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2.1 Introduction 

The Earth's atmosphere absorbs, scatters, and emits electromagnetic radiation. Although 
air molecules are the primary actors in these processes, aerosol particles are also present 
ubiquitously (see Chapter 1) and modify the radiation field. In fact, this modification con
stitotes the very physical basis of aerosol remote sensing. Whenever clouds are present, 
they have a much larger influence on radiation which largely overshadows the aerosol im
pact. Therefore, in aerosol remote sensing, one often has to limit observations to cloudless 
conditions and screen cloudy pixels. 

In the solar part of the spectrum, molecular absorption is mostly limited to ultraviolet 
(UV; ozone) and near-infrared (near-IR; carbon dioxide, water vapor) wavelengths and is 
characterized by strong and narrow oxygen bands. A brief description of atmospheric mo
lecular absorption is presented in Section 2.2. Shortwave aerosol remote sensing is usually 
performed outside the absorption bands, but some instruments also have channels captur
ing absorption bands with the objective of quantifying gaseous components. 

Absorption in the longwave terrestrial spectrum, both by molecules and aerosols, is 
accompanied by emission, according to Kirchhoff's law. This subject will be addressed in 
Chapter9. 

In Sections 2.3 and 2.4, we present some basic definitions concerning the scattering and 
polarization phenomena; the same formalism will be used throughout this book. Section 
2.5 deals with Rayleigh molecular scattering, Section 2.6 summarizes the theory of scatter
ing by spherical particles (the Lorenz-Mie theory), and Section 2.7 addresses the scattering 
by nonspherical particles. Finally, in Section 2.8, we discuss the main traits of single-scat
tering and absorption characteristics of spherical and nonspherical aerosols. 
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2.2 Atmospheric molecular absorption 

Solar radiation at very short wavelengths is strongly absorbed in the upper atmosphere, 
mainly by oxygen in the Schumann-Runge and Herzbetg bands (Greenblatt et al., 1990), 
and, therefore, is not very useful for remote sensing. At wavelengths above 250 nm, the 
ozone absorption becomes dominant, in the Hartley and Huggins bands, and limits the 
ability to observe the solar spectrum at the Earth's surface around 300 nm. Figme 2.1 
depicts the absorption cross-section of ozone in the UV region. The Hartley and Huggins 
bands do not yield a line structure, but rather cause small osc:illations superposed on the 
continuum. Numerous measurements of the ozone absorption have been performed over 
the past decades (Vigroux, 1953; Molina and Molina, 1986; Paur and Bass, 1985; Burrows 
et a1.,1999b), especially in the Huggins bands, and have demonstrated the absorption to be 
strongly temperatme dependent. Remote sensing in the UV can be used to retrieve simulta
neously aerosols and ozone, as, e.g., with TOMS and OMI instruments (see Chapters 7 and 
8). In the visible, ozone causes the much weaker Chappuis absorption band which is not 
temperature dependent (Amuroso et a1.,1990), as shown in Figure 2.2. This band is used in 
remote sensing with SAGE and similar occultation instruments (see Chapter 8). 

Minor gaseous constituents, such as N02, N03, OClO, and S02, also cause some ab
sorption bands in the UV and visible parts of the spectrum, thereby facilitating remote 
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Figure 2.1 Ozone UV absmption cross section x104' (cmZ) at 230 K. 
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sensing of these gases. The oxygen molecule causes a few D81TOW bands in the visible and 
near-IR, the most important bands being centered at 690 and 7(1.) nm. Measurements of the 
7(1.)-nm band, called the A band, are used in remote sensing of cloud top heights (Fischer 
and Grassl, 1991). 

In the near-IR, besides the strong-absorption bands due to ~0 and C02 (see the spec
troscopic data banks HITRAN at www.cfa.harvard.edu/hitran, and GEISA at etheripsl. 
jussieu.fr), several species cause absorption bands also used for remote sensing. However, 
this topic is beyond the scope of our discussion of aerosol remote sensing. 

2.3 Definitions: Extinction, scattering, absorption, and phase function 

The radiative energy is most generally characterized by the radiant 1iux density (Wm~; 
for simplicity it is called intensity I in this chapter, without considering its distribution in 
directions; I takes generally the name of irradiance, when received on a surface. In Chapter 
3, we will define the radiance L (Wm-Zsr1), used in radiative transfer analysis. 

Let us consider a horizontal layer of iDfini.tesimal thickness ds inside the atmosphere 
or any other medium composed of sparsely distributed scatterers (Figure 2.3a). A paral-
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Figure 2.2 Ozone visible absorption cross section xlo-ac' (cm.Z). 
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ds 

Figure 2.3 Definition of extinction. 

lei beam of monochromatic radiation incident from above perpendicularly to this layer is 
characterized by its intensity I (Wm-2

) at the entrance surface of the layer and an intensity I 
+ dl at the exit surface. According to the microphysical theory of radiative transfer (Mish
chenko et al., 2006), dl is proportional to the product of I and ds: 

dl = -aJds, (2.1) 

where a~ (m-1
) is the local extinction coefficient. Implicit inEq. (2.1) is the assumption that 

the scattering medium is composed of spherically symmetric and/or randomly oriented 
nonspherical particles. Preferential orientation of nonspherical particles requires the intro
duction of a 4 x 4 extinction-matrix coefficient rather than the scalar extinction coefficient 
(Mishchenko et al., 2006). 

The cumulative extinction is generally due to two different physical phenomena: ab
sorption, wherein the radiative energy is transformed into another form of energy (e.g., via 
heating and photochemical reactions), and scattering, wherein a part of the incident light 
changes its direction of propagation and is lost to the incident energy flux. Both molecules 
and aerosols absorb and scatter radiation. The extinction coefficient is the sum of the ab
sorption coefficient aa and the scattering coefficient a,: 

(2.2) 

To characterize a molecule or a particle, one generally uses the extinction, absorption, and 
scattering cross-sections (C~, c •. and C,) expressed in m2

• The extinction, absorption, and 



2.3 Definitions: Extinction, scattering, absorption, and phase function 17 

scattering coefficients defined above are obtained by multiplying the respective cross-sec
tions by the number of molecules or particles per unit volume. The fractional contribution 
of scattering to the total extinction is given by the single-scattering albedo (SSA): 

(2.3) 

For a finite-thickness layer located between s
1 

and s
2 

(Figure 2.3b), the integration of 
Eq. (2.1) yields 

(2.4) 

where 

(25) 

is the optical thickness of the layer and exp( --r.) is its optical transmittivity. Of course -r. 
can be decomposed into the sum of the absorption, r,, and scattering, r., optical thickness
es. Quite often the subscript "e" is omitted when implicit from the context. Equation (2.4) 
is known as Bouguer-Beer's exponential extinction law and, strictly speaking, applies only 
to monochromatic radiation. However, it can also be applied to narrow wavelength inter
vals over which the intensity and the extinction vary slowly. This is the case for scattering 
(both molecular and aerosol), aerosol absorption, and ozone absorption, but not for gaseous 
line absorption. 

In the atmosphere, the optical depth is traditionally measured along a vertical path and 
is equal to the optical thickness of the atmospheric layer above a given altitude. The total 
optical thickness of the atmosphere corresponds to the optical depth at the surface level. 

The scattered radiation is lost to the initial parallel energy flux and has a probability to 
be distributed in any direction depending on the specific type of scatterers. In the case of 
unpolarized incident light (e.g., sunlight), the phase functionp(@) expresses this probabil
ity as a function of the scattering angle @e [0, n], i.e., the angle between the incidence and 
scattering directions (see Figure 2.4 showing the plane of scattering defined by these two 
directions). The amount of monochromatic radiative power scattered by an elementary vol
ume dV of the scattering medium into a solid angle dQ around the direction e is given by 

(2.6) 

where l is measured in W. The conservation of energy implies that p( 8) is normalized to 
4n when integrated over all scattering directions. As before, we assume that the scatter
ing medium is composed of spherically symmetric and/or randomly oriented nonspherical 
particles. 
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It is customary and convenient to expand the phase function in a series of Legendre 
polynomials P1 : 

where 

p(8)- ~jj1.l}(cos8), 

21 +I +1 

jj1 - --Jp(8)P,(cos8)d(cos8); 
2 -1 

(2.7) 

(2.8) 

the upper summation limit L is 2 for molecules and increases rapidly as the particle size 
exceeds the incident wavelength (Section 2.8). The normalization of the phase function 
implies that jj0 = 1. 

The asymmetry factor is defined as 

+1 +1 

g- (cos9)-Jp(9)cos6d(cos9)/ Jp(9)d(cos9)- jj1 /3. 
-1 -1 

(2.9) 

A useful analyti.cal rep~esentation of the phase function is the Henyey-Greenstein function 
(Henyey and Greenstein,l941) 

p(6)- 1-i ; 
(l + g2

- 2gcos6'P 

it is used quite often and usually gives good results in radiative flux computations. 

(2.10) 
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As stated above, the number of terms in the expansion (2.7) increases rapidly for large 
particles, when the phase function exhibits a very strong forward peak (see Section 2.8). 
Therefore, a useful approximation is to write the phase function as the sum of a delta-func
tion term and a much smoother phase-function component: 

p(9) = 2/AO. -cos9)+0.- f)p'(9), (2.11) 

where p'(8) can be expanded into series of Legendre polynomials with many fewer terms 
than p(8). Physically, this approximation implies that the radiation scattered in the forward 
peak is simply transmitted; the constant f is empirically defined, depending on how the 
forward peak is truncated (Potter, 1970). 

2A Polarization and scattering matrix 

In general, the scattering process modifies the state of polarization of the radiation incident 
on a molecule or a particle. In order to account for this phenomenon appropriately, espe
cially when one has to deal with two or more successive scattering events (see Chapter 3), 
it is first necessary to choose a consistent representation of polarized radiation. 

2A.l The Stokes parameters 

A time-harmonic plane electromagnetic wave propagating in the direction of the wave 
vector k is characterized by two orthogonal components E, and E, of its complex electric 
vector E(r, t) = Eexp(icot- ik · r) defined in the wave plane (i.e., the plane normal to k), 
where tis time, r is the position vector of the observation point, co is the angular frequency, 
and i = .;:_ 1. The subscripts "l" and "r" denote the components parallel and perpendicular 
to a reference plane, respectively (Figure 2.5). 

Because of high frequency of the time-harmonic oscillations, traditional optical instru
ments cannot measure the electric and magnetic fields associated with the electromagnetic 
wave. Instead, optical instruments usually measure quantities that have the dimension of 
energy flux and are combinations of the four products E/t',.E,E',,E,E'1, and E/t',. where 
the asterisk denotes a complex-conjugate value. In particular, the real-valued Stokes pa
rameters I, Q, U, and V of the plane wave (Stokes, 1852; Chandrasekhar, 1950) form a 
so-called Stokes column vector I defined as 

I ~Ej+E,.E; E~+E~ 

I= 
Q 
=~ 

~Ej-E,E; 
=~ 

E~-E~ 
(2.12) 

u 2 ~E;+E,Ej 2 2E10Er0costJ 
v iErE; - iE,.EI• 2EufirOsintJ 

where E
10 

and E
10 

are the amplitudes of the complex time-harmonic components E
1 
and E,, 
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Reference plane 

Figure 2.5 Electric field vector components. The reference plane contains the vectors k and E,. 
The wave plane goes through the vectors E, and E1• 

respectively; d is the retardation in the phase of E1 relative to that of E,; c is the speed of 
light in a vacuum; and £0 the dielectric constant of a vacuum. All four Stokes parameters 
have the dimension of the scalar quantity I (Wm-2). If the Stokes vector is associated with 
radiance, the Stokes parameters are in Wm-2sr1• 

A plane electromagnetic wave is the simplest type of electromagnetic radiation and is 
well represented by a perfectly monochromatic and perfectly parallel laser beam. Let us 
consider an arbitrary point within such a beam. It is straightforward to demonstrate (see, 
e.g., Mishchenko et al., 2002, 2006) that during each time interval 'brlw, the end-point of 
the real electric field vector Re[E(r ,t)] describes an ellipse in the wave plane. The sum of 
the squares of the semi-axes of this ellipse, multiplied by e

0
c/2, yields the total intensity of 

the wave/. The ratio of the semi-axes, the orientation of the ellipse, and the sense in which 
the electric vector rotates (clockwise or counter-clockwise, when looking in the direction 
of propagation) can be derived from the other three Stokes parameters of the wave, Q, U, 
and V. Importantly, any plane electromagnetic wave is fully polarized, i.e., satisfies the 
Stokes identity 

(2.13) 

Quasi-monochromatic beams of light are encountered much more often than perfectly 
monochromatic beams and, in general, are described by E(r,t) = E(t)exp(iwt-ik·r), where 
fluctuations in time of the complex amplitude of the electric field E(t) around its mean 
value occur much more slowly than the harmonic oscillations of the time factor exp(iwt), 
albeit still too fast to be detected by an actual optical detector of electromagnetic energy 
flux. Therefore, the Stokes parameters measured by the detector are obtained by taking an 
average of the right-hand side of Eq. (2.12) over a time interval much longer than 'brlw: 
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I <E,Ei> + <EA> (E~)+ <E?.> 

I-
Q 
-~ 

(E,Ei)- <E,E;) 
-~ 

(E~)- <E?.> 
(2.14) u 2 <E,E;> + (E,.Ej) 2 QE1oE .. cosd) 

v i<E,E;>- i<E,Ei) QE1oEn> sind) 

These average Stokes parameters contain all practically available information on the quasi
monochromatic parallel beam (Chandrasek:har, 1950; Mishchenko eta!., 2006). I is the 
total intensity of the beam considered in the previous section. The other three Stokes pa
rameters have the same dimension as I (Wm-2) and satisfy the inequality 

I 2 
" Q' + u' + v'. (2.15) 

In general, the end-point of the vector Re[E(r, t)] of a quasi-monochromatic beam does 
not describe a well-defined polarization ellipse. Still, one can think of a ''preferential" el
lipse with a "preferential orientation", ''preferential elongation", and "preferential banded
ness". Equation (2.15) implies that a quasi-monochromatic beam can be partially polarized 
and even unpolarized. The latter means that the temporal behavior of Re[E(r, t)] is com
pletely "erratic", so that there is no "preferential ellipse". This is, for example, the case for 
the extraterrestrial solar radiation. 

When two or more quasi-monochromatic beams propagating in the same direction are 
mixed incoherently, which means that there is no permanent phase relation between the 
separate beams, then the Stokes column vector of the mixture is equal to the sum of the 
Stokes column vectors of the individual beams: 

(2.16) 

• 

where n numbers the beams. According to Eqs (2.15) and (2.16), it is always possible 
mathematically to decompose any quasi-monochromatic beam into two incoherent parts, 
one unpolarized, with a Stokes column vector 

I - ~Q' + u' + v' 
0 

0 

0 
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and one fully polarized, with a Stokes column vector 

Thus, the intensity of the fully polarized component is (Ql + lP + Vl)~, and so the degree of 
(elliptical) polarization of the quasi-monochromatic beam can, in general, be defined as 

(2.17) 

The parameters of the "preferential ellipse" of a parallel quasi-monochromatic beam of 
light can be viewed as quantitative descriptors of the asymmetry in the directional distribu
tion and/or rotation direction distribution of the vector Re[E(r ,t)] in the wave plane. For 
example, a common type of polarization encountered in natural conditions is partial or full 
linear polarization, which implies that the Stokes parameter Vis negligibly small. This type 
of polarization is often described by the total intensity, degree of linear polarization, and 
angle a defined in the wave plane and specifying the orientation of the plane of preferential 
oscillations of the real electric field vector with respect to the reference plane (Figure 25). 
The degree of linear polarization is given by 

P = ~if+ U2 

I 

the second and third Stokes parameters are given by 

Q-IPcos2a, 

U =lPsin2a, 

and the orientation angle is given by 

a = l arctg (U/V). 
2 

(2.18) 

(2.19) 

(220) 

In general, the parameter V is nonzero and defines the preferential ellipticity of the 
beam. However, Vis usually very small in the atmosphere and is often neglected, the po
larization being considered (partially) linear. 

It is clear from the above discussion that the Stokes parameters are always defined with 
respect to a reference plane containing the direction of light propagation (Figure 25). If the 
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reference plane is rotated about the direction of propagation then the Stokes parameters are 
modified according to a rotation transformation rule. Specifically, consider a rotation of the 
reference plane through an angle 0 ,.; X < 231: in the anti-clockwise direction when looking 
in the direction of propagation. Then the new Stokes column vector is given by 

where 

I 

0 
T(X) - 0 

0 

I' - T(X)I, 

0 

cos2x 

- sin2x 

0 

is the Stokes rotation matrix for angle x. 

2A.2 Scattering matrix 

0 0 
sin2x o 
cos2x 0 

0 I 

(221) 

(222) 

Upon choosing the reference axes parallel and perpendicular to the scattering plane for 
both the incident and scattered radiation, Eq. (2.6) is replaced by 

cfi -o,F(fJ)IdVdQ/i!m., (223) 

where 

F(8)- [Fy(8)], i,j -1, ... ,4 (224) 

is the 4x4 so-called normalized Stokes scattering matrix such that F
11
(8)- p(8). For an 

ensemble of randomly oriented particles each of which has a plane of symmetry and/or 
for an ensemble containing an equal number of particles and their mirror counterparts in 
random orientation, the scattering matrix has the following simplified structore and ouly 
six independent elements: 

Fi,(e) 

F(fJ) _ Fi2(8) 
0 

0 

Fi2(8) 
Fi2(8) 

0 

0 

(225) 
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with 

Fi2(0) - F12(n) - F,.(O) - F,.(n:) - 0, (226) 

F,,(n:) - - F22(n), (227) 

(228) 

(van de Hulst, 1957; Mishchenko et al., 2002). Still further simplifications occur for spheri
cal particles: 

Fit(@) 

F(@) = Fi2(61) 
0 

0 

0 0 
0 0 

F,3(61) F,4(61) ' 

- 1'3.(61) F,,(@) 

(229) 

(2.30) 

Several recipes can be used to check the physical correctness of the elements of a scatter
ing matrix found as the outcome of laboratory measurements or theoretical computations 
(Hovenier and van der Mee, 2000). 

A useful expansion of the elements of the scattering matrix in so-called generalized 
spherical functions (Kuseer and Ribaric, 1959; Siewert, 1982; Lenoble et al., 2007) is as 
follows: 

Fit(EI)- p(61)- f fJIJj(cos@), 
l=O 

L 
F2t(61) = F)2(61) = ~ y,P,.(cos@), 

~ 

F22(61) = ~ [a1J?i(cos61) +C/I~(cos@)], 
6 
L I ...J 

F,3(61) = ~ [>"1R2(cos@) +a112(cos61)], 
~ 

F;,3(61)- -1'34(61)- f e1P,.(cos61), 
1-2 

(2.31) 
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where 

Jl.!(cos9) = l[P,'2(cos9) + P,'_2(cos9)], 
2 ' 

(2.32a) 

Tj(cos9) = l[P,',(cos9)- P,'_2(cos9)]. 
2 ' 

(2.32b) 

The P' ~(x) are the generalized spherical functions introduced by Gel'fand and Shapiro 
(1956); they reduce to the usual Legendre polynomials P1for m = n = 0. The P'm are the 
standard associated Legendre functions. The first expansion of Eq. (2.31) is, of course, 
identical to Eq. (2.7). An alternative form of Eq. (2.31) can be found in Mishchenko eta!. 
(2002, 2006), and Hovenier eta!. (2004). 

2.5 Molecular scattering: Rayleigh theory 

The theory of molecular scattering was first developed by Strutt (1871), later known as 
Lord Rayleigh (1889). He assumed that the incident electromagnetic wave induces an elec
tric dipole moment at the same frequency in the molecule. This dipole emits, according to 
the classical electromagnetic theory, at the same wavelength. For incident natural radiation, 
the radiation scattered at e = 90• must be completely polarized, with vibrations of the 
electric field vector perpendicular to the scattering plane. However, this theoretical predic
tion has not been confirmed by observations revealing a small depolarization at 90•. Later 
on, a correction for the molecular anisotropy was introduced by Cabannes (1929) in order 
to explain why the degree of polarization is not 100% at e = 90•. The depolarization factor 
d is defined as the ratio of the parallel to the perpendicular components of the electric field 
vector at e = 90•. It has been measured several times, but is still subject to uncertainty, 
leading to an uncertainty of about 2% in the so-called King factor (6+3d)/(6-7d) appearing 
in Eq. (2.33) below. 

The molecular scattering coefficient for dry air is 

(2.33) 

where A.= 2:nik is the wavelength, k = lkl is the wave number, m,is the refractive index for 
standard air (defined as dry air containing 0.03% C02 at a pressure of 1013.25 hPa and a 
temperature of 15•q, N is the molecular density, and N, is the same quantity in standard 
conditions. The m,is also subject to some uncertainty and slightly depends on the wave
length. Bodhaine eta!. (1999) carefully analyzed the data available for computing the mo
lecular scattering coefficient and their uncertainties. They proposed the following best-fit 
equation for the Rayleigh scattering cross section defined, as above, by c,, = a ,,IN: 
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Ca (x10-zscm?) = 1.0455996-341.29061..1.-
2

- 0.90230850A?. (2.34) 
,R 1 + 0.0027059889A_-2

- 85.96856JA2 

The corresponding Rayleigh scattering matrix is as follows: 

~(1 + cos28) _.lsin28 
4 0 

FR(8)=K 
_.1sin28 

4 t(l + cos28) 0 
0 
0 

where 

2.6 Lorenz-Mie theory 

0 1cos8 

0 0 

1- d K=--
1 + d/2, 

K=1-2d_ 
1- d 

0 +(1-K) 0 0 I [I 
K'1~s8 ~ 

0 

0 OJ 0 0 0 

0 o o' 
0 0 0 

(2.35) 

(2.36) 

(2.37) 

The complete theory of electromagnetic scattering by an individual spherical particle was 
first presented by Gustav Mie (Mie, 1908; see Mishchenko and Travis, 2008 for a his
torical perspective on this seminal development). Detailed accounts of the Lorenz-Mie 
theory can be found in Stratton (1941), van de Hulst (1957), Bohren and Huffman (1983), 
and Lenoble (1993). The incident electromagnetic field is expressed as a linear combina
tion of elementary solutions of the vector wave equation in spherical coordinates called 
vector spherical wave functions (VSWFs). The scattered and internal fields are expressed 
similarly, with unknown coefficients being obtained from the boundary conditions at the 
particle surface. 

Consider an isolated homogeneous spherical particle, having a radius r, illuminated by 
a plane electromagnetic wave, as defined in Section 2.4.1. Using the scattering plane for 
reference (Figures 2.4 and 25), the scattered field vector components at a large distance p 
from the particle (i.e., in the so-called far-field zone; see Section 3.2 of Mishchenko et al., 
2006) are given by 

(2.38a) 
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Ear = _j_ exp( -ikp )~(€J)Eon 
kp 
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(2.38b) 

where sl and s2 are complex functions of the scattering angle given by the following se
ries: 

S:t(t9) = ~ 2n+l (a.._A__Pn(cos€J)+b,-.-1-Pn(cos8)). 
~ n(n + 1) d8 smt9 

(2.39a) 

S2(€J)- ~ 2n + 1 (b,_A__ Pn(cos€J) +a,-.-1-P.:(cost9) \ 
f-t. n(n + 1) d8 sm8 f (2.39b) 

The so-called Mie coefficients an correspond to magnetic oscillations, while the bn cor
respond to electric oscillations. They are determined from the boundary conditions at the 
particle surface and depend on the complex refractive index of the particle relative to the 
surrounding medium m and on the particle size parameter x "' kr. 

The number of numerically significant terms nmn. in the series (2.39) is of the order of 
2x+3; the same number is necessary in the expansions (2.31). Therefore, the practical ap
plication of the Lorenz-Mie theory for particles larger than the wavelength was delayed 
until the advent of modem computers. At present, several numerically efficient and highly 
accurate Lorenz-Mie codes are publicly available on the Internet (see, e.g., ftp://ftp.giss. 
nasa.gov/pub/crmim/spher.f). 

From Eqs (2.38) and the definition of the Stokes parameters, it is straightforward to 

show that the non-zero elements of the normalized Lorenz-Mie scattering matrix are as 
follows: 

(2.40a) 

(2.40b) 

(2.40c) 

(2.40d) 

ftp://ftp.giss.nasa.gov/pub/crmim/spher.f
ftp://ftp.giss.nasa.gov/pub/crmim/spher.f
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where C, is the corresponding scattering cross section. The latter is often expressed in 
terms of the scattering efficiency factor Q, as follows: 

(2.41) 

with 

Q. = ') ~ (2n + l)(la, f + 14.12
). (2.42) 

Similarly, the extinction cross section is represented as 

(2.43) 

while the extinction efficiency factor is given by 

Q., = ') ~(2n+l)Re(a, +4,), (2.44) 

where, as before, Re stands for the real part. If the particle absorbs radiation (i.e., the rela
tive refractive index m has a non-zero imaginary part) then the extinction cross section 
is greater than the scattering cross section; otherwise they are eqnal. The extinction and 
scattering efficiencies are examples of dimensionless scale-invariant quantities depending 
only on the ratio of the particle size to the wavelength rather than on r and A. separately 
provided that the relative refractive index m is wavelength-independent (see Section 3.5 of 
Mishchenko eta!., 2006). The normalized Stokes scattering matrix F defined by Eq. (223) 
is another scale-invariant quantity. 

For a polydisperse ensemble of spherical particles, the average scattering and the extinc
tion cross sections are given by 

C. =I ,.ZQ,(x, m)n(r)dr, 
0 

C, =I ,.ZQ.(x, m)n(r)dr, 
0 

(2.45a) 

(2.45b) 

where n(r)dr is the fraction of particles with radii between r and r+dr normalized such 
that 

I n(r)dr = 1. (2.46) 
0 
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The corresponding formula for the ensemble-averaged elements of the nonnalized scatter
ing matrix is as follows: 

.. 
1';(9) - j_ J .nYa(x, m)n(r)J<U(8; x, m)dr. 

c. 0 

(2.47) 

2.7 Nonspherical partides: Theory and measurements 

Although spherical (or nearly spherical) aerosols do exist (e.g., Figure 2.6a), many aerosol 
types exhibit complex particle morphologies (e.g., Figures 2.6b-d), thereby rendering the 
Lo.renz-Mie theory potentially inappJicable. The optical properties of such nonspherical 
and/or heterogeneous particles must be either computed using an advanced theory of elec-
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F1gure 2-' Examples of aerosol-particle morphologies. (a) S~micrometer-sized quasi-spherical 
ammonium sulphate and dust aerosols (after Weinzierl et al., 2009). (b) A soot aggregale (after Li 
et al., 2003). (c) Sahara-desert soil particles (after Weinzierl et al., 2009). (d) Dcy sea-salt partic:Jes 
(after Cbamamanl et al., 2003) . 
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tromagnetic scattering or measured experimentally, both approaches having their strengths, 
weaknesses, and limitations. In this section, we provide a brief summary of the existing 
theoretical and experimental techniques for the determination of single-particle scattering 
and absorption characteristics. Detailed information and further references can be found 
in the books by Mishchenko eta!. (2000, 2002) and Babenko eta!. (2003) as well as in the 
review by Kahnert (2003). 

2.7.1 Numerically-exact and approximate theoretical techniques 

The majority of the existing exact theoretical approaches belong to one of two broad cate
gories. Specifically, differential equation methods yield the scattered field via the solution 
of the Maxwell equations or the vector wave equation in the frequency or in the time 
domain, whereas integral equation methods are based on the volume or surface integral 
counterparts of the Maxwell equations. 

The classical example of a differential equation method is the Lorenz-Mie theory dis
cussed in the preceding section. By implementing a recursive procedure, one can general
ize the Lorenz-Mie solution to deal with concentric multilayer spheres. 

Like the Lorenz-Mie theory, the separation of variables method (SVM) for homoge
neous or layered spheroids is a frequency-domain technique, wherein all fields and sources 
are assumed to vary in time according to the same factor exp(iwt). The SVM is based on 
solving the electromagnetic scattering problem in spheroidal coordinates by means of ex
panding the incident, internal, and scattered fields in appropriate vector spheroidal wave 
functions. The expansion coefficients of the incident field can be computed analytically, 
whereas the unknown expansion coefficients of the internal and scattered fields are deter
mined by applying the appropriate boundary conditions. Unfortunately, the vector spheroi
dal wave functions are not orthogonal on the surface of a spheroid. Therefore, this proce
dure yields an infinite set of linear algebraic equations for the unknown coefficients which 
has to be truncated and solved numerically. The main limitation of the SVM is that it can be 
applied ouly to spheroidal scatterers, whereas its primary advantages are the applicability 
to spheroids with extreme aspect ratios and the ability to produce accurate benchmarks. 

Another frequency-domain differential equation technique is the finite element method 
(FEM) which yields the scattered field via solving numerically the vector Helmholtz equa
tion subject to the standard boundary conditions. The scattering object is intentionally im
bedded in a finite computational domain, the latter being discretized into many cells with 
about 10 to 20 cells per wavelength. The electric field values are specified at the nodes of 
the cells and are initially unknown. Using the boundary conditions, the differential equa
tion is converted into a matrix equation for the unknown node field values. The latter 
is solved using the standard Gaussian elimination or one of the preconditioned iterative 
techniques such as the conjugate gradient method. While scattering in the far-field zone is 
an open-space problem, the FEM is always implemented in a finite computational domain 
in order to limit the number of unknowns. Therefore, one has to impose approximate ab
sorbing boundary conditions at the outer boundary of the computational domain, thereby 
suppressing wave reflections back into the computational domain and allowing the numeri
cal analogs of the outward-propagating wave to exit the domain almost as if the domain 
were infinite. In principle, the FEM can be applied to arbitrarily shaped and inhomogeneous 
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particles and is simple in terms of its concept and practical implementation. However, FEM 
computations are spread over the entire computational domain rather than confined to the 
scatterer itself. This makes the technique rather slow and limits particle size parameters to 
values less than about 15. The finite spatial discretization and the approximate absorbing 
boundary conditions limit the accuracy of the method. 

Unlike the frequency-domain FEM, the finite difference time domain method (FDTDM) 
yields the solution of the electromagnetic scattering problem in the time domain by directly 
solving the Maxwell time-dependent curl equations (e.g., Taflove and Hagness, 2000; P. 
Yang et a!., 2000). The space and time derivatives of the electric and magnetic fields are 
approximated using a finite difference scheme with space and time discretizations selected 
so that they constrain computational errors and ensure numerical stability of the algorithm. 
As before, the scattering object must be imbedded in a finite computational domain, which 
requires the imposition of absorbing boundary conditions as a model of scattering in the 
open space. Representing a scattering object with curved boundaries using rectangular grid 
cells causes a staircasing effect and increases numerical errors, especially for particles with 
large relative refractive indices. Since the FDTDM yields the near field in the time domain, 
a special near-zone to far-zone transformation must be implemented in order to compute 
the requisite scattered far field in the frequency domain. The FDTDM has the same advan
tages as the FEM and shares its limitations in terms of accuracy and size parameter range. 

The interaction of an incident plane electromagnetic wave with an arbitrary particle can 
also be described fully by the frequency-domain so-called volume integral equation (VIE). 
The calculation of the scattered field using the VIE would be straightforward except that 
the internal electric field entering the integrand is unknown beforehand. Therefore, the VIE 
must first be solved for the internal field. The integral over the particle volume is approxi
mated by partitioning the interior region into a large number N of small cubical cells with 
about 10 to 20 cells per wavelength and assuming that the electric field and the refractive 
index within each cell are constant. The resulting system of N linear algebraic equations for 
the N unknown internal fields is solved numerically. Once the internal fields are found, the 
scattered field is determined by evaluating the right-hand side of the original VIE. This ver
sion of the VIE method is known as the method of moments (MOM). The simple approach 
to solving the MOM matrix equation for the internal fields by using the standard Gaussian 
elimination is not practical for particle size parameters exceeding unity. The conjugate gra
dient method together with the fast Fourier transform can be applied to significantly larger 
size parameters and reduces computer memory requirements substantially. The traditional 
drawback of using a preconditioned iterative technique is that computations must be re
peated anew for each illumination direction. 

Another version of the VIE technique is the so-called discrete dipole approximation 
(DDA). Whereas the MOM deals with the actual electric field in the center of each cell, the 
DDA exploits the concept of exciting fields and is based on discretizing the particle into a 
number N of elementary polarizable units called dipoles. The form of the electromagnetic 
response of each dipole to the local exciting electric field is assumed to be known. The 
field exciting a dipole is a superposition of the external (incident) field and the partial fields 
scattered by all the other dipoles. This allows one to form a system of N linear equations 
for theN fields exciting theN dipoles. The numerical solution of the DDA matrix equation 
is then used to compute theN partial fields scattered by the dipoles and thus the total scat-
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tered field. The original formulation of the DDA in the mid-1970s was phenomenological; 
however, it has been demonstrated since that the DDA can be derived from the VIE and 
thus is closely related to the MOM. 

The main advantages of the MOM and the DDA are that they automatically satisfy 
the asymptotic radiation condition at infinity and can be applied to inhomogeneous, ani
sotropic, and optically active scatterers. Furthermore, the actual computation is confined 
to the scatterer volume, thereby resulting in fewer unknowns than the differential equa
tion methods. However, the numerical accuracy of the MOM and DDA is relatively low 
and improves rather slowly with increasing N, whereas the computer time grows rapidly 
with increasing size parameter. Another disadvantage of these techniques is the need to 
repeat the entire calculation for each new direction of incidence. Further information on 
the MOM and the DDA and their applications can be found in the recent review by Yurkin 
and Hoekstra (2007). 

The classical Lorenz-Mie solution can be extended to a cluster of non-overlapping 
spheres by using the translation addition theorem for the participating VSWFs. The total 
field scattered by the multisphere cluster is represented as a superposition of individual 
(partial) fields scattered by each sphere. The external electric field illuminating the cluster 
and the individual fields scattered by the constituent spheres are expanded in VSWFs with 
origins at the individual sphere centers. The orthogonality of the VSWFs in the sphere 
boundary conditions is exploited by applying the translation addition theorem wherein a 
VSWF centered at one sphere origin is re-expanded about another sphere origin. This pro
cedure ultimately results in a matrix equation for the scattered-field expansion coefficients 
of each sphere. A numerical computer solution of this equation for the specific incident 
field yields the partial scattered fields and thereby the total scattered field. 

Alternatively, the numerical inversion of the cluster matrix equation yields sphere-cen
tered transition matrices (or T matrices) that transform the expansion coefficients of the in
cident field into the expansion coefficients of the individual scattered fields. In the far-field 
region of the entire cluster, the individual scattered-field expansions can be transformed 
into a single expansion centered at a single origin inside the cluster. This procedure yields 
the cluster T matrix transforming the incident-wave expansion coefficients into the sin
gle-origin expansion coefficients of the total scattered field and can be used in the highly 
efficient semi-analytical averaging of scattering characteristics over cluster orientations 
(Mackowski and Mishchenko, 1996). 

This so-called superposition method (SM) has been extended to spheres with one or 
more eccentrically positioned spherical inclusions as well as to clusters of spheroids in an 
arbitrary configuration. Owing to the analyticity of its mathematical formulation, the SM is 
capable of producing very accurate numerical results. 

The T-matrix method (TMM) is based on the expansion of the incident field in VSWFs 
regular at the origin of the coordinate system and on the expansion of the scattered field 
outside a circumscribing sphere of the scatterer in VSWFs regular at infinity. The T matrix 
transforms the expansion coefficients of the incident field into those of the scattered field and, 
if known, can be used to compute any scattering characteristic of the particle. The TMM was 
initially developed by Waterman (1971) for single homogeneous objects, but has since been 
generalized to deal with multilayered scatterers and arbitrary clusters of nonspherical parti
cles. For a homogeneous or concentrically layered sphere, all TMM formulas reduce to 
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Spheroids Clus1er of spheres Osculating spheres 
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Circular cylinders Polyhedral particles Sphere cut by plane 

Chebyshev particles Supe.rellipsoids 

Fipre 2.7 Types of particles that can be treated with the T-matrix method. 

those of the Lotenz-Mie theory. In the case of a cluster composed of spherical components, 
the TMM reduces to the multisphere SM mentioned above. 

The T matrix for single homogeneous and multilayered scatterers is usually computed 
using the so-called extended boundary condition method (BBCM) applicable to any parti
cle shape, although computations become much simpler and much more efficient for bod
ies of revolution. Special procedures have been developed to improve the numerical stabil
ity of BBCM computations for large size parameters and/or extreme aspect ratios. More 
recent wolk has demonstrated the practical applicability of the EBCM to particles without 
axial symmetry, e.g., ellipsoids, cubes, and finite polyhedral cylinders. The computation of 
the T matrix for a cluster of particles is based on the assumption that the T matrices of all 
components are known and is based on the use of the ttanslation addition theorem for the 
VSWFs. 

The loss of efficiency for particles with large aspect ratios or with shapes lacking axial 
symmetry is the main drawback of the TMM. The main advantages of the TMM are high 
accuracy and speed coupled with applicability to particles with equivalent-sphere size pa
rameters exceeding 200. There are several semi-analytical orientation averaging proce
dures that make TMM computations for randomly oriented particles as fast as those for a 
particle in a fixed orientation. 

Figure 2.7 shows examples of particles that can be treated using various implementations 
of the TMM. A representative collection of public-dmnain T-matrix computer programs has 
been available at http://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html since 1996 
and has been used in more than 780 peer-reviewed publications. These programs have been 
developed specifically to deal with axially symmetric particles and clusters of spherical 
monomers. 'J'Ypical examples are spheroids, finite circular cylinders, Chebyshev particles 

http://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html
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(Wiscombe and Mugnai, 1986), osculating spheres, spheres cut by a plane, and clusters 
of spherical particles with touching or separated components. In all cases, the scattering 
object in question can be randomly or preferentially oriented. The EBCM-based programs 
have been thoroughly tested against the SVM for spheroids. The very high numerical accu
racy of the T -matrix codes has been used to generate benchmark results with five and more 
accurate decimals which can be used for testing other numerically-exact and approximate 
approaches. Extensive timing tests have shown that the numerical efficiency of these T
matrix codes is unparalleled, especially in computations for randomly oriented particles. 

The SVM, SM, and TMM are the only methods that can yield very accurate results for 
particles comparable to and larger than a wavelength. The analytical orientation averaging 
procedure makes the TMM the most efficient technique for randomly oriented particles 
with moderate aspect ratios. Particles with larger aspect ratios can be treated with the SVM 
and an iterative EBCM. Computations for anisotropic objects and homogeneous and inho
mogeneous particles lacking rotational symmetry often have to rely on more flexible tech
niques such as the FEM, FDIDM, MOM, and DDA. All these techniques are conceptu
ally simple, can be easily implemented, and have comparable performance characteristics. 
However, their simplicity and flexibility are often accompanied by lower efficiency and 
accuracy and by stricter practical limitations on the range of size parameters and/or refrac
tive indices. A comprehensive collection of computer programs based on various exact 
numerical techniques is available at http://www.scattport.org/. 

The practical importance of approximate theories of electromagnetic scattering dimin
ishes as computers become more efficient while numerically-exact techniques mature and 
become applicable to a wider range of problems. However, at least one approximation, the 
geometrical optics method (GOM), is not likely to become obsolete in the near future since 
its accuracy often improves as the particle size parameter grows, whereas all numerically
exact theoretical techniques for nonspherical particles become inapplicable whenever the 
size parameter exceeds a certain threshold. The GOM is a phenomenological approach to 
the computation of electromagnetic scattering by an arbitrarily shaped particle with a size 
much greater than the wavelength of the incident light. It is based on the assumption that 
the incident plane wave can be represented as a collection of "independent (or incoherent) 
parallel rays". The history of each ray impinging on the particle boundary is traced indi
vidually using Snell's law and Fresnel's formulas. Each incident ray is partially reflected 
and partially refracted into the particle. The refracted ray may emerge after an insidt>-out 
refraction, possibly preceded by one or more internal reflections, and can be attenuated by 
absorption inside the particle. Each internal ray is traced until its intensity decreases below 
a prescribed cutoff value. Varying the polarization state of the incident rays, sampling all 
emerging rays into predefined narrow angular bins, and adding "incoherently" the respec
tive Stokes parameters of the emerging rays yields a quantitative representation of the 
particle's scattering properties in terms of the ray-tracing scattering matrix. The ray-trac
ing extinction cross section does not depend on the polarization state of the incident light 
and is equal to the geometrical area G of the particle projection on the plane perpendicular 
to the incidence direction. The presence of the particle modifies the incident plane wave 
front by eliminating a part that has the shape and size of the geometrical projection of the 
particle. Therefore, the ray-tracing scattering pattern is artificially supplemented by adding 
the Fraunhofer pattern caused by diffraction of the incident wave on the particle projection. 

http://www.scattport.org/
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Since the particle size is assumed to be much greater than the incident wavelength, the dif
fraction component of the scattering matrix is confined to a narrow angular cone centered 
at the exact forward-scattering direction. 

The main advantage of the GOM is its applicability to essentially any particle shape. How
ever, this technique is approximate by definition, which implies that its range of applicability 
in terms of the smallest size parameter must be examined thoroughly by comparing GOM 
results with numerically-exact solutions of the Maxwell equations. Such comparisons with 
Lorenz-Mie and T-matrix results have demonstrated that although the main geometrical op
tics features can be reproduced qualitatively by particles with size parameters less than 100, 
obtaining good quantitative accuracy in GOM computations of the scattering matrix requires 
size parameters exceeding a few hundred. Even then, the GOM fails to reproduce scattering 
features caused by various interference effects. 

The so-called physical optics or Kirchhoff approximation (KA) has been developed 
with the purpose of improving the GOM performance (see, e.g., P. Yang and Liou, 2006). 
This technique is based on expressing the scattered field in terms of the electric and mag
netic fields on the exterior side of the particle boundary. The latter are computed approxi
mately using Fresnel's formulas and the standard ray-tracing procedure. The KA partially 
preserves the phase information and reproduces some physical optics effects ignored com
pletely by the simple GOM. 

2.7 .2 Measurement techniques 

The majority of existing laboratory measurement techniques fall into two basic catego
ries: 

• scattering of visible or infrared light by particles with sizes from several hundredths of a 
micron to several hundred microns; 

• scattering of microwaves by millimeter- and centimeter-sized objects. 

Measurements in the visible and infrared parts of the spectrum benefit from the availability 
of sensitive detectors of electromagnetic energy, diverse sources of radiation, and high
quality optical elements. They usually involve less expensive and more portable instru
mentation and can be performed in the field as well as in the laboratory. However, they may 
be more difficult to interpret due to lack of independent information on sample microphysi
cal characteristics and composition. Microwave scattering experiments often require more 
cumbersome and expensive instrumentation and large stationary measurement facilities, 
but allow almost full control over the scattering object. 

Traditional detectors of electromagnetic energy in the visible and near-infrared spectral 
regions are polarization-insensitive, which means that the detector response is determined 
only by the first Stokes parameter of the radiation impinging on the detector. This implies 
that in order to measure alll6 elements of the scattering matrix, one must use optical ele
ments that can vary the polarization state of light before and after scattering in a specific 
and controllable way. Figure 2.8 depicts the scheme of a modem laboratory setup used to 
measure the scattering matrix for a small group of natural or artificial particles. The laser 
beam first passes through a linear polarizer and a polarization modulator and then illumi
nates particles contained in the scattering chamber. Light scattered by the particles at an 
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Figure 2.8 Schematic view of a labonltory scatlering setup bued on measurements of visible or near
infrared light (after Hovcmier, 2000). 

angle 9 relati.ve to the incidence direction passes a quarter-wave plate and a polarization 
analyzer, after which its intensity is measured by a detector. The transformation Mueller 
matrices of the polarizer, modulator, quarter-wave plate, and analyzer depend on their ori
entation with respect to the scattering plane and can be varied precisely. Because the detec
tor measures oDly the first element of the resulting Stokes column vector, several measure
ments with different orientations of the optical components with respect to the scattering 
plane are necessary for the full determination of the scattering matrix. This procedure must 
be repeated at different scattering angles in order to determine the full angular profile of the 
scattering matrix, perhaps with the exception of near-forward and/or near-backward direc
tions. This laboratory technique has been used to acc:umulate a large and representative set 
of scattering-matrix data for samples of natural and artificial aerosols (see, e.g., the review 
by Munoz and Volten, 2006 and references therein) 

In accordance with the above-mentioned electromagnetic scale invariance rule (see Sec
tion 3.5 of Mishchenko et al., 2006), the main idea of the microwave analog technique 
is to manufacture a centimeter-sized scattering object with desired shape and refractive 
index, measure the scattering of a microwave beam by this object, and finally extrapolate 
the result to visible or near-infrared wavelengths by keeping the ratio of the object size 
to the wavelength fixed. In a modem microwave scattering setup (e.g., Gustafson, 2009), 
radiation from a transmitting conical hom antenna passes through a commating lens and a 
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polarizer. The lens produces a nearly fiat wave front which is scattered by an analog parti
cle model. The scattered wave passes through another polarizer and lens and is measured 
by a receiving hom antenna. Positioning the receiver end of the setup at different scattering 
angles yields information on the angular distribution of the scattered radiation. By varying 
the orientations of the two polarizers, one can measure all 16 elements of the scattering 
matrix. 

2.8 Dlustrative theoretical and laboratory results 

The review by Hansen and Travis (1974) and monographs by Mishchenko et al. (2000, 
2002) provide a detailed discussion of extinction, scattering, and absorption properties of 
aerosol particles having diverse morphologies and compositions. Plentiful information on 
light scattering by nonspherical and morphologically complex particles can also be found 
in several special issues of the Journal of Quantitative Spectroscopy and Radiative Transfer 
(Hovenier, 1996; Lumme, 1998; Mishchenko et al., 1999b, 2008; Videen et al., 2001, 2004; 
Kolokolova et al., 2003; Wriedt, 2004; Moreno et al., 2006; Voshchinnikov and Videen, 
2007; Horvath, 2009; Hough, 2009). Therefore, the limited purpose of the several illustra
tive examples given in this section is to highlight the most typical traits of the single-scat
tering patterns caused by small particles. 

Figure 2.9 shows the extinction efficiency factor defined by Eq. (2.43) versus size pa
rameter x for monodisperse spheres with three real-valued relative refractive indices. Each 
curve exhibits a succession of major low-frequency maxima and minima with a super
imposed high-frequency ripple consisting of sharp, irregularly spaced extrema many of 
which are super-narrow spike-like features. The major maxima and minima are called the 
"interference structure" since they are usually interpreted as being the result of interfer
ence of light diffracted and transmitted by the particle. Unlike the interference structure, 
the so-called morphology-dependent resonances (MDRs) forming the ripple are caused by 
the resonance behavior of the Lorenz-Mie coefficients a~ and b~ at specific size-parameter 
values. The interference structure and the MDRs are typical attributes of all scattering 
characteristics of nonabsorbing monodisperse spheres. 

Irrespective of m, the extinction efficiency rapidly vanishes in the Rayleigh domain of 
size parameters (i.e., as x approaches zero). Indeed, it is well known that for nonabsorbing 
particles much smaller than the wavelength, 

(2.48) 

as first demonstrated by Lord Rayleigh and hence called Rayleigh scattering. As the parti
cle size becomes much greater than the wavelength, Qc tends to the asymptotic geometri
cal-optics value 2, with equal contributions from the rays striking the particle surface and 
the light diffracted by the particle projection. Figure 2.9 also demonstrates that for nonab
sorbing particles with size parameters of order one, the extinction cross section can exceed 
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Figure 2.9 Extinction efficiency factor Q. versus size parameter x for monodisperse, homogeneous 
spherical particles with relative refractive indices m = 13, 1.5, and 2. 
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Figure 2.10 The effect of increasing absorption on the interference and ripple structures of the 
extinction efficiency factor for monodisperse spherical particles with the real part of the relative 
refractive index Re(m) = 1.5. The vertical axis scale applies to the curve with lm(m) = 0, the other 
curves being successively displaced upward by 2. 
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Figure 2.11 The effect of increasing width of the size distribution on the interference structure and 
ripple for nonabsorbing spherical particles with the real-valued relative refractive index m = 1.5 and 
effective size parameters xelfranging from 0 to 30. The vertical aJtis scale applies to the curve with b 
= 0, the other curves being successively displaced upward by 2. 
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Figure 2.12 Gamma size distributions (2.50) with a= 1 (in arbitracyunits oflength) and b = 0,0.01, 
0.05, 0.1, and 0.2. The value b = 0 corresponds to monodisperse particles. 
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Figure 2.13 Expansion coefficients for two models of polydisperse spherical particles with effective 
size parameters xc:!!' = 5 and 30. 
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Figure 2.14 Elements of the normalized Stokes scattering matrix for two models of polydisperse 
spherical particles. 
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Figure 2.15 Degree of linear polarization for unpolarized incident light (in %) versus scattering angle 
8 and effective size parameter ka for polydisperse spherical particles with relative refractive indices 
1.3, 1.425, and 1.55. The effective variance of the gamma size distribution (2.50) is fixed at b = 0.2. 

the particle geometrical cross section by more than a factor of 5. 
For absorbing particles, extinction in the Rayleigh limit of size parameters is dominated 

by absorption and varies as the inverse wavelength: 

(2.49) 

The :MDRs rapidly weaken and then vanish with increasing absorption, as Figure 2.10 
demonstrates. Increasing the imaginary part of the relative refractive index Im(m) beyond 
0.001 starts to affect and eventually suppresses most of the interference structure as well. 
However, the first interference maximum atx::::: 4 survives, although becomes significantly 
less pronounced, even at Im(m) = 0.1. 

A very similar smoothing effect on the interference structure and MDRs is caused by 
particle polydispersity. Figure 2.11 shows the results ofLorenz-Mie computations for the 
gamma distribution of particle radii 

n(r) -
0 

2h)(b 
1 r(l-3b)/bexp(- _!'_)• rE(O, oo), bE[O, 5) 

(ab) - T[(l- 2b)/b] ab (250) 
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Figure 2.16 Elements of the normalized Stokes scattering matrix for the gamma distribution of 
spheres and surface-area-equivalent, randomly oriented oblate spheroids with ka = 10, b = 0.1, and 
m = 1.53 + i0.008. The ratio of the larger to the smaller spheroid axes is 2. 
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with the effective variance (width) b increasing from 0 (which corresponds to monodis
perse particles) to 0.2 (which corresponds to a moderately wide size distribution). The 
efficiency factor is now defined as the average extinction cross section divided by the 
average area of the particle geometrical projection and is plotted against the effective size 
parameter defined as xclf = lw. It is seen that increasing the width of the size distribution 
(see Figure 2.12) initially suppresses the MDRs and then eliminates the interference struc
ture. Interestingly, as narrow a dispersion of sizes as that corresponding to b = 0.01 washes 
the MDRs out completely. The first major maximum of the interference structure persists 
to much larger values of b, but eventually fades away too. 

To illustrate the dependence of the coefficients {J1 entering the expansion (2.7) on par
ticle physical characteristics, Figure 2.13 depicts them versus l for two polydispersions of 
spherical particles, each described by the gamma distribution (250). For both polydisper
sions, the relative refractive index ism= 1.5 and the effective variance is b = 0.2. The ef
fective size parameter xclf is equal to 5 for the first model and to 30 for the second model. 
Figure 2.14 visualizes the four non-zero independent elements of the normalized Stokes 
scattering matrix (229) for each polydispersion. Figure 2.13 reveals the typical behavior of 
the expansion coefficients {J, with increasing index l: they first grow in magnitude and then 
decay to absolute values below a meaningful numerical threshold. The greater the particle 
size parameter, the larger the maximal absolute value of the expansion coefficients and 
the slower their decay. This trend is largely explained by the rapid growth of the height of 
the forward-scattering peak in the phase function p( 8) = F 11 ( 8) (as well as in the element 
F 33(8)) with increasing xclf (see Figure 2.14). 

Besides the magnitude of the forward-scattering peak, the angular profiles of the two 
phase functions in Figure 2.14 are qualitatively similar. The same is largely true of the 
ratio F43(8)/F11(8). On the other hand, the angular profiles of the ratios F 33(8)/F11(8) and 
-F

12
(8)/F

11
(8) (the latter represents the degree of linear polarization of singly scattered 

light for unpolarized incident light) reveal a strong dependence on the effective size pa
rameter. Indeed, at certain scattering angles these ratios can differ not just in magnitude but 
even in sign. Figure 2.15 demonstrates the equally strong dependence of the ratio -F

12
(8)/ 

F 11(8) on the relative refractive index. These results illustrate well why measurements of 
polarization contain much more information on particle microphysics than measurements 
of intensity only (e.g., Mishchenko et al., 2010 and references therein). 

The dependence of all scattering and absorption characteristics on particle microphysi
cal properties can become much more intricate for nonspherical and/or morphologically 
complex particles, particularly those having a preferred orientation. This is especially true 
of the interference structure and MDRs, which now strongly depend on the particle orienta
tion with respect to the incidence and scattering directions and on the polarization state of 
the incident light. However, averaging over orientations reinforces the effect of averaging 
over sizes and extinguishes many resonance features, thereby making scattering patterns 
for randomly oriented, polydisperse nonspherical particles even smoother than those for 
surface- or volume-equivalent polydisperse spheres. In fact, it is often difficult to distin
guish spherical and randomly oriented nonspherical particles based on qualitative differ
ences in their scattering patterns. 

However, there can be significant quantitative differences in specific scattering patterns. 
As an example, Figure 2.16 contrasts the elements of the normalized Stokes scattering 
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matrix for polydisperse spheres and surface-equivalent, randomly oriented spheroids with 
a relative refractive index m = 1.53 + i0.008. The left-hand top diagram shows the corre
sponding phase functions and reveals the following five distinct scattering-angle ranges: 

nonsphere ~sphere from 8 = 0" to 8 -15"- 20"; 

nonsphere > sphere from 8 - 15"-20" to 8- 35"; 

nonsphere < sphere from 8 - 35° to 9 - 85"; (251) 

nonsphere » sphere from e - 85° to 8- 150°; 

nonsphere « sphere from e -150° to 9 = 180". 

Although the specific boundaries of these regions can be expected to shift with changing 
particle shape and relative refractive index, the enhanced side-scattering and suppressed 
backscattering appear to be rather typical characteristics of nonspherical particles. 

The degree of linear polarization for unpolarized incident light, -F12(9)/F11(9), tends 
to be positive at scattering angles around 120" for the spheroids, but is negative at most scat
tering angles for the surface-equivalent spheres. Whereas F 22(9)/Fu(9) = 1 for spherical 
particles, the F22(9)/F11(9) curve for the spheroids significantly deviates from 100% and 
causes a non-zero value of the linear depolarization ratio defined by 

()L Jij,Q80")- F22Q80") 
Jij 1 (180") + F22(180") 

(252) 

Similarly, F
33
(9)/F

11
(@) = F 

44
(9)/F

11
(9) for spherically symmetric particles, whereas the 

F 
44
(9)/F

11
(@) for the spheroids tends to be greater than the F

33
(@)/Fu(@) at most scattering 

angles, especially in the backscattering direction. The violation of the Lorenz-Mie equality 
F 

44
( 180°) = -F 11 (180") by the spheroids yields a non-zero value of the circular depolarization 

ratio defined by 

de= Jij1(180") + F44(180") _ ~ 
Jij1Q80") -F44Q80") 1-6r_ 

(253) 

(cf. Eq. (228)). The ratios F43(@)/F
11

(@) for the spheres and the spheroids also reveal sig
nificant quantitative differences at scattering angles exceeding 60". On the other hand, the 
nonspherical/spherical differences in the integral scattering and absorption characteristics 
are not nearly as significant as those in the scattering matrix elements. 

Despite the significant progress in our ability to model scattering by nonspherical and 
morphologically complex particles, direct theoretical computations for many types of natu
ral and artificial particles with sizes comparable to and greater than the wavelength (Figure 
2.6) remain highly problematic. Therefore, there have been several attempts to simulate the 
scattering and absorption properties of actual particles using simple model shapes. These 
attempts have been based on the realization that in addition to size and orientation averag
ing, averaging over shapes can also be necessary in many cases. Indeed, usually ensembles 
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of natural and artificial particles exhibit a vast variety of shapes and morphologies, thereby 
making quite questionable the utility of a single model shape (however "irregular" it may 
look to the human eye) in the representation of scattering properties of an ensemble. 

As an illustration, Figure 2.17 shows the phase functions computed for polydisperse, ran
domly oriented prolate spheroids with varying aspect ratios (Mishchenko et al., 1997). It is 
seen indeed that even after size and orientation averaging, each spheroidal shape produces 
a unique, aspect-ratio-specific angular scattering pattern, whereas laboratory and in situ 
measurements for real nonspherical particles usually show smooth and mostly featureless 
phase functions. On the other hand, the grey curves in Figure 2.18 (Dubovik et al., 2006) 
show that shape mixtures of polydisperse, randomly oriented prolate and oblate spheroids 
can provide a good quantitative fit to the results of accurate laboratory measurements of the 
scattering matrix for natural irregular particles. On the other hand, the Lorenz-Mie results 
depicted by black curves disagree with the laboratory data quite substantially. 

These examples lead to two important conclusions. First of all, they provide evidence 
that the often observed smooth scattering-angle dependence of the elements of the scatter
ing matrix for natural and artificial ensembles of nonspherical aerosols (e.g., Muiioz and 
Volten, 2006) is largely caused by the diversity of particle shapes in the ensemble. Sec
ondly, they suggest that at least some scattering properties of ensembles of irregularly and 
randomly shaped aerosols can be modeled adequately using polydisperse shape mixtures 
of simple particles such as spheroids. It goes without saying that forming representative 
mixtures of less regular particles than spheroids should be expected to eventually provide 
an even better model of electromagnetic scattering by many natural and artificial aerosols 
(e.g., Bi et al., 2009; Zubko et al., 2009). 

In most cases nonspherical-spherical differences in the optical cross-sections and the 
single-scattering albedo are much less significant than those in the scattering matrix ele
ments. This does not mean, however, that the effects of nonsphericity and morphology on 
the integral scattering and absorption characteristics are always negligible or unimportant. 
An important type of particle characterized by integral radiometric properties substantially 
different from those of volume-equivalent spheres are clusters composed of large numbers 
of small monomers such as soot aggregates shown in Figure 2.6b (see, e.g., the reviews by 
Sorensen, 2001 and Moosmilller et al., 2009). The overall morphology of a dry soot aerosol 
is usually described by the following statistical scaling law: 

(254) 

where a is the monomer mean radius, k
0 

is the prefactor, Dr is the fractal dimension, N
5 

is 
the number of spherical monomers in the cluster, and R

8
, called the radius of gyration, is 

a measure of the overall cluster radius. The fractal dimension is especially important for 
the quantitative characterization of the aggregate morphology. Densely packed aggregates 
have D1 values approaching 3, whereas the fractal dimension of chain-like branched clus
ters can be significantly smaller. 

Detailed computations for fractal soot clusters based on the DDA and the superposition 
T-matrix method have been reported by Klusek et al. (2003), Liu and Mishchenko (2005, 
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Figure 2J. 7 T-matrix computations of the phase function for micrometer-sized polydisperse spheres 
and randomly oriented surface-equivalent prolate spheroids with aspect ratios e ranging from 1.2 to 
2.4 at a wavelength of 443 nm. The relative refractive index is fixed at 1.53 + i0.008. 

2007), Liu et al. (2008), and Kahnert (2010). These numerically exact results have dem
onstrated that the integral radiometric properties of the clusters can often be profoundly 
different from those of the volume-equivalent spheres. This is especially true of the scat
tering cross-section, single-scattering albedo, and the asymmetry parameter defined by Eq. 
(2.9). 

Figure 2.19 depicts the results ofT-matrix computations of the scattering matrix ele
ments averaged over 20 soot-cluster realizations randomly computer-generated for the same 
values of the fractal parameters using the procedure developed by Mackowski (2006). In a 
rather peculiar way ( cf. West, 1991 ), the angular scattering properties of the clusters appear 
to be a mix of those of wavelength-sized compact particles (the nearly isotropic Rayleigh 
phase function of the small individual spherules evolves into a forward scattering phase 
function) and Rayleigh scatterers (i.e., the ratio -F

1
z('fJ)/F

11
(8) is systematically positive, 

almost symmetric with respect to the scattering angle 8 = goo, and reaches a nearly 100% 
maximum at 8 == 90°, while the ratio F 34(8)/F11(8) is very close to zero). The deviation of 
the ratio F '12(8)/F

11
(8) from 100% is the only unequivocal manifestation of the nonsphe

ricity of the soot-cluster shape. 
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F1pre 1.18 The diamonds depict the results of laboratory measurements of the ensemble-averaged 
Stokes scatlering matrix for microme1er-sized feldspar particles at a wavelength of 633 nm (Volten 
et al., 2001). The grey curves show the result of fitting the laboratory data with T-matrix results 
computed for a shape mixture of polydisperse, randomly oriented prolate and oblate spheroids. The 
real and model particle shapes are contrasted in the inset. The black curves show the corresponding 
results for volume-equivalent polydisperse spherical particles. 
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Figure 2.19 Realizati.on-avemged scattering matrix elements for randomly oriented fractal clusters 
withDf= 1.82,~ = 1.19,Ns = 400,and a =0.02pm. The soot refractive index is 1.75 +i0.435 and the 
wavelength of the incident light is 628 nm.. Also shown are Lorenz--Mie results for the corresponding 
homogeneous volume-equivalent sphere and the "equivalent" external mixture of soot monomers. 
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Also depicted in Figure. 2.19 are two sets of approximate computations. The first one 
is the result of applying the single-scattering approximation to the corresponding external 
mixture of the constituent monomers (i.e., by assuming that all monomers are widely sepa
rated and randomly positioned rather than form a cluster with touching components). The 
second set was computed by applying the Lorenz-Mie theory to a homogeneous sphere 
with a volume equal to the cumulative volume of the cluster monomers. Clearly, the exter
nal-mixture model provides a poor representation of the cluster phase function, whereas 
the performance of the equal-volume-sphere model is inadequate with respect to all scat
tering matrix elements. 
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