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Abstract In this chapter, we present illustrations of second grade students’ rea-
soning about patterns and two-part function rules in the context of an early algebra
research project that we have been conducting in elementary schools in Toronto and
New York City. While the study of patterns is mandated in many countries as part of
initiatives to include algebra from K-12, there is a plethora of evidence that suggests
that the route from patterns to algebra can be challenging even for older students.
Our teaching intervention was designed to foster in students an understanding of lin-
ear function and co-variation through the integration of geometric and numeric rep-
resentations of growing patterns. Six classrooms from diverse urban settings partici-
pated in a 10–14-week intervention. Results revealed that the intervention supported
students to engage in functional reasoning and to identify and express two-part rules
for geometric and numeric patterns. Furthermore, the students, who had not had for-
mal instruction in multiplication prior to the intervention, invented mathematically
sound strategies to deconstruct multiplication operations to solve problems. Finally,
the results revealed that the experimental curriculum supported students to transfer
their understanding of two-part function rules to novel settings.

Introduction

The study of patterns is now commonplace in elementary school curricula in many
countries, arising out of initiatives to include algebra from Kindergarten through
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Grade 12 (e.g., Noss et al. 1997; Ontario Ministry of Training and Education 2005;
Sasman et al. 1999; Warren 2000). The National Council of Teachers of Mathemat-
ics (NCTM) advocates that patterns should be taught from the first years of school-
ing with the expectation that students, as early as second grade, should be able to
“analyze how both repeating and growing patterns are generated”, and by the end of
fifth grade should be able to “represent patterns and functions in words, tables and
graphs” (NCTM 2000). It has been suggested that patterns can: (1) support students
to understand the dependent relations among quantities that underlie mathemati-
cal functions (e.g. Carraher et al. 2008; Ferrini-Mundy et al. 1997; Mason 1996;
Lee 1996); (2) serve as a concrete and transparent way for young students to begin
to grapple with abstraction and generalization (Watson 2000; Noss and Hoyles 1996;
Kieran 1992); and (3) support students to develop the language of conjecture and
proof in communicating their reasoning about pattern rules (Kuchemann 2008;
Moss and Beatty 2006b).

Developmentally, the inclusion of patterns seems to fit well with mathematics
learning in the early years. We know that young children are fascinated with patterns
(Ginsburg and Seo 1999) and are capable not only of noticing patterns but also of
using this skill naturally to make sense of their world (Greenes et al. 2001).

However, the potential of pattern work to support algebra learning has not been
substantially realized (e.g. Carraher et al. 2008; Dorfler 2008). An extensive lit-
erature review on patterning research—conducted primarily with older students—
reveals that without specific targeted pedagogical supports even older students have
significant difficulty finding algebraic rules for patterns, strongly suggesting that
the route from perceiving patterns to finding useful rules and algebraic represen-
tations is difficult (English and Warren 1998; Kieran 1992; Lannin et al. 2006;
Lee and Wheeler 1987; Orton and Orton 1999; Stacey and MacGregor 1999;
Steele and Johanning 2004).

One challenge in moving from pattern study to algebra is the tendency of students
to use additive strategies for identifying and describing patterns—that is, to focus
on the variation within a single data set rather than on the relationship between two
data sets (e.g., Orton et al. 1999; Rivera 2006; Rivera and Becker 2007; Warren
2006). While this recursive approach allows students to predict the “next” position
of a pattern, it does not support co-variational thinking about a relationship across
data sets to find the underlying function rule. As well, even when students begin
to grasp two-part pattern rules, they often use incorrect proportional thinking or
“whole object reasoning” to make predictions about the number of elements in a
far position of a sequence (e.g., English and Warren 1998; Lee 1996; Orton 1997;
Stacey 1989).

Over the last several years, however, there has been an increasing number of
accounts of middle school students who, as part of dedicated instructional inter-
ventions, demonstrated the ability to work constructively with patterns. For exam-
ple, in 2008, the journal ZDM, Mathematics education published a special issue
that focused on patterns and generalizing problems (Becker and Rivera 2008). Re-
search reported in this special issue by Amit and Neria, Radford, Rivera and Becker,
and Steele analyzed strategies that middle school students employed in their pattern
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work. These studies had in common the use of an analytic framework (e.g. Stacey
1989; Lannin 2005; English and Warren 1998) that captured the progression of stu-
dents’ reasoning. They noted that students working on generalizing problems began
by using an additive or recursive approach, then, if they were able, switched to ex-
plicit or functional reasoning to find far positions and general rules. While there
were many promising results reported in these articles, there were also indications
of limited strategy use. Amit and Neria (2008), who studied the patterning prob-
lem solving strategies of 139 gifted 11- to 13-year-olds, went so far as to conclude
that it is only advanced mathematics students who are able to learn to generalize. In
their words, “Because of the higher-order thinking involved in generalization, such
as abstraction, holistic thinking, visualization, flexibility and reasoning, the ability
to generalize is a feature that characterizes capable students and differentiates them
from others.”

However, we along with others believe that it is not patterns per se, but the ways
that patterns are presented that may limit students’ ability to engage in the higher
order thinking that characterizes generalization. While there has been less research
conducted with very young children, our present study with Grade 2 students in
diverse urban settings joins the work of other researchers (e.g. Carraher et al. 2006,
2008; Carraher and Earnest 2003; Cooper and Warren 2008; Mulligan et al. 2004;
Mulligan and Mitchelmore 2009) to examine the potential of pattern work to support
algebraic thinking in the early elementary school years.

Our Project

Over the last five years, we have been investigating new approaches to pattern teach-
ing and learning that support students to forge connections amongst different repre-
sentations of pattern. Our goal is to promote multiple ways of working with patterns
(Mason 1996), and to foster what Lee (1996) has termed “perceptual agility—the
ability to see multiple patterns coupled with a willingness to abandon those that do
not prove useful for rule making” (p. 95). Our project to date has included interven-
tion studies in 20 inner city elementary school classrooms (e.g., Beatty and Moss
2006a, 2006b; Beatty et al. 2006; London McNab and Moss 2004; Moss 2005; Moss
and Beatty 2006a, 2006b; Moss et al. 2008). Further, it has served as a basis for a
school district-wide professional development intervention (Beatty et al. 2008). This
research began with a series of studies in second grade classrooms; it is the methods
and data from these Grade 2 studies that we present in this chapter.

Our Approach: Theoretical

The predominant theoretical inspiration for our research on patterning emanated
from the theories about mathematical development of Case and colleagues (Case
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and Okamoto 1966). Case and his colleagues’ previous work in mathematics devel-
opment for number sense in the domains of whole number (e.g. Griffin and Case
1997) and rational number (e.g. Moss and Case 1999; Moss 2004) offered a model
for the integration of numeric and spatial schemes that we paralleled in linking nu-
meric and geometric representations of patterns. A central tenet of the instructional
design of Case et al. is the focus on the development of students’ visual/spatial
schemes. The theoretical proposal is that the merging of the numerical and the vi-
sual provides the students with a new set of powerful insights that can underpin not
only the early Learning of a new mathematical domain but subsequent Learning as
well (Case and Okamoto 1966; Kalchman et al. 2001). As we elaborate below, our
experimental patterning curriculum was designed to support students to forge con-
nections between visual/spatial patterns in the form of geometric growth sequences
and numeric patterns embedded in “Guess my rule” games. Our conjecture was that
the merging of these two types of patterns would serve as a foundation to support
students to gain an initial understanding of linear functions. To test this conjecture,
we designed a lesson sequence that was pilot-tested, revised and refined over a two-
year period, and implemented in 6 different Grade 2 classrooms.

Context and Students

The 7- and 8-year old students in our study were from intact classrooms of between
20 and 22 students each, in urban settings in Toronto and New York City. These stu-
dents represented diverse populations and a range of math competency. The class-
rooms were chosen because of the teachers’ interest in learning more about this
new approach and in involving their children in this study. Overall, the classrooms
seemed to have in common an invitational sense of welcoming student contribution;
the students were all accustomed to expressing their thoughts and reasoning in math,
as in all subjects.

All of the students had previous experience with repeating patterns as part of the
early years math curricula; however, none of the students had worked with growing
patterns. Importantly, there had been no formal instruction in multiplication in any
of the classrooms prior to the intervention. Although the activities in the intervention
could be approached through multiplication, at no time was multiplication formally
taught.

The length of the intervention varied from 10 to 14 lessons of about forty minutes
each. In four of these classrooms, the interventions were taught by the classroom
teachers with the help of research assistants; in the other classrooms, the interven-
tions were taught by the first or second author with the assistance of the classroom
teacher. It is important to note that there were research assistants in the classroom,
who were able to work with Small groups or individual children, and that in some
of the classrooms math was taught to only half the class at a time.
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Instructional Sequence

Visual Representation: Geometric Growing Patterns

The lessons began by presenting students with the first three positions in a geometric
growing pattern. These patterns were made of square tiles set out in arrays that grew
by a given coefficient. To enable students to keep track of the ordinal position num-
ber of these tile patterns, position number cards were placed below the geometric
arrays that represented that position of the pattern.

This clarified for students the functional relationship between the position num-
ber (independent variable) and the number of elements in each position (dependent
variable). So, for example, for a pattern representing the relationship described by
the equation y = 3x (please see Fig. 1), students could easily connect the position
number card “1” to the single row of three square tiles, the position number “2” to
the 2 rows of three square tiles (6 tiles), the position number “3” to the 3 rows of
three square tiles (9 tiles), and so on.

The initial challenges that the teacher posed were designed to focus students’ at-
tention on the relationship between the position number and the number of elements
in each position, through the geometric configurations of the tile arrays. Referring
once more to the pattern in Fig. 1, in the first lessons, the teacher’s questions to
the students followed a specific sequence: If this pattern keeps growing in the same
way, what would the next position look like? How many blocks would there be in
the next position? What would the 10th position look like? How many blocks in
the 10th? What about the 100th position? In subsequent lessons after the students
had experience with the function machine activity “Guess my rule?” (see below),
the teacher would go on to ask, What if you had any position? What could the rule
be?

Next, two-part functions were introduced geometrically. To demonstrate the con-
stant, a fixed number of tiles was placed at the top of the array; this configuration
of tiles remained the same from position to position, while the array grew multi-
plicatively by one row for each new position. Because of the spatial representation
of the constant as tiles that jutted out from the array (please see Fig. 2), the students
began to refer to the constant as the “bump”, and we made a deliberate decision to
encourage their use of this natural language.

Fig. 1 Position number cards
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Fig. 2 Composite functions:
the “bump”

As the lessons progressed, students built their own patterns and challenged class-
mates to make conjectures for general rules.

Numeric Representations: Function Machine

We interspersed these visually based pattern lessons with numeric-based lessons
that incorporated function machine activities (Carraher and Earnest 2003; Ruben-
stein 2002; Willoughby 1997). Please see Fig. 3a for an example of a function ma-
chine. As in the geometric lessons, in the first series of function machine activities,
we focused on one-step multiplicative rules. To begin, the teacher led the activi-
ties; then the students took turns creating functional rules (e.g. “double the number
and add 3 more”) to challenge their classmates in the “Guess my rule” game. The
teacher modeled the use of a T-table to record the non-sequential pairs of input and
output numbers; please see Fig. 3b for an example of the Function machine T-table.
Pairs of students generated between 3 and 5 examples of non-sequential pairs of
input and output numbers, as clues to their rule. The children who were solving the
challenges given to them by their classmates used T-tables to record the input and
output numbers, and their iterative conjectures for what the rule might be. It was
important that the numeric clues were non-sequential to allow students to focus on
the “across” (on a T-table) or functional rule, rather than on the “down” pattern or
“what comes next” strategy identified as interfering with functional generalizations.
Further, the T-tables were used only to record the non-sequential clues in the “Guess
my rule” game, but not to generate further pairs of values as is often done in many
classrooms.

Because the children had not yet been taught multiplication, the coefficients we
initially presented were confined to what we determined to be arithmetically man-
ageable numbers—2, 3, 5 and 10—that they would have practiced as skip-counting
in first grade. However, there were no such constraints on the numbers the students
could choose when they were creating their own rules for the function machine,
giving them the opportunity to experiment with even difficult or tricky arithmetic if
they chose.
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Fig. 3 (a) Function machine.
(b) Function machine T-table

(a)

(b)

Integration Activities: Pattern Sidewalk

Both the geometric and the numeric activities offered students a chance to con-
sider the idea of co-variation and function rules. The geometric activities specifically
highlighted the direct connection between the position number and the structure of
the corresponding arrays and number of tiles in each position. The function ma-
chine activities illuminated the idea of explicit rather than recursive rules. In order
to integrate these two complementary approaches within a non-sequential presenta-
tion and exploration of geometric patterns, we designed what became known as a
“pattern sidewalk”. This is a large counting line placed on the classroom floor, with
ordinal position numbers on each section of the sidewalk, from 1 to 10.
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Fig. 4 Pattern sidewalk

The pattern sidewalk activities were geometric, but paralleled those of the nu-
meric function machine game. First, the teacher would build one position of a pat-
tern that conformed to a secret rule on, for example, the third section of the side-
walk, and ask the children to consider a possible pattern rule that would fit with
that configuration in that position. Then the teacher would build another position of
the same rule on any other non-adjacent section of the sidewalk, for example, the
seventh pattern position on the seventh section of the sidewalk. At this point the
students were given the opportunity to revise their initial rule conjecture. Finally,
another pattern position would be shown to the students, on its appropriate section
of the sidewalk and students were allowed to guess the rule, and asked to show their
guess by building another position of the pattern correctly on a new section of side-
walk. The students were then invited to take on the role of teacher and present their
own challenges to their classmates.

These three components—the geometric pattern building, the function machine
and the pattern sidewalk—comprised the main elements of the lesson sequence in
all cases, and were introduced to the students in the specific order described above.
However, as the students gained experience of increasingly complex patterns, the
teacher/researcher would revisit these different components, adding new elements
such as moving from one-step to two-step functions.

Role of the Teacher

Another specific feature of this instruction that needs to be highlighted is the very
particular ways in which the teachers engaged with the students, and the prompts
and foci they adopted in their interactions with the children. Aligned with Radford’s
“theory of knowledge objectification” (Radford 2008), we shaped both the order
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of activities and the teachers’ prompts to help students notice and make sense of
the ways in which patterns stay the same and the ways in which they change, thus
moving students towards generalization and algebraic reasoning. Specifically, the
teachers focussed the students’ attention and grounded their perceptions of change
in the curriculum’s sequenced arrays of tiles that grew by a multiplicative factor;
the teacher also grounded the students’ perception of what stays the same by draw-
ing their attention to those configurations of tiles outside the arrays which remained
constant for each position of a pattern. The teachers also carefully supported the
children’s learning by helping them draw connections between the idea of rules, as
they are experienced in “Guess my rule” function machine activities, and the pos-
sibility that geometric pattern growth can also be predicted by a rule. Further, the
teachers focused the children’s attention on the relationship between the position
number cards and the number of elements in, and structure of, the corresponding ar-
ray, thus supporting these young students’ emerging understandings of co-variation.

Procedures and Measures: Grade 2 Interventions

In order to assess the potential of the intervention, we collected data from many
different sources. Our major analyses were qualitative and descriptive, based on
classroom artifacts, field notes, transcripts of videotaped classroom lessons and ad
hoc interviews with students during the lessons. In addition, we gave each of the
students in all of the research classrooms a short pre-test interview, that was ad-
ministered again at the end of the intervention as a post-test, consisting of patterns
in different representations. In keeping with the literature on patterning discussed
above, this pre-/post-test was designed to assess changes in students’ abilities to
find “near” and “far” positions of patterns (e.g., Lannin 2003), to identify whether
students relied on recursive strategies or functional reasoning and finally to assess
students’ abilities to find and express general pattern rules. At the end of the second
year, we introduced an additional assessment in which we interviewed students to
look specifically for transfer in their reasoning to a novel context.

Results

The results presented here focus on four general areas: the way students developed
their reasoning about pattern rules, the explicit aim of our research; students’ con-
structed understandings of multiplication, an implicit research question; the use of
zero as both co-efficient and position number, an unexpected result; and the transfer
of understandings to a novel context.
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Finding Rules for Patterns and Generating Patterns Based on
Given Rules

Our overall analyses for each year of the study revealed that students made signif-
icant gains in their ability to discern function rules for geometric growth patterns
and reciprocally/conversely could also build patterns based on given rules. In con-
trast to findings from other studies that reveal the pervasiveness of recursive reason-
ing, the students in our research classrooms used a functional approach, which was
evidenced in the way that they talked about the position number in relation to the
number of elements in a position.

Constructing a Pattern from a Rule: “A ‘number times two, plus
one’ pattern?”

The following transcript of a conversation between Ricardo and the classroom
teacher was initiated by the teacher as she walked around the class during a por-
tion of a lesson where students were building patterns based on given rules. She
asked Ricardo to build a “number times two, plus one” pattern. Ricardo, using the
square tiles from the pattern block set, built the first four positions of a pattern (that
could be described in the informal notation of this classroom as “n×2+1”, placing
position number cards below each position. Each position was comprised of a row
of increasing numbers of square tiles, with one tile on top of the row. (Please see
Fig. 5.)

Our transcript begins when the teacher asks Ricardo to explain his pattern:

Ricardo: See, this is the first position. [Ricardo points to the first position of the
pattern he built and then picks up the position card that he had placed

Fig. 5 Building a composite
function
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under the first position]. So [touching the row of 2 blocks], so one times
two is two, plus one [points to the block on top] is three. [Keeping this
same speech rhythm he picks up the second position card] So, two times
two is four [points to the row of four blocks] and ONE [said emphatically]
makes five.

In his explanation of the next (third) position, Ricardo makes an error. As he is
about to make the same mistake again for the fourth position, he catches himself
and corrects his explanation:

[He points to the position card on which is written a 3.] So three times
three [sic] is six and one [points to the single tile] is 7. [He repeats the
same set of actions for the fourth position—the final one he has built]) So,
four times four. . . I mean four PLUS four. . . or, two TIMES four is eight
and one makes nine.

Teacher: Well done. How many blocks would there be in the 10th position?
R: [putting his hand over his eyes in thinking position and then rapidly drop-

ping it and saying with a smile] Twenty-one.

What was notable to us about Ricardo’s explanation was his clear understand-
ing of the co-variation of the position number and the number of tiles. What also
was revealed in the interaction was the way that Ricardo constructed the pattern to
clearly reflect his ability to distinguish the coefficient from the constant. Finally,
this exchange also demonstrates this young student’s fluency in being able to use
his understanding of the function rule not only to build sequential pattern positions
from 1 to 4 but also to predict quickly, easily and accurately the number of tiles that
would be required for the 10th position—a far position.

Finding a Rule for a Given Pattern: “Position number times three,
plus one”

In this transcript, two students, Zoya and Marie, are sitting at a table examining the
first three positions of a geometric pattern (y = 3x +1) to determine the pattern rule.
The figures each consisted of a planar column of yellow hexagonal pattern blocks
with a single green triangle placed on the top, that grew by three yellow blocks each
time (Fig. 6).

The students stare at the first three positions of the pattern:

Marie: It’s a times 3 pattern, right?
Zoya: [touches the blocks in the second pattern position] Because this is a

GROUP of 3 [separates and points to one group of 3 in the second
position, and then moves her finger in a circle around it], and this is a
GROUP of 3 [points to the remaining group of hexagons in the second
position; then she looks at the triangle and exclaims:] Wait, oh but it
can’t be, because [indicating the green triangle] it’s a whole block. So,
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Fig. 6 Caterpillar pattern

never mind! [pushes groups back together, and throws up her hands;
the students seem stumped and continue to look at the pattern]

Marie: I’ve got it. [long pause as she stares at the pattern] It is number times
3. . . No, position number times 3, plus 1.

Researcher: How do you know that?
Marie: Because, here is a group of 3, so that is times 3 and 1 makes 4.

Here we see the flexibility of students who were able to discard an initial
conjecture of a pattern rule when the evidence (the built pattern) did not sup-
port their rule. We contrast the flexible reasoning of these very young students
with findings of other researchers (e.g. Lee and Wheeler 1987; Stacey 1989;
Stacey and MacGregor 1999) who all document older students’ reluctance to change
incorrect conjectures of rules in the face of contradictory evidence.

Marie offered an initial rule; Zoya immediately tried to support this conjecture
by referring to the structure of the pattern. However, in trying to “prove” this rule,
Zoya realized that the built pattern did not fit the rule, so they abandoned their initial
conjecture. Eventually, Marie does figure out the correct rule, which she expresses
in informal algebraic language as position number times 3, plus 1. Notable as well
is the “groups of” language that illustrates one of the ways in which students con-
structed their multiplicative reasoning.

Students’ Invention of Multiplication

As mentioned previously, none of the classes had been taught multiplication prior
to the patterning lessons. Perhaps amongst the most salient of our findings was the
way that the pattern activities worked to support students to construct a robust un-
derstanding of multiplication, revealed in the diversity of approaches the students
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had “invented” and the deep conceptual orientation to multiplication they had con-
structed through continual experience with arrays of tiles. It appears that the arrays
in the geometric growth patterns provided the students with a visual representation
of multiplication as a set of relationships that they could construct and deconstruct.
Schliemann et al. (2001) have suggested that operations such as multiplication may
in fact be more effectively understood as functions.

As shown in the following transcripts, even arithmetically lower-achieving stu-
dents who struggled to perform some of the required calculations were nonetheless
able to use multiplication to explain their reasoning about pattern rules and the num-
ber of elements in pattern positions.

Deconstructing Multiplication: “Double the position, plus the
position”

One way in which students constructed their understanding of multiplication in the
context of patterning was through a deconstruction of the operation. In this excerpt,
taken in the context of a classroom lesson, Moni is presented with tile arrays rep-
resenting the first four positions of a y = 3x pattern in which the first position is a
row of 3 tiles, the second position is two rows of 3 tiles, and so on. She explains her
thinking about how the number of tiles in the fourth position (an array of 4 rows of
3 tiles each, or 3 columns of 4 tiles each) conforms to a general rule:

Moni: [running her finger up and down one column of 4 tiles] Here it would be
4 doubles; that would be 8. . . So when you put these two lines together
it’s 8. And here’s [indicates position number card] 4. So you double the
position, with the number.

Teacher: So, it’s the number. . . ?
Moni It’s the position [number], plus the double of the position.

It is noteworthy that Moni chose to reason in a structural way rather than counting
out the full number of tiles in her attempt to calculate the total. This type of reason-
ing typified the approach taken by many of the children. The geometric configura-
tion (array) that Moni’s explanation relied on clearly supported her deconstruction
of multiplication; 3n is decomposed into both n + 2n (It’s the position, plus the
double of the position) and 2n + n (Double the position, with the number). This
visual/spatial reference that anchors her understanding further allows her to demon-
strate correctly both the commutative property of addition and the distribution of
multiplication over addition.

Using a Structural Understanding of Multiplication to Predict Far
Positions: “It’s 40 up, and 3 to the side”

In this next transcript, Oscar was shown the first two positions of a pattern (repre-
senting the functional relationship y = 3x +5) built with square and triangular tiles,
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Fig. 7 Photo of rocket ship
pattern

designed to look like a “rocket ship” for astronauts. Each position included an array
of a number of rows of 3 square tiles each, one row of 3 tiles for each astronaut.
Below this array were two triangular tiles, positioned one on each side to look like
rocket boosters; three triangular tiles above the array formed the nose of the rocket
(Fig. 7).

After Oscar was shown the first two positions of this pattern, the researcher won-
dered if Oscar could use his understanding of the structure of the pattern to de-
termine how many blocks there would be in the 40th (a far) position (there are not
enough blocks on the table for Oscar to build it), so asks him what the pattern would
look like for 40 astronauts:

Researcher: Do 40, first.
Oscar: Forty [thinks]. Forty would be 40 up, 40 up [moving his finger along

an imaginary column on the table] and 3 to the side [moves his finger
sideways] ‘cause one astronaut is 3 blocks long.

Researcher: Oh, it’s 40 up and 3 to the side. Can you figure out how many blocks
that would be in all?

Oscar: That would mean 3 rows [sic] of 40. And 40 [counts with one finger
held up] plus 40 [counts on another finger] is 80. And another 40 is. . .
another 40 is. . . . [turns to his partner] What’s 80 plus 40? [the partner
replies, “120.”] A hundred and twenty. . . So that’s a hundred twenty.
[He now begins to put 5 triangle blocks down one at a time, very delib-
erately. He first places 2 at the base of a smaller array he has already
built, then 3 triangles far above this configuration, apparently at the
top of the imaginary much larger array that he is describing.] Then
a hundred and twenty one, a hundred and twenty two, a hundred and
twenty three, a hundred and twenty four, a hundred and twenty five.
That’s the answer. . . Can I write that answer down before I lose it?

The fact that Oscar could predict the 40th position (from only two examples)
revealed his growing understanding of multiplication as an array and the structure of
the linear functions we had been working with Further, Oscar’s reasoning illustrates
the understanding students developed of the co-variation of the position number and
of the number of elements in a given position. Finally, this short excerpt is indicative
of the kind of excitement this work generated in the students, the “big numbers” they
were willing to engage with and the kind of effort they were willing to make.
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The Discovery of Zero

Our sequence of lessons required the children to move back and forth between nu-
meric and geometric expressions of function rules; the lessons also moved back and
forth between teacher and student generation of patterns and rules. In the course of
creating their own rules within both the numeric and the visual/spatial investigations
of pattern, students in different research classrooms independently made the discov-
ery of zero as a powerful mathematical idea and arithmetic tool. Below we present
examples taken from different classrooms revealing how students used zero in their
pattern designs, first as a coefficient and then as a position number.

Zero as a Coefficient: “Zero groups of 4 million is zero”

The first example comes from a classroom lesson at a time when pairs of students
were working independently to create function machine challenges for their fellow
classmates. The researcher approached two students, Clarice and Emma who had
already invented a rule and had created written pairs of input and output numbers.

Researcher: Okay, I’m going to give you an input number you don’t already have,
and can you give me an output? Ready, my input is 2.

Clarice: It’s going to be 5.
Researcher: Okay, input number is 17.

Clarice: 5, 5, 5!
Researcher: Input number is 672!
Clarice & Emma: 5, 5, 5, 5, 5! [laughing]:
Researcher: Wow. Can I ask you a question—what does that mean? How many

groups of the input number are there?
Clarice: If it’s times zero, it would always be zero. Zero groups of 4 million is

zero!
Researcher: Zero—there are just no groups of them.

Clarice: And then plus 5, so it’s always 5.

We were surprised, as there had been no prior discussion of zero in any con-
text. As this lesson progressed, Emma and Clarice had the opportunity to sit at
the function machine and present their challenge to their classmates. While many
were stumped, one student asserted, “It’s the number, minus itself, plus 5”. We
were interested to note that Emma and Clarice were flexible in being able to
accept this different rule as an expression of the same relationship, something
older students have difficulty doing (e.g., Lannin 2003; Lee 1996; Mason 1996;
Stacey 1989.)
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Fig. 8 The zero-th position

Zero as a Position Number: “the zero-th position”

Whereas the two girls in the example above were excited to use zero as a trick, in the
next excerpt we see Anna, pictured in Fig. 8 with her geometric pattern that offered
no clear visual organizational clues for her classmates to identify the constant. Anna
suggested that the “zero-th” position was a “help” to them in discovering her pattern
rule:

Researcher: Can you show the class the pattern that you have built?
Anna: [holding a Small piece of paper in her hand, with a rule eon it written

by a researcher] So what our rule was, was—this is our second one—
it’s times 5 plus 3. [gestures to the pattern in general and then points
to a position card she has made with a zero and indicates the three
tiles above it] And the zero-th position helps you a lot, it gives you a
big clue. [she splays her 3 fingers as she tries to indicate the 3 tiles
that are over the “zero-th position” card]. It’s 3 [touching all 3 at
once]—this is the bump, cause the bump stays the same, but there’s
no GROUPS of 3 [according to the pattern rule]. So it’s the bump. It
helps you a lot because it identifies what the bump would look like.
So it’s like 5 [pointing to the first position configuration], and then
plus the bump. [pointing to the second position] Five and then 5, plus
the bump. [pointing to the third position] Five, and then 5, and then 5
[holding her hands over each group of 5], plus the bump.

The inclusion of zero was Anna’s and her partner’s idea. There were no position
cards with zero written on them. As she prepared the challenge for her classmates,
she had requested a blank card to make a zero-th position card. Anna was aware
that the position number always indicated how many groups there were, regardless
of how many tiles were in each group; so she determined that if she used zero as
a position number, then there would be no groups at all, isolating the constant and
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making it easy to identify. Thus, she was giving her classmates what she determined
to be a big hint to finding the rule for her visually complicated pattern.

Transfer of Structure

As we observed the students over the course of the research lessons, we could see
that they were gaining fluency with geometric patterns and becoming increasingly
successful with function machine games, and integrating these features within their
work in the pattern sidewalk. However, what we could not tell through observation
was the robustness of the students’ acquired understandings of the two-part function
structure (represented formally as y = mx + b) and whether they could transfer
their new understandings to other mathematical contexts. Accordingly, at the end
of the second year of our Grade 2 interventions, we interviewed pairs of students
using a word problem—a novel context—that was a narrative representation of a
two-part function. The problem was presented only orally; there were no visual
representations, and the students were not given the opportunity to write or draw
to find the solution. There was nothing in the word problem that resembled what
they had done on patterning in the research lessons, and no verbal cues that linked
the word problem to what we had done in the classroom. The word problem is as
follows:

Charlotte really wants to buy a scooter. But she doesn’t have enough money. The
scooter she wants costs $100! From the tooth fairy, Charlotte already has saved
$10. But she decides to earn more money by walking her neighbour’s dog, Sparky.
For each day that Charlotte walks Sparky, her neighbour will pay her $5.

Circumventing Whole Object Reasoning

The first transcript comes from a post-intervention interview in which two students,
although not asked to state a function rule, clearly demonstrate their ability to dis-
cern and use a rule:

Researcher: Okay, kids. Now you really have to listen hard. I have a question for
you. I don’t have any paper or anything. [Reads the problem out loud.]
How much money will Charlotte have altogether at the end of the first
day of walking Sparky?

Mai: She. . . .
Juanita: 15.

Researcher: How do you know?
Juanita: She already has 10, and then she gets 5.

Researcher: How much money will she have altogether at the end of Day 2?
How about on the second day?
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Mai: 20.
Juanita: Hey!

Researcher: Why, is that what you were going to say, Juanita?! How much money
will she have altogether at the end of Day 5?

Juanita: 20. . . 25. . . . Just a second. [counting by fives on her fingers]
Mai: 35.

Researcher: How did you get 35?
Mai: Because 5 × 5 is 25, plus 10 is 35.

Researcher. Is that how you did it, Juanita?
Juanita: Yeah.

Researcher: How much money will she have altogether at the end of Day 10?
Mai: 60.

Researcher How did you get 60?
Juanita: Well, on the 5th day is 25, and 25 and 25 is 50, plus 10 is 60.
Juanita. Same with me.

Researcher: What day would it be if Charlotte has $70 altogether?
Juanita: I think the. . . twelfth.

The inappropriate use of proportional reasoning or “whole object reasoning” in
the context of patterning problems is well documented. For this reason, the sequence
of questions in our interview progressed from asking the students how much money
Charlotte would have in 5 days, to how much she would have in 10 days. A whole
object strategy, which could be anticipated, would produce an incorrect answer of
70. That is, if 5 days equals $35, then 10 days would be double that, or $70. How-
ever, Juanita, like the majority of students in the Grade 2 research classrooms, gave
the correct answer of 60.

While Juanita and Mai had not been asked to express a rule explicitly, they ap-
peared to understand what the rule was and how to use it to predict positions of the
pattern, as evidenced in their responses.

Further, the students’ ability to correctly answer the final question in the narrative
problem (how many days would it be if Charlotte has $70) is a further indication of
their agility and robust understanding. They could use their explicit understanding
of the coefficient and constant to reason backwards, i.e. to begin with the number of
elements (money) in an unknown position and find the position (day).

Informal Algebraic Expressions of Rules in the Sparky Problem

In the excerpts below, from another classroom, the researcher gave students the
opportunity to explain their thinking and to propose a general rule for the Sparky
problem. The responses below are impressive in that these students were able to
extract the functional relationships inherent in the Sparky problem, and express them
in syncopated language (Sfard 1995). The three examples below of rules offered by
Luca, Tomas and Stella show increasing levels of abstraction of rules:

Luca: It’s counting by 5s with a 10 bump.
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Tomas: Oh, I get it—it’s a groups of 5 pattern with a 10 bump because she
[Charlotte] already had 10 dollars from the tooth fairy.

Another student, Stella went on to notice that the constant was larger than the
coefficient, which had not been the Case in the geometric problems that the students
engaged with as part of the intervention. Her references to the geometric, as well as
those of the previous students, in talking about “groups of” and the “bump”, illus-
trate the crucial role of the visual/spatial representation in their ability to transfer.

Stella: It’s always the day [ordinal position number] times 5, plus 10. So there’s 10
bumps and 5 normal things, more bumps than normal things—that’s weird!

Taken together, in the order that they are presented, these three excerpts reveal
the increasing degree of formalization of the students’ explanations of rules. Our
conjecture is that the role of spatial-inspired terms like “bumps” and “normal things”
was fundamental in ensuring the abstraction required to tackle the purely numeric
Sparky pattern. We see this generalization as related to what Radford (2003) has
called algebraic contextual generalizations. Further, we concur with Radford that
adherence to conventions is not necessarily an indicator of algebraic thinking: “It
is not notations which make thinking algebraic; it is rather the way the general is
thought about” (2008, p. 84).

Discussion

The Grade 2 students in our research classrooms did not rely on recursive reasoning
in their solutions to patterning problems, nor did they use inappropriate proportional
(“whole object”) strategies, both of which have been indicated in the literature as
common problems even among older students. Rather, they appeared to develop a
fairly robust understanding of two-part function rules through their engagement with
the curriculum: they could predict how a pattern would grow, find general rules for
geometric and numeric patterns, and construct patterns based on given rules. As
well, our results revealed that the students were able to transfer their understanding
of rules to a new (narrative) context, both finding and applying a rule.

The invention of multiplication has been noted in other studies of young students
engaging with patterns; however, the diversity and quality of the approaches these
students invented seemed noteworthy. Not only did the students find mathematically
sound ways to deconstruct multiplication operations to solve problems, but some
students also, at their own initiative, experimented with the effect of using zero as
either the position number or the coefficient.

Finally, the students appeared to enjoy the lessons and seemed intrigued by the
geometric presentation of patterns. They were interested in making, justifying and
testing conjectures, were flexible in their general approach, and were excited to ex-
plore different ways of creating difficult challenges for their classmates. This con-
trasts with the concerns expressed by scholars, such as Mason (1996) and Hewitt
(1992), who noted that when geometric sequences are introduced, often students
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produce a table of values from which they extract a closed form formula which they
check with only one or two figural examples. The question arises: what are the char-
acteristics of our program that may have supported these very young students in
their productive and flexible approach to patterning activities?

Analyses of our findings over the many iterations of our studies suggest a number
of distinct but overlapping factors that may have contributed to our students’ ability
to work with patterns. We draw your attention to three factors in particular. First, is
the design of the curriculum with its deliberate movement back and forth between,
and then bridging of, geometric and numeric representations of growing patterns
through the idea of “rules”. Second, and related, is the primacy given to the visual
and to the way that the curriculum design deliberately focuses students’ attention
on the spatial/geometric pattern formations. And third, inherent in the design of
the instructional sequence is the emphasis on student invention. In the sections that
follow we briefly elaborate on these factors.

The Curriculum with Its Focus on Integration

The theoretical framework that underpinned this research, and served as a heuristic
for the design of the curriculum, came from previous work of Case and colleagues
on children’s mathematical development. Specifically, we were guided by the pro-
posal of Case et al. that children’s development in a domain of mathematics (e.g.,
whole number, rational number) is underpinned by the integration of the children’s
visual schemas on the one hand, and their numeric understandings on the other, for
the mathematics domain in question (Please see Kalchman et al. 2001 for details of
this theory). Further, as we mentioned earlier, this theoretical framework helped to
establish a developmentally grounded sequence for our intervention. Students first
worked with geometric (tile array) representations and then moved on to numeric
(function machine) patterns. This sequence served to help the students to consol-
idate and extend their separate understandings in both the geometric and numeric
domains. These separate understandings were bridged for the students by the con-
cept of (function) rule which enabled the students to begin to move between the vi-
sual and the numeric with increasing flexibility. The subsequent introduction of the
pattern sidewalk, in its use of a non-sequential geometric representation of pattern,
also fostered this integration and flexibility. Our preliminary conjecture is that it was
the specific movement back and forth between these two representations, geometric
and numeric, that ultimately supported the students to gain not only flexibility with,
but also a structural sense of, two-part linear functions, thus supporting/enabling
the students to discern and understand pattern rules in contexts that were new to
them.
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Prioritizing Visual Representations of Pattern

While we believe that the back and forth movement was critical to the flexible rea-
soning that students ultimately were able to demonstrate, we also suggest that the
students’ initial grounding in the visual geometric context was also significant in the
effectiveness of the curriculum. All through the lessons and interviews with students
we were made aware of how their reasoning was underpinned by their interpreta-
tions and analyses that were based on geometric figures. When probed for explana-
tions of rules, the students focused on how a pattern grew in relation to the position
number; how the addition of the constant or “bump” was related to the coefficient,
or multiplicative; how parts of the pattern changed and parts stayed the same based
on their visual configurations. Finally, even in their post-intervention explanations
of the “Sparky” narrative word problem, many students referred to the two elements
of the two-part function in geometric terms: “Oh, I get it—it’s a groups of 5 pattern
with a 10 bump because she already had 10 dollars from the tooth fairy.”

Indeed, a number of researchers have reported on the support provided by figu-
ral representations for students working with generalizing problems (e.g., Carraher
et al. 2008; Healy and Hoyles 2000; Lannin 2005; Noss et al. 1997; Rivera and
Becker 2008; Sasman et al. 1999; Stacey 1989). When visual representations are
prioritized, and students are supported to focus on the figural patterns as a way of
discerning general rules, they are better able to find, express and justify functional
rules.

However, research has also shown that, overwhelmingly, students and adults have
a strong tendency to ignore the geometric properties of figural patterns, and to focus
instead on the number of elements in the given pattern. The focus on the visual in
our program appears to have had a double advantage for students: providing a rich
context in which to analyze growth and change, and also supporting students to be
aware of covariation.

Pedagogy and Student Inventions

In the opening sections of this article we discussed the particular ways that in which
the teachers interacted with the students and how they focussed the children’s at-
tention on salient features of the instructional sequence to support the children’s
learning. It is also our proposal that another significant contribution to the success
of the intervention was the ongoing insertion into the learning sequence of the chil-
dren’s own inventions: specifically the geometric patterns they designed and also
the challenges they created for their classmates with the function machine.

As we mention in earlier sections of this chapter, inasmuch as there was a con-
tinuous movement back and forth between geometric and numeric representations
of patterns, so too was there movement back and forth from the standpoint of the
pedagogy: for example, in iterative fashion teachers modeled geometric one-step
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patterns, and then students designed and presented their own patterns; teachers pre-
sented challenges with the function machine, and then students in pairs followed
their lead and designed their own challenges for their classmates. The evidence,
based on the transcripts of classroom lessons, is clear in revealing that these student-
invented challenges created excitement, interest and motivation among the children.
They also may have served other important purposes. First was the opportunity to
practice. Students in Grade 2 had little or no experience with growing patterns prior
to the intervention, and many held firmly to the belief that patterns could only repeat.
Creating their own patterns gave the grade 2 students the opportunity to discover and
experience how linear growing patterns worked or did not work. In addition, by cre-
ating their own geometric and numeric patterns, students had the time and space to
invent and then practice multiplication. Also, in the course of developing challenges
for their classmates, the students had the opportunity to take on an additional per-
spective in anticipating how their classmates might respond. In our view, this kind
of anticipation and planning added an extra dimension (metacognitive) to students’
thinking, thus enriching the learning potential of the lessons.

Concluding Thoughts

Typically, patterns are taught in the early years as repeating, with children asked to
find “what comes next”. As Blanton and Kaput point out, this limited view does not
capitalize on the potential of patterns to support later mathematics learning (Blan-
ton and Kaput 2004). A number of researchers have included a focus on young
children and patterns (e.g. Carraher et al.; Mitchelmore and Mulligan; Mulligan,
Prescott & Mitchelmore; Warren & Cooper), investigating ways of promoting alge-
braic thinking, generalizing and awareness of structure through the use of pattern-
ing. We join with these researchers in trying to illuminate the potential of pattern
work for young children. Our findings suggest that, with appropriate instruction,
the study of patterns can support students of all levels of mathematics abilities to
foster the kinds of mathematical thinking that Kieran suggests is fundamental to al-
gebraic reasoning: “analyzing relationships between quantities, noticing structure,
studying change, generalizing, problem solving, modeling, justifying, proving, and
predicting” (Cai and Knuth 2005, pg. 1)
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