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Of what use . . . is it to be able to see the end in the beginning? (Dewey 1974, p. 345).

Fractions and algebra are two topics in school mathematics that are considered
critical to the curriculum and difficult to learn (National Council of Teachers of
Mathematics 1998, 2000). Students’ misconceptions and procedural errors for frac-
tions and algebra, for example, have been well documented (Kerslake 1986; Matz
1982; Sleeman 1984; Stafylidou and Vosniadou 2004). Moreover, high-school stu-
dents’ poor performance in algebra has been blamed on their weak proficiency in
fractions. According to a recent Math Panel report, for instance, the ability to per-
form fraction computations easily and quickly is one of the most critical prerequi-
sites for algebra (U.S. Department of Education 2008).

We see the relationship between fractions and algebra differently. If there is an
obstacle to learning algebra, it begins to form as children learn basic arithmetic.
As a direct result of typical approaches to instruction in the U.S., American stu-
dents tend to understand arithmetic as a collection of procedures, rather than in
terms of conceptual relationships or general properties of number and operation. By
the time the problem is exposed as children learn fractions, it is fairly entrenched,
and it is only exacerbated by the fact that fractions are taught in isolation from
whole numbers and that fraction operations are taught as a collection of proce-
dures. Concrete materials and models may help children make critical connections
(Lesh et al. 1987), but our take on the types of connections that are most fruit-
ful for understanding fractions represents a departure from earlier lines of think-
ing.

In this chapter we present an alternative view on the relationship between frac-
tions and algebra that (1) emphasizes the conceptual continuities between whole-
number arithmetic and fractions; and (2) shows how the fundamental properties
of operations and equality that form the foundations of algebra are used naturally
by children in their strategies for problems involving operating on and with frac-
tions. We ground this view in research on children’s thinking to illustrate how al-
gebraic structure emerges in young children’s reasoning and can, with the help of
the teacher, be made explicit. Specifically, we argue that there is a broad class of
children’s strategies for fraction problems motivated by the same mathematical re-
lationships that are essential to understanding high-school algebra and that these
relationships cannot be presented to children as discrete skills or learned as iso-
lated rules. We refer to the thinking that guides such strategies as relational think-
ing.

These arguments are based on our research over the last 14 years, in which we
have been studying how to provide opportunities for students to engage in rela-
tional thinking in elementary classrooms and how to use relational thinking to learn
the arithmetic of whole numbers and fractions. We have focused on understand-
ing children’s conceptions and misconceptions related to relational thinking, how
conceptions develop, how teachers might foster the development and the use of re-
lational thinking to learn arithmetic, and how professional development can support
the teaching of relational thinking. This research has included design experiments
with classes and small groups of children (e.g. Falkner et al. 1999; Empson 2003;
Koehler 2004; Valentine et al. 2004), case studies (Empson et al. 2006; Empson and
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Turner 2006), and large-scale studies (Jacobs et al. 2007); and it has been synthe-
sized in two books (Carpenter et al. 2003; Empson and Levi 2011).

In this chapter, we illustrate elementary school children’s use of relations and
properties of operations as a basis for learning fractions and argue that relational
thinking is a critical foundation for learning algebra. We first define relational think-
ing and then we discuss how the use of relational thinking supports the development
of children’s understanding of arithmetic. At the same time we challenge the notion
that an invigorated focus on fractions in the middle grades is the key to equipping
students to learn algebra meaningfully (Hiebert and Behr 1988; U.S. Department of
Education 2008). Instead, we argue that the key can be found in helping children
to see the continuities among whole numbers, fractions, and algebra. Finally, we
suggest that a model of the development of children’s understanding of arithmetic
that is based upon a concrete to abstract mapping is too simplistic. We propose in-
stead that developing computational procedures based on relational thinking could
effectively integrate children’s learning of the whole-number and fraction arithmetic
in elementary mathematics, in anticipation of the formalization of this thinking in
algebra.

What Is Relational Thinking?

Relational thinking involves children’s use of fundamental properties of operations
and equality1 to analyze a problem in the context of a goal structure and then to
simplify progress towards this goal (Carpenter et al. 2003; see also Carpenter et
al. 2005; Empson and Levi 2011). The use of fundamental properties to generate a
goal structure and to transform expressions can be explicit or it can be implicit in
the logic of children’s reasoning much like Vergnaud’s (1988) theorems in action.

For example, to calculate 1
2 + 3

4 a child may think of 3
4 as equal to 1

2 + 1
4 and

reason that 1
2 plus another 1

2 is equal to 1, then plus another 1
4 is 1 1

4 . In a study by
Empson (1999), several first graders reasoned this way when given a story problem
involving these fractional quantities. This solution involves anticipatory thinking, a
construct introduced by Piaget and colleagues (Piaget et al. 1960) to characterize
the use of psychological structures to coordinate a goal with the subgoals used to
accomplish it; thinking can involve several such coordinations. These students rec-
ognized that they could decompose 3

4 into 1
2 + 1

4 , and that if they decomposed it
this way, they could regroup to add 1

2 + 1
2 . In other words, they transformed 3

4 to
1
2 + 1

4 in anticipation of adding 1
2 + 1

2 . This solution involved thinking flexibly about
both the quantity 3

4 and about the operation, taken into account concurrently rather
than separately as a series of isolated steps. Their thinking can be represented by the

1Essentially, we are referring here to the field properties and basic properties of equality (Herstein
1996; see also Carpenter et al. 2003; Empson and Levi 2011).
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following equalities:

1

2
+ 3

4
= 1

2
+

(
1

2
+ 1

4

)
=

(
1

2
+ 1

2

)
+ 1

4
= 1 + 1

4
= 1

1

4
.

Although the first graders did not represent their reasoning symbolically in this way,
their solution is justified in part by the implicit use of the associative property of
addition, which we have represented explicitly here to highlight the logic of the
their thinking.

Relational thinking is powerful because the applicability of fundamental proper-
ties such as the associative property of addition and the distributive property of mul-
tiplication over addition cuts across number domains and into the domain of algebra
where one reasons about general quantities rather than specific numbers. Consider
the expression 7a + 4a. A basic algebraic skill is to simplify this expression to 11a,
by application of the distributive property of multiplication over addition:

7a + 4a = (7 + 4)a = 11a.

The same property that justifies this transformation can also be used to justify that
70 + 40 = 110 and 7

5 + 4
5 = 11

5 :

70 + 40 = 7 × 10 + 4 × 10 = (7 + 4) × 10 = 11 × 10 = 110,

7

5
+ 4

5
= 7 × 1

5
+ 4 × 1

5
= (7 + 4) × 1

5
= 11 × 1

5
= 11

5
.

Yet addition of whole numbers and addition of fractions are taught in isolation from
each other in the elementary curriculum, and they are often taught by rote, without
reference either to the underlying properties or the process of deciding how and
when to use a property. For example, to add fractions children are taught to first find
a common denominator and then add the two numerators; many children remember
this process as a series of steps to execute. They are not encouraged to draw on
their understanding of the distributive property either to derive or to explain this
procedure. Many children are therefore simply not prepared later to explicitly draw
on the appropriate properties to justify why 7a +4a is 11a, but 7a +4b is not 11ab.

Children learn arithmetic with understanding when they are encouraged to use
and develop their intuitive understanding of the properties of number and operation.
Our research has led us to recast the meaning of learning with understanding in
terms of thinking relationally: to understand arithmetic is to think relationally about
arithmetic, because the coherence of operations on whole numbers and fractions is
found at the level of the fundamental properties of operations and equality. Teaching
arithmetic in general and fractions in particular primarily as a set of procedures
fails to introduce children to the powerful reasoning structures that form the basis
of our number system. On the other hand, if children enter algebra with a well
developed ability to think relationally about operations, they are prepared to learn
to reason meaningfully about and carry out transformations involving generalized
expressions through the explicit application of algebraic properties. In the following
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section we show how these properties emerge and can be developed in the context of
carrying out number operations involving fractions and we discuss their connections
to learning algebra.

Use of Relational Thinking in Learning Fractions

Children’s difficulties learning fractions have been well documented (Kerslake
1986; Stafylidou and Vosniadou 2004). The difficulty, however, may be in how frac-
tions are taught rather than how intrinsically easy or hard they are to understand.
Indeed, a conclusion we draw from our research is that fractions are not unduly
difficult if instruction develops children’s capacity for relational thinking.

A focus on relational thinking can transform fractions into a topic that children
understand by drawing on and reinforcing the fundamental properties that govern
reasoning about both whole-number and fraction quantities and operations. Chil-
dren use relational thinking in their solutions to story problems (e.g., Baek 2008;
Carpenter et al. 1998; Empson et al. 2006) and open number sentences (Carpenter
et al. 2005). Teachers can cultivate children’s use of relational thinking by using
a combination of these types of problems. In this chapter we focus on children’s
relational thinking in the context of solving story problems.

Understanding Fractional Quantities Through Relational Thinking

Before children can learn to operate on or with fractions, they need to under-
stand fractional as quantities. Because a fraction is defined by the multiplicative
relationship between its two terms, a mature understanding of fractions as quan-
tities is relational in nature. Young children can construct a relational understand-
ing of fractions by solving and discussing Equal Sharing problems (Empson 1999;
Empson and Levi 2011; Streefland 1993).

To solve a problem about equally sharing quantities, such as two pancakes shared
among three children, children must partition the quantities equally and completely.
Children’s earliest, non-relational strategies often involve partitioning the pancakes
into halves. In this example the two pancakes would yield four halves. A child
using this strategy might then try to distribute the four halves into three groups.
When the child discovers that there is a half left over, the child may then parti-
tion the extra half into half, and then partition each of those parts into half again,
continuing until the parts get too small to partition. This solution is not relational
in that it lacks anticipatory thinking. The child knows that it is necessary to parti-
tion the pieces to share them, but approaches the problem one step at a time, par-
titioning into halves without anticipating how the resulting parts are going to be
shared.

Children begin to think relationally about fractional quantities when they begin
to reason about the relationship between partitions into equal and exhaustive shares
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Fig. 1 Child’s strategy for
sharing 2 pancakes equally
among 3 children,
demonstrating emerging
relational understanding of
fractions

and the number of sharers. To solve two pancakes shared by three children, a child
could decide to completely share the first pancake with all three children, and then
to share the second pancake in the same way (Fig. 1). Alternatively, a child who
began by distributing one half to each person might then decide to partition the left
over half into three equal parts. In either case, a child who thinks about the number
of people sharing and at the same time how to partition the things to be shared is in
the process of developing a relational understanding of fractions.

These strategies implicitly use several important mathematical relationships. For
ease of illustration, we concentrate on the strategy in which the child partitions
each whole candy bar into thirds. Although young children are unlikely to use the
following notation to represent their reasoning, it follows this logic:

2 ÷ 3 = (1 + 1) ÷ 3 = 1 ÷ 3 + 1 ÷ 3 = 1

3
+ 1

3
= 2

3
.

This reasoning embodies the knowledge that three one-thirds make a whole pancake
and that one pancake divided among three people yields one-third of a pancake to
each. It also suggests an intuitive understanding of how a “distributive-like property”
can be applied to division.2

A fully operationalized and explicit understanding of fractions as relational quan-
tities develops gradually. Most basic to this understanding is that unit fractions are
created by division or partitioning and that unit fractions are multiplicatively related
to the whole:

1 ÷ n = 1

n
and

1

n
× n = 1. (1)

Multiple opportunities to combine unit-fraction quantities in solutions to Equal
Sharing problems and to notate these solutions—such as “1 third and 1 third equals

2This property can be represented as a ÷ c + b ÷ c = (a + b) ÷ c, which is equivalent to a × 1
c

+
b × 1

c
= (a + b) × 1

c
. It is sometimes referred to as the right distributive property of division over

addition. On the other hand, a ÷ (b + c)is not the same as a ÷ b + a ÷ c; that is, there is no left
distributive property of division over addition.
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2 thirds”— lead to the following more generalized relational understanding:

m × 1

n
= m

n
. (2)

The conceptual connections between children’s pictorial and symbolic representa-
tions of fractional quantities require prolonged attention to develop in a flexible,
integrated way (Empson et al. 2006; Saxe et al. 1999). These relationships are ini-
tially grounded in children’s informal knowledge of partitioning quantities, such as
cupcakes and sandwiches. Children arrive at the generalized relational understand-
ing represented by (1) and (2) above as the result of repeated opportunities to create,
represent, and reason about these relationships in various interlinked forms over an
extended period of time.

Understanding these basic relationships is absolutely critical to children’s abil-
ity to reason with understanding about fraction operations and computations. Con-
sider the case of Holly, a fifth grader who had been exposed to fraction instruction
throughout her school career but did not understand fractions as relational quanti-
ties. She had learned that fractions involved partitioning wholes into parts, but she
did not understand the relation between the parts and the whole. Fractional parts, to
her, were entities unrelated to whole numbers. These limitations in her understand-
ing were exposed in her solution to the following problem:

Jeremy is making cupcakes. He wants to put 1
2 cup of frosting on each cupcake. If he makes

4 cupcakes for his birthday party, how much frosting will he use to frost all of the cupcakes?

To solve the problem, Holly drew the picture in Fig. 2 and decided the answer was
“four halves.” Upon further questioning, it became clear that Holly did not see how
these quantities could be combined; she insisted the answer was four halves and four
halves only. It seemed instead that the entire circle partitioned in half represented
the fraction 1

2 for Holly, and it would have been nonsensical to combine them (akin
to asking, “How much is 4 apples?”). For her, fractions existed separately from other
numerical measures.

Fig. 2 Holly’s written work for figuring four groups of half each, suggesting a non-relational
understanding of fractions. (The 4 over what looks like 12 is Holly’s way of writing 4 halves.
She appears to be trying to remember syntactic features of the numeral and confounding “12”
with “1/2”)

Contrast Holly’s solution to a third grader’s solution to the following problem.

Mr. W has 10 cups of frog food. His frogs eat 1
2 a cup of frog food a day.

How long can he feed his frogs before his food runs out?



416 S.B. Empson et al.

Fig. 3 A third grader’s
written work for figuring 10
groups of one half each,
showing a relational
understanding of fractions as
quantities

The third grader, John, represented each cup of frog food with a rectangle, then
divided each rectangle in half and notated “ 1

2 ” on each half to show how much
food Mr. W’s frogs could eat in a day (Fig. 3). He then counted these to arrive at
an answer of 20 days. Unlike Holly, John used a relational understanding of the
quantity 2 × 1

2 = 1 to construct a solution. John’s solution represents a big step
forward over Holly’s. He might have gone further in his use of relational thinking
by grouping the half cups in order to figure the total number of days more efficiently.
For example, he could have reasoned that 2 half cups are one cup, 4 half cups are 2
cups and so on, until he reached the number of half cups in 10 whole cups. He also
could have reasoned directly that 20 groups of 1

2 are the same as 10 groups of 1.
This type of reasoning, which takes into account both a relational understanding
of fractional quantities and relations involving the operation of multiplication, is
illustrated in the cases in the following section.

Use of Relational Thinking to Make Sense of Operations Involving
Fractions

As children come to understand fractions as relational, they start to use this under-
standing to decompose and recompose quantities for the purpose of transforming
expressions and simplifying computations. These manipulations are done purpose-
fully and draw on (a) children’s intuitive understanding of fractional quantities as
relational described above and (b) children’s relational understanding of operations
cultivated in the context of whole-number reasoning and problem solving.

Children’s strategies for multiplication and division word problems involving
fractions can draw on and reinforce their growing understanding of the multiplica-
tive nature of fractions. At the same time, the use of such problems supports the
emergence of relational thinking about operations as children attempt to figure out
how to make operations more efficient. Children’s thinking becomes more antici-
patory in that they begin to make choices about how to decompose and recompose
fractions in the context of a goal structure that relates operations and quantities. This
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Table 1 Combining groups using fundamental properties of multiplication

Equation representing
child’s thinking

Fundamental and other generalized properties of arithmetic
on which child’s thinking is based

8 × 3
8 = 8 × (3 × 1

8 ) Fractions represented as multiples of unit fractions

= 8 × ( 1
8 × 3) Commutative property of multiplication

= (8 × 1
8 ) × 3 Associative property of multiplication

= 1 × 3 = 3 Inverse and identity properties of multiplication

anticipatory thinking signals the purposeful use of fundamental properties of oper-
ations and equality and is in contrast with algorithmic thinking about operations in
which the goal structure can be summarized as “do next.”

A pivotal point in the growth of children’s understanding is reached when chil-
dren begin to use relational thinking to make repeated addition or subtraction of
fractions more efficient by applying fundamental properties of operations and equal-
ity in their strategies for combining quantities. The emergence of relational thinking
about operations in this context is facilitated by the need to combine several groups
of equal size. For example, in one of the cases that follows, a fifth-grade student
wanted to figure eight groups of three eighths each. The child reasoned that eight
groups of one eighth each equals one, so three such groups would be three. This
reasoning makes implicit use of the commutative and associative properties of mul-
tiplication (Table 1).

As children’s understanding of fractions grows, basic relationships as illustrated
in Table 1 serve as building blocks in more sophisticated relational thinking strate-
gies. These strategies draw upon a variety of these properties in ways that are an-
ticipatory rather than algorithmic and in ways that demonstrate a well connected
understanding of number and operation. Most notably, these strategies are driven
by each child’s understanding and therefore cannot and should not be reduced to a
generalized series of steps for all children to follow. In fact, a teacher would be hard
pressed to explicitly teach these strategies, because each step is embedded in a goal
structure that is specific to each child’s relational understanding of the operations
and quantities for a given problem. In the long run, this relational understanding of
number and operations results in an efficiency in learning advanced mathematics,
such as algebra.

To illustrate the types of relational thinking that elementary students are capable
of using, we discuss two strategies generated by fifth and sixth graders in different
classrooms. The teachers in these classrooms tended to place responsibility for gen-
erating and using conceptually sound strategies on each individual student.3 This
approach to instruction does not typify instruction in U.S. classrooms, and so the
strategies we describe here are not representative of the current performance of U.S.
children in the upper elementary grades (e.g., Hiebert et al. 2003). However, they are

3We have observed patterns both in the types of relational thinking used and how it develops, which
are beyond the scope of this chapter (see Empson and Levi 2011).
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representative of the types strategies that evolve in classrooms such as these—even
if these classrooms are rare—and provide a study of the possibility of integrating
fractions and algebra in the upper elementary grades.

Each problem involved division with a remainder to be taken into account in the
quotient. For each case, we describe the strategy and then note how children used
fundamental properties of operations and equality in their solutions.

Case 1: Measurement division.
The first case comes from a combination fourth- and fifth-grade class, working

on the following measurement division problem:

It takes ____ of a cup of sugar to make a batch of cookies. I have 5 1
2 cups of sugar. How

many batches of cookies can I make?

The students were given a variety of number choices for the divisor. In order of
difficulty, these choices were 1

2 , 1
4 , 3

4 , and 3
8 . Several students, including Jill, chose

to work with 3
8 of a cup of sugar.

Jill began her strategy by drawing upon the basic multiplicative relationship de-
scribed above to generate familiar groupings of three eighths that would simplify
the calculation (Table 1). She said she knew that 8 three-eighths would be 3, which
meant that 4 three-eighths would be half that much, or 1 1

2 , and 12 three-eighths
would therefore be 4 1

2 (Fig. 4). At this point, she knew that she needed only 1 more
cup to use up all 5 1

2 cups. Again Jill used the relationship between 3
8 and 3 as a

reference point. She said that because 8 three-eighths was 3, a third as many three-
eighths would be a third as much, or 1. That is, ( 1

3 × 8) × 3
8 is 1, and 1

3 × 8 is 8
3 or

2 2
3 . She concluded that she could make a total of 12 + 8

3 batches, which would be
equal to 14 2

3 batches.
If we unpack Jill’s description of her solution, we see that it involved setting

subgoals that were readily solved using familiar relations. The solution of one sub-

Fig. 4 Jill’s written work for
her strategy to solve 5 1

2
divided by 3

8 , suggesting
implicit use of fundamental
properties of operations and
equality
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goal provided a springboard for the next. Fundamental properties of operations and
equality were implicit in the solution of each of the subgoals. Jill’s ultimate goal
was to find how many 3

8 cups it would take to make 5 1
2 cups. She started with an

overarching view of the problem that facilitated the formulation of a series of sub-
goals. The 5 1

2 cups could be partitioned into parts that would be easily divided by 3
8 .

Then the parts could be combined.
Jill’s first subgoal was to identify a multiple of 3

8 that would give her a whole
number that she might subsequently use as a building block to find how many 3

8
cups it took to make 5 1

2 cups. Drawing implicitly on the kind of thinking described
in Table 1, she started with the equation 8 groups of 3

8 is 3.
Because she had only accounted for 3 of the 5 1

2 cups of flour in the problem, Jill
now had to find how many 3

8 cups it took to make 2 1
2 cups. She recognized that she

could use the equation involving 8 groups of 3
8 to make another 1 1

2 cups and that
would leave exactly one cup to deal with. Essentially she used the multiplicative
property of equality and the associative property of multiplication to transform the
equation 8 × 3

8 = 3 as follows:

1

2
×

(
8 × 3

8

)
= 1

2
× 3,

(
1

2
× 8

)
× 3

8
= 1

1

2
,

4 × 3

8
= 1

1

2
.

The next subgoal was to find how many 3
8 cups it took to make the remaining one

cup. Jill also used the equation 8 × 3
8 = 3 as the basis for addressing this subgoal.

She again used the multiplicative property of equality and the associative property
of multiplication to transform the core equation as shown below.

8 × 3

8
= 3,

1

3
×

(
8 × 3

8

)
= 1

3
× 3,

(
1

3
× 8

)
× 3

8
= 1,

8

3
× 3

8
= 1.

Note Jill might have simply used the reciprocal relation between 8
3 and 3

8 for this
calculation, but she continued to build off of the equation 8 × 3

8 = 3. Although we
believe it is likely that she did not intend to generate the reciprocal relationship be-
tween 8

3 and 3
8 , we find its emergence here significant, because it illustrates how
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algebraic relationships can emerge fairly naturally in the context of children’s rela-
tional reasoning. Problems such as this one provide experience with this relation.

Finally, Jill put the parts together using the additive property of equality and the
distributive property.

8 × 3

8
+ 4 × 3

8
+ 8

3
× 3

8
= 3 + 1

1

2
+ 1 = 5

1

2

and

8 × 3

8
+ 4 × 3

8
+ 8

3
× 3

8
=

(
8 + 4 + 8

3

)
× 3

8

= 14
2

3
× 3

8
.

The kinds of thinking implicit in Jill’s strategy are directly related to the kinds
of thinking that are involved in solving algebra problems with meaning. She started
with a primary goal—to find how many 3

8 -cups were in 5 1
2 cups—which subse-

quently guided the formulation of her subgoals. To make progress on solving the
problem, she transformed the primary goal into a series of subgoals for which she
had a ready solution. This practice is fundamental to high-school algebra in which a
series of properties of operations and equality are often used to simplify a complex
equation. For example, to solve a linear equation in one unknown, students set sub-
goals that entail finding successively simpler equations that are closer to the goal of
finding an equation of the form x = a number. As in the above example, the sub-
goals are met by repeated application of fundamental properties of operations and
equality. Similarly, the goal of solving a quadratic equation is transformed into sub-
goals of solving simple linear equations by applying a corollary of the zero property
of multiplication (a × b = 0, if and only if a = 0 or b = 0).

To address each of the subgoals, Jill essentially constructed and transformed re-
lationships of equality using fundamental properties of operations and equality in
ways that were strikingly similar to the thinking used in constructing and solving
equations in formal treatments of algebra. She drew on anticipatory thinking in
transforming the equations into equations that could be put together to solve the
problem. In other words she consistently constructed and transformed equations in
ways that brought her closer to the solution of the basic problem. Again, that is
essentially what solving algebra equations is all about.

Case 2: Partitive division.
Our second case involves a sixth-grade boy, Keenan, who solved the following

problem:

Two thirds of a bag of coffee weighs 2.7 pounds. How much would a whole bag of coffee
weigh?

This problem involves partitive division and differs from the previous division
problem in that the goal is to find out how much per group rather than to find out how
many groups. Keenan’s strategy included the transformation of quantities for the
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Fig. 5 Keenan’s strategy to
solve 2.7 divided by 2

3 ,
suggesting implicit use of
fundamental properties of
operations and equality

purpose of simplifying calculations as well as the flexible use of several fundamental
properties of operations and equality (Fig. 5).

To start, Keenan recognized that the problem was a division problem and wrote
2.7 ÷ 2

3 . He remarked, “Two divided by 2
3 is going to be really easy, all I really need

to worry about is the seven tenths. Seven tenths divided by 2
3 isn’t easy to think

about so [long pause] if I make them both thirtieths, it would be easier.” He notated
his thinking so that it read:

21

30
÷ 20

30
and then said, “21 thirtieths divided by 20 thirtieths is just the same as 21 divided
by 20 which is one and one twentieth.” He notated his answer:

21

30
÷ 20

30
= 1

1

20
.

Keenan then said, “Now all I have to do is 2 divided by 2
3 , which is 3.” When asked

how he knew that so quickly he said, “2 divided by 1
3 would be 6 since you have 3

groups of 1
3 in each 1, so 2 divided by 2

3 would be 3 since 2
3 is twice as big as 1

3 .” He
then extended his notation as follows:

2.7 ÷ 2

3
= 1

1

20
+ 2 ÷ 2

3
= 1

1

20
+ 3 = 4

1

20
.

This strategy incorporates several instances of relational thinking. Keenan began
by decomposing 2.7 into .7 + 2. This choice involved anticipatory thinking in that
he analyzed the problem to see what relationships he might draw upon to simplify
his calculations, rather than simply begin to execute a series of steps to solve the
problem. He used the commutative property of addition and a “distributive-like”
property to simplify the division. Although he did not notate this step, his thinking
could be represented as:

2.7 ÷ 2

3
= (2 + .7) ÷ 2

3
= (.7 + 2) ÷ 2

3
= .7 ÷ 2

3
+ 2 ÷ 2

3
.

Of note is his correct use of this distributive-like property for division. This division
relationship is generalizable and can be justified with the distributive property of
multiplication over addition in conjunction with the inverse relationship between
multiplication and division (see footnote 2).
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Next Keenan facilitated the computation of .7÷ 2
3 by transforming .7 into 21

30 and
2
3 into 20

30 and then using these transformed quantities as follows:

.7 ÷ 2

3
= 21

30
÷ 20

30
= 21 ÷ 20 = 1

1

20
.

Again, Keenan used anticipatory thinking to produce equivalent fractions for the
purpose of simplifying the division.

Keenan then computed 2 ÷ 2
3 . This computation appeared to be routine for him;

however, he justified it as follows:

2 ÷ 2

3
= 2 ÷

(
2 × 1

3

)
= 2 ÷

(
1

3
× 2

)
=

(
2 ÷ 1

3

)
÷ 2

with an associative-like property of division. Again he used a generalizable princi-
ple, similar to the distributive-like principle he used above, that could be justified
with formal properties but is rooted in a relational understanding of fractional quan-
tities and division.

Like Jill, Keenan had a unified view of the entire problem and its parts. This view
allowed him to set subgoals to address the parts individually with the understanding
that the answers to the problems addressed by these subgoals could be reassembled
into the whole. As was the case with Jill, Keenan drew on anticipatory thinking and
a fluid understanding of how expressions and equations could be transformed. Once
again the parallels with the kind of thinking used in symbolic treatments of algebra
are striking.

Discussion of Cases

The strategies used by these two elementary aged children to divide fractions illus-
trate the power of relational thinking and its algebraic character. Children’s thinking
in these examples was anticipatory in that their strategies were driven by a goal
structure premised on relational thinking. These strategies contrast with the goal
structure in the execution of standard algorithms as they are typically learned which
can be summarized as “do next.”

Further, the thinking displayed by these children resembles the “competent rea-
soning” that proficient mathematical thinkers use to compare rational numbers, as
reported by Smith (1995). Based on an analysis of 30 students’ solutions to order
and equivalence problems, Smith argued that competent reasoning is characterized
by the use of strategies that exploit the specific numerical features of a problem
and often apply only to a restricted class of fractions. These strategies were reliable
and efficient. He contrasted this reasoning with the use of generalized, all purpose
strategies—such as conversion to a common denominator to compare fractions—
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which the students in his study tended to use as a last resort.4 These findings led
Smith to conclude “the analysis of skilled reasoning with rational numbers should
. . . move beyond a focus on particular strategies to examine the character of the
broader knowledge system that has those strategies as components” (p. 38). We are
proposing that this system consists of children’s informal algebra of fractional quan-
tities and that it is expressed in children’s relational thinking.

From this perspective, Jill and Keenan represent students who are in the process
of developing a knowledge base for reasoning about fractions in ways that can be
characterized as proficient and competent. Moreover, this knowledge base is inte-
grated with properties of whole-number operations and relations and anticipates the
algebra of generalized quantities, typically taught in the eighth or ninth grade. We
are not suggesting that standard algorithms for fraction operations have no place in
developing fluency with number operations. Proficient thinkers use them when they
see no way to exploit the number relationships in a problem. However, we are ar-
guing that when children are supported to develop relational thinking in elementary
school, their knowledge of generalized properties of number and operation becomes
explicit and can serve as a foundation for learning high-school algebra in ways that
mitigate the development of mistakes and misconceptions.

A Conjecture Concerning Relational Thinking as a Tool in
Learning New Number Content

Jill and Keenan used fundamental properties of operations and equality and other
notable relationships, such as 3

8 × 8 = 3, as tools in their strategies to divide frac-
tions. The use of these relationships was coordinated within a goal structure and is
a hallmark of relational thinking. In this section we discuss a critical and perhaps
surprising implication of a focus on relational thinking in the elementary curriculum
with respect to the role of other types of tools such as concrete materials and mod-
els in facilitating the development of children’s understanding of number operations
involving fractions (as well as decimals and integers—which are beyond the scope
of this chapter).

Some approaches to teaching for understanding emphasize the use of concrete
materials such as base-ten blocks or fraction strips to model abstract relation-
ships (e.g., Van de Walle 2007). The use of such materials has at times been
seen as a universal remedy to children’s difficulties in understanding mathemat-
ics. Several studies have shown, however, that concrete materials alone are insuffi-
cient at best and at worst, ineffective (Brinker 1997; Resnick and Omanson 1987;

4This approach to numerical reasoning is not unique to children. Dowker (1992) reported that
professional mathematicians prefer to approach computational estimation in the same ways, that
is, by exploiting specific numerical features of a problem rather than using a generalized algorithm
that works in all cases.
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Uttal et al. 1997). In a review of this research, Sophian (2007) noted that manipula-
tives are symbols themselves and how they map to mathematical notation and pro-
cesses is best appreciated by those who already understand the mapping (p. 157).
Teachers can show students how to manipulate these materials to perform calcula-
tions involving fractions just as they show students how to manipulate symbols to
perform calculations. Some students may remember steps involving materials more
easily than they remember symbolic algorithms, but in neither case are they neces-
sarily reasoning about the relationships involved in each step or more globally in the
problem.

In contrast, when manipulatives and other types of models are used as tools to
think with, rather than to simply generate an answer, they can play a critical role in
the development of children’s understanding (Carpenter and Lehrer 1999; Koehler
2004; Martin and Schwartz 2005). For example, the images that children create and
reason about as they partition quantities such as cupcakes and sandwiches in their
solutions to story problems can help children conceptualize fractions in terms of
basic relationships such as 2

3 = 2 × 1
3 (Empson and Levi 2011).

Keeping in mind this valuable use of visualizing tools, we propose a shift in rel-
ative emphasis as the curriculum turns to advanced number operations: Children’s
use of relational thinking can and should drive the development of new content
and concrete materials and models should be used to support the emergence of re-
lational thinking. Jill’s and Keenan’s strategies for division of fractions described
above cannot be mapped in any straightforward way onto the manipulation of con-
crete materials and so do not appear to represent an abstraction of their operations
on concrete materials. Instead, these strategies (1) incorporated a relational under-
standing of fractions and (2) were planned and executed (sometimes in an emergent
sense) on the basis of each child’s understanding of fundamental properties of oper-
ations and equality.

One fairly popular way to introduce fraction multiplication, for example, is by
using an area model (Izsák 2008). Its advantages are that it is generalizable—it can
be used to multiply any two fractions—and it is “concrete” so children can “see”
the multiplication. To multiply 1

4 × 2
3 using this model, for example, a rectangular

unit is divided into thirds and two of the thirds are shaded. Then the rectangle is
divided into fourths orthogonally to the original partition into thirds. Based on this
partitioning, one fourth of the rectangle is shaded. The intersection of the shaded
parts (Fig. 6) represents the product of one fourth and two thirds. The model might
be used to develop understanding of multiplication of fractions, but the use of this
model is easily proceduralized, especially if it is introduced before children have
had opportunities to make and integrate relational connections between quantities
and operations. (See teachers’ own difficulties with the proceduralization of this
model, reported in Izsák 2008.)

Using relational thinking, children might approach a problem such as this one in
any number of ways employing strategies that involve the application of generalized
properties of arithmetic. For example, a child could reduce the calculation to oper-
ating on unit fractions, by applying the distributive property of multiplication over
addition. A child might say, “a quarter of 1

3 is 1
12 so a quarter of 2

3 has to be 1
12 plus
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Fig. 6 Area representation of
the product of 1

4 × 2
3

1
12 which is 2

12 .” This thinking could be formally represented:

1

4
× 2

3
= 1

4

(
1

3
+ 1

3

)
=

(
1

4
× 1

3

)
+

(
1

4
× 1

3

)
= 1

12
+ 1

12
= 2

12
.

A child could also transform the calculation into an easier one through an implicit
use of the associative property of multiplication. The reasoning might be “a quarter
of 1

3 is 1
12 so a quarter of 2

3 has to be 1
12 times 2 which is 2

12 :”

1

4
× 2

3
= 1

4
×

(
1

3
× 2

)
=

(
1

4
× 1

3

)
× 2 = 1

12
× 2 = 2

12
.

These strategies represent the same types of relational thinking that we saw in
children’s strategies for division and mirror the types of relational thinking that
children use in whole-number multiplication (Baek 2008). They are two examples
of possible strategies that are driven by relational thinking instead of the potentially
rote use of a concrete model. With some experimentation, the reader should be able
to generate strategies for the multiplication of any two fractions that incorporate the
same fundamental properties of operations and equality and are robust and general-
izable.

In summary, our conjecture is that if instruction is focused on developing rela-
tional thinking with whole numbers throughout the early grades, the role of concrete
materials in introducing and developing understanding of operations on fractions
and decimals will likely change. Concrete materials would be used to support the
development of relational thinking rather than simply as tools to calculate answers
or justify algorithms. Further, encouraging children to construct and use procedures
based on relational thinking would help them to integrate learning number opera-
tions across different number domains.

Conclusion

The kinds of activity and thinking illustrated in this chapter are not isolated exam-
ples, and they do not represent mathematics that should be reserved for only a lim-
ited number of students or as supplementary enrichment (Carpenter et al. 2003). The
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results of a recent study by Koehler (2004) document that young children of a wide
range of abilities are able to learn to think about relations involving the distribu-
tive property and that instruction that focuses on relational thinking as illustrated in
these examples supports the learning of basic arithmetic concepts and skills.

In this chapter we have argued that a focus on relational thinking can address
some of the most critical perennial issues in learning fractions with understanding.
One of the defining characteristics of learning with understanding is that knowledge
is connected (Bransford et al. 1999; Carpenter and Lehrer 1999; Greeno et al. 1996;
Hiebert and Carpenter 1992; Kilpatrick et al. 2001). Not all connections, however,
are of equal value, and we propose that our conception of relational thinking can
sharpen mathematics educators’ conceptions of what learning with understanding
looks like. Students who engage in relational thinking are using a relatively small
set of fundamental principles of mathematics to establish relations. Thus, relational
thinking can be seen as one way of specifying the kinds of connections that are pro-
ductive in learning with understanding. We have presented several such connections
made by children in elementary grades in the context of generating strategies for
problems involving multiplication and division of fractions.

We have further argued that relational thinking is a critical precursor—perhaps
the most critical—to learning algebra with understanding, because if children under-
stand the arithmetic that they learn, then they are better prepared to solve problems
and generate new ideas in the domain of algebra. However, relational thinking is
almost entirely neglected in typical U.S. classrooms with the unfortunate result that
children experience all types of learning difficulties as they move beyond arithmetic
into learning algebra. Some proposed solutions focus on a renewed emphasis on
prerequisite skills (e.g., U.S. Department of Education), while others emphasize the
use of concrete materials and models (e.g., Lesh et al. 1987). We have presented
an alternative view of how to address these difficulties that centers on cultivating
children’s implicit use of fundamental properties of the real-number system to solve
arithmetic problems, to better align the concepts and skills learned in arithmetic and
algebra. At the heart of this view is the reciprocal relationship between arithmetic
and algebra as it is revealed in children’s reasoning about quantity.
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