they are general enough to be applied
to any database supporting parallel query executions.

4.1 Query Simplification for Efficient Parallel Inference

After comparing the performance difference of all the rules running in serial and par-
allel mode, we observed that rules with smaller number of patterns in the body tend to
have bigger performance gains when run in parallel. This observation leads to a new
optimization to simplify complex, multi-pattern rules. Next, we provide an example
of how this rule simplification by break up technique is used to optimize the parallel
execution of the OWL 2 RL rule CLS-SVF1 (listed below):

T(?x,owl:someValuesFrom,?y)
T(?x,owl:onProperty,?p)
T(?u,?p,?v)
T(?v, rdf:type, ?y) T(?u, rdf:type, ?x).

The first two patterns T(?x, owl:someValuesFrom, ?y) and T(?x,

owl:onProperty, ?p) are much more selective compared to the rest. Intuitively,

442 V. Kolovski, Z. Wu, and G. Eadon

execution of this rule can be divided into two parts, where one part focuses on the se-
lective patterns, and the other part focuses on the rest. After the selective sub-query is
executed, the variable bindings are then used to further constraint the rest of the pat-
terns. Putting this idea into context, a query can be executed to find all bindings for ?x,
?y, and ?p that satisfy the first two patterns T(?x, owl:someValuesFrom, ?y)
and T(?x, owl:onProperty, ?p). For each binding tuple (x, y, p) coming
from the query result set, we execute the following rule in parallel:

 T(?u, p, ?v). T(?v, rdf:type, y) T(?u, rdf:type, x)

Executing CLS_SVF1 in parallel mode using the hybrid approach described above is
five times faster than running this rule as a single SQL statement.

This idea of breaking up a rule in two parts can easily be generalized to complex
rules containing selective and unselective patterns in the rule body5. The pseudo code
of the algorithm is as follows:

 function find_sel_patterns (I, R) returns C
 I : Input RDF graph containing asserted data
 R : Set of triple patterns belonging to an OWL 2
 RL rule body

C : Candidate selective subset that is returned,
 initially empty

1. Estimate average out- and in- degree for subjects
and property nodes respectively for each property
in I

2. Estimate selectivity for each property in I by sam-
pling

3. For each subset S of R
 If est(S, I) < threshold6 then

 If cardinality(S) > cardinality(C) then C := S
 Else if cardinality(S) == cardinality(C) and
 est(S, I) < est(C, I) then C := S
4. Return C

Note that all of the rules in OWL 2 RL have less than 10 triple patterns in the body,

so the search space for selective subsets is fairly small.
In the pseudo-code above, est(S, I) estimates the selectivity (size of return

set) of a set of triple patterns S against a triple dataset I. We use a simple, conserva-
tive estimation technique where we start with the property count estimates and then
we iteratively multiply by the average in- or out- degrees (depending on the position
of the join variables). These property count and average in/out degree estimates are
done once, when the first time find_sel_patterns is executed. Note that more
sophisticated SPARQL selectivity estimation methods like [26] could be used here.

5 Note that we are not simply reordering the patterns; instead we find a selective subset of rule

body patterns to be used as the driving query.
6 Currently, we set the threshold for the selective triple pattern estimate to 1000. We do not use

a larger number because we need to re-evaluate the second part of the rule for each binding
produced by the selective part.

 Optimizing Enterprise-Scale OWL 2 RL Reasoning in a Relational Database System 443

The idea of query simplification also applies to those rules, including CLS-INT1
[12], with recursive/hierarchical structures that use rdf:list. Using CLS-INT1 as an
example, instead of using a single complex SQL to find all ?y that satisfy T(?y,
rdf:type, ?C1) … T(?y, rdf:type, ?Cn), a series of simpler SQLs are
used to first find all matches for the T(?y, rdf:type, ?C1) and then join this
result set with the next pattern T(?y, rdf:type, ?C2). This kind of operation
is repeated until the last pattern T(?y, rdf:type, ?Cn) is processed. Apart
from the query simplification, another benefit is that for ontologies containing tens of
thousands or more owl:intersectionOf axioms, it is feasible to process all the axioms
together in an iterative fashion. Details are omitted here due to space limitations.

4.2 Compact Data Structures

An examination of the underlying table design shows a discrepancy between the table
that holds the original semantic model(s) and the partitioned temporary table (PTT)
that holds the intermediate inference results. Namely, PTT is partitioned using predi-
cates while the semantic models are not.

To allow efficient parallel execution, we designed a single source table with the
same structure as PTT; this source table contains all data of the original semantic
model(s). Then, queries executed during inference only use this source table and PTT.
This design change produced critical performance improvements for parallel infer-
ence. For example, rules that tend to generate many new inferred triples including
RDFS2, RDFS3, RDFS9, RDFS11, RDFS7, PRP-INV1 [12], PRP-INV2 are running
30% ~ 60% faster when Oracle SQL engine’s parallel query execution is turned on
and the degree of parallelism (DOP7) is set to 48.

As an additional storage optimization, we use an 8-byte binary RAW type as a col-
umn type for the PTT and source table instead of a generic numeric type (NUMBER).
RAW is an Oracle-specific native datatype which is returned as a hexadecimal string.
This column type change saves more than 12% disk storage size using typical
benchmark ontologies and this space saving directly translates into better inference
performance.

As a final optimization, we also use perfect reverse hashing, based on the fact that
the set of all generated resource IDs for even a large-scale ontology tends to be sparse
(imagine 1 billion = 109 unique IDs scattered across a space consisting of 264 which is
roughly 1.8*1019 different values). Perfect reverse hashing provides additional storage
savings by mapping the sparse ID values into a sequential set of values starting with 1.
For example, assume the original data model has the following set of unique ID values:
{10, 1009123, 834132227519661324, 76179824290317, 621011710366788}, where
some of them require multiple bytes for storage. If we map them to this sequence {1, 2,
3, 4, 5}, then one byte for each ID is sufficient. In our algorithm, we get the set of
unique integer IDs out from the semantic models, map them into a set of sequential in-
teger values, which are then stored in a variable length data type. Then, the RDBMS
determines the number of bytes needed for storage. Note that the more compact table
structures provided by perfect reverse hashing will improve serial inference as well.

7 Degree of parallelism (DOP) is an Oracle setting that specifies the number of parallel proc-

esses that should be used to execute a SQL statement.
8 On a PC with dual-core CPU, three 1TB disks and 8GB RAM running 64-bit Linux.

444 V. Kolovski, Z. Wu, and G. Eadon

5 Incremental Inference

Incremental inference tackles the following problem: Given a model M with a materi-
alized inference graph I, how can we efficiently update I after a new set of triples D is
added to M?

Our algorithm for incremental inference is based on semi-naïve evaluation [21].
The goal is to avoid re-deriving existing facts in I after an update. The following ex-
ample illustrates the basic idea using the rule:

 X rdf:type C1. C1 rdfs:subClassOf C2 => X rdf:type C2
 p1 p2 h

In “naïve” inference, the patterns p1 and p2 are both selected from M UNION I.
For shorthand, we use pA,B to indicate that pattern p selects from relation A UNION
B. After adding D to M, we know that the join p1

M,I× p2
M,I

 was already evaluated.
Joining p1

M,I,D× p2
M,I,D

 means mostly re-deriving the same inferences.
To avoid redundant derivation, at least one predicate should select from the new set

of triples D. The semi-naïve rule evaluation is done in two steps:

1) h p1
D

 × p2
M,I,D

2) h p1
M,I,D

 × p2
D

Given the assumption that D is small relative to M and I, this divide and conquer
approach has the potential for significant performance improvements. We imple-
mented two custom optimizations on top of this well-known evaluation algorithm in
order to further improve performance.

5.1 Lazy Duplicate Elimination

During inference, inferred triples are checked to see if they already exist in M, I or
PTT before the triples are inserted in PTT. This check usually involves a hash join
which essentially scans through the M, I, and PTT tables. Given a small size of D, we
assume that the number of triples inferred will be relatively small compared to M and
I, so we allow duplicates to accumulate by not removing them after firing each rule.
Instead, we perform the join to remove duplicates only once, at the end of each infer-
ence round.

Lazy duplicate elimination will introduce duplicates in DI during an inference
round. However, our results (see Table 1) indicate that the duplicate overhead is ac-
ceptable since we do not have to perform duplicate elimination after each rule.

Table 1. Duplicate Triples in Incremental Inference. The number of newly asserted triples (i.e.,
delta size) is 10,000.

Model name
(#triples)

Yago
(19.9 million)

WordNet
 (1.9 million)

LUBM8000
(1.06 billion)

#Duplicate/#Unique
triples

83,583 / 17,180 123,123 / 23,410 20,944 / 2,453

 Optimizing Enterprise-Scale OWL 2 RL Reasoning in a Relational Database System 445

5.2 Dynamic Semi-naïve Evaluation

The semi-naïve evaluation technique described in this section can also be used when
performing inference from scratch, by treating the inferred triples in each round as
delta D.

However, we observed that using semi-naïve evaluation for each inference round
(we refer to it as static semi-naïve evaluation) is not always the optimal choice. This
is because in the initial inference rounds the number of inferred triples |DI| could be
quite large compared to the size of the asserted model(s) |M|; in such cases, when
splitting and evaluating each rule the same execution plan (usually consisting of hash
joins) might be used and it might be slower than evaluating the rule in one step. On
the other hand, if |DI| is small enough, the SQL optimizer will select a different plan
where a nested loop join with index is used instead of hash join, which could dramati-
cally improve performance when the driving table |DI| << |M|.

Thus, we selectively use semi-naïve evaluation depending on the number of triples
inferred in an inference round. At the end of each round r, we use the following heu-
ristic formula to determine whether to use semi-naïve evaluation in round r+1:

t
MPTT

DI

i
i

<
+∑ ||||

||
 (1)

where the threshold t is set to 0.1 by default. In other words, if the number of triples
inferred is less than 10% of the overall triple count (including cumulative inferences
and asserted models), then we use semi-naïve evaluation in the following round.

Below, we demonstrate the benefits of dynamic semi-naïve evaluation compared to
naive evaluation and to “static” semi-naïve evaluation (running times in seconds).

Table 2. Evaluation results for dynamic semi-naïve evaluation

Dataset Model Size #Inf.
Rounds

Dynamic Semi-
Naive

Naïve

Static
Semi-Naive

LUBM1000 133M 3 3,628 4,497 4,996
Yago 19.9M 2 981 1,230 2,049
Wordnet 1.9M 6 335 427 605

6 Evaluation

This section presents the results of a performance study of the techniques presented in
this paper using various real-world and synthetic semantic datasets.

6.1 Experimental Setup

We used 2 commodity PCs for our experiment; we refer to them as S1 and S2. Each
runs Redhat Enterprise Linux v5 64 Bit (2.6.18-128). Each PC has Oracle Database
11.2 installed and three disks attached. We used Automatic Storage Management
(ASM) to spread the I/O load across multiple disks.

446 V. Kolovski, Z. Wu, and G. Eadon

 CPU Memory Disk
S1 Intel Core 2 Duo 2.13 GHz 6GB 750GB
S2 Intel Core 2 Quad 2.4 GHz 8GB 3TB

The databases were setup with a block size of 8k bytes. S1 had 2400M memory al-

located to system global area (SGA), and 3200M to aggregated program global area
(PGA) whereas S2 had allocated 3400M and 4400M to SGA and PGA.

In addition to the two commodity PC setups, we also use two server-class ma-
chines. S3 is a Sun 4150 server with dual quad core CPUs and Sun Storage 5100
Flash Array. S4 is a Sun Oracle Database Machine and Exadata Storage Server (Full
Rack9 with 8 nodes).

 CPU Memory Disk
S3 Intel Xeon CPU E5440 2.83GHz 32GB 1TB
S44 Intel Xeon CPU E5540 2.53GHz 72GB each node 100 TB+

We used various real-world and synthetic datasets to evaluate our inference engine.

Lehigh University Benchmark [4] is used frequently to evaluate performance of se-
mantic stores; we evaluated against LUBM1000, LUBM8000, LUBM25K and
LUBM50K where each has 133M, 1.1B, 3.3B and 6.6B triples respectively. We used
Yago (20M), OpenCyc [24] (1.5M), Wordnet (1.9M) and UniProt [2] (two versions,
one of 80M, another of 740M) as real-world datasets.

6.2 Parallel Inference Evaluation

We evaluated parallel inference on UniProt 740M and various sizes of LUBM. On
server class machine S3, we measure the performance improvement as DOP changes
from 1 to 8. Figure 1 shows that performance improves drastically as we move from a
serial execution to parallel execution with DOP set to 8.

Fig. 1. Inference Performance on server S3

9 http://www.oracle.com/technology/products/bi/db/exadata/pdf/
 exadata-technical-whitepaper.pdf

 Optimizing Enterprise-Scale OWL 2 RL Reasoning in a Relational Database System 447

The evaluation results achieved using machine S2 results are shown in Figure 2. In
the case of LUBM8000, inference time drops from 42 hours to 11 hrs when using
parallel inference. We observe similar improvements with LUBM25000. In all cases,
the parallel inference is run with DOP=4.

Using the parallel inference optimizations, we are able to achieve comparable per-
formance to other triple stores while using much weaker hardware: e.g., BigOWLIM
uses a server machine while reporting similar inference performance numbers to ours
for LUBM25000 and LUBM8000 [15].

Fig. 2. Parallel Inference Performance when DOP=4

We also evaluated parallel inference performance on server-class machine S4. Due
to time limitations, we only collected a few data points. The results nonetheless prove
the effectiveness of the parallel inference engine inside Oracle database and the scal-
ability of the particular server-class machine tested.

Benchmark Parallel Inference Time with S4
LUBM 8000, DOP = 64 46 minutes and 23 seconds
LUBM 25000, DOP = 32 247 minutes and 9 seconds

6.3 Incremental Inference Evaluation

This section contains the incremental inference performance results. The evaluation
was done on server S1. For each dataset, we removed a number of triples, performed
inference on the remaining dataset and then added back the removed triples in batches
of various sizes while measuring the time needed to update the inference graph. We
performed this three times and measured the average incremental inference time for
each batch. Results are presented in Figure 3.

Our evaluation shows that updating the inference graph is orders of magnitude
faster using the incremental inference techniques. For instance, even in the case of a 1
billion triple dataset like LUBM8000, we are able to update the inference graph in
less than 20 seconds if the delta is less than 100. Even when adding 10,000 triples the
inference update time takes only a few minutes (compared to 11 hours needed to build
LUBM8000 inference graph from scratch).

448 V. Kolovski, Z. Wu, and G. Eadon

Fig. 3. Incremental Inference Evaluation. As a reference, we also show total (non-incremental)
inference time when building the inference graph from scratch.

6.4 Optimized owl:sameAs Handling Evaluation

To evaluate our optimized owl:sameAs handling techniques, we used the following
datasets: UniProt 80 million, UniProt 740M and OpenCyc. All three of these datasets
have more than 100,000 asserted owl:sameAs triples. Performance results are shown
in Table 3. Without the optimized owl:sameAs handling, UniProt 80M and OpenCyc
did not finish inference: they exhausted disk space (500GB) after running for 40+ hrs,
and UniProt 740M took 24 hours to finish inference.

Table 3. Performance Results for Optimized owl:sameAs Handling

Dataset

(#triples)

UniProt

(80 Million)

UniProt

(740 Million)

OpenCyc

(1.5 Million)

owl:sameAs Closure # of Triples 2,129,166,152 42,159,397 295,540,812

owl:sameAs Compressed Closure

of Triples
766,905 12,282,537 395,527

Inferred Triple Size 63,161,568 740,269,215 91,192,106

Cliques Building Time 29 sec 6 min 39 sec

Total Inference Time 25min 48sec 4hr 14min 13 hr 47min

Figure 4 shows the distribution of number of cliques across bins of various clique
sizes. As expected, most of the cliques in all three datasets have less than 10 mem-
bers. Interestingly, UniProt80m and OpenCyc have a surprising number of cliques
larger than 1000. In the case of UniProt80m, the largest clique is of size 22,065 and
can blow up to 486 million triples when fully materialized. In the more recent, up-
dated version of UniProt (with 740million triples), the modeling issues leading to
these large cliques seems to have been fixed; almost all cliques have less than 1000
resources.

 Optimizing Enterprise-Scale OWL 2 RL Reasoning in a Relational Database System 449

Fig. 4. Distributions of Clique Sizes

The latest version of OpenCyc [24], on the other hand, seems to contain some
modeling issues. Apart from the largest clique containing 17,030 resources, many of
the resources in that clique are plain literals with distinct values.

7 Related Work

Due to a lack of space, in this section we only provide a survey of the semantic stores
and inference engines most closely related to our work.

Jena [11,14] is a Java framework for Semantic Web Applications. In addition to
providing an API for RDF, RDFS, OWL and SPARQL, it includes a rule-based infer-
ence engine; the inference engine can use both forward and backward chaining, and it
supports the most common OWL constructs. Additionally it allows users to define
their own custom rules, however it does not natively support any constructs intro-
duced in OWL 2. Like our inference engine Jena supports incremental maintenance
(when the forward-chaining RETE-based engine is used); unlike our engine Jena does
not optimize owl:sameAs handling.

Sesame [13] is a semantic data repository for RDF and RDFS. Inference wise, it
does not support OWL and OWL 2 constructs as we do. It provides an inference en-
gine for RDFS that uses forward chaining and materialization of the data. In [13], an
algorithm is proposed for truth maintenance of RDFS data, which could be used to
optimize reasoning after updates.

BigOWLIM [3] is a semantic repository that is fully compatible with the Sesame
RDF framework. It supports RDFS, some OWL constructs, and extensions with user-
defined rules. BigOWLIM’s inference engine materializes inferred triples using for-
ward chaining.

BigOWLIM has reported results for the LUBM benchmark [15]. For example,
BigOWLIM 3.1 can load, infer, and store the LUBM 8000 dataset in 14.4 hours on a

450 V. Kolovski, Z. Wu, and G. Eadon

desktop machine. However, their approach seems to require a much larger memory
footprint when operating against large ontologies [15] compared to ours.

AllegroGraph [1] is a persistent triple store that can handle large RDF knowledge
bases. It has inferencing capabilities that extend beyond RDFS, including custom
rules and some OWL constructs, but does not natively support any constructs intro-
duced in OWL 2. Virtuoso Open Link Server [18] is a persistent triple store that
scales well on multiple machines but it also provides limited inference support
(rdfs:subClassOf, owl:sameAs and rdfs:subPropertyOf constructs).

The Web-Scale Parallel Inference Engine (WebPIE) - although not a true RDF re-
pository because it lacks query capabilities - shows the power of massive parallelism
for OWL reasoning. WebPIE [25] is able to infer 4.97 billion triples from a 10 billion-
triple LUBM data set in 4.06 hours, using a 64-node cluster. As a comparison, in an
inference run using the server-class machine S4, Oracle’s parallel inference engine is
able to infer, in one inference round, 5.5 billion triples from a 13 billion-triple LUBM
data set in 1.97 hours, using DOP=32. The same university ontology and the same
OWL Horst semantics were chosen to make the comparison meaningful. We plan to
do more testing using high performance platforms like S4.

While our inference engine is to able to cover the whole OWL 2 RL profile, for
applications that need additional expressiveness there has been recent work in cou-
pling OWL 2 DL reasoner Pellet [19] with the OWLPrime inference engine in Oracle
Database 11g. The scalable-yet-expressive engine PelletDB [20] uses Pellet to com-
pute the class hierarchy and Oracle for Abox reasoning and instance query answering.

Recently a system has been proposed for parallel inference in shared-nothing clus-
ters using existing systems for local computation on each node [16]. The parallelism
within our system could work with this to take advantage of multi-core machines
within a shared-nothing cluster.

8 Conclusions and Future Work

This paper described the next generation OWL 2 RL inference engine, implemented
in the Oracle Database, capable of handling ontologies with billions of triples. We
described a number of techniques that we developed to make this engine enterprise-
scale, incremental and parallelized. Additionally, to accommodate the high degree of
owl:sameAs interlinking between semantic datasets, we implemented a novel scal-
able, hybrid in-memory/disk-based approach that can compute compact equivalence
closures. Using this owl:sameAs approach we were able to discover some modeling
issues in real world datasets (e.g., OpenCyc). Our final contribution consists of a
thorough evaluation of all our techniques on large-scale real world and synthetic
RDF/OWL datasets.

As part of future work, we plan to develop an efficient technique to update infer-
ence graphs in presence of deletions. Additionally, we plan to investigate how we can
generalize our approach and extend our inference engine to cover the remaining OWL
2 profiles (EL and QL). Finally, the optimization techniques described in this paper
are only applied to the axiomatic rules of OWL 2 RL, OWLPrime and RDF(S). We
plan to generalize the approach to cover user-specified rules and evaluate it using the
OpenRuleBench suite [28].

 Optimizing Enterprise-Scale OWL 2 RL Reasoning in a Relational Database System 451

Acknowledgement. We thank Jay Banerjee for his continuous support and sugges-
tions. We thank Tim Cline for his help in providing server-class machines S3 and S4.

References

[1] AllegroGraph, http://www.franz.com/products/allegrograph/
[2] The UniProt Consortium. The Universal Protein Resource (UniProt). Nucleic Acids Res.

36, D190–D195 (2008), http://www.UniProt.org/
[3] Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM – a Pragmatic Semantic Repository for

OWL. In: Proc. International Workshop on Scalable Semantic Web Knowledge Systems
(SSWS 2005), New York City, USA (2005)

[4] Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base Systems.
Journal of Web Semantics 3(2), 158–182 (2005)

[5] Calvanese, D., de Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable Reason-
ing and Efficient Query Answering in Description Logics: The DL-Lite Family. J. of
Automated Reasoning 39(3), 385–429 (2007)

[6] Stocker, M., Smith, M.: Owlgres: A Scalable OWL Reasoner. In: Proc. of OWL Experi-
ences and Directions EU, OWLED-EU (2008)

[7] Baader, F., Brandt, S., Lutz, C.: Pushing the EL Envelope. In: Proc. of the 19th Joint Int.
Conf. on Artificial Intelligence, IJCAI 2005 (2005)

[8] Tarjan, R.: A Class of Algorithms which Require Nonlinear Time to Maintain Disjoint
Sets. Journal of Computer and System Sciences 18(2), 110–127 (1979)

[9] Motik, B., Patel-Schneider, P.F., Parsia, B. (eds.): OWL 2 Web Ontology Language:
Structural Specification and Functional-Style Syntax. Latest version available at,
http://www.w3.org/TR/owl2-syntax/

[10] Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srinivasan, J.: Im-
plementing an Inference Engine for RDFS/OWL Constructs and User-Defined Rules in
Oracle. In: IEEE 24th International Conference on Data Engineering, ICDE, pp. 1239–
1248 (2008)

[11] Jena Framework, http://jena.sourceforge.net/
[12] Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2 Web On-

tology Language: Profiles. Latest version available at,
 http://www.w3.org/TR/owl2-profiles/

[13] Broekstra, J., van Harmelen, F., Kampman, A.: Sesame: A Generic Architecture for Stor-
ing and Querying RDF and RDF Schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002.
LNCS, vol. 2342, p. 54. Springer, Heidelberg (2002)

[14] Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF storage and retrieval in
Jena. In: Proc. VLDB Workshop on Semantic Web and Databases (2003)

[15] OWLIM: LUBM Tests,
http://ontotext.com/owlim/benchmarking/lubm.html

[16] Narayanan, S., Catalyurek, U., Kurc, T., Saltz, J.: Parallel materialization of large
ABoxes. In: Proc. of the 2009 ACM Symposium on Applied Computing, Honolulu,
Hawaii, pp. 1257–1261 (2009)

[17] Oracle SQL Parallel Execution,
http://www.oracle.com/technology/products/bi/db/11g/pdf/
twp_bidw_parallel_execution_11gr1.pdf

[18] Virtuoso Universal Server Platform, http://virtuoso.openlinksw.com/
[19] Pellet – Open Source OWL DL Reasoner, http://clarkparsia.com/pellet/

452 V. Kolovski, Z. Wu, and G. Eadon

[20] PelletDB. More information, http://clarkparsia.com/pelletdb
[21] Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog (and

never dared to ask). IEEE Transactions on Knowledge and Data Engineering 1(1) (1989)
[22] Hayes, P. (ed.): RDF Semantics, W3C Recommendation. Latest version available at,

http://www.w3.org/TR/rdf-mt/
[23] Oracle Semantic Technologies, http://www.oracle.com/technology/tech/

semantic_technologies/index.html
[24] OpenCyc, http://www.opencyc.org/downloads
[25] Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: OWL reasoning with

WebPIE: calculating the closure of 100 billion triples. In: Aroyo, L., Antoniou, G., Hy-
vönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC
2010. LNCS, vol. 6088, pp. 213–227. Springer, Heidelberg (2010)

[26] Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL Basice
Graph Pattern Optimization Using Selectivity Estimation. In: Proc. of the World Wide
Web Conference (WWW 2008), Beijing, China, April 21-15 (2008)

[27] Fiorio, C., Gustedt, J.: Memory Management for Union-Find Algorithms. In: Reischuk,
R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 67–79. Springer, Heidelberg
(1997)

[28] Liang, S., Fodor, P., Wan, H., Kifer, M.: OpenRuleBench: An Analysis of the Perform-
ance of Rule Engines. In: WWW 2009, pp. 601–610. ACM Press, New York (2009)

Linked Data Query Processing Strategies

Günter Ladwig and Thanh Tran

Institute AIFB, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

{guenter.ladwig,duchthanh.tran}@kit.edu

Abstract. Recently, processing of queries on linked data has gained at-

tention. We identify and systematically discuss three main strategies:

a bottom-up strategy that discovers new sources during query process-

ing by following links between sources, a top-down strategy that relies

on complete knowledge about the sources to select and process relevant

sources, and a mixed strategy that assumes some incomplete knowledge

and discovers new sources at run-time. To exploit knowledge discovered

at run-time, we propose an additional step, explicitly scheduled during

query processing, called correct source ranking. Additionally, we propose

the adoption of stream-based query processing to deal with the unpre-

dictable nature of data access in the distributed Linked Data environ-

ment. In experiments, we show that our implementation of the mixed

strategy leads to early reporting of results and thus, more responsive

query processing, while not requiring complete knowledge.

1 Introduction

The amount of Linked Data on the Web is large and ever increasing. This devel-
opment is exciting, paving new ways for next generation applications on the Web.
We contribute to this development by investigating the problem of how to pro-
cess queries against Linked Data. Linked Data query processing can be seen as
a special case of federated query processing, i.e., to process queries against data
that resides in different data sources. However, the highly distributed structure
and evolving nature of Linked Data presents unique challenges.

– Volume of the Source Collection: According to the Linked Data princi-
ples [2], each URI can be dereferenced and the document returned represents
a virtual “data source”. This dramatically increases the number of Linked
Data sources that need to be considered for query processing.

– Dynamic of the Source Collection: Linked Data sources are added and
removed and sources’ content changes rapidly over time. Due to this dy-
namic, it is no longer safe to assume that information about all sources can
be obtained. In particular, sources might be a priori unknown and can only
be discovered at run-time.

– Heterogeneity of Sources, Source Descriptions and Access Options:
Sources vary in size. There might be large sources, corresponding to Web
databases today. Sources could also just comprise several RDF statements
obtained via URI lookup. Further, there is no standard for describing sources

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 453–469, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

454 G. Ladwig and T. Tran

yet. Not all sources are accompanied with a voiD1 description and even if so,
they are often incomplete. Also, the range of access options is vast. Sources
can be obtained via HTTP lookup, retrieved from SPARQL endpoints or
directly loaded from a local repository or cache. Even using the same access
method, the time required to obtain the same amount of data might vary
greatly due to network latency.

Recently, Harth et al. [5] proposed a probabilistic data structure that aims to
improve the efficiency of Linked Data query processing. In order to deal with
a large number of sources, rich statistics about them are acquired and stored
locally. These statistics are used to determine relevant sources and to optimize
query processing. Hartig et al. [6] proposed a method for dealing with the dy-
namic aspect of Linked Data query processing. As opposed to [5], the strat-
egy employed here does not assume information about sources to be available.
Sources are discovered via lookups of URIs found during query processing. We
follow the direction of this line of work and make the following contributions:

– For Linked Data query processing, we identify the challenges, discuss con-
crete tasks, and derive three main strategies. There is a top-down strategy
corresponding to the approach implemented by [5], a bottom-up strategy im-
plemented by [6], and a mixed strategy that as opposed to [5], does not
assume complete but only partial knowledge about the sources and unlike
[6], have to discover only some but not all sources at run-time.

– We propose an implementation of the mixed strategy that is able to use run-
time information for corrective source selection and ranking. The proposed
ranking scheme can deal with different types of source descriptions containing
knowledge at varying levels of granularity.

– As an alternative to the pull-based non-blocking iterator [6], we propose the
use of push- and stream-based query processing where source data is treated
as finite streams that can arrive at any time in any order. This approach is
better suited to deal with network latency as it is driven by incoming data
and does not require temporary rejection of answers.

We implement the proposed approach and perform an evaluation where we com-
pare the mixed strategy with the bottom-up [6] and top-down [5] strategies. The
results suggest that the implemented mixed strategy is able to report results
much earlier than the bottom-up strategy, while not relying on the assumption
that complete knowledge is available, as opposed to the top-down strategy. First
results (25% of total results) were on average reported 42% faster than for the
bottom-up strategy.

Outline: In Section 2 we discuss techniques for Linked Data query processing.
In Sections 3 & 4 we present our approach to stream-based query processing and
corrective source ranking. Finally, we present related work in Section 5 before
the discussion on evaluation results in Section 6 and the conclusions in Section 7.

1 http://vocab.deri.ie/void/guide

http://vocab.deri.ie/void/guide

Linked Data Query Processing Strategies 455

2 Linked Data Query Processing

We begin with a discussion on Linked Data. For Linked Data query processing,
we discuss the tasks (a) source discovery, (b) source ranking and for (c) query
evaluation, we discuss the (1) top-down, (2) bottom-up and (3) mixed strategy.

2.1 Linked Data

In this work, we simply conceive Linked Data sources as sets of RDF triples [10].

Definition 1. A source s is a set of RDF triples 〈s, p, o〉 ∈ T s where s is the
subject, p the predicate and o the object. It is uniquely identified by an URI and
can be retrieved by dereferencing that URI. A source si links to another source
sj if the URI of sj appears as the subject or object in at least one triple ts ∈ T si .

The standard language for querying RDF data is SPARQL [14]. An important
part of SPARQL queries are basic graph patterns (BGP). In this work we are
concerned with answering BGP queries.

Definition 2. A basic graph pattern is a set of triple patterns 〈s, p, o〉 ∈ T q

where every s, p and o is either a variable or a constant. Variables may interact
in an arbitrary way such that the triple patterns tq ∈ T q may form a graph.

An answer to a BGP query is given by μ which maps patterns tq ∈ T q to triples
ts ∈ T s. By applying such a mapping, each variable in T q is replaced by the
corresponding subject, predicate or object of triples in T s (called a binding).
When processing queries over a set of Linked Data sources, the query is not
evaluated on a single source, but on the graph formed by the union of all retrieved
sources. A BGP query is evaluated by performing a series of joins between RDF
triples that match the triple patterns in the query. In particular, two triple
patterns that share a variable form a join pattern.

There are several types of source descriptions the system might be able to
obtain for a source: A metadata description is like a voiD description of the
content. It captures basic information such as the size of the source, the RDF
predicate it contains etc. Statistics capture detailed information that can be
derived from the source data such as triple pattern cardinality, join pattern
cardinality, histograms, etc. A representative sample of the source data might
be available.

2.2 Source Discovery

There are multiple ways for sources to be discovered: Sources can be explicitly
set in the query using special syntax or can be part of a triple pattern. The
query engine can maintain a list of known sources. This list can either be en-
tered manually or be compiled from previously executed queries. Sources can be
discovered during query processing by following links mentioned in the content
of retrieved sources.

456 G. Ladwig and T. Tran

In the first two cases, sources are known before the execution of the query.
Compile-time optimization decisions concerning source ranking and query opti-
mization (discussed in the following) are based exclusively on information derived
from these sources. In the last case, sources are dynamically added at runtime.
New information derived from these sources has an impact on the compile-time
optimization plan. This information might render the plan no longer optimal. It
is used in our work for corrective query optimization.

2.3 Source Ranking

A source is relevant if it contains data that can contribute to the final answers.
The standard optimization goal is to (1) obtain all results as fast as possible.
However, given the volume and dynamic of the Linked Data collection, it is often
infeasible to retrieve and process all sources. It is important to rank sources
by their relevancy to the query and more fine-grained optimization goals. In
particular, it might be desirable to (2) report results as early as possible, (3) to
optimize the time for obtaining the first k results, or (4) to maximize the number
of total results, given a fixed amount of time.

Source ranking uses available source descriptions that may vary in quality and
completeness, i.e., they may lack information important for ranking. This means
that it is essential to incorporate not only a priori available knowledge, but also
knowledge discovered obtained query execution.

2.4 Query Evaluation Strategies

Top-Down Query Evaluation. Linked Data comprises heterogeneous data
that comes from different sources. Typically, a federated database system is used
to integrate multiple sources and systems into one single federated database. The
goal is to obtain a fully-integrated virtual database that provides transparent
access to data of all its constituent sources.

Typically, sources and databases are geographically decentralized in a feder-
ated system. However, a system, which discovers, retrieves and stores Linked
Data sources centrally, also falls into the category of a federated system. In
fact, no matter the physical location (and other characteristics) of the sources,
a source is considered if and only if the federated system knows about it. The
federated system assumes that all source descriptions are available and based
on that, compiles a query evaluation plan that specifies the relevant sources,
and the order for retrieving and processing these sources. Thus, query planning
and optimization is a one-off process performed in a top-down fashion based on
complete information.

Harth et al. [5] implement this top-down evaluation. The main focus is on
using a data structure capturing rich statistics that can be used to improve query
planning and optimization. In approaches that fall into this category, source
discovery is performed offline and source ranking is not part of the process.
In order to deal with the large amount of sources, source ranking based on

Linked Data Query Processing Strategies 457

approximative triple and join pattern cardinality estimation is used to consider
only a fixed number of top-ranked sources.

Bottom-Up Query Evaluation. As opposed to top-down query processing,
this strategy does not assume source descriptions to be available beforehand and
computes results in a bottom-up fashion. Without planning and optimization, it
directly evaluates the query. During this process, it (1) retrieves the sources that
are mentioned in the query, (2) discovers further sources based on source URIs
and links found in the data of the retrieved sources, (3) incorporates the content
of these discovered sources into query evaluation and (4) terminates when all
sources found to be relevant have been processed.

Systems that implement this strategy do not rely on sources or source descrip-
tions being managed centrally but discover and retrieve sources from external
locations. Source discovery and retrieval are an integral part of the online pro-
cess. These online tasks make this approach to query processing different from
traditional database approaches. They might be needed due to the Linked Data
specific challenges we have discussed. The large volume and the dynamic of the
sources and source collection render the traditional top-down approach imprac-
ticable. In particular, it cannot be applied when there are sources that are not
known beforehand and can only be discovered during online processing.

Another aspect distinct to this approach is completeness. As opposed to tra-
ditional query processing, it might not be possible to obtain complete knowledge
about all sources. In particular, processing queries against Linked Data where
sources have to be discovered online might not yield all results. Results to the
query cannot be found when they are part of sources that are unknown and can-
not be discovered during online processing. This is the case when a link between
two sources is only stored in one of the sources, meaning that the link cannot
be discovered from the other source.

This strategy is implemented in [6], using non-blocking iterators to avoid
blocking due to network delay (see Section 3.2).

Mixed Strategy Query Evaluation. This strategy combines the two other
strategies by assuming that knowledge about some sources is available (the
sources’ data themselves are not necessarily locally available), and more knowl-
edge can be obtained during online query processing. Compared to the top-down
strategy, it does not rely on complete knowledge. Similar to the bottom-up strat-
egy, online source discovery is an integral part of query processing. As opposed
to that strategy, it makes use of knowledge available beforehand to do query
planning and optimization. However, the plan built at compile time might be
corrected according to newly acquired knowledge about sources. In particular,
the additional optimization tasks that have to be performed online are corrective
source ranking and join order optimization. Source ranking is not a by-product
of query optimization [5], but explicitly scheduled as an integral task.

For processing queries on Linked Data, this strategy begins with (1) “best-
effort” query planning, and based on this plan, evaluates the query. During this
process, (2) sources are retrieved, (3) new sources are discovered, (4) new sources’

458 G. Ladwig and T. Tran

content are incorporated into evaluation and in a continuous fashion, (5) new
sources’ descriptions are used for corrective source ranking and optimization.
The evaluation proceeds with the continuously refined plan and (6) terminates
when all relevant sources have been processed.

This mixed strategy explicitly addresses two of the challenges discussed pre-
viously. It uses online discovery to deal with Linked Data volume and dynamic.
Also targeting the aspect of volume, compile-time combined with evaluation-time
corrective source ranking and optimization are employed to make processing the
large amount of sources affordable.

In the following, we discuss our implementation of this strategy that addresses
also the remaining challenges. It features a novel approach for corrective source
ranking that is designed to deal with Linked Data heterogeneity by exploiting
the different types of source descriptions discussed previously. A stream-based
query processing is employed to deal with the unpredictable nature of Linked
Data resulting from different source access options, and to report results early.

3 Stream-Based Linked Data Query Processing

We provide an overview of our approach to Linked Data query processing and
then discuss stream-based evaluation based on push-based symmetric hash joins.

3.1 Overview of the Process

Query Planning. A query plan is constructed during query compilation. We
only consider left-deep query plans in this implementation, while in principle,
query plans with other shapes such as bushy plans are possible. Depending on
available source descriptions, basic information or detailed statistics as discussed
before can be used to plan the order of operators to be executed, and to perform
other kinds of database optimizations that might consider indexes, materialized
views, or the concrete join implementations [12]. Apart from joins, for Linked
Data query processing, the operators we consider additionally include source
discovery, source retrieval and source ranking. In this work we do not consider
the general case of operator order optimization (and join order optimization)
but focus on the specific aspect of corrective source ranking at run-time.

Query Evaluation. For evaluating the query according to the query plan, we
run each operator in a separate thread. Communication between operators is
based on bounded message queues to enable parallel query processing. After
query planning, threads for all operators are started. As a first step at run-time,
local indexes are probed using the query triple patterns to obtain an initial list
of possibly relevant sources, which is then sent to the source ranker. Fig. 1 shows
an overview of the operators involved in the query execution.

Source Ranking. The source ranker also runs in its own thread and receives
source URIs, either obtained through discovery or from local indexes. It ranks
the sources according to the methods described in Section 4. Ranking is per-
formed only when necessary. The source ranker checks this continuously, using

Linked Data Query Processing Strategies 459

the parameters given in Section 4.4. If ranking is to be performed, the scores of
all sources are calculated and normalized. The source ranker keeps track of the
source retrieval threads and assigns them the top-ranked sources.

Source Retrieval. Because of network delay it is usually necessary to request
data from several sources at once, which is accomplished by running more than
one source retrieval thread [6]. They filter the incoming data using the triple
patterns of the query and push matching triples to the join operators as soon as
they are decoded from the incoming data. This push-based join processing and
the join operator are discussed in Section 3.2.

Source Discovery. In addition to retrieving sources, the retrieval threads per-
form discovery of new sources based on the content of the source currently being
processed. They notify the source ranker of all sources linked from the source
just found.

Termination. Several termination conditions can be configured: (1) maximum
discovery distance, (2) maximum number of sources to load and (3) number
of results to produce. If any of these conditions are reached, the source ranker
notifies the join operators so that query execution is terminated as soon as all
remaining intermediate results have been processed.

Fig. 1. Join, source ranking and retrieval operators

3.2 Push-Based Symmetric Hash Join

Query processing in highly distributed environments, where data is often stored
at remote locations, presents unique challenges. These environments require flex-
ible scheduling: operators should not block, so that the query plan can make
progress when input is delayed for another part [8]. In query plans using iterator-
based (“pull-based”) operators, the next method blocks until it is able to pro-
duce a result. Non-blocking iterators [6] were proposed to address this problem in
the context of Linked Data queries. A non-blocking iterator is able to temporar-
ily reject input from iterators lower in the operator tree when it would otherwise
block because of unavailable data on the other input. On the next call to its next
method, the lower operator randomly either returns a new intermediate result
or one of the previously rejected results, for which data might now be available
in the upper iterator. This ensures that query processing can progress even if
data for a particular triple pattern is not yet available. The advantage of this
solution is that it can be used in existing query engines. However, while waiting

460 G. Ladwig and T. Tran

for input to become available the query engine essentially performs busy-waiting
in a loop by alternately asking for new results and then rejecting them. Even if
no new data arrives the query engine is active, consuming CPU time.

To alleviate this problem, we propose the adoption of a stream-based approach
where source data is treated as a (finite) stream that can arrive in any order. To
process such streams, pipelined operators are required that produce results even
before the whole input has been read. Query plans using these operators can be
implemented using threads and message queues, taking advantage of multi-core
and parallelization capabilities of modern CPUs.

One such operator is the symmetric hash join (SHJ), which, in constrast to
traditional hash joins, can start reporting results as soon as input tuples arrive in
the operator and does not have to wait until one of the input has been completely
read [16]. This is achieved by maintaing one hash table on each input. Instead of
a pull-based iterator, we employ the SHJ in a push-based mode where operators
are driven by their inputs. Instead of a next method that is called by operators
higher in the operator tree, the join operator has a push method for each of
its inputs. Algorithm 1 shows the operation of this method in a SHJ operator.
First, the arriving tuple t is inserted into the hash table Hm that corresponds to
the input where the tuple belongs to (i.e., Hm = H1 or H2). Then, t is used to
probe hash table Hn for valid join combinations. All such valid join combinations
are then immediately reported to subsequent operator out by calling its push
method. Pushing is done from the operators corresponding to the leaf nodes of
the operator tree to the root operator. The root operator pushes early results to
the caller of the query evaluator. Compared to blocking operators such as the
hash join, the SHJ produces results as soon as input tuples are available and
input tuples can arrive on all inputs in any order.

Algorithm 1. SHJ: push(in, t)
Input: Operator in from which input tuple t was pushed

Data: Hash tables H1 and H2; current operator this; subsequent operator out
if in is left input then m = 1, n = 21

else m = 2, n=12

Insert t into hash table Hm3

Probe Hn with join keys of t4

forall valid join combinations j do out.push(this,j)5

4 Corrective Source Ranking

The relevance of a source depends on several factors and is measured based on
the current query, any available intermediate results and an overall optimization
goals as discussed in Section 2.3. In this section, we elaborate on the source
features that are taken into account, concrete metrics derived from them, the
indexes used to compute the metrics, newly discovered information used to refine
and correct previously computed metrics, and how they are incorporated into
source ranking.

Linked Data Query Processing Strategies 461

4.1 Source Features and Metrics

Triple Pattern Results. A source is more relevant if it contains data that
contributes to answers of the query. Thus, a source is relevant if it contains
triples matching a query triple pattern. The estimation of triple pattern results
is based on the metrics triple pattern cardinality and triple pattern specificity.

Definition 3 (Triple Pattern Cardinality and Specificity). The triple
pattern cardinality card(s, t) gives the number of triples in source s that match
the triple pattern t. The triple pattern specificity spec(t) gives the number of
constants that occur in the triple pattern t.

Clearly, the higher the cardinality and the more specific the triple pattern, the
more relevant is a source matching that pattern. However, these two metrics
alone are yet no good indicator for the relevance of a source. Given the power-
law distribution in the Web of Data [4], some triple patterns might have a high
cardinality for all or many sources. These patterns do not discriminate sources,
just like words that frequently occur in all documents of a collection. One ex-
ample is 〈?x, rdf:type , ?y〉, which can be found in most Linked Data sources. To
alleviate this problem, we adopt the TF-IDF concept to obtain weights for triple
patterns (capturing their importance). Similarly to words in IR, the importance
of a triple pattern positively correlates with how often bindings to this pattern
occur in a source as measured by its cardinality, and negatively correlates with
how often its bindings occur in all sources of the collection. Higher weight is thus
given to discriminative triple patterns.

Definition 4 (TF-ISF). Given a source s and a triple pattern t, the triple fre-
quency - inverse source frequency (TF-ISF) measure is defined as TF-ISF(s, t) =
card(s, t) · log |S|

|{r∈S|card(r,t)>0}| where S is the set of all sources to be ranked.

Join Pattern Results. A source containing data matching larger parts of the
query is more relevant. Thus, a source that contains data matching a join pattern
is considered highly relevant. However, not containing data for a join does not
render a source irrelevant as its data might be joined with data from other
sources. The join pattern cardinality estimates the results of a join pattern.

Definition 5 (Join Pattern Cardinality). Given the join pattern ti �v tj
on the shared variable v, the join pattern cardinality of a source s denoted
card(s, ti, tj , v) gives the number of results a join on the variable v between triples
retrieved from s for ti and tj produces.

Links to Results. A source containing many links coming from relevant sources
is more useful. The relevance of such sources is even higher when these links
match query predicates. Note that unlike triple pattern results that can be com-
puted given a source, links can only be discovered by processing several sources.
A source at first considered irrelevant based on triple pattern results might be-
come relevant during the process. For measuring links to results, links to other
sources are extracted from sources discovered during the process.

462 G. Ladwig and T. Tran

Definition 6 (Links to Results). Let S be the set of sources already processed,
links(si, sj) be a function that return all links between a source si ∈ S and the
source sj, the links to results of sj is defined as links(sj) =

⋃
si∈S links(si, sj).

Retrieval cost. Sources are more useful the faster they can be retrieved.

Definition 7 (Retrieval Cost). The retrieval cost of a source s is a monotonic
aggregation of the size of s and the bandwidth of a host h, defined as cost(s) =
Agg(size(s), bandwidth(h)).

Source size is available in the source description. Bandwidth is approximately
derived for a particular host based on past experiences or, when available, average
performance recorded during the process for sources retrieved from this host.

4.2 Metric Computation

In the mixed strategy, some of the source metrics are available locally. We store
these metadata in specialized indexes (1) to select relevant sources and (2) to
compute cardinalities for these sources.

Indexes for Source Selection. Given a triple pattern, these indexes return a
set of sources that contain triples matching the pattern. The only “interesting”
patterns are those with one or two variables. Patterns with no variables match
only themselves and pattern with no constants match all triples and thus, match
all sources. Three indexes are sufficient to support all patterns with one variable.
In particular, we create the indexes SP, PO and OS (where S, P, O stand for
subject, predicate and object). Each maps the indexed pattern to a set of sources.
For example, to find sources for 〈?x, rdf:type , foaf:Person〉, we use the PO index
to retrieve relevant sources. Using prefix lookup, the same indexes can be used
to cover all patterns with two variables.

Index for Cardinality Computation. In [5], a probabilistic index structure
is used to support triple and join pattern cardinality estimation of individual
sources. A different technique based on aggregation indexes is presented in [13].
We adopt this method, but extend it to support lookup of triple pattern car-
dinalities and estimation of join cardinalities for individual sources. Instead of
calculating the statistics and indexes for the whole dataset, we treat each source
as its own dataset and create the aggregation indexes accordingly. While we lose
the ability to perform selectivity and cardinality estimation over the indexed
data as a whole, we can now calculate estimates for individual sources, which is
what is necessary for source ranking.

4.3 Metric Correction and Refinement

During query processing as sources are retrieved and their data is processed,
more information becomes available to compute new or to refine and correct pre-
viously computed metrics. This is especially important in the case of very general

Linked Data Query Processing Strategies 463

“non-discriminative” triple patterns, such as 〈?x, rdf:type , ?y〉. When such a pat-
tern is joined with another pattern, it is more or less by chance that matching
join combinations are found.

When processing queries over data that is stored and indexed locally, this
problem can be alleviated by performing index nested-loop joins. An index
nested-loop join between two triple patterns t1, t2 uses triples that match t1
to instantiate triple pattern t2 by replacing variables with bindings of the join
variables in triples matching t1. This creates more specific triple patterns which
are then used perform index lookups to retrieve further data that is guaranteed
to create join combinations.

In the case where data is not locally available, we cannot perform such joins.
However, we employ a similar technique to estimate join pattern cardinalities,
taking into account current intermediate results and information in the cardinal-
ity indexes. In particular, a triple pattern of a join is instantiated with interme-
diate results and then used to perform lookups on the triple pattern cardinality
indexes to calculate better join cardinality estimates:

Definition 8 (Join Pattern Cardinality Estimate). Let ti, tj be two triple
patterns, T s

i a set of triples in s matching the pattern ti, and T s
i (v) denotes

the set of bindings to the variable v of the triple pattern ti. Based on triple
pattern cardinalities, a cardinality estimate of a join ti �v tj is calculated as
card(s, ti, tj , v) =

∑
b∈T s

i (v) card(s, tj .inst(v, b)), where tj .inst(v, b) denotes the
instantiation of the variable v of the triple pattern tj with the binding b.

The SHJ operators maintain hash tables on both of their inputs, storing data
by the join attribute. The data of a source indexed in a hash table is used to
instantiate the triple patterns of the join to obtain more specific triple patterns.
Then, the cardinality of these more specific patterns is looked up using the
index and aggregated to obtain an estimate for the size of the join. In order
to reduce the cost of this process, we perform sampling to estimate the join
cardinality by instantiating the triple pattern with only a random subset of the
triples. Sampling has been used in database research to perform estimation of
join cardinalities, see Section 5 for related work on this topic.

4.4 Source Ranking at Run-Time

In our implementation we prioritized early result reporting, i.e., producing re-
sults as early as possible is the optimization goal. First, for every indexed source,
we calculate the TF-ISF measure for all query triple patterns. In order to pro-
duce early results the join cardinality is important. We employ both methods
for join cardinality estimation: using join pattern indexes and sampling from
join states obtained during query processing. Less information is available for
sources that are not indexed and were only discovered during query processing.
No join cardinality estimation is performed for these sources. For all sources,
however, the count and type of incoming links are available. In particular, we
follow owl:sameAs and rdfs:seeAlso links as well as links that have a predicate
that occurs in a query triple pattern. Links with query predicates receive a higher

464 G. Ladwig and T. Tran

weight than others as these are more likely to deliver results. Finally, all scores
are normalized separately and then combined using a monotonic aggregation
function, in this case a weighted summation.

Ranking of sources is not a one-off process but needs to be done continuously
during query processing as new sources and more information about already
known sources are discovered. However, ranking also represents an overhead,
and therefore should be executed only when “necessary”. We define several pa-
rameters that are used to influence the behavior and cost of the ranking process:
(1) Invalid Score Threshold : the score of a source is invalid if it has not been
calculated before, or if new information about the source is available. A ranking
is performed when the number of invalid scores passes a threshold. (2) Sample
Size: using larger samples for join size estimation will give better estimates, but
are also more costly to use. (3) Resampling Threshold : results of previous join
size estimates are cached for each indexed source. Only when the corresponding
hash table maintained by the join operator grows over a given threshold, join
size re-estimation is performed using a new sample.

5 Related Work

Seminal work on Linked Data query processing [6,5] and some concrete tech-
niques related to our work have been discussed throughout the paper. Here,
we summarize the relation between the proposed corrective ranking and steam-
based processing techniques to database work on query optimization and pro-
cessing in an distributed environment.

Query Optimization. One main problem of query optimization is finding the
optimal join order. To do that, it is necessary to estimate their selectivity. His-
tograms [15] and more complex probabilistic data structures have been suggested
to store and estimate selectivity information of RDF triples. In [13], aggrega-
tion indexes are used to improve the accuracy of selectivity estimation for joins
between triple patterns. As discussed in Section 4.2, we extend these indexes
to estimate the cardinality of joins for individual sources (instead of the entire
source collection).

Compared to these approaches, [9] does not perform compile-time join order-
ing, but optimizes the query at run-time by using chain sampling to estimate the
selectivity of joins that were not yet performed. In our work, we use sampling
combined with triple pattern cardinality indexes to estimate the cardinality of
joins given data in a particular source.

Sideways information passing has been employed to complement compile-time
optimization with a run-time decision-making technique for reusing intermediate
states from one query part to prune and reduce computation of other parts [13,8].
The feedback process between query execution and source ranking employed in
our approach for metric refinement can be seen as a case of sideways information
passing.

Query Processing in Distributed Environments. In distributed environ-
ments data is often stored in remote locations, causing delays in data access.

Linked Data Query Processing Strategies 465

Much research has been focused on compensating for these delays. Widely used
for this are pipelineable query operators that operate on streams. As discussed
in Section 3.2, the symmetric hash join is one such operator. Another aspect of
stream-based query processing is adaptivity. Query processing techniques have
been proposed to adapt the query plan at run-time to deal with changing char-
acteristics of the data. One technique is to switch among query plans at run-
time [7]. Other techniques use special operators, such as Eddies [1] and STAIRs
[3] that adaptively route incoming tuples through a series of query operators.

Comparison. Our work is the first to provide a systematic overview of Linked
Data query processing. The specific techniques proposed extend related work in
database research to deal with the specific aspects of Linked Data. In particular,
whereas selectivity information has been used for query optimization [13,15,5],
it is incorporated in this work into a framework for source ranking, a task that
is novel and specific to Linked Data query processing. Likewise, the ideas be-
hind stream-based and adaptive processing [7] and sideways information passing
techniques [8] are adopted to address the specific challenges of Linked Data, to
enable corrective source ranking on Linked Data streams.

6 Evaluation

In the experiments, we systematically compare the three strategies and examine
the impact of various parameters on corrective source ranking. A more extensive
description of the evaluation, including the queries, can be found in [11].

Queries and Data. We create a set of eight queries that can all be executed
using a discovery-only approach (i.e. results can be discovered by exploring
from sources mentioned in the query). These queries use popular datasets from
the Linked Open Data Project, such as DBPedia, Geonames, DBLP, Semantic
Web Dog Food, data.gov, Freebase and others. Overall, during answering these
queries, 6200 sources were retrieved containing 500k triples in total.

Systems. We compare the approaches proposed in [6] for bottom-up evaluation
(BU), [5] for top-down (TD), and our implementation of the mixed (MI) strate-
gies. All approaches were implemented on top of the same stream-based query
engine. We randomly chose 25% of the sources from the complete index of TD to
construct a partial index for MI. Note that these indexes are used for obtaining
source descriptions, but the actual data used for query processing comes from
a local proxy server. Because local access has lower latency than remote, we
applied a configurable delay to the proxy server. For this evaluation this was set
to 2s, wherease under real conditions this can be much higher.

Comparison of Strategies. The strategies under investigation vary w.r.t com-
pleteness of results. The bottom-up strategy finds only sources and results that
can be discovered by following links, the mixed strategy usually finds some more,
and the top-down strategy finds all of them. To make the approaches compara-
ble, we restrict the sources to those that can be considered by all strategies, i.e.,
those discovered by the BU strategy.

466 G. Ladwig and T. Tran

Table 1 shows the results for six queries, capturing the times needed to ob-
tain (some percentage of the) results, and the specific times needed for source
selection and ranking. The results show that for all queries, the MI and TD
approaches report results earlier than BU. The benefit lies in the use of prior
knowledge about sources, which helps to retrieve more relevant sources first. Less
expected, MI outperformed TD in some cases (Q1,Q3,Q5,Q6,Q7,Q8) in terms
of early reporting. The cause lies in the higher source selection times resulting
from the use of a larger index. On average the time to retrieve 25% and 50% of
the results was 8.7s and 12.8s for MI and 15.1s and 22.0s for BU, respectively.
This is an improvement of about 42% in both cases, which may increase with
higher, more realistic latencies where the impact of ranking will be higher.

In terms of total execution time, MI and BU are comparable, while TD is
significantly faster in most cases. While TD incurs more overhead for the initial
source selection because of the larger index, it enables the exclusion of sources.
Due to the high network cost, not retrieving irrelevant sources results in a sig-
nificant performance gain. Using only a partial index, MI is not able to restrict
the number of sources that have to be retrieved. This means that in the end MI
processes almost the same sources, same data and thus does the same work as
BU. The additional overhead incurred by source selection, ranking and sampling
lead to execution times worse than BU in some cases (Q1,Q2,Q6). However, MI
was able to process more useful sources and results earlier.

To better illustrate the behavior of the different approaches, Fig. 2 shows the
arrival of results over time for query Q4. The first result for TD was produced
after less than 10s and all results were reported after 33s. The difference to overall
execution time of about 90s given in Table 1 is due to the fact that even after the
final result was reported other relevant sources had to be processed, but did not
contribute to the final result. This indicates that early result reporting resulting
in better responsiveness is very important in some cases, where processing all

Table 1. Execution times for six of the evaluation queries. Times in ms.

BU MI TD BU MI TD BU MI TD

Q1 Q2 Q3

25% res. 24810.5 10300.0 11038.0 10464.5 10162.0 8096.5 9207.0 7900.0 11166.0

50% res. 43464.5 40782.0 15787.0 13080.5 17974.5 8327.0 10568.0 8048.5 11391.5

Total 84066.5 86895.5 44323.5 21623.5 23273.0 21428.0 22711.0 21944.0 21733.5

Src. sel. 0.0 853.0 1444.5 0.0 805.0 1280.0 0.0 1211.0 1717.0

Ranking 25.5 2404.0 411.0 32.5 358.0 196.5 32.0 575.5 523.0

#Sources 622.0 612.0 154.0 120.0 120.0 67.0 134.0 134.0 67.0

Q4 Q5 Q6

25% res. 56800.5 26025.5 10969.5 16837.5 6580.5 4177.0 8222.5 4743.5 5545.0

50% res. 56804.5 26047.0 13605.0 21578.5 11855.5 9186.0 10961.5 7650.5 5634.0

Total 98129.0 98931.0 91352.0 29562.0 30603.5 20074.0 24086.0 20711.0 16469.0

Src. sel. 0.0 270.0 351.0 0.0 203.0 292.0 0.0 1331.0 1863.5

Ranking 31.0 3173.5 1358.5 25.5 283.5 414.5 23.5 292.5 335.0

#Sources 392.0 390.0 342.0 119.0 117.0 70.0 236.0 92.0 49.0

Linked Data Query Processing Strategies 467

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0
 1

0
0

0
0

 2
0

0
0

0
 3

0
0

0
0

 4
0

0
0

0
 5

0
0

0
0

 6
0

0
0

0
 7

0
0

0
0

 8
0

0
0

0
 9

0
0

0
0

 1
0

0
0

0
0

#
R

e
s
u

lt
s

a) Q4, Time [ms]

BU

MI

TD

 0

 5000

 10000

 15000

 20000

 25000

 30000

10 20 40 80
T

im
e
 [
m

s
]

b) Invalid Score Threshold [%]

5%

25%

Ranking

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1.0 1.5 3.0 10.0 Off

T
im

e
 [
m

s
]

c) Resampling Threshold

5%

25%

Sampling

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

10 50 100 200

T
im

e
 [
m

s
]

d) Sample size

5%

25%

Sampling

Fig. 2. a: Result arrival times for query Q4; b-d: Effects of invalid score threshold,

sample size and resampling threshold

sources might be very costly and not needed. Clearly, TD produced results earlier
than MI, which was better than BU.

Corrective Source Ranking. In this part we examine the influence of various
parameter configurations on sampling and ranking. To separate the effect of each
parameter, we vary one while setting the other parameters to default values 40%
for invalid score threshold, 3 for resampling and 50 for sample size.

Invalid Score Threshold. Fig. 2b shows average query times for computing
5% and 25% of the results and for sampling at different invalid score thresholds
from 10%-80%. With increasing threshold, ranking is performed less often, and
correspondingly, times for ranking decreased. The effect of performing ranking
less often was positive for computing 5% results, but no clear trend could be
observed for 25% results, where the best time was observered for a threshold
of 40%. Ranking is beneficial as query execution is more guided and sources
that directly contribute to join results are preferred, especially by using join
cardinality estimation with sampling.

Resampling Threshold. Fig 2c shows that times for sampling decrease with
higher resampling thresholds, as sampling is performed less often. Times for
5% and 25% results are best for a threshold of 1.5 and 3, respectively. Clearly,
sampling is better than no sampling, because the time to reach 25% of results is
the highest when sampling is off.

Sample Size. Fig 2d shows that times for sampling increased as the sample
grows larger. While sampling creates an overhead, it also provides benefits.
Larger sample sizes can lead to more accurate cardinality estimates. Thus, total
effect on result computation times varies. While the time for 25% results stayed
largely the same, time for 5% results was clearly best for a sample size of 100.

7 Conclusion

We provided a systematic analysis of the challenges and tasks, and discussed
concrete strategies for linked data query processing. We proposed an implemen-
tation of the mixed strategy that mimics a realistic linked data scenario where

468 G. Ladwig and T. Tran

some partial knowledge of linked data sources are available. The implementation
exploits different types of knowledge available beforehand, and also, incorporates
information gained during query processing to perform corrective source ranking.
The proposed ranking scheme specifies various types of metrics, which can be
combined to reach different optimization goals. A stream-based processing tech-
nique is adopted to deal with the unpredictable nature of linked data access.
Experiments showed that the proposed implementation leads to early reporting
of results and thus, more responsive query processing. On average early results
were reported 42% faster than for the bottom-up strategy. In the Linked Data
scenario where response times are very high due to the large number of sources
and network latency, the capability to produce early results is essential.

As future work, we aim to use information discovered at run-time not only for
source ranking but for optimizing the entire evaluation process. In particular,
we will target the problem of run-time corrective query optimization to refine
the query determined at compile-time.

Acknowledgements. Research reported in this paper was supported by the
German Federal Ministry of Education and Research (BMBF) under the Col-
labCloud project (grant 01IS0937A-E).

References

1. Avnur, R., Hellerstein, J.M.: Eddies: continuously adaptive query processing. SIG-

MOD Rec. 29(2), 261–272 (2000)

2. Bizer, C., Heath, T., Berners-Lee, T., Heath, T., Hepp, M., Bizer, C.: Linked data

- the story so far. International Journal on Semantic Web and Information Systems

(IJSWIS) (2009)

3. Deshpande, A., Hellerstein, J.M.: Lifting the burden of history from adaptive query

processing. In: Proceedings of the Thirtieth International Conference on Very Large

Data Bases, Toronto, Canada, vol. 30, pp. 948–959 (2004)

4. Ge, W., Chen, J., Hu, W., Qu, Y.: Object link structure in the semantic web. In:

The Semantic Web: Research and Applications, pp. 257–271 (2010)

5. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K., Umbrich, J.: Data

summaries for on-demand queries over linked data. In: Proceedings of the 19th

International Conference on World Wide Web (2010)

6. Hartig, O., Bizer, C., Freytag, J.: Executing SPARQL queries over the web of

linked data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,

D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309.

Springer, Heidelberg (2009)

7. Ives, Z.G., Halevy, A.Y., Weld, D.S.: Adapting to source properties in processing

data integration queries. In: Proceedings of the 2004 ACM SIGMOD International

Conference on Management of Data, Paris, France. ACM, New York (2004)

8. Ives, Z.G., Taylor, N.E.: Sideways information passing for Push-Style query pro-

cessing. In: Proceedings of the 2008 IEEE 24th International Conference on Data

Engineering, pp. 774–783. IEEE Computer Society, Los Alamitos (2008)

9. Kader, R.A., Boncz, P., Manegold, S., van Keulen, M.: ROX: run-time optimization

of XQueries. In: Proceedings of the 35th SIGMOD International Conference on

Management of Data, Providence, Rhode Island, USA, pp. 615–626. ACM, New

York (2009)

Linked Data Query Processing Strategies 469

10. Klyne, G., Carroll, J.J., McBride, B.: Resource description framework (RDF): con-

cepts and abstract syntax (2004)

11. Ladwig, G., Tran, T.: Linked data query processing strategies – technical report.

Technical report (2010), http://people.aifb.kit.edu/gla/tr/ldqp_report.pdf

12. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. Proc. VLDB

Endow. 1(1), 647–659 (2008)

13. Neumann, T., Weikum, G.: Scalable join processing on very large RDF graphs.

In: Proceedings of the 35th SIGMOD International Conference on Management of

Data, Providence, Rhode Island, USA, pp. 627–640. ACM, New York (2009)

14. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Rec-

ommendation (2008)

15. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic

graph pattern optimization using selectivity estimation. In: Proceeding of the 17th

International Conference on World Wide Web, Beijing, China (2008)

16. Wilschut, A.N., Apers, P.M.G.: Dataflow query execution in a parallel main-

memory environment. Distributed and Parallel Databases 1(1), 103–128 (1993)

http://people.aifb.kit.edu/gla/tr/ldqp_report.pdf

Making Sense of Twitter

David Laniado1 and Peter Mika2

1 DEI, Politecnico di Milano

Via Ponzio 34/5, 20133 Milan, Italy

david.laniado@elet.polimi.it
2 Yahoo! Research

Diagonal 177, 08018 Barcelona, Spain

pmika@yahoo.inc.com

Abstract. Twitter enjoys enormous popularity as a micro-blogging ser-

vice largely due to its simplicity. On the downside, there is little organi-

zation to the Twitterverse and making sense of the stream of messages

passing through the system has become a significant challenge for every-

one involved. As a solution, Twitter users have adopted the convention of

adding a hash at the beginning of a word to turn it into a hashtag. Hash-

tags have become the means in Twitter to create threads of conversation

and to build communities around particular interests.

In this paper, we take a first look at whether hashtags behave as strong

identifiers, and thus whether they could serve as identifiers for the Se-

mantic Web. We introduce some metrics that can help identify hashtags

that show the desirable characteristics of strong identifiers. We look at

the various ways in which hashtags are used, and show through evalu-

ation that our metrics can be applied to detect hashtags that represent

real world entities.

1 Introduction

Twitter, a service for publishing short messages has been growing nearly expo-
nentially in the past two years. Twitter handled over 600 messages every second
by January, 20101, and has become a cultural phenomenon in many parts of the
world. This success can be attributed in a large part to the simplicity of system,
and the resulting cleanliness of its web site and its APIs. The ease of publish-
ing also means that Twitter inspires timely contributions and has become an
important source of information for late-breaking news, and it is already being
exploited by major search engines. While appealing to publishers, the simplicity
of Twitter has its downsides for anyone consuming and processing Twitter data,
especially when it comes to aggregating messages. Aggregation is a necessary
first step for many applications of Twitter mining, including news and trend
detection, brand management and customer service, and it is also a crucial first
step in separating personal communications from public discussions.

Within the current system, however, the aggregation functions are limited
to filtering tweets by users or restricting by keywords. Even in the latter case,
1 http://blog.twitter.com/2010/02/measuring-tweets.html

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 470–485, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://blog.twitter.com/2010/02/measuring-tweets.html

Making Sense of Twitter 471

tweets are organized by time, and not by relevance as is common for search en-
gines. Without formal organization, aggregating tweets that belong to the same
conversation or discuss the same topic is daunting. Table 1 shows ten consecutive
messages retrieved for the keyword banana. These messages are not only posted
in different languages, but are part of different ongoing conversations and refer
to very different topics (the plant, a chain store, a dance, a club, and others).
Keyword search is not only imprecise in aggregation, but is also missing out on
a number of messages that do not contain the particular keyword. As Twitter
messages are unusually short, keyword search is likely to fail in recall. As an ex-
ample, during a January, 2010 earthquake in the San Francisco Bay Area, search
engines have been criticized in showing only tweets that explicitly mentioned the
word earthquake. A second, related problem is separating personal communica-
tion and news publishing, the two main cases of Twitter usage [12]. This is a
crucial function for aggregators that are interested only in the conversations that
concern topics of broader interests such as news or current events.

As a community solution to these problems, Twitter users have adopted the
convention of adding a hash at the beginning of a word to turn it into a hashtag.
Hashtags are meant to be identifiers for discussions that revolve around the same
topic. By including hashtags in a message, users indicate to which conversations
their message is related to. When used appropriately, searching on these hash-
tags would return messages that belong to the same conversation (even if they
don’t contain the same keywords), and thereby solving the aggregation prob-
lem. Coincidentally, this is the same function that strong identifiers (URIs) play
in the Semantic Web. The questions we ask then is which hashtags behave as
strong identifiers (if any), and could they be mapped to concept identifiers in
the Semantic Web?

In this paper, we propose a set of metrics to measure the extent to which
hashtags exhibit the desirable properties of strong identifiers. Our first contribu-
tion is thus formalizing the characteristic properties of strong identifiers in terms
of usage in social media systems. We give a general description of hashtag usage
according to these metrics (Section 2). Using a manually collected data set, we
evaluate how well our metrics can identify those hashtags that represent named
entities and concepts found in Freebase, a large and broad-coverage knowledge
base (Section 3). Our contribution is in measuring the quality of hashtags as
identifiers and selecting the hashtags that are candidate concept identifiers, a
necessary first step in mapping hashtags to Semantic Web knowledge bases and
identifying hashtags that are candidates for extending knowledge bases. We dis-
cuss related work in Section 4 and point to future work in Section 5.

2 Metrics for Hashtag Evaluation

There is no special support for tagging in Twitter, and new tags are simply
introduced by prefixing a word with the hash sign. Hashtags may be used for
personal categorization, but in the vast majority of cases the intention of those
who introduce a new hashtag is to evolve it into a symbol that is used by a

472 D. Laniado and P. Mika

Table 1. A consecutive sequence of Twitter message for the query ’banana’

Boo368 @AvenLantz OMG I WANT A BANANA HAMMOCK XD

Endivisual Got my dress..from banana republic..uhh im wearing dis dress once..?

Thx..i dont need it to be so expensive - -”

DevvonTerrell World of Lala Fuh Sure!!RT @ RosettaStone : Real talk DevvonTer-

rell grandmother needs to open up a bakery. Her Banana Pudding is

on. HAHA!!

makalovesbieber RT @bieberhechos: RT si te gusta la banana de Justin (? JAJAJA

no mentira.

reidnwrite @EDHMovement Unforgettable goes SUPER hard...he slipped like

banana peels for not having you know you know on the album!

jojoserquina Chicken Tinola with bitter melon, hot long horn and banana pepper,

ginger and spices http://twitgoo.com/14sosn

Vol Sus RT @So Delicious: Hot Fudge-Dipped Frozen Banana Bites wa recipe

for Coconut Peanut Butter Hot Fudge Sauce! http://bit.ly/aknbRe

YUM!

Markaw00 Eating a banana sandwich and watching Hero.

LauraRogers13 Mom asks me if I want a banana and I start doing the banana

dance...I’ve been at cheer too much!

MissRicaRica RT @philthyrichFOD: @MissRiCaRiCa *PHILTHY RICH* Coming

Home Party And Video Shoot July 4th @ Banana Joes 950 10th St

Modesto http://twitpic.com/1oh6ji PLZ RT.

community of users interested in and discussing a particular topic. The goal of
such a hashtag is to help search and aggregation of messages related to the same
topic, a function that is similar to the role of (shared) URIs in the Semantic
Web.

There are a number of desirable criteria that a hashtag should fulfill in this
role, similar to how ‘cool URIs’ are differentiated from poor URIs. In the follow-
ing, we formalize some of these characteristics.

1. Frequency. The hashtag is used by a community of users with some fre-
quency. We measure frequency both in number of users and number of mes-
sages sent, and explore the correlations between the two ways of measuring
frequency.

2. Specificity. The extent to which the usage of a hashtag deviates from the
usage of the word without a hash.

3. Consistency in usage. The hashtag is used consistently by different users
and in different messages to indicate a single topic or concept.

4. Stability over time. The hashtag should become a part of the persistent
vocabulary of Twitter users, i.e. it should have sustained levels of usage and
should have a stable meaning over a period time.

In the following, we formalize these notions based on a Vector Space Model
(VSM) for hashtags.

http://bit.ly/aknbRe

Making Sense of Twitter 473

2.1 A Vector Space Model for Hashtags

The basic model of Twitter can be represented by a set of tuples S ⊂ M × U ×
P(H)× T where M is the set of all sequences of not more than 140 characters,
U is the set of registered Twitter users, H is the set of hashtags and T is a
set of discrete timestamps with a total order. The set of hashtags is the set of
possible words that start with a hash. Hashtags form part of the message in the
raw data, and we extract them using a regular expression "#[a-zA-Z0-9]+".
The size limitation imposed on messages puts an upper bound on the potential
length of hashtags, the number of possible hashtags as well as the number of
hashtags that may appear in a single message.

In line with previous works on the analysis of folksonomy systems [5], we cap-
ture the semantics of the hashtags by their usage in the social media system.
In particular, we will represent the meaning of hashtags using a Vector Space
Model (VSM) [20]. VSMs are commonly used in information retrieval as a rep-
resentation of documents, where each dimension corresponds to a term in the
collection and each value measures the weight of that term for the document. In
our case, we form virtual documents for each hashtag by considering all messages
where the hashtag appears. We don’t filter messages by language, but it would
be possible to build language specific representations this way.2

Formally, each hashtag hj can be represented by a vector hj = w1,j , w2,j ..wN,j

where wi,j ∈ W, N = |W | and W is the set of unique terms in all of M . The
simplest method for assigning weight is to consider term frequencies, i.e. wi,j is
the number of messages in which term i co-occurs with hashtag hj. In order to
account for the different levels of specificity of terms with respect to hashtags,
and to reduce the importance of the most common words, we obtain a more
accurate model by applying tf-idf normalization: wi,j = tfi,j · idfi where tfi,j =

wi,j∑
N
i=0 wi,j

is the relative frequency of term i with respect to hashtag hj; idfi =

log |H|
|{hj : wij

>0}| is inversely proportional to the logarithm of the relative number
of hashtags which term i appears with. For reasons of efficiency, we set elements
wi,j lower than a threshold k to zero. In particular, this allows efficient indexing
of the vectors using inverted indices.

We also introduce a bigram language model for hashtags; to do this, we define
as bigram each pair of consecutive terms in a message, and as bj the vector of
all bigrams coocurring with tag hj , bi,j being the number of messages in which
bigram i and tag hj co-occur. We apply tf-idf normalization in the same way as
we compute it for single word co-occurrence.

Finally, we represent hashtags on a social dimension by means of their user
occurrence vector uj, where ui,j is the number of messages tweeted by user ui

and containing hashtag hj .

2 Based on previous experience, languages can be detected with good accuracy despite

the short length of messages. The Twitter Search API also allows restricting tweets

by language.

474 D. Laniado and P. Mika

2.2 Frequency of Usage

The frequency of a hashtag hj ∈ H in terms of the number of users and
messages can be defined as

Fu(hj) = |{u : ∃(m, u, Hi, t) ∈ S ∧ hj ∈ Hi}| (1)
Fm(hj) = |{m : ∃(m, u, Hi, t) ∈ S ∧ hj ∈ Hi}| (2)

where Hi is the set of tags used in message i.

2.3 Specificity

While in most tagging systems tags are added as external metadata to describe
the content, in Twitter tags are just words making part of the message, high-
lighted by means of a hash to assign them a special function. Often, the hash
is added as a form of emphasis (e.g.: “I’m so #happy!”), and the user may not
be aware that the word as a hashtag has a more specific or otherwise different
meaning than the word itself. A hashtag can often just refer to the meaning of
the corresponding word, but in some cases it can assume a very different usage.
For example, the hashtag “#milan” seems to be prominently used to refer to
the Italian town, while the word “Milan” is much more frequently used in the
context of the football team.

It is thus interesting to observe if a hashtag has a meaning close to the one of
the corresponding word without hash, that we will call a non-tag. As with URIs
on the Semantic Web, we assume that hashtags that closely match the meaning
of the corresponding non-tag will be used more frequently. On the other hand,
we also expect that words that are used mostly as hashtags, or hashtags that are
used with a different semantics than their non-tag, will be used more consistently,
because they are re-used intentionally.

Similarly to our previous definitions, we define nj as the term vector of the
non-tag nj derived from hj by removing the hash. When building the term vector
nj, we only consider non-tag nj occurring in a message when the corresponding
hashtag hj is not used inside the same message. The intuition is that when
a non-tag appears in a message where the corresponding hashtag has already
been used, the semantics of the two are probably the same. We apply tf-idf
normalization to non-tags analogously to the one described in Section 2.1 for
hashtags.

We compute the specificity of a hashtag as the similarity between the vec-
torial representation of the hashtag and the corresponding non-tag. For comput-
ing similarity, we use the well-known cosine similarity of the two co-occurrence
vectors [21].

wsim(hj , nj) =
hj · nj

‖hj‖ ‖nj‖
(3)

Analogously, we define ūj as the model of the users of the non-tag uj, where ūi,j

is the number of messages in which user i used non-tag nj . We measure social

Making Sense of Twitter 475

specificity by comparing the model of the users of hashtag hj to the model of
the users of non-tag nj:

usim(hj, nj) =
uj · ūj

‖uj‖ ‖ūj‖
(4)

To be able to compare tags and non-tags also according to frequency, we define
F̄u(ni) and F̄m(ni) the frequency of a non-tag in terms of users and messages,
respectively.

2.4 Consistency of Usage

An important requirement for strong identifiers on the Semantic Web is that
they need to be used consistently across documents and users. As a measure of
the variety of usage contexts of a hashtag, we study the entropy of our vectorial
representations of hashtags. Entropy measures the amount of uncertainty asso-
ciated with the value of a random variable, in other words how uniformly the
probabilities are distributed across possible values of the variable.

We define the entropy of a hashtag hj as:

H(hj) = −
n∑

i=1

p(wi,j) log p(wi,j) (5)

Higher values of entropy point to more even distributions of probabilities, cor-
responding to tags being used in a variety of contexts, while lower values of
entropy signifies more restricted usage of a tag.

Similarly, we measure entropy of bigrams co-occurring with a tag as

Hb(hj) = −
n∑

i=1

p(bi,j) log p(bi,j) (6)

Non-tag entropy is measured like tag entropy: H̄(j) = −
∑n

i=1 p(w̄i,j) log p(w̄i,j).

2.5 Stability over Time

To study the evolution of hashtags on a temporal dimension, we chose to analyze
them day by day. First of all, to be able to identify new tags emerging, we define
as new on day d a tag not appearing in the previous k days. We will define
longevity of a new tag ld,k(hj) as the number of days in which tag hj appears
at least once, over the k days after its first occurrence on day d.

We then define hd
j the vector of words appearing with tag hj in some message

on day d, and we measure similarity of a hashtag hj on day d with respect to
the previous day as

wsimd(hj) =
hd
j · hd−1

j∥∥∥hd
j

∥∥∥∥∥∥hd−1
j

∥∥∥ (7)

476 D. Laniado and P. Mika

Analogously, ud
j is the vector of users who used tag hj on day d, and usimd(hj)

is the similarity among users on day d and d− 1.
The intuition behind these measures is that a stable tag should endure over

time and its meaning should not deviate much from one day to the other.

3 Evaluation

3.1 Dataset

For this study we relied on a dataset of 539,432,680 messages, collected over
the whole month of November 2009 (about 18 million per day). Slightly less
than 50% of tweets are in English; to filter out messages in non-latin encoding,
that we are not able to parse and study, we discarded all messages containing
non-ASCII characters, reducing the size of the dataset by about 28%.

Twitter user interfaces allow for forwarding of messages; the original message
is so “retweeted” with a special string “rt” at the beginning. As our study is based
on the co-occurrence of words inside the same message, and massive retweeting
that characterizes several tags might have a strong impact biasing the results,
we decided to filter out all retweets. Retweets constitute 5.4% of messages, so the
actual dimension of our dataset, after filtering, is of about 369 million messages.

To compute words co-occurring with a hashtag, we filtered out from the mes-
sages all Web links and Twitter usernames (words starting with “@”). To reduce
the size of co-occurrence vectors, discarding items having a very low tf-idf, we
used a threshold k = 0.01.

3.2 Descriptive Statistics

Figure 1 shows the distribution of the number of hashtags per message; overall,
only 31.5 million messages, corresponding to 8.5%, have at least one hashtag.
The percentage of users using at least a hashtag is higher, around 20%. Figure 2
shows that the number of users per tag follows a power low distribution, with
some outlier tags used by hundreds of thousands of users. Both the distribution
of the number of messages and of distinct tags tweeted by each user also follow
a heavy tailed distribution, with a few extremely active users, tweeting up to 10
thousand messages or one thousand distinct tags in a month. The total number
of distinct tags encountered is over 2 million; however, only about 93 thousand,
corresponding to 4.14%, appeared in more than 20 messages over the whole
month: for our study, we considered only these tags, and discarded all the others.

3.3 Evaluating Hashtags

In this Section we will illustrate some results obtained by applying the metrics
described in Section 2 to evaluate hashtags contained in our dataset.

Making Sense of Twitter 477

Fig. 1. Representation of the number of

messages having a given number of hash-

tags, on a logarithmic scale

Fig. 2. Distribution of the number of

users using a hashtag, on a log-log scale

Frequency of usage. A first interesting question about hashtags is whether
the corresponding non-tags also appear; about 73.5% of hashtags have the cor-
responding non-tag appearing at least once in our dataset. Among these, 57.8%
are more frequent as hashtags than as non-tags. A “map” representing the fre-
quency Fm of each hashtag in function of the frequency F̄m of the corresponding
non-tag in shown in Figure 3. The graphic exhibits a glove shape, which seems
to point out the distinction between two kinds of tags: those corresponding to
common words, that appear only sometimes preceded by a hash, and those on
the “thumb“, Twitter specific tags which are more often used with hash, and
do usually not correspond to any commonly used word. Examples of this second
kind of tags are #tagtuesday, #iranelection, #sextips and #tcot (acronym
for “top conservatives on Twitter”). We obtained a very similar shape for user
frequencies Fu and F̄u.

Specificity. Figure 4 shows the similarity between tags and the corresponding
non-tags, both in terms of co-occurrence vectors and of users. About a half of tags
have null values of usim, meaning no user in common with the corresponding
non-tag, while wsim is null for about one third of tags; while considering this
second result, it must be taken into account the fact that we have cut all values
of tf-idf below a threshold of 0.01.

Among tags having the highest values of wsim we find for example #daylight,
almost always used in the context of “daylight savings“, #lady, mostly referred
to the singer Lady Gaga both as a tag and as a non-tag, and #comofaz, which
is a Portuguese slang word for “How do I do?” Among those having null or very
low similarity we find tags like #tweetphoto, mainly found in messages gener-
ated by an application, and #li, that corresponds to a common word in several
languages, like Portuguese, Italian and Chinese, but as a hashtag is mainly used
to refer to the social network platform LinkedIn.

478 D. Laniado and P. Mika

Fig. 3. Frequency of each hashtag in function of the frequency of the corresponding

word with no hash

Fig. 4. Similarities wsim (red) and usim
(blue), in descending order

Fig. 5. Entropies H (red) and Hb (blue)

of tags, in ascending order

In Figures 6 and 7 similarity wsim is plotted in function of tag and non-tag
frequency, respectively. Apart from a tendency of very frequent tags to have a
lower similarity, no precise relationship can be detected between wsim and Fm.
On the other hand, high values of similarity seem to be more likely for tags
corresponding to words having a frequency in the order of a few thousands, with
a peak between 1e+04 and 1e+05.

Making Sense of Twitter 479

Fig. 6. Similarity between each tag and

the corresponding non-tag, in function of

tag frequency

Fig. 7. Similarity between each tag and

the corresponding non-tag, in function of

non-tag frequency

Consistency of usage. In Figure 5 we plotted the entropies of tags, in de-
scending order. Most of the tags have values of H lying in the range between 4
and 6; entropy based on bigram co-occurrence tends to be higher, with values
ranging mostly between 5 and 7.

Among tags having very high entropy we find especially tags expressing sen-
timents, like #whocares, #argh, # #, beyond some words used in a variety
of contexts, like #freak. Tags with a very low entropy are typically gener-
ated by applications, like #dongdongdong (a tweeting church), #tweetphoto or
#iphonebabes.

3.4 Stability over Time

While until here we have studied tags as static entities for the whole period of ob-
servation, in this Section we will illustrate some results based on the observation
of tags over different days.

As an example, we report some statistics observed for tags appearing on
November 10th, 2009; to identify new tags we used a temporal window of k = 9
days. The total number of distinct hashtags observed on November 10th is over
160 thousand, about 50% of which were not appearing in any of the 9 previous
days. We looked for these new tags in the messages from the 9 following days to
evaluate their longevity l. Most of the tags have l = 0 and only 36 tags (about
0.045%) appear in all days until November 19th. This is an interesting indicator
of how off-handedly users add hashes to words.

In this way, we have selected for each day very few new tags, that are poten-
tially new trending topics; we can now illustrate the results obtained by applying
the measures defined in Section 2.5 to two of these tags, to characterize them.

Tag #ampat stands for “American patriot”, and seems to have been adopted
by a well defined community. Frequency of messages and users (Figure 8) exhibit
a slow decreasing trend, after starting with about 300 messages in the first day,
tweeted by 50 users; entropy tends to decrease in time (Figure 10) pointing out a

480 D. Laniado and P. Mika

convergence towards some context; both the meaning and the community behind
the tag seem to be quite stable, though users tend to differentiate a bit in the
last observed days (Figure 9).

#kmartbls stands for Kmart’s blue light special offers; the extremely high
similarity between consecutive days in terms of co-occurrences (Figure 12), to-
gether with the very low entropy (Figure 13), is a signal of the scarce variety of
information carried by the messages; these data, contrasted with the very high
frequency (Figure 11), can easily bring to the conclusion that the tag has been
massively promoted by some automatic application, retweeting almost identical
messages from different accounts.

Fig. 8. Frequency Fm

(red) and Fu (blue) of tag

#ampat by day (November

12th-30th)

Fig. 9. Values of wsimd

(red) and usimd (blue)

of tag #ampat (November

12th-30th)

Fig. 10. Entropy of tag

#ampat over days (Novem-

ber 12th-30th)

Fig. 11. Frequency Fm

(red) and Fu(blue) of

tag #kmartbls by day

(November 10th-30th)

Fig. 12. Values of wsimd

(red) and usimd (blue) for

tag #kmartbls (November

10th-30th)

Fig. 13. Entropy of tag

#kmartbls over days

(November 10th-30th)

3.5 Manual Assessment

In order to assess how well our metrics are able to indicate which hashtags
represent stable concepts with a unique identity, we have performed a manual
evaluation on a random sample of 257 hashtags, relying on 7 evaluators, experts

Making Sense of Twitter 481

in the field of NLP. For each tag, we collected a random sample of 100 messages
with that hashtag, and asked our evaluators to answer the following questions:

1. whether they could guess the meaning of the tag just by looking at it;
2. whether the hashtag represented:

– an event, person, organization, product, or other named entity;
– messages generated by an application (e.g. spam);
– messages with a common sentiment;
– other;
– not clear;

3. whether the tag referred to the same meaning in all messages or not.

Furthermore, the evaluators were asked to choose the closest matching concept
from Freebase3, by means of the Freebase Suggest tool4.

In roughly 39% of cases, the messages were found to refer to a named en-
tity; for 20% of the tags the messages were characterized by a common senti-
ment (e.g. #thankfulfor, #grrr or #youknowyouareuglyif), while 12% of the
times they were recognized as generated automatically by some application (e.g.
#soundcloud, an audio distribution platform that relies on Twitter to spread
notifications about users’ activities, or #shop, massively used by spammers). In
26% of the cases, the hashtag did not represent a named entity, a sentiment or an
application, but was created for some other reason, typically to discuss a general
topic (e.g. #tv, #politics, #immigration). The meaning of the tag remained
unclear in 6.7% of the cases. Among named entities, organizations were the most
common (27%), followed by products, events, persons and other entities (16%,
12%, 6%, 29%).

Slightly more than half of the tags (137) could be associated to a Freebase en-
try; this is higher than the number of named entities because Freebase contains
also some general terms, like domains or common words, which are not named
entities. As expected, most application and sentiment tags could not be mapped
to Freebase. Only 33% of application and 14% of sentiment tags could be re-
solved, and many of these mappings are rough approximations of the intended
meaning (e.g. the protest tag #freegary mapped to gary mckinnon). We have
also explicitly measured agreement on this task by reevaluating 31 judgments.
18 out of the 31 tags in this sample could be mapped to Freebase. The inter-
annotator agreement on the task of determining if a hashtag can be mapped to
Freebase is very high (Cohen’s κ of 0.79). The judges agreed on the exact target
in 12 out of 18 cases, and 4 of the 6 instances of disagreements were simply
due to the same topic appearing in multiple hierarchies within Freebase. One of
the other two cases was a close match (technician vs technology for the tag
#tech), the other a broader match (bacon vs food for #bacon).

Using the whole set of judgments, we have also performed a logistic regression
on the binary variable indicating whether there was a mapping to Freebase for
a given hashtag. We have normalized the input variables by a linear transfor-
mation to the [0,1] interval, so that we obtain coefficients that are comparable
3 http://freebase.com
4 http://code.google.com/p/freebase-suggest/

http://freebase.com
http://code.google.com/p/freebase-suggest/

482 D. Laniado and P. Mika

in magnitude. Table 2 shows the coefficients of the resulting model. This model
shows that tag frequency, non-tag frequency, the number of users are negatively
correlated with the success of mapping to Freebase, because these frequency
measures are indicators of Twitter-specific usage. Entropy is also negatively cor-
related, because the higher the entropy, the less consistently the tag is used. The
number of non-tag users is positively correlated, because it indicates common
words/sentiments. Similarities are also positively correlated, but to a smaller
extent. Altogether our model achieves a 66% accuracy, a relative improvement
of 25% over the baseline of choosing the majority class.

Table 2. Logistic regression coefficients of the input variables reported, for predicting

output variable FBID (i.e., whether a hashtag can be mapped onto a Freebase entry)

Variable Fm F̄m Fu F̄u Hb H H̄ wsim usim Intercept

Coefficient -2.00 -3.45 -6.80 5.45 3.56 -3.68 0.11 0.78 0.34 -0.01

4 Related Work

After the appearance of the first social bookmarking applications, a considerable
effort has been spent in the study of tag semantics. Work in this field is strongly
related to ours, different in that tagging is explicit and often serves personal
categorization. Classifications of tags based on their usage are proposed in [8]
and [22]; an insight into the use of non subject related tags is offered in [11]. Mo-
tivations and incentives behind tagging have been investigated in [16] and [2]. In
[7] some metrics are introduced to evaluate tags, based on user behaviour. The
authors of [1] evaluate the potential of folksonomies to generate semantic meta-
data; an assessment of delicious tag vocabulary efficiency from an information
theory perspective is provided in [6]. Among the studies aiming at extracting
emergent semantics from folksonomies, the work described in [24] relies on a
metric of tag entropy to evaluate the ambiguity of tags.

While in our work we could represent hashtags as virtual documents, based
on messages in which they appear, in traditional social tagging applications the
context in which a tag can be analyzed is usually just constitued by other tags
used concurrently; a tripartite model of tags, users and resources is the basis for
most works [17]. In [5] some measures to compute tag relatedness are presented,
and delicious tags are grounded to WordNet synsets in order to contrast semantic
relations with the results of the different metrics proposed; the best semantic
precision was achieved with metrics based on the cosine between each tag’s
context, represented as a vector of co-occurring tags. Also the study described
in [4] resonates with our work for the use of information retrieval techniques to
compare tags with each other. In [13] a classification of users according to their
tagging behaviour is leveraged to improve the effectiveness of algorithms for
emergent semantics extraction from folksonomies. The idea of integrating tags
into the Semantic Web is pursued in FLOR [3], a framework for the enrichment

Making Sense of Twitter 483

of folksonomies with semantic information from existing ontologies. Models have
been proposed to anchor tags to Semantic Web URIs, such as MOAT [19] and
CommonTag5; NiceTag ontology allows for the representation of different kinds
of tagging actions, by means of named graphs [15].

Twitter’s social network and information diffusion dynamics have been stud-
ied in [10] and [12]; the authors of [14] investigate the use of Twitter during
conferences, identifying classes of hashtags and finding out a prevalence of tech-
nical terms, and a general tendency to address especially people belonging to the
same community. In [9] tagging behaviour in Twitter is compared with the one
in delicious, and it is described as conversational ; the authors in particular study
the phenomenon of memes emerging around hashtags that are often abandoned
after a short time, and introduce statistical metrics to detect them. A tripartite
model of users, hashtags and messages is introduced in [23] to turn Twitter into
a folksonomy, and to extract emergent semantics. Special syntaxes have been
proposed to allow users express structured information inside a tweet; among
these we mention twitlogic6 and HyperTwitter7, which allows users specify rela-
tionships among hashtags (equivalent, subtag) and express arbitrary properties;
an alternative distributed platform for microblogging, based on Semantic Web
principles, is described in [18].

5 Conclusions and Future Work

Since their introduction, hashtags have shown to be a popular feature of mi-
croblogging platforms as a practical solution to the problem of aggregating con-
tent in the disorganized and fragmented stream of information that characterizes
these systems. However, not all hashtags are used in the same way, not all of
them aggregate messages around a community or a topic, not all of them endure
in time, and not all of them have an actual meaning. In this work we have ad-
dressed the issue of evaluating Twitter hashtags as strong identifiers, as a first
step in order to bridge the gap between Twitter and the Semantic Web.

The first contribution of this paper stands in the formalization of the problem,
and in the elaboration of a number of desired properties for a good hashtag to
serve as a URI. We have proposed a Vector Space Model for hashtags, repre-
senting them as virtual documents; in parallel we have introduced the notion of
non-tag, to be able to compare each tag with the corresponding word without
hash. We have defined several metrics, based both on the messages containing a
hashtag and on the community adopting it, to characterize hashtag usage on a
variety of dimensions: frequency, specificity, consistency, and stability over time.
We have applied these metrics to a dataset of more than half a billion mes-
sages, collected over the whole month of November 2009. Beyond qualitatively
illustrating the results, showing how the metrics proposed tend to correspond
to actual properties of the data, we have performed manual classification of a
5 http://commontag.org
6 http://twitlogic.fortytwo.net/
7 http://semantictwitter.appspot.com/

http://commontag.org
http://twitlogic.fortytwo.net/
http://semantictwitter.appspot.com/

484 D. Laniado and P. Mika

sample of tags. Based on these data, we have tested the results obtained with the
algorithms described in the paper, showing how a combination of the proposed
measures can help in the task of assessing which tags are more likely to represent
valuable identifiers. These results are promising, with respect to the perspective
of anchoring Twitter hashtags to Semantic Web URIs, and to detect concepts
and entities valuable to be treated as new identifiers. Also spam detection tasks
can benefit from the metrics we have illustrated.

This work is only a first step in the direction of the investigation of hashtag
semantics, and of automatic hashtag classification. Different machine learning
algorithms can be used to improve the performances; cleaner results might be
obtained by taking into account the different languages of tweets. A more com-
plete analysis may result by considering also links, usernames and emoticons, and
by comprising retweet dynamics in the investigation. As a further step, we plan
to study similarity between hashtags, based both on word and user co-occurrence
vectors, in order to find clusters and study emergent semantics.

References

1. Al-Khalifa, H.S., Davis, H.C.: Exploring the value of folksonomies for creating se-

mantic metadata. International Journal on Semantic Web and Information Systems

(2007)

2. Ames, M., Naaman, M.: Why we tag: motivations for annotation in mobile and

online media. In: Proc. of CHI (2007)

3. Angeletou, S.: Semantic enrichment of folksonomy tagspaces. In: Sheth, A.P.,

Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.)

ISWC 2008. LNCS, vol. 5318, pp. 889–894. Springer, Heidelberg (2008)

4. Benz, D., Grobelnik, M., Hotho, A., Jaschke, R., Mladenic, D., Servedio, V.D.P.,

Sizov, S., Szomszor, M.: Analyzing tag semantics across collaborative tagging sys-

tems. In: Dagstuhl Seminar 08391 - Working Group Summary (2008)

5. Cattuto, C., Benz, D., Hotho, A., Stumme, G.: Semantic grounding of tag related-

ness in social bookmarking systems. In: Sheth, A.P., Staab, S., Dean, M., Paolucci,

M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318,

pp. 615–631. Springer, Heidelberg (2008)

6. Chi, E.H., Mytkowicz, T.: Understanding the efficiency of social tagging systems

using information theory. In: Proc. of HT (2008)

7. Farooq, U., Kannampallil, T.G., Song, Y., Ganoe, C.H., Carroll, J.M., Giles, L.:

Evaluating tagging behavior in social bookmarking systems: metrics and design

heuristics. In: Proc. of GROUP (2007)

8. Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems. J.

Inf. Sci. (2006)

9. Huang, J., Thornton, K.M., Efthimiadis, E.N.: Conversational tagging in twitter.

In: Proc. of HT (2010)

10. Huberman, B.A., Romero, D.M., Wu, F.: Social networks that matter: Twitter

under the microscope. First Monday (2009)

11. Kipp, M.E.: @toread and cool: Subjective, affective and associative factors in tag-

ging. In: Proc. of CAIS/ACSI (2008)

12. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news

media? In: Proc. of WWW (2010)

Making Sense of Twitter 485

13. Krner, C., Benz, D., Strohmaier, M., Hotho, A., Stumme, G.: Stop thinking, start

tagging - tag semantics emerge from collaborative verbosity. In: Proc. of WWW

(2010)

14. Letierce, J., Passant, A., Breslin, J., Decker, S.: Understanding how twitter is used

to widely spread scientific messages. In: Proc. of WebSci. (2010)

15. Limpens, F., Monnin, A., Gandon, F., Laniado, D.: Speech acts meet tagging:

NiceTag ontology. In: Proc. of I-SEMANTICS (2010)

16. Marlow, C., Naaman, M., Boyd, D., Davis, M.: Ht06, tagging paper, taxonomy,

flickr, academic article, to read. In: Proc. of HT (2006)

17. Mika, P.: Ontologies are us: A unified model of social networks and semantics.

In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS,

vol. 3729, pp. 522–536. Springer, Heidelberg (2005)

18. Passant, A., Hastrup, T., Bojars, U., Breslin, J.: Microblogging: A semantic web

and distributed approach. In: Proc. of SFSW (2008)

19. Passant, A., Laublet, P.: Meaning of a tag: A collaborative approach to bridge the

gap between tagging and linked data. In: Proc. of LDOW (2008)

20. Raghavan, V.V., Wong, S.K.M.: A critical analysis of vector space model for infor-

mation retrieval. Journal of the American Society for Information Science (1986)

21. Salton, G.: Automatic Text Processing – The Transformation, Analysis, and Re-

trieval of Information by Computer. Addison-Wesley, Reading (1989)

22. Sen, S., Lam, S.K., Rashid, A.M., Cosley, D., Frankowski, D., Osterhouse, J.,

Harper, F.M., Riedl, J.: Tagging, communities, vocabulary, evolution. In: Proc.

of CSCW (2006)

23. Wagner, C., Strohmaier, M.: The wisdom in tweetonomies: Acquiring latent con-

ceptual structures from social awareness streams. In: Proc. of SemSearch (2010)

24. Wu, X., Zhang, L., Yu, Y.: Exploring social annotations for the semantic web. In:

Proc. of WWW (2006)

Optimize First, Buy Later: Analyzing Metrics to
Ramp-Up Very Large Knowledge Bases

Paea LePendu, Natalya F. Noy, Clement Jonquet, Paul R. Alexander,
Nigam H. Shah, and Mark A. Musen

Stanford University, Stanford, California USA
{plependu,noy,jonquet,palexander,nigam,musen}@stanford.edu

Abstract. As knowledge bases move into the landscape of larger ontologies and
have terabytes of related data, we must work on optimizing the performance of
our tools. We are easily tempted to buy bigger machines or to fill rooms with
armies of little ones to address the scalability problem. Yet, careful analysis and
evaluation of the characteristics of our data—using metrics—often leads to dra-
matic improvements in performance. Firstly, are current scalable systems scalable
enough? We found that for large or deep ontologies (some as large as 500,000
classes) it is hard to say because benchmarks obscure the load-time costs for
materialization. Therefore, to expose those costs, we have synthesized a set of
more representative ontologies. Secondly, in designing for scalability, how do we
manage knowledge over time? By optimizing for data distribution and ontology
evolution, we have reduced the population time, including materialization, for the
NCBO Resource Index, a knowledge base of 16.4 billion annotations linking 2.4
million terms from 200 ontologies to 3.5 million data elements, from one week
to less than one hour for one of the large datasets on the same machine.

1 Introduction

Researchers are using ontologies extensively to annotate their data, to drive decision-
support systems, and to perform natural language processing and information extrac-
tion. As a result, we have an abundance of information across many domains making
their way into knowledge-based systems. For example, annotation databases that link
terms from biomedical ontologies to clinical data reach well into the tens of billions
of records and help scientists discover new connections among genes and diseases, or
drugs, treatments, and patient outcomes [11,20].

At the same time, ontologies are diverse; they are evolving; and they are getting
larger. Many have over 25,000 classes. A few have over 200,000 classes. Some change
on a daily basis. As we move into this abundant landscape, we are tempted to meet the
computational challenges either by scaling-up and purchasing bigger machines, or by
scaling-out and renting armies of little ones from the various compute clouds. Here, we
study how a careful analysis and evaluation of the characteristics of our ontologies and
data—using metrics—leads to dramatic improvements in performance, without spend-
ing on new infrastructure.

We focus on the domain of biomedicine, which has some of the largest, actively used,
and actively evolving ontologies today. In our laboratory, as part of the National Cen-
ter for Biomedical Ontology (NCBO), we have developed BioPortal [16]—the largest

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 486–501, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Optimize First, Buy Later 487

repository of publicly available biomedical ontologies. It currently contains more than
200 ontologies, which comprises over 2.4 million classes.

BioPortal includes the NCBO Resource Index [19], which is a searchable database
of semantic annotations for biomedical resources using all BioPortal ontologies. In this
context, a biomedical resource is a repository of elements that may contain patient
records, gene expression data, scholarly articles, and so on. A data element is unstruc-
tured text describing elements in the resource. An annotation—a central component—
links an ontology term to a data element, indicating that the element refers to the term.
To generate the Resource Index, we use a concept-recognition tool to find ontology
terms and their synonyms in data elements, and to store these associations in the index.
The Resource Index currently includes 22 different data resources, comprising over
3.5 million data elements resulting in 16.4 billion annotations stored in a 1.5 terabyte
MySQL database. We are ramping-up the system to include nearly 100 different data
resources, 50 million data elements, and well over 100 billion annotations.

Many large-scale knowledge bases will pay an amortized penalty up-front by mate-
rializing inferences (e.g., forward chaining, materializing views, computing transitive
closures) so that queries will run much faster, but at what cost? Knowing these trade-
offs and performance limitations helps us make critical decisions on which systems will
work best for our needs, or when—and how—to build something entirely new. As one
example of a critical problem we encountered for the Resource Index: what happens
when ontology evolution outpaces materialization?

Therefore, we approach the scalability problem for a knowledge base of annotations,
like the Resource Index, first by examining existing, scalable systems. Our goal is to
incorporate a large variety of ontologies as well as a large amount of data. However,
we found that benchmarks fall short in illuminating the fundamental tradeoffs between
query-time and load-time costs precisely because they do not account for variability
among ontologies. The size and depth of an ontology hierarchy significantly affects
the cost-curve for materialization. Furthermore, ontologies are not stagnant. Hence, in
building our own tool to handle a variety of ontologies and datasets, we found that
optimizing primarily for data distribution and ontology evolution significantly improves
the performance of the system.

Besides providing metrics for the most comprehensive set of ontologies and annota-
tions available in biomedicine (Section 3), we offer the following contributions:

– we used clustering algorithms on the size and depth of ontologies to identify some
characteristic distributions (4.2).

– we synthesized a set of representative ontologies as a new benchmark and demon-
strate that these ontologies illuminate previously opaque materialization costs (4.3).

– we analyzed the distribution of annotations together with ontology evolution met-
rics to determine partitioning schemes that streamline our workflow (5.2).

– we improved the performance time of the Resource Index by several orders of mag-
nitude by applying our analysis toward optimization strategies (5.3).

2 Related Work

Some of the related areas for this study include work on annotation indexes, bench-
marking tools, ontology metrics, and the motivating biomedical uses cases.

488 P. LePendu et al.

Annotation indexes. An annotation assigns a tag to some media as a whole, but it
also records the context in which the tag applies. Text annotations differ from multi-
media annotations mainly in terms of dimensionality. For text strings, the context can
be as simple as a position-offset value. For images or video (such as radiology x-rays,
EKG data, CT scans, MRI images, or even YouTube videos), additional dimensions,
including temporal offsets are required to localize the annotation context [18]. Large-
scale annotation systems often resort to scale-out architectures. Annotation databases
and ontology-based indexes often exemplify this: GoPubMed [5] indexes all of the
PubMed1 articles using terms from the Gene Ontology; Sindice [6] is another example
of a more general ontology-based index; Yahoo! is adopting the Healthline2 ontology-
based search engine. Some of the underlying technologies include databases such as
MySQL, indexing tools like Lucene, and frameworks like Hadoop and Solr.3

Benchmarking tools. Researchers use the Lehigh University Benchmark (LUBM) [7]
to evaluate the scalability of knowledge bases. LUBM provides developers, engineers
and architects with methods for quantifying the load-time and query-time for compu-
tationally intensive tasks such as computing massive RDF closures [23,26]. Some re-
searchers have indicated that the benchmark can be improved by reflecting real-world
workloads based on various dimensions such as reasoning complexity [13], data dis-
tribution [24], and even ontology variation [21]. However, to our knowledge, still no
benchmark takes the diversity of ontologies into account; therefore, materialization
costs remain inadequately characterized.

Ontology metrics. Researchers aiming to characterize various dimensions of large
numbers of ontologies in RDF(S), OWL or DAML format have performed several sur-
veys of the Semantic Web landscape [4,14,21,25]. Ontologies vary considerably along
many dimensions: by size and shape [4,25], by expressiveness and complexity [13,25],
by feature selection [21,25], or by instance density [4].

Biomedical use cases. The NCBO annotations have been used to interpret high-
throughput biomedical data (e.g., gene expression) using generalized (ontology neu-
tral) enrichment analysis [22] to discover significant gene–disease relationships that
are implicitly embedded in scientific literature. We have also used annotations to dis-
cover context-specific mappings among biomedical terminologies, which gives insights
into the relationship between, for example, the liver (Minimal Anatomical terminol-
ogy) and transduction (Gene Ontology) within the context of cancer (Human Disease
Ontology).

One of the gaps in current research involves using multiple ontologies at once in
large-scale knowledge base systems, such as the Resource Index, for scientific analy-
sis. Not only must we keep pace with the growing abundance of biomedical data, we
must also account for the number, variety and evolution of ontologies being used in
practice.

1 http://www.ncbi.nlm.nih.gov/pubmed
2 http://www.healthline.com
3 http://www.apache.org

http://www.ncbi.nlm.nih.gov/pubmed
http://www.healthline.com
http://www.apache.org

Optimize First, Buy Later 489

3 Data

We have collected metrics for the most comprehensive set of publicly available ontolo-
gies and annotations in biomedicine. In this section, we outline what ontologies and
annotations we used and how we gathered metrics on them. Our collected data repre-
sents a snapshot taken in May, 2010.

Ontologies. The BioPortal repository [16] stores biomedical ontologies developed in
various formats—OWL, OBO, RRF, Lexgrid-XML and Protégé Frames—and rang-
ing in subject matter from representation of anatomy and phenotype to diseases. Re-
searchers in biomedicine actively contribute their ontologies to BioPortal. Users can
submit new versions of their ontologies; visualize, browse and search them; make com-
ments on and get notifications about ontology changes; or create mappings between
terms from different ontologies.

BioPortal makes all data accessible programmatically via RESTful Web services.
Almost all of the BioPortal ontologies, including earlier versions, can be downloaded.4

We used these services to collect the ontologies used in our study. Of the 200 ontologies,
we incorporated 145. We skipped the remainder due to limitations on what was available
for parsing at the time.

Annotations. The Resource Index workflow, as illustrated by Figure 1, is composed
of two main steps: First, direct annotations are created from the text metadata of a
resource element using an off-the-shelf concept recognition tool, which in our case is
MGREP [3]. Second, we use subclass relations to traverse ontology hierarchies to create
new, expanded annotations.5

The ontology terms play a vital role because of the subsumption hierarchy. Users
who search for a general term like “cancer” will find results for documents that have
been annotated with, say, “melanocytic neoplasm” because it is defined as a kind of
cancer in the NCI Thesaurus, one of the ontologies in BioPortal.

The Resource Index currently has 22 resources indexed. We use the following sample
of 4 resources in this study because they are representative in terms of size, type of
content, frequency of updates, and quantity of data per element:

Biositemaps (BSM) represent a mechanism that researchers in biomedicine use to
publish and retrieve metadata about biomedical resources (1.5K elements).

ArrayExpress (AE) is a public repository of microarray data and gene-indexed ex-
pression profiles from a curated subset of experiments (10K elements).

ClinicalTrials.gov (CT) provides regularly updated information about federally and
privately supported clinical trials (89K elements).

GRANTS combines three different funding databases: Research Crossroads, CRISP,
and the Explorer of the NIH Reporter (1,400K elements).

4 http://www.bioontology.org/wiki/index.php/
BioPortal REST services#Download an ontology file

5 This workflow is also available as a web service called the NCBO Annotator [10], which pro-
vides researchers with an easy mechanism to employ ontology-based annotation using Bio-
Portal ontologies in their respective pipelines.

http://www.bioontology.org/wiki/index.php/BioPortal_REST_services#Download_an_ontology_file
http://www.bioontology.org/wiki/index.php/BioPortal_REST_services#Download_an_ontology_file

490 P. LePendu et al.

Fig. 1. Resource Index workflow: Using the Gene Expression Omnibus (GEO) data resource,
we illustrate how direct annotations are associated with a data element, then we expand those
annotations to account for the ontology hierarchy

Metrics. BioPortal maintains a limited set of ontology metrics, such as the number
of classes or siblings (Table 1), which we gathered using REST services. For every
ontology in either OWL or OBO format, we also used the ontology download service
and used the OWL API Metrics tool [8] to complement those statistics. We followed
imports during all calculations and consider only the asserted hierarchy.

For annotation metrics, we directly download the statistical data on the number and
kinds of annotations per resource and per ontology kept by the Resource Index. Table 1
lists the specific metrics we used in this study. All the metrics are available online.6

Table 1. Ontology and annotation metrics that we used

Ontology Metrics Annotation Metrics
Number of classes Number of data elements

Number of versions Number of direct annotations
Maximum depth of the class hierarchy Number of expanded annotations

Maximum and average number of siblings
Average number of adds, deletes and changes per version

6 http://www.bioontology.org/wiki/index.php/Metrics_Study

http://www.bioontology.org/wiki/index.php/Metrics_Study

Optimize First, Buy Later 491

Fig. 2. Materialized versus non-materialized KBs: OntoDB outperforms DLDB on LUBM
query-time performance (A). Yet, OntoDB appears to add no additional cost for load-time per-
formance (B). (Note: we reported these figures previously [12]).

4 Are Existing Systems Scalable Enough?

The set of ontologies in BioPortal, which we use to generate the Resource Index, is
extremely diverse, both in terms of size and depth of the class hierarchy. In order
to analyze and improve the query performance of the Resource Index, we must first
analyze the effects of the ontology characteristics on both load-time and query-time
performance. We started by using popular ontology benchmarks to compare the perfor-
mance of different approaches. However, as we show in this section, these benchmarks
do not account for the diversity in size and depth of ontologies. We then discuss the
complementary set of benchmarks that we synthesized based on the ontologies in our
repository.

4.1 A Tale of Two KBs: Is Materialization Really Free?

Because materializing inferences is a large part of high-performance KBs, we would
expect the obvious tradeoff: systems that perform materialization should obtain faster
query time at the cost of slower load time. However, upon comparing two dichotomous
KB systems, we were baffled to find that materialization seems to cost nothing at all.

DLDB [17] is a knowledge base system developed at Lehigh University that uses
database views to assist with query answering on large sets of data. OntoDB [12] was
developed at the University of Oregon using other database features. These two systems
are very similar: they take an ontology and a set of instances as input; they create and
load a relational database schema based on predicates from the ontology; they store the
instances in database tables; and they use intrinsic database features to maintain the
knowledge model and answer queries. OntoDB differs from DLDB by materializing
inferences at load time—using triggers—rather than by unfolding views at query time.

Comparing OntoDB with DLDB using LUBM, we clearly see the expected gains in
query-response time, as illustrated by Figure 2–A: materializing the inferences yields
marked gains because of the pre-computation. However, suspiciously, the gains come at

492 P. LePendu et al.

Table 2. EM clustering: Cluster 3 characterizes 38 percent of ontologies

Cluster Num. Classes Max. Depth Max. Siblings Avg. Siblings
0 (8%) 19628

(+/- 29189)
13.7

(+/- 5.6)
249.9

(+/- 118.6)
39.5

(+/- 13.4)
1 (26%) 1264

(+/- 791)
10.7

(+/- 4.7)
68.8

(+/- 35.5)
5.1

(+/- 6.0)
2 (3%) 13338

(+/- 10483)
37.0

(+/- 5.3)
2252.9

(+/- 2335.9)
10.4

(+/- 10.0)
3 (38%) 181

(+/- 170)
7.5

(+/- 3.4)
13.6

(+/- 8.4)
3.4

(+/- 2.6)
4 (21%) 34401

(+/- 66037)
18.8

(+/- 11.0)
385.1

(+/- 380.9)
1.1

(+/- 0.5)
5 (2%) 344095

(+/- 158541)
29.7

(+/- 10.3)
9939

(+/- 100.4)
1

(+/- 18.0)
6 (3%) 45303

(+/- 20784)
21.2

(+/- 15.1)
2226.3

(+/- 790.2)
76.8

(+/- 49.8)

Table 3. K-means clustering: The characteristics of small, medium and large ontologies

Cluster Num. Classes Max. Depth Max. Siblings Avg. Siblings
Small (80%) 4925 9.6 110.6 3.8
Medium (8%) 26062 14.7 654.7 55.8
Large (12%) 96502 33.2 2571.4 8.6

no apparent cost as shown in Figure 2–B: the slope of the overlapping lines indicates the
same constant cost per assertion for both systems. Would larger or deeper ontologies
demonstrate the expected load-time cost for materialization?

4.2 Is the LUBM Ontology Too Small and Shallow?

To determine whether larger and deeper ontologies would expose the expected load-
time costs, we need ontologies that vary in size and depth. Motivated by results that are
practical and relevant to biomedicine, we analyzed the 145 ontologies from BioPortal
by running clustering algorithms on the ontology metrics that we gathered for them
(Section 3, Table 1). We specifically considered the number of classes, maximum depth
and maximum and average number of siblings. We used two clustering algorithms: the
Expectation-Maximization clustering algorithm (EM) with an unspecified number of
clusters, which uses an iterative mechanism to find an optimal clustering distribution
(Table 2); and the simple K-means clustering algorithm with 3 clusters, identifying
small, medium, and large ontologies (Table 3).

We found that the most representative ontology has 181 classes and depth 8 (Table 2).
In addition, the three clusters with the largest number of ontologies (3, 1, 4) cover 85%
of the ontologies. The characteristics in the K-means results are highly skewed, with
80% of ontologies falling into the “small” category. The previous EM results (cluster 3,
38%) suggest that there are a significant number of clustered ontologies having smaller
characteristics—so, we might consider introducing a smaller division than K-means
suggests. Furthermore, the medium and large categories can be collapsed into cluster 4.

Reasoning in this way, we combined the results of EM clusters 3, 1 and 4 with the
K-means clusters to extrapolate a division between small, medium and large ontologies:

Optimize First, Buy Later 493

Table 4. Ontologies: nine synthetic ontologies representing biomedicine

 Ontology Parameters Schema Load Time Instance Load Time
 Size Depth Mean Mean

78 5 6.95 ms 3.65 ms
81 10 7.12 ms 4.99 ms

Small

72 20 8.64 ms

7.57 ms

5.69 ms

4.78 ms

1623 5 8.21 ms 6.51 ms
1555 10 8.93 ms 9.45 ms

Medium

1827 20 8.68 ms

8.61 ms

 15.69 ms

10.55 ms

19992 5 9.57 ms 11.84 ms
22588 10 9.59 ms 22.80 ms

Large

19578 20 10.28 ms

9.82 ms

40.14 ms

24.93 ms

100, 2,000 and 25,000 classes. Similarly, we defined the range of shallow, mid-range
(mid) and deep ontologies as having depths of 5, 10, and 20. We use these results to
generate a set of ontologies that account for the variety of depths and sizes.

4.3 Accounting for Size and Depth: New Benchmark Ontologies

The clustering results give us the characteristics of nine possible ontologies varying
along the size and depth dimensions: small–medium–large and shallow–mid–deep. Our
goal is to determine whether this benchmark produces enough variability to compare
load times for use cases that rely on different ontologies.

We developed OntoGenerator, a tool that generates a synthetic ontology given the
following parameters: a seed, the maximum number of classes, maximum number of
siblings (i.e., span), density, and number of individuals. The density parameter intro-
duces a degree of randomization in the fullness of the tree structure. It denotes the
probability that the maximum number of siblings or the maximum depth will be reached
along any path to a leaf node. We use the seed value to prime the randomizing func-
tion which allows us to reproduce the same ontology given the same parameters, or,
conversely, to construct a new ontology (of the same kind) by using a different seed. Fi-
nally, the tool creates the given number of individuals as instances of randomly chosen
classes in the ontology, distributing data uniformly at various depths in the hierarchy.

We used OntoGenerator to synthesize the nine different ontologies whose specific
size and depth are outlined in Table 4. We also had OntoGenerator create one million
individuals for each of the ontologies. The data is available online.7

4.4 Conclusion: Materialization Costs Depend on the Size and Depth

Our hypothesis that materialization costs will be exposed for larger and deeper ontolo-
gies was confirmed: the results demonstrate that cost is not constant per assertion, but
it depends on ontology size and depth. We obtained the load-time results in Table 4
by populating OntoDB (the KB that explicitly materializes inferences) with the nine
ontologies we generated, i.e., we loaded the ontology and the data. We measured load
time in two phases: the time to transform the ontology into a schema and load it into

7 http://www.bioontology.org/wiki/index.php/Metrics_Study

http://www.bioontology.org/wiki/index.php/Metrics_Study

494 P. LePendu et al.

Fig. 3. New benchmark performance: For OntoDB, the average time in milliseconds to load a
single assertion for small, medium, and large ontologies increases with larger-sized ontologies
(A). Load time also increases with depth (B).

the database (averaged per class), and the average time for loading a single instance
assertion (taken 1,000 at a time).

The positive slope of the lines displayed in Figure 3 show a clear cost dependency.
Interestingly, size and depth have both super-linear and interactive effects on the cost.
The crooked slope of each line indicates that size (and depth) independently yields a
super-linear effect on load time. Furthermore, size and depth have a cumulative effect:
the larger the ontology, the larger the role of depth (note increasing crookedness).

In conclusion, we should include ontologies of varying size and depth in KB bench-
marking suites. We have proposed a set of ontologies that can be used to enhance the
LUBM for characterizing materialization costs. This study clearly points out that, de-
pending on their ontologies, system designers should worry about materialization.

5 Managing Large-Scale Annotation Databases

Based on the results above (cf. Table 4), neither OntoDB nor DLDB could handle data
on the scale of the Resource Index: they would take several hours just to create the
schema (let alone process any data!) for the NCI Thesaurus, which has 74,646 classes.
Furthermore, the Resource Index uses not just one ontology, but over 200 of them (over
2.4 million classes) for annotation purposes. Finally, not only must we abate the costs of
materializing inferences for large-scale KBs, but we must also consider how to manage
that knowledge over time for various, evolving ontologies.

Whereas ontology size and depth affect materialization costs in the stagnant scenar-
ios described above, we demonstrate below that data distribution and ontology evolution
significantly also affect how we manage a very large KB over time. By optimizing for
these metrics, we have streamlined the Resource Index population workflow by several
orders of magnitude: from taking over one week for loading to less than one hour for
one of our larger datasets on the same machine.

5.1 The NCBO Resource Index

Annotation databases such as the NCBO Resource Index take the structure of an ontol-
ogy into account to provide enhanced search and retrieval functionality for documents.

Optimize First, Buy Later 495

Table 5. Annotations: A sample of four biomedical resources from the Resource Index shows the
number of elements, the number of direct annotations, and the number of expanded annotations.

As mentioned previously, a direct annotation “tags” a data element with a class from an
ontology. If a document is annotated with a class from an ontology, then we infer that
it is also annotated by the superclasses of that class (Figure 1).

In terms of load time versus query time, the tradeoff has to do with materializing
those superclass annotations. We can perform the inference at query time by unwinding
the hierarchical structure and issuing a union of sub-queries, one for each subclass (re-
cursively), to retrieve annotations. However, unfolding queries is probably not a viable
option because users expect split-second response times and the number of subclasses
for a given class can reach into the thousands. The query-time results in Figure 2 testify
to the slowness of query unfolding, even for a small ontology. But, as our benchmarking
study further illustrates (Figure 3), we can expect that for very large and deep ontolo-
gies (e.g., the NCBI Organismal Classification Ontology, which has 513,248 classes) a
user could potentially wait for several minutes to get answers on a very simple query as
it unfolds into tens of thousands of sub-queries.

The other option is to materialize the expanded annotations by forward propagating
(i.e., copying) them up the class hierarchy when they are created. As a result, no un-
folding occurs during query time—we can directly look up the answers for each class
quickly by using an index. However, materializing inferred annotations results in very
large expanded annotation databases (Table 5). In general, the ratio of annotations to
elements is 1000:1 and the ratio of expanded to direct annotations is 8:1.

Prior to optimization, the Resource Index population workflow took approximately
one week to generate and materialize annotations for the CT resource (the largest pro-
cessable resource), which has 89,000 data elements. We extrapolated that it would take
several months to process a repository of a million documents (e.g., the GRANTS re-
source), which puts repositories serving nearly 20 million documents (e.g., PubMed)
completely out of reach. Therefore, our goal is to reduce the load time by optimizing
the workflow so that it will scale to handle these large data resources—and to keep up
with them as each one grows.

5.2 Optimizing for Data Distribution and Ontology Evolution

Since our goal is to manage very large sets of annotations and expanded annotations,
one obvious choice is to partition the data in a way that supports a streamlined and
efficient execution. Ideally, a good partitioning mechanism will also distribute easily
over multiple nodes (if necessary). In order to determine how to partition the data, we
look at metrics on data distribution and ontology evolution:

496 P. LePendu et al.

Fig. 4. Annotations per ontology: The number of annotations per ontology obviously pref-
erences some of the larger ontologies like NCIT, MeSH and Galen (A). However, I-density
(B) shows that small but generic ontologies have higher percentages of their terms used for
annotation.

Data Distribution. Instance density tells us how the data is distributed. If we treat an-
notations as a kind of data instance, the instance density (I-density) of an ontology
measures the number of instances for each class in an ontology [4]. As Table 5 shows,
larger resources have larger I-densities because there is simply more data to be dis-
tributed. This indicates that resource size is an important consideration. By the same
token, larger ontologies entail more annotations (Figure 4–A) because more terms are
available for annotation matches, so ontology size is another factor. Interestingly, ac-
counting for ontology size, the actual I-density of a resource per ontology preferences
very small but very general ontologies such as the Cell Behavior Ontology (6 terms),
Basic Formal Ontology (an upper ontology), and BioPortal Metadata Ontology (Fig-
ure 4–B) because there is a higher chance that a high percentage of terms are used in
those ontologies.

Ontology Evolution. Ontologies evolve by growing in size and changing in structure.
We used the structural differences (diffs) that BioPortal provides for 15 of its ontologies
to understand their evolution. The diffs record the additions, deletions and changes to
classes in the ontologies for consecutive versions. Figure 5 shows that users modify
ontologies (change or delete terms) more often than they add new terms. This implies
that materialized inferences must be updated regularly as well. Moreover, the number
of versions per ontology in BioPortal indicates that the frequency of updates depends
on the ontology in question: new versions of ontologies accumulate frequently for a few
but rarely for most, following a power law distribution (Figure 6).

The metrics on data distribution and ontology evolution help to decide how to parti-
tion the database so that we can streamline the workflow. Our goal is not only to mate-
rialize the expanded annotations efficiently, but also to manage them as the ontologies

Optimize First, Buy Later 497

Fig. 5. Version differences: Based on a sample of 15 ontologies, normalized by ontology-size,
the percentage of modifications (updates and deletes) are double the percentage of additions

Fig. 6. Ontology versions: Ontologies loaded in BioPortal evolve according to a power law dis-
tribution: most ontologies (59%) are rarely modified (1.3 versions on average) but some (3%) are
revised weekly (150 versions). The Gene Ontology changes the most (daily, 212 versions).

evolve. In developing an optimization strategy, we need to determine which partitioning
criteria are most important, in what order.

Partitioning the Database. First of all, we can see from Table 5 and Figure 4 that
data is naturally distributed along resource size and ontology size by examining in-
stance density metrics—therefore, those attributes make good partitioning candidates.
We confirmed this by using information theory on the annotation metrics to determine
feature selection: we ran a basic information gain algorithm (ID3). However, we still
need more information to decide which should be the primary partitioning criteria: re-
source size or ontology size.

Hence, we looked at ontology evolution metrics next. Evolution influences how we
keep the database up-to-date. Whereas data is always added, metrics confirm that on-
tologies are mostly (but infrequently) updated. From these evolution metrics, we con-
cluded that resources should be the primary partitioning criterion because data additions
will far outweigh ontology updates in importance.

Therefore, we first partition the database by resource, which means that each set
of annotations for a resource will be kept in its own database file. Next, we partition
again by ontology. Partitioning first by resource allows us to process data elements in a
pipelined fashion: it enables adding new data elements over time extremely quickly by
merely appending to the end of the file (minimizing disk seeks). Furthermore, adding
a new resource is as simple as adding a new partition: it has no detrimental effect on
existing annotations. Finally, as we show in the next section, this partitioning helps with
expanding annotations very rapidly.

498 P. LePendu et al.

Sub-partitioning by ontology allows us to drop annotations efficiently for only the
ontology that has changed: it has no effect on annotations associated with other ontolo-
gies. Moreover, since sub-partitioning subdivides the files into smaller chunks, we also
gain speed in reading, indexing and updating annotations by ontology.

Speeding-up Expanded Annotations. Expanding annotations along the subsumption
hierarchy is—by far—the most computationally intensive, storage expensive and time
consuming phase of the population workflow. Partitioning by resource makes it possible
to compute the expansions extremely efficiently. Again, the goal is to take a direct an-
notation using a class and to use the ontology hierarchy to materialize (i.e., expand) the
annotations to superclasses of that class (cf. Figure 1). There are 2.4 million classes in
BioPortal ontologies, which, if we compute the transitive closure on subclass assertions,
result in 20.4 million subclass relationships to consider during expansion. However, the
real challenge comes when we have to cross-reference these 20.4M subclass relation-
ships against 2 billion direct-annotation records (e.g., the GRANTS data set, Table 5).

Stored in a database, we essentially have two tables to join: [term, superclass] and
[term, data-element]. The former contains the subclass relationships and the latter con-
tains the direct annotations. The efficient way to compute this join—called a merge-
join—is to sort both tables first by the join condition (term) and then scan them both
sequentially, outputting the join result in a linear fashion in the size of each table. How-
ever, sorting 2 billion records on disk is unrealistic: it would take days if not weeks;
moreover, data is constantly being added, so maintaining sorted order would slow down
inserts. Joining them using just indexes causes thrashing and unnecessary seeking and
re-reading of records (billions of times over!). The database is unable to automatically
optimize the join because it lacks the appropriate metrics.

The solution relies on two important facts: (1) the data grows rapidly but is parti-
tioned by resource, and (2) the ontology subclass relations will not grow quickly be-
yond the 20.4 million (or, say, a 100 million) mark any time soon. Therefore, we stream
annotations by resource into the [term, data-element] table as rapidly as the disk can
write them (which is many thousands of records a second). We also force the [term,
superclass] table into main memory using the MySQL MEMORY engine. (Forcing the
annotations into main memory is not an option because they are simply too large.) By
having the entire hierarchy in main memory, we can achieve the optimal performance
of the simple merge-join query without sorting any records. The result of applying these
key decisions yields remarkable performance gains.

Table 6. Optimized workflow: We achieve highly scalable performance using partitioning and
merge-join optimization based on density and evolution metrics

Resource No. Elements Old Population Time Optimized Population Time
BSM 1.5 K << 1 day 0.4 min
AE 11 K ~ 1 day 3 min
CT 89 K ~ 7 days 49 min
GRANTS 1,400 K N/A 492 min

Optimize First, Buy Later 499

5.3 Conclusion: Memory-Based Merge-Join with Partitioning Performs Well

Table 6 shows that we have achieved extraordinary performance gains—on a single
machine. In the worst case, we could repopulate the entire database (all resources and
all ontologies) in less than a day. Extrapolating these results, we anticipate that indexing
PubMed (20M articles) with all BioPortal ontologies will take only 5 days, as opposed
to nearly a year based on previous estimates.

In conclusion, by analyzing how data is distributed, how it grows, and how it evolves,
we can determine how to partition the data, how to streamline population speed, what
to keep in main memory, and how to update data without slowing down population.

6 Discussion

We would like to see previous results on large-scale knowledge base systems [17,23,26]
re-evaluated using the nine new benchmark ontologies we created. For example, we
believe that anomalies described when evaluating the BibTeX benchmark [24]—a phe-
nomenon similar to that in our “tale of two KBs”—would be explained by using a
variety of ontologies, rather than merely a variety of data. Furthermore, we believe that
differences in materialization heuristics will be easier to comprehend for systems that
compute massive RDF closures [23,26].

We would like to see metrics used more often for query optimization on Semantic
Web queries [1]. As our study illustrates, database optimization techniques should be
reused. Just as query optimizers use catalogs, which are metrics kept on the data distri-
bution in each database table, so can metrics improve knowledge bases. For example,
we can use ontology metrics for improving query federation over SPARQL endpoints:
we can easily optimize a query intersecting two ontologies by taking the smaller one
first. The same goes for annotations. What makes optimization in this area different
from database optimization, is that ontologies are just like data—they are not treated as
higher class citizens the way schemas are treated in databases.

As future work, we plan to develop better metrics on resource evolution: how fre-
quently and how drastically do resources change. Likewise, we are working on comput-
ing the differences between all versions of all ontologies. What will be most interesting
is to analyze those differences to come up with a viable change-propagation model that
could increase the performance of our systems even further. Considering that only frac-
tions of an ontology change during a revision, this approach should save a considerable
amount time updating annotations.

Our future research directions include using metrics for SPARQL query optimiza-
tion. Also, we can analyze differences between ontology revisions to determine an
incremental, change-propagation model for updating materialized inferences as ontolo-
gies evolve. Finally, we will consider providing annotations as Linked Open Data in a
scalable way.

7 Conclusion

We collected metrics for the most comprehensive ontologies available in biomedicine.
By analyzing those ontology metrics, we have created a set of representative ontologies

500 P. LePendu et al.

that improve upon existing benchmarks. These new ontologies help to illuminate pre-
viously opaque load time costs. By using these new evaluation tools, researchers can
improve upon KB systems that use materialization strategies.

We followed up on our evaluation by studying additional metrics on instance density
and ontology evolution to reduce load time for the NCBO Resource Index as much as
possible. As a result of our analyses, we improved performance time by several orders
of magnitude, without investing in new infrastructure. In the worst case, the current
database of 16.4 billion annotations can be re-materialized overnight. More importantly,
now we can annotate resources that were previously impossible, such as PubMed.

Acknowledgments. We thank Matthew Horridge for assisting with the OWL API Met-
rics tool. Benchmarking work was performed at the University of Oregon under the di-
rection of Professor Dejing Dou, supported in part by grant R01 EB007684 from the
National Institutes of Health. This work was also supported largely in part by the Na-
tional Center for Biomedical Ontology, under roadmap-initiative grant U54 HG004028
from the National Institutes of Health.

References

1. Bernstein, A., Kiefer, C., Stocker, M.: OptARQ: A SPARQL Optimization Approach based
on Triple Pattern Selectivity Estimation. Technical report, University of Zurich (2007)

2. Bodenreider, O., Smith, B., Kumar, A., Burgun, A.: Investigating Subsumption in SNOMED
CT: An Exploration into Large Description Logic-Based Biomedical Ontologies. Artificial
Intelligence in Medicine 39(3), 183–195 (2007)

3. Dai, M., Shah, N., Xuan, W.: An Efficient Solution for Mapping Free Text to Ontology
Terms. In: AMIA Summit on Translational Bioinformatics (2008)

4. d’Aquin, M., Baldassarre, C., Gridinoc, L., Angeletou, S., Sabou, M., Motta, E.: Character-
izing Knowledge on the Semantic Web with Watson. In: Evaluation of Ontology-based Tools
Wkshp (ISWC), pp. 1–10 (2007)

5. Doms, A., Schroeder, M.: GoPubMed: exploring PubMed with the Gene Ontology. Nucleic
Acids Research 33(Web Server issue), 783–786 (2005)

6. Tummarello, G., Oren, E., Delbru, R.: Sindice.com: Weaving the Open Linked Data. In: Int’l
Sem. Web Conf. (ISWC), pp. 547–560 (2007)

7. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base Systems. Jour-
nal of Web Semantics 3(2), 158–182 (2005)

8. Horridge, M., Bechhofer, S.: The OWL API: A Java API for Working with OWL 2 Ontolo-
gies. In: OWL Experiences and Directions Wkshp, OWLED (2009)

9. Jonquet, C., Musen, M., Shah, N.: Building a Biomedical Ontology Recommender Web Ser-
vice. Biomedical Semantics 1(S1) (2010)

10. Jonquet, C., Shah, N., Youn, C., Callendar, C., Storey, M., Musen, M.: NCBO Annotator:
Semantic Annotation of Biomedical Data. In: Int’l Sem. Web Conf., ISWC (2009)

11. Krallinger, M., Leitner, F., Valencia, A.: Analysis of biological processes and diseases using
text mining approaches. In: Methods in Molecular Biology, pp. 341–382 (2010)

12. LePendu, P., Dou, D.: Using Ontology Databases for Scalable Query Answering, Inconsis-
tency Detection, and Data Integration. Intelligent Info. Sys., JIIS (2010)

13. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a Complete OWL Ontology
Benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 125–139.
Springer, Heidelberg (2006)

Optimize First, Buy Later 501

14. Magkanaraki, A., Sofia, A., Christophides, V., Plexousakis, D.: Benchmarking RDF Schemas
for the Semantic Web. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp.
132–146. Springer, Heidelberg (2002)

15. Marwah, K., Katzin, D., Alterovitz, G.: Context-Specific Ontology Integration. In: (under
review) Pacific Symp. on Biocomputing, PSB (2011)

16. Noy, N., Shah, N., Whetzel, P., Dai, B., Dorf, M., Griffith, N., Jonquet, C., Rubin, D., Storey,
M.A., Chute, C., Musen, M.: BioPortal: Ontologies and Integrated Data Resources at the
Click of a Mouse. Nucleic Acids Research 1(37) (2009)

17. Pan, Z., Heflin, J.: DLDB: Extending Relational Databases to Support Semantic Web
Queries. In: Practical and Scalable Sem. Web Systems Wkshp (ISWC), pp. 109–113 (2003)

18. Rubin, D., Supekar, K., Mongkolwat, P., Kleper, V., Channin, D.: Annotation and Image
Markup: Accessing and Interoperating with the Semantic Content in Medical Imaging. IEEE
Intelligent Systems 24(1), 57–65 (2009)

19. Shah, N., Jonquet, C., Chiang, A., Butte, A., Chen, R., Musen, M.: Ontology-driven Indexing
of Public Datasets for Translational Bioinformatics. BMC Bioinformatics 10 (2009)

20. Stenson, P., Ball, E., Howells, K., Phillips, A., Mort, M., Cooper, D.: The Human Gene
Mutation Database: providing a comprehensive central mutation database for molecular di-
agnostics and personalized genomics. Hum. Genomics 4(2), 69–72 (2009)

21. Tempich, C., Volz, R.: Towards a benchmark for Semantic Web reasoners - an analysis of the
DAML ontology library. In: Evaluation of Ontology-based Tools Wkshp, ISWC (2003)

22. Tirrell, R., Evani, U., Berman, A., Mooney, S., Musen, M., Shah, N.: An Ontology-Neutral
Framework for Enrichment Analysis. In: AMIA Annual Symposium (2010)

23. Urbani, J., Kotoulas, S., Oren, E., Harmelen, F.: Scalable Distributed Reasoning using
MapReduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta,
E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 634–649. Springer, Heidelberg
(2009)

24. Wang, S., Guo, Y., Qasem, A., Heflin, J.: Rapid Benchmarking for Semantic Web Knowledge
Base Systems. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005.
LNCS, vol. 3729, pp. 758–772. Springer, Heidelberg (2005)

25. Wang, T., Parsia, B., Hendler, J.: A Survey of the Web Ontology Landscape. In: Int’l Sem.
Web Conf. (ISWC), pp. 682–694 (2009)

26. Weaver, J., Hendler, J.: Parallel Materialization of the Finite RDFS Closure for Hundreds
of Millions of Triples. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,
D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 682–697. Springer,
Heidelberg (2009)

Using Reformulation Trees to Optimize Queries
over Distributed Heterogeneous Sources

Yingjie Li and Jeff Heflin

Department of Computer Science and Engineering, Lehigh University

19 Memorial Dr. West, Bethlehem, PA 18015, U.S.A.

{yil308,heflin}@cse.lehigh.edu

Abstract. In order to effectively and quickly answer queries in envi-

ronments with distributed RDF/OWL, we present a query optimization

algorithm to identify the potentially relevant Semantic Web data sources

using structural query features and a term index. This algorithm is based

on the observation that the join selectivity of a pair of query triple pat-

terns is often higher than the overall selectivity of these two patterns

treated independently. Given a rule goal tree that expresses the reformu-

lation of a conjunctive query, our algorithm uses a bottom-up approach

to estimate the selectivity of each node. It then prioritizes loading of se-

lective nodes and uses the information from these sources to further con-

strain other nodes. Finally, we use an OWL reasoner to answer queries

over the selected sources and their corresponding ontologies. We have

evaluated our system using both a synthetic data set and a subset of the

real-world Billion Triple Challenge data.

Keywords: information integration, query optimization, query refor-

mulation, source selectivity.

1 Introduction

In the Semantic Web, the definitions of resources and the relationship between re-
sources are described by ontologies. The resources in the Web are independently
generated and distributed in many locations. Under such an environment, there
is often the need to integrate the ontologies and their data sources and access
them without regard to the heterogeneity and the dispersion of the ontologies.
Although recent research has led to the development of knowledge bases (KBs)
and/or triple stores to support this need, such systems have many disadvantages.
First, centralized knowledge bases will become stale unless they are frequently
reloaded with fresh data; this can be especially expensive if the knowledge-bases
rely on forward-chaining. Second, they can require significant disk space, espe-
cially for triple stores that use multiple triple indices to optimize queries. For
example, Hexastore [16] replicates each triple six times. Finally, there may be
legal or policy issues that prevent one from copying data or storing it in a central-
ized place. For this reason, we believe it is important to investigate algorithms
that allow data to reside in its original location, and that use summary indexes to

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 502–517, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Using Reformulation Trees to Optimize Queries 503

determine which locations contain data relevant to a particular query. In partic-
ular, we have proposed an inverted index-based mechanism that indicates which
documents mention certain URIs and/or literal strings [5]. This simple mecha-
nism is clearly space efficient, but also surprisingly selective for many queries.
However, because this index only indicates if URIs or literal strings are present
in a document, specific answers to a subgoal of the given query cannot be cal-
culated until the sources are physically accessed - an expensive operation given
disk/network latency. To further complicate matters, ontology heterogeneity can
lead to query answers being expressed in ontologies different from those used to
express the query. To solve these issues, we further proposed a flat-structure
query optimization algorithm that selects and processes sources given a set of
conjunctive query rewritings [4]. For each rewriting, this algorithm employs a
source selection strategy that prioritizes selective subgoals of the query and uses
the sources that are relevant to these subgoals to provide constraints that could
make other subgoals more selective. However, there are two key problems with
this algorithm: 1) the number of rewrites can be exponential in the size of the
query, especially when there are complex ontology axioms and 2) the selectivity
of the algorithm is inhibited by its reliance on local information.

To solve the above issues, we present a novel algorithm for optimizing the
selection of sources in ontology-based information integration systems. Like our
prior work, this approach relies on an inverted index; however, the main contri-
butions of this paper are:

– We present a tree-structure algorithm that performs optimizations that con-
sider the structure of a reformulation tree. Using this tree and the term
index, it estimates the most selective subgoals, incrementally loads the rele-
vant sources, and uses the data from the sources to further constrain related
subgoals.

– We demonstrate that this new algorithm outperforms the algorithms pro-
posed in [4] and [5] on both a synthetic data set with 20 ontologies having
significant heterogeneity and a real world data set with 73,889,151 triples
distributed in 21,008,285 documents.

The remainder of the paper is organized as follows: Section 2 reviews related
work. In Section 3, we describe the tree-structure source selection algorithm for
ontology-based information integration. Section 4 describes our experiments and
in Section 5, we conclude and discuss future work.

2 Related Work

Currently, there are mainly three areas of work related with our paper: database
query optimization, RDF query optimization and query answering over dis-
tributed ontologies.

Query optimization has been extensively studied by traditional database re-
searchers since the classic work by Selinger et al. [9]. Variations of these ideas are
still common practice in relational optimizers: use statistics about the database

504 Y. Li and J. Heflin

instance to estimate the cost of a query plan; consider plans with binary joins
in which the inner relation is a base relation (left-deep plans); and postpone
Cartesian product after joins with predicate. Following this, a number of opti-
mization techniques for databases systems were proposed. The representatives
include join-ordering strategies, and techniques that combine a bottom-up eval-
uation with top-down propagation of query variable bindings in the spirit of
the Magic-Sets algorithm [8]. Join-ordering strategies may be heuristic-based or
cost-based; some cost-based approaches depend on the estimation of the join
selectivity; others rely on the fan-out of a literal [12]. All of these database
query optimization techniques are designed for situations where data of different
database relations are stored in the same file. However, in the Semantic Web, it
is very common that data from the same relation is spread among many files.
If the available indices do not completely specify the triples contained in a doc-
ument, then high latency makes determining the extensions of the relations in
these files very expensive. In such situations, query plans need to be developed
incrementally.

In RDF query optimization, RDF data can be serialized and stored in a
database and a SPARQL query can be executed as an SQL join, hence re-
cently a lot of database join query optimization techniques such as creating
indexes have been applied to improve the performance of SPARQL queries. In
recent years, many researchers have proposed ways of optimizing SPARQL join
queries. MonetDB [11] exploits the fact that RDF data typically has many fewer
predicates than triples, thereby vertically partitioning the data for each unique
predicate and sorting each predicate table on subject, object order. RDF-3X [6]
and Hexastore [16] attempt to achieve scalability by replicating each triple six
times (SPO, SOP, PSO, POS, OPS, OSP): one for each sorting order of sub-
ject, predicate and object. It has been demonstrated that this strategy results
in good response time for conjunctive queries. The major disadvantages of both
of these approaches are that they rely on centralized knowledge bases and that
the indexes (or replication) are quite expensive in terms of space. YARS2 [3]
is another native RDF store and query answering system where index struc-
tures and query processing algorithms are designed from scratch and optimized
for RDF processing. The novelty of the approach proposed by YARS2 lies in
the use of multiple indexes to cover different access patterns. However, in this
way, if more efficient query processing can be achieved, more disk space will be
needed. GRIN [15] is a novel index developed specially for RDF graph-matching
queries and focuses on path-like queries that cannot be expressed using existing
SPARQL syntax. This index identifies selected central vertices and the distance
of other nodes from these vertices. However, it is still not clear how GRIN could
be adapted for a distributed context.

In query answering over distributed ontologies, T. Tran et al. [14] proposed
Hermes, which translates a keyword query provided by the user into a feder-
ated query and then decomposes this into separate SPARQL queries that are
issued to web data sources. A number of indexes are used, including a keyword
index, mapping index, and structure index. The most significant drawback to

Using Reformulation Trees to Optimize Queries 505

the approach is that it does not account for rich schema heterogeneity (map-
pings are basically of the subclass/equivalent class variety). Stuckenschmidt et
al. [13] proposed a global data summary for locating data matching query an-
swers in different sources and optimizing the query. However, this method does
not consider the heterogeneity of schemas of the distributed ontologies.

Most of the research on query answering over distributed schemas or ontolo-
gies are based on the P2P architecture. Piazza [2] proposes a language (based on
XQuery/XPath) to describe the semantic mapping between two different ontolo-
gies. In this work, a peer reformulates a query by using the semantic mapping
and forwards the reformulated query to another peer related by the semantic
mapping. DRAGO [10] focuses on a distributed reasoning based on the P2P-like
architecture. In DRAGO, every peer maintains a set of ontologies and the seman-
tic mapping between its local ontologies and remote ontologies located in other
peers. The semantic mapping supported in DRAGO is only the subsumption
relationship between two atomic concepts and ABox reasoning is not supported.
KAONP2P [1] also suggests the P2P-like architecture for query answering over
distributed ontologies. KAONP2P supports more extended semantic mapping
which describes the correspondence between views of two different ontologies,
where each view is represented by a conjunctive query. To support federated
query answering, it generates a virtual ontology including a target ontology to
which the query is issued and the semantic mapping between the target and the
other ontologies. Then, the query evaluation is performed against the virtual
ontology. However, all of these P2P systems have a drawback in that each node
must install system specific P2P software, presenting a barrier to adoption.

3 Query Optimization

In this section, we present some preliminary definitions regarding the distributed
environment for our algorithm, the inverted term index, and the algorithms of
our prior work. We then describe the novel tree-structure algorithm in detail.

3.1 Preliminaries

In the Semantic Web, there exist many ontologies, which can contain classes,
properties and individuals. We assume that the assertions about the ontologies
are spread across many data sources, and that mapping ontologies have been
defined to align the classes and properties of the domain ontologies. For con-
venience of analysis, we separate ontologies (i.e. the class/property definitions
and axioms that relate them) and data sources (assertions of class membership
or property values). Formally, we treat an ontology as a set of axioms and a
data source as a set of RDF triples. A collection of ontologies and data sources
constitute what we call a semantic web space:

Definition 1. (Semantic Web Space) A Semantic Web Space SWS is a tuple
〈D, o, s〉, where D refers to the set of document identifiers, o refers to an ontology
function that maps D to a set of ontologies and s refers to a source function that
maps D to a set of data sources.

506 Y. Li and J. Heflin

We have chosen to focus on conjunctive queries, which provide the logical foun-
dation of many query languages (SQL, SPARQL, Datalog, etc.). A conjunctive
query has the form 〈X〉 ← B1

(
X1

)
∧ . . .∧Bn

(
Xn

)
where each variable appear-

ing in 〈X〉 is called a distinguished variable and each Bi(Xi) is a query triple
pattern (QTP) 〈si, pi, oi〉, where si is a URI or variable, pi is a predicate URI,
and oi is a literal, URI, or variable. Given a Semantic Web Space SWS, the
answer set ans(SWS, α) for a conjunctive query α is the set of all substitutions
θ for all distinguished variables in α such that: SWS |= αθ1. In this definition,
the entailment relation |= is defined in the usual way, albeit with respect to the
conjunction of every ontology and data source in the Semantic Web Space.

Our problem of interest is given a Semantic Web Space, how do we efficiently
answer a conjunctive query? Recall, we are assuming that we do not have a
local repository for the full content of data sources and due to network latency,
we need to minimize the number of sources that we will load to ascertain their
actual content. Therefore we need to prune sources that are clearly irrelevant and
focus on those that might contain useful information for answering the query.
Here, we consider a system architecture where an Indexer is periodically run to
create an index for all of the data sources and to collect the axioms from domain
and mapping ontologies. Given a conjunctive query, the Reformulator uses the
domain and mapping ontologies to produce a set of query rewritings. A Selector
takes these rewritings and uses the index to identify which sources are potentially
relevant to the query (note, since the index is an abstraction, we cannot be
certain that a source is relevant until we load it). Then the Loader reads the
selected sources together with their corresponding ontologies and inputs them
into a sound and complete OWL Reasoner, which is then queried to produce
results. Since the selected sources are loaded in their entirety into a reasoner, any
inferences due to a combination of these selected sources will also be computed
by the reasoner.

In our prior work [5], we showed that a term index could be an efficient
mechanism for locating the documents relevant to queries over distributed and
heterogeneous semantic web resources. Basically, the term index is an inverted
index, where each term is either a full URI (taken from the subject, predicate
or object of a triple) or a string literal value. Formally, for a given document d,
the terms contained in d can be expressed as following:

terms(d) ≡ {x|〈s, p, o〉 ∈ d ∧ [x ≡ s ∨ x ≡ p ∨ (o ∈ U ∧ x ≡ o) ∨ (o ∈
L ∧ x ∈lit−terms(o))]},

where 〈s, p, o〉 stands for a triple contained in document d, U is the set of URIs,
L is the set of Literals and lit-terms() is a function that extracts terms from
literals, and may involve typical IR techniques such as stemming and stopwords.
The term index can then be defined as follows:

Definition 2. (Term Index) Given a Semantic Web Space 〈D, o, s〉, the term
index is a function I : T → P(D) , where T =

⋃
d∈D terms(s(d)).

1 αθ is a shorthand for applying θ to the body of α, i.e., B1θ ∧ B2θ . . . ∧ Bnθ.

Using Reformulation Trees to Optimize Queries 507

Using the term index we can define two functions that together determine how
to select potentially relevant sources using the term index. Note that the sources
for a QTP are basically those sources that contain each constant (URI or literal
term) in the QTP.

Definition 3. (Term Evaluation) Given the set of possible query triple patterns
Q and a set of constant terms T (that appear as subjects, predicates or objects
of any q ∈ Q), the term evaluation function qterms: Q → P(T) maps QTPs to
the (non-variable) terms that appear in them.

Definition 4. (Source Evaluation) Given the set of possible query triple pat-
terns Q and a set of document identifiers D, the source evaluation function
is qsources: Q → P(D). Given a QTP q and a term index I, qsources(q) =⋂

c∈qterms(q) I(c).

Subsequently, we proposed a flat-structure query optimization algorithm [4]
where the Selector took a set conjunctive query rewrites as input and then
locally optimized each of them. Since loading sources is the primary bottleneck
of this type of system, we focused on optimizing the source selectivity – the total
number of sources loaded. We define the source selectivity of a selection proce-
dure sproc for a query α as the number of sources not selected divided by the
total number of sources available:

Selsproc(α) =
|D| − |sproc(α)|

|D| (1)

The flat-structure algorithm is based on the simple observation that the join se-
lectivity of a pair of QTPs is often higher than the overall selectivity of these two
QTPs treated independently. Consider two QTPs q1 and q2 from the same con-
junctive query that share a variable x, in database parlance this situation is called
a join condition and x is the join variable. We note that the number of sources
required to answer the query are often less than qsources(q1) ∪ qsources(q2). If
we load the sources for q1 first, we can find a set rs of variable bindings for the
QTP from the triples contained in the sources. We can then apply each substi-
tution θ ∈ rs to q2 to generate a set of queries and get a set of sources for q2
by doing index lookups for each:

⋃
θ∈rs qsources(q2θ). It should be clear that by

adding an additional constant to each QTP, this join approach often has a higher
source selectivity than naively applying qsources to each QTP in the query, al-
though note that the join selectivity depends on which QTP is processed first.
The flat-structure algorithm iteratively loads the most selective QTP and uses
its substitutions to calculate the join selectivity for all remaining QTPs.2 The
two main problems with this algorithm are:

2 Here, we assume that all data sources are relatively small; the presence of very large

data sources may lead to an issue where a QTP that has high source selectivity

actually has low answer selectivity. Such problems could be addressed by keeping

additional size statistics in the index.

508 Y. Li and J. Heflin

– In order to avoid complications with inference impacting the number of
sources for each QTP, it repeats the source selection procedure for each
possible query rewrite. However, when there is significant heterogeneity in
the ontologies, synonymous ontology expressions can lead to an explosion
in the number of query rewrites. Processing a large number of rewrites can
slow the system down, even if we cache the results of index lookups and are
careful not to load the same source multiple times.

– The inability to use the full structure of query rewrites reduces the possible
source selectivity of the query process. Since source selection is indepen-
dently executed for each query rewriting, selectivity is based only on local
information, and does not account for the possibility that a subgoal that
initially appears selective actually is not selective once all of its rewrites are
taken into consideration.

3.2 Tree Structure Query Optimization Algorithm

To address the issues discussed in the previous section, we propose to replace
the Selector component of our previous architecture with a tree-structure query
optimization algorithm that takes a rule-goal tree expressing the query reformu-
lation as its input and performs a greedy, bottom-up analysis of which sources
to load. A rule-goal tree is basically an AND-OR graph, where goal nodes are
labeled with QTPs (or their rewritings), and rule nodes are labeled with ontol-
ogy axioms [2]. The purpose of the rule-goal tree is to encapsulate all possible
ways the required information could be represented in the sources. See Figure
1 for an example of a rule goal tree for query with three QTPs. In this ex-
ample, a property composition axiom r0 from a mapping ontology has been
used to rewrite swat:makerAffiliation as the conjunction of swrc:affiliation and
foaf:maker. Qasem et al. [7] have shown how to produce such rule-goal trees when
all ontologies are expressed in OWLII, a subset of OWL DL that is slightly more
expressive than Description Horn Logic.

We begin with an example to provide the intuition for our algorithm, and then
discuss its details subsequently. Consider the rule-goal tree in Fig. 1 for the query
Q, which asks for the publications affiliated with Lehigh University (“lehigh-
univ”), complete with the ids and names of their authors. In the diagram, each
goal node has three associated costs: the initial-cost is the number of sources rel-
evant to that goal if we do not consider any axioms, the local-optimal-cost is the
number of relevant sources after applying available constant constraints and the
total-cost is the number of sources after applying available constant constraints
and collecting sources from the descendants. Additionally, the order in which we
process goal nodes is indicated by the parenthesized numbers. The first step is
to use the term index to initialize the tree with source selectivity information,
represented by initial-costs next to each goal node. We start with the QTP leaf
node that selects the fewest sources: <?m,akt:has-affiliation,“lehigh-univ”> (la-
beled with (1)). Since this is an OR node, we simply propagate its sources up to
its parent goal. Thus, the total-cost for <?m,swrc:affiliation,“lehigh-univ”> is
updated to 60 (40 sources from its child plus 20 sources of itself; for simplicity of

Using Reformulation Trees to Optimize Queries 509

(6)

q

Q(?p, ?n, ?pap)

<?p, akt:full-name, ?n>: 4X10
6
/4/10

<?pap, swat:makerAffiliation, “lehigh-univ”>: 20/20/105

<?pap, akt:has-author, ?p>: 3X10
6
/20/20

r0

<?m, swrc:affiliation, “lehigh-univ”>: 20/20/60 <?pap, foaf:maker, ?m>: 4X10
6/25/25

<?m, akt:has-affiliation, “lehigh-univ”>: 40/40/40

r1

<?p, foaf:name, ?n>: 3X10
6
/6/6

r2

(1)

(2) (3)

(4)

(5)
(7)

Fig. 1. Query resolution of one sample query with notations in form of initial-

cost/local-optimal-cost/total-cost

(b)

q(?p, ?n, ?pap)

<?p akt:full-name ?n> <?pap swat:makerAffiliation “lehigh-univ”> <?pap akt:has-author ?p>

Θ = {{?p/person2,?pap/paper1, ?n/name1}, {?p/person3, ?pap/paper2, ?n/name2},
 {?p/person5,?pap/paper3, ?n/name3}}

Θ={}
<?p akt:full-name ?n>
<?p foaf:name ?n>
Total # of srcs:7million

Θ={}
<?pap akt:has-author ?p >
Total # of srcs: 3 million

Θ={}
<?pap swat:makerAffiliation lehigh-univ>
<?m swrc:affilitation lehigh-univ>
<?m akt:has-affilitation lehigh-univ>
<?pap foaf:maker ?m>
Total # of srcs: 105

Θ = {?pap/paper1, ?pap/paper2, ?pap/paper3, ?pap/paper4}
<?pap akt:has-author ?p >
Total # of srcs: 20

Θ ={?pap/paper1, ?pap/paper2, ?pap/paper3, ?pap/paper4}
<?p akt:full-name ?n>
<?p foaf:name ?n>
Total # of srcs: 7 million

Θ ={{?p/person2,?pap/paper1}, {?p/person3, ?pap/paper2 }, {?p/person5,?pap/paper3 }}
<?p akt:full-name ?n>
<?p foaf:name ?n >
Total # of srcs: 10

(a)

Θ = {}
<?m swrc:affilitation lehigh-univ>
<?m akt:has-affilitation lehigh-univ>
Total # of srcs: 60

Θ = {}
<?pap foaf:maker ?m>
Total # of srcs: 4million

<?pap swat:makerAffiliation lehigh-univ>

Θ={?m/maker1, ?m/maker2, ?m/maker3,
 ?m/maker4, ?m/maker5}
<?pap foaf:maker ?m>
Total # of srcs: 25

Fig. 2. AND-optimization. At each level of the tree a QTP is chosen greedily, its sources

loaded and queried, and the answers applied to sibling QTPs.

510 Y. Li and J. Heflin

exposition we are assuming that the sets of sources are disjoint, but this is not a
requirement for the algorithm). Since all children of <?m,swrc:affiliation,“lehigh-
univ”> have been processed, it joins the leaf nodes as a candidate for process-
ing, and since it’s total cost is 60, which is less than the initial costs of all
other candidates, it is the next node to be processed. Since it is a child of r0,
an AND rule node (indicated by the arc), we can use it to constrain its sib-
ling foaf:maker as shown in Fig. 2(a). First, we load all sources associated with
the goal node and issue the goal as a query for these sources. This query re-
sults in the substitutions for ?m: {?m/maker1, ?m/maker2, ...}. Each of these
substitutions is then applied to <?pap,foaf:maker,?m>, an index lookup is per-
formed for each resulting QTP, and the total set of sources (in this case 25 of
them) is used to update the total cost of this node in Figure 1, step (3). In
step (4), the total cost of these nodes (60+25=85) is propagated to their parent
swat:makerAffiliation, and is added to its initial cost (20), resulting in a total
cost of 105. Since this node now has the best selectivity and is the child of an
AND rule node (the original query), we need to perform another AND opti-
mization as show in Fig. 2(b). As shown, once this node is selected, there are
two siblings to choose from. However, before we can determine the cost of these
nodes, we must repeat the tree process on the subtrees rooted at these nodes,
thus the number of sources for <?p,akt:full-name,?n> is 7 million, the sum of
its sources and the sources of its child <?p,foaf:name,?n>. We apply the sub-
stitutions from swat:makerAffiliation to each sibling, resulting in the number
of sources of akt:has-author being reduced to 20 (updating its local-optimal-
cost in Fig. 1), but not changing the sources of akt:full-name. In step (5) of
Fig. 1, we select akt:has-author, load its sources, issue a combined query with
the previous goal, and get a new set of substitutions. These substitutions are
then applied to the subtree of akt:full-name, changing the local-optimal-costs of
foaf:name and akt:full-name to 6 and 4, respectively, and changing the total-cost
of akt:full-name to 10. As a result, the total number of collected sources for the
given conjunctive query is 105 + 20 + 10 = 135, compared to over 11 million if
no optimization was done. Once all sources are loaded, we can ask the original
query of the reasoner in order to get a final set of substitutions.

The pseudo code for our algorithm is shown in Figure 3. Algorithm 1 processes
a rule-goal tree, where the parameter rs, which provides a set of substitutions,
is ∅ when first called, but instantiated in recursive calls. We use frontier to
maintain a set of deepest, unprocessed goal nodes in the rule-goal tree; this is
initialized to be the set of leaf nodes. In Lines 2-4, we use the term index to
determine the initial selectivity of all goal nodes in the rule-goal tree. Then,
the most selective node n is chosen from the frontier (Line 6). We check if n
is a child of an AND rule, and if so Algorithm 2 is called to collect sources by
using the greedy strategy (Lines 7-8). If the rule is an OR mapping, the sources
from the rule children are directly broadcast upward to the rule parent goal
node p (Lines 9-10). Since this completes the processing of n, we remove it from
our frontier node set (Line 11) and if p currently has no descendants in frontier,

Using Reformulation Trees to Optimize Queries 511

Fig. 3. Pseudo code of tree-structure source selection algorithm

we add p to the frontier (Lines 12-13). When the frontier contains only the root
of the given rule-goal tree, the while loop terminates and our source collection
ends (Line 14). Finally, all collected sources are returned (Line 15).

In Algorithm 2 we optimize an AND node, given a most selective goal node
on, its siblings sibs, and an array of the sources for each node in the tree (the
latter is used as an output parameter to update the log of sources found for each
node). We start by loading on’s sources into the knowledge base KB. Then,
we evaluate on by asking the reasoner to get the substitutions of the variables
contained in on (Lines 5-6). These substitutions are then applied to on’s siblings
to enhance their individual selectivity (Lines 7-8). Note the recursive call to
getSourceList() in line 8; this ensures that any new constraints specified by rs
are effectively applied to the subtree rooted at each sibling. Based on the new
selectivity estimations, we choose the next most selective node that shares a join
variable with the partial query to be the next on (Line 9). Then we remove on
from sibs, add its sources to the sources retrieved so far, and load any newly
selected sources (Lines 10-12). In the next iteration, on is conjuncted with the
partial query query, the reasoner is queried, and the substitutions applied again
to the siblings. This process is repeated until all sibling nodes of the initial
given goal node are processed (Line 13). Finally, the sources collected by the
current AND mapping rule are returned (Line 14). As an aside, the flat-structure
algorithm essentially executes a variation of Algorithm 2 for every conjunctive
query rewrite.

512 Y. Li and J. Heflin

4 Evaluation

To evaluate our query optimization algorithm, we have conducted two experi-
ments based on a synthetic data set and a real world data set respectively. The
first experiment compares our tree-structure source selection algorithm to our
previous non-structure [5] and flat-structure [4] source selection algorithms using
a synthetic dataset with significant ontology heterogeneity. The second exper-
iment tests the scalability and practicality of our algorithm using a subset of
the real world Billion Triple Challenge (BTC) data set. For both experiments,
we use a graph-based synthetic query generator to produce a set of queries that
are guaranteed to have at least one answer each. These queries range from one
to thirteen triples, have at most nine variables each, and each QTP of each
query satisfies the join condition with at least one sibling QTP. All of our ex-
periments are done on a workstation with a Xeon 2.93G CPU and 6G memory
running UNIX. Our Indexer component is implemented using Lucene while our
Reasoner is KAON2.

4.1 Heterogeneity Evaluation Using a Synthetic Data Set

Our first experiment compares the tree-structure algorithm to the non-structure
and the flat-structure algorithms using a synthetic data generator that is de-
signed to approximate realistic conditions. First, we ensure that each generated
file is a connected graph, which is typical of most real-world RDF files. Based
on a random sample of 200 semantic web documents, we set the average num-
ber of triples in a generated document to be 50. In order to achieve a very
heterogeneous environment, we conducted experiments with 20 ontologies, 8000
data source sources, and a diameter of 6, meaning that the longest sequence of
mapping ontologies between any two domain ontologies was six. In this configu-
ration, the average number of sources committing to each ontology is 400. This
configuration resulted in an index size of 75.3MB, which was built in 21.6 sec-
onds. We issued 240 random queries, grouped by the number of unconstrained
QTPs (from 0 to 10), where an unconstrained QTP is one with variables for
both its subject and object or with an rdf :type predicate paired with a variable
subject. For each group, we computed the average query response time, average
number of selected sources and average number of index accesses. Due to the
exponential increase in query response time, we only executed queries with up to
5 unconstrained QTPs for both the non-structure and flat-structure algorithms.

Fig. 4(a) shows how each algorithm’s average query response time is affected
by increasing the number of unconstrained QTPs. From this result, we can see
that the tree-structure algorithm and flat-structure algorithm are faster than
the non-structure algorithm. The reason is that unconstrained QTPs are typi-
cally the least selective; thus, the more unconstrained QTPs there are, the more
opportunities there are for the two optimization algorithms to use constraints
to enhance the selectivity of goals. However, the benefits of the tree-structure
algorithm become really noticeable for 5 or more unconstrained QTPs; in this
situation the flat-structure algorithm begins to reveal exponential behavior while

Using Reformulation Trees to Optimize Queries 513

the tree-structure algorithm remains linear. This is because complex mapping
ontologies can lead to a number of conjunctive query rewrites that is exponential
in the size of the query.

(a)

(b)

 (c)

0

5000

10000

15000

20000

25000

30000

35000

0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 q
ue

ry
 r

es
po

ns
e

ti
m

e(
m

s)

of unconstrained query triple patterns

Tree-structure

Flat-structure

Non-structure

0
50

100
150
200
250
300
350
400
450
500

0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 #
 o

f
in

de
x

ac
ce

ss
es

of unconstrained query triple patterns

Tree-structure

Flat-structure

Non-structure

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 #
 o

f
se

le
ct

ed
 s

ou
rc

es

of unconstrained query triple patterns

Tree-structure

Flat-structure

Non-structure

Fig. 4. Synthetic Semantic Web Space experimental results. Average query response

time (a), index accesses (b) and number of selected sources (c) as the number of

unconstrained QTPs varies.

514 Y. Li and J. Heflin

Fig. 4(b) shows how each algorithm’s average number of index accesses is af-
fected by the number of unconstrained QTPs. Note the index is stored on disk
and is optimized for fast lookups, but a large number of accesses can have a
noticeable impact on performance. From this result, we can see that the tree-
structure and flat-structure algorithms require more index accesses than the
non-structure algorithm: for 5 unconstrained QTPs they require 5.3x and 9.1x
more accesses, respectively. This is because both algorithms take into account
the query structure information while solving the original query and might need
several index lookups for the same query subgoal but using different substitu-
tions. However, the tree-structure algorithm has 58% fewer index accesses than
the flat-structure algorithm. The reason is that when using the flat-structure
algorithm, one QTP can appear in multiple query rewritings and receive con-
straints from different sets of siblings representing different rewrites, while in the
tree-structure algorithm the constraints of a sibling already consider all possible
rewrites of the sibling.

Fig. 4(c) shows how the number of unconstrained QTPs impact the average
number of selected sources for each algorithm. From this result, we can see the
selectivity of the tree-structure and the flat-structure algorithms are roughly
linear, while the non-structure algorithm is exponential in the number of uncon-
strained QTPs. Furthermore, the tree-structure algorithm has a gentler slope
for its source selectivity than the flat-structure algorithm. Note, loading sources
is the primary bottleneck of the system, since it requires that triples be read
from the disk or network. The similar trends in Fig. 4(a) and Fig. 4(c) reflect
the importance of source selectivity to overall query response time.

4.2 Scalability Evaluation Using the BTC Data Set

In this section, we evaluate our algorithm’s scalability by using a subset of
the BTC 2009 data set (much of which comes from the Linking Open Data
Project Cloud). We have chosen four collections, as summarized in Table 1,
with a total of 73,889,151 triples. Using the provenance information in the BTC,
we re-created local N3 versions of the original files from the BTC resulting in
21,008,285 data sources. The size of these data sources varies from roughly 5
to 50 triples each. In order to integrate the four heterogeneous collections, we
manually created some mapping ontologies, primarily using rdf:subClassOf and
rdf:subPropertyOf axioms (these schemas do not have any meaningful align-
ments that are more complex). Since our algorithm does not yet select all rel-
evant sources with owl:sameAs information, we assume an environment where
any relevant owl:sameAs information is already supplied to the reasoner. We
do this by initializing the KB with the necessary owl:sameAs statements. Our
index construction time is around 58 hours and its size is around 18GB. Each
document takes around 10ms on average to be indexed. The Lucence configura-
tions are 1500MB for RAMBufferSize and 1000 for MergeFactor, which are the
best tradeoff between index building and searching for our experiment.

Using Reformulation Trees to Optimize Queries 515

Table 1. Data sources selected from the BTC 2009 dataset

Data Source Namespace # of Sources # of Triples

http://data.semanticweb.org/ swrc 41,974 174,816

http://sws.geonames.org/ geonames 2,324,253 14,866,924

http://dbpedia.org dbpedia 10,615,260 48,694,372

http://dblp.rkbexplorer.com akt 8,026,878 10,153,039

Total 21,008,285 73,889,151

Because the non-structure algorithm does not refine goals with constraint
information from related goals, it cannot scale to the BTC data set. In fact,
most of our synthetic queries cannot be solved by this algorithm. For example,
consider the query Q:{〈<?x0, swrc:affiliation, “lehigh−univ”〉.〈?x2, akt:has−
title, “Hawkeye”〉.〈?x2, foaf :maker, ?x0〉.〈?x0, akt:full − name, ?x1〉}. For the
non-structure algorithm, the number of sources that can potentially contribute
to solving 〈?x2, foaf :maker, ?x0〉 is 3,485,607, which is far too many to load
into a memory-based reasoner. However, the tree-structure and flat-structure
algorithms can deal with it because the number of sources for the same QTP
becomes 114 after variable constraints are applied. For this reason, we only
compare the tree-structure and flat-structure algorithms here.

0

10

20

30

40

50

Tree-structure Flat-structure

Average # of query response
time

0

5

10

15

20

Tree-structure Flat-structure

Average # of index accesses

0

100

200

300

400

500

600

Tree-structure Flat-structure

Average # of selected sources

(a) (b) (c)

Fig. 5. BTC data set experimental results

We executed 150 synthetic queries with at most 10 QTPs and computed the
same metrics as for the prior experiment. As shown in Fig. 5(a), the average
query response time of the tree-structure algorithm is 35 seconds, which is a
13% improvement over the flat-structure algorithm. At the same time, it has
25% fewer index accesses as shown in Fig. 5(b). Fig. 5(c) shows that both al-
gorithms select on average between 450 and 500 sources, and the tree-structure
algorithm only shows a 1.6% improvement over the flat-structure algorithm here.
We attribute this to the fact that the semantic mappings of the BTC experiment
are not as complex as those for the synthetic data set, which leads to a small
number of rewrites for each query. when there are potentially many rewrites for

516 Y. Li and J. Heflin

a query. We posit that in real-world settings where more ontologies are involved,
that the superiority of the tree-structure algorithm will be more pronounced.

5 Conclusions, Limitations and Future Work

We have proposed a tree-structure optimization algorithm for integrating mil-
lions of data sources that commit to different ontologies. Given a reformulation
tree, this algorithm uses a bottom-up process to select sources and uses the
selectivity of each goal node as a heuristic to optimize and plan the query ex-
ecution. Our experiments have demonstrated that this new algorithm is better
than both of our prior algorithms [4] [5] in that not only does it demonstrate
query response time performance that is linear with respect to the number of un-
constrained QTPs, it also has better source selectivity and requires fewer index
accesses than the flat-structure algorithm. Meanwhile, we have also shown that
our algorithm scales well, allowing many complex randomly generated queries
against 20 million heterogeneous data sources to complete in 35 seconds.

Despite showing initial promise there are a number of limitations to the work
in its present form. First, the algorithm focuses on conjunctive queries, and does
not consider richer features of SPARQL such as OPTIONALs. In addition, in
order to avoid the computational challenges of higher-order logics, it does not
allow variables in the predicate position. Second, the implementation only works
with OWLII, a subset of OWL DL, although any rewriting algorithm that pro-
duces an AND-OR reformulation tree could be used. Since finite reformulation
trees cannot express rewrites of a query whose reformulation involves cyclic rules,
completeness is only guaranteed for acyclic OWLII axioms. We note that this
algorithm is designed for a setting where there are large numbers of small RDF
files, and that it is not intended to issue queries to large SPARQL end points.
Fortunately, due to Linked Data guidelines, we note that most large SPARQL
end points expose an interface where a URL can be dereferenced to retrieve a
small set of RDF triples describing each instance. The algorithm assumes that a
correct set of mapping ontologies has been provided, and we note that any errors
in these mappings can result in a loss of “semantic fidelity.” Finally, the current
algorithm is not guaranteed to find all relevant sources if there are owl:sameAs
statements in the Semantic Web Space.

Our future work includes attempting to improve the selectivity of our al-
gorithm even further and addressing many of its limitations. We believe it is
possible to make better estimates about the selectivity of a node by maintaining
upper and lower bounds and we will also look at storing additional statistics in
our index. With respect to the limitations mentioned in the previous paragraph,
we think that the most critical need is to adapt the algorithm to locate relevant
owl:sameAs statements, which must necessarily be an iterative process in order
to find their transitive closure. We believe that this paper provides a major step
towards a pragmatic solution for querying a large, distributed, and ever changing
Semantic Web.

Using Reformulation Trees to Optimize Queries 517

References

1. Haase, P., Wang, Y.: A decentralized infrastructure for query answering over dis-

tributed ontologies. In: Proceedings of the 2007 ACM Symposium on Applied Com-

puting, SAC 2007, pp. 1351–1356. ACM, New York (2007)

2. Halevy, A.Y., Ives, Z.G., Madhavan, J., Mork, P., Suciu, D., Tatarinov, I.: The

Piazza peer data management system. IEEE Trans. Knowl. Data Eng. 16(7), 787–

798 (2004)

3. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A federated repository for

querying graph structured data from the web. In: The Semantic Web, pp. 211–224

(2008)

4. Li, Y., Heflin, J.: Query optimization for ontology-based information integration.

In: CIKM 2010. ACM, New York (2010)

5. Li, Y., Qasem, A., Heflin, J.: A scalable indexing mechanism for ontology-based

information integration. In: IEEE/WIC/ACM International Conference on Web

Intelligence and Intelligent Agent Technology (2010)

6. Neumann, T., Weikum, G.: Scalable join processing on very large RDF graphs.

In: Proceedings of the 35th SIGMOD International Conference on Management of

Data, SIGMOD 2009, pp. 627–640. ACM, New York (2009)

7. Qasem, A., Dimitrov, D.A., Heflin, J.: Efficient selection and integration of data

sources for answering semantic web queries. In: International Conference on Se-

mantic Computing, pp. 245–252 (2008)

8. Ramakrishnan, R., Ullman, J.D.: A survey of research on deductive database sys-

tems. Journal of Logic Programming 23, 125–149 (1993)

9. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access

path selection in a relational database management system. In: Proceedings of the

1979 ACM SIGMOD International Conference on Management of Data, SIGMOD

1979, pp. 23–34. ACM, New York (1979)

10. Serafini, L., Tamilin, A.: Drago: Distributed reasoning architecture for the semantic

web. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp.

361–376. Springer, Heidelberg (2005)

11. Sidirourgos, L., Goncalves, R., Kersten, M.L., Nes, N., Manegold, S.: Column-store

support for rdf data management: not all swans are white. PVLDB 1(2), 1553–1563

(2008)

12. Staudt, M., Soiron, R., Quix, C., Jarke, M.: Query optimization for repository-

based applications. In: Proceedings of the 1999 ACM Symposium on Applied Com-

puting, SAC 1999, pp. 197–203. ACM, New York (1999)

13. Stuckenschmidt, H., Vdovjak, R., Broekstra, J., Houben, G.: Towards distributed

processing of RDF path queries. Int. J. Web Eng. Technol. 2(2/3), 207–230 (2005)

14. Tran, T., Wang, H., Haase, P.: Hermes: Data web search on a pay-as-you-go inte-

gration infrastructure. Web Semantics 7(3), 189–203 (2009)

15. Udrea, O., Pugliese, A., Subrahmanian, V.S.: Grin: A graph based RDF index. In:

AAAI, pp. 1465–1470 (2007)

16. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web

data management. PVLDB 1(1), 1008–1019 (2008)

AnQL: SPARQLing Up Annotated RDFS

Nuno Lopes1, Axel Polleres1, Umberto Straccia2, and Antoine Zimmermann1

1 Digital Enterprise Research Institute,
National University of Ireland Galway, Ireland

{nuno.lopes,axel.polleres,antoine.zimmermann}@deri.org
2 Istituto di Scienza e Tecnologie dell’Informazione (ISTI - CNR), Pisa, Italy

straccia@isti.cnr.it

Abstract. Starting from the general framework for Annotated RDFS which we
presented in previous work (extending Udrea et al’s Annotated RDF), we address
the development of a query language – AnQL – that is inspired by SPARQL,
including several features of SPARQL 1.1. As a side effect we propose formal
definitions of the semantics of these features (subqueries, aggregates, assign-
ment, solution modifiers) which could serve as a basis for the ongoing work in
SPARQL 1.1. We demonstrate the value of such a framework by comparing our
approach to previously proposed extensions of SPARQL and show that AnQL
generalises and extends them.

Introduction

RDF (Resource Description Framework) [14] is the widely used representation lan-
guage for the Semantic Web and the Web of Data. RDF exposes data as triples, con-
sisting of subject, predicate and object, stating that subject is related to object by the
predicate relation. Several extensions to RDF were proposed in order to deal with
time [7,19,24], truth or imprecise information [15,22], trust [10,20] and provenance [4].
All these proposals share a common approach of extending the RDF language by attach-
ing meta-information about the RDF graph or triple. RDF Schema (RDFS) [3] is the
specification of a restricted vocabulary that allows to deduce further information from
existing triples. In our previous work [23], we presented a general extension to RDFS,
improving on Udrea et al’s Annotated RDF [25], that is capable of encapsulating the
mentioned RDF extensions as specific domains for RDF annotations. For this general
extension, we present a generic RDFS reasoning procedure which can be formulated
independently of the annotation domain by being parameterised with operations any
domain needs to provide. An overview of Annotated RDFS is presented in Sect. 1.

SPARQL [21] is the W3C-standardised query language for RDF. In this paper we
present an extension of SPARQL for querying annotated RDFS. SPARQL shares sim-
ilarities with SQL although several features, such as aggregates, nested queries and
variable assignments, are still missing from the current SPARQL specification. Our
SPARQL extension presented here also deals with these missing features thus going
beyond the features of SPARQL, heading towards the currently under development
SPARQL 1.1 specification [9]. Our extension of SPARQL, called AnQL, is presented in
Sect. 2. Furthermore, Sect. 3 presents a discussion of some of the most important issues
with the design of our query language along with the comparison to some of the related
works.

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 518–533, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

AnQL: SPARQLing Up Annotated RDFS 519

Related Work. The basis for Annotated RDF were first established by Udrea et al. [25,
26], in which their query language is restricted to conjunctive queries. SPARQL is com-
pared to the presented conjunctive queries but excludes the possibility of querying an-
notations. Furthermore, OPTIONAL, UNION and FILTER SPARQL queries are not
considered which results in a subset of SPARQL that can be directly translated into
their previously presented conjunctive query system.

In [7], Gutiérrez et al. present conjunctive queries with built-in predicates for query-
ing temporal RDF, neither considering full SPARQL. Pugliese et al. [19] also have a
temporal framework where they only define conjunctive queries, thus ignoring some of
the more advanced features of SPARQL. Tappolet and Bernstein [24] present tempo-
ral extensions for RDF and SPARQL. A storage format for temporal RDF is presented
where each time interval is stored as a named graph. The τ -SPARQL query language al-
lows to query the temporal RDF representation using an extended SPARQL syntax that
can match the graph pattern against the snapshot of a temporal graph at any given time
point and allows to query the start and endpoints of a temporal interval, whose values
can then be used in other parts of the query. The RDF extensions towards uncertain or
fuzzy information [15, 22] so far do not address SPARQL, presenting only extensions
for RDFS reasoning but [22] formalises conjunctive queries.

SPARQL extensions towards querying trust have been presented by Hartig [10]. Har-
tig introduces a trust aware query language, tSPARQL, that includes a new constructor
to access the trust value of a graph pattern. This value can then be used in other state-
ments such as FILTERs or ORDER.

Another extension to query meta-knowledge in RDF, mostly considering provenance
and uncertainty is presented by Dividino et al. [4]. In this work, the meta-information
is stored using named graphs and the syntax and semantics of SPARQL are extended to
consider an additional expression that enables querying the named graphs representing
the meta-information.

Our present work can also be related to annotated relational databases, especially
Green et al. [6] who provides a similar framework for the relational algebra. After
presenting a generic structure for annotations, they focus more specifically on the prove-
nance domain. The specificities of the relation algebra, especially Closed World
Assumption, allows them to define a slightly more general structure for annotation do-
mains, namely semiring (as opposed to residuated lattice in our approach).

1 Annotated RDFS

For the sake of making the paper self-contained, we recap essential parts from [23],
where we only considered ground graphs, while here we do allow blank nodes as well.

1.1 Syntax

Consider pairwise disjoint alphabets U, B, and L denoting, respectively, URI refer-
ences, blank nodes (i.e., variables, denoted x, y, z)1 and Literals.2 We call the elements

1 We will often use the term blank node and variable synonymously in this paper.
2 We assume U,B, and L fixed, and for ease we will denote unions of these sets simply con-

catenating their names.

520 N. Lopes et al.

in UBL (B) terms. An RDF triple is τ = (s, p, o) ∈ UBL × U × UBL.3 We call
s the subject, p the predicate, and o the object. An annotated triple is an expression
τ : λ, where τ is a triple and λ is an annotation value (defined below). An annotated
graph G is a finite set of annotated triples. The universe of G, universe(G), is the set
of elements in UBL that occur in the triples of G. A vocabulary is a subset of UL.

As in our previous work, for presentation purposes, we rely on a fragment of RDFS,
called ρdf [16], that covers essential features of RDFS.4 ρdf is defined as the following
subset of the RDFS vocabulary: ρdf = {sp, sc, type, dom, range}. Informally, (i)
(p, sp, q) means that property p is a subproperty of property q; (ii) (c, sc, d) means
that class c is a subclass of class d; (iii) (a, type, b) means that a is of type b; (iv)
(p, dom, c) means that the domain of property p is c; and (v) (p, range, c) means that
the range of property p is c. Annotations are added to triples to attach meta information
such as temporal validity, trust or fuzzy value, provenance.

Example 1. For instance, the following annotated triple:

(:Alain, :livesIn, :Paris) : [1980, 1991]

in a temporal setting [7] has intended meaning “Alain lives in Paris from 1980 to 1991”,
while in the fuzzy setting [22]:

(audiTT, type, SportsCar): 0.8

has intended meaning “AudiTT is a sports car to degree not less than 0.8”; considering
provenance as annotations:

(Person, sc,Agent): {http://xmlns.com/foaf/0.1/}
would mean that the subclass relationship between persons and agents is defined by –
or, “belongs to” – the document http://xmlns.com/foaf/0.1/.

1.2 RDFS Annotation Domains

Consider a lattice 〈L,�〉. Elements in L are our annotation values. The order � is
used to express redundant/entailed/subsumed information. For instance, for temporal
intervals, an annotated triple (s, p, o) : [2000,2006] entails (s, p, o) : [2003,2004],
as [2003,2004] ⊆ [2000,2006] (here, ⊆ plays the role of �). Informally, an in-
terpretation will map statements to elements of the annotation domain. Our semantics
generalises the one of standard RDFS by using an algebraic structure that is well-known
for Many-Valued FOL [8]. We say that an annotation domain for RDFS is a residuated
bounded lattice D = 〈L,�,∧,∨,⊗,⇒,⊥,�〉.5 That is,

1. 〈L,�,∧,∨,⊥,�〉 is a bounded lattice, where ⊥ and � are bottom and top ele-
ments, and ∧ and ∨ are meet and join operators;

2. 〈L,⊗,�〉 is a commutative monoid;

3 As in [16] we allow literals for s.
4 Just as in [16] our annotation framework can be extended to full RDFS, adding additional

semantic conditions and respective inference rules [13].
5 We correct here an imprecision in the definition given in [23], in which we did not mention

that the structure should be a residuated lattice.

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/

AnQL: SPARQLing Up Annotated RDFS 521

3. ⇒ is the so-called residuum of ⊗, i.e., for all λ1, λ2, λ3, λ1 ⊗ λ3 � λ2 iff λ3 �
(λ1 ⇒ λ2).

Remark 1. Note that λ1 ⇒ λ2 can be determined uniquely as λ1 ⇒ λ2 = sup {λ |
λ1⊗λ � λ2} (see [11]). Furthermore, in the remaining of this paper, we do not use the
∧ which is implicitly defined by the order�. For these reasons, we represent a domain
succinctly as 6-tuple 〈L,�,∨,⊗,⊥,�〉.

In what follows we define a map as a function μ : UBL → UBL preserving URIs
and literals, i.e., μ(t) = t, for all t ∈ UL. Given a graph G, we define μ(G) =
{(μ(s), μ(p), μ(o)) | (s, p, o) ∈ G}. We speak of a map μ from G1 to G2, and write
μ : G1 → G2, if μ is such that μ(G1) ⊆ G2.

1.3 Semantics

Fix an annotation domain D = 〈L,�,∨,⊗,⊥,�〉. Informally, an interpretation I will
assign to a triple τ an element of the annotation domain λ ∈ L, dictating that under I,
the annotation of τ is greater or equal than (i.e., �) λ. Formally, an annotated interpre-
tation I over a vocabulary V is a tuple I = 〈ΔR, ΔP , ΔC , ΔL, P [[·]], C[[·]], ·I〉 where
ΔR, ΔP , ΔC , ΔL where ΔR, ΔP , ΔC , ΔL are the interpretation domains of I, which
are finite non-empty sets, and P [[·]], C[[·]], ·I are the interpretation functions of I. These
have to satisfy:

1. ΔR are the resources (the domain or universe of I);
2. ΔP are property names (not necessarily disjoint from ΔR);
3. ΔC ⊆ ΔR are the classes;
4. ΔL ⊆ ΔR are the literal values and contains L ∩ V ;
5. P [[·]] maps each property name p ∈ ΔP into a function P [[p]] : ΔR×ΔR → L, i.e.,

assigns an annotation value to each pair of resources;
6. C[[·]] maps each class c ∈ ΔC into a function C[[c]] : ΔR → L, i.e., assigns an

annotation value representing class membership in c to every resource.
7. ·I maps each t ∈ UL ∩ V into a value tI ∈ ΔR ∪ ΔP , and such that ·I is the

identity for plain literals and assigns an element in ΔR to each element in L;

Intuitively, a triple (s, p, o) : λ is satisfied by an annotated interpretation I if (s, o)
belongs to the extension of p to a “wider” extent than λ. We formalise this intuition
in terms of semantic conditions on the use of the RDFS vocabulary. That is, an in-
terpretation I is a model of an annotated ground graph G, denoted I |= G, iff I
is an interpretation over the vocabulary ρdf ∪ universe(G) that satisfies the condi-
tions in Table 1. Here, considering a set Δ ⊆ ΔR ∪ ΔP , we say that a function
p : Δ ×Δ → L is sup-⊗ transitive (or simply transitive) over Δ iff for all x, z ∈ Δ,
supy∈Δ{p(x, y)⊗ p(y, z)} � p(x, z).6

Finally, entailment among annotated ground graphs G and H is as usual. Now, G |=
H , where G and H may contain blank nodes, iff for any grounding G′ of G there is a
grounding H ′ of H such that G′ |= H ′.7

6 As Δ is finite, sup-⊗ transitivity is well defined.
7 A grounding G′ of graph G is obtained by replacing variables in G with terms in UL.

522 N. Lopes et al.

Table 1. The conditions for annotated interpretations

Simple:
1. (s, p, o) : λ ∈ G implies pI ∈ ΔP and P [[pI]](sI , oI) 	 λ;

Subproperty:
1. P [[spI]] is sup-⊗ transitive over ΔP ;
2. P [[spI]](p, q) = inf(x,y)∈ΔR×ΔR

P [[p]](x, y) ⇒ P [[q]](x, y);
Subclass:

1. P [[scI]] is sup-⊗ transitive over ΔC ;
2. P [[scI]](c, d) = infx∈ΔR C[[c]](x) ⇒ C[[d]](x);

Typing I:
1. C[[c]](x) = P [[typeI]](x, c);
2. P [[domI]](p, c) = inf(x,y)∈ΔR×ΔR

P [[p]](x, y) ⇒ C[[c]](x);
3. P [[rangeI]](p, c) = inf(x,y)∈ΔR×ΔR

P [[p]](x, y) ⇒ C[[c]](y);
Typing II:

1. For each e ∈ ρdf, eI ∈ ΔP

2. P [[domI]](p, c) is defined only for p ∈ ΔP and c ∈ ΔC

3. P [[rangeI]](p, c) is defined only for p ∈ ΔP and c ∈ ΔC

4. P [[typeI]](s, c) is defined only for c ∈ ΔC .

Remark 2. In [16], the authors define two variants of the semantics of ρdf: the default
one includes reflexivity of the subclass and subproperty relations but in the present
paper, we extend the alternative semantics presented in [16, Definition 4] which omits
this requirement.

Remark 3. Note that we always have that G |= τ : ⊥. Clearly, triples of the form τ : ⊥
are uninteresting and, thus, in the following we not consider them as part of the lan-
guage.

As for the crisp case, it can be shown [23] that any annotated RDFS graph has a finite
model (modulo Remark 3) and, thus, we do not have to care about consistency.

1.4 Deductive System

The important feature of the annotation framework is that we are able to provide a de-
ductive system in the style of the one for classical RDFS. Moreover, the schemata of the
rules are the same for any annotation domain (only support for the domain dependent
⊗ and ∨ operations has to be provided) and, thus, are amenable to an easy implemen-
tation on top of existing systems. Specifically, the rule set contains the rules presented
in Table 2. Please note that rule 6 from Table 2 is destructive, i.e., this rule removes the
premises as the conclusion is inferred, intuitively meaning that only “maximal” anno-
tations are preserved.

Remark 4. We point out that rules 2 − 5 from Table 2 can be represented concisely
using the following inference rule:

(A) τ1 : λ1, ..., τn : λn, {τ1, . . . τn} �RDFS τ
τ :

⊗
i λi

AnQL: SPARQLing Up Annotated RDFS 523

Table 2. Inference rules for annotated RDFS

1. Simple:

(a) G
G′ for a map μ : G′ → G (b) G

G′ for G′ ⊆ G

2. Subproperty:

(a)
(A, sp, B) : λ1,(B, sp, C) : λ2

(A, sp, C) : λ1 ⊗ λ2
(b)

(D, sp, E) : λ1,(X, D, Y) : λ2

(X, E, Y) : λ1 ⊗ λ2

3. Subclass:

(a)
(A, sc, B) : λ1,(B, sc, C) : λ2

(A, sc, C) : λ1 ⊗ λ2
(b)

(A, sc, B) : λ1,(X, type, A) : λ2

(X, type, B) : λ1 ⊗ λ2

4. Typing:

(a)
(D, dom, B) : λ1,(X, D, Y) : λ2

(X, type, B) : λ1 ⊗ λ2
(b)

(D, range, B) : λ1,(X, D, Y) : λ2

(Y, type, B) : λ1 ⊗ λ2

5. Implicit Typing:

(a)
(A, dom, B) : λ1,(D, sp, A) : λ2,(X, D, Y) : λ3

(X, type, B) : λ1 ⊗ λ2 ⊗ λ3

(b)
(A, range, B) : λ1,(D, sp, A) : λ2,(X, D, Y) : λ3

(Y, type, B) : λ1 ⊗ λ2 ⊗ λ3

6. Generalisation:
(X, A,Y) : λ1,(X, A,Y) : λ2

(X, A, Y) : λ1 ∨ λ2

Essentially, this rule says that if a classical RDFS triple τ can be inferred by applying a
classical RDFS inference rule to triples τ1, . . . τn (denoted {τ1, . . . , τn} �RDFS τ), then
the annotation term of τ will be

⊗
i λi, where λi is the annotation of triple τi. It follows

immediately that, using rule schema (A), the annotated framework extends to the whole
RDFS rule set as well. We also assume that rule schema (A) or rule 6 of Table 2 are not
applied if the consequence is of the form τ : ⊥ (see Remark 3).

Finally, like for the classical case, the closure is defined as cl(G) = {τ : λ | G �∗
τ : λ}, where �∗ is as � for the annotated framework without rule (1a). Notice that the
size of the closure of G is polynomial in |G| and can be computed in polynomial time,
provided that the computational complexity of operations ⊗ and ∨ are polynomially
bounded (from a computational complexity point of view, it is as for the classical case,
plus the cost of the operations⊗ and ∨ in L).

Proposition 1 (Soundness and completeness). For an annotated graph, the proof sys-
tem � is sound and complete for |=, that is, (1) if G � τ : λ then G |= τ : λ and (2) if
G |= τ : λ then there is λ′ � λ with G � τ : λ′.

1.5 Examples of Domains

Here, we instantiate the definition with several domains that have been discussed in
the literature. The interested reader can find more details about the temporal and fuzzy
domains in our previous work [23] and additional information in our accompanying
technical report [13]. Furthermore, domains can be combined into a multi-dimensional
annotation domain as explained in [23].

524 N. Lopes et al.

Crisp. Note that with the domain D01 = 〈{0, 1},�,max,min, 0, 1〉, Annotated RDFS
turns out to be the same as standard RDFS.

Fuzzy. The fuzzy domain has been presented in [15, 22] and to model fuzzy RDFS
in our framework is easy: the annotation domain is D[0,1] = 〈[0, 1],�,max,⊗, 0, 1〉
where⊗ is any continuous t-norm on [0, 1] and ∨ is max.

Temporal. For modelling the temporal domain we generalise the notions presented
in [7,19,24] and consider that time points are elements of xsd:dateTimeStamp [18] value
space ∪ {−∞,+∞}.8 A temporal interval is a non-empty interval [α1, α2], where αi

are time points. An empty interval is denoted as ∅. We define a partial order on intervals
as I1 � I2 iff I1 ⊆ I2 and L as (where ⊥ = {∅},� = {[−∞,+∞]}). Therefore, a
temporal term is a finite set of pairwise disjoint time intervals. Furthermore, on L we
define the following partial order:

t1 � t2 iff ∀I1 ∈ t1∃I2 ∈ t2, such that I1 � I2 .

The join and t-norm⊗ operators are defined as:

t1 ∨ t2 = inf{t | t 	 ti, i = 1, 2}
t1 ⊗ t2 = sup{t | t � ti, i = 1, 2} .

Remark 5. Although we represent time points as dateTimeStamps, for presentation pur-
poses in this paper we will only use years.

Provenance. We also generalise the representation of provenance as described, e.g.,
in [4, 5]. In this case, we start from a countably infinite set of atomic provenances P.
We consider the propositional formulae made from symbols in P (atomic propositions),
logical or (∨) and logical and (∧), for which we have the standard entailment |=. A
provenance value is an equivalent class for the logical equivalence relation, i.e., the
set of annotation values is the quotient set of P by the logical equivalence. The order
relation is |=, t-norm and join are ∧ and ∨ respectively. We set � to true and⊥ to false.

Trust. For the trust domain we rely on previous work by Schenk [20] that defines
a bilattice structure to model some form of trust. We can directly use this algebraic
structure as an annotation domain in our framework.

2 AnQL: Annotated SPARQL

We now present an extension of the SPARQL [21] query language, made for querying
annotated graphs, which we call AnQL. For the rest of this section we fix a specific
annotation domain, D = 〈L,�,∨,⊗,⊥,�〉.

8 Note that we have a continuous set of time points as opposed to Gutiérrez et al. [7].

AnQL: SPARQLing Up Annotated RDFS 525

2.1 Syntax

A simple AnQL query is defined – analogously to a SPARQL query – as a triple Q =
(P,G, V) where P is an annotated graph pattern, the dataset G is an annotated graph
and V is a set of variables, called the result form. We restrict ourselves to SELECT
queries in this work so it is sufficient to consider the result form V as a list of variables
to be projected.

Remark 6. Note that, for presentation purposes, we simplify the notion of datasets by
excluding named graphs and thus GRAPH queries. Our definitions can be straight-
forwardly extended to named graphs and we refer the reader to the SPARQL W3C
specification [21] for details.

Triple patterns in annotated AnQL are defined the same way as in SPARQL. A triple
pattern is a triple (s, p, o) where s, o ∈ UBL and p ∈ UB. We denote variables from
B in triple patterns by ’?’ prefixed names.9 Let V be a distinct set of variables, called
annotation variables. For a triple pattern τ and λ either an annotation term from D
or an annotation variable, we call τ : λ an annotated triple pattern; sets of annotated
triple patterns are called basic annotated patterns (BAP). An annotated graph pattern
is defined in a recursive manner: any BAP is an annotated graph pattern; if P and
P ′ are annotated graph patterns, R is a filter expression (see [21], and later on), then
(P AND P ′), (P OPTIONAL P ′), (P UNION P ′), (P FILTER R) are annotated graph
patterns.

Example 2. Suppose we are looking for people who live near Paris during some time
period and optionally owned a car during that period. This query can be posed as fol-
lows:

SELECT ?p ?c ?l
WHERE {(?p :basedNear :paris):?l OPTIONAL{(?p :hasCar ?c):?l}}

Assuming the following input data:

(:alain, :livesIn, :paris) : [2007, 2010]
(:alain, :hasCar, :peugeot) : [2004, 2009]
(:alain, :hasCar, :renault) : [2010, 2010]
(:livesIn, sp, :basedNear) : [−∞,+∞]

we will get the following answers:

θ1 = {?p/:alain, ?l/[2007, 2010]}
θ2 = {?p/:alain, ?c/:peugeot, ?l/[2007, 2009]}
θ3 = {?p/:alain, ?c/:renault, ?l/[2010, 2010]} .

The first answer corresponds to the answer in which the OPTIONAL pattern is not
satisfied, so we get the annotation value [2007, 2010] that corresponds to the time Alain
lives in Paris. In the second and third answers, the OPTIONAL pattern is matched and,
in this case, the annotation value is restricted to the time when Alain lives in Paris and
has a car. �

9 Note that we do not consider blank nodes in triple patterns separately, since they can be treated
just as other variables.

526 N. Lopes et al.

Note that – as we will see – this first query will return as a result for the annotation
variable the periods where a car was owned.

Example 3. A slightly different query can be people who lived near Paris during some
time period and optionally owned a car at some point during their stay. This query –
which will rather return the time periods of employment – can be written as follows:

SELECT ?p ?c ?l WHERE {(?p :basedNear :paris):?l
OPTIONAL {(?p :hasCar ?c):?l2 FILTER (?l2 � ?l)} }

Using the input data from Example 2, we obtain the following answers:

θ1 = {?p/:alain, ?l/[2007, 2010]}
θ2 = {?p/:alain, ?c/:renault, ?l/[2007, 2010]}

In this example the FILTER behaves as in SPARQL by removing from the answer set
the mappings that do not make the FILTER expression true. This query also exposes the
issue of unsafe filters, noted in [2]. �

2.2 Semantics

We denote by var (P) the set of variables and annotation variables present in a BAP P .
A substitution θ for a BAP P is a mapping with domain var(P) (annotation) variables
into (annotation) terms occurring in G. We denote the domain of a substitution θ, i.e.
the variables for which θ is defined, by dom(θ). For convenience, sometimes we will
use the notation θ = {x1/t1, . . . , xn/tn} to indicate that θ(xi) = ti, i.e., variable xi is
assigned to term ti. Note that we do not allow any assignment of an annotation variables
to ⊥ (of the domain D). An annotation value of⊥, although it is a valid answer for any
triple, does not provide any additional information and thus is of minor interest.

For a BAP P , and a substitution θ we denote by θ(P) the triples obtained by replac-
ing the variables in P according to θ. By G |= θ(P) we denote the fact that θ(P) is
entailed by G.

For the extension of the SPARQL relational algebra to the annotated case we in-
troduce – inspired by the definitions in [17] – definitions of compatibility and union
of substitutions: given two substitutions θ1 and θ2, θ1 and θ2 are ⊗-compatible if and
only if (i) θ1(x) = θ2(x) for any non-annotation variable x ∈ dom(θ1) ∩ dom(θ2);
(ii) θ1(λ) ⊗ θ2(λ) = ⊥ for any annotation variable λ ∈ dom(θ1) ∩ dom(θ2). Fur-
ther, for two ⊗-compatible substitutions θ1 and θ2the ⊗-union, denoted θ1 ⊗ θ2, is as
θ1 ∪ θ2, with the exception that for any annotation variable λ ∈ dom(θ1) ∩ dom(θ2),
θ1 ⊗ θ2(λ) = θ1(λ)⊗ θ2(λ).

We are now ready to present the notion of evaluation for generic AnQL graph pat-
terns. Let P be a BAP, P1, P2 annotated graph patterns, G an annotated graph and R a
filter expression, then the evaluation [[·]]G, i.e., set of answers,10 is recursively defined
as:
10 Strictly speaking, we consider sequences of answers – note that SPARQL allows duplicates

and imposing and order on solutions, cf. Sect. 2.3 below for more discussion – but we stick
with set notation representation here for illustration. Whenever we mean “real” sets where
duplicates are removed we write {. . .}DISTINCT.

AnQL: SPARQLing Up Annotated RDFS 527

[[P]]G = {θ | dom(θ) = var(P) and G |= θ(P)}
[[P1 AND P2]]G = {θ1 ⊗ θ2 | θ1 ∈ [[P1]]G, θ2 ∈ [[P2]]G, θ1 and θ2 ⊗-compatible}
[[P1 UNION P2]]G = [[P1]]G ∪ [[P2]]G
[[P1 FILTER R]]G = {θ | θ ∈ [[P1]]G and Rθ is true}
[[P1 OPTIONAL P2[R]]]G = {θ | and θ meets one of the following conditions:

1.) θ = θ1 ⊗ θ2 if θ1 ∈ [[P1]]G, θ2 ∈ [[P2]]G, θ1 and θ2 ⊗-compatible, and Rθ is true
2.) θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G such that θ1 and θ2 ⊗-compatible,

R(θ1 ⊗ θ2) is true, and for all annotation variables λ in dom(θ1) ∩ dom(θ2),
θ2(λ) ≺ θ1(λ)

3.) θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G such that θ1 and θ2 ⊗-compatible,
R(θ1 ⊗ θ2) is false}

Remark 7. For practical convenience, we retain in [[·]]G only “domain maximal an-
swers”. That is, let us define θ′ � θ iff (i) θ′ = θ; (ii) dom(θ) = dom(θ′); (iii)
θ(x) = θ′(x) for any non-annotation variable x; and (iv) θ′(λ) � θ(λ) for any annota-
tion variable λ. Then, for any θ ∈ [[P]]G we remove any θ′ ∈ [[P]]G such that θ′ � θ.

Remark 8. Please note that the cases for the evaluation of the OPTIONAL are com-
pliant with the SPARQL specification [21], covering the notion of unsafe FILTERs as
presented in [2]. However, there are some peculiarities inherent to the annotated case.
More specifically case 2.) introduces the side effect that annotation variables that are
compatible between the mappings may have different values in the answer depending
if the OPTIONAL is matched of not. This is the behaviour demonstrated in Example 2.

The notion of true filter is defined as follows: for a FILTER expression R, the valuation
of R on a substitution θ, denoted Rθ is true iff:11

(1) R = BOUND(v) with v ∈ dom(θ);
(2) R = isBLANK(v) with v ∈ dom(θ) and θ(v) ∈ B;
(3) R = isIRI(v) with v ∈ dom(θ) and θ(v) ∈ U;
(4) R = isLITERAL(v) with v ∈ dom(θ) and θ(v) ∈ L;
(5) R = (u = v) with u, v ∈ dom(θ) ∪UBL and θ(u) = θ(v);
(6) R = (¬R1) with θ(R1) is false;
(7) R = (R1 ∨ R2) with θ(R1) is true or θ(R2) is true;
(8) R = (R1 ∧ R2) with θ(R1) is true and θ(R2) is true;
(9) R = (x � y) with x, y ∈ dom(θ) ∪ L and θ(x) � θ(y);
(10) R = p(z̄) with p(z̄)θ = true iff p(θ(z̄)) = true, where p is a built-in predicate.

In the FILTER expressions above, a built-in predicate p is any n-ary predicate p, where
p’s arguments may be variables (annotation and non-annotation ones), domain values
of D, values from UL, p has a fixed interpretation and we assume that the evaluation of
the predicate can be decided in finite time. Annotation domains may define their own
built-in predicates that range over annotation values as in the following query:

Example 4. Consider we want to know where Alain was living before 2009. This query
can be expressed in the following way:

SELECT ?city
WHERE {(:alain :livesIn ?city):?l FILTER(before(?l, [2009]))}

11 We consider a simple evaluation of filter expressions where the “error” result is ignored,
see [21, Sect. 11.3] for details.

528 N. Lopes et al.

The following proposition shows that we have a conservative extension of SPARQL:

Proposition 2. Let Q = (P,G, V) be a SPARQL query over an RDF graph G. Let G′

be obtained from G by annotating triples with �. Then [[P]]G under SPARQL semantics
is in one-to-one correspondence to [[P]]G′ under AnQL semantics such that for any
θ ∈ [[P]]G there is a θ′ ∈ [[P]]G′ with θ and θ′ coinciding on var(P).

2.3 Further Extensions of AnQL

In this section we include various features from SPARQL 1.112 such as variable as-
signments, projection (i.e. sub-SELECTs), aggregates and solution modifiers to AnQL.
We succinctly present both syntax and semantics of the constructs. The evaluation of a
ASSIGN statement is defined as:

[[P ASSIGN f(z̄) AS z]]G = {θ | θ1 ∈ [[P]]G, θ = θ1[z/f(θ1(z̄))]} ,

where

θ[z/t] =
{
θ ∪ {z/t} if z ∈ dom(θ)
(θ \ {z/t′}) ∪ {z/t} otherwise .

Essentially, we assign to the variable z the value f(θ1(z̄)), which is the evaluation of
the function f(z̄) with respect to a substitution θ1 ∈ [[P]]G.

Example 5. Using a built-in function we can retrieve for each employee the length of
employment for any company:

SELECT ?x ?y ?z
WHERE {(?x :worksFor :?y):?l ASSIGN length(?l) AS ?z }

Here, the length built-in predicate returns, given a set of temporal intervals, the overall
total length of the intervals. �

Remark 9. Note that this definition is more general than “SELECT expr AS ?var”
project expressions in current SPARQL 1.1 [9] due to not requiring that the assigned
variable be unbound.

We introduce the ORDERBY clause where the evaluation of a [[P ORDERBY ?x]]G
statement is defined as the ordering of the solutions – for any θ ∈ [[P]]G – according
to the values of θ(?x). Ordering for non-annotation variables follows the rules in [21,
Section 9.1]. In case the variable x is an annotation variable, the order is induced by �.
In case,� is a partial order then we may use some linearisation method for posets, such
as [12]. Likewise, the SQL-like statement LIMIT(k) can be added straightforwardly.

We can further extend the evaluation of AnQL queries with aggregate functions

@ ∈ {SUM,AVG,MAX,MIN,COUNT,∧,∨,⊗}

as follows: the evaluation of a GROUPBY statement is defined as:13

12 These features are currently being defined by W3C, see [9] for the latest draft.
13 In the expression, @̄f̄(z̄) AS ᾱ is a concise representation of n aggregations of the form

@ifi(z̄i) AS αi.

AnQL: SPARQLing Up Annotated RDFS 529

[[P GROUPBY(w̄) @̄f̄(z̄) AS ᾱ]]G = {θ | θ1 in [[P]]G, θ = θ1|w̄[αi/@ifi(θi(z̄i))]}DISTINCT ,

where the variables αi ∈ var(P), z̄i ∈ var(P) and none of the GROUPBY variables
w̄ are included in the aggregation function variables z̄i. Here, we denote by θ|w̄ the re-
striction of variables in θ to variables in w̄. Using this notation, we can also straightfor-
wardly introduce projection, i.e., sub-SELECTs as an algebraic operator in the language
covering another new feature of SPARQL 1.1:

[[SELECT V̄ {P}]]G = {θ | θ1 in [[P]]G, θ = θ1|v̄} .

Remark 10. Please note that the aggregator functions have a domain of definition and
thus can only be applied to values of their respective domain. For example, SUM and
AVG can only be used on numeric values, while MAX,MIN are applicable to any to-
tal order. Resolution of type mismatches for aggregates is currently being defined in
SPARQL 1.1 [9] and we aim to follow those, as soon as the language is stable. The
COUNT aggregator can be used for any finite set of values. The last three aggregation
functions, namely ∧,∨ and ⊗, are defined by the annotation domain and thus can be
used on any annotation values.

Remark 11. Please note that, unlike the current SPARQL 1.1 syntax, assignment, solu-
tion modifiers (ORDER BY, LIMIT) and aggregation are stand-alone operators in our
language and do not need to be tied to a sub-SELECT but can occur nested withinin
any pattern. This may be viewed as syntactic sugar allowing for more concise writing
than the current SPARQL 1.1 [9] draft.

Example 6. Suppose we want to know, for each employee, the average length of their
employments with different employers. Then such a query will be expressed as:

SELECT ?x ?avgL
WHERE{(?x :worksFor :?y):?l GROUPBY(?x) AVG(length(?l)) AS ?avgL}

Essentially, we group by the employee, compute for each employee the time he worked
for a company by means of the built-in function length, and compute the average value
for each group. That is, if g = {〈t, t1〉, . . . , 〈t, tn〉} is a group of tuples with the same
value t for employee x, and value ti for y, where each length of employment for ti is li
(computed as length(·)), then the value of avgL for the group g is (

∑
i li)/n. �

Proposition 3. Assuming the built-in predicates are computable in finite time, the an-
swer set of any AnQL is finite and can also be computed in finite time.

This proposition can be demonstrated by induction over all the constructs we allow in
AnQL.

3 Twisting AnQL – Issues and Pitfalls

In this section we discuss some practical issues arising in formulating real-life questions
in AnQL like the treatment of non-annotated queries, combination of domains in queries
and some domain specific issues while highlighting problems in some related works.

530 N. Lopes et al.

3.1 Uniform Treatment of Annotated and Non-annotated Queries

We aim at providing a uniform treatment for queries, i.e., it should be allowed to ask an-
notated queries against non-annotated graphs and vice-versa. There are two distinct sit-
uations where a default value must be determined, viz., in the RDF data or in SPARQL
queries. The treatment of non-annotated triples in the data has been discussed in [23]
and here we just use the meta-variable ΩD to represent the default value for domain
D. We consider a similar solution for evaluating a SPARQL query over an annotated
RDFS dataset. We allow that any non-annotated triple pattern τ be considered a BAP
by assigning it a default annotation. We consider that a graph pattern P , is in Annotated
Normal Form (ANF) if it does not contain any non-annotated triple patterns. Any graph
pattern P can be transformed into ANF by replacing each non-annotated triple pattern
τi ∈ P by using one of the following approaches:

1. adding a single annotation variable for each triple: τi : λ, where λ is a new annota-
tion variable not occurring in P ; or

2. adding a different annotation variable for each non-annotated triple: τi : λi s.t. each
λi is a new annotation variable not occurring in P and different from any other
generated variable; or

3. adding the � element from the domain: τi : �.

In later discussions, we will use the meta-variable ΘD to represent the default value of
domain D assigned to annotations in the query triples.

Example 7. For instance, if we again consider the query (excluding the annotation vari-
ables) and input data from Example 2, the query would look like:

SELECT ?p ?c
WHERE {(?p :basedNear :paris) OPTIONAL{(?p :hasCar ?c)}}

Now, given the 3 approaches for transforming this query into ANF we would get the
following answers:

Approach 1
?p/:alain -
?p/:alain ?c/:peugeot

?p/:alain ?c/:renault

Approach 2
?p/:alain ?c/:peugeot

?p/:alain ?c/:renault

Approach 3 ∅

3.2 Querying Multi-dimensional Domains

Similarly to the discussion in the previous subsection, we can encounter mismatches
between the Annotated RDFS dataset and the AnQL query. In case the AnQL query
contains only variables for the annotations, the query can be answered on any Anno-
tated RDFS dataset. From a user perspective, the expected answers may differ from the
actual annotation domain in the dataset, e.g., the user may be expecting temporal in-
tervals in the answers when the answers actually contain a fuzzy value. For this reason
some built-in predicates to determine the type of annotation should be introduced, like
isTEMPORAL, isFUZZY, etc.

AnQL: SPARQLing Up Annotated RDFS 531

If the AnQL query contains annotation values and the Annotated RDFS dataset con-
tains annotations from a different domain, one option is to not provide any answers.
Alternatively, we can consider combining the domain of the query with the domain of
the annotation into a multi-dimensional domain, as illustrated in the next example.

Example 8. Assuming the following input data:
(:alain, :livesIn, :paris) : {ex.org}

When performing the following query:

SELECT ?p ?c WHERE { (?p :livesIn ?c):[2009, 2010] }

we would interpret the data to the form:
(:alain, :livesIn, :paris) : ({ex.org,Ωtemporal})

while the query would be interpreted as:

SELECT ?p ?c WHERE (?p :livesIn ?c):(Θprovenance, [2009, 2010])

where Ωtemporal and Θprovenance are annotations corresponding to the default values
their respective domains, as discussed in Section 3.1. The semantics of combining dif-
ferent domains into one multi-dimensional domain has been discussed in [23].

3.3 Temporal Issues

Let us highlight some specific issues inherent to the temporal domain. Considering
queries using Allen’s temporal relations [1] (before, after, overlaps, etc.) as allowed
in [24], we can pose queries like “find persons who lived in Paris before Alain”. this
query raises some ambiguity when considering that persons may have lived in the same
city at different disjoint intervals. We can model such situations – relying on sets of
temporal intervals modelling the temporal domain. Consider the following input data:

(:betty, :livesIn, :paris) : {[1990, 1995]}
(:alain, :livesIn, :paris) : {[1980, 2000], [2002, 2010]}

Tappolet and Bernstein [24] consider the latter triple as two triples with disjoint intervals
as annotations. For the following query in their language τSPARQL:

SELECT ?p WHERE {
[?s1,?e1] ?p :livesIn :paris . [?s2,?e2] :alain :livesIn :paris .
[?s1,?e1] time:intervalBefore [?s2,?e2] }

we would get :betty as an answer although Alain was already living in Paris when
Betty moved there. This is one possible interpretation of “before” over a set of inter-
vals. In AnQL we could add different domain specific built-in predicates, representing
different interpretations of “before”. For instance, we could define binary built-ins (i)
beforeAny(?A1, ?A2) which is true if there exists any interval in annotation ?A1 be-
fore an interval in ?A2, or, respectively, a different built-in beforeAll(?A1, ?A2) which
is only true if all intervals in annotation ?A1 are before any interval in ?A2. Using the
latter, an AnQL query would look as follows:

SELECT ?p WHERE {(?p :livesIn :paris):?l1 .
(:alain :livesIn :paris):?l2 . FILTER(beforeAll(?l1,?l2))}

This latter query gives no result, which might comply with people’s understanding of
“before” in some cases, while we also have the choice to adopt the behaviour of [24] by
use of beforeAny instead. Our report [13] provides more details on this issue.

532 N. Lopes et al.

3.4 Constraints vs Filters

Considering the previous section, please note that FILTERs do not act as constraints
over the query. It could be expected that, given the data from the previous section, and
for the following query:

SELECT ?l1 ?l2 WHERE {(?p :livesIn :paris):?l1 .
(:alain :livesIn :paris):?l2 }

with an additional constraint that requires ?l1 to be “before” ?l2. We could expect
the answer {?l1/[1990, 1995], ?l2/[1996, 2000]} that matches the query with regards
to the data and satisfies the proposed constraint. However, we require maximality of
the annotation values in the answers, which in general, do not exist in presence of
constraints. For this reason, we do not allow general constraints.

Conclusions

Based on our previous work on Annotated RDFS [23], we presented a semantics for
an extension of the SPARQL query language, AnQL, that enables querying RDF with
annotations. Queries are specified with regards to a specific domain, from which we
presented some of the more common ones. Queries exemplified in related literature for
specific extensions of SPARQL can be expressed in AnQL.

Noticeably, our semantics goes beyond the expressivity of the current SPARQL spec-
ification and includes some features from SPARQL 1.1 such as aggregates, variable
assignments and sub-queries.

A prototype implementation, including the annotated RDFS inferencing and anno-
tated SPARQL query engine is available at http://anql.deri.org.

Acknowledgement. The work presented in this report has been funded in part by Sci-
ence Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lı́on-2) and supported by
COST Action IC0801 on Agreement Technologies. We thank Jürgen Umbrich for his
useful comments.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the
ACM 26(11), 832–843 (1983)

2. Angles, R., Gutierrez, C.: The Expressive Power of SPARQL. In: Sheth, A.P., Staab, S.,
Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS,
vol. 5318, pp. 114–129. Springer, Heidelberg (2008)

3. Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema. W3C
Recommendation (2004), http://www.w3.org/TR/rdf-schema/

4. Dividino, R.Q., Sizov, S., Staab, S., Schueler, B.: Querying for Provenance, Trust, Uncer-
tainty and other Meta Knowledge in RDF. Journal of Web Semantics 7(3), 204–219 (2009)

5. Flouris, G., Fundulaki, I., Pediaditis, P., Theoharis, Y., Christophides, V.: Coloring RDF
Triples to Capture Provenance. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,
Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 196–212.
Springer, Heidelberg (2009)

6. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proc. of 26th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 2010),
pp. 31–40 (2007)

http://anql.deri.org
http://www.w3.org/TR/rdf-schema/

AnQL: SPARQLing Up Annotated RDFS 533

7. Gutiérrez, C., Hurtado, C.A., Vaisman, A.A.: Introducing Time into RDF. IEEE Transactions
on Knowledge and Data Engineering 19(2), 207–218 (2007)

8. Hájek, P.: Metamathematics of Fuzzy Logic. In: Trends in Logic, Kluwer, Dordrecht (1998)
9. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Working Draft (2010),

http://www.w3.org/TR/2010/WD-sparql11-query-20100601/
10. Hartig, O.: Querying Trust in RDF Data with tSPARQL. In: Aroyo, L., Traverso, P.,

Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M.,
Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 5–20. Springer, Heidelberg (2009)

11. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. In: Trends in Logic, Kluwer, Dordrecht
(2000)

12. Labrador, N.M., Straccia, U.: Monotonic Mappings Invariant Linearisation of Finite Posets.
Technical report, Computing Research Repository (2010), Available as CoRR technical re-
port at, http://arxiv.org/abs/1006.2679

13. Lopes, N., Lukácsy, G., Polleres, A., Straccia, U., Zimmermann, A.: A General Framework
for Representing, Reasoning and Querying with Annotated Semantic Web Data. Technical
report, DERI (2010),
http://www.deri.ie/fileadmin/documents/DERI-TR-2010-03-29.pdf

14. Manola, F., Miller, E.: RDF Primer. W3C Recommendation (2004),
http://www.w3.org/TR/rdf-primer/

15. Mazzieri, M., Dragoni, A.F.: A Fuzzy Semantics for the Resource Description Framework.
In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T.,
Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327, pp. 244–261.
Springer, Heidelberg (2008)

16. Muñoz, S., Pérez, J., Gutiérrez, C.: Minimal Deductive Systems for RDF. In: Franconi, E.,
Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 53–67. Springer, Heidelberg
(2007)

17. Pérez, J., Arenas, M., Gutiérrez, C.: Semantics and complexity of SPARQL. ACM Transac-
tions on Database Systems 34(3) (2009)

18. Peterson, D., Gao, S., Malhotra, A., Sperberg-McQueen, C.M., Thompson, H.S.: W3C XML
Schema Definition Language (XSD) 1.1 Part 2: Datatypes. W3C Working Draft (2009),
http://www.w3.org/TR/xmlschema11-2/

19. Pugliese, A., Udrea, O., Subrahmanian, V.S.: Scaling RDF with time. In: Proc. of 17th Inter-
national Conference on World Wide Web (WWW 2008), pp. 605–614 (2008)

20. Schenk, S.: On the Semantics of Trust and Caching in the Semantic Web. In: Sheth, A.P.,
Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC
2008. LNCS, vol. 5318, pp. 533–549. Springer, Heidelberg (2008)

21. Seaborne, A., Prud’hommeaux, E.: SPARQL Query Language for RDF. W3C Recommen-
dation (2008), http://www.w3.org/TR/rdf-sparql-query/

22. Straccia, U.: A Minimal Deductive System for General Fuzzy RDF. In: Polleres, A., Swift,
T. (eds.) RR 2009. LNCS, vol. 5837, pp. 166–181. Springer, Heidelberg (2009)

23. Straccia, U., Lopes, N., Lukacsy, G., Polleres, A.: A General Framework for Representing
and Reasoning with Annotated Semantic Web Data. In: Proc. of 24th AAAI Conference on
Artificial Intelligence (AAAI 2010). AAAI Press, Menlo Park (2010)

24. Tappolet, J., Bernstein, A.: Applied Temporal RDF: Efficient Temporal Querying of RDF
Data with SPARQL. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T.,
Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS,
vol. 5554, pp. 308–322. Springer, Heidelberg (2009)

25. Udrea, O., Recupero, D.R., Subrahmanian, V.S.: Annotated RDF. In: Sure, Y., Domingue, J.
(eds.) ESWC 2006. LNCS, vol. 4011, pp. 487–501. Springer, Heidelberg (2006)

26. Udrea, O., Recupero, D.R., Subrahmanian, V.S.: Annotated RDF. ACM Transactions on
Computational Logic 11(2), 1–41 (2010)

http://www.w3.org/TR/2010/WD-sparql11-query-20100601/
http://arxiv.org/abs/1006.2679
http://www.deri.ie/fileadmin/documents/DERI-TR-2010-03-29.pdf
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/rdf-sparql-query/

Using Semantics for Automating the
Authentication of Web APIs

Maria Maleshkova1, Carlos Pedrinaci1, John Domingue1,
Guillermo Alvaro2, and Ivan Martinez2

1 Knowledge Media Institute (KMi)

The Open University, Milton Keynes, United Kingdom

{m.maleshkova,c.pedrinaci,j.b.domingue}@open.ac.uk
2 Intelligent Software Components (iSOCO), Madrid, Spain

{galvaro,imartinez}@isoco.com

Abstract. Recent technology developments in the area of services on

the Web are marked by the proliferation of Web applications and APIs.

The implementation and evolution of applications based on Web APIs

is, however, hampered by the lack of automation that can be achieved

with current technologies. Research on semantic Web services is there-

fore trying to adapt the principles and technologies that were devised for

traditional Web services, to deal with this new kind of services. In this

paper we show that currently more than 80% of the Web APIs require

some form of authentication. Therefore authentication plays a major role

for Web API invocation and should not be neglected in the context of

mashups and composite data applications. We present a thorough anal-

ysis carried out over a body of publicly available APIs that determines

the most commonly used authentication approaches. In the light of these

results, we propose an ontology for the semantic annotation of Web API

authentication information and demonstrate how it can be used to cre-

ate semantic Web API descriptions. We evaluate the applicability of our

approach by providing a prototypical implementation, which uses au-

thentication annotations as the basis for automated service invocation.

1 Introduction

Web services provide means for the development of open distributed systems,
based on decoupled components, by overcoming heterogeneity and enabling the
publishing and consuming of functionalities of existing pieces of software. Re-
cently the world around services on the Web, thus far limited to “classical” Web
services based on SOAP and WSDL, has been enriched by the proliferation of
Web applications and APIs, also referred to as RESTful services [1], when con-
forming to the REST architectural principles. Web APIs are characterised by
their relative simplicity and their natural suitability for the Web, relying directly
on the use of URIs, for both resource identification and interaction, and HTTP
for message transmission. Many popular Web 2.0 applications like Facebook,

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 534–549, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Using Semantics for Automating the Authentication of Web APIs 535

Google, Flickr and Twitter offer easy-to-use, publicly available APIs, which not
only provide simple access to different resources but also enable combining het-
erogeneous data coming from diverse services, in order to create data-oriented
service compositions called mashups.

Despite their success, Web APIs are currently facing a number of limitations.
While the development, publication and use of Web services is guided by stan-
dards and specifications, the Web API landscape is much more heterogeneous
and diverse. This heterogeneity is especially present in the forms and structure
of the documentation, since currently most Web API descriptions are given di-
rectly in text/HTML as part of a webpage. Providers publish the APIs in a way
that they see fit, following no particular guidelines and conforming to no par-
ticular standards. As a consequence, in order to use Web APIs, developers are
obliged to manually locate, retrieve and interpret heterogeneous documentation,
and subsequently develop custom tailored software, which has a very low level
of reusability. The diversity of the Web APIs is accompanied by a wide range
of used authentication approaches, which hinder the automated Web API invo-
cation. The lack of a common structured language for describing Web APIs is
addressed by some initial proposals [2], [3], while lightweight annotations over
Web API descriptions [4], [5] have been developed as means for overcoming the
existing heterogeneity and providing basic support for service task automation.
Still, up to date, the importance of authentication as part of the invocation pro-
cess has been neglected. As our study points out (see Section 4.2) the majority
of the Web APIs require some form of authentication but none of the existing
formalisms and annotation approaches deal with this. Moreover, none of the
available tools, which provide developer support for creating mashups, such as
Yahoo Pipes and DERI Pipes1, handle authentication in an integrated way and
it still needs to be addressed separately. As a result, the invocation of individual
Web APIs and their use within mashups, requires extensive manual development
work, independently of whether they are semantically annotated or not.

In order to support the automated invocation of Web APIs, we propose the
use of semantic annotations over the existing heterogeneous HTML descriptions.
As shown by our study, the invocation of Web APIs requires authentication in
more than 80% of the cases, but currently there is no description formalism or
semantic annotation approach, which addresses this, and commonly the need for
authentication support is simply neglected. Therefore, we provide an ontology
for the annotation of authentication information on top of Web API descrip-
tions, which covers all authentication mechanisms identified by our study and
is extendable to cover further ones. We show how semantic descriptions of au-
thentication details can be created and validate our approach by providing a
prototype of an invocation system, which effectively uses the created annota-
tions to support the automated invocation of Web APIs.

The remainder of this paper is structured as follows: Section 2 provides a moti-
vating example that illustrates the challenges related to Web API authentication,
while Section 3 gives an overview of previous work in the area of semantic Web

1 http://pipes.yahoo.com/pipes/, http://pipes.deri.org/

http://pipes.yahoo.com/pipes/
http://pipes.deri.org/

536 M. Maleshkova et al.

API descriptions and Web service security. A detailed analysis of current API
authentication approaches is given in Section 4. Based on the Web API survey,
in Section 5 we propose an ontology and an implementation for supporting the
automated authentication, by using lightweight semantic annotations. Section 6
presents an overview of related work and Section 7 concludes the paper.

2 Motivating Example

In this section we present a simple example, which demonstrates the necessity
of authentication information during the invocation of Web APIs, and use it
throughout the paper to illustrate the here proposed annotation approach. In
particular, we describe one of the operations of the Last.fm Web API2. The
Last.fm API enables developers to access and use the Last.fm data. This popular
website for music claims more than 40 million active users and provides details
about artists, albums, events and user-specific information, such as playlists.

Fig. 1. Extract from the Last.fm API

Figure 1 shows the Web API operation for getting the details for a particular
artist. The provided data can be used directly or as part of a mashup, where
artists details are combined with latest charts news, for example. However, since
the Web API is described solely in HTML, the discovery and interpreting of the
documentation have to be done manually. Moreover, even if the Last.fm API were
semantically annotated or had a machine-processable description, for example
in WADL, the automated invocation would still not be possible because of the
necessity of providing an authentication API key, which cannot be captured
with existing description forms. The work presented in this paper is targeted at
addressing precisely this problem.

2 http://www.last.fm/api

http://www.last.fm/api

Using Semantics for Automating the Authentication of Web APIs 537

3 Background

Since the advent of Web service technologies, research on semantic Web services
(SWS) has been devoted to reduce the extensive manual effort required for ma-
nipulating Web services. The main idea behind this research is that tasks such
as discovery, negotiation, composition and invocation can have a higher level
of automation, when services are enhanced with semantic descriptions of their
properties. Similarly to “classical” Web services, Web API-related tasks also
require a lot of developer involvement and face even further difficulties, since
there is no established common formalism for describing Web APIs. In order to
address this, lightweight annotations over API descriptions have been proposed
as means for achieving a higher-level of automation.

Currently, there are two main contributions aiming at using semantics to
support the automation of common Web API service-related tasks. Both ap-
proaches rely on marking service properties within the HTML description and
subsequently liking these to semantic entities. MicroWSMO [4] is a formalism for
the semantic description of Web APIs, which is based on adapting the SAWSDL
[6] approach for enhancing service properties with semantic information. Mi-
croWSMO uses microformats for adding semantic information on top of HTML
service documentation, by relying on hRESTS [7] for marking service proper-
ties. Listing 1.1 shows the hRESTS annotation of the Last.fm API, where the
different service properties are identified via HTML tags.

Listing 1.1. Last.fm Web API

1 <div class=”service” id=”service1”><h1>Last.fm Web Services</h1>
2 <div class=”operation” id=”op1”><h2>artist.getInfo</h2>
3 <div>Get the metadata for an artist on Last.fm. Includes biography.</div>
4 http://ws.audioscrobbler.com/2.0/?method=artist.getinfo&
5 artist =Cher&api key=xxx
6 <div class=”input” id=”input1”>
7 artist (Optional) : The artist name in question

8 lang (Optional) : The language to return the biography in.

9 api key (Required) : A Last.fm API key.
</div>

10 <div class=”output” id=”output1”>Artist</div></div></div>

Another formalism is SA-REST [5], which also applies the grounding princi-
ples of SAWSDL but instead of using hRESTS relies on RDFa [8] for marking
service properties. Similarly to MicroWSMO, SA-REST enables the annotation
of existing HTML service descriptions by identifying service elements and link-
ing these to semantic entities. The main differences between the two approaches
are not the underlying principles but rather the implementation techniques.

Both MicroWSMO and SA-REST, provide a solid foundation for the use of
semantics as the basis for automating common service tasks. However, they
are very lightweight and the automation support that they provide is limited.
More importantly, all existing approaches neglect the need for addressing the
automation of Web API authentication. Therefore, we use existing models for
the semantic description of Web APIs as the basis for an incremental approach
for reflecting authentication information.

538 M. Maleshkova et al.

3.1 WS-Security

The issues of authentication and security have already been tackled in the con-
text of WSDL and SOAP-based Web services. The result is a unified Web service
security standard. WS-Security [9] specifies a set of feature extensions to SOAP
messaging, in order to provide message integrity and confidentiality. In addition,
it also provides a mechanism for associating security tokens with message con-
tent and allows for a variety of signature formats and encryption algorithms. As
a result, the defined enhancements provide support for ensuring that the sent
message is not altered by a third party (message integrity), that its content can-
not be read by anyone but the designated client or server (confidentiality) and
that the user has the necessary credentials in order to access particular resources
(authentication).

WS-Security addresses the main security issues in the context of Web ser-
vices. However, in contrast to WSDL-based services, Web APIs are proliferating
autonomously without the creation of standards and independently from Web
services. The result is a very heterogeneous world of Web APIs, where secu-
rity issues such as confidentiality and message integrity, guaranteed by the WS-
Security standard, are not considered as crucial. In fact, as our study shows,
security in the context of Web APIs is reduced only to authentication, which in
turn serves mainly the purposes of access control, where providers rather want
to restrict and track the number of requests, instead of providing data integrity.

4 Investigating Authentication for Web APIs

In order to become aware of currently used Web API authentication approaches,
we conducted a study, analysing 222 Web APIs from the ProgrammableWeb3

directory. ProgrammableWeb is a popular API directory, providing informa-
tion about 2002 APIs and 4827 mashups (visited June 2010). For easier search
and browsing, the APIs are sorted in categories and our analysis covered all
51 categories, including on average 4 APIs per category. The analyzed Web
APIs from each category were randomly chosen, however, since some categories
have only one or two entries, the analyzed number of Web APIs per category
varies. As a result the survey covered 18% of the REST ProgrammableWeb APIs
(1235 APIs at the time of the study, February 2010). Therefore, we consider the
following results to be representative for the directory and in general, since Pro-
grammableWeb is currently the biggest directory4.

In the following sections we first provide an overview of common authenti-
cation approaches, as identified by our Web API analysis, and then layout the
results and conclusions of our Web API survey.

3 http://www.programmableweb.com
4 Webmashup.com (http://www.webmashup.com) contains around 1800 Web APIs

and 3100 mashups, while APIFinder (http://www.apinder.com) provides around

1100 Web APIs.

http://www.programmableweb.com
(http://www.webmashup.com)
(http://www.api�nder.com)

Using Semantics for Automating the Authentication of Web APIs 539

4.1 Common Authentication Approaches

Currently, as our survey shows, most Web APIs use one of five authentication
mechanisms. We differentiate between approaches based only on authentication
credentials (API key or username and password), approaches using a transmis-
sion security protocol (HTTP Basic Authentication, HTTP Digest Authentica-
tion and OAuth), and approaches that use different parts of the HTTP request
in order to transmit the authentication information. We start by describing au-
thentication mechanisms relying only on the input credentials.

API Key. Currently, the most common way of Web API authentication is via
API key (also called “developer key”, “developer token”, “token Id”, “user Id”,
“user key”). Web APIs using this mechanism include Last.fm (http://www.
last.fm/api) and Remember the Milk (http://www.rememberthemilk.com/
services/api/). This authentication mechanism does not have any security
measures for the message integrity and confidentiality but is rather only based
on the necessary credentials. The user only needs to provide the API key, which
is received by signing up for the particular Web API. The key is transmitted
either as a parameter in the Web API URI or directly in the HTTP request.
Each client that provides a valid API key is permitted access to the requested
resources. This approach is very simple to use and to implement. However, since
the API key is not protected in any way during the message transmission, but is
rather sent directly as plain text, this method is suitable for Web API providers,
who only want to somehow restrict the access to the available resources.

Username and Password. Similarly, to authentication via API key, authenti-
cation via username and password is also only based on the required credentials.
It provides no message encryption or signature and the login details are trans-
mitted as parameters of the request URI or are included in the HTTP request.
Example Web APIs include Happenr (http://www.happenr.com/webservices/,
for example http://happenr.com/webservices/getEvents.php?username=
xxx&password=xxx&town=London) and FileSocial (http://filesocial.com/
api/docs). The user only needs to create an account for the particular Web
API and can use the username and password (in some cases email and pass-
word, telephone number and pin, username and token or API key and private
key) to access resources. Similarly to the authentication via API key, this ap-
proach is only suitable for providers who want to restrict the traffic and the
number of requests to their APIs.

The first two authentication mechanisms are only based on the required cre-
dentials, while the following approaches, including HTTP Basic Authentication
and HTTP Digest Authentication, are transmission security protocols. These,
provide a higher level of security for the login details and the client’s message.

HTTP Basic Authentication. [10] provides a simple way for user authen-
tication. It is based on a challenge-response model, where the HTTP server
requests and validates the authentication of the Web client. Example Web APIs
include Assembla (https://www.assembla.com/wiki/show/breakoutdocs/
Assembla_REST_API) and Basecamp (http://developer.37signals.com/

http://www.last.fm/api
http://www.last.fm/api
http://www.rememberthemilk.com/services/api/
http://www.rememberthemilk.com/services/api/
http://www.happenr.com/webservices/
http://happenr.com/ webservices/
file:getEvents.php?username=xxx&password=xxx&town=London
file:getEvents.php?username=xxx&password=xxx&town=London
http://filesocial.com/api/docs
http://filesocial.com/api/docs
https://www.assembla.com/wiki/show/breakoutdocs/
Assembla_REST_API
http://developer.37signals.com/

540 M. Maleshkova et al.

basecamp/). In order to access a Web API operation, which requires authen-
tication, the client needs to provide the corresponding username and password
in the form of an authentication header (with value Base64encode [11] of the
string username+":"+password). The Base64-encoded string is transmitted and
decoded by the receiver, resulting in the colon-separated user name and password
strings, which are checked against the expected values.

This type of authentication is very simple and is supported by all popular
Web browsers. However, although it uses Base64 encoding, it does no encryption
and the username and password can directly be decoded from the transmitted
message. Therefore, this type of authentication is only suitable for Web APIs
with lower data security demands.

HTTP Digest Authentication. [10] follows the same process as the HTTP
Basic one – request, credentials challenge and response. However, it only transmits
a digest of the usernameand password,which cannot be directly decoded. Example
Web APIs include Talis (http://n2.talis.com/wiki/Platform_API) and Ad-
Speed (http://www.adspeed.com/Knowledges/830/AdSpeed_API/AdSpeed_
API_Overview.html, for example http://api.adspeed.com/?method=METHOD
NAME¶m1=VALUE¶m2=VALUE&md5=SIGNATURE). The first time a
client sends a request to the server, the server responds with a nonce (a ran-
dom string) and the realm (typically a description of the computer or system
being accessed). The client uses the username and password, to compute the
digest response (result of MD5(username:realm:password)) and the digest of
the nonce (usually by using MD5 [12]), which are put in the response. The server
processes the response by retrieving the stored password for the user and testing
the nonce. If the nonce is correct, the response digest is checked by using the
nonce, username and password to compute a digest and compare it to the re-
ceived one. If the two digests match, the client is allowed access to the resources.

OAuth. [13] is a protocol for making authenticated HTTP requests by using a to-
ken. It enables users to share private resources stored on one website with another
one by using a token, which is an identifier denoting an access grant with spe-
cific scope, duration, and other attributes, instead of the username and password.
Therefore, OAuth supports the interoperability and the combining of resources
coming from different websites, in a way that is transparent for the user. Exam-
ple Web APIs include Fire Eagle (http://fireeagle.yahoo.net/developer/
documentation) and Delicious (http://delicious.com/help/api).

Whenever a Web API (or a website) needs to access resources from another
Web API, the user is asked to provide his/her access information for the host
Web API, while in the background, OAuth creates a token, which can be used
by other APIs to gain access to the resources. As a result the username and
password are kept private and unavailable for third-party websites and APIs,
while the interoperability is still facilitated. This authentication approach is
extremely important in the context of mashups, since it does not require that
the user provides credentials for every Web API included in the composition,
but rather relies on token-based user-transparent handling of authentication.

basecamp/
http://n2.talis.com/wiki/Platform_API
http://www.adspeed.com/Knowledges/830/AdSpeed_API/AdSpeed_
API_Overview.html
http://api.adspeed.com/?method=METHODNAME¶m1=VALUE¶m2=VALUE&md5=
http://api.adspeed.com/?method=METHODNAME¶m1=VALUE¶m2=VALUE&md5=
http://fireeagle.yahoo.net/developer/documentation
http://fireeagle.yahoo.net/developer/documentation
http://delicious.com/help/api

Using Semantics for Automating the Authentication of Web APIs 541

So far we have described authentication based on different credentials and
on using different authentication mechanisms. In addition, there are also two
main ways of transmitting the authentication information. One very common
way is to directly provide the API key or username and password as param-
eters in the request URI. For example Last.fm (http://ws.audioscrobbler.
com/2.0/?method=artist.getinfo&artist=Cher&apikey=XXX) and Fire Eagle
(https://fireeagle.yahooapis.com/api/0.1/) use this approach. Since the
authentication credentials are not protected in any way, this way of sending
data is suitable for openly available resources, where providers want to restrict
the access to the API but are not concerned with enforcing access rights. The
other common way of sending authentication credentials is directly in the HTTP
request. This method is somewhat more complex because the client needs to
construct the request, instead of only calling a parameterized URI. However, it
enables a higher level of security, since the information can be encrypted and
signed. For example, this way of sending information is commonly used by the
HTTP digest authentication approach.

In summary, current authentication approaches have three main characteris-
tics: 1) the required credentials, 2) the used authentication protocol, and 3) the
way of sending the authentication information.

4.2 Web API Survey Results

After introducing the most common authentication approaches, in this section
we focus on describing the results and the main findings of our Web API study.
Table 1 shows the results of our analysis in terms of Web API authentication
approaches. As it can be seen, using an API key is by far the most common way
of authentication (38%). It is followed by 19% of APIs, which do not require any
authentication. HTTP Basic and HTTP Digest are not used as often (14%, 5%),
while about 6% of the APIs use OAuth and 5% implement their own operations,
which need to be called, before being able to invoke other operations. There are

Table 1. Common Web API Authentication Approaches

Authentication Mechanisms Number In %

API Key 89 38%

No Authentication 46 19%

HTTP Basic 32 14%

Username and Password 19 8%

OAuth 14 6%

Web API Operation 12 5%

HTTP Digest 11 5%

API Key in Combination with Other Credentials 5 2%

Session Based 5 2%

Other 2 1%

Authentication Only for Data Modification 4 2%

Offer Alternative Authentication Mechanisms 16 7%

http://ws.audioscrobbler.com/2.0/?method=artist.getinfo&artist=Cher&apikey=XXX
http://ws.audioscrobbler.com/2.0/?method=artist.getinfo&artist=Cher&apikey=XXX
https://fireeagle.yahooapis.com/api/0.1/

542 M. Maleshkova et al.

also some APIs, which require authentication only for operations, which perform
data modification but require no authentication for only reading resources. The
sum of all APIs is greater than 222 because, APIs that offer more that one
authentication mechanism were counted more than once.

It is important to point out that currently 81% of the Web APIs require some
form of authentication. Therefore, providing support for the annotation and au-
tomation of authentication is crucial for Web API use. In addition, there is no es-
tablished approach for Web API authentication but rather a landscape of different
approaches. Also, about only a quarter of the APIs use a mechanism that protects
the user credentials and does not transmit them directly in plain text. This shows
that providers are not so much concerned with verifying the user identity and do
not invest implementation work in securing the message transfer but rather prefer
to employ simple measures for access control. This is verified by the fact that less
than 10% of the Web APIs use signatures and encryption.

Table 2. Way of Transmitting Credentials

Transmission Medium Number In %

URI 117 70%

HTTP Header 45 27%

URI or HTTP Header (Depending on the 6 3%

Type of Authentication and HTTP Method)

Table 2 shows the most commonly used ways of transmitting authentication
credentials. As it can be seen, 70% of the Web APIs send authentication infor-
mation directly in the URI, while less than one third require that the HTTP
header is constructed. This means that even if Web APIs require authentication,
most of them do not need a custom client but can rather be invoked directly
from a Web browser.

The survey also delivered some important information about the Web API de-
scription forms. In particular, none of the analyzed APIs used WSDL [3] or WADL
[2] and the majority of the APIs are documented directly in HTML Web pages.
The main conclusions of the Web API survey can be summarised as follows:

1. More that 80% of the Web APIs require authentication. Therefore authenti-
cation is a vital part of the invocation process and any approach disregarding
authentication information has very limited support.

2. The currently used authentication approaches are very heterogeneous and
there is no commonly accepted way for addressing Web API authentication.

3. Only about 25% of the Web APIs use an authentication approach that pro-
tects the user credentials and/or the content of the message.

5 Supporting the Automation of Web API Authentication

As highlighted by the Web API survey, authentication is essential and any
general purpose solution aiming at supporting the invocation of Web APIs or

Using Semantics for Automating the Authentication of Web APIs 543

mashups would necessarily be restricted to only 20% of the APIs or requires
customisation. In addition, the authentication approaches are very diverse and
similarly to Web API descriptions in general, authentication details are not de-
scribed in a machine processable way but are given as part of documentation
websites. In order to overcome the heterogeneity and provide means for the au-
tomatic recognition and processing of authentication details, we propose that
Web API descriptions are annotated with semantic information about authen-
tication. We next present the main design principles followed when deriving the
proposed authentication ontology and continue by describing it in detail.

5.1 Design Principles

Guided by the results of the Web API study, we analyzed the collected data and
derived an authentication ontology, which enables the annotation of authenti-
cation information as part of a semantic Web API description. The process of
defining this ontology was guided by a number of competency questions and
design principles. First, we started by identifying the cases, in which authenti-
cation is required, and the information that is needed. Relevant information in
this respect is: “Does the service require authentication?”, “Which operations re-
quire authentication?”, “What kind of authentication is used?”, and “What is the
required information to complete the authentication?”. As we concluded, based
on the analysis of common authentication approaches, authentication has three
main characteristic including the required credentials, the used authentication
protocol, and the way of sending the authentication information. Therefore, we
can identify the information necessary for supporting a particular authentica-
tion mechanism by determining: “What are the required credentials?”, “What is
the used authentication protocol?” and “How is the authentication information
transmitted?”. In addition to the competency questions, used for identifying the
information that needs to be captured by the authentication ontology, we im-
plemented some complementary requirements, which are specified in the form of
design principles. The principles are as follows:

1. The ontology should cover all common authentication approaches identified
by the Web API study.

2. The ontology should be extendable to cover further mechanisms.
3. The ontology should capture the information required for the automation of

authentication as part of the invocation process.
4. The ontology should be compatible with existing semantic annotation ap-

proaches, such as MicroWSMO and SA-REST.
5. The ontology should support simplicity of use for making annotations.
6. The ontology should aim to be minimal but capture the necessary informa-

tion for supporting the authentication.

The so designed ontology is not bound to any particular annotation formalism,
but can be used as an extension by simply attaching it to the service and oper-
ation elements. In the following section we introduce the authentication ontology

544 M. Maleshkova et al.

and show how it supports the automation of the invocation of Web APIs by
using it as part of an authentication engine.

5.2 Authentication Ontology

Figure 2 depicts the Web API authentication ontology with namespace
waa (Web API Authentication), which consists of three main classes–
AuthenticationMechanism, Credentials and TransmissionMedium5.

The AuthenticationMechanism class has six subclasses, corresponding to com-
mon authentication mechanisms, where the Direct subclass is used to describe
approaches, which rely on using only credential details and employ no authen-
tication protocol. The Credentials class has a number of instances including
API Key, Username, Password and OAuth Credentials, which can be combined
to produce composite credentials, such as authentication through username and
password. The composedOf relationship as well as the class AuthenticationMech-
anism, which can have further subclasses, represent points of extensibility for
the ontology. The Service class has a relationship to the ServiceAuthentication
class, which has three instances including All, Some and None that are used to
point out that the service requires authentication for all its operations, for only
some of them or for none of them. The TransmissionMedium has two instances
(ViaHTTPHeader and ViaURI), used to describe that the credentials are sent
by using only the URI or through constructing an HTTP header.

Fig. 2. Web API Authentication Ontology

The Service and Operation classes lack a namespace, because they serve as
placeholders that can be replaced by the service and operation elements of any
Web API model whether it is semantic, such as MicroWSMO or SA-REST, or
not. In this way, the ontology can be used as an extension to existing formalisms
or independently from them.
5 The ontology is available at http://purl.oclc.org/NET/WebApiAuthentication

http://purl.oclc.org/NET/WebApiAuthentication

Using Semantics for Automating the Authentication of Web APIs 545

In order to show how the authentication ontology can be used to annotate
Web APIs, we have taken the Last.fm motivating example from Section 2 and
provide its HTML annotation (Listing 1.2) and semantic description (Listing
1.4). We apply the annotation approach presented in [14], where Web API de-
scriptions are enhanced with semantic information by using MicroWSMO and
SWEET as a supporting tool. In the example we use the wsl (http://www.wsmo.
org/ns/wsmo-lite) namespace for WSMO-Lite, which is used in MicroWSMO
annotations for the service model. However, as pointed out, the authentication
annotations can be assigned to any operation and service model elements.

Listing 1.2. Example MicroWSMO Authentication Annotation

1 <div class=”service” id=”service1”><h1>Last.fm Web Services</h1>
2
3 <div class=”operation” id=”op1”><h2>artist.getInfo</h2>
4
5 http://ws.audioscrobbler.com/2.0/?method=artist.getinfo...
6 <div class=”input” id=”input1”>...</div>
7 <div class=”output” id=”output1”>Artist</div></div></div>

Listing 1.2 shows the annotated HTML of the Last.fm API. The Web API
requires authentication for all its operations (Line 2) and has authentication in-
formation for the artist.getInfo operation reflected in Line 4. The model reference
contains a URI pointing to a particular instance of the AuthenticationMechanism
class, which contains details about the operation requiring an API key, which is
sent in the URI without the use of any authentication protocols.

Listing 1.3. Example Instance of the AuthenticationMechanism Class

1 @prefix rdf : <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
2 @prefix waa: <http://purl.oclc .org/NET/WebApiAuthentication#> .
3 <http://purl.oclc .org/NET/WebApiAuthentication/LastFm> rdf:type waa:Direct ;
4 waa: hasInputCredentials waa:API Key ;
5 waa:wayOfSendingInformation waa:ViaURI .

Listing 1.3 shows how this instance of the AuthenticationMechanism class
looks like. As it can be seen, the capturing of authentication information with
the provided Web API authentication ontology is very simple and easy to apply.

Listing 1.4. Example RDF Authentication Annotation

1 : service1 rdf :type wsl : Service ;
2 rdfs : isDefinedBy <http://www.last.fm/api/show?service=267> ;
3 waa:requiresAuthentication waa:All .
4 : operation1 rdf :type wsl :Operation ;
5 rdfs : label ” artist . getInfo” ;
6 hr:hasAddress ”http://ws. audioscrobbler .com/2.0/?method=artist.getinfo&...” ;
7 waa:hasAuthenticationMechanism <http://purl.oclc.org/NET/WebApiAuthentication/LastFm> .
8 <http://purl.oclc .org/NET/WebApiAuthentication/LastFm> rdf:type waa:Direct ;
9 waa:hasInputCredentials waa:API Key ;

10 waa:wayOfSendingInformation waa:ViaURI .
11 : service1 wsl :hasOperation :operation1 .

http://www.wsmo.org/ns/wsmo-lite
http://www.wsmo.org/ns/wsmo-lite

546 M. Maleshkova et al.

Based on the annotated HTML, the authentication information can easily
be extracted in RDF (Listing 1.4) by using a simple XML transformation. All
examples are available at http://sweet.kmi.open.ac.uk/examples/.

5.3 Authentication Engine

In this section we show how the authentication Web API annotations can be used
to support the automated invocation of services. The contribution described here
is implemented as part of SPICES6 [15] (Semantic Platform for the Interaction
and Consumption of Enriched Services), a platform for the easy consumption of
services based on their semantic descriptions. In particular, SPICES supports
both the end-user interaction with services and the invocation process itself, via
the generation of appropriate user interfaces. Typically, the user is presented
with a set of fields, which must be completed to allow the service to execute,
and these fields cove input parameters as well as authentication credentials.

Fig. 3. Invoking the Last.fm API

Dealing with the different types of credentials and the way they have to be
used, is the purpose of an Authentication Engine, part of SPICES, developed as
a REST service, which is capable of handling the storage and retrieval of creden-
tials for different Web APIs. This engine has the necessary logic to support the
user in his/her interaction with services. In particular, if the engine has the cre-
dentials for a given service, thanks to the authentication annotations described
previously, it is able to create a suitable request including the credentials. If
the authentication credentials are not available yet, based on the authentication
annotations, the authentication engine will be aware of the missing credentials
and will prompt the user to provide them. Currently, the authentication engine
plays the role of a trusted party, since it accesses and stores all user credentials.
However, SPICES is only a prototypical implementation, with the main focus on
supporting the invocation of Web APIs, and the authentication engine represents
an initial practical application of the here presented approach. Therefore some

6 http://soa4all.isoco.net/spices

http://sweet.kmi.open.ac.uk/examples/
http://soa4all.isoco.net/spices

Using Semantics for Automating the Authentication of Web APIs 547

issues such as appropriately storing and managing user credentials, still need to
be addressed. However, since more than 70% of the authentication approaches
do not protect the user credentials, this issue is not so crucial.

Figure 3 shows how the authentication engine prompts the user for the Last.fm
API key, based on the API annotation, during the process of invoking the
artist.getInfo operation. In this way the authentication engine can collect the
required credentials and compose an API request, which together with the pro-
vided input information, supports the automated Web API invocation.

6 Related Work

In this section we describe further existing Web API authentication approaches,
which address different challenges in the context of authentication but have not
yet reached greater popularity.

Web-key [16] is an authentication mechanism, especially designed to tackle
the difficulties arising in the context of mashup authentication. Web-key is an
https URL convention for representing a transferable permission in a Web appli-
cation. It binds each permission issued from the Web application to a randomly
generated bit string (key), which is transmitted in the fragment segment of the
URL (for example https://www.emaple.com/app/#mhbqcmmva5ja3). The
keys are generated on behalf of the user for every Web API that is part of the
composition. In this way, each Web API has its unique key, instead of the user
having to share his username and password across all composite APIs. However,
this approach is fairly new and its adoption is still limited.

Another authentication mechanism is FOAF+SSL [17]. FOAF+SSL is a
simple protocol for RESTful authentication, which enables a one-click signing
into websites by using a browser as the client application. It requires the user to
enter neither a password nor an identifier but rather uses SSL and a custom trust
protocol. The custom trust protocol is based on authentication certificates, which
contain semantic descriptions of the authentication information in the subject
alternative Name URI. FOAF+SSL presents a novel authentication approach,
which includes Semantic Web principles in the authentication process. It remains
to be seen how well it will be adopted for Web API implementations.

OpenID7 targets to solve the problem of one user being forced to have many
different Web application and API accounts, in order to be able to execute a
mashup. It is a method based on using a single login at a trusted provider to
automatically gain access to other websites. In this way the user can log into
different services with the same digital identity, where these services trust the
authentication body. Website providers, which use OpenID include AOL, IBM,
Microsoft and others. OpenID is often seen as a complimentary approach to
OAuth, where OpenID credentials can be used for generating OAuth tokens.

XAuth8 provides an approach for extending authenticated user services
throughout the Web by issuing user browser tokens for each of the participating
7 http://openid.net
8 http://xauth.org

http://openid.net
http://xauth.org

548 M. Maleshkova et al.

services. In this way the provider can recognize, which users are logged into the
services and not only give access to resources but also give additional relevant
options. A different approach is followed by Yadis9, who instead of suggesting
a new authentication mechanism, propose means for automatically detecting,
which authentication protocol a particular system is most likely to use. There-
fore, Yadis addresses the question of how do we know, what authentication needs
to be used, by providing a service discovery system that determines automati-
cally, without end-user intervention, the most appropriate protocol to use.

The approach, which we propose in this paper, differs from Web-key, FOAF+
SSL, XAuth and Yadis and other authentication mechanisms because we are
not suggesting to alter the current Web API authentication landscape by in-
troducing a common standard. Instead, based on a study of current Web API
authentication mechanisms, we provide a lightweight model and an approach for
the annotation of APIs. The resulting semantic descriptions serve as the basis
for automating the Web API invocation process.

In addition to the here listed authentication mechanisms, there is also one
approach that uses semantic Web service descriptions in order to capture au-
thorisation and privacy service properties [18]. The authors suggest that privacy
and authentication policies should be incorporated into the OWL-S Web service
descriptions. This additional information can then be integrated into the service
matchmaking process. Similarly to our approach, this approach uses semantic
descriptions for capturing authentication information. However, it is suitable
only for WSDL-based services annotated in OWL-S.

7 Conclusion and Future Work

Nowadays, finding, interpreting and invoking Web APIs requires extensive hu-
man involvement due to the lack of API machine-processable descriptions. Ef-
forts like SA-REST and MicroWSMO aim to overcome this difficulty and provide
basic support for the automation of common service tasks such as discovery and
composition. However, currently none of the existing approaches support the au-
tomated authentication as part of the Web API invocation process. As a result,
developers are required to manually retrieve and interpret the HTML documen-
tation, to signup with API providers, in order to receive access credentials, and
to implement support for the different authentication protocols. In addition,
none of the existing frameworks for supporting the creation of mashups, such
as Yahoo Pipes and DERI Pipes, enable the handling of authentication in an
integrated way and it has to be addressed with additional manual effort.

Our Web API study shows that more than 80% of the APIs require authentica-
tion, which makes authentication a vital part of the invocation process and any
invocation approach disregarding authentication information has very limited
support. Therefore, we propose the annotation of authentication information by
using an authentication ontology, which overcomes Web API heterogeneity and

9 http://yadis.org

http://yadis.org

Using Semantics for Automating the Authentication of Web APIs 549

provides the basis for automated authentication handling. We base the annota-
tion approach on a thorough study of current Web API authentication mecha-
nisms and show how it can be used as input to SPICES and the authentication
engine, in order to support the automated invocation of Web APIs. Future work
will focus on further developing the authentication engine.

Acknowledgments. The work presented in this paper is partially supported
by EU funding under the project SOA4All (FP7 - 215219).

References

1. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media, Sebastopol (May

2007)

2. Hadley, M. J.: Web Application Description Language (WADL). Technical report,

Sun Microsystems (November 2006), https://wadl.dev.java.net
3. Web Services Description Language (WSDL) Version 2.0. W3C Recommendation

(June 2007), http://www.w3.org/TR/wsdl20/
4. Kopecký, J., Vitvar, T., Fensel, D., Gomadam, K.: hRESTS & MicroWSMO. Tech-

nical report (2009), http://cms-wg.sti2.org/TR/d12/
5. Sheth, A.P., Gomadam, K., Lathem, J.: SA-REST: Semantically Interoperable and

Easier-to-Use Services and Mashups. IEEE Internet Computing 11(6), 91–94 (2007)

6. Kopecký, J., Vitvar, T., Bournez, C., Farrel, J.: SAWSDL: Semantic Annotations

for WSDL and XML Schema. IEEE Internet Computing 11(6), 60–67 (2007)

7. Kopecký, J., Gomadam, K., Vitvar, T.: hRESTS: an HTML Microformat for De-

scribing RESTful Web Services. In: Proceedings of International Conference on

Web Intelligence, WI 2008 (2008)

8. RDFa in XHTML: Syntax and Processing. Proposed Recommendation, W3C

(September 2008), http://www.w3.org/TR/rdfa-syntax/
9. Nadalin, A., Kaler, C., Monzillo, R., Hallam-Baker, P.: Web Services Security:

SOAP Message Security 1.1, WS-Security 2004 (2006)

10. Franks, J., Hallam-Baker, P., Hostetler, J.: HTTP Authentication: Basic and Digest

Access Authentication RFC 2617. The Internet Society (1999)

11. Freed, N., Borenstein, N.: Multipurpose Internet Mail Extensions (MIME) Part

One: Format of Internet Message Bodies, http://tools.ietf.org/html/rfc2045
12. The MD5 Message-Digest Algorithm, http://tools.ietf.org/html/rfc1321

(visited June 2010)

13. Atwood, M., et al.: OAuth Core 1.0 Specification, http://oauth.net/core/1.0/
14. Maleshkova, M., Pedrinaci, C., Domingue, J.: Supporting the creation of semantic

RESTful service descriptions. In: Service Matchmaking and Resource Retrieval in

the Semantic Web (SMR2) at 8th International Semantic Web Conference (2009)

15. Álvaro, G., Mart́ınez, I., Gómez, J.M., Lecue, F., Pedrinaci, C., Villa, M., Di Mat-

teo, G.: Using SPICES for a Better Service Consumption. Poster at the 7th Ex-

tended Semantic Web Conference, ESWC (2010)

16. Close, T.: Web-key: Mashing with Permission. In: Proceedings of Web 2.0 Security

and Privacy (2008)

17. Story, H., Harbulot, B., Jacobi, I., Jones, M.: FOAF+SSL: RESTful Authentication

for the Social Web. In: SPOT 2009 European Semantic Web Conference (2009)

18. Kagal, L., Paolucci, M., Srinivasan, N., Denker, G., Finin, T., Sycara, K.: Autho-

rization and Privacy for Semantic Web Services. IEEE Intelligent Systems 19(4)

(July 2004)

https://wadl.dev.java.net
http://www.w3.org/TR/wsdl20/
http://cms-wg.sti2.org/TR/d12/
http://www.w3.org/TR/rdfa-syntax/
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc1321
http://oauth.net/core/1.0/

Representing and Querying Validity Time in
RDF and OWL: A Logic-Based Approach

Boris Motik

Oxford University Computing Laboratory, Oxford, UK

Abstract. RDF(S) and OWL 2 currently support only static ontologies.

In practice, however, the truth of statements often changes with time,

and Semantic Web applications often need to represent such changes

and reason about them. In this paper we present a logic-based approach

for representing validity time in RDF and OWL. Unlike the existing

proposals, our approach is applicable to entailment relations that are not

deterministic, such as the Direct Semantics or the RDF-Based Semantics

of OWL 2. We also extend SPARQL to temporal RDF graphs and present

a query evaluation algorithm. Finally, we present an optimization of our

algorithm that is applicable to entailment relations characterized by a set

of deterministic rules, such RDF(S) and OWL 2 RL/RDF entailment.

1 Introduction

RDF(S) and OWL 2 currently support only static ontologies. In practice, how-
ever, the truth of statements often changes with time, and Semantic Web appli-
cations often need to represent such changes and reason about them. We discuss
these issues on an example derived from the author’s collaboration with Expe-
rienceOn (abbreviated EO)—an IT start-up company from Barcelona, Spain.

EO aims to improve search in the tourism domain by providing an advanced
system that can answer complex queries such as “trips to the second week of
Oktoberfest.” Users will input their questions in natural language, and NLP
technology will translate such questions into one or more queries over a knowl-
edge base containing information about flights, lodging, events, geography, and
so on. EO’s system must be able to represent statements that are not universally
true, but are associated with validity times. For example, “Oktoberfest is being
held in Munich” is true only while the festival is being held; similarly, state-
ments describing airline flight schedules are valid only in certain time intervals.
Validity time must be tightly integrated with reasoning; for example, from the
knowledge about Oktoberfest and German geography, EO’s system should con-
clude that “Oktoberfest is being held in Bavaria” is true for the duration of the
festival. Validity time should also be integrated with a query language, allowing
one to retrieve “flights from London to Munich during Oktoberfest.” Validity
time thus affects virtually all aspects of knowledge representation and reasoning
in scenarios such as EO’s. Some applications also need to represent transaction
times, which specify when facts were added to the database. In this paper we
focus on validity time since it is more relevant to knowledge modeling.

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 550–565, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Representing and Querying Validity Time in RDF and OWL 551

Validity time has been extensively studied in databases and artificial intel-
ligence [4,19]. Neither RDF nor OWL, however, supports validity time, and
SPARQL does not provide temporal query primitives. These deficiencies have
been recognized by the community, and several proposals have emerged. A com-
prehensive framework for representing validity time in RDF was presented in [7],
and it encompasses notions of temporal graphs and entailment, a characteriza-
tion of temporal entailment via closures [6], an encoding of temporal graphs into
regular RDF graphs, and a sketch of a temporal query language. This approach
was extended in [9] with more general temporal constraints. In [15], the authors
extended the approach from [7] with unknown time points, defined a tempo-
ral query language based on graph matching, and presented a way for indexing
temporal graphs. A general framework for annotating RDF data was presented
in [17]; the very general notion of annotations can be used to represent validity
time. A temporal extension of SPARQL was presented in [18]. Approaches to
extending description logics (DLs) [3]—the family of formalisms underpinning
OWL 2 DL—with temporal features were surveyed in [2]. A temporal extension
of OWL based on concrete domains was presented in [10].

None of these proposals is applicable to all variants of RDF and OWL. For
example, the notion of closures from [7] relies on the fact that the inference rules
of RDF(S) are deterministic—an assumption that does not hold in expressive
languages such as OWL. In this paper we present a novel approach for repre-
senting validity time that is applicable to all Semantic Web languages, including
RDF(S) and all profiles of OWL 2. In particular, in Section 3 we develop a first-
order interpretation of temporal graphs, which we use to define temporal graph
entailment. Our approach coincides with the one from [7] on RDF(S), but it is
applicable to all languages of the RDF and OWL family.

In Section 4, we argue that a temporal query language defined in the obvious
way would allow for queries that have very large and often even infinite answers.
We present a query language whose queries always have finite answers, we in-
tegrate our query primitives into the formalization of SPARQL from [14], and
we present a general query evaluation algorithm. In Section 5 we optimize our
general evaluation algorithm for the case of deterministic inference rules.

We implemented our approach in EO’s system. Given the nature of EO’s busi-
ness, we cannot make the system publicly available; however, EO is successfully
using our approach to answer temporal queries, which we take as indication that
our approach is suitable for practice.

The proofs of all technical results can be found in the extended version of this
paper available from the author’s online publication list.

2 Preliminaries

We assume the reader to be familiar with the syntax and semantics of OWL
2 DL [12]; for simplicity, we write OWL 2 DL axioms using the description
logic syntax [3]. We use the standard definitions of constants, variables, terms,
predicates, atoms, multi-sorted first-order logic, and skolemization [5]. For α an

552 B. Motik

OWL 2 DL axiom or an ontology, let θ(α) be the translation of α into a first-order
formula. We assume that the equality predicate≈ is treated in θ(α) as a standard
first-order predicate explicitly axiomatized as a congruence; this does not affect
the consequences of θ(α) [5]. Moreover, we assume that θ maps the blank nodes
(also called anonymous individuals) in α into free first-order variables, so the
semantics of α is ∃y1, . . . , yn : θ(α) where y1, . . . yn are the blank nodes of α.

Let U , B, and L be infinite sets of URI references, blank nodes, and literals, re-
spectively, and let UBL = U ∪ B ∪ L. A triple is an assertion of the form 〈s, p, o〉
with s, p, o ∈ UBL.1 An RDF graph (or just graph) G is a finite set of triples.
The semantics of RDF is determined by entailment relations.

Simple entailment, RDF entailment, RDFS entailment, and D-entailment are
defined in [8], and OWL 2 RL/RDF entailment and OWL 2 RDF-Based entail-
ment are defined in [16]. The logical consequences of each entailment relation
X from this list can be characterized by a (possibly infinite) set of first-order
implications ΓX . For example, for RDF entailment, ΓRDF contains the rules in
[8, Section 7], and for OWL 2 RL/RDF entailment, ΓRL contains the rules in [11,
Section 4.3]. The semantics of a graph G w.r.t. X can be defined by transforming
G into a first-order theory as follows. We assume that each blank node corre-
sponds to a first-order variable (i.e., for simplicity, we do not distinguish blank
nodes from variables). Let bX(G) be the set of all blank nodes in G. For a triple
A = 〈s, p, o〉, let πX(A) = T (s, p, o), where T is a ternary first-order predicate.
For a graph G, let πX(G) =

∧
A∈G πX(A). The first-order theory correspond-

ing to G is then νX(G) = {∃bX(G) : πX(G)} ∪ ΓX . Let ξX(G) be obtained from
νX(G) by skolemizing the existential quantifiers ∃bX(G)—that is, by removing
∃bX(G) and replacing each blank node in πX(G) with a fresh URI reference.
Theory νX(G) is equisatisfiable with ξX(G). A graph G1 X-entails a graph G2,
written G1 |=X G2, if and only if νX(G1) |= ∃bX(G2) : πX(G2); the latter is the
case if and only if ξX(G1) |= ∃bX(G2) : πX(G2).

We next define OWL 2 Direct entailment (written DL due to its relationship
with description logic). A graph G encodes an OWL 2 DL ontology if G can be
transformed into an OWL 2 DL ontology O(G) as specified in [13]. For such G,
let bDL(G) be the set of blank nodes occurring in O(G); let πDL(G) = θ(O(G));
let νDL(G) = ∃bDL(G) : θ(O(G)); and let ξDL(G) be obtained from νDL(G) by
skolemizing the existential quantifiers ∃bDL(G). Formula νDL(G) is equisatisfi-
able with ξDL(G). For G1 and G2 graphs that encode OWL 2 DL ontologies,
G1 DL-entails G2, written G1 |=DL G2, iff νDL(G1) |= ∃bDL(G2) : πDL(G2); the
latter is the case if and only if ξDL(G1) |= ∃bDL(G2) : πDL(G2).

SPARQL is the standard W3C language for querying RDF graphs, and the
1.1 version (currently under development) will support different entailment rela-
tions. In this paper we focus on group patterns—the core of SPARQL that deals
with pattern matching and is largely independent from constructs such as aggre-
gates and sorting. We formalize group patterns as in [14], and we treat answers
as sets rather than multisets as this simplifies the presentation without changing

1 RDF actually requires s ∈ U ∪ B, p ∈ U , and o ∈ UBL, but this is not important in

our framework so we assume s, p, o ∈ UBL for the sake of simplicity.

Representing and Querying Validity Time in RDF and OWL 553

the nature of our results. Let V be an infinite set of variables disjoint from UBL.
A mapping is a partial function μ : V → UBL. The domain (resp. range) of μ is
written dm(μ) (resp. rg(μ)). We define μ(t) = t for t ∈ UBL ∪ V \ dm(μ). Map-
pings μ1 and μ2 are compatible if μ1(x) = μ2(x) for each x ∈ dm(μ1) ∩ dm(μ2);
in such a case, μ1 ∪ μ2 is also a mapping. The following algebraic operations on
sets of mappings Ω1 and Ω2 are used to define the semantics of group patterns.

Ω1 � Ω2 = {μ1 ∪ μ2 | μ1 ∈ Ω1, μ2 ∈ Ω2, and μ1 and μ2 are compatible}
Ω1 \Ω2 = {μ1 ∈ Ω1 | each μ2 ∈ Ω2 is not compatible with μ1}

A built-in expression is constructed using the elements of V ∪ U ∪ L as specified
in [14]; furthermore, for each built-in expression R and each mapping μ, we
can determine whether R evaluates to true under μ, written μ |= R, as specified
in [14]. A basic graph pattern (BGP) is a set of triples of the form 〈s, p, o〉
where s, p, o ∈ UBL ∪ V . A group pattern (GP) is an expression of the form B,
P1 and P2, P1 union P2, P1 opt P2, or P1 filter R, where B is a BGP, P1 and P2
are group patterns, and R is a built-in expression. For A a built-in expression
or a group pattern and μ a mapping, var(A) is the set of variables occurring in
A, and μ(A) is the result of replacing each variable x in A with μ(x).

The answer to a group pattern P on a graph G depends on an entailment
relation X . For each X , we assume that a function exists that maps each graph
G to the set adX(G) ⊆ UBL called the answer domain of G; this set determines
the elements of UBL that can occur in answers to group patterns on G under X-
entailment. To see why this is needed, let B = {〈x, rdf :type, rdf :Property〉}; due
to the axiomatic triples [8], ∅ |=RDF μ(B) whenever μ(x) ∈ {rdf : 1 , rdf : 2 , . . .}.
Without any restrictions, the answer to B under RDF entailment would thus
be infinite even in the empty graph. To prevent this, adRDF (G) excludes rdf : 1 ,
rdf : 2 , . . . that do not occur in G, which makes adRDF (G) finite and thus ensures
finiteness of answers. Similar definitions are used for X other than RDF .

SPARQL treats blank nodes as objects with distinct identity. To understand
this, let G = {〈a, b, c〉, 〈d, e, :1〉} where :1 is a blank node, let P = 〈a, b, x〉,
and let μ = {x !→ :1}. Even though G |=RDF μ(P), the answer to P on G under
RDF entailment does not contain μ. Roughly speaking, :1 is distinct from c even
though :1 is semantically a “placeholder” for an arbitrary URI reference. We
capture this idea using skolemization: we replace the blank nodes in G with fresh
URI references, thus giving each blank node a unique identity. Our answers are
isomorphic to the answers of the official SPARQL specification, so skolemization
allows us to simplify the technical presentation without losing generality. We
formalize this idea by evaluating group patterns in ξX(G) instead of νX(G).
Table 1 defines the answer �P �X

G to a group pattern P in a graph G w.r.t. X .

3 Representing Validity Time in RDF and OWL

To incorporate validity time into RDF, one could simply equip each triple with
a validity time instant; however, it would be impractical or even impossible
to explicitly list all such time instants. To this end, Chomicki distinguishes an

554 B. Motik

Table 1. Semantics of Group Patterns

�B�X
G = {μ | dm(μ) = var(B), rg(μ) ⊆ adX(G), ξX(G) |= ∃bX(μ(B)) : πX(μ(B))}

�P1 and P2�
X
G = �P1�

X
G �� �P2�

X
G

�P1 union P2�
X
G = �P1�

X
G ∪ �P2�

X
G

�P1 opt P2�
X
G = �P1�

X
G �� �P2�

X
G ∪ �P1�

X
G \ �P2�

X
G

�P1 filter R�X
G = {μ ∈ �P1�

X
G | μ |= R}

abstract from a concrete temporal database [4]. The former is a sequence of
“static” databases each of which contains the facts true at some time instant.
Since the time line is unbounded, an abstract temporal database is infinite, so
a concrete temporal database is used as a finite specification of one or more
abstract temporal databases. We next apply thus approach to RDF and OWL.

We use a discrete notion of time, since the ability to talk about predeces-
sors/successors of time instants is needed in Section 4. Thus, the set T I of time
instants is the set of all integers, ≤ is the usual total order on T I, and +1 and
−1 are the usual successor and predecessor functions on T I. The set of time
constants is T C = T I ∪ {−∞,+∞}; we assume that UBL ∩ T C = ∅. Time con-
stants −∞ and +∞ are special in that they can occur in first-order formulae
only in atoms of the form −∞ ≤ t, −∞ ≤ +∞, and t ≤ +∞ for t a time instant
or a variable; all such atoms are syntactic shortcuts for true. This allows us to
simplify the notation for bounded and unbounded time intervals; for example,
to say that the interval described by formula t1 ≤ xt ≤ t2 has no lower bound,
we write t1 = −∞, which makes the formula equivalent to xt ≤ t2.

Definition 1. A temporal triple has the form 〈s, p, o〉[t] or 〈s, p, o〉[t1, t2], such
that s, p, o ∈ UBL, t ∈ T I, t1 ∈ T I ∪ {−∞}, and t2 ∈ T I ∪ {+∞}. A temporal
graph G is a finite set of temporal triples.

In this work, we focus mainly on the conceptual aspects of temporal graphs
and we do not discuss practical issues such as serialization syntax. We interpret
temporal graphs in multi-sorted first-order logic. Let t be a distinct temporal
sort interpreted over T I; we write xt to stress that a variable x ranges over T I.
For each n-ary predicate P , let P̂ be the n + 1-ary predicate where positions 1–n
have the same sort as in P , and position n+ 1 is of sort t. For t a term of sort t
and P (u1, . . . , un) an atom, let P (u1, . . . , un)〈t〉 = P̂ (u1, . . . , un, t), and let ϕ〈t〉
be obtained by replacing each atom A with A〈t〉 in a first-order formula ϕ.

Intuitively, atom P̂ (u1, . . . , un, t) encodes the truth of atom P (u1, . . . , un) at
time instant t: the former is true iff the latter is true at time t, so our approach is
similar to the temporal arguments approach [19]. Similarly, ϕ〈t〉 determines the
truth of ϕ at time instant t. As explained in Section 2, ≈ is an ordinary predicate
with an explicit axiomatization, so ≈̂ is well defined and it gives us a notion
of equality that changes with time. Finally, to understand why a multi-sorted
interpretation is needed, consider a graph G that encodes the OWL 2 DL axiom
� � {c}. Such G is satisfiable only in first-order interpretations consisting of a

Representing and Querying Validity Time in RDF and OWL 555

single object, which contradicts the requirement that a domain should contain
T I. Multi-sorted logic cleanly separates temporal instants from other objects
in the domain, so axioms such as � � {c} do not quantify over time instants,
which solves the problem. We next define the semantics of temporal graphs.

Definition 2. Let X be an entailment relation from Section 2 other than DL,
and let ΓX be the first-order theory that characterizes X. For G a temporal
graph, uX(G), bX(G), and tcX(G) are the subsets of U ∪ L, B, and T C, respec-
tively, that occur in G. Mappings πX and νX are extended to temporal graphs as
shown below, where O is a fresh unary predicate. Furthermore, ξX(G) is obtained
from νX(G) by skolemizing the existential quantifiers in ∃bX(G), and ubX(G) is
uX(G) extended with the URI references introduced via skolemization.

πX(〈s, p, o〉[t]) = T̂ (s, p, o, t)
πX(〈s, p, o〉[t1, t2]) = ∀xt : (t1 ≤ xt ≤ t2) → T̂ (s, p, o, xt)

πX(G) =
∧

u∈bX(G)
O(u) ∧

∧
A∈G

πX(A)

νX(G) = {∃bX(G) :
∧

u∈uX (G)
O(u) ∧ πX(G)} ∪ {∀xt : ϕ〈xt〉 | ϕ ∈ ΓX}

A temporal graph G1 entails a temporal graph G2 under entailment relation X,
written G1 |=X G2, if and only if νX(G1) |= ∃bX(G2) : πX(G2).

Intuitively, predicate O in νX(G) “contains” all elements of uX(G) ∪ bX(G) that
occur in G, which ensures that, whenever G1 |=X G2, all blank nodes in G2
can be mapped to uX(G1) ∪ bX(G1). We discuss the rationale behind such a
definition at end of this section; for the moment, we just note that, when applied
to RDF(S), our definition of entailment coincides with the one from [7].

We next present a small example. Let G1 be the temporal graph containing
temporal triples (1)–(3). Triples in (1) state that there is a flight from LHR
to MUC; this information may have been gathered from two distinct sources,
so validity times of the two triples overlap. Triple (2) states that Munich hosts
Oktoberfest. Finally, triple (3) states that, if x hosts y, then x has y as an
attraction; that this statement is not universally true might be due to the fact
that attractions are relevant only during holiday seasons. One can easily verity
that G1 |=RDFS 〈:Munich, :hasAttraction, :Oktoberfest〉[130, 180].

〈:LHR, :flightTo, :MUC 〉[50, 120] 〈:LHR, :flightTo, :MUC 〉[100, 150] (1)
〈:Munich, :hosts , :Oktoberfest〉[80, 180] (2)

〈:hosts , rdfs :subPropertyOf , :hasAttraction〉[130, 300] (3)

OWL 2 Direct entailment is not characterized by a fixed set of first-order impli-
cations, so we define temporal OWL 2 Direct entailment separately.

Definition 3. A temporal OWL 2 DL axiom has the form α[t] or α[t1, t2] for
α an OWL 2 DL axiom, t ∈ T I, t1 ∈ T I ∪ {−∞}, and t2 ∈ T I ∪ {+∞}. A

556 B. Motik

temporal OWL 2 DL ontology O is a finite set of temporal OWL 2 DL axioms.
Temporal axioms and ontologies are mapped into formulae as θ(α[t]) = θ(α)〈t〉,
θ(α[t1, t2]) = ∀xt : (t1 ≤ xt ≤ t2)→ θ(α)〈xt〉, and θ(O) =

∧
A∈O θ(A).

A temporal graph G encodes a temporal OWL 2 DL ontology O(G) if O(G)
can be extracted from G using the mapping from [13] modified as follows:

– Each 〈s, p, o〉 in Tables 3–8 and 10–15 is replaced with 〈s, p, o〉[−∞,+∞].
– Each triple pattern from Tables 16 and 17 without a main triple2 producing

an axiom α is changed as follows: each 〈s, p, o〉 in the pattern is replaced with
〈s, p, o〉[−∞,+∞], and the triple pattern produces α[−∞,+∞].

– Each triple pattern from Tables 16 and 17 with a main triple 〈sm, pm, om〉
producing an axiom α is replaced with the following two triple patterns.
• The first one is obtained by replacing each triple 〈s, p, o〉 in the pattern

other than the main one with 〈s, p, o〉[−∞,+∞], replacing the main triple
with 〈sm, pm, om〉[t], and making the triple pattern produce α[t].

• The second one is obtained by replacing each triple 〈s, p, o〉 in the pattern
other than the main one with 〈s, p, o〉[−∞,+∞], replacing the main triple
with 〈sm, pm, om〉[t1, t2], and making the triple pattern produce α[t1, t2].

For G encoding a temporal OWL 2 DL ontology O(G), uDL(G), bDL(G), and
tcDL(G) are the sets of named individuals, blank nodes, and temporal constants,
respectively, in O(G). Mappings, πDL and νDL are extended to G as shown be-
low, where O is a fresh unary predicate. Furthermore, ξDL(G) is obtained from
νDL(G) by skolemizing the existential quantifiers in ∃bDL(G), and ubDL(G) is
uDL(G) extended with the named individuals introduced via skolemization.

πDL(G) =
∧

u∈bDL(G)
O(u) ∧ θ(O(G))

νDL(G) = ∃bDL(G) :
∧

u∈uDL(G)
O(u) ∧ πDL(G)

For G1 and G2 temporal graphs that encode temporal OWL 2 DL ontologies, we
have G1 |=DL G2 if and only if νDL(G1) |=DL ∃bDL(G2) : πDL(G2).

Definition 3 allows us to attach validity time to axioms (but not to parts of
axioms such as class expressions), which provides us with a flexible language
that can represent, for example, class hierarchies that change over time.

We next explain the intuition behind the predicate O in Definitions 2 and
3. Note that ∃bX(G) occurs in νX before the universal quantifiers over T I,
so blank nodes in G are interpreted rigidly—that is, they represent the same
objects throughout all time. For example, let G2 = {〈s, p, :1〉[−∞,+∞]}, so
πDL(G2) = ∃ :1 : O(:1) ∧ ∀xt : p̂(s, :1, xt); since ∃ :1 comes before ∀xt, blank
node :1 refers to the same object at all time instants. In contrast, the existen-
tial quantifiers in ϕ〈xt〉 and θ(O(G)) are not rigid—that is, they can be satis-
fied by different objects at different time instants. For example, let G3 be such
that O(G3) = {∃p.�(s)[−∞,+∞]}, so πDL(G3) = ∀xt : ∃y : p̂(s, y, xt); since ∃y
2 Please refer to [13] for the definition of a main triple.

Representing and Querying Validity Time in RDF and OWL 557

comes after ∀xt, the value for y can be different at different time instants. Con-
sequently, G2 is not DL-equivalent to G3; in fact, G2 DL-entails G3, but not
vice versa. Blank nodes can thus be understood as unnamed constants, which
we believe to be in the spirit of RDF and OWL. In line with this intuition, con-
juncts

∧
u∈bX(G) O(u) and

∧
u∈uX(G) O(u) in Definitions 2 and 3 ensure that, if

G2 |=X G3, then the blank nodes in bX(G3) can be mapped to the rigid objects in
uX(G2), but not to the nonrigid objects whose existence is implied by existential
quantifiers. Without this restriction, G3 would DL-entail G4 = {〈s, p, :1〉[1, 1]}
(since the triple in G4 refers only to a single time instant, the nonrigidity of ∃p.�
is irrelevant), which seems at odds with the fact that G3 does not DL-entail G2.
Under our semantics, G3 does not DL-entail G4 due to the O predicate, which
seems more intuitive and it is also easier to implement.

4 Querying Temporal Graphs

The first step in designing a query language is to identify the types of questions
that the language should support. The language of first-order logic readily reveals
the following natural types of questions:

Q1. Is BGP B true in G at some time instant t?
Q2. Is BGP B true in G at all time instants between t1 and t2?
Q3. Is BGP B true in G at some time instant between t1 and t2?

Such questions can be easily encoded in first-order formulae, and an answer to a
formula Q over a graph G under entailment relation X can be defined as the set
of mappings μ of the free variables of Q such that G |=X μ(Q). Such an approach,
however, has an important drawback. Let G5 = {〈a, b, c〉[5, 12], 〈a, b, c〉[9,+∞]}
and let Q(x1, x2) = ∀x : x1 ≤ x ≤ x2 → 〈a, b, c〉[x] be a question of type Q2.
Evaluating Q(x1, x2) on G5 is not a problem if x1 and x2 are concrete time
instants. Note, however, that Q(x1, x2) does not ask for maximal x1 and x2 for
which the formula holds. Thus, the answer to Q(x1, x2) on G5 is infinite since it
contains each mapping μ such that 5 ≤ μ(x1) ≤ μ(x2) ≤ +∞.

One can restrict answers to mappings that refer to time instants explicitly
occurring in G, but this is also problematic. First, answers can contain re-
dundant mappings. For example, μ1 = {x1 !→ 5, x2 !→ +∞} is the “most gen-
eral mapping” in the answer to Q(x1, x2) on G5, but the answer also contains
a “less general” mapping μ2 = {x1 !→ 9, x2 !→ 12}. Second, answers can differ
on syntactically different but semantically equivalent temporal graphs. For ex-
ample, G6 = {〈a, b, c〉[5, 10], 〈a, b, c〉[7,+∞]} is equivalent to G5 under simple
entailment; however, μ2 is not contained in the answer to Q(x1, x2) on G6,
and μ3 = {x1 !→ 7, x2 !→ 10} is not contained in the answer to Q(x1, x2) on G5.
Third, computing redundant answers can be costly: an answer to a formula such
as Q(x1, x2) in a graph with n overlapping intervals consists of mappings that
refer to any two pairs of interval endpoints, so the number of mappings in the an-
swer is exponential in n. One might try to identify the “most general” mappings,
but this would be an ad hoc solution without a clear semantic justification.

558 B. Motik

We deal with these problems in two stages. First, we introduce primitives that
support questions of types Q1–Q3, as well as of types Q4–Q5, thus explicitly
introducing a notion of maximality into the language.

Q4. Is [t1, t2] the maximal interval such that BGP B holds in G for each time
instant in the interval?

Q5. Is t the smallest/largest instant at which BGP B holds in G?

We define our notion of answers w.r.t. T C, which makes the answers independent
from the syntactic form of temporal graphs. To ensure finiteness, we then define
a syntactic notion of safety, which guarantees that only questions of type Q4
and Q5 can “produce” a value.

Practical applications will often need to express constraints on time points
and intervals retrieved via Q1–Q5. For example, to retrieve “hotels with va-
cancy during Oktoberfest,” we must require the duration of Oktoberfest to be
contained in the hotels’ vacancy period. Such conditions can be expressed, for
example, using Allen’s interval algebra [1], and they can be integrated into our
query language via built-in expressions; for example, we can provide a built-in
expression that takes two pairs of interval end-points and that is true iff the first
interval is contained in the second. Such extensions of our query language are
straightforward, so we do not discuss them further in the rest of this paper.

Definition 4. A temporal group pattern (TGP) is an expression defined induc-
tively as shown below, where B is a BGP, P1 and P2 are TGPs, R is a built-in
expression, t1 ∈ T I ∪ {−∞} ∪ V, t2 ∈ T I ∪ {+∞}∪ V, and t3 ∈ T I ∪ V. TGPs
from the first two lines are called basic.

B at t3 B during [t1, t2] B occurs [t1, t2]
B maxint [t1, t2] B mintime t3 B maxtime t3
P1 and P2 P1 union P2 P1 opt P2 P1 filter R

We redefine a mapping as a partial function μ : V → UBL ∪ T C. Let X be an
entailment relation and G a temporal graph. Let adX(G) = adX(G′), where G′ is
the nontemporal graph obtained by replacing all triples in G of the form 〈s, p, o〉[u]
and 〈s, p, o〉[u1, u2] with 〈s, p, o〉. The answer to a basic TGP P in G under X
is the set of mappings defined as specified below, where δX(μ(P)) is a condition
from Table 2. Answers to all other TGP types are defined in Table 1.

�P �X
G = {μ | dm(μ) = var(P), rg(μ) ⊆ adX(G) ∪ T C, and δX(μ(P)) holds}

We next present several TGPs that could be used in our running example.
TGP (4) returns the maximal intervals [y, z] during Oktoberfest in which a
flight from airport x to the Munich airport exists; the answer to (4) on G1
is {{x !→ LHR, y !→ 80, y !→ 150}} . TGP (5) retrieves all events z in London
that have at least one time instant in common with Oktoberfest; if occurs were
changed to during, the TGP would retrieve all events z in London whose du-
ration is contained in the duration of Oktoberfest. TGP (6) retrieves the first
time instant at which Munich hosted Oktoberfest; the answer to (6) on G1 is

Representing and Querying Validity Time in RDF and OWL 559

Table 2. Semantics of Temporal Graph Patterns

P δX(P)

B at t3 ξX(G) |= ∃bX(B) : πX(B)〈t3〉
B during [t1, t2] ξX(G) |= ∃bX(B) ∀xt : [t1 ≤ xt ≤ t2] → πX(B)〈xt〉
B occurs [t1, t2] ξX(G) |= ∃bX(B) ∃xt : [t1 ≤ xt ≤ t2 ∧ πX(B)〈xt〉]
B maxint [t1, t2] a function σ : bX(B) → ubX(G) exists such that

ξX(G) |= ∀xt : [t1 ≤ xt ≤ t2] → πX(σ(B))〈xt〉, and

t1 = −∞ or ξX(G) �|= πX(σ(B))〈t1 − 1〉, and

t2 = +∞ or ξX(G) �|= πX(σ(B))〈t2 + 1〉
B mintime t3 a function σ : bX(B) → ubX(G) exists such that

ξX(G) |= πX(σ(B))〈t3〉 and

ξX(G) �|= πX(σ(B))〈xt〉 for each xt ∈ T I with xt ≤ t3 − 1

B maxtime t3 a function σ : bX(B) → ubX(G) exists such that

ξX(G) |= πX(σ(B))〈t3〉 and

ξX(G) �|= πX(σ(B))〈xt〉 for each xt ∈ T I with t3 + 1 ≤ xt

Note: δX(P) does not hold if P is malformed (e.g., if it is of the form B at t3 and

t3 �∈ T I); and σ(B) is the result of replacing each blank node v in B with σ(v).

{{x !→ 80}}. Finally, TGP (7) returns all rooms x that have price y during an
event z in Munich within the time interval [50, 100].

{〈x, :flightTo, :MUC 〉, 〈:Munich, :hosts , :Oktoberfest〉} maxint [y, z] (4)

{〈:Munich, :hosts , :Oktoberfest〉} maxint [x, y] and
{〈:London , :hosts , z〉} occurs [x, y] (5)

{〈:Munich, :hosts , :Oktoberfest〉} mintime x (6)
{〈x, :hasPrice , y〉, 〈:Munich , :hosts , z〉} occurs [50, 100] (7)

We next turn our attention to the formal properties of TGPs. By Definition 4,
adX(G) does not contain time constants occurring in G and answers are defined
w.r.t. T C, which ensures that answers do not depend on the syntactic form of
temporal graphs. For example, temporal graphs G5 and G6 mentioned earlier
are equivalent and adX(G5) = adX(G6), so �P �X

G5
= �P �X

G6
for each TGP P .

Proposition 1. Let X be an entailment relation, and let G1 and G2 be temporal
graphs such that G1 |=X G2, G2 |=X G1, and adX(G1) = adX(G2). Then, for
each temporal group pattern P , we have �P �X

G1
= �P �X

G2
.

Since the answers are defined w.r.t. the entire set T C, temporal basic graph
patterns can have infinite answers. We next define a notion of safe TGPs and
later show that such group patterns always have finite answers.

Definition 5. For P a temporal group pattern, uns(P) is the set of variables as
shown in Table 3. Pattern P is safe if and only if uns(P) = ∅.

560 B. Motik

Table 3. The Definition of Safety

P uns(P) P uns(P)

B at t3 {t3} ∩ V B maxint [t1, t2] ∅
B during [t1, t2] {t1, t2} ∩ V B mintime t3 ∅
B occurs [t1, t2] {t1, t2} ∩ V B maxtime t3 ∅
P1 and P2 uns(P1) ∪ [uns(P2) \ var(P1)] P1 union P2 uns(P1) ∪ uns(P2)

P1 opt P2 uns(P1) ∪ [uns(P2) \ var(P1)] P1 filter R uns(P1)

Intuitively, x ∈ uns(P) means that there is no guarantee that μ(x) ∈ T C im-
plies μ(x) ∈ tcX(G) for each μ ∈ �P �X

G . Thus, B at t3, B during [t1, t2], and
B occurs [t1, t2] are safe iff t1, t2, and t3 are not variables: B can hold at po-
tentially infinitely many time intervals, which could give rise to infinite answers
if t1, t2, or t3 were a variable. In contrast, B maxint [t1, t2], B mintime t3,
and B maxtime t3 are always safe as there are finitely many maximal inter-
vals in which B holds. The nontrivial remaining cases are P1 and P2 and
P1 opt P2, in which we assume that P1 is evaluated “before” P2—that is,
that the values for variables obtained by evaluating P1 are used to bind un-
safe variables in P2; this will be made precise shortly in our algorithm for TGP
evaluation. Thus, (B1 occurs [x, y]) and (B2 maxint [x, y]) is not safe while
(B2 maxint [x, y]) and (B1 occurs [x, y]) is, which may seem odd given that con-
junction is commutative. Without a predefined evaluation order, however, we
would need to examine every possible order of conjuncts in a conjunction to find
an “executable” one, which could be impractical.

We next present an algorithm for evaluating TGPs. We start by showing how
to decide three types of temporal entailment that are used as basic building
blocks of our evaluation algorithm. We first present some auxiliary definitions.
Let G be a temporal graph and X an entailment relation. A pair of time con-
stants (t1, t2) is consecutive in G if t1, t2 ∈ tcX(G), t1 < t2, and no t ∈ tcX(G)
exists with t1 < t < t2. The representative of such (t1, t2) is defined as t1 + 1
if t1 = −∞, t2 − 1 if t1 = −∞ and t2 = +∞, and 0 otherwise. Furthermore,
tiX(G) ⊆ T I is the smallest set that contains tcX(G) ∩ T I and the represen-
tative of each consecutive pair of time constants in G. Finally, note that by
Definitions 2 and 3, ξX(G) contains

∧
u∈ubX (G) O(u) ∧ Λ and zero or more for-

mulae of the form ∀xt : ϕi〈xt〉, and that Λ is a conjunction of formulae of the
form ψi〈ti〉 and ∀xt : (t1i ≤ xt ≤ t2i)→ κi〈xt〉; then, for t ∈ T I, ΞX(G, t) is the
set of all O(u), all ψi such that ti = t, all κi such that t1i ≤ t ≤ t2i , and all ϕi.

Proposition 2. Let G be a temporal graph, let X be an entailment relation, let
B be a BGP such that var(B) = ∅, and let t1 ∈ T I ∪ {−∞}, t2 ∈ T I ∪ {+∞},
and t3 ∈ T I. Then, the following claims hold:

1. ξX(G) is satisfiable iff ΞX(G, t) is satisfiable for each t ∈ tiX(G).
2. ξX(G) |= ∃bX(B) : πX(B)〈t3〉 iff ξX(G) is unsatisfiable or some function

σ : bX(B)→ ubX(G) exists such that ΞX(G, t3) |= πX(σ(B)).

Representing and Querying Validity Time in RDF and OWL 561

Table 4. Evaluation of Temporal Group Patterns

evalX(P, G) is the set of mappings defined as follows depending on the type of P :

P = B at t3 or P = B during [t1, t2] or P = B occurs [t1, t2] :

{μ | dm(μ) = var(B), rg(μ) ⊆ adX(G), and δX(μ(P)) holds}
P = B maxint [t1, t2] :

{μ | dm(μ) = var(P), rg(μ) ⊆ adX(G) ∪ tiX(G) ∪ {−∞, +∞}, and δX(μ(P)) holds}
P = B mintime t3 :

{μ | dm(μ) = var(P), rg(μ) ⊆ adX(G) ∪ tiX(G), δX(μ(B at t3)) holds, and

δX(μ(B at t′)) does not hold for all t′ ∈ tiX(G) such that t′ ≤ μ(t3) − 1}
P = B maxtime t3 :

{μ | dm(μ) = var(P), rg(μ) ⊆ adX(G) ∪ tiX(G), δX(μ(B at t3)) holds, and

δX(μ(B at t′)) does not hold for all t′ ∈ tiX(G) such that μ(t3) + 1 ≤ t′}
P = P1 and P2 :

{μ1 ∪ μ2 | μ1 ∈ evalX(P1, G) and μ2 ∈ evalX(μ1(P2), G)}
P = P1 union P2 :

evalX(P1, G) ∪ evalX(P2, G)

P = P1 opt P2 :

evalX(P1 and P2, G) ∪ {μ ∈ evalX(P1, G) | evalX(μ(P2), G) = ∅}
P = P1 filter R :

{μ ∈ evalX(P1, G) | μ |= R}

3. ξX(G) |= ∃bX(B) ∀xt : [t1 ≤ xt ≤ t2]→ πX(B)〈xt〉 iff ξX(G) is unsatisfiable
or some σ : bX(G) → ubX(G) exists such that ΞX(G, t) |= πX(σ(B)) for
each t ∈ tiX(G) with t1 ≤ t ≤ t2.

4. ξX(G) |= ∃bX(B) ∃xt : [t1 ≤ xt ≤ t2 ∧ πX(B)〈xt〉] iff ξX(G) is unsatisfiable
or some σ : bX(B) → ubX(G) exists such that ΞX(G, t) |= πX(σ(B)) for
some t ∈ tiX(G) with t1 ≤ t ≤ t2.

Proposition 2 reduces temporal entailment to standard entailment problems that
can be solved using any decision procedure available. This provides us with a way
to check conditions δX(μ(P)) needed to evaluate safe TGPs. Furthermore, note
that Claim 3 can be straightforwardly extended to general temporal graph en-
tailment. We use these results as building blocks for the function shown in Table
4 that evaluates safe temporal group patterns. For P a basic TGP, evalX(P,G)
can be computed by enumerating all mappings potentially relevant to P and
then eliminating those mappings that do not satisfy the respective conditions;
optimizations can be used to quickly eliminate irrelevant mappings.

Proposition 3. Let G be a temporal graph, let X be an entailment relation
such that adX(G) is finite, and let P be a safe temporal group pattern. Then
evalX(P,G) = �P �X

G and �P �X
G is finite.

562 B. Motik

5 Optimized Query Answering

The algorithm from Table 4 checks temporal entailment using a black box de-
cision procedure, which can be inefficient. In this section we first present an
optimization of this algorithm that is applicable to simple entailment, and then
we extend this approach to any entailment relation that can be characterized by
deterministic rules, such as RDF(S) and OWL 2 RL.

5.1 Simple Entailment

Simple entailment is the basic entailment relation in which BGPs can be eval-
uated in nontemporal graphs by simple graph lookup. Such an approach pro-
vides the basis of virtually all practical RDF storage systems and has proved
itself in practice, so it would be beneficial if similar approaches were applicable
to TGPs and temporal graphs. As the following example demonstrates, how-
ever, this is not the case. Let P = {〈:LHR, :flightTo, :MUC 〉} maxint [x, y]; then
�P �simple

G1
= {{x !→ 50, y !→ 150}}. Note, however, that G1 does not contain tem-

poral triple α = 〈:LHR, :flightTo, :MUC 〉[50, 150], so �P �simple
G1

cannot be com-
puted via lookup. Temporal graph G1 is, however, equivalent to the normalized
temporal graph nrm(G1) obtained from G1 by replacing (1) with α; then, P can
be evaluated in nrm(G1) via lookup, which simplifies query processing. TGPs of
other types can additionally require adequate interval comparisons.

We next formalize this idea. We say that temporal triples 〈s, p, o〉[t1, t2] and
〈s′, p′, o′〉[t′1, t′2] overlap if s = s′, p = p′, o = o′, and max(t1, t′1) ≤ min(t2, t′2);
this definition is extended to triples of the form 〈s, p, o〉[t1] by treating them as
abbreviations for 〈s, p, o〉[t1, t1]. Let G be a temporal graph and let A ∈ G be a
temporal triple. The maximal subset of G w.r.t. A is the smallest set GA ⊆ G
such that A ∈ GA and, if β ∈ GA, γ ∈ G, and β and γ overlap, then γ ∈ GA

as well. The normalization of G is the temporal graph nrm(G) that, for each
A ∈ G of the form 〈s, p, o〉[t1, t2] or 〈s, p, o〉[t1], contains the temporal triple
〈s, p, o〉[t′1, t′2] where t′1 and t′2 are the smallest and the largest temporal con-
stant, respectively, occurring in the maximal subset GA of G w.r.t. A.

Let G′ be the list of the temporal triples in G of the form 〈s, p, o〉[t1, t2]
and 〈s, p, o〉[t1] sorted by s, p, o, t1, and t2. For each A ∈ G, the triples that
constitute the maximal subset GA of G occur consecutively in G′, so nrm(G)
can be computed by a simple sequential scan through G′.

We next show how to use nrm(G) to evaluate temporal group patterns.
Let B = {〈s1, p1, o1〉, . . . , 〈sk, pk, ok〉} be a BGP, let x1, . . . , xk and y1, . . . , yk

be variables not occurring in B, and let G be a temporal graph. Then 〈B〉G
is the set of all mappings μ such that dm(μ) = var(B) ∪ {x1, y1, . . . , xk, yk},
μ(〈si, pi, oi〉[xi, yi]) ∈ nrm(G) for each 1 ≤ i ≤ k, and μ↓ ≤ μ↑, where the lat-
ter are defined as μ↓ = max{μ(x1), . . . , μ(xk)} and μ↑ = min{μ(y1), . . . , μ(yk)}.
Furthermore, ν|B if the restriction of a mapping ν to var(B). Table 5 then shows
how to evaluate basic TGPs under simple entailment in a normalization.

Representing and Querying Validity Time in RDF and OWL 563

Table 5. Evaluation of Temporal Group Patterns under Simple Entailment

evalsimple(P, G) is the set of mappings defined as follows:

P = B at t3 :

{ν | dm(ν) = var(P) and ∃μ ∈ 〈B〉G : ν|B = μ|B ∧ μ↓ ≤ t3 ≤ μ↑}
P = B during [t1, t2] :

{ν | dm(ν) = var(P) and ∃μ ∈ 〈B〉G : ν|B = μ|B ∧ μ↓ ≤ t1 ≤ t2 ≤ μ↑}
P = B occurs [t1, t2] :

{ν | dm(ν) = var(P) and ∃μ ∈ 〈B〉G : ν|B = μ|B ∧ max(μ↓, t1) ≤ min(μ↑, t2)}
P = B maxint [t1, t2] :

{ν | dm(ν) = var(P) and ∃μ ∈ 〈B〉G : ν|B = μ|B ∧ ν(t1) = μ↓ ∧ ν(t2) = μ↑}
P = B mintime t3 :

{ν | dm(ν) = var(P) and ∃μ ∈ 〈B〉G :

μ↓ ∈ T I ∧ ν|B = μ|B ∧ ν(t3) = μ↓ ∧ ∀λ ∈ 〈B〉G : μ|B = λ|B → μ↓ ≤ λ↓}
P = B maxtime t3 :

{ν | dm(ν) = var(P) and ∃μ ∈ 〈B〉G :

μ↑ ∈ T I ∧ ν|B = μ|B ∧ ν(t3) = μ↑ ∧ ∀λ ∈ 〈B〉G : μ|B = λ|B → λ↑ ≤ μ↑}

Proposition 4. For each temporal graph G and each safe temporal group pat-
tern P , we have evalsimple(P,G) = �P �simple

G .

We explain the intuition behind this algorithm for P = B maxint [t1, t2]. First, we
compute 〈B〉G by evaluating the conjunctive query

∧
〈si, pi, oi〉[xi, yi] in nrm(G)

via simple lookup. Consider now an arbitrary μ ∈ 〈B〉G. By the definition of
normalization, each μ(xi) and μ(yi) determine the maximal validity interval of
〈si, pi, oi〉 so, to answer P , we must intersect all intervals [μ(xi), μ(yi)]. Note
that μ↓ and μ↑ give the lower and the upper limit of the intersection, provided
that μ↓ ≤ μ↑. Thus, what remains to be done is to convert μ into ν by setting
ν(x) = μ(x) for each x ∈ var(B) and ensuring that ν(t1) = μ↓ and ν(t2) = μ↑.
Based on these ideas, EO’s system translates TGPs into SQL, which allows us
to use a standard database query planner to optimize query execution.

5.2 Entailments Characterized by Deterministic Rules

Let X be an entailment relation that can be characterized by a set ΓX of deter-
ministic rules of the form (8).

A1 ∧ . . . ∧An → B (8)

To evaluate a SPARQL group pattern in a graph under X-entailment, most
existing (nontemporal) RDF systems first compute the closure of the graph
w.r.t. ΓX . We next show how to compute the temporal closure clsX(G) of a
temporal graph G using the rules from ΓX . After computing the closure, we can
normalize it and then apply the algorithm from Section 5.1.

564 B. Motik

Definition 6. For X and ΓX as stated above, let ΣX be the set containing the
rule (9) for each rule (8) in ΓX .

A1[x1, y1] ∧ . . . ∧An[xn, yn] ∧max(x1, . . . , xn) ≤ min(y1, . . . , yn)→
B[max(x1, . . . , xn),min(y1, . . . , yn)] (9)

Let G be a temporal graph consisting of triples of the form 〈s, p, o〉[t1, t2].3 The
skolemization of G is a temporal graph obtained from G be replacing each blank
node with a fresh URI reference. Furthermore, the temporal closure of G is the
(possibly infinite) temporal graph clsX(G) obtained by exhaustively applying the
rules in ΣX to the skolemization of G.

By applying this approach to G1 under RDFS entailment, one can see that (2)
and (3) produce 〈:Munich, :hasAttraction, :Oktoberfest〉[130, 180].

The following proposition shows that, instead of evaluating TGPs in G under
X-entailment, one can evaluate them in clsX(G) under simple entailment.

Proposition 5. Let X and G be as stated in Definition 6. For each temporal
group pattern P , we have �P �X

G = �P �simple
G′ , where G′ = clsX(G).

6 Implementation and Outlook

In this paper we presented an approach for representing validity time in RDF
and OWL, an extension of SPARQL that allows for querying temporal graphs,
and two query answering algorithms. We implemented our approach in EO’s
knowledge representation system. The system is based on a proprietary exten-
sion of RDF that supports n-ary relations; it uses an ontology language based on
OWL 2 RL; and it implements a proprietary query language based on the prim-
itives and the notion of safety outlined in Section 4. The PostgreSQL database
is used for data persistence and query processing. Ontology reasoning is im-
plemented by translating the ontology into a datalog program, which is then
compiled into a plSQL script that implements the seminäıve datalog evaluation
strategy. Datalog rules are modified as described in Section 5.2 in order to deal
with validity time; furthermore, the resulting set of facts obtained by applying
the rules is normalized to allow for efficient query answering. Finally, temporal
queries are translated into SQL and then evaluated using PostgreSQL’s query
engine; the translation essentially encodes the query evaluation algorithm from
Section 5.1. The source of the system is not open, and EO has no plans for
licensing the system to third-party developers. Therefore, we do not present a
performance evaluation since such results could not be validated by the commu-
nity. We merely note that EO is successfully using our approach with datasets
consisting of tens of millions of triples, which we take as confirmation that our
approach is amenable to practical implementation.

An important open theoretical question is to determine the worst-case com-
plexity bounds of the query answering problem for our query language. Fur-
thermore, one should see whether the general algorithm from Section 4 can be
3 For simplicity we assume that G does not contain triples of the form 〈s, p, o〉[t1].

Representing and Querying Validity Time in RDF and OWL 565

successfully used with expressive languages such as OWL 2 DL. We believe this
to be possible provided that the algorithm is adequately optimized.

References

1. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of

the ACM 26(11), 832–843 (1983)

2. Artale, A., Franconi, E.: A survey of temporal extensions of description logics.

Annals of Mathematics and Artificial Intelligence 30(1-4), 171–210 (2000)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):

The Description Logic Handbook: Theory, Implementation and Applications, 2nd

edn. Cambridge University Press, Cambridge (August 2007)

4. Chomicki, J.: Temporal Query Languages: A Survey. In: Proc. ICTL, pp. 506–534

(1994)

5. Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd edn. Texts

in Computer Science. Springer, Heidelberg (1996)

6. Gutiérrez, C., Hurtado, C.A., Mendelzon, A.O.: Foundations of Semantic Web

Databases. In: Proc. PODS, pp. 95–106 (2004)

7. Gutierrez, C., Hurtado, C.A., Vaisman, A.A.: Introducing Time into RDF. IEEE

Transactions on Knowledge and Data Engineering 19(2), 207–218 (2007)

8. Hayes, P.: RDF Semantics, W3C Recommendation (February 10, 2004)

9. Hurtado, C.A., Vaisman, A.A.: Reasoning with Temporal Constraints in RDF.

In: Alferes, J.J., Bailey, J., May, W., Schwertel, U. (eds.) PPSWR 2006. LNCS,

vol. 4187, pp. 164–178. Springer, Heidelberg (2006)

10. Milea, V., Frasincar, F., Kaymak, U.: Knowledge Engineering in a Temporal Se-

mantic Web Context. In: Proc. ICWE, pp. 65–74 (2008)

11. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2

Web Ontology Language: Profiles. W3C Recommendation (October 27, 2009)

12. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Web Ontology Language:

Structural Specification and Functional-Style Syntax, W3C Recommendation

(October 27, 2009)

13. Patel-Schneider, P.F., Motik, B.: OWL 2 Web Ontology Language: Mapping to

RDF Graphs, W3C Recommendation (October 27, 2009)

14. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM

Transactions on Database Systems 34(3) (2009)

15. Pugliese, A., Udrea, O., Subrahmanian, V.S.: Scaling RDF with Time. In: Proc.

WWW, pp. 605–614 (2008)

16. Schneider, M.: OWL 2 Web Ontology Language: RDF-Based Semantics, W3C Rec-

ommendation (October 27, 2009)

17. Straccia, U., Lopes, N., Lukácsy, G., Polleres, A.: A General Framework for Rep-

resenting and Reasoning with Annotated Semantic Web Data. In: Proc. AAAI

(2010)

18. Tappolet, J., Bernstein, A.: Applied Temporal RDF: Efficient Temporal Querying

of RDF Data with SPARQL. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano,

P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.)

ESWC 2009. LNCS, vol. 5554, pp. 308–322. Springer, Heidelberg (2009)

19. Vila, L.: A Survey on Temporal Reasoning in Artificial Intelligence. AI Communi-

cations 7(1), 4–28 (1994)

Enhancing the Open-Domain Classification of
Named Entity Using Linked Open Data

Yuan Ni, Lei Zhang, Zhaoming Qiu, and Chen Wang

IBM Research, China

{niyuan,lzhangl,qiuzhaom,chenwang}@cn.ibm.com

Abstract. Many applications make use of named entity classification.

Machine learning is the preferred technique adopted for many named

entity classification methods where the choice of features is critical to

final performance. Existing approaches explore only the features derived

from the characteristic of the named entity itself or its linguistic context.

With the development of the Semantic Web, a large number of data

sources are published and connected across the Web as Linked Open

Data (LOD). LOD provides rich a priori knowledge about entity type

information, knowledge that can be a valuable asset when used in con-

nection with named entity classification. In this paper, we explore the

use of LOD to enhance named entity classification. Our method extracts

information from LOD and builds a type knowledge base which is used

to score a (named entity string, type) pair. This score is then injected

as one or more features into the existing classifier in order to improve

its performance. We conducted a thorough experimental study and re-

port the results, which confirm the effectiveness of our proposed method.

Keywords: Named Entity Classification, Linked Open Data.

1 Introduction

Automatically classifying named entities from text is a crucial step in several
applications. For example, in the Question Answering system [17], one important
step is to determine whether a candidate answer is of the correct type given
the question, and in the Information Extraction system [9], the first step is to
identify the named entities and their types from the text. As devices linked to
the Internet proliferate, the amount of information available on the Web rapidly
grows. At the same time, there is a trend to scaling applications to the Web. For
example, the MULDER Question Answering system [19] is designed to answer
open-domain questions from the Web, and the TextRunner system is designed to
extract open information from the Web [6]. To satisfy the requirements of such
Web-scale applications, named entity classification is evolving from a simple
three-category classification system to one in which a large number of classes
are specified by an ontology or by a taxonomy [8], clearly a more challenging
task.

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 566–581, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Enhancing the Open-Domain Classification of Named Entity Using LOD 567

Most proposed approaches for named entity classification adopt machine-
learning techniques. The choice of features is critical to obtaining a good clas-
sification of named entities. Traditional classification approaches focus on the
word-level characters or the context information of the named entities [20] with-
out exploiting in any way the valuable classification information available for the
large number of entities provided by Linked Open Data (LOD) on the Web. As of
this writing, the Linked Data project [1] includes more than 100 datasets which
together contain about 4.2 billion triples, and the datasets cover such various
domains as Wikipedia, IMDb, and Geonames. Given a named entity, it is highly
likely that some type assertions can be found in LOD. Thus, knowledge from
LOD can provide good features for named entity classification. Features used
in existing methods can be considered as context-dependent linguistic features,
and the machine-learning technique makes use of statistic information based on
these features to obtain a posteriori knowledge, while the features from LOD
are considered as context-independent features that explore a priori knowledge.
Our proposed method is to integrate the a priori knowledge with the a posteriori
knowledge to improve named entity classification.

In this work we examine how to make use of the type information from LOD
to improve named entity classification. It is not a trivial task due to the follow-
ing challenges. First, because LOD may contain noisy information and it may be
incomplete with respect to the information required to determine named entities
and their potential types, we need to improve the precision and completeness of
the type information. Second, for the extracted and cleaned type information for
named entities, we need a mechanism to store it and to guarantee the efficiency
of the method used to process the large, unwieldy LOD for use in real appli-
cations. Third, LOD from various sources have various taxonomies, and named
entity classification also has its own taxonomies; therefore, we need a mechanism
to solve the type similarity problem among these multiple taxonomies. The fi-
nal challenge is to provide a scoring strategy given the multiple possible type
information for a named entity.

Organization. The remainder of this paper is organized as follows. Section 2
gives an overview of our proposed method; Section 3 presents the method we use
to prepare the linked data and store the potential type information; the scoring
method is discussed in Section 4; Section 5 presents our experimental evaluation
of the feature; related work is discussed in Section 6, and the conclusion and
future work are discussed in Section 7.

2 Overview

The key idea of our approach is to leverage the knowledge base from the LOD
to generate a score to measure the probability that the given named entity
could be classified as the target type. The scores can then be used by exist-
ing machine-learning methods as additional features to improve named entity
classification. Let us use < f1, . . . , fn > to denote the feature vector for a
named entity in the existing approach. Our method appends a set of features

568 Y. Ni et al.

derived from LOD to the end of that vector to obtain a new feature vector
< f1, . . . , fn, F1, . . . , Fm >. The new generated feature vectors are used by the
classifiers for named entity classification. The rationale behind this method is
to combine context-independent, a priori knowledge from LOD with linguistic
contextual information in a single feature vector and let the machine-learning
algorithm determine how to best combine them statistically.

Fig 1 shows the architecture of the component to compute the LOD feature.
In order to efficiently compute the additional feature, our system is divided into
online and offline components. For the offline components, the LOD Preproces-
sor is used to extract the type information from the various LOD sources and
precompute the type knowledge base in a format that best suits our algorithms.
For the online components, the Type Retrieval is used to retrieve all type in-
formation of a given named entity string from the type knowledge base. The
LOD scorer takes charge of computing the probability scores for the retrieved
types of the named entity and the target type. An intermediate taxonomy is
used to calculate the similarity between each type that is provided by LOD and
the target type. Finally, the obtained score, together with other feature scores,
are given to the classifier.

Fig. 1. The Architecture of the Component for Computing LOD feature

3 Type Knowledge Base Generation

The type knowledge base is needed for two reasons. First, the LOD may contain
noise and may be incomplete; thus, we need to remove the noisy information and
make the type information more complete. Second, to ensure the efficiency of
the online scoring, the type information should be pre-computed and indexed in
a format that supports fast retrieval. This section describes the method used to
generate the type knowledge base. The goal is to enumerate all possible (name
string, type) pairs from the LOD.

Enhancing the Open-Domain Classification of Named Entity Using LOD 569

LOD uses a Uniform Resource Identifier (URI) to identify each instance, and
type assertions are provided for each URI. For example, for an instance having
the URI dbpedia:John F. Kennedy1, one triple from DBpedia indicates that the
instance dbpedia:John F. Kennedy belongs to type President :

(dbpedia:John F. Kennedy, rdf:type, President).
For the instance dbpedia:John F. Kennedy, we have another triple from DBpedia
to indicate one of its names:

(dbpedia:John F. Kennedy, rdfs:label, “John F. Kennedy”).
Based on these two triples, we obtain the (name string, type) pair (John F.
Kennedy, President) to specify that the name string “John F. Kennedy” belongs
to category “President”. From DBpedia, we have another triple which indicates
another possible name for the instance dbpedia:John F. Kennedy:

(dbpedia:John F. Kennedy, dbpedia:birthName, “John Fitzgerald Kennedy”).
From this we obtain another (name string, type) pair, (John Fitzgerald Kennedy,
President).

As the type knowledge base requires the type information for each named
entity, one problem we needed to solve is how to generate all possible name
variants for each instance. Traditional approaches leverage the string similarity
to determine whether some name variants correspond to one instance. However,
the name variants of one instance may not always be similar. For example,
ping-pong and table-tennis are the name variants for the same instance. In our
method, we propose to use various name properties and certain relationships in
LOD to enumerate all possible names variants for an instance.

3.1 Leverage the Name Properties

Thanks to the broad coverage of LOD, most name variants for an instance that
may be mentioned in some text are likely to be specified by some name proper-
ties. We analyze the properties used in LOD sources and identify the ones that
may describe the name information. For example, in terms of the definition from
RDF schema, the property rdfs:label provides a human-readable description of a
resource, making it a good candidate for name properties. We observe that there
are many name properties in LOD, e.g., DBpedia has 106 properties about such
names as dbpedia:name and dbpedia:fullname. To get maximal coverage on all
possible names of an entity, we tried to use most of these properties. However,
experimental results showed that they lead to many errors due to noisy LOD.
For example, from DBpedia we have the following triples:

(dbpedia:Chrysler New Yorker, dbpedia:name, 1982)
(dbpedia:Chrysler New Yorker, rdf:type, Automobile)

We can then obtain the pair (1982, Automobile) which is not correct. Based on
these experiments, we make use of only the properties that exactly describe the
names, such as rdfs:label and foaf:name.

1 The dbpedia: stands for the prefix for the URI from DBpedia.

570 Y. Ni et al.

3.2 Leverage the Relationships

In LOD, some relationships may connect two data instances where one data
instance could be considered as providing another name variant of the other
instance. We have identified three relationships and make use of them to enrich
the name variants of the instances.

Redirects Relationship. The redirects relationship is used in DBpedia and
links one URI, which has no description, to another URI that has a description.
The purpose of creating and maintaining the redirects relationship is because the
former URI has the relationships, including alternative name, less- and more-
specific forms of names, abbreviations, etc. [3] with the later URI. If URI1
redirects to URI2, then the name of URI1 can be considered as a name variant
of the instance of URI2. Therefore, for each (name string, type) pair, i.e., (name2,
type), that is derived from the type assertions for URI2, we generate another
pair (name1, type).

Fig. 2. The Example RDF Data for Redirect Relationship

Example 3.1. Let us use an example to illustrate this. Suppose we have a set of
RDF triples, and their graph representation is shown in Fig 2. There is a redirect
relationship from the URI dbpedia:Ping-pong to dbpedia:Table tennis, meaning
that ping-pong is a name variant of dbpedia:Table tennis. From the description
of dbpedia:Table tennis, we obtain a pair (table tennis, Sport), and we then
generate another pair (ping-pong, Sport) due to the redirects relationship. �

owl:sameAs Relationship. According to the OWL specification, the
owl:sameAs indicates that two URI references actually refer to the same thing.
Therefore, if URI1 owl:sameAs URI2, we combine them as one instance. The in-
stance has the name variants from both URI1 and URI2 and has the types from
both URI1 and URI2.

Disambiguates Relationship. The disambiguates relationship is used in
DBpedia. A disambiguation URI has many disambiguates relationships with
other different URIs which could, in principle, have the same name as that of
the disambiguation URI. For example, we have (dbpedia:Joker disambiguates db-
pedia:Joker butterfly) and (dbpedia:Joker disambiguates dbpedia:The Joker’s
Wild). It means that dbpedia:Joker butterfly and dbpedia:The Joker’s Wild can
have the same name Joker. Joker is then a name variant of dbpedia:Joker butterfly
and is also a name variant of dbpedia:The Joker’s Wild. For all type assertions

Enhancing the Open-Domain Classification of Named Entity Using LOD 571

about dbpedia:Joker butterfly and dbpedia:The Joker’s Wild, we generate cor-
responding (name string, type) pairs for the name Joker. For example, we know
that dbpedia:Joker butterfly belongs to the type Insect, then we generate a pair
(Joker, Insect).

The enrichment using these relationships may not be 100% reliable because
there may exist incorrect relationships due to the current quality level of LOD.
However, we have conducted experiments that verify that the above enrichment
helps improve the scoring accuracy.

3.3 Structure of the Type Knowledge Base

Given the (name string, type) pairs extracted from LOD, we need a mechanism
to store and index them in order to guarantee the efficient retrieval for online
scoring. The inverted list is used to store such information where the name
string is the key. Different data instances may have the same name, but the
scoring mechanism needs to distinguish the types for different instances (which
will be introduced in detail in Section 4). Thus, the type information for a single
name string is separated in terms of the data instance, i.e., the URI to which it
corresponds. Fig. 3 shows the structure of the inverted list for storing the type
information for name strings where the element (t1j1, . . . , t

1
jm(j)) for entry N1

stores all possible types of the jth instance S1
j that has the name string N1.

Fig. 3. The Inverted List for Type Knowledge Base

We could have used services like Sindice and Sigma2 instead of building the
inverted index on our own, but considering the complicated preprocessing we
need to perform and the networking latency to use these services, we decided to
build our own indexes.

In our work, we have generated a type knowledge base that includes LOD
from DBpedia, IMDb, and GeoNames. The statistical information is shown in
Table 1.

4 Scoring Method

Given a named entity string and a target type, the scoring is performed by
computing a metric that measures the probability that the named entity can be
classified as the target type using the type information from the type knowledge
2 Sindice : http://sindice.com, Sigma:http://sig.ma

http://sindice.com
http://sig.ma

572 Y. Ni et al.

Table 1. Statistic Information for the Type Knowledge Base

Dataset #instances

(millions)

#name properties #name variants

(millions)

#type assertions

(millions)

DBpeida 3.2 4 4.7 7.9

IMDb 24.5 8 12.0 24.4

GeoNames 6.7 3 8.4 6.5

base. There are three main challenges to doing this: (1) given a named entity
string, how to find the matched names in the type knowledge base and get all
possible type information for them; (2) because the types from LOD and the
target type may be from different taxonomies, we need a strategy to precisely
compute the similarity between these types; (3) because one named entity may
correspond to multiple instances with multiple types, we need a mechanism to
determine a final score. In the following sections, we introduce the details of the
techniques used to meet these challenges.

4.1 Retrieving Types for the Named Entity String from Type
Knowledge Base

To retrieve the possible type information, one simple method is to use the given
named entity string as the key to find the corresponding types from the inverted
lists. However, for the same entity, the given name may not be exactly the same
as the names indexed in the type knowledge base. There are two reasons that
can cause a name mismatch.

The entity itself has various names. For example, for President John F.
Kennedy, one may use the full name John Fitzgerald Kennedy. As mentioned in
Section 3, during the generation of the type knowledge base, we make use of the
properties of names of instances to generate all possible names of an instance.
Additionally, we make use of three types of relationships in LOD to enrich the
possible names. With the help of all name properties of an instance and the
relationships, our type knowledge base is likely to have a broad coverage of all
possible names of an instance. Then, given a named entity string, a simple index
lookup is enough to find its type information.

The names are presented in different format. For example, the indexed
name is tomato while the given name is tomatoes. To solve this problem, we
conduct the normalization on both the indexed names and the given names
using the following rules: (1) perform word stemming on the names; (2) convert
the names to lowercase; (3) remove any articles from names.

4.2 Matching the Target Type with the Retrieved Type

The types provided by LOD are considered as from open-domain. According to
data publishers’ requirements, new types can be added to describe new instances.
Meanwhile, the types generated by data publishers are more flexible; for instance,

Enhancing the Open-Domain Classification of Named Entity Using LOD 573

a type can be represented by a phrase, such as the category jewish american film
directors from DBpedia. Even more, each data source in LOD may have its own
type system. On the other side, the target type would also be considered as
from open-domain because of the requirement of scaling information extraction
and question answering to the Web. It is very difficult to match various types
from open-domain taxonomies. We propose an intermediate ontology (denoted
as O) to compute the similarity. First, the target type and the retrieved type are
linguistically matched to some nodes in O, and we then compute the semantic
distance between the two matched nodes in O and use this distance measurement
as the similarity score.

Intermediate Ontology. One simple method for the intermediate ontology
is to leverage an existing, well-defined general taxonomy. WordNet [11] is a
well-defined general taxonomy widely used by the natural-language processing
community. However, WordNet lacks a formal constraint on classes; for example,
WordNet does not provide information about disjoint classes which could help us
determine that a named entity does not belong to a type. Additionally, WordNet
contains word senses that are too diverse, and a very rarely used word sense may
incur a negative effect on the similarity computation. The AI community has
also built general-purpose ontologies, such as Cyc [2], with formal logic theories.
However, the ontology is very complex and lacks linguistic features. Considering
the drawbacks of existing taxonomies, in our work we built a simple intermediate
ontology. The ontology is designed in terms of the following principles: (1) the
ontology covers the most frequently used concepts; (2) the ontology captures the
disjoint axioms between classes such that we can obtain a score to measure how
the named entity does not conform to the target type. For example, people and
organization are disjointed classes. Our ontology is relatively small so if some
type cannot be matched, we revert back to using WordNet.

Calculating the Similarity Score. The created ontology O is used as an
intermediate ontology to link the target type and the retrieved type. The first
step is to find the corresponding types of the target type and the retrieved type
in O. If T denotes the target type/retrieved type, and the corresponding type in
O is denoted as T ′, then T ′ should stand for the same concept as T . If a node in
O exactly matches the type T , then the node is considered the best match for
T . However, because of the flexibility of types from the open-domain, especially
types from linked data, some types can be a phrase with adjective qualifiers that
are not covered in O. To match these types for which no exactly matched nodes
exist in O, we perform a normalization on the type phrase to get the headword.
By analyzing type phrases from the linked data, we observed that the qualifiers
are mainly presented in three ways: (1) an adjective is used to qualify a noun, for
example, “Australian anthropologists”; (2) a qualifier phrase beginning with of
xxx is used, such as “people of the French and Indian war”; (3) a qualifier phrase
with from xxx is used, such as “people from St. Louis, Missouri”. Given the type
T , we remove the qualifiers for the above three cases to get the headword of

574 Y. Ni et al.

T , denoted as Troot. Finally, the node in O that matches Troot exactly is the
corresponding type of T in O.

Suppose, T ′
target and T ′

retrieve are the corresponding types of the target type
and the retrieved type, respectively. The similarity score (denoted as s) is com-
puted as follows:

- if T ′
target and T ′

retrieve are the same node, then s = 1.
- if T ′

target and T ′
retrieve are disjointed in terms of the ontology, then s = −1.

- if T ′
target and T ′

retrieve are on the same path and there exists n steps between
them, then s = 1/n.

- if T ′
target and T ′

retrieve are in different paths and n1 and n2 are the number
of steps to their lowest common ancestors, then s = 1/(n1 + n2).

It is possible that Thead cannot be exactly matched by some node in the ontology
O because our created ontology cannot cover all possible kinds of types. For these
cases, we make use of the online resource WordNet to calculate the similarity
score. Given a word, WordNet provides an API to get matched nodes. We then
use the method proposed in [5] to calculate the semantic similarity between
nodes in WordNet.

4.3 Determining the Final Score

Given a named entity N(i), it may correspond to multiple data instances Si
1,

. . ., Si
j , . . .,S

i
n(i), and for each data instance Si

j , it may belong to multiple types
T i

j1, . . ., T
i
jk, . . ., T i

jm(j). For each type T i
jk, we calculate a score with respect

to the target type T using the mechanism discussed in the previous section. For
the named entity string N(i), we then obtain multiple scores, which are divided
into subsets according to the instances they describe. In this paper, we propose
a two-step strategy to determine the final score. The first step is to compute the
score for each data instance Si given the scores for {T i

j1, . . . , T
i
jk, . . . , T

i
jm(j)};

after that, we compute the score for the named entity N(i) given the scores
for {Si

1, . . . , S
i
j , . . . , S

i
n(i)}. The advantage of the two-step strategy is as follows.

By considering the characteristic of a single instance, we can avoid some noisy
scores, making the score for a single instance more precise. The precise score for
each instance is indispensable to obtaining a precise final score.

Determining the score for an instance Si. Given a certain instance Si, it can
be stated that there should not be any conflicts within all of the type information
for that instance. Therefore, for all scores of an instance, it is unlikely that some
are positive (i.e., conform to the target type to some degree) and some are
negative (i.e., conflict with the target type to some degree). However, due to
the fuzzy match in the type-matching step and possible noise in the linked data,
conflicts may occur. We propose the use of a vote strategy to solve this problem.
For an instance Si, if most of its types get positive scores, then the largest score
is picked as the score for Si; otherwise, if most of its types get negative scores,
then the smallest score is picked as the score for Si.

Enhancing the Open-Domain Classification of Named Entity Using LOD 575

Determining the score for N(i). Given multiple data instances for a named
entity, if we know its URI, then the score for the data instance with the matched
URI is used as the final score. This situation may occur in some Web-based
question-answering applications in which Wikipedia is used as the corpora [4].
When the title of the Wikipedia page is selected as a candidate answer, the
URI of the page is considered as the URI of the named entity and corresponds
directly to a DBpedia URI.

In cases where there is no URI for the named entity and we cannot know
which instance is indicated for this named entity, then we can use the following
strategies to determine the final score. (1) The aggressive strategy: Considering
that the named entity could be any one of the indexed data instances, one
aggressive heuristic is that if the maximum score is larger than 0, then we pick
the largest score; else if the maximum score is smaller than 0, then we pick the
smallest score; otherwise the final score is 0. The aggressive strategy tends to
give an exact score, either exactly matched or exactly unmatched. The score will
be distinguishable. (2) The average strategy: We assume that the named entity
has the same probability to match each indexed data instance, then the average
of the total scores is used as the final score. An experimental study is provided
in Section 5 to compare the above two strategies.

4.4 Applying the Score in Machine Learning

This section introduces how to use the score (which measures the probability
of whether the named entity belongs to the target type) as a feature in the
machine-learning step.

We can simply add one feature, which is called TyCorLOD (Type Coercion
using LOD) in machine learning, and the generated score is used as the fea-
ture score. The score range for the TyCorLOD feature would then be [-1,1].
The higher score indicates that the named entity is more likely to belong to
the target type. However, the problem with this method is that we cannot give
different weights on the positive effect and negative effect. Therefore, we devel-
oped another method. In the machine-learning step, we split the score into two
features (we call them TyCorLOD and AnTyCorLOD). The TyCorLOD feature
indicates the likelihood that the named entity conforms to the target type,
while the AnTyCorLOD feature indicates the likelihood that the named entity
conflicts with the target type. These two feature scores are generated in terms
of the final score S using the following strategy: If S >= 0, then we give the
score S for TyCorLOD and 0 for AnTyCorLOD; otherwise (i.e., S < 0), we give
the score 0 for TyCorLOD and |S| for AnTyCorLOD. The comparison of the
above two options is discussed in Section 5.

5 Experimental Study

To verify our proposed feature using LOD for named entity classification, we con-
ducted extensive experiments to demonstrate the effectiveness of our proposed
method.

576 Y. Ni et al.

5.1 Experimental Setup

Datasets. We have tested our proposed method on two datasets. The first
dataset (denoted as DataQ) is extracted from an IBM question-answering system
for open-domain factoid questions. We randomly selected 400 questions. For
each question we manually labeled the type of entity that was expected as an
answer to the question (i.e., the target type) and we also extracted the top
10 candidate answers that were generated by the system. We asked one test
person to determine whether the candidate answer belongs to the target type.
For all candidate answers that belonged to the target types, we generated a list
of (candidate answer, type) pairs, called ground-truth (denoted as Datatrue

Q); for
all candidate answers that did not belong to the target types, we generated a list
of (candidate answer, type) pairs, called ground-wrong (denoted as Datawrong

Q).
We obtained 1,967 pairs for ground-truth and 3,053 pairs for ground-wrong.
There are 114 distinguishing target types, which reflects the fact that the data
was from open-domain. The second dataset (denoted as DataP) is the People
Ontology, which is a benchmark in [16], [15]. It was extracted from WordNet
and contained 1,657 distinct person instances arranged in a multilevel taxonomy
having 10 fine-grained categories, such as chemist or actor. Each instance and its
category could also be considered as a pair in ground-truth. From this dataset,
we obtained 1,618 pairs for ground-truth. The obtained dataset is denoted as
Datatrue

P .

Evaluation Metric. We conducted two types of evaluations. First, we measured
how our feature and scoring method performed on ground-truth/ground-wrong.
The three metrics used here, i.e., accuracy, false-rate, and unknown-rate, are
described in Table 2, where N stands for total number of pairs.

Table 2. Descriptions for Used Metrics

Metric Name Description Measurement Remarks

accuracy #(correctly

scored

pairs)/N

correctness per-

centage of the

scoring method

for ground-truth (resp. ground-wrong)

dataset, the positive scores (resp. negative

scores) are considered as correct

unknown-rate #(pairs with

score 0)/N
the coverage of

the linked data

if the named entity is not indexed in the

type knowledge base, we give the score 0

false-rate #(incorrectly

scored

pairs)/N

incorrectness

percentage of the

scoring method

for ground-truth (resp. ground-wrong)

dataset, the negative scores (resp. positive

scores) are considered as incorrect

Second, we wanted to illustrate how our proposed feature helps to improve
the performance of named entity classification. To do this, we compared the
precision/recall of the classification with and without our feature.

5.2 Scoring Accuracy

This section demonstrates the scoring accuracy of LOD feature on the ground-
true/wrong dataset. As introduced in Section 4.3, we have two strategies to

Enhancing the Open-Domain Classification of Named Entity Using LOD 577

determine the final score, i.e., the aggressive strategy and the average strategy.
We compared the performance of these two strategies on the ground-true/wrong
of DataQ and DataP using the metrics introduced in Table 2. The results for
the aggressive strategy and for the average strategy are shown in Table 3.

Table 3. The Scoring Performance on the Ground-Truth/Wrong Dataset

Aggressive Average

Data Set accuracy unknown-rate false-rate accuracy unknown-rate false-rate

Datatrue
Q 83.4% 10.2% 6.35% 71.9% 12.6% 15.5%

Datawrong
Q 50.6% 25.9% 23.5% 53.9% 26.2% 19.9%

Datatrue
P 91.5% 7.85% 0.65% 88.3% 9.88% 1.83%

We first observed that the aggressive strategy resulted in high accuracy, i.e.,
83.4% for Datatrue

Q and 91.5% for Datatrue
P on ground-true data. This indicates

that the linked data provides high-quality type information with good coverage
and that our scoring method measures the type similarity quite well. Second,
it shows that the accuracy for the ground-wrong data from DataQ is a little
lower. For the higher unknown-rate, although in a question-answering project
the correct response should be a fact, the extracted candidate answers may
not all be fact entities, for example, “Germany history” or “the best movie.”
Therefore, these candidates are not covered by the linked data. Actually, named
entity classification does not target for this kind of entity. For the higher false-
rate, there are two main reasons: (1) our strategy for final score gives higher
preference on the positive score. One name may correspond to multiple instances
in our type knowledge base, and we do not know which instance the named entity
corresponds to. Giving a relaxed score is safer for our linked data feature. With
the additional context information of the named entity, information that can be
used as additional features in named entity classification, the false-rate could be
reduced; (2) the type knowledge base contains only more general types than the
target type. For example, the named entity has a type person, and the target
type is actor. The named entity may not be an actor, but as the type person
is not disjoint with the type actor, we could not give a negative score for this
named entity with respect to the type actor. This may incur the false-positive
cases.

To compare the aggressive strategy with the average strategy, we observed
that the aggressive strategy outperforms the average strategy for the ground-
true data while the average strategy outperforms the aggressive strategy for the
ground-wrong data. Because the aggressive strategy gives a higher priority on the
positive score, the ground-true pairs benefit more from this strategy. For ground-
wrong data, as mentioned in the previous paragraph, the false-positive instances
may occur due to the more general types in the type knowledge base. Using the
aggressive strategy, this false-positive instance will affect the final score; while
using the average strategy, the false-positive instance may be compensated by
other correctly scored instances. That is why the average strategy is better than

578 Y. Ni et al.

(a) Score Distribution on Ground True

DataQ

(b) Score Distribution on Ground Wrong

DataQ

Fig. 4. Score Distribution on the Dataset

the aggressive strategy for ground-wrong data. When combining the ground-true
and ground-wrong data together for DataQ, the aggressive strategy is better in
general.

Fig. 4(a) and (b) illustrate the distribution of the scores between the range
[-1,1] for the ground-true and ground-wrong datasets from DataQ. We can ob-
serve that for correct scores (i.e., positive scores for ground-true and negative
scores for ground-wrong), most are exactly correct (i.e., score 1 for ground-true
and score -1 for ground-wrong). This indicates the accuracy of our scoring. To
compare the aggressive strategy and the average strategy, it shows that the ag-
gressive strategy gives more exact scores and the average aggressive tends to be
more balanced. The reason is that the average strategy computes the average
of all instance scores, so the exact score may be reduced by other scores. Con-
sidering both the accuracy and the distribution, we suggest using the aggressive
strategy.

5.3 Impact on the Machine Learning for Classification

This section reports the results of adding our proposed feature into the feature
space of an existing named entity classification method using latent semantic
kernels (LSI) [15]. We use LSI to denote the existing approach and LSI+LOD to
denote the approach with our feature. Given each instance from the people ontol-
ogy, the multi-context is derived by collecting 100 English snippets by querying
GoogleTM . The proximity matrices are derived from 200,000 Wikipedia articles.
and the features are then generated using jLSI code [14]. With respect to our
LOD feature, for each target class i, one feature is added to measure the proba-
bility of whether the instance belongs to the class i. Therefore, for 10 classes, we
need to add 10 features. We use the KNN (k=1) method to do the classification.
Fig. 5(a) compares the precision/recall/f-measure between the approaches LSI
and LSI+LOD. It is shown that LSI+LOD outperforms the LSI on both preci-
sion and recall, and then f-measure. Specifically, the precision is improved from
81% to 84.3%, the recall is improved from 80.3% to 84.3%, and the f-measure is
improved from 80.5% to 84.3%.

Enhancing the Open-Domain Classification of Named Entity Using LOD 579

(a) Comparison of Approaches between LSI

and LSI+LOD DataP

(b) Classification Performance by Varying

the Number of Classes DataP

Fig. 5. Effectiveness of Linked Data Feature

Fig. 5(b) illustrates the performance on different numbers of target classes.
The bars with N = 5 are the results for the 5-class dataset where we select 5
classes from the 10 classes and extract the corresponding instances to generate
the dataset. The bars with N = 10 are the results for the 10-class dataset. It
shows that the improvement of LSI+LOD over LSI is larger on the dataset with
N = 10 than the dataset with N = 5. Specifically, for N = 5, the f-measure is
improved by 1.1% using LSI+LOD, and for N = 10, the f-measure is improved
by 4.7% using LSI+LOD. This indicates that as the number of target classes
grows larger, the improvement using our LOD feature becomes greater. The
reason is that as the number of classes becomes larger, the classification accuracy
using traditional features, such as word characteristic and word context, becomes
lower. However, as the linked data knowledge base provides more fine-grained
type information, the scoring is still accurate for fine-grained classes. Therefore,
the improvement of the method using the LOD features becomes greater.

We also conducted the experiments on a dataset from an IBM question-and-
answering system to compare the performance of using feature TyCorLOD only
or using both TyCorLOD and AnTyCorLOD, as discussed in Section 4.4. The
results verify that the strategy to use both TyCorLOD and AnTyCorLOD out-
performs the strategy of using only TyCorLOD. Due to space limitations, we
omit the detailed results here.

6 Related Work

Named entity classification has been studied by many researchers [13], [10], [15],
[12], [16]. The early named entity classification task considered a limited num-
ber of classes. For example, the MUC named entity task [18] distinguishes three
classes, i.e., PERSON, LOCATION and ORGANIZATION, and the CoNLL-
2003 adds one more class, i.e., MISC. The dominant technique for addressing
this task is supervised learning where the labeled training data for the set of
classes is provided [7]. Recently, a more fine-grained categorization of named
entities has been studied. Fleischman and Hovy [12] examined different features

580 Y. Ni et al.

and learning algorithms to automatically subcategorize person names into eight
fine-grained classes. Cimiano and Völker [8] have leveraged the context of named
entities and used unsupervised learning to categorize named entities with respect
to an ontology. In short, machine-learning approaches are widely adopted by the
proposed approaches and the features used for the learning method can be clas-
sified into three categories: (1) the word-level feature [7], such as the word case
or digit pattern; (2) handcrafted resources, such as gazetteers or lists [13], [12];
(3) the context of the named entities [8], [15].

The feature proposed in this paper is different from these existing approaches.
It exploits a resourceful knowledge base, i.e., linked open data. This knowledge
base is different from precomplied lists for classifying certain categories, as used
in [13]. The linked data is published by various data providers and has a broad
coverage. Because information in the linked data is still growing, more type
information will be available in the future. The linked data feature is orthogonal
with existing features and can be combined with them in order to improve the
performance of named entity classification, including both the three-class task
and fine-grained classification.

7 Conclusion and Future Work

In this paper, we proposed to explore the extensive type information provided
by LOD to generate additional features, and these new features, together with
existing features, can be used in machine-learning techniques for named entity
classification. Specifically, in the first step, we proposed a mechanism to generate
a type knowledge base that precisely and completely captures the type informa-
tion for all possible named entity strings. We then proposed scoring strategies to
generate feature scores based on the precomputed type information. Our exper-
imental results verified the effectiveness of the proposed method and indicated
that the improvement margin becomes larger as the number of target classes
grows. In the future, we plan to investigate more data sources for LOD in order
to provide better coverage.

Acknowledgements

We thank Christopher Welty and Aditya Kalyanpur for their valuable sugges-
tions regarding this paper.

References

1. Linked data, http://linkeddata.org/

2. Opencyc, http://www.cyc.com/opencyc

3. Redirects, http://en.wikipedia.org/wiki/Redirects_on_wikipedia

4. Ahn, D., Jijkoun, V., Mishne, G., Muller, K., de Rijke, M., Schlobach, S.: Using

wikipedia at the trec qa track. In: Proceedings of the 13rd Text REtrieval Confer-

ence, TREC 13 (2004)

http://linkeddata.org/
http://www.cyc.com/opencyc
http://en.wikipedia.org/wiki/Redirects_on_wikipedia

Enhancing the Open-Domain Classification of Named Entity Using LOD 581

5. Banerjee, S., Pedersen, T.: Extended gloss overlaps as a measure of semantic re-

latedness. In: Proceedings of the 18th International Joint Conference on Artificial

Intelligence (2003)

6. Banko, M., Cafarella, M.J., Soderland, S., Boardhead, M., Etzioni, O.: Open in-

formation extraction from the web. Communications of the ACM (2008)

7. Bikel, D.M., Miller, S., Schwartz, R., Weischedel, R.: Nymble: High-performance

learning name-finder. In: Proceedings of the 5th Conference on Applied Natural

Language Processing (1997)

8. Cimiano, P., Volker, J.: Towards large-scale, open-domain and ontology-based

named entity classification. In: Proceedings of the International Conference on

Recent Advances in Natural Language Processing, RANLP (2005)

9. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A.-M., Shaked, T., Soder-

land, S., Yates, D.S.W.S.A.: Web-scale information extraction in knowitall. In:

Proceedings of the 13th International Conference on World Wide Web, WWW

(2004)

10. Evans, R.: A framework for named entity recognition in the open domain. In:

Proceedings of the Recent Advances in Natural Language Processing, RANLP

(2003)

11. Fellbaum, C. (ed.): Wordnet: An electronic lexical database. MIT Press, Cambridge

(1998)

12. Fleischman, M., Hovy, E.: Fine-grained classification of named entities. In: Pro-

ceedings of the 19th International Conference on Computational Linguistics, Coling

(2002)

13. Ganti, V., Konig, A.C., Vernica, R.: Entity categorization over large document

collections. In: Proceedings of the 14th ACM SIGKDD International Conference

On Knowledge Discovery & Data Mining (2008)

14. Giuliano, C.: jLSI a for latent semantic indexing (2007) Software available at,

http://tcc.itc.it/research/textec/tools-resources/jLSI.html

15. Giuliano, C.: Fine-grained classification of named entities exploiting latent seman-

tic kernels. In: Proceedings of the 13rd Conference onCcomputational Natural Lan-

guage Learning, CoNLL (2009)

16. Giuliano, C., Gliozzo, A.: Instance-based ontology population exploiting named-

entity substitution. In: Proceedings of the 22nd International Conference on Com-

putational Linguistics, Coling (2008)

17. Harabagiu, S., Moldovan, D., Pasca, M., Mihalcea, R., Surdeanu, M., Bunescu, R.,

Girju, R., Rus, V., Morarescu, P.: Falcon: Boosting knowledge for answer engines.

In: Proceedings of 9th Text REtrieval Conference, TREC 9 (2000)

18. Hirschman, L., Chinchor, N.: Muc-7 named entity task definition. In: Proceedings

of the 7th Message Understanding Conference, MUC-7 (1997)

19. Kwok, C.C.T., Etzioni, O., Weld, D.S.: Scaling question answering to the web. In:

Proceedings of the 10th World Wide Web Conference, WWW (2001)

20. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. In:

Linguisticae Investigationes (2007)

http://tcc.itc.it/research/textec/tools-resources/jLSI.html

Forgetting Fragments from Evolving Ontologies

Heather S. Packer, Nicholas Gibbins, and Nicholas R. Jennings

Intelligence, Agents, Multimedia Group,

School of Electronics and Computer Science,

University of Southampton,

Southampton SO17 1BJ, UK

{hp07r,nmg,nrj}@ecs.soton.ac.uk

Abstract. Ontologies underpin the semantic web; they define the con-

cepts and their relationships contained in a data source. An increasing

number of ontologies are available on-line, but an ontology that combines

information from many different sources can grow extremely large. As

an ontology grows larger, more resources are required to use it, and its

response time becomes slower. Thus, we present and evaluate an on-line

approach that forgets fragments from an OWL ontology that are infre-

quently or no longer used, or are cheap to relearn, in terms of time and

resources. In order to evaluate our approach, we situate it in a controlled

simulation environment, RoboCup OWLRescue, which is an extension of

the widely used RoboCup Rescue platform, which enables agents to build

ontologies automatically based on the tasks they are required to perform.

We benchmark our approach against other comparable techniques and

show that agents using our approach spend less time forgetting concepts

from their ontology, allowing them to spend more time deliberating their

actions, to achieve a higher average score in the simulation environment.

1 Introduction

Evolving ontologies enable the completion of tasks and queries that were unfore-
seen during the design phase. Ontologies may evolve in use, by incorporating in-
formation from other ontologies. Due to the abundance of available ontologies it
is possible that the uncontrolled evolution of an ontology may lead to an ontology
that is large in size. Large ontologies require increasing amounts of resources to
host, manage, and use. In time-critical environments where a fast response time
is required, large ontologies can critically degrade response times. By forgetting
concepts from an ontology in order to reduce its size the resources required to
host, manage, and use the ontology can be reduced, therefore improving response
times. However, forgetting concepts is a trade-off, because if too many concepts
are forgotten, the quality of the answers will degrade, while forgetting too few
concepts degrades the response time. For example, consider a fire brigade that
uses an ontology to describe fire vehicle capability information on a portable de-
vice. A fire requires immediate use of vehicles which can remove rubble. A nearby
building site has suitable vehicles, although information about their capabilities

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 582–597, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Forgetting Fragments from Evolving Ontologies 583

and operational requirements is not present in the fire brigade’s ontology. As
such, this information can be reused from the construction vehicles manufactur-
ers’ ontologies by the fire brigade portable device, using a low-bandwidth mobile
internet connection. Response time is critical so that damage to surrounding ar-
eas can be minimised, while inferring which construction vehicles are appropriate
for the situation and will best protect the vehicles’ operators.

In this paper, we focus on reducing the size of evolving ontologies to im-
prove their response time by removing fragments, sets of axioms that represent
concepts [6]. Our approach removes fragments according to the frequency and
recency with which they are used, and the cost of their acquisition, in terms of
time and resources. We reduce the size of an ontology when it becomes too large
to complete a task within a given period of time. By removing a fragment we
hypothesise that the associated costs of using the ontology will be reduced.

We illustrate our work within a controlled environment so that, for now, we
can regulate the information available to software agents, and use a standard
success metric to compare state of the art approaches. We use an extension of
RoboCup Rescue (RCR), a widely used multi-agent platform for agent research
that simulates an emergency response scenario. RCR agents learn about concepts
that enable them to rescue targets that have been victim to an earthquake in a
virtual city. A team of agents has five second time limit in which to determine
their actions, or else automatically forfeit their turn, and thus their ontology
must enable them to use the information it contains and perform actions given
the timeframe. The agents’ ontologies evolve as they encounter tasks that re-
quire additional information to complete. By reusing the additional information
in their ontologies, they do not need to incur the cost of re-learning it in future.
However, with each additional fragment they learn, the performance of using
their ontology degrades. Thus, to ensure that agents can use their ontology effi-
ciently, our approach forgets concepts from their ontologies. While we situate our
approach using a specific multi-agent system exemplar, our algorithm is a general
approach to selecting concepts to forget from an ontology, and could therefore
be applied outside of our framework. For example, agents could learn and forget
concepts from ontologies on the Semantic Web, although doing so might bring
about challenges in managing inconsistencies and issues regarding trust. Like-
wise, our approach is not specific to the search and rescue domain; it can be
applied to any domain. It should be noted that our forgetting approach does not
guarantee that reasoning from an evolving ontology is sound or complete. How-
ever, this is not always a requirement, and a ‘good enough’ answer is appropriate
in many cases where a response is required quickly, as discussed in the example
above. Our approach is agnostic to a specific ontology language, however for
simplicity we describe our approach in the context of OWL-Lite ontologies.

Against this background, we advance the state of the art in automatic ontology
evolution, with our main contribution, a technique that selects a fragment which
represents the least useful concept in the ontology to remove. We contribute
a technique that rates all concepts in an ontology and weights according to
their use and acquisition cost. Then, in our empirical evaluation, we compare

584 H.S. Packer, N. Gibbins, and N.R. Jennings

our forgetting approach to other state of the art approaches and evaluate the
outcome using RCR’s scoring system. Agents using our approach save 99.3%
more civilians and 12.4% more of the city, compared with the next best approach.

In Section 2 we introduce related work. In Sections 3 and 4, we introduce
RCR and highlight the benefits of forgetting. Section 5 describes our approach
and Section 6 discusses the empirical evaluation by describing our benchmark
techniques. Section 7 presents our results and Section 8 concludes.

2 Related Work

The agent community focuses primarily on augmenting an agent’s ontology, in-
stead of pruning it. In particular, Bailin and Truszkowski [7], Afsharchi et al. [8],
Wiesman and Roos [9], and Soh [10] enable their agents to augment their ontolo-
gies with new knowledge, when agents have different domain models representing
the same domain. Specifically, Bailin and Truszkowski’s approach considers se-
mantically equivalent representations, and Afsharchi et al. and Soh focus on the
validation of the knowledge to be incorporated into the agent’s ontology. These
approaches augment an agent’s ontology with one concept at a time, which in-
creases the overhead cost of retrieving the information. In addition to this work,
we presented an approach that reduces the cost associated with learning by aug-
menting a fragment into an ontology [11]. While the above discussed approaches
allow agents to augment their ontologies, they do not prune them.

However, the Semantic Web community has produced methods that prune
ontologies. An agent could apply the approaches of Eiter et al. [12] or Wang et
al. [13] and [14] to prune its ontology, who provide algorithms to remove one
concept from an ontology at a time. In contrast to the approach of [13], Eiter
el al.’s approach requires axioms to first be translated from Description Logic
(DL) syntax to rule representations, and translated back to DL syntax after
the expansion of the rules and the removal of a concept has been performed.
In contrast, Wang et al.’s approach can be applied to axioms without need of
translation. [12]’s approach has restrictions which limit the use of this technique
to OWL-Lite and subspecies of OWL-Lite. These approaches enable an agent to
evaluate the knowledge and remove a single concept at a time.

In this work, we chose to use the technique presented by Wang et al. to remove
concepts from our agent’s ontologies because it can ensure the consistency of an
ontology after the removal of a concept. However, while this work focuses on
removing a single concept from the ontology, our approach focuses on selecting
a set of concepts and remove them. Removing more than one concept at a time
results in an overall smaller ontology and reduces the number of times that the
forgetting approach needs to be used, resulting in an increase in performance.

3 RoboCup OWLRescue Framework

The RoboCup OWLRescue (RCOR) framework extends the RoboCup Rescue
(RCR) platform, which models the effects of an earthquake on a virtual city’s

Forgetting Fragments from Evolving Ontologies 585

buildings, civilians, and roads [15]. In RCR, at the beginning of a simulation,
buildings may have: collapsed, possibly with civilians buried inside; caused road
blockages; and, ignited. There are three types of RCR agents with specific capa-
bilities: ambulance teams recover buried civilians, and transfer them to refuges;
fire teams extinguish fires, and police force teams clear blocked roads. The goal
is to save the lives of as many civilians as possible, and to minimise the area of
the city which is burnt. The performance of a team is evaluated using a formula
which factors in the percentage of live civilians, the state of live civilians, and
the average building damage. While this scenario provides a testbed for devel-
oping the co-ordination of agents, our extension aims to extend the variables
associated with each target (civilians, buildings, and blockages) resulting in a
set of possible actions an agent can take. Each action affects the outcome of the
scenario.

Our RoboCup OWLRescue (RCOR) framework extends buildings to contain
(possibly hazardous) chemicals, and extends civilians to have symptoms. The
RCOR agents require different knowledge for each run because variables such
as chemicals in buildings and civilians’ symptoms are stochastic, and differ with
each run. All agents have their own ontologies so that an agent can augment
its ontology with information about its tasks from ontologies in the environ-
ment. These environment ontologies describe the available resources which can
be used in the agents’ decision making processes, and describe vehicles and their
ability to deal with fires, building collapses and casualties. The RCOR agents
access the environment ontologies by requesting information about concepts and
receive fragments representing a desired concept. The agent can then augment
its ontology with all the concepts or a selection of concepts depending on the
agent’s strategy. In order for an agent to retain its core knowledge, two ontolo-
gies are used, a Domain Ontology (DO) from which an agent cannot forget, and
an Evolving Ontology (EO) which an agent learns in and forgets from. Both
ontologies are used when deciding on the action to take. Each command centre
is assigned a set of vehicles which it can allocate on a first-come, first-served
basis to agents. Each agent is allocated a vehicle; if its vehicle does not have the
necessary equipment for a task, it can then exchange it at a command centre.

The RCOR agents can learn about variables encountered while rescuing a
target and alternative resources. For example, a police rescue agent can discover
an appropriate construction vehicle which can remove a blockage from a road. It
is beneficial for agents to augment their ontology so that they can successfully
perform tasks that they could not complete before. In the RCR, a team of agents
must complete a task within five seconds which represents one timestep in the
simulation. Specifically, a timestep is the amount of time that each agent has to
decide on its next action before the targets in the world are updated either with
new targets or changes to existing targets. Thus an agent must spend its time
efficiently performing actions. In order to do this, our agents maintain a relatively
small ontology and send a minimal number of requests for information from the
environment ontologies. The next section describes our forgetting approach.

586 H.S. Packer, N. Gibbins, and N.R. Jennings

4 The Forgetting Approach

When an ontology becomes too large to use given a specific timeframe, our
approach: first evaluates the concepts in its ontology to select which concept to
remove; second selects a fragment of the concept that is deemed to be the most
irrelevant; and third removes the concept so that the ontology remains consistent.

In order to motivate forgetting concepts, we first consider costs associated with
a large ontology. Using an ontology incurs costs with hosting, maintaining, and
using it, and the larger the ontology, the greater the need for physical memory
and time to access information. It is therefore beneficial to reduce the size of an
ontology. We categorise three situations when forgetting concepts is beneficial:

1. Performance: If the performance of querying an ontology falls below re-
quired parameters, for example after new information has been learned, re-
moving older less used information can result in performance gains.

2. Specialisation: In order to retain specialisation in an ontology, information
that is unrelated to the domain can be removed. This can occur because the
specialist domain of an ontology is predetermined, or because the specialist
domain of an ontology changes over time.

3. Relevance: Concepts and relationships in an ontology can become outdated
when superseded by information. Forgetting out of date concepts therefore
keeps an ontology up to date. Depending on the scenario it might also be
beneficial to utilise OWL’s deprecation semantics to mark out of date con-
cepts as obsolete.

In our RoboCup Rescue example, the agents decided to forget when they cannot
complete their actions within a single timestep. In our scenario, we only consider
removing concepts that have been learnt through participating in tasks because
we do not want to change an agent’s core knowledge. This is because fire brigade
agents require a different core set of concepts than an ambulance team because of
their specialisation, thus, we only remove concepts from an agent’s EO. The fol-
lowing three sections describe how we enable an agent to automatically evaluate
the concepts within its ontology, select a fragment to prune from the ontology,
and remove the fragment. We use the following running example.

A fire brigade is tasked with extinguishing a building. The chemicals in
the building are particularly toxic and human exposure results in severe
damage to airways. The fire brigade wants to be able to increase the
amount of equipment it carries in its first aid kit so that it can treat af-
fected civilians, and augments an ontology fragment with such equipment.
During this augmentation the agent learns about intubation equipment,
but is unable to use the equipment because it is not specialised to do so.
Therefore, this knowledge is not used during the agent’s lifetime. The
agent’s response time is waning and it decides to reduce the size of its
ontology in order to reduce the cost of using it.

Forgetting Fragments from Evolving Ontologies 587

4.1 Evaluate Concepts

Once a task agent determines that it needs to contract its ontology, it decides
which concepts it wants to remove. Our approach enables an agent to evaluate
the concepts in its EO using two influential factors:

1. How recently and frequently the concept is used to answer queries: This ap-
proach aims to reduce the cost of acquiring regularly required concepts so we
therefore adopt the Least Recently, Frequently Used value (LRFU) used in
[17] and is used in caching scenarios to select concepts to remove from a query
agent’s ontology. Each time a concept is used the LRFU increases as does
LRFUs of the concepts which are used to define it. The LRFU is normalised
into a ranking so that it can be summed with the concept acquisition below.

2. The cost of the original acquisition of the concept: this cost is recorded in mil-
liseconds and is recorded by our learning approach, in order to be used here.
The acquisition value depends on the availability of the concept, and the net-
work bandwidth available to transfer the fragment from another agent. The
acquisition cost is normalised into a ranking, and is summed with the LRFU.

In order to indicate the usefulness of a concept, we sum these two factors to
calculate a concept forgetting value (CFV) for each concept in an agent’s EO
(see Equation 1).

CFV = LRFU + AC (1)

where CFV is the concept forgetting value of a concept in an agent’s EO, the
LRFU is the LRFU value for a concept, and AC is the acquisition value of
the concept. A low CFV weighting indicates that the concept has not been
used recently, often, and was inexpensive time wise to acquire, and a high CFV
weighting indicates that the concept is used recently, frequently and was expen-
sive to acquire. A medium CFV weighting can indicate that LRFU is high and
AC is low, or that AC is high and LRFU is low, and as such the likelihood of
the concept being forgotten is lower than those with a low CFV weighting. In
more detail, the LRFU is calculated for each concept in the agent’s EO using
Algorithm 1. This algorithm shows how an agent calculates the LFRU value
for each of its ontologies concepts, where concept(EO) is a function that holds
the set of concepts in an agent’s EO, T = {< t1, cu1 >, . . . , < tn, cun >} is a
set of tasks where each task is a tuple representing the task (t) and the set of
concepts required to complete the task (cu), all concepts in cu are a subset of
concept(EO), and all concepts in the EO have a LFRU weighting which is rep-
resented using a tuple < c,LRFU >. The LRFU weighting for each concept is
calculated over time. After each time period each concept’s LRFU is calculated,
by increasing the value by 1 if it is used and decaying it exponentially when it
is not, so that concepts not used recently have a lower value. In our RoboCup
Rescue example, concepts’ LRFU weightings are calculated each timestep and
are represented by tasks in the Algorithm because an agent has to complete a
task per timestep. Depending on the scenario, it may be appropriate to weight

588 H.S. Packer, N. Gibbins, and N.R. Jennings

the AC or LRFU differently. For example if network bandwidth fluctuates, the
acquisition cost is time-sensitive, and therefore it would be appropriate to weight
it lower than LRFU. In our environment available bandwidth does not change,
and therefore we do not apply weightings when calculating the CFV.

Algorithm 1. Algorithm calculating the LRFU for each concept in an agent’s
ontology
Ensure: concepts(EO) �= ∅
Ensure: T = {< t1, cu1 >, . . . , < tn, cun >} /* T is the set of tasks, where tasks require a

set of concepts to complete them. */
Ensure: cu �= ∅ /* the set of concepts used for current task */
Ensure: cu ⊂ concepts(EO)
Ensure: ∀c ∈ concepts(EO) = < c, lrfu >
1. for all T do
2. for all c ∈ concepts(EO) do
3. if c ∈ cu then
4. c = < c, lrfu + 1 >
5. else
6. c = < c, e−lrfu >
7. end if
8. end for
9. end for

Once a concept’s LRFU factor has decayed so that the acquisition cost be-
comes more influential in the weighting, an agent can determine which concept
from a set of concepts that have the same LRFU to forget. It is more likely
that concepts will have different acquisition costs due to different agent’s net-
work location and bandwidth, than different a LRFU because concepts decay
exponentially. Performance wise, it is better for the agent to forget concepts
that are inexpensive to acquire because the cost of re-acquiring them is less,
compared to concepts that are expensive to acquire. To summarise, the agent
selects the concept with the lowest rating in its EO to remove. In our example
(see Figure 1), the agent selects the concept labelled endotrachealTubes, which is
a piece of intubation equipment, because it has the lowest weighting. In the next
section, we describe how the agent removes a fragment representing the selected
concept.

4.2 Select Concepts

Once the agent has selected a concept it desires to forget, it creates a fragment
(made up of multiple concepts) representing that selected concept so that the
agent can benefit performance wise from a smaller ontology. We also hypothesise
that an agent can benefit from removing more than one concept at a time so
that it can perform forgetting less often than forgetting methods that forget less
concepts (as proposed by other state of the art approaches, see Section 2).

In order to select concepts to prune, the agent generates a fragment repre-
senting the selected concept and selects concepts with a similar CFV weighting
to prune. The fragment is generated using the basic segmentation technique pre-
sented in [6], where the technique selects the target concept first, in our example

Forgetting Fragments from Evolving Ontologies 589

(see Figure 1) the target concept is endotrachealTubes, and selects concepts by
traversing the ontology’s concept hierarchy upwards all the way to the root class.
It then traverses downwards to the target’s leaf classes. Additionally, any links
across the hierarchy from any of the traversed classes are followed upwards but
not downwards. Once there are no concepts to traverse, the traversed concepts
form a fragment representing the target concept (described in more detail in [6]).

In order to detail how our agent selects the concepts to remove from the
fragment, we formally introduce the components described above. Let: l be the
capacity limit at which the agent is required to prune concepts from its EO;
W be the set of weightings for the concepts contained in the EO, where W =
{w : C ∈ concepts(EO) ∧ w = weight(c)} and c1 . . . cn ∈ concepts(EO); foq,ct

be the fragment representing the concept to be forgotten, where oq is the query
agent’s ontology (where oq = DO ∪ EO) and ct is the concept to be forgotten;
Wfoq,ct

= {W : C ∈ foq,ct∧w = weight(c)} be the set of concept weightings asso-
ciated with the concepts contained in foq,ct , where concepts(foq,ct) = {c1, . . . cn}.
Using this formal notation we describe how we select the concepts to forget in
Algorithm 2, which is run over all concepts in the EO.

Algorithm 2. Lowest Weighted Concept Selection Technique: This algorithm
is used to select the concepts to be pruned from an agent’s EO
Initialise: ct ← null
Initialise: conceptsToRemove ← ∅
Initialise: wct ← +∞ /* the weight of the concept; calculated from the LRFU value and

Acquisition Cost of ct*/
1. {finds the concept with the lowest concept weighting}
2. for ∀c ∈ concepts(EO) do
3. if wc < wct then

4. ct ← c
5. wct ← wc

6. end if
7. end for
8. conceptsToRemove ← conceptsToRemove ∪ {ct}
9. {finds all the concepts in the fragment with a similar concept weighting to ct}
10. for ∀c ∈ concepts(foq,ct) do

11. if |wc − wct | ≤ t then

12. conceptsToRemove ← conceptsToRemove ∪ {c}
13. end if
14. end for
15. return conceptsToRemove

In our example, Figure 1 shows the ontology fragment representing concept
endotrachealTubes which has weight wct = 0.02, thus our selection algorithm se-
lects the concepts endotrachealTubes, laryngoscopes, connellAnotomicMask, and
intubationEquipment to forget (these concepts have a shaded background). These
concepts have not been used by the agent so they have a low CFV because the
agent has not had specialist knowledge to use the equipment, because it spe-
cialises in extinguishing fires and only supports first response first aid and triage.
Once our agents have selected the concepts they desire to remove they then
remove these concepts from their ontology, this is described in the next section.

590 H.S. Packer, N. Gibbins, and N.R. Jennings

4.3 Remove Concepts

After the agent has selected the concepts that it desires to remove, the agent
then prunes these from its ontology. In order to prune these concepts from an
ontology we use the technique presented in [13] so that the ontology remains
consistent. For example, we aim to remove concept B from A � B, B � C
which results in A � C; and the removal of B from A � B, B � C and B � D
results in A � C and A � D.

5 Evaluation

In order to evaluate our approach, forget-fragment, we compare the effective-
ness of agents using different forgetting techniques (discussed below) to: rescue
civilians; put out burning buildings; to evaluate the requirements of rescuing a
target against its RoboCup score (see Section 2); and investigate the amount of
time used to forget. Similar to the RCR Competition, our simulation allows a
team of agents five seconds to complete an action in a timestep, and are given
two thousand timesteps to save as many of the civilians and burning buildings
as possible. The pseudo-code in Algorithm 3 provides the basic scenario of the
agents in the RCOR.

In our experiments, we initialise a RCOR scenario where there are ten of
each of the ambulance, fire brigade and police agents and they use the learning
technique presented in [11] when they encounter unknown concepts or do not
have the right equipment to rescue their target. This learning technique selects
fragments from ontologies about a requested concept, and demonstrated the
most efficient learning algorithm (in terms of resulting performance) compared to
benchmark approaches. We compare our technique to the following approaches:

Forget Concept. This approach removes all concepts and relationships related
to the selected concept, where eo−cp and cp is the concept to be pruned from

treatmentFor

 Intubation
Equipment

Laryngo
-scopes

 Endotrac
-heal Tubes

 Connell
anotomic

mask

Blocked
Airways

thing

Symptom Medical
Equipment

treatmentFor

treatmentFor

CFV=0.029

CFV=0.02 CFV=0.026 CFV=0.027

CFV=1.24CFV=1.96

CFV=0.91

Fig. 1. Concepts selected to be forgotten, the curved lines represent relationships (do-

main and range restrictions) between concepts

Forgetting Fragments from Evolving Ontologies 591

Algorithm 3. Pseudo-code of the RoboCup simulator
Require: function: contains(set, element) returns true if set contains element
Require: simulator ← RoboCup rescue simulator
Require: agent ← RoboCup rescue agent
1. simulator.generateFires()
2. simulator.generateBlockades()
3. simulator.generateCivilians()
4. for timestep ∈ timesteps do
5. target = getFirstTarget()
6. targetInfo = agent.getInformation(target)
7. if ¬ contains(agent.ontology, targetInfo) then
8. fragments ← requestFragements(targetInfo)
9. axioms ← selectAxioms(fragments)
10. agent.ontology.learn(axioms)
11. end if
12. if ¬ contains(agent.vehicle, requiredEquipment) then
13. travelToCentre()
14. changeVehicle()
15. end if
16. rescue(target)
17. simulator.update()
18. end for

the ontology. This technique removes one concept at a time, and is compa-
rable to the techniques presented by [12] and [13].

Forget Tree. This approach extends the above approach by selecting a subtree
from the hierarchy of concepts in the agent’s EO. The subtree is selected by
comparing the weight used for each concept (see Algorithm 4), where eoctree

and ctree is a concept represented by the fragment (which is a subtree)
being pruned from the ontology. Removing a connected subtree can result in
removing a subtree, branch, or extraction of a subtree (shown in Figure 2).

(i) Subtree Removal (ii) Branch Removal (iii) Subtree Extraction

Fig. 2. Subtree Removal, Branch Removal and Subtree Extraction, where the high-

lighted nodes are removed from the graph

Forget Redundant. This approach removes all concepts that are not used in
future queries. We provide a list of the future queries to the agent at the
start of the simulation, which have been recorded on a dummy run using
the same random seed. This is the only agent that requires a complete list
of future queries. This agent is not limited by a capacity.

Forget Nothing. This approach does not remove any concepts from the agent’s
ontology. Hence this agent is not limited by a capacity.

592 H.S. Packer, N. Gibbins, and N.R. Jennings

Algorithm 4. This algorithm is used to select the concepts which are connected
by their concept weighting, to form a subtree, to be pruned from an agent’s EO
Require: function: getConceptWithMinimalWeight(set), returns tuple < concept, weight > with

the lowest weight in the set.
Require: ct ← null, wct ← null
Require: conceptsToRemove ← ∅
Require: CH ← {∅}
1. < ct, wct > =getConceptWithMinimalWeight(concepts(EO)) {wct is the lowest weight in EO

}
2. {traverses the children of ct}
3. CH ← children(ct)
4. for CH do
5. for ch ∈ CH do
6. if |wch − wct | ≤ t then

7. conceptsToRemove ← conceptsToRemove ∪ {ch}
8. CH ← CH ∪ {children(ch)}
9. end if
10. end for
11. end for
12. P ← parents(ct)
13. for ∀ P do
14. for ∀ p ∈ P do
15. if |wp − wct | ≤ t then

16. conceptsToRemove ← conceptsToRemove ∪ {p}
17. P ← P ∪ {parents(p)}
18. end if
19. end for
20. end for
21. return conceptsToRemove

We put forward these four approaches: forget-concept, forget-tree, forget-
redundant, forget-nothing, as benchmarks for the performance of our forget-
ting approach, forget-fragment. These agents adopt their behaviour defined
by the sample package in RCR, which determines the agents’ behaviour such
as planning a path through the virtual city and which target to rescue first.
We note this adopted behaviour is basic, whereby there are no algorithms used
to co-ordinate agents’ targets or to minimise path traversal. Our investigation
consists of comparing how five different learning techniques perform given the
same set of 200 scenarios, using the standard Kobe map provided with RCR.
Each scenario is randomly generated by the RCR simulators. For our evaluation
our framework includes the following environment ontologies:

1. EACOntology:This ontologydescribes the EmergencyAction Code (EAC),
which is a three character code displayed on all dangerous goods classed carri-
ers. This ontology provides fire agents with information about the required
equipment for attending burning targets, and is derived from the National
Chemical Emergency Centre (NCEC) code list.

2. HazChem Ontology: This Hazardous Chemical (HazChem) ontology
classifies chemicals using Hazardous Identification (ID) Numbers (HIN). Sim-
ilar to the EAC Ontology, this ontology provides fire agents with informa-
tion about the required equipment for attending burning targets, and is
derived from the The National Institute for Occupational Safety and Health
(NIOSH) HIN system.

Forgetting Fragments from Evolving Ontologies 593

3. Chemical Ontology: This ontology contains chemicals and their EAC and
HIN classification. This ontology allows agents to use either standard pro-
vided by the EAC and HIN, and enables the agent to translate chemicals
between both standards.

4. Vehicle Ontology: This ontology describes vehicles, their attributes, pur-
pose, and manufacturer. In particular, this ontology provides information
about the track type of a vehicle, and its capabilities, and is derived from ve-
hicle categorisations from the Driver and Vehicle Licensing Agency (DVLA).

5. HantsFireEngineFleet Ontology: This ontology contains information ab-
out the fleet of fire engines in the county of Hampshire (UK). This informa-
tion is derived from the Hampshire fire service website1, which details vehicle
types, their model, manufacturer, and registration numbers.

6. Ambulance Ontology: This ontology contains information about different
types of ambulance, their attributes, and equipment and is derived from the
standards of the Ontario Ministry of Health and Long-Term Care2.

7. ConstructionVehicles Ontology: This ontology contains information ab-
out construction vehicles and their capacity, and is derived from information
from the book “Fundamentals of Technical Rescue.”3

8. Triage Ontology: This ontology describes the 5-Category Triage System
and identifies symptoms for each category, and is derived from the Australian
Ministry of Health guidelines4.

9. CSI Ontology: This ontology contains information from the Chemical Sam-
pling Information (CSI) of the US Department of Labor Occupational Safety
and Health Administration. The CSI contains details about chemicals and
their health effects on humans, and the organs affected.

10. Treatment Ontology: This ontology contains information about burns
and broken bones, their symptoms, and their treatment. This information
has been taken from the NHS website5.

These ten ontologies have been chosen because they are representative of stan-
dard industry vocabularies for the domains of interest of RCR agents. This
combination of ontologies covers the areas required by the RCOR extension and
represent a realistic set of information that rescue agents would need to consult
in real conditions. The number of concepts in each of the ontologies is given in
Table 1. The next section presents the results and our analysis of our evaluation.

1 Hampshire Fire and Rescue Service: http://www.hantsfire.gov.uk/theservice/

sp-and-sr/fleetmanagement
2 OntarioAmbulanceStandards:http://www.health.gov.on.ca/english/providers/

pub/ambul/equi pment/standard.pdf
3 Fundamentals of Technical Rescue, International Association of Fire Chiefs: http://

books.google.com/books?id=mLyYsT8YEWkC&pg=PT33
4 Ministry of Health Triage Guidelines: http://www.moh.govt.nz/moh.nsf/indexmh/

ed-about-triage
5 NHS Health Information:

http://www.nhs.uk/chq/pages/Category.aspx?CategoryID=72

http://www.hantsfire.gov.uk/theservice/sp-and-sr/fleetmanagement
http://www.hantsfire.gov.uk/theservice/sp-and-sr/fleetmanagement
http://www.health.gov.on.ca/english/providers/pub/ambul/equi pment/standard.pdf
http://www.health.gov.on.ca/english/providers/pub/ambul/equi pment/standard.pdf
http://books.google.com/books?id=mLyYsT8YEWkC&pg=PT33
http://books.google.com/books?id=mLyYsT8YEWkC&pg=PT33
http://www.moh.govt.nz/moh.nsf/indexmh/ed-about-triage
http://www.moh.govt.nz/moh.nsf/indexmh/ed-about-triage
http://www.nhs.uk/chq/pages/Category.aspx?CategoryID=72

594 H.S. Packer, N. Gibbins, and N.R. Jennings

Table 1. The number of concepts in each of the environment ontologies

Ontology No. of Concepts

EAC Ontology 1906
Chemical Ontology 1800
HantsFireEngineFleet Ontology 745
ConstructionVehicles Ontology 114
CSI Ontology 3841
EAC Ontology 1906
Chemical Ontology 1800
HantsFireEngineFleet Ontology 745
ConstructionVehicles Ontology 114
CSI Ontology 3841

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Pr
op

or
tio

n
of

 B
ui

ld
in

gs
 U

nd
es

tr
oy

ed

Timestep

Forget-redundant
Forget-concept

Forget-fragment
Forget-tree

Forget-nothing

Fig. 3. Chart showing the percentage of buildings unburned for each forgetting

approach

6 Results

We compare our results using standard measures of the RoboCup Rescue scorevec-
tor [18] scoring system: saved civilians, and buildings unburned. The agents using
the forget-fragment approach outperform the other agents using benchmark ap-
proaches, by having the highest average number of civilians alive (99.3% more
civilians saved compared to the next highest approach, forget-tree) and percent-
age of the city that is unburned at the end of the simulation (12% more than the
next highest approach, forget-tree), see Table 2 and Figures 3 and 4.

The agents using our approach reduce the size of their ontologies by removing
a fragment of a concept, instead of removing trees that contain a smaller number
of concepts or removing a single concept. By removing a higher number of con-
cepts from an ontology the agents forget less frequently, and ultimately spend
less time deciding what to forget and forgetting than the other approaches, with
the exception of the forget-nothing approach (forget-tree forgets 332% more times
than forget-fragment, and 14% more concepts when it forgets), see Table 2 and

Forgetting Fragments from Evolving Ontologies 595

Table 2. Comparison of average results for each forgetting technique

Percentage Percentage Number Number of
of City of Civilians of Times Concepts Forgotten

Technique Unburned in Refuge Forgot per Forget
Forget-Concept 31.5 29.1 11.0 50.4

Forget-Tree 33.0 29.0 10.3 50.3
Forget-Redundant 31.5 19.8 50.3 215.1

Forget-Nothing 31.5 1.4 0.0 0.0
Forget-Fragment 37.1 58.0 3.1 44.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300 400 500 600 700

R
at

io
 o

f
C

iv
ili

an
s

Timestep

Forget-redundant
Forget-concept

Forget-fragment
Forget-tree

Forget-nothing

Fig. 4. Chart showing the percentage of civilians rescued for each forgetting approach,

our results range from 0 - 700 timesteps; result after 700 timesteps are the same trend

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(m

s)

Timestep

Forget-redundant
Forget-concept

Forget-fragment
Forget-tree

Forget-nothing

Fig. 5. Chart showing the time spent forgetting for each forgetting approach

596 H.S. Packer, N. Gibbins, and N.R. Jennings

Figure 5. We also note that despite our approach forgets fewer concepts than
other approaches, it still outperforms them, because it spends less time forget-
ting, thus demonstrating the trade-off between spending time managing an on-
tology, and spending time querying a large ontology. Our approach helps agents
save civilians at a faster rate than the other approaches, because the fire brigade
agents put out more fires thus reducing the injuries to the civilians in the simu-
lation. The forget-tree and forget-concept approaches’ performances are similar;
this is because they have a similar forgetting frequency, and thus spend a simi-
lar amount of time performing actions derived from their ontology. The forget-
nothing approach is unable to submit any commands because it took too long to
deliberate over its actions. Despite the forget-redundant approach having perfect
foresight it spent too long forgetting because it forgot every unnecessary concept
increasing the forgetting frequency compared to the forget-fragment approach.

7 Conclusions

In this paper we present a novel technique that can be used to remove a frag-
ment from an ontology. Our technique is tested using an agent-based search
and rescue domain, but is generalised and applicable to any scenario where an
ontology evolves limitlessly over time. In order to support this contribution we
have also developed a semantic extension to the RoboCup Rescue framework
which enables its agents to evolve their ontologies, and a technique that rates all
concepts in an ontology with a weighting. We have also implemented benchmark
approaches which were used to compare the forgetting approaches. Our evalu-
ation shows that our method saves 99.3% more civilians and 12.4% more city
area, compared with the next best approach. For the future, we plan to inves-
tigate the benefits of using our technique in scenarios that require random and
regularly used concepts. This investigation aims to explore the hypothesis that
our approach will remove the concepts acquired from the random queries, while
generally keeping the fragments required for the regularly repeated queries. We
will also explore other motivations for an agent to forget concepts, for exam-
ple agents that can predict future queries so that they can prioritise forgetting
concepts which are unlikely to reoccur.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific Ameri-

can 284(5), 28–37 (2001)

2. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.,

Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al.: Gene Ontology: tool for

the unification of biology. Nature genetics 25(1), 25–29 (2000)

3. Sidhu, A.S., Dillon, T.S., Chang, E., Sidhu, B.S.: Protein ontology: vocabulary for

protein data. IEEE Computer Society, Los Alamitos (2005)

4. Rogers, J., Rector, A.: The GALEN ontology. In: Medical Informatics Europe, pp.

174–178 (1996)

Forgetting Fragments from Evolving Ontologies 597

5. Stuckenschmidt, H., Klein, M.: Structure-based partitioning of large concept hier-

archies. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004.

LNCS, vol. 3298, pp. 289–303. Springer, Heidelberg (2004)

6. Seidenberg, J., Rector, A.: Web Ontology Segmentation: Analysis, Classification

and Use. In: Proceedings of the 15th International Conference on WWW, NY,

USA, pp. 13–22. ACM, New York (2006)

7. Bailin, S., Truszkowski, W.: Ontology Negotiation between Intelligent Information

Agents. The Knowledge Engineering Review 17(01), 7–19 (2002)

8. Afsharchi, M., Far, B., Denzinger, J.: Ontology-guided Learning to Improve Com-

munication between Groups of Agents. In: Proceedings of the 5th International

Joint Conference on Autonomous Agents and Multiagent Systems, Hakodate,

Japan, pp. 923–930 (2006)

9. Wiesman, F., Roos, N.: Domain Independent Learning of Ontology Mappings. In:

Proceedings of the 3rd International Joint Conference on Autonomous Agents and

Multiagent Systems, New York City, New York, USA, vol. 2, pp. 846–853 (2004)

10. Soh, L.: Multiagent, Distributed Ontology Learning. In: Working Notes of the 2nd

AAMAS OAS Workshop, Bologna, Italy (2002)

11. Packer, H.S., Gibbins, N., Jennings, N.R.: Collaborative Learning of Ontology Frag-

ments by Co-operating Agents. In: Web Intelligence-Intelligent Agent Technology

International Conference, Toronto (2010)

12. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H., Wang, K.: Forgetting in manag-

ing rules and ontologies. In: Proc. of the International Conference on Web Intelli-

gence, pp. 411–419 (2006)

13. Wang, Z., Wang, K., Topor, R., Pan, J.: Forgetting Concepts in DL-Lite. In: Bech-

hofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS,

vol. 5021, p. 245. Springer, Heidelberg (2008)

14. Wang, K., Wang, Z., Topor, R., Pan, J.Z., Antoniou, G.: Concept and Role Forget-

ting in ALC Ontologies. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum,

L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,

pp. 666–681. Springer, Heidelberg (2009)

15. Kitano, H., Tadokoro, S.: Robocup rescue: A grand challenge for multiagent and

intelligent systems. AI Magazine 22, 1–39 (2001)

16. Wang, K., Sattar, A., Su, K.: A Theory of Forgetting in Logic Programming. In:

Proc. of the National Conference on Artificial Intelligence, vol. 20(2), p. 682 (2005)

17. Lee, D., Choi, J., Choe, H., Noh, S.H., Min, S.L., Cho, Y.: Implementation and

Performance Evaluation of the LRFU Replacement Policy, pp. 106–111 (1997)

18. Siddhartha, H., Sarika, R., Karlapalem, K.: Retrospective analysis of RoboCup

rescue simulation agent teams. In: Proceedings of The 8th International Conference

on Autonomous Agents and Multiagent Systems, vol. (2), pp. 1365–1366 (2009)

Linking and Building Ontologies of Linked Data

Rahul Parundekar, Craig A. Knoblock, and José Luis Ambite

University of Southern California,
Information Sciences Institute and Department of Computer Science

4676 Admiralty Way, Marina del Rey, CA 90292
{parundek,knoblock,ambite}@isi.edu

Abstract. The Web of Linked Data is characterized by linking structured data
from different sources using equivalence statements, such as owl:sameAs, as well
as other types of linked properties. The ontologies behind these sources, how-
ever, remain unlinked. This paper describes an extensional approach to generate
alignments between these ontologies. Specifically our algorithm produces equiv-
alence and subsumption relationships between classes from ontologies of differ-
ent Linked Data sources by exploring the space of hypotheses supported by the
existing equivalence statements. We are also able to generate a complementary
hierarchy of derived classes within an existing ontology or generate new classes
for a second source where the ontology is not as refined as the first. We demon-
strate empirically our approach using Linked Data sources from the geospatial,
genetics, and zoology domains. Our algorithm discovered about 800 equivalences
and 29,000 subset relationships in the alignment of five source pairs from these
domains. Thus, we are able to model one Linked Data source in terms of another
by aligning their ontologies and understand the semantic relationships between
the two sources.

1 Introduction

The last few years have witnessed a paradigm shift from publishing isolated data from
various organizations and companies to publishing data that is linked to related data
from other sources using the structured model of the Semantic Web. As the data being
published on the Web of Linked Data grows, such data can be used to supplement one’s
own knowledge base. This provides significant benefits in various domains where it is
used in the integration of data from different sources. A necessary step to publish data
in the Web of Linked Data is to provide links from the instances of a source to other
data ‘out there’ based on background knowledge (e.g. linking DBpedia to Wikipedia),
common identifiers (e.g. ISBN numbers), or pattern matching (e.g. names, latitude, lon-
gitude and other information used to link Geonames to DBpedia). These links are often
expressed by using owl:sameAs statements. Often, when such links between instances
are asserted, the link between their corresponding concepts is not made. Such con-
ceptual links would ideally help a consumer of the information (agent/human) to model
data from other sources in terms of their own knowledge. This problem is widely known
as ontology alignment [12], which is a form of schema alignment [16]. The advent of
the Web of Linked Data warrants a renewed inspection of these methods.

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 598–614, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Linking and Building Ontologies of Linked Data 599

Our approach provides alignments between classes from ontologies in the Web of
Linked Data by examining their linked instances. We believe that providing ontology
alignments between sources on the Web of Linked Data provides valuable knowledge
in understanding and reusing such sources. Moreover, our approach can provide a more
refined ontology for a source described with a simple ontology (like GEONAMES) by
aligning it with a more elaborate ontology (like DBPEDIA). Alternatively, by aligning an
ontology (like GEOSPECIES) with itself using the same approach, we are able to generate
a hierarchy of derived classes, which provide class definitions complimentary to those
already existing in the source.

The paper is organized as follows. First, we briefly provide background on Linked
Data and describe the domains (geospatial, genetics and zoology) and data sources
(LINKEDGEODATA, GEONAMES, DBPEDIA, GEOSPECIES, MGI, and GENEID) that we fo-
cus on in this paper. Second, we describe our approach to ontology alignment, which is
based on defining restriction classes over the ontologies and comparing the extensions
of these classes to determine the alignments. Third, we provide an empirical evalua-
tion of the alignment algorithm on five pairs of sources: (LINKEDGEODATA-DBPEDIA,
GEONAMES-DBPEDIA, GEOSPECIES-DBPEDIA, MGI-GENEID and GEOSPECIES-
GEOSPECIES). Finally, we describe related and future work and discuss the contribu-
tions of this paper.

2 Linked Data Background and Sources

In this section, we provide a brief introduction to Linked Data and the three domains
and six data sources that we consider.

The Linked Data movement, as proposed by Berners-Lee [6], aims to provide
machine-readable connections between data in the Web. Bizer et al. [7] describe several
approaches to publishing such Linked Data. Most of the Linked Data is generated auto-
matically by converting existing structured data sources (typically relational databases)
into RDF, using an ontology that closely matches the original data source. For example,
GEONAMES gathers its data from over 40 different sources and it primarily exposes its
data as a flat-file structure1 that is described with a simple ontology [19]. Such an on-
tology might have been different if designed at the same time as the collection of the
actual data. For example, all instances of GEONAMES have geonames:Feature as their
only rdf:type, however, they could have been more effectively typed based on the fea-
tureClass and featureCode properties (cf. Section 3.1).

The links in the Web of Linked Data make the Semantic Web browsable and, more-
over, increase the amount of knowledge by complementing data in a source with ex-
isting data from other sources. A popular way of linking data on the Web is the use of
owl:sameAs links to represent identity links [14,8]. Instead of reusing existing URIs,
new URIs are automatically generated while publishing linked data and an owl:sameAs
link is used to state that two URI references refer to the same thing. Halpin et al. [14]
distinguish four types of semantics for these links: (1) same thing as but different con-
text, (2) same thing as but referentially opaque, (3) represents, and (4) very similar to.

1 http://download.geonames.org/export/dump/readme.txt

http://download.geonames.org/export/dump/readme.txt

600 R. Parundekar, C.A. Knoblock, and J.L. Ambite

For the purposes of this paper, we refrain from going into the specifics and use the term
as asserting equivalence.

In this paper we consider six sources sources from three different domains (geospa-
tial, zoology, and genetics), which are good representatives of the Web of Linked Data:

LINKEDGEODATA is a geospatial source with its data imported from the Open Street
Map (OSM) [13] project containing about 2 billion triples. The data extracted from the
OSM project was linked to DBPEDIA by expanding on the user created links on OSM
to WIKIPEDIA using machine learning based on a heuristic on the combination of type
information, spatial distance, and name similarity [4].

GEONAMES is a geographical database that contains over 8 million geographical
names. The structure behind the data is the Geonames ontology [19], which closely
resembles the flat-file structure. A typical individual in the database is an instance of
type Feature and has a Feature Class (administrative divisions, populated places, etc.),
a Feature Code (subcategories of Feature Class) along with latitude, longitude, etc.
associated with it.

DBPEDIA is a source of structured information extracted from WIKIPEDIA contain-
ing about 1.5 million objects that are classified with a consistent ontology. Because of
the vastness and diversity of the data in DBPEDIA, it presents itself as a hub for links
in the Web of Linked Data from other sources [3]. We limit our approach to only the
rdf:type assertions and info-box triples from DBPEDIA as they provide factual informa-
tion. LINKEDGEODATA, GEONAMES are both linked to DBPEDIA using the owl:sameAs
property asserting the equivalence of instances.

GEOSPECIES is an initiative intended to unify biological taxonomies and to overcome
the problem of ambiguities in the classification of species.2 GEOSPECIES is linked to
DBPEDIA using the skos:closeMatch property.

Bio2RDF’s MGI and GENEID. The Bio2RDF project aims at integrating mouse
and human genomic knowledge by converting data from bioinformatics sources and
publishing this information as Linked Data [5]. The Mouse Genome Informatics (MGI)
database contains genetic, genomic, and biological data about mice and rats. This
database also contains assertions to a gene in the National Center for Biotechnology
Information - Entrez Gene database, which is identified with a unique GeneID.3 The
data from the MGI database and Entrez Gene was triplified and published by Bio2RDF
on the Web of Linked Data4, which we refer to as MGI and GENEID. We align these
two sources using the bio2RDF:xGeneID link from MGI to GENEID.

3 Ontology Alignment Using Linked Data

An Ontology Alignment is “a set of correspondences between two or more ontologies,”
where a correspondence is “the relation holding, or supposed to hold according to a par-
ticular matching algorithm or individual, between entities of different ontologies” [12].
Entities here, can be classes, individuals, properties, or formulas.

2 http://about.geospecies.org/
3 http://www.ncbi.nlm.nih.gov/entrez/query/static/help/
genehelp.html

4 http://quebec.bio2rdf.org/download/data/

http://about.geospecies.org/
http://www.ncbi.nlm.nih.gov/entrez/query/static/help/genehelp.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/help/genehelp.html
http://quebec.bio2rdf.org/download/data/

Linking and Building Ontologies of Linked Data 601

Our alignment algorithm uses data analysis and statistical techniques for matching
the classes of two ontologies using what Euzenat et al. [12] classify as a common exten-
sion comparison approach for aligning the structure. This approach considers classes
from different ontologies that have instances in common, and derives the alignment re-
lationship between the classes based on the set containment relationships between the
sets of instances belonging to each of the classes. Our approach is novel in two respects.
First, we identify common instances by using the equivalence links in the Web of Linked
Data. Specifically, we use the owl:sameAs property to link LINKEDGEODATA with DB-
PEDIA, and GEONAMES with DBPEDIA; the skos:closeMatch property to link GEOSPECIES

with DBPEDIA,5 and the bio2rdf:xGeneID property to link MGI with GENEID. Second,
instead of limiting ourselves to the existing classes in an ontology, we overlay a richer
space of class descriptions over the ontology and define alignments over these sets of
new classes, as we describe next.

3.1 Restriction Classes

In the alignment process, instead of focusing only on classes defined by rdf:type, we
also consider classes defined by conjunctions of property value restrictions (i.e, has-
Value constraints in the Web Ontology Language), which we will call restriction classes
in the rest of the paper. Restriction classes help us identify existing as well as de-
rived set of classes in an ontology. A restriction class with only a single constraint
on the rdf:type property gives us a class already present in the ontology, for example
in LINKEDGEODATA the restriction (rdf:type=lgd:country) identifies the class Country.
Using restrictions also helps us get a refined set of classes when the ontology of the
source is rudimentary i.e. when there are little or no specializations of top level classes,
as can be seen in the case of GEONAMES. In GEONAMES, the rdf:type for all instances
is Feature. Thus, the ontology contains a single concept. Traditional alignments would
then only be between the class Feature from GEONAMES and another class from DB-
PEDIA, for example Place. However, instances from GEONAMES have featureCode and
featureClass properties. A restriction on the values of such properties gives us classes
that we can effectively align with classes from DBPEDIA. For example, the restriction
class defined by (featureCode=geonames:A.PCLI) (independent political entity) aligns
with the class Country from DBPEDIA. Our algorithm defines restriction classes from
the source ontologies and generates alignments between such restrictions classes using
subset or equivalence relationships.

The space of restriction classes is simply the powerset of distinct property-value
pairs occurring in the ontology. For example assume that the GEONAMES source had only
three properties: rdf:type, featureCode and featureClass; and the instance Saudi Arabia
had as corresponding values: geonames:Feature, geonames:A.PCLI, and geonames:A.
Then this instance belongs to the restriction class defined by (rdf:type=geonames:
Feature & featureClass=geonames:A). The other elements of the powerset also form
such restriction classes as shown in Figure 1. It is evident that in order to consider all
restriction classes, the algorithm would be exponential. We thus need some preprocess-
ing that eliminates those properties that are not useful.

5 Based on the ‘Linked Open Data Cloud Connections’ section in
http://about.geospecies.org/

http://about.geospecies.org/

602 R. Parundekar, C.A. Knoblock, and J.L. Ambite

(rdf:type=geonames:Feature & featureCode=geonames:A.PCLI & featureClass=geonames:A)

(rdf:type=geonames:Feature) (featureCode=geonames:A.PCLI) (featureClass=geonames:A)

(rdf:type=geonames:Feature & featureCode=geonames:A.PCLI)

(rdf:type=geonames:Feature & featureClass=geonames:A)

(featureCode=geonames:A.PCLI & featureClass=geonames:A)

Fig. 1. Hierarchy showing how restriction classes are built

3.2 Pre-processing of the Data

Before we begin exploring alignments, we perform a simple pre-processing on the in-
put sources in order to reduce the search space and optimize the representation. First,
for each pair of sources that we intend to align, we only consider instances that are
actually linked. For example, instances from DBPEDIA not relevant to alignments in the
geospatial domain (like People, Music Albums, etc.) are removed. This has the effect
of removing some properties from consideration. For example, when considering the
alignment of DBPEDIA to GEONAMES, the dbpedia:releaseDate property is eliminated
since the instances of type album are eliminated.

Second, in order to reduce the space of alignment hypotheses, we remove proper-
ties that cannot contribute to the alignment. Inverse functional properties resemble for-
eign keys in databases and identify an instance uniquely. Thus, if a restriction class
is constrained on the value of an inverse functional property, it would only have a
single element in it and not be useful. For example, consider the wikipediaArticle
property in GEONAMES, which links to versions of the same article in WIKIPEDIA in
different languages. The GEONAMES instance for the country Saudi Arabia6 has links
to 237 different articles. Each of these, in turn, however could be used to identify
only Saudi Arabia. Similarly, in LINKEDGEODATA the ‘georss:point’ property from the
‘http://www.georss.org/georss/’ namespace contains a String representation of the lat-
itude and longitude and would tend to be an inverse functional property. On the other
hand, the addr:country property in LINKEDGEODATA has a range of 2-letter country
codes that can be used to group instances into useful restriction classes.

Third, we transform the instance data of a source into a tabular form, which allows
us to load the data in a relational database and process it more efficiently. Specifically,
each instance is represented as a row in a table, each property occurring in the ontology
is a column, and the instance URI is the key. For example, the table for GEONAMES

contains 11 columns not including the identifier. We call this tuple representation of
an instance a vector. In cases of multivalued properties, the row is replicated in such a
way that each cell contains a single value but the number of rows equals the number
of multiple values. Each new row however, is still identified with the same URI, thus

6 http://sws.geonames.org/102358/about.rdf

http://sws.geonames.org/102358/about.rdf

Linking and Building Ontologies of Linked Data 603

(rdf:type=lgd:country)
(rdf:type=owl:Thing)

(rdf:type=lgd:node)
(rdf:type=dbpedia:PopulatedPlace)

(rdf:type=lgd:node)
(rdf:type=dbpedia:BodyOfWater)

Seed hypotheses generation

(rdf:type=lgd:node)
(rdf:type=dbpedia:PopulatedPlace & dbpedia:Place#type=dbpedia:City)

(rdf:type=lgd:node)
(rdf:type=dbpedia:BodyOfWater & dbpedia:Place#type=dbpedia:City)

(rdf:type=lgd:node)
(dbpedia:Place#type=dbpedia:City)

Seed hypothesis
pruning (owl:Thing
covers all instances)

Prune as no change
in the extension set

Pruning on empty set
r2=Ø

(rdf:type=lgd:node)
(dbpedia:Place#type=dbpedia:City & rdf:type=owl:Thing)

(lgd:gnis%3AST_alpha=NJ)
(dbpedia:Place#type=

http://dbpedia.org/resource/City_(New_Jersey))

Fig. 2. Exploring and pruning the space of alignments

retaining the number of distinct individuals. In general, the total number of rows for
each individual is the product of cardinalities of the value sets for each of its properties.

From these individual vectors, we then perform a join on the equivalence property
(e.g. owl:sameAs property from LINKEDGEODATA to DBPEDIA) such that we get a com-
bination of vectors from both ontologies. We call this concatenation of two vectors an
instance pair.

3.3 Searching the Space of Ontology Alignments

An alignment hypothesis is a pair of restriction classes, one from each of the ontologies
under consideration. The space of alignment hypotheses is combinatorial, thus our al-
gorithm exploits the set containment property of the hypotheses in a top-down fashion
along with several pruning features to manage the search space.

We describe the search algorithm that we use to build the alignments by example.
Figure 2 shows a small subset of the search space, as explored by this algorithm while
aligning LINKEDGEODATA with DBPEDIA. Each gray box represents a candidate hypoth-
esis where the first line within it is the restriction class from the first source(O1) and the
second line is the restriction class from the second source (O2). The levels in the ex-
ploration space, denoted by dashed horizontal lines, separate alignments where the one
from a lower level contains a restriction class with one extra property-value constraint
than its parent alignment (that is, it is a subclass by construction).

We first seed the space by computing all alignment hypotheses with a single property-
value pair from each ontology, that is [(p1

i = v1
j)(p2

k = v2
l)], as shown at the top of

Figure 2. There are O(n2m2) seed hypotheses, where n is the larger of the number of

604 R. Parundekar, C.A. Knoblock, and J.L. Ambite

properties in each source, and m is the maximum number of distinct values for any
property. Then, we explore the hypotheses space by using a depth-first search. At each
level we choose a property and add a property-value constraint to one of the restriction
classes and thus explore all specializations. The instance pairs that support the new
hypothesis are obtained by restricting the set of instance pairs of the current hypoth-
esis with the additional constraint. In Figure 2, while adding a new constraint ‘dbpe-
dia:Place#type=dbpedia:City’ to the restriction (rdf:type=dbpedia:PopulatedPlace)
while aligning it with (rdf:type=lgd:node), we take the intersection of the set of iden-
tifiers covered by [(rdf:type=dbpedia:PopulatedPlace) (rdf:type=lgd:node)] with the set
of instances in DBPEDIA that have a value of ‘dbpedia:City’ for the property ‘dbpe-
dia:Place#type’.

Our algorithm prunes the search space in several ways. First, we prune those hy-
potheses with a number of supporting instance pairs less than a given threshold. For
example, the hypothesis [(rdf:type=lgd:node) (rdf:type=dbpedia:BodyOfWater & db-
pedia:Place#type=dbpedia:City)] is pruned since it has no support.

Second, we prune a seed hypothesis if either of its constituent restriction classes cov-
ers the entire set of instances from one of the sources, then the algorithm does not search
children of this node, because the useful alignments will appear in another branch of
the search space. For example, in the alignment between (rdf:type=lgd:country) from
LINKEDGEODATA and (rdf:type=owl:Thing) from DBPEDIA in Figure 2, the restriction
class (rdf:type=owl:Thing) covers all instances from DBPEDIA. The alignment of such
a seed hypothesis will always be a subset relation. Moreover, each of its child hy-
potheses can also be explored through some other hypotheses that does not contain
the non-specializing property-value constraint. For example, our algorithm will explore
a branch with [(rdf:type=lgd:country) (dbpedia:Place#type=dbpedia:City)], where the
restriction class from the second ontology actually specializes in the extensional sense
(rdf:type=owl:Thing).

Third, if the algorithm constrains one of the restriction classes of an hypothesis,
but the resulting set of instance pairs equals the set from the current hypothesis, then
it means that adding the constraint did not really specialize the current hypothesis.
Thus, the new hypothesis is not explored. Figure 2 shows such pruning when the
constraint (rdf:type=owl:Thing) is added to the alignment [(rdf:type=lgd:node)
(dbpedia:Place#type =dbpedia:City)].

Fourth, we prune hypotheses [r1r2] where r1 ∩ r2 = r1 as shown in Figure 3(a).
Imposing an additional restriction on r1 to form r′1 would not provide any immediate
specialization as the resultant hypothesis could be inferred from r′1 ⊂ r1 and the current
hypothesis. The same holds for the symmetrical case r1 ∩ r2 = r2.

Finally, to explore the space systematically the algorithm specializes the restriction
classes in a lexicographic order. By doing this, we prune symmetric cases as shown by
Figure 3(b). The effect of lexicographic selection of the property can also be seen in
Figure 2 when the hypotheses [(rdf:type=lgd:node) (rdf:type=dbpedia:PopulatedPlace
& dbpedia:Place#type=dbpedia:City)] is not explored through the hypothesis
[(rdf:type= lgd:node) (dbpedia:Place#type=dbpedia:City)].7

7 Note that the pruning from Figure 3(a) & (b) is not explicitly depicted in Figure 2.

Linking and Building Ontologies of Linked Data 605

Prune

(p1=v1)
(p3=v3)

(p1=v1 & p2=v2)
(p3=v3)

(p1=v1)
(p3=v3 & p4=v4)

r2

(p1=v1 & p2=v2)
(p3=v3 & p4=v4)

(a) Pruning when r1 ∩ r2 = r1 (i.e. r1 ⊂ r2)

Hypothesis

r1

r’1

r’2

[if r1 ∩ r’2 = r’2]
Prune

(p5=v5)
(p8=v8)

(p5=v5 & p6=v6)
(p8=v8)

(p5=v5 & p7=v7)
(p8=v8)

r2

(p5=v5 & p6=v6 & p7=v7)
(p8=v8)

(b) Pruning due to lexicographical ordering

Hypothesis

r1

Fig. 3. Pruning the hypotheses search space

3.4 Scoring Alignment Hypotheses

After building the hypotheses, we score each hypothesis to assign a degree of confi-
dence for each alignment. Figure 4 illustrates the instance sets considered to score an
alignment. For each hypothesis, we find the instances belonging to the restriction class
r1 from the first source and r2 from the second source. We then compute the image of
r1 (denoted by I(r1)), which is the set of instances from the second source that form
instance pairs with instances in r1, by following the owl:sameAs links. The dashed
lines in the figure represent these instance pairs. All the pairs that match both restric-
tions r1 and r2 also support our hypothesis and thus are equivalent to the instance pairs
corresponding to instances belonging to the intersection of the sets r2 and I(r1). This
set of instance pairs that support our hypothesis is depicted as the shaded region. We
can now capture subset and equivalence relations between the restriction classes by
set-containment relations from the figure. For example, if the set of instance pairs iden-
tified by r2 are a subset of I(r1), then the set r2 and the shaded region would be entirely
contained in the I(r1).

We use two metrics P and R to quantify these set-containment relations. Figure 5
summarizes these metrics and also the different cases of intersection. In order to allow
a certain margin of error induced by the dataset, we are lenient on the constraints and use
the relaxed versions P’ and R’ as part of our scoring mechanism. For example, consider
the alignment between the restriction class (lgd:gnis%3AST alpha=NJ) from LINKED-
GEODATA to the restriction (dbpedia:Place#type=http://dbpedia.org/resource/City
(New Jersey)) from DBPEDIA shown in Figure 2. Based on the extension sets, our
algorithm finds |I(r1)| = 39, |r2| = 40 and |I(r1)∩ r2| = 39. The value of R′ therefore
is 0.97 and that of P ′ is 1.0. Based on our margins, we hence assert the relation of the
alignment as equivalent in an extensional sense.

3.5 Eliminating Implied Alignments

From the result set of alignments that pass our scoring thresholds, we need to only keep
those that are not implied by other alignments. We hence perform a transitive reduction
based on containment relationships to remove the implied alignments. Figure 6 explains

606 R. Parundekar, C.A. Knoblock, and J.L. Ambite

r1 r2

I(r1)
Instance pairs where both r1 and r2 holds

Set of instance pairs where both r1 and r2 holds

Key:

Set of instances from O1 where r1 holds

Set of instances from O2 where r2 holds

Set of instances from O2 paired to instances from O1

Instance pairs where r1 holds

Fig. 4. Scoring of a Hypothesis

Set
Representation

Relation P = | ∩ || | R = | ∩ || | P’ R’

Disjoint = 0 = 0 ≤ 0.01 ≤ 0.01

r1 ⊂ r2 < 1 = 1 > 0.01 ≥ 0.90

r2 ⊂ r1 = 1 < 1 ≥ 0.90 > 0.01

r1 = r2 = 1 = 1 ≥ 0.90 ≥ 0.90

Not enough
support 0 < P < 1 0 < R < 1

0.01 <
P’ <
0.90

0.01 <
R’ <
0.90

Fig. 5. Metrics

these reductions, where alignments between r1 and r2 and between r′1 and r2 are at
different levels in the hierarchy such that r′1 is a subclass of r1 by construction (i.e.,
by conjoining with an additional property-value pair). Figure 6(a) through (i) depict
the combinations of the equivalence and containment relations that might occur in the
alignment result set. Solid arrows depict these containment relations. Arrows in both
directions denote an equivalence of the two classes.

A typical example of the reduction is Figure 6(e) where the result set contains a
relation such that r1 ⊂ r2 and r′1 ⊂ r2. Based on the implicit relation r′1 ⊂ r1, the
relation r′1 ⊂ r2 can be eliminated (denoted with a cross). Thus, we only keep the
relation r1 ⊂ r2 (denoted with a check). The relation r1 ⊂ r2 could alternatively be
eliminated but instead we choose to keep the simplest alignment and hence remove
r′1 ⊂ r2. Other such transitive relations and their reductions are depicted with a ‘T’ in
box on the bottom-right corner.

Another case can be seen in Figure 6(d) where the subsumption relationships found
in the alignment results can only hold if all the three classes r1, r′1 and r2 are equivalent.
These relations have a characteristic cycle of subsumption relationships. We hence need
to correct our existing results by converting the subset relations into equivalences. This
is depicted by an arrow with a dotted line in the figure. Other similar cases can be
seen in Figure 6(a), (c) and (f) where the box on the bottom-right is has a ‘C’ (cycle).

Linking and Building Ontologies of Linked Data 607

r1

r’1

r2

C(a)

r1

r’1

r2

T(b)

r1

r’1

r2

C(c)

r1

r’1

r2

C(d)

r1

r’1

r2

T(e)

r1

r’1

r2

C(f)

r1

r’1

r2

T(g)

r1

r’1

r2

T(h)

r1

r’1

r2

T(i)

Key:
ri rj : Subset relations (ri rj)

found by the algorithm.
ri rj : Implied subset relations.
r’i rj : Subset relation by construction.
T: Transitivity in subset relations.

One relation can be eliminated.
C: Cycle in subset relations. Hence,

all classes are equivalent.
: Relation eliminated by the rule.
: Relation retained by the rule.

Fig. 6. Eliminating Implied Alignments

In such cases, we order the two equivalences such that the one with more support is
said to be a ‘better’ match than the other (i.e. if |I(r1) ∩ (r2)| > |I(r′1) ∩ (r2)|, then
r1 = r2 is a better match than r′1 = r2). The corrections in the result alignments based
on transitive reductions may induce a cascading effect. Hence our algorithm applies the
’C’ rules shown in Figure 6(a), (c), (d), (f) to identify equivalences until quiescence.
Then it applies the ‘T’ rules to eliminate hypotheses that are not needed.

In sources like DBPEDIA an instance may be assigned multiple rdf:types with values
belonging to a single hierarchy of classes in the source ontology. This results in multiple
alignments where relations were found to be implied based on the rdf:type hierarchy.
Such alignments were also considered as candidates for cycle correction, equivalence
ordering and elimination of implied subsumptions. We used the ontology files (RDF-
S/OWL) provided by GEONAMES, LINKEDGEODATA, DBPEDIA AND GEOSPECIES as the
source for the ontologies.

4 Empirical Evaluation

We evaluate our algorithm on the domain and sources described in Section 2. Table 1
shows the number of properties and instances in the original sources. For example,
LINKEDGEODATA has 5,087 distinct properties and 11,236,351 instances.8

As described in Section 3.2, we consider only linked instances and remove properties
that cannot generate useful restriction classes. This reduced dataset contains instances
that reflect the practical usage of the equivalence links and properties relevant to the
domain. In LINKEDGEODATA, most of the instances coming from OSM have a rudimen-
tary type information (classified as ‘lgd:node’ or ‘lgd:way’) and are not linked to any

8 Data and results available at:
http://www.isi.edu/integration/data/LinkedData

http://www.isi.edu/integration/data/LinkedData

608 R. Parundekar, C.A. Knoblock, and J.L. Ambite

Table 1. Properties and instances in the original sources

Source # properties # instances
LinkedGeoData 5087 11236351
DBpedia 1043 1481003
Geonames 17 6903322
Geospecies 173 98330
MGI 24 153646
GeneID 32 4153014

instance from DBPEDIA. DBPEDIA similarly has instances not linked to LINKEDGEO-
DATA and they were removed as well.

Table 2 shows the results of pre-processing on the source pairs. The table lists the
number of properties and instances retained in either sources, the count of the number
of combinations of the vectors as a result of the join, and the count of the distinct
instance pairs as identified by the concatenation of their respective URIs. Our algorithm
processed this set of instance pairs for each source pair and generated alignments that
have a minimum support level of 10 instance pairs.

Table 2. Generation of instance pairs in pre-processing

Source 1 # properties # instances Source 2 # properties # instances # vector # distinct
after after after after combin- instance

elimination reduction elimination reduction ations pairs
LinkedGeoData 63 23594 DBpedia 16 23632 329641 23632

Geonames 5 71114 DBpedia 26 71317 459716 71317
Geospecies 31 4997 Dbpedia 13 4982 289967 4998

MGI 7 31451 GeneID 4 47491 829454 47557
Geospecies 22 48231 Geospecies 22 48231 771690 48231

The alignment results after eliminating implied alignments, as described in
Section 3.5, are shown in Table 3. The table shows the two sources chosen for the
alignment and the count of the hypotheses classified as equivalent, r1 ⊂ r2 and r2 ⊂ r1
both before and after elimination.9 Even though our algorithm provides for the correc-
tion and cascading of mislabeled equivalence relations, for all the source pairs that we
considered for alignment, such corrections did not arise. The number of equivalences
that our algorithm finds can be seen in Table 3 along with the count of equivalences that
were labeled as the best match in a hierarchy of equivalence relations. The procedure for
elimination of implied relations further prunes the results and helps the system focus on
the most interesting alignments. For example, in linking LINKEDGEODATA to DBPEDIA,
the 2528 (r1 ⊂ r2) relations were reduced to 1837 by removing implied subsumptions.
Similarly, in aligning GEOSPECIES with itself, we found 188 equivalence relations, 94
of which were unique due to the symmetrical nature of the hypotheses.

Since the subset and equivalence relationship our algorithm finds are based on exten-
sional reasoning, they hold by definition. However, in the remainder of this section we

9 The counts of any of the containment relations in the table do not include the logically implied
relations within the same source, that is, when r′1 is a subset of r1 by construction.

Linking and Building Ontologies of Linked Data 609

Table 3. Alignment results

Source 1 Source 2 #(r1 = r2) #(r1 = r2) #(r1 ⊂ r2) #(r1 ⊂ r2) #(r2 ⊂ r1) #(r2 ⊂ r1)
(O1) (O2) total best matches before after before after
LinkedGeoData DBpedia 158 152 2528 1837 1804 1627
Geonames DBpedia 31 19 809 400 1384 1247
Geospecies DBpedia 509 420 9112 2294 6098 4455
MGI GeneID 10 9 2031 1869 3594 2070
Geospecies Geospecies 94 88 1550 1201 - -

show some examples of the alignments discovered and discuss whether the extensional
subset relationships correspond to the intuitive intensional interpretation. As we use an
extensional approach as opposed to an intensional one, the results reflect the practical
nature of the links between the datasets and the instances in these sources.

Table 4 provides an assessment of the experimental results by selecting some in-
teresting alignment examples from the five source pairs. For each alignment, the table
depicts the restrictions from the two sources, the values of the metrics used for hypothe-
ses evaluation (P ′ and R′), the relation, and the support for that relation.

We refer to the row numbers from Table 4 as a shorthand for the alignments. For ex-
ample alignment 1 refers to the alignment between the restriction class (rdf:type=lgd:
node) from LINKEDGEODATA and the class (rdf:type=owl:Thing) from DBpedia classi-
fied as an equivalent relation. Alignments 1, 2, 3 and 5 are the simplest alignments found
by our algorithm as they are constrained on values of only the rdf:type property. How-
ever, we are also able to generate alignments like 4, as shown in Figure 2. GEONAMES has
a rudimentary ontology comprised of only a single Feature concept. Hence alignments
between the restriction classes prove to be more useful. Alignments 6 and 7 suggest
that such restrictions from GEONAMES are equivalent to existing concepts in DBPEDIA.
Our algorithm is thus able to build a richer set of classes for GEONAMES. This ontology
building can also be observed in GEOSPECIES in alignment 12. A more complicated and
interesting set of relations is also found in alignments 8, 15, 17, 18, 20 and 22. For ex-
ample, in alignment 8, pointing a web browser to ‘http://sws.geonames.org/3174618/’
confirms that for any instance in GEONAMES that has this URI as a parent feature, would
also belong to the region of ‘Lombardy’ in DBPEDIA. In a similar way, 20 provides an
alternate definition for a restriction class with another class in the same ontology and
thus build complimentary descriptions to existing classes and thus reinforce it.

The alignments closely follow the ontological choices of the sources. For example,
we could assume that alignment 11, mapping ‘geonames:featureCode=T.MT’ (Moun-
tain) to ‘rdf:type=dbpedia:Mountain’, should be equivalent. Closer inspection of the
GEONAMES dataset shows, however, that there are some places with Feature Codes like
‘T.PK’ (Peak), ‘T.HLL’ (Hill), etc. from GEONAMES whose corresponding instances in
DBPEDIA are all typed ‘dbpedia:Mountain’. This implies that the interpretation of the
concept ‘Mountain’ is different in both the sources and only a subset relation holds.
Alignments 16, 19 and 21 also express a similar nature of the classes. As our results fol-
low the data in the sources, incompleteness in the data reflects closely on the alignments
generated. Alignment 9 suggests Schools from GEONAMES is extensionally equivalent
Educational Institutions. It should naturally follow that Schools in the US be a subset

610 R. Parundekar, C.A. Knoblock, and J.L. Ambite

Ta
bl

e
4.

E
xa

m
pl

e
al

ig
nm

en
ts

fr
om

th
e

L
IN

K
E

D
G

E
O

D
A

T
A

-D
B

P
E

D
IA

,
G

E
O

N
A

M
E

S
-D

B
P

E
D

IA
,

G
E

O
S

P
E

C
IE

S
-D

B
P

E
D

IA
,

M
G

I-
G

E
N

E
ID

&
G

E
O

S
P

E
C

IE
S
-G

E
O

S
P

E
C

IE
S

da
ta

se
ts

#
L

IN
K

E
D

G
E

O
D

A
T

A
re
st
ri
ct
io
n

D
B

P
E

D
IA

re
st
ri
ct
io
n

P
’

R
’

R
el

at
io

n
|I

(r
1
)
∩

r 2
|

1
rd

f:
ty

pe
=

lg
d:

no
de

rd
f:

ty
pe

=
ow

l:
T

hi
ng

97
.2

7
99

.9
9

r 1
=

r 2
22

98
7

2
rd

f:
ty

pe
=

lg
d:

ae
ro

dr
om

e
rd

f:
ty

pe
=

db
pe

di
a:

A
ir

po
rt

90
.9

4
10

0
r 1

=
r 2

25
1

3
rd

f:
ty

pe
=

lg
d:

is
la

nd
rd

f:
ty

pe
=

db
pe

di
a:

Is
la

nd
90

.8
1

99
.4

4
r 1

=
r 2

17
8

4
lg

d:
gn

is
%

3A
S

T
al

ph
a=

N
J

db
pe

di
a:

P
la

ce
#t

yp
e=

ht
tp

:/
/d

bp
ed

ia
.o

rg
/r

es
ou

rc
e/

C
it

y
(N

ew
Je

rs
ey

)
10

0
97

.5
r 1

=
r 2

39

5
rd

f:
ty

pe
=

lg
d:

vi
ll

ag
e

rd
f:

ty
pe

=
db

pe
di

a:
P

op
ul

at
ed

P
la

ce
67

.3
98

.7
1

r 1
⊂

r 2
14

39
1

#
G

E
O

N
A

M
E

S
re
st
ri
ct
io
n

D
B

P
E

D
IA

re
st
ri
ct
io
n

P
’

R
’

R
el

at
io

n
|I

(r
1
)
∩

r 2
|

6
ge

on
am

es
:f

ea
tu

re
C

la
ss

=
ge

on
am

es
:P

rd
f:

ty
pe

=
db

pe
di

a:
P

op
ul

at
ed

P
la

ce
91

.0
7

96
.7

r 1
=

r 2
54

92
7

7
ge

on
am

es
:f

ea
tu

re
C

la
ss

=
ge

on
am

es
:H

rd
f:

ty
pe

=
db

pe
di

a:
B

od
yO

fW
at

er
98

.4
9

91
.8

8
r 1

=
r 2

19
59

8
ge

on
am

es
:p

ar
en

tF
ea

tu
re

=
ht

tp
:/

/s
w

s.
ge

on
am

es
.o

rg
/3

17
46

18
/

db
pe

di
a:

C
it

y
re

gi
on

=
ht

tp
:/

/d
bp

ed
ia

.o
rg

/r
es

ou
rc

e/
L

om
ba

rd
y

99
.9

1
91

.2
r 1

=
r 2

12
45

9
ge

on
am

es
:f

ea
tu

re
C

od
e=

ge
on

am
es

:S
.S

C
H

rd
f:

ty
pe

=
db

pe
di

a:
E

du
ca

tio
na

lI
ns

tit
ut

io
n

92
.4

5
94

.5
2

r 1
=

r 2
38

0

10
ge

on
am

es
:f

ea
tu

re
C

od
e=

ge
on

am
es

:S
.S

C
H

&
ge

on
am

es
:i

nC
ou

nt
ry

=
ge

on
am

es
:U

S
rd

f:
ty

pe
=

db
pe

di
a:

E
du

ca
tio

na
lI

ns
tit

ut
io

n
91

.7
2

94
.7

2
r 1

=
r 2

37
7

11
ge

on
am

es
:f

ea
tu

re
C

od
e=

ge
on

am
es

:T
.M

T
rd

f:
ty

pe
=

db
pe

di
a:

M
ou

nt
ai

n
78

.4
96

.8
r 1

⊂
r 2

17
28

#
G

E
O

S
P

E
C

IE
S
re
st
ri
ct
io
n

D
B

P
E

D
IA

re
st
ri
ct
io
n

P
’

R
’

R
el

at
io

n
|I

(r
1
)
∩

r 2
|

12
ge

os
pe

ci
es

:i
nK

in
gd

om
=

ht
tp

:/
/l

od
.g

eo
sp

ec
ie

s.
or

g/
ki

ng
do

m
s/

A
a

rd
f:

ty
pe

=
db

pe
di

a:
A

ni
m

al
99

.9
6

99
.9

6
r 1

=
r 2

30
29

13
ge

os
pe

ci
es

:h
as

O
rd

er
N

am
e=

L
ep

id
op

te
ra

db
pe

di
a:

or
de

r=
ht

tp
://

db
pe

di
a.

or
g/

re
so

ur
ce

/L
ep

id
op

te
ra

10
0

99
.4

2
r 1

=
r 2

34
4

14
ge

os
pe

ci
es

:h
as

O
rd

er
N

am
e=

L
ep

id
op

te
ra

db
pe

di
a:

ki
ng

do
m

=
ht

tp
://

db
pe

di
a.

or
g/

re
so

ur
ce

/A
ni

m
al

&
db

pe
di

a:
or

de
r=

ht
tp

://
db

pe
di

a.
or

g/
re

so
ur

ce
/L

ep
id

op
te

ra
10

0
97

.6
8

r 1
=

r 2
33

8

15
ge

os
pe

ci
es

:h
as

G
en

us
N

am
e=

Fa
lc

o
db

pe
di

a:
ge

nu
s=

ht
tp

://
db

pe
di

a.
or

g/
re

so
ur

ce
/F

al
co

n
10

0
90

.9
r 1

=
r 2

10
16

ge
os

pe
ci

es
:h

as
O

rd
er

N
am

e=
P

ri
m

at
es

db
pe

di
a:

or
de

r=
ht

tp
://

db
pe

di
a.

or
g/

re
so

ur
ce

/P
ri

m
at

es
10

0
40

.2
2

r 2
⊂

r 1
35

#
M

G
I
re
st
ri
ct
io
n

G
E

N
E

ID
re
st
ri
ct
io
n

P
’

R
’

R
el

at
io

n
|I

(r
1
)
∩

r 2
|

17
bi

o2
rd

f:
su

bT
yp

e=
P

se
ud

og
en

e
bi

o2
rd

f:
su

bT
yp

e=
ps

eu
do

93
.7

6
93

.5
6

r 1
=

r 2
59

71
18

bi
o2

rd
f:

su
bT

yp
e=

P
se

ud
og

en
e

&
m

gi
:g

en
om

eS
ta

rt
=

17
ge

ne
id

:c
hr

om
os

om
e=

17
&

bi
o2

rd
f:

su
bT

yp
e=

ps
eu

do
91

.4
9

94
.3

8
r 1

=
r 2

26
9

19
bi

o2
rd

f:
ch

ro
m

os
om

eP
os

it
io

n=
-1

.0
0

&
m

gi
:g

en
om

eS
ta

rt
=

4
ge

ne
id

:c
hr

om
os

om
e=

4
&

bi
o2

rd
f:

su
bT

yp
e=

ps
eu

do
97

.0
7

14
.7

9
r 2

⊂
r 1

33
2

#
G

E
O

S
P

E
C

IE
S
re
st
ri
ct
io
n

G
E

O
S

P
E

C
IE

S
re
st
ri
ct
io
n

P
’

R
’

R
el

at
io

n
|I

(r
1
)
∩

r 2
|

20
ge

os
pe

ci
es

:h
as

K
in

gd
om

N
am

e=
A

ni
m

al
ia

ge
os

pe
ci

es
:in

K
in

gd
om

=
ht

tp
://

lo
d.

ge
os

pe
ci

es
.o

rg
/k

in
gd

om
s/

A
a

91
.9

9
10

0
r 1

=
r 2

56
3

21
ge

os
pe

ci
es

:h
as

C
la

ss
N

am
e=

In
se

ct
a

ge
os

pe
ci

es
:i

nC
la

ss
=

ht
tp

:/
/l

od
.g

eo
sp

ec
ie

s.
or

g/
bi

oc
la

ss
es

/a
Q

ad
o

87
.8

3
10

0
r 1

⊂
r 2

19
5

22
ge

os
pe

ci
es

:i
nF

am
il

y=
ht

tp
:/

/l
od

.g
eo

sp
ec

ie
s.

or
g/

fa
m

il
ie

s/
am

T
J9

ge
os

pe
ci

es
:h

as
S

ub
fa

m
il

yN
am

e=
S

ig
m

od
on

ti
na

e
10

0
37

.0
3

r 2
⊂

r 1
10

Linking and Building Ontologies of Linked Data 611

of Educational Institutions. However, as there are only 3 other Schools (outside the
US), extensionally these classes are very close, as shown by alignment 10. This exam-
ple illustrates that reasoning extensionally actually provides additional insight on the
relationship between the sources. Alignments 13 and 14 show two equivalent align-
ments that have different support due to missing assertions in one of the ontologies (the
property dbpedia:kingdom for all moths and butterflies).

Our approach makes an implicit ‘closed-world’ assumption in using the instances of
a class to determine the relationships between the classes in different sources. We be-
lieve that this is an important feature of our approach in that it allows one to understand
the relationships in the actual linked data and their corresponding ontologies. The align-
ments generated can be readily used for modeling and understanding the sources since
we are modeling what the sources actually contain as opposed as to what an ontology
disassociated from the data appears to contain based on the class name or description.
Moreover, even if we delve into the open-world assumption of data, it would be very
difficult to categorize the missing instances as either: (1) yet unexplored, (2) explored
but purposefully classified as not belonging to the dataset, or (3) explored but not in-
cluded in the dataset by mistake. Hence, our method provides a practical approach to
understanding the relationships between sources.

In summary, our algorithm is able to find a significant number of interesting align-
ments, both equivalent and subset relationships, as well as build and refine the ontolo-
gies of real sources in the Web of Linked Data.

5 Related Work

There is a large body of literature on ontology matching [12]. Ontology matching has
been performed based on terminological (e.g. linguistic and information retrieval tech-
niques [11]), structural (e.g. graph matching [15]), and semantic (e.g. model-based)
approaches or their combination. The FCA-merge algorithm [18] uses extensional tech-
niques over common instances between two ontologies to generate a concept lattice in
order to merge them and, thus, align them indirectly. This algorithm, however, relies on
a domain expert (a user) to generate the merged ontology and is based on a single corpus
of documents instead of two different sources, unlike our approach. A strong parallel to
our work is found in Duckham et al. [10], which also uses an extensional approach for
fusion and alignment of ontologies in the geospatial domain. The difference in our ap-
proach in comparison to their work (apart from the fact that it predates Linked Data) is
that while their method fuses ontologies and aligns only existing classes, our approach
is able to generate alignments between classes that are derived from the existing on-
tology by imposing restrictions on values of any or all of the properties not limited to
the class type. The GLUE system [9] also uses an instance-based similarity approach to
find alignments between two ontologies. It uses the labels of the classes that a concept
belongs to along with the textual content of the attribute values of instances belonging
to that concept to train a classifier and then uses it to classify instances of a concept
from the other ontology as either belonging to the first concept or not. Similarly, it also
tries to classify the concepts in the other direction. GLUE then hypothesizes alignments
based on the probability distributions obtained from the classifications. Our approach,

612 R. Parundekar, C.A. Knoblock, and J.L. Ambite

instead, relies on the links already present in the Web of Linked Data, which in some
cases uses a much more sophisticated approach for finding instance equivalences.

Most of the work in information integration within the Web of Linked Data is in
instance matching as explained in Bizer et al. [7]. Raimond et al. [17] use string and
graph matching techniques to interlink artists, records, and tracks in two online music
datasets (Jamendo and MusicBrainz) and also between personal music collections and
the MusicBrainz dataset. Our approach solves a complimentary piece of the informa-
tion integration problem on the Web of Linked Data by aligning ontologies of linked
data sources. Schema matching in the Web of Linked Data has also been explored by
Nikolov et al. [2], who use existing instance and schema-level evidence of Linked Data
to augment instance mappings in those sources. First, instances from different sources
are clustered together by performing a transitive closure on owl:sameAs links such that
all instances in a cluster are equivalent. Class re-assignment is then performed by la-
beling each instance with all the other classes in the same cluster. Second, a similarity
score is computed based on the size of the intersection sets and classes are labeled as
equivalent. Finally, more equivalence links are generated based on the new class assign-
ments. Our approach differs from this in the sense that, first, the class re-assignment step
increases the coverage of a class. Such an assumption in aligning schemas would bias
the extensional approach as it modifies the original extension of a class. Second, only
existing classes are explored for similarity in that work and thus faces severe limitations
with rudimentary ontologies like GEONAMES, where our approach performs well as it
considers restriction classes.

6 Conclusion

The Web of Linked Data contains linked instances from multiple sources without the
ontologies of the sources being themselves linked. It is useful to the consumers of the
data to define the alignments between such ontologies. Our algorithm generates align-
ments, consisting of conjunctions of restriction classes, that define subsumption and
equivalence relations between the ontologies. This paper focused on automatically find-
ing alignments between the ontologies of geospatial, zoology and genetics data sources
and building such ontologies using an extensional technique. However, the technique is
general and can be applied to other Web of Linked Data data sources.

In our future work, we plan to improve the scalability of our approach, specifically,
improve the performance of the algorithm that generates alignment hypotheses by us-
ing a more heuristic exploration of the space of alignments. The sizes of the sources in
this paper were quite large (on the order of thousands of instances after preprocessing).
Although we have fixed a minimum support size of ten instance pairs for a hypothesis,
the effectiveness of the extensional approach needs to be verified when the sources are
small (number of instances in the order of hundreds or less). We also plan to explore
the integration of this work with our previous work on automatically building models of
sources [1]. Linking the data from a newly discovered source with a known source al-
ready linked to an ontology will allow us to more accurately determine the classes of the
discovered data. Finally, we plan to apply our alignment techniques across additional
domains and to pursue in depth alignments in biomedical Linked Data.

Linking and Building Ontologies of Linked Data 613

Acknowledgements

This work was supported in part by the NIH through the following NCRR grant: the
Biomedical Informatics Research Network (1 U24 RR025736-01), and in part by the
Los Angeles Basin Clinical and Translational Science Institute (1 UL1 RR031986-01).

References

1. Ambite, J.L., Darbha, S., Goel, A., Knoblock, C.A., Lerman, K., Parundekar, R., Russ, T.:
Automatically constructing semantic web services from online sources. In: Bernstein, A.,
Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.)
ISWC 2009. LNCS, vol. 5823, pp. 17–32. Springer, Heidelberg (2009)

2. Andriy Nikolov, V.U., Motta, E.: Data Linking: Capturing and Utilising Implicit Schema
Level Relations. In: International Workshop on Linked Data on the Web, Raleigh, North
Carolina (2010)

3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia: A nucleus
for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon,
L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux,
P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg
(2007)

4. Auer, S., Lehmann, J., Hellmann, S.: LinkedGeoData: Adding a Spatial Dimension to the
Web of Data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta,
E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 731–746. Springer, Heidelberg
(2009)

5. Belleau, F., Tourigny, N., Good, B., Morissette, J.: Bio2RDF: A Semantic Web atlas of post
genomic knowledge about human and mouse, pp. 153–160. Springer, Heidelberg (2008)

6. Berners-Lee, T.: Design Issues: Linked Data (2009),
http://www.w3.org/DesignIssues/LinkedData.html

7. Bizer, C., Cyganiak, R., Heath, T.: How to publish linked data on the web (2007),
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/

8. Ding, L., Shinavier, J., Finin, T., McGuinness, D.L.: owl: sameAs and Linked Data: An
Empirical Study. In: Second Web Science Conference, Raleigh, North Carolina (2010)

9. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Ontology matching: A machine learning
approach. In: Handbook on Ontologies, pp. 385–516 (2004)

10. Duckham, M., Worboys, M.: An algebraic approach to automated geospatial information
fusion. International Journal of Geographical Information Science 19(5), 537–557 (2005)

11. Euzenat, J.: An API for Ontology Alignment. In: McIlraith, S.A., Plexousakis, D., van
Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 698–712. Springer, Heidelberg (2004)

12. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
13. Haklay, M.M., Weber, P.: OpenStreetMap: user-generated street maps
14. Halpin, H., Hayes, P.J.: When owl: sameAs isn’t the same: An analysis of identity links on

the semantic web. In: International Workshop on Linked Data on the Web, Raleigh, North
Carolina (2010)

15. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph matching
algorithm and its application to schema matching. In: International Conference on Data En-
gineering, San Jose, California, pp. 117–128 (2002)

http://www.w3.org/DesignIssues/LinkedData.html
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/

614 R. Parundekar, C.A. Knoblock, and J.L. Ambite

16. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB
Journal 10(4), 334–350 (2001)

17. Raimond, Y., Sutton, C., Sandler, M.: Automatic interlinking of music datasets on the se-
mantic web. In: First Workshop on Linked Data on the Web, Beijing, China (2008)

18. Stumme, G., Maedche, A.: FCA-Merge: Bottom-up merging of ontologies. In: International
Joint Conference on Artificial Intelligence, Seattle, Washington, pp. 225–234 (2001)

19. Vatant, B., Wick, M.: Geonames ontology, http://www.geonames.org/ontology/

http://www.geonames.org/ontology/

A Feature and Information Theoretic Framework
for Semantic Similarity and Relatedness

Giuseppe Pirró� and Jérôme Euzenat

INRIA Rhône-Alpes, Montbonnot, France

{Giuseppe.Pirro,Jerome.Euzenat}@inrialpes.fr

Abstract. Semantic similarity and relatedness measures between on-

tology concepts are useful in many research areas. While similarity only

considers subsumption relations to assess how two objects are alike, relat-

edness takes into account a broader range of relations (e.g., part-of). In

this paper, we present a framework, which maps the feature-based model

of similarity into the information theoretic domain. A new way of com-

puting IC values directly from an ontology structure is also introduced.

This new model, called Extended Information Content (eIC) takes into

account the whole set of semantic relations defined in an ontology. The

proposed framework enables to rewrite existing similarity measures that

can be augmented to compute semantic relatedness. Upon this frame-

work, a new measure called FaITH (Feature and Information THeoretic)

has been devised. Extensive experimental evaluations confirmed the suit-

ability of the framework.

Keywords: Semantic Similarity, Feature Based Similarity, Ontologies.

1 Introduction

Semantic similarity and relatedness investigates how alike two or more objects
are, and plays an important role in many contexts. Generally speaking, similarity
allows to infer knowledge and categorize objects into kinds. This is important
when either it is not possible to exactly state what properties are salient for
an object, or when it is not easy to separate an object into distinct properties
[5,26]. Semantic similarity has a long tradition in psychology and cognitive sci-
ence where different models have been postulated. Among these, the geometric
model enables to asses similarity between entities by considering them as points
in a dimensionally organized metric space. The feature-based model, leverages
features (i.e., characteristics) of the examined objects and assumes that similar-
ity is a function of both common and distinctive features [24]. Recently, find-
ings in information theory have been considered in computing similarity [19].
From a computer science perspective, similarity measures exploit some source of
knowledge such as search engines [3] or ontologies such as WordNet [13]. More
recently, similarity measures have been defined in Description Logics (DLs) [2,4].
In [4] several similarity measures are described, which take into account ontology
� This work was carried out during the tenure of an ERCIM ”Alain Bensoussan”

Fellowship Programme.

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 615–630, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

616 G. Pirró and J. Euzenat

instances for assessing the similarity between two concepts. While similarity only
considers subsumption relations to assess how two objects are alike, relatedness
takes into account a broader range of relations (e.g., part-of). The work presented
in this paper focuses on computing similarity and relatedness by exploiting the
terminological definition of ontology concepts. We leave the investigation about
how this method can be applied to DLs as a future work.

Computing semantic similarity between ontology concepts is an important is-
sue since having many applications in different contexts including: Information
Retrieval, to improve the performance of current search engines [8], ontology
matching, to discover correspondences between entities belonging to different
ontologies [16], semantic query routing, to choose among the set of possible
peers only those relevant, bioinformatics to assess the similarity between pro-
teins [25] just to cite a few. This paper presents a semantic similarity framework,
which is based on two main pillars. One is the projection of the feature-based
model of similarity into the information theoretical domain. The reason to com-
bine these two models is twofold. On one hand, the feature-based model has
a solid theoretical underpinning supported by several psychological studies [24]
and is more flexible than other theoretical models (e.g., geometric). On the other
hand, the information-theoretic formulation of similarity allows to compare con-
cept features not by simply counting object properties but taking into account
the informativeness of the concepts being compared. The second pillar, is a new
way to obtain IC values called Extended Information content (eIC). eIC con-
siders the whole set of semantic relations defined in an ontology and assigns a
score of informativeness to each concept without referring to external corpora
as usually done by traditional IC-based approaches where time expensive and
corpus-dependent occurrence count has to be performed.

The generality of this framework enables to rewrite several existing similarity
measures that can be augmented to compute semantic relatedness. This as-
pect has been investigated and resulted in an improvement of existing similarity
measures as will be discussed in Section 4. Finally, a new measure called FaITH
(Feature and Information Theoretic) has been designed, which is a versatile tool
to compute both similarity and relatedness. Extensive experimental evaluation
of similarity and relatedness show the suitability of the proposed framework and
FaITH in particular.

The remainder of this paper is organized as follows. Section 2 provides some
background and surveys on popular measures. Section 3 presents the new sim-
ilarity framework and the logical path toward its definition; here the FaITH
measure and the eIC are discussed. Section 4 presents an extensive evaluation
campaign. Section 5 concludes the paper.

2 Definitions and Background

We consider an ontology O as a graph, where nodes represent concepts and edges
represent relations between concepts. If we consider the hierarchical structure of
the ontology, each concept can have a set of sub-concepts (its descendants) in

A Feature and IC Framework for Semantic Similarity and Relatedness 617

the hierarchy. However, an ontology usually includes a broader set of semantic
relation such as part-of. Figure 1 reports an excerpt of an ontology. Hereafter we
will consider WordNet as reference ontology even if the same reasoning applies
to any other ontology. In WordNet, the definition of a concept consists of its
immediate superordinate(s) followed by a relative clause that describes how this
concept differs from all others. For example Fortified Wine is distinguished from
Wine because “... alcohol (usually grape brandy)” has been added just as the
gloss accompanying its definition mentions.

Fig. 1. An excerpt of ontology

An object feature (a concept in our case) can be seen as a property of the
object. According to the definition above, concepts in the hierarchy inherit all the
features of their superordinate even if they can have their own specific features.
As an example, since car and bicycle both serve to transport people or objects,
in other words they are both types of vehicles, they share all features pertaining
to the concept vehicle. However, each concept has also its specific features as
steering wheel for car and pedal for bicycle. Moreover, even if specialization
relations constitute the majority in WordNet, there are other kinds of relations
accompanying each definition that are useful to identify object features. For
instance, car has a relation of type part-of with engine whereas bicycle has a
part-of relation with sprocket. The use of immediate concept features can be
seen as a special case of semantic neighbourhood with radius equals to 1.

Similarity or relatedness measures, by looking at the ontology structure or by
exploiting some additional information, address the problem of assessing (typi-
cally in terms of a numerical score) how alike two concepts are. As an example
of similarity and relatedness, car and bicycle are similar whereas car and wheel
are related. The choice to focus either on similarity or relatedness depends on
the particular application context, even though many approaches to compute re-
latedness are extensions of similarity measures [6,20]. The framework presented
in this paper can be adopted to compute both similarity and relatedness.

618 G. Pirró and J. Euzenat

2.1 State of the Art

Similarity measures can be divided into different and not necessarily disjoint
categories. In this work we consider information-theoretic approaches, ontology-
based approaches and hybrid approaches.

Information Theoretic Approaches. Information theoretic approaches em-
ploy the notion of Information Content (IC), which quantifies the informative-
ness of concepts. Early IC approaches [19,9,12] obtained IC values by associating
probabilities to each concept in an ontology on the basis of its occurrences in
large text corpora. In the specific case of hierarchical ontologies, these proba-
bilities are cumulative as we travel up from specific concepts to more abstract
ones. This means that every occurrence of a concept in a given corpus is also
counted as an occurrence of each concept containing it. IC values are obtained by
computing the negative likelihood of encountering a concept in a given corpus.
Note that this method ensures that IC is monotonically decreasing as we move
from the leaves of the taxonomy to its roots.

Resnik [19] was the first to leverage IC for the purpose of semantic similarity.
The basic intuition behind the use of the negative likelihood is that the more
probable a concept is of appearing in a corpus the less information it conveys,
in other words, infrequent words are more informative than frequent ones. Once
IC values are available for each concept in the considered ontology, semantic
similarity can be calculated. Resnik’s formula to compute similarity states that
similarity depends on the amount of information two concepts c1 and c2 share,
which is given by the Most Specific Common Abstraction (msca(c1, c2)), that
is, the concept that subsumes the two concepts being compared.

Starting from Resnik’s work, Jiang and Conrath [9] and Lin [12] proposed
two measures, which calculate IC-values in the same manner as proposed by
Resnik while correcting some problems with this similarity measure; if one were
to calculate simres(c1, c1) one would not obtain the maximal similarity value
of 1, but instead the value given by IC(c1). Besides, with Resnik’s approach
any two pairs of concepts having the same msca have exactly the same se-
mantic similarity; for instance, in the WordNet ontology, simres(Horse, P lant)
= simres(Animal, P lant) because in each case the msca(Horse, P lant) and
msca(Animal, P lant) is Living Thing. However, in this case the semantic leap
is not the same.

The Lin measure considers the ratio between the amount of information
needed to state the commonality between two concepts and the information
needed to describe them as discussed in [12].

Ontology Based Approaches. As for ontology based approaches, the work
by Rada et al. [18] is similar to the Resnik measure since it also computes the
msca(c1, c2), but instead of considering the IC as the value of similarity, it con-
siders the number of links that were needed to attain the msca(c1, c2). Obviously,
the less the number of links separating the concepts the more similar they are.
The work by Hirst et al., which actually measures relatedness, is similar to the
previous one but it uses a wider set of relations coupled with rules restricting

A Feature and IC Framework for Semantic Similarity and Relatedness 619

the way concepts are transversed [6]. Nonetheless, the intuition also in this case
is that the number of links separating two concepts is inversely proportional to
the degree of similarity.

Hybrid Approaches. Hybrid approaches usually combine multiple information
sources. Li et al. [11] proposed to combine structural semantic information in a
nonlinear model. The authors empirically defined a similarity measure that uses
shortest path length, depth and local density in a taxonomy and combine them.

In [22] the OSS distance function, combining a-priori scores of concepts with
distance, is proposed. OSS performs the following steps to assess similarity be-
tween two concepts c1 and c2: (i) computing the score of the concept c2 from
the concept c1; (ii) computing how much score has been transferred between the
concepts; (iii) transforming the transfer of score into a distance measure.

Our previous work [17], defined a similarity measure combining features and
information content that adopts Tversky’s contrast model. This measure treats
similarity between identical concepts as a special case and can give as output
negative values, which make difficult the interpretation of results. The differences
with the present work are: i) this paper describes a general framework, which
can be used to rewrite even existing similarity measures; ii) here a new similarity
measure is proposed, which adopts a different representation of the feature-based
model; iii) in this paper a new way to compute IC values is proposed, which
enables to compute both semantic similarity and relatedness; iv) an extensive
evaluation of relatedness is proposed for FaITH and several other measures.

2.2 Comparison among Measures

Each measure has its limitations. IC-based measures making use of corpora,
though having a strong mathematical formalization, may sometimes fail to cap-
ture certain aspects of language. For instance, it is possible that corpus such
as the British National Corpus, may not even mention certain words. Besides,
values of IC are obtained through time intensive analysis of corpora and can
heavily depend on the considered corpora (as discussed in Section 4). Ontology-
based approaches require to work with consistent ontologies, that is, ontologies
where distance between specific and more general concepts have the same inter-
pretation. As an example it is obvious that the semantic leap between Entity
and Psychological Feature is higher than that between Canine and Dog even if
both couples are separated by one edge. Finally, hybrid approaches require the
different information sources to be correctly “weighted”. A common limitation
of the considered approaches is that they can only compute either similarity or
relatedness. The proposed framework, and in particular FaITH, are more flex-
ible as the notion of Extended Information Content (eIC) can be exploited to
compute both similarity and relatedness without depending on external corpora.

3 A Framework for Semantic Similarity and Relatedness

This section presents a new framework for computing semantic similarity
and relatedness. After providing some preliminary definitions, the Tversky’s

620 G. Pirró and J. Euzenat

formulation of similarity, which is based on a representation of concepts ac-
cording to their features, is introduced. This will serve as a basis to motivate
the present framework. In more detail, the proposed framework adopts a ratio-
based formulation of the Tversky’s model of similarity and projects it into the
information-theoretic domain. Section 3.4 describes the Extended Information
Content (eIC), which can be used to compute relatedness between concepts.
Note that the generality of this framework enables to rewrite several existing
similarity measures, which can be augmented to compute relatedness.

3.1 Tversky’s Feature-Based Model of Similarity

Amos Tversky, in his seminal work, proposed an alternative way to compute
similarity by taking into account both common and distinguish “features ”of
the objects being compared. As an example of Tversky’s formulation, car and
bicycle both serve to transport people or objects (in other words they are both
types of vehicles), then they share all features that pertain to the concept vehicle.
However, each concept has also its specific features such as steering wheel for car
or pedal for bicycle. Moreover, if we look beyond the hierarchical structure of
their definitions we can find different kinds of relations with other concepts such
as engine part-of car and sprocket part-of bicycle. The set of all relations can be
exploited to further characterize concept features. Fig. 2 depicts an example of
such reasoning. Early semantic similarity models, such as the geometric model,

Fig. 2. An example of concept features

required to respect metric properties such as the triangle inequality or symmetry.
Tversky’s discussed several examples to support the idea that certain axioms,
required by the geometric model, were not necessary in the process of similarity
estimation. For instance, since Germany is judged to be more like Austria than
Austria is to Germany [24] the symmetry property could not be respected in
this case. According to the feature-based model, the similarity of a concept c1 to
a concept c2 is a function of the features common to c1 and c2, those in c1 but
not in c2 and those in c2 but not in c1. If we admit a function Ψ(c) that yields
the set of features relevant to c, Tversky’s similarity model can be represented
by the following equation, also known as contrast model :

simtvr(c1, c2) = αF(Ψ(c1)∩Ψ(c2))−βF(Ψ(c1)\Ψ(c2))−γF(Ψ(c2)\Ψ(c1)). (1)

A Feature and IC Framework for Semantic Similarity and Relatedness 621

where F is some function that reflects the salience of a set of features, and α,
β and γ are parameters that provide for differences in focus on the different
components. According to this model, features in common increase similarity
whereas features that are unique to the two objects decrease similarity. However,
note that the above formulation is not framed in information theoretic terms
since it is based on sets of concept features.

3.2 A Ratio-Based Formulation of Tverky’s Similarity Model

The difficulty with the contrast model described in equation (1) and discussed in
our previous study [17] is that the more unique features a concept presents the
lower the similarity. Moreover similarity values are not bounded between 0 and
1, which can make interpretation of results difficult. To overcome these issues,
therefore, a ratio model is more appropriate since it is bounded between 0 and
1, irrespective of the size of the features being compared. Thus a more useful
definition of feature-based similarity is:

simtvr−ratio(c1, c2) =
F(Ψ(c1) ∩ Ψ(c2))

βF(Ψ(c1) \ Ψ(c2)) + γF(Ψ(c2) \ Ψ(c1)) + F(Ψ(c1) ∩ Ψ(c2))
.

(2)

Note that α = 1 in the ratio model and then common features are maximally
important in process of similarity estimation. At this point there are two main
tasks we can perform:

1. Assess the degree to which concept c1 and c2 are similar to each other. In
this case β = γ since the similarity is not intended to be directional.

2. Assess the degree to which concept c2 is similar to concept c1. In this second
task, similarity is directional and we are more interested in the features in
c1 than we are in the features unique to c2. Here, β and γ do not need
to be equal. This latter case is useful in many application contexts such as
Information Retrieval (IR) or clustering where starting from a concept we
are interested in finding what it is similar to.

Table 1 analyzes different scenarios obtained by manipulating the coefficients β
and γ in equation (2). For the purpose of this paper, we consider β = γ since
we want to compute the similarity not directionally. Moreover, for the definition
of the ratio based model described in equation (2) α = 1, which maximizes the
contribution of common features. We leave as future work the investigation of
other values for these parameters in more targeted applications such as IR.

3.3 The FaITH Similarity Measure

This section describes the FaITH measure for semantic similarity and relatedness.
The cornerstone of this measure is the msca(c1, c2), which reflects the information
shared by two concepts c1 and c2 in an ontology structure. In the information-
theoretic domain, Resnik exploited the msca(c1, c2) to assess the similarity be-
tween concepts. IC values are obtained by exploiting equation (3):

IC(c) = −log p(c). (3)

622 G. Pirró and J. Euzenat

Table 1. Possible scenarios obtained by manipulating equation (2)

Case Coefficients Description

Commonalities be-

tween c1 and c2

β = γ = 0 If there exists any commonality then

simtvr′(c1, c2) = 1

Given c1 assess to

which degree c2 is

similar to it

β = 1, γ = 0 When the full set of features

of c1 are contained in c2 then

simtvr′(c1, c2) =
αF(Ψ(c1)∩Ψ(c2))

βF(Ψ(c1)\Ψ(c2))+αF(Ψ(c1)∩Ψ(c2))

β = 0, γ = 1 When the set of features of c1
contains the features of c2 then

simtvrr (c1, c2) =
αF(Ψ(c1)∩Ψ(c2))

γF(Ψ(c2)\Ψ(c1))+αF(Ψ(c1)∩Ψ(c2))

Given c1 and c2 as-

sess to which degree

they are similar to

each other

β=γ = 1 Tversky’s similarity is represented in terms of

Tanimoto index.

β=γ = 0.5 Tversky’s similarity is represented in terms of

Dice index.

where c is a concept and p(c) is the probability of encountering c in a given
corpus. Note that this method ensures that IC is monotonically decreasing as
we move from the leaves of the taxonomy to its roots.

In Fig. 2, the msca(car, bicycle) is wheeled vehicle and these two concepts
share all the features belonging to their msca. In a feature-based formulation of
similarity, the msca(c1, c2) can be seen as the intersection of features from c1 and
c2. Therefore, one can speculate that the function F, that reflects the saliency
of features, can be substituted by the function IC in the information theoretic
domain (this new IC is referred to as ICfeatures). Starting from this assumption,
by looking at Fig. 2, it is immediate to infer that the set of features specific
to car (resp. bicycle) is given by ICfeatures(car)− ICfeatures(wheeled vehicle)
(resp. ICfeatures(bicycle)−ICfeatures(wheeled vehicle)). These three analogies,
generalized in Table 2, are the building blocks of the proposed framework.

Table 2. Mapping between feature-based and information theoretic similarity models

Description Feature-based model Information-theoretic model

Common features Ψ(c1) ∩ Ψ(c2) IC(msca(c1, c2))

Features of c1 alone Ψ(c1) \ Ψ(c2) IC(c1) − IC(msca(c1, c2))

Features of c2 alone Ψ(c2) \ Ψ(c1) IC(c2) − IC(msca(c1, c2))

Moreover, as it will be discussed in Section 3.4, the way we compute the IC
values for each concept (i.e., eIC) can take into account the different features of
an object defined both in terms of the hierarchical structure and other kinds of
semantic relations. By substituting the analogies from Table 2 in equation (2)
the similarity measure called FaITH, reported in equation (4), is obtained.

simF aIT H (c1, c2) =
IC(msca(c1, c2))

β(IC(c1) − IC(msca(c1, c2))) + γ(IC(c2) − IC(msca(c1 , c2))) + IC(msca(c1, c2))
.

(4)

A Feature and IC Framework for Semantic Similarity and Relatedness 623

As we are concerned to compute how two concepts c1 and c2 are similar to each
other we set the values of β and γ to 1 (see Table 1) thus obtaining:

simF aITH(c1, c2) =
IC(msca(c1, c2))

IC(c1) + IC(c2) − IC(msca(c1, c2))
. (5)

Note that in the case of ontologies with multiple inheritance, the msca(c1, c2)
may be unique. In this case, FaITH considers the most informative msca (i.e.,
the msca with the highest information content).

3.4 Extended Information Content (eIC)

The proposed framework combines the feature and the information theoretic
models of similarity. One of the main difficulty with this model is that IC values
have to be derived by analyzing large corpora, which may not even contain cer-
tain specific words. In order to overcome this issue, the intrinsic IC formulation
proposed in [23] is adopted. The intrinsic IC (iIC) for a concept c is defined as:

iIC(c) = 1− log(sub(c) + 1)
log(maxcon)

. (6)

where the function sub returns the number of subconcepts of a given concept
c. Note that concepts representing leaves in the taxonomy will have an IC of
one, since they do not have hyponyms. The value of one states that a concept
is maximally expressed and is not further differentiated. Moreover maxcon is a
constant that indicates the total number of concepts in the considered taxonomy.

However, since an ontology usually contains relations beyond inheritance also
useful to assess to what extent two concepts are alike, the Extended Information
Content (eIC) is introduced. eIC by investigating each kind of ontological rela-
tion between concepts provides a better indicator about the features of concepts
and then can be used to compute relatedness. For instance, by only focusing on
isa relations, in the example in Fig. 2 we would lose some important informa-
tion (e.g., that car has part-of engine or that bicycle has as part-of sprocket)
that can help to further characterize commonalities and differences between two
concepts. For each concept, the coefficient EIC is defined as follows:

EIC(c) =
m∑

j=1

∑n
k=1 iIC(ck ∈ CRj))

|CRj |
. (7)

This formula takes into account all the m kinds of relations that connect a
given concept c with other concepts. Moreover, for all the concepts at the other
end of a particular relation (i.e., each ck ∈ CRj) the average iIC is computed.
This enables to take into account the expressiveness of concepts to which a
given concept is related in terms of their information content. The final value of
Extended Information Content (eIC) is computed by weighting the contribution
of the iIC and EIC coefficients thus leading to:

eIC(c) = ζiIC(c) + ηEIC(c). (8)

624 G. Pirró and J. Euzenat

The two parameters ζ and η can be settled in order to give more or less emphasis
to the hierarchical IC of the two concepts. At this point, we can rewrite equation
(5) thus obtaining:

simF aITH(c1, c2) =
eIC(msca(c1, c2))

eIC(c1) + eIC(c2) − eIC(msca(c1, c2))
. (9)

This similarity measure corrects some drawbacks of existing approaches. First,
it exploits features of concepts, expressed in terms of IC, and not only their
position in the ontology structure. Second, it corrects the problem with Resnik’s
measure, in fact, simFaITH(c1, c1) = 1. Finally, by taking into account relations
beyond inheritance, FaITH allows to compute semantic relatedness.

4 Evaluation

This section discusses the evaluation of the FaITH similarity measure and its
comparison w.r.t. the state of the art. In the first experiment we evaluated FaITH
as a semantic similarity measure while in the second experiment we evaluated
FaITH as a semantic relatedness measure as using the eIC formulation. Finally,
in order to have an insight of how FaITH works with more domain-related on-
tologies, we performed an evaluation using couples of concepts taken from the
MeSH biomedical ontology. In each experiment, we evaluated the performance
of the different methods in two settings. The first one (denoted as F + eIC)
by exploiting the proposed framework along with the eIC while the second one
using the classical approach to compute IC without mapping features in the IC
domain. In particular, the SemCor(S) Brown (B) and BNC (Bnc) text corpora,
of increasing size, have been used to obtain IC values. For the Li measure we
adopted the same optimal parameter values as indicated by authors in [11].

In order to have an idea of the improvement using the F + eIC formulation
we computed for each measure and corpus the loss (L) in performance, which
represents how much the performance of a given measure decrease when using
the classical IC formulation. Besides, for each evaluation, as statistical test of sig-
nificance, we computed the p-value. The analyzed similarity measures have been
implemented in the Java WordNet Similarity Library available upon request,
along with the datasets, at http://grid.deid.unical.it/similarity.

4.1 Experiment 1: Evaluating FaITH on Similarity

In the first experiment, we evaluate the FaITH measure on a dataset collected by
an online similarity experiment described in our previous work [17]. The dataset
contains similarity judgments for 65wordpairs [21] (referred to asSR&G)which are
commonly used, along with a subset of 28 word pairs [14] (referred to as SM&C),
to measure accuracy of similarity measures. The word pairs in the dataset have
been originally chosen to range from very similar (e.g., car-automobile) to semanti-
cally unrelated (e.g., chord-smile) as discussed in [21]. Figure 3 reports the ratings
of similarity provided by both human participants and computational methods.
Values of correlation (ρ) for the different measures are reported in Table 3. The

http://grid.deid.unical.it/similarity

A Feature and IC Framework for Semantic Similarity and Relatedness 625

 0

 0.2

 0.4

 0.6

 0.8

 1

ge
m

-j
ew

el
m

id
da

y-
no

on
au

to
m

ob
ile

-c
ar

ce
m

et
er

y-
gr

av
ey

ar
d

cu
sh

io
n-

pi
llo

w
bo

y-
la

d
co

ck
-r

oo
st

er
im

pl
em

en
t-

to
ol

fo
re

st
-w

oo
dl

an
d

co
as

t-
sh

or
e

au
to

gr
ap

h-
si

gn
at

ur
e

jo
ur

ne
y-

vo
ya

ge
se

rf
-s

la
ve

gr
in

-s
m

ile
gl

as
s-

tu
m

bl
er

co
rd

-s
tr

in
g

hi
ll-

m
ou

nd
m

ag
ic

ia
n-

w
iz

ar
d

fu
rn

ac
e-

st
ov

e
as

yl
um

-m
ad

ho
us

e
br

ot
he

r-
m

on
k

fo
od

-f
ru

it
bi

rd
-c

oc
k

bi
rd

-c
ra

ne
or

ac
le

-s
ag

e
sa

ge
-w

iz
ar

d
br

ot
he

r-
la

d
cr

an
e-

im
pl

em
en

t
m

ag
ic

ia
n-

or
ac

le
gl

as
s-

je
w

el
ce

m
et

er
y-

m
ou

nd
ca

r-
jo

ur
ne

y
hi

ll-
w

oo
dl

an
d

cr
an

e-
ro

os
te

r
fu

rn
ac

e-
im

pl
em

en
t

co
as

t-
hi

ll
bi

rd
-w

oo
dl

an
d

sh
or

e-
vo

ya
ge

ce
m

et
er

y-
w

oo
dl

an
d

fo
od

-r
oo

st
er

fo
re

st
-g

ra
ve

ya
rd

la
d-

w
iz

ar
d

m
ou

nd
-s

ho
re

au
to

m
ob

ile
-c

us
hi

on
bo

y-
sa

ge
m

on
k-

or
ac

le
sh

or
e-

w
oo

dl
an

d
gr

in
-l

ad
co

as
t-

fo
re

st
as

yl
um

-c
em

et
er

y
m

on
k-

sl
av

e
cu

sh
io

n-
je

w
el

bo
y-

ro
os

te
r

gl
as

s-
m

ag
ic

ia
n

gr
av

ey
ar

d-
m

ad
ho

us
e

as
yl

um
-m

on
k

as
yl

um
-f

ru
it

gr
in

-i
m

pl
em

en
t

m
ou

nd
-s

to
ve

au
to

m
ob

ile
-w

iz
ar

d
au

to
gr

ap
h-

sh
or

e
fr

ui
t-

fu
rn

ac
e

no
on

-s
tr

in
g

ro
os

te
r-

vo
ya

ge
co

rd
-s

m
ile

Si
m

ila
ri

ty
 v

al
ue

 FaITH (Features and IC)
P&S (Features and IC)

Li (Multisource)
Resnik (IC-based)

Lin (IC-based)
J&C (IC-based)

Human

Fig. 3. Results for similarity measures and human ratings

first column indicates the correlation by using the IC formulation introduced in
Section 3.4. Each other column considers the correlation according to one corpus
and the loss as compared to the result in the first column. The second column,
for instance, indicates that by using the SemCor(S) corpus, the correlation of the
Resnik measure is 0.71, with a loss of 16.4 % .

Table 3. Correlation values with F + eIC (ρ) and different corpora

Correlation on SM&C Correlation on SR&G

ρ ρS/L(%) ρB/L(%) ρBnc/L(%) ρ ρS/L(%) ρB/L(%) ρBnc/L(%)

Lenght 0.61 0.61 0.61 0.61 0.58 0.58 0.58 0.58

Depth 0.84 0.84 0.84 0.84 0.80 0.80 0.80 0.80

Li 0.91 0.91 0.91 0.91 0.90 0.90 0.90 0.90

Resnik 0.85 0.71/16.4 0.73/14.5 0.75/11.8 0.87 0.83/5.1 0.84/4.1 0.85/2.4

Lin 0.87 0.69/20.2 0.74/15.0 0.75/14.2 0.89 0.75/15.0 0.79/10.9 0.80/9.8

J&C 0.88 0.72/17.8 0.80/9.3 0.81/8.1 0.87 0.82/6.3 0.83/5.4 0.84/4.0

P&S 0.91 0.86/4.7 0.87/4.2 0.89/2.3 0.90 0.87/3.7 0.88/3.0 0.89/1.8

FaITH 0.92 0.87/5.5 0.88/4.6 0.90/2.4 0.91 0.88/3.3 0.88/2.9 0.90/1.0

For the Length measure, lower values correspond to higher similarity values.
For instance, the two word pairs (i.e., gem-jewel and automobile-car) have a
length equal to zero since belonging to the same WordNet synset respectively
and then are maximally similar according to the WordNet’s design principle.
On the other hand, examples of unrelated words are the couples rooster-voyage
and chord-smile having a path length of 30. The Depth measure obtained a
value of correlation of about 30% better than the Path measure. This measure

626 G. Pirró and J. Euzenat

assesses similarity by considering the depth of the msca(c1, c2). Edge counting
approaches reach the lowest correlation w.r.t. human ratings in both datasets.
That is because these approaches work well only when the values computed have
a “consistent interpretation”, that is, when the length of the path (resp. depth
of the msca(c1, c2)) between two general concepts and that between two specific
ones express the same semantic leap, which is not the case of WordNet.

As for IC-based approaches, Resnik’s measures obtained the lowest value of
correlation. However, the usage of the IC(msca(c1, c2)) brings better results in
terms of correlation as compared to path-based measures. The other two IC-
based measures (i.e., Lin and J&C) obtained better results since considering the
IC of the two concepts as well. As for hybrid approaches, the Li measure, which
combines the depth of the msca(c1, c2) and the length of the path between two
concepts, obtained a higher value of correlation. However, note that this mea-
sure to correctly weights the contributions of the different information sources
requires the tuning of two coefficients as described in [11]. The P&S measure,
described in [17], obtained a remarkable value of correlation in both SR&G and
SM&C . However, the P&S formulation treats the computation of similarity be-
tween identical concepts as a special case as discussed in [17]. Moreover, in some
cases, simP&S(c1,c2) < 0, which makes the interpretation of results difficult.

Moreover, this measure is not as flexible as FaITH, which can be adopted
to different contexts as discussed in Section 3.2. The FaiTH measure obtained
the best value of correlation in both SR&G and SM&C . Note that in all cases
the F + eIC formulation brings better results. The loss L can reach the 20%
and 15% with the Lin measure in SR&G and SM&C respectively. Moreover, us-
ing classical approaches the performance heavily depend on the adopted corpus
even if it can be noted that larger corpora bring better results. The p-values
in both evaluations are p − value < 0.001, which indicate that the results are
significant. Finally, one note about the couple car-journey. The two words, even
if generally related since a car can be the means to do a journey, are not similar.
This is because similarity, which is a special case of relatedness, only considers
the relations of hypernymy/hyponymy (i.e., isa). The FaITH measure assigned
a similarity score of 0.007 to this couple while the J&C, Resnik, Lin and P&S
assigned 0.346, 0.009, 0.013 and 0.233 respectively. In this case, the FaITH mea-
sure since giving the lowest value of similarity seems to better comply with the
definition of similarity. In summary, our intuition to exploit a ratio-based rep-
resentation of Tversky’s similarity model and project it into the information
theoretic domain is consistent.

4.2 Experiment 2: Evaluating FaITH on Relatedness

In this experiment, FaITH has been evaluated as a semantic relatedness mea-
sure by using the eIC formulation. For the evaluation, the WordSim353 dataset,
which is a test collection for measuring word relatedness often used in the liter-
ature has been adopted. Further detail on the dataset are available in [1]. Even
in this case, for each measure, the Pearson correlation coefficient w.r.t. human
ratings of similarity has been computed. In this evaluation we compare FaITH

A Feature and IC Framework for Semantic Similarity and Relatedness 627

with more relatedness measures. In particular, we also considered the Leacock
& Chodorow (referred to as Lch) [10] and the Wu & Palmer (referred to as
Wup) [27] measures. We also used a measure of relatedness between two words
(referred to as Ovp), which assesses the overlap score between two concepts by
augmenting glosses with glosses of related concepts [15]. The optimal values for
the parameters ζ and η, experimental determined, are 0.4 and 0.6 respectively.

Table 4. Evaluation on relatedness

Measure ρ ρS/L% ρB/L% ρBnc/L%

Lch 0.36 0.36 0.36 0.36

Wup 0.32 0.32 0.32 0.32

Ovp 0.21 0.21 0.21 0.21

Resnik 0.40 0.36/11.1 0.36/9.9 0.38/5.4

Lin 0.404 0.37/7.9 0.378/6.4 0.38/5.7

J&C 0.40 0.38/4.0 0.38/2.8 0.39/1.8

P&S 0.41 0.38/5.4 0.38/5.1 0.39/4.7

FaITH 0.43 0.40/7.0 0.40/6.3 0.40/5.8

While similarity measures perform extremely well on small similarity datasets
such as the M&C and R&G discussed in Section 4.1, their performance drasti-
cally decrease when applied to a larger dataset such as WordSim353. The values
of correlation reported in Table 4 are related to the word pairs contained in
WordNet. Note that for the Lch, Wup and Ovp measures the results are the
same as they are not based on IC.

As can be observed, FaITH performs clearly better than the other measures,
which substantiate our intuition of adopting the F + eIC strategy. Besides, all
the similarity measures perform worse when not using F + eIC. The loss (L)
in performance is reported in Table 4. In particular, all the IC-based measures
take advantage of this formulation, with the Resnik measure improving of about
11%. In the case of not adopting the F + eIC, correlation values heavily depend
on the considered corpus. Overall, FaITH and the eIC formulation represent a
promising technique to compute similarity and relatedness between words and
help to augment and improve existing similarity measures.

4.3 Experiment 3: Evaluation on the MeSH Ontology

The MeSH Medical Subject Headings (MeSH) ontology is mainly a hierarchy
of medical and biological terms. It consists of a controlled vocabulary and a
Tree. The controlled vocabulary contains several different types of terms such as
Descriptors, Qualifiers, Publication Types, Geographics and Entry terms. Entry
terms are the synonyms or the related terms to descriptors. MeSH descriptors are
organized in a tree, which defines the MeSH Concept Hierarchy. In the MeSH tree
there are 15 categories each of which is further divided into subcategories. For
each subcategory, its descriptors are arranged in a hierarchy from most general
to most specific. This evaluation investigates how FaITH performs with domain

628 G. Pirró and J. Euzenat

Table 5. Correlation with F + iIC

Measure ρ

Resnik 0.72

Lin 0.71

J&C 0.71

Li 0.70

P&S 0.72

FaITH 0.74

Table 6. Evaluation on MeSH

Word 1 Word 2 Human Resnik [19] Lin [12] J&C [9] Li [11] P&S [17] FaITH

Antibiotics Antibacterial Agents 0.93 1.00 1.00 1.00 0.99 1.00 1.00
Measles Rubeola 0.91 0.92 1.01 1.00 0.99 1.03 1.00
Chicken Pox Varicella 0.97 1.00 1.00 1.00 0.99 1.00 1.00
Down Syndrome Trisomy 21 0.87 1.00 1.00 1.00 0.99 1.00 1.00
Seizures Convulsions 0.84 0.88 1.04 0.90 0.81 1.10 0.99
Pain Ache 0.87 0.86 1.00 1.00 0.99 1.00 0.95
Malnutrition Nutritional Deficiency 0.87 0.62 1.00 1.00 0.98 1.00 0.87
Myocardial Ischemia Myocardial Infarction 0.75 0.59 0.92 0.89 0.80 0.85 0.83
Hepatitis B Hepatitis C 0.56 0.65 0.82 0.86 0.66 0.70 0.79
Pulmonary Valve Stenosis Aortic Valve Stenosis 0.53 0.65 0.78 0.81 0.66 0.64 0.76
Psychology Cognitive Science 0.59 0.68 0.77 0.81 0.80 0.63 0.75
Asthma Pneumonia 0.37 0.51 0.79 0.87 0.52 0.66 0.75
Diabetic Nephropathy Diabetes Mellitus 0.50 0.61 0.76 0.79 0.77 0.61 0.74
Hypothyroidism - Hyperthyroidism 0.41 0.62 0.73 0.75 0.63 0.57 0.72
Sickle Cell Anemia Iron Deficiency Anemia 0.44 0.60 0.72 0.79 0.36 0.56 0.71
Carcinoma Neoplasm 0.75 0.25 0.68 0.85 0.45 0.46 0.65
Urinary Tract Infection Pyelonephritis 0.65 0.47 0.58 0.67 0.42 0.42 0.60
Hyperlipidemia Hyperkalemia 0.15 0.33 0.48 0.47 0.51 0.32 0.56
Lactose Intolerance Irritable Bowel Syndrome 0.47 0.47 0.47 0.40 0.30 0.30 0.47
Adenovirus Rotavirus 0.44 0.27 0.33 0.45 0.35 0.20 0.40
Vaccines Immunity 0.59 0.00 0.00 0.52 0.00 0.00 0.34
Migraine Headache 0.72 0.23 0.24 0.37 0.17 0.14 0.80
Bacterial Pneumonia Malaria 0.15 0.00 0.00 0.20 0.13 0.00 0.22
AIDS Congenital Heart Defects 0.06 0.00 0.00 0.27 0.10 0.00 0.18
Sarcoidosis Tuberculosis 0.40 0.00 0.00 0.25 0.07 0.00 0.17
Anemia Appendicitis 0.03 0.00 0.00 0.19 0.13 0.00 0.13
Meningitis Tricuspid Atresia 0.03 0.00 0.00 0.19 0.13 0.00 0.13
Failure to Thrive Malnutrition 0.62 0.00 0.00 0.18 0.13 0.00 0.12
Sinusitis Mental Retardation 0.03 0.00 0.00 0.36 0.13 0.00 0.11
Hypertension Kidney Failure 0.50 0.00 0.00 0.21 0.13 0.00 0.11
Breast Feeding Lactation 0.84 0.00 0.00 0.04 0.08 0.00 0.03
Dementia Atopic Dermatitis 0.06 0.00 0.00 0.16 0.10 0.00 0.00
Osteoporosis Patent Ductus Arteriosus 0.15 0.00 0.00 0.03 0.10 0.00 0.00
Amino Acid Sequence - AntiBacterial Agents 0.15 0.00 0.00 0.15 0.00 0.00 0.00
Otitis Media Infantile Colic 0.15 0.00 0.00 0.07 0.08 0.00 0.00
Neonatal Jaundice Sepsis 0.19 0.00 0.00 0.19 0.16 0.00 0.00

related ontologies. Similarly to the first evaluation, a dataset of human similarity
judgments has been exploited (refer to [7] for further details). Results obtained
by computational methods are compared with those provided by humans in
Table 6 whereas, Table 5 reports values of correlations.

The P&S measure, which on WordNet similarity was the closest to FaITH,
obtained even in this case a lower value of correlation. Note that the Li mea-
sure, which on WordNet obtained a remarkable value of correlation, obtained
the lowest correlation on MeSH. We hypothesize that this can be due to two
reasons. First, the Li measure depends on two parameters to correctly balance
the contribution of the path between c1 and c2 to be compared and the depth
of their msca(c1, c2). Hence, it is possible that parameter values that achieved
a good correlation in WordNet do not obtain the same (comparable) perfor-
mance in MeSH. The second reason is related to the structure of the considered

A Feature and IC Framework for Semantic Similarity and Relatedness 629

ontology. MeSH is a more domain-specific ontology than WordNet and there-
fore, in MeSH the combination of path and depth in a non linear function as
suggested by the Li measure could not have the same consistent interpretation
as in WordNet. The three information content measures obtained better corre-
lation, with Resnik’s measure showing a slightly higher level of correlation. This
trend is in contrast with the results obtained by the same measure on WordNet
where it obtained the lowest correlation both on the M&C and R&G datasets.
This fact can be justified assuming the in MeSH the msca(c1, c2) better expresses
the amount of information shared by two terms. Finally, even on this dataset
the FaITH measure obtained the highest correlation. In this case the value of
correlation is lower than that obtained on WordNet. Results are significant due
to the very low value of p-value (i.e., p− value < 0.001).

5 Concluding Remarks and Future Work

This paper described a new model of similarity combining features [24] and
information-content [19]. In particular, by exploiting a ratio-based formulation
of the feature model a family of similarity measures as reported in Table 2 has
been defined. One of these measures, called FaITH, to quantify how two ontol-
ogy concepts are similar to each other, has been presented. Another contribution
of this paper is the definition of Extended Information Content (eIC) that en-
ables to compute relatedness between concepts by taking into account relations
beyond subsumption. The proposed framework enabled to rewrite existing IC-
based measures with significant improvement in their performance.

There are at least two interesting strands for future research. One is how
to extend the framework to Description Logics (DLs). The main aspect that
should be addressed is how to express Extended Information Content values for
concepts defined in DLs. Moreover, investigating how similarity depends on the
expressiveness of the considered DL is another interesting concern.

The second aspect we want to address is how this strategy, and in partic-
ular FaITH, works in more targeted applications such as document clustering,
information retrieval and query answering across ontologies.

References

1. Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Pasca, M., Soroa, A.: A Study on

Similarity and Relatedness Using Distributional and WordNet-based Approaches.

In: Proc. of NAACL-HLT (2009)

2. Borgida, A., Walsh, T., Hirsh, T.: Towards Measuring Similarity in Description

Logics. In: Proc. of Description Logics (2005)

3. Danushka, B., Yutaka, M., Mitsuru, I.: Measuring Semantic Similarity Between

Words using Web Search Engines. In: Proc. of WWW 2007, pp. 757–766 (2007)

4. D ’ Amato, C.: Similarity-based Learning Methods for the Semantic Web. PhD

Thesis, University of Bari (2007)

5. Son, J.Y., Goldstone, R.L.: The Transfer of Scientific Principles using Concrete and

Idealized Simulation. The Journal of the Learning Sciences (14), 69–110 (2005)

630 G. Pirró and J. Euzenat

6. Hirst, G., St-Onge, D.: Lexical Chains as Representations of Context for the De-

tection and Correction of Malapropisms. In: Fellbaum, C. (ed.) WordNet. An Elec-

tronic Lexical Database, ch. 13, pp. 305–332

7. Hliaoutakis, A.: Semantic Similarity Measures in MeSH Ontology and their Appli-

cation to Information Retrieval on Medline, Technical report, Technical Univ. of

Crete, Dept. of Electronic and Computer Engineering (2005)

8. Hliaoutakis, A., Varelas, G., Voutsakis, E., Petrakis, E.G.M., Milios, E.E.: Infor-

mation Retrieval by Semantic Similarity. Int. J. SWIS 2(3), 55–73 (2006)

9. Jiang, J.J., Conrath, D.W.: Semantic Similarity based on Corpus Statistics and

Lexical Taxonomy. In: Proc. of ROCLING X (1997)

10. Leacock, C., Chodorow, M.: Combining Local Context and WordNet Similarity for

Word Sense Identification. In: Fellbaum, C. (ed.) WordNet. An Electronic Lexical

Database, ch. 11, pp. 265–283

11. Li, Y., Bandar, A., McLean, D.: An Approach for Measuring Semantic Similarity

between Words Using Multiple Information Sources. IEEE TKDE 15(4), 871–882

12. Lin, D.: An Information-theoretic Definition of Similarity. In: Proc. of Conf. on

Machine Learning, pp. 296–304 (1998)

13. Miller, G.A.: WordNet an on-line Lexical Database. International Journal of Lexi-

cography 3(4), 235–312 (1990)

14. Miller, G.A., Charles, W.G.: Contextual Correlates of Semantic Similarity. Lan-

guage and Cognitive Processes (6), 1–28 (1991)

15. Banerjee, S., Pedersen, T.: Extended Gloss Overlaps as a Measure of Semantic

Relatedness. In: Proc. of IJCAI, pp. 805–810 (2003)

16. Pirró, G., Ruffolo, M., Talia, D.: SECCO: On Building Semantic Links in Peer to

Peer Networks. Journal on Data Semantics XII, 1–36 (2009)

17. Pirró, G.: A Semantic Similarity Metric Combining Features and Intrinsic Infor-

mation Content. Data Knowl. Eng. 68(11), 1289–1308 (2009)

18. Rada, R., Mili, H., Bicknell, M., Blettner, E.: Development and Application of a

measure on Semantic Nets. IEEE TSMC (19), 17–30 (1989)

19. Resnik, P.: Information Content to Evaluate Semantic Similarity in a Taxonomy.

In: Proc. of IJCAI, pp. 448–453 (1995)

20. Rodriguez, M.A., Egenhofer, M.J.: Determining Semantic Similarity among Entity

Classes from Different Ontologies. IEEE TKDE 15(2), 442–456 (2003)

21. Rubenstein, H., Goodenough, J.B.: Contextual Correlates of Synonymy.

CACM 8(10), 627–633 (1965)

22. Schickel-Zuber, V., Faltings, B.: OSS: A Semantic Similarity Function based on

Hierarchical Ontologies. In: IJCAI, pp. 551–556 (2007)

23. Seco, N., Veale, T., Hayes, J.: An Intrinsic Information Content measure for Se-

mantic Similarity in WordNet. In: Proc. of ECAI 2004, pp. 1089–1090 (2004)

24. Tversky, A.: Features of Similarity. Psychological Review 84(2), 327–352 (1977)

25. Wang, J., Du, Z., Payattakool, R., Yu, P., Chen, C.: A New Method to Measure

the Semantic Similarity of GO Terms. Bioinformatics 23(10), 1274–1281 (2007)

26. Watanable, S.: Knowing and Guessing: A Quantitative Study of Inference and

Information. Wiley, Chichester (1969)

27. Wu, Z., Palmer, M.: Verb semantics and Lexical Selection. In: Proc. of FQAS ACL

1994, pp. 133–138 (1994)

Combining Approximation and Relaxation in
Semantic Web Path Queries

Alexandra Poulovassilis and Peter T. Wood

London Knowledge Lab, Birkbeck, University of London, UK

{ap,ptw}@dcs.bbk.ac.uk

Abstract. We develop query relaxation techniques for regular path

queries and combine them with query approximation in order to sup-

port flexible querying of RDF data when the user lacks knowledge of its

full structure or where the structure is irregular. In such circumstances, it

is helpful if the querying system can perform both approximate matching

and relaxation of the user’s query and can rank the answers according

to how closely they match the original query. Our framework incorpo-

rates both standard notions of approximation based on edit distance and

RDFS-based inference rules. The query language we adopt comprises

conjunctions of regular path queries, thus including extensions proposed

for SPARQL to allow for querying paths using regular expressions. We

provide an incremental query evaluation algorithm which runs in poly-

nomial time and returns answers to the user in ranked order.

1 Introduction

The volume of semistructured data available to users on the web continues to
grow, increasingly in the form of RDF linked data. Given the complexity and
heterogeneity of such data, users may not be aware of its full structure and
need to be assisted by querying systems which do not require that users’ queries
necessarily match exactly the data structures being queried.

In this paper we consider general semistructured data modelled as a graph,
with RDF linked data being a particular application of this model. We are inter-
ested in developing efficient algorithms which allow for both approximate match-
ing and relaxation of users’ queries on such data, with the answers to queries
being returned to users in ranked order. We restrict our query language to that
of conjunctive regular path queries [2]. A conjunctive regular path (CRP) query
Q consisting of n conjuncts is of the form

(Z1, . . . , Zm)← (X1, R1, Y1), . . . , (Xn, Rn, Yn)

where each Xi and Yi, 1 ≤ i ≤ n, is a variable or constant, each Zi, 1 ≤ i ≤ m,
is a variable appearing in the body of Q, and each Ri, 1 ≤ i ≤ n, is a regular
expression over the alphabet from which edge labels in the graph are drawn.

The answer to a CRP query Q on a graph G, Q(G), is defined as follows. For
each conjunct (Xi, Ri, Yi), 1 ≤ i ≤ n, let ri be a binary relation over the scheme

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 631–646, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

632 A. Poulovassilis and P.T. Wood

(Xi, Yi). Let t[Xi] and t[Yi] denote the first and second components, respectively,
of any tuple t ∈ ri. There is a tuple t ∈ ri if and only if there exists a path from
node t[Xi] to node t[Yi] in G such that t[Xi] = Xi if Xi is a constant, t[Yi] = Yi

if Yi is a constant, and the concatenation of the edge labels in the path satisfies
the regular expression Ri. Then Q(G) = πZ1,...,Zm(r1 � · · · � rn).

Using regular expressions to query data has been much studied, e.g. [2,17],
as have approximate query matching techniques, e.g. [4,7,14,15,18]. In [13], we
studied a combination of these and showed that approximate matching of CRP
queries can be undertaken in polynomial time. The edit operations we allowed in
approximate matching of queries were insertions, deletions, substitutions, trans-
positions and inversions of edge labels (corresponding to reverse traversal of
edges) — each with an assumed edit cost of 1. Here, for simplicity of exposition,
we exclude inversions and transpositions — we note though that the techniques
we develop here extend straightforwardly to this more general case, and the
query complexity results still hold.

Example 1. The L4All system allows users to create and maintain a chronolog-
ical record of their learning, work and personal episodes — their “timelines” —
with the aim of supporting lifelong learners in exploring learning opportuni-
ties and in planning and reflecting on their learning [3]. Figure 1 illustrates a
fragment of data and metadata relating to a user’s timeline (where sc denotes
subclassOf). The episodes within a timeline have a start and an end date asso-
ciated with them (for simplicity these are not shown). Episodes are ordered by
their start date — as indicated by edges labelled next. There are several types
of episode, e.g. University and Work. Associated with each type of episode are
several properties — we show just two of these, qualif[ication] and job.

Suppose that Mary is studying for a BA in English and wishes to find out
what possible future career choices there are for her. Timelines may have edges
labelled prereq between episodes, indicating that the timeline’s owner believes
that undertaking an earlier episode was necessary in order for them to be able
to proceed to or achieve a later episode. So Mary might pose this query, Q1

1:

(?E2,?P)<-(?E1,type,University),(?E1,qualif.type,EnglishStudies),
(?E1,prereq+,?E2), (?E2,type,Work), (?E2,job.type,?P)

However, this will return no results relating to the timeline of Figure 1, even
though it is evident that this contains information that would be relevant to
Mary. This is because, in practice, users may or may not create prereq metadata
relating to their timelines. If Mary chooses to allow replacement of the edge label
prereq in her query by the label next, she can submit a variant of Q1:

(?E2,?P)<-(?E1,type,University), (?E1,qualif.type,EnglishStudies),
APPROX(?E1,prereq+,?E2),(?E2,type,Work),(?E2,job.type,?P)

The regular expression prereq+ can be approximated by the regular expression
next.prereq* at edit distance 1 from prereq+. This allows the system to return

1 In our assumed concrete syntax, variable names are preceded with ‘?’.

Combining Approximation and Relaxation in Semantic Web Path Queries 633

Education Occupation

Humanities Media Professional

Travel Service Occupation Editor

Languages Editor-in-Chief

Associate Editor

English Studies Air Travel Assistant Journalist Assistant Editor

sc

sc

sc

sc
sc

sc

sc

sc

sc
sc

sc

j22 j23 j24BA English

type type type type

ep21 ep22 ep23 ep24

next next next

prereq

qualif job job job

University Work Work Work

type type type type

Fig. 1. A fragment of timeline data and metadata

the answer (ep22,AirTravelAssistant) at an edit distance 1 from Q1. Mary
may judge this not to be relevant and may seek further results, at a further level
of approximation. The regular expression next.prereq* can be approximated
by next.next.prereq*, now at edit distance 2 from Q1, allowing the following
answers (ep23,Journalist), (ep24,AssistantEditor) to be returned. Mary
may judge both of these as being relevant, and she can then request the system
to return the whole of this user’s timeline for her to explore further.

Suppose now Mary knows she wants to become an Assistant Editor and would
like to find out how she might achieve this, given that she’s done an English
degree. Mary might pose this query, Q2:

(?E2,?P)<-(?E1,type,University), (?E1,qualif.type,EnglishStudies),
APPROX (?E1,prereq+,?E2), (?E2,job.type,?P)
APPROX (?E2,prereq+,?Goal), (?Goal,type,Work),
(?Goal,job.type,AssistantEditor)

At distance 0 and 1 there are no results from the timeline of Figure 1. At distance
2, the answers (ep22,AirTravelAssistant), (ep23,Journalist) are returned,
the second of which gives Mary potentially useful information.

Suppose Mary wants to know what other jobs, similar to an Assistant Editor,
might be open to her. There are many categories of jobs classified under Media
Professional but none of these will be matched by query Q2 above. What she
would like to pose instead (borrowing the ‘RELAX’ syntax of [12]) is query Q3:

(?E2,?P)<-(?E1,type,University),(?E1,qualif.type,EnglishStudies),
APPROX (?E1,prereq+,?E2),(?E2,job.type,?P)
APPROX (?E2,prereq+,?Goal), (?Goal,type,Work),

634 A. Poulovassilis and P.T. Wood

RELAX (?Goal,job.type,AssistantEditor)

which would relax Assistant Editor to its parent concept Editor, matching
jobs such as Assistant Editor, Associate Editor, Editor-in-Chief etc., as
well as in parallel approximating the two instances of prereq+. Query results
would be returned in increasing overall distance (relaxation and approximation)
from the original query.

As a further extension, suppose another user, Joe, wants to know what jobs
similar to being an Assistant Editor might be open to someone who has stud-
ied English or a similar subject at university. Subject disciplines are classi-
fied, e.g. English Studies under Languages which in turn is classified under
Humanities. So Joe may pose query Q4 which is identical to Q3 above but with
RELAX in front of (?E1,qualif.type,EnglishStudies). "#

In Section 2, we first consider computing approximate and relaxed answers for
regular path queries consisting of a single conjunct. We show that in both cases
answers can be computed in polynomial time in the size of the query and the
input graph, and returned to the user in ranked order. Section 3 generalises to the
case of multi-conjunct queries and shows that computation can still be achieved
in polynomial time as long as the queries are acyclic and have a fixed number
of head variables. In a multi-conjunct query, approximation and relaxation are
combined by allowing each conjunct to be qualified by either an APPROX or a
RELAX operator, as shown in the above example. Section 4 discusses related
work. Section 5 presents our conclusions and future work.

2 Single-Conjunct Regular Path Queries

In this paper we consider a semistructured data model comprising a directed
graph G = (V,E) and an ontology K = (VK , EK). V contains nodes repre-
senting entity instances or entity classes. E represents relationships between the
members of V . Each node in V is labelled with a distinct constant. Each edge in
E is labelled with a symbol drawn from a finite alphabet Σ∪{type}. VK contains
nodes representing entity classes or properties. Each node in VK is labelled with
a distinct constant. We call a node in VK representing an entity class a ‘class
node’ and a node representing a property a ‘property node’. So V ∩VK contains
the set of class nodes of V . Each edge in EK is labelled with a symbol drawn
from {sc, sp, dom, range}. We assume that Σ ∩ {type, sc, sp, dom, range} = ∅.
We also assume that the set of labels of edges in E, except for the label type,
is contained in the set of labels of property nodes in VK . We observe that this
general graph model encompasses RDF data, except that it does not allow for
the representation of RDF’s ‘blank’ nodes (but these are discouraged for linked
data [10]). It also comprises a fragment of the RDFS vocabulary: rdf:type,
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range, which we
abbreviate by type, sc, sp, dom, range.

A single-conjunct regular path query Q over a graph G is of the form:

vars← (X,R, Y) (1)

Combining Approximation and Relaxation in Semantic Web Path Queries 635

where X and Y are constants or variables, R is a regular expression over Σ ∪
{type}, and vars is the subset of {X,Y } that are variables.

A regular expression R over Σ ∪ {type} is defined as follows:

R := ε | a | type | | (R1 ·R2) | (R1|R2) | R∗ | R+

where ε is the empty string, a is any symbol in Σ, “ ” denotes the disjunction
of all constants in Σ ∪ {type}, and the operators have their usual meaning.

A path p in G = (V,E) from x ∈ V to y ∈ V is a sequence of the form
(v1, l1, v2, l2, v3, . . . , vn, ln, vn+1), where n ≥ 0, v1 = x, vn+1 = y and for each
vi, li, vi+1, vi

li→ vi+1 ∈ E. A path p conforms to a regular expression R if
l1 · · · ln ∈ L(R), the language denoted by R.

Given a single-conjunct regular path query Q and graph G, let θ be a matching
from variables and constants of Q to nodes of G, that maps each constant to
itself. A tuple θ(vars) satisfies Q on G if there is a path from θ(X) to θ(Y)
which conforms to R. The answer of Q on G is the set of tuples which satisfy Q
on G. The answer can be found in polynomial time in the size of Q and G (from
Lemma 1 in [17]).

Below we first briefly review approximate matching of single-conjunct regular
path queries, from [13]. We then discuss relaxation of such queries based on
information from the ontology K. Section 3 discusses combined approximation
and relaxation for multi-conjunct queries.

2.1 Approximate Matching of Single-Conjunct Queries

The edit distance from a path p to a path p′ is the minimum cost of any sequence
of edit operations which transforms the sequence of edge labels of p to the
sequence of edge labels of p′ (note that edge labels are treated as atomic values
and it is sequences of such labels that are transformed using edit operations). The
edit operations that we consider here are insertions, deletions and substitutions
of edge labels, each with an assumed edit cost of α, for some α.

The edit distance of a path p to a regular expression R is the minimum edit
distance from p to any path that conforms to R. Given a matching θ from
variables and constants of a query Q to nodes in a graph G, where constants
must be matched to themselves, we say that the tuple θ(vars) has edit distance
edist(θ,Q) to Q, and we define this to be the minimum edit distance to R of any
path p from θ(X) to θ(Y) in G. Note that if p conforms to R, then θ(vars) has
edit distance zero to Q.

The approximate answer of Q on G is a list of pairs (θ(vars), edist(θ,Q)),
ranked in order of non-decreasing edit distance. The approximate top-k answer
of Q on G comprises the first k tuples in the approximate answer of Q on G.

We now describe how the approximate answer can be computed in time poly-
nomial in the size of R and G. The process is similar to that described in [13],
but differs in a number of respects which are described below:

(i) We construct a weighted NFA MR of size O(R) to recognise L(R), using
Thompson’s construction (which makes use of ε-transitions). MR has set of

636 A. Poulovassilis and P.T. Wood

states S, alphabet Σ′ = Σ∪{type}, transition relation δ, start state s0, and
final state sf . Each transition is labelled with a label from Σ′ and a weight,
or cost, which is zero in MR. If X (or, respectively, Y) in the query is a
constant n, we annotate s0 (sf) with n; otherwise we annotate s0 (sf) with
a wildcard symbol ∗ that matches any constant.

(ii) We now construct the approximate automaton AR corresponding to MR. AR

has the same set of states as MR, with the following additional transitions:
• For each state s ∈ S and label a ∈ Σ, there is a transition (s, a, α, s),

where α is the cost of insertion.
• For each transition (s, a, 0, t) in MR where a ∈ Σ, there is a transition

(s, ε, α, t), where α is the cost of deletion.
• For each transition (s, a, 0, t) in MR, where a ∈ Σ, and label b ∈ Σ

(b = a), there is a transition (s, b, α, t), where α is the cost of substitution.
Thus AR has O(|R| · |Σ′|) transitions.

(iii) We form the weighted product automaton, H , of AR with the graph G =
(V,E), viewing each node in V as both an initial and a final state. The
states of H are of the form (s, n), s ∈ S and n ∈ V .

(iv) To evaluate query Q, if X is a node v of G, we perform a shortest path
traversal of H starting from the vertex (s0, v). Whenever we reach a vertex
(sf ,m) in H we output m, provided m matches the annotation on sf . The
distance of (v,m) to Q is given by the total cost of the shortest path from
(s0, v) to (sf ,m). If X is a variable, we perform such a traversal of H starting
from vertex (s0, v) for every node v of G.

This construction differs from that of [13] where the NFA for approximate match-
ing of regular expression R was constructed using a number of copies of the
NFA for recognising R, each corresponding to matching at a difference distance.
Hence, in that NFA, distance was represented implicitly by the “copy number”
of states, rather than explicitly using a weight as above. The use of annotations
on states also does not appear in [13].

Proposition 1. Let G = (V,E) be a graph and Q be a single-conjunct query
using regular expression R over alphabet Σ. The approximate answer of Q on G
can be found in time O(|R|2|V |(|Σ′||E|+ |V | log(|R||V |))).

The proof follows by using Dijkstra’s algorithm on the product automaton H ,
which can be shown to have O(|R||V |) nodes and O(|R||Σ′||E|) edges.

The above query evaluation can also be accomplished “on-demand” by incre-
mentally constructing the edges of H as required, thus avoiding precomputation
and materialisation of the entire graph H . This is performed by calling a func-
tion Succ with a node (s, n) of H . The function returns a set of transitions
a,d→ (p,m), such that there is an edge in H from (s, n) to (p,m) with label a
and cost d. We show Succ below, where the function nextStates(AR, s, a) re-
turns the set of states in AR that can be reached from state s on reading input
a, along with the cost of reaching each. Note that we need either to remove
ε-transitions from AR (using a standard algorithm that potentially squares the

Combining Approximation and Relaxation in Semantic Web Path Queries 637

Procedure. Succ(s, n)

Input: state s of AR and node n of G
Output: set of transitions which are successors of (s, n) in H
W ← ∅
for (n, a, m) ∈ G and (p, d) ∈ nextStates(AR, s, a) do

add
a,d→ (p, m) to W

return W

size of AR) or nextStates needs to repeatedly follow ε-transitions until it finds
a non-ε-transition, while summing costs of transitions.

A set visitedR is maintained, storing tuples of the form (v, n, s) representing
the fact that node n of G was visited in state s having started the traversal from
node v. Also maintained is a priority queue queueR containing quadruples of
the form (v, n, s, d), ordered by increasing values of d, where d is the distance
associated with visiting node n in state s having started from node v. We begin by
enqueueing the initial quadruple (v, v, s0, 0), if X is some node v, or enqueueing
a set of initial quadruples otherwise, one for each node v of G. We maintain a list
answersR containing tuples of the form (v, n, d) where d is the smallest distance
of this answer tuple to Q and ordered by non-decreasing value of d. This list is
used to avoid returning again (v, n, d′) for any d′ ≥ d.

We then call a procedure getNext to return the next query answer, in order of
non-decreasing distance from Q. getNext repeatedly dequeues the first quadru-
ple of queueR, (v, n, s, d), adding (v, n, s) to visitedR, until queueR is empty.
After dequeueing the quadruple (v, n, s, d), we enqueue (v,m, s′, d+ d′) for each

transition
e,d′

→ (s′,m) returned by Succ(s, n) such that (v,m, s′) ∈ visitedR. If
s is a final state, its annotation matches n, and the answer (v, n, d′) has not been
been generated before for some d′, then the triple (v, n, d) is returned.

2.2 Ontology Relaxation of Single-Conjunct Regular Path Queries

In [12], we considered relaxation of conjunctive queries over RDF data, and the
formalisation of relaxation using RDFS entailment with respect to an RDFS
ontology K. We assumed that the predicates of triples in K are in the set
{type, dom, range, sp, sc} and we adopted an operational semantics for the no-
tion of RDFS entailment, denoted by |= and characterised by the six rules shown
in Fig. 2 (see [8,9] for details).

We assumed infinite sets I (IRIs) and L (RDF literals). The elements in I ∪L
are called RDF terms. A triple (v1, v2, v3) ∈ I × I × (I ∪ L) is called an RDF
triple. In such a triple, v1 is called the subject, v2 the predicate and v3 the object.
An RDF graph is a set of RDF triples.

For RDF graphs G1 and G2, we stated that G1 |=rule G2 if G2 can be derived
from G1 by iteratively applying the rules of Fig. 2. We used the notion of the
closure of an RDF graph G [9], denoted cl(G), which is the closure of G under
the rules. By a result from [9], RDFS entailment (for the fragment of RDFS we
consider) can be characterized as follows: G1 |=RDFS G2 if and only if G2 ⊆ cl(G1).

638 A. Poulovassilis and P.T. Wood

Group A (Subproperty) (1)
(a, sp, b) (b, sp, c)

(a, sp, c)
(2)

(a, sp, b) (X, a, Y)
(X, b, Y)

Group B (Subclass) (3)
(a, sc, b) (b, sc, c)

(a, sc, c)
(4)

(a, sc, b) (X, type, a)
(X, type, b)

Group C (Typing) (5)
(a, dom, c) (X, a, Y)

(X, type, c)
(6)

(a, range, c) (X, a, Y)
(Y, type, c)

Fig. 2. RDFS Inference Rules

Given a set of variables V disjoint from the sets I and L, a triple pattern is a
triple (v1, v2, v3) ∈ (I ∪ V) × (I ∪ V)× (I ∪ V ∪ L). A graph pattern P is a set
of triple patterns. We denote the variables mentioned in P by var(P).

A conjunctive query as considered in [12] is a rule whose body is a graph
pattern. We investigated two broad classes of relaxations for such queries in
that paper: ontology relaxation and simple relaxation. Ontology relaxation en-
compasses relaxations that are entailed using information from the ontology and
are captured by the rules of Fig. 2; we note that when applying these rules to
triple patterns, rather than (ground) triples, a, b and c must be instantiated to
RDF terms, while X and Y can be instantiated to either RDF terms or vari-
ables. Simple relaxation consists of relaxations that can be entailed without an
ontology, e.g. dropping triple patterns, replacing constants with variables, and
breaking join dependencies.

In this paper, we extend the application of ontology relaxation from graph
patterns to regular path queries, leaving consideration of simple relaxation to
future work. Before proceeding further we introduce some assumptions and
terminology.

We consider the cost of applying rule 2 or 4 to be β, and the cost of applying
rule 5 or 6 to be γ. (Because queries and data graphs cannot contain sc and sp,
rules 1 and 3 are inapplicable as far as relaxation is concerned.) We assume that
the subgraphs of K induced by edges labelled sc and sp are acyclic; this ensures
that the transitive reduction (see below) of each of these subgraphs is unique.
We also assume that all the edges labelled with symbols from Σ ∪ {type} that
are entailed by G ∪K are included in G.

For each edge (a, type, c) inG, we also add toG the “reverse” edge (c, type−, a).
We do this because, while we do not consider reverse traversal of graph edges in
general in this paper (leaving this as an area of further work), we do allow the re-
verse traversal of type edges, which we accommodate by generating reverse edges
in G labelled type−. We need these edges in order to accomodate Rule 6 of Fig. 2
without changing the position of the variable Y in the relaxed triple. This is be-
cause (as we will see below) in our context of relaxing regular path queries, the
relaxed triples are generally part of a sequence of relaxed triples. Thus, we use the
equivalent form of (c, type−, Y) for the relaxed triple inferred by Rule 6.

Finally, we assume that K = extRed(K), where extRed(K) is the extended
reduction of K. Given ontology K, extRed(K) can be computed as follows: (i)
compute cl(K); (ii) apply the rules of Fig. 3 in reverse until no longer applicable;

Combining Approximation and Relaxation in Semantic Web Path Queries 639

and (iii) apply rules 1 and 3 of Fig. 2 in reverse until no longer applicable.
(Applying a rule in reverse means deleting the triple deduced by the rule.) Using
this extended reduction allows us to perform what were termed direct relaxations
in [12] which correspond to the “smallest’ relaxation steps. This is necessary if
we are to return query answers to users incrementally in order of increasing cost,
which we discuss in more detail shortly.

(e1)
(b, dom, c) (a, sp, b)

(a, dom, c)
(e2)

(b, range, c) (a, sp, b)
(a, range, c)

(e3)
(a, dom, b) (b, sc, c)

(a, dom, c)
(e4)

(a, range, b) (b, sc, c)
(a, range, c)

Fig. 3. Additional rules used to compute the extended reduction of an RDFS ontology

Let t1 and t2 be triple patterns such that t1, t2 ∈ cl(G ∪K), and var(t2) =
var(t1). We say that t1 relaxes to t2 (or t2 is a relaxation of t1), denoted t1 ≤ t2

2,
if ({t1} ∪ G ∪ K) |=rule t2. Let P1 and P2 be graph patterns such that for all
t1 ∈ P1 and t2 ∈ P2, t1, t2 ∈ cl(G ∪K) and var(P2) = var(P1). We say that P1
relaxes to P2 (or P2 is a relaxation of P1), denoted P1 ≤ P2, if for all t1 ∈ P1
there is a t2 ∈ P2 such that t1 ≤ t2 and for all t2 ∈ P2 there is a t1 ∈ P1 such
that t1 ≤ t2. We note that the relaxation relation is reflexive and transitive.

Example 2. If we did not use the extended reduction of an ontology K, we
could have the triples (a, dom, c), (a, dom, c′) and (c, sc, c′) in K. Given a con-
junct (X, a,w), we could apply rule 5 in order to relax (X, a,w) to (X, type, c)
with cost γ and to (X, type, c′), also with cost γ. However, the cost of relaxing
(X, a,w) to (X, type, c′) should really be γ + β, reflecting the cost of using rule
5 to relax (X, a,w) to (X, type, c) followed by the cost of using rule 4 to relax
(X, type, c) to (X, type, c′). The extended reduction of K does not contain the
triple (a, dom, c′) because of applying rule e3 in reverse; hence, although the rules
of Fig. 3 are not sound for RDFS entailment, using extRed(K) allows us finer
control over computing the cost of various relaxations. "#

Given a query Q with a single conjunct (X,R, Y), let q = l1l2 · · · ln be a string
in L(R). We define a triple form of (Q, q) as a set of triple patterns

{(X, l1,W1), (W1, l2,W2), . . . , (Wn−1, ln, Y)}

where W1, . . . ,Wn−1 are variables not appearing in Q. Thus, a triple form of
(Q, q) is a graph pattern which can be relaxed to another graph pattern.

Example 3. Let query Q contain the single conjunct (X,R, 4), where X is a
variable, 4 is a constant, and R = (a · b · d). Assume that K contains the triples
(d, sp, e), (e, dom, c) and (c, sc, c′). There is only a single q ∈ L(R), namely
q = abd. Consider the following triple form T of (Q, q)

{(X, a,W1), (W1, b,W2), (W2, d, 4)}
2 For notational simplicity we assume that the parameters G and K are implicit.

640 A. Poulovassilis and P.T. Wood

and let P be the graph pattern

{(X, a,W1), (W1, b,W2), (W2, type, c
′)}

Then T relaxes to P since (W2, d, 4) ≤ (W2, type, c′) by applying rules 2, 5 and
4. We also have that (W2, d, 4) ≤ (W2, e, 4) (by rule 2), (W2, e, 4) ≤ (W2, type, c)
(by rule 5) and (W2, type, c) ≤ (W2, type, c′) (by rule 4).

Note that, because of our requirement that variables be preserved when per-
forming relaxation, rules 4, 5 and 6 can only be applied to the first or last triple
pattern of a triple form of a string. So if, for example, (b, dom, f) ∈ K, the triple
pattern (W1, b,W2) cannot be relaxed to (W1, type, f) by rule 5. "#

We now define the relaxed semantics of such queries as follows. Let p be the path
(v1, l1, v2, l2, v3, . . . , vn, ln, vn+1), n ≥ 1, in G. We define a triple form of p as a
set of triple patterns

{(v1, l1,W1), (W1, l2,W2), . . . , (Wn−1, ln, vn+1)}

where W1, . . . ,Wn−1 are variables. If p is of length zero, then p is of the form
(v, ε, v) and the only triple form of p is also (v, ε, v).

Given a query Q of the form (1) and a graph G, let θ be a matching from
variables and constants of Q to nodes of G such that θ maps each constant to
itself. We denote (θ(X), R, θ(Y)) by θ(Q). Path p in G r-conforms to θ(Q) if
there is a q ∈ L(R), a triple form Tq of (θ(Q), q) and a triple form Tp of p such
that Tq ≤ Tp. A tuple θ(vars) r-satisfies Q on G if there is a path in G that
r-conforms to θ(Q).

Note that a path in G can r-conform to a query on the basis of a triple pattern
t relaxing to a triple pattern t′ such that the constants in t and t′ differ (due to
applications of rules 5 and 6, provided Y is a constant). Hence relaxation of a
conjunct induces a mapping on constants which may not be the identity.

We now consider the cost of applying relaxations in order to be able to re-
turn answers ordered by increasing cost. For this we need the notion of direct
relaxation. In [12] we defined the direct relaxation relation, denoted by ≺, as the
reflexive, transitive reduction of ≤. The direct relaxations of a triple pattern t
(i.e., triple patterns t′ such that t ≺ t′) are the result of the smallest steps of
relaxation. We write t, o � t′ if t′ can be derived from t and o ∈ cl(G ∪ K) by
the application of a single rule from Fig. 2. We also write t, o �i t

′ if rule i was
the rule used in the derivation.

It is shown in [12] that a single application of each of the rules in Fig. 2 to a
triple pattern t and a triple o ∈ extRed(K) (where applicable) yields precisely
the direct relaxations of t with respect to K. Given graph patterns P1 and P2,
we say that P1 directly relaxes to P2, denoted P1 ≺ P2, if P1 = {t1} ∪ P and
P2 = {t2}∪P , for some (possibly empty) graph pattern P , and t1 ≺ t2; in other
words, t1, o �i t2 for some triple o ∈ extRed(K) and rule i. The cost of the
direct relaxation is the cost of applying rule i. The cost of a sequence of direct
relaxations is the sum of the costs of each relaxation in the sequence.

Given ontology K = extRed(K), path p in G, matching θ, query Q as in
(1), string q ∈ L(R), triple form Tq for (θ(Q), q), triple form Tp for p such that

Combining Approximation and Relaxation in Semantic Web Path Queries 641

Tq ≤ Tp (so p r-conforms to θ(Q)), the relaxation distance from p to (θ(Q), q)
is the minimum cost of any sequence of direct relaxations which yields Tp from
Tq. The cost of the empty sequence of direct relaxations (so that Tq is already a
triple form of p) is zero. The relaxation distance from p to θ(Q) is the minimum
relaxation distance from p to (θ(Q), q) for any string q ∈ L(R).

Given graph G, query Q and matching θ, the relaxation distance of θ(Q),
denoted rdist(θ,Q), is the minimum relaxation distance to θ(Q) from any path
p that r-conforms to θ(Q). The relaxed answer of Q on G is a list of pairs
(θ(vars), rdist(θ,Q)), where θ(vars) is an r-satisfying tuple, ranked in order of
non-decreasing relaxation distance. The relaxed top-k answer of Q on G com-
prises the first k tuples in the relaxed answer of Q on G.

Example 4. Consider the conjunct Q = (?Goal,job.type,AssistantEditor)
from query Q3 in Example 1. Suppose the graph G contains the triples
(ep24,job,j24), (j24,type,AssistantEditor) shown in Fig. 1, and also the
triples (ep33,job,j33),(j33,type,AssociateEditor) from another timeline.
Path(ep24,job,j24,type,AssistantEditor)r-conforms toθ(Q)whenθ(?Goal)
=ep24withrelaxationdistance0.Path(ep33,job,j33,type,AssociateEditor)
r-conforms to θ(Q) when θ(?Goal) = ep33 with relaxation distance β. So tuples
(ep24) and (ep33) both r-satisfy Q on G. "#

2.3 Computing the Relaxed Answer

We now describe how the relaxed answer can be computed, starting from the
weighted NFA MR that recognises L(R) which was described in Section 2.1.

In computing a relaxed answer, it is useful to be able to make (possibly partial)
copies of states in an automaton. Given an automaton M with a set of states S
and a state s ∈ S, a clone of s in M is a new state s′ which is added to S such
that s′ is an initial or final state if s is, and s′ has the same sets of incoming
and outgoing transitions as s. An incoming (outgoing) clone of s is a new state
s′ such that s′ is an initial or final state if s is, s′ has the same set of incoming
(outgoing) transitions as s, and has no outgoing (incoming) transitions.

Given a weighted automaton M = (S,Σ′, δ, s0, sf) and ontology K such that
K = extRed(K), we construct as described below the relaxed automaton MK =
(S′, Σ′, τ, S0, Sf) of M with respect to K. The set of states S′ includes S as well
as any new states defined below. S0 and Sf are sets of initial and final states,
respectively, with S0 including s0, Sf including sf and both possibly including
additional cloned states defined below. Each state in S0 and Sf is annotated
either with a constant or with the wildcard symbol ∗. The transition relation τ
includes δ as well as any transitions added to τ by the process defined below.
The process continues until no further changes to τ and S′ occur.

– (rule 2) For each transition (s, a, d, t) ∈ τ and (a, sp, b) ∈ K, add the transi-
tion (s, b, d + β, t) to τ .

– (rule 4 (i)) For each transition (s, type, d, t) ∈ τ , t ∈ Sf and (c, sc, c′) ∈ K
such that t is annotated with c, (i) add an outgoing clone t′ of t annotated
with c′ to S′, and (ii) add the transition (s, type, d + β, t′) to τ .

642 A. Poulovassilis and P.T. Wood

– (rule 4 (ii)) For each transition (s, type−, d, t) ∈ τ , s ∈ S0 and (c, sc, c′) ∈ K
such that s is annotated with c, (i) add an incoming clone s′ of s annotated
with c′ to S′, and (ii) add the transition (s′, type−, d + β, t) to τ .

– (rule 5) For each (s, a, d, t) ∈ τ , t ∈ Sf and (a, dom, c) ∈ K such that t is
annotated with a constant, (i) add an outgoing clone t′ of t annotated with
c to S′, and (ii) add the transition (s, type, d + γ, t′) to τ .

– (rule 6) For each (s, a, d, t) ∈ τ , s ∈ S0 and (a, range, c) ∈ K such that s is
annotated with a constant, (i) add an incoming clone s′ of s annotated with
c to S′, and (ii) add the transition (s′, type−, d + γ, t) to τ .

Given a regular expression R and ontology K = extRed(K), we denote by MK
R

the automaton obtained by first constructing the automaton MR for R and then
constructing the relaxed automaton of MR with respect to K.

Example 5. Consider again conjunct (X,R, 4), where R = (a ·b ·d), and ontology
K = {(d, sp, e), (e, dom, c), (c, sc, c′)} from Example 3. The relaxed automaton
MK

R initially comprises the states {s0, s1, s2, sf} and the transitions labelled
with cost zero between them, as shown in Fig. 4. Applying the transformation
for rule 2 to the transition labelled d, 0 and the triple (d, sp, e) ∈ K, adds the
transition labelled e, β from s2 to sf . Applying rule 5 to this transition and the
triple (e, dom, c) ∈ K, adds the outgoing clone s′f of sf , annotated with c, as
well as the transition labelled type, β + γ from s2 to s′f . Applying rule 4(i) to
this transition and the triple (c, sc, c′) ∈ K, adds the outgoing clone s′′f of s′f ,
annotated with c′, as well as the transition labelled type, 2β + γ from s2 to s′′f .

s0 s1 s2 sf

a, 0 b, 0

e, β

d, 0

s′′
f

type, 2β + γ

s′
f

type, β + γ

∗
c′

4

c

Fig. 4. Relaxed automaton MK
R for conjunct (X, (a · b · d), 4)

Given a graph G, automaton MK
R will match (i) paths labelled a · b · d from

any node to node 4 with distance 0, (ii) paths labelled a · b · e from any node to
node 4 with distance β, (iii) paths labelled a · b · type from any node to node c
with distance β + γ, and (iv) paths labelled a · b · type from any node to node
c′ with distance 2β + γ. "#

Proposition 2. Let Q be a query comprising a single conjunct (X,R, Y). Let
MK

R = (S′, Σ′, τ, S0, Sf) be the relaxed automaton for regular expression R and
ontology K = extRed(K), where the ε-transitions have been removed from MK

R .
Let G be a graph and H be the product automaton of MK

R and G. Let θ be a
matching from Q to G such that θ(X) = v0 and θ(Y) = vn. (i) There is a path

Combining Approximation and Relaxation in Semantic Web Path Queries 643

r = (v0, l1, . . . , ln, vn) in G that r-conforms to θ(Q) if and only if there is a path
p = ((s0, v0), (l1, c1), . . . , (ln, cn), (sn, vn)) in H, where s0 ∈ S0 and sn ∈ Sf .
(ii) Consider all paths of the form of p in (i). The relaxation distance from r to
(θ(Q), q), where q = l1 · · · ln, is given by the minimum value of c1 + · · ·+ cn.

The proof of (i) follows from the fact that the rules used to add transitions to
MK

R correspond to direct relaxations applied to triples. The proof of (ii) follows
from the definition of relaxation distance.

Proposition 3. Given a query Q comprising a single conjunct (X,R, Y) and
ontology K = extRed(K), the relaxed automaton MK

R has at most O(|R||K|)
states and O(|R||K|2) transitions.

The proof follows from the fact that automaton MR contains O(|R|) states, for
each of which we can potentially add O(|K|) cloned states. Each of the rules
adds no more than O(|K|) transitions for each of the O(|R||K|) states in MK

R .

Proposition 4. Let G = (V,E) be a graph, Q be a single-conjunct query using
regular expression R, and K = extRed(K) be an ontology. The relaxed answer
of Q on G can be found in time O(|R|2|K|2|V |(|E|+ |V | log(|R||K||V |))).

The proof follows from Propositions 2 and 3, along with using Dijkstra’s algo-
rithm on the product automaton H , which can be shown to have O(|R||K||V |)
nodes and O(|R||K|2|E|) edges.

In order to compute the relaxed answers incrementally, we can use the getNext
function from Section 2.1 along with the same initialisation of program variables.
The only difference is that the Succ function now uses the relaxed automaton
MK

R rather than approximate automaton AR.

3 General Queries

Combining the possibility of approximating and relaxing query conjuncts, a gen-
eral query Q is of the form

(Z1, . . . , Zm)← (X1, R1, Y1), . . . , (Xj , Rj , Yj),
APPROX(Xj+1, Rj+1, Yj+1), . . . , APPROX(Xj+k, Rj+k, Yj+k),
RELAX(Xj+k+1, Rj+k+1, Yj+k+1), . . . , RELAX(Xj+k+n, Rj+k+n, Yj+k+n)

where j, k, n ≥ 0, the Xi and Yi are constants or variables, the Ri are regular
expressions, and each Zi is one of X1, . . . , Xj+k+n or Y1, . . . , Yj+k+n. In the
concrete syntax, conjuncts may be specified in any order.

Let θ be a matching from variables and constants of Q to nodes in graph G.
The distance from θ to Q, dist(θ,Q), is defined as

wA(edist(θ, (Xj+1, Rj+1, Yj+1)) + · · ·+ edist(θ, (Xj+k , Rj+k, Yj+k)))+
wR(rdist(θ, (Xj+k+1, Rj+k+1, Yj+k+1))+· · ·+rdist(θ, (Xj+k+n, Rj+k+n, Yj+k+n)))

where the coefficients wA and wR are set according to the preferences of the user.
For example, they can be set to the same value if the same “cost” is associated

644 A. Poulovassilis and P.T. Wood

with query approximation and query relaxation, or to different relative values
to penalise one or the other more. Let θ(Z1, . . . , Zm) = (a1, . . . , am). We call
θ a minimum-distance matching if for all matchings φ from Q to G such that
φ(Z1, . . . , Zm) = (a1, . . . , am), dist(θ,Q) ≤ dist(φ,Q).

The answer of Q on G is the list of pairs (θ(Z1, . . . , Zm), dist(θ,Q)), for some
minimum-distance matching θ, ranked in order of non-decreasing distance. The
top-k answer of Q on G comprises the first k tuples in the answer of Q on G.

The query Q can be evaluated by joining the answers arising from the evalu-
ation of each of its conjuncts. For each APPROXed or RELAXed conjunct we
can use the techniques described in Sections 2.1 and 2.3, respectively, to incre-
mentally compute a relation ri with scheme (Xi, Yi, ED,RD). If i ≤ j, then
t[ED] = t[RD] = 0. If j < i ≤ j + k, then for any tuple t ∈ ri, t[RD] = 0 and
t[ED] is the edit distance for that tuple. If j + k < i ≤ j + k + n, then for any
tuple t ∈ ri, t[ED] = 0 and t[RD] is the relaxation distance for that tuple.

To ensure polynomial-time evaluation, we require that the conjuncts of Q are
acyclic [6]. Hence a query evaluation tree can be constructed for Q, consisting
of nodes denoting join operators and nodes representing conjuncts of Q. Given
that the answers for single conjuncts are ordered by non-decreasing distance,
we can use a pipelined execution of any rank-join operator, such as the recent
instance-optimal FRPA operator proposed in [5], to produce the answers to Q
on graph G in order of non-decreasing distance.

Example 6. Consider query Q4 from Example 1. Suppose graph G contains the
triples shown in Fig. 1 and also the triples
(ep31,type,University),(ep31,qualif,BA History),
(ep32,type,Work),(ep32,job,j32),(j32,type,Writer)
(ep33,type,Work),(ep33,job,j33),(j33,type,AssociateEditor)
(BA History,type,History),(ep31,next,ep32),(ep32,next,ep33)
from another timeline. Suppose also that in the ontology, there are triples
(History,sc,Humanities) and (Writer,sc,MediaProfessional). We set the
approximation cost α = 1, the two relaxation costs β = γ = 2 and wA = wR = 1.
Then, answers are produced for query Q4 as shown in the table below:

?E1 ?E1,RD ?E1,?E2,ED ?E2,?P ?E2,?Goal,ED ?Goal ?Goal,RD ?E2,P,D
ep21 ep21,0 ep23,ep24,0 ep22,AT ep23,ep24,0 ep22 e24,0 ep23,J,2
ep31 ep31,4 ep21,ep22,1 ep23,J ep21,ep22,1 ep23 e33,2 ep22,AT,6

ep22,ep23,1 ep24,IE ep22,ep23,1 ep24 e23,4 ep32,W,8
ep31,ep32,1 ep32,W ep31,ep32,1 ep32 e32,4
ep32,ep33,1 ep33,OE ep32,ep33,1 ep33 e22,6
ep21,ep23,2 ep21,ep23,2
ep21,ep24,2 ep21,ep24,2
ep31,ep33,2 ep31,ep33,2

The first seven columns refer to the answers produced for the individual con-
juncts of Q4. For brevity, we do not show the full four-attribute answer tuples,
only the non-zero distances and the variable instantiations. We also abbreviate
Air Travel Assistant by AT, Journalist by J, Writer by W, Assistant Editor by
IE and Associate Editor by OE. The final column shows the overall query an-
swers and distances. Tuples contributing to the first two answers are italicised
and those contributing to the third answer are bold. "#

Combining Approximation and Relaxation in Semantic Web Path Queries 645

4 Related Work

Various forms of query approximation and relaxation have been studied for a
number of data models and query languages. For approximate querying, [14] con-
sidered querying semistructured data using flexible matchings which allow paths
whose edge labels simply contain those appearing in the query to be matched.
Such semantics can be captured by the edit operations of transposition and
insertion. More generally, [7] used weighted regular transducers for performing
transformations to regular path queries (but not CRP queries) to allow them
to match semi-structured data approximately. The approximate queries of [18]
are simply selections placed on attributes of form-based web data, where value
constraints can be relaxed according to their perceived importance to the user.

In terms of query relaxation, work has been done on relaxing tree pattern
queries for XML, recently in [16]. Relaxation of conjunctive queries on RDF is
considered in [4,12]. Rewriting rules are used on query patterns in [4] to perform
both query refinement by including user preferences as well as query relaxation.
Building on the work of [12], [11] develops a similarity measure for relaxed queries
in an attempt to improve the relevance of answers. Similarity-based querying was
also the focus of iSPARQL [15], where resources (rather than paths connecting
them) are compared using similarity measures. Flexible querying of RDF using
SPARQL and preferences expressed as fuzzy sets is investigated in [1].

In contrast to all the above, our work combines within one framework both
query approximation and query relaxation, and applies it to the more general
query language of conjunctive regular path queries on graph-structured data.

5 Concluding Remarks

We have discussed query relaxation for conjunctive regular path queries, and
have shown how this can be combined with query approximation in order to pro-
vide greater flexibility in the querying of complex, irregular seminstructured data
sets. Using the techniques proposed here, users are able to specify approxima-
tions and relaxations to be applied to their original query, and the relative costs
of these. Query results are returned incrementally, ranked in order of increas-
ing ‘distance’ from the user’s original query. We have presented polynomial-time
algorithms for incrementally computing the top-k answers to such queries.

In practice, we expect that a visual query interface would be required, provid-
ing users with readily understandable options from which to select their query
formulation, approximation and relaxation requirements, and set the relative
cost associated with each operation they have selected. Our future work includes
the design, prototyping and evaluation of such a query interface, or interfaces,
and the empirical evaluation of our query processing algorithms, in domains such
as querying of lifelong learners’ metadata and heterogeneous medical data sets.

Another direction of ongoing research is to merge the APPROX and RELAX
operations into one integrated ‘FLEX’ operation that applies concurrently both
approximation and relaxation to a regular path query. For this, we are taking
advantage of the common NFA-based approach that we have adopted.

646 A. Poulovassilis and P.T. Wood

References

1. Buche, P., Dibie-Barthélemy, J., Chebil, H.: Flexible SPARQL querying of web

data tables driven by an ontology. In: Proc. FQAS, pp. 345–357 (2009)

2. Calvanese, D., Giacomo, G.D., Lenzerini, M., Vardi, M.Y.: Containment of con-

junctive regular path queries with inverse. In: Proc. KR, pp. 176–185 (2000)

3. de Freitas, S., Harrison, I., Magoulas, G., Mee, A., Mohamad, F., Oliver, M., Pa-

pamarkos, G., Poulovassilis, A.: The development of a system for supporting the

lifelong learner. British Journal of Educational Technology 37(6), 867–880 (2006)

4. Dolog, P., Stuckenschmidt, H., Wache, H., Diederich, J.: Relaxing RDF queries

based on user and domain preferences. J. Intell. Inf. Syst. 33(3), 239–260 (2009)

5. Finger, J., Polyzotis, N.: Robust and efficient algorithms for rank join evaluation.

In: Proc. ACM SIGMOD, pp. 415–428 (2009)

6. Gottlob, G., Leone, N., Scarcello, F.: The complexity of acyclic conjunctive queries.

J. ACM 43(3), 431–498 (2001)

7. Grahne, G., Thomo, A.: Regular path queries under approximate semantics. Ann.

Math. Artif. Intell. 46(1-2), 165–190 (2006)

8. Gutierrez, C., Hurtado, C., Mendelzon, A.O.: Foundations of semantic web

databases. In: Proc. PODS, pp. 95–106 (2004)

9. Hayes, P. (ed.): RDF Semantics, W3C Recommendation, (February10, 2004)

10. Heath, T., Hausenblas, M., Bizer, C., Cyganiak, R.: How to publish linked data on

the web (tutorial). In: Proc. ISWC (2008)

11. Huang, H., Liu, C., Zhou, X.: Computing relaxed answers on RDF databases. In:

Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.) WISE 2008.

LNCS, vol. 5175, pp. 163–175. Springer, Heidelberg (2008)

12. Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Query relaxation in RDF. Journal

on Data Semantics X, 31–61 (2008)

13. Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Ranking approximate answers to se-

mantic web queries. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath,

T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC

2009. LNCS, vol. 5554, pp. 263–277. Springer, Heidelberg (2009)

14. Kanza, Y., Sagiv, Y.: Flexible queries over semistructured data. In: Proc. PODS,

pp. 40–51 (2001)

15. Kiefer, C., Bernstein, A., Stocker, M.: The fundamentals of iSPARQL: A virtual

triple approach for similarity-based semantic web tasks. In: Aberer, K., Choi, K.-S.,

Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard,

D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC

2007. LNCS, vol. 4825, pp. 295–309. Springer, Heidelberg (2007)

16. Liu, C., Li, J., Yu, J.X., Zhou, R.: Adaptive relaxation for querying heterogeneous

XML data sources. Information Systems 35(6), 688–707 (2010)

17. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases.

SIAM J. Computing 24(6), 1235–1258 (1995)

18. Meng, X., Ma, Z.M., Yan, L.: Answering approximate queries over autonomous

web databases. In: Proc. WWW, pp. 1021–1030 (2009)

EvoPat – Pattern-Based Evolution and
Refactoring of RDF Knowledge Bases

Christoph Rieß, Norman Heino, Sebastian Tramp, and Sören Auer

AKSW, Institut für Informatik, Universität Leipzig, Pf 100920, 04009 Leipzig

{lastname}@informatik.uni-leipzig.de
http://aksw.org

Abstract. Facilitating the seamless evolution of RDF knowledge bases

on the Semantic Web presents still a major challenge. In this work we

devise EvoPat – a pattern-based approach for the evolution and refactor-

ing of knowledge bases. The approach is based on the definition of basic
evolution patterns, which are represented declaratively and can capture

simple evolution and refactoring operations on both data and schema lev-

els. For more advanced and domain-specific evolution and refactorings,

several simple evolution patterns can be combined into a compound one.

We performed a comprehensive survey of possible evolution patterns with

a combinatorial analysis of all possible before/after combinations, result-

ing in an extensive catalog of usable evolution patterns. Our approach

was implemented as an extension for the OntoWiki semantic collabora-

tion platform and framework.

1 Introduction

The challenge of facilitating the smooth evolution of knowledge bases on the Se-
mantic Web is still a major one. The importance of addressing this challenge is
amplified by the shift towards employing agile knowledge engineering methodolo-
gies (such as Semantic Wikis), which particularly stress the evolutionary aspect
of the knowledge engineering process.

The EvoPat approach is inspired by software refactoring. In software engineer-
ing, refactoring techniques are applied to improve software quality, to accommo-
date new requirements or to represent domain changes. The term refactoring
refers to the process of making persistent and incremental changes to a system’s
internal structure without changing its observable behavior, yet improving the
quality of its design and/or implementation [5]. Refactoring is based on two key
concepts: code smells and refactorings. Code smells are an informal but still
useful characterization of patterns of bad source code. Examples of code smells
are “too long method” and “duplicate code”. Refactorings are piecemeal trans-
formations of source code which keep the semantics while removing (totally or
partly) a code smell. For example, the “extract method” refactoring extracts a
section of a “long method” into a new method and replaces it by a call to the
new method, thus making the original method shorter (and clearer).

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 647–662, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://aksw.org

648 C. Rieß et al.

Compared to software source code refactoring, where refactorings have to
be performed manually or with limited programmatic support, the situation in
knowledge base evolution on the Semantic Web is slightly more advantageous.
On the Semantic Web we have a unified data model, the RDF data model,
which is the basis for both, data and ontologies. In this work we exploit the
RDF data model by devising a pattern-based approach for the data evolution
and ontology refactoring of RDF knowledge bases. The approach is based on
the definition of basic evolution patterns, which are represented declaratively
and can capture atomic evolution and refactoring operations on the data and
schema levels. In essence, a basic evolution pattern consists of two main compo-
nents: 1) a SPARQL SELECT query template for selecting objects, which will
be changed and 2) a SPARQL/Update query template, which is executed for
every returned result of the SELECT query. In order to accommodate more ad-
vanced and domain-specific data evolution and refactoring strategies, we define
a compound evolution pattern as a linear combination of several simple ones.

To obtain a comprehensive catalog of evolution patterns, we performed a sur-
vey of possible evolution patterns with a combinatorial analysis of all possible
before/after combinations. Starting with the basic constituents of a knowledge
base (i. e. graphs, properties and classes), we consider all possible combinations of
the elements potentially being affected by an evolution pattern and the prospec-
tive result after application of the evolution pattern. This analysis led to a com-
prehensive library of 24 basic and compound evolution patterns. The catalog is
not meant to be exhaustive but covers the most common knowledge base evo-
lution scenarios as confirmed by a series of interviews with domain experts and
knowledge engineers. The EvoPat approach was implemented as an extension
for the OntoWiki semantic collaboration platform and framework.

Compared to existing approaches for knowledge base evolution, our declara-
tive, pattern-based approach has a number of advantages:

– EvoPat is a unified method, which works for both data evolution and ontology
refactoring.

– The modularized, declarative definition of evolution patterns is relatively
simple compared to an imperative description of evolution. It allows domain
experts and knowledge engineers to amend the ontology structure and modify
data with just a few clicks.

– Combined with our RDF representation of evolution patterns and their ex-
posure on the Linked Data Web, EvoPat facilitates the development of an
evolution pattern ecosystem, where patterns can be shared and reused on the
Data Web.

– The declarative definition of bad smells and corresponding evolution patterns
promotes the (semi-)automatic improvement of information quality.

This paper is structured as follows: We describe the evolution pattern concepts
in Section 2 and survey possible evolution patterns in Section 3. We showcase
our implementation in Section 4 while we present our work in the light of related
approaches in Section 5 and conclude with an outlook on future work in Section 6.

EvoPat – Pattern-Based Evolution and Refactoring 649

2 Concepts

The EvoPat approach is based on the rationale of working as closely as possi-
ble with the RDF data model and the common ontology construction elements,
i. e. classes, instances as well as datatype and object properties. With EvoPat
we also aim at delegating bulk of the work during evolution processing to the
underlying triple store. Hence, for the definition of evolution patterns we employ
a combination of different SPARQL query templates. In order to ensure modu-
larity and facilitate reusability of evolution patterns our definition of evolution
patterns is twofold: basic evolution patterns accommodate atomic ontology evo-
lution and data migration operations, while compound evolution patterns repre-
sent sequences of either basic or other compound evolution patterns in order to
capture more complex and domain specific evolution scenarios. The application
of a particular evolution pattern to a concrete knowledge base is performed with
the help of the EvoPat pattern execution algorithm. In order to optimally assist
a knowledge engineer we also define the concept of a bad smell in a knowledge
base. We describe these individual EvoPat components in more detail in the
remainder of this paper.

2.1 Evolution Pattern

Figure 1 describes the general composition of EvoPat evolution patterns. Bad
smells (depicted in the lower left of Figure 1 have a number of basic or com-
pound evolution patterns associated, which are triggered once a bad smell is
traced. Basic and compound evolution patterns can be annotated with descrip-
tive attributes, such as a label for the pattern, a textual description and other
metadata such as the author of the pattern the creation date, revision etc.

Basic Evolution Pattern (BP). A basic evolution pattern consists of two main
components: 1. a SPARQL SELECT query template for selecting objects, which
will be changed and 2. a SPARQL/Update query template, which is executed for
every returned result of the SELECT query. In addition, the placeholders con-
tained in both query templates are typed in order to facilitate the classification
and choreography of different evolution patterns. Please note, that in the follow-
ing we will use the term variable for placeholders contained in SPARQL query
templates. These should not be confused with variables contained in SPARQL
graph patterns, which, however, do not play any particular role in this article.
The following definition describes basic evolution patterns formally:

Definition 1 (Basic Evolution Pattern). A basic evolution pattern is a tuple
(V, S, U), where V is a set of typed variables, S is a SPARQL query template
with placeholders for the variables from V , and U is a SPARQL/Update query
template with placeholders referring to a result set which is generated by the
SPARQL query template S.

650 C. Rieß et al.

bad smells

compound pattern (CP)

0<i n

basic pattern (BP)

0<j m variable update query

Fig. 1. Pattern composition with descriptive attributes, functional attributes and car-

dinality restrictions

1 V: dtProp type: PROPERTY

2 objProp type: PROPERTY

3 p type: TEMP

4 o type: TEMP

5 S: SELECT DISTINCT * WHERE {

6 %dtProp% %p% %o% .

7 FILTER (

8 !sameTerm (%p%, rdfs:range) &&

9 !sameTerm (%p%, rdf:type)

10)

11 }

12 U: INSERT: %objProp% %p% %o% .

13 DELETE: %dtProp% %p% %o% .

Listing 1. Basic Evolution Pattern example: moving axioms from one property to

another

Listing 1 shows a basic evolution pattern, which moves axioms from one prop-
erty to another. Lines 1-4 define the typed variables used in the pattern. Lines
5-11 contain the SELECT query template, while lines 12-13 contain the SPAR-
QL/Update query template to be executed for each result of the SELECT query.

EvoPat – Pattern-Based Evolution and Refactoring 651

Query preprocessor. In order to give a SPARQL query for previously unknown
entities (since they are selected by the pattern SPARQL query), we introduce
an extension to SPARQL that defines two additional types of variables and
preprocessor functions:

– Pattern variables are enclosed in % characters and will be replaced with the
corresponding entity. Input variables are defined by the user applying the
pattern (e. g. on which entity the pattern is to operate.). Temp variables are
variables to which query results from the pattern SPARQL query are bound.
They can be used in the SPARQL/Update query of the same pattern to
describe triple updates. In Listing 1, line 12 the variable %objProp% is used
to bind the newly created object property.

– Preprocessor functions are a means of performing certain actions with the
entities bound to a variable. If e. g. the user wants URIs of a certain format
or change the datatype of a created literal value, those functions can be
used. We provide a number of pre-defined functions for the most common
use cases.

Compound Evolution Pattern (CP). Basic evolution patterns alone are not suffi-
cient to cover arbitrary evolution scenarios. Especially on higher abstraction lev-
els of represented domain knowledge, it is feasible to represent ontology changes
on the same level of abstraction. To this end, we define compound evolution
patterns, consisting of several evolution patterns that are subsequently applied
to a knowledge base.

Definition 2 (Compound Evolution Pattern). Let 0 < i ≤ n, Pi be (basic
or compound) patterns and Vi the corresponding sets of unbound variables in Pi.
A sequence CP := (Vi,Pi) of patterns is called a compound pattern (CP).

An example of a compound pattern for transforming a datatype property into an
object property (including instance transformation) is given in listing 2. It con-
sists of the following four basic sub patterns: moving property axioms, deleting
datatype property, transforming instance data and creating object property.

1 // Sub pattern 1: (move axioms from dtProp to objProp)

2 V: dtProp type: PROPERTY

3 objProp type: PROPERTY

4 p type: TEMP

5 o type: TEMP

6 S: SELECT DISTINCT * WHERE {

7 %dtProp% %p% %o% .

8 FILTER (

9 !sameTerm (%p%,rdfs:range) &&

10 !sameTerm (%p%,rdf:type)

11)

12 }

13 U: INSERT: %objProp% %p% %o% .

14 DELETE: %dtProp% %p% %o% .

652 C. Rieß et al.

15

16 // Sub pattern 2: (delete dtProp)

17 V: dtProp type: PROPERTY

18 p type: TEMP

19 o type: TEMP

20 S: SELECT DISTINCT * WHERE {

21 %dtProp% %p% %o% .

22 }

23 U: DELETE: %dtProp% %p% %o% .

24

25 // Sub pattern 3: (transform instance data)

26 V: dtProp type: PROPERTY

27 inst type: TEMP

28 o type: TEMP

29 objProp: PROPERTY

30 S: SELECT DISTINCT * WHERE {

31 %inst% %dtProp% %o% .

32 }

33 U: INSERT:

34 %inst% %objProp%getTempUri (getNamespace (% objProp %),%o%).

35 getTempUri (getNamespace (%objProp %),%o%) rdfs:label %o%.

36 DELETE: %inst% %dtProp% %o%

37

38 // Sub pattern 4: (create property)

39 V: objProp type: PROPERTY

40 S:

41 U: INSERT: %objProp% rdf:type owl:ObjectProperty .

Listing 2. Compound Evolution Pattern example: transforming a datatype into an

object property while maintaining instance consistency

2.2 Evolution Pattern Processing

Algorithm 2.2 outlines the evolution pattern processing. The algorithm uses
an evolution pattern P , a graph G and a set of variable bindings B as input.
Depending on the type of pattern (basic or compound) the following steps are
performed.

Basic pattern. If P is a basic pattern, the variables in the query are substituted
with respect to their binding in B. Each of the update patterns contained in P
is processed as follows:

1. If the update pattern sets an explicit graph, the active graph is set to that
graph, else it is set to the default graph.

2. The variables in the update pattern are substituted according to B.
3. Changes are determined by executing the SPARQL query in P on G.
4. The changes are then applied to the active graph.

EvoPat – Pattern-Based Evolution and Refactoring 653

Compound pattern. Compound patterns are resolved to basic patterns. For each
of the basic patterns the above steps are performed. The output of the algorithm
is a set of changes on the respective graphs.

Algorithm 1. Pattern execution sequence
Require: Pattern P
Require: RDF graph G
Require: Variable bindings B

if P is Basic Pattern then
substitute variables in SPARQL Query according to B
execute preprocessor functions in P
QR := SPARQL query result of P on G
for all update patterns of P as UP do

if UP has graph then
active graph AG = graph of UP

else
active graph AG = default graph G

end if
substitute variables in UP according to B
generate changes CS of UP on AG with QR
apply changes CS to AG

end for
else

for all basic patterns in compound pattern P as SP do //maintain correct order

execute Base Pattern SP //see above

end for
end if

2.3 Bad Smells

In order to assist knowledge engineers and domain experts as much as possible
with the evolution of a knowledge base we also provide a formal definition for
a bad smell in a certain knowledge base. In essence, a bad smell is represented
via a SPARQL SELECT query, which detects a suspicious structure in a knowl-
edge base. In most scenarios, there will be one (or multiple) evolution patterns
addressing exactly the issue raised by a certain bad smell. Hence, we allow to
assign one (or multiple) evolution patterns to the bad smell for resolving that
issue. In order to further automatize the resolving of bad smells each evolution
pattern can be assigned with a mapping from the bad smells result set to the
variables used in the evolution patterns.

Definition 3 (Bad smell). A bad smell is a tuple (S, (Pi, μi)), where S is a
SPARQL query and (Pi, μi) is a list of possible evolution patterns Pi for resolving
the bad smell with an associated mapping μi, which maps results of S to the
variables in Pi.

654 C. Rieß et al.

1 SELECT ?s ?p ?o

2 WHERE {

3 ?s ?p ?o .

4 ?p a owl:DatatypeProperty .

5 ?p rdfs:range ?range .

6 FILTER (DATATYPE (?o) != ?range)

7 }

Listing 3. Bad smell example: selecting statements for which the datatype of the

object doesn’t match the rdfs:range of the property

An example of a bad smell is given in listing 3. It selects all statements whose
object is a literal with a datatype that does not match the rdfs:range of the
property of that statement. The result set from the bad smell query can be
directly applied as input to a pattern that typecasts literal values to the correct
datatype.

In certain cases a knowledge base evolution can be even performed completely
automatically. This is the case if and only if both of the following conditions are
met.

– The bad smell can only be resolved by exactly one evolution pattern and
– the mapping to the evolution pattern’s variables is complete in the sense

that all variables will be assigned values from the bad smell’s query result
set.

2.4 Serialization in RDF

To facilitate the exchange and reuse of previously defined evolution patterns we
developed an RDF serialization, i. e. an RDF vocabulary for representing evolu-
tion patterns1. Together with an updated log publishing (such as e.g. proposed in
[1]) on the Linked Data Web this facilitates the creation of an evolution ecosys-
tem, where generic and domain specific evolution patterns are shared and reused
and data cleansing and migration strategies can be also performed in network
of linked knowledge bases.

3 Pattern Survey and Classification

In order to obtain a comprehensive catalog of evolution patterns we pursued
a three-fold strategy: (1) we performed a comprehensive literature review, (2)
we looked at all combinatorial combinations of before/after states and (3) we
conducted a number of interviews with knowledge engineers and domain experts,
which were involved in medium-scale knowledge base construction projects and
retrospectively reviewed the evolution of these knowledge bases.
1 The vocabulary for representing evolution patterns is available at:

http://ns.aksw.org/Evolution/

http://ns.aksw.org/Evolution/

EvoPat – Pattern-Based Evolution and Refactoring 655

Table 1. Combinatorially possible before/after evolution states. C, P, G stand for

class, property, graph respectively. The ’+’ indicates that multiple entities of the same

type participate in the evolution pattern. Impossible combinations are blackened out.

∅ C+ P+ G+ PC PG CG

∅ ok ok ok ok

C+ ok ok ok invalid invalid invalid ok

P+ ok ok ok invalid ok ok invalid

G+ ok invalid invalid ok invalid invalid invalid

PC invalid ok invalid invalid invalid

PG invalid ok invalid invalid invalid

CG ok invalid invalid invalid invalid

Literature review. Most work concerned with ontology evolution patterns iden-
tifies a number of useful patterns but gives only an informal description which
cannot be used for implementing an evolution software system. In [10], evolu-
tion patterns that work on the ontology level are identified. A classification of
evolution patterns in four levels of abstraction is presented in [7]. The levels
identified by the authors helped us in our classification system. In the inter-
views we conducted, the need for representational changes was identified. Thus,
we added another layer that deals with syntactic changes to resources (i. e. re-
naming a URI). The authors of [3] present a number of patterns with formally
defined participants and execution steps. We extended the approach, providing
a pattern behavior in the form of SPARQL/Update queries that can directly be
built into Semantic Web applications.

Combinatorial analysis. In order to ensure, that we achieved a comprehensive
coverage of all possible evaluation patterns we followed a combinatorial analy-
sis. We considered all possible combinations of ontology construction elements
(i. e. classes, properties and (sub-)graphs) which are potentially affected by the
application of a basic evolution pattern and the possible combinations of re-
maining elements after the pattern has been applied. All possible combinations
are displayed in Table 1. For each of the potentially possible combinations we
performed an analysis whether evolution patterns actually exist in practice. The
results of this analysis are also summarized in Table 2. Combinations where pos-
sible patterns can be represented as combinations of basic evolution patterns are
marked with a white background. Those combinations were no basic evolution
patterns exist are blackened out.

Interviews and retrospective coverage checks. In order to ground our findings
from the literature review and combinatorial analysis, we had an in-depth look
at several medium- to large-scale knowledge base construction projects. These
included in particular the Vakantieland e-tourism knowledge base for the Nether-
lands [9], the Leipzig Professors Catalog [2] and the development of an ontology
for the energy sector, which was performed by our industry partner Business

656 C. Rieß et al.

information flow

flow of control

Legend:

Frontend: OntoWiki extension
(browsing, editing and applying patterns)

Backend: triple store

LOD Cloud

P
at

te
rn

 M
an

ag
em

en
t

User Interaction

Pattern Processing

SPARQL Support

Pattern Control

Pattern
Deserialization

Statement-level
Support P

at
te

rn
 E

ng
in

e
Fig. 2. System architecture with internal functional units and provided services. Pat-

terns are exposed as Linked Data.

Intelligence GmbH. We also retrospectively reviewed the evolution of these knowl-
edge bases and analyzed to what extend the previously defined evolution patterns
would cover the found evolution steps.

4 Implementation

The EvoPat approach was implemented as an extension to OntoWiki – a tool
for browsing and collaboratively editing RDF knowledge bases. It differs from
other Semantic Wikis insofar as OntoWiki uses RDF as its natural data model
instead of Wiki texts. Information in OntoWiki is always represented according
to the RDF statement paradigm and can be browsed and edited by means of
views. These views are generated automatically by employing ontology features
such as class hierarchies or domain and range restrictions. OntoWiki adheres to
the Wiki principles by striving to make the editing of information as simple as
possible and by maintaining a comprehensive revision history. This history is also
based on the RDF statement paradigm and allows to roll back prior change sets.
OntoWiki has recently been extended to incorporate a number of Linked Data
features, such as exposing all information stored in OntoWiki as Linked Data as
well as retrieving background information from the Linked Data Web [6]. Apart
from providing a comprehensive user interface, OntoWiki also contains a number
of components for the rapid development of Semantic Web applications, such as
the RDF API Erfurt2, methods for authentication, access control, caching and
various visualization components.
2 http://aksw.org/Projects/Erfurt/

http://aksw.org/Projects/Erfurt/

EvoPat – Pattern-Based Evolution and Refactoring 657

Table 2. Overview of valid evolution patterns on four levels of abstraction

Ontology level (OWL)
Before After Description

∅ ∅ Trivial empty pattern (no actions taken)

∅ C+, P+ or G+ Creating class, property or graph

C+, P+ or G+ ∅ Deleting class, property or graph

C+ C+ Subclassing, union, merging, splitting classes

P+ P+ Property axioms (functional, symmetric, domain,

range, etc.)

G+ G+ Graph merging and splitting, graph annotation

C+ P+ Remodeling from class membership to distinct

property value

P+ C+ Remodeling from distinct property value to class

membership

C+ CG Class extraction from named graph

CG C+ Merging classes into graph

P PC Converting datatype to object property

PC P Converting object to datatype property (incl. ax-

ioms)

Instance and data level (RDFS)
Input Output Description

I∗ I Instances merging

I∗, C∗ I∗ Instances reclassification

I∗, P, O I∗ Adding data to instances

I∗, P, P ∗ I∗ Generating data from existing instances data

I∗, L∗ I∗ Converting literal property values to resources

I∗, R∗ I∗ Converting resources to literal property values

I∗(, P ∗, O∗) I∗ Moving data (predicates and objects) from one

instance to another

Entity level (RDF)
Input Function Description

Literal, datatype Setting datatype

on literal

Datatype added, changed or removed

Literal, language Setting language

on literal

Literal language added, changed or removed

RegExp search/

replace

regexp replace Performs a regular expression search and replace

on literal value

Syntactic/representational level (RDF/XML, N3, etc.)
Input Function Description

URI, namespace Set URI prefix Changes prefixes for a resource

URI, local name Set local name Changes local name of a resource

658 C. Rieß et al.

The general architecture of the EvoPat extension is depicted in Figure 2.
It consists of four distinct components. Core of the EvoPat implementation is
the pattern engine, which in particular handles processing, storing, versioning
and exposing evolution patterns as Linked Data on the data web. It interacts
via SPARQL with a triple store representing the EvoPat backend. The EvoPat
frontend facilitates the user friendly browsing/selection, configuration and ap-
plication of evolution patterns. The pattern management component as a logical
component spans several architectural layers. It implements the required APIs
needed by the user interface and backend for managing patterns.

Different versions of ontologies resulting from applying evolution patterns
can be managed through OntoWiki’s versioning component. Similar to database
transactions, the changes on the statement level that result from applying a
certain evolution pattern can be grouped and versioned as a single change.

Fig. 3. EvoPat user interface showing pattern editor (right) and pattern execution view

(left)

Figure 3 showcases the EvoPat user interface with the pattern editor and
the pattern execution. The pattern editor allows to create basic and compound
evolution patterns. A user friendly form is generated, where the descriptive at-
tributes, the variables used in the pattern and the respective SPARQL SELECT

EvoPat – Pattern-Based Evolution and Refactoring 659

and UPDATE queries can be filled in. For pattern execution (as shown in the
upper left part of Figure 3), the EvoPat implementation generates a form based
on the variables definition of the evolution pattern at hand. Employing the typing
of the variable a type ahead search simplifies the selection of concrete values for
the variables.

Scalability evaluation. One of the main goals of developing EvoPat was to push
as much of the evolution pattern processing down to the triple store. In order to
evaluate whether EvoPat lives up to this promise we evaluated the processing
of selected evolution patterns with different knowledge base sizes. The results
of the evaluation are summarized in Table 3. We used the Catalogus Professo-
rum Lipiensis knowledge base and simply created three different versions of it
in different sizes, by simply copying the data. The results of the performance
evaluation show, that the evolution pattern processing grows linearly with the
knowledge base size. As a consequence, EvoPat can be used with arbitrarily large
knowledge bases, the performance of the evolution pattern processing primarily
depends on the speed of the underlying triple store.

Table 3. Scalability evaluation with two compound patterns on Catalogus Professo-

rum Lipsiensis. The benchmarks were performed in three different sizes of the original

knowledge base: original size (150K triples), 3 × the size (450K triples), 5 × the size

(750K triples). Figures are quoted for two patterns each KB size.

pattern exec. [s] affect. rsrc. [pcs] throughput [
pcs
s

]

KB size: 1 × 150K triples
Datatype to Object Property 8.593 1300 151.3

Class merging 5.949 1500 252.1

KB size: 3 × 150K triples
Datatype to Object Property 24.813 3900 157.2

Class merging 17.753 4500 253.4

KB size: 5 × 150K triples
Datatype to Object Property 39.822 6500 163.2

Class merging 30.603 7500 245.1

5 Related Work

Ontology evolution has constantly been under research during the past two
decades. In recent years a ramp-up could be observed due to Semantic Web
research activity, thus providing a more user-centric view on ontology evolution.

A comprehensive overview on the field of ontology change is given in [4]. The
authors conduct an extensive literature review, extracting and defining common

660 C. Rieß et al.

vocabulary as a base for discussion. They define ontology evolution as a “response
to a change in the domain or conceptualization”. The term ontology evolution, as
used in this paper, covers what Flouris et al. refer to as ontology translation and
by which they mean changes in the syntactical representation of the ontology
(e. g. changing the URI of a resource).

To the best of our knowledge, there is no existing approach for formally spec-
ifying modular evolution patterns in a declarative manner. The most closely
related approach in this regard is a categorization of pattern-based change oper-
ators in [7]. The paper defines four levels of abstraction of an ontology (element,
element context, domain-specific and generic abstract level) to whose elements
the said operators can be applied. Taking into account the Semantic Web infras-
tructure, our approach defines an additional level on the representation layer.

Stojanovic et al. in [12] define three requirements for ontology evolution: 1)
ensuring consistency, 2) allowing the user supervision of evolution and 3) advice
for continuous ontology refinement. In addition, the authors identify six phases
of ontology evolution, namely 1) capturing, 2) representation, 3) semantics of
change, 4) implementation, 5) propagation and 6) validation of changes. The
KAON API3, implementing the approach, also introduced by the authors. Fur-
thermore, they identify the need for representing changes on different levels of
granularity. To cope with different methods of applying changes to an ontology,
they introduce basic evolution strategies, which define the steps of a complex
evolution process. For a given change request there are usually more than on
applicable strategy, resulting in different ontologies. Seen in a broader sense,
these basic evolution strategies can be combined into so called advanced evolu-
tion strategies, of which they introduce four. Our compound patterns are similar
in nature to Stojanovic’s basic evolution strategies, but differ in the inclusion of
explicit declarative semantics by means of SPARQL/Update queries.

An interesting approach to ontology evolution with particular respect to con-
sistency management is given by Djedidi and Aufaure [3]. They propose a process
model, an attached pattern and a versioning layer. If applying a change pattern
results in a match to an inconsistency pattern, an alternative pattern is automat-
ically applied by the proposed system. Furthermore, a quality assessment step
is integrated into the process. The system can thus alleviate the need for user
interaction by applying quality-improving patterns in an automated fashion.

Noy and Klein determine in [10] to what extent ontology evolution resem-
bles schema evolution, which has been extensively researched in the database
community. By arguing that different versions of an ontology have to be kept
in parallel, they conclude that the traditional distinction between schema evolu-
tion and schema versioning is not applicable to ontology evolution and ontology
versioning. Even though, EvoPat distinguishes between versioning and evolu-
tion, both subsystems are closely related and cannot be used exclusively. All
evolutionary changes are automatically versioned and can be reverted at any
time.

3 http://kaon.semanticweb.org/developers

http://kaon.semanticweb.org/developers

EvoPat – Pattern-Based Evolution and Refactoring 661

A declarative update language for RDF graphs, named RUL is defined in [8].
RUL is based on RQL and RVL and ensures consistency on the RDF and RDFS
levels. It, therefore, contains primitive, set-oriented and complex updates as
compositions of primitive or complex ones. Primitive RUL updates are simi-
lar in expressiveness to SPARQL 1.1 updates. Complex updates are expressed
by means of fine-grained updates on class and property instance level. Our
basic evolution patterns with variable placeholders are similar to the set-oriented
RUL updates (i. e. repeating the same query for several bindings). Additionally,
we, however, define a functional extension that allows for arbitrarily replacing
entities in a preprocessor-like manner.

Finally, applying the software engineering concept of code smell [5] to ontolo-
gies has been inspired by the work of Rosenfeld et al. [11]. They use bad smells
in a Semantic Wiki context for triggering refactoring operations.

6 Conclusion and Future Work

We introduced an approach to pattern-based evolution of RDF knowledge bases.
By considering the complete stack of Semantic Web knowledge representation
techniques including its syntactic infrastructure as opposed to just the ontology
layer, our approach fulfills additional requirements identified for example in user
interviews (cf. Section 3). We provide a concrete implementation that leverages
the plug-in architecture of OntoWiki4, our semantic collaboration platform and
framework. Thus, our implementation can make use of existing functionality of
the OntoWiki framework like versioning of RDF knowledge bases.

Currently, EvoPat only ensures consistency through the definition of con-
sistency-preserving patterns by the knowledge engineer. User-defined patterns
can, however, lead to inconsistent knowledge bases. An approach that ensures
consistency by proposing only those patterns whose application will not result
in an inconsistent ontology, would thus be desirable. A straightforward (but
admittedly not very scalable) solution to this problem is to combined EvoPat
with a reasoner and test the application of a pattern employing the reasoner
before its actual application in order to ensure correctness.

As opposed to bad smells, which indicate modeling problems, a promising
approach is also to share and reuse modeling best practices. A problem which
has to be solved in this regard, is the formalization and elicitation of a user’s
modeling requirements. A related idea for future work is the consumption of
Linked Data. Our current implementation publishes evolution patterns on the
Data Web but makes no use of gathering further information about resources.
Doing so, could deliver hints for the applicability of specific patterns.

In a number of application projects we learned, that a key factor for the
success of a knowledge engineering project is the efficient co-design of knowledge-
bases and knowledge-based applications. Through the declarative definition of
evolution with EvoPat it becomes possible to (semi-)automatize this co-design,
since a knowledge base refactoring can trigger code refactoring and vice versa.
4 Online at http://code.google.com/p/ontowiki/wiki/ExtensionCookbook

http://code.google.com/p/ontowiki/wiki/ExtensionCookbook

662 C. Rieß et al.

References

1. Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify: light-

weight linked data publication from relational databases. In: Quemada, J., León,

G., Maarek, Y.S., Nejdl, W. (eds.) Proceedings of the 18th International Conference

on World Wide Web, WWW 2009, Madrid, Spain, April 20-24, pp. 621–630. ACM,

New York (2009)

2. Augustin, C., Kuchta, B., Morgenstern, U., Riechert, T.: Datenbank und web-

site catalogus professorum lipsiensis. ein sozialstatistisches analyseinstrumentar-

ium und seine repräsentation im netz. In: Schattkowsky, M., Metasch, F. (eds.)

Biografische Lexika im Internet. Bausteine, vol. 14, pp. 167–184. TUDPress, Ver-

lag der Wissenschaften GmbH, Dresden (2009)

3. Djedidi, R., Aufaure, M.-A.: ONTO-EVOAL an Ontology Evolution Approach

Guided by Pattern Modeling and Quality Evaluation. In: Link, S., Prade, H. (eds.)

FoIKS 2010. LNCS, vol. 5956, pp. 286–305. Springer, Heidelberg (2010)

4. Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.: On-

tology change: classification and survey. Knowledge Eng. Review 23(2), 117–152

(2008)

5. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,

Reading (1999)

6. Heino, N., Dietzold, S., Martin, M., Auer, S.: Developing Semantic Web Appli-

cations with the OntoWiki Framework. In: Networked Knowledge – Networked

Media. Springer, Heidelberg (2009)

7. Javed, M., Abgaz, Y.M., Pahl, C.: A Pattern-Based Framework of Change Oper-

ators for Ontology Evolution. In: Meersman, R., Herrero, P., Dillon, T.S. (eds.)

OTM 2009 Workshops. LNCS, vol. 5872, pp. 544–553. Springer, Heidelberg (2009)

8. Magiridou, M., Sahtouris, S., Christophides, V., Koubarakis, M.: RUL: A Declar-

ative Update Language for RDF. In: Gil, Y., Motta, E., Benjamins, V.R., Musen,

M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 506–521. Springer, Heidelberg (2005)

9. Martin, M.: Exploring the netherlands on a semantic path. In: Auer, S., Bizer,

C., Müller, C., Zhdanova, A. (eds.) Proceedings of the 1st Conference on Social

Semantic Web, Leipzig, Germany, GI-edn., LNI, vol. P-113, p. 179. Bonner Köllen

Verlag (2007) ISSN 1617-5468

10. Noy, N.F., Klein, M.C.A.: Ontology Evolution: Not the Same as Schema Evolution.

Knowl. Inf. Syst. 6(4), 428–440 (2004)

11. Rosenfeld, M., Fernández, A., Dı́az, A.: Semantic Wiki Refactoring. A strategy to

assist Semantic Wiki evolution. In: Proceedings of the Fifth Workshop on Semantic

Wikis (SemWiki 2010), co-located with 7th European Semantic Web Conference,

ESWC 2010 (2010)

12. Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: User-Driven Ontology Evo-

lution Management. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002.

LNCS (LNAI), vol. 2473, p. 285. Springer, Heidelberg (2002)

How to Reuse a Faceted Classification and Put
It on the Semantic Web

Bene Rodriguez-Castro, Hugh Glaser, and Leslie Carr

School of Electronics and Computer Science, University of Southampton,

Southampton SO17 1BJ, UK

{b.rodriguez,hg,lac}@ecs.soton.ac.uk

http://www.ecs.soton.ac.uk

Abstract. There are ontology domain concepts that can be represented

according to multiple alternative classification criteria. Current ontology

modeling guidelines do not explicitly consider this aspect in the rep-

resentation of such concepts. To assist with this issue, we examined a

domain-specific simplified model for facet analysis used in Library Sci-

ence. This model produces a Faceted Classification Scheme (FCS) which

accounts for the multiple alternative classification criteria of the domain

concept under scrutiny. A comparative analysis between a FCS and the

Normalisation Ontology Design Pattern (ODP) indicates the existence

of key similarities between the elements in the generic structure of both

knowledge representation models. As a result, a mapping is identified

that allows to transform a FCS into an OWL DL ontology applying the

Normalisation ODP. Our contribution is illustrated with an existing FCS

example in the domain of “Dishwashing Detergent” that benefits from

the outcome of this study.

Keywords: facet analysis, faceted classification, normalisation, ontol-

ogy design pattern, ontology modeling.

1 Introduction

Ontologies remain as one of the key components needed for the realization of
the Semantic Web vision. They bring with them a broad range of development
activities that can be grouped into what it is referred to as Ontology Engineer-
ing. Ontology Engineering for the Semantic Web is a very active research area
and has experienced remarkable advancements in recent years, although it is
still relatively new compared to other engineering practices within Computer
Science or other fields. A constant ongoing effort in Ontology Engineering deals
with harnessing the field with sound development methodologies analogous to
those successfully employed in Software Engineering for decades. One of the ob-
jectives of these methodologies is to address areas of the ontology development
process vulnerable to ad-hoc practices that could potentially lead to unexpected
or undesirable results in ontology artifacts.

This paper describes a specific, very recurrentmodeling scenario in ontology de-
velopment, subject to such vulnerability. The scenario consists of domain-specific

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 663–678, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.ecs.soton.ac.uk

664 B. Rodriguez-Castro, H. Glaser, and L. Carr

concepts that can be represented according to multiple alternative classification
criteria. To the best of our knowledge, guidelines for the conceptualization and
representation of domain-specific concepts prone to be described based on multi-
ple (potentially alternative) classification criteria, has not been explicitly consid-
ered in the context of ontology modeling for the Semantic Web.

General examples of domain-specific concepts that exhibit the characteris-
tics described abound, going from a “bibliographic reference”, (which could be
classified according to several criteria such as “subject”, “author”, “publication
venue”, etc.); to a “toy” (which could be classified based on “suitable age”,
“brand”, “subject type”, etc.). The list of examples can go on. We have seen
in our own experience that lack of specific design guidelines leaves ample room
for conceptual errors when trying to develop a simple domain-specific ontology
model for such concepts. For example, common mistakes when trying to rep-
resent these concepts and their classification criteria are to use subsumption
relations between classes when in fact a part-of relation would be in order, or to
use subsumption to model relationships that are outside OWL DL expressivity
altogether.

Other examples of domain-specific concepts that can fit into the modeling
scenario described are particularly interesting because they are used in well-
known ontology development literature using OWL. They include: “Wine” [1],
“Person” (in the context of family history relations) [2], or “Pizza” [3]. However,
in none of them, they refer explicitly to the various classification criteria of the
domain concept that are considered implicitly, nor attempt to represent these
criteria explicitly in the respective ontology models developed.

To assist with these issues, we aim to put forward an initial set of basic
design guidelines to mitigate the opportunity for ad-hoc modeling decisions in
the development of ontologies for the problem scenario described. To obtain
the conceptual model of a domain-specific concept and its multiple classifica-
tion criteria we examined a simplified model for facet analysis in the field of
Library and Information Science [4]. The outcome of this facet analysis is a
Faceted Classification Scheme (FCS) for the domain concept in question where
in most cases a facet would correspond to a classification criterion. To obtain an
ontology representation of the FCS, we examined the Normalisation Ontology
Design Pattern (ODP) [5] [6] [7]. A comparative analysis between a FCS and
the Normalisation ODP revealed the existence of key similarities between both
knowledge representation paradigms. The similarities allowed us to identify a
series of mappings to transform a FCS into an OWL ontology applying the Nor-
malisation pattern. Moreover, the ontology model obtained through this process
contains a valid OWL DL representation of the classification criteria involved in
the characterization of the domain concept.

To illustrate our contribution, we used throughout the document an existing
FCS example in the domain of “Dishwashing Detergent” [8]. In fact, there are
aspects of the work presented in this paper that could be viewed as a follow-up
to [8] in the context of the Semantic Web and we attempted to acknowledge that
in our title.

How to Reuse a Faceted Classification and Put It on the Semantic Web 665

There is an additional important use case worth highlighting for motivating
the need of this work as well. That is the modeling of the concept “Fault” in
the domain of resilient and dependable computer systems. The representation of
“Fault” is part of an ontology featured in a web portal knowledge base (RKB-
Explorer1) for the project ReSIST2 (Resiliance for Survivability in Information
Society Technologies) [9].

The rest of this paper is structure as follows: Section 2 describes the structure
and elements of a generic FCS; Section 3 does likewise regarding the Normalisa-
tion ODP; Section 4 introduces the alignments identified between both knowl-
edge representation paradigms to enable the transformation of a generic FCS
into a normalised ontology; Section 5 provides a comparison to previous work
closely related to our proposal; and finally, Section 6 concludes the paper with
some final remarks.

2 Faceted Classification Scheme

This section remarks the main features of a FCS involved in the comparative
analysis to the Normalisation ODP for a given domain of discourse, while a
thorough overview of facet analysis and FCSs can be found in [4] [10]. The latter
also explores how FCSs compare to other knowledge representation approaches
in classification and provides an account of its strengths and limitations.

Denton [8](§ 0) characterized a FCS for a given domain as follows: “a set of
mutually exclusive and jointly exhaustive categories, each made by isolating one
perspective on the items (a facet), that combine to completely describe all the
objects in question, and which users can use, by searching and browsing, to find
what they need”.

However, in order to develop a FCS it is required to go through the process
of Facet Analysis. Vickery [8](§ 2.3) describes Facet Analysis as: “The essence
of facet analysis is the sorting of terms in a given field of knowledge into homo-
geneous, mutually exclusive facets, each derived from the parent universe by a
single characteristic of division”.

The key to Facet Analysis and FCSs is the notion of facet. Spiteri [4] simpli-
fied existing principles used in established Universal FCSs in Library Science. A
fundamental of such principles is introduced as follows: “The Principles of Ho-
mogeneity and Mutual Exclusivity state respectively that facets must be homo-
geneous and mutually exclusive, i.e., that the contents of any two facets cannot
overlap, and that each facet must represent only one characteristic of division of
the parent universe”.

In this sense, each facet can be designed separately and it models the domain
of discourse from a distinct aspect. Each facet consists of a terminology, a finite
set of terms that exhaust the facet. This set of terms is also referred to as foci.

There are numerous types of FCSs that vary in complexity. For example,
FCSs that include several subject fields containing multiple facets and subfacets
1 http://www.rkbexplorer.com/
2 http://www.resist-noe.org/

http://www.rkbexplorer.com/
http://www.resist-noe.org/

666 B. Rodriguez-Castro, H. Glaser, and L. Carr

[11](§ 8, Fig. 1). However, the rest of this section characterizes the elements of
a simple generic FCS that this paper will refer to hereafter.

2.1 Structure and Elements

Definition 1. Elements of a simple generic Faceted Classification Scheme:

– Target Domain Concept (TDC).
– Facets: Facet1, Facet2, ..., rest of facets.
– Terms or foci (organized by facets):

• Facet1: F1Term1, F1Term2, ..., rest of terms in Facet1.
• Facet2: F2Term1, F2Term2, ..., rest of terms in Facet2.
• ... rest of terms by facet.

– Set of items (from the TDC) to classify: Item1, Item2, ..., rest of items.

The following notation is introduced to refer to the elements of a generic FCS
in Def. 1:

– TDC denotes the domain or universe of discourse. The domain-specific con-
cept targeted by the FCS.

– Faceti denotes one of the facets of the FCS.
– FiTermj denotes one of the terms of Faceti.
– Itemx denotes one the items from the domain of discourse to be classified.

Example 1. The structure below recaps the final FCS developed for the “Dish-
washing Detergent” domain example in [8](§ 2.4). The elements of the schema
fit into the generic structure presented in Def. 1.

– The TDC element is populated with the domain “Dishwashing Detergent”.
– Faceti elements are populated with the facets: “Agent”, “Form”, “Brand

Name”, “Scent”, “Effect On Agent”, and “Special Property”.
– FiTermj elements are populated with the terms or foci listed below (grouped

by facet):

• Agent: dishwasher, person.
• Form: gel, gelpac, liquid, powder, tablet.
• Brand Name: Cascade, [...], Palmolive, President’s Choice, Sunlight.
• etc.

– Itemx elements are populated in this case with two example items to classify:

• “President’s Choice Antibacterial Hand Soap and Dishwashing Liquid”.
• “Palmolive Aroma Therapy, Lavender and Ylang Ylang”.

How to Reuse a Faceted Classification and Put It on the Semantic Web 667

3 Normalisation Ontology Design Pattern

This section highlights the main characteristics of the Normalisation ODP rele-
vant to the comparative analysis to a FCS.

The Normalisation pattern is classified as a “Good Practice” ODP in the
catalog of ODPs introduced in [6] [7] (available online3). It can be applied to
any OWL DL ontology that consists of a polyhierarchy where some semantic
axes can be pointed. Each of those axes will be a module. One of their most
powerful features, is the ability of logical reasoners to link these independent
ontology modules to allow them to be separately maintained, extended, and
re-used.

The pattern also establishes a series of requirements that a normalised ontol-
ogy should meet, some of which are summarized below:

– The essence for the normalisation proposal is that the primitive skeleton
of the domain ontology should consist of disjoint homogeneous trees (also
referred to as modules) [5].

– Each primitive class that is part of the primitive skeleton should only have
a primitive parent, and primitive sibling classes should be disjoint, creating
the modules [6](§ 4.3.2.1).

– This implies that for any two primitive concepts either one subsumes the
other or they are disjoint. Assertion of multiple inheritance relations among
primitive concepts are not allowed [5].

– Normalisation allows exactly one unlabelled flavour of is-kind-of link cor-
responding to the links declared in the primitive skeleton. All others are
inferred by the reasoner [5].

3.1 Structure and Elements

There are several examples of the generic structure of the Normalisation ODP
in the literature [6](§ 4.3.2.1), [7](§ 6.5.1, § A.13) and online3. Figure 1 presents
the specific version of the generic structure that this paper will refer to hereafter,
which preserves the required characteristics of the pattern. Every node of the
owl:Thing tree in Fig. 1, denotes an owl:Class. The symbol “(≡)” indicates that
the corresponding node is a defined class. Otherwise, the node is a primitive class.
Every node of the owl:topObjectProperty tree denotes an owl:ObjectProperty.
Figure 2 depicts a further generalization of the structure in Fig. 1 and introduces
the following notation:

– :TDC denotes a primitive class representing the domain concept being nor-
malised.

– :Modulei denotes a primitive class that represents one of the modules.
– :MiClassj denotes a primitive class that represents a subset of the module

class :Modulei.
3 http://odps.sourceforge.net/(§ Normalisation).

http://odps.sourceforge.net/

668 B. Rodriguez-Castro, H. Glaser, and L. Carr

owl:Thing
|-- :Module1

|-- :M1Class1
|-- :M1Class2
|-- (... rest of subclasses of Module1)

|-- Module2
|-- :M2Class1
|-- :M2Class2
|-- (... rest of subclasses of Module2)

|-- (... rest of modules and subclasses)
|-- :TargetDomainConcept (or :TDC)

|-- (≡) :M1Class1TDC
|-- (≡) :M1Class2TDC
|-- (≡) (... rest of defined classes based on Module1)
|-- (≡) :M2Class1TDC
|-- (≡) :M2Class2TDC
|-- (≡) (... rest of defined classes based on Module2)
|-- (≡) (... rest of defined classes based on subclasses of the rest of modules)
|-- :SpecificTDC1
|-- :SpecificTDC2
|-- (... rest of specific items from the TDC to be represented and classified)

owl:topObjectProperty
|-- :hasModule1
|-- :hasModule2
|-- (... rest of properties based on the rest of modules)

Fig. 1. Generic structure of the Normalisation ODP

– :hasModulei denotes an object property that links every module :Modulei

to the different subclasses of the target domain concept :MiClassjTDC and
:SpecificTDCx.

– :MiClassjTDC denotes a defined class that represents a subset of the target
domain concept class :TDC. Every class :MiClassjTDC is defined based on
a one-to-one relationship to the single corresponding class :MiClassj that
it is derived from.

– :SpecificTDCx denotes a primitive class that represents a subset of the
target domain concept class :TDC and an entity from the domain to be clas-
sified. Every class :SpecificTDCx is described based on a one-to-many rela-
tionship to various classes :MiClassj from potentially different modules. As
a consequence of this one-to-many relationship, the classes :SpecificTDCx

could introduce the polyhierarchy scenarios in the ontology model that the
Normalisation ODP aims to manage.

3.2 Implementation

One of the main features of the Normalisation ODP is to enable a reasoner
to mantain the subsumption relations between a class :SpecificTDCx and the
various classes :MiClassjTDC involved in its description. This feature is ac-
complished encoding the conditions of the subsumption relation as restrictions
in the implementation of the classes :MiClassjTDC and :SpecificTDCx.

Definition 2. The implementation of a generic defined class :MiClassjTDC
is given as follows:

How to Reuse a Faceted Classification and Put It on the Semantic Web 669

owl:Thing

|-- :Modulei

|-- :MiClassj

|-- :TargetDomainConcept (or :TDC)

|-- (≡) :MiClassjTDC
|-- :SpecificTDCx

owl:topObjectProperty

|-- :hasModulei

Fig. 2. Generic structure of the Normalisation ODP

:MiClassjTDC
rdf:type owl:Class ;

rdfs:subClassOf :TDC ;

owl:equivalentClass [rdf:type owl:Restriction ;

owl:onProperty :hasModulei ;

owl:someValuesFrom :MiClassj] .

This implementation indicates that:

– A :MiClassjTDC class is equivalent to an anonymous class described by an
existential property restriction.

– The restriction is on the object property :hasModulei associated to the
module :Modulei that subsumes the class :MiClassj.

– The filler of the restriction is the class :MiClassj linked to the definition of
:MiClassjTDC.

Definition 3. The implementation of a generic class :SpecificTDCx is given
as follows:

:SpecificTDCx

rdf:type owl:Class ;

rdfs:subClassOf :TDC ,

[rdf:type owl:Restriction ;

owl:onProperty :hasModulei ;

owl:someValuesFrom :MiClassj] ,

[... rest of existential restrictions on :hasModulei

for every class :MiClassj that participates

in the description of :SpecificTDCx] .

This representation indicates the following:

– A class :SpecificTDCx is subsumed by a variable number of anonymous
classes. More specifically, one anonymous class for every class :MiClassj of
every module :Modulei that is linked to the description of :SpecificTDCx.
Every anonymous class is represented by an existential property restriction
such as:

670 B. Rodriguez-Castro, H. Glaser, and L. Carr

• The restriction is on the object property :hasModulei, associated to the
module :Modulei that subsumes the class :MiClassj .

• The filler of the restriction is the class :MiClassj, linked to the descrip-
tion of :SpecificTDCx.

This implementation of the classes :MiClassjTDC and :SpecificTDCx respec-
tively, enable a reasoner to infer and maintain the subsumption relations between
a given class :SpecificTDCx and the various classes :MiClassjTDC that it is
related to.

Specific examples of the Normalisation ODP in the literature [6](§ 4.3.2.1),
[7](§ 6.5.1, § A.13) and online3 demonstrate the features of the pattern in specific
use case scenarios.

4 Alignment of a FCS to the Normalisation ODP

A comparative analysis between the main characteristics of a FCS and the Nor-
malisation ODP presented in previous sections, indicates the existence of key
similarities between the elements in the generic structures of both conceptual
models.

One such key similarity lies in the notion of facet in FCSs and the notion of
module (or semantic axis) in the Normalisation ODP. Both elements represent
one perspective of the domain being modelled, a single characteristic of division,
a single criterion of classification in their respective paradigm.

Another key similarity is linked to the requirement for facets in a FCS to be
homogeneous and mutually exclusive and likewise the requirement of modules
in the Normalisation ODP to be comprised of primitive classes arranged in a
structure of disjoint homogeneous class trees.

These key similarities prompt us to identify a mapping between the elements
of both conceptual models that allows to transform a FCS into a normalised
ontology model. In this first approach, the mapping aims to keep the design
choices of the resultant normalised ontology as simple and straight-forward as
possible, without compromising any of the requirements and features of both
FCSs and the normalisation mechanism. This approach might not be suitable for
converting all possible schemas into a normalised ontology but it is an attempt to
provide an initial set of basic design guidelines. These guidelines can be extended
hereafter to support more complex cases of FCSs.

The main principle is to represent each facet as a independent module or se-
mantic axis. Following this principle makes the application of the Normalisation
ODP almost straight-forward. Moreover, the resultant ontology includes the rep-
resentation of the multiple alternative classification criteria that were considered
in the original FCS for the target domain concept.

Table 1 summarizes the alignment of the elements in the generic structure of
both conceptual models. This alignment enables the conversion from a FCS to
an OWL DL ontology by applying the Normalisation ODP.

– The first column (leftmost), contains the elements of a generic FCS as in-
troduced in Sect. 2.1, Def. 1.

How to Reuse a Faceted Classification and Put It on the Semantic Web 671

Table 1. Alignment of a Faceted Classification Scheme to the Normalisation ODP

Library Science Ontology Modeling

FCS Norm. ODP FCS in Norm. ODP OWL Implementation

TDC :TDC owl:Class (primitive)

Faceti
:Modulei :Faceti owl:Class (primitive)

:hasModulei :hasFaceti owl:ObjectProperty

FiTermj
:MiClassj :FiTermj owl:Class (primitive)

:MiClassjTDC :FiTermjTDC owl:Class (defined) (≡)

Itemx :SpecificTDCx owl:Class (primitive)

– The second column contains the elements of the Normalisation ODP generic
structure as introduced in Sect. 3.1, Fig. 2.

– The third column represents the selected OWL notation for the elements of
a generic FCS in the context of the Normalisation ODP generic structure.

– The forth column (rightmost), indicates the OWL implementation chosen
for every element. The selection complies with the requirements of the nor-
malisation mechanism.

Based on the principle of representating each facet as a module, the underlying
ideas behind the mappings in Table 1 can be outlined as follows:

– The target domain concept TDC represents the domain of discourse of both
a FCS and the Normalisation ODP. The primitive class :TDC fulfills that
role in the normalised ontology.

– A facet Faceti from a generic FCS corresponds to a module :Modulei in the
Normalisation ODP, therefore it becomes a primitive class :Faceti in the
normalised ontology model.

– A facet Faceti from a FCS also becomes an object property :hasFaceti
in the normalised ontology, given that for every module :Modulei in the
Normalisation ODP, there is an object property :hasModulei.

– From the relationship between facet and module, it follows that a facet term
FiTermj from a FCS maps to a module subclass :MiClassj from the Nor-
malisation ODP. Both elements represents the same notion in their respective
conceptual models. A subvidision, a refinement of the facet or module that
they complement respectively. Therefore, a facet term FiTermj from a FCS
becomes a primitive class :FiTermj in the normalised ontology.

– A facet termFiTermj from a FCS also produces a defined class :FiTermjTDC
in thenormalisedontology, given that for everyprimitive class :MiClassj in the
Normalisation ODP, there is a corresponding defined class :MiClassjTDC.

– Every item Itemx to be classified in the FCS aligns to a class :SpecificxTDC
that is automatically classifiedby a reasoner in the NormalizationODP. There-
fore, every element Itemx is represented as a primitive class : SpecificTDCx

in the normalised ontology.

The rest of this section details the characteristics of the resultant normalised
ontology model that is obtained by applying the Normalisation ODP to a generic

672 B. Rodriguez-Castro, H. Glaser, and L. Carr

owl:Thing

|-- :Faceti

|-- :FiTermj

|-- :TargetDomainConcept (or :TDC)

|-- (≡) :FiTermjTDC
|-- :SpecificTDCx

owl:topObjectProperty

|-- :hasFaceti

Fig. 3. Elements of a FCS placed into the Normalisation ODP generic structure

FCS. The application of the pattern is driven by the alignments summarized
in Table 1. The process is illustrated using the example of the “Dishwashing
Detergent” FCS presented in Sect. 2.1, Ex. 1.

4.1 Structure and Elements

Figure 3 depicts the placement of the elements of a generic FCS into the generic
structure of the Normalisation ODP based on the structure of the pattern in
Sect. 3.1, Fig. 2 and the corresponding mappings from Table 1.

Example 2. Now let us populate the generic ontology structure in Fig. 3 with
the specific elements of the “Dishwashing Detergent” FCS example. Figure 4
presents the overall normalised ontology class diagram obtained.

It is important to note that the structure in Fig. 4 includes axioms to comply
with the requirement already stated of the Normalization ODP. That is, the
skeleton of primitive classes consists of disjoint homogeneous tress where each
primitive class only has a primitive parent, and primitive sibling classes are
disjoint, creating the modules. This normalization requirement complies as well
with the FCS requirement of facets being homogeneous and mutually exclusive
based on the alignments in Table 1.

4.2 Implementation

Defined Classes. The generic implementation of a defined class :FiTermjTDC
in terms of FCS elements is straight-forward based on the definition of
:MiClassjTDC given in Sect. 3.2, Def. 2 and Table 1.

Example 3. Let us illustrate the implementation of a defined class in the “Dish-
washing Detergent” FCS example. Consider the facet “Agent” which contains
the terms “Person” and “Dishwasher”. From Table 1, these FCS elements fit
into the normalised ontology as follows:

– :Faceti is populated with :Agent.

How to Reuse a Faceted Classification and Put It on the Semantic Web 673

owl:Thing
|-- :Agent

|-- :Person
|-- :Dishwasher

|-- :Form
|-- :Gel
|-- :Gelpac
|-- (... rest of terms in the facet "Form")

|-- :BrandName
|-- :Cascade
|-- :Electrasol
|-- (... rest of terms in the facet "Brand Name")

|-- :Scent
|-- :GreenApple
|-- :GreenTea
|-- (... rest of terms in the facet "Scent")

|-- :EffectOnAgent
|-- :AromaTherapy

|-- :Invigorating
|-- :Relaxing

|-- :SpecialProperty
|-- :Antibacterial

|-- :DishwashingDetergent (:TDC)
|-- (≡) :ManualDishDetergent
|-- (≡) :DishwasherDishDetergent
|-- (≡) :GelDishDetergent
|-- (≡) :GelpacDishDetergent
|-- (≡) (... rest of subclasses for each term in the facet "Form")
|-- (≡) :CascaseDishDetergent
|-- (≡) :ElectrasolDishDetergent
|-- (≡) (... rest of subclasses for each term in the facet "Brand Name")
|-- (≡) :GreenAppleDishDetergent
|-- (≡) :GreenTeaDishDetergent
|-- (≡) (... rest of subclasses for each term in the facet "Scent")
|-- (≡) :AromaTherapyDishDetergent

|-- (≡) :InvigoratingDishDetergent
|-- (≡) :RelaxingDishDetergent

|-- (≡) :AntibacterialDishDetergent
|-- :PresidentsPersonLiquidAntibacterial
|-- :PalmoliveAromaTherapyLavenderYlangYlang
|-- :SpecificDishDetergent3
|-- (... rest of specific dish detergent classes :SpecificDishDetergentx to classify)

owl:topObjectProperty
|-- :hasAgent
|-- :hasForm
|-- :hasBrand
|-- :hasScent
|-- :hasEffectOnAgent
|-- :hasSpecialProperty

Fig. 4. Normalised ontology structure of the “Dishwashing Detergent” FCS

– :hasFaceti is populated with :hasAgent.
– :FiTermj is populated with :Person and :Dishwasher respectively.
– :FiTermjTDC is populated with :ManualDishDetergent and :Dishwash-

erDishDetergent respectively.

As an example, let us focus on the class :DishwasherDishDetergent. The imple-
mentation in the normalised ontology can be stated as follows:

674 B. Rodriguez-Castro, H. Glaser, and L. Carr

:DishwasherDishDetergent

rdf:type owl:Class ;

rdfs:subClassOf :DishDetergent .

owl:equivalentClass [rdf:type owl:Restriction ;

owl:onProperty :hasAgent ;

owl:someValuesFrom :Dishwasher] .

The implementation of the rest defined classes in the “Dishwashing Detergent”
FCS shown in Fig. 4 follows the same rationale.

Classification Classes. The generic implementation of a class :SpecificTDCx

in terms of FCS elements is straight-forward following the implementation of
:SpecificTDCx given in Sect. 3.2, Def. 3 and Table 1.

Example 4. To illustrate the representation of a specific dishwashing detergent,
let us reuse one of the classification examples presented in [8](§ 2.4). The item
“President’s Choice Antibacterial Hand Soap and Dishwashing Liquid” is clas-
sified in the cited reference, as follows: (Agent: person), (Form: liquid), (Brand
Name: President’s Choice), (Scent: none), (Effect on Agent: none) and (Special
Property: antibacterial). From Table 1, the description of the example detergent
reveals the following mappings:

– :TDC is populated by :DishDetergent.
– :SpecificTDCx is populated by :PresidentsPersonLiquidAntibacterial.
– There are four existential restrictions. One per facet term involved in the

description of the specific detergent at hand (“person”, “liquid”, “President’s
Choice”, and “antibacterial”). Therefore, for each restriction:
• :hasFaceti is populated with :hasAgent, :hasForm, :hasBrandName and

:hasSpecialProperty respectively.
• :FiTermj is populated with :Person, :Liquid, :PresidentsChoice and :An-

tibacterial respectively.

The implementation of this particular detergent in the normalised ontology can
be stated as follows:

:PresidentsPersonLiquidAntibacterial

rdf:type owl:Class ;

rdfs:subClassOf :DishDetergent ,

[rdf:type owl:Restriction ;

owl:onProperty :hasAgent ;

owl:someValuesFrom :Person] ,

[rdf:type owl:Restriction ;

owl:onProperty :hasForm ;

owl:someValuesFrom :Liquid] ,

[rdf:type owl:Restriction ;

owl:onProperty :hasBrandName ;

owl:someValuesFrom :PresidentsChoice] ,

[rdf:type owl:Restriction ;

owl:onProperty :hasSpecialProperty ;

owl:someValuesFrom :Antibacterial] .

How to Reuse a Faceted Classification and Put It on the Semantic Web 675

This descriptionmakes explicit the relationshipbetween the specificdetergent class
and every term of every facet that participate in the facet classification of the item.
Moreover, it enables a reasoner to infer that :PresidentsPersonLiquidAntibacterial
is a subclass of the defined classes :ManualDishDetergent, :LiquidDishDetergent,
:PresidentsChoiceDishDetergent and :AntibacterialDishDetergent.

A version of the complete normalised ontology model for the “Dishwashing
Detergent” FCS example is available online4 in RDF/XML format.

5 Relation to Other Methods

Previous work that defines mappings between different semantic models include
[12]. The authors performs a rigorous and comprehensive comparative analysis
between the primitive elements of three semantic models: the Semantic Web
Ontology Language (OWL), the Relational Database Model (RDBM), and the
Resource Space Model (RSM). Based on the identified mappings between every
two models, a detailed set of criteria is provided to transform one of them to the
other. The most relevant to us is the mapping between RSM and OWL because
of its similarities with the conversion between a FCS and OWL that we propose
here.

The RSM is defined as a semantic model for specifying, organizing and re-
trieving diverse multimedia resources by classifying their contents according to
different partition methods and organizing them according to a multidimensional
classification space. A FCS is also a multidimensional classification space and
comparing the primitive elements of a FCS and a RSM the following mapping
is instantly revealed:

– The domain or universe of discourse of the FCS (the target domain concept)
corresponds to the overall resource space, the RS element in the RSM.

– A facet in the FCS corresponds to an axis Xi in the RSM.
– A facet term in the FCS corresponds to a coordinate Ci in the RSM.
– A facet is covered and exhausted by the set of terms associated to it in a FCS.

The same principle holds in a RSM for an axis and the set of coordinates
associated to it, Xi = 〈Ci1, Ci2, ..., Cin〉.

– An item to be classified by the FCS corresponds to a point p in the RSM.

These mappings show that a generic FCS can be converted into a RSM, which
in turn can be converted into an OWL model using the RSM to OWL mappings
in [12]. Now there are two possible paths to convert a FCS into an OWL model.

– Path 1: FCS to RSM via mappings above and RSM to OWL via mappings
in [12]. Let us refer to this OWL model as O1.

– Path 2: FCS to OWL via mappings presented in our paper using the Nor-
malization ODP. Let us refer to this OWL model as O2.

4 http://purl.org/net/project/enakting/ontology/detergent_fcs_norm

http://purl.org/net/project/enakting/ontology/detergent_fcs_norm

676 B. Rodriguez-Castro, H. Glaser, and L. Carr

There are important differences between the ontologies O1 and O2. An important
difference is due to the RSM to OWL conversion in [12]. RSM describes mainly
classification semantics and as the authors explain, this means that there is no
semantic loss when converting from RSM to OWL but there might be semantic
loss when transforming an OWL model that includes richer semantics into a
RSM. This also means that, in terms of W3C standards, the expressivity level
of the resultant OWL model O1, will be within the RDF Schema or OWL Lite
boundary.

On the other hand, the ontology O2 is within OWL DL and presents richer
OWL semantics than O1, provided by the Normalization ODP. These additional
OWL DL semantics in O2 enable one of the main features of the normalization
pattern such as the automatic classification and maintenance of complex sub-
sumption relations by a reasoner. So while O1 is a valid OWL description of
the FCS that it is based on, O2 using our proposed method provides additional
semantics at the OWL DL level that support a richer description and additional
features of the classification criteria considered in the initial FCS.

Additional research that made use of facet analysis in Library and Infor-
mation Science to build computational ontologies includes [13]. Giunchiglia et
al. introduces the concept of Faceted Lightweight Classification Ontology as “a
lightweight (classification) ontology where each term and corresponding concept
occurring in its node labels must correspond to a term and corresponding concept
in the background knowledge, modeled as a faceted classification scheme”.

Similarities to our approach include:

– The use of a FCS to model certain background knowledge and to derive and
ontology based on it.

– Each concept in the ontology model obtained in our method also corresponds
to a concept in the FCS.

There are important differences where our approach deviates from that in [13]
probably due to the different type of problems that both are trying to address
respectively. Giunchiglia et al. are trying to counteract the lack of interest and
difficulties on the user side to build and reuse ontologies while our concern focuses
on identifying explicit guidelines to represent the notion of multiple classification
criteria in domain concepts. Additional differences include:

– The expressive level for the resultant ontology model in our method is OWL
DL. In contrast, [13] focuses on lightweight classification ontologies which
expressive level would loosely correspond to no more than RDF Schema in
terms of W3C Standards. Key features provided by the Normalisation ODP
found in our method, can not be implemented using solely RDF Schema
semantics.

– The type of FCS used in [13] is based on a Universal Faceted Classification
System. On the other hand, we have focused on simpler custom domain-
specific FCSs to serve as an starting point for our initial proof of concept.
This helped limiting the complexity of the classification criteria to consider
and represent in the corresponding ontology.

How to Reuse a Faceted Classification and Put It on the Semantic Web 677

6 Conclusions

This paper has presented an initial set of basic design guidelines to develop an
ontology model within OWL DL that supports the representation of multiple
alternative classification criteria of a specific domain concept.

A lack of explicit guidance in the ontology development literature on how to
address this recurrent modeling scenario, leaves ample room for ad-hoc prac-
tices that can lead to unexpected or undesired results in ontology artifacts. In
our attempt to mitigate this void, we examined a simplified procedure to develop
a Faceted Classification Scheme (FCS) which contains the conceptualization of
various classification criteria (facets) of a specific target domain concept. A se-
ries of mappings between the elements of a generic FCS and the Normalization
Ontology Design Pattern (ODP) have been identified that allow us to convert a
given FCS into an OWL DL ontology model following a consistent and system-
atic approach. The resultant ontology model includes the representation of the
various classification criteria of the domain concept considered in the original
FCS. An existing FCS example in the domain of “Dishwashing Detergent” is
used to illustrate the main steps of our conversion procedure.

The guidelines presented in this first effort consider explicitly the conceptu-
alization of existing classification criteria in the context of ontology modeling
for the Semantic Web and provide a partial solution to the problem scenario de-
scribed. They do not cover all existing types of generic structures of FCSs (which
can be the aim of future work) and they do not eliminate all opportunities of
potentially hazardous ad-hoc decisions in the development process. However, we
believe the use of a consistent, systematic and fit-for-purpose approach allows
to significantly reduced them.

Acknowledgments. This work was supported in part by the UK Engineer-
ing and Physical Sciences Research Council (EPSRC), in the context of the
EnAKTing project under grant number EP/G008493/1. Additionally, many
people have contributed directly and indirectly to this work and we thank
them all. In particular, everyone that participated in the online discussion “The
notion of a ‘classification criterion’ as a class”5,6 via the mailing lists: “ontolog-
forum@ontolog.cim3.net” and “public-owl-dev@w3c.org”; and the British Chap-
ter of the International Society for Knowledge Organization (ISKO).

References

1. Welty, C., McGuinness, D.L., Smith, M.K.: OWL web ontology language guide.

W3C recommendation, W3C (February 2004),

http://www.w3.org/TR/2004/REC-owl-guide-20040210/
2. Krötzsch, M., Patel-Schneider, P.F., Rudolph, S., Hitzler, P., Parsia, B.: OWL 2

web ontology language primer. Technical report, W3C (October 2009),

http://www.w3.org/TR/2009/REC-owl2-primer-20091027/

5 http://lists.w3.org/Archives/Public/public-owl-dev/2010AprJun/0009.html
6 http://ontolog.cim3.net/forum/ontolog-forum/2010-04/msg00051.html

http://www.w3.org/TR/2004/REC-owl-guide-20040210/
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/
http://lists.w3.org/Archives/Public/public-owl-dev/2010AprJun/0009.html
http://ontolog.cim3.net/forum/ontolog-forum/2010-04/msg00051.html

678 B. Rodriguez-Castro, H. Glaser, and L. Carr

3. Horridge, M., Drummond, N., Jupp, S., Moulton, G., Stevens, R.: A practical guide

to building owl ontologies using the protege-owl plugin and co-ode tools edition 1.2.

Technical report, The University Of Manchester (March 2009)

4. Spiteri, L.: A simplified model for facet analysis: Ranganathan 101. Canadian Jour-

nal of Information and Library Science 23(1/2), 1–30 (1998)

5. Rector, A.L.: Modularisation of domain ontologies implemented in description log-

ics and related formalisms including owl. In: Proceedings of the 2nd International

Conference on Knowledge Capture, K-CAP 2003, pp. 121–128. ACM, New York

(2003)

6. Egana-Aranguren, M.: Ontology Design Patterns for the Formalisation of Biological

Ontologies. MPhil Dissertation, Bio-Health Informatics Group, School of Computer

Science, University of Manchester (2005)

7. Egana-Aranguren, M.: Role and Application of Ontology Design Patterns in Bio-

ontologies. PhD thesis, School of Computer Science, University of Manchester

(2009)

8. Denton, W.: How to make a faceted classification and put it on the web (November

2003), http://www.miskatonic.org/library/facet-web-howto.html

9. Rodriguez-Castro, B., Glaser, H.: Whose “fault” is this? untangling domain con-

cepts in ontology design patterns. In: Workshop on Knowledge Reuse and Reengi-

neering over the Semantic Web in the 5th European Semantic Web Conference

(June 2008)

10. Kwasnik, B.H.: The role of classification in knowledge representation and discovery.

Library Trends 48(1) (1999)

11. Vickery, B.: Faceted classification for the web. Axiomathes 18(2), 145–160 (2008)

12. Zhuge, H., Xing, Y., Shi, P.: Resource space model, owl and database: Mapping

and integration. ACM Trans. Internet Technol. 8(4), 1–31 (2008)

13. Giunchiglia, F., Dutta, B., Maltese, V.: Faceted lightweight ontologies. In: Borgida,

A., Chaudhri, V.K., Giorgini, P., Yu, E.S.K. (eds.) Conceptual Modeling: Founda-

tions and Applications. LNCS, vol. 5600, pp. 36–51. Springer, Heidelberg (2009)

http://www.miskatonic.org/library/facet-web-howto.html

OWL-POLAR: Semantic Policies for Agent Reasoning�

Murat Şensoy1, Timothy J. Norman1, Wamberto W. Vasconcelos1, and Katia Sycara1,2

1 Department of Computing Science, University of Aberdeen, AB24 3UE, Aberdeen, UK
{m.sensoy,t.j.norman,w.w.vasconcelos}@abdn.ac.uk

2 Carnegie Mellon University, Robotics Institute, Pittsburgh, PA 15213, USA
katia@cs.cmu.edu

Abstract. Policies are declarations of constraints on the behaviour of compo-
nents within distributed systems, and are often used to capture norms within agent-
based systems. A few machine-processable representations for policies have been
proposed, but they tend to be either limited in the types of policies that can be
expressed or limited by the complexity of associated reasoning mechanisms. In
this paper, we argue for a language that sufficiently expresses the types of policies
essential in practical systems, and which enables both policy-governed decision-
making and policy analysis within the bounds of decidability. We then propose an
OWL-based representation of policies that meets these criteria using and a rea-
soning mechanism that uses a novel combination of ontology consistency check-
ing and query answering. In this way, agent-based systems can be developed that
operate flexibly and effectively in policy-constrainted environments.

1 Introduction

In this paper, we present a novel and powerful OWL 2.0 [7] knowledge representa-
tion and reasoning mechanism for policies: OWL-POLAR (an acronym for OWL-based
POlicy Language for Agent Reasoning). Policies (aka. norms) are system-level princi-
ples of ideal activity that are binding upon the components of that system. Depending on
the nature of the system itself, policies may serve to control, regulate or simply guide
the activities of components. In systems security, for instance, the aim is typically to
control behaviour such that the system complies with the policies [18]. In real socio-
technical systems, however, there are important limits to this and the aim is to develop
effective sets of policies along with incentives to regulate behaviour [2]. In systems of
autonomous agents, the term norm is most prevalent, but the concept and issues remain
the same [4]; for example, norms are used to regulate the behaviour of agents repre-
senting disparate interests in electronic institutions [6]. The objective of this research is
to capture the essential requirements of policy representation and reasoning. In meeting
this objective three key requirements must be met:

� This research was sponsored by the U.S. Army Research Laboratory and the U.K. Ministry
of Defence and was accomplished under Agreement Number W911NF-06-3-0001. The views
and conclusions contained in this document are those of the author(s) and should not be in-
terpreted as representing the official policies, either expressed or implied, of the U.S. Army
Research Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K. Gov-
ernment. The U.S. and U.K. Governments are authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation hereon.

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 679–695, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

680 M. Şensoy et al.

1. System/institutional policies must be machine understandable and underpinned by
a clear interpretation.

2. The representation must be sufficiently expressive to capture the notion of a policy
across domains.

3. Policies must be able to be effectively shared/interpreted at run-time.

The choice of OWL 2.0 as an underlying language addresses the first requirement, but
in meeting the second two, we must clearly outline what is required of a policy language
and what reasoning should be supported by it. The desiderata of a model of policies that
motivates the language OWL-POLAR are as follows:

– Representational adequacy. Policies (or norms) must capture the distinction be-
tween activities that are required (obliged), restricted (prohibited) and, in some
way, authorised but not necessarily expected (permitted) by some representational
entity within the environment. It is essential to capture the authority from which
the policy/norm comes, the subject (agent) to whom it applies, the object (activity)
to which the policy/norm refers, and the circumstances within which it applies.

– Supporting decisions. Any reasoning mechanism that is driven/guided by policies
must support both the determination of what policies/norms apply in a given situa-
tion, and what activities are warranted by the normative state of the agent if it were
to comply with these policies.

– Supporting analysis. Any reasoning mechanism that is driven/guided by norma-
tive/policy constraints must support the assessment of policies in terms of: (i)
whether a policy/norm is meaningful and (ii) whether norms conflict, and in what
circumstances they do conflict.

With the introduction of data ranges within the OWL 2.0 specification [7], we believe
that this desiderata of a model of policies can be met within the confines of OWL-DL.
If this claim can be shown to be valid (as we aim to do within this paper), we believe
that OWL-POLAR provides, for the first time, a sufficiently expressive policy language
for which the key reasoning mechanisms required of such a language are decidable.

The paper is organised as follows: in Section 2 we formally specify the OWL-
POLAR language within OWL-DL; in Section 3 we describe how a set of active policies
may be computed, and how decisions about what activities are warranted by some set
of policies may be made; then in Section 4 we present in detail the reasoning mecha-
nisms that support the analysis of policies. OWL-POLAR is then compared to existing
languages for policies in Section 5, and we present our conclusions in Section 6.

2 Semantic Representation of Policies

The proposed language for semantic representation of policies is based on OWL-DL [7].
An OWL-DL ontology o = (TBoxo, ABoxo) consists of a set of axioms defining the
classes and relations (TBoxo) as well as a set of assertional axioms about the individu-
als in the domain (ABoxo). Concept axioms have the form C � D where C and D are
concept descriptions, and relation axioms are expressions of the form R � S, where
R and S are relation descriptions. The ABox contains concept assertions of the form
C(a) where C is a concept and a is an individual name, and relation assertions of the
form R(a, b), where R is a relation and a and b are individual names.

OWL-POLAR: Semantic Policies for Agent Reasoning 681

Conjunctive semantic formulas are used to express policies. A conjunctive semantic
formula F o

v =
∧n

i=0 φi over an ontology o is a conjunction of atomic assertions φi,
where v = 〈?x0, . . . , ?xn〉 represents a vector of variables used in these assertions.
For the sake of convenience, we assume

∧n
i=0 φi ≡ {φ1, . . . φn} in order to consider a

conjunctive formula as a set of atomic assertions. Based on this, F o
v can be considered

as T o
v ∪ Ro

v ∪ Co
v, where T o

v is a set of type assertions using the concepts from o, e.g.,
{student(?xi), nurse(?xj)}; Ro

v is set of of relation assertions using the relations from
o, e.g., {marriedTo(?xi, ?xj)}; Co

v is a set of constraint assertions on variables. Each
constraint assertion is of the form ?xi � β, where β is a constant and � is any of the
symbols {>,<,=, =,≥,≤}. A constant is either a data literal (e.g, a numerical value)
or an individual defined in o.

Variables are divided into two categories; data-type and object variables. A data-type
variable refers to data values (e.g., integers) and can be used only once in Ro

v. On the
other hand, an object variable refers to individuals (e.g., University of Aberdeen) and
can be used freely many times in Ro

v . Equivalence and distinction between the values
of object variables can be defined using OWL properties sameAs and differentFrom
respectively, e.g., owl:sameAs(?x,?y). In the rest of the paper, we use the symbols α, ρ,
ϕ, and e as a short hand for semantic formulas.

Given an ontology o, a conditional policy is defined as α −→ Nχ:ρ (a : ϕ) /e, where

1. α, a conjunctive semantic formula, is the activation condition of the policy.
2. N ∈ {O,P, F} indicates if the policy is an obligation, permission or prohibition.
3. χ is the policy addressee and ρ describes χ using only the role concepts from the

ontology (e.g., ?x : student(?x)∧female(?x), where student and female are defined
as sub-concepts of the role concept in the ontology). That is, ρ is of the form∧n

i=0 ri(χ), where ri � role. Note that χ may directly refer to a specific individual
(e.g., John) in the ontology or a variable.

4. a : ϕ describes what is prohibited, permitted or obliged by the policy. Specifically,
a is a variable referring to the action to be regulated by the policy and ϕ describes a
as an action instance using the concepts and properties from the ontology (e.g., ?a :

SendF ileAction(?a) ∧ hasReceiver(?a,John) ∧ hasF ile(?a, T echReport218.pdf),
where SendFileAction is an action concept). Each action concept has only a number
of functional relations (aka. functional properties) [7] and these relations are used
while describing an instance of that action.

5. e defines the expiration condition.

Table 1 illustrates how a conditional policy can be represented using the proposed ap-
proach. The policy in the table states that a person is obliged to leave a location when
there is a fire risk.

Table 1. A person has to leave a location when there is a fire risk

α P lace(?b) ∧ hasF ireRisk(?b, true) ∧ in(?x, ?b)

N O

χ : ρ ?x : Person(?x)

a : ϕ ?a : LeavingAction(?a) ∧ about(?a, ?b) ∧ hasActor(?a, ?x)

e hasF ireRisk(?b, false)

682 M. Şensoy et al.

Given a semantic representation for the state of the world, policies are used to reason
about actions that are permitted, obliged or prohibited. Let Δo be a semantic represen-
tation for a state of the world based on an ontology o. Each state of the world is partially
observable; hence Δo is a partial representation of the world. Δo itself is represented as
an ontology composed of (TBoxo, ABoxΔ) where ABoxΔ is an extension of ABoxo.

3 Reasoning with Policies

When its activation conditions are satisfied, a conditional policy leads to an activated
policy. Definition 1 summarizes how a conditional policy is activated using ontological
reasoning over a state of the world. Here we use query answering to determine acti-
vated policies and reason about actions. The query answering mechanism we use in this
work is DL-safe; i.e. variables are bound only to the named individuals, to guarantee
decidability [8]. In this section, we address some of the key issues in supporting deci-
sions governed by policies: activation and expiration, and reasoning about interactions
between policies and actions.

Definition 1. Let Δo be a state of the world represented based on a domain ontology
o. If there is a substitution σ such that Δo � (α ∧ ρ) · σ, but there is no substitution σ′

such that Δo � (e · σ) · σ′, then the policy (Nχ (a : ϕ)) · σ becomes active. This policy
expires when there exists a substitution σ′ such that Δo � (e · σ) · σ′.

Person

Patient Doctor

BuildingRoom

John
Jane

CentralHospital

Room245

type type type

type

in

in

inChargeOf

hasFireRisk

in

TBOX

ABOX

Hospital

isA
isA isA

isA

Place

isA

in

in

HospitalRoom

isA

in

Action

isA

hasActor

LeavingAction

true

hasPatient

hasFireRisk

xsd:boolean

CurrentTime

t

type

hasValue

13:00:00

hasValue
xsd:time

xsd:boolean

hasAge

xsd:int

inChargeOf

marriedTo

Fig. 1. A partial state of the world represented based on a domain ontology

3.1 Policy Activation

A policy is activated for a specific agent when the world state is such that the activation
condition holds for that agent and the expiration condition does not hold, and expires
when this latter condition holds. The above definition is rather standard [11], but we
now describe how this is implemented efficiently through query answering. A conjunc-
tive semantic formula can be trivially converted to a SPARQL query [15] and can be
evaluated by OWL-DL reasoners with SPARQL-DL [17] support such as Pellet [17] to

OWL-POLAR: Semantic Policies for Agent Reasoning 683

find a substitution for its variables satisfying a specific state of the world. Therefore,
we can test Δo � (α ∧ ρ) · σ by writing a query for (α ∧ ρ) and testing whether it is
entailed by Δo or not. Consider the conditional policy in Table 1 and assume that we
have the partially represented state of the world in Figure 1. We can write the semantic
query in Figure 2 to find σ for the conditional policy. When we query the state of the
world using SPARQL, each result in the result set provides a substitution σ; in our case,
we have two σ values: {?x/John, ?b/Room245} and {?x/Jane, ?b/Room245}, representing
that there is a fire risk in the room 245 of the Central Hospital and that John and Jane
are in that room.

Query:

q(?x, ?b):-
Place(?b) ∧
hasFireRisk(?b, true) ∧
Person(?x) ∧
in(?x,?b).

SPARQL SYNTAX:

PREFIX example: <http://www.example.com/ns#>
PREFIX rdf: <http://www.w3.org/...rdf-syntax-ns#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?x ?b
WHERE {

?b rdf:type example:Place.
?b example:hasFireRisk "true"ˆˆxsd:boolean.
?x rdf:type example:Person.
?x example:in ?b.

}

Fig. 2. Query for the activation of a policy

Now, using the computed σ values, we should try to find a σ′ such that Δo �
(e · σ) · σ′. In our case, for this purpose, we can use the semantic query “q():- has-
FireRisk(Room245, false)”. When the SPARQL representation of this query is executed
over the state of the world shown in Figure 1, it returns false; that is the RDF graph
pattern represented by the query could not be found in the ontology. This means that
the policy in Table 1 should be activated using the variable bindings in σ. The result is
activations of OJohn(?a : LeavingAction(?a) ∧ about(?a,Room245)) and OJane(?a : Leav-
ingAction(?a) ∧ about(?a,Room245)). These policies mean that John and Jane are obliged
to leave the room 245; the obligation expires when the fire risk is removed.

3.2 Reasoning about Actions

Let us assume that a specific action a′ : ϕ′ will be performed by x, where a′ is a URI
referring to the action instance and ϕ′ is a conjunctive semantic formula describing a′

without using any variables. Let Δo be the current state of the world. We can test if the
action a′ is permitted, forbidden or prohibited in Δo. For this purpose, based on Δo,
we create a “sandbox” (hypothetical) state of the world Δ′

o to make what-if reason-
ing [21], i.e., Δ′

o shows what happens if the action is performed. This is achieved by
simply adding the described action instance to Δo, i.e., Δ′

o = Δo∪ϕ′. For example, the
state of the world in Figure 1 is extended using action instance LeaveAct 1: LeavingAc-
tion(LeaveAct 1) ∧ hasActor(LeaveAct 1,John) ∧ about(LeaveAct 1,room245). The resulting
state of the world is shown in Figure 3.

684 M. Şensoy et al.

Person

Patient Doctor

BuildingRoom

John
Jane

CentralHospital

Room245

type type
type

type

in

in
inChargeOf

hasFireRisk

in

TBOX

ABOX

Hospital

isA
isA isA

isA

Place

isA

in

in

HospitalRoom

isA

in

Action

isA

hasActor

LeavingAction

true

hasPatient

hasFireRisk

xsd:boolean

LeaveAct_1

type

hasActor

about

CurrentTime

t

type

hasValue

13:00:00

hasValue
xsd:time

xsd:boolean

hasAge

xsd:int

inChargeOf

marriedTo

Fig. 3. The “sandbox” (hypothetical) state of the world

For each active policy Nx(y : ϕy), we test the expiration conditions on Δ′
o as ex-

plained before. If the policy’s expiration conditions are satisfied, we can conclude that
the action a′ : ϕ′ leads to the expiration of the policy. Otherwise, a semantic query Q of
the form q(vϕy):- ϕy is created, where vϕy is the vector of variables in ϕy . Then, Δ′

o is
queried with Q. Let the query return a result set rs; each result r ∈ rs is a substitution
such that Δ′

o � ϕy · r. If y · r = a′ for any such r, then a′ is regulated by the policy. In
this case, we can interpret the policy based on its modality as follows:

1. Nx = O: In this case, the policy represents an obligation; that is, x is obliged to
perform a′. Performing a′ will remove this obligation.

2. Nx = P : Performing a′ is explicitly permitted.
3. Nx = F : Performing a′ is prohibited.

After examining the active policies as described above, we can identify a number of
possible normative positions with respect to the action instance a′: (i) doing a′ may be
explicitly permitted if there is a policy permitting it; (ii) doing a′ may be obligatory
if there exists a policy obliging it; (iii) doing a′ may be prohibited if there is a policy
prohibiting it; and (iv) there may be a conflict in the normative position with respect to
a′ if it is either both prohibited and explicitly permitted, or both prohibited and obliged.

4 Reasoning about Policies

In this section, we demonstrate reasoning techniques to support the analysis of policies
in terms of their meaningfulness (Section 4.2) and possibility of conflict (Section 4.3),
and hence address our third desideratum. Prior to this, however, we propose methods
for reasoning about semantic formulas to underpin our mechanisms for policy analysis.

4.1 Reasoning about Semantic Formulas

Here, we introduce methods for reasoning about semantic conjunctive formulas using
query freezing and constraint transformation.

OWL-POLAR: Semantic Policies for Agent Reasoning 685

Conjunctive Queries. There is a relation between conjunctive formulas and conjunc-
tive queries. A conjunctive semantic formula can trivially be converted into a conjunc-
tive semantic query. For example, Ao

v1
can be converted into the query qA():- Ao

v1
.

Therefore, we can use query reasoning techniques to reason about semantic formulas.
For instance, in order to reason about the subsumption between semantic formulas, we
can use query subsumption (containment).

In conjunctive query literature, in order to test whether qA subsumes qB , the stan-
dard technique of query freezing is used to reduce query containment problem to query
answering in Description Logics [13,20]. For this purpose, we build a canonical ABox
ΦqB from the query qB():- Bo

v2
in three steps. First, for each variable in v2, we put

a fresh individual into ΦqB using the type assertions about the variable. Note that this
individual should not exist in o. Second, we add each individual appearing in qB into
ΦqB . This is done using the information about the individual from the ABoxo (e.g.,
type assertions). Third, relationships between individuals and constants defined in qB

are inserted into ΦqB . As a result of this process, ΦqB contains a pattern that exists
only in ontologies that satisfy qB . We combine ΦqB and our TBoxo to create a new
canonical ontology, o′ = (TBoxo, ΦqB). Example 1 demonstrates a simple case. Based
on [20,13], we conclude that o � qB � qA if and only if o′ entails qA. In order to test
whether o′ entails qA or not, we query o′. That is, o′ entails qA if there exists at least one
match for qA in o′. This can easily be achieved by converting qA to SPARQL syntax
and use Pellet’s SPARQL-DL query engine to answer qA on o′ [17].

Example 1. Let query qA be q():- Person(?p) ∧ marriedTo(?p,?x) ∧ Patient(?x) and
query qB be q():- Doctor(?x)∧ marriedTo(?x,Jane)∧ hasChild(?x,?c). Then, ΦqB con-
tains an individual x, which is created for the variable ?x. The individual x is defined
as of type Doctor. In ΦqB , we also have another individual Jane, which is defined in
the original ABoxo as an instance of the Patient class; we get all of its type assertions
from the ABoxo. Then, we insert the object property marriedTo between the individ-
uals x and Jane. Lastly, we create another individual c for the variable ?c in ΦqB and
insert the hasChild object property between x and c. The resulting ontology is shown
in Figure 4.

Person

Patient Doctor

Jane

type

marriedTo

TBOX

ABOX

isA
isA

Action

isA

hasActor

LeavingAction

hasAge

xsd:int

X

type

marriedTo

C

type

hasChild

hasChild

Fig. 4. The ontology created for qB in Example 1

686 M. Şensoy et al.

<owl:Class rdf:about="#AgeConst1">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasAge"/>

<owl:allValuesFrom>
<rdfs:Datatype>

<owl:onDataRange rdf:resource="&xsd;nonNegativeInteger"/>
<xsd:minInclusive rdf:datatype="&xsd;int">10</xsd:minInclusive>
<xsd:maxExclusive rdf:datatype="&xsd;int">20</xsd:maxExclusive>

</rdfs:Datatype>
</owl:allValuesFrom>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Fig. 5. A concept named AgeConst1 is created for hasAge(?c, ?a) ∧ ?a ≥ 10 ∧ ?a ≤ 20

The query freezing method described above enables us to create a canonical ABox
for a semantic conjunctive formula; this ABox represents a pattern which only exists in
ontologies satisfying the semantic formula. On the other hand, this method assumes that
variables in queries can be assigned fresh individuals in a canonical ABox. However,
in OWL-DL, individuals can refer to objects, but not data values [19]. Therefore, the
proposed query freezing method can be used to test for subsumption between qA and
qB only if the variables in qA and qB refer to objects. A variable can refer to an object
if it is used as the domain of an object or datatype property (e.g., hasAge(?x,10)) or if
it is used as the range of an object property (e.g., marriedTo(Jack,?x)). Unfortunately, in
many real-life settings, queries may have variables referring to data values with various
constraints, which we refer to here as datatype variables. In these settings, the query
freezing described above cannot be used to test subsumption. Example 2 illustrates a
simple scenario.

Example 2. Let query qA be q():- Person(?p) ∧ hasChild(?p,?c)∧ hasAge(?c,?y)∧ ?y
≥ 12 ∧ ?y≤ 16 and query qB be q():- Doctor(?x)∧marriedTo(?x,Jane)∧ hasChild(?x,
?c) ∧ hasAge(?c,?a)∧ ?a ≥ 10 ∧ ?a ≤ 20. In this example, the query freezing method
cannot be used directly to test subsumption between qA and qB , because the variables
?y and ?a refer to data values, which cannot be represented by individuals in an OWL-
DL ontology.

Constraint Transformation. Here, we propose constraint transformation. It is a pre-
processing step which enables us to create a canonical ABox for semantic formulas
with datatype variables. Note that a datatype variable is used in a semantic formula to
constrain one datatype property, e.g., ?y is used to constrain the hasAge datatype prop-
erty in qA of Example 2. Constraint transformation in contrast uses data-ranges intro-
duced in OWL 2.0 [7] to transform each constrained datatype property to a named OWL
class. As a result, datatype variables and related datatype properties and constraints are
replaced with type assertions. This procedure is detailed in Algorithm 1.

The algorithm takes a conjunctive semantic formula F o
v and the ontology o as inputs

(line 1). F o
v is of the form T o

v∪Ro
v∪Co

v, where T o
v , Ro

v, and Co
v are sets of type, relation

and constraint assertions respectively. The outputs of the algorithm are the transformed

OWL-POLAR: Semantic Policies for Agent Reasoning 687

Algorithm 1. Constraint transformation
1: Inputs: Formula F o

v ≡ T o
v ∪ Ro

v ∪ Co
v ,

Ontology o ≡ (ABoxo, TBoxo)

2: Outputs: Formula F φ
u ,

Ontology φ ≡ (ABoxo, TBoxφ)

3: Initialization: F φ
u = T o

v , TBoxφ = TBoxo

4: for all (r(a, b) ∈ Ro
v) do

5: if (isDatatypeV ariable(b)) then
6: γd = getConstraints(b,Co

v)

7: c = createConcept(r, γd, TBoxφ)

8: τ = createTypeAssertion(a,c)
9: F φ

u = F φ
u ∪ τ

10: else
11: F φ

u = F φ
u ∪ r(a, b)

12: γb = getConstraints(b,Co
v)

13: if (γb �= ∅ & ¬(γb ⊂ F φ
u)) then

14: F φ
u = F φ

u ∪ γb

15: end if
16: end if
17: end for

semantic formula Fφ
u (containing no datatype variables) and the updated ontology φ

(line 2). Initially, Fφ
u is set as equal to T o

v and φ is the same as o (line 3). For each
relation assertion r(a, b) in Ro

v, we do the following (line 4). First, we check if b is a
datatype variable (line 5). If so, this means that r is a datatype property with a variable
in its range. In this case, we extract the set of constraints related to b from Co

v , which is
referred by γd (line 6). Based on r and γd, we create a concept c in TBoxφ using the
createConcept function (line 7). This function works as follows:

1. If γd = ∅, then b implies some restrictions on the range of r. In this case, c should
refer to objects that have the property r with the restrictions defined in γd on
its range. While creating c in TBoxφ, we use data-ranges1 introduced in OWL
2.0 to restrict the range of r accordingly. For example, if r(a, b) corresponds to
hasAge(?c, ?a) and γd = {?a ≥ 10, ?a ≤ 20}, then a concept named AgeConst1
can be described as shown in Figure 5. For more sophisticated constraints, we
create more complex class expressions using the OWL constructors owl:unionOf,
owl:intersectionOf, and owl:complementOf.

2. If γd = ∅, then b has no constraints, which means that the data-range of b is
equivalent to the range of its data-type (i.e., for xsd:int, the range is min inclusive
−2147483648 and max inclusive 2147483647).

After creating the concept c in TBoxφ, we create a type assertion τ to declare a as an
instance of c (e.g., AgeConst1(?c)) (line 8). This type assertion is added to Fφ

u in order to
substitute r(a, b) and γd in F o

v (line 9). On the other hand, if b is not a datatype variable
(line 10), there are two possibilities: (1) r is a datatype property but b is not a variable,
or (2) r is an object property. In both cases, we directly add r(a, b) to Fφ

u (line 11). If b

1 http://www.w3.org/TR/2008/WD-owl2-syntax-20081008/#Data_Ranges

http://www.w3.org/TR/2008/WD-owl2-syntax-20081008/#Data_Ranges

688 M. Şensoy et al.

Person

Patient Doctor

Jane

type

marriedTo

TBOX

ABOX

isA isA

Action

isA

hasActor

LeavingAction

hasAge

xsd:int

X

type

marriedTo

C

type

hasChild

AgeConst1

hasChild

type

AgeConst2

Fig. 6. The Ontology created for qB in Example 2

has constraints defined in Co
v, we extract these constraints and add them to Fφ

u if they
are not already added (lines 12-15).

In order to test subsumption between qA and qB in Example 2, we should transform
the bodies of these queries and update the ontology they are based on. For this purpose,
we use constraint transformation twice. That is, we first update the ontology by adding
the concept AgeConst1 to handle hasAge(?c,?y) ∧ ?y ≥ 10 ∧ ?y ≤ 20 and transform qB

to q():- Doctor(?x) ∧ marriedTo(?x,Jane) ∧ hasChild(?x,?c) ∧ AgeConst1(?c). Then, we add
concept AgeConst2 to the ontology to handle hasAge(?c,?y) ∧ ?y ≥ 12 ∧ ?y ≤ 16 and
transform qA to q():- Person(?p) ∧ hasChild(?p,?c) ∧ AgeConst2(?c). After this preprocess-
ing step, we use query freezing to test qB � qA; the ontology with a canonical ABox
created during query freezing is shown in Figure 6.

With these techniques in place, we are now in a position to address the issue of policy
analysis supported by OWL-POLAR. It is descried in the following sections.

4.2 Idle Policies

A policy is idle if it is never activated or the policy’s expiration condition is satisfied
whenever the policy is activated. This condition is formally described in Definition 2. If
a policy is idle, it cannot be used to regulate any action, because either it never activates
or whenever it activates an obligation, permission, or prohibition about an action, the
activated policy expires. While designing policies, we may take domain knowledge into
account to avoid idle policies.

Definition 2. A policy α −→ Nχ:ρ (a : ϕ) /e is an idle policy if it does not activate
for any state of the world Δo or there is a substitution σ′ such that Δo � (e · σ) · σ′,
whenever there is a substitution σ such that Δo � (α ∧ ρ) · σ.

Let us demonstrate idle policies with a simple example. Assume that object property
hasParent is an inverse property of hasChild. Also, let us assume in the domain on-
tology, we have a SWRL rule such as hasSponsor(?c, true) ← hasParent(?c, ?p) ∧
hasAge(?c, ?age) ∧ ?age < 18, which means that children under 18 have a sponsor if
they have a parent. Now, consider the policy in Table 2. This policy is activated when a
person ?p has a child ?c, which is a student under 18. The activated policy expires when

OWL-POLAR: Semantic Policies for Agent Reasoning 689

Table 2. A simple idle policy example

α hasChild(?p, ?c) ∧ Student(?c)∧ hasAge(?c, ?age)∧?age < 18

N O

χ : ρ ?p : Person(?p)

a : ϕ ?a : PayTuitionsOfStudent(?a) ∧ about(?a, ?c) ∧ hasActor(?a, ?p)

e hasSponsor(?c, true)

?c has a sponsor. Interestingly, whenever the policy is activated, the domain knowledge
implies that ?c has a sponsor. That is, whenever the policy is activated, it expires.

In order to detect idle policies, we reason about the activation and expiration condi-
tions of policies. Specifically, a policy α −→ Nχ:ρ (a : ϕ) /e is an idle policy if (α ∧ ρ)
is unrealistic or implies e using the knowledge in the domain ontology. More formally,
we can show that the policy is idle if we show (α ∧ ρ) never holds or (α ∧ ρ)→ e. This
can be achieved as follows. First, we freeze (α ∧ ρ) and create a canonical ontology o′.
If the resulting o′ is not a consistent ontology, then we can conclude that the policy is
an idle policy, because (α ∧ ρ) never holds. Let o′ be consistent and σ be a substitution
denoting the mapping of variables in (α ∧ ρ) to the fresh individuals in o′. If there exists
a substitution σ′ such that o′ � (e · σ) · σ′, we conclude that (α ∧ ρ) → e. We can test
o′ � (e · σ) · σ′ by querying o′ with q() : − (e · σ).

4.3 Anticipating Conflicts between Policies

In many settings, policies may conflict. In the simplest case, one policy may prohibit
an action while another requires it. There are, however, many less obvious interactions
between policies that may lead to logical conflicts [9,16,12,5]. Further developing our
earlier example, consider the policy presented in Table 3 that states that a doctor cannot
leave a room with patients if he is in charge of the room. This policy conflicts with the
policy in Table 1 under some specific conditions. For example, in the scenario described
Figure 1, room 245 of Central Hospital has a fire risk and Dr. John is in charge of the
room, in which there are some patients. In this setting, the policy in Table 1 obligates
Dr. John to leave the room while the policy in Table 3 prohibits this action until the
room has no patient.

Table 3. A doctor cannot leave a room containing patients if he is in charge of the room

α Room(?r) ∧ hasPatient(?r, true) ∧ inChargeOf(?d, ?r)

N F

χ : ρ ?d : Doctor(?d)

a : ϕ ?x : LeavingAction(?x) ∧ about(?x, ?r) ∧ hasActor(?x, ?d)

e hasPatient(?r, false)

If we can determine possible logical conflicts while designing policies, we can create
better policies that are less likely to raise conflicts at run time. Furthermore, we can use
various conflict resolution strategies such as setting a priority ordering between the
policies to solve conflicts [11,21,22], once we determine that two policies may conflict.

690 M. Şensoy et al.

In this section, we propose techniques to anticipate possible conflicts between
policies at design time. Suppose we have two non-idle policies Pi = αi −→ Aχi:ρi(
ai : ϕi

)
/ei and Pj = αj −→ Bχj :ρj

(
aj : ϕj

)
/ej . These policies are active for the

same policy addressee in the same state of the world Δ if the following requirements
are satisfied:

(i) Δ �
(
αi ∧ ρi

)
· σi, but no σ′

i such that Δ �
(
ei · σi

)
· σ′

i

(ii) Δ �
(
αj ∧ ρj

)
· σj , but no σ′

j such that Δ �
(
ej · σj

)
· σ′

j

(iii) χi · σi = χj · σj

The policies Pi and Pj conflict if the following requirements are also satisfied:

(iv) (ϕi · σi) � (ϕj · σj) or (ϕj · σj) � (ϕi · σi)
(v) A conflicts with B. That is, A ∈ {P,O} while B ∈ {F} or vice versa.

We can use Algorithm 2 to test if it is possible to have such a state of the world where
Pi conflicts with Pj . The first step of the algorithm is to test if A conflicts with B (line
2). If they are conflicting, we continue with testing the other requirements. We create
a canonical state of the world Δ in which Pi is active by freezing

(
αi ∧ ρi

)
with a

substitution σi mapping the variables in
(
αi ∧ ρi

)
to the fresh individuals in Δ. Given

that (ϕj · σ) � ϕj for any substitution σ mapping variables into individuals, the re-
quirement (iv) implies that (ϕi · σi) � ϕj . We test this as follows. First, we create a
canonical ontology o′ by freezing (ϕi · σi) (line 4) and then query o′ with ϕj (line 5).
Each answer to this query defines a substitution σk mapping variables in ϕj into the
terms in (ϕi · σi), so that (ϕi · σi) � (ϕj · σk). If ϕj does not have any variable but
it repeats in o′ as a pattern, the result set contains only one empty substitution. If the
query fails, the result set is an empty set (∅), which means that it is not possible to have
a σk such that (ϕi ·σi) � (ϕj ·σk). For each σk satisfying (ϕi ·σi) � (ϕj ·σk), we test

Algorithm 2. An algorithm to anticipate if Pi may conflict with Pj

1: Inputs: Policy Pi = αi −→ Aχi:ρi

(
ai : ϕi

)
/ei,

Policy Pj = αj −→ Bχj :ρj

(
aj : ϕj

)
/ej

2: if ((A ∈ {O, P} and B ∈ {F}) or (A ∈ {F} and B ∈ {O, P})) then
3: 〈Δ, σi〉 = freeze(αi ∧ ρi)

4: 〈o′, 〉 = freeze(ϕi · σi)

5: rs = query(o′, ϕj)

6: for all (σk ∈ rs) do
7: 〈Δ, σj〉 = update(Δ,

(
αj ∧ ρj

)
· σk)

8: if (isConsistent(Δ)) then
9: if (query(Δ,ei · σi) = ∅ and query(Δ,

(
ej · σk

)
· σj) = ∅) then

10: return true
11: end if
12: end if
13: end for
14: end if
15: return false

OWL-POLAR: Semantic Policies for Agent Reasoning 691

the other requirements as follows. First, we update Δ by freezing
(
αj ∧ ρj

)
·σk without

removing any individual from its existing ABox (line 7). Note that as a result of this
process, σj is the substitution mapping the variables in

(
αj ∧ ρj

)
· σk to the new fresh

individuals in the updated Δ, so that χi ·σi =
(
χj · σk

)
·σj . We test the consistency of

the resulting state of the world Δ (line 8). If this is not consistent, we can conclude that
it is not possible to have a state of the world satisfying the requirements. If the resulting
Δ is consistent, we check the expiration conditions of the policies. If both are active in
the resulting state of the world (line 9), the algorithm returns true (line 10). If any of
these requirements do not hold, the algorithm returns false (line 15).

As described above, the algorithm transforms the problem of anticipating conflict
between two policies into an ontology consistency checking problem. To check the
consistency of the constructed canonical state of the world Δ, we have used the Pel-
let [17] reasoner. This reasoner adopts the open world assumption and does not have
Unique Name Assumption (UNA). Hence, it searches for a model2 of Δ, also consid-
ering the possible overlapping between the individuals (i.e., individuals referring the
same object). If there is no model of Δ, it is not possible to have a state of the world
satisfying the requirements stated above. We should also note that, while anticipating
the conflict, Algorithm 2 tests only the case (ϕi · σi) � (ϕj · σj). However, we also
need to test (ϕj · σj) � (ϕi · σi) to capture the possibility of conflict. Therefore, if the
algorithm returns false, we should swap the policies and run the algorithm again. If it
returns true with the swapped policies, we can conclude that there is a state of the world
where these policies may conflict.

To demonstrate the algorithm, let us use the policies presented in Tables 1 and 3 and
refer to them as Pi and Pj respectively. In this example, Pj is a prohibition while Pi

is an obligation, so the algorithm proceeds as follows (line 2). We create a canonical
state of the world Δ by freezing Person(?x) ∧ Place(?b) ∧ hasF ireRisk(?b, true)
∧ in(?x, ?b) with a substitution σi = {?x/x, ?b/b} (line 3). Now we create a canon-
ical ontology a′ by freezing ϕi · σi with substitution {?a/a} (line 4). This ontology
has the following ABox assertions: LeavingAction(a), about(a, b), hasActor(a, x).
We query o′ with LeavingAction(?x) ∧ about(?x, ?r) ∧ hasActor(?x, ?d) (line 5).
The result set is composed of only one substitution: σk = {?x/a, ?r/b, ?d/x}. The
next step is to update Δ by freezing Doctor(x) ∧ Room(b) ∧ hasPatient(b, true)
∧ inChargeOf (x , b) without removing the current ABox of Δ (line 7). The result-
ing canonical state of the world is shown in Figure 7. Lastly, we check whether both
policies remain in effect by checking their expiration conditions (line 9). In this ex-
ample, we query Δ with hasF ireRisk(b, false) and hasPatient(b, false). Both of
these queries return ∅, hence we conclude that there is a state of the world where these
policies conflict (line 10).

5 Related Work and Discussion

There have been several policy languages proposed that are built upon Semantic Web
technologies. Rei [10] is a policy language based on OWL-Lite and Prolog. It allows

2 A model of an ontology o is an interpretation of o satisfying all of its axioms [1].

692 M. Şensoy et al.

Person

Patient Doctor

BuildingRoom

TBOX

ABOX

Hospital

isA
isA isA

isA

Place

isA

in

in

HospitalRoom

isA

in

Action

isA

hasActor

LeavingAction

hasPatient

hasFireRisk

xsd:boolean

CurrentTime

hasValue
xsd:time

xsd:boolean

hasAge

xsd:int

x

type

b

type

in hasFireRisk

true

hasPatient

inChargeOf

inChargeOf

true

marriedTo

Fig. 7. The canonical state of the world where the policies of Table 1 and Table 3 conflict

logic-like variables to be used while describing policies. This gives it the flexibility to
specify relations like role value maps that are not directly possible in OWL. The use
of these variables, however, makes DL reasoning services (e.g., static conflict detection
between policies) unavailable for Rei policies. KAoS [21] is, probably, the most devel-
oped language for describing policies that are built upon OWL. KAoS was originally
designed to use OWL-DL to define actions and policies. This, however, restricts the ex-
pressive power to DL and prevents KAoS from defining policies in which one element
of an action’s context depends on the value of another part of the current context. For
example, KAoS cannot be used to represent a policy like two soldiers are allowed to
communicate only if they are in the same team. To handle such situations, KAoS has
been enhanced with role-value maps using Stanford JTP, a general purpose theorem
prover [21]. Unfortunately, subsumption reasoning is undecidable in the presence of
arbitrary role-value-maps [1].

KAoS distinguishes between (positive and negative) obligation policies and (positive
and negative) authorization policies. Authorization policies permit (positive) or forbid
(negative) actions, whereas obligation policies require (positive) or do not require (neg-
ative) action. Thus the general types of policies that can be described are similar to those
that we have discussed in this paper. Actions are also the object of a KAoS policy, and
conditions on the application of policies can be described (context), although the sub-
ject (individual/role) of the policy is not explicit (it is, however, in Rei). In common with
OWL-POLAR in its present form, KAoS does not capture the notion of the authority
from which/whom a policy comes, but there is a notion of the priority of a policy which
partially (although far from adequately) addresses this issue. Unlike OWL-POLAR, Rei
and KAoS do not provide means to explicitly define expiration conditions of the policies.

Policy analysis within both KAoS and Rei is restricted to subsumption. A policy in
KAoS is expressed as an OWL-DL class regulating an action, which is expressed as an
OWL-DL class expression (e.g., using restrictions on properties such as performedBy
and hasDestination). Two policies are regarded in conflict if their actions overlap (one
subsumes another) while the modality of these policies conflict (e.g., negative vs. pos-
itive authorization). Similarly, if there exist two policies within Rei that overlap with

OWL-POLAR: Semantic Policies for Agent Reasoning 693

respect to the agent and action concerned and they are obligued and prohibited, then a
conflict is recognised. In such a situation, meta-policies are used to resolve the conflict.
Policy conflicts can also be detected within the Ponder2 framework [18,23], where anal-
ysis is far more sophisticated than that developed for either KAoS or Rei, but analysis is
restricted to design time. In general, different methods can be used to resolve conflicts
between policies. This issue has been explored in detail elsewhere [11].

The expressiveness of OWL-POLAR is not restricted to DL. Using semantic con-
junctive formulas, it allows variables to be used while defining policies. However, in
semantic formulas, OWL-POLAR allows only object-type variables to be compared
using owl:sameAs and owl:differentFrom properties. On the other hand, data-type vari-
ables can be used to define constraints on the datatype properties. In other words, se-
mantic formulas are restricted to describe states of the world, each of which can be
represented as an OWL-DL ontology. Therefore, when a semantic formula is frozen,
the result is a canonical OWL-DL ontology. OWL-POLAR converts problems of rea-
soning with and about policies into query answering and ontology consistency checking
problems. Then, it uses an off-the-shelf reasoner (Pellet) to solve these problems. It is
known that consistency checking in OWL-DL is decidable [17], and query answering
in OWL-DL has also been shown to be decidable under DL-safety restrictions [8].

Ontology languages like KAoS are built on OWL 1.0, which does not support data-
ranges. Therefore, while defining policies, they either do not allow complex constraints
to be defined on datatype properties or use non-standard representations for these con-
straints, which prevents them from using the off-the-shelf reasoning technologies. The
clear distinctions between OWL-POLAR and KAoS, however, are manifest in the fact
that data ranges are exploited in OWL-POLAR to enable the expression of more com-
plex constraints on policies, and the sophistication of the reasoning mechansims de-
scribed in this paper.

To the best of our knowledge, OWL-POLAR is the first policy framework that for-
mally defines and detects idle policies. Existing approaches like KAoS and Rei analyse
policies only to detect some type of conflict, considering only subsumption between
policies. On the other hand, OWL-POLAR provides advanced policy analysis support
that is not limited to subsumption checking. Consider the following policies: (i) Dogs
are prohibited from entering to a restaurant, and (ii) A member of CSI team is permit-
ted to enter a crime scene. There is no subsumption relationship between these policies,
and so KAoS and Rei could not detect a conflict. However, OWL-POLAR anticipates a
conflict by composing a state of the world where these policies are in conflict, e.g., the
crime scene is a restaurant and there is a dog in the CSI team.

Building upon this research, we plan to explore various extensions to OWL-POLAR.
We will explore extending the representation of policies to include deadlines and penal-
ties associated with their violation, along the lines of [3]. Another issue we would like
to investigate concerns how policing mechanisms [14] could make use of our repre-
sentation and associated mechanisms to foster welfare in societies of self-interested
components/agents. We plan to enhance our representation so as to allow constraints
over arbitrary terms (and not just ?x � β, β being a constant), possibly using constraint
satisfaction mechanisms to deal with these. Two further extensions should address poli-
cies over many actions (as in, for instance, “ξ is obliged to perform ϕ1 and ϕ2”) and

694 M. Şensoy et al.

disjunctions (as in, for instance, “ξ is obliged to perform ϕ1 or ϕ2”). Finally, we are ex-
ploring the use of OWL-POLAR in support of human decision-making, including joint
planning activities in hybrid human-software agent teams.

6 Conclusions

Policies provide useful abstractions to constrain and control the behaviour of compo-
nents in loosely coupled distributed systems. Policies, also called norms, help design-
ers of large-scale, open, and heterogenous distributed systems (including multi-agent
systems) to specify, in a concise fashion, acceptable (or policy-compliant) global and in-
dividual computational behaviours, thus providing guarantees for the system as a whole.

In this paper, we have presented a semantically-rich representation for policies as
well as efficient mechanisms to reason with/about them. OWL-POLAR meets all the
essential requirements of policies, as well as achieving an effective balance between ex-
pressiveness (realistic policies can be adequately represented) and computational com-
plexity of associated reasoning for decision-making and analysis (reasoning with and
about policies operate in feasible time).

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The De-
scription Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press, Cambridge (2003)

2. Beautement, A., Pym, D.: Structured systems economics for security management. In: Pro-
ceedings of the Ninth Workshop on the Economics of Information Security, Harvard, USA
(June 2010)

3. Boella, G., Broersen, J., Torre, L.: Reasoning about constitutive norms, counts-as condition-
als, institutions, deadlines and violations. In: Bui, T.D., Ho, T.V., Ha, Q.T. (eds.) PRIMA
2008. LNCS (LNAI), vol. 5357, pp. 86–97. Springer, Heidelberg (2008)

4. Castelfranchi, C.: Modelling social action for AI agents. Artificial Intelligence 103, 157–182
(1998)

5. Elhag, A., Breuker, J., Brouwer, P.: On the formal analysis of normative conflicts. Informa-
tion & Communications Technology Law 9(3), 207–217 (2000)

6. Garcı́a-Camino, A., Rodrı́guez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: Constraint rule-
based programming of norms for electronic institutions. Autonomous Agents and Multi-
Agent Systems 18(1), 186–217 (2009)

7. W. O. W. Group. OWL 2 web ontology language: Document overview (October 2009),
http://www.w3.org/TR/owl2-overview

8. Haase, P., Motik, B.: A mapping system for the integration of owl-dl ontologies. In: Proceed-
ings of the First International Workshop on Interoperability of Heterogeneous Information
Systems, IHIS 2005, pp. 9–16. ACM, New York (2005)

9. Hill, H.: A functional taxonomy of normative conflict. Law and Philosophy 6(2), 227–247
(1987)

10. Kagal, L., Finin, T., Joshi, A.: A policy language for a pervasive computing environment. In:
Proceedings of the 4th IEEE International Workshop on Policies for Distributed Systems and
Networks, POLICY 2003, pp. 63–74 (2003)

http://www.w3.org/TR/owl2-overview

OWL-POLAR: Semantic Policies for Agent Reasoning 695

11. Kollingbaum, M.J., Norman, T.J.: Norm adoption and consistency in the NoA agent archi-
tecture. In: Dastani, M.M., Dix, J., El Fallah-Seghrouchni, A. (eds.) PROMAS 2003. LNCS
(LNAI), vol. 3067, pp. 169–186. Springer, Heidelberg (2004)

12. Lupu, E., Sloman, M.: Conflicts in policy-based distributed systems management. IEEE
Transactions on Software Engineering 25(6), 852–869 (1999)

13. Motik, B.: Reasoning in Description Logics using Resolution and Deductive Databases. PhD
thesis, Universitt Karlsruhe (TH), Karlsruhe, Germany (January 2006)

14. Patel, J., et al.: Agent-based virtual organisations for the grid. Int. Journal of Multi-Agent
and Grid Systems 1(4), 237–249 (2005)

15. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. Technical report,
W3C (2006), http://www.w3.org/TR/rdf-sparql-query/

16. Sartor, G.: Normative conflicts in legal reasoning. Artificial Intelligence and Law 1(2), 209–
235 (1992)

17. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL rea-
soner. Web Semant. 5(2), 51–53 (2007)

18. Sloman, M., Lupu, E.: Policy specification for programmable networks. In: Covaci, S. (ed.)
IWAN 1999. LNCS, vol. 1653, pp. 73–84. Springer, Heidelberg (1999)

19. Smith, M.K., Welty, C., McGuinness, D.L.: OWL: Web ontology language guide (February
2004), http://www.w3.org/TR/owl-guide

20. Ullman, J.D.: Information integration using logical views. Theoretical Computer Sci-
ence 239(2), 189–210 (2000)

21. Uszok, A., Bradshaw, J.M., Lott, J., Breedy, M., Bunch, L., Feltovich, P., Johnson, M., Jung,
H.: New developments in ontology-based policy management: Increasing the practicality and
comprehensiveness of KAoS. In: Proceedings of the 2008 IEEE Workshop on Policies for
Distributed Systems and Networks, POLICY 2008, pp. 145–152 (2008)

22. Vasconcelos, W.W., Kollingbaum, M.J., Norman, T.J.: Normative conflict resolution in multi-
agent systems. Autonomous Agents and Multi-Agent Systems 19(2), 124–152 (2009)

23. Zhao, H., Lobo, J., Bellovin, S.M.: An algebra for integration and analysis of ponder2 poli-
cies. In: Proceedings of the 2008 IEEE Workshop on Policies for Distributed Systems and
Networks, POLICY 2008, Washington, DC, USA, pp. 74–77. IEEE Computer Society, Los
Alamitos (2008)

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/owl-guide

Query Strategy for Sequential Ontology Debugging

Kostyantyn Shchekotykhin and Gerhard Friedrich�

Universitaet Klagenfurt
Universitaetsstrasse 65-67
9020 Klagenfurt, Austria

{firstname.lastname}@ifit.uni-klu.ac.at

Abstract. Debugging is an important prerequisite for the wide-spread applica-
tion of ontologies, especially in areas that rely upon everyday users to create and
maintain knowledge bases, such as the Semantic Web. Most recent approaches
use diagnosis methods to identify sources of inconsistency. However, in most de-
bugging cases these methods return many alternative diagnoses, thus placing the
burden of fault localization on the user. This paper demonstrates how the target
diagnosis can be identified by performing a sequence of observations, that is, by
querying an oracle about entailments of the target ontology. We exploit probabil-
ities of typical user errors to formulate information theoretic concepts for query
selection. Our evaluation showed that the suggested method reduces the number
of required observations compared to myopic strategies.

1 Introduction

The application of semantic systems, including the Semantic Web technology, is largely
based on the assumption that the development of ontologies can be accomplished ef-
ficiently even by every day users. However, studies in cognitive psychology, like [1],
discovered that humans make systematic errors while formulating or interpreting log-
ical descriptions. Results presented in [10,12] confirmed these observations regarding
ontology development. Therefore it is essential to create methods that can identify and
correct erroneous ontological definitions. Ontology debugging tools simplify the devel-
opment of ontologies by localizing a set of axioms that should be modified in order to
formulate the intended target ontology.

To debug an ontology a user must specify some requirements such as coherence
and/or consistency. Additionally, one can provide test cases [3] which must be fulfilled
by the target ontology Ot. A number of ontology diagnosis methods have been de-
veloped [13,6,3] to pinpoint alternative sets of possibly faulty axioms (called a set of
diagnoses). A user has to change at least all of the axioms of one diagnosis in order to
satisfy all of the requirements and test cases.

However, the diagnosis methods can return many alternative diagnoses for a given
set of test cases and requirements. A sample study of real-world inconsistent ontologies
presented in Table 1 shows that even a small number of irreducible sets of axioms that
are together inconsistent/incoherent (conflict sets) can be a source of a large number
of diagnoses. For instance only 8 conflict sets in the Economy ontology resulted in

� The research project is funded by grants of the Austrian Science Fund (Project V-Know, con-
tract 19996).

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 696–712, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Query Strategy for Sequential Ontology Debugging 697

Table 1. Dianosis results for some real-world ontologies presented in [6]. #C/#P/#I are the num-
bers of concepts, properties, and individuals in an ontology. #CS/min/max are the number of
conflict sets, their minimum and maximum cardinality. The same notation is used for diagnoses
#D/min/max. These ontologies are available upon request.

Ontology Axioms #C/#P/#I #CS/min/max #D/min/max Domain
1. Chemical 114 48/20/0 6/5/6 6/1/3 Chemical elements
2. Sweet-JPL 2579 1537/121/50 8/1/13 13/8/8 Earthscience
3. University 50 30/12/4 4/3/5 90/3/4 Training
4. Tambis 596 395/100/0 7/3/9 147/3/7 Biological science
5. Economy 1781 339/53/482 8/3/4 864/4/9 Mid-level
6. Transport 1300 445/93/183 9/2/6 1782/6/9 Mid-level

864 diagnoses. In the case of Transportation ontology the diagnosis method was able
to identify 1782 diagnoses. In such situations simple visualization of all alternative
changes of the ontology is ineffective.

A possible solution would be to introduce an ordering using some preference criteria.
For instance, Kalyanpur et al. [7] suggest measures to rank the axioms of a diagnosis
depending on their structure, occurrence in test cases, etc. Only the top ranking diagnoses
are then presented to the user. Of course this set of diagnoses will contain the target one
only in the case when a faulty ontology, the given requirements and test cases, provide
sufficient data to appropriate heuristics. However, in most debugging sessions a user has
to provide additional information (e.g. in the form of tests) to identify the target diagnosis.

In this paper we present an approach to acquisition of additional information by gen-
erating a sequence of queries, which should be answered by some oracle such as a user,
an information extraction system, etc. Our method uses each answer to a query to reduce
the set of diagnoses until finally it identifies the target diagnosis. In order to construct
queries we exploit the property that different diagnoses imply unequal sets of axioms.
Consequently, we can differentiate between diagnoses by asking the oracle if the target
ontology should imply an axiom or not. These axioms can be generated by classifi-
cation and realization services provided in description logic reasoning systems [15,4].
In particular, the classification process computes a subsumption hierarchy (sometimes
also called “inheritance hierarchy” of parents and children) for each concept name men-
tioned in a TBox. For each individual mentioned in an ABox, realization computes the
atomic concepts (or concept names) of which the individual is an instance [15].

In order to generate the most informative query we exploit the fact that some diag-
noses are more likely than others because of typical user errors. The probabilities of
these errors can be used to estimate the change in entropy of the set of diagnoses if a
particular query is answered. We select those queries which minimize the expected en-
tropy, i.e. maximize the information gain. An oracle should answer these queries until
a diagnosis is identified whose probability is significantly higher than those of all other
diagnoses. This diagnosis is the most likely to be the target one.

We compare our entropy-based method with a greedy approach that selects those
queries which try to cut the number of diagnoses in half as well as with a “random”
strategy when the algorithm selects queries to be asked completely randomly. The eval-
uation was performed using the set of ontologies presented in Table 1 and generated

698 K. Shchekotykhin and G. Friedrich

examples. Its results show that on average the suggested entropy-based approach is at
least 50% better than the greedy one.

The remainder of the paper is organized as follows: Section 2 presents two intro-
ductory examples as well as the basic concepts. The details of the entropy-based query
selection method are given in Section 3. Section 4 describes the implementation of the
approach and is followed by evaluation results in Section 5. The paper concludes with
an overview of related work.

2 Motivating Examples and Basic Concepts

In order to explain the fundamentals of our approach let us introduce two examples.

Example 1. Consider a simple ontologyO with the terminology T :

ax 1 : A � B ax 2 : B � C ax 3 : C � Q ax 4 : Q � R

and the background theory A : {A(w),¬R(w)}. Let the user explicitly define that the
two assertional axioms should be considered as correct.

The ontologyO is inconsistent and the only irreducible set of axioms (minimal con-
flict set) that preserves the inconsistency is CS : {〈ax 1, ax2, ax 3, ax 4〉}. That is one
has to modify or remove the axioms of at least one diagnosis:

D1 : [ax 1] D2 : [ax 2] D3 : [ax 3] D4 : [ax 4]

to restore the consistency of the ontology. However it is unclear, which diagnosis from
the set D : {D1 . . .D4} corresponds to the target one.

In order to focus on the essentials of our approach we employ the following simpli-
fied definition of diagnosis without limiting its generality. A more detailed version can
be found in [3].

We allow the user to define a background theory (represented as a set of axioms)
which is considered to be correct, a set of logical sentences which must be implied by
the target ontology and a set of logical sentences which must not be implied by the
target ontology. Following the standard definition of the diagnosis [11,8], we assume
that each axiom ax j ∈ Di is faulty whereas each axiom axk /∈ Di is correct.

Definition 1. Given a diagnosis problem
〈
O, B, T |=, T �|=〉 where O is an ontology, B

a background theory, T |= a set of logical sentences which must be implied by the target
ontologyOt, and T �|= a set of logical sentences which must not be implied by Ot.

A diagnosis is a set of axioms D ⊆ O such that the set of axioms O \ D can be
extended by a logical description EX and (O \ D) ∪B ∪EX |= t|= for all t|= ∈ T |=

and (O \ D) ∪B ∪ EX |= t �|= for all t �|= ∈ T �|=.

A diagnosisD is minimal if there is no proper subset of the faulty axiomsD′ ⊂ D such
that D′ is a diagnosis. The following proposition allows us to characterize diagnoses
without the extension EX . The idea is to use the sentences which must be implied to
approximate EX .

Corollary 1. Given a diagnosis problem
〈
O, B, T |=, T �|=〉, a set of axiomsD ⊆ O is a

diagnosis iff (O \ D) ∪B ∪ {
∧

t|=∈T |= t|=} ∪ ¬t �|= consistent for all t �|= ∈ T �|=.

Query Strategy for Sequential Ontology Debugging 699

In the following we assume that a diagnosis always exists under the (reasonable) con-
dition that the background theory together with the axioms in T |= and the negation
of axioms in T �|= are mutually consistent. For the computation of diagnoses the set of
conflicts is usually employed.

Definition 2. Given a diagnosis problem
〈
O, B, T |=, T �|=〉, a conflict set CS ⊆ O is a

set of axioms s.t. there is a t �|= ∈ T �|= and CS∪B∪{
∧

t|=∈T |= t|=}∪¬t �|= is inconsistent.

A conflict is the part of the ontology that preserves the inconsistency/incoherency. A
minimal conflict CS has no proper subset which is a conflict.D is a (minimal) diagnosis
iff D is a (minimal) hitting set of all (minimal) conflict sets [11].

In order to differentiate between the minimal diagnoses {D1 . . .D4} an oracle can
be queried for information about the entailments of the target ontology. For instance,
in our example the ontologies Oi = O \ Di have the following entailments O1 : ∅,
O2 : {B(w)}, O3 : {B(w), C(w)}, and O4 : {B(w), C(w), Q(w)} provided by the
realization of the ontology. Based on these entailments we can ask the oracle whether
the target ontology has to entail Q(w) or not (Ot |= Q(w)). If the answer is yes (which
we model with the boolean value 1), then Q(w) is added to T |= and D4 is the target
diagnosis. All other diagnoses are rejected because (O \ Di) ∪ B ∪ {Q(w)} for i =
1, 2, 3 is inconsistent. If the answer is no (which we model with the boolean value
0), then Q(w) is added to T �|= and D4 is rejected as (O \ D4) ∪ B |= Q(w) (rsp.
(O \D4)∪B ∪¬Q(w) is inconsistent) and we have to ask the oracle another question.

Property 1. Given a diagnosis problem
〈
O, B, T |=, T �|=〉, a set of diagnoses D, and a

set of logical sentences X representing the queryOt |= X :
If the oracle gives the answer 1 then every diagnosis Di ∈ D is a diagnosis for

T |=∪X iff (O\Di)∪B ∪{
∧

t|=∈T |= t|=}∪{X}∪¬t �|= is consistent for all t �|= ∈ T �|=.
If the oracle gives the answer 0 then every diagnosis Di ∈ D is a diagnosis for

T �|= ∪ {X} iff (O \ Di) ∪B ∪ {
∧

t|=∈T |= t|=} ∪ ¬X is consistent.

Note, a set X corresponds to a logical sentence where all elements of X are connected
by ∧. This defines the semantic of ¬X .

As possible queries we consider sets of entailed concept definitions provided by a
classification service and sets of individual assertions provided by realization. In fact,
the intention of classification is that a model for a specific application domain can be
verified by exploiting the subsumption hierarchy [2].

One can use different methods to select the best query in order to minimize the
number of questions asked to the oracle. “Split-in-half” heuristic is one of such methods
that prefers queries which remove half of the diagnoses from the set D. To apply this
heuristic it is essential to compute the set of diagnoses that can be rejected depending
on the query outcome. For a query X the set of diagnoses D can be partitioned in sets
of diagnoses DX, D¬X and D∅ where

– for each Di ∈ DX it holds that (O \ Di) ∪B ∪ {
∧

t|=∈T |= t|=} |= X

– for each Di ∈ D¬X it holds that (O \ Di) ∪B ∪ {
∧

t|=∈T |= t|=} |= ¬X
– D∅ = D \ (DX ∪D¬X)

Given a diagnosis problem we say that the diagnoses in DX predict 1 as a result of the
queryX , diagnoses in D¬X predict 0, and diagnoses in D∅ do not make any predictions.

700 K. Shchekotykhin and G. Friedrich

Property 2. Given a diagnosis problem
〈
O, B, T |=, T �|=〉, a set of diagnoses D, and a

query X :
If the oracle gives the answer 1 then the set of rejected diagnoses is D¬X and the set

of remaining diagnoses is DX ∪D∅.
If the oracle gives the answer 0 then the set of rejected diagnoses is DX and the set

of remaining diagnoses is D¬X ∪D∅.

For our first example let us consider three possible queries X1, X2 and X3 (see Table 2).
For each query we can partition a set of diagnoses D into three sets DX, D¬X and D∅.
Using this data and the heuristic given above we can determine that asking the oracle if
Ot |= C(w) is the best query, as two diagnoses from the set D are removed regardless
of the answer.

Let us assume that D1 is the target diagnosis, then an oracle will answer 0 to our
question (i.e. Ot |= C(w)). Given this feedback we can decide that Ot |= B(w) is
the next best query, which is also answered with 0 by the oracle. Consequently, we
identified that D1 is the only remaining minimal diagnosis. More generally, if n is the
number of diagnoses and we can split the set of diagnoses in half by each query then
the minimum number of queries is log2n. However, if the probabilities of diagnoses
are known we can reduce this number of queries by using two effects: (1) We can
exploit diagnoses probabilities to asses the probabilities of answers and the change in
information content after an answer is given. (2) Even if there are multiple diagnoses in
the set of remaining diagnoses we can stop further query generation if one diagnosis is
highly probable and all other remaining diagnoses are highly improbable.

Table 2. Possible queries in Example 1

Query DX D¬X D∅

X1 : {B(w)} {D2,D3,D4} {D1} ∅
X2 : {C(w)} {D3,D4} {D1,D2} ∅
X3 : {Q(w)} {D4} {D1,D2,D3} ∅

Example 2. Consider an ontologyO with the terminology T :

ax1 : A1 � A2 "M1 "M2 ax 4 : M2 � ∀s.A " C
ax2 : A2 � ¬∃s.M3 " ∃s.M2 ax 5 : M3 ≡ B # C
ax3 : M1 � ¬A "B

and the background theory A : {A1(w), A1(u), s(u,w)}. The ontology is inconsistent
and includes two minimal conflict sets: {〈ax 1, ax 3, ax 4〉 , 〈ax 1, ax 2, ax 3, ax 5〉}. To
restore consistency, the user should modify all axioms of at least one minimal diagnosis:

D1 : [ax 1] D2 : [ax 3] D3 : [ax 4, ax 5] D4 : [ax 4, ax2]

Following the same approach as in the first example, we compute entailments for each
ontologyOi = O\Di for all minimal diagnosesDi ∈ D. To construct a query we select
a DX ⊂ D and determine the common set X of concept instantiations and concept
subsumption axioms, which are entailed by each Oi = O \Di, whereDi ∈ DX. If the
set X is empty, the query is rejected. For each accepted query the remaining diagnoses
Dj ∈ D \DX are partitioned into three sets DX, D¬X, and D∅ as defined above. If

Query Strategy for Sequential Ontology Debugging 701

Table 3. Possible queries in Example 2

Query DX D¬X D∅

X1 : {B � M3} {D1,D2,D4} {D3} ∅
X2 : {B(w)} {D3,D4} {D2} {D1}
X3 : {M1 � B} {D1,D3,D4} {D2} ∅
X4 : {M1(w), M2(u)} {D2,D3,D4} {D1} ∅
X5 : {A(w)} {D2} {D3,D4} {D1}
X6 : {M2 � D} {D1,D2} ∅ {D3,D4}
X7 : {M3(u)} {D4} ∅ {D1,D2,D3}

the the ontologyOj = O \ Dj is inconsistent with X then we add Dj to the set D¬X.
In the case whenOj ∪ {¬X} is inconsistentDj is added to DX. Otherwise we add Dj

to the set D∅.
For instance, ontologies Oi = O \ Di obtained for diagnoses D2, D3 and D4 have

the following set of common entailments:

X ′
4 : {A1 � A2, A1 �M1, A1 �M2, A2(u),M1(u),M2(u), A2(w),M1(w)} (1)

Since the set X ′
4 is not empty it is considered as the query and the set DX includes

three elements {D2,D3,D4}. The ontology O \ D1 ∪ {X ′
4} is inconsistent therefore

the set D¬X = {D1} and the set D∅ = ∅. However, a query need not include all
of these axioms. If a query X ′ partitions the set of diagnoses into DX, D¬X and D∅

and there exists an irreducible set X ⊂ X ′ which preserves the partition then it is
sufficient to query X . In our example, the set X ′

4 can be reduced to its subset X4 :
{M1(w),M2(u)}. If there are multiple subsets that preserve the partition we select one
with minimal cardinality. For query generation we investigate all possible subsets of D.
This is feasible since we consider only the n most probable minimal diagnoses (e.g.
n = 12) during query generation and selection.

The possible queries presented in Table 3 partition the set of diagnoses D in a way
that makes the application of myopic strategies, such as split-in-half, inefficient. A
greedy algorithm based on such a heuristic would select the first query X1 as the next
query, since there is no query that cuts the set of diagnoses in half. If D4 is the target
diagnosis then X1 will be positively evaluated by an oracle (see Fig. 1). On the next
iteration the algorithm would also choose a suboptimal query since there is no parti-
tion that divides the diagnoses D1, D2, and D4 into two equal groups. Consequently,

{D4} {D1} {D1} {D2}

{D1,D4} : X4 {D1,D2} : X3

{D1,D2,D4} : X2 {D3}

{D1,D2,D3,D4} : X1

1�����
��

0 ����
��

�

1�����
��

0 ����
��

�

1���������� 0

�����
��

0 ����
��

�
1

�����
��

Fig. 1. Greedy algorithm

702 K. Shchekotykhin and G. Friedrich

it selects the first untried query X2. The oracle answers positively, and the algorithm
identifies query X4 to differentiate between D1 and D4.

However, in real-world settings the assumption that all axioms fail with the same
probability is rarely the case. For example, Roussey et al. [12] present a list of “anti-
patterns”. Each anti-pattern is a set of axioms, like {C1 � ∀R.C2, C1 � ∀R.C3, C2 ≡
¬C3}, that correspond to a minimal conflict set. The study performed by the authors
shows that such conflict sets occur often in practice and therefore can be used to com-
pute probabilities of diagnoses.

The approach that we follow in this paper was suggested by Rector at al. [10] and
considers the syntax of the description logics, such as quantifiers, conjunction, negation,
etc., rather than axioms to describe a failure pattern. For instance, if a user modifies a
quantifier of one of the roles to restore coherency, then we can assume that axioms
including universal quantifier are more probable to fail than the other ones. In [10] the
authors report that in most cases inconsistent ontologies were created because users (a)
mix up ∀r.S and ∃r.S, (b) mix up ¬∃r.S and ∃r.¬S, (c) mix up # and ", (d) wrongly
assume that classes are disjoint by default or overuse disjointness, (e) wrongly apply
negation. Observing that misuses of quantifiers are more likely than other failure pat-
terns one might find that the axioms ax 2 and ax 4 are more likely to be faulty than ax 3
(because of the use of quantifiers), whereas ax 3 is more likely to be faulty than ax 5 and
ax 1 (because of the use of negation). Therefore, diagnosisD2 is the most probable one,
followed closely by D4 although it is a double fault diagnosis. D1 and D3 are signif-
icantly less probable because ax 1 and ax 5 have a significantly lower fault probability
than ax 3. A detailed justification based on probability is given in the next section.

Taking into account the information about user faults provided in [10], it is almost
useless to ask query X1 because it is highly probable that the target diagnosis is either
D2 orD4 and therefore it is highly probable that the oracle will respond with 1. Instead,
asking X3 is more informative because given any possible answer we can exclude one
of the highly probable diagnoses, i.e. either D2 or D4. If the oracle responds to X3
with 0 thenD2 is the only remaining diagnosis. However, if the oracle responds with 1,
diagnoses D4, D3, and D1 remain, where D4 is significantly more probable compared
to diagnoses D3 and D1. We can stop, since the difference between the probabilities
of the diagnoses is high enough such that D1 can be accepted as the target diagnosis.
In other situations additional questions may be required. This strategy can lead to a
substantial reduction in the number of queries compared to myopic approaches as we
will show in our evaluation.

Note that in real-world application scenarios failure patterns and their probabilities can
be discovered by analyzing actions of a user in an ontology editor, like Protégé, while
debugging an ontology or just repairing an inconsistency/incoherency. In this case it is
possible to “personalize” the debugging algorithm such that it will prefer user-specific
faults.

3 Entropy-Based Query Selection

To select the best query we make the assumption that knowledge is available about the
a-priori failure probabilities in specifying axioms. Such probabilities can be estimated
either by studies such as [10,12] or can be personalized by observing the typical failures

Query Strategy for Sequential Ontology Debugging 703

of specific users working with an ontology development tool. In the last case an ontol-
ogy editor should just save logs of debugging sessions, as well as user actions taken to
restore the consistency/coherency of an ontology. Such observations can be then used to
identify typical failures of a particular user. Using observations about failure patterns,
for instance obtained from an ontology editor as described above, we can calculate the
initial probability of each axiom p(ax i) containing a failure. If no information about
failures is available then the debugger can initialize all probabilities p(ax i) with some
small number.

Given the failure probabilities p(ax i) of axioms, the diagnosis algorithm first calcu-
lates the a-priori probability p(Dj) that Dj is the target diagnosis. Since all axioms fail
independently, this probability can be computed as [8]:

p(Dj) =
∏

axn ∈Dj

p(axn)
∏

axm �∈Dj

1− p(axm) (2)

The prior probabilities for diagnoses are then used to initialize an iterative algorithm that
includes two main steps: (a) selection of the best query and (b) update of the diagnoses
probabilities given the query feedback.

According to information theory the best query is the one that, given the answer of
an oracle, minimizes the expected entropy of a the set of diagnoses [8]. Let p(Xi = vik)
where vi0 = 0 and vi1 = 1 be the probability that query Xi is answered with either 0
or 1. Let p(Dj |Xi = vik) be the probability of diagnosis Dj after the oracle answers
Xi = vik . The expected entropy after querying Xi is:

He(Xi) =
1∑

k=0

p(Xi = vik)×−
∑

Dj∈D

p(Dj |Xi = vik) log2 p(Dj |Xi = vik)

The query which minimizes the expected entropy is the best one based on a one-step-
look-ahead information theoretic measure. This formula can be simplified to the fol-
lowing score function [8] which we use to evaluate all available queries and select the
one with the minimum score to maximize information gain:

sc(Xi) =
1∑

k=0

p(Xi = vik) log2 p(Xi = vik) + p(D∅
i) + 1 (3)

where D∅
i is the set of diagnoses which do not make any predictions for the query Xi.

p(D∅
i) is the total probability of the diagnoses that predict no value for the query Xi.

Since, for a query Xi the set of diagnoses D can be partitioned into the sets DXi , D¬Xi

and D∅
i , the probability that an oracle will answer a query Xi with either 1 or 0 can be

computed as:
p(Xi = vik) = p(Sik) + p(D∅

i)/2 (4)

where Sik corresponds to the set of diagnoses that predicts the outcome of a query, e.g.
Si0 = D¬Xi for Xi = 0 and Si1 = DXi in the other case. Under the assumption
that both outcomes are equally likely the probability that a set of diagnoses D∅

i predicts
Xi = vik is p(D∅

i)/2.
Since by Definition 1 each diagnosis is a unique partition of all axioms in an ontol-

ogy O into correct and faulty, we consider all diagnoses as mutually exclusive events.

704 K. Shchekotykhin and G. Friedrich

Therefore the probabilities of their sets can be calculated as:

p(D∅
i) =

∑
Dj∈D∅

i

p(Dj) p(Sik) =
∑

Dj∈Sik

p(Dj)

Given the feedback v of an oracle to the selected query Xs, i.e. Xs = v we have to
update the probabilities of the diagnoses to take the new information into account. The
update is made using Bayes’ rule for each Dj ∈ D:

p(Dj |Xs = v) =
p(Xs = v|Dj)p(Dj)

p(Xs = v)
(5)

where the denominator p(Xs = v) is known from the query selection step (Equation 4)
and p(Dj) is either a prior probability (Equation 2) or is a probability calculated using
Equation 5 during the previous iteration of the debugging algorithm. We assign p(Xs =
v|Dj) as follows:

p(Xs = v|Dj) =

⎧⎪⎨⎪⎩
1, if Dj predicted Xs = v;

0, if Dj is rejected by Xs = v;
1
2 , if Dj ∈ D∅

s

Example 1 (continued). Suppose that the debugger is not provided with any infor-
mation about possible failures and therefore it assumes that all axioms fail with the
same probability p(ax i) = 0.01. Using Equation 2 we can calculate probabilities for
each diagnosis. For instance, D1 suggests that only one axiom ax 1 should be modi-
fied by the user. Hence, we can calculate the probability of diagnosis D1 as follows
p(D1) = p(ax 1)(1 − p(ax 2))(1 − p(ax 3))(1 − p(ax 4)) = 0.0097. All other minimal
diagnoses have the same probability, since every other minimal diagnosis suggests the
modification of one axiom. To simplify the discussion we only consider minimal diag-
noses for the query selection. Therefore, the prior probabilities of the diagnoses can be
normalized to p(Dj) = p(Dj)/

∑
Dj∈D p(Dj) and are equal to 0.25.

Given the prior probabilities of the diagnoses and a set of queries (see Table 2)
we evaluate the score function (Equation 3) for each query. E.g. for the first query
X1 : {B(w)} the probability p(D∅) = 0 and the probabilities of both the positive
and negative outcomes are: p(X1 = 1) = p(D2) + p(D3) + p(D4) = 0.75 and
p(X1 = 0) = p(D1) = 0.25. Therefore the query score is sc(X1) = 0.1887.

The scores computed during the initial stage (see Table 4) suggest that X2 is the best
query. Taking into account that D1 is the target diagnosis the oracle answers 0 to the

Table 4. Expected scores for queries
(p(ax i) = 0.01)

Query Initial score X2 = 1

X1 : {B(w)} 0.1887 0
X2 : {C(w)} 0 1
X3 : {Q(w)} 0.1887 1

Table 5. Expected scores for queries
(p(ax1) = 0.025, p(ax2) = p(ax3) =

p(ax4) = 0.01)

Query Initial score
X1 : {B(w)} 0.250
X2 : {C(w)} 0.408
X3 : {Q(w)} 0.629

Query Strategy for Sequential Ontology Debugging 705

Table 6. Probabilities of diagnoses after answers

Answers D1 D2 D3 D4

Prior 0.0970 0.5874 0.0026 0.3130
X3 = 1 0.2352 0 0.0063 0.7585
X3 = 1, X4 = 1 0 0 0.0082 0.9918
X3 = 1, X4 = 1, X1 = 1 0 0 0 1

Table 7. Expected scores for queries

Queries Initial X3 = 1 X3 = 1, X4 = 1

X1 : {B � M3} 0.974 0.945 0.931
X2 : {B(w)} 0.151 0.713 1
X3 : {M1 � B} 0.022 1 1
X4 : {M1(w), M2(u)} 0.540 0.213 1
X5 : {A(w)} 0.151 0.713 1
X6 : {M2 � D} 0.686 0.805 1
X7 : {M3(u)} 0.759 0.710 0.970

query. The additional information obtained from the answer is then used to update the
probabilities of diagnoses using the Equation 5. SinceD1 andD2 predicted this answer,
their probabilities are updated, p(D1) = p(D2) = 1/p(X2 = 1) = 0.5. The proba-
bilities of diagnoses D3 and D4 which are rejected by the outcome are also updated,
p(D3) = p(D4) = 0.

On the next iteration the algorithm recomputes the scores using the updated proba-
bilities. The results show that X1 is the best query. The other two queries X2 and X3 are
irrelevant since no information will be gained if they are performed. Given the negative
feedback of an oracle to X1, we update the probabilities p(D1) = 1 and p(D2) = 0. In
this case the target diagnosis D1 was identified using the same number of steps as the
split-in-half heuristic.

However, if the first axiom is more likely to fail, e.g. p(ax 1) = 0.025, then the first
query will be X1 : {B(w)} (see Table 5). The recalculation of the probabilities given
the negative outcome X1 = 0 sets p(D1) = 1 and p(D2) = p(D3) = p(D4) = 0.
Therefore the debugger identifies the target diagnosis only in one step.

Example 2 (continued). Suppose that in ax4 the user specified ∀s.A instead of ∃s.A
and ¬∃s.M3 instead of ∃s.¬M3 in ax 2. Therefore D4 is the target diagnosis. More-
over, the debugger is provided with observations of three types of failures: (1) conjunc-
tion/disjunction occurs with probability p1 = 0.001, (2) negation p2 = 0.01, and (3)
restrictions p3 = 0.05. Using the probability addition rule for non-mutually exclusive
events we can calculate the probability of the axioms containing an error: p(ax 1) =
0.0019, p(ax 2) = 0.1074, p(ax 3) = 0.012, p(ax 4) = 0.051, and p(ax 5) = 0.001.
These probabilities are exploited to calculate the prior probabilities of the diagnoses
(see Table 6) and to initialize the query selection process.

On the first iteration the algorithm determines that X3 is the best query and asks an
oracle whetherOt |= M1 � B is true or not (see Table 7). The obtained information is
then used to recalculate the probabilities of the diagnoses and to compute the next best

706 K. Shchekotykhin and G. Friedrich

Algorithm 1. Ontology debugging algorithm
Input: ontology O, set of background axioms B, set of fault probabilities for axioms FP ,

maximum number of most probable minimal diagnoses n, acceptance threshold σ
Output: a diagnosis D

1 DP ← ∅; DS ← ∅; T |= ← ∅; T �|= ← ∅; D ← ∅; s ← 0;
2 while belowThreshold(DP, σ) ∧ s �= 1 do
3 D ← getDiagnoses(HS-Tree(O, B ∪ T |=, T �|=, n));
4 DS ← computeDataSet(DS,D);
5 DP ← computePriors(D, FP);

6 DP ← uptateProbablities(DP, DS, T |=, T �|=);
7 s ← getMinimalScore(DS, DP);
8

〈
X,DX,D¬X

〉
← selectQuery(DS, s);

9 if getAnswer(Ot |= X) then T |= ← T |= ∪ X;
10 else T �|= ← T �|= ∪ ¬X;

11 return mostProbableDiagnosis(D,DP);

query X4, and so on. The query process stops after the third query, since D4 is the only
diagnosis that has the probability p(D4) > 0.

Given the feedback of the oracle X4 = 1 for the second query, the updated probabili-
ties of the diagnoses show that the target diagnosis has a probability of p(D4) = 0.9918
whereas p(D3) is only 0.0082. In order to reduce the number of queries a user can spec-
ify a threshold, e.g. σ = 0.95. If the probability of some diagnosis is greater than this
threshold, the query process stops and returns the most probable diagnosis. Note, that
even after the first answer X3 = 1 the most probable diagnosis D3 is three times more
likely than the second most probable diagnosis D1. Given such a great difference we
could suggest to stop the query process after the first answer. Thus, in this example the
debugger requires less queries than the split-in-half heuristic.

4 Implementation Details

The ontology debugger (Algorithm 1) takes an ontology O as input. Optionally, a user
can provide a set of axioms B that are known to be correct, a set FP of fault probabil-
ities for axioms ax i ∈ O, a maximum number n of most probable minimal diagnoses
that should be considered by the algorithm, and a diagnosis acceptance threshold σ.
The fault probabilities of axioms are computed as described by exploiting knowledge
about typical user errors. Parameters n and σ are used to speed up the computations. In
Algorithm 1 we approximate the set of the n most probable diagnoses with the set of
the n most probable minimal diagnoses, i.e. we neglect non-minimal diagnoses which
are more probable than some minimal ones. This approximation is correct, under a
reasonable assumption that probability of each axiom p(ax i) < 0.5. In this case for
every non-minimal diagnosis ND, a minimal diagnosis D ⊂ ND exists which from
Equation 2 is more probable than ND. Consequently the query selection algorithm op-
erates on the set of minimal diagnoses instead of all diagnoses (including non-minimal
ones). However, the algorithm can be adapted with moderate effort to also consider
non-minimal diagnoses.

Query Strategy for Sequential Ontology Debugging 707

We implemented the computation of diagnoses following the approach proposed by
Friedrich et al. [3]. The authors employ the combination of two algorithms, QUICKX-
PLAIN [5] and HS-TREE [11]. The latter is a search algorithm that takes an ontology
O, a set of correct axioms, a set of axioms T �|= which must not be implied by the target
ontology, and the maximal number of most probable minimal diagnoses n as an input.
HS-TREE implements a breadth-first search strategy to compute a set of minimal hit-
ting sets from the set of all minimal conflicts in O. As suggested in [3] it ignores all
branches of the search tree that correspond to hitting sets inconsistent with at least one
element of T �|=. HS-TREE terminates if either it identifies the n most probable minimal
diagnoses or there are no further diagnoses which are more probable than the already
computed ones. Note, HS-TREE often calculates only a small number of minimal con-
flict sets in order to generate the n most probable minimal hitting sets (i.e. minimal
diagnoses), since only a subset of all minimal diagnoses is required.

The search algorithm computes minimal conflicts using QUICKXPLAIN. This algo-
rithm, given a set of axiomsAX and a set of correct axioms B returns a minimal conflict
set CS ⊆ AX , or ∅ if axioms AX ∪B are consistent. Minimal conflicts are computed
on-demand by HS-TREE while exploring the search space. The set of minimal hitting
sets returned by HS-TREE is used by GETDIAGNOSES to create a set D with at most n
minimal diagnoses.

At the beginning of the main loop the algorithm calls COMPUTEDATASET function
to generate a set of ontologies O : {Oi} for each diagnosis Di ∈ D by removing all
elements of a diagnosis from O. The algorithm uses this set to generate data sets like
the ones presented in Tables 2 and 3. For each ontologyOi ∈ O the algorithm gets a set
of entailments from the reasoner and associates them with the corresponding diagnosis
Di. The algorithm uses the set of diagnoses/entailments pairs to compute the set of
queries. For each query Xi it partitions the set D into DXi , D¬Xi and D∅

i , as defined
in Section 2. Then Xi is iteratively reduced by applying QUICKXPLAIN such that sets
DXi and D¬Xi are preserved.

In the next step COMPUTEPRIORS computes prior probabilities for a set of diagnoses
given the fault probabilities of the axioms contained in FP . To take past answers into
account the algorithm updates the prior probabilities of the diagnoses by evaluating
Equation 5 for each diagnosis in D (UPDATEPROBABILITIES). All data required for the
update is stored in sets DS, T |=, and T �|=.

The function GETMINIMALSCORE evaluates the scoring function (Equation 3) for
each element of DS and returns the minimal score.

In the query-selection phase the algorithm selects a set of axioms that should be
evaluated by an oracle. SELECTQUERY retrieves a triple

〈
X,DX,D¬X

〉
∈ DS that

corresponds to the best (minimal) score s. The set of axioms X is then presented to the
oracle. If there are multiple queries with a minimal score SELECTQUERY returns the
triple where X has the smallest cardinality in order to reduce the answering effort.

Depending on the answer of the oracle, the algorithm extends either set T |= or T �|=.
This is done to exclude corresponding diagnoses from the results of HS-TREE in further
iterations. Note, the algorithm can be easily extended to allow the oracle to reject a
query if the answer is unknown. In this case the algorithm proceeds with the next best
query until no further queries are available.

708 K. Shchekotykhin and G. Friedrich

The algorithm stops if there is a diagnosis probability above the acceptance threshold
σ or if no query can be used to differentiate between the remaining diagnoses (i.e. all
scores are 1). The most probable diagnosis is then returned to the user. If it is impossible
to differentiate between a number of highly probable minimal diagnoses, the algorithm
returns a set that includes all of them.

5 Evaluation

The evaluation of our approach was performed using generated examples and real-
world ontologies presented in Table 1. We employed generated examples to perform
controlled experiments where the number of minimal diagnoses and their cardinality
could be varied to make the identification of the target diagnosis more difficult. The
main goal of the experiment using ontologies is to demonstrate applicability of our
approach in the real-world settings.

For the first test we created a generator which takes a consistent and coherent on-
tology, a set of fault patterns together with their probabilities, the minimum number
of minimal diagnoses m, and the required minimum cardinality of these minimal di-
agnoses |Dt| as inputs. The output was an alteration of the input ontology for which
at least the given number of minimal diagnoses with the required cardinality exist. In
order to introduce inconsistencies and incoherences, the generator applied fault patterns
randomly to the input ontology depending on their probabilities.

In this experiment we took five fault patterns from a case study reported by Rector at
al. [10] and assigned fault probabilities according to their observations of typical user
errors. Thus we assumed that in cases (a) and (b) (see Section 2, when an axiom includes
some roles (i.e. property assertions), axiom descriptions are faulty with a probability of
0.025, in cases (c) and (d) 0.01 and in case (e) 0.001. In each iteration the generator
randomly selected an axiom to be altered and applied a fault pattern to this axiom. Next
it selected another axiom using the concept taxonomy and altered it correspondingly to
introduce an incoherency/inconsistency. The fault patterns were randomly selected in
each step using the probabilities given above.

For instance, given the description of a randomly selected concept A and the fault
pattern “misuse of negation”, we added the construct "¬X to the description of A,
where X is a new concept name. Next, we randomly selected concepts B and S such
that S � A and S � B and added "X to the description of B. During the gen-
eration process, we applied the HS-TREE algorithm after each introduction of a in-
coherency/inconsistency to control two parameters: the minimum number of minimal
diagnoses in the ontology and their minimum cardinality. The generator continued to in-
troduce incoherences/inconsistencies until the specified parameter values were reached.
For instance, if the minimum number of minimal diagnoses equals to m = 6 and their
cardinality to |Dt| = 4, then the generated ontology will include at least 6 diagnoses of
cardinality 4 and some additional number of diagnoses of higher cardinalities.

The resulting faulty ontology as well as the fault patterns and their probabilities
were inputs for the ontology debugger. The acceptance threshold σ was set to 0.95 and
the number of most probable minimal diagnoses n was set to 12. One of the minimal
diagnoses with the required cardinality was randomly selected as the target diagnosis.

Query Strategy for Sequential Ontology Debugging 709

1

2

3

4

5

6

7

8

9

4 6 8 10 12

Re
qu

ire
d

qu
er

ie
s

Random Split-in-half
|Dt|=2 |Dt|=4 |Dt|=8Entropy-based:

Required number of minimal diagnoses in a faulty ontology

Fig. 2. Number of queries required to select the target diagnosis Dt with threshold σ = 0.95.
Random and “split-in-half” are shown for the cardinality of minimal diagnoses |Dt| = 2.

Note, the target ontology is not equal to the original ontology, but rather is a corrected
version of the altered one, in which the faulty axioms were repaired by replacing them
with their original (correct) versions according to the target diagnosis. The tests were
done on ontologies bike2 to bike9, bcs3, galen and galen2 from Racer’s benchmark
suite1.

The average results of the evaluation performed on each test suite (depicted in Fig. 2)
show that the entropy-based approach outperforms the split-in-half method described
in Section 2 as well as random query selection by more than 50% for the |Dt| = 2 case
due to its ability to estimate the probabilities of diagnoses. On average the algorithm
required 8 seconds to generate a query. Figure 2 also shows that the cardinality of the
target diagnosis increases as the number of required queries increases. This holds for the
random and split-in-half methods (not depicted) as well. However, the entropy-based
approach is still better than the split-in-half method even for diagnoses with increasing
cardinality. The approach required more queries to discriminate between high cardinal-
ity diagnoses because the prior probabilities of these diagnoses tend to converge.

In the tests performed on the real-world ontologies we initialized the input parameters
n and σ of Algorithm 1 with the same values as in the test with generated examples.
Also we used the same five fault patterns together with their probabilities as given above.
Before the experiment each ontology was analyzed by the HS-TREE algorithm and all
minimal diagnoses of these ontologies were identified. In each test for a given ontology
we selected randomly one of its minimal diagnoses as the target one and applied our
approach using both split-in-half and entropy-based strategies. The evaluation of queries
was done automatically by verifying if a query is also entailed by the target ontology
obtained by removing all axioms of the target diagnosis from the input ontology. For

1 http://www.racer-systems.com/products/download/benchmark.phtml

http://www.racer-systems.com/products/download/benchmark.phtml

710 K. Shchekotykhin and G. Friedrich

Table 8. Number of queries required to identify a target diagnosis

Split-in-half Entropy-based
Ontology min max avg min max avg

1. Chemical 3 4 3 1 3 2
2. Sweet-JPL 4 5 4 1 4 2
3. University 7 9 8 2 7 4
4. Tambis 8 10 8 2 7 5
5. Economy 10 12 11 3 10 6
6. Transport 11 14 12 4 11 7

Table 9. Time in seconds required to calculate 12 first and all minimal diagnoses as well as an
average time used to generate a query

Ontology
Diagnoses Query

12 all avg
1. Chemical 0,97 1,39 1,50
2. Sweet-JPL 31,97 36,47 5,48
3. University 0,27 0,61 1,12
4. Tambis 80,29 286,11 3,91
5. Economy 8,33 55,70 1,87
6. Transport 6,70 99,02 2,39

each ontology we performed 20 tests and on each iteration the target diagnosis was
randomly reselected.

The results of this experiment are presented in Tables 8 and 9 and show that in terms
of queries, the entropy-based approach outperformed split-in-half. As the number of
diagnoses grew we observed that the difference between the two strategies increased.
In the best case for the entropy-based strategy, when the target diagnoses were assigned
a high a-priori fault probability, the number of queries was usually twice as low as
required by the split-in-half strategy. Also in the worst case, when the target diagnoses
were assigned a low a-priori fault probability, the entropy-based strategy performed
better than split-in-half, because it was able to adapt the a-posteriori fault probabilities
using Bayes rule and the oracle’s feedback to queries. In this case the entropy-based
strategy corresponds to active learning [14] applied to learn fault probabilities which
is not exploited in the split-in-half strategy. The more queries are asked, the better the
entropy-based method can predict the target diagnosis.

6 Related Work

To the best of our knowledge no sequential ontology debugging methods (neither em-
ploying split-in-half nor entropy-based methods) have been proposed to debug faulty
ontologies so far. Diagnosis methods for ontologies are introduced in [13,6,3]. Ranking
of diagnoses and proposing a target diagnosis is presented in [7]. This method uses a
number of measures such as: (a) the frequency with which an axiom appears in conflict
sets, (b) impact on an ontology in terms of its “lost” entailments when some axiom is
modified or removed, (c) ranking of test cases, (d) provenance information about the

Query Strategy for Sequential Ontology Debugging 711

axiom, and (e) syntactic relevance. All these measures are evaluated for each axiom in
a conflict set. The scores are then combined in a rank value which is associated with the
corresponding axiom. These ranks are then used by a modified HS-TREE algorithm that
identifies diagnoses with a minimal rank. In this work no query generation and selection
strategy is proposed if the target diagnosis cannot be determined reliably with the given
a-priori knowledge. In our work additional information is acquired until the target di-
agnosis can be identified with confidence. In general, the work of [7] can be combined
with the one presented in this paper as axiom ranks can be taken into account together
with other observations while calculating the prior probabilities of the diagnoses.

The idea of selecting the next best query based on the expected entropy was exploited
in the generation of decisions trees [9] and further refined for selecting measurements in
the model-based diagnosis of circuits [8]. We extended these methods to query selection
in the domain of ontology debugging.

7 Conclusions

In this paper we presented an approach to the sequential diagnosis of ontologies. We
showed that the axioms generated by classification and realization can be used to build
queries which differentiate between diagnoses. To rank the utility of these queries we
employ knowledge about typical user errors in ontology axioms. Based on the likelihood
of an ontology axi om containing an error we predict the information gain produced by a
query result, enabling us to select the next best query according to a one-step-lookahead
entropy-based scoring function. We outlined the implementation of a sequential debug-
ging algorithm and compared our proposed method with a split-in-half strategy. Our
experiments showed a significant reduction in the number of queries required to iden-
tify the target diagnosis.

References

1. Ceraso, J., Provitera, A.: Sources of error in syllogistic reasoning. Cognitive Psychology 2(4),
400–410 (1971)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook, 2nd edn. Cambridge University Press, New York (2007)

3. Friedrich, G., Shchekotykhin, K.: A General Diagnosis Method for Ontologies. In: Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 232–246.
Springer, Heidelberg (2005)

4. Haarslev, V., Müller, R.: RACER System Description. In: Goré, R.P., Leitsch, A., Nipkow,
T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer, Heidelberg (2001)

5. Junker, U.: QUICKXPLAIN: Preferred Explanations and Relaxations for Over-Constrained
Problems. In: Association for the Advancement of Artificial Intelligence (AAAI 2004), pp.
167–172. AAAI, Menlo Park (2004)

6. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all Justifications of OWL DL
Entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B.,
Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.)
ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 267–280. Springer, Heidelberg (2007)

712 K. Shchekotykhin and G. Friedrich

7. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B.: Repairing Unsatisfiable Concepts in
OWL Ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 170–
184. Springer, Heidelberg (2006)

8. de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artificial Intelligence 32(1), 97–130
(1987)

9. Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1(1), 81–106 (1986)
10. Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens, R., Wang,

H., Wroe, C.: OWL Pizzas: Practical Experience of Teaching OWL-DL: Common Errors &
Common Patterns. In: Motta, E., Shadbolt, N.R., Stutt, A., Gibbins, N. (eds.) EKAW 2004.
LNCS (LNAI), vol. 3257, pp. 63–81. Springer, Heidelberg (2004)

11. Reiter, R.: A Theory of Diagnosis from First Principles. Artificial Intelligence 23, 57–95
(1987)

12. Roussey, C., Corcho, O., Vilches-Blázquez, L.M.: A catalogue of OWL ontology antipat-
terns. In: 5th International Conference On Knowledge Capture (K-CAP-2009), pp. 205–206.
ACM, New York (2009)

13. Schlobach, S., Huang, Z., Cornet, R., Harmelen, F.: Debugging Incoherent Terminologies.
Journal of Automated Reasoning 39(3), 317–349 (2007)

14. Settles, B.: Active Learning Literature Survey. Computer sciences technical report 1648,
University of Wisconsin-Madison (2009)

15. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL rea-
soner. Journal of Web Semantics: Science, Services and Agents on the World Wide Web 5(2),
51–53 (2007)

Preference-Based Web Service Composition:
A Middle Ground between Execution and Search

Shirin Sohrabi and Sheila A. McIlraith

Department of Computer Science, University of Toronto, Toronto, Canada

{shirin,sheila}@cs.toronto.edu

Abstract. Much of the research on automated Web Service Composi-

tion (WSC) relates it to an AI planning task, where the composition is

primarily done offline prior to execution. Recent research on WSC has

argued convincingly for the importance of optimizing quality of service,

trust, and user preferences. While some of this optimization can be done

offline, many interesting and useful optimizations are data-dependent,

and must be done following execution of at least some information-

gathering services. In this paper, we examine this class of WSC prob-

lems, attempting to balance the trade-off between offline composition

and online information gathering with a view to producing high-quality

compositions efficiently and without excessive data gathering. Our inves-

tigation is performed in the context of the semantic web employing an

existing preference-based Hierarchical Task Network WSC system. Our

experiments illustrate the potential improvement in both the quality and

speed of composition generation afforded by our approach.

1 Introduction

Web Service Composition (WSC) requires a computer program to automati-
cally select, integrate, and invoke multiple web services in order to achieve a
user-defined objective. It is an example of the more general task of composing
business processes or component software. Automated WSC is motivated by the
need to improve the efficiency of composing and integrating services. A num-
ber of Business Process Management (BPM) systems exist to help organizations
optimize business performance by discovering, managing, composing, and inte-
grating business processes, including SAP’s NetWeaver, and IBM’s WebSphere
and BPM Suite. With the advent of cloud computing, an increasing number of
small- and medium-sized businesses are attempting to blend cloud services from
multiple providers. Performing such integration and interoperation manually is
costly and time consuming. Automated WSC and semantic integration address
this emerging challenge [14]. For the purposes of this paper, we illustrate con-
cepts in terms of the intuitive but over-used travel domain, however compelling
examples exist in sectors such as Banking and Finance, Government, Healthcare
and Life Sciences, Insurance, Retail, and Supply Chain Management. Many of
these applications exploit extensive internet- or intranet-accessible data and will
directly benefit from the work described here.

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 713–729, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

714 S. Sohrabi and S.A. McIlraith

A popular approach to WSC is to characterize it as an Artificial Intelligence
(AI) planning task and to solve it as such (e.g., [13,15,4]). In previous work (e.g.,
[15,20,19]) we have argued that for a number of WSC problems it is desirable to
specify a flexible workflow, generic procedure, or composition template that
specifies the basic steps of the composition at an abstract level, but has sufficient
flexibility to support their customization for different stakeholders, scenarios, and
applications. To this end, we have specified flexible workflows using Golog (e.g.,
[15,20]), or alternatively Hierarchical Task Networks (HTNs) [19], and developed
associated machinery for WSC. We are not alone is proposing such a vision.
Others have similarly used HTNs (e.g., [17]) and finite state automata (e.g., [5])
to specify composition objectives with varying flexibility.

While customization of flexible workflows can take the form of hard con-
straints imposed by the specific application scenario and its stakeholders, in
cases where such customizing constraints are conflicting, some form of priori-
tization is required. Similarly, in cases where customizations are desirable but
not mandatory, customizations can be specified as preferences. This observation
has led us to characterize the WSC task as a preference-based planning (PBP)
task where actions (services, service parameters, and/or data) are selected not
only to achieve the composition objective but to produce compositions that are
of high quality with respect to quality of service, trust, or other composition-,
service-, or data-oriented user preferences (e.g., [20,11,19,1,10,21]).

Previous work on preference-based WSC (and indeed much of the work on
WSC without preferences) has assumed that all the information required to
generate the composition is on hand at the outset, and as such, composition
is done offline followed by subsequent execution of the composition, perhaps in
association with execution monitoring. However, this is not realistic in many
settings. Consider the task of travel planning or any other multi-step purchasing
process on the Web. A good part of the composition for these domains involves
data gathering, followed by generation of an optimized composition with respect
to that data and other criteria. Indeed many of the choice points relating to the
composition require data acquired at execution time.

To address this, most current WSC systems will acquire all the information
required for the composition prior to initiating composition generation. This
can result in a lot of unnecessary data access. Further, it results in an enor-
mous search space for a planner. Most state-of-the-art planners require actions
to be grounded. However, unlike typical planning applications, many WSC ap-
plications are data-intensive, which results in an enormous number of ground
actions and a huge search space. While this space may still be manageable for
computing a composition, to compute an optimal composition, and to guarantee
optimality, the entire search space must be searched, at least implicitly. This has
the effect that most data-intensive WSC tasks that involve optimization of data
(like picking preferred flights) will not scale using conventional PBP techniques.

Consider a flexible workflow that describes the travel domain in terms of the
tasks of booking transportation and booking accommodations, with varying op-
tions for their realization. We add to this the following preferences: If destination

Preference-Based WSC: A Middle Ground between Execution and Search 715

is more than 500 km away, book a flight, otherwise I prefer to rent a car; I prefer
to fly with a Star Alliance carrier; I prefer to book cars with Avis, and if not
Budget; I prefer to book a Hilton hotel, and if not a Sheraton. A naive PBP
would access all the flight, car, hotel, etc. information prior to composition and
create grounded actions (e.g., book-car(Avis,Pria,Daily,$39,. . .)) for each data
instance, resulting in a huge set of actions. In order to guarantee optimality
of a composition, one needs to guarantee that all compositions were considered,
which would (naively) involve considering all combinations of flight-hotel and/or
car-hotel. However, there is clearly a smarter way to do this. In particular, either
flight information or car rental information (but not both) need to be consid-
ered, depending on the distance to destination. Further, the choice of airline
is independent of the choice of hotel, so optimality can be guaranteed by opti-
mizing these choices independently. These simple, intuitive observations provide
motivation for the work presented here.

In this paper, we investigate the class of WSC problems that endeavour to
generate high-quality compositions through optimization of service and data se-
lection. We attempt to balance the trade-off between offline composition and
online information gathering with a view to producing high-quality composi-
tions. Our objective is to minimize data access and to make optimization as
efficient as possible by exploiting the independence of ground actions within the
search space. Finally we wish to ensure that our techniques will maintain the
guarantees a more naive approach would afford, including guarantees regarding
the soundness of our compositions and their optimality.

Our investigation is performed in the context of our existing preference-based
HTN WSC system, HTNWSC-P [19]. We propose a means of analyzing a WSC
problem in order to identify places where optimization can be localized while pre-
serving global optimality. Further, building on previous work that addresses the
problem of information gathering (e.g., [15,9]), we propose a middle-ground exe-
cution engine that executes information-gathering services, as needed, while only
simulating the execution of world-altering services. In doing so, the HTN WSC
engine is able to benefit from the further knowledge afforded by information-
gathering while still supporting backtrack search, by not actually or not nec-
essarily executing world-altering services. We illustrate the effectiveness of our
approach through experimentation.

2 Background and Preliminaries

The setting for this work is the semantic web. We assume that both the Web
services and our composition template are described in OWL-S, an ontology for
describing Web services [12]. We use an OWL-S to HTN translator to translate
the OWL-S process descriptions and composition template to an HTN domain
description and initial task network, respectively. Customization of the composi-
tion template is specified in PDDL3, the Planning Domain Definition Language,
which provides a means of specifying preferences for planning domains [6]. Web
service compositions now take the form of plans, and optimized compositions

716 S. Sohrabi and S.A. McIlraith

take the form of optimized PBPs. In order to compute such PBPs, we exploit
our previous work [18], which uses state-of-the-art heuristic search techniques to
generate optimized PBPs from HTN specifications. Note throughout this paper
we distinguish between information-gathering actions – actions that collect data,
and world-altering actions – actions that effect change in the world.

HTN Planning: Hierarchical Task Network (HTN) planning [7] is a popular
and widely used planning paradigm that has been employed for WSC (e.g.,
[17,11]). Given an initial state, an initial task network (the objective to be
achieved), and a domain description comprising a set of operators and meth-
ods – a description of how tasks can be decomposed, an HTN planner constructs
a plan by repeatedly decomposing tasks into smaller and smaller subtasks until
a primitive decomposition of the initial task network is found. In the travel do-
main, the initial task network is the single task arrange-travel. This task can be
decomposed into arranging transportation, accommodations, local transporta-
tion, activities, tours, and entertainment. Basic definitions are taken from [7].

Definition 1 (HTN Planning Problem). An HTN planning problem is a 3-
tuple P = (s0, w0, D) where s0 is the initial state, w0 is the initial task network,
and D is the HTN planning domain which consists of a set of operators and
methods.

An operator is a primitive action, described by its name, preconditions and effects.
In the travel domain, ignoring the parameters, operators might include: book-hotel
and book-flight. A task consists of a task symbol and a list of arguments. A task is
primitive if its task symbol is an operator name and its parameters match, other-
wise it is nonprimitive. arrange-transportation and arrange-activity are nonprim-
itive tasks, while book-tour and book-car are primitive.

A method, m, is a 4-tuple (name(m), task(m),subtasks(m), constr(m)) cor-
responding to the method’s name, a nonprimitive task and the method’s task
network, comprising subtasks and constraints. Method m is relevant for a task
t if there is a substitution σ such that σ(t) =task(m). Several methods can be
relevant to a particular nonprimitive task t, leading to different decompositions
of t. In our example, the method with name by-air-trans can be used to decom-
pose the task arrange-trans into the subtasks of booking a flight and paying,
with the constraint (constr) that the booking precede payment.

Definition 2 (Task Network). A task network is a pair w=(U, C) where U
is a set of task nodes and C is a set of constraints. The constraints normally
considered are of type precedence constraint, before-constraint, after-constraint
or between-constraint.

Definition 3 (Plan). π = o1o2 . . . ok is a plan for HTN planning program P =
(s0, w0, D) if there is a primitive decomposition, w, of w0 of which π is an
instance.

Specifying User Preferences and Constraints: Customizing preferences
and constraints are specified in a version of PDDL3 that we have augmented

Preference-Based WSC: A Middle Ground between Execution and Search 717

to express preferences over how HTN tasks are parameterized and decomposed
as well as preferences over service (i.e., task) properties [19,18]. This allows us
to combine optimization of service selection (such as quality of service) with
optimization of the composition. This augmented version of PDDL3 supports
specification of temporally extended preferences via a subset of Linear Tempo-
ral Logic (LTL). always, sometime, sometime-before are among the supported
constructs. occ(a) refers to the occurrence of a primitive task, while initiate(x)
and terminate(x) refer to the initiation and termination of a nonprimitive task
or method. To specify preferences over non-functional properties of services such
as trust, reliability, and reputation, we associate a unique id with each task via
the predicate isAssociatedWith and augment the domain with additional pred-
icates for these properties The constructs described above are used to describe
desirable properties of plans. These properties (called preferences) are then ag-
gregated together into an objective function. Some simplified examples follow.

(preference p1 (sometime (initiate (book-flight AirCanada Eco Direct))))
(preference p2 (always (not (occ (pay MasterCard)))))
(preference p3 (imply (hasBookedCar ?Z) (sometime (occ (pay ?Z AE)))))

p1 states that at some point the user books a direct economy flight with Air
Canada, p2 states that the user never pays by Mastercard, and p3 states that if
a car is booked, at some point the user pays with their American Express (AE).

The quality of a plan is measured by the value of a PDDL3 metric func-
tion – an objective function over preferences that can either be maximized or
minimized. The PDDL3 function is-violated takes as input a preference name
and returns the number of times the corresponding preference is violated. The
example metric function below stipulates that it is to be minimized. As such,
the lower its value, the higher the quality of the plan. The violation of individual
preferences can be weighted to reflect their relative importance. E.g.,

(:metric minimize (+ (* 2 (is-violated p1)) (* 1 (is-violated p2))))

specifies that it is twice as important to satisfy p1 as to satisfy preference p2.
Note that since the metric function is a weighted sum of individual preference
formulae, by trying to minimize its value, it automatically deals with inconsistent
preferences. Hence, an appropriate trade-off between inconsistent preferences is
made so that the metric function can be optimized.

Definition 4 (Preference-based HTN Planning). An HTN planning prob-
lem with user preferences is described as a 4-tuple P = (s0, w0, D,�) where �
is a preorder between plans. A plan π is a solution to P if and only if: π is a
plan for P ′ = (s0, w0, D) and there does not exist a plan π′ for P ′ such that π′

is more preferred than π.

The� relation can be defined in many ways (e.g., � can be quantitatively defined
using a metric function). Note, from now on we will refer to the metric function
as M , and use M(N) to denote the value of the metric in a search node N (a
search node contains the current state, task network, and partial plan).

718 S. Sohrabi and S.A. McIlraith

3 Decoupling Data Optimization from Search

Given the HTN domain description of a WSC problem, the initial task network,
and the customizing constraints and preferences, we are interested in generating
a high-quality (ideally optimal) composition. Unfortunately, unlike the task of
generating a composition, its optimization requires considering all alternative
compositions, at least implicitly. And even in the case where the composition
can be decomposed into independent subproblems, customizing preferences and
constraints over the composition can introduce new inter-dependencies.

In previous work [20,19] we proposed an algorithm based on planning with
heuristic search that employs a best-first, forward search strategy capable of
computing an optimal composition. We elaborate on the algorithm in Section 5.
Here we consider how to exploit this algorithm in data-intensive settings where
the search space can be prohibitively large.

As noted earlier, data acquired via information gathering is typically encoded
as parameters of the actions that act on that data. E.g., the book-flight action
would be parameterized by the data associated with a flight, such as airline,
origin, destination, fare class, etc. State-of-the-art planning algorithms require
actions/operators to be grounded. As such, in data-intensive settings, there can
be an enormous number of ground actions and as a consequence an enormous
search space to explore. Consider a simplified version of the task of booking a
flight, a hotel, a car, and booking a tour for a vacation. Assume that these four
tasks can be performed in any order and are completely independent of each
other. Given 20 possible flights, 10 hotels, 10 types of car, 5 tours of the city,
and 4! ways in which the booking of these items can be performed, there are
20*10*10*5*4! different compositions that need to be explored (at least implic-
itly) to determine the optimal composition. Using the algorithm proposed in our
previous work, some of these combinations will be eliminated by our exploita-
tion of state-of-the-art heuristic search and sound pruning – a means of pruning
partial plans that have no prospect of producing a plan that is superior to the
current best plan. Nevertheless, the algorithm is still doing a lot of unnecessary
search.

From our experience with WSC applications that involve preferences, we ob-
serve that most of the search time is spent on resolving the optimization that
relates to the data that we have collected. We henceforth refer to this type of
optimization as data optimization . We observe that just as the subtasks af-
ford a degree of independence in many WSC scenarios, so too do the different
data choices, and that this independence allows us to perform some optimiza-
tion locally, external to the composition process, or even arbitrarily (if they don’t
matter) while still guaranteeing that the choice does not eliminate the globally
optimal solution. For example, in our simplified scenario we can select the best
car, best flight, best hotel, and best tour independently of each other. And in
doing so, we can reduce the search space to (20+10+10+5)*4!. More generally,
if we are able to identify that subset of the data that is relevant to the opti-
mization of the composition and attempt to localize its optimization then we
can significantly streamline our search.

Preference-Based WSC: A Middle Ground between Execution and Search 719

In what follows, we elaborate on the exploitation of three scenarios: (1) a
data choice must be done in concert with the composition but choosing the
optimal data can be localized; (2) a data choice can be optimized in isolation
of the composition generation process; and (3) a data choice is irrelevant to
the optimization of the composition and can be made arbitrarily. We begin by
defining the notion of localized data optimization and identify conditions under
which it retains the possibility of finding the optimal solution.

Definition 5 (Localized Data Optimization with respect to an Oper-
ator). Let P ′ be an information-gathering HTN planning problem with prefer-
ences, following Definitions 4 and 8. Let N be a search node that represents a
partial plan, and let O be the world-altering operator that is to be applied next in
our search – the operator that extends the partial plan currently under considera-
tion. Let N1...Nk be different nodes that result from different possible groundings
of O from node N . Localized data optimization for O selects node Ni, 1 ≤ i ≤ k
if M(Ni) ≤ M(Nj), ∀1 ≤ j ≤ k, where M(N) is the metric value of search
node N .

According to the above definition, the node with the least metric value is selected
when localized data optimization for an operator is performed. The question is
when is such a strategy sound, i.e., when can we do such a local selection without
eliminating the overall best solution? For example, assume a best flight among all
available flights is selected, but the selected flight arrives at night preventing the
planner from booking an activity for that day. In such situations, even though
the selected flight is the best flight choice among all available flights in isolation
(or locally), because of the interactions among operators within and between
tasks, this choice is not the best choice for the composition.

Definition 6 (Sound Localized Data Optimization with respect to an
Operator). Let P ′, N , O, N1...Nk be as in Definition 5. Localized data op-
timization with respect to O is said to be sound if there does not exist a plan
extending any node Nj, 1 ≤ j ≤ k that would result in a better metric value than
any plan extending the node Ni that is selected via localized data optimization.
Hence, if there exists an optimal plan π from extending the partial plan in node
N , π is not achievable from extending any of the nodes Nj and is only achievable
from Ni.

This definition has important implications. If localized data optimization is
sound, then all nodes Nj can be pruned from the search space because we know
the optimal plan cannot be reached by extending any of these nodes. Now that
we know the condition under which localized data optimization is sound, we need
to discuss how such an operator can be identified. Doing so involves analyzing
the structure of the planning problem to identify operators that are completely
independent and have no interactions with the rest of the planning problem in-
cluding (1) the operators and methods in the domain, (2) the user preferences,
and (3) the hard constraints, assuming for simplicity that there are no indirect
effects that we have to worry about. The following is a syntactic criterion that

720 S. Sohrabi and S.A. McIlraith

can be used to identify operators whose grounding choices will have no impact
on the rest of the decisions made during the generation of a composition.

Definition 7 (Non-interacting Operator with respect to the Domain).
An operator O is said to be non-interacting with respect to the domain if (1) no
predicate in the precondition of O or in the condition of the conditional effect
statement of O appears in the effect of any other operator in the domain, and
(2) there is no predicate in the effect of O that appears in the precondition (or
in the condition of the conditional effect statement) of any other operators or
methods1 of the planning problem.

Intuitively this definition says that nothing affects the execution or outcome of
this operator. Returning to our example, if the flight booking operator changes
anything that is a precondition of another operator, then the flight booking
operator interacts with that operator. E.g., if the flight booking operator has
the effect of depleting available monetary funds, precluding the booking of a
particular hotel, or if it results in arrival at a time that impacts the booking of
a tour, then it is considered to interact with other aspects of the problem.

The above condition can be easily checked as a preprocessing step by ana-
lyzing the domain definition. However, syntactically identifying how preferences
play a role in data interactions is more difficult, particularly when trajectory
preferences – preferences expressed in a subset of LTL – are involved. One way
to identify interacting operators with respect to the preferences, is to determine
whether the operator’s add effects – the positive effects of an operator – ap-
pear in any preference formulae. More specifically to enforce non-interaction, we
need to ensure that the add effects of the operator never appear in the “b part”
of preference formulae, where the “b part” is as follows: (sometime-after b a)
(always (imply b a)) or (sometime (imply b a)). This is because the “b part”
is the condition that if true requires the preference formula to be true, and in
particular necessitates the “a part” holding. Thus, if the “b part” refers to an
add effect of a world-altering operator for which localized data optimization is
performed, and the “a part” is hard or impossible to achieve then the choice
made in the data optimization interacts with a choice that has to be made later.

Theorem 1 (Criterion for Sound Localized Data Optimization). If an
operator O is non-interacting with respect to the planning domain, user prefer-
ences, and hard constraints then performing localized data optimization on this
operator is sound.

To this point we have defined the notion of localized data optimization and iden-
tified some syntactic criteria that will ensure its soundness. Before concluding,
we informally discuss two further cases. We observe that in some instances the
optimization of data can be completely separated or decoupled from the dynam-
ics of the composition problem and the optimal data choice can be determined
as a separate process. For example, if a user’s sole preference is to book the

1 Precondition for a method can be specified as a before constraint.

Preference-Based WSC: A Middle Ground between Execution and Search 721

cheapest car, then the identification of what car to book can be performed in
isolation of the generation of the composition altogether. Further, some data
choices have no effect at all on the quality of the composition and as such can
be made arbitrarily. For example, if the user does not care what car they rent,
then the choice of rental car can be made arbitrarily. In both of these cases, the
search space can exclude consideration of the different data values by insertion
of a single placeholder value. Execution of the information-gathering service can
be delayed until after composition, and the placeholder resolved at that time.

4 Middle-Ground Execution

For many WSC problems it is impractical, and often impossible to reduce the
WSC problem to a planning problem with complete initial state – i.e., for which
all the information necessary to generate a composition (and in our case to opti-
mize it) is known prior to commencement of the search for a composition. In the
travel domain this would necessitate collecting data relating to all the different
modes of transportation, means of accommodation, etc. The space of ground
actions would be enormous and the planning and optimization task unsolvable.
However, one can instead imagine gathering information as it becomes neces-
sary to choice points in the generation and optimization of the composition, and
using this to inform the search for different compositions. In this section, we
investigate how to perform information gathering in this manner.

The problem of gathering information during composition has been examined
in several research papers (e.g., [15,17,8]). McIlraith and Son in [15] describe a
middle-ground interpreter that collects relevant information, but only simulates
the effects of world-altering actions. Their interpreter works under the Invoca-
tion and Reasonable Persistence (IRP) Assumption that (1) assumes all
information gathering actions can be executed by the middle-ground interpreter
and (2) assumes that the gathered information persists for a reasonable period
of time, and none of the actions in the composition cause this assumption to be
violated. Kuter et al. in [8] take a similar approach but their work focuses on
dealing with services that do not return a result (if any) immediately. They pro-
vide a Query Manager that allows the planner to continue search without waiting
for all of the information-gathering services to return data. They also assume
that the information-gathering services are executable (similar to condition 1 of
IRP) but they allow the planner itself to change the gathered information during
planning (a variant of condition 2 of IRP). More recently, Au et al [2] proposed
an approach to relaxing the IRP assumption, however their approach does not
seem amenable to generating optimized compositions.

Our translation builds on the work by Sirin et al. [17]. We encode each OWL-S
atomic process as an HTN operator and each OWL-S composite process as an
HTN method. Similarly, we assume that all atomic processes are either infor-
mation gathering or world altering and distinguish our set of planning operators
accordingly. The fidelity of our translation relies on the IRP assumption, i.e.,
none of the actions in the HTN or any exogenous action can violate the assump-
tion. To improve the efficiency of the system by avoiding multiple calls to the

722 S. Sohrabi and S.A. McIlraith

same source with the same parameters, we implement a caching system similar
to [17]. However instead of using a monitoring system we modify the translation
of information-gathering atomic processes into HTN operators (this operator has
preconditions that externally call information-gathering sources and add the re-
turn response) to explicitly encode the caching for the gathered information, and
to reflect the different courses of action that must be followed. We consider the
following 3 cases in our translation:

1. cannot delay the call and are calling the information source for the first time,
so call the information source and cache the gathered information.

2. cannot delay the call and have already called the information source once,
so use the cached information.

3. can delay the call to the information source, so use a placeholder data value.

Our translation relies on the use of a SHOP2-based HTN planner; it exploits
SHOP2’s features to perform runtime binding of variables and to make external
procedure calls to invoke services. The full translation is excluded for space.

In Section 3, we discussed circumstances where data optimization can be
performed in isolation of the generation of the composition. This can occur
when the data is irrelevant to the optimization of the composition. i.e., it is not
mentioned in any preferences, or when the data choice does not does not interact
with the dynamics of the composition. For example, consider the book-hotel
service and the information-gathering service that gathers information regarding
available hotels. If the user has no preference regarding the choice of hotel, then
it is efficient to delay the execution of this information-gathering service and
the arbitrary selection of a hotel until after the composition is generated. To
implement this, we identify these data and associated services a prior and modify
the translation to remove the execution of the information-gathering service and
to replace occurrences of the data with placeholders. The information-gathering
service is then executed following composition generation and the placeholder
replaced with an appropriate choice.

Similar to [8], let X be a set of information-gathering services available dur-
ing planning. Then we represent the body of information that can be obtained
from services in X as δ(X). More specifically, δ(X) represents all possible bind-
ings of the predicates that appear in the output or the postcondition of the
OWL-S descriptions of the services in X . Note that we operate under the IRP
assumption, and more specifically, we assume that the results returned from
these sources will not change during the planning step.

Definition 8 (Information-Gathering HTN Planning Problem). An
information-gathering HTN planning problem P ′ is a 3-tuple (s′0, w

′
0, D

′) where
s′0 is what is known of the initial state, and w′

0 and D′ are generated following our
modified OWL-S to HTN translator, described above. Assuming the IRP assump-
tion holds for our planning problem, we define a corresponding HTN planning
problem P = (s0, w0, D) where s0 is a consistent complete initial state such that
s′0 ∪ δ(X) ⊆ s0, w0 is the initial task network, D is an HTN planning domain,
and where w0 and D are generated using the original OWL-S to HTN translator
described in [17].

Preference-Based WSC: A Middle Ground between Execution and Search 723

From Definitions 3 and 8, a plan for the information-gathering HTN planning
problem is a primitive decomposition of the task network w′

0. To find such a
decomposition, some information-gathering operators, as dictated by the meth-
ods and operators of the domain, have to be applied to collect the relevant
information needed to successfully decompose w′

0. These operators interact with
the information sources and add new information to the state of the planning
problem. The following theorem establishes soundness of our approach.

Theorem 2. Let P and P ′ be corresponding planning problems as defined above.
π is a plan for P ′ if and only if π is a plan for P.

The above theorem states that if a plan can be found in the information-
gathering problem P ′ the same plan can be found from the corresponding com-
plete problem P , and vice versa. This holds by looking at the relevant search
space. The following corollary immediately follows. Recall π is an optimal plan
for P if there is no other plan of superior quality.

Corollary 1. Let P and P ′ be corresponding planning problems as described in
Theorem 1. π is an optimal plan for P ′ if and only if π is an optimal plan for P.

5 Computing a Preferred Composition

In this section, we address the problem of computing a most preferred compo-
sition by using AI planning techniques to help guide the construction of the
composition. Our algorithm performs best-first, incremental search and uses
state-of-the-art heuristics developed in [18]. The search is performed in a series
of episodes, each of which returns a plan with better quality than the previous
plan. The search in each episode performs branch-and-bound pruning, that is
we prune nodes from the search space if provably there does not exist a plan ex-
tending this node with a better metric value than the one found in the previous
episode. In addition, we perform sound localized data optimization on some al-
ready identified non-interacting operators. The two important heuristics we use
are the Optimistic Metric Function (OM) and the Lookahead Metric Function
(LA). The OM function estimates optimistically the metric value resulting from
the current node. LA function estimate the metric of the best successor to the
current node. In short, it first solves the current node up to a certain depth,
and then it computes a single decomposition for each of the resulting nodes and
returns the best metric value among all the fully decomposed nodes.

Our algorithm is outlined in Figure 1. The algorithm takes as input an
information-gathering HTN planning problem (s′0, w

′
0, D

′), a metric function
MetricFn, and a heuristic function HeuristicFn. The nodes are of the form
〈s, w, partialP 〉, where s is a plan state, w is a task network, and partialP is a
partial plan. This means w remains to be decomposed in state s and state s is
reached from s′0 by performing the sequence of actions partialP . The algorithm
keeps the elements of frontier sorted according to the function HeuristicFn.

724 S. Sohrabi and S.A. McIlraith

function HTNWSC(s′0, w′
0, D′, MetricFn,HeuristicFn)

frontier ← 〈s′0, w′
0, ∅〉, bestMetric ← worst case upper bound � initialization

while frontier is not empty do
current ← frontier ’s first element � best element since frontier is always sorted

〈s, w, partialP 〉 ← current � establish the current values for s, w, and partialP

lbound ← MetricBoundFn(s) � estimating the lower bound for s

if lbound < bestMetric then � pruning suboptimal partial plans

if w = ∅ and current ’s metric < bestMetric then
Output plan partialP , bestMetric ← MetricFn(s)

succ ← successors of current
if possible to perform sound localized data optimization then

succ ← the best node among successors of current � pruning other nodes

frontier ← merge succ into frontier

Fig. 1. A sketch of our HTN WSC algorithm

The HeuristicFn function we use is a prioritized sequence of our heuristics (i.e.,
when comparing two nodes we look at the value of their heuristics in sequence
to break ties when needed). We use a variable bestMetric that stores the metric
value of the best plan found so far. This variable is initialized to a worst case
upper bound. In each iteration of the while loop, the algorithm extracts the
first element from the frontier and initializes the current . Then, it estimates
a lowerbound, lbound , using the function MetricBoundFn and prunes nodes
with a lbound greater than or equal to bestMetric. If current corresponds to a
plan (i.e., w is empty), bestMetric is updated, and the plan is returned.

All successors to current are computed using the Partial-order Forward De-
composition procedure (PFD) [7]. If computing a successor to current implies
picking a primitive task to decompose next and it is possible to perform sound lo-
calized data optimization for the operator that accomplishes this task, then data
optimization on this node will select the best successor according to MetricFn

and replace succ with the selected node2. The resulting succ is then merged into
the frontier . Note that succ will have only one element if the algorithm chose
to perform localized data optimization, that is all other nodes will get pruned
from the search space. The search terminates when frontier is empty.

Optimality and Pruning. The search space for computing the preferred com-
position is significantly reduced by the flexible workflow captured in the structure
of the HTN, by pruning performed from incremental search, and by the localized
data optimization. So, under sound pruning we can guarantee that by exhaust-
ing the search space, an optimal plan can be found. We use the OM function to
estimate the lower bound. Baier et al. [3] show that the OM function provides
sound pruning under certain conditions.

2 There are some subtleties, not discussed here, that ensure all appropriate grounding

choices are considered and evaluated.

Preference-Based WSC: A Middle Ground between Execution and Search 725

% of Identified Case 1 Case 2 Case 3 Case 4 Average Average
Non-Inteferences Time(sec) Time(sec) Time(sec) Time(sec) STI PMI

0% 128 131 136 277 1.00 50.89%
20% 80 80 88 221 1.51 50.89%
40% 41 39 50 178 2.69 50.89%
60% 29 29 40 119 3.66 50.89%
80% 23 23 33 89 4.62 50.89%
100% 17 18 30 30 7.14 44.91%

Fig. 2. Time comparison between the four cases that found the optimal plan even

without localized data optimization. STI is the search time improvement between each

case and the no data optimization case (i.e., 0% case). PMI is the percent metric

improvement. i.e., the percent difference between the metric of the first and the last

plan returned relative to the first plan.

Proposition 1. The OM function provides sound pruning if the metric func-
tion is non-decreasing in the number of satisfied preferences, non-decreasing in
plan length, and independent of other state properties. A metric is non-decreasing
in plan length if one cannot make a plan better by increasing its length only.

Theorem 3. If the OM function used to calculate the lower bound provides
sound pruning, and any localized data optimization performed is sound, then the
last plan returned, if any from the algorithm, is optimal.

The proof follows from the proof of optimality for the HPlan-P planner [3]
using Definition 7 and Theorem 1.

6 Implementation and Evaluation

We implemented our proof-of-concept WSC engine with two modules: a pre-
processor and a preference-based HTN planner. The preprocessor reads PDDL3
problems and generates an HTN planning problem. Additionally, it finds non-
interacting operators, making it possible to perform sound localized data op-
timization on this selection. Our implementation builds on HTNPlan-P [18],
itself a modification of the LISP version of SHOP2 [16], that implements the
algorithm and heuristics described above. We have three main objectives in our
experimental evaluation: (1) to measure the search time gain as well as the
quality improvement by performing localized data optimization, (2) to see if
performing localized data optimization helps in finding the optimal plan, (3) to
investigate if the improvement (both time and quality) depends on other dimen-
sions of search such as the heuristics used or the difficulty of the domain.

We use the travel domain described in this paper as our benchmark. We
created 8 problem sets each with 6 different instances (we have 48 instances in
total). In half of the problem sets we allowed interleaving of tasks and in the
other half we did not. An example of interleaving is one that allows booking
an accommodation when a transportation is booked, but not paid for (i.e., the
transportation task is not done yet). Furthermore, the problem sets within the

726 S. Sohrabi and S.A. McIlraith

allowed (or not allowed) interleaving group differ in the difficulty of their top-
level task. In the easiest case, the order of the execution of all tasks in arrange-
travel (e.g., arrange-trans, arrange-acc, and arrange-activity) was known, and
in the hardest case, these tasks could be carried out in any order. As explained
earlier, if there are n tasks and they can be carried out in any order, then
in the worst case there are n! different combinations to evaluate in order to
find the optimal composition. Finally in each problem set we know the number
of non-interacting operators, but intentionally select the percentage of the one
identified from this range [0, 20, 40, 60, 80, 100]. So in the 0% case none of the
non-interacting operators are identified, hence, no localized data optimization
can be performed, on the other hand in the 100% case all of the non-interacting
operators are known, and localized data optimization is performed whenever
possible. We used a 60 minute time out and a limit of 1 GB per process.

We ran all of the instances in two modes, one that makes use of the LA heuris-
tic and one that does not. To compare the relative performance between the two
modes, we averaged the percent metric difference of the final plan (relative to
the worst plan) for all our 48 instances. This difference is 43% indicating that
not surprisingly, using the LA heuristic greatly improves the quality of search. In
particular, without the use of the LA heuristic, an optimal plan was not found in
any of the instances. However, when the LA heuristic was used, many instances
found an optimal plan. In particular, in four of the problem sets (we named them
cases 1-4 in Figure 2), an optimal plan was found even without any localized
data optimization The result shows (see Figure 2) that as the percentage of iden-
tified non-interacting operators increases (i.e., more localized data optimization
is done), the time it took to find the optimal plan decreases. We averaged this
improvement and show it in the STI column (search time improvement with
respect to the 0% case). This column shows that optimal plans are found for
example, 2.69 times faster than the 0% case in the 40% case, and 7.14 times
faster in the 100% case. Also recall that our algorithm is incremental, perform-
ing search in a series, each one returning a better-quality plan than the last. To
see how effective this approach is, we calculated the percent metric improvement
(PMI), i.e., the percent difference between the metric of the first and the last
plan returned relative to the first plan. The result shows that the incremental
approach improves the quality of the plan almost by 50%.

Finally, we looked at the other four cases where without localized data opti-
mization an optimal plan was not found. Out of these, in two, an optimal plan
was found in the 100% case and this was found 3.5 times faster than the time it
took to find a non-optimal plan in the 0% case. This suggests that doing local-
ized data optimization for these harder problem sets is helpful. In the remaining
two cases, an optimal plan was not found even with optimization. This is not
surprising, since the search space in these sets is very large, and pruning even
though helpful, is not able to exhaust the search space; in these cases interleav-
ing was allowed and the top level tasks were unordered. However, we observed
that with optimization, the quality of the final plan was improved by 10%, and
the time spend on finding this better quality plan was 5 times faster.

Preference-Based WSC: A Middle Ground between Execution and Search 727

7 Summary and Related Work

A significant number of WSC problems involve both optimization of the com-
position and the collection of information. Work on preference-based WSC has
begun to address this problem but much of the work has ignored the critical
information-gathering component, assuming that all information is given a pri-
ori. In this paper, we are motivated by the observation that even though some
classes of WSC problems can be addressed without the need for any execu-
tion during the composition phase, without explicit consideration of the data,
and without consideration of preferences that distinguish high-quality solutions,
many interesting and useful compositions must be done hand in hand with the
data collection and optimization. Specifically this is done following execution of
some information-gathering services. The main contributions of this paper in-
clude: identification of a way to exploit structure in the preference specification
and domain in order to generate compositions more efficiently by performing
what we call localized data optimization, identification of a condition where per-
forming localized data optimization is sound, development of an execution engine
for preference-based WSC that interleaves online information gathering with of-
fline search as deemed necessary, and identification of a case where we could
prove the optimality of resulting compositions. To assess the effectiveness of our
approach to WSC, we performed experiments to evaluate the performance of our
system. We showed that our approach to data optimization has the potential to
greatly improve the quality of compositions and the speed with which they are
generated. While the focus of this paper was reasonably narrow, the problem
it presents and the advances it makes are important first steps in addressing a
broad and important problem.

While no other WSC planners can perform true preference-based planning,
SHOP2 [16] and enquirer [8] handle some simple user constraints. The scup
prototype PBP planner in [11] is related but there are several differences to our
work. In particular, their preferences are pre-processed into task networks and
conflicting user preferences are detected and removed prior to invocation of their
planner. Further, they do not consider handling regulations and are not able to
specify preferences over the quality of services.

Another body of related work is the research on quality-driven WSC (e.g.,
[10,21,1]). This research addresses the problem of run-time service selection based
on the functional (e.g., input and output matching) and non-functional (e.g..,
reliability, availability, and reputation) properties of a service. This is addressed
by encoding the problem as an optimization problem that can be solved using for
example: Integer Programming (e.g., [21]), Mixed Integer Programming (e.g., [1])
or Genetic Algorithms (e.g., [10]). Our work differs in many ways. In particular,
in our framework we are able to find a composition that is optimal with respect
to the user’s preferences some of which are over the entire composition, and we
can do so while interleaving execution and search. Further, we are concerned with
optimizing the selection of data within the services in addition to the selection
of services themselves based on their quality.

728 S. Sohrabi and S.A. McIlraith

Acknowledgements. We gratefully acknowledge funding from the Natural Sci-
ences and Engineering Research Council of Canada (NSERC) and the Ontario
Ministry of Innovations Early Researcher Award (ERA).

References

1. Alrifai, M., Risse, T.: Combining global optimization with local selection for effi-

cient QoS-aware service composition. In: Proc. of the 18th Int’l World Wide Web

Conference (WWW 2009), pp. 881–890 (2009)

2. Au, T.C., Nau, D.S.: Reactive query policies: A formalism for planning with volatile

external information. In: Proc. of the IEEE Symposium on Computational Intelli-

gence and Data Mining (CIDM), pp. 243–250 (2007)

3. Baier, J.A., Bacchus, F., McIlraith, S.A.: A heuristic search approach to plan-

ning with temporally extended preferences. Artificial Intelligence 173(5-6), 593–618

(2009)

4. Bertoli, P., Kazhamiakin, R., Paolucci, M., Pistore, M., Raik, H., Wagner, M.:

Continuous orchestration of Web services via planning. In: Proc. of the 19th Int’l

Conference on Automated Planning and Scheduling (ICAPS), pp. 18–25 (2009)

5. Calvanese, D., Giacomo, G.D., Lenzerini, M., Mecella, M., Patrizi, F.: Automatic

service composition and synthesis: the Roman Model. IEEE Data Eng. Bull. 31(3),

18–22 (2008)

6. Gerevini, A., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y.: Deterministic plan-

ning in the fifth international planning competition: PDDL3 and experimental

evaluation of the planners. Artificial Intelligence 173(5-6), 619–668 (2009)

7. Ghallab, M., Nau, D., Traverso, P.: Hierarchical Task Network Planning. In: Au-

tomated Planning: Theory and Practice. Morgan Kaufmann, San Francisco (2004)

8. Kuter, U., Sirin, E., Nau, D.S., Parsia, B., Hendler, J.A.: Information gathering

during planning for Web service composition. In: McIlraith, S.A., Plexousakis,

D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 335–349. Springer,

Heidelberg (2004)

9. Kuter, U., Sirin, E., Parsia, B., Nau, D.S., Hendler, J.A.: Information gathering

during planning for Web service composition. J. Web Sem. 3(2-3), 183–205 (2005)

10. Lécué, F.: Optimizing QoS-aware semantic Web service composition. In: Bern-

stein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E.,

Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 375–391. Springer,

Heidelberg (2009)

11. Lin, N., Kuter, U., Sirin, E.: Web service composition with user preferences. In:

Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.

LNCS, vol. 5021, pp. 629–643. Springer, Heidelberg (2008)

12. Martin, D., Burstein, M., McDermott, D., McIlraith, S., Paolucci, M., Sycara, K.,

McGuinness, D., Sirin, E., Srinivasan, N.: Bringing semantics to Web services with

OWL-S. World Wide Web Journal 10(3), 243–277 (2007)

13. McDermott, D.V.: Estimated-regression planning for interactions with Web ser-

vices. In: Proc. of the 6th Int’l Conference on Artificial Intelligence Planning and

Scheduling (AIPS), pp. 204–211 (2002)

14. McDougall, P.: IBM eyes plug-and-play cloud framework, informationWeek (July

8, 2010)

15. McIlraith, S., Son, T.: Adapting Golog for composition of semantic Web services.

In: Proc. of the 8th Int’l Conference on Knowledge Representation and Reasoning

(KR), pp. 482–493 (2002)

Preference-Based WSC: A Middle Ground between Execution and Search 729

16. Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.:

SHOP2: An HTN planning system. Journal of Artificial Intelligence Research 20,

379–404 (2003)

17. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for Web service

composition using SHOP2. J. Web Sem. 1(4), 377–396 (2005)

18. Sohrabi, S., Baier, J.A., McIlraith, S.A.: HTN planning with preferences. In: Proc.

of the 21st Int’l Joint Conference on Artificial Intelligence (IJCAI), pp. 1790–1797

(2009)

19. Sohrabi, S., McIlraith, S.A.: Optimizing Web service composition while enforcing

regulations. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,

D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 601–617.

Springer, Heidelberg (2009)

20. Sohrabi, S., Prokoshyna, N., McIlraith, S.A.: Web service composition via generic

procedures and customizing user preferences. In: Cruz, I., Decker, S., Allemang,

D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006.

LNCS, vol. 4273, pp. 597–611. Springer, Heidelberg (2006)

21. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang,

H.: QoS-aware middleware for web services composition. IEEE Trans. Software

Eng. 30(5), 311–327 (2004)

A Self-Policing Policy Language

Sebastian Speiser and Rudi Studer

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Institute of Applied Informatics and Formal Description Methods (AIFB)

firstname.lastname@kit.edu

Abstract. Formal policies allow the non-ambiguous definition of sit-

uations in which usage of certain entities are allowed, and enable the

automatic evaluation whether a situation is compliant. This is useful for

example in applications using data provided via standardized interfaces.

The low technical barriers of integrating such data sources is in contrast

to the manual evaluation of natural language policies as they currently

exist. Usage situations can themselves be regulated by policies, which

can be restricted by the policy of a used entity. Consider for example the

Google Maps API, which requires that applications using the API must

be available without a fee, i.e. the application’s policy must not require

a payment. In this paper we present a policy language that can express

such constraints on other policies, i.e. a self-policing policy language. We

validate our approach by realizing a use case scenario, using a policy

engine developed for our language.

1 Introduction

Policies are declarative descriptions of constraints and conditions that apply to
some entity (the policy subject). Formal languages allow non-ambiguous poli-
cies, that can be automatically evaluated by computers. Many existing policy
languages represent essentially an implicit access control matrix [1]. While this
is sufficient for applications such as rights management for local file systems,
there are entities that still impose constraints on their use after initial access
was granted. This often applies to data representing factual information or cre-
ative works. Examples include images that require attribution of their creator,
or real-time stock quotes that can only be published for a fee. Generally such
policies classify usage situations into compliant or non-compliant. Conditions,
required to be fulfilled by compliant situations, may restrict the policy of the
situation. Consider for example the Google Maps API, which requires that appli-
cations using the API must be made available to the public without a fee. This is
basically a constraint in the API’s policy, which restricts the application’s policy
to not grant exclusive access to paying users. There exist approaches to usage
restrictions, but our work is to the best of our knowledge the first self-policing
policy language, in the sense that it can express restrictions on other policies.

Today, vast amounts of data are published on the Internet with standardized
interfaces, e.g. as Web services or as Linked Data1. This imposes only low technical
1 http://linkeddata.org

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 730–746, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://linkeddata.org

A Self-Policing Policy Language 731

barriers to the use and reuse of data in new ways and their composition into new
applications or data sources. In contrast the policies regulating their allowed uses
are either not made explicit at all [2], or published in natural language, in form
of terms and conditions. The former case makes it impossible, the latter case a
manual and very tedious task to evaluate if a given usage situation is compliant
or not. This may lead to frequent violations of usage restrictions, not because of ill
will, but convenience. Evidence for this assumption is delivered e.g. by Seneviratne
et al. who discovered that around 70%-90% of the reuses of Flickr images with
a Creative Commons attribution license actually violate the license [3]. Formal
policies are required to build tools that help users to check compliance of their
data usages with the same ease as just using the data.

Restrictions on other policies include testing if one policy is contained in
another. The resulting query containment problem is undecidable for many pol-
icy languages (e.g. in the presence of general negations and disjunctions). This
means that these languages cannot simply be extended with self-policing con-
ditions. Another difficulty is that simple query containment may not work, as
restrictions have to apply to policies with subjects that are unknown at specifi-
cation time. Therefore a policy structure is required that separates identifying
applicable policy subjects and required compliance conditions. Other restrictions
include checking if a partial situation description is sufficient for fulfilling a pol-
icy, possibly under further restrictions on aspects not specified in the partial
description. Such restrictions need novel algorithms. Another requirement for
the policy language is usability for the policy specifiers. Two enabling properties
for usability are an intuitive policy structure and the reuse of policy conditions.

The rest of the paper is structured as follows. After introducing a use case in
Section 2 for further motivation and evaluation of the approach, and presenting
preliminaries in Section 3, the following contributions are presented:

– A policy model with formal semantics based on unions of conjunctive queries
and RDFS (see Section 4.1).

– A model for structuring policies to improve usability and enable the reuse
of policy parts (comparable to the Creative Commons building blocks, such
as (non-)commercial use). The structure is based on RDF and RIF and is
provided with rules that map it to our policy model (see Sections 4.2 and
4.3).

– Formal definitions of useful types of policy restrictions and their integration
into policy conditions (see Section 5).

We evaluate the approach by implementing a policy engine and applying it to
policies realizing the use cases. This is described in Section 6 together with
some performance experiments. In Section 7 the policy language is compared to
existing work. In Section 8 we conclude and give an outlook to future work.

2 Use Case and Requirements
The policy language presented in this paper is thought to be applicable to dif-
ferent application scenarios. However for further motivating the features of the

732 S. Speiser and R. Studer

language and validating how they fulfill concrete requirements, we describe a
specific application and a concrete use case in this section. The application area
we deal with is the use of services and data in dynamic and composed docu-
ments. Another thinkable application would be expressing right restrictions of
music pieces that also affect the right restrictions of a musical work that samples
the original piece.

Dynamic and composed documents are an approach for integrating data and
functionalities that are provided over standardized interfaces, e.g. as Web ser-
vices or as Linked Data. Dynamic document compositions specify links to re-
sources and how the obtained data is combined to form a final document. An
example for such a composition is a dynamic PHP page, that reads stock quotes
from a Web service and displays them in a human-friendly way. Both the Web
service and the PHP page can be equipped with a policy restricting who can ac-
cess them. The Web service could also have a clause that requires that Web pages
displaying its result, have to have the same access restrictions as the service.

Policy-aware
Composition Tool

Description of
Service Usages

Policy
Engine

PoliciesPoliciesPoliciesPolicies
Classification

and Justification

Document
Composition

Fig. 1. Use case scenario

For realizing the policies we use an abstract model of service and data usages
that is the base for policy conditions. The policy-aware composition tool, as
visualized in Figure 1, mediates between the concrete document composition
(e.g. the PHP page) and its abstract description in terms of the usage model.
The policy engine classifies the composition according to the policies of the
used services and returns the result to the composition tool. In future work the

subclass of

property

Action

Agent

...

DirectUsage Public

SituationService

Composition

PaymentUse Attribution ...

actor

Policy

policy

service

co
nt
ai
ns

Fig. 2. Conceptual Model of Use Case for Policy Conditions

A Self-Policing Policy Language 733

classification will be accompanied with a justification that helps to fix problems,
if a situation is non-compliant.

The abstract conceptual model for compositions and service usages is visu-
alized in Figure 2. Situations contain actions, that can be for example uses of
services, payments or attributions. A situation can either be a direct usage,
meaning that the actions are executed and the result directly used, or a com-
position, meaning that the result of the situation is again provided as a service.
Situations are conducted by an agent, which can be optionally classified in sub-
classes. Services (including compositions) have a policy regulating their allowed
uses.

In Section 6 we will show how our policy language can be used to model the
following representative examples:

– The terms and conditions of the Google Maps API2, which require (besides
other clauses) that “Your Maps API Implementation must be generally ac-
cessible to users without charge.“

– A service in a company internal scenario delivers confidential information,
thus it can only be accessed by managers; the same must hold for composi-
tions using the service.

– A service provider offers two stock quote services: one with real-time quotes
that requires a payment, and one with delayed quotes that only requires an
attribution. A service user is searching for stock quote services that can be
used without payments.

3 Preliminaries

We choose RDF Schema (RDFS [4]) as data model for situation descriptions,
as it provides desirable modeling features, but still has decidable algorithms
for conjunctive query answering and containment. Modeling features of RDFS
that are useful for describing usage situations include: (i) the use of URIs for
individuals and classes, allowing heterogeneous actors and extensibility of situa-
tion models, (ii) class memberships and subclasses, e.g. an action belonging to a
credit card payment class, fulfills the requirement of a general payment action,
and (iii) subproperties, e.g. two actions in an application that always occur to-
gether (subproperty) are also related by a property describing actions that can
possibly occur together (superproperty).

Let I, B, L, and V be disjoint infinite sets of IRIs, blank nodes, literals and
variables. In the following P (S) denotes the powerset of S.

Definition 1. An RDF graph is a finite set of triples, defined as r ∈ P ((I ∪
B)× I × (I ∪B ∪ L)).

In Section 4, we introduce our policy model, which is based on conjunctive
queries (CQs), as defined in the following.

2 http://code.google.com/apis/maps/terms.html

http://code.google.com/apis/maps/terms.html

734 S. Speiser and R. Studer

Definition 2. A conjunctive query cq = (x, t) is a pair of head variables x ⊂ V
and a finite set of triple patterns t ∈ P ((I ∪ V) × I × (I ∪ V ∪ L)). We denote
as Vt = {v ∈ V | ∃p, o (v, p, o) ∈ t ∨ ∃s, p (s, p, v) ∈ t} the set of all variables in
a set of triple patterns t.

Let M be the set of all function μ : I ∪ L ∪ V → I ∪ L, s.t. ∀a : (a ∈ I ∪ L →
μ(a) = a). As an abbreviation we also apply a function μ ∈M to a set S (μ(S) =
{μ(s) | s ∈ S}), to a triple or triple pattern t = (s, p, o) (μ(t) = (μ(s), μ(p), μ(o)))
or to sets of triples or triple patterns.

Definition 3. The result set for a conjunctive query cq = (x, t) applied to a
RDF graph r is defined as Qcq(r) = {x′ ∈ (I∪L)|x||∃μ ∈M μ(x) = x′∧μ(t) ⊆ r}.

Definition 4. A union of conjunctive queries (UCQ) is a set CQ of conjunctive
queries with the same head predicate. We define QCQ(r) =

⋃
cq∈CQ Qcq(r).

We assume that the we can evaluate queries on a RDF graph that is the fixpoint
according to RDFS semantics for the properties and classes used in the queries,
i.e. all implicit properties and class memberships are materialized.

In Section 5, we discuss restrictions on policies, which are partially defined
using query containment. Query containment of a query CQ1 in a query CQ2,
denoted as CQ1 � CQ2, means that for every possible RDF graph r, every result
of CQ1 is also a result of CQ2, i.e. CQ1(r) ⊆ CQ2(r).

Definition 5. A function h : (I∪L∪B∪V) → (I∪L∪B∪V) is a containment
mapping from cq2 = (x2, t2) to cq1 = (x1, t1), if the following conditions hold:
– ∀x ∈ (I ∪ L) : h(x) = x
– ∀x ∈ x2 : h(x) ∈ x1
– ∀(s, p, o) ∈ t2 : (p = rdf:type→
∃(s′, p′, o′) ∈ t1 : h(s) = s′ ∧ p′ = rdf:type∧ o′ rdfs:subClassOf o)

– ∀(s, p, o) ∈ t2 : (p = rdf:type→
∃(s′, p′, o′) ∈ t1 : h(s) = s′ ∧ h(o) = o′ ∧ p′ rdf:subPropertyOf p)

Note that rdfs:subClassOf and rdfs:subPropertyOf are both reflexive.

Definition 6. A CQ cq1 is contained in a CQ cq2, if and only if there exists a
containment mapping h from cq2 to cq1 (see[5, p. 882]).

For showing query containment of a UCQ CQ1 in another UCQ CQ2, it is
sufficient to show containment on the component CQs, i.e. CQ1 � CQ2 ←
∀cq1 ∈ CQ1 ∃cq2 ∈ CQ2 : cq1 � cq2 (see [5, p. 904]).

4 Policy Model

As mentioned in the introduction, we want a policy to describe the circumstances
in which it is allowed to use the entity that is the subject of the policy. We
distinguish between policy applicability and compliance. Applicability describes
the situations, which are regulated by a policy, i.e. considered a use of the policy

A Self-Policing Policy Language 735

subject. If a situation is not applicable it is trivially compliant, otherwise only
if the situation fulfills the corresponding conditions.

This corresponds to a goal-based policy as defined by Kephart and Walsh in
[6], as only the desired states are specified. Such policies are on a higher concep-
tual level than action-based policies, which specify for every situation what has
to be done next. The notions are based on the classification of agents according
to Russel and Norvig [7]. To arrive at a compliant state based on a goal policy,
algorithms are needed that help to determine the needed actions, respectively
situation modifications. In Section 4.2 we further elaborate on this aspect, after
we describe in Section 4.1 the used formalisms for modeling descriptions and
policy conditions.

4.1 Formal Policy Model

The sets of situations that are applicable, respectively compliant for a given pol-
icy, are described by conjunctive queries. CQs allow the declarative specification
of properties that a situation must fulfill, using predicates (i.e. RDF properties
and classes) on variables and constants which are connected by conjunctions.

Consider for example a policy that requires either a payment by credit card or
if the usage is for scientific purposes, then an attribution of the service provider
is sufficient. In order to avoid having two different policies, we define policy com-
pliance conditions to be UCQs. Formally we define: a policy P = (id, cqa, CQc),
where id ∈ I is the IRI representing the policy entity, cqa is a CQ defining the
applicable policy subjects, and CQc is a UCQ defining the compliant policy
subjects.

We define the two properties applicable and compliant with domain of
policy subjects and range of policies. The extensions of these properties are
defined in the following way for all policies P = (id, cqa, CQc) and all potential
policy subjects s in an RDF graph r:

s applicable id ↔ (s) ∈ Qcqa(r), and

s compliant id ↔ (s) ∈ Qcqa(r) ∧ ∃cq ∈ CQc : (s) ∈ Qcq(r).

For the representation of such policies we employ the RIF-Core Dialect [8], to
define a policy as a group of conjunctive rules, using RIF’s annotation to link it
to the policy entity. The RIF documents specify in [9] how RIF frame formulas
of the form s[p->o] correspond to RDF triple (patterns) of the form s’ p’ o’.

Note that the policies do not support negation. This means that for example
it is not possible to check that there is no activity with commercial purpose,
instead such an absence has to be stated and required explicitly. Approaches like
scoped negation (cf. [10]) make it possible to combine negation as failure with
RDF’s open world assumption. However, negation together with hierarchical
predicates as introduced in Section 4.2 generally leads to undecidability of query
containment.

736 S. Speiser and R. Studer

4.2 Policy Structure

Unions of conjunctive queries (UCQs) provide a nice formal model of policies that
is suitable for evaluation. However specifying them can introduce redundancy in
the likely case that several alternatives of a union share common conditions.
Furthermore UCQs lack an hierarchical structure which eases the specification
and maintainability of policies. Therefore we allow not only the use of frame
formulas in conditions that can be directly mapped to triple patterns but also the
use of predicates with arbitrary arity that are themselves again defined as UCQs.
This essentially means that policies can be specified as non-recursive datalog
programs, which can always be expanded to UCQs using only base predicates
(i.e. RDF class memberships and properties).

Note that such predicates can also be defined externally, which enables reuse
of conditions across policies from different specifiers. This is comparable to the
Creative Commons approach, where certain standard terms are defined that
can be used to define custom policies (cf. [11]). As rules are identified by IRIs,
they can be described not only by their formal definition as RIF documents but
also by a legal or layman description, if the IRI is resolved by a Web browser
(recognized by the Accept header of the HTTP request).

ConditionPolicy
requires

ContainerRuleBinding

PolicyANDPolicyORxsd:string

contains

head_variable

VariableMapping

source

destination

maps

Rule

rule

applies_to
subclass of

property

Fig. 3. Visualization of Policy Structures

In the following we define a conceptual model of combining policies from predi-
cates defined by UCQs. It is based on an RDF model that refers by IRIs to rules
defined in RIF. The model is visualized in Figure 3. A Policy applies_to
subjects that are answers to the applicability query, which is defined by a
Condition, which is either a RuleBinding, a conjunction of other Conditions
(i.e. a PolicyAND container), or a disjunction of Conditions (i.e. a PolicyOR con-
tainer). Furthermore a policy requires a condition, which represents the validity
test, and has a head_variablewhich defines the policy subject in the conditions.
Both PolicyAND and PolicyOR contain a number of conditions. RuleBindings
refer by the rule property to an IRI which is the id of a group in a RIF docu-
ment that defines the corresponding predicate. Note that by resolving the IRI we
expect a RIF representation containing this group. The metadata of the group
specifies via defines_predicate the head predicate of the rules. Furthermore

A Self-Policing Policy Language 737

a RuleBinding maps a number of VariableMappings each with a source vari-
able name of the defined predicate that is mapped to the destination, which
is either a variable in the policy condition or a string representation of an IRI.

Such an hierarchical policy definition with simple boolean operators to com-
bine basic conditions is a more user friendly way to specify policies, which is
already familiar from filter creation in many email programs. Furthermore the
structuring allows users to group conditions in sensible blocks, which can be ex-
ploited for giving justifications of (mainly negative) policy decisions. Due to the
use of IRIs and metadata, the rules and policy parts can be annotated with fur-
ther useful and human-readable information. See for example the work by Kagal
et al. [12] for a policy engine that exploits policy structures for human-friendly
justifications.

4.3 Mapping the Policy Structure to the Formal Model

The mapping from the proposed structural model to a policy’s normal form (i.e.
its UCQ as defined in Section 4) is defined in a bottom-up way. The most basic
part is a rule defining a predicate based only on RDF properties. Using RIF
presentation syntax (cf. [13]) it is expressed in the following way (p: is used in
the following for the namespace of the policy vocabulary):
(* "RULEID"^^rif:iri

"RULEID"^^rif:iri[p:defines_predicate->"PREDICATE"^^rif:iri] *)

Group (

Forall ?h1 ... ?hn (

"PREDICATE"^^rif:iri(?h1 ... ?hn) :-

Exists ?e1 ... ?em (

And(s1[p1->o1]

...

sk[pk->ok])))

Forall ?h1 ... ?hn (

"PREDICATE"^^rif:iri(?h1 ... ?hn) :-

Exists ?e1 ... ?em (

And(s’1[p’1->o’1]

...

s’l[p’l->o’l]))))

This maps to a union of conjunctions of the following form:

CQRULEID =

{ ((
h1, . . . , hn

)
,
{
(s1, p1, o1), . . . , (sk, pk, ok)

})
, . . . ,((

h1, . . . , hn

)
,
{
(s′1, p

′
1, o

′
1), . . . , (s

′
l, p

′
l, o

′
l)
})}

,

where (s1, p1, o1), . . . , (s′l, p
′
l, o

′
l) ∈ I∪V ×I×I∪V ∪L. Note that it is also possible

to use other (non-recursive) RIF predicates instead of only RDF properties.
In this case, we assume that the IRI of the used predicate resolves to a RIF
document that defines the corresponding UCQ. In this way a rule definition
can always be expanded to a union of conjunctions in terms of simple RDF
properties.

738 S. Speiser and R. Studer

The rules are used in our policy model by RuleBindings, which has the general
form:

RB a p:RuleBinding;
p:rule RULEID;
p:maps MAP1; p:maps ...; p:maps MAPN.

We define a function fMAP : V ∪ I ∪ L → V ∪ I ∪ L for each variable mapping
MAP = (source, destination) in the following way:

fMAP(x) =

{
destination, if x = source

x, otherwise.

We also use these functions when applied to UCQs with the meaning that it is
applied to all variables, IRIs and literals in the UCQ. Thus, we can define the
UCQ of the rule binding RB in the following way:

CQRB = fMAP1(f...(fMAPN(CQRULEID))).

The mapping for both AND and OR containers are defined by treating them
as binary operators. Due to the associativity of these operators, the mapping
naturally applies also to containers with more components.

Conditions (e.g. rule bindings) are used in PolicyAND containers of the fol-
lowing form:

AND a p:PolicyAND;

p:contains C1;

p:contains C2.

The corresponding UCQ is obtained by creating the union of the conjunctions
for each pair of alternatives of the two components. More formally:

CQAND =
⋃

(x1,t1)∈CQC1

⋃
(x2,t2)∈CQC2

{(x1 ∪ x2, t1 ∪ t2)}.

For a PolicyOR container of the following form

OR a p:PolicyOR;
p:contains C1;
p:contains C2.

we define the UCQ as the union of the two components: CQOR = CQC1 ∪ CQC2.

Finally we define the mapping for a Policy object to the formal model. Given
the following representation

POL a p:Policy;
p:head_variable HV;
p:applies_to CA;
p:requires CR. , we define a policy PPOL = (POL, CQCA, CQCR).

A Self-Policing Policy Language 739

5 Restrictions on Policies

Policies classify policy subjects into compliant, non-compliant, and inapplicable
categories. If we want to ensure that certain kinds of policy subjects are always,
respectively never, compliant with a policy, we have to restrict the policy with
regard to a specification of the policy subject. Specifying restrictions on policies
is useful for several tasks, as outlined in the following:

– Searching for an entity with a policy that allows certain situations, e.g.
searching for a service that can be used without a payment.

– Validation of a policy, i.e. ensuring that it fulfills test restrictions.
– Comparison to other policies, e.g. to a previous version, in order to see, if

the policy is stricter or more lax.
– Policing other policies, if the compliance of a policy subject depends on

restrictions of the subject’s policy.

Independent of their application, we found the three types of restrictions partic-
ularly useful, which are listed in the following, including examples of their use:

1. Required for compliance: is it necessary that a policy subject fulfills cer-
tain conditions in order to be compliant. If we specify the required conditions
themselves as a policy, this restriction is equivalent to asking if all compli-
ant subjects of the restricted policy are also compliant with the restricting
policy. This can be solved by checking query containment of the policies.

Examples for such restrictions are: (i) a policy must always require a
payment, or (ii) a policy must restrict data access to a certain class of users.

2. Not required for compliance: is it possible that a policy subject is com-
pliant without necessarily fulfilling certain conditions. This restriction is ba-
sically just the negation of the previous one, and thus can also be checked
by query containment.

Examples are: (i) can a subject be compliant without having a payment,
(ii) can a service be used without being a registered user?

3. Sufficient for compliance: can a partially described subject be compliant
by adding only further restrictions that do not affect the given description?

An example for this restriction is: can a situation, where data is provided
to the general public, be compliant? This is true if the policy does not further
restrict the data recipient, but it may for example require a payment.

The presented restrictions rely on query containment, i.e. comparison of policies.
As we want to compare policies that generally can apply to different subjects
(i.e. the subjects of the restricted and the restricting policy), we define the
comparisons in terms of the compliance conditions of policies, and dismiss the
applicability conditions. This is one of the reasons for separating applicability
and compliance, besides avoiding redundancy as applicability is part of every
policy alternative (i.e. conjunction in the policy’s UCQ).

In order to use the above defined restrictions in policy conditions, we introduce
three RDF properties and formally define their extensions:

740 S. Speiser and R. Studer

– req_for_comp (see 1. “required for compliance”),
– not_req_for_comp (see 2. “not required for compliance”, needed as we do

not support negation), and
– sufficient_for_comp (see 3., “sufficient for compliance”).

As discussed above we can reduce the first two restrictions to query containment
in the following way:

P2 req_for_comp P1 ↔ PP1 = (P1, cq1a, CQ1
c) ∧ PP2 = (P2, cq2a, CQ2

c) ∧ CQ1
c � CQ2

c

P2 not_req_for_comp P1 ↔ ¬(P2 req_for_comp P1)

The sufficient_for_comp property is defined between policies specifying the
sufficient condition and a target policy. The sufficient condition policy Ps =
(ids, cqs

a, CQs
c) should only consist of a single acyclic conjunctive query ([14],

also called tree queries [15]) CQs
c = {cqs(xs, ts)}, whereas the target policy

Pt = (idt, cqt
a, CQt

c) can be a union of CQs. Ps is sufficient for Pt if there exists
one policy alternative cqt ∈ CQt

c for which it is sufficient. Finding out, if cqs =
(xs = {hvs}, ts) is sufficient for cqt = (xt = {hvt}, tt) can be done by doing a
tree traversal of cqs according to the following recursive condition:
suff(cqs, cqt) ↔ is suff(hvs, cqs, cqt, {(hvs, hvt)}), where:

is suff(n, cqs, cqt, μ)
=
(
∀c ∈ {c | (n, rdf:type, c) ∈ ts} :

∀c′ ∈ {c′ | (μ(n), rdf:type, c′) ∈ tt} : c rdfs:subClassOf c′
)
∧(

∀p ∈ {p | ∃o : (n, p, o) ∈ ts} :
∀p′ ∈ {p′ | ∃o′ : (μ(n), p′, o′) ∈ tt} :(

(p′ rdfs:subPropertyOf p)→ (p rdfs:subPropertyOf p′)
))
∧(

∀(p, o) ∈ {(p, o) | (n, p, o) ∈ ts} :
∀(p′, o′) ∈ {(p′, o′) | (μ(n), p′, o′) ∈ tt} :(

(p rdfs:subPropertyOf p′) ∧ {(x, x′) ∈ μ | x = o} = ∅ →
is suff(o, cqs, cqt, μ ∪ {(o, o′)})

))
∧(

∀(s, p) ∈ {(s, p) | (s, p, n) ∈ ts} :
∀(s′, p′) ∈ {(s′, p′) | (s′, p′, μ(n)) ∈ tt} :(

(p rdfs:subPropertyOf p′) ∧ {(x, x′) ∈ μ | x = s} = ∅ →
is suff(s, cqs, cqt, μ ∪ {(s, s′)})

))
.

The definition of is suff is divided into four conditions. The first condition
checks for a node mapping, that there are no stricter class requirements in the
target policy than in the sufficiency condition. The second condition checks that
no stricter property requirements occur (i.e. every mapping to a subproperty
must be an equivalent property). The third and fourth conditions follow the
patterns connected to a node (depending on its position as a subject or object)
and recursively apply is suff to the newly mapped variables. As we required
the sufficiency condition to be an acyclic conjunctive query and only patterns

A Self-Policing Policy Language 741

are followed that map previously unmapped variables, the recursion will always
come to an end.

The proposed policy restriction properties are defined to have special interpre-
tations, as defined in this section. As the definitions for query containment and
sufficiency rely on normal RDFS interpretations of properties, the restriction
properties cannot be freely used in policies occuring in restriction conditions.
Specifically the current definitions do not support restriction properties in suffi-
ciency conditions (i.e. S in S sufficient_for_comp P) and containing policies
(i.e. P2 in P2 (not_)req_for_comp P1). Note that the properties can occur in
contained policies, as they just reduce the set of compliant subjects and thus
can be ignored.

6 Evaluation

In Section 2 we presented a use case and three concrete examples. We modeled
the use case using our policy language and tested it with a prototypical imple-
mentation of a policy engine, that we developed. In the following we present and
discuss interesting aspects of the example policies. The full examples in RDF
and RIF, as well as the policy engine and its source code are available online3.
At the end of the section, we elaborate on the performance of the policy engine.

Policy for Google Maps API. In subsequent descriptions we use N3-syntax for
RDF and the abstract syntax for RIF. The URI prefix p: stands for the policy vo-
cabulary, and m: points to the conceptual model for compositions and service us-
ages. In the followingwe show the description of themapspolicy, thepolicy:prefix
points to a RIF file containing maps policy rules, and generalrules: refers to a
RIF file describing general rules that can be reused by different policy specifiers.

@prefix gm: <http://example.org/googlemapsapi#> .

@prefix policy: <http://example.org/gmpolicy#> .

gm:policy a p:Policy;

p:head_variable "situation";

p:applies_to [a p:RuleBinding;

p:rule policy:apprule];

p:requires [a p:PolicyAND;

p:contains :RegisteredUser;

p:contains [a p:PolicyOR;

p:contains [a p:PolicyAND;

p:contains <http://example.org/nopaymentreq#NoPaymentReqCondition>;

p:contains :AvailForPublic];

p:contains [a p:RuleBinding; p:rule generalrules:DirectUse]]].

:RegisteredUser a p:RuleBinding;

p:rule policy:GMRegisteredUser.

:AvailForPublic a p:RuleBinding;

p:rule policy:AvailForPublicRule.

3 http://code.google.com/p/seppl/

http://code.google.com/p/seppl/

742 S. Speiser and R. Studer

The policy defines that applicability is determined by the apprule and requires
for compliance that (i) the actor of an applicable situation is a registered user
(rule GMRegisteredUser), and (ii) that the situation is either a direct use (rule
generalrules:DirectUse), or a composition that has a policy which makes
it available to the public (rule AvailForPublicRule) and does not require a
payment (link to external rule binding, reusing this common condition).

The apprule specifies that situations are applicable to this policy, if it uses
the Google Maps API (defined as gm:service a m:Service):

(* policy:apprule

policy:apprule[p:defines_predicate -> policy:apprulepred *)

Group (

Forall ?situation (

policy:apprulepred(?situation) :- Exists ?usage (

And (?situation[rdf:type -> m:Situation]

?situation[m:contains -> ?usage]

?usage[rdf:type -> m:Usage]

?usage[m:service -> gm:service]))))

The AvailForPublicRule has the following rule body:

And (?situation[rdf:type -> m:Composition]

?situation[m:policy -> ?policy]

gm:AvailableForPublicPolicy[p:sufficient_for_comp -> ?policy])

This means that another policy is described (gm:AvailableForPublicPolicy)
that defines a partial situation description which must be sufficient for fulfilling
the policy of a composition which is using the API. The partial situation is
defined by a binding of a rule with the following body:

And (?situation[m:actor -> ?actor]

?actor[rdf:type -> m:Public])

The partial situation is thus only sufficient if the composition’s policy allows
access by actors without requiring them to belong to any other class than
m:Public.

Confidential company internal service. The policy of the confidential ser-
vice requires two rules: (i) one checking if the actor of the using situation is a
manager, and (ii) one that checks if the policy of a using composition is con-
tained in a policy restricting access to managers. The second rule ensures that
if the service is used in a composition, then the composition inherits the access
restrictions. For the realization of this rule, the p:req_for_comp property was
used.

Stock quotes service. The policies of the stock quote services are rather
straightforward, one checking for a payment and the other one for an attri-
bution. The search process is realized in the following way: (i) the user creates a
policy that requires a situation that contains a payment, (ii) he asks the policy
engine to check for both stock quote services if their policy is not contained in
his policy. The engine answers the request by using the p:not_req_for_comp
property, which only holds for the delayed stock quote service.

A Self-Policing Policy Language 743

Performance. Compliance checking using our policy language corresponds to
answering unions of conjunctive queries. Conjunctive query answering is known
to be NP-complete [16] for relational databases. This result can be transferred
to RDFS knowledge bases with a materialized fixpoint, where the properties can
be treated as relations. However, in our approach special properties exist that
check restrictions on policies. The evaluation, if two instances are related by such
a property involves checking query containment, which for positive conjunctive
queries is equivalent to query answering and thus also NP-complete. Thus in
combination this means a complexity of up to Σ2P (i.e. NP with an NP oracle)
for policy evaluation. The theoretical complexity relates to the size of the queries
defining the policies.

For testing what the theoretical complexity means for practical purposes we
conducted some performance measurements using our (non-optimized) policy
engine. We created for both the maps API policy and the confidential service
policy each three situation descriptions: one that is compliant, one that is non-
compliant and one that is not applicable. We measured the classification time on
a laptop with an Intel Core2Duo 2.4GHz processor and 4 GB of main memory.
Furthermore we measured the search time for determining for the real-time and
the delayed stock quote services if they do not require payments. The results are
shown in Table 1.

Table 1. Results of the Performance Experiments

Task/Policy time non-compliant time compliant time not-applicable

Maps API 0.69 s 0.68 s 0.60 s

Confidential Service 0.53 s 0.54 s 0.38 s

Policy search 0.35 s 0.34 s n/a

Even with our prototypical policy engine the time required for performing
policy checks are all well below 1 second. With further optimizations (e.g. caching
formal representations of policies instead of parsing them again for every policy
action), it seems feasible to integrate real-time compliance checking in a policy-
aware composition tool.

7 Related Work

XACML is a widely-used industry standard for policies [17], but lacks a formal,
declaratively defined semantics for its very extensive condition model, which in-
cludes XPath queries, string and date comparisons, arithmetic functions, logical
negation and regular expressions besides others. Especially negation in combina-
tion with arbitrary XPath queries leads to undecidability of query containment.
Another difference to our work is that XACML focuses specifically on access
control policies, whereas our proposed policy language is suitable for usage con-
trol, which does not only check if initial access to data or services is allowed, but
also restricts the ongoing usage afterwards.

744 S. Speiser and R. Studer

WS-Policy provides a standard that can be used to specify policies that ex-
press requirements and capabilities in systems based on Web services [18]. The
policy language itself is not especially targeted at Web services and can be ex-
tended by custom policy assertions, which are basic conditions that can be com-
bined to form policies (similar to using our containers). The standard is based
on XML and syntactic matching and is thus, in contrast to our approach, not
suitable for heterogeneous environments where different vocabularies are mixed.
There exist however several extensions to WS-Policy, which link assertions to
OWL concepts (e.g. [19,20]). Such policies are thus based on description logics
and therefore restricted to conditions with tree structures. The same restriction
applies to KAoS, an early semantic policy framework [21]. Our approach uses
conjunctive queries and thus can express non-tree conditions.

Accountability in RDF (AIR) is a policy language that comes with an engine
that supports RDFS models, and an extensive justification framework [12]. It
is based on N3 syntax, and supports quantified variables, as well as if-then-else
statements. The “else” path is followed if the condition does not hold, which
means that the language supports negation on non-atomic conditions. There-
fore query containment on AIR policies is not decidable and thus the policy
restrictions presented in this paper cannot be easily integrated into AIR. For
future work it is certainly interesting to see which features of AIR and our pol-
icy language can be fruitfully combined. Especially interesting is an adaption of
AIR’s justification framework, for which we already laid out the foundation by
associating policy rules with RIF metadata.

Another semantic policy language is Protune [22]. It is based on logic pro-
gramming rules, including negation. Its main focus is not on the classification
of situations, but on trust negotiation, which includes the execution of actions.
It includes the explanation facility ProtuneX [23], which supports decision jus-
tifications and different kind of policy queries, such as how-to queries that tell a
user what is needed to fulfill a policy. None of these queries can however be inte-
grated into the conditions of other policies, which is a key feature of our policy
language. Bonatti and Mogavero present a restricted version of Protune (e.g. no
negation) for which they show decidability of policy comparison, i.e. query con-
tainment [24]. Their work does not support integration of the comparisons into
policy conditions, and does not treat the “sufficient for compliance” restriction
introduced in this paper.

8 Conclusions and Future Work

We presented a policy language with the novel capability to express restrictions
on other policies given in the same language. The policy language has formal
semantics defined in terms of conjunctive queries over RDFS data. Furthermore
we described a concrete representation format being based on the W3C standards
RDF and RIF. We motivated the need for our self-policing policy language by a
use case about composed documents, including a real-world service, namely the
Google Maps API.

A Self-Policing Policy Language 745

We implemented a policy engine for our language and used it to model the
use case. We conducted first performance measurements. The results show that
the language and engine can effectively represent the required policies. As next
steps we plan to develop a justification framework for the language and based
thereon build a policy-aware composition tool.

Furthermore we plan to extend the expressivity of the policy language in one
of the following possible directions:

– a more expressive data model, i.e. using one of the OWL 2 profiles, instead
of RDFS,

– allow some limited negation (e.g. only on basic patterns),
– allow viral policies, in the meaning that restricting policies can also include

conditions using the special policy restriction properties.

We currently evaluate, which of these extensions are most desirable in terms of
required expressivity and preservation of decidability.

Acknowledgments. The authors wish to thank Markus Krötzsch and Andreas
Harth for the useful discussions. This work was supported by the European
project SOA4All.

References

1. Lampson, B.W.: Protection. In: Proc. Fifth Princeton Symposium on Information

Sciences and Systems, pp. 437–443. Princeton University, Princeton (March 1971);

reprinted in Operating Systems Review 8 (1), 18 – 24 (January 1974)

2. Dodds, L.: Rights Statements on the Web of Data. Nodalities Magazine (9) (2010),

http://www.talis.com/nodalities/pdf/nodalities_issue9.pdf

3. Seneviratne, O., Kagal, L., Berners-Lee, T.: Policy Aware Content Reuse on the

Web. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D.,

Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 553–568.

Springer, Heidelberg (2009)

4. W3C: RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recommen-

dation (2004), http://www.w3.org/TR/rdf-schema/

5. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. II. Com-

puter Science Press, Rockville (1989)

6. Kephart, J.O., Walsh, W.E.: An Artificial Intelligence Perspective on Autonomic

Computing Policies. In: IEEE Workshop on Policies for Distributed Systems and

Networks, POLICY (2004)

7. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Pren-

tice Hall, Englewood Cliffs (2003)

8. W3C: RIF Core Dialect. W3C Recommendation (2010),

http://www.w3.org/TR/rif-core/

9. W3C: RIF RDF and OWL Compatibility. W3C Recommendation (2010),

http://www.w3.org/TR/rif-rdf-owl/

10. Polleres, A., Feier, C., Harth, A.: Rules with Contextually Scoped Negation. In:

Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 332–347. Springer,

Heidelberg (2006)

http://www.talis.com/nodalities/pdf/nodalities_issue9.pdf
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rif-core/
http://www.w3.org/TR/rif-rdf-owl/

746 S. Speiser and R. Studer

11. Abelson, H., Adida, B., Linksvayer, M., Yergler, N.: ccREL: The Creative Com-

mons Rights Expression Language. W3C Submission (2008)

12. Kagal, L., Hanson, C., Weitzner, D.: Using Dependency Tracking to Provide Ex-

planations for Policy Management. In: IEEE Workshop on Policies for Distributed

Systems and Networks, POLICY (2008)

13. W3C: RIF Basic Logic Dialect. W3C Recommendation (2010),

http://www.w3.org/TR/rif-bld/

14. Gottlob, G., Leone, N., Scarcello, F.: The complexity of acyclic conjunctive queries.

Journal of the ACM 48(3), 431–498 (2001)

15. Goodman, N., Shmueli, O.: Tree queries: a simple class of relational queries. ACM

Trans. Database Syst. 7(4), 653–677 (1982)

16. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in

relational data bases. In: Annual ACM Symposium on Theory of Computing (1977)

17. OASIS: eXtensible Access Control Markup Language (XACML) Version 2.0. OA-

SIS Standard (2005), http://docs.oasis-open.org/xacml/2.0/

18. W3C: Web Services Policy 1.5 - Framework. W3C Recommendation (2007),

http://www.w3.org/TR/ws-policy/

19. Verma, K., Akkiraju, R., Goodwin, R.: Semantic matching of web service policies.

In: Semantic and Dynamic Web Processes (SDWP) In Conjunction with the Third

International Conference on Web Services, ICWS 2005 (2005)

20. Kolovski, V., Parsia, B.: WS-Policy and Beyond: Application of OWL Defaults to

Web Service Policies. In: Semantic Web Policy Workshop (SWPW) at 5th Inter-

national Semantic Web Conference, ISWC (2006)

21. Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., Hayes, P., Breedy, M., Bunch, L.,

Johnson, M., Kulkarni, S., Lott, J.: KAoS Policy and Domain Services: Toward

a Description-Logic Approach to Policy Representation, Deconfliction, and En-

forcement. In: IEEE Workshop on Policies for Distributed Systems and Networks,

POLICY (2003)

22. Bonatti, P.A., De Coi, J.L., Olmedilla, D., Sauro, L.: A Rule-based Trust Negoti-

ation System. IEEE Transactions on Knowledge and Data Engineering (2010)

23. Bonatti, P.A., Olmedilla, D., Peer, J.: Advanced Policy Explanations on the Web.

In: European Conference on Artificial Intelligence, ECAI (2006)

24. Bonatti, P.A., Mogavero, F.: Comparing Rule-Based Policies. In: IEEE Workshop

on Policies for Distributed Systems and Networks, POLICY (2008)

http://www.w3.org/TR/rif-bld/
http://docs.oasis-open.org/xacml/2.0/
http://www.w3.org/TR/ws-policy/

Completeness Guarantees for Incomplete
Reasoners

Giorgos Stoilos, Bernardo Cuenca Grau, and Ian Horrocks

Oxford University Computing Laboratory

Wolfson Building, Parks Road, Oxford, UK

Abstract. We extend our recent work on evaluating incomplete reason-

ers by introducing strict testing bases. We show how they can be used in

practice to identify ontologies and queries where applications can exploit

highly scalable incomplete query answering systems while enjoying com-

pleteness guarantees normally available only when using computationally

intensive reasoning systems.

1 Introduction

A key application of OWL ontologies is ontology-based data access [12,9,3,2,7,11],
where an ontology is used to support query answering against distributed and/or
heterogeneous data sources. The ontology provides the vocabulary used to for-
mulate queries, and a conceptual model (or schema) that is used in computing
query answers. In a Semantic Web setting, a typical scenario would involve the
use of an OWL ontology to answer SPARQL queries over RDF datasets.

Unfortunately, when using an expressive ontology language such as OWL,
computing query answers can be very costly, and in a (Semantic) Web setting,
datasets may be extremely large. There has therefore been a growing interest in
the development of query answering systems that are highly scalable in practice,
but that are not guaranteed to be complete in all cases; i.e., for some combina-
tions of query, ontology and dataset, they will not compute all query answers.
Most such systems (e.g., Oracle’s Semantic Data Store, Sesame, Jena, HAWK,
OWLim, Minerva, and Virtuoso) are based on database or RDF triple store
technologies; others are based on approximate reasoning techniques [10,5].

Although the scalability of such systems is attractive, application developers
face two main difficulties when using them. Firstly, incomplete query answers
may not be acceptable in a given application; and secondly, even if some in-
completeness is acceptable, it may be important to know just how incomplete
answers are likely to be, and to compare the scalability-completeness trade-off
offered by different systems. One way to address these issues is via empirical
testing, e.g., checking the answers given by query answering systems w.r.t. a
particular ontology, dataset and query, and although primarily intended for per-
formance testing, benchmark suites such as LUBM [4] have sometimes been used
for this purpose. However, this kind of testing has serious limitations: results are
specific to a given query, ontology and dataset, and may tell us nothing about

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 747–763, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

748 G. Stoilos, B. Cuenca Grau, and I. Horrocks

the behaviour of the system more generally; and, in order to determine the sys-
tem’s degree of completeness, we need to already know, or be able to compute,
exact answers to the given queries.

In our recent work [13], we addressed these issues by introducing the no-
tion of a Testing Base (TB). For a given ontology and query, a TB is a set of
datasets such that, for any “well behaved” query answering system, if the sys-
tem is complete for each dataset in the TB, then it will be complete for any
dataset. As well as providing a quantitative measure of completeness, which
we call the completeness degree, TBs thus allow us to identify circumstances
under which a completeness guarantee can be provided even when the system
being used is incomplete in general. This is very useful in practice given that in
many applications the ontology and (kinds of) query are fixed at design time, or
change relatively infrequently, whereas the data is typically unknown and/or fre-
quently changing. Unfortunately, we were unable to devise a practical algorithm
for computing TBs; instead, we devised an algorithm that efficiently computes
an approximation of a TB. This algorithm can be used to approximate the com-
pleteness degree, but it cannot be used to provide completeness guarantees.

In this paper we extend our previous work in several directions. Most impor-
tantly, we define the notion of a Strict Testing Base; we show that strict TBs
are typically much smaller than TBs, prove that they can be used to provide
the same completeness guarantee as TBs, and present an efficient algorithm for
computing them. This algorithm can thus be used to identify ontologies and
queries where applications can exploit highly scalable incomplete systems while
enjoying completeness guarantees normally available only when using computa-
tionally intensive reasoning systems—i.e., they can have the best of both worlds.

Additionally, we propose four properties that any “reasonable” measure of
completeness should ideally enjoy, and we show that while completeness degree
w.r.t. a TB satisfies all of these properties, completeness degree w.r.t. a strict
TB satisfies only two of them, albeit the most important two.

Finally, our preliminary evaluation, which includes the LUBM ontology and
queries as well as (a version of) the Galen ontology of clinical terms, suggests not
only that strict TBs are easy to compute in practice, but also that completeness
guarantees can often be provided for realistic ontologies and queries.

2 Preliminaries

Description Logics. We assume that the reader is familiar with the basics of
DL syntax, semantics and standard reasoning problems [1], and we use standard
notions of a TBox T (the terminology, or conceptual schema) and an ABox
A (the assertions, or data). In the context of ontology-based data access, the
ontology may be thought of as consisting only of a TBox, with the data being
stored in the sources. From an OWL point of view, however, we can treat the
contents of the sources as ABox assertions, and the ontology as being the union
of the TBox and ABox, i.e., O = T ∪ A. To avoid conflating the schema (TBox)
and the data (ABox), we consider only fragments of the DLs underpinning OWL

Completeness Guarantees for Incomplete Reasoners 749

DL and OWL 2 that do not provide for nominals (i.e., that do not allow ABox
individuals to be used to define TBox concepts); we also assume (without loss of
generality) that ABoxes contain only atomic assertions—that is, each assertion
of the form C(a) or R(a, b) in A must be such that C and R are atomic.

Queries. We use the standard notions of term, (function-free) atom and vari-
able. A datalog clause is an expression H ← B1 ∧ . . . ∧Bn where H (the head) is
a (possibly empty) atom, B1∧ . . .∧Bn (the body) is a conjunction of atoms, and
each variable in the head also occurs in the body. A union of conjunctive queries
(UCQ) is a tuple u = 〈QP , P 〉 with QP a query predicate and P a finite set of
datalog clauses such that QP is the only predicate occurring in head position in
P and the body of each clause in P does not contain QP . We denote with var(q)
the set of variables in q and say that a variable is distinguished if it appears in
the head. Finally, q is a conjunctive query (CQ) if it is a UCQ and P has one
clause. If q = 〈QP , P 〉 is a CQ, we often abuse notation and write q = P ; if u is
a UCQ with P = {P1, . . . , Pn}, we write u = {q1, . . . , qn} with qi = Pi a CQ.

A tuple of constants a is a certain answer of a UCQ q = 〈QP , P 〉 with respect
toO = T ∪ A iffO∪P |= QP (a), where P is seen as a set of universally quantified
implications with first-order semantics. The set of certain answers of q w.r.t.
O = T ∪ A is (equivalently) denoted as either cert(q, T ,A) or cert(q,O). Clearly,
the set of certain answers satisfies the following useful properties:

1. Monotonicity: cert(q,O) ⊆ cert(q,O′) for each O, O′ and q with O ⊆ O′.
2. Invariance under isomorphisms: For each pair of isomorphic ABoxes A

and A′ (i.e., identical modulo renaming of individuals), cert(q, T ,A) and
cert(q, T , A′) are also identical modulo the same renaming.

UCQ Rewritings. Intuitively, a UCQ rewriting for a TBox T and a CQ q is a
UCQ that extends q with the information from T that is relevant to answering
the query. Formally, a UCQ rewriting for T and q is a UCQ u such that, for
each ABox A where T ∪ A is consistent, the following properties hold:

1. (Soundness:) For each q′ ∈ u, we have that cert(q′, ∅,A) ⊆ cert(q, T ,A).
2. (Completeness:) cert(q, T ,A) ⊆ ∪

q′∈u
cert(q′, ∅,A).

Several well-known techniques can be used to reduce the size of (U)CQs. A CQ
q is reduceable if it contains distinct body atoms that are unifiable. A reduction
q′ of q is obtained by applying the most general unifier θ to the body of q. A
condensation reduction cond(u) is a UCQ obtained from u by ensuring that no
two queries q, q′ exist such that q′ subsumes q and q′ is a reduction of q. Finally,
a subsumption reduction sub(u) is a UCQ obtained from u by ensuring that no
two queries q, q′ in the reduction are such that q′ subsumes q.

Justifications. Finally, our framework in [13] relies on the well-established no-
tion of a justification for an entailment (see e.g., [6]). In the case of CQ answering,
a justification for a CQ q and a tuple a ∈ cert(q,O) in a consistent ontology O is
an ontology J ⊆ O such that a ∈ cert(q, J) and a ∈ cert(q, J ′) for each J ′ ⊂ J .

750 G. Stoilos, B. Cuenca Grau, and I. Horrocks

3 A Framework for Evaluating Completeness

In this section we present our revised and extended framework for evaluating
the completeness of Semantic Web CQ answering systems.

3.1 CQ Answering Algorithms

Our framework adopts a rather general notion of a CQ answering algorithm. This
allows us to abstract from the specifics of implemented systems and establish
general results that hold for any system satisfying certain basic properties.

Definition 1. A CQ answering algorithm ans for a DL L is a procedure that,
for each L-ontology O = T ∪A and CQ q = 〈QP , P 〉 computes in a finite number
of steps a set ans(q,O) of tuples of constants of the same arity as QP .

– It is sound if ans(q,O) ⊆ cert(q,O) for each O and q.
– It is complete if cert(q,O) ⊆ ans(q,O) for each O and q.
– It is faithful if it satisfies the same monotonicity and invariance under iso-

morphisms properties as cert.
– It is compact if for each consistent O, each q, and each a ∈ cert(q,O) ∩

ans(q,O), there exists a justification J for q, a in O such that a ∈ ans(q, J).

Intuitively, ans is faithful if it implements the semantics of CQ answering in a
“reasonable” way; in particular, the set of computed query answers for a fixed
query can only grow if new axioms are added to the ontology (monotonicity)
and the algorithm should be robust under trivial isomorphic renamings of in-
dividuals in the ABox (invariance under isomorphisms). Most of the results in
our framework require ans to be at least sound and faithful, which we believe to
be reasonable requirements that are satisfied by most if not all existing incom-
plete reasoners. For some of our results, however, compactness is also an issue.
Intuitively, ans is compact if, whenever it correctly computes a certain answer
 a for some query q and ontology O, then it will also compute a for q and some
minimal subset of O that is sufficient to derive a.

Consider an (incomplete) algorithm ans that, given O = T ∪A and q, ignores
T and answers q only w.r.t. A. Clearly, ans is sound and faithful. Furthermore,
it is compact since, for each consistent O = T ∪ A and certain answer a ∈
ans(q,O), there is a minimal subset A′ of A (a justification) that is sufficient to
derive a.1 Suppose, however, that in order to handle atomic implications of the
form A � B, ans is extended as follows: it selects from T the set T ′ of atomic
implications, extends A to A′ by adding assertions implied by T ′ (e.g., adding
B(a) if A(a) ∈ A′ and A � B ∈ T ′), and uses A′ to answer queries as before.
Assume, however, that ans contains a bug, and only adds B(a) if both A(a) and
C(a) occur in A′, for C = A a (fixed) atomic concept. Despite the bug, the
algorithm is still sound and faithful, but it is not compact. To see this, consider
T = {A � B} and q asking for the instances of B. For A = {A(a), C(a)} we have

1 Recall that we are assuming that TBoxes do not contain nominals.

Completeness Guarantees for Incomplete Reasoners 751

that cert(q, T ,A) = ans(q, T ,A) = {a}. However, the only relevant justification
is J = T ∪AJ for AJ = {A(a)}; but a /∈ ans(q, J), and thus ans is not compact.

We believe that compactness is also a reasonable property to expect from a
CQ answering algorithm, and that non-compactness is likely to be indicative of
some “oddity” in the algorithm, as in the above example.

3.2 Testing Bases

Next, we briefly recapitulate from [13] the central notion of a testing base: a
collection of minimal ABoxes (called testing units) which can produce an answer
to q w.r.t. some minimal subset of T . To check completeness, a testing base must
include all “relevant” testing units.

Definition 2. An ABox A is a testing unit for a CQ q and TBox T if T ∪A is
consistent and there exists a tuple a ∈ cert(q, T ,A) such that A is the ABox part
of some justification for q, a in T ∪A. A testing base (TB) for q, T is a finite set
B of testing units for q, T such that for each testing unit A for q and T , there
is some A′ ∈ B such that A′ is isomorphic to A. A testing base is minimal if
no two ABoxes in it are isomorphic.

Consider, as a running example, the following TBox T stating that everyone
taking a maths course is a student and every instance of the relation “takes
calculus course” is also an instance of “takes maths course”; consider also the
following query q asking for the set of students taking a maths course.

T = {∃takesMathCo.� � St, takesCalcCo � takesMathCo}
q = QP (x) ← St(x) ∧ takesMathCo(x, y)

By Definition 2, the following ABoxes are testing units for q, T , and the set
B = {A1, . . . ,A8} is a minimal TB for q, T :

A1 = {takesMathCo(a, b)} A2 = {St(a), takesMathCo(a, b)}
A3 = {takesMathCo(a, a)} A4 = {St(a), takesMathCo(a, a)}
A5 = {takesCalcCo(a, b)} A6 = {St(a), takesCalcCo(a, b)}
A7 = {takesCalcCo(a, a)} A8 = {St(a), takesCalcCo(a, a)}

As shown in [13], TBs provide the following completeness guarantee for any CQ
answering algorithm ans that is sound and faithful: if ans correctly computes
the set of certain answers for each ABox in a TB, then it will also compute the
set of certain answers for any ABox that is consistent with the TBox. In our
example, this means that we only need to check whether ans(q, T ,Ai) = {a}
for each Ai ∈ {A1, . . . ,A8} in order to determine if ans will compute the set of
certain answers of q w.r.t. T and any ABox that is consistent with T .

3.3 Strict Testing Bases

Intuitively, to check whether each Ai in our running example is a testing unit,
one would need to compute all justifications for q and each certain answer a in

752 G. Stoilos, B. Cuenca Grau, and I. Horrocks

T ∪ Ai, and then check whether Ai is the ABox part of one of them. This may
be infeasible in practice, as we may need to consider all possible subsets of T .

In this paper, we address this issue by investigating the notion of a strict
testing unit—a minimal ABox that can produce an answer to q w.r.t. T .

Definition 3. An ABox A is a strict testing unit for a CQ q and TBox T
if T ∪ A is consistent and there exists a tuple a ∈ cert(q, T ,A) such that
 a /∈ cert(q, T ,A′) for each A′ ⊂ A.

To check whether A is a strict testing unit, we only need to find a certain answer
that is lost when removing any assertion from A. Furthermore, it can be easily
shown that each strict testing unit for q and T is also a testing unit for q and T ,
and in our running example only the testing units A1,A3,A5, and A7 are strict.
The notion of a strict testing unit leads to that of a strict testing base.

Definition 4. A strict testing base Bs for q, T is a finite set of strict testing
units for q, T such that, for each strict testing unit A for q, T , there is some
A′ ∈ Bs such that A′ is isomorphic to A. Finally, a strict testing base is minimal
if no two ABoxes in it are isomorphic.

Given any TB B, we can always construct a strict one Bs by removing from B
the testing units that are not strict, and hence Bs is likely to be smaller than B
(in our example, Bs = {A1,A3,A5,A7} is a strict and minimal TB).

We next present our main result in this section: although strict TBs are smaller
than TBs, they provide exactly the same completeness guarantees.

Theorem 1. Let ans be a sound and faithful CQ answering algorithm for L. Let
q be a CQ, T an L-TBox and Bs a strict TB for q, T . The following property (♦)
holds for any ABox A′ s.t. T ∪ A′ is consistent: If ans(q, T ,A) = cert(q, T ,A)
for each A ∈ Bs, then ans(q, T ,A′) = cert(q, T ,A′).

Proof. By contradiction, let ans(q, T ,A) = cert(q, T ,A) for each A ∈ Bs and
assume there exists A′ s.t. T ∪A′ is consistent but ans(q, T ,A′) = cert(q, T ,A′).
Since ans is sound, ans(q, T ,A′) = cert(q, T ,A′) iff cert(q, T ,A′) � ans(q, T ,A′).
Hence, let a ∈ cert(q, T ,A′) be s.t. a /∈ ans(q, T ,A′). Since a ∈ cert(q, T ,A′) and
L does not provide for nominals, there is a minimal (w.r.t. set inclusion), non-
empty Amin ⊆ A′ s.t. a ∈ cert(q, T ,Amin). But then, Amin is a strict testing
unit by Definition 3. Since Bs is a strict TB, there exists A′

min ∈ Bs isomorphic
to Amin. Finally, since Amin ⊆ A′ and ans is monotonic and invariant under
isomorphisms, we have that a ∈ ans(q, T ,A′), which is a contradiction. "#

Thus, given our example T and q, to check whether a sound and faithful reasoner
correctly computes cert(q, T ,A) for any ABox A, we only need to check whether
it returns all the certain answers w.r.t. A1, A3, A5 and A7.

3.4 Existence and Size of Strict Testing Bases

In [13] we showed that, unfortunately, there exist CQs and ontologies written in
rather simple ontology languages for which a TB does not exist, because infinitely

Completeness Guarantees for Incomplete Reasoners 753

many testing units would be needed. As already discussed, a strict TB exists
whenever a TB does. The converse, however, may not hold, and hence our non-
existence results from [13] do not transfer directly to strict TBs. The following
example shows a TBox and a CQ for which there is a strict TB containing just
one ABox with a single assertion, but for which no TB exists.

Example 1. Consider the following TBox and query:

T = {A � ∃R.B, ∃R.B � B}; q = QP (x) ← A(x) ∧B(x)

The set Bs = {{A(a)}} is a strict TB. However, for any value of n, the ABox
An = {A(a), R(a, b1), . . . , R(bn−1, bn), B(bn)} is a testing unit (it is the ABox
part of a justification J for the certain answer a in T ∪An, whose TBox part is
TJ = {∃R.B � B}), and Ai and Aj are non-isomorphic for any i = j. Thus no
TB exists, because from Definition 2 a TB must be a finite set of testing units.

Although a strict TB may exist even if no TB does, it may not be possible in
general to guarantee the existence of one. For instance, if we modify T from
Example 1 to be T = {∃R.B � B}, no strict TB exists for the same reason that
no TB does. The proof of Theorem 2 is identical to the one in [13] for TBs.

Theorem 2. Let L be EL, or FL0, or a DL allowing for transitivity axioms.
There is a CQ q and a L-TBox T for which no strict testing base exists.

In cases when a TB B does exist (see Section 4), the corresponding strict TB
Bs is likely to be much smaller. A natural question is how small Bs can be in
comparison to B. We next provide an example of an exponential reduction in
size.

Example 2. Consider the following TBox and query:

T = {B � Ai | 1 ≤ i ≤ n} ∪ {A1 " . . . "An � C}; q = QP (x) ← C(x)

Let Bs and B be as follows, where A = {A1(a), . . . , An(a)}, B = {B(a)}, and
℘(A) is the power set of A:

Bs = {B,A, {C(a)}}; B = Bs ∪ ∪
A′∈℘(A)\A

{B ∪ A′}

The set Bs with three testing units is a strict and minimal TB for q, T . Also,
given any A′ ⊂ A, we have that B∪A′ is a testing unit since it is the ABox of a
justification with T ′ = {B � Aj | 1 ≤ j ≤ n,Aj(a) /∈ A′}∪{A1 " . . ."An � C}.
Therefore, B is a minimal TB containing 2n + 1 testing units.

Although strict TBs can be exponentially smaller than TBs, this is not always
the case. The following example shows that an exponential blowup w.r.t. the size
of the TBox may not be avoidable when computing strict and minimal TBs.

Example 3. For n ≥ 1, consider the TBox Tn consisting of the following axioms
for each 0 ≤ j < i ≤ n:2

2 A similar TBox was used in [8] for a different purpose.

754 G. Stoilos, B. Cuenca Grau, and I. Horrocks

X0 " . . . "Xn � ⊥; X0 " . . . "Xn � B;

∃R.X0 � X0; ∃R.X0 � X0;
∃R.(Xi "X0 " . . . "Xi−1) � Xi; ∃R.(Xi "X0 " . . . "Xi−1) � Xi;

∃R.(X i "Xj) � X i; ∃R.(Xi "Xj) � Xi.

and the query q = QP (x) ← B(x). Intuitively, Tn implements the incrementation
of an n-bit counter along an R-chain. For each 1 ≤ k < 2n+1, let Zk be of the
form Zk = "

0≤i≤n
Yi with Yi ∈ {Xi, Xi} s.t. the binary number obtained by

replacing each Yi in the chain Y0 . . . Yn with 1 if Yi = Xi and 0 otherwise is
precisely the binary encoding of k. Then, for each 2 ≤ j < 2n+1, the following
ABox Aj is a strict testing unit (and is not isomorphic to any Aj′ with j′ = j):

Aj = {R(a0, a1), . . . , R(aj−1, aj), Zj(aj)}

Existence of a strict TB is ensured by the axiom X0 " . . . " Xn � ⊥, which
precludes the computation of an infinite number of (non-isomorphic) strict test-
ing units by “appending” relevant R-chains an arbitrary number of times (recall
that a strict testing unit must be consistent with Tn). It can easily be verified
that a strict and minimal TB must contain exponentially many testing units
w.r.t. n.

3.5 Measuring the Degree of Completeness

In this section, we turn our attention to measuring quantitatively “how com-
plete” a sound and faithful reasoner is for a fixed query q and TBox T , when
completeness guarantees are not provided. To this end, we next introduce the
notion of completeness degree, which in its most general form can be defined as
follows.3

Definition 5. Let ans be a sound and faithful CQ answering algorithm for L a
DL, q a CQ, T an L-TBox and A a non-empty set of ABoxes such that, for
each A ∈ A, T ∪A is consistent and cert(q, T ,A) = ∅. The completeness degree
δ of ans for q, T and A is defined as follows (where "S denotes the number of
elements in a set S):

δA(ans, q, T) =
1
"A

×
∑
A∈A

"ans(q, T ,A)
"cert(q, T ,A)

Therefore, δA represents the proportion of certain answers w.r.t. ABoxes in A
that ans is able to compute correctly. The specific properties of δA, however,
will obviously depend on the particular set of ABoxes under consideration. In-
tuitively, in order to obtain a reasonable measure of completeness for T and q,
the set A should be chosen such that the following basic properties are satisfied:

1. If ans misses a certain answer for some (arbitrary) ABox consistent with the
TBox, then δA(ans, q, T) should be smaller than one.

3 The notion given here slightly differs from the one in our previous work.

Completeness Guarantees for Incomplete Reasoners 755

2. If ans correctly computes some certain answer for some (arbitrary) ABox
consistent with the TBox, then δA(ans, q, T) should be larger than zero.

3. If each certain answer computed by ans is also computed by ans′, then
δA(ans′, q, T) should be at least as large as δA(ans, q, T).

4. If Property 3 holds and, in addition, there is an (arbitrary) ABox A con-
sistent with T for which ans′ computes a certain answer that ans fails to
compute, then δA(ans′, q, T) should be strictly larger than δA(ans, q, T).

Consider our running example CQ q, TBox T , TB B = {A1, . . . ,A8} and strict
TB Bs = {A1,A3,A5,A7}. An algorithm a1 that ignores T and simply answers
q w.r.t. the data would only compute the correct answers for A2 and A4; hence,
δB(a1, q, T) = 0.25, whereas δBs(a1, q, T) = 0. An algorithm a2 that handles
role inclusions but not existential quantification would only compute the cor-
rect answers for A2, A4, A6 and A8; thus, δB(a2, q, T) = 0.5, but we again
have δBs(a2, q, T) = 0. Finally, a complete algorithm would compute the correct
answers for all ABoxes; hence, δB(a3, q, T) = δBs(a3, q, T) = 1, as desired.

Our example suggests that by choosing a (possibly strict) TB, we can guar-
antee Properties 1 and 3. Indeed, this can be shown in general as a direct con-
sequence of Theorem 1.

Proposition 1. The following properties hold for ans and ans′ sound and faith-
ful, q a CQ, T a TBox and Bs a strict TB for q, T :

1. If cert(q, T ,A) = ans(q, T ,A) for some A s.t. T ∪ A is consistent, then
δBs(ans, q, T) < 1.

2. If ans(q, T ,A) ⊆ ans′(q, T ,A) for each A, δBs(ans, q, T) ≤ δBs(ans′, q, T).

Our running example also illustrates an important advantage of using TBs over
strict TBs for measuring completeness degrees, namely that Properties 2 and 4
fail if δ is measured in terms of Bs, but hold if δ is measured w.r.t. B. We finally
show that Properties 2 and 4 always hold for TBs provided that the relevant CQ
answering algorithm is also compact.

Proposition 2. The following properties hold for ans and ans′ sound, faithful
and compact, q a CQ, T a TBox and B a TB for q, T .

1. If a ∈ ans(q, T ,A) for some tuple a and some ABox A s.t. T ∪A is consistent,
then δB(ans, q, T) > 0.

2. If ans(q, T ,A) ⊆ ans′(q, T ,A) for each ABox A, and there exists A′ and
 a ∈ ans′(q, T ,A′) s.t. a /∈ ans(q, T ,A′), then δB(ans, q, T) < δB(ans′, q, T).

Proof. 1. Suppose that such tuple a and ABox A exist. Since ans is sound, a ∈
cert(q, T ,A). Since ans is also compact, there is a justification J = TJ ∪ AJ

for q, a in T ∪ A such that a ∈ ans(q, TJ ,AJ). But then, AJ is a testing
unit by Definition 2. Since B is a testing base, there exists an ABox A′ ∈ B
that is isomorphic to AJ with a′ the tuple obtained after the correspond-
ing renaming of a. Finally, since ans is invariant under isomorphisms and
monotonic, we clearly have a′ ∈ ans(q, T , A′) and hence δB(ans, q, T) > 0.

756 G. Stoilos, B. Cuenca Grau, and I. Horrocks

2. By Proposition 1, δB(ans, q, T) ≤ δB(ans′, q, T). The property then follows
from the following statement, which we show next: there exist Amin ∈ B and
 b ∈ ans′(q, T ,Amin) such that b /∈ ans(q, T ,Amin). Since ans′ is compact,
there is a justification J = TJ ∪AJ for q, a in T ∪A′ s.t. a ∈ ans′(q, TJ ,AJ).
By definition of a TB, there exists Amin ∈ B isomorphic to AJ with b
the result of renaming a accordingly. By monotonicity and invariance under
isomorphisms of ans′, b ∈ ans′(q, T ,Amin). But then, b /∈ ans(q, T ,Amin)
since otherwise by monotonicity and invariance under isomorphisms of ans
we have a ∈ ans(q, T ,A′), which is a contradiction. "#

4 Computing Strict Testing Bases

In our previous work [13], we identified sufficient conditions for a TB to exist.
We showed that it is always possible to construct a TB for T , q whenever there
exists a UCQ rewriting for q and each subset T ′ of T . The connection between
the existence of UCQ rewritings and of TBs is relevant for practice: on the
one hand, UCQ rewritings are guaranteed to exist if T is expressed in the DLs
underpinning the QL profile of OWL 2, and they may also exist even if T is in
other fragments of OWL 2 (such as the EL profile); on the other hand, there are
currently a number of implemented algorithms for computing UCQ rewritings
(e.g., those implemented in the systems QuOnto and REQUIEM).

Roughly speaking, the algorithm for computing a TB for T and q proceeds as
follows: first, for each subset T ′ of T it computes a UCQ rewriting uT ′ ; second,
for each such uT ′ it constructs a fixed set of individuals whose cardinality is
bounded by var(uT ′); finally, it computes the required testing units by instanti-
ating each uT ′ with a valid instantiation—a (maximal) subset of the mappings
from the variables of each CQ in uT ′ to individuals satisfying certain properties.

This naive algorithm is not practical since it may need to examine an expo-
nential number of subsets of T . This is required to ensure, on the one hand, that
a TB exists and, on the other hand, that all relevant testing units are computed
via a valid instantiation. For example, the CQ QP (x) ← A(x) is a UCQ rewrit-
ing for the query q and TBox T from Example 1, but no TB exists for q, T . The
algorithm from [13] rejects the input q, T because it additionally considers the
subset T ′ = {∃R.B � B} of T and finds that no UCQ rewriting exists for q, T ′.

We next show that a strict TB can be computed solely from a UCQ rewriting u
for T and q, and hence computing a UCQ rewriting for each of the (exponentially
many) subsets of T is no longer required. Indeed, we can compute the strict TB
Bs = {A(a)} for q and T from Example 1 by just computing and instantiating
the UCQ rewriting QP (x) ← A(x).

We start by recapitulating the notions from [13] of an instantiation of a CQ
and a valid instantiation for a UCQ.

Definition 6. Let q be a CQ, Bq the body atoms in q, and π a mapping from
all variables of q to individuals. The following ABox is an instantiation of q:

Aq
π := {A(π(x)) | A(x) ∈ Bq} ∪ {R(π(x), π(y)) | R(x, y) ∈ Bq}

Completeness Guarantees for Incomplete Reasoners 757

Let u = {q1, . . . , qn} be a UCQ and assume w.l.o.g. that var(qi)∩ var(qj) = ∅ for
i = j. Let ind = {a1, . . . , am} be a set of individuals s.t. m = "var(u) and let Πqi

be the set of all mappings from var(qi) to ind. A set Πu = Πu
q1 ' . . . 'Πu

qn
with

Πu
qi
⊆ Πqi is a valid instantiation of u if it is a maximal subset of Πq1 '. . .'Πqn

with the following property:

(∗): for each qi, qj ∈ u and π ∈ Πu
qi

, there is no π′ ∈ Πqj s.t. π and π′

map the distinguished variables in qi and qj identically and Aqj

π′ ⊂ Aqi
π .

Intuitively, when instantiating a CQ q in a rewriting u using a valid instantiation,
Property (∗) from Definition 6 ensures that there is no “smaller” instantiation
of a (possibly different) CQ q′ from u. In our running example about students
and math courses we have that u = {q, q1, q2, q3}, with q1, q2 and q3 given as
follows, is a UCQ rewriting of q and T :

q1 = QP (x1) ← St(x1) ∧ takesCalcCo(x1, y1)
q2 = QP (x2) ← takesMathCo(x2, y2)
q3 = QP (x3) ← takesCalcCo(x3, y3)

For ind = {ai, bi | 0 ≤ i ≤ 3}, we have that Π = {xi !→ ai, yi !→ bi | 2 ≤ i ≤ 3}
is a valid instantiation; in contrast, Π ′ = {x1 !→ a1, y1 !→ b1} is not valid since
the mapping π = {x3 !→ a1, y3 !→ b1} leads to a smaller ABox.

Our previous example clearly shows that non-valid instantiations can lead to
ABoxes that are not strict testing units. Furthermore, each ABox obtained by
instantiating a CQ in a UCQ rewriting using a valid instantiation is indeed a
strict testing unit, as shown by the following lemma.

Lemma 1. Let u be a UCQ rewriting for T and q, and let Πu be a valid instan-
tiation. Then, for each qi ∈ u and each π ∈ Πu

qi
such that T ∪Aqi

π is consistent,
we have that Aqi

π is a strict testing unit for T , q.

Proof. Let π map the distinguished variables of qi to a. Then, a ∈ cert(qi, ∅,Aqi
π).

Since qi ∈ u, soundness of UCQ rewritings implies a ∈ cert(q, T ,Aqi
π). To show

that Aqi
π is a strict testing unit, it suffices to show that a ∈ cert(q, T ,Aqi

π \ α)
for each α ∈ Aqi

π . By the contrapositive of the completeness property of UCQ
rewritings it suffices to show that ∀qj ∈ u, a ∈ cert(qj , ∅,Aqi

π \ α). But, this is
ensured by Property (∗) of Definition 6, as we show next.

By contradiction. For some qj ∈ u assume that a ∈ cert(qj , ∅,Aqi
π \ α).4 Then,

by the semantics of CQ answering there is a mapping σ from the variables in
qj to the individuals in Aqi

π \ α that maps the distinguished variables of qj to a
and such that Aqj

σ ⊆ Aqi
π \ α. Hence, Aqj

σ ⊂ Aqi
π ; however, this contradicts the

assumption that π ∈ Πu
qi

, since Property (∗) in Definition 6 would fail. "#

To compute strict TBs, we need to consider in the worst case all the possible
ABoxes that can be obtained by instantiating a given UCQ rewriting using a
given valid instantiation, as shown by the following theorem.

4 Note that qj could be qi.

758 G. Stoilos, B. Cuenca Grau, and I. Horrocks

Algorithm 1. Compute a strict testing base
Algorithm: tb(u)

Input: a UCQ rewriting u for T , q

1 Compute u′ := sub(cond(u))

2 Construct ind := {a1, . . . , an} for n = �var(u′)

3 Initialize Out := ∅
4 For each qi ∈ u′

For each π : var(qi) �→ ind

If T ∪ Aqi
π is consistent then

Out := Out ∪ {Aqi
π }

For each qj ∈ u′

If Sig(qj) ⊆ Sig(qi) and there exists π′ : var(qj) �→ ind s.t. π, π′ map

distinguished vars. in qi and qj identically and Aqj

π′ ⊂ Aqi
π then

Out := Out \ {Aqi
π }

3 Return Out

Theorem 3. Let u be a UCQ rewriting for T , q and let Πu be a valid instanti-
ation. The following set is a strict testig base for T and q.

Bs = {Aqj
π | qj ∈ u, π ∈ Πu

qj
, T ∪ Aqj

π consistent}

Proof. By Lemma 1, Bs only contains strict testing units. We show that for
each strict testing unit A, there exists qj ∈ u and a mapping π ∈ Πu

qj
s.t. Aqj

π is
isomorphic to A and thus Bs is a strict TB. A being a strict testing unit implies
that T ∪ A is consistent and there exists a ∈ cert(q, T ,A) s.t. a /∈ cert(q, T ,A′)
for eachA′ ⊂ A. Since a ∈ cert(q, T ,A) and T ∪A is consistent, the completeness
property of rewritings implies that qj ∈ u exists s.t. a ∈ cert(qj , ∅, A). Hence,
there exists π from var(qj) to individuals in A that maps the distinguished
variables in qj to a. Since A is minimal, there is no other π′ that maps qj or any
other qi ∈ u to a strict subset of A and s.t. it maps their distinguished variables
to a. Thus, by maximality, there exists π ∈ Πu

qj
s.t. Aqj

π is isomorphic to A. "#

According to Theorem 3, an algorithm for computing a strict TB for T , q must
use a valid instantiation to compute all testing units. A naive implementation
would check Property (∗) from Definition 6 by performing a number of ABox
containment tests that is exponential in the number of query variables.

We next present a practical algorithm for computing a strict TB. Algorithm 1
takes a UCQ rewriting u for T and q (computed using any state of the art
rewriting algorithm), and implements several optimisations aimed at reducing
the number of ABox containment tests needed to check Property (∗).

First, as in our practical algorithm from [13], Algorithm 1 uses condensa-
tion and subsumption to reduce the size of the input rewriting. This can avoid
(possibly exponentially) many tests when checking Property (∗). For instance,
subsumption would eliminate the queries q and q1 from the rewriting for our
running example, thus discarding each of their instantiations.

Completeness Guarantees for Incomplete Reasoners 759

Finally, Algorithm 1 only checks the containment of an instantiation of the
form Aqj

π′ in an instantation of the form Aqi
π whenever all the body predicates in

qj occur also in qi. For instance, consider the following TBox and CQ:

T = {C � ∃R.�} q = QP (x) ← R(x, y) ∧R(y, z)

Given u = {q, q1} with q1 = QP (x) ← R(x, y) ∧ C(y), neither cond nor sub
removes any query. Algorithm 1, however, will not perform any test of the form
Aq1

π′ ⊂ Aq
π since q1 mentions the predicate C, which is not mentioned in q.

As shown by the following theorem, none of these optimisations results in a
loss of relevant strict testing units, and the output of Algorithm 1 is a strict TB.

Theorem 4. Algorithm 1 computes a strict TB for q and T .

Proof. The application of cond and sub on a UCQ rewriting preseves the sound-
ness and completeness properties, and u′ = sub(cond(u)) is also a UCQ rewriting.
We show that each Aqi

π ∈ Out is a strict testing unit. To this end, we show that
π belongs to Πu′

qi
with Πu′ a valid instantiation of u′ w.r.t. ind. This is so un-

less the following condition holds: there exists qj ∈ u′ with Sig(qj) � Sig(qi)
and π′ : var(qj) !→ ind s.t. π and π′ map the distinguished variables in qi and
qj identically and Aqj

π′ ⊂ Aqi
π . This condition, however, cannot hold: qj has an

atom X not occurring in qi and hence for each π′ the ABox Aqj

π′ has an assertion
involving X which cannot occur in Aqi

π . To show that Out is a strict TB, let Πu′

be a valid instantiation of u′ w.r.t. ind. By Theorem 3 we show that for arbitrary
qi ∈ u′ and π ∈ Πu′

qi
, we have Aqi

π ∈ Out. This is the case because Algorithm
1 considers all possible queries qi, qj and all possible mappings from variables
in those queries to individuals in ind, and it only excludes from Out ABoxes
corresponding to instantiations violating Property (∗) from Definition 6. "#

We conclude by briefly comparing Algorithm 1 with the TB approximation al-
gorithm from our previous work. In [13], we showed that the approximation
algorithm produces only testing units, but not necessarily all those needed to
obtain a TB. In fact, the approximation algorithm produces only strict testing
units, but not necessarily all those needed to obtain a strict TB, and hence it
cannot be used to provide completeness guarantees for sound and faithful CQ
answering algorithms. Algorithm 1, in contrast, produces strict TBs, and so can
be used to provide such guarantees. Furthermore, as we show in the next section,
the computation of strict TBs is computationally feasible in practice.

5 Implementation and Evaluation

We have implemented Algorithm 1 in our prototype tool SyGENiA,5 which uses
REQUIEM6 for the computation of the UCQ rewritings, and used it to evaluate

5 http://code.google.com/p/sygenia/
6 http://www.comlab.ox.ac.uk/projects/requiem/home.html

http://code.google.com/p/sygenia/
http://www.comlab.ox.ac.uk/projects/requiem/home.html

760 G. Stoilos, B. Cuenca Grau, and I. Horrocks

Table 1. Generation times of strict TBs for each LUBM query (in sec.)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

1.3 1.1 0.09 6.3 0.25 2.1 0.6 7 2.7 6 0.06 0.1 0.1 0.05

Table 2. LUBM queries for which completeness can be guaranteed

System Completeness Guarantee Completeness w.r.t. LUBM dataset

Jena Max Q1-Q14 Q1-Q14

OWLim Q1-Q5, Q7, Q9, Q11-Q14 Q1-Q14

Minerva Q1-Q4, Q9, Q11, Q14 Q1-Q14

Jena Mini/Micro Q1-Q3, Q5, Q11, Q13-Q14 Q1-Q5, Q11, Q13-Q14

Sesame Q1, Q3, Q11, Q14 Q1-Q5, Q11, Q14

four systems: Sesame 2.3-prl,7 OWLim 2.9.1,8 Minerva v1.5,9 and Jena v2.6.310

in each of its three variants (Micro, Mini and Max).
We first ran SyGENiA over the LUBM TBox and queries and computed a

strict TB for each query—each LUBM query leads to a UCQ rewriting w.r.t.
the TBox, and hence a strict TB is guaranteed to exist.11 Table 1 presents the
generation time for each of these strict TBs. We then used these strict TBs to
compute the corresponding completeness degrees for each evaluated system.

In contrast to our previous work, Algorithm 1 ensures that each computed
collection of datasets is a strict TB, and hence we can provide completeness
guarantees in practice. This is illustrated in Table 2 where, for each system, we
list the queries for which testing using strict TBs shows that it is complete for
any dataset, and the queries for which it is complete w.r.t. the LUBM dataset.

Our results show that Jena Max is the only system that is guaranteed to be
complete for all 14 LUBM queries regardless of the dataset—that is, it behaves
exactly like a complete OWL reasoner w.r.t. the LUBM queries and TBox. Fur-
thermore, as already noted in our previous work, completeness w.r.t. the LUBM
benchmark is no guarantee of completeness in general; for example, OWLim and
Minerva are both complete w.r.t. LUBM (and even w.r.t. to the more expressive
UOBM benchmark), but for some queries they were found to be incomplete w.r.t.
to our datasets. OWLim is, however, guaranteed to be complete for all LUBM
queries that do not involve reasoning with existential quantifiers—a feature not
supported by the system. Minerva, which uses a DL reasoner to classify the on-
tology and explicate subsumption between atomic concepts, is still guaranteed
to be complete for only 8 queries; this is because our datasets reveal missing
answers that depend on subsumptions between complex concepts that are not

7 http://www.openrdf.org/
8 http://www.ontotext.com/owlim/
9 http://www.alphaworks.ibm.com/tech/semanticstk

10 http://jena.sourceforge.net/
11 Since REQUIEM does not currently support individuals in the queries or transitivity

in the TBox, we have replaced the individuals in queries by distinguished variables

and dispensed with the only transitivity axiom in the LUBM TBox.

http://www.openrdf.org/
http://www.ontotext.com/owlim/
http://www.alphaworks.ibm.com/tech/semanticstk
http://jena.sourceforge.net/

Completeness Guarantees for Incomplete Reasoners 761

Table 3. Completeness degrees for Jena Mini/Micro

Datasets Q4 Q6 Q7 Q8 Q9 Q10 Q12

LUBM 1 .83 .87 .83 .64 .83 0

SyGENiA .68 .003 .04 .058 0 .001 .25

Table 4. Completeness analysis on Galen

Sesame OWLim Jena Mini Minerva

Q1 ∼0 .84 ∼0 .97

Q2 .07 .83 .07 .96

Q3 .01 .84 ∼0 .96

Q4 .01 .77 .01 1

pre-computed by the system. Jena Mini and Micro are guaranteed to be complete
for 7 queries. Surprisingly, Jena Mini behaved exactly like Jena Micro, despite
the fact that, in theory, Jena Mini can handle a larger fragment of OWL; these
differences are, however, not revealed by the structure of the LUBM TBox and
queries. Finally, Sesame is only guaranteed to be complete for 4 of the queries.

Concerning completeness degrees, the values we have obtained using strict
TBs are in line with those from our previous work. However, as discussed in
Section 3.5, a completeness degree value smaller than one should be interpreted
with caution when using strict TBs, especially in the case of very small values.
For instance, consider the values obtained for Jena Mini/Micro given in Table
3. When using strict TBs, the completeness degree for query Q9 is 0%, but the
system is clearly able to correctly compute certain answers for some ABoxes (e.g.,
the LUBM dataset). As already discussed, this is because completeness degree
measures based on strict TBs fail to satisfy properties 2 and 4 of Proposition 2.

Finally, we have considerd a small version of Galen (an expressive ontology
with complex structure used in medical applications) and four queries asking re-
spectively for the instances of the concepts HaemoglobinConcentrationProcedure,
PlateletCountProcedure, LymphocyteCountProcedure, and HollowStructure. Each
of these queries has a UCQ rewriting that can be computed using REQUIEM.
Thus, a strict TB exists for each of them and can be computed in times ranging
from 2 seconds to 1 minute. Our results are summarised in Table 4.

We could not run Jena Max since Galen makes heavy use of existential re-
strictions, which (according to the Jena documentation) might cause problems.
Among the other systems, Minerva exhibited the best behavior: it was the only
one for which completeness could be guaranteed for at least one query, and it
exhibited a high completeness degree for the remaining three queries; this is
because Minerva pre-computes many subsumption relationships between atomic
concepts that depend on existential restrictions, which most other systems do
not handle. Jena Mini and Sesame were surprisingly incomplete, although as
already discussed, values close to zero should be interpreted with caution.

762 G. Stoilos, B. Cuenca Grau, and I. Horrocks

6 Conclusion and Future Work

In this paper we have extended in several important ways our prior work on
completeness evaluation of Semantic Web reasoners. Most importantly, we have
introduced the notion of a strict testing base, studied its formal properties,
and shown that it can be used to identify circumstances in which completeness
guarantees can be provided for reasoners that are incomplete in general. Finally,
we have proposed a practical algorithm for the generation of strict testing bases,
implemented it in the SyGENiA tool, and used SyGENiA to evaluate several
incomplete reasoners, using both the LUBM benchmark, and the Galen ontology.

Our results suggest not only that strict testing bases are relatively easy to com-
pute in practice, but also that completeness guarantees can often be provided for
realistic ontologies and queries. The main limitation of strict testing bases is that
the associated completeness degree fails to satisfy certain desirable properties. An
interesting problem for future work is to try to design a practical algorithm that
can be used to provide an accurate measure of completeness degree.

Acknowledgments. Supported by the EU project SEALS (FP7-ICT-238975).
B. Cuenca Grau is supported by a Royal Society University Research Fellowship.

References

1. Baader, F., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic

Handbook: Theory, implementation and applications. Cambridge Uni. Press, New

York (2002)

2. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable

reasoning and efficient query answering in description logics: The DL-Lite family.

J. of Automated Reasoning 39(3), 385–429 (2007)

3. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the

description logic SHIQ. In: Proc. of IJCAI 2007 (2007)

4. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base

Systems. Journal of Web Semantics 3(2), 158–182 (2005)

5. Hitzler, P., Vrandecic, D.: Resolution-based approximate reasoning for OWL DL.

In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS,

vol. 3729, pp. 383–397. Springer, Heidelberg (2005)

6. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of

OWL DL entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,

K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,

G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp.

267–280. Springer, Heidelberg (2007)

7. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description

logic EL using a relational database system. In: Proc. of IJCAI 2009 (2009)

8. Lutz, C., Wolter, F.: Conservative extensions in the lightweight description logic

EL. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 84–99.

Springer, Heidelberg (2007)

9. Ortiz, M., Calvanese, D., Eiter, T.: Characterizing data complexity for conjunctive

query answering in expressive description logics. In: Proc. of AAAI 2006 (2006)

Completeness Guarantees for Incomplete Reasoners 763

10. Pan, J.Z., Thomas, E.: Approximating OWL-DL Ontologies. In: Proc. of AAAI

2007, pp. 1434–1439 (2007)

11. Pérez-Urbina, H., Horrocks, I., Motik, B.: Efficient query answering for OWL 2.

In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta,

E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 489–504. Springer,

Heidelberg (2009)

12. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.:

Linking data to ontologies. J. Data Semantics 10, 133–173 (2008)

13. Stoilos, G., Cuenca Grau, B., Horrocks, I.: How incomplete is your semantic web

reasoner? In: Proc. of AAAI 2010 (2010)

Signal/Collect: Graph Algorithms for the
(Semantic) Web

Philip Stutz1, Abraham Bernstein1, and William Cohen2

1 DDIS, Department of Informatics, University of Zurich, Zurich, Switzerland
2 Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA

{stutz,bernstein}@ifi.uzh.ch,
wcohen@cs.cmu.edu

Abstract. The Semantic Web graph is growing at an incredible pace,

enabling opportunities to discover new knowledge by interlinking and

analyzing previously unconnected data sets. This confronts researchers

with a conundrum: Whilst the data is available the programming models

that facilitate scalability and the infrastructure to run various algorithms

on the graph are missing.

Some use MapReduce – a good solution for many problems. However,

even some simple iterative graph algorithms do not map nicely to that

programming model requiring programmers to shoehorn their problem

to the MapReduce model.

This paper presents the Signal/Collect programming model for

synchronous and asynchronous graph algorithms. We demonstrate that

this abstraction can capture the essence of many algorithms on graphs

in a concise and elegant way by giving Signal/Collect adaptations of

various relevant algorithms. Furthermore, we built and evaluated a pro-

totype Signal/Collect framework that executes algorithms in our

programming model. We empirically show that this prototype trans-

parently scales and that guiding computations by scoring as well as

asynchronicity can greatly improve the convergence of some example

algorithms. We released the framework under the Apache License 2.0 (at

http://www.ifi.uzh.ch/ddis/research/sc).

1 Introduction

The Semantic Web confronts researchers and practitioners with increasing data
set sizes. One approach to deal with this problem is to hope for the compu-
tational capabilities of computers to grow faster than the datasets relying on
Moore’s Law [1]. This approach is somewhat impractical as it makes current
work rather tedious and relies on the hope that Moore’s Law will be sustainable
and will outpace the growth of data—both of which are unsure prospects. As a
consequence, many researchers have tried to use parallelism to improve the per-
formance of Semantic Web computational tasks. Hereby, they used two avenues
of investigation. On the one hand, they have tried to use distributed computing
programming models such as MapReduce [2] to achieve their goals [3,4]. This,

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 764–780, 2010.
� Springer-Verlag Berlin Heidelberg 2010

http://www.ifi.uzh.ch/ddis/research/sc

Signal/Collect: Graph Algorithms for the (Semantic) Web 765

usually, requires to cumbersomely shoehorn their computation to the program-
ming model. In the case of MapReduce the typed graphs of the Semantic Web
need to be inconveniently mapped to the key/value-pair programming model.
On the other hand, many have used low-level distributed computing primitives
such as message passing interfaces [5], clusters [6], or distributed hash trees [7],
which requires the building of the whole infrastructure for Semantic Web graph
processing from scratch—a tedious task.

This paper proposes a novel and scalable programming model for typed graphs.
The core idea lies in the realization, that most computations on Semantic Web
data involve the passage of (1) some kind of information between the resources
(or vertices) along the properties (or edges) of the RDF graph and (2) some
computation at the vertices of the RDF graph. Specifically, we propose a pro-
gramming model where vertices send signals along the property-defined edges
of a compute graph and then a collect function gathers the incoming signals at
the vertices to perform some computation. Given the two core elements we call
our model Signal/Collect.

This programming model allows an elegant and concise definition of program-
ming tasks on typed graphs that a suitable execution framework can process
transparently in a distributed fashion. In some cases the framework can exploit
asynchronous execution to further speed up the accomplishment of the task. As
such Signal/Collect provides a natural programming model for the Semantic
Web, which can serve as an alternative to paradigms such as MapReduce.

Given the above, the contributions of this paper are the following: First, we in-
troduce an elegant and concise programming model for Semantic Web computing
tasks. We show the elegance and conciseness by presenting the model and provid-
ing a number of typical algorithm examples. Second, we empirically show that
a simple execution framework is able to transparently parallelize Signal/Col-

lect computations and can be simply initialized with SPARQL queries. Third,
we empirically show that the exploitation of asynchronous execution can further
increase the performance and convergence of an already parallel algorithm.

The remainder of the paper is organized as follows: Section 2 formally intro-
duces the programming model and its extensions. Section 3 describes a number
of increasingly complex graph algorithms to illustrate the elegance and concise-
ness of the programming model. We then introduce an actual implementation
and evaluate the scalability, the impact of guiding computations by scoring and
asynchronous computations in Sections 4 and 5. We close with a discussion of
the related and future work.

2 The Signal/Collect Programming Model

The general intuition behind our Signal/Collect programming model is that
all computations are executed on a compute graph, where the vertices are the
computational units that interact by the means of signals that flow along the
edges. All computations in the vertices are accomplished by collecting the in-
coming signals and performing some computation on them employing, possibly,
some vertex-state, and then signaling their neighbors in the compute graph.

766 P. Stutz, A. Bernstein, and W. Cohen

To give a more concrete example: imagine a graph with RDFS classes as ver-
tices and edges from superclasses to subclasses (i.e., rdfs:subClassOf triples).
Every vertex has a set of superclasses as state, which initially only contains it-
self. Now all the superclasses send their own states as signals to their subclasses,
which collect those signals by setting their own new state to the union of the old
state and all signals received. It is easy to imagine how these steps, when repeat-
edly executed, iteratively compute the transitive closure of the rdfs:subClassOf
relationship in the vertex states.

Signal/Collect provides an elegant and concise abstraction for describing
such graph-based algorithms. So far, however, we glossed over a number of im-
portant details which we elaborate in this section. We will introduce a formal
definition of the basic structures of the Signal/Collect programming model
and continue by specifying the synchronous/asynchronous execution modes for
computations as well as extending the basic model to support them.

2.1 A Formal Definition of the Signal/Collect Structures

The basis for any Signal/Collect computation is the compute graph

G = (V,E),

where V is the set of vertices and E the set of edges in G. Every vertex v ∈ V
has the following attributes:

v.id a unique id.
v.state the current vertex state which represents computational intermediate

results.
v.outgoingEdges a list of all edges e ∈ E with e.source = v.
v.signalMap a map with the ids of vertices as keys and signals as values.

Every key represents the id of a neighboring vertex and its value represents
the most recently received signal from that neighbor. We will use the alias
v.signals to refer to the list of values in v.signalMap.

v.uncollectedSignals a list of signals that arrived since the collect operation
was last executed on this vertex.

Every edge e ∈ E has the following attributes:

e.source the source vertex
e.sourceId id of the source vertex
e.targetId id of the target vertex

The default vertex type also defines an abstract collect function and the default
edge type defines an abstract signal function. To specify an algorithm in the
Signal/Collect programming model the default types have to be extended
with implementations of those functions. The collect function calculates a new
vertex state, while the signal function calculates the signal that will be sent
along an edge.

We have now defined the basic structures of the programming model. In order
to completely define a Signal/Collect computation we still need to describe
how to execute computations on them.

Signal/Collect: Graph Algorithms for the (Semantic) Web 767

2.2 The Computation Model and Extensions

In this section we will specify how both synchronous and asynchronous compu-
tations are executed in the Signal/Collect programming model. Also we will
provide extensions to the core model.

We will use the attribute target on edges to denote the target vertex, but
this is only to specify the behavior without having to describe how signals are
relayed.

We first define an additional attribute lastSignalState and two additional
functions on all vertices v ∈ V , which will enable us to describe computations
in Signal/Collect:

v.executeSignalOperation
lastSignalState := state
for all (e ∈ outgoingEdges) do

e.target.uncollectedSignals.append(e.signal)
e.target.signalMap.put(e.sourceId, e.signal)

end for
v.executeCollectOperation

state := collect
uncollectedSignals := Nil

With these functions we are now able to describe a synchronous Signal/Col-

lect execution.

Synchronous Execution. A synchronous computation is specified in Algo-
rithm 1. Its parameter num iterations defines the number of iterations (compu-
tation steps the algorithm is going to perform. Everything inside the inner loops
can be executed in parallel, with a global synchronization between the signal-
ing and collecting phases, which is similar to computations in Pregel [8]. This
parallel programming model is more generally referred to as Bulk Synchronous
Parallel (BSP).

Algorithm 1. Synchronous execution of Signal/Collect

for i ← 1..num iterations do
for all v ∈ V parallel do

v.executeSignalOperation
end for
for all v ∈ V parallel do

v.executeCollectOperation
end for

end for

This specification allows the efficient execution of algorithms, where every
vertex is equally involved in all steps of the computation. However, in many
algorithms only a subset of the vertices is involved in each part of the compu-
tation. In order to be able to define a computational model that enables us to

768 P. Stutz, A. Bernstein, and W. Cohen

guide the computation and give priority to more “important” operations, we will
introduce scoring.

Extension 1: Score-Guided Execution. In order to enable the scoring (or
prioritizing) of signal/collect operations, we need to extend the core structures of
the Signal/Collect programming model. This is why we define two additional
functions on all vertices v ∈ V :

v.scoreSignal : Double
is a function that calculates a number that reflects how important it is
for this vertex to signal. The result of this function is only allowed to
change when the v.state changes. Its default implementation returns 0 if
state = lastSignalState and 1 otherwise. This captures the intuition that
it is desirable to inform the neighbors iff the state has changed since they
were informed last.

v.scoreCollect : Double
is a function that calculates a number that reflects how important it is
for this vertex to collect. The result of this function is only allowed to
change when uncollectedSignals changes. Its default implementation re-
turns uncollectedSignals.size. This captures the intuition that the more
new information is available, the more important it is to update the state.

The default implementations can be overridden with functions that capture the
algorithm-specific notion of “importance” more accurately.

Now that we have extended the basic model with scoring we specify a score-
guided synchronous execution of a Signal/Collect computation in Algo-
rithm 2. There are three parameters that influence when the algorithm stops:

Algorithm 2. Score-guided synchronous execution of Signal/Collect

done := false

while iterations < num iterations and !done do
done := true

iterations := iterations +1

for all v ∈ V parallel do
if (v.signalScore > signal threshold) then

done := false

v.executeSignalOperation
end if

end for
for all v ∈ V parallel do

if (v.collectScore > collect threshold) then
done := false

v.executeCollectOperation
end if

end for
end while

Signal/Collect: Graph Algorithms for the (Semantic) Web 769

signal threshold and collect threshold which set a minimum level of “im-
portance” for operations that get executed and num iterations, which limits
the number of computation steps. This means that the algorithm is guaranteed
to stop, either because the maximum number of iterations is reached or because
there are no operations anymore that score higher than the threshold. If the
second condition is fulfilled, we say that the algorithm has converged.

Asynchronous Execution. We can now also define an asynchronous execution
which gives no guarantees about the order of execution or the ratio of signal/-
collect operations. We referred to the first two execution modes as synchronous
because they guarantee that all vertices are in the same “loop” at the same time.
In a synchronous execution it can never happen that one vertex executes a sig-
nal operation while another vertex is executing a collect operation, because the
switch from one phase to the other is globally synchronized. In an asynchronous
computation, in contrast, no such guarantees exist.

Algorithm 3. Asynchronous execution of Signal/Collect

ops := 0

while [ops < num ops] ∧ [∃v ∈ V ((v.signalScore > signal threshold) ∨
(v.collectScore > collect threshold))] do

S := radomly choose subset of V
for all v ∈S parallel do

Randomly call either

v.executeSignalOperation or v.executeCollectOperation
assuming respective threshold is reached

ops := ops + 1

end for
end while

As shown in Algorithm 3 there are again three parameters that influence when
the asynchronous algorithm stops: signal threshold and
collect threshold, which have the same function as in the synchronous case
and num ops which instead of the number of iterations limits the number of op-
erations executed. Again this guarantees that an asynchronous execution termi-
nates, either because the maximum number of operations is exceeded or because
it converged. The purpose of Algorithm 3 is not to be executed directly, but to
specify what kind of restrictions are guaranteed (by an execution environment)
during asynchronous execution. This freedom is useful, because if an algorithm
no longer has to maintain the execution order of operations then one is able use
different scheduling strategies for those operations.

Extension 2: Scheduled Asynchronous Operations. As an extension to
the asynchronous execution we can define operation schedulers that optimize
certain measures. For example we can define an eager scheduler (see Algorithm
4 in Section 4) that will execute the signal operation of a vertex immediately after

770 P. Stutz, A. Bernstein, and W. Cohen

the collect operation of that same vertex. This allows other vertices to receive
those signals sooner. Another example is a scheduler that gives priority to signals
that have high scores by only executing signals with at least an average score.
Depending on the algorithm this can result in fewer operations being executed,
which, depending on the operation costs, impact of scheduling on convergence
and the cost of scheduling itself, can pay off.

Extension 3: Multiple Vertex/Edge Types. Some algorithms, for example
operating on OWL ontologies in RDF or bipartite factor graphs, require several
kinds of vertices and edges with different associated functions for signaling, col-
lecting, etc. This is why a compute graph can contain vertices and edges that
have different types.

Extension 4: Result Processing. Results are processed by a result
Processing function defined on the default vertex type. The default implemen-
tation does nothing and is meant to be overridden. This function gets executed
on all vertices once the computation has ended.

Extension 5: Weights. The model supports weights on edges and the vertices
keep track of the sum of weights of outgoing edges. It is also possible to extend
the default edge/vertex type with labels or whatever additional attributes or
functions should be required.

Extension 6: Conditional Edges & Computation Phases. Edges can be
extended to only send a signal when certain conditions have been met. A possible
condition is that a source vertex has received a convergence signal from an
aggregation vertex, which can be used to trigger a next computation phase in
the target vertices. Another use for this feature is to avoid sending the same
signal repeatedly.

Feature: Aggregation. Sometimes it is desirable to aggregate over the state
of multiple vertices to, for example, obtain a global convergence criterium. This
can be easily achieved by introducing an aggregation vertex that receives a signal
from all the vertices it needs to aggregate.

We have now specified the structures and execution model of the Signal/Col-

lect programming model. In the next section we show the usefulness of this
programming model by giving implementations for various algorithms.

3 Algorithms in Signal/Collect

We argue that the Signal/Collect programming model is a useful abstraction.
There are many important algorithms that can be expressed in a concise and
elegant way, which proves that this abstraction captures the essence of many
computations on graphs indeed.

Signal/Collect: Graph Algorithms for the (Semantic) Web 771

We demonstrate these characteristics of the Signal/Collect programming
model by giving examples (written in Scala-like1 pseudocode, where the initial-
ization of class variables is passed in parentheses) of several interesting algo-
rithms expressed in Signal/Collect. Note that not all algorithms work with
all execution modes. Vertex coloring for example does not converge without
score-guidance.

Single-source shortest path. Here the vertex states represent the shortest
currently known path from the path-source, edge weights are used to represent
distance. The signals represent the total path length of the shortest currently
known path from the path-source to e.target that passes through e. In the
Semantic Web context this algorithm can be used to compute the Rada shortest
path distance along subclass vertices, which is sometimes used to denote the
similarity between two classes.

class Location(id: Any, initalState: Int) extends Vertex {

def collect: Integer = min(state, min(uncollectedSignals))

}

class Path(sourceId: Any, targetId: Any) extends Edge {

def signal: Integer = source.state+weight

}

RDFS subclass inference. A vertex represents an RDFS class. The vertex
state represents the set of currently known superclasses of the given vertex. As
the edges just signal the set of currently known superclasses of the class repre-
sented by the source vertex, one can simply use the predefined StateForwarder
edge, which has the signal function: def signal = source.state. The compute
graph can be built with edges from vertices representing super-classes to vertices
representing sub-classes, which can easily be done with a SPARQL query (see
full PageRank example code in Figure 1, Section 4).

class RdfsClass(id: String, initialState=Set(iri)) extends Vertex {

def collect: Set[String] = state ∪
⋃

s∈uncollectedSignals

s

}

Vertex coloring. The following algorithm solves the vertex coloring problem by
assigning to each vertex a random color. The vertices keep switching to different
random colors wherever conflicts with neighbors remain. The predefined State-
Forwarder edges are used again to signal the color of a vertex to its neighbors.

class Colored(id: Any, initialState=randomColor) extends Vertex {

def collect: Int = {

1 http://www.scala-lang.org/

http://www.scala-lang.org/

772 P. Stutz, A. Bernstein, and W. Cohen

if (signals.contains(state)) randomColorExcept(state) else state

}

}

PageRank [9]. The vertex state represents the current pagerank of a vertex.
The signals represent the rank transferred from e.source to e.target.

class Document(id: Any, initialState=0.15) extends Vertex {

def collect: Double = 0.15+0.85*
∑

s∈v.signalMap.values

s

}

class Citation(sourceId: Any, targetId: Any) extends Edge {

def signal: Double = weight∗source.state
source.sumOfOutWeights

}

Loopy Belief Propagation [10]. Loopy belief propagation subsumes infer-
encing on Relational Probabilistic Models. These can be used to combine logical
and probabilistic inference on Semantic Web data—a highly desirable goal.

Because of space constraints we just convey the intuition: A factor graph can
be defined in Signal/Collect with two vertex types Factor and Variable and
edge types FactorToVariable and VariableToFactor. Loopy belief propagation
is a message passing algorithm on a factor graph where messages are passed
back and forth between factor and variable vertices. Those messages in turn
are calculated from the messages received by the respective factor/variable. In
the simplest adaptation we put the code that computes those messages into the
signal functions of the edges. These functions can directly calculate the new
outgoing signals from the received signals in the signalMap of the source vertex.

All current evidence also indicates (but we have not tried it yet) that Sig-

nal/Collect can straightforwardly implement the general sum-product (GSP)
algorithm [11]. According to Kschischang et al. [11] a wide variety of algorithms,
such as the forward/backward algorithm, the Viterbi algorithm, the iterative
turbo decoding algorithm, Pearls belief propagation algorithm for Bayesian net-
works, the Kalman filter, and certain fast Fourier transform (FFT) algorithms
can be derived as specific instances of the GSP algorithm.

In this subsection we demonstrated that the Signal/Collect programming
model is a useful abstraction by giving examples of several interesting algorithms,
which we were able to express in a concise and elegant way. Note that whilst not
all of them are initially recognizable as typical Semantic Web approaches they
all provide important functionality.

In the next section we are going to evaluate the properties of a prototype of
the Signal/Collect framework which can execute algorithms such as the ones
we just described.

Signal/Collect: Graph Algorithms for the (Semantic) Web 773

4 The Signal/Collect Framework — An Implementation

The Signal/Collect framework provides an execution platform for algorithms
specified according to the Signal/Collect programming model. This is analo-
gous to the Hadoop MapReduce framework which executes algorithms expressed
in the MapReduce programming model. The framework has been implemented in
Scala—a fusion of the object-oriented and functional programming paradigms
running on the Java Virtual Machine. We released the framework under the
Apache License 2.0 (http://www.ifi.uzh.ch/ddis/research/sc).

Parallel Computations: The current implementation of the framework can
parallelize computations exploiting multiple processor cores of one computer and
shared memory for efficient signal passing. To that end we assign the vertices
to worker threads that are each responsible for a part of the graph. We use a
hash function on the vertex ids for the mapping of vertices to workers, edges are
always assigned to the same worker as their source vertex.

We implemented the synchronous computation similar to [8] with a master
that orchestrates the synchronized execution of signal/collect steps for all worker
threads.

Asynchronous Scheduling: In an asynchronous computation every worker
decides on its own which operations to execute. For this purpose every worker
has a scheduler that determines the order in which the signal/collect operations
get executed. We experimented with different schedulers for the signal/collect
operations in the asynchronous case. Every computation in asynchronous mode
starts with one synchronous score-guided signal/collect step, as this improved
performance for the algorithms we analyzed. After that a scheduler takes over.
The “eager” scheduler (Algorithm 4) for example tries to have a vertex signal
as soon as possible after collecting.

Algorithm 4. “Eager” scheduler: tries to signal right after collection
for all v ∈V do

if (v.collectScore > collect threshold) then
v.executeCollectOperation
if (v.signalScore > signal threshold) then

v.executeSignalOperation
end if

end if
end for

We also experimented with other schedulers that, for example, only execute
signal operations that score above or equal to the average signal score (“above
average” scheduler).

Specifying Graphs: The PageRank example. In order to specify compute
graphs one needs to define the necessary elements of the Signal/Collect

programming model. Consider the Signal/Collect implementation of the

774 P. Stutz, A. Bernstein, and W. Cohen

PageRank algorithm optimized with residual scoring on SwetoDblp2 citations
shown in Figure 1. First, the Figure specifies the PageRank algorithm by defining
both the collect and signal functions. Second, the Algorithm object initializes
a score-guided and synchronous compute-graph by iterating over the answers of
a SPARQL query and then executes the algorithm with a signal threshold of 0
using computeGraph.execute(.). Note that this is the executable code and not
simplified pseudocode.

E
xe

cu
ti
o
n

class Document(id: Any) extends Vertex(id, 0.15) {
 def collect = 0.15 + 0.85 * signals[Double].foldLeft(0.0)(_ + _)
 override def processResult = if (state > 5) println(id + ": " + state)
 override def scoreSignal = (state - lastSignalState.getOrElse(0)).abs
}

In
it
ia
liz
at
io
n

A
lg
o
ri
th
m

object Algorithm {
 def executeCitationRank(db: SparqlAccessor) {
 val computeGraph = new ComputeGraph(ScoreGuidedSynchronous)
 val citations = new SparqlTuples(db, "select ?source ?target where {"
 + "?source <http://lsdis.cs.uga.edu/projects/semdis/opus#cites> ?target}")
 citations foreach {
 case (citer, cited) =>
 computeGraph.addVertex[Document](citer)
 computeGraph.addVertex[Document](cited)
 computeGraph.addEdge[Citation](citer, cited)
 }
 computeGraph.execute(signalThreshold = 0)
 }
}

class Citation(citer: Any, cited: Any) extends Edge(citer, cited) {
 override type SourceVertexType = Document
 def signal = source.state * weight / source.sumOfOutWeights
}

Fig. 1. Complete implementation of the PageRank algorithm on citations,

including residual scoring and result processing. Written in Scala and executable as-is

on the framework.

5 Evaluation

Having established the elegance and conciseness of the Signal/Collect pro-
gramming model by example in Sections 3/4 we can now turn to validate the
second and third of our claims: the scalability/transparency of our parallelization
framework and the ability of our programming model to exploit score-guidance
and asynchronous execution to further improve performance.

5.1 Scalability

To establish the ability of the Signal/Collect framework to transparently
scale we evaluated its performance when running the single-source shortest path
algorithm (“above average” score-guided asynchronously) with a varying num-
ber of worker threads on a computer with two quad-core Intel� Xeon� X5570
2 http://knoesis.wright.edu/library/ontologies/swetodblp

http://knoesis.wright.edu/library/ontologies/swetodblp

Signal/Collect: Graph Algorithms for the (Semantic) Web 775

processors (turbo boost & hyper-threading disabled to reduce confounding
effects) and 72 GB RAM.

Figure 2(a) shows the average, fastest and slowest running-times over 10 ex-
ecutions, while Figure 2(b) shows that the performance scaled almost linearly
with the number of worker threads used. Bearing the limitations discussed in
Section 5.4 below we have, hence, established that given the right algorithm and
graph our programming model and framework can provide excellent scalability.

(a) Scaling with additional workers (b) Parallel speedup

Fig. 2. Scalability of Signal/Collect: Single-source shortest path on a randomly

generated graph with a log-normal distribution of out-degrees. The graph had 1 million

vertices, 94 million edges and a longest path of 5. Results of 10 executions for each

number of worker threads.

5.2 Score-Guided Computations

In order to evaluate the impact of guiding computations by scoring and, hence,
establish its usefulness we ran PageRank (as shown in Figure 1) with and without
score-guiding (residual scoring, signal threshold=0.001) on two different graphs.
The hardware we used for all further evaluations was a MacBook Pro i7 2.66 GHz
(2 cores, hyper-threading enabled) with 8 GB RAM running four worker threads.
Also we used a newer version of the framework than in the previous experiment.
Figures 3 and 4 show the averages over 10 executions for each algorithm and the
error bars indicate min/max values.

These results show that score-guided execution in general performed very well
on the less densely connected citation graph, where some parts of the graph prob-
ably converged faster than others. On the densely connected generated graph the
synchronous version performed comparably to the score-guided algorithms. We
can conclude that given a suitable combination of algorithm and graph, score-
guidance can improve convergence significantly by focusing the computation only
on the parts of the graph that still require it.

5.3 Asynchronous vs. Synchronous

The results in Figure 4 suggest that the performance of the asynchronous version
is highly dependent on the scheduling. For this combination of algorithm and

776 P. Stutz, A. Bernstein, and W. Cohen

Fig. 3. PageRank on SwetoDblp citations, 22 387 vertices (publications) con-

nected by 112 303 edges (citations)

Fig. 4. PageRank on a generated graph with log-normal distributed out-degrees

(drawn from eμ+σN , where μ = 4, σ = 1.3 and N is drawn from a standard normal

distribution). The generated graph has 100 000 vertices connected by 1 284 495 edges.

graph the “eager” asynchronous version performed well and outperformed the
synchronous approach, while the “above average” asynchronous scheduler per-
formed poorly. Hence, more evaluations are required to determine which combi-
nations of scheduling algorithms and graph algorithms/structures work well.

To establish that for some algorithms the asynchronous version outperforms
the synchronous we ran the vertex coloring algorithm introduced in Section 3 on
a generated graph. The results in Table 1 show that the asynchronous version
converges quickly for some problems, where the synchronous version fails to con-
verge (within a reasonable amount of time). Other algorithms share this property:
Koller and Friedman note that some asynchronous loopy belief propagation com-
putations converge where the synchronous computations keep oscillating. They
summarize [12, p. 408]: “In practice an asynchronous message passing scheduling
works significantly better than the synchronous approach. Moreover, even greater
improvements can be obtained by scheduling messages in a guided way.”

5.4 Limitations—Threats to Validity

The main limitation of the evaluations above is that our current Signal/Col-

lect framework only runs on a single machine using shared memory for signal-
ing. It is not entirely clear how the overhead of signaling across the network with

Signal/Collect: Graph Algorithms for the (Semantic) Web 777

Table 1. Vertex coloring on a generated graph with log-normal distributed out-

degrees (drawn from eμ+σN , where μ = 1, σ = 0.2 and N is drawn from a standard

normal distribution). The generated graph has 100 000 vertices connected by 554 118

edges. The table shows the average time (in milliseconds) over 10 executions it took to

find a vertex coloring with the given number of colors. When the algorithm failed to

converge in less than a minute (on average) the time was noted as “did not converge”

(d.n.c).

Number of colors 5 6 7 8 9 10 11

”Eager” Score-Guided Asynchronous d.n.c 12870 1690 1392 1243 1218 1046

Score-Guided Synchronous d.n.c d.n.c d.n.c d.n.c d.n.c 2856 1876

the involved bandwidth and latency implications would impact the scalability
of the prototype system. We do not expect this limitation to have an impact on
the evaluations of score-guided and asynchronous execution.

In terms of scalability, we only ran our experiment on one large graph with
an algorithm that has a very simple interaction pattern and many more vertices
than worker threads and many edges per vertex. For a refined evaluation we need
to investigate the impact of different graph structures and interaction scenarios.

Note also, that we only ran our second experiment on one algorithm. Before
analyzing the impact of all important factors (algorithm, graph, scoring func-
tions/thresholds, number of worker threads, asynchronous operation scheduling,
etc.) it is difficult to make a general statement about the trade-offs involved with
regard to guided vs. unguided and synchronous vs. asynchronous computations.

6 Related Work

Many general programming models for distributed computing have been pre-
sented. Most notable is the MapReduce [2] programming model, which is based
on parallel operations on sets of key-value pairs. The Hadoop MapReduce frame-
work3 has been used by [3,4] for scalable RDFS/OWL reasoning. The big disad-
vantage of the MapReduce model is that it is based on key-value pairs requiring
a translation of Semantic Web tasks to this abstraction. Also, the programming
model was not designed with iterated executions in mind and if it is used itera-
tively, the model is limited to synchronous execution.

Most closely related to our programming model is Pregel [8]: a system devel-
oped by Google for large-scale graph processing. It has been shown to scale to
graphs with billions of vertices/edges via distribution to thousands of commodity
PCs. Its limitations are that it only handles synchronous computations, can only
support graphs with one kind of vertex sharing a single “compute” function, and
edges are not first class citizens. As we have seen in our evaluation, score-guided
asynchronous computations are essential for some graph computations. Pregel’s
limitation to one vertex type makes the implementation of algorithms employing
multiple kinds of vertices rather tedious.
3 http://hadoop.apache.org/mapreduce

http://hadoop.apache.org/mapreduce

778 P. Stutz, A. Bernstein, and W. Cohen

The concurrency model of the asynchronous Signal/Collect computation
was inspired by the actor formalism [13], in which many processor objects take
part in a computation and can only influence each other via messaging. This
bears a lot of similarity to vertices in Signal/Collect, which do local compu-
tations and can only influence each other via signaling.

We did not find any other programming models specialized for parallel it-
erated computation on typed graphs (such as the Semantic Web). However, in
addition to the use of generic distributed computing frameworks many have im-
plemented their own distributed systems for Semantic Web tasks [6,7]. Weaver
and Hendler [5], e.g., present an RDFS closure using MPI—a low-level message
passing interface. Oren et al. [14] have implemented a distributed reasoner using
their own low-level primitives. We believe that most of these solutions could
profit from our generic framework.

7 Limitations, Future Work and Conclusions

In order to master the onslaught of data the Semantic Web is in dire need of
distributed computation paradigms. Current paradigms either have the problem
that their programming model does not lend itself naturally to the typed graph
based Semantic Web computation tasks or provide only low-level functionality
requiring the tedious implementation of the whole functionality for every algo-
rithm. This paper presented a novel, distributed, and scalable computing model
for typed graphs called Signal/Collect. We showed a framework that can be
used to elegantly and concisely specify and execute a number of computations
that are typical for the Semantic Web fully incorporating Semantic Web tech-
niques such as SPARQL (to initialize the graph). We also showed that the pro-
gramming model allows for scalable implementations given suitable algorithms
and graphs. Lastly, we showed that the support for asynchronous execution of
graph algorithms enables the convergence for some algorithms that will not con-
verge in the synchronous case.

Whilst these results are remarkable Signal/Collect is still at its beginning.
First, we need to find the limitations of the programming model. Although it
is suitable for computations on graphs it is, obviously, not quite as suitable for
computations on lists. Second, we need to extend the framework for distribution
and explore heuristics for the distribution of vertices in the compute graph to
compute nodes. This is a non-trivial problem as signals transmitted across the
network will incur significant latencies compared to signals transmitted in a
shared memory setting. Consequently, the algorithms need to be robust against
signal latency variance. Third, for the use outside research we need to build a
framework that provides typical middle-ware services (such as distributed file-
system access). We plan to investigate each of these areas in the future.

The Semantic Web is growing and so are the needs for processing its RDF-
based data. Many have approached the call for processing these large-sized RDF
graph data sets. Researchers have developed stores (or data bases) that scale
to disk, have explored various means for computing the logical closure, and

Signal/Collect: Graph Algorithms for the (Semantic) Web 779

built large-scale systems. In order for large-scale processing of these data to go
main-stream we need elegant programming models that allow for the concise for-
mulation of a large amount of Semantic Web tasks. Signal/Collect is such a
programming model that, we believe, can serve the function as a general purpose
Semantic Web infrastructure. As such, it has the potential to bring distributed
computing transparently to the Semantic Web and become a major building
block for future Semantic Web applications.

Acknowledgemement. We would like to thank Stefan Schurgast for using early
prototypes of the framework and providing valuable feedback on its usage.

References

1. Moore, G.E.: Cramming more components onto integrated circuits. Electron-

ics 38(8) (1965)

2. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.

In: Proceedings of the 6th Conference on Symposium on Opearting Systems Design

& Implementation, OSDI 2004, Berkeley, CA, USA, USENIX Association, p. 10

(2004)

3. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable distributed reason-

ing using mapreduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,

Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,

pp. 634–649. Springer, Heidelberg (2009)

4. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.E.: Owl reasoning

with webpie: Calculating the closure of 100 billion triples. In: Aroyo, L., Antoniou,

G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.)

ESWC 2010. LNCS, vol. 6088, pp. 213–227. Springer, Heidelberg (2010)

5. Weaver, J., Hendler, J.: Parallel materialization of the finite rdfs closure for hun-

dreds of millions of triples. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum,

L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,

pp. 682–697. Springer, Heidelberg (2009)

6. Harth, A., Umbrich, J., Hogan, A., Decker, S.: Yars2: A federated repository for

querying graph structured data from the web. In: Aberer, K., Choi, K.-S., Noy,

N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D.,

Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC

2007. LNCS, vol. 4825, pp. 211–224. Springer, Heidelberg (2007)

7. Aberer, K., Cudré-Mauroux, P., Hauswirth, M., Pelt, T.V.: Gridvine: Building

internet-scale semantic overlay networks. In: McIlraith, S.A., Plexousakis, D., van

Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 107–121. Springer, Heidel-

berg (2004)

8. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Cza-

jkowski, G.: Pregel: a system for large-scale graph processing. In: Elmagarmid,

A.K., Agrawal, D. (eds.) SIGMOD Conference, pp. 135–146. ACM, New York

(2010)

9. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:

Bringing order to the Web. Technical report, Stanford Digital Library Technologies

Project (1998)

10. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science

and Statistics), 1st edn. Springer, Heidelberg (October 2007)

780 P. Stutz, A. Bernstein, and W. Cohen

11. Kschischang, F., Frey, B., Loeliger, H.: Factor graphs and the sum-product algo-

rithm. IEEE Transactions on Information Theory 47(2), 498–519 (2001)

12. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-

niques. MIT Press, Cambridge (January 2009)

13. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for ar-

tificial intelligence. In: Proceedings of the 3rd International Joint Conference on

Artificial intelligence, IJCAI 1973, pp. 235–245. Morgan Kaufmann Publishers Inc.,

San Francisco (1973)

14. Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., van Harmelen, F.:

Marvin: Distributed reasoning over large-scale semantic web data. Web Seman-

tics: Science, Services and Agents on the World Wide Web 7(4), 305–316 (2009);

Semantic Web challenge 2008

Summary Models for Routing Keywords to
Linked Data Sources

Thanh Tran, Lei Zhang, and Rudi Studer

Institute AIFB, Karlsruhe Institute of Technology, Germany

{dtr,lzh,studer}@kit.edu

Abstract. The proliferation of linked data on the Web paves the way

to a new generation of applications that exploit heterogeneous data from

different sources. However, because this Web of data is large and contin-

uously evolving, it is non-trivial to identify the relevant link data sources

and to express some given information needs as structured queries against

these sources. In this work, we allow users to express needs in terms of

simple keywords. Given the keywords, we define the problem of finding

the relevant sources as the one of keyword query routing. As a solu-

tion, we present a family of summary models, which compactly repre-

sents the Web of linked data and allows to quickly find relevant sources.

The proposed models capture information at different levels, represent-

ing summaries of varying granularity. They represent different trade-offs

between effectiveness and efficiency. We provide a theoretical analysis

of these trade-offs and also, verify them in experiments carried out in a

real-world setting using more than 150 publicly available datasets.

1 Introduction

The Web is no longer only a collection of textual documents but also a Web of
linked data. One prominent project which largely contributes to this development
is the Linking Open Data project. Collectively, linked data comprises hundreds
of sources containing over 13.1 billions RDF triples, which are connected by 142
millions links (November 2009, http://linkeddata.org/).

This development offers new opportunities for addressing complex information
needs. Instead of documents, complex results ranging over different sources of
linked data can be returned to Web users. To exploit this, users can specify
complex queries using structured query languages such as SPARQL1. While
such a query language is powerful, it requires users to know not only the query
syntax and semantics but also the schema as well as the underlying data.

Problem. So far, these requirements have proven to be a large burden. Given
the amount of linked data is large and continuously evolving, it is inherently
difficult to know what is in there (i.e., the data and the schema) and to formu-
late the corresponding structured queries for addressing some given information
needs. Hence, it is desirable to have a mechanism, which allows users to express
1 http://www.w3.org/TR/rdf-sparql-query/

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 781–797, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://linkeddata.org/
http://www.w3.org/TR/rdf-sparql-query/

782 T. Tran, L. Zhang, and R. Studer

information needs in their own words. Another aspect of dealing with the large
Web of linked data is scalability. Processing the needs against the entire Web
might be too time consuming and not needed, especially when users are inter-
ested in and want to choose some particular sources of information. Processing
against a relevant subset of linked data identified by the user is more scalable
and possibly the only practical solution for the large Web of linked data. Con-
cerning these problems, the question we deal with is given the needs expressed
by users as sets of keywords, are there corresponding answers in linked data and
what combination of data sources shall be used to produce them?.

Existing Work. In the Semantic Web community, there exists a large body
of work on processing queries against RDF and linked data. Given structured
queries, RDF stores such as RDF-3X [5] and YAR2 [3] can compute structured
results and in the context of linked data query processing [2], can also identify
relevant sources. They however do not apply when the information need is pro-
vided as keywords. While keyword search is supported by some Semantic Web
search engines such as SWSE [1] and Sig.ma [9], they are limited to processing
simple list of keywords that refer to entities. This work deals with complex infor-
mation needs, which may involve complex results providing information about
sets of entities and relations between them, i.e., result tuples that may form
graphs. Further, the aim is not to directly compute results but to quickly iden-
tify and let users and system focus on the combination of sources that produce
non-empty results.

To this end, work in information retrieval (IR) and database research dealing
with keyword search constitutes the starting point. Keyword search has become
the most widely used IR paradigm on the Web, enabling lay users without knowl-
edge of the schema and data to search for a priori unknown documents. This
kind of schema-agnostic search is not limited to textual data but can also be used
for querying structured data. In database research, solutions have been proposed
that allow for the retrieval of the most relevant, possibly graph-structured re-
sults [4,6,7]. Unlike IR approaches, which consider only keywords for finding
matching documents (we called keyword coverage), database approaches also
use structure information. Possible join sequences in the data are explored to
ensure that matching result tuples not only “contain” the keywords but also,
represent meaningful connections between these keywords (called structure cov-
erage). Given the data graph in Fig. 1a and the query “Stanford, John, Award”
for instance, an IR-style approach might return none (AND-semantics) or all the
entities uni1, per2, ... in the graph because they all partially match the keyword
query (OR-semantics) whereas the DB approach would return the subgraph that
connects uni1 with per2, per1, per3 and prize1. However, computing complex re-
sults in this way is expensive, especially in a multi-source setting like the linked
data Web. Authors of state-of-the-art work explicitly considered only the setting
where “number of databases that can be dealt with is up to the tens” [6].

Thus, database researchers started to look at a problem we consider most re-
lated, namely the of finding the single most relevant databases [11,10]. They rec-
ognized the fact that the computational complexity resulting from a large-scale

Summary Models for Routing Keywords to Linked Data Sources 783

setting can be partially addressed when allowing users to choose and retrieve
answers from only some particular databases. Given a set of keywords, the goal
is to find and rank the single most relevant databases that contain the answers.
Following this line, we propose specific solutions for the linked data context.
The differences to this work called database selection will be discussed in detail
throughout the paper.

Contributions. While existing approaches select single databases, we deal with
the Web of linked data where results are not bounded by a single source but
may encompass several linked data sources. Instead of computing the most rele-
vant single sources, we extend the work in [11,10] to compute the most relevant
combinations of sources. The goal is to produce keyword routing plans which
capture combinations of sources that contain non-empty results. This novel key-
word query routing problem raises additional challenges. Most notably, query
keywords may be covered by several linked sources, resulting in a large search
space. The size of this search space grow exponentially with the number of
sources and their associated links. Targeting this problem of scale, we report the
following contributions in this paper:

– We propose solutions for keyword query routing which enable the exploita-
tion of linked data. Without putting any burden on the users, this kind
of approaches help to find relevant sources containing complex answers to
ad-hoc information needs in the large and evolving Web of linked data.

– We propose a multi-level relationship graph to capture the search space of the
keyword query routing problem. Based on this, we elaborate on a family of
summary models, which compactly represent the Web of linked data. These
models capture information at different levels, representing summaries of
different granularities. In a theoretical analysis, we prove that finer grained
models can improve the result quality. This however, comes at the expense
of higher complexity. Thus, the models represent different trade-offs between
effectiveness and efficiency.

– In the experiments, we investigate these trade-offs by analyzing the pre-
cision and the processing time needed using different models. The experi-
ments were carried out in a real-world setting using more than 150 publicly
available datasets, and an open-source implementation we made available at
http://code.google.com/p/rdfstores/. Results of using summaries are
promising. While the “best” one shall be determined w.r.t a concrete appli-
cation, there is one model that seems to represent the most practical trade-
off: the D-KERG model, which summarizes elements according to sources,
produces results in less than 10ms, out of which every second is a valid one.

Outline. Section 2 introduces the readers to the concepts of linked data and key-
word query routing. The search space and its summary models are presented in
Section 3. Strategies for computing routing plans using these models and ramifi-
cations for result quality and performance are discussed in Section 4. Evaluation
results are provided in Section 5 before we conclude in Section 6.

http://code.google.com/p/rdfstores/

784 T. Tran, L. Zhang, and R. Studer

2 Preliminary

In this section, we discuss the underlying data and problem.

2.1 Web of Linked Data

Linked data can be conceived as a set of data graphs, each represents a particular
source. As a working definition, we present a simple graph-based model of linked
data called the Web graph. In that model, we distinguish between the Web data
graph representing relationships between individual data elements, the Web
schema graph, which captures information about group of elements, and the
Web source graph that contains information at the level of data sources.

Definition 1 (Web Graph). The Web of linked data is modeled as a Web
Graph W∗(G∗,M∗,N ∗, E∗) where G∗ denotes the set of data graphs, M∗ is
the set of edges also called mappings or links, which establish connections be-
tween elements of two different graphs, N ∗ is the set of all nodes and E∗ is
the set of all edges, i.e., G∗ = {g1(N ∗

1, E∗1), g2(N ∗
2, E∗2),. . . , gn(N ∗

n, E∗n)},
N ∗ =

⋃n
i=1N ∗

i, M∗ = {m(ni, nj)|ni ∈ N ∗
i, nj ∈ N ∗

j ,N ∗
i,N ∗

j ⊆ N ∗, i = j}
and E∗ =

⋃n
i=1 E∗i ∪M∗. We use W(G,M,N , E) to distinguish the Web data

graph from the Web schema graphW ′(G′,M′,N ′, E ′) and the Web source graph
W ′′(N ′′, E ′′). We have n ∈ N representing a data element, n′ ∈ N ′ stands for a
group of elements, and n′′ ∈ N ′′ denotes a data source. For simplicity, we use
n ∈ n′ to denote that an element n belongs to the group n′ and n, n′ ∈ n′′ to
assert the element n and the group n′ belongs to the source n′′. Elements in N
and N ′ are labeled, i.e., there is a function label : N ∪N ′ !→ 2V that associates
an element with a set of labels drawn from V, the vocabulary of words. We have
m(n′

i, n
′
j) ∈ M′ iff there is m(ni, nj) ∈ M where ni ∈ n′

i and nj ∈ n′
j. Analo-

gously, e(n′′
i , n

′′
j) ∈ E ′′ iff there is m(n′

i, n
′
j) ∈ M′ where n′

i ∈ n′′
i and n′

j ∈ n′′
j .

We use the Web graph W∗(G∗,M∗,N ∗, E∗) to refer to the union set of elements
of the Web data graph, the Web schema graph and the Web source graph.

This is a simple model of linked data that omits details not necessary for this
work. In particular, data elements may correspond to RDF resources, blank
nodes or literals. Schema elements might stand for classes or data types. For
keyword query routing, these distinctions are not relevant but the fact that the
elements can be recognized via their labels. While different kinds of links can be
established, the ones frequently found are sameAs links, which denote that two
RDF resources or two classes are the same. There is also no need to distinguish
the types of links. Only the fact that sources can be reached via some kinds of
link m ∈M∗ matters. An example of this model is illustrated in Figs. 1.

2.2 Keyword Query Routing

Given the need expressed as keywords, we aim to identify sources containing
results. A DB-style result to a keyword query is typically a Steiner graph, which
in the linked data scenario, may combine data from several sources:

Summary Models for Routing Keywords to Linked Data Sources 785

Fig. 1. (a) A Web data graph (left) and (b) its Web schema graph (right)

Definition 2 (Keyword Query Result). A Web data graph W(G,M,N , E)
contains a result for a query K = {k1, k2, . . . , k|K|} if there is subgraph also
called Steiner graph WK(GK,MK,NK, EK), where for all ki ∈ K, there is an
nM
K ∈ NM

K ⊆ NK ⊆ N with a label that matches ki (NM
K is called the set of

keyword elements), and there is path ni 	 nj for all ni, nj ∈ NM
K . In a d-max

Steiner graph, the length of the paths ni 	 nj is d-max or less.

Typical for keyword search is the pragmatic assumption that users are only inter-
ested in compact results such that a threshold dmax can be used to constrain the
connections to be considered. Thus, instead of general Steiner graphs, keyword
search solutions proposed so far and the work presented here consider d-max
Steiner graphs as results. For our example query “Stanford, John, Award”, we
have NM

K = {uni1, per2, per1, per3, prize1}; the subgraph that connects these
keyword elements is a 1-Steiner graph because the maximum distance between
keyword elements is 1; and since there are no other elements between keyword
elements, NM

K = NK.

Definition 3 (Keyword Routing Plan). Given the Web data graph W =
(G,M,N , E) and a set of keyword queries SK, the mapping μ : SK !→ 2G that
associates a query with a set of data graphs is called a keyword routing plan
RP. A plan RP = {g1, . . . , g|K|} for a query K ∈ SK is considered valid when
there is a combination of data graphs gi ∈ RP that produces non-empty results
for K.

A valid plan in our example is RP = {Freebase,DBLP,DBPedia}. Note that
validity does not imply relevance. That is, a valid plan ensures that results can
be produced, but for the users, these results may differ in relevance. A proper
account of relevance and the ranking of routing plans based on the relevance of
their results go beyond the scope of this paper, which is focused on efficiency
aspects of computing valid plans. We assume a fixed ranking function, which
equally applies to all summaries discussed in this paper. We refer the interested
readers to our report [8], which discusses relevance and the ranking function.

786 T. Tran, L. Zhang, and R. Studer

3 Summary Models for Keyword Query Routing

We now discuss the most related work in detail and introduce the models we use
for keyword query routing.

3.1 Keyword Query Routing Search Space

For database selection, the search space is composed of a set of databases. The
idea behind previous work [11,10] is to model every database using a keyword
relationship model. A keyword relationship 〈ki, kj〉 is a pair of keywords, which
can be connected via a sequence of join operations, i.e., there exists two data
elements ni 	 nj that contain ki and kj . For instance, 〈Stanford,Award〉 is a
keyword relationship because there is a path between FB:uni1 and DBP :prize1
in Fig. 1a. The state-of-the-art [10] employs a keyword relationship graph (KRG),
with keywords being nodes and keyword relationships being edges. A database
is relevant when all pairs of query keywords match some edges of the KRG.

In our example, we have the keyword pairs (Stanford, John),
(Stanford,Award) and (John,Award). It is clear that when using key-
word relationships in every source to form separate KRGs, none of them
matches all the 3 keyword pairs. To match the pair (Stanford,Award), rela-
tionships across sources from Freebase to DBPedia have to be incorporated
into in the model. In keyword query routing, the search space does not comprise
single databases but constitutes one integrated Web data graph. Instead of
computing a set of summary models, this problem requires the construction of
one integrated summary model. It shall allow for answers capturing relationships
across sources. Thus, not only single sources but also combinations of sources
might be relevant. Another aspect not addressed by current work is efficiency.
Instead of capturing all possible relationships, we aim to use a more compact
representations of the search space.

We conceive the search space as a multi-level inter-relationship graph (MIRG),
as illustrated in Fig. 2. For clarity, this figure does not show the labels and also,
omits some data and schema elements of our running example. At the lowest
level, it models relationships between keywords. In the upper-levels, there is the
Web data graph W followed by W ′ and W ′′. Elements and relationships at the
upper level represent sets of elements and sets of relationships at the lower level:
a node at the source level represents a set of schema elements; every schema node
represents a set of data elements; and every data element n is composed of a set
of keywords K. We say k ∈ K is mentioned in n, denoted mentionedIn(k, n).

3.2 Summary Models

Thus, MIRG provides different perspectives on the search space and different
views on the data. The lower levels capture more fine-grained views of the data.
In order to extend the KRG [10] to deal with keyword query routing, the keyword
level and keyword relationships at this level that also capture links between
sources have to be taken into account. We will now discuss such an extension of

Summary Models for Routing Keywords to Linked Data Sources 787

University

McCarthy

Stanford Award

John

Turing

SOURCE

ELEMENT

SCHEMA

KEYWORD

typetype type

mentionedIn mentionedIn mentionedIn mentionedIn mentionedIn

containedIn

typetype

containedIn

Fig. 2. Multi-level inter-relationship graph

the KRG, and introduce further summary models that capture relationships at
different levels of granularity. Examples of the models are shown in Fig. 3.

Definition 4 (Keyword Sets). The keyword sets (KS) of a Web graph
W∗(G∗,M∗,N ∗, E∗) is WKS

K = NKS
K , where NKS

K stands for all the keywords
that are mentioned in elements of the graphs G∗. Every nKS

k ∈ NKS
K is in fact a

tuple (k,Gk) that represents a keyword k and the graphs Gk ⊂ G∗ mentioning k.

This is a simple model that contains only keywords but no relationships between
them. It captures all nodes at the keyword level of MIRG.

Definition 5 (Element-level KERG). An element-level keyword-element
relationship graph (E-KERG) of a Web graph W∗(G∗,M∗,N ∗, E∗) is a tu-
ple WK = (NK, EK). Every keyword-element nK ∈ NK is a tuple (n, g,K)
where n ∈ N is the corresponding element node it represents, g ∈ G ⊂ G∗

is the data graph containing n, and K is the set of all keywords that are
mentioned in n, i.e., K = {k|mentionedIn(k, n)}. There is a relationship
eK = (〈ki, nKi(ni, gi,Ki)〉, 〈kj , nKj(nj , gj ,Kj)〉) ∈ EK, iff mentionedIn(ki, ni),
mentionedIn(kj, nj), and ni 	 nj.

This can be seen as an extension of the KRG because it captures all keywords
and relationships. As shown in Fig. 3a, it also represents the data elements in
which the keywords are mentioned. Hence, we use “keyword-element” to make
clear that a node captures both the data element and its keywords. This model
captures elements at the keyword and element level of the MIRG.

Definition 6 (Schema-level KERG). A schema-level keyword-element rela-
tionship graph (S-KERG) is a tuple W ′

K = (N ′
K, E ′K). It captures elements

788 T. Tran, L. Zhang, and R. Studer

Fig. 3. (a)The 1-E-KERG (top left), (b) the 1-S-KERG (bottom left), (c) the 1-D-

KERG (top right) and the (d) KS for our running example.

at the keyword and schema level of the MIRG. For a keyword-element node
n′
K(n′, g,K) ∈ N ′

K, we have n′ ∈ N ′ being a schema-level node, g ∈ G′ ⊂ G∗

is the schema graph containing n′, and K comprises keywords that are men-
tioned in the elements n ∈ n′, i.e., K = {k|n ∈ n′,mentionedIn(k, n)}.
There is a relationship e′K = (〈ki, n

′
Ki

(n′
i, gi,Ki)〉, 〈kj , n

′
Kj

(n′
j , gj,Kj)〉) ∈ E ′K,

iff mentionedIn(ki, ni), mentionedIn(kj, nj), ni ∈ n′
i, nj ∈ n′

j, and ni 	 nj.

As opposed to E-KERG, this one is indeed a summary model because it clus-
ters two element-level relationships (〈ki, nKi(ni, gi,Ki)〉, 〈kj , nKj (nj , gj ,Kj)〉)
and (〈kv, nKv(nv, gv,Kv)〉, 〈kw, nKw(nw, gw,Kw)〉) to one schema-level rela-
tionship when they capture the same keyword relationships (i.e., ki =
kv and kj = kw) between the same classes (i.e, n′

i = n′
v and n′

j =
n′

w). For instance, (〈John, (Person,DBPedia,{Smith, John,McCarthy})〉,
〈Award, (Prize,DBPedia, {Music, Award, Turing})〉) in Fig. 3b is an
aggregation of the relationships (〈John, (per4,DBPedia,{Smith, John})〉,
〈Award, (prize2,DBPedia,{Music, Award})〉) and (〈John,(per3,DBPedia,
{McCarthy, John})〉,〈Award,(prize1,DBPedia,{Turing,Award})〉) in Fig. 3a.
These E-KERG relationships are aggregated because they represent the same re-
lationships (John,Award) between the classes (Person, Prize).

Definition 7 (Source-level KERG). A source-level keyword-element rela-
tionship graph (D-KERG) is a tuple W ′′

K = (N ′′
K, E ′′K). For a keyword-element

node n′′
K(n′′,K) ∈ N ′′

K, we have n′′ ∈ N ′′ being a source-level node, i.e., a graph,
and K is the set of all keywords that are mentioned in elements of the graph n′′.
There is a relationship e′′K = (〈ki, n

′′
Ki

(n′′
i ,Ki)〉, kj , n

′′
Kj

(n′′
j ,Kj)〉) ∈ E ′′K, iff ki is

mentioned in some elements ni of the graph n′′
i , kj mentioned in some elements

nj of the graph n′′
j , and ni 	 nj.

Summary Models for Routing Keywords to Linked Data Sources 789

Thus, this model is conceptually similar to S-KERG but aggregate elements at
the level of sources. It combines schema-level relationships when they capture the
same keyword relationships between the same sources. As shown in Fig. 3b, there
are only distinct keyword relationships in S-KERG. Thus, no further aggregation
is needed in this case.

As keyword search results, we consider d-max Steiner graphs where paths be-
tween keyword elements are of length dmax or less. Accordingly, we actually employ
a dmax-KERG versions where the maximum distance to be considered between
ni and nj is dmax (ni 	dmax nj). Note that the summaries illustrated in Figs.
3 resemble the structure of the underlying data and schema graphs because rela-
tionships in the summaries in fact correspond to graph edges, i.e., only paths with
length 1 are considered such that dmax = 1 (1-KERG models). Clearly, a higher
value for dmax would result in a blowup of paths. In particular, the E-KERG model
would contain much more relationships than there are edges in the data graph.
Hence, summarizing relationships is essential for efficient keyword query routing.

3.3 Computing Summary Models

The computation of dmax-KERG models is performed in three steps. Firstly,
the relationships between entities are computed for various distances within a
threshold dmax. Then, connected term pairs are extracted based on the computed
relationships. They are used for computing E-KERG. For computing S-KERG
and D-KERG, term pairs are further grouped according to schema and source-
level elements, respectively.

All information are finally stored in an specialized index that enables the
lookup of keyword-element relationships, given a pair of keywords. In par-
ticular, for (ki, kj), we have (1) IE−KERG returning the relationships eK =
(〈ki, nKi〉, 〈kj , nKj〉), (2) IS−KERG returning e′K = (〈ki, n

′
Ki
〉, 〈kj , n

′
Kj
〉) and (3)

ID−KERG returning e′′K = (〈ki, n
′′
Ki
〉, 〈kj , n

′′
Kj
〉). Also, we construct a KS model

based on keywords extracted from the data graphs and build the index (4) IKS ,
which returns the elements nKS

k , given the keyword k.

4 Computing Keyword Routing Plans

For computing valid query routing plans, the idea behind existing work on key-
word search [4,6,7] and database selection [11,10] applies: we search for Steiner
graphs to discover sources that produce answers. Recall that a Steiner graph
is basically a graph that connects keyword elements. The existence of such a
graph indicates that there are answers to the keyword query. In our approach,
the search is not performed directly on the Web data graph but on the summary
models. Specifically, we search for Steiner graphs in either (1) Wks

K , (2) WK, (3)
W ′

K or (4) W ′′
K. Since KS (1) do not capture relationships, the results that can

be derived from it do not completely adhere to the notion of Steiner graph. Also
for the KERG models (2-4), Steiner graphs that can be computed are different
in granularities. We will now elaborate on strategies for searching Steiner graphs
using different summaries.

790 T. Tran, L. Zhang, and R. Studer

4.1 Routing Plan Computation Using KS

Using the KS model and its index, routing plans can be computed as follows:

– Given the keyword query K = {k1, k2, . . . , ki}, retrieve the elements
nKS

ki
(ki,Gki) for every ki ∈ K using the IKS index.

– For every nKS
ki

retrieved before, put the sources Gki that is associated with
nKS

ki
into the set of relevant sources GK.

– Compute all |K|-combinations for the set GK.
– Output these combinations as the set of routing plans SRP .

Intuitively speaking, this procedure simply retrieves sources that cover the key-
words and in order to cover all |K| query keywords, it uses |K|-combinations of
these sources as routing plans.

4.2 Routing Plan Computation Using KERGs

Since KERG models capture relationships, we retrieve data for pair of keywords
(ki, kj), instead of single keywords. Retrieved data are joined to compute Steiner
graphs. It is necessary to ensure that all keyword elements in a Steiner graph
are pairwise connected through a path of length dmax or less. Thus, it is nec-
essary to join all possible keyword pairs. Given a query with three keywords
k1, k2, k3 for instance, we need to retrieve keyword elements and perform the
joins (k1, k2) ��k2 (k2, k3) ��k3,k1 (k1, k3) to verify that (1) the elements n2
matching k2 are connected with both n1 that match k1 and n3 that match k3
over a distance of dmax or less (by means of the first join ((k1, k2) ��k2 (k2, k3)
on k2), (2) the elements n3 just found to be connected with n2, are also con-
nected with n1 (by means of the second join on k3), and (3) the n1 found to be
connected with n2, is also connected with n3 (by means of the third join on k1).
The complete procedure can be summarized as follows:

– Given the keyword query K = {k1, k2, . . . , ki}, compute all 2-combinations
of K to get all possible keyword pairs, resulting in a total of N = |K|(|K| −
1)/2 different pairs. Subsequently, retrieve relationships for these pairs and
perform joins according to a random2 or alternatively, optimized order.

– In particular, inputs for every keyword pair are obtained using the underlying
index. Given (k1, k2) and IE−KERG for instance, relationships of the form
eK = (〈k1, nK1(n1, g1,K1)〉, 〈k2, nK2(n2, g2,K2)〉) are retrieved. Joining this
with the next inputs retrieved for (k2, k3) for instance, ensures that n2 is
connected with both n1 and n3.

– Processing the entire join sequence of keyword pairs yields a set of graphs.
Depending on the underlying summary model, these graphs capture Steiner
graphs at the source, schema or element level.

2 For this work, we omit the aspect of join order optimization and simply generate a

random order for joining keyword pairs.

Summary Models for Routing Keywords to Linked Data Sources 791

– Some resulting graphs might be indistinguishable in terms of the sources and
connections between sources they represent. Keep only one of those because
the other does not contain additional information.

– Extract sources associated with elements of the graphs to obtain combination
of sources, i.e., the routing plans RP .

This procedure is the same for all KERGs. Given that the underlying data
contain results, we provide proofs in the report [8] to show that applying this
procedure on the S-KERG summary will yield routing plans, i.e., when Steiner
graphs can be found for K in the data, then there will be corresponding graphs
that can be found in the summary. Thus, given K, the procedure will output a
non-empty set of RP if W contains a result for K. In the same manner, it is
straightforward to show that E-KERG and D-KERG can provide this guarantee.
However, we show formally in [8] that the other way around is not true, i.e.,
the graphs derived from the summary are not necessarily valid such that there
might be no corresponding Steiner graph in the data. Thus, the fact that a
routing plan can be derived from the summaries does not guarantee there exists
a result for K. This formal result is interesting because it makes clear that while
the use of summaries might be required to obtain the desired performance, it
has consequences on the result validity. In particular, it implies that the more
compact the summary, the more likely that plans computed from it are not valid.
We will now discuss the intuition behind this formal result.

4.3 Result Validity

A graph derived from a summary does not always have a corresponding Steiner
graph in the data, unless we use E-KERG. This model makes a difference be-
cause it in fact captures all nodes and paths in the Web data graph. In particular,
when a dsum

max-E-KERG is used, ddata
max-Steiner graphs are keyword query answers,

and dsum
max = ddata

max, then E-KERG captures all the paths in the data that are rel-
evant for Steiner graph computation, i.e., all paths up to length dsum

max. For every
path ni 	dmax nj in the data, there is a one-to-one corresponding relationship
eK = (〈ki, nKi(ni, gi,Ki)〉, 〈kj , nKj (nj , gj,Kj)〉) in E-KERG. This one-to-one
correspondence of paths constitutes the base argument, which can be extended
inductively to show that there is also a one-to-one correspondence of graphs such
that a graph derived from E-KERG always has a corresponding Steiner graph
in the data, and vice versa.

A S-KERG however, combines two edges e(ni1 , nj1) and e(ni2 , nj2)
(paths) in the data graph to one single relationship e′K =
(〈ki, n

′
Ki

(n′
i, gi,Ki)〉, 〈kj , n

′
Kj

(n′
j , gj,Kj)〉) iff ni1 , ni2 ∈ n′

i, nj1 , nj2 ∈ n′
j ,

ni1 , ni2 mention ki, and nj1 , nj2 mention kj . Thus, for an element in the data,
there is always a counterpart in S-KERG, which is however a grouping of
elements, constituting a one-to-many correspondence. Through this grouping,
we loose detailed information about elements in the group. That is, for the
pair of keyword (ki, kj), S-KERG captures the corresponding connection from
the element group n′

i to n′
j but can no longer tell for instance, whether this

792 T. Tran, L. Zhang, and R. Studer

represents a connection between ni1 to nj1 or ni1 to nj2 . In other words, it can
be inferred from S-KERG that ni1 is connected with nj2 even though such a
connection does not exist in the data. With respect to our example, a graph can
be derived from S-KERG that covers the keywords Stanford, John and Music.
It is clear from Fig. 3a that there is no Steiner graph corresponding to this.
The problem here is that S-KERG does not distinguish the John McCarthy
connected with “Stanford” from the John Smith connected with “Music”. Thus,
it incorrectly infers the connection “Stanford” and “Music”.

The same arguments can be applied to D-KERG. The difference is that
the grouping in D-KERG is even more coarse-grained. Two edges e(ni1 , nj1)
e(ni2 , nj2) are aggregated to one single relationship in D-KERG, when ni1 and
ni2 mention the same keyword ki, nj1 and nj2 mention kj , and they belong to the
same data source, i.e., ni1 , ni2 ∈ n′′

i and nj1 , nj2 ∈ n′′
j . Note that with S-KERG,

the incorrect inference mentioned before would not occur when John Smith is in
a different class than John McCarthy. They would not have been aggregated to
one single node in S-KERG. This however happens with D-KERG. No matter
the classes they belong to, these elements would be aggregated to one single node
when they are in the same data source. With respect to our example, D-KERG
makes one additional false inference: it does not distinguish the person “John”
connected with “Stanford” from yet another “John” connected with “Music”,
which is an article (see that John as an article and John as a person in Fig. 3b
is aggregated to one element in Fig. 3c).

Compared to the KERG models, KS does not capture relationships between
keywords at all. Given two keywords ki, kj , the sources which cover these key-
words can be derived from KS, e.g. the graphs n′′

i , n
′′
j . However, this does not

imply there exist two elements ni ∈ n′′
i and nj ∈ n′′

j , and ni 	 nj . More gener-
ally, a combination of sources derived from KS covers all keywords but does not
ensure that elements matching these keywords are connected, and thus, does not
necessarily correspond to a Steiner graph.

In summary, the percentage of valid plans for D-KERG is less or equal that
for S-KERG, which in turn is less or equal that for E-KERG. When dsum

max value
of E-KERG is sufficiently large to cover all paths relevant for Steiner graph
computation, i.e., dsum

max = ddata
max, this percentage is 100 for E-KERG. By chance,

the percentage of valid plans for KS might be higher than that for the summary
models but in general, is expected to be less (because relationships between
elements are not considered).

4.4 Complexity

Using KS, complexity is O(input|K|−1
max), where inputmax denotes the largest

number of elements that can be obtained for a keyword ki. This is because for
computing the combination of sources for a 2-keyword query K = {ki, kj}, we
have to union every element retrieved for ki with every other retrieved for kj

(Cartesian product), thus requiring |inputi|×|inputj| time and space. For queries
with |K| keywords, we have to combine elements retrieved for one keyword ki

Summary Models for Routing Keywords to Linked Data Sources 793

with elements retrieved for every other keyword kj ∈ K, kj = ki. Thus, |K| − 1
combinations of input sets of maximum size inputmax have to be performed.

With KERG models, retrieved elements have to be joined. While in practice,
this operation can be performed more efficiently using special indexes and join
implementation, this operation in worst case, also requires |inputi| × |inputj|
time and space. Inputs are retrieved not for every ki but for all possible pair
of keywords. This results in complexity O(inputC(K,2)−1

max), where inputmax here
refers to the largest number of relationships that can be obtained for a keyword
pair, and C(K, 2) is the number of 2-combinations of the set K, denoting the
number of joins that have to be processed.

While the number of operations are same for all KERG models, the size
of inputmax varies. Clearly, the more coarse-grained the grouping, i.e., the
higher the number of elements aggregated to one group at the summary level,
the smaller will be inputmax. In particular, we have inputmax(D-KERG) ≤
inputmax(S-KERG) ≤ inputmax(E-KERG). How much smaller a KERG sum-
mary is compared to one other depends on the data. In the extreme case where
every data element mentions only distinct terms, i.e., does not share terms with
one other, all KERG models are actually equal in size.

While KERG models require joins on input sets to be performed C(K, 2)− 1
times, KS only needs |K|−1 combinations of input sets. However, the advantage
of using KERG is that the size of the input sets that have to be processed is
expected to be smaller. This is not only due to the effect of summarization. For
all KERG models, inputs are retrieved for keyword pair while for KS, inputs
are retrieved using single keywords. Two keywords are more selective than one
keyword, thus more likely result in smaller input.

5 Evaluation

We implemented our approach for keyword query routing in Java using JDK
1.6 on top of MySQL 5.1. The experiments were conducted on a commodity
PC with 2.5GHz Intel Core, 4GB of RAM and 500GB HDD SATA II 7200rpm,
running on Windows 7. As discussed, while KRG [10] is limited to the problem
of database selection, E-KERG can be seen as an extension that captures the
ideas behind KRG. KS represents a naive baseline. The goal was to assess the
performance of routing plan computation and the validity of results that can be
achieved with S-KERG and D-KERG, compared to the baselines E-KERG and
KS.

5.1 Data Preprocessing

We employed a chunk of RDF data part of the Billion Triple Challenge dataset3.
It contains about 10M RDF triples that are from 154 different data sources,
linked via 500K mappings.

3 http://vmlion25.deri.ie/index.html

http://vmlion25.deri.ie/index.html

794 T. Tran, L. Zhang, and R. Studer

In total, the number of distinct terms extracted from all sources was 121,434.
We measured the number of elements in KS and the number of KERG relation-
ships. This was done for different settings of dmax to investigate the changes
in the number of relationships as longer distances are considered. KS contains
804,528 elements. For dmax = 0, 1, 2, 3, 4, E-KERG contains 2.4M, 7.7M, 364M,
616M and 889M relationships, S-KERG contains 1.8M, 5.1M, 144M, 215M and
312M relationships and D-KERG contains 1.7M, 4.7M, 141M, 203M and 279M
relationships. Clearly, there were more relationships in KERG models than ele-
ments in KS. The number of relationships increases with dmax. The increase was
particularly sharp (one order of magnitude) when changing dmax from 1 to 2.

Similar results were obtained for index size. The E-KERG index was the
largest. As an average over different settings for dmax, S-KERG was about 36%,
D-KERG was about 32% and KS was less than 1% the size of E-KERG. For
dmax = 2 for instance, the sizes for E-KERG, S-KERG, D-KERG and KS were
8694MB, 3438MB, 3279MB and 22 MB, respectively.

Larger indexes required more building times. The times for building the S-
KERG indexes for dmax = 4, 3, 2, 1 for instance, were 846 Min, 583 Min, 339
Min and 27 Min, respectively.

Our report [8] provides a breakdown of the results into 6 categories of datasets
that vary in size. According to these results, both index size and building time
increased with the size of the dataset. However, there is no strict correlation
because there are cases where relatively small datasets resulted in large indexes.
Rather, structural density was the dominant factor. Large index and high build-
ing costs were obtained for datasets which exhibit large number of links to other
datasets, and contain nodes with large in- and outdegree.

5.2 Query Processing

For the experiment, we used a set of 30 keyword queries. All queries are valid,
i.e., they produce non-empty keyword answers (4-Steiner graphs to be precise).
For each query, at least two data sources contribute to the answers. One example
submitted by participants is “Rudi AIFB ISWC2008”. The sources containing
partial answers to this are uni-karlsruhe.de and semanticweb.org. Other exam-
ples are “Town River America”, “Markus Denny Semantic Wikis” and “Beijing
Conference Database 2007”. All queries can be found in our report [8].

Validity of Routing Plans. To investigate the validity, we use precision at k
(P@k) to measure the percentage of plans that are valid out of the top-k plans
returned by the system. For instance, P@10 is 1 when every plan in the top-10
list returned by the system, produces at least one keyword query result.

Fig. 4a shows P@5 for the settings dmax = 0, 1, 2, 3, 4. These values represent
the average computed for all 30 queries. Using E-KERG, precision was up to
100 percent, i.e., for dsum

max = ddata
max = 4. With P@5 being always above 0.6 when

dmax > 1, S-KERG and D-KERG also achieved relatively good results. P@5
for KS was only 6%. Clearly, dmax had a positive effect. More valid plans were

Summary Models for Routing Keywords to Linked Data Sources 795

0,4

0,5

0,6

0,7

0,8

0,9

1,0

P@
5

E KERG

D KERG

S KERG

KS

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 1 2 3 4

P@
5

dmax

E KERG

D KERG

S KERG

KS

(a) P@k at various dmax

0,4

0,5

0,6

0,7

0,8

0,9

1,0

P@
5

E KERG D KERG

S KERG KS

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

2 3 4 5

P@
5

|K|

E KERG D KERG

S KERG KS

(b) P@k at various |K|

0 3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

P

E KERG D KERG
S KERG KS

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1 2 3 4 5 6 7 8 9 10

P

k

E KERG D KERG
S KERG KS

(c) P at various k

Fig. 4. Validity of the plans measured using P@k

computed when a higher value was used for dmax. However, using dmax = 4
instead of 3 did not yield clear improvement.

Fig. 4b shows the effect of query length |K|. Quite clear, queries with larger
number of keywords resulted in lower precision. It dropped as low as 0.23 when
using D-KERG for queries with 5 keywords.

Fig. 4c shows that as more results from the system were taken into account
(larger k), precision decreased. The decrease is small for k values larger than 3.

Experimental results thus correspond to the analysis we presented before: KS
is the model that produces only very few valid plans. This result was improved
by one order of magnitude when relationships between keywords were used.
The more fine-grained a model captures the relationships, the larger was the
percentage of valid plans. Even a summary at the level of sources produced
reasonably high quality results, i.e., every second plan was a valid one.

Performance. Performance is measured as the average response time for com-
puting routing plans. Fig. 5a shows the performance for queries at various set-
tings using different values for dmax. This parameter had no effect on the KS’s
results but clearly influenced the performance achieved with KERG summaries.
Times increased with higher values for dmax. While this increase was sharp for
E-KERG and S-KERG, time performance of D-KERG was relatively stable. In
particular, time required by D-KERG was no more than 10ms on average.

Expectedly, more time was needed when the number of query keywords in-
creases, as illustrated in Fig. 5b. It seems that all the other models had poor
performance w.r.t complex queries but D-KERG. In particular, E-KERG is no
longer affordable for queries with more than 2 keywords because it needed more
than 100s to produce results. While the times shown are the actual times ob-
tained for the other models, only the lower bound was shown for E-KERG. This
is because we applied a timeout of 6min. Fig. 5c shows the exact times ob-
tained for E-KERG and the queries that had to be aborted due to timeout. For
dmax = 4 for instance, 1 out of every three queries was aborted.

Less expected, Fig. 5a+ 5b show that KS did not achieve good performance.
It needed more than 30s on average, up to 100s for queries with 5 keywords.

This can be explained using the theoretical result achieved in the previous sec-
tion. Namely, the poor performance of KS indicates that the number of elements
(see inputmax in Section 4.4) retrieved for single keywords must have been much

796 T. Tran, L. Zhang, and R. Studer

1000

10000

100000

1000000

ce
ss

in
g

Ti
m

e
(m

s)

E KERG

S KERG

D KERG

1

10

100

1000

10000

100000

1000000

0 1 2 3 4

Q
ue

ry
Pr

oc
es

si
ng

Ti
m

e
(m

s)

dmax

E KERG

S KERG

D KERG

KS

(a) Times at var. dmax

1000

10000

100000

1000000

ce
ss

in
g

Ti
m

e
(m

s)

E KERG

S KERG

D KERG

KS

1

10

100

1000

10000

100000

1000000

2 3 4 5

Q
ue

ry
Pr

oc
es

si
ng

Ti
m

e
(m

s)

|K|

E KERG

S KERG

D KERG

KS

(b) Times at var. |K|

1000

10000

100000

1000000

ce
ss

in
g

Ti
m

e
E

kE
RG

(m
s)

dmax=0

dmax=1

dmax=2

dmax=3

1

10

100

1000

10000

100000

1000000

Q1 Q3 Q5 Q7 Q9 Q11 Q13 Q15 Q17 Q19 Q21 Q23 Q25 Q27 Q29

Q
ue

ry
Pr

oc
es

si
ng

Ti
m

e
E

kE
RG

(m
s)

Queries

dmax=0

dmax=1

dmax=2

dmax=3

dmax=4

(c) Times for E-KERG at var. dmax

Fig. 5. Processing times

larger than for two keywords. In other words, keyword pairs proved to be the
much more selective queries. Considering relationships between keywords thus
did not only improve result validity but also performance.

6 Conclusion

We presented a solution to the novel problem of keyword query routing. It helps
users without knowledge of the evolving linked data and schema to find combina-
tion of sources that contain answers corresponding to their needs. This solution
also partially addresses the aspect of efficiency as queries can be then evaluated
against the relevant sources identified by the user, instead of using the entire
Web of linked data.

We have proposed a family of summary models. Through theoretical and
experimental analysis, we showed that it is important to capture keyword rela-
tionships. Compared to the KS model representing the naive baseline that stores
only single keywords, the KERG models relying on relationships could produce
a much larger number of valid results, i.e., improved precision by more than one
order of magnitude when compared to the naive baseline represented by KS. Fur-
ther, finding out which relationships are covered as opposed to single keywords
resulted in less intermediate results to be processed. Thus, using relationships
also has a positive effect on performance.

We could also show that summarizing relationships is essential for dealing with
the large-scale linked data Web. Using a fine-grained E-KERG model represent-
ing an extension of work in database selection that captures all relationships
in the data, precision was up to 100%, but response time was too high. While
specific requirements shall determine what is the “best” model, it seems that
D-KERG which summarizes at the level of sources represents the most practical
trade-off. It produced results in less than 10ms out of which every second one
was valid.

As future work, we will combine the proposed work on query routing with
query processing to obtain a scalable procedure for computing relevant sources
as well as retrieving the final answers from them.

Summary Models for Routing Keywords to Linked Data Sources 797

Acknowledgements. Research reported in this paper was supported by the
German Federal Ministry of Education and Research (BMBF) under the iGreen
(grant 01A08005) and CollabCloud project (grant 01IS0937A-E).

References

1. Harth, A., Hogan, A., Delbru, R., Umbrich, J., O’Riain, S., Decker, S.: Swse:

Answers before links! In: Semantic Web Challenge (2007)

2. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.-U., Umbrich, J.: Data

summaries for on-demand queries over linked data. In: WWW, pp. 411–420 (2010)

3. Harth, A., Umbrich, J., Hogan, A., Decker, S.: Yars2: A federated repository for

querying graph structured data from the web. In: Aberer, K., Choi, K.-S., Noy,

N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D.,

Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC

2007. LNCS, vol. 4825, pp. 211–224. Springer, Heidelberg (2007)

4. Liu, F., Yu, C.T., Meng, W., Chowdhury, A.: Effective keyword search in relational

databases. In: SIGMOD Conference, pp. 563–574 (2006)

5. Neumann, T., Weikum, G.: The rdf-3x engine for scalable management of rdf data.

VLDB J. 19(1), 91–113 (2010)

6. Sayyadian, M., LeKhac, H., Doan, A., Gravano, L.: Efficient keyword search across

heterogeneous relational databases. In: ICDE, pp. 346–355 (2007)

7. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query can-

didates for efficient keyword search on graph-shaped (rdf) data. In: ICDE, pp.

405–416 (2009)

8. Tran, T., Zhang, L.: Keyword query routing. Technical report, Karlsruhe Institute

of Technology (2010),

http://www.aifb.uni-karlsruhe.de/WBS/dtr/papers/kqueryrouting.pdf

9. Tummarello, G., Cyganiak, R., Catasta, M., Danielczyk, S., Delbru, R., Decker,

S.: Sig.ma: live views on the web of data. In: WWW, pp. 1301–1304 (2010)

10. Vu, Q.H., Ooi, B.C., Papadias, D., Tung, A.K.H.: A graph method for keyword-

based selection of the top-k databases. In: SIGMOD Conference, pp. 915–926 (2008)

11. Yu, B., Li, G., Sollins, K.R., Tung, A.K.H.: Effective keyword-based selection of

relational databases. In: SIGMOD Conference, pp. 139–150 (2007)

http://www.aifb.uni-karlsruhe.de/WBS/dtr/papers/kqueryrouting.pdf

Declarative Semantics for the Rule Interchange
Format Production Rule Dialect

Carlos Viegas Damásio, José Júlio Alferes, and João Leite

CENTRIA, Dep. Informática, FCT/Universidade Nova de Lisboa, Portugal

{cd,jja,jleite}@di.fct.unl.pt

Abstract. The Rule Interchange Format Production Rule Dialect (RIF-

PRD) is a W3C Recommendation to define production rules for the

Semantic Web, whose semantics is defined operationally via labeled ter-

minal transition systems.

In this paper, we introduce a declarative logical characterization of the

full default semantics of RIF-PRD based on Answer Set Programming

(ASP), including matching, conflict resolution and acting.

Our proposal to the semantics of RIF-PRD enjoys several features.

Being based on ASP, it enables a straightforward integration with Logic

Programming rule based technology, namely for reasoning and acting

with ontologies. Then, its full declarative logical character facilitates

the investigation of formal properties of RIF-PRD itself. Furthermore, it

turns out that our characterization based on ASP is flexible enough so

that new conflict resolution semantics for RIF-PRD can easily be defined

and encoded. Finally, it immediately serves as the declarative specifica-

tion of an implementation, whose prototype we developed.

1 Introduction

In this paper we present a sound and complete declarative semantical char-
acterization of the Production Rule Dialect of the Rule Interchange Format
(RIF-PRD) [6] – including matching, conflict resolution and acting – based on
Answer-Set Programming [11], accompanied by a prototypical implementation.
While contributing to a better understanding of RIF-PRD, our proposal brings
greater flexibility to RIF-PRD as it facilitates integration with other rule based
technologies and is easily extensible e.g. with other conflict resolution strategies.

The W3C Rule Interchange Format (RIF) exists to enable interoperability
among rule languages in general, allowing rules written for one application to
be published, shared, and re-used in other applications and other rule engines.
Whereas the core dialect of RIF [3] is designed to support the interchange of
definite Horn rules without function symbols (“Datalog”), the Production Rule
Dialect of RIF (RIF-PRD) [6] extends it to deal with production rules, and is
currently a W3C Recommendation. Production rules can be seen as condition-
action rules, and are particularly useful to specify behaviors and support the
separation of business logic from business objects. According to RIF-PRD, the
condition part of production rules is like the condition part of logic rules (as

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 798–813, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Declarative Semantics for the RIF-PRD 799

covered by RIF-Core and its basic logic dialect extension, RIF-BLD [4]). Actions
can assert facts, modify facts, retract facts, and have other side-effects, unlike
conclusions of logic rules, which contain only a logical statement.

The following are examples of production rules taken from [6], about the
status of customers, and corresponding discounts at checkout:
–Gold rule: “Silver” customers with shopping carts worth at least $2,000 are
awarded the “Gold” status.
–Discount rule: “Silver” and “Gold” customers are awarded a 5% discount on
the total worth of their shopping cart.
–New customer and widget rule: “New” customers who buy a widget are
awarded a 10% discount on the total worth of their shopping carts, but loose
any voucher they may have been awarded.
–Unknown status rule: a message must be printed, identifying any cus-
tomer whose status is unknown (that is, neither “New”, “Bronze”, “Silver”
nor “Gold”), and the customer must be assigned the status “New”.
RIF-PRD specifies an abstract syntax and associates the abstract constructs
with normative semantics and a normative XML concrete syntax. It also specifies
a presentation syntax that provides a more succinct representation of production
rules. For example, the third rule above can be represented as follows [6]:

Forall ?cust such that (And(?cust # ex1:Customer

?cust[status->"New"]))

(If Exists ?cart ?item (And (?customer[shoppingCart->?cart]

?cart[containsItem->?item]

?item # ex1:Widget)))

Then Do((?s ?cust[shoppingCart->?s])

(?val ?s[value->?val])

(?voucher ?cust[voucher->?voucher])

Retract(?cust[voucher->?voucher]) Retract(?voucher)

Modify(?s[value->func:numeric-multiply(?val 0.90)]))))

The RIF-PRD operational semantics for production rules and rule sets is based
on labeled terminal transition systems [14] where state transitions result from
executing the action part of instantiated rules, according to the loop: (Match):
the rules are instantiated based on the definition of the rule conditions and the
current state of the data source; (Conflict resolution): a decision algorithm, of-
ten called the conflict resolution strategy, is applied to select which rule instance
will be executed; (Act): the state of the data source is changed, by executing
the selected rule instance’s actions. If a terminal state has not been reached, the
control loops back to the first step (Match).

An important part of the control loop that governs the semantics concerns
the conflict resolution strategy used to select one of the several available rules
for execution. Strategies are denoted by keywords (of type rif:IRI), that are
attached to rule sets permitting that production rule producers and consumers
agree on a different semantics. RIF-PRD also prescribes a normative strategy,
forward chaining denoted by rif:forwardChaining, which eliminates rules from
a conflict set (a set of applicable rules) based on the following ordered criteria:

800 C. Viegas Damásio, J.J. Alferes, and J. Leite

1.Refraction: eliminate rules that were already applied and whose conditions
for application haven’t changed since;
2.Priority: eliminate rules with lower priority;
3.Recency: eliminate rules that have been applicable for longer.
At the end of the application of these criteria, RIF-PRD prescribes that one of
the remaining rules be chosen “in some way” (e.g. randomly).

The RIF-PRD W3C Recommendation is a crucial and significant step in stan-
dardizing the syntax and semantics of production rules, enabling their interop-
erability among rule languages in general, and not limited to the Web. However,
there are some issues that require further attention, and some steps that need
to be taken, in order to provide a better understanding and greater flexibility of
RIF-PRD. One important component missing in [6] is a purely logical declarative
semantics for RIF-PRD, which would serve as a counterpart to the operational
semantics provided. Such a semantics would provide a better understanding and
further insights into RIF-PRD, while facilitating the integration of production
rules with declarative rules and Logic Programming rule based technology in
general, useful e.g. for reasoning and acting with ontologies.

Another issue that needs further attention is that of providing alternatives to
the default conflict resolution strategy. Though RIF-PRD foresees the specifica-
tion of different conflict resolution strategies, there is no indication in [6] as to
how such alternative strategies could be specified in a way that facilitates their
shared understanding by document producers and consumers. We believe that
any such strategy, including the one normatively specified by RIF-PRD, should
be defined by a set of rules which precisely defines its meaning. In this case,
the keyword for the strategy could be a URI for the set of rules which precisely
defines the strategy.

In this paper, we present a sound and complete declarative semantical charac-
terization of RIF-PRD – including matching, conflict resolution and acting – based
on Answer-Set Programming (ASP) [11], that addresses these outstanding issues.
As suggested by RIF-PRD designers, we assume RIF-Core strong safeness [3] in
order to guarantee finite grounding in forward chaining mode.

ASP is a form of declarative programming, similar in syntax to traditional
logic programming and close in semantics to non-monotonic logic, that is now
widely recognized as a valuable tool for knowledge representation and reasoning.
On the one hand, ASP is fully declarative in the sense that the program spec-
ifications resemble the problem specifications, the semantics is very intuitive,
and there is extensive theoretical work that facilitates proving several properties
of answer-set programs. On the other hand, ASP is very expressive, allowing
for compact representations of all NP and coNP problems, or even more com-
plex ones if disjunctive programs are used [7]. Other important characteristics
of ASP include the use of default negation to allow for reasoning with assump-
tions and incomplete knowledge, as well as the existence of a number of well
studied extensions such as preferences, revision, abduction, etc. More relevant
for this work, are the recent results on MKNF+ hybrid knowledge bases where
a faithful, tight and flexible integration of description logics and rules has been

Declarative Semantics for the RIF-PRD 801

achieved [13]. The integration of rules with ontologies is also possible with dl-
programs [8]. Finally, there are very efficient ASP solvers available (e.g. Clingo,
DLV, Smodels, etc.).

Our proposal enjoys the following features that address the mentioned issues:

– Being based on ASP, it paves the way to a direct integration with Logic
Programming based technology, viz. for reasoning and acting with ontologies;

– Being fully declarative, it facilitates the investigation of further formal prop-
erties of RIF-PRD, e.g. using the approach followed in [5];

– Enjoying the expressivity of ASP, it is flexible enough so that conflict reso-
lution strategies for RIF-PRD are easily defined and encodable;

– Benefiting from the existence of efficient ASP solvers, it can be directly and
efficiently implemented – which we have done using iClingo [9], and is, to
the best of our knowledge, the first implementation of RIF-PRD.

The remainder of this paper is structured as follows: in Sect. 2 we review ASP;
in Sect. 3 we present a sound and complete translation of RIF-PRD rule sets
into ASP; in Sect. 4 we address the specification of conflict resolution strategies
in ASP, illustrating with a sound and complete encoding of forward chaining,
the RIF-PRD normative strategy; we conclude in Sect. 5.

2 Answer Set Programming

In this Section we start by describing the syntax and semantics of Answer-set
Programming, before we introduce iClingo[9], an incremental answer-set system.
We follow the presentation in [9], with some modifications.

The language is built from a set F of constants and function symbols (in-
cluding the natural numbers and usual arithmetic operators), a set V of variable
symbols, and a set P of predicate symbols (including the binary equality and
inequality predicates, and ordinary arithmetic comparison operators). We as-
sume that V contains a distinguished parameter symbol κ (varying over natural
numbers). The set T of terms is the smallest set containing V and all expressions
of the form f (t1, ..., tn), where f ∈ F and ti ∈ T for 0 ≤ i ≤ n. The set A of
atoms contains all expressions of the form p (t1, ..., tn), where p ∈ P and ti ∈ T
for 1 ≤ i ≤ n. A literal is an atom a or its (default) negation not a. Given a set
L of literals, let L+ = {a ∈ A | a ∈ L} and L− = {a ∈ A | not a ∈ L}. A logic
program overA is a set of rules of the form a0 ← a1, ..., am,not am+1, ...,not an,
where ai ∈ A for 0 ≤ i ≤ n. For a rule r of the form above, let head (r) = a
be the head of r, body (r) = {a1, ..., am,not am+1, ...,not an} be the body of
r, and atom (r) = {head (r)} ∪ body (r)+ ∪ body (r)−. For a program P , let
head (P) = {head (r) | r ∈ P} and atom (P) =

⋃
r∈Patom (r). Given an ex-

pression e ∈ T ∪ A, let var (e) denote the set of all variables occurring in
e, and given a rule r, let var (r) denote the set of all variables occurring in
r. Expression e ∈ T ∪ A is ground if var (e) = ∅. The ground instantiation
of a program P is defined as grd (P) = {rθ | r ∈ P, θ : var (r) → U} where
U = {t ∈ T | var (t) = ∅}. Similarly, grd (A) = {a ∈ A | var (a) = ∅}.

802 C. Viegas Damásio, J.J. Alferes, and J. Leite

A set M ⊆ grd (A) is an answer set [11,1] of a program P over A if M
is the ⊆-smallest model of {head (r) ← body (r)+ | r ∈ grd (P) , body (r)− ∩
M = ∅}. The set of answer-sets of P is denoted by AS (P). The semantics
of integrity constraints is given through a program transformation where an
integrity constraint of the form← a1, ..., am,not am+1, ...,not an is a shorthand
for the rule a′ ← a1, ..., am,not am+1, ...,not an,not a′ where a′ is a new atom.

2.1 iClingo

Real-world applications such as planning or model checking include a parameter
encoding the size of a solution. In Answer Set Programming (ASP), essentially a
propositional formalism, this is dealt with by considering one problem instance
after another by gradually increasing the bound on the solution size. In most
cases, Answer-Set Programming systems simply produce a ground set of rules
for each problem instance, incurring in a high efficiency cost.

iClingo1 [9] is an incremental ASP (iASP) system where both the grounder
as well as the solver are implemented in a stateful way, interleaving grounding
and solving within incremental computations. Both the grounder and the solver
maintain their previous states while increasing an incremental parameter. At
each incremental step, the grounder just produces ground rules generated from
the current program slice, i.e. generated by instantiating the incremental param-
eter with the current value. Such ground program slices are gradually passed to
the solver that accumulates ground rules and computes answer sets for them.

In the context of iClingo, the concept of a (parametrized) domain description
is introduced, as being a triple 〈B,S [κ] , Q [κ]〉 of logic programs where S [κ]
and Q [κ] contain a (single) parameter κ ranging over the natural numbers.
The base program B describes static knowledge, independent of parameter κ.
Program S [κ] contains knowledge that accumulates with increasing values of
κ. Program Q [κ] contains knowledge that is specific for each value of κ. Given
a domain description Π = 〈B,S [κ] , Q [κ]〉 and an integer i ≥ 1, let P [i] =
B ∪

(⋃
1≤j≤iS [j]

)
∪ Q [i], and AS (Πi) denote AS (P [i]), min (Π) denote the

minimum integer such that AS (Πi) = ∅, and AS (Π) denote AS
(
Πmin(Π)

)
. The

goal is then to determine AS (Π). iClingo accepts domain descriptions Π2 and
computes AS (Π) by incrementally constructing and solving for P [i]. Detailed
information regarding the implementation of iClingo can be found in [9].

1 iClingo is part of Potassco, a set of tools for Answer Set Programming developed at

the University of Potsdam, and available at http://potassco.sourceforge.net
2 Function symbols with non-zero arity may lead to logic programs over an infinite

Herbrand base. To maintain decidability at each iteration, it is important to restrict

the language to fragments for which finite equivalent ground programs are guaran-

teed to exist. Level-restricted (or λ-restricted) logic programs [10] constitute such a

fragment, where finiteness is guaranteed by the requirement that any variable in a

rule be bound to a finite set of ground terms via a predicate not subject to positive

recursion through that rule.

http://potassco.sourceforge.net

Declarative Semantics for the RIF-PRD 803

3 Fact Bases, States, Conditions and Rules

In this Section we synthetically overview some of the main concepts of the Pro-
duction Rule dialect of RIF [6] and provide a mapping of RIF-PRD initial states
(fact base) and rule sets into iASP which is sound and complete wrt. the possible
traces of execution of the rules on the initial state. For now, we do not consider
the inclusion of a conflict resolution strategy – it will be dealt with in Sect. 4.

RIF-PRD defines rules with action heads for performing changes over a set
of facts (i.e. an extensional logic database) dependent on logical conditions over
a logical state derived from this set of facts. The underlying logical language is
constructed from a first-order alphabet.

3.1 Atomic Formulas and Conditions

RIF-PRD defines the notion of term as in ASP, except for the introduction of
the special list term which, for all purposes in the rest of this paper, can be seen
as an ordinary complex term. Terms are used to construct atomic formulas.

Definition 1 (RIF-PRD term and atomic formulas). A term is either an
arbitrary constant c, an arbitrary variable ?V, a lists of ground terms List(g1
...gn), or a (complex) positional terms f(t1 ...tn) formed from a constant f
and a sequence of arbitrary term arguments t1 . . .tn with n ≥ 1.

Given arbitrary terms t, s, and pi, ti where 1 ≤ i ≤ n, atomic formulas
are ordinary atoms (i.e. positional terms), equality of terms (t=s), membership
of object t in class s (t#s), subclass relation (t##s), frames (t[p1->t1 ...
pn->tn]), or externally defined terms (External(t)).

In RIF-PRD, there is no syntactical distinction between positional terms and
ordinary atoms. Equality is used to check if two terms are identical, while mem-
bership atomic formulas t#s are used to represent that the object denoted by
term t belongs to the class denoted by s. A subclass atomic formula t##s ex-
presses that t is a subclass of s. A frame term t[p1->t1 ... pn->tn] roughly
states that the object denoted by term t has for each property pi the value ti.
Externally defined terms are used for representing built-in functions, e.g. to per-
form numerical operations. Condition formulas are to be used in the antecedents
of production rules to define conditions for their applicability, corresponding
syntactically to a fragment of first-order logic without universal quantifiers.

Definition 2 (RIF-PRD condition formulas). Condition formulas are in-
ductively defined from atomic formulas, conjunction And(φ1 ...φn) and dis-
junction Or(φ1 ...φn) of conditional formulas, negation Not(φ) or existential
quantification Exists ?v1 ...?vm (φ), where φ, φ1 . . .φn are condition for-
mulas and ?v1 ...?vm are variables.

3.2 Fact Bases and States

The knowledge dynamics is captured by a set of ground atomic formulas – the
fact base – which changes through the addition and removal of atomic formulas.

804 C. Viegas Damásio, J.J. Alferes, and J. Leite

The execution of a RIF-PRD production rule system starts with an initial fact
base, and proceeds by updating it step by step. At a given step of the execution
κ a fact base will be encoded in iASP by a set of facts of the form fact(ϕ′, κ)
where ϕ′ is the translation of the RIF-PRD ground atomic formula ϕ.

Definition 3 (Translation of atomic formulas). An atomic RIF-PRD for-
mula ϕ is translated into the iASP term ϕ′ as follows:
– A positional atom, an equality or an externally defined term ϕ is mapped

into itself;
– A membership atomic formula t#s is mapped into term isa(t, s);
– A subclass atomic formula t##s is mapped into term sub(t, s);
– A frame atomic formula s[p->o] is mapped into term frame(s, p, o).

This representation assumes that a ground frame t[p1->t1 ... pn->tn] is rep-
resented by the set of facts frame(t, p1, t1), . . . , frame(t, pn, tn). For simplicity
of presentation, externally defined formulas are mapped into themselves. How-
ever, a concrete implementation should implement these resorting to their own
built-ins; this is ignored in the translation.

Definition 4 (Fact bases translation). Consider an initial fact base Φ.

– Program πINIT(Φ) is formed by fact(ϕ, 0), for each ϕ ∈ Φ.
– Program πFLUENT(Φ) is formed by fluent(ϕ), for each formula ϕ that may

occur in a fact base.
– Program πCHANGE[κ] is formed by the rules:

fact(F, κ) ← fluent(F), fact(F, κ − 1),not retract(F,κ − 1).
fact(F, κ) ← fluent(F), assert(F,κ − 1).

πINIT collects the initial fact base which will be updated using the rules in
πCHANGE[κ]. The first rule states that fluents which are not retracted in the pre-
vious step remain in the fact base (inertia), while the second states that fluents
asserted in the previous step will be added. Notice that the things which can be
added or deleted are collected in program πFLUENT. For simplicity, the definition
of predicate fluent/1 is extensional but could also be defined intensionally by
rules. Also note that by RIF-Core strong safeness at each step there may exist
only a finite number of alternatives which can be dealt with in practice. An-
other essential use of predicate fluent/1 is to ground variables in the final iASP
domain description.

Definition 5 (States translation). Program πSTATES[κ] is formed by the rules:

state(F,κ) ← fact(F, κ).
state(F,κ) ← fact(F, 0),not fluent(F).

state(isa(O1, C2), κ) ← fluent(isa(O1, C1)), fluent(sub(C1, C2)),
state(isa(O1, C1), κ), state(sub(C1, C2), κ).

state(sub(C1, C3), κ) ← fluent(sub(C1, C2)), fluent(sub(C2, C3)),
state(sub(C1, C2), κ), state(sub(C2, C3), κ).

The first rule includes in the state of step κ the fact base of κ. The second states
that any non-fluent (static) fact holding at the initial fact base also holds at step
κ. According to RIF-PRD semantics the set of initial facts can be arbitrarily
ground atomic formula but actions are syntactically limited to specific types of

Declarative Semantics for the RIF-PRD 805

formula (e.g. it is impossible to change subclass atomic formulas). The third rule
captures class inheritance while the last one expresses transitivity of the subclass
relationship, imposed to any state by the semantics of RIF-PRD.

Conditions are matched to a given state. However, the case of non-atomic
formulas introduces extra complexity:

Definition 6 (Conditions translation). Let Φ be an arbitrary condition for-
mula and κ an execution step. Define condition iASP formula Φ′ and program
πΦ
COND[κ] inductively as follows:
– If Φ is an atomic formula ϕ then Φ′[κ] = state(ϕ′,κ) and πΦ

COND[κ] = {};
– IfΦ=And(φ1 ...φn) thenΦ′[κ]=(φ′

1, . . . , φ
′
n)andπΦ

COND[κ] =
⋃

1≤i≤n πφi

COND[κ];
– If Φ = Or(φ1 ...φn) then Φ′[κ] = orΦ(X1, . . . , Xm,κ) where ?X1, . . . ?Xm,

are the free variables of Φ and orΦ is a new predicate symbol, and πΦ
COND[κ] =⋃

1≤i≤n

(
πφi

COND[κ] ∪ {orΦ(X1, . . . , Xm,κ)← φ′
i[κ]}

)
;

– If Φ = Exists ?V1 ...?Vn (φ) then Φ′[κ] = existsΦ(X1, . . . , Xm,κ) where
?X1, . . . ?Xm, are the free variables of Φ and existsΦ is a new predicate
symbol, and πΦ

COND[κ] = πφ
COND[κ] ∪ {existsΦ(X1, . . . , Xm,κ)← φ′[κ]};

– If Φ = Not(φ) then Φ′[κ] = not argΦ(X1, . . . , Xm,κ) where ?X1, . . . ?Xm,
are the free variables of Φ and argΦ is a new predicate symbol, and πΦ

COND[κ] =
πφ
COND[κ] ∪ {argΦ(X1, . . . , Xm,κ) ← φ′[κ]};

Basically, this transformation applies Lloyd-Topor’s transformation [12] to ob-
tain the corresponding normal rules capturing the conditional formula, taking
into account what is true in the current step. Mark that both a (conjunctive)
goal Φ′[κ] and a program πΦ

COND[κ] is returned for each condition formula Φ.
Additional details and justification of this process can be found in [1].

3.3 Actions and Rules

The RIF-PRD language defines several atomic actions for updating the fact base,
and these will be used to define the effects of RIF-PRD production rules.

Definition 7 (RIF-PRD atomic actions). An atomic action is a simple con-
struct that represents an atomic transaction.

1. Assert fact: If Φ is a positional atom, a frame or a membership atomic
formula in the RIF-PRD condition language, then Assert(Φ) is an atomic
action.

2. Retract fact: If Φ is a positional atom or a frame in the RIF-PRD condition
language, then Retract(Φ) is an atomic action.

3. Retract all slot values: If o and s are terms in the RIF-PRD condition lan-
guage, then Retract(o s) is an atomic action.

4. Retract object: If t is a term in the RIF-PRD condition language, then
Retract(t) is an atomic action.

5. Execute: if Φ is a positional atom in the RIF-PRD condition language, then
Execute(Φ) is an atomic action.

The arguments of the action are dubbed the target of the action.

806 C. Viegas Damásio, J.J. Alferes, and J. Leite

The effects of RIF-PRD atomic actions are captured by our translation using
the following iASP rules.

Definition 8 (Effects of actions). Program πACTIONS[κ] is:
assert(F,κ) ← action(assert(F),κ).
retract(F,κ) ← action(retract(F),κ).

retract(isa(O,C), κ) ← action(retract object(O), κ), fact(isa(O, C), κ).
retract(frame(O,S, V), κ) ← action(retract object(O), κ), fact(frame(O,S, V), κ).

retract(frame(O,S, V), κ) ← action(retract slots(O, S), κ), fact(frame(O, S, V), κ).

Note that the execute actions do not have an effect in the fact base and should
be interpreted externally. The first two rules of program πACTIONS[κ] apply when
an assert (resp. retract) action occurs at step κ, whose effects in the fact base
have been defined previously in program πCHANGE. The next two rules translate a
retract object action into a set of simultaneous retracts, while the last one takes
care of the retract all slots action. The interaction of rules with the fact base is
performed via the action/2 predicate to be defined subsequently.

Actions are combined sequentially into action blocks, allowing binding pat-
terns for binding variables occurring in the actions. Additionally, RIF-PRD de-
fines a compound Modify frame action which can be substituted by a sequence
of a retract all slot values followed by an assert; it is assumed that such a re-
placement has been performed.

Definition 9 (Action variable declaration and action blocks). An action
variable declaration is a pair (?V b) where ?V is a variable and b is binding hav-
ing one of the forms: New() for generating a new identifier, or a frame o[s->?V]
where o and s are ground terms. If (?V1 b1), ..., (?Vn bn), n ≥ 0, are ac-
tion variable declarations, and if a1, ..., am, m ≥ 1, are simple actions, then
Do((?V1 b1) ...(?Vn bn) a1 ...am) denotes an action block.

Finally, the RIF Production Rules are captured by the following definition. Mark
that well-formedness conditions are imposed to rules and conditions, which we
are ignoring in this summary presentation.

Definition 10 (RIF production rule). A rule can be one of:
– An (unconditional) action block Do((?V1 b1)...(?Vn bn) a1. . .am).
– A conditional action block If Φ Then Do((?V1 b1)...(?Vn bn) a1. . .am),

where Φ is a condition formula and the conclusion is an action block.
– A quantified rule Forall ?V1. . .?Vn such that (p1. . .pm) (r), where each

pi is a conditional formula (a pattern) and r is a RIF Production rule.

Without loss of generality we assume that quantified rules have only one level
of universal quantification, i.e. the rule r is limited to be a conditional action
block since it is always possible to write quantified rules in this way, by variable
renaming and appending patterns.

Definition 11 (Translation of a RIF production rule). Let ri be a RIF
production rule and let id be a unique identifier assigned to that rule (i.e. its
“name”). Program πri

RULE[κ] is constructed as follows:

Declarative Semantics for the RIF-PRD 807

– If ri is Do((?V1 b1)...(?Vn bn) a1...am) then include in πri
RULE[κ] the

fact fireable(rule(id, subs),κ).
– If ri is If Φ Then Do((?V1 b1) ...(?Vn bn) a1 ...am) then include

πΦ
COND[κ] in πri

RULE[κ], and the following rule where ?X1, . . . , ?Xl are the free
variables of ri: fireable(rule(id, subs(X1, . . . , Xl), κ)) ← Φ′.

– If ri is Forall ?V1. . .?Vn such that (p1. . .pm) (If Φ Then Do(B)) then treat
this as the conditional action block If And(p1. . .pm Φ) Then Do(B).

Additionally, from the action block Do((?V1 b1)...(?Vn bn) a1...am) in the
conclusion of ri add to program πri

RULE[κ], for each 1 ≤ j ≤ m, the rule:

action(a′
j , κ + j) ← instance(id, subs(V1, . . . , Vn, X1, . . . , Xl), κ).

Finally, include in πri
RULE[κ] the rule below, where bindvi is state(frame(o, s, Vi),κ)

if bi = o[s->?Vi]. Otherwise bi = New(), and let bindvi be Vi = obj(id, i,κ) with
obj an arbitrary but fixed constant symbol.

instance(id, subs(V1, . . . , Vn, X1, . . . , Xl), κ) ← picked(rule(id, subs(X1, . . . , Xl)), κ),
bindV1 , . . . , bindVn .

Predicate fireable(rule(id, subs(. . .)),κ) holds in step κ whenever the rule iden-
tified by id has a condition true, and thus may be applied. The complex term
sub(. . .) keeps the substitution of variables for which the condition matches state
κ, and is also used to distinguish between different matching instances of the
same rule. If the rule is picked for execution then picked(rule(id, subs(. . .)),κ)
will hold and consequently action aj will be executed in step k + j with the
action instance (i.e. substitution of variables) collected in auxiliary predicate
instance/3.

Example 1. Consider the rule presented in the introduction of this paper. Its
encoding into iASP as constructed by πRULE transformation is shown below, fol-
lowing the usual answer-set convention of variables beginning with upper-case
and, to simplify the presentation, the constants belonging to namespace ex1 are
represented using CURIE notation:

fireable(rule(widget, subs(Cust)),κ) ← state(isa(Cust,ex1:Customer),κ),
state(frame(Cust,status,“New”), κ), exists1(Cust,κ).

exists1(Cust, κ) ← state(frame(Cust,shoppingCart,Cart), κ),
state(frame(Cart,containsItem, Item),κ), state(isa(Item,ex1:Widget),κ).

action(retract(frame(Cust,voucher, V oucher)), κ + 1) ←
instance(widget, subs(Cust, S, V al, V oucher), κ).

action(retract object(V oucher)), κ + 2) ←
instance(widget, subs(Cust, S, V al, V oucher), κ).

action(retract slots(S,value),κ + 3) ←
instance(widget, subs(Cust, S, V al, V oucher), κ).

action(assert(frame(S,value, V al ∗ 90/100)), κ + 4) ←
instance(widget, subs(Cust, S, V al, V oucher), κ).

instance(widget, subs(Cust, S, V al, V oucher), κ) ←
picked(rule(widget, subs(Cust),κ), state(frame(Cust,shoppingCart, S), κ),

state(frame(S,value,V al), κ), state(frame(Cust,voucher,V oucher), κ).

808 C. Viegas Damásio, J.J. Alferes, and J. Leite

It is clear from the example that the fireable conditions are not yet connected to
the rules performing the actions, which will be tackled next. First, it is necessary
to pick one rule for execution from the pickable ones (i.e. the ones which fire and
can be executed). This is straightforward to encode:

Definition 12 (Pick rule). Program πPICK[κ] is formed by:
picked(Rule,κ) ← pickable(Rule,κ),not picked other(Rule, κ),not transitional(k).
picked other(Rule, κ) ← pickable(Other, κ), pickable(Rule, κ), Rule! = Other,

picked(Other,κ).
picked(κ) ← picked(Rule,κ). transitional(κ) ← action(A, κ).

The execution of RIF-PRD proceeds by first picking one rule, then performing
its actions sequentially, then picking another rule, performing its actions, etc. . . .
The steps in which the fact base is being updated are dubbed “transitional” in
the RIF-PRD recommendation. The first two rules in πPICK[κ] choose exactly one
alternative (i.e. a rule) from the pickable rules, when κ is not a transitional step.
If no strategy is defined, the general operational semantics prescribes that all
fireable rules are pickable, which can be captured by the program πONE[κ] with
the single rule pickable(Rule,κ) ← fireable(Rule,κ). Computation terminates
in a non-transitional step where no rule is picked. This is captured by πHALT[κ],
which ends our translation of a RIF-PRD rule set, summarized in Def. 14.

Definition 13 (Termination). Program πHALT[κ] is defined by:
← not final(κ).
final(κ) ← not transitional(κ),not picked(κ).

Definition 14 (Rule set translation). The translation of a RIF-PRD rule set
RS with initial fact base w and set of fluents F is the iASP domain specification
ΠRULESET(RS,w) = 〈BRS(w), SRS(RS) [κ] , QRS [κ]〉 where:

BRS(w) =πINIT(w) ∪ πFLUENT(F)
SRS(RS)[κ] =πCHANGE[κ]∪πSTATES[κ]∪πACTION[κ]∪πPICK[κ]∪πONE[κ]∪

⋃
ri∈RSπ

ri
RULE[κ]

QRS [κ] =πHALT[κ]

An advantage of this encoding is that all possible “traces” of execution can be
generated by the iASP system, where each different trace corresponds to an
answer set. Formally3:

Theorem 1 (Correctness of translation). Let RS be a rule set and w an
initial fact base. Then4:
Soundness: If M ∈ AS (ΠRULESET(RS,w)n) and (c1, . . . , cm) is the increasing
sequence of integers such that transitional(cj) ∈ M, 1 ≤ j ≤ m, then, for
every i : 1 ≤ i ≤ m − 1 (Statei(M), P ickedi(M), Statei+1(M)) ∈→PRD,

3 Lack of space prevents us from presenting the proofs of theorems.
4 →PRD stands for the transition system which serves as the basis for defining the

semantics of RIF-PRD, ConflictSet(RS, si) the set of all applicable rules in state

si. Lack of space prevents us from presenting the semantics of RIF-PRD, which is

available in [6].

Declarative Semantics for the RIF-PRD 809

where Statei(M) denotes the set of formulae Φ such that state(Φ′, ci) ∈ M
and Pickedi(M) the name of the (only) rule R such that picked(R, ci) ∈M .
Completeness: If (s1, . . . , sm) is a sequence of non-transitional states such that
w = s1, and for each pair (si, si+1) there exists a rule r ∈ ConflictSet(RS, si)
such that (si, r, si+1) ∈→PRD, then, there exists M ∈ AS (ΠRULESET(RS,w)n) for
some n ≥ m such that the sequence of integers (c1, . . . , cm), constructed from M
as above, is such that Statei(M) = si, for all 1 ≤ i ≤ m.

4 Conflict Resolution Strategies

For selecting (ideally one) among these possible executions (or traces), as men-
tioned in the Introduction RIF-PRD foresees the existence of conflict resolution
strategies. Each of the strategies is denoted by a keyword (of type rif:IRI),
that is attached to the rule set. The current version of RIF-PRD prescribes a
normative strategy, forward chaining, denoted by rif:forwardChaining, and
anticipates the specification of additional keywords, each corresponding to an
additional strategy for selecting rules in conflict. Furthermore, it also allows
for the inclusion of other keywords, not specified in the RIF-PRD specification,
in which case it is the responsibility of the producers and consumers of those
documents to agree on the strategy denoted by the keywords.

Our stance is that any conflict resolution strategy should be defined by a
set of rules, including those normatively specified by RIF-PRD, which precisely
defines its meaning. In this case, the keyword for the strategy could be a URI for
the set of rules which precisely defines the strategy. In this section we show that
iASP, along with the translation defined in the previous section, is expressive
enough to specify conflict resolution strategies. In particular, we show how to
specify conflict resolution strategies, and illustrate by precisely characterizing
the rif:forwardChaining strategy.

4.1 General Definition of Strategies

A conflict resolution strategy is defined in [6] by an algorithm that, in a series
of steps, selects from the set of all fireable rules in some state, a subset of
(pickable) rules from which one is finally picked for execution. For example, the
rif:forwardChaining strategy can be summarized as the following algorithm:

Definition 15 (Forward chaining algorithm). Given a conflict set (i.e. a
set of fireable rules):
1. Remove all rules which where previously applied and, since their last applica-

tion, the conditions that made them applicable haven’t changed – refraction.
2. The remaining rules are ordered by decreasing priority, and only the rule

instances with the highest priority are kept. Recall that in RIF-PRD every
rule is assigned a priority which is a natural number.

3. The remaining rules are ordered by decreasing recency, and only the most
recent rule instances are kept. Here, a rule is more recent than another if it
is (consecutively) applicable for less prior states than the other.

810 C. Viegas Damásio, J.J. Alferes, and J. Leite

Each of these steps applies one strategy element (refraction, priority and re-
cency). In [6], a fourth (tie-break) element is considered, to be applied after
these 3, stating that one of the remaining rules should be picked in some “imple-
mentation specific way” [6]. Here we do not need to consider this last step. On
the one hand, the translation is such that each answer set is guaranteed to reflect
the application of a single rule at each state. On the other hand, the existence
of more than one answer set reflects the fact that there may be more than one
pickable rule at some state after the application of these 3 strategy elements.
As a result of the translation, each answer set encodes one possible sequence
of application of rules, and one can either consider all resulting answer-sets, or
arbitrarily pick one of them.

For encoding such a strategy in a set of iASP rules, to be added to the domain
description obtained from the translation of the previous section, we first need
to replace the rule of πONE[κ] which specified that all fireable rules are pickable,
by a set of general rules allowing for restrictions on pickable rules. Accordingly,
a rule is pickable if it is fireable and it is not rejected by one of the strategy
elements:

Definition 16 (Strategy). Program πSTRATEGY[κ] is formed by the rules
pickable(Rule, κ) ← fireable(Rule,κ),not rejected(Rule,κ).
rejected(Rule,κ) ← rejected(Rule,κ, S), st element(S).

Note that, without any defined strategy, πSTRATEGY[κ] has exactly the same effect
as πONE[κ]. In fact, if there are no rules for neither rejected/3 nor st element/1,
rejected(Rule,κ) is false in all answer-sets for all rules and κ, and so pickable
is true for all fireable rules, as is the case in πONE[κ].

Strategy elements are identified by a name. Then, for each strategy, facts to
specify the order of application of the elements must be added. For example, for
rif:forwardChaining the specification of the order of elements is as follows:

st element(refraction, 1). st element(priority,2). st element(recency,3).

For referring to the element without its order of application, the following rule
is also needed st element(S)← st element(S,).

In general, for the definition of conflict resolution strategies, a predicate is
needed to indicate whether a rule is active when a given strategy element is
being applied. For example, in rif:forwardChaining, if a rule is removed by
refraction, then that rule should no longer be available for consideration (i.e.
active) when considering the priority-element. The specification of this predicate
is quite straightforward: a rule is inactive if there is a strategy element prior in
the application order which rejected it, and active otherwise.

Definition 17 (Active Rules). Program πACTIVE[κ] is defined by
inactive(Rule, κ, N) ← st element(, N), st element(S,N1), N1 < N,

rejected(Rule,κ, S).
active(Rule,κ, N) ← not inactive(Rule, κ, N), st element(, N).

The iASP domain description associated with a RIF-PRD rule set becomes:

Declarative Semantics for the RIF-PRD 811

Definition 18 (RIF-PRD domain description). The RIF-PRD iASP do-
main description of a rule set RS with initial fact base w and fluents F is
ΠRS(RS,w) = 〈BRS(w), SRS(RS) [κ] , QRS [κ]〉 with BRS(w) and QRS as in Def. 14,
and

SRS(RS)[κ] = πCHANGE[κ] ∪ πSTATES[κ] ∪ πACTION[κ] ∪ πPICK[κ]∪
∪
⋃

ri∈RS πri
RULE[κ] ∪ πSTRATEGY[κ] ∪ πACTIVE[κ]

Theorem 2. Theorem 1 holds if we replace ΠRULESET(RS,w) with ΠRS(RS,w).

4.2 Defining One Specific Strategy

To completely specify one conflict resolution strategy, we add facts defining the
strategy elements and their application order (as above for rif:forwardChaining)
and define, for each element, which rules are rejected. Below we show how this can
be done for each of the elements in the rif:forwardChaining algorithm.

Refraction. Once a rule is picked at some state, then it is rejected by refraction
from that state onwards, for as long as the rule remains fireable. The test for the
rule being fireable is only done in states when the system is not being updated.

rejected(Rule,κ, refraction) ← fireable(Rule,κ), picked(Rule, κ − 1).
rejected(Rule,κ, refraction) ← rejected(Rule,κ − 1, refraction), transitional(κ).
rejected(Rule,κ, refraction) ← fireable(Rule,κ), rejected(Rule,κ − 1, refraction)

not transitional(κ).

Priority. All rules for which there is another (different) active fireable rule with
a strictly higher priority should be rejected. We do not need to test that rejected
rules are active (i.e. not rejected by a previous strategy element), since according
to πSTRATEGY[κ] a rejected rule is never pickable.

rejected(rule(Id,V ar),κ, priority) ← fireable(rule(Id,V ar), κ),
fireable(rule(Id2, V ar2), κ), Id! = Id2, priority(Id,P), priority(Id2, P2),
P < P2, active(rule(Id2, V ar2), κ, N), strategy(priority,N).

Recency. A rule is rejected if there is a more recent one also active and fireable.
We use an auxiliary predicate (recency/3) that, for each rule instance and state
κ, determines the number of consecutive states before κ that the instance has
been fireable. Then, a rule is rejected if there is another one which is more recent.
Predicate state(K) is just used for grounding, and is true for any state K.

rejected(rule(Id,V ar),κ, recency) ← fireable(Rule, κ), fireable(Other,κ),
Rule ! = Other, recency(Rule, TR,κ), recency(Other, TO, κ), TO < TR,
state(TR), state(TO), active(Other, κ, N), st element(recency,N).

recency(Rule,κ, κ) ← fireable(Rule,κ), not fireable(Rule,κ − 1).
recency(Rule,K, κ) ← recency(Rule,K, κ − 1), transitional(κ), state(K).
recency(Rule,K, κ) ← fireable(Rule,κ), recency(Rule,K, κ − 1),

not transitional(κ), state(K).

The set composed by all rules described in this subsection is meant to encode
the rif:forwardChaining, and we denote it by πrif:fC[κ].

812 C. Viegas Damásio, J.J. Alferes, and J. Leite

The next theorem shows in which terms the encoding is correct with respect
to the RIF-PRD rif:forwardChaining as described in [6]:

Theorem 3 (Correctness for rif:forwardChaining). Let RS be a rule set,
w an initial fact base, and 〈BRS(w), SRS(RS) [κ] , QRS [κ]〉 the corresponding iASP
domain description as in Def. 18. Let LS be the rif:forwardChaining strategy
of definition 15, and H the halting test that halts whenever no rule is picked. Let
Πrif:fC(RS,w) = 〈BRS(w), SRS(RS) [κ] ∪ πrif:fC[κ], QRS [κ]〉. Then5:
Soundness: if M ∈ AS (Πrif:fC(RS,w)), then there exists a state sf such that
Eval(RS,LS,H,w) →∗

PRD sf and where sf is the set of all formulae Φ such
that state(Φ′,min (Πrif:fC(RS,w))) ∈M .
Completeness: if Eval(RS,LS,H,w)→∗

PRD sf , then there exists an M such that
M ∈ AS (Πrif:fC(RS,w)) and ∀Φ ∈ sf , state(Φ′,min (Πrif:fC(RS,w))) ∈M .

One can impose other conflict resolution strategies, by specifying different rejec-
tion rules. For example, rif:forwardChaining behaves in a depth-first manner,
in that it always selects the rule that has been more recently applied. Imposing
a breadth-first strategy can be accomplished by simply changing “TO < TR”
into “TO > TR” in the rule defining the rejection by recency, thus obtaining
πst:breadth[κ]. Also note that rif:forwardChaining does not behave in a purely
depth-first manner since it only applies recency after removing rules with less
priority. For a strategy where a depth-first behavior is more important than
complying with the declared priority of rules, one can simply change the facts
that impose the order in the application of strategy elements, e.g. by including
the facts st element(priority, 3) and st element(recency, 2) instead.

5 Conclusions

In this paper, we presented a declarative logical characterization of RIF-PRD
through a sound and complete transformation into ASP, which can be seen as
an equivalent alternative to the transitional semantics proposed in [6], giving
further insights into RIF-PRD and providing for an immediate implementation
using iASP, which we have developed using iClingo[9]. This transformation con-
siders not only the RIF-PRD rule sets and their transitions, but also the conflict
resolution strategies which are essential to select among applicable rules. We
have illustrated how the default normative strategy – forward chaining – is en-
codable in ASP, and have shown that ASP provides an appropriate language in
which to precisely define alternative non-standard conflict resolution strategies,
which are also foreseen in [6], facilitating their development and unambiguous
sharing, due to the simple, expressive and well known semantics of ASP. The
work in [2] uses the Situation Calculus, although without handling the idiosyn-
crasies of RIF-PRD. A Situation Calculus based approach like the one in [2]

5 Eval(RS,LS, H, w) is the input function of the RIF-PRD production rule system

that is responsible for choosing one among the rules in the conflict set and for the

halting conditions. →∗
PRD is the transitive closure of →PRD.

Declarative Semantics for the RIF-PRD 813

could have been followed, although with extra complexity introduced by the sit-
uation terms which would not be easily handled by answer set solvers. A critique
of the Situation Calculus is made in [5], where it is shown how to capture the
semantics of rule production systems in μ-calculus and FPL. This work captures
a result equivalent to our Theorem 1, thus not handling other conflict resolu-
tion strategies. We expect to use the work of [5] to study the formal properties
of our translation. An implementation using an external DL reasoner is under-
way to assess the practicality of our approach, namely by comparing with more
traditional approaches like CLIPS or JESS.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press, Cambridge (2003)

2. Baral, C., Lobo, J.: Characterizing production systems using logic programming

and situation calculus,

http://www.public.asu.edu/?cbaral/papers/char-prod-systems.ps

3. Boley, H., Hallmark, G., Kifer, M., Paschke, A., Polleres, A., Reynolds, D. (eds.):

RIF Core Dialect. W3C Recommendation (June 22, 2010),

http://www.w3.org/TR/2010/REC-rif-core-20100622/

4. Boley, H., Kifer, M. (eds.): RIF Basic Logic Dialect. W3C Recommendation (June

22, 2010), http://www.w3.org/TR/2010/REC-rif-bld-20100622/

5. de Bruijn, J., Rezk, M.: A logic based approach to the static analysis of production

systems. In: Polleres, A. (ed.) RR 2009. LNCS, vol. 5837, pp. 254–268. Springer,

Heidelberg (2009)

6. de Sainte Marie, C., Hallmark, G., Paschke, A. (eds.): RIF Production Rule Dialect.

W3C Recommendation (June 22, 2010),

http://www.w3.org/TR/2010/REC-rif-prd-20100622/

7. Eiter, T., Gottlob, G.: Expressiveness of stable model semantics for disjunctive logic

programs with functions. Journal of Logic Programming 33(2), 167–178 (1997)

8. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining

answer set programming with description logics for the semantic web. Artificial

Intelligence 172(12-13), 1495–1539 (2008)

9. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.:

Engineering an incremental asp solver. In: Garcia de la Banda, M., Pontelli, E.

(eds.) ICLP 2008. LNCS, vol. 5366, pp. 190–205. Springer, Heidelberg (2008)

10. Gebser, M., Schaub, T., Thiele, S.: Gringo: A new grounder for answer set program-

ming. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI),

vol. 4483, pp. 266–271. Springer, Heidelberg (2007)

11. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Procs. of

ICLP 1990, pp. 579–597. MIT Press, Cambridge (1990)

12. Lloyd, J.W., Topor, R.W.: Making prolog more expressive. Journal of Logic Pro-

gramming 1(3), 225–240 (1984)

13. Motik, B., Rosati, R.: Reconciling description logics and rules. J. ACM 57(5) (2010)

14. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic

and ALgebraic Programming 60-61, 17–139 (2004)

http://www.public.asu.edu/?cbaral/papers/char-prod-systems.ps
http://www.w3.org/TR/2010/REC-rif-core-20100622/
http://www.w3.org/TR/2010/REC-rif-bld-20100622/
http://www.w3.org/TR/2010/REC-rif-prd-20100622/

Measuring the Dynamic Bi-directional Influence
between Content and Social Networks

Shenghui Wang and Paul Groth

VU University Amsterdam

De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands

{swang,pgroth}@few.vu.nl

Abstract. The Social Semantic Web has begun to provide connections

between users within social networks and the content they produce across

the whole of the Social Web. Thus, the Social Semantic Web provides a

basis to analyze both the communication behavior of users together with

the content of their communication. However, there is little research com-

bining the tools to study communication behaviour and communication

content, namely, social network analysis and content analysis. Further-

more, there is even less work addressing the longitudinal characteris-

tics of such a combination. This paper presents a general framework for

measuring the dynamic bi-directional influence between communication

content and social networks. We apply this framework in two use-cases:

online forum discussions and conference publications. The results pro-

vide a new perspective over the dynamics involving both social networks

and communication content.

1 Introduction

Does an informative post on a microblogging service lead to a user gaining
followers? If a user is popular in a social network, will their new status updates
be widely quoted? If a researcher identifies a new topic one year, does that
result in the research having more coauthors the next? As an increasing amount
of content is mediated through social networks, these types of questions are of
great interest, in particular, to developers, social scientists, and business that
aim to understand the link between content generation and social connection. A
key aspect to answering these questions is to understand how the relationships
between users influence the content of their communication and vice versa.

In this paper, we extend our work in [26] by proposing a general framework
for measuring such influence over time. In our approach, we translate both user
relationships and content into two corresponding networks: a social network and
a content networks. The networks are then characterized using common network
properties such as (in-/out-)degree and betweenness centrality. The influence is
then measured using a set of multilevel time-series regression models producing
what we term an influence network showing how these variables impact each
other in time. Additionally, our Influence Framework can integrate other network
properties tailored to a given problem domain.

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 814–829, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Measuring the Dynamic Bi-directional Influence 815

The use of the Influence Framework is facilitated by the emergence of Se-
mantic Web technologies not only to represent relationships between users on
the Social Web but also to link to the content those users exchange. For ex-
ample, the Semantically Interlinked Online Communities (SIOC) ontology is for
the representation of the content of discussions but is explicitly intertwined with
the Friend of a Friend (FOAF) ontology that is used to represent personal rela-
tionships. Because the Semantic Web provides these explicit links, it is easier to
obtain the input data sets required by our Influence Framework. Thus, as more
Social Web content is made available using Semantic Web standards, the Frame-
work can be used to investigate a wider variety of content and social networks.
Later, we show how the Influence Framework can be applied to networks ob-
tained by querying the Semantic Web Dog Food dataset [24] as well as networks
extracted from a Dutch political forum. The ability to study the connection be-
tween people through their objects was posited as a key benefit to the Social
Semantic Web [5]. This work is an example of where these benefits are coming
to fruition.

In summary, the contributions of this paper are as follows:

– A general framework for measuring the bi-directional influence between net-
works of people and the content associated with those people.

– A multilevel time-series regression model for measuring the longitudinal in-
fluences between the network properties of content and social networks.

– The generation of influence networks for both Dutch political forums and
the World Wide Web conference series, which provide new material for social
scientists to investigate these domains.

The rest of this paper is organized as follows. We begin by presenting the Influ-
ence Framework and its constituent parts. This is followed by a discussion of the
application of the Framework to two use cases: one studying a conference series
and the other studying data from a Dutch political forum. Related work is then
discussed followed by a conclusion.

2 Influence Framework

The Influence Framework is a three stage framework for measuring the influ-
ence between (and within) user relationships and the content they communicate.
While such measures of influence are clearly possible to perform on a case-by-
case basis, a key realization in this work is that by representing content and
user relationships as networks, standard network properties can provide a good
initial insight into influence in different domains. We note that influence is a
time-dependent notion and thus our framework requires time series data.

The three stages of the framework are:

1. Network Generation
2. Measuring Network Properties
3. Time Series Analysis

We now discuss each of these stages.

816 S. Wang and P. Groth

2.1 Network Generation

The first stage of the framework is to generate a series of both content and
social networks as well as bindings between those networks. The starting point
is information about a set of actors who interact over time, e.g. , participants in
online discussions, scientists who co-author, etc. . From these data sets, a series
of social networks representing the interaction of these actors over time can be
produced. Then, a corpus of content related to each actor produced over time is
needed e.g. , the textual content of online discussions a participant posted, the
abstract a scientist wrote, the movies a star acted in, etc. . This content corpus
should also have the property that pieces of content are somehow similar across
a group of actors. Based on some similarity measure between content at each
time step, a series of content networks can be generated. A key artifact for the
framework is documentation of the relationship between actors and the content
they produce at each time step. We term these bindings.

The network generation stage is perhaps the most domain specific part of
the framework as a decision must be made about which content and which sort
of user relationship should be represented in the network. Furthermore, many
domains have different data formats requiring specialized programs to generate
the needed networks. This is where Social Semantic Web technologies are par-
ticularly important. By providing common query interfaces and data represen-
tations, the extraction of these networks is significantly easier as demonstrated
in Section 3.1.

2.2 Measuring Network Properties

Once the content networks and social networks have been produced, the proper-
ties of those networks that are of interest need to be defined (as variables) and
then measured. The necessary requirement of these properties is that they vary
over time. Because the content and social relationships are defined as networks,
common network properties can be measured first. For a graph G = (V,E) with
a set of vertices V = {v1, . . . , vn} and a set of edges E = {eij | 1 � i, j � n},
the common network properties suggested are:

Degree centrality. For a given vertex vi, its degree centrality is equal to the
degree of vi divided by the maximum possible degree. That is, the degree
centrality CD(vi) for vertex vi is:

CD(vi) =
deg(vi)
n− 1

In a directed network, two separate measures of degree centrality, namely
in-degree and out-degree, should be measured instead.

Betweenness centrality. The betweenness centrality of a vertex is defined as
the fraction of all shortest paths that pass through it over all shortest paths
in the network. That is,

CB(vi) =
∑

vs �=vi �=vt∈V
vs �=vt

σst(vi)
σst

Measuring the Dynamic Bi-directional Influence 817

where σst is the number of shortest paths from vs to vt (vs, vt ∈ V) and
σst(vi) is the number of shortest paths from vs to vt that pass through vi.

Clustering coefficients. Our analysis is at the vertex level, therefore, we mea-
sure the local clustering coefficient of a vertex which quantifies how close its
neighbors are to being a clique (complete graph). It is measured as the pro-
portion of links between the vertices within its neighbourhood divided by
the number of links that could possibly exist between them. Let Ni be the
neighbourhood of vertex vi, i.e. , its immediately connected neighbours. For
directed graphs, the local clustering coefficient of vertex vi is given as

CC(vi) =
|{ejk}|

ki(ki − 1)
: vj , vk ∈ Ni, ejk ∈ E.

While for undirected graphs, it is defined as

CC(vi) =
2|{ejk}|
ki(ki − 1)

: vj , vk ∈ Ni, ejk ∈ E.

A higher CC(vi) means the neighbours of vi are more densely connected.

It is important to note that while these network properties can be measured for
every graph, their underlying meaning with respect to the social reality needs
to be defined on a per domain basis.

While these measures are a useful start, any network property that varies over
time is allowable within the Influence Framework. Later, we show how other more
domain specific network properties can be used to gain additional insight into
the influence between content and social networks.

The output of this stage is a table mapping each actor to values for each
property at each time step.

2.3 Multilevel Time-Series Regression Models

Our Framework aims to model the longitudinal influences between network prop-
erties derived from both social and content networks. The output of Stage 2 pro-
vides data at successive time steps spaced at uniform time intervals, which form
a time series. Thus, we need to apply time series analysis to extract meaningful
statistics of the data in order to better understand the underlying forces and
structures that produced the observed data. By fitting to a time series model,
we can proceed to forecasting and predicting the forthcoming data [30]. When
modeling variations in the level of a process, one of the typical methods is to use
the autoregressive (AR) models.

Let X be a time series: X = {x(1),x(2), . . . }, where x(t) is the data observa-
tion at time t. Here, x(t) is a vector, i.e. x(t) = (x(t)

1 , x
(t)
2 , . . . , x

(t)
m)T , where m

is the total number of variables we are modelling and each x
(t)
i , i = 1, . . . ,m, is

a variable we are interested in, such as the betweenness and degree centrality of a

818 S. Wang and P. Groth

node in the social network or the centrality values of certain political or scientific
topics. The AR(p) model is defined as

x(t) = a +
p∑

j=1

bj x
(t−j) + ε(t), (1)

where b1, . . . , bp are the parameters of the model, a is a constant and ε(t) is
the noise with Gaussian distribution. In this paper, we opt for a simple model
for each variable xi independently, which only includes the values from the last
time-point as independent variables, i.e. , an AR(1)-process:

x
(t)
i = ai + b1i x

(t−1)
1 + · · ·+ bmi x

(t−1)
m + ε

(t)
i , (2)

where ε
(t)
i is Gaussian noise with zero mean and variance σ2

ε .
In these models, each variable x(t)

i at time t is modelled as a linear combination
of the predictor variables at time t − 1, each weighted by a coefficient that
quantifies how variation in the predictor variable at time t− 1 is related to the
variation of the predicted variable at time t. Such coefficients or effects can tell
us the influence among different variables over time.

Generally, the above mentioned variables are referred to in statistics as units
of analysis. In social reality, these variables are often from different levels, which
are frequently hierarchically nested. For example, when studying the research
achievements, attributes of individual researchers, research groups, faculties and
the universities as a whole can all be important units of measures. This stage
applies the above introduced regressive model to study the influence between
variables, and the resulting coefficients are also called fixed effects. However,
there exist variations among different actors, i.e. , random effects (actor-level
errors). Therefore, such single-level statistical methods are no longer appropriate
to study these so-called complex data sets [31]. We thus need to apply multilevel
analysis to examine both fixed and random effects of variables measured at
different levels [13,31].

Formally, we define x(t)
p = (x(t)

1,p, . . . , x
(t)
m,p)T , a vector containing the variables

for actor p at time t. We can then rewrite equation (2) as

x
(t)
i,p = ai + bT

i x(t−1)
p + ε

(t)
i + cT

i,p x(t−1)
p + ε

(t)
i,p, (3)

where bi = (bi1, . . . , bim)T and ci = (ci1, . . . , cim)T are the fixed-effect coeffi-
cients and random-effects coefficients respectively.

In order to compare the resulting fixed effects to each other, all variables
in the random effects regression equations need to be linearly transformed into
standardised values, i.e. , subtraction of their mean, division by their standard
deviation. In this way, the fixed effects can be interpreted as the effect of one
standard deviation of change in the independent variable on the number of stan-
dard deviations change in the dependent variable.

The output of this stage is the set of statistics generated in fitting the regres-
sion models as well as a diagram, called an influence network, that shows the
statistically significant effects between variables.

Measuring the Dynamic Bi-directional Influence 819

3 Use Cases

We now present two use cases applying the Influence Framework. First, a simple
use case based on existing Semantic Web data is discussed. It analyses the influ-
ence between co-authorship and the topics addressed at a conference. The second
use case looks at the influence of social status of forum participants and their
focus on particular political parties. This use case is then extended to consider
newly defined variables to answer specific questions of the domain.

3.1 Influence between Co-authors of Academic Papers and the
Topics They Address

Data Collection. The World Wide Web Conference is the preeminent confer-
ence on Web Technologies covering both advances in academia and industry. We
obtained a corpus of metadata about this conference from the Semantic Web
Dogfood repository [24]. The metadata covers the conference program including
paper metadata (e.g. , authors, paper titles, keywords, etc.) and organization
metadata (e.g. , program committee members, collocated workshops, etc.). Im-
portantly for use with the Influence Framework, the metadata spans four years
of the conference from 2007 to 2010 using generally the same schema. The data
was downloaded in bulk and loaded into separate RDF stores for each year.

Generating Social Networks. We chose the co-author network as the social
network of interest. For every year, we retrieved the co-author pairs for each
article using the SPARQL query shown in Figure 1. From these results, we built
a weighted undirected graph for each year where nodes are authors, edges are
shared authorship of an article and the weights on edges are the number of
co-authorships between the two linked authors. For wider coverage, we did not
distinguish between paper types that is a workshop, main track, or poster paper
are all considered equal for the purposes of co-authorship.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX swrc: <http://swrc.ontoware.org/ontology#>

SELECT ?author ?coauthor ?article WHERE {
?article swrc:author ?author.

?article swrc:author ?coauthor

}

Fig. 1. Query to extract co-author pairs

For each year, we measured the degree and betweenness centrality of each
of the authors. The degree centrality represents how activity the author is in
coauthoring with others. Clustering coefficient provides a measure for how closely

820 S. Wang and P. Groth

knit a group is. In this case, it provides a measure of whether authors write with
the same set of other authors. For example, one can imagine that the authors
from the same department may form a cluster within the co-author network.

Generating Content Networks. Here, we are interested in the topics under
discussion at the conference in each year. To obtain those topics, we use author
assigned keywords as proxies for those topics. This is common practice within
the bibliometrics community [3]. Similar to the co-author network, we retrieved
the keywords for each article in the conference via a SPARQL query. To improve
overlap between keywords assigned by different authors, keywords containing
more than one word were split into separate words and then stemmed. Stemming
allows keywords such as ontologies and ontology to be treated the same. Based
on the stemmed keywords, a weighted undirected graph is built, where a node
is a keyword and an edge is the co-occurrence between two keywords in the set
of keywords for an article. Edges are weighted by the number of co-occurrences.
A graph is produced for each year.

As prescribed by the Influence Framework, we then compute several common
network metrics. Again, the degree provides information about the popularity of
a given topic. The betweenness centrality provides information about whether a
keyword is a bridge between two other keywords (i.e. topics).

Binding Social Content Networks. We bind the two networks together via
the papers within the conference. Thus, we know which author discusses a topic
and what topics are associated with particular authors via their connection to
papers.

Influence Network. For this use case, we use five network measures.

– Three social network properties: degree centrality, betweenness centrality,
and clustering coefficient.

– Two content-wise properties: degree centrality, betweenness centrality.

The units of analysis are all year × participant combinations. The multilevel
time-series regression models are then constructed to to study the influence
network between topics of a conference and the co-authorship of papers.

Figure 2 shows the resulting influence network. This network only shows ef-
fects which are statistically significant. Note, when reading such an influence
network, the edges are directional in time. For example, in Figure 2, the edge
between degree in the content network and clustering coefficient in the social
network, should be read as the degree at some time t has large negative effect
on the clustering coefficient in time t + 1.

The network suggests a number of avenues for investigation. First, there is
strong negative effect between the degree centrality of a topic (i.e. , keyword) on
itself, which suggests that a popular topic one year is likely to be less popular the
next. Degree centrality of a topic also has strong negative effects on the degree
centrality and clustering coefficient for an author. One interpretation of this

Measuring the Dynamic Bi-directional Influence 821

Fig. 2. Influence network for WWW conference

result is that after a burst of collaboration on a hot topic, the topic becomes less
exciting and the collaboration between authors around it dies down. There are
strong positive effects of the betweenness centrality of a topic and the subsequent
degree centrality and clustering coefficient of an author. A possible explanation
for these effects is that if a topic bridges the gap between other topics in one
conference year, it is likely to become the focus for new collaborations between
authors concentrating on these normally separate topics. Such new collaborations
would then come to the foreground in the next conference year.

3.2 Influence between Social Status of Online Forum Participants
and Their Political Attention

Data Collection. Our data is collected from the biggest and one of the oldest
Dutch forums, NL.politiek, which is entirely devoted to politics. This forum
has more than 40,000 participants. Our dataset contains all the postings from
October 2003 to December 2008, in total more than 1.1 million postings.

Generating Social Networks. All postings were divided into weekly subsets.
In each subset, all postings were grouped by their threads and ranked based on
their time stamps. Each thread corresponded to a mini discussion network, where
the participants reacted to others by replying to their postings. Formally, a mini
discussion network (i.e. , a thread) is a graph G = (V,E), where V is a set of
participants in this thread, and E the weighted and directed connections between
the participants. There is a directed link (vi, vj) if participant vi replied at least
once to one of the postings of participant vj . The frequency of the occurrence
of such replying action was considered as the weight of the link, w(vi, vj). Note,
online participants often post more than once in the same thread, replying to
previous postings which may include their own. Therefore, such networks can be
reflexive.

822 S. Wang and P. Groth

We then aggregated all the mini discussion networks within one week into a big-
ger network, producing a series of 259 weekly social networks where 21,127 par-
ticipants are involved. We note that the extraction of these networks would have
been greatly simplified if they had been represented using SIOC, for example.

For each week, we measured the in-/out-degree and betweenness centrality
of all participants. In this setting, the in-degree centrality of a participant indi-
cates the degree of popularity he has in the online community. The out-degree
centrality indicates how active one participant is. The betweenness centrality is
an indicator of the mediating/brokerage role of a participant. A high between-
ness centrality suggests that the participant connects separate communities. The
brokerage role of the persons with a higher betweenness centrality is the key to
understand the structural hole theory of organisational communication [9].

Generating Content Networks. In this use case, we are interested in the
attention to the political parties that online participants have when they discuss
in the forum. We thus extract the co-occurrence of parties as the content network.
Since co-occurrence is symmetric, the content networks are therefore undirected.
In the content network, the vertices are 19 Dutch parties, i.e. , V = {p1, . . . , p19}.
At the weekly basis, for each party pi, we gathered a set of postings where the
party was mentioned,1 noted as Spi , i = 1, . . . , 19. The weight of the edge (pi, pj)
is calculated as the Jaccard similarity coefficient between two sets Spi and Spj ,
that is,

w(pi, pj) =
Spi ∩ Spj

Spi ∪ Spj

In this way, we also extracted 259 weekly content networks. We then measured
the betweenness and degree centrality of each party in each week. These cen-
trality can tell us how one party’s popularity and breakage role evolves over
time. When a party has a higher degree centrality, then this party is more often
mentioned while other parties are being discussed, i.e. , this party is more rel-
evant or important. A party with a higher betweenness centrality is more often
mentioned as a reference while more than two parties are mentioned.

Binding Social and Content Networks. We bind two networks based on
who talked when, about what. For each participant, we counted how many times
he talked about one or more of the 19 Dutch parties in a particular week, noted
as {Op1 , . . . , Op19}. Then the degree centrality of this participant in terms of his
discussion content is calculated as

cdc =
19∑
1

Op1 × dc(pi)

1 This is done through the AmCAT tool (http://content-analysis.org/) which

uses a dictionary of keywords to signify an occurrence of a party when one of its

keywords is used in the posting.

http://content-analysis.org/

Measuring the Dynamic Bi-directional Influence 823

Fig. 3. Standard influence network

where dc(pi) is the degree centrality of Party pi in the extracted content network
of this week. The betweenness centrality in terms of the content, cbc, is calculated
similarly.

Influence Network. Similar to the conference case, we have five standard
network variables to model:

– Three social network properties: sbc (betweenness centrality), sidc (in-degree
centrality) and sodc (out-degree centrality)

– Two content-wise properties: cbc (betweenness centrality) and cdc (degree
centrality)

The units of analysis are all the week × participant combinations. We built the
multilevel time-series regression models as introduced in Section 2.3 to study
the influence network among political attention and social status in the online
community.

There are 1762 participants have posted more than 10 postings during the
whole period of time. Therefore, the Figure 3 is based on 433,453 observations
from these 1762 participants. The value on the links are the fixed effects, with
the critical value p < 0.05.

Not surprisingly, the in and out degree centrality have positive effect upon each
other and to themselves. When a participant is more active, they are also likely
to be more popular and more active in the social network, and vice versa. Also,
the two degree centralities and the betweenness centrality have positive effects on
each other with the similar strength. Once a participant gains a relatively strong
brokerage role, they are more likely to maintain this role, by continuing to react
to others, which consequently causes more people to reply to them. Looking
at the effects between social network and the content network, the in-degree
centrality (i.e. , the popularity of a participant) has a positive effect on the
degree centrality of the content. This suggests that when a popular participant
talks about certain parties, these parties are likely to become popular in the
next week. When a participant becomes a broker, they tend to communicate
with different opinion-holders, therefore they discuss more parties instead of
only popular ones. This might be the reason for the negative effect from the

824 S. Wang and P. Groth

social betweenness centrality to the content degree centrality. However, this may
also be because of the correlations between these fixed effects, which needs to
be further investigated.

3.3 Influence between User-Defined Content Variables with Social
Network Properties

Content networks can be extracted in a manner that is more suitable to spe-
cific problems within a domain. Communication scientists are interested in not
only the attention that the online forum participants pay to the political parties,
but also the degree to which they follow the agenda of the mass media. Online
discussions are expected to be more emotional and more aggressive (negativity,
hatred, disgust, in short flaming) as compared to the news from the mass me-
dia [25]. It is natural for the communication scientists to ask to which degree
emotions and aggression are expressions of autonomous or even anarchistic of
online participants, to which degree they are caused by the news content in the
mass media, as the classic theory of agenda setting would suggest, and to which
degree they reflect depersonalised, scale-free properties of the social network of
online participants that can be predicted from the previous state of their social
networks.

Data Collection. We further collected newspaper articles from five biggest
Dutch national newspapers. The selected national newspapers (Telegraaf, NRC
Handelsblad, Algemeen Dagblad, de Volkskrant and Trouw) represent main-
stream politics in the Netherlands. These newspapers reach one third of the
Dutch population (official figures in 2008, http://www.cebuco.nl). The newspa-
per articles were retrieved from the LexisNexis archive,2 each of which mentioned
at least one political actor (e.g. , Dutch politicians or parties). We took a ran-
dom subset of newspaper articles published between 2006 and 2008. Therefore,
we also take 157 weekly social networks in these three years into the analysis.

Extracting Content Variables. In this paper, we focus on two aspects related
to the forum content. The first aspect is related to the agenda setting [29,33].
The agenda setting hypothesis maintains that the participants in the online
environment will take over the issue agenda from the mass media in a top-down
fashion. An alternative hypothesis is that the mass media nowadays take over the
topics raised in online discussion forums, in order to express and disseminate the
opinions of their audience to decision-makers in business and politics, or in order
to keep their audience in competitive media markets. Here, we are interested in
whether the social status of the participants is influenced by the extent to which
they follow mass media. Therefore, we use a list of political issues and measure
weekly the attention to these issues (the frequencies of occurrence of these issues)
in the newspaper articles and online discussions, respectively. Then a correlation
is calculated between these two lists of the attention, which gives the first content
2 http://www.lexisnexis.com/

http://www.lexisnexis.com/

Measuring the Dynamic Bi-directional Influence 825

variable NewspaperContagion. A higher NewspaperContagion indicates that
the participant more strongly follows the agenda of the newspapers.

Another interesting aspect is the above-mentioned emotion expressed in the
forum discussions. We would like to check whether the amount of emotion ex-
pressed in the online discussion influences the social status of the participants
and his willingness to following the mass media. Starting from Brouwers the-
saurus for Dutch [7], a list of keywords was developed for each emotion. Similar
to measuring the attention to political parties, the frequencies of occurrence of
these keywords were also measured. We separated the emotion of disgust and
hate as a separate variable as they are the major emotions the communica-
tion scientists are studying [25]. Therefore, we have two other content variables:
DisgustHate and OtherEmotions.

Influence Network. The five variables we investigate are

– Two network properties: IPopularity (=indegree centrality) and
CBetweenness (betweenness centrality)

– Three communication contents: DisgustHate, OtherEmotions and
NewspaperContagion.

Similar multilevel time-series regression models were built to study the influence
between these variables. The resulting influence network is shown in Figure 4,
based on 171,756 observations from 1101 participants.3

Similar to Figure 3, the betweenness centrality and popularity (in-degree cen-
trality) have strong positive effects on themselves and each other. As we can
see, a popular member or a brokerage member has a strong tendency to express
emotions in their postings, and such emotional expressions also increase their
social status. Especially the social popularity and the usage of the language of
disgust and hate have impressively strong effects on each other. It may be the
case that online participants who feel that they are in the centre of the debate,
as measured by a high popularity and betweenness centrality, feel unhindered or
even obliged to use rather crude words to maintain their position.

In our dataset, there seems no significant effect from the degree one follows
the mass media to the aptitude for flaming and blaming, which is suggested on
the basis of the classic agenda setting theory [21].

The decision of following newspaper agenda is influenced by the previous
popularity in the community and also the expression of disgust and hate. This
finding corresponds with earlier findings that especially citizens who are pre-
occupied with negativity will like the current type of news, especially men like
negative news [12]. A new finding is that a high popularity in an online dis-
cussion forum also contributes to taking over agenda cues from the mass media.
Apparently popular participants feel inclined to follow the news and to take over
the news agenda. This corresponds with the old idea that opinion leaders in a
group tend to follow the mass media closely.
3 Again, only these 1101 participants have more than 9 postings within these three

years.

826 S. Wang and P. Groth

Fig. 4. Regression model of user-defined variables

4 Related Work

Social network analysis (SNA) has recently become a popular topic of study in
organisation studies, communication studies, information science, etc. It views
social relationships in terms of network theory consisting of nodes and ties. Using
graph algorithms, SNA characterises the structure of social networks, strategic
positions in these networks, specific sub-networks and decompositions of people
and activities [28]. SNA has been applied not only to Web 2.0 platforms such as
Facebook [1] and wikis [32], but also directly to the whole Web, the blogsphere,
ontologies and the Semantic Web [16,17,15]. Recently, Semantic Web techniques
have been adopted to facilitate standard SNA procedures [23,20,10].

On the other hand, content analysis is a research tool which has been used
since the mid-1950’s to determine the presence of certain words or concepts
within texts [4,18]. By quantifying and analysing the presence, meanings and
relations of such words and concepts, social scientists can make inferences about
the content of the texts. As it is applicable to any piece of writing or recorded
communication, it has been widely used in many fields, such as media studies,
literature, sociology and political science [14,8,34]. Recently, many efforts have
been focused on automated content analysis, such as [2], which to a large degree
improves the access to large corpora.

These two classes of analysis have been investigated and applied in a rather
parallel style. Only until recently, social scientists started to combine social net-
work analysis and content analysis, such as the discourse network analysis in [19],
and the work in [27]. This paper is the first to combine these two kinds of analysis
in the Semantic Web context.

Another focus of our paper is on the longitudinal analysis over content and so-
cial networks. Recognised as a Holy Grail for network researchers, there has been
a large degree of focus on the analysis of social networks over time [22]. However,
there has not been much work with respect to the longitudinal analysis on the

Measuring the Dynamic Bi-directional Influence 827

combination of social and content networks. The closest work is that of Gloor et al,
who use network analysis over social networks and corresponding content to iden-
tify trends , however, they concentrate on a time dependent betweenness measure
and do not provide a general framework for a variety of network properties [11].
Our previous work in [26] is extended in this paper by providing a general frame-
work which is suitable for the analysis of the longitudinal influence between social
networks and communication content in the Semantic Web context.

5 Conclusion

In this paper, we presented a general framework for analyzing the dynamic bi-
directional influence between social relationships and the content produced with
respect to those relationships. The Influence Framework leverages a key insight
that by representing both social relationships and content as networks, common
network properties can be used to bootstrap the analysis of influence. Based on
these properties, the framework applies a time-series regression model to generate
influence network diagrams representing the statistically significant effects of
these properties. We applied our framework to two domains, dutch politics and
a conference series, resulting in interesting conclusions about the influence of
media on political forum participants and the impact of topics on academic
collaboration. The data was acquired from both a web crawl and a Semantic Web
source, we note that the acquisition of networks was easier using the Semantic
Web data source. To the best of our knowledge, this is the first work that combines
longitudinal social network analysis and content analysis in the context of the
Semantic Web. In future work, we aim to expand the integration with Semantic
Web data sources by providing reusable modules for widely used ontologies such
as SIOC. Additionally, we aim to provide a service allowing others to more easily
apply this framework to their own data sources.

By linking across both content and social networks, the Social Semantic Web
is providing a new data source for understanding the relationship between users
and the content that they produce [6]. The framework described in this pa-
per provides a new tool for analyzing these relationships from a longitudinal
perspective.

References

1. Ackland, R.: Social network services as data sources and platforms for e-researching

social networks. Social Science Computer Review 27, 481–492 (2009)

2. van Atteveldt, W., Kleinnijenhuis, J., Ruigrok, N.: Parsing, semantic networks,

and political authority using syntactic analysis to extract semantic relations from

dutch newspaper articles. Political Analysis 16(4), 428–446 (2008)

3. Becker, H.A., Sanders, K.: Innovations in meta-analysis and social impact analysis

relevant for tech mining. Technological Forecasting and Social Change 73(8), 966–

980 (2006); tech Mining: Exploiting Science and Technology Information Resources

4. Berelson, B.: Content Analysis in Communication Research. Free Press, New York

(1952)

828 S. Wang and P. Groth

5. Bojars, U., Breslin, J.G., Peristeras, V., Tummarello, G., Decker, S.: Interlinking

the social web with semantics. IEEE Intelligent Systems 23, 29–40 (2008)

6. Bojrs, U., Breslin, J.G., Finn, A., Decker, S.: Using the semantic web for linking

and reusing data across web 2.0 communities. Web Semant. 6(1), 21–28 (2008)

7. Brouwers, L.: Het juiste woord. Standaard betekeniswoordenboek der Nederlandse

taal, 7de druk, bewerkt door F. Clacs. Antwerpen: Standaard Uitgeverij (1989)

8. Budge, I., Klingemann, H.D., Volkens, A., Bara, J., Tanenbaum, E.: Mapping Pol-

icy Preferences. In: Estimates for Parties, Electors and Governments 1945-1998.

Oxford University Press, Oxford (2001)

9. Burt, R.S.: Structural Holes: The Social Structure of Competition. Harvard Uni-

versity Press, Cambridge (1992)

10. Ereteo, G., Buffa, M., Gandon, F., Corby, O.: Analysis of a real online social

network using semantic web frameworks. In: Bernstein, A., Karger, D.R., Heath,

T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009.

LNCS, vol. 5823, pp. 180–195. Springer, Heidelberg (2009)

11. Gloor, P.A., Krauss, J., Nann, S., Fischbach, K., Schoder, D.: Web science 2.0:

Identifying trends through semantic social network analysis. In: CSE (4), pp. 215–

222. IEEE Computer Society, Los Alamitos (2009)

12. Grabe, M., Kamhawi, R.: Hard wired for negative news? gender differences in

processing broadcast news. Communication Research 33(5), 346–369 (2006)

13. Hayes, A.F.: A Primer on Multilevel Modeling. Human Communication Research 4,

385–410 (2006)

14. Holsti, O.R.: Content Analysis for the Social Sciences and Humanities. Addison-

Wesley, Reading (1969)

15. Hoser, B., Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Semantic network anal-

ysis of ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011,

pp. 514–529. Springer, Heidelberg (2006)

16. Jamali, M., Abolhassani, H.: Different aspects of social network analysis. In:

IEEE/WIC/ACM International Conference on Web Intelligence, Hong Kong, pp.

66–72 (2006)

17. Kim, H.M., Biehl, M., Buzacott, J.A.: M-ci2: Modelling cyber interdependencies

between critical infrastructures. In: Proceedings of 3rd IEEE International Confer-

ence on Industrial Informatics, pp. 644–648 (2005)

18. Krippendorff, D.K.H.: Content Analysis: An Introduction to Its Methodology. Sage

Publications, Inc., Thousand Oaks (2003)

19. Leifeld, P., Haunss, S.: A comparison between political claims analysis and dis-

course network analysis: The case of software patents in the european union. In:

MPI Collective Goods Preprint. 2010/21 (May 2010)

20. Martin, M.S., Gutierrez, C.: Representing, querying and transforming social net-

works with rdf/sparql. In: Aroyo, L., Traverso, P., Ciravegna, F. (eds.) Semantic

Web: Research and Applications, pp. 293–307 (2009)

21. McCombs, M., Shaw, D.: The agenda-setting function of mass media. Public Opin-

ion Quarterly (1972)

22. McCulloh, I., Carley, K.: Longitudianl dynamic network analysis, using the over

time viewer feature in ora. Tech. rep., Institute for Software Research, School of

Computer Science, Carnegie Mellon University (2009)

23. Mika, P.: Flink: Semantic web technology for the extraction and analysis of social

networks. Journal of Web Semantics 3, 211–223 (2005)

Measuring the Dynamic Bi-directional Influence 829

24. Möller, K., Heath, T., Handschuh, S., Domingue, J.: Recipes for semantic web dog

food: the ESWC and ISWC metadata projects. In: Aberer, K., Choi, K.-S., Noy,

N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D.,

Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC

2007. LNCS, vol. 4825, pp. 802–815. Springer, Heidelberg (2007)

25. Oegema, D., Kleinnijenhuis, J., Anderson, K., Van Hoof, A.: Flaming and blam-

ing: The influence of mass media content on interactions in on-line discussions.

In: Konijn, E., Tanis, M., Utz, S. (eds.) Mediated Interpersonal Communication.

Erlbaum, Mahwah (2008)

26. Oegema, D., Wang, S., Kleinnijenhuis, J.: Dynamics of online discussions about

politics: a function of structural network properties, mass media attention or emo-

tional utterances? In: Proceedings of the WebSci10: Extending the Frontiers of

Society On-Line. US, Raleigh (April 2010)

27. Oliver, A.L., Montgomery, K.: Using field-configuring events for sense-making: A

cognitive network approach. Journal of Management Stuidies 45, 1147–1167 (2008)

28. Scott, J.: Social Network Analysis: A Handbook, 2nd edn. Sage, Newberry Park

(2000)

29. Severin, W., Tankard, J.: Communication theories. Pearson, New York (2010)

30. Shumway, R.H.: Applied Statistical Time Series Analysis. Prentice Hall Series in

Statistics. Prentice Hall, Englewood Cliffs (1988)

31. Snijders, T.A.B., Bosker, R.J.: Multilevel analysis: an introduction to basic and

advanced multilevel modeling. Sage, Thousand Oaks (1999)

32. Tomasev, N., Mladenic, D.: Semantic web wiki: Social network analysis of page

editing. In: LuzarStiffler, V., Jarec, I., Bekic, Z. (eds.) Proceedings of the ITI 2009

31st International Conference on Information Technology Interfaces, pp. 505–510

(2009)

33. Walgrave, S., Van Aelst, P.: The contingency of the mass medias political agenda

setting power: Toward a preliminary theory. Journal of Communication 56, 88–190

(2006)

34. Wimmer, R.D., Dominick, J.R.: Mass Media Research: An Introduction, 8th edn.

Wadsworth, Belmont (2005)

Author Index

Alani, Harith II-17

Alexander, Paul R. I-486

Alferes, José Júlio I-798

Alvaro, Guillermo I-534

Ambite, José Luis I-598

Araujo, Samur I-1

Auer, Sören I-647, II-1, II-225

Bail, Samantha I-32

Barrat, Alain II-17

Beisswanger, Elena II-289

Ben-David, David II-66

Benson, Edward I-48

Bernstein, Abraham I-764

Besana, Paolo II-34

Bodenreider, Olivier II-273

Bonatti, Piero A. I-64

Bonet, Blai I-386

Bouamrane, Matt-Mouley II-50

Bourde, Annabel II-34

Bredeweg, Bert II-82

Bryl, Volha I-80

Bühmann, Lorenz II-177

Burgun, Anita II-34

Calbimonte, Jean-Paul I-96

Calvanese, Diego I-112

Carr, Leslie I-663

Cattuto, Ciro II-17

Choi, Key-Sun II-1

Chute, Christopher G. II-241

Ciravegna, Fabio I-370

Cohen, William I-764

Corcho, Oscar I-96, II-82

Cuenca Grau, Bernardo I-747

Cuggia, Marc II-34

David, Jérôme I-129

Decker, Stefan I-337

Dědek, Jan II-297

Ding, Li I-145

Domany, Tamar II-66

Domingue, John I-534

Doran, Paul I-161

Duan, Songyun I-177

Eadon, George I-436

Eberhart, Andreas II-98

Ell, Basil II-114

Euzenat, Jérôme I-129, I-615

Faella, Marco I-64

Falconer, Sean II-257

Fernández, Javier D. I-193

Filler, Andreas II-145

Fokoue, Achille I-177, I-209

Friedrich, Gerhard I-696

Gibbins, Nicholas I-582

Giuliano, Claudio I-80

Glaser, Hugh I-663

Glimm, Birte I-225, I-241, I-257

Gómez-Pérez, Asunción II-82

Gracia, Jorge II-82

Gray, Alasdair J.G. I-96

Gröner, Gerd I-273

Groth, Paul I-289, I-814

Guéret, Christophe I-289

Gutierrez, Claudio I-193

Haase, Peter II-98

Halaschek-Wiener, Christian II-194

Halpin, Harry I-305

Happel, Hans-Jörg I-321

Haugen, Austin II-338

Hayes, Patrick J. I-305

He, Jing II-339

Heflin, Jeff I-502

Heino, Norman I-647

Herzig, Daniel M. II-114

Hidders, Jan I-1

Hitzler, Pascal I-402

Hogan, Aidan I-337

Horridge, Matthew I-354

Horrocks, Ian I-225, I-747

Houben, Geert-Jan I-1

Howahl, Fabian I-48

Hu, Bo II-129

Hurrell, Martin II-50

832 Author Index

Ireson, Neil I-370

Izquierdo, Daniel I-386

Jain, Prateek I-402

Janzen, Sabine II-145

Jennings, Nicholas R. I-582

Jonquet, Clement I-486

Kaoudi, Zoi I-418

Kapahnke, Patrick II-161

Karger, David I-48

Kharlamov, Evgeny I-112

Klusch, Matthias II-161

Knoblock, Craig A. I-598

Kolovski, Vladimir I-436

Koubarakis, Manolis I-418

Kowatsch, Tobias II-145

Krötzsch, Markus I-241

Kyzirakos, Kostis I-418

Ladwig, Günter I-453

Laniado, David I-470

Lehmann, Jens II-1, II-177

Leite, João I-798

LePendu, Paea I-486

Li, Xiaoming II-339

Li, Yingjie I-502

Liedtke, Pascal II-161

Liem, Jochem II-82

Lopes, Nuno I-518

Lozano, Esther II-82

Maass, Wolfgang II-145

Maleshkova, Maria I-534

Marcus, Adam I-48

Martin, Michael II-225

Martinez, Ivan I-534

Mart́ınez-Prieto, Miguel A. I-193

Mathäß, Tobias II-98

McGuinness, Deborah L. I-145, I-305

McIlraith, Sheila A. I-713

Mika, Peter I-470

Morgenstern, Ulf II-225

Motik, Boris I-225, I-550

Musen, Mark A. I-486, II-194, II-257

Nesbigall, Stefan II-161

Ni, Yuan I-566

Norman, Timothy J. I-679

Noy, Natalya F. I-486, II-257

Nutt, Werner I-112

Nyulas, Csongor II-257

O’Connor, Martin J. II-194

Packer, Heather S. I-582

Palmisano, Ignazio I-161

Pan, Jeff Z. I-337

Parsia, Bijan I-32, I-354

Parundekar, Rahul I-598

Passant, Alexandre II-209

Payne, Terry R. I-161

Pedrinaci, Carlos I-534

Pirró, Giuseppe I-615

Polleres, Axel I-337, I-518

Poulovassilis, Alexandra I-631

QasemiZadeh, Behrang II-305

Qiu, Zhaoming I-566

Rector, Alan II-50

Riechert, Thomas II-225

Rieß, Christoph I-647

Rijgersberg, Hajo I-16

Rodriguez-Castro, Bene I-663

Rudolph, Sebastian I-257

Sandhaus, Evan II-355

Sattler, Ulrike I-32, I-354

Sauro, Luigi I-64

Savova, Guergana K. II-241

Schlobach, Stefan I-289

Schmidt, Michael II-98

schraefel, mc II-356

Schwabe, Daniel I-1

Şensoy, Murat I-679

Serafini, Luciano I-80

Serban, Floarea II-313

Shah, Nigam H. I-486

Shangguan, Zhenning I-145

Sharma, Deepak K. II-241

Shchekotykhin, Kostyantyn I-696

Sheth, Amit P. I-402

Shinavier, Joshua I-145

Silva Parreiras, Fernando I-273

Sohrabi, Shirin I-713, II-321

Solbrig, Harold R. II-241

Speiser, Sebastian I-730

Srinivas, Kavitha I-177

Srivatsa, Mudhakar I-209

McCusker, Jamie P. I-305

Author Index 833

Staab, Steffen I-273

Stoilos, Giorgos I-225, I-747

Straccia, Umberto I-518

Studer, Rudi I-730, I-781

Stutz, Philip I-764

Šváb-Zamazal, Ondřej I-129

Svensson, Glenn II-129

Sycara, Katia I-679

Szomszor, Martin II-17

Tamma, Valentina I-161

Tao, Cui II-241

Tao, Jiao II-330

Tarem, Abigail II-66

Thompson, Henry S. I-305

Top, Jan I-16

Tramp, Sebastian I-647, II-225

Tran, Thanh I-453, I-781

Trna, Michal II-82

Tudorache, Tania II-257

Tymoshenko, Kateryna I-80

van Assem, Mark I-16

Van den Broeck, Wouter II-17

van Harmelen, Frank I-289

Vasconcelos, Wamberto W. I-679

Verma, Kunal I-402

Vidal, Maŕıa-Esther I-386

Viegas Damásio, Carlos I-798

Völker, Johanna I-257

Walther, Ulrich II-98

Wang, Chen I-566

Wang, Shenghui I-814

Warwas, Stefan II-161

Wei, Wei-Qi II-241

Weidl, Matthias II-1

Wigham, Mari I-16

Wood, Peter T. I-631

Wu, Zhe I-436

Yeh, Peter Z. I-402

Young, Rob I-209

Zaveri, Amrapali J. II-1

Zekri, Oussama II-34

Zhang, Guo-Qiang II-273

Zhang, Lei I-566, I-781

Zheleznyakov, Dmitriy I-112

Zimmermann, Antoine I-518

	Title
	Preface
	Organization
	Table of Contents – Part I
	Research Track
	Fusion – Visually Exploring and Eliciting Relationships in Linked Data
	Introduction
	Related Work
	Ontology Mapping
	SPARQL Construct Queries and Their Extensions
	Views over RDF Data
	SWRL Rules
	RDF Exploration
	Interlinking

	Discovering and Deriving RDF Relationships
	Deriving Object Property Relationships
	Deriving New Datatype Properties

	Architecture Overview
	Examples of Use
	Scenario 1 – Adding the isSenatorOf Object Property to GovTrack.Us
	Scenario 2 – Adding a Datatype Property citySize to Geonames

	Conclusion and Future Work
	References

	Converting and Annotating Quantitative Data Tables
	Introduction
	Problem Description
	Related Work
	Materials
	Datasets
	Ontology

	Approach
	Tokenization
	Basic Matching: Full Names and Symbols
	Matching: Compounds in OUM
	Matching: Compounds Not in OUM
	Disambiguation
	Implementation

	Evaluation and Analysis
	Evaluation Type and Data Selection
	Gold Standard Creation
	Results
	Qualitative Analysis

	Discussion
	References

	JustBench: A Framework for OWL Benchmarking
	Introduction
	Reasoner Behaviour Analysis
	Approaches to Understanding Reasoner Behaviour
	Benchmarks
	Existing OWL Benchmarks

	Justification-Based Reasoner Benchmarking
	Limitations of this Selection Method
	JustBench: System Description

	Experiments and Evaluation
	Experimental Setup
	Results and Discussion
	Additional Tests and Discussion
	Application of JustBench

	Conclusion and Future Work
	References

	Talking about Data: Sharing Richly Structured Information through Blogs and Wikis
	Introduction
	Requirements for the 21st Century Blogger
	The Latent Potential for Grassroots Data
	DataPress
	Authoring and Uploading Data
	Data Linking
	Visualization Authoring
	Data Sharing

	DataPress in a Data Ecosystem
	Lessons Learned
	DataPress in the Wild
	User Interviews

	Related Work
	Conclusion
	References

	EL with Default Attributes and Overriding
	Introduction
	Preliminaries
	A New Reasoning Task

	Complexity
	NP-Hardness of the General Case
	A Polynomial Case

	Reasoning about Individuals
	Related Work
	Conclusions and Perspectives
	References

	Supporting Natural Language Processing with Background Knowledge: Coreference Resolution Case
	Introduction
	Coreference Resolution: Task Definition and Related Work
	Background Knowledge Acquisition
	Sources of Background Knowledge
	Linking to Wikipedia

	Selecting Relevant Background Knowledge
	Feature Extraction
	Feature Selection

	Evaluation: Coreference Resolution with Background Knowledge
	Baseline Model Definition
	Injecting Background Knowledge into Coreference Model

	Conclusion and Future Work
	References

	Enabling Ontology-Based Access to Streaming Data Sources
	Introduction
	Background
	Ontology-Based Access to Stored Relational Data
	Querying Relational Data Streams

	Ontology-Based Streaming Data Access
	Query and Mapping Syntax
	SPARQLStream
	S2O: Expressing Stream-to-Ontology Mappings

	Semantics of the Streaming Extensions
	SPARQLStream Semantics
	S2O Semantics

	Implementation and Walkthrough
	Related Work
	Conclusions and Future Work
	References

	Evolution of DL-Lite Knowledge Bases
	Introduction
	Preliminaries and Problem Definition
	Approaches to Evolution
	Model-Based Approaches
	Formula-Based Approaches

	Bold Semantics
	ABox Evolution
	Conclusion
	References

	Ontology Similarity in the Alignment Space
	Introduction
	Related Works
	Ontologies, Alignment Spaces and Similarities
	Ontologies and Alignments
	Alignment Space
	Algebraic Similarity Properties

	Path-Based Measures
	Coverage-Based Measures
	Largest Coverage
	Union Path Coverage
	OntoSim

	Comparison of Presented Measures
	Dataset Description
	Agreement
	Robustness

	Conclusion
	References

	SameAs Networks and Beyond: Analyzing DeploymentStatus and Implications of owl: sameAs in Linked Data
	Introduction
	SameAs Networks
	Definitions and Notations
	SameAs Networks Analysis

	Building ESameNet Dataset and Experiment Settings
	Basic Properties of SameAs Networks
	Pay-Level-Domain (PLD) Network Analysis
	Definitions and Notations
	Implications of the PLD Network

	CLS Network Analysis
	Definitions and Notation
	CLS Network and Enhancement

	Related Work
	Conclusion and Future Work
	References

	Deciding Agent Orientation on Ontology Mappings
	Introduction
	Arguing over Ontology Mappings
	A Flexible Approach for Determining Agents' Orientation on Mappings
	Illustrative Example
	Empirical Evaluation
	Evaluating the Generated Arguments
	Fitness Evaluation

	Related Work
	Conclusions
	References

	One Size Does Not Fit All: Customizing Ontology Alignment Using User Feedback
	Introduction
	Overview of Ontology Alignment
	Generation of Candidate Matchings
	Feature Engineering
	Lexical Similarities and Initial Selection of Candidate Matchings

	Similarity Aggregation and Interpretation
	User Feedback
	Weighted Aggregation
	Probabilistic Matching

	Iterative Supervised Structural Propagation of User Feedback
	Structure-Based Similarity
	Determining the Degree of Structural Propagation
	Determining the Right Number of Iterations
	Techniques for Scalability

	Experimental Evaluation
	Experimental Setting
	Evaluation Metric
	Effect of Learning for Weighted Combination
	Effect of Iterative Supervised Structural Propagation
	Discussion and Future Work

	Related Work
	Conclusion
	References

	Compact Representation of Large RDF Data Sets for Publishing and Exchange
	Introduction and Related Work
	Compacting RDF with HDT: The Concepts
	Taking Advantage of the Skewed Structure of Real-World RDF Data
	Header
	Dictionary
	Triples

	Compacting RDF with HDT: Practical Aspects
	Implementation
	HDT Management
	HDT Compression
	Experimental Results

	Conclusions and Future Work
	References
	Appendix: The Data Sets Used in the Study

	Assessing Trust in Uncertain Information
	Introduction
	Background
	Bayesian Network Notation
	Bayesian Description Logics

	Inconsistency and Justification
	Degree of Inconsistency
	Inconsistency Justification
	Error-Bounded Approximate Reasoning
	Sampling Justifications in a Classical KB

	Trust Computation Model
	Trust Computation

	Experimental Evaluation
	Conclusion
	References

	Optimising Ontology Classification
	Introduction
	Preliminaries
	The KP Classification Algorithm

	Optimised Classification
	Further Comparisons with the KP Algorithm

	Object Property Classification
	Data Property Classification
	Evaluation
	Conclusions
	References

	SPARQL beyond Subgraph Matching
	Introduction
	RDF Graphs and Their Semantics
	The SPARQL Query Language
	Extending Basic Graph Pattern Matching
	The RDF and RDFS Entailment Regimes
	Treatment of Inconsistencies
	Treatment of Axiomatic Triples
	Treatment of Blank Nodes
	Defining the RDF(S) Entailment Regimes

	The OWL Entailment Regimes
	Infinite Entailments in Datatype Reasoning
	The OWL 2 RDF-Based Semantics Entailment Regime
	The OWL 2 Direct Semantics Entailment Regime

	Implementations of SPARQL Entailment Regimes
	Related Work
	Conclusions
	References

	Integrated Metamodeling and Diagnosis in OWL 2
	Introduction
	Preliminaries
	Ontology-Inherent Metamodeling for Classes
	OntoClean
	OWL-Based Constraint Checking
	The Original OntoClean Metaontology
	Towards OntOWL2Clean

	Marker Predicates for Pinpointing Constraint Violations
	Evaluation
	Conclusion
	References

	Semantic Recognition of Ontology Refactoring
	Introduction
	An Ontology Refactoring Scenario
	Motivating Example
	Discussion of Shortcomings

	Modeling and Categorizing Refactoring Patterns
	Modeling Foundations and Assumptions
	Overview of Refactoring Pattern
	Detailed Refactoring Descriptions

	DL-Reasoning for Ontology Comparison
	Combining Knowledge Bases
	Semantic Version Comparison

	Refactoring Pattern Recognition
	Evaluation and Discussion
	Related Work
	Conclusion and Future Work
	References

	Finding the Achilles Heel of the Web of Data:Using Network Analysis for Link-Recommendation
	Introduction
	Background
	Related Work
	Infrastructure Failure and Semantic Failure

	Analysing the Web of Data
	Measures of Robustness
	Dataset
	Robustness Results

	Improving the Web of Data
	The Cost of Fixing the WoD
	Strategies for Adding New Edges
	Repair of the Namespaces Network
	Repair of the Hostnames Network

	Conclusion
	References

	When owl:sameAs Isn’t the Same: An Analysis of Identity in Linked Data
	Introduction
	What Is Identity?
	The Identity Crisis of Linked Data
	Varieties of Identity and Similarity
	Identical but Referentially Opaque
	Identity as Claims
	Matching
	Similar
	Related

	The Similarity Ontology
	Inference

	Experiment
	Data
	Experimental Design

	Conclusion
	References

	Semantic Need: Guiding Metadata Annotations by Questions People #ask
	Introduction
	Need-Driven Knowledge Sharing
	Semantic Need Heuristics
	Semantic MediaWiki
	Incomplete Result Set
	Sparse Result Set
	Public SMW Analysis

	Semantic Need Implementation
	Resolving Semantic Gaps
	Semantic Need for MediaWiki
	Semantic Need Survey

	Design Implications
	Related Work
	Summary
	References

	SAOR: Template Rule Optimisations for Distributed Reasoning over 1 Billion Linked Data Triples
	Introduction
	Preliminaries
	RDF and Rules

	Partial Indexing Approach: Separating Terminological Data
	Template Rules
	Merging Equivalent Template Rules
	Rule Index
	Rule Dependency – Labelled Rule Graph
	Rule Saturisation
	Optimised Partial Indexing Approach Using Template Rules
	Preliminary Performance Evaluation

	Reasoning for Linked Data
	Authoritative Reasoning
	Linked Data Reasoning Evaluation

	Related Work
	Conclusion
	References

	Justification Oriented Proofs in OWL
	Introduction and Motivation
	Justifications as Explanations
	Problems with Justifications
	From Justifications towards Proofs
	Justification Oriented Proofs
	Contributions

	Related Work
	Preliminaries
	Proof Generation Framework
	Justification Lemmatisation
	Complexity Models
	A General Model for Deriving Justification Oriented Proofs

	An Algorithm for Generating Proofs
	GenerateProof
	LemmatiseJustification
	ComputeJPlus

	The Feasibility of Computing Justification Oriented Proofs
	Examples
	Conclusions and Future Work
	References

	Toponym Resolution in Social Media
	Introduction
	Related Work
	Methodology
	Information Context
	Ambiguity

	Experiment
	Data
	Classification

	Results
	Discussion
	Conclusion
	References

	An Expressive and Efficient Solution to the Service Selection Problem
	Introduction
	Service Selection Problem
	Domain Ontology
	Services and Mappings
	User Requests
	Examples

	Solution and System Architecture
	System Architecture

	Preliminary Experiments
	Airline Experiments
	Random Experiments

	Related Work
	Discussion
	References

	Ontology Alignment for Linked Open Data
	Introduction
	Preliminaries
	The BLOOMS Approach
	Evaluation
	Evaluation: Ontology Alignment Evaluation Initiative Oriented Track
	Evaluation: Ontology Alignment Evaluation Initiative Benchmark Track
	Evaluation: LOD Schema Alignment

	Related Work
	Conclusion and Future Work
	References

	SPARQL Query Optimization on Top of DHTs
	Introduction
	System and Data Model
	Query Evaluation
	Query Optimization Algorithms
	Selectivity Estimation
	Single Triple Patterns
	Conjunction of Triple Patterns

	Statistics for RDF
	Experimental Evaluation
	Comparing the Optimization Algorithms
	Effectiveness of Query Optimization
	Varying the Dataset and Network Size
	Statistics
	Discussion

	Related Work
	Conclusions and Future Work
	References

	Optimizing Enterprise-Scale OWL 2 RL Reasoning in a Relational Database System
	Introduction
	Preliminaries
	OWL 2 RL
	Oracle Semantic Technologies

	Optimized Equivalence Reasoning
	Large Scale Clique Building

	Parallel OWL Inference
	Query Simplification for Efficient Parallel Inference
	Compact Data Structures

	Incremental Inference
	Lazy Duplicate Elimination
	Dynamic Semi-naïve Evaluation

	Evaluation
	Experimental Setup
	Parallel Inference Evaluation
	Incremental Inference Evaluation
	Optimized owl:sameAs Handling Evaluation

	Related Work
	Conclusions and Future Work
	References

	Linked Data Query Processing Strategies
	Introduction
	Linked Data Query Processing
	Linked Data
	Source Discovery
	Source Ranking
	Query Evaluation Strategies

	Stream-Based Linked Data Query Processing
	Overview of the Process
	Push-Based Symmetric Hash Join

	Corrective Source Ranking
	Source Features and Metrics
	Metric Computation
	Metric Correction and Refinement
	Source Ranking at Run-Time

	Related Work
	Evaluation
	Conclusion
	References

	Making Sense of Twitter
	Introduction
	Metrics for Hashtag Evaluation
	A Vector Space Model for Hashtags
	Frequency of Usage
	Specificity
	Consistency of Usage
	Stability over Time

	Evaluation
	Dataset
	Descriptive Statistics
	Evaluating Hashtags
	Stability over Time
	Manual Assessment

	Related Work
	Conclusions and Future Work
	References

	Optimize First, Buy Later: Analyzing Metrics to Ramp-Up Very Large Knowledge Bases
	Introduction
	Related Work
	Data
	Are Existing Systems Scalable Enough?
	A Tale of Two KBs: Is Materialization Really Free?
	Is the LUBM Ontology Too Small and Shallow?
	Accounting for Size and Depth: New Benchmark Ontologies
	Conclusion: Materialization Costs Depend on the Size and Depth

	Managing Large-Scale Annotation Databases
	The NCBO Resource Index
	Optimizing for Data Distribution and Ontology Evolution
	Conclusion: Memory-Based Merge-Join with Partitioning Performs Well

	Discussion
	Conclusion
	References

	Using Reformulation Trees to Optimize Queries over Distributed Heterogeneous Sources
	Introduction
	Related Work
	Query Optimization
	Preliminaries
	Tree Structure Query Optimization Algorithm

	Evaluation
	Heterogeneity Evaluation Using a Synthetic Data Set
	Scalability Evaluation Using the BTC Data Set

	Conclusions, Limitations and Future Work
	References

	AnQL: SPARQLing Up Annotated RDFS
	Annotated RDFS
	Syntax
	RDFS Annotation Domains
	Semantics
	Deductive System
	Examples of Domains

	AnQL: Annotated SPARQL
	Syntax
	Semantics
	Further Extensions of AnQL

	Twisting AnQL – Issues and Pitfalls
	Uniform Treatment of Annotated and Non-annotated Queries
	Querying Multi-dimensional Domains
	Temporal Issues
	Constraints vs Filters

	References

	Using Semantics for Automating the Authentication of Web APIs
	Introduction
	Motivating Example
	Background
	WS-Security

	Investigating Authentication for Web APIs
	Common Authentication Approaches
	Web API Survey Results

	Supporting the Automation of Web API Authentication
	Design Principles
	Authentication Ontology
	Authentication Engine

	Related Work
	Conclusion and Future Work
	References

	Representing and Querying Validity Time in RDF and OWL: A Logic-Based Approach
	Introduction
	Preliminaries
	Representing Validity Time in RDF and OWL
	Querying Temporal Graphs
	Optimized Query Answering
	Simple Entailment
	Entailments Characterized by Deterministic Rules

	Implementation and Outlook
	References

	Enhancing the Open-Domain Classification of Named Entity Using Linked Open Data
	Introduction
	Overview
	Type Knowledge Base Generation
	Leverage the Name Properties
	Leverage the Relationships
	Structure of the Type Knowledge Base

	Scoring Method
	Retrieving Types for the Named Entity String from Type Knowledge Base
	Matching the Target Type with the Retrieved Type
	Determining the Final Score
	Applying the Score in Machine Learning

	Experimental Study
	Experimental Setup
	Scoring Accuracy
	Impact on the Machine Learning for Classification

	Related Work
	Conclusion and Future Work
	References

	Forgetting Fragments from Evolving Ontologies
	Introduction
	Related Work
	RoboCup OWLRescue Framework
	The Forgetting Approach
	Evaluate Concepts
	Select Concepts
	Remove Concepts

	Evaluation
	Results
	Conclusions
	References

	Linking and Building Ontologies of Linked Data
	Introduction
	Linked Data Background and Sources
	Ontology Alignment Using Linked Data
	Restriction Classes
	Pre-processing of the Data
	Searching the Space of Ontology Alignments
	Scoring Alignment Hypotheses
	Eliminating Implied Alignments

	Empirical Evaluation
	Related Work
	Conclusion
	References

	A Feature and Information Theoretic Framework for Semantic Similarity and Relatedness
	Introduction
	Definitions and Background
	State of the Art
	Comparison among Measures

	A Framework for Semantic Similarity and Relatedness
	Tversky's Feature-Based Model of Similarity
	A Ratio-Based Formulation of Tverky's Similarity Model
	The FaITH Similarity Measure
	Extended Information Content (eIC)

	Evaluation
	Experiment 1: Evaluating FaITH on Similarity
	Experiment 2: Evaluating FaITH on Relatedness
	Experiment 3: Evaluation on the MeSH Ontology

	Concluding Remarks and Future Work
	References

	Combining Approximation and Relaxation in Semantic Web Path Queries
	Introduction
	Single-Conjunct Regular Path Queries
	Approximate Matching of Single-Conjunct Queries
	Ontology Relaxation of Single-Conjunct Regular Path Queries
	Computing the Relaxed Answer

	General Queries
	Related Work
	Concluding Remarks
	References

	EvoPat – Pattern-Based Evolution and Refactoring of RDF Knowledge Bases
	Introduction
	Concepts
	Evolution Pattern
	Evolution Pattern Processing
	Bad Smells
	Serialization in RDF

	Pattern Survey and Classification
	Implementation
	Related Work
	Conclusion and Future Work
	References

	How to Reuse a Faceted Classification and Put It on the Semantic Web
	Introduction
	Faceted Classification Scheme
	Structure and Elements

	Normalisation Ontology Design Pattern
	Structure and Elements
	Implementation

	Alignment of a FCS to the Normalisation ODP
	Structure and Elements
	Implementation

	Relation to Other Methods
	Conclusions
	References

	OWL-POLAR: Semantic Policies for Agent Reasoning
	Introduction
	Semantic Representation of Policies
	Reasoning with Policies
	Policy Activation
	Reasoning about Actions

	Reasoning about Policies
	Reasoning about Semantic Formulas
	Idle Policies
	Anticipating Conflicts between Policies

	Related Work and Discussion
	Conclusions
	References

	Query Strategy for Sequential Ontology Debugging
	Introduction
	Motivating Examples and Basic Concepts
	Entropy-Based Query Selection
	Implementation Details
	Evaluation
	Related Work
	Conclusions
	References

	Preference-Based Web Service Composition: A Middle Ground between Execution and Search
	Introduction
	Background and Preliminaries
	Decoupling Data Optimization from Search
	Middle-Ground Execution
	Computing a Preferred Composition
	Implementation and Evaluation
	Summary and Related Work
	References

	A Self-Policing Policy Language
	Introduction
	Use Case and Requirements
	Preliminaries
	Policy Model
	Formal Policy Model
	Policy Structure
	Mapping the Policy Structure to the Formal Model

	Restrictions on Policies
	Evaluation
	Related Work
	Conclusions and Future Work
	References

	Completeness Guarantees for Incomplete Reasoners
	Introduction
	Preliminaries
	A Framework for Evaluating Completeness
	CQ Answering Algorithms
	Testing Bases
	Strict Testing Bases
	Existence and Size of Strict Testing Bases
	Measuring the Degree of Completeness

	Computing Strict Testing Bases
	Implementation and Evaluation
	Conclusion and Future Work
	References

	Signal/Collect: Graph Algorithms for the (Semantic) Web
	Introduction
	The Signal/Collect Programming Model
	A Formal Definition of the Signal/Collect Structures
	The Computation Model and Extensions

	Algorithms in Signal/Collect
	The Signal/Collect Framework — An Implementation
	Evaluation
	Scalability
	Score-Guided Computations
	Asynchronous vs. Synchronous
	Limitations—Threats to Validity

	Related Work
	Limitations, Future Work and Conclusions
	References

	Summary Models for Routing Keywords to Linked Data Sources
	Introduction
	Preliminary
	Web of Linked Data
	Keyword Query Routing

	Summary Models for Keyword Query Routing
	Keyword Query Routing Search Space
	Summary Models
	Computing Summary Models

	Computing Keyword Routing Plans
	Routing Plan Computation Using KS
	Routing Plan Computation Using KERGs
	Result Validity
	Complexity

	Evaluation
	Data Preprocessing
	Query Processing

	Conclusion
	References

	Declarative Semantics for the Rule Interchange Format Production Rule Dialect
	Introduction
	Answer Set Programming
	iClingo

	Fact Bases, States, Conditions and Rules
	Atomic Formulas and Conditions
	Fact Bases and States
	Actions and Rules

	Conflict Resolution Strategies
	General Definition of Strategies
	Defining One Specific Strategy

	Conclusions
	References

	Measuring the Dynamic Bi-directional Influence between Content and Social Networks
	Introduction
	Influence Framework
	Network Generation
	Measuring Network Properties
	Multilevel Time-Series Regression Models

	Use Cases
	Influence between Co-authors of Academic Papers and the Topics They Address
	Influence between Social Status of Online Forum Participants and Their Political Attention
	Influence between User-Defined Content Variables with Social Network Properties

	Related Work
	Conclusion
	References

	Author Index

