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Preface

The 20th ICPR (International Conference on Pattern Recognition) Conference
took place in Istanbul, Turkey, during August 23–26, 2010. For the first time in
the ICPR history, several scientific contests (http://www.icpr2010.org/
contests.php) were organized in parallel to the conference main tracks. The pur-
pose of these contests was to provide a setting where participants would have the
opportunity to evaluate their algorithms using publicly available datasets and
standard performance assessment methodologies, disseminate their results, and
discuss technical topics in an atmosphere that fosters active exchange of ideas.
Members from all segments of the pattern recognition community were invited
to submit contest proposals for review.

In response to the Call-for-Papers, 21 substantial proposals were submitted,
and the review process was highly selective leading to a striking acceptance rate
of 38%. Accordingly, there were eight scientific contests organized under ICPR
2010, as listed below:

1. BiHTR: Bi-modal Handwritten Text Recognition
2. CAMCOM 2010: Verification of Video Source Camera Competition
3. CDC: Classifier Domains of Competence
4. GEPR: Graph Embedding for Pattern Recognition
5. ImageCLEF@ICPR: The CLEF Cross Language Image Retrieval Track
6. MOBIO: Mobile Biometry Face and Speaker Verification Evaluation
7. PR in HIMA: Pattern Recognition in Histopathological Images
8. SDHA 2010: Semantic Description of Human Activities

This volume includes the selected papers presented at the above-listed ICPR
2010 Contests. Each paper underwent a meticulous revision process guided by
the referees listed in these proceedings.

We thank all contest organizers and the external referees for their excellent
work, especially given the demanding time constraints. Without the willingness,
strength, and organizational skills of the organizers, the ICPR 2010 Contests
would not have been a spectacular success. Furthermore, we thank the Confer-
ence Chair Aytül Erçil and all the Organizing Committee members. It has been
a wonderful experience to work with all of them.

Finally we thank all local organizers, including Rahmi Fıçıcı, Gülbin Akgün,
members of TeamCon, and the volunteers, who worked tirelessly to create and
maintain the main website of the contests and to pull off the logistical arrange-
ments of the contests. It was their hard work that made the ICPR 2010 Contests
possible and enjoyable.

August 2010 Devrim Ünay
Zehra Çataltepe

Selim Aksoy
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Jesús Mart́ınez-Gómez, Alejandro Jiménez-Picazo,
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Jean-François Bonastre, Ping-Han Lee, Jui-Yu Hung, Si-Wei Wu,
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Bi-modal Handwritten Text Recognition

(BiHTR) ICPR 2010 Contest Report

Moisés Pastor and Roberto Paredes

Pattern Recognition and Human Language Technologies group

Department of Information Systems and Computation,

Technical University of Valencia

Cami de Vera s/n. 46022 Valencia, Spain

{mpastorg,rparedes}@dsic.upv.es
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Abstract. Handwritten text is generally captured through two main

modalities: off-line and on-line. Each modality has advantages and dis-

advantages, but it seems clear that smart approaches to handwritten

text recognition (HTR) should make use of both modalities in order to

take advantage of the positive aspects of each one. A particularly inter-

esting case where the need of this bi-modal processing arises is when an

off-line text, written by some writer, is considered along with the on-

line modality of the same text written by another writer. This happens,

for example, in computer-assisted transcription of old documents, where

on-line text can be used to interactively correct errors made by a main

off-line HTR system.

In order to develop adequate techniques to deal with this challenging

bi-modal HTR recognition task, a suitable corpus is needed. We have

collected such a corpus using data (word segments) from the publicly

available off-line and on-line IAM data sets.

In order to provide the Community with an useful corpus to make easy

tests, and to establish baseline performance figures, we have proposed

this handwritten bi-modal contest.

Here is reported the results of the contest with two participants, one of

them achieved a 0% classification error rate, whilst the other participant

achieved an interesting 1.5%.

1 Introduction

Handwritten text is one of the most natural communication channels currently
available to most human beings. Moreover, huge amounts of historical handwrit-
ten information exist in the form of (paper) manuscript documents or digital
images of these documents.

When considering handwritten text communication nowadays, two main
modalities can be used: off-line and on-line. The off-line modality (the only
one possible for historical documents) consists of digital images of the consid-
ered text. The on-line modality, on the other hand, is useful when an immediate
communication is needed. Typically, some sort of electronic pen is used which

D. Ünay, Z. Çataltepe, and S. Aksoy (Eds.): ICPR 2010, LNCS 6388, pp. 1–13, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.icpr2010.org/contests.php
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provides a sequence of x-y coordinates of the trajectory described by the pen
tip, along with some info about the distance of the pen to the board or paper
and/or the pressure exerted while drawing the text.

The difficulty of handwritten text recognition (HTR) varies widely depending
of the modality adopted. Thanks to the timing information embedded in on-line
data, on-line HTR generally allows for much higher accuracy than off-line HTR.

Given an on-line sample, it is straightforward to obtain an off-line image with
identical shape as that of the original sample. Such an image is often referred to
as “electronic ink” (of e-ink). Of course, the e-ink image lacks the on-line timing
information and it is therefore much harder to recognize than the original on-line
sample. Conversely, trying to produce the on-line trajectory that a writer may
have produced when writing a given text image, is an ill-defined problem for
which no commonly accepted solutions exist nowadays.

Given an on-line text to be recognized, several authors have studied the pos-
sibility of using both the on-line trajectory and a corresponding off-line version
of this trajectory (its e-ink). This multi-modal recognition process has been re-
ported to yield some accuracy improvements over using only the original on-line
data [13,5].

Similar ideas are behind the data collected in [12], referred to as the IRONOFF
corpus. In this data set, on-line and off-line sample pairs were captured simulta-
neously. A real pen with real ink was used to write text on paper while the pen
tip position was tracked by an on-line device. Then, the paper-written text was
scanned, providing an off-line image. Therefore, as in the e-ink case, for each
written text sample, both the on-line and off-line shapes are identical. However,
this is quite different from the thing we propose in this work where on-line and
off-line sample pairs can be produced in different times and by different writers.

Another, more interesting scenario where a more challenging bi-modal (on/off-
line) fusion problem arises is Computer Assisted Transcription of Text Images,
called “CATTI” in [10]. In this scenario, errors made by an off-line HTR sys-
tem are immediately fixed by the user, thereby allowing the system to use the
validated transcription as additional information to increase the accuracy of the
following predictions. Recently, a version of CATTI (called multi-modal CATTI
or MM-CATTI) has been developed where user corrective feedback is provided
by means of on-line pen strokes or text written on a tablet or touch-screen [11].
Clearly, most of these corrective pen-strokes are in fact on-line text aimed to fix
corresponding off-line words that have been miss-recognized by the off-line HTR
system. This allows taking advantage of both modalities to improve the feed-
back decoding accuracy and the overall multi-modal interaction performance.
In this scenario, on-line HTR can be much more accurate than in conventional
situations, since we can make use of several information derived from the inter-
action process. So far, we have only focused on contextual info derived from the
available transcription validated by the user. But, now, we are trying to improve
accuracy even further by using info from the off-line image segments which are
supposed to contain the very same text as the one entered on-line by the user
as feedback.
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As compared with the use of e-ink or IRONOFF-style data to improve the
plain on-line HTR accuracy, in the MM-CATTI scenario the on-line and off-line
text shapes (for the same word) may differ considerably. Typically, they are even
written by different writers and the on-line text tends to be more accurately
written in those parts (characters) where the off-line text image is blurred or
otherwise degraded. This offers great opportunities for significant improvements
by taking advantage of the best parts of each shape to produce the recognition
hypothesis.

In order to ease the development of adequate techniques for such a challenging
bi-modal HTR recognition task, a suitable corpus is needed. It must be simple
enough so that experiments are easy to run and results are not affected by alien
factors (such as language model estimation issues, etc.). On the other hand,
it should still entail the essential challenges of the considered bi-modal fusion
problem. Also, considering the MM-CATTI scenario where a word is corrected
at a time, we decided to compile this bi-modal isolated word corpus.

This corpus have compiled using data (word segments) from the publicly
available off-line and on-line IAM corpora [6,4].

In order to provide the Community with an useful corpus to make easy tests,
and to establish baseline performance figures, we have proposed this handwritten
bi-modal contest.

The rest of the article is organized as follows. The next section presents the
“biMod-IAM-PRHLT” corpus along with some statistics of this data set. Contest
results are reported in Section 3. Finally, some conclusions are presented in the
last section.

2 The biMod-IAM-PRHLT Corpus

In order to test the above outlined bi-modal decoding approaches on the interac-
tive multi-modal HTR framework introduced in section 1, an adequate bi-modal
corpus is needed. This corpus should be simple, while still entailing the essen-
tial challenges of the considered bi-modal HTR problems. To this end, a simple
classification task has been defined with a relatively large number of classes
(about 500): Given a bi-modal (on/off-line) sample, the class-label (word) it
corresponds to must be hypothesized. Following these general criteria, a corpus,
called “biMod-IAM-PRHLT”, has been compiled.

Obviously, the chosen words constituting the set of class-labels (“vocabulary”)
are not equiprobable in the natural (English) language. However, in order to
encourage experiments that explicitly focus on the essential multi-modal fusion
problems, we have pretended uniform priors by setting standard test sets with
identical number of samples of each word. Nevertheless, the number of training
samples available per word is variable, approximately reflecting the prior word
probabilities in natural English.

The samples of the biMod-IAM-PRHLT corpus are word-size segments from
the publicly available off-line and on-line IAM corpora (called IAMDB) [6,4],
which contain handwritten sentences copied from the electronic-text LOB
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corpus [9]. The off-line word images were semiautomatically segmented at the
IAM (FKI) from the original page- and line-level images. These word-level im-
ages are included in the off-line IAMDB. On the other hand, the on-line IAMDB
was only available at the line-segment level. Therefore we have segmented and
extracted the adequate word-level on-line samples ourselves, as discussed in
section 2.1.

In order to select the (approximately 500) vocabulary words, several criteria
were taken into account. First, only the words available in the word-segmented
part of the off-line IAMDB were considered. From these words, only those which
appear in at least one (line) sample of the on-line IAMDB were selected. To keep
data management simple, all the words whose UTF-8 representation contained
diacritics, punctuation marks, etc., were discarded (therefore all the remaining
class-labels or words are plain ASCII strings). Finally, to provide a minimum
amount of training (and test) data per class, only those words having at least 5
samples in each of the on-line and off-line modalities were retained. This yielded
a vocabulary of 519 words, with approximately 10k on-line and 15k off-line
word samples, which were further submitted to the data checking and cleaning
procedures.

The resulting corpus is publicly available for academic research from the data
repository of the PRHLT group(http://prhlt.iti.upv.es/iamdb-prhlt.html).

It is partitioned into training and test sub-corpora for benchmarking pur-
poses. In addition to the test data included in the current version (referred to
as validation), more on-line and off-line word-segmented test samples have been
produced, but they are currently held-out so they will be used for benchmarking
purposes. Basic results on this test set, referred to as hidden test, will be reported
in this paper in order to establish the homogeneity of the held-out data with
respect to the currently available (validation) data.

Figure 1 shows some examples of on/of-line word pairs contained in this corpus
and some statistics will be shown later in section 2.2.

The correctness of all the off-line word segments included in the on-line
IAMDB were manually checked at the IAM (FKI). For the on-line data, only
the test samples have been checked manually; the quality of samples in the the
much larger training set have been checked semiautomatically, as discussed in
section 2.1.

2.1 On-Line Word Segmentation and Checking

As previously commented, the off-line IAM Handwriting database already con-
tained data adequately segmented at the word level. The word segmentation of
the IAM On-Line Handwriting corpus has been carried out semiautomatically.

Morphological HMMs were estimated from the whole on-line corpus. Then, for
each text line image, a “canonical” language model was built which accounted
only for the sequence of words that appear in the transcription of this line.
Finally, the line image was submitted for decoding using the Viterbi algorithm.
As a byproduct of this “forced recognition” process, a most probable horizontal
segmentation of the line image into its constituent word-segments was obtained.



Bi-modal Handwritten Text Recognition (BiHTR) 5

Fig. 1. Examples of (corresponding) off-line (left) and on-line (right) handwritten

words

The correctness of this segmentation has been fully checked by hand only for
the validation and test data. For the much larger training set, the quality has
been checked semiautomatically. By random sampling, the number of segmen-
tation errors of this on-line training partition was initially estimated at about
10%, but most of these errors have probably been fixed by the following pro-
cedure. An complete HTR system was trained using the just segmented on-line
training word samples; then, the same samples were submitted to recognition
by the trained system. The observed errors were considered as candidates to
have word segmentation errors. These errors were manually checked and those
samples which were found to be incorrectly segmented were either discarded or
manually corrected. In the end, the amount of segmentation errors detected in
this process was about 10%. Therefore, while the exact degree of correctness of
the on-line training data is unknown, it can confidently expected to be close to
100%.

2.2 Corpus Statistics

Main figures of the biMod-IAM-PRHLT corpus are shown in Table 1. Other
more detailed statistics are shown in the figures 2–4 below.

Figure 2 shows the amount of on-line and off-line samples available for each
word class, in decreasing order of number of samples (“rank”). As previously
mentioned, these counts approximately follow the real frequency of the selected
vocabulary words in natural English.
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Table 1. Basic statistics of the BIMOD-IAM-PRHLT corpus and their standard

partitions. The hidden test set is currently held-out and Will be released for bench-

marking in the future.

Modality sub-corpus

on-line off-line

Word classes (vocabulary) 519 519

Running words:
training 8 342 14 409
validation 519 519
hidden test 519 519

total 9 380 15 447
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Figure 3 shows the class-label (word) length distribution; By construction,
all the words have at least two characters and the observed most frequent word
length is 4 characters.

Finally, the histograms of figure 4 show the distribution of average sizes of
characters in the the on-line trajectories and off-line images. Let s be a sample
and N the number of characters of the word label of s. For an on-line sample, the
average character size is measured as the number of points in the pen trajectory
divided by N . For an off-line sample, on the other hand, the average character
size is measured as the horizontal size (number of pixels) of the image divided
N . Average character sizes are somewhat more variable in the off-line data. If
character-based morphological HMMs are used as word models, these histograms
can be useful to establish adequate initial HMM topologies for these models.

3 Participants

Three teams were participated at the present contest. The teams, the algorithms
used, and the results obtained, will be explained in the next subsections.

Previous baseline results will be published by organizers of this contest in the
proceedings of the ICPR 2010 [7]. In this work, basic experiments were carried
out to establish baseline accuracy figures for the biMod-IAM-PRHLT corpus. In
these experiments, fairly standard preprocessing and feature extraction proce-
dures and character-based HMM word models have been used. The best results
obtained for the validation partition were 27.6% off-line and 6.6% on-line clas-
sification error. Of course, no results were provided for the hidden test used in
this contest. A weighted-log version of naive Bayes, assuming uniform priors,
were used to balance the relative reliability of the on-line and off-line models.
The best bi-modal classification score obtained was 4.0%.
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3.1 UPV-April Team

This entry was submitted by the team composed of Maŕıa José Castro-Bleda1,
Salvador España-Boquera2, and Jorge Gorbe-Moya3, from the Departamento de
Sistemas Informáticos y Computación of the Universidad Politécnica de Va-
lencia, (Spain), and Francisco Zamora-Mart́ınez4 from the Departamento de
Ciencias F́ısicas, Matemáticas y de la Computación, Universidad CEU-Cardenal
Herrera (Spain).

Off-line. Their off-line recognition system is based on hybrid HMM/ANN mod-
els, as fully described in [2]. Hidden Markov models (HMM) with a left-to-right
without skips topology have been used to model the graphemes, and a single
multilayer perceptron (MLP) is used to estimate all the HMM emission proba-
bilities. Several preprocessing steps are applied to the input word image: slope
and slant correction, and size normalization [3]. The best result obtained by the
team was 12.7% classification error for validation and 12.7% for the hidden test.

On-line. Their on-line classifier is also based on hybrid HMM/ANN models
using also a left-to-right without skips HMM topology. The preprocessing stage
comprises uniform slope and slant correction, size normalization, and resampling
and smoothing of the sequence of points. In order to detect the text baselines
for these preprocessing steps, each sample is converted to an image which goes
through the same process as the off-line images. Then, a set of 8 features is ex-
tracted for every point from the sequence: y coordinate, first and second deriva-
tive of the position, curvature, velocity, and a boolean value which marks the
end of each stroke. The best result obtained by the team was 2.9% classification
error for validation and 3.7% for the hidden test.

Combination of Off-line and On-line Recognizers. The scores of the 100
most probable word hypothesis are generated for the off-line sample. The same
process is applied to the on-line sample. The final score for each sample is com-
puted from these lists by means of a log-linear combination of the scores com-
puted by both the off-line and on-line HMM/ANN classifiers. The best result
obtained by the team was 1.9% classification error for validation and 1.5% for
the hidden test (see table 3.4 for a summary of the results).

3.2 PRHLT Team

This submission is by Enrique Vidal5, Francisco Casacuberta6 and Alejandro H.
Tosselli7 from the PRHLT group (http://prhlt.iti.es) at the Instituto Tecnológico
de Informática of the Technical University of Valencia (Spain).
1 mcastro@dsic.upv.es
2 sespana@dsic.upv.es
3 jgorbe@dsic.upv.es
4 fzamora@dsic.upv.es
5 evidal@dsic.upv.es
6 fcn@dsic.upv.es
7 ahector@dsic.upv.es

mcastro@dsic.upv.es
sespana@dsic.upv.es
jgorbe@dsic.upv.es
fzamora@dsic.upv.es
evidal@dsic.upv.es
fcn@dsic.upv.es
ahector@dsic.upv.es
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Off-line. Their off-line recognition system is based on the classical HMM-Viterbi
speech technology. Left-to-right, continuous density, hidden Markov models with-
out skips have been used to model the graphemes. The HMM models were trained
from the standard Off-line training data of the contest (i.e., no additional data
from other sources were used), by means of the HTK toolkit [14].

Several standard preprocessing steps are applied to the input word image,
which consists on median filter noise removal, slope and slant correction, and
size normalization. The feature extraction process transforms a preprocessed
text line image into a sequence of 60-dimensional feature vectors, each vector
representing grey-level and gradient values of an image column or “frame” [1].
In addition, each of these vectors was extended by stacking 4 frames from its
left context and 4 form its right context. Finally, Principal Component Analysis
(PCA) was used to reduce these 180-dimensional vectors to 20 dimensions.

The best Off-line classification error rates obtained by the team were 18.9%
for validation set and 18.9% for the hidden test set.

On-line. Their on-line classifier is also based on continuous density HMM mod-
els using also a left-to-right HMM topology without skips. As in the Off-line case,
the HMM models were trained from the standard On-line training data of the
contest, also without any additional data from other sources.

Each the e-pen trajectory of each sample was processed through only three
simple steps: pen-up points elimination, repeated points elimination, and noise
reduction (by simple low pass filtering). Each preprocessed trajectory was trans-
formed into a new temporal sequence of 6-dimensional real-valued feature vec-
tors [8], composed of normalized vertical position, normalized first and second
time derivatives and curvature.

The best results obtained by the team were 4.8% classification error for the
validation set and 5.2% for the hidden test set.

Combination of Off-line and On-line Recognizers. To obtain bi-modal
results, the team used a weighted-log version of naive Bayes classifier (assuming
uniform class priors):

ĉ = argmax
1≤c≤C

P (c | x, y) = argmax
1≤c≤C

log P (x, y | c) (1)

where
log P (x, y | c) = (1 − α) · log P (x | c) + α · log P (y | c) (2)

The weight factor α aims at balancing the relative reliability of the on-line (x)
and off-line (y) models. To perform these experiments, all the log-probability
values were previously shifted so that both modalities have a fixed, identical
maximum log-probability value. Then, to reduce the impact of low, noisy proba-
bilities, only the union of the K-best hypothesis of each modality are considered
in the argmax of (1). Therefore, the accuracy of this classifiers depends on two
parameters, α and K. Since these dependencies are not quite smooth, it is not
straightforward to optimize these parameters only from results obtained on the
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validation data. Therefore, a Bayesian approach has been followed to smooth
these dependencies. Namely,

P (x, y | c) ∼
∑

k

P (K)
∫

P (x, y | c, K, α)P (α) d(α) (3)

To simplify matters, the parameter prior distributions P (K) and P (α) were
assumed to be uniform in suitably wide intervals (4 ≤ K ≤ 20 and 0.3 ≤ α ≤
0.45), empirically determined from results on the validation set. This allows to
easily compute (3) by trivial numerical integration on α.

With this approach, the validation set error rate was 1.9%, while for the
hidden test set, a 1.3% error rate was achieved.

3.3 GRFIA Team

This submission is by JoseOncina8 from theGRFIAgroup (http://grfia.dlsi.ua.es)
of the University of Alicante.

Off-line and On-line. This group used the On-line and Off-line HMM decoding
outputs (i.e., P (x | c), P (y | c), 1 ≤ c ≤ C) provided by the PRHLT group,
therefore identical On-line and Off-line results were obtained.

Combination of Off-line and On-line Recognizers. Similarly, this group
used the PRHLT classifier given by Eq. (3). However, in this case a rather
unconventional classification strategy was adopted, which finally led to the best
results for this contest.

The idea was to capitalize on the contest specification which established that
a strictly uniform distribution of classes had been (rather artificially) set for both
the validation and the test sets. More specifically, as stated in section 2, both the
validation and the test sets do have “identical number of samples of each word
(class)”. Since each set has 519 samples and there are 519 classes, this implies
that each set has exactly one sample per class. This restriction can be exploited
by considering the classification of each (validation or test) set as a whole and
avoiding the classifier to yield the same class-label for two different samples.
While optimally solving this problem does entail combinatory computational
complexities, a quite effective greedy strategy was easily implemented as follows.

First, the best score for each sample (maxc log P (x, y | c)) was computed and
all the samples are sorted according to these scores. Then, following the resulting
order, the classifier corresponding to Eq. (3) was applied to each sample and each
resulting class label was removed from the list of class candidates (i.e., from the
the argmax of (1)) for classification of the remaining samples.

With this approach, the validation set error rate was 1%, while for the hidden
test set, a 0% error rate was achieved.

8 oncina@dlsi.ua.es

oncina@dlsi.ua.es
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3.4 Summary of Results

Finally in Table 2 a summary of the main validation and hidden test is pre-
sented. These hidden test results were obtained using the on- and off-line HMM
parameters, as well as the parameters needed for the combination of modalities,
determined using the validation set only.

Table 2. Summary of the best results (classification error rate %) using on-line and

off-line classifiers alone and the bi-modal classifier. The relative improvement over the

on-line-only accuracy is also reported.

Participant data uni-modal bi-modal improvement
on-line off-line

Baseline validation 6.6 27.6 4.0 39%

validation 2.9 12.7 1.9 35%
UPV-April test 3.7 12.7 1.5 60%

validation 4.8 18.9 1.9 60%
PRHLT test 5.2 18.9 1.3 75%

PRHLT + validation 4.8 18.9 1.0 79%

GRFIA test 5.2 18.9 0.0 100%

4 Conclusions

The main conclusion from these results is that a simple use of both modalities
does help improving the accuracy of the best modality alone. Morever, there is
room for further improvements using more sophisticated multi-modal classifiers.

There are many pattern recognition problems where different streams repre-
sent the same sequence of events. This multi-modal representation offers a good
opportunities to exploit the best characteristics of each modality to get improved
classification rates.

We have introduced a controlled bi-modal corpus of isolated handwriting
words in order to ease the experimentation with different models that deal with
multi-modality. Baseline results are reported that include uni-modal results, bi-
modal results and lower bounds by taking the best modality for each input
pattern.

It can be seen that the UPV-April team achieve better results in uni-modal
tests, but the PRHT team achieve better profit of the bi-modality, obtaining
60% and 75% of relative improvement on validation and hidden test respectively.
With the a priory information that in the test there is only one sample per class,
the GRFIA team impose the restriction of do not repeat any hypothesis, that is,
every hypothesis is sorted by its reliability, then each hypothesis is classified on
the most probably class not produced before. This way, the team classify every
sample correctly.
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From these results, we can conclude that, in this corpus, multi-modal clas-
sification can help to improve the results obtained from the best uni-modal
classification. In future works, more sophisticated techniques would be applied
to this corpus, and it is also planned to increase the samples of the corpus.
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Abstract. The recognition performance of current automatic offline
handwriting transcription systems is far from being perfect. This is the
reason why there is a growing interest in assisted transcription systems,
which are more efficient than correcting by hand an automatic tran-
scription. A recent approach to interactive transcription involves multi-
modal recognition, where the user can supply an online transcription of
some of the words. In this paper, a description of the bimodal engine,
which entered the “Bi-modal Handwritten Text Recognition” contest or-
ganized during the 2010 ICPR, is presented. The proposed recognition
system uses Hidden Markov Models hybridized with neural networks
(HMM/ANN) for both offline and online input. The N-best word hy-
pothesis scores for both the offline and the online samples are combined
using a log-linear combination, achieving very satisfying results.

1 Introduction

Handwriting recognition can be divided into two main areas: offline and online
handwriting recognition. An offline handwriting recognition system extracts the
information from previously scanned text images whereas online systems receive
information captured while the text is being written, usually employing a stylus
and sensitive tablets.

Offline systems are applicable to a wider range of tasks, given that online
recognition require the data acquisition to be made with specific equipment
at the time of writing. Online systems are more reliable due to the additional
information available, such as the order, direction and velocity of the strokes.

However, in all cases, achieving a perfect transcription requires human inter-
vention. The aim of assisted handwriting transcription systems is minimizing
the correction effort. An example of this kind of systems is the state system [1]
which integrates both modalities of text recognition. The expert user may in-
troduce text by writing it directly on the screen where the error is seen with

D. Ünay, Z. Çataltepe, and S. Aksoy (Eds.): ICPR 2010, LNCS 6388, pp. 14–21, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. User interacting with the state assisted transcription system

the help of an stylus sensitive device. The online handwritten text and gestures
input can feed an interactive loop between the handwritten system and it can
be exploited in a multimodal, combined recognition system (see a picture of the
system in Figure 1).

This paper presents a bimodal recognition engine which combines our previous
offline recognition system and the new developed online recognition system. The
proposed engine entered the “Bi-modal Handwritten Text Recognition” contest
organized during the 2010 ICPR.

The next section describes the bimodal task [2], extracted from the offline and
online IAM database [3,4]. Section 3 describes the preprocessing steps applied
to offline and online word samples. The bimodal handwriting recognition system
is presented in Section 4, along with its performance. The work concludes with
an analysis of the obtained results.

2 The Bimodal Corpus

The biMod-IAM-PRHLT corpus is a bimodal dataset of online and offline iso-
lated handwritten words [2], publicly available for academic research. It is com-
posed of 519 handwritten word classes with several online and offline word
instances extracted from the publicly available IAM corpora [3,4]. Figure 2 shows
some examples of bimodal samples from the corpus.
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Fig. 2. Examples of word samples from the bimodal corpus: left, offline images, and
right, online samples

Table 1. Basic statistics of the biMod-IAM-PRHLT corpus and their standard parti-
tions. The vocabulary is composed of 519 word classes.

Running words Online Offline
Training set 8 342 14 409
Validation set 519 519
(Hidden) test set 519 519
Total 9 380 15 447

The writers of the online and offline samples are generally different. The offline
samples are presented as grey-level images, and the online samples are sequences
of coordinates describing the trajectory of an electronic pen.

The corpus is partitioned into training and validation for common benchmark-
ing purposes. A test partition was held-out and it was used for the “Bi-modal
Handwritten Text Recognition” contest organized during the 2010 ICPR. Both
validation and test partitions are composed of a bimodal sample (a pair of an on-
line and an offline instance) for each word in the vocabulary. Some basic statistics
of this corpus are shown in Table 1.

3 Handwriting Preprocessing

3.1 Offline Preprocessing

The individual word images have been preprocessed using the method described
in [5,6]. Neural networks have been used to estimate the slope and slant angles,
and also to find the main body area of the text line in order to perform size
normalization.
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In order to correct the slope, a set of local extrema from the text contours of
the image are extracted and then processed by a multilayer perceptron (MLP)
which receives, for a given local extremum, a window of the image around that
point. The task of this MLP consists in selecting which points are used to
estimate the lower baseline by means of least squares fitting.

Following the slope correction, non-uniform slant correction based also on a
MLP is performed. Instead of trying to estimate the slant angle, this MLP only
detects whether a fragment of an image is slanted or not. For each angle in a
given range, the input image is slanted, and the MLP gives a score to each pair
(angle, column) of the original image. Then, a dynamic programming algorithm
is used to find the maximum-score path across all the columns of the image which
satisfies a smoothness constraint, to avoid abrupt slant changes. This path is an
estimation of the local slant angle for each column of the image.

Finally, local extrema from the deslanted image are computed again and an-
other MLP classifies each point into 5 classes: ‘ascender’, ‘descender’, ‘lower
baseline’, ‘upper baseline’ and ‘other’. Using this information, the sizes of ascen-
ders, descenders and main body areas are normalized to a fixed height. Figure 3
(left) shows an example of all the steps of this process.

The feature extraction method is the same described in [7]. A grid of square
cells is applied over the image and three values are extracted from each cell:
normalized gray level, horizontal derivative of the gray level and vertical deriva-
tive of the gray level. Gray levels are weighted with a Gaussian which gives more
importance to the pixels in the center of the cell and tends to zero in the borders.
In all of the experiments a grid with 20 rows has been used.

3.2 Online Preprocessing

The online input consists of sequences of point coordinates with no stylus pres-
sure information corresponding to writing strokes. The preprocessing stage com-
prises trace segmentation and smoothing of the sequence of points, uniform slope
and slant correction, and size normalization. Each smoothed sample is converted
to an image which goes through the same process as the offline images to obtain
estimates of the slant angle and the text baselines. With this information, the
online sequence is desloped and deslanted, and then scaled and translated so
that the lower and upper baselines are located in y = 0 and y = 1 respectively
(see Figure 3, right). Finally, a set of 8 features is extracted for every point from
the sequence: y coordinate, first and second derivative of the position, curvature,
velocity, and a boolean value which marks the end of each stroke.

4 Bimodal Handwriting Recognition Engine

4.1 HMM/ANN Optical Models

The recognition system is based on character-based hybrid HMM/ANN mod-
els, as fully described in [6]. Hidden Markov models (HMM) with a left-to-right
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Fig. 3. Preprocessing example of an offline sample (left), and an online sample (right)

without skips topology have been used to model the graphemes, and a single
multilayer perceptron is used to estimate all the HMM emission probabilities.
Thus, the output unit yq(xt) represents, after dividing by the priors, the prob-
ablity distribution of state q given the input at time t. Softmax ensures that
this probability distribution is valid, i.e. yq(xt) > 0 for any HMM state q and∑

i yi(xt) = 1.
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At each MLP training step, error is computed according to cross entropy
criterion and weights are updated with the standard backpropagation algorithm
with momentum, using our own software [8].

The advantages of this approach are that the training criteria is discriminative
(each class is trained with all the training samples, those which belong to the
class and those which do not), and the fact that it is not necessary to assume
an a priori distribution for the data.

Another advantage of this kind of hybrid HMM/ANN models is the lower
computational cost compared to Gaussian mixtures, since a single forward eval-
uation of a unique MLP generates the values for all HMM states whereas a
different Gaussian mixture is needed for each type of HMM state.

The recognition system presented in this work is based on HMM/ANN optical
models for both offline and online recognition, using the following configurations:

– Off-line: We have used the same hybrid HMM/ANN models from [6]: a
7-state HMM/ANN using a MLP with two hidden layers of sizes 192 and
128. The input to the MLP was composed of the current frame plus a context
of 4 frames at each side. It is worth noting that these models were trained
with the training partition of the IAM-DB [3].

– On-line: Similarly, online models were trained with more data than that
given in the bimodal corpus: the IAM-online training partition [4] was also
used. Topologies of HMMs and MLP were just the same as the offline
HMM/ANN models, but with a wider context at the input layer of the
MLP: 12 feature frames at both sides of the actual input point.

4.2 Bimodal System

The scores of the 100 most probable word hypothesis were generated for the
offline sample using the offline preprocessing and HMM/ANN optical models.
The same process is applied to the online sample. The final score for each bimodal
sample is computed from these lists by means of a log-linear combination of the
scores computed by both the offline and online HMM/ANN classifiers:

ĉ = argmax
1≤c≤C

((1 − α) log P (xoff-line|c) + α log P (xon-line|c)),

being C the number of word classes. The combination coefficients were estimated
by exhaustive scanning of values over the biMod-IAM-PRHLT validation set.
Table 2 shows a summary of the whole recognition engine.

Table 2. Bimodal recognition engine summary, including the combination coefficients

Bimodal system offline online
# input features per frame 60 8
# HMM states 7 7
MLP hidden layers’ size 192-128 192-128
MLP input context (left-current-right) 4-1-4 12-1-12
Combination coefficient (1-α)=0.55 α=0.45
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5 Experimental Results

The ICPR contest organizers published baseline validation results for a bimodal
recognition system described in [2]. The error rates were 27.6% for the offline
modality and 6.6% for the online modality. A Naive Bayes combination of both
unimodal systems resulted in a error rate of 4.0% for the bimodal task.

Our proposed system achieved a 12.7% error rate for the offline validation set,
and a 2.9% for the online validation set. Combining both sources resulted in a
1.9% validation error rate. The error rates for the test dataset were 12.7% for
the offline data, 3.7% for the online data, and 1.5% for the bimodal task.

Table 3 shows these results. Baseline system performance is also shown for
comparison purposes with the validation data. Unimodal results, both for offline
and online samples, are also shown. The last column illustrates the relative
improvement of the bimodal system over the online (best unimodal) system.
As can be observed, close to 60% of improvement is achieved with the bimodal
system when compared to using only the online system for the test set.

Table 3. Performance of the bimodal recognition engine

Unimodal Bimodal
System Offline Online Combination Relative improv.

Validation Baseline [2] 27.6 6.6 4.0 39%
HMM/ANN 12.7 2.9 1.9 34%

(Hidden) Test HMM/ANN 12.7 3.7 1.5 59%

6 Conclusions

A perfect transcription for most handwriting tasks cannot achieved and hu-
man intervention is needed to correct it. Assisted transcription systems aim
to minimize this human correction effort. An integration of online input into
the offline transcription system can help in this process, as it is done in the
state system [1]. For this end, we have developed a bimodal recognition engine
which combines our previous offline recognition system and a new developed
online recognition system. This work presents this system and tests it in the
“Bi-modal Handwritten Text Recognition” contest organized during the 2010
ICPR.

Hybrid HMM/ANN optical models perform very well for both offline and
online data, and their naive combination is able to greatly outperform each
system. Nevertheless, more exhaustive experimentation is needed, with a larger
corpus, in order to obtain more representative conclusions. As a future work we
plan to fully integrate it in the assisted transcription system.
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Abstract. Digital cameras are being integrated in a large number of

mobile devices. These devices may be used to record illegal activities, or

the recordings themselves may be illegal. Due to the tight integration of

these mobile devices with the internet, these recordings may quickly find

their way to internet video-sharing sites such as YouTube. In criminal

casework it is advantageous to reliably establish the source of the video.

Although this was shown to be doable for relatively high quality video,

it is unknown how these systems perform for low quality transcoded

videos. The CAMCOM2010 contest is organized to create a benchmark

for source video identification, where the videos originate from YouTube.

Despite the number of participants was satisfactory initially, only two

participants submitted results, mostly due to a lack of time. Judging by

the performance of the contestants, this is certainly not a trivial problem.

Keywords: YouTube, source video identification, camera identification.

1 Introduction

Digital imaging presents a lot of obvious advantages with respect to their ana-
log counterparts. There is no need to chemically develop the images, virtually
eliminating processing time. Results can be viewed immediately, and results can
easily be edited to obtain a visually more pleasing image. With the internet, im-
ages and videos can be shared in seconds, and this may obfuscate the origin of
the (original) image or video when there are no identifying characteristics (e.g.
metadata) available.

For forensic purposes, however, we are interested in the origin of a certain
image or video. In other words, we would like to know from which camera the
file originates.

There are various reasons why this is of interest. First, it may link a witness or
a suspect to a crime scene, and hence be used to verify statements. In particular,
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c© Springer-Verlag Berlin Heidelberg 2010



Verification of Video Source Camera Competition (CAMCOM 2010) 23

a camera stolen in a burglary or during a homicide may be traced back to its
original owner if some reference images are available. Another possibility is to
trace back which images or videos were made by the same camera if there is no
camera available. This can be of interest in child pornography cases, or when a
film is recorded in a cinema by a digital camera and subsequently released to
the internet. As such this problem is a verification problem: the question to be
answered is whether a certain characteristic is present in both the digital camera
itself as the natural image or video.

Although there has been a wide interest in the forensics community to solve
this problem [1–3], this is mostly confined to (photo) cameras of relatively high
quality. In [4] it was shown to be possible to identify the source camera from low
resolution and heavily compressed JPEG images. All these methods rely on the
presence of a perceptually invisible noise pattern, a ‘fingerprint’, in the video
or image originating from the sensor. Hence, source identification is a matter
of extracting and comparing these noise patterns, called Photo Response Non-
Uniformity (PRNU) patterns, as visualized in Fig. 1. These patterns originate
due to the fact that each pixel has a slightly different response to the same
amount of light. Extracting the pattern essentially comes down to subtracting a
low-pass filtered (denoised) version of the image from the original. The low-pass
filtered version of the image represents the image in the absence of the noise-
like PRNU pattern. Subtracting the filtered image from the original shows the
characteristic pattern of deviations. The accuracy depends on the filter used to
denoise the image; a simple low-pass filtered image is suboptimal as small details
are removed. Hence, different filters result in different performance. Furthermore,
different filters are suitable for different situations.

Fig. 1. Schematic overview of the problem. In the first scenario, the goal is to find the

origin of an unknown video. This can be accomplished by extracting a characteristic

(PRNU) from the unknown video, as well as from a reference video with known origin.

When these PRNU patterns are similar, this may indicate that the unknown video has

the same origin as the reference video. In the second scenario, no such reference video

is available, and the goal is to establish which videos have a common origin.

The deviations are multiplicative with respect to the amount of light that
falls on each pixel, and are easiest to extract from well illuminated images that
contain smooth gradients. Hence, images that are well illuminated and have low
frequency content allow for a more clear and accurate extraction of the sensor
noise. On the other hand, high frequency textures or dark areas result in more
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uncertainty in the extracted pattern. When we need to answer whether a certain
image or video originates from a certain camera, we make so-called reference or
‘flatfield’ images or videos that are well illuminated and contain no discernible
details. In practice, a homogeneous grey area is recorded; these flatfield images
or videos are used as reference. On the other hand, ‘natural’ videos are videos
with normal content, i.e. they portray normal scenes.

With the advent of high speed mobile internet and the integration of cameras
in mobile phones and laptops, the challenge shifts to low quality images and
videos. To conserve bandwidth and processing power, these videos are often
strongly compressed in a far from optimal video codec. The ever increasing
popularity of video sharing sites as YouTube presents an extra challenge, as
these low quality videos will be transcoded to a standard codec. These codecs
remove or suppress high frequency noise, such as PRNU. Although small scale
tests proved successful [5], it is hard to obtain data for large scale testing. For
photographs, Flickr has been used in [6]. Images on Flickr generally contain EXIF
metadata listing the camera model and type, and it is reasonable to assume that
multiple images (with the same EXIF metadata for camera brand/model) from
a single user have the same origin. However, such an online ‘database’ does not
exist for videos; in particular, videos do not have a general metadata description
such as EXIF for photographs.

The normal camera identification scheme is very successful, and we believe
the challenge has shifted to heavily compressed videos. There is a certain point
at which the compression becomes too strong and virtually removes the PRNU.
Alternatively, the length of the video may be too short to get a reliable estimate
of the PRNU pattern. Hence, it is desirable to know the limits of the PRNU
technique. This necessitates sensitive methods to extract the PRNU. However,
the lack of a video database (comparable to Flickr for photographs), makes it
difficult to find these limits. These reasons motivated us to start the CAMCOM
challenge.

2 Problem Description

As in the introduction, the problem with doing source video camera identifi-
cation with videos from YouTube is the generally strong compression present,
and this may result in visible compression artefacts. However, there is another
problem with videos obtained from these cameras. Sensors in webcams, digital
cameras or mobile phones are often used to make photographs as well as to
record videos. These videos generally have a lower resolution than photographs
made with the same sensor. Alternatively, video can be recorded in a wide range
of resolutions and aspect ratios. This means that either a smaller subsection
of the sensor is used, or that some form of scaling is used before the signal is
output. These possibilities need to be taken into account when we do the source
camera identification.
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For example, when a sensor has a native resolution of 800x600, we can record
video in a lower resolution such as 640x480. The signal may be downsampled by
software, or a smaller section of the sensor can be used. Often it is also possible
to record video in a higher resolution, depending on the driver software. Finally,
the aspect ratio may change when the software driver allows this. All situations
may occur at the same time.

3 Data

For the creation of the data set, we used approximately 100 low cost webcams
with native resolutions of 640x480 or 352x288. A few screenshots can be found
in Fig. 2. However, there is no need to record the videos in these resolutions as
explained in the previous section. For example, a large amount of webcams we
used had a native resolution of 352x288 (11:9 aspect ratio). The driver allowed
to record video in 640x480 (4:3) resolution. When we analyzed the pattern, we
found that a 320x240 subsection from the center was used which was subse-
quently upscaled to 640x480.

The natural videos contain footage of the surroundings of an office; they con-
tain both high and low detailed scenes, and saturation occurred frequently. The
contest was split up in two optional scenarios. Each scenario will be explained
separately in the next sections.

Table 1. Overview of the dataset used in both scenarios. In this table, the number

of videos and length (in seconds) of the videos used in each scenario is presented. The

videos in both scenarios were not necessarily recorded in their native resolutions. In

the first scenario, reference videos are available, and the natural videos are recorded in

3 different resolutions as indicated. In the second scenario, all videos were recorded in

640x480 resolution, but no reference video were available.

Length (s) Amount Reference available? Resolutions

Scenario I 10 148 Yes 320x240, 352x288, 640x480

35 148 Yes 320x240, 352x288, 640x480

Scenario II 20 158 No 640x480

60 100 No 640x480

3.1 Scenario I

The goal of the first scenario is to link videos of unknown origin with a set
of 50 reference videos; these reference videos of known origin were supplied in
their native resolutions. Ideally, the 50 reference cameras would be distributed
to each contestant to make reference videos, but this is not feasible. Instead, we
decided to record the reference videos ourselves, and make them available to the
contestants. These videos were not uploaded to YouTube so that no additional
transcoding occurred, and the PRNU has not been attenuated significantly. The
videos are minimally compressed and have a length of approximately 30 seconds
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containing well-illuminated homogeneous areas. We also recorded 148 natural
videos of approximately 10 seconds, and 148 natural videos of approximately
35 seconds. These natural videos are either recorded in their native format, or
in some other resolution that the camera driver makes possible. Hence, each
video may originate from a low or high resolution camera, independent of its
resolution.

The contestant was asked to identify which of the videos had a corresponding
reference video (if any). Multiple videos from each camera may be present. Each
combination of natural video and reference video had to be scored. In this way,
two contingency tables of 148x50 are obtained. This scenario mimics the situation
where a forensic investigator needs to say whether a certain video originates from
a certain camera that is available to the investigator.

3.2 Scenario II

The goal of the second scenario is to link natural videos; no reference videos are
supplied. Or, in the verification framework, one natural video acts as a refer-
ence while the other videos need to be scored against this reference video. As
in the previous scenario, two different video lengths were available: 158 videos
of approximately 20 seconds, and 100 videos of approximately 60 seconds. Each
set of a certain length needed to be assessed separately, multiple ‘partners’ may
be present, and not all videos may have a corresponding ‘partner’. To ease the
process of matching, all videos are recorded in 640x480 resolution, and origi-
nate from low resolution cameras (352x288) and the higher resolution cameras
(640x480). In this way two tables are obtained, of size 158x158 and 100x100.
The difference with the first scenario is that there is no reference video with
a known origin. This scenario is more difficult as the PRNU extraction from
natural videos is more difficult.

Fig. 2. Sample screenshots from the videos

4 Results

Due to the limited response we only report some anonymized results. In Table
2 we report the Area Under Curve (AUC) and the Equal Error Rate (EER) of
the systems. The ROC curves for scenario I and II are shown in Figs. 3 and 4,
respectively. These measures do not tell the complete story, as an investigator
may refrain from giving an answer about the source of the video. Hence, each
contestant was also asked to submit a separate decision matrix in which the final
decision was presented about the source of each test video (if any). It has to be
mentioned that such a decision can be unrealistic in practice; a likelihood ratio
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Fig. 3. ROC curves for Scenario I for both long (left) and short (right) videos
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Fig. 4. ROC curves for Scenario II for both long (left) and short (right) videos. For

the short videos, no valid contingency table was submitted by contestant A for the

determination of the ROC curve.

or verbal scale of certainty can be more suitable in these comparisons. For the
videos that had a corresponding partner, we use the decision matrix to calculate
the Precision and Recall. Precision is defined as the number of True Positives
divided by the sum of True Positives and False Positives. Recall is defined as
the number of True Positives divided by the sum of True Positives and False
Negatives. These numbers are shown in Table 3.

Even though the performance (based on the EER) of participant A is much
lower than B, its precision is much higher. In both cases the Recall rate is low,
suggesting conservative systems. The performance for the long videos of the
second scenario is adequate, but for the short videos (10 seconds in scenario I,
20 seconds in scenario II) the performance is low. This low performance may be
an indication that the limit of the PRNU has been reached, but this is hard to
conclude from the limited amount of results available.
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Table 2. Area Under Curve (AUC) and Equal Error Rate (EER) for both participants

A and B. The dagger (†) denotes that no valid results were submitted.

AUC(A) AUC(B) EER(A) EER(B)

ScI:Long 0.67 0.82 0.61 0.74

ScI:Short 0.63 0.73 0.58 0.66

ScII:Long 0.82 0.93 0.74 0.86

ScII:Short 0.73 † 0.65 †

Table 3. Precision P and Recall rate R for both participants. The dagger (†) denotes

that no valid results were submitted.

P(A) P(B) R(A) R(B)

ScI:Long 0.95 0.72 0.33 0.18

ScI:Short 0.79 0.52 0.13 0.12

ScII:Long 0.98 † 0.31 †
ScII:Short 1.00 † 0.17 †

5 Conclusion

Although the initial number of contestants was satisfactory, a large number of
participants eventually did not submit any results. The main reason mentioned
was a lack of time. Hence, it is difficult to draw conclusions from the limited
amount of data obtained. However, judging by the performance, it can be seen
there is certainly room for improvement. The dataset can be used in the future,
either for testing or as a benchmark as in this contest.
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Abstract. The landscape contest provides a new and configurable framework to
evaluate the robustness of supervised classification techniques and detect their
limitations. By means of an evolutionary multiobjective optimization approach,
artificial data sets are generated to cover reachable regions in different dimensions
of data complexity space. Systematic comparison of a diverse set of classifiers
highlights their merits as a function of data complexity. Detailed analysis of their
comparative behavior in different regions of the space gives guidance to potential
improvements of their performance. In this paper we describe the process of data
generation and discuss performances of several well-known classifiers as well as
the contestants’ classifiers over the obtained data sets.

1 Introduction

In many applications researchers pursue perfection of classification techniques since
there are obvious benefits to obtain the maximum accuracy, e.g., in performing medical
diagnosis. However, there have been relatively few systematic studies on whether per-
fect classification is possible in a specific problem. Most attention has been devoted to
fine tuning the techniques instead.

Over the last two decades the competitiveness of classification techniques1, typi-
cally developed for a general purpose, has been claimed over a small and repetitive set
of problems. Although a common test bed is useful and necessary to make fair com-
parisons among algorithms, it can lead to incomplete conclusions about the quality of
the learning algorithms if we do not have control over its characteristics, such as sim-
ilarity between the data sets. The study of how real-world problems distribute in data
complexity dimensions is aimed at providing a remedy, so that the classifier’s behavior
can be understood in the context of the problems’ characteristics. Also, stability of the
classifier’s performance over problems with similar characteristics can be assessed.

1 Our discussions will be restricted to supervised classification techniques, also referred to as
classifiers, learning algorithms, or learners.
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Problems that provide a good coverage of the data complexity space would be nec-
essary to perform this kind of study. To this end, we design a contest, to be held before
the 20th International Conference on Pattern Recognition in 2010, that uses a collection
of problems selected on the basis of their complexity characteristics. Evaluation of the
participating algorithms with this collection of problems would provide the landscape
featuring the domains of competence of each algorithm in the data complexity space.

The purpose of this paper is to describe the contest and report some preliminary
experiments which pursue (1) to support the belief that rather than a unique and globally
superior classifier, there exist local winners, (2) to highlight the critical role of the test
framework, and (3) to envisage how this space may help to understand the limitations
of classifiers and offer guidance on the design of improvements that can push the border
of their domains of competence.

The remainder of this paper is organized as follows. Section 2 describes the process
that generates the data collection for the contest. Then, Section 3 summarizes the ex-
periments and presents some preliminary results. Finally, Sections 4 and 5 elaborate on
some observations and conclusions.

2 The Landscape Contest

The analysis of the performance of learning algorithms should rely on a known, con-
trolled testing framework due to the observed dependence between the capabilities of
learners and the intrinsic complexity of data. To develop such a framework, lately some
studies have been done on the characteristics of real-world data to evaluate the learner
performance, in particular, various notions of data complexity [3].

This section revises an earlier work, on using the characterization of the difficulty
of classification problems to identify classifier domains of competence, which provides
the basis of the current contest. Then, it describes the process to cover the complexity
space with synthetic data sets.

2.1 Background

In [11], Ho and Basu presented a set of twelve measures that estimate different aspects of
classification difficulty. Examples are the discriminative power of features, class separa-
bility, class geometry and topology, and sampling density w.r.t. feature dimensionality.

They aimed at providing a characterization of classification problems, represented
by a training data set, to analyze the domains of competence of classifiers and ob-
tain guidelines to select the most suitable technique for each problem. Observing that
many of the proposed complexity measures are correlated, they looked for uncorrelated
factors by projecting the problem distributions on the first four principal components
extracted from the set of twelve complexity dimensions. These projections revealed a
near continuum formed by real-world problems as well as problems synthesized with
controlled difficulty. The continuum spreads across extreme corners of the space. Nev-
ertheless, the projection of problems did not cover the entire space. A mystery remains
on whether the empty regions were due to constraints of the selection of problems or to
the nature of the complexity measures.
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2.2 Synthesizing a New Landscape with Evolutionary Optimization

To achieve better coverage of the complexity space, a larger collection of problems is
necessary. However, real-world problems with truth labels are expensive to obtain, and
difficult to control for quality. Synthetic data offers an interesting alternative. They can
be created with the least cost and time, and can be controlled to reach a good coverage
of reachable regions in the complexity space. Though, to employ this alternative, it is
important to ensure that the generated data have sufficient resemblance to real-world
problems, and at the same time contain sufficient variety to represent different aspects
of data complexity.

With this aim in mind, we proposed an approach [12] that starts with a sample of
real-world problems where the class concepts are described by the data collected in the
experiments or from synthetic data following tailored distributions. We then introduced
perturbations to the sample problems to extend their coverage in the complexity space.

We formulated the problem as a search for useful problems: given an original data
set, search the best selection of instances that satisfies a desired complexity. In fact,
the desired complexity is specified as a multiobjective optimization problem because
it involves the minimization or maximization of a set of complexity measures and the
satisfaction of a set of internal constraints.

In the following, we present the formulation of the optimization problem, list the
constraints implemented, and detail the process organization of the evolutionary multi-
objective search.

Problem Formulation. First of all, we consider a set of n labeled instances (also re-
ferred to as examples) {i1, i2, ..., in} coming from a real-world problem or a synthetic
problem generated with reference to a physical process. The optimization problem con-
sists in searching the selection of instances I = {i1, i2, ..., il}, l ≤ 1, that minimizes
or maximizes the set of objectives O = {o1, o2, ..., op} where each oi corresponds to a
complexity measure. For instance, if we need to obtain a data set with as many points
located on the class boundary as possible, we should maximize the complexity measure
that evaluates the fraction of points on the class boundary, also called N1.

Constraints. The consistency of the resulting data sets also depends on the extrinsic
complexities, such as the number of instances, the number of attributes, or a measure
of balance between the classes. These external characteristics have been taken into ac-
count by including them into the approach as constraints which are responsible for (1)
maintaining a minimum number of instances, (2) conserving a specific class balance,
(3) ensuring that the calculation of the complexity measures is feasible, and (4) avoiding
the duplicity of instances.

Organization of the Search Process. To create data sets whose complexity is bounded
by several indicators of data complexity designed in [11], we used an evolutionary
multiobjective strategy [5], more specifically a method based on NSGA-II [6].

The system requires defining (1) the meta-information, (2) the genetic representation
of the solution of the problem, and (3) the fitness function to evaluate each candidate
solution. These are described as follows.

Meta-information. The input of the system is a data set, whatever its distribution is—
real-world distribution or synthesized distribution—, described by n learning instances,
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where each instance is defined by m continuous or nominal attributes. This data set will
be altered through an instance selection process until reaching the desired complexity.

Knowledge representation. The NSGA-II system evolves a population composed of
N individuals, where each individual is a candidate solution, i.e., an artificial data set
characterize by a selection of instances from the input data set. The representation of
the individual is an array of size k ≤ n, where k is the number of instances selected
by the current individual and n is the number of instances of the original data set.
The array contains the indexes of the selected instances, e.g., if an individual contains
{2,5,14}, it means that instances 2, 5, and 14 of the original data set are selected. The
evolutionary multiobjective optimization (EMO) searches the best selection of instances
that satisfies the required complexity, i.e., minimizes or maximizes the set of specified
complexity measures. Then, the final data set is obtained by moving from the genotypic
representation to the phenotypic representation, i.e., by grouping the instances coded
in the individual in a file and adding the corresponding header to provide a data set in
Weka format [16].

Objective functions. Each objective refers to a complexity measure. To calculate the
fitness of the individual, we simply translate the genotype into the phenotype according
to the information encoded in the individual and compute the value of the complexity
measures.

The EMO approach follows the classic procedure of a genetic algorithm (GA) [9] but
includes two sorting concepts: (1) the fast non-dominated sorting and (2) the crowd-
ing distance assignment, which contribute to optimize different objectives in a single
simulation run. The fast non-dominated sorting procedure allocates the population into
different fronts according to how well they satisfy the multiple objectives and, the
crowding distance assignment estimates the density of the solutions surrounding a par-
ticular solution in the population. It tries to measure the diversity of the population and
maintain it.

This process drives the population to the Pareto-optimal line (see the pseudo code in
Algorithm 1).

At the beginning, the individuals of the initial populations P0 and Q0 are randomly
initialized and evaluated. Then, the GA bases the search on the interaction of two spe-
cific and three primary genetic operators that are iteratively applied: fast non-dominated
sorting, crowding distance assignment, selection, crossover, and mutation. The process
is organized as follows.

First, populations Pt and Qt are combined in a population Rt which is sorted accord-
ing to the non-dominated procedure. Then, starting from the first front, the solutions of
each front i are introduced into the new population Pt+1 on the condition that there is
enough room to allocate all the solutions of the given front. Otherwise, only the solu-
tions with the highest crowding distance of front i are included into Pt+1, until filling
all the population.

Thereafter, selection is applied to choose the parent population of the next gener-
ation, resulting in the offspring population Qt+1. Pairs of these parents are selected
without replacement, and they undergo crossover and mutation operators with proba-
bilities χ and μ respectively. If neither crossover nor mutation are applied, the offspring
are exact copies of the parents.
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Algorithm 1. NSGA-II

Input: P0 and Q0 initial populations, N (Population size), tmax (Maximum number of gener-
ations)
t = 0

while (t < tmax) do
Create Rt = Pt

⋃
Qt

Perform a non-dominated sorting to Rt and identify different fronts: Fi, i = 1, 2, ..., n by
using a ranking algorithm
Pt+1 = Pt

i = 1

while (|Pt+1| + |Fi| < N) do
Pt+1 = Pt+1

⋃
Fi

i = i + 1

end while
Include in Pt+1 the most widely spread (N − |Pt+1|) solutions by using the crowding
distance
Create Qt+1 from Pt+1 by using crowded tournament selection, crossover, and mutation
operators
t = t + 1

end while
Output: Front F1 from set Ptmax

⋃
Qtmax

The whole process is repeated until the stop criterion is reached. In this case, the stop
criterion is a maximum number of generations.

Regarding the genetic operators, we use the following strategies: (i) Tournament
selection. Tournaments of s randomly chosen parents are held, and the parent with
the best fitness, according to the crowded-comparison operator, is selected for recom-
bination. (ii) Two-point crossover. Two cut-points along the individuals are randomly
selected and the information in between of both parents are shuffled. The
range of the cut-points corresponds to [0,min(size individual1, size
individual2)] to maintain the consistency of the offspring. (iii) Mutation. Ad-
dition or deletion of instances brings some diversity into the population. First, we ran-
domly assign a Boolean value to each instance of the input data set. Then, each instance
whose value is true is searched in the individual to mutate. If the instance exists, we
remove it. Otherwise, we add it at the end of the structure.

To sum up, this evolutionary technique allows us to stretch different dimensions of
complexity at the same time. However, correlations among variables (i.e., measures) or
a high number of independent variables affect the optimization performance. This sug-
gests that we should perform generation in steps by combining the complexity measures
three by three.

2.3 The Idyllic Landscape

The idyllic landscape refers to a landscape providing a complete coverage of the char-
acteristic space – a space small enough in which we are able to map all the problems
and have enough resolution in the complexity values. This framework can help us to
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(1) better understand the domain of competence of different learners and (2) compare
different learners on the complexity space. The creation of such a space is not trivial
since there are many ways to characterize a problem and its linkage to the properties of
the learners is not a direct function. As we mentioned previously, our proposal consists
in characterizing the data sets geometrically by means of twelve complexity measures.
Nevertheless, the generation of problems to cover this 12-dimensional space involves
a complex parameterization. The resulting combinatorial problem entails an unattain-
able computational cost. This is investigated in a preliminary study that precedes the
landscape contest. As a result we settle on what can be done with evolutionary multi-
objective optimization.

2.4 The Real Landscape Obtained from Evolutionary Multiobjective
Optimization

In order to prepare the data for the contest, four data set collections are created and
named S1, S2, S3, and S4. We aim at testing (1) the learner behavior over the problem
space (S1, S2, and S3) and (2) the learner’s local behavior in their domain of compe-
tence (S4). The four data set collections are summarized as follows:

S1. Collection of data sets covering the reachable complexity space, designed for train-
ing the learner. All the instances are duly labeled.

S2. Collection of data sets covering the reachable complexity space, designed for testing
the learner. No class labeling is provided.

S3. Collection of data sets with no class labeling, like S2, that will be used in a live test
that will be run for a limited period of time (i.e., one hour).

S4. Collection of data sets with no class labeling, which covers specific regions of the
complexity space where each learner dominates. Its design is aimed at determining the
stability of dominance over the local neighborhood.

To this end, we generated 80,000 data sets running the EMO approach over five seed
problems: Checkerboard, Spiral, Wave Boundary, Yin Yang, and Pima. The four first are
data sets with a known concept (see Figure 1). Checkerboard. Classic non-linear prob-
lem with heavily interleaved classes following a checkerboard layout. Spiral. Problem
with a non-linear class boundary following a spiral layout. Wave Boundary. Linearly
separable problem defined by a sinusoidal function. Yin Yang. Linearly problem with
small disjuncts. The last one is a real-world problem which belongs to the UCI repos-
itory (Pima Indians Diabetes) [2]. These five seed data sets were evolved for different
objective configurations, plus all the combinations of the optimization of three complex-
ity measures at each time. The selection of three complexity measures results in eight
experiments which consist in maximizing (1) or minimizing (0) each dimension, (i.e.,
000, 001, ..., 111). The entire generation process used eleven of the twelve complexity
measures proposed in [10], with the omission of the maximum Fisher’s discriminant
ratio (F1).

Following the analysis performed in [11], we calculated the singular value decom-
position (SVD) over all the complexity measures and built a space with the first two
principal components (see Figure 2(a)). To limit the size of the contest, we decided to
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Fig. 1. Seed data sets with a known structure
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(a) 80,000 data sets
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(b) 300 data sets

Fig. 2. Projection of the problems on the first and second principal components extracted from
the complexity measurement: (a) the entire collection composed of 80,000 data sets and (b) 300
cherry-picked training data sets for use in the contest

select a sample from the collection. We divided the space into 100 cells and picked five
data sets at random from each cell. Figure 2(b) plots the distribution of the 300-data set
sample from the generated collection. These are the 300 data sets used in the contest.
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3 Contest Execution and Results of Trial Runs

The landscape contest involves the running and evaluation of classifier systems over
synthetic data sets. The contest is divided into two phases: (1) offline test and (2) live
test. This section describes the experimental environment and presents some results of
both phases.

3.1 Contest Description

For the offline test, participants ran their algorithms over two sets of problems, S1 and
S2, and reported their results. In particular, we assessed (1) the predictive accuracy (i.e.,
test rate of correctly classified instances) applying a ten-fold cross-validation using S1
and (2) the class labeling of the test collection S2. Abilities such as robustness and
scalability are evaluated indirectly, since they are implicit in the data complexity, and,
thence reflected in the predictive accuracy. Learner’s efficiency is shown in the second
round of the contest (the live contest) where the results are to be submitted within a
limited period of time. Finally, interpretability is not taken into consideration despite
of its importance in certain knowledge domains, because it is out of the scope of this
paper.

A live test was planned to take place during the conference. There, collections S3
and S4 were presented. S3 covers the data complexity space comprehensively, like S2,
whereas S4 was generated according to the preliminary results submitted by the partic-
ipants in order to determine the relative merits in each algorithm’s respective domain of
competence.

3.2 Contestants

The contest data set was released on March 31, 2010. Initially ten teams indicated their
interest in participating in the contest. However, a combination of difficulties caused
most teams to drop out over the next few months. At the end, three teams submitted
their final results for the entire collection S2 by the June 1st due date, and all of them
participated in the live test.

Table 1 summarizes the information of each team. The approaches they used include
(1) a classifier based on a co-evolutionary algorithm, (2) a set of classifiers defined in
a feature-based dissimilarity space, and (3) a classifier based on real-valued negative
selection.

Interestingly, in addition to submitting results of their advocated approach, Team 2
applied nineteen classifiers in total to the training data S1 in order to compare perfor-
mances of different families of learners. They documented a discovery that each classi-
fier found a most favorable data set among the collection S1, and the nineteen favored
sets were all distinct.

3.3 Results with Six Widely-Used Classifiers

Before the contestants submitted their results, we performed a test run of the contest
using six widely-used classifiers belonging to different learning paradigms: C4.5 [14],
IBk [1], Naı̈ve Bayes (NB), PART [8], Random Tree (RT) [4], and SMO [13].
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Table 1. Contestant description

Team 1 Contestants: Joaquı́n Derrac, Salvador Garcı́a, and Francisco Herrera
Affiliation: Universidad de Granada and Universidad de Jaén
Contribution: IFS-CoCo in the landscape contest: Description and results

Team 2 Contestants: Robert P.W. Duin, Marco Loog, Elżbieta Pekalska, and David M.J. Tax
Affiliation: Delft University of Technology and University of Manchester
Contribution: Feature-based dissimilarity space classification

Team 3 Contestants: Luiz Otávio Vilas Boas Oliveira and Isabela Neves Drummond
Affiliation: Universidade Federal de Itajubá
Contribution: Real-valued Negative Selection (RNS) for classification task

C4.5 creates a decision tree by splitting the data recursively using the information
gain of each attribute. IBk is an implementation of the nearest neighbor algorithm; to
classify a previously unseen instance, it searches the k nearest neighbors and returns the
majority class among them. Naı̈ve Bayes is a probabilistic classifier based on the Bayes’
theorem and the assumption of feature independence. PART is a decision tree algorithm
that combines strategies from two methods to generate partial trees. RT builds a decision
tree which is generated with a group of randomly selected features at each node from the
original training set; the output of the new examples is inferred by considering the most
popular class among the tree. SMO is an implementation of the sequential minimal
optimization for efficiently training support vector machines [15]. All these methods
were run using the Weka package [16] with the following configurations: (1) k = 3 for
IBk and (2) the rest of the parameters were set to their default value.

Ten-Fold Cross-Validation. The performance of each technique was evaluated with
the test classification accuracy, estimated using stratified ten-fold cross-validation [7].
Figures 7 and 8 represent the test accuracy over the complexity measurement space
projected to the first two principal components. The x-axis refers to the first princi-
pal component and the y-axis refers to the second principal component. The color bar
shows the gradation of the test accuracy; the darker the color, the lower the accuracy.
For clarity of the plots, the accuracies are shown with a truncated scale from 25% to
100%. In Figures 7 and 8, we can see the results obtained by C4.5, IB3, NB, PART,
RT, and SMO over the data sets generated using the five different seeds. Each column
refers to each seed problem, namely, Checkerboard, Pima, Spiral, Wave Boundary, and
Yin Yang.

We observe that C4.5 achieves a good performance except for a small group of prob-
lems located in the upper left corner, whereas IB3 behaves correctly for only half of the
collection. According to the gradation of the accuracy, we believe that this measurement
space is able to distinguish to some extent between easy and difficult problems. As all
the learners involved in the experimentation failed learning the concept of the data sets
located in the upper left corner, we can conclude that those data sets refer to difficult
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Fig. 3. C4.5 accuracies over the (a) training collection S1, (b) test collection S2, and (c) test
collection S3

problems. On the other hand, regarding the algorithms based on decision trees, C4.5 and
RT behave similarly whereas this pair differs from the PART results. This may indicate
that we should relate the data complexity with the knowledge representation used by
the learners instead of the learning paradigms.

Results with the Reserved Test Sets. Figures 3(a), 3(b), and 3(c) show the training
accuracy of C4.5 over S1 and the test accuracies of C4.5 over the collections S2 and
S3. These two collections, S2 and S3, were generated based on the same partition of
the space used to generate S1. We used a larger random selection of problems in order
to match each problem contained in S1 with problems generated with the same seed
problem and are of comparable data complexity. Thus, problems contained in S2 and
S3 have structurally similar counterparts in S1.

In general, we observe that the accuracies obtained during training remain in the
same range as the accuracies attained during testing. However, for problems with simi-
lar complexity, the comparative advantages between classifiers are sometimes reversed.
The problems seemingly easy in S1 could result in low accuracies in S2 and S3. This
means that, for apparently easy problems, the accuracies are less consistent across dif-
ferent sample problems of the same complexity. This leads to a note of caution that
data complexity alone is not sufficient to ensure similar classifier performances if the
training and testing data may differ structurally. Additional measures of the structural
similarity between training and testing data are needed to project classification accuracy.
An extreme example is as follows: data sets with either a vertical linear boundary or a
horizontal linear boundary can have the same geometric complexity; but if the learner
is trained with a data set containing a vertical boundary and tested on another data set
containing a horizontal boundary, the classification accuracy will be low. For data gen-
erated from the same seed problem, such large differences in structure are unlikely, but
not impossible at local scales, especially when the samples are sparse.

3.4 Results with the Contestants’ Classifiers

In analyzing the contestants’ results, we notice that the methods proposed by Teams 1
and 2 behave similarly. For the majority of the problems they score the same accuracies.
In a win/loss comparison over the 300 data sets, Team 1 outperforms the others in 121
problems and Team 2 outperforms in 61 problems. For the other 118 problems, either all
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Fig. 4. Classifier accuracies over the test collection S2: (a) Team 1, (b) Team 2, and (c) Team 3

three techniques achieve the same score, or just Teams 1 and 2 come to a draw. A paired
T-test shows that the difference between Teams 1 and 2 is not statistically significant,
whereas their differences with Team 3 are. The accuracies of Team 3 are far below its
rivals’; its average accuracy is 76% while the others’ are about 92%.

Figure 4 plots the results with the reserved test set S2. For clarity, it plots only those
data sets for which the learners achieved accuracies lower than 80%. In general, the
number of correctly classified instances is high. Nonetheless, Figures 4(a) and 4(b)
show some spots where the accuracies are extremely low and suggest performing an
in-depth study with these specific data sets. Interestingly they are not located in the
same region of the complexity space. For both learning paradigms, there is a com-
mon set of problems that cause degradations to their performances. These problems,
despite belonging to different zones of the space, share the same underlying concept:
a wave-shaped boundary (Wave Boundary). For Team 2, a checkerboard distribution
poses some difficulties too. This points out the significant role of the “seeding” learning
concept.

Regarding the domains of competence of classifiers, Team 2 performed a comparison
with nineteen classifiers and observed that each of the nineteen classifiers they tried has
a unique data set for which it is the best. This is a very interesting result, and can be
a subject for further study. Figure 5 shows the location of these nineteen data sets in
the PC1-PC2 space. This kind of study may help to open up a new methodology to test
machine learning techniques by using prototypical data sets.

3.5 Announcement of Awards

The contest was composed of three different tests: (1) offline test, (2) real-time test, and
(3) the neighborhood dominance test. (2) and (3) were held for a fixed allocation of time
during the conference. The winner of each test was determined to be the followings.

Champion of the offline test: The winner is... Team 1
Their test results, obtained over the collection S2, were high with an average accuracy
of 92.36%. Given that the difference to their rival’s is not statistically significant, we
resort to win/loss/tie counting, and the counts show that their system outperformed in
121 and behaved equally with their rival’s in 118 out of 300 data sets.
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Fig. 5. Data sets within the collection S1 that are favored by the nineteen classifiers attempted by
Team 2

Champion of the real-time test: The winner is... Team 1
Their test results, obtained over the collection S3, were high with an average accuracy
of 81.73%, which again did not differ from their rival’s with statistical significance. Yet,
by win/loss/tie counting, their system outperformed in 167 and behaved equally with
their rival’s in 28 out of 300 data sets.

Champion of the neighborhood dominance test: The winner is... Team 2
Teams 1 and 2 were able to defend the dominance of their competence neighborhood,
whereas Team 3 could not. In addition, Team 2 was unbeaten in Team 3’s dominance re-
gion. While Teams 1 and 2 were again close rivals, Team 2 showed a notable dominance
in its competence region, being superior to Team 1 and presenting small differences in
Team 1’s competence neighborhood.

We were pleasantly surprised by the unexpected exploration and discoveries the
participants made using the training collection, and the perseverance the participants
showed in overcoming the difficulties associated with the contest. Therefore we de-
cided to give two more awards to the teams most accomplished in these dimensions:

Excellence in offline training: The winner is... Team 2
For their extra analysis of the behavior of nineteen classifiers, and their discovery of the
nineteen “golden” data sets.

Perseverance in participation: The winner is... Team 3
For their perseverance in completing the competition despite the difficulties.

We sincerely thank all the participants for making this contest a success.

4 Discussion

The performed experiments have shown interesting results that point out the impor-
tance of the problem structure. In order to better understand the learners’ behavior or to
make some guidelines to choose the right learner any time, we have to address in detail
three key points related to the construction of the testing framework: (1) complexity
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Fig. 6. Coverage derived from each seed data set: (a) Checkerboard, (b) Pima, (c) Spiral, (d) Wave
Boundary, and (e) Yin Yang

measures, (2) structural dimension, and (3) completeness. In the following, each one of
these aspects is elaborated.

Complexity Measures. The proposed landscape is built using eleven of the twelve com-
plexity measures proposed in [10]. However, it is important to analyze the contribution
of each measure and how the problem distribution may be modified depending on the
insertion of more complexity measures or the deletion of some. Moreover, it would be
interesting to determine whether this space suffices to provide some guidelines that link
data characteristics to learner properties, or whether we have to carry out an individual
study for each complexity measure.

Structural Limits from Seeding Data. The coverage of the proposed space is based on
the difficulty of the problems originating from only five seed data sets each representing
a different pair of class concepts. The nature of the seed distributions may influence the
resulting testing framework. Figure 6 shows how each seed data set leads to the cover-
age of a different region of the space, with some overlapping. Further work should be
planned to determine the effect of the seed data on the resulting coverage, and whether
coverage originating from different seed data would have any significant difference.

Completeness. The two aforementioned aspects lead to the concern about whether and
how the completeness of the space could be guaranteed. What is the minimum number
of dimensions needed to fully represent the difficulty of a problem? Which of these
dimensions are most suitable? What would be the proper seed data that have the farthest
reach over the space? In our proposal, we are able to cover more than 50% of the volume
of space (in the first two principal components). It is to be seen whether the remaining
regions are inherently empty, or could be reached using some other seed data.



42 N. Macià et al.
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Fig. 7. C4.5, IB3, and NB test accuracy over ten-fold cross-validation (a1, a2, a3) Checkerboard,
(b1, b2, b3) Pima, (c1, c2, c3) Spiral, (d1, d2, d3) Wave Boundary, and (e1, e2, e3) Yin Yang
respectively
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Fig. 8. PART, RT, and SMO test accuracy over ten-fold cross-validation (a1, a2, a3) Checkerboard,
(b1, b2, b3) Pima, (c1, c2, c3) Spiral, (d1, d2, d3) Wave Boundary, and (e1, e2, e3) Yin Yang
respectively
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5 Conclusions

The problems generated using our approach offer some potential to perfect classifica-
tion techniques since it is possible to tailor collection of data characterized by specific
complexities to evaluate and debug the learners. Nevertheless, we believe that this is
only a small step towards offering guidelines to select the right learner according to the
complexity of the data. The consolidation of the independent and relevant features for
characterizing a problem is still a pending task. We have some early success in creating
a set of problems that can reach a large range in data complexity. Analysis of classifier
performances in the reached regions highlights their differences in a systematic way.
We believe that we are on the way to understand the crucial role that data complexity
plays in the analysis and evaluation of classification techniques.
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Abstract. General dissimilarity-based learning approaches have been proposed
for dissimilarity data sets [1,2]. They often arise in problems in which direct com-
parisons of objects are made by computing pairwise distances between images,
spectra, graphs or strings.

Dissimilarity-based classifiers can also be defined in vector spaces [3]. A
large comparative study has not been undertaken so far. This paper compares
dissimilarity-based classifiers with traditional feature-based classifiers, including
linear and nonlinear SVMs, in the context of the ICPR 2010 Classifier Domains
of Competence contest. It is concluded that the feature-based dissimilarity space
classification performs similar or better than the linear and nonlinear SVMs, as
averaged over all 301 datasets of the contest and in a large subset of its datasets.
This indicates that these classifiers have their own domain of competence.

1 Introduction

Pairwise dissimilarities constitute a natural way to represent objects. They may even
be judged as more fundamental than features [4]. Vector spaces defined by pairwise
dissimilarities computed between objects like images, spectra and time signals offer an
interesting way to bridge the gap between the structural and statistical approaches to
pattern recognition [1,2]. Structural descriptions may be used by the domain experts
to express their specific background knowledge [5,6]. Such descriptions often rely on
graphs, strings, or normalized versions of the raw measurements, while maintaining the
object connectivity in space, frequency or time. A well chosen dissimilarity measure is
used to compare objects to a fixed set of representation objects. Such dissimilarity vec-
tors construct a vector space, the so-called dissimilarity space. Traditional classifiers,
designed for feature spaces, can be constructed in the dissimilarity space.

This dissimilarity approach may also be used on top of a feature representation [3].
It offers thereby an alternative to kernel approaches based on similarities. Dissimilarity
measures are more general than kernels. The later have to obey the Mercer condition so
that the implicit construction of classifiers, such as Support Vector Machine (SVM), can
be possible in the related kernel spaces. The dissimilarity approach has the advantage
that any measure can be used as well as any classifier that works in vector spaces.

It is the purpose of this paper to present a large scale comparison between traditional
classifiers built in a feature vector space and some appropriate classifiers built in the

D. Ünay, Z. Çataltepe, and S. Aksoy (Eds.): ICPR 2010, LNCS 6388, pp. 46–55, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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dissimilarity space defined over the original feature space. This dissimilarity space is
built by the Euclidean distances to the set of chosen representation objects. The dimen-
sion of the space equals the size of the representation set. Various studies are available
on the selection of this set out of the training set [7,8] and classification results depend
on such a selection procedure. To simplify our experiments we will restrict ourselves to
representation sets that are equal to the training set. It means that the number of training
objects is identical to the dimension of the space. Consequently, we focus on classifiers
in the dissimilarity space that can handle this situation.

2 The Dissimilarity Representation

The dissimilarity representation has extensively been discussed, e.g. in [1] or [9], so we
will only focus here on some aspects that are essential for this paper.

Traditionally, dissimilarity measures were optimized for the performance of the near-
est neighbor rule. In addition, they were also widely used in hierarchical cluster anal-
ysis. Later, the resulting dissimilarity matrices served for the construction of vector
spaces and the computation of classifiers. Only more recently proximity measures have
been designed for classifiers that are more general than the nearest neighbor rule. These
are usually similarities and kernels (but not dissimilarities) used in combination with
SVMs. So, research on the design of dissimilarity measures such that they fit to a wide
range of classifiers is still in an early stage. In this paper we focus on the Euclidean
distance derived in the original feature space. Most traditional feature-based classifiers
use the Euclidean distance measure in one way or the other as well. It is our purpose
to investigate for which datasets such classifiers can be improved by transforming the
feature space into a dissimilarity space, both relying on the same Euclidean distance.

Given a set of pairwise dissimilarities between all training objects, the so-called dis-
similarity matrix, we studied two ways of constructing a vector space [1]: the postu-
lation of a dissimilarity space and a (pseudo-Euclidean) embedded space. Because the
dissimilarity matrix we compute here is the Euclidean distance matrix in the feature
space, the resulting embedded space is the original feature space. Therefore, we will
just deal with the dissimilarity space, which is introduced now more formally.

2.1 Dissimilarity Space

Let X = {o1, . . . ,on} be a training set of objects oi, i = 1, . . . ,n. In general, these are
not necessarily vectors but can also be real world objects or e.g. images or time signals.
Given a dissimilarity function and/or dissimilarity data, we define a data-dependent
mapping D(·,R) : X → R

k from X to the so-called dissimilarity space [10,11,12].
The k-element set R consists of objects that are representative for the problem. This
set, the representation or prototype set, may be a subset of X . In the dissimilarity
space each dimension D(·, pi) describes a dissimilarity to a prototype pi from R. Here,
we will choose R := X . As a result, every object is described by an n-dimensional
dissimilarity vector D(o,X ) = [d(o,o1) . . . d(o,on)]T , which is a row of the given
dissimilarity matrix D. The resulting vector space is endowed with the traditional inner
product and the Euclidean metric. Since we have n training objects in an n-dimensional
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space, a classifier such as SVM is needed to handle this situation. Other solutions such
as dimension reduction by PCA or prototype selection are not considered here with one
exception, i.e. the use of a representation set, randomly selected out of the training set
and consisting of 20% of the training objects. We will then compare classifiers built in
complete dissimilarity spaces with classifiers built in the reduced spaces (defined over
smaller representation sets), yielding five times as many objects as dimensions.

Since the dissimilarity space is defined by the Euclidean distance between the objects
in the feature space and, in addition, we also use Euclidean distance over the dissimi-
larity space, it can easily be shown that asymptotically (for growing representation sets
and training sets) the nearest neighbors in the dissimilarity space are identical to the
nearest neighbors in the feature space. This does not hold, however, for finite sets. This
is an advantage in case of noisy features: nearest neighbors in the dissimilarity space
are more reliable than in the feature space because noise is reduced by averaging in the
process of computing distances.

2.2 Feature-Based Dissimilarity Space Classification

Feature-based Dissimilarity Space (FDS) classification is now defined as follows:

1. Determine all pairwise distances as an n× n dissimilarity matrix D between the n
objects in the training set X = {o1, . . . ,on}. Di j is the Euclidean distance between
the i-th and j-th objects.

2. Define the dissimilarity space as a Euclidean vector space X by X = D. Hereby, an
i-th object is represented by a dissimilarity vector of the Di j-values, j = 1, . . . ,n.

3. Train classifiers on the n training objects represented in the n-dimensional dissimi-
larity space.

4. Test objects are represented in the dissimilarity space by their Euclidean distances
to the objects in the training set and applied to the trained classifier in this space.

Traditional classifiers can now be used as FDS classifiers. We will study three classifiers
here: the (pseudo-)Fisher linear discriminant, the logistic classifier and linear SVM.
Concerning computational effort, the dimensionality is increased to the feature size n.
In particular, the Fisher discriminant may suffer from this as it relies on the inverse of
an n×n covariance matrix.

In order to illustrate some properties of FDS classification on a two-dimensional
spiral dataset we compare two classifiers: an optimized radial basis SVM computed in
the feature space (implicitly in the radial basis kernel space) and a Fisher discriminant
in the dissimilarity space; see Figure 1. The later classifier is overtrained and results in
a hyperplane having exactly the same distances to all objects in the training set. This
works out such that in the feature space the distances to the most neighboring objects
are still about equal on all positions of the spiral. This does not hold for SVM whose
constant kernel is too narrow on the outside of the spiral and too large in the center.

3 Observations on the Datasets

We use the ICPR2010 Landscape contest for a systematic comparison with a set of other
classifiers of the 301 contest datasets. All but one datasets are just two class problems.
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Fig. 1. A spiral example with 100 objects per class. Top row shows the complete data sets, while
bottom row presents the zoom of the spiral center. 50 objects per class, systematically sampled,
are used for training. The middle column shows the training set and the SVM with an optimized
radial basis function; 17 out of 100 test objects are erroneously classified. The right column
shows the Fisher linear discriminant (without regularization) computed in the dissimilarity space
derived from the Euclidean distances. All test objects are correctly classified.

They are either 8-dimensional or 20-dimensional and the class sizes vary between 5 and
938. The largest dataset has 20 classes in 20 dimensions and has almost 10000 objects.
We observe that a small amount of artificial noise has been added in a number of cases.
A two-dimensional linear subspace obtained by 2-dimensional PCA is informative for
a number of datasets. As we intend to compare a large set of classifiers we restrict
ourselves by some choices.

1. No feature scaling is included. This would be profitable for about 100 datasets, but
it would double the set of experiments to be run with and without feature scaling.
For other datasets feature scaling would also emphasize the artificially added noise.

2. Since many classifiers cannot be directly applied to the set of 10000 objects, the
following scheme has been followed:

(a) The 65 datasets with more than 500 objects are split at random in equally sized
subsets smaller than 500.

(b) For each of these subsets a version of the particular classifier is trained obtain-
ing either posterior probabilities or class confidences in the [0,1] interval.

(c) During classification these base classifiers are combined by the sum rule.

3. Class sizes can be very skewed. It is assumed that the observed class frequencies
are representative for the test sets. So no corrections are made for the skewness.
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4. Due to a large set of datasets we skip very time consuming snd advanced classifiers
such as adaboost, neural networks and SVMs with kernels optimized by grid search.

5. Instead of a grid search we use ’smart’ choices for the regularization parameter
of the SVMs and the choice of the kernels. This will not directly influence our
conclusions as we use the same SVM procedures in the feature space as well as in
the dissimilarity space.

6. We also include one classifier in the 2D PCA space as good results are achieved in
2D subspaces for some datasets. This would not be an obvious choice for general
problems but it seems appropriate in the setting of artificially generated datasets.

4 Experiments

We train all classifiers by 10-fold cross-validation. The total execution time is about five
days. The results of our experiments are presented in Table 1. The classifiers are:

1-NN, the 1-nearest neighbor rule.
k-NN, the k-nearest neighbor rule. k is optimized by LOO (Leave-One-Out)

cross-validation over the training set.
ParzenC, densities estimated by a single Parzen kernel. Its width is optimized by LOO

cross-validation over the training set.
ParzenD, densities estimated by different Parzen kernels per class, using an

ML-estimator for the kernel width. The variances of the kernels are for every
dimensions proportional to the corresponding class variances.

Nearest Mean, the nearest mean classifier.
UDA, uncorrelated discriminant analysis assuming normally distributed classes with

different diagonal covariance matrices. This routine is similar to the so-called
Gaussian Naive Bayes rule.

LDA, linear discriminant analysis assuming normally distributed classes with a
common covariance matrix for all classes.

QDA, quadratic discriminant analysis assuming normally distributed classes with
different covariance matrices.

Naive Bayes, using histogram density estimates with 10 bins per feature.
Logistic, linear logistic classifier.
FDS-0.2-Fish, feature-based dissimilarity space classifier, using randomly selected

20% of the training set for representation and the Fisher discriminant for
classification.

FDS-Fish, FDSC using the (pseudo-)Fisher discriminant for classification. For a com-
plete dissimilarity space whose dimension is equal to the size of the training set,
first the null-space is removed and then the linear classifier is constructed that
perfectly separates the classes in the training set. This classifier is overtrained in
comparison to a linear SVM as it uses all objects as ’support’ objects.

FDS-Logistic, FDSC using the linear logistic classifier. Similarly to the (pseudo-)
Fisher rule, this classifier is overtrained in the complete dissimilarity space.

FDSC-C-SVM, FDSC using the C-SVM rule to compute a linear classifier. The value
of C is set to 1 and is rather arbitrary.
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Table 1. The averaged results per classifier: the mean classification error, the number of times the
classifier is the best and the average classifier rank

Mean error # Best Scores Mean rank
1-NN 0.204 6.0 13.7
k-NN 0.165 12.5 8.6
ParzenC 0.172 13.0 9.6
ParzenD 0.209 6.0 12.7
Nearest Mean 0.361 1.0 16.8
UDA 0.168 43.0 10.4
LDA 0.202 16.5 9.6
QDA 0.216 1.0 12.0
NaiveBayes 0.162 30.0 9.3
Logistic 0.204 13.5 10.4
FDS-0.2-Fish 0.191 7.5 12.1
FDS-Fish 0.162 9.0 8.5
FDS-Logistic 0.157 11.0 7.8
FDS-C-SVM 0.170 13.0 8.1
FDS-ν-SVM 0.159 8.0 7.1
PCA2-FDS-Fish 0.143 70.5 7.7
C-SVM 0.195 12.0 8.5
ν-SVM 0.208 12.5 9.8
RB-SVM 0.160 15.0 7.3

FDSC-ν-SVM, FDSC using the ν-SVM rule to compute a linear classifier. ν is esti-
mated from the class frequencies and the LOO 1-NN error. This error serves as an
estimate of the number of support objects. It is corrected for the sometimes very
skewed class frequencies.

PCA2-FDSC-Fish, the feature space is first reduced to two dimensions by PCA. This
space is converted to a dissimilarity space, in which the (pseudo-)Fisher discrimi-
nant is computed.

C-SVM, C-SVM in a feature space with C = 1.
ν-SVM, the ν-SVM rule described above, now in a feature space.
RB-SVM, the radial basis SVM using an estimate for the radial basis function based

on the Parzen kernel as found by ParzenC. As a ’smart’ choice we use five times the
width of the Parzen kernel as found by ParzenC and the ν-SVM rule as described
above.

All experiments are performed by PRTools [13]. The LIBSVM package is used for
training SVM [14]. All classifiers in the dissimilarity space are linear, but they corre-
spond to nonlinear classifiers in the original feature space thanks to the nonlinearity of
Euclidean distance. All other classifiers are computed in the original feature space.

The best classifier, PCA2-FDSC-Fish, makes use of the analyst observation that a
number of datasets is in fact just 2D. If we abstain from this classifier then still the
dissimilarity-based classifiers perform very well, comparable or better than the radial
basis SVM. A plausible explanation is that FDSC can be understood as a SVM with
a variable kernel as illustrated in Section 2. It has, however, the disadvantage that the
linear classifier in the dissimilarity space still depends on all objects and is not restricted
to a set of support objects. It may thereby be outlier sensitive.



52 R.P.W. Duin et al.

Ta
bl

e
2.

C
la

ss
ifi

ca
ti

on
er

ro
rs

fo
r

m
os

tc
ha

ra
ct

er
is

ti
c

da
ta

se
ts

.B
es

tr
es

ul
ts

pe
r

da
ta

se
ta

re
un

de
rl

in
ed

.

D
24

2
D

47
D

20
0

D
16

8
D

11
6

D
29

1
D

18
0

D
10

0
D

29
8

D
82

D
18

3
D

17
1

D
29

2
D

28
6

D
97

D
5

D
29

D
24

D
21

8
1-

N
N

.1
20

.3
28

.0
83

.2
50

.3
50

.3
21

.0
49

.2
35

.6
11

.3
02

.0
74

.1
66

.0
49

.1
01

.1
64

.5
30

.5
26

.4
16

.0
60

k-
N

N
.1

60
.2

20
.1

75
.2

54
.1

73
.2

72
.0

46
.1

26
.4

25
.3

00
.0

56
.1

66
.0

49
.1

01
.1

28
.5

13
.3

79
.2

96
.0

47
Pa

rz
en

C
.1

44
.2

54
.0

68
.2

84
.2

07
.2

89
.0

51
.1

62
.4

49
.2

96
.0

52
.3

66
.0

51
.1

26
.1

25
.5

33
.4

53
.3

22
.0

47
Pa

rz
en

D
.1

32
.3

23
.1

35
.2

22
.3

57
.4

03
.0

60
.2

35
.6

18
.2

79
.0

69
.1

86
.0

51
.0

86
.1

45
.5

60
.4

40
.3

82
.0

56
N

ea
re

st
M

ea
n

.2
77

.4
27

.4
25

.4
01

.1
67

.5
80

.1
14

.4
90

.3
85

.3
78

.5
11

.4
19

.5
21

.3
73

.1
78

.5
37

.4
35

.3
30

.5
09

U
D

A
.1

79
.2

67
.0

99
.2

74
.2

13
.0

75
.0

34
.1

26
.4

25
.2

53
.0

78
.2

84
.0

87
.2

20
.0

92
.5

27
.3

66
.2

70
.0

73
L

D
A

.1
77

.2
63

.3
10

.2
52

.1
97

.5
57

.0
20

.1
29

.4
12

.2
50

.0
69

.3
04

.0
49

.2
07

.0
95

.5
17

.3
66

.2
79

.0
47

Q
D

A
.1

70
.2

72
.1

20
.2

77
.2

80
.1

64
.0

71
.1

23
.4

95
.2

60
.0

69
.2

82
.0

67
.2

02
.1

32
.5

03
.3

62
.3

35
.0

56
N

ai
ve

B
ay

es
.1

58
.2

93
.1

17
.2

40
.2

07
.1

70
.0

49
.1

23
.2

03
.2

65
.0

69
.2

94
.0

56
.1

88
.1

15
.5

07
.3

71
.3

05
.0

43
L

og
is

ti
c

.1
72

.2
63

.3
04

.2
54

.1
97

.5
54

.0
34

.1
29

.4
09

.2
36

.0
69

.3
01

.0
54

.2
20

.0
99

.5
13

.3
79

.2
79

.0
52

F
D

S
-0

.2
-F

is
h

.2
19

.3
10

.1
75

.2
85

.2
77

.2
16

.0
34

.1
32

.4
98

.2
81

.0
48

.3
37

.0
67

.2
00

.1
02

.5
50

.4
40

.3
52

.0
47

F
D

S
-F

is
h

.1
58

.2
89

.1
82

.3
07

.2
17

.1
67

.0
31

.1
26

.4
62

.2
89

.0
56

.1
33

.0
41

.0
86

.0
95

.5
33

.4
66

.3
65

.0
47

F
D

S
-L

og
is

ti
c

.1
30

.2
89

.0
86

.2
40

.2
17

.1
67

.0
31

.1
23

.4
62

.2
77

.0
56

.1
37

.0
36

.0
81

.0
95

.5
43

.4
66

.3
65

.0
47

F
D

S
-C

-S
V

M
.1

70
.2

80
.1

88
.2

62
.1

87
.2

26
.0

31
.1

23
.4

22
.2

89
.0

65
.1

42
.0

54
.0

72
.0

89
.4

93
.4

57
.3

43
.0

43
F

D
S

-ν
-S

V
M

.1
57

.2
46

.1
23

.2
70

.1
93

.2
36

.0
29

.1
26

.4
32

.2
89

.0
61

.2
10

.0
51

.1
36

.0
66

.4
87

.3
88

.2
88

.0
43

P
C

A
2-

F
D

S
-F

is
h

.1
58

.3
19

.0
93

.3
02

.2
40

.1
97

.0
40

.1
23

.3
02

.3
52

.0
61

.1
61

.0
44

.0
99

.0
86

.1
20

.4
27

.4
03

.0
60

C
-S

V
M

.2
00

.2
50

.2
86

.2
42

.1
87

.4
30

.0
29

.1
29

.4
12

.2
48

.0
61

.3
08

.0
56

.2
02

.0
86

.5
17

.3
32

.2
92

.0
43

ν-
S

V
M

.2
00

.2
54

.2
86

.2
67

.1
93

.5
28

.0
37

.1
79

.4
15

.2
72

.0
61

.3
35

.0
56

.2
44

.0
92

.4
90

.3
66

.2
49

.0
43

R
B

-S
V

M
.1

60
.2

54
.1

25
.2

70
.1

97
.1

74
.0

31
.1

29
.4

45
.2

79
.0

61
.4

19
.0

54
.1

36
.0

95
.5

03
.3

62
.2

88
.0

39



Feature-Based Dissimilarity Space Classification 53

Fig. 2. Dendrogram

The classification of the test sets in the competition is based on the best classifier per
dataset determined by the 10-fold cross-validation experiments. This classifier is trained
by the entire training set. The performance of this classification rule can be estimated
by the average of the minimum cross-validation error per dataset (of the best classifier
for that dataset). This appears to be 0.106. This number is optimistically biased as it
is based on the minima of 19 stochastic numbers. A better estimate would demand an
additional 10-fold cross-validation loop over all classifiers. This would have increased
the computation time to about 50 days. The meaning of such error estimates is of course
very limited. It is an estimate of the expected error of the best classifier found by 10-
fold cross-validation for a new dataset randomly selected out of the same distribution
of datasets that generated the set used in contest.

We applied a cluster analysis to the 19×301 matrix of all classification errors in order
to obtain a better view of the similarities of the various classifiers (as seen through the
eyes of the set of contest datasets). In Figure 2 the dendrogram is shown resulting from
a complete linkage cluster procedure. A number of obvious relations can be observed:
k-NN and ParzenC, or the linear classifiers group (LDA, logistic and linear SVMs). The
various FDS classifiers constitute a group with the RB-SVM, which make sense as all
are nonlinear classifiers in the feature space.

5 Discussion

Our experiments are run on the set of contest datasets. The results show that the best
linear classifiers in the dissimilarity space (FDSC-ν-SVM) perform overall better than
the linear as well as nonlinear SVM in the feature space. This result is of minor interest
as it depends on the distribution of datasets in the contest. One should realize that for
any classification rule, datasets can be either found or constructed for which this rule
outperforms all other rules. As each classifier relies on assumptions, estimators or ap-
proximations, a dataset for which these are exactly fulfilled is an ideal dataset for that
classifier.
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Table 3. Rank correlations of the classification errors for the most characteristic datasets

1-N
N
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FD
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FD
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FD
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-SV
M

FD
S-ν

-SV
M

PC
A

2-FD
S-Fish

C
-SV

M

ν
-SV

M

R
B

-SV
M

1-NN 1.0 -0.0 0.3 0.8 -0.4 -0.3 -0.5 -0.1 -0.0 -0.5 -0.3 0.3 0.7 -0.1 -0.2 0.3 -0.7 -0.7 -0.4
k-NN -0.0 1.0 0.4 -0.0 0.2 -0.5 -0.1 -0.1 -0.2 -0.1 -0.1 -0.0 -0.1 0.1 0.2 -0.1 -0.1 0.1 -0.0
ParzenC 0.3 0.4 1.0 0.2 -0.1 -0.3 -0.5 -0.2 -0.2 -0.5 0.3 0.1 0.1 -0.3 0.2 -0.0 -0.3 -0.1 0.2
ParzenD 0.8 -0.0 0.2 1.0 -0.5 -0.4 -0.3 -0.0 0.0 -0.3 -0.1 0.2 0.7 -0.1 -0.5 -0.0 -0.4 -0.6 -0.4
Nearest Mean -0.4 0.2 -0.1 -0.5 1.0 0.1 0.3 -0.2 0.2 0.5 -0.3 -0.5 -0.6 0.0 -0.1 -0.1 0.3 0.4 0.1
UDA -0.3 -0.5 -0.3 -0.4 0.1 1.0 0.1 0.5 0.2 0.3 0.0 -0.3 -0.3 -0.3 -0.2 -0.1 0.2 0.1 0.1
LDA -0.5 -0.1 -0.5 -0.3 0.3 0.1 1.0 -0.3 -0.1 0.8 -0.2 -0.4 -0.5 -0.2 0.0 -0.5 0.7 0.6 0.2
QDA -0.1 -0.1 -0.2 -0.0 -0.2 0.5 -0.3 1.0 0.4 -0.1 0.0 -0.2 -0.0 -0.3 -0.3 0.1 -0.3 -0.2 0.0
NaiveBayes -0.0 -0.2 -0.2 0.0 0.2 0.2 -0.1 0.4 1.0 0.1 -0.2 -0.5 -0.1 -0.0 -0.5 -0.0 -0.1 -0.1 -0.0
Logistic -0.5 -0.1 -0.5 -0.3 0.5 0.3 0.8 -0.1 0.1 1.0 -0.4 -0.6 -0.6 -0.2 -0.1 -0.4 0.6 0.7 -0.0
FDS-0.2-Fish -0.3 -0.1 0.3 -0.1 -0.3 0.0 -0.2 0.0 -0.2 -0.4 1.0 0.3 0.2 -0.1 -0.0 -0.2 0.1 -0.0 0.3
FDS-Fish 0.3 -0.0 0.1 0.2 -0.5 -0.3 -0.4 -0.2 -0.5 -0.6 0.3 1.0 0.7 0.3 0.1 0.4 -0.5 -0.6 -0.3
FDS-Logistic 0.7 -0.1 0.1 0.7 -0.6 -0.3 -0.5 -0.0 -0.1 -0.6 0.2 0.7 1.0 0.1 -0.2 0.3 -0.6 -0.9 -0.6
FDS-C-SVM -0.1 0.1 -0.3 -0.1 0.0 -0.3 -0.2 -0.3 -0.0 -0.2 -0.1 0.3 0.1 1.0 0.3 0.3 -0.1 -0.1 -0.2
FDS-ν-SVM -0.2 0.2 0.2 -0.5 -0.1 -0.2 0.0 -0.3 -0.5 -0.1 -0.0 0.1 -0.2 0.3 1.0 0.1 0.1 0.3 0.3
PCA2-FDS-Fish 0.3 -0.1 -0.0 -0.0 -0.1 -0.1 -0.5 0.1 -0.0 -0.4 -0.2 0.4 0.3 0.3 0.1 1.0 -0.6 -0.4 -0.4
C-SVM -0.7 -0.1 -0.3 -0.4 0.3 0.2 0.7 -0.3 -0.1 0.6 0.1 -0.5 -0.6 -0.1 0.1 -0.6 1.0 0.7 0.4
ν-SVM -0.7 0.1 -0.1 -0.6 0.4 0.1 0.6 -0.2 -0.1 0.7 -0.0 -0.6 -0.9 -0.1 0.3 -0.4 0.7 1.0 0.5
RB-SVM -0.4 -0.0 0.2 -0.4 0.1 0.1 0.2 0.0 -0.0 -0.0 0.3 -0.3 -0.6 -0.2 0.3 -0.4 0.4 0.5 1.0

On the basis of the above it is of interest to observe that all classifiers that we studied
here are the best ones for one or more datasets. This proves that the contest is sufficiently
rich to show the variations in classification rules that we applied. Simple rules like
Nearest Mean and 1-Nearest Neighbor are sometimes the best, as well as much more
advanced rules like the Radial Basis SVM and the dissimilarity space classifiers.

To make the analysis less dependent on the accidental collection of problems in the
contest, for every classifier we selected the dataset for which it is the best and for which
the second best classifier is most different. This set of 19 datasets, one for each classifier,
can be considered as a set of prototypical problems. Table 2 presents the 10-fold cross-
validation errors for these prototypical datasets. Table 3 shows the rank correlations
between the classifiers on the basis of the classification errors for these datasets.

In Table 2 the differences between the datasets can be clearly observed. A dataset
that might be judged as very simple is D116, as Nearest Mean is the best. Dataset
D291 is interesting as all linear classifiers fail and perform close to random, while UDA
(Naive Gaussian) is very good. Dataset D29 shows an almost random performance for
all classifiers and inspired us to include the two-dimensional subspace classifier PCA2-
FDS-Fish. We were somewhat disappointed by our ’smart’ choice for ν in the ν-SVM
classifier as it turned out to be very often worse than the C-SVM with the rather arbitrary
choice of C = 1. This holds both for feature spaces as well as dissimilarity spaces.

The similarities and dissimilarities between the classifiers can be better judged from
the rank correlations between the performances on the 19 prototypical datasets; see
Table 3. Strong positive correlations indicate similar classifiers, e.g. 1-NN and ParzenD,
LDA and Logistic or the two linear SVMs. Strong negative correlations can be observed
between the linear and nonlinear classifiers, e.g. the FDS classifiers in the dissimilarity
space. It is interesting that there is no correlation between the 1-NN and k-NN rules.
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6 Conclusions

We have presented a set of classifiers based on a dissimilarity representation built on
top of a feature representation. Linear classifiers in the dissimilarity space correspond
to nonlinear classifiers in the feature space. The nonlinearity has not to be set by some
kernel but results naturally from the object distances in the training set as they are used
for representation. Consequently, there are no parameters to be defined if classification
rules like the Fisher discriminant or the logistic classifier are applied. The contest shows
a large set of examples for which this classification scheme outperforms traditional
classifiers including linear and nonlinear SVMs.

Acknowledgments. We acknowledge financial support from the FET programme
within the EU FP7, under the SIMBAD project (contract 213250) as well as the En-
gineering and Physical Sciences Research Council in the UK.
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Abstract. In this work, we describe the main features of IFS-CoCo,

a coevolutionary method performing instance and feature selection for

nearest neighbor classifiers. The coevolutionary model and several re-

lated background topics are revised, in order to present the method to

the ICPR’10 contest “Classifier domains of competence: The Landscape

contest”. The results obtained show that our proposal is a very com-

petitive approach in the domains considered, outperforming both the

benchmark results of the contest and the nearest neighbor rule.

Keywords: Evolutionary Algorithms, Feature selection, Instance selec-

tion, Cooperative coevolution, Nearest neighbor.

1 Introduction

Data reduction [15] is one of the main process of data mining. In classification,
it aims to reduce the size of the training set mainly to increase the efficiency of
the training phase (by removing redundant instances) and even to reduce the
classification error rate (by removing noisy instances).

The k-Nearest Neighbors classifier (NN) [3] is one of the most relevant algo-
rithms in data mining [21]. It is a Lazy learning method [1], a classifier which
does not build a model in its training phase. Instead of using a model, it is
based on the instances contained in the training set. Thus, the effectiveness of
the classification process relies on the quality of the training data. Also, it is
important to note that its main drawback is its relative inefficiency as the size of
the problem grows, regarding both the number of examples in the data set and
the number of attributes which will be used in the computation of its similarity
functions (distances) [2].

Instance Selection (IS) and Feature Selection (FS) are two of the most success-
ful data reduction techniques in data mining. Both are very effective in reducing
the size of the training set, filtrating and cleaning noisy data. In this way, they
are able to enhance the effectiveness of classifiers (including NN), improving its
accuracy and efficiency [11,12].

D. Ünay, Z. Çataltepe, and S. Aksoy (Eds.): ICPR 2010, LNCS 6388, pp. 56–65, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Evolutionary algorithms (EAs)[6] are general purpose search algorithms that
use principles inspired by nature to evolve solutions to problems. In recent years,
EAs have been successfully used in data mining problems[8,9], including IS and
FS (defining them as combinatorial problems) [4,10].

Coevolution is a specialized trend of EAs. It tries to simultaneously manage
two or more populations (also called species), to evolve them and to allow in-
teractions among individuals of any population. The goal is to improve results
achieved from each population separately. The Coevolution model has shown
some interesting characteristics over the last few years [20], being applied mainly
in the optimization field [19].

In this work, we show the application of IFS-CoCo (Instance and Feature
Selection based on Cooperative Coevolution, already published in [5]) over the
benchmark domains defined for the contest: Classifier Domains of Competence:
The Landscape Contest. The performance of our approach will be tested
throughout the S1 benchmark set of the contest, and compared with the 1-NN
classifier and other reference results.

This work is organized as follows: Section 2 gives an overview of the back-
ground topics related to our approach. Section 3 describes the main features of
IFS-CoCo. Section 4 presents our participation in the Landscape contest and
the results achieved. Section 5 concludes the work.

2 Background

In this section, two main topics related with our proposal will be reviewed:
Evolutionary Instance and Feature Selection (Section 2.1), and Coevolutionary
Algorithms (Section 2.2). Definitions and several cases of application will be
shown in order to provide a solid background to present our approach.

2.1 Evolutionary Instance and Feature Selection

In recent years, EAs have arisen as useful mechanisms for data reduction in data
mining. They have been widely employed to tackle the FS and IS problems.

The FS problem can be defined as a search process of P features from an
initial set of M variables, with P <= M . It aims to remove irrelevant and/or
redundant features, with the aim of obtaining a simpler classification system,
which also may improve the accuracy of the model in classification phase[12].

The IS problem can also be defined as a search process, where a reduced
set S of instances is selected from the N examples of the training set, with
S <= N . By choosing the most suitable points in the data set as instances for
the reference data, the classification process can be greatly improved, concerning
both efficiency and accuracy [11].

In [4], a complete study of the use of EAs in IS is done, highlighting four
EAs to complete this task: Generational Genetic Algorithm (GGA), Steady-
State Genetic Algorithm (SGA), CHC Adaptive Search Algorithm(CHC) [7]
and Population-Based Incremental Learning (PBIL). They concluded that EAs
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outperform classical algorithms both in reduction rate and classification accu-
racy. They also concluded that CHC is the most appropriate EA to make this
task, according to the algorithms they compared. Several researching efforts have
been also applied to develop EA based FS methods. For example, [17] studies
the capabilities of CHC applied to the FS problem.

Beyond these applications, it is important to point out that both techniques
can be applied simultaneously. Despite the most natural way to combine these
techniques is to use one first (e.g. IS), store its results and to apply them to the
second technique (e.g. FS), some authors have already tried to get some profit
from the combined use of both approaches [10].

2.2 Coevolutionary Algorithms

A Coevolutionary Algorithm (CA) is an EA which is able to manage two or
more populations simultaneously. Coevolution, the field in which CAs can be
classified, can be defined as the co-existence of some interacting populations,
evolving simultaneously. In this manner, evolutionary biologist Price [14] defined
coevolution as reciprocally induced evolutionary change between two or more
species or populations. A wider discussion about the meaning of Coevolution in
the field of EC can be found in the dissertation thesis of Wiegand [18].

The most important characteristic of Coevolution is the possibility of splitting
a given problem into different parts, employing a population to handle each one
separately. This allows the algorithm to employ a divide-and-conquer strategy,
where each population can focus its efforts on solving a part of the problem. If the
solutions obtained by each population are joined correctly, and the interaction
between individuals is managed in a suitable way, the Coevolution model can
show interesting benefits in its application.

Therefore, the interaction between individuals of different populations is key
to the success of Coevolution techniques. In the literature, Coevolution is often
divided into two classes, regarding the type of interaction employed:

Cooperative Coevolution: In this trend, each population evolves individuals
representing a component of the final solution. Thus, a full candidate solution
is obtained by joining an individual chosen from each population. In this way,
increases in a collaborative fitness value are shared among individuals of all
the populations of the algorithm [13].

Competitive Coevolution: In this trend, the individuals of each population
compete with each other. This competition is usually represented by a de-
crease in the fitness value of an individual when the fitness value of its
antagonist increases [16].

In this work, we will focus our interest on Cooperative Coevolution, since its
scheme of collaboration offers several advantages for the development of ap-
proaches which integrate several techniques related, e.g. data reduction
techniques.
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3 IFS-CoCo: Instance and Feature Selection Based on
Cooperative Coevolution

In this section we present IFS-CoCo, providing a description of its most impor-
tant charasteristics. A full study concerning several advanced topics about its
behavior (including optimization of its parameter, capabilities when applied to
medium sized data sets, and more) can be found in [5].

Our approach performs several data reduction process (instance selection,
feature selection, and both) in order to build a multiclassifier based on the well-
known nearest neighbor rule (three 1-NN classifiers whose output is agregated
by a majority rule). It defines a cooperative coevolutionary model composed of
three populations, which evolve simultaneously:

– An Instance Selection population (IS).
– A Feature Selection population (FS).
– A dual population, performing both Instance and Feature Selection (IFS).

Figure 1 depicts its organization (N denotes the number of instances in the
training set, whereas M denotes the number of features). In isolation, the three
populations can be seen as genetic-based search methods, where their respective
chromosomes encode the features/instances currently selected. However, in con-
trast to existing evolutionary approaches for Instance Selection [4] or to wrapper
approaches for Feature Selection [12], the evaluation of the quality of the chro-
mosomes (i.e. the fitness function) is not performed in isolation.

Fig. 1. Population scheme of IFS-CoCo: The three populations (IS, FS and IFS) define

three 1-NN classifiers whose output are merged by a majority vote
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Performing an evaluation of the fitness function of IFS-CoCo requires three
chromosomes (one for each population). Once they have been gathered, the
fitness value of a chromosome is computed as follows:

Fitness(J) = α · β · clasRate(J)
+(1 − α) · ReductionIS(J)
+(1 − β) · ReductionFS(J) (1)

– clasRate(J): Classification accuracy over the training set. In order to com-
pute this accuracy, a multiclassifier is built based on three 1-NN classifiers.
Each of them will employ as reference set only the subset defined by each
chromosome selected.
Thus, each chromosome defines a reduced version of the original training set,
which may give a different output than the rest when classifying a training
instance. In order to join these outputs, a majority voting process is per-
formed by the 1-NN classifiers. Its result is taken as the final output of the
multiclassifier.
Finally, the clasRate is computed as the classification accuracy over the train-
ing set by the multiclassifier. This value is assigned to the three chromosomes
employed to compute the fitness function.

– ReductionIS(J): Ratio of instances discarded from the original training
set.

– ReductionFS(J): Ratio of features discarded from the original training set.

The search process of the three populations is conducted by the CHC algorithm
[7]. The populations evolve sequentially, performing a generation in each step,
before starting to evolve the next population. This process is carried out until
the specified number of evaluations runs out. Then, the best chromosome of
each population is gathered, in order to build a final multiclassifier, ready to
classify test instances. This multiclassifier will work in the same manner as all
the multiclassifiers employed in the coevolutionary process.

4 The Landscape Contest

In this section, we describe the experimental study performed. Since it is a part
of the Landscape contest, data sets (Section 4.1) are fixed by the organizers.
Comparison algorithms and configuration parameters employed are also consid-
ered (Section 4.2). Results obtained in the study are shown (Section 4.3) and
analyzed (Section 4.4), discussing the strengths and limitations of our approach.

4.1 Problems

The data sets considered belong to the S1 benchmark provided by the organiza-
tion1. It consists of 300 real-valued small data sets (with less than 1000 instances)
1 http://www.salle.url.edu/ICPR10Contest/?page_id=21

http://www.salle.url.edu/ICPR10Contest/?page_id=21
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and a large data set with roughly 10000 instances, being the majority of them
two-class problems.

These data sets have been partitioned by using the ten fold cross-validation
(10-fcv) procedure, and their values have been normalized in the interval [0, 1]
to equalize the influence of attributes with different ranges (a desirable charas-
teristic for NN-based classifiers, e.g. IFS-CoCo).

4.2 Comparison Algorithms and Configuration Parameters

In order to test the performance of IFS-CoCo, we have selected two additional
methods as reference: 1-NN rule (the baseline classifier whose performance is
enhanced by the preprocessing techniques of IFS-CoCo) and the benchmark re-
sults offered at the contest web page2. We will denote these results as Benchmark
method throughout the study.

The configuration parameters of IFS-CoCo are the same that were used in its
original presentation [5]:

– Number of evaluations: 10000
– Population size: 50 (for each population)
– α weighting factor: 0.6
– β weighting factor: 0.99

Given the scale of the experiment, we have not performed a fine-tuning process
of the parameters for each data set. Instead, we have employed the same con-
figuration in all runs, expecting a suitable behavior in all the cases (for a wider
discussion about the tuning of α and β parameters, see Section 5.3 of [5]).

4.3 Results Achieved on Benchmark S1

Table 1 shows a summary of the results achieved in the S1 benchmark. Accu-
racy denotes the average accuracy obtained through a 10-folds cross validation
procedure, whereas Wins denotes the number of data sets in which each method
achieves the best result of the experiment.

Table 1. Summary of results

Method Accuracy Wins

IFS-CoCo 87.73 173

1-NN 74.17 10

Benchmark 81.84 117

Moreover, Figures 2 and 3 depict a comparison between IFS-CoCo and Bench-
mark or 1-NN, respectively. The dots symbolize the accuracy achieved in test
2 http://www.salle.url.edu/ICPR10Contest/DataSets/TrainingAccuracy.txt

http://www.salle.url.edu/ICPR10Contest/DataSets/TrainingAccuracy.txt
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phase by the two classifiers in a concrete dataset (thus, 301 points are repre-
sented). A straight line splits the graphic, exactly at the points where the accu-
racy measure of both classifiers is equal. Therefore, those points below (right) of
the line represent data sets where IFS-CoCo behaves better than the comparison
algorithm, whereas those points above (left) of the line represent the opposite.

Fig. 2. Graphical comparison of IFS-CoCo vs Benchmark

These graphics emphasize the superiority of IFS-CoCo over the comparison
algorithms. In comparison with Benchmark, our approach greatly improves its
results in a large number of problems. The majority of the problems in which
Benchmark improves IFS-CoCo are easy problems (those in which both classi-
fiers achieved more than a 90% of accuracy), where there are no great differences.
On the contrary, in harder problems, differences are much greater.

Furthermore, the differences between IFS-CoCo and 1-NN are even greater:
There are only a few points in which 1-NN outperforms our approach, most of
them depicting easy problems.

4.4 Strength and Limitations of Our Approach

As we have shown in the former subsection, our approach is able to improve
the performance of the comparison methods. The simultaneous search for the
best instances and features allows IFS-CoCo to dynamically adapt its behavior
to different kinds of problems (i.e. giving more importance to features in some
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Fig. 3. Graphical comparison of IFS-CoCo vs 1-NN

problems and instances in the rest), showing a robust behavior in most of the
domains considered (e.g. the greatest improvement of Benchmark over IFS-CoCo
is in data set d60, 10.98%, whereas the greatest improvement of IFS-CoCo over
benchmark is almost four times higher, 38.32%, in d17).

Moreover, the much reduced size of the subsets selected by IFS-CoCo to build
the final classifier allows to classify quickly the test sets, being 1-NN often slower
than the multiclassifier in test phase.

On the other hand, the main limitation of IFS-CoCo is the computation time
in training phase. The cost of computing 10000 times the fitness function by
means of three 1-NN classifiers is high, thus an important amount of time is
required in order to let IFS-CoCo select the best possible subsets from the train-
ing data (in S1 phase, IFS-CoCo spent almost 4 days to finish the 10-folds cross
validation procedure over the 301 data sets).

5 Conclusions

In this work, we have shown the preliminary results of IFS-CoCo in The Land-
scape contest. These results highlight the good performance of our approach in
general classification domains, outperforming those achieved by the 1-NN rule.
Moreover, it also outperforms the benchmark results offered by the organizers
of the contest.
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The main capability of our approach (the ability of working simultaneously
both in the instances’ and features’ space) has been the key to the robust behav-
ior shown in these problems, performing well in most of the domains considered.
However, a future analysis of the characteristics of the data sets employed could
give a new insight about the strength and limitations of our approach.
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Abstract. This work presents a classification technique based on artifi-

cial immune system (AIS). The method consists of a modification of the

real-valued negative selection (RNS) algorithm for pattern recognition.

Our approach considers a modification in two of the algorithm param-

eters: the detector radius and the number of detectors for each class.

We present an illustrative example. Preliminary results obtained shows

that our approach is promising. Our implementation is developed in Java

using the Weka environment.

1 Introduction

Artificial Immune Systems (AIS) are computational methods inspired by biolog-
ical immune systems to solve complex problems. We highlight their uses in the
pattern recognition task, where the cells and molecules that do not belong to
the body are recognized and eliminated by the immune system. The recognition
task is identified in the process of negative selection and clonal selection, which
are mechanisms present in the immune system.

The negative selection algorithm (NSA) [1] was developed for anomaly detec-
tion, with applications in computer protection, based on negative selection of T
lymphocytes in the thymus. The algorithm is implemented in two phases: cen-
soring and monitoring. In the censoring phase, we define the set of self strings
(S) to be protected. Then, random strings are generated and they are match
against the strings in S. If a string match any one in S, it is rejected. Otherwise,
the string is stored in a set of detectors (R). In the monitoring, the state of self
strings can be monitored by continually matching strings in S against strings in
the defined collection R. If a detector is ever activated, it must be characterized
as a non-self string.

In this work, we proceed to investigate how the detector radius and the number
of the detectors for each class can be modified in order to improve the algorithm.
Our initial proposal involves the calculation of the area covered by each detector
and the possibility of finding the best number of detectors per class.

This paper is organized as follows. In Section 2 we briefly study the original
NSA algorithm for real values. In Section 3, we formally present our modified
RNS describing the calculation of the modified parameters. In Section 4 we
show an application of the proposed approach, using an illustrative example. In

D. Ünay, Z. Çataltepe, and S. Aksoy (Eds.): ICPR 2010, LNCS 6388, pp. 66–74, 2010.
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Section 5 we present the results obtained for the contest using the proposal data
sets, and finally, Section 6 states the conclusion and points to future research
directions.

2 Real-Valued Negative Selection Algorithm (RNS)

The time and space complexity of the NSA is exponential on the window size
used for the detection (the number of bits that should be used when comparing
two binary strings). This may represent a scalability limitation, since a large
window size may be necessary [2].

Another important issue is the representation of the problem space. For some
applications, the binary coding creates difficulty. A real-valued representation
can be employed instead to characterize the self / non-self space and evolve
another set of points (detectors) to cover the non-self space.

The Real-Valued Negative Selection (RNS) [2] uses as input the self samples,
which are represented by n-dimensional points, and tries to evolve detectors
(another set of points) to cover the non-self space. From an initial set of randomly
generated detectors, an iterative process is performed to update the positions
of the detectors driven by two goals: the first is to keep the detector away from
the self points and the second is to maximize the coverage of non-self space by
keeping the detectors separated.

The portion of the hyperspace covered by the detectors can be configured
through the parameter r that specifies the radius of detection for each detector.
Since it is not desirable that the detectors match self points, r is also the shortest
allowed distance between a detector and a self point.

To determine if a detector d matches a self point, the algorithm identifies the
k nearest neighbors of d in the self set. Then, we calculate the median distance of
the k neighbors. If this distance is less than r, it is considered that the detector d
matches the self point. This strategy makes the algorithm more robust to noise
and outliers [2].

The function μd(x) is the membership function of the detector d. It is the mem-
bership degree of x to the detection space around d, and is defined by Equation 1:

μd(x) = e−
|d−x|2

2r2 (1)

For each detector we assign an age, which is increased every time the detector
is inside the self set. If the detector reaches a certain age (indicated by the
parameter t) without leaving the self space, it becomes “old”, and it is replaced
by a new randomly generated detector. The age of a detector that is not in self
space is always zero.

If the distance between the detector d and the nearest self point is less than
the radius r, i.e., if the detector d matches self points, we verify its age t to
determine if it should be replaced. If the detector is not replaced, we calculate
the motion direction of the detector d in the space, taking into account only
the self points. The motion direction is represented by a set of points dir. If the
detector does not match the self points, the direction is calculated taking into
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account only the detectors. This direction is used to determine the new position
of the detector.

3 The RNS-Based Classifier

The original algorithm creates detectors to recognize non-self antigens, discard-
ing the detectors that match the self set. For pattern recognition, in particular,
the classification task, it is necessary that the detectors are able to separate
possible classes in order to make a correct classification of the input element.
Thus, for each class we consider the points belonging to the other classes as self
points, and the ones belonging to the class as non-self.

We generate a set of detectors for each class, from the non-self points, which
are moved away from the self region. In this approach we do not employ the
parameter r, described in previous section. Instead of r given by the user, each
detector has its own radius, calculated based on the higher value between two
distances: the one obtained between the detector and the nearest self point,
and the distance obtained between the detector and the nearest non-self point.
Figure 1 shows these two distances as n1 and n2 in a simple example, and
illustrates a radius for one detector. In this way, each detector has its own radius.
They are different among themselves, and are dependent on the data set.

Our second modification is made to the number of detectors for each class,
considering that not always when we have a data set with k elements and n
classes, these classes are composed of k/n elements. In many real problems, the
sizes of the classes are not proportional or equal to each other. In a previous
test we used an overall percentage of the detectors generated by the method as
an input parameter. Thus, this percentage is multiplied by the total number of
instances in the data set presented as input. The number of detectors so obtained
are divided equally among the classes.

We can easily verify that this is not the best way to find the number of the
detectors we need for each class, because the number of instances per class is not
the same, and in some cases can be very different. Therefore, our approach still has

Fig. 1. Representation of a three classes problem: The radius of detector d based on

distances n1 and n2
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the percentage as a parameter of the algorithm, but we employ it to determine the
number of detectors for each class. For example, if a given data set has 20 instances
for class A and 80 for class B, and the user sets 10% as detectors percentage, it
will generate 2 detectors for class A and 8 for class B, which is different from the
initial approach that would use 5 detectors for each class.

Algorithm 1. MODIFIED-RNS (η, t, k, c, γ)
η: adaptation rate, i.e., the rate at which the detectors will adapt on each step
t: once a detector reaches this age it will be considered mature
k: number of neighbors to take into account
c: number of steps
γ: detectors rate, i.e., percentage of detectors to be generated
Auxiliary functions
Calculate-Radius(d)
d: detector whose radius will be calculated
nearestSelf = find the nearest self neighbor
nearestNonSelf = find the nearest non-self neighbor
n1= distance(d,nearestSelf)
n2= distance(d,nearestSelf)
d.radius= max(n1,n2)

for i = 1 to c do
for each class of the input set do
(*Tested class is considered non-self and remainder is considered self*)
detectorsNumber = γ ∗ numberofinstances/numberofclasses
Generates a random population with detectorsNumber detectors
(*This population contains only non-self points*)

for each detector d do
NearCells =k-nearest neighbors of d in the self set
NearCells is ordered with respect to the distance to d.
NearestSelf = median of NearCells
if distance(d,NearestSelf) < d.radius
then Increase age of d

dir =

∑
c∈NearCells

(d−c)

|NearCells|
if age of d > t (*Detector is old*)
then Replace d by a new random detector
else
d = d + η ∗ dir
Calculate-Radius(d)
end-if
else
age of d = 0

dir =

∑
d′∈Detectors

μd(d′)(d−d′)∑
d′∈Detectors

μd(d′)
d = d + η ∗ dir
Calculate-Radius(d)
end-if
end-for

end-for
end-for
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We are also investigating another approach. Considering that the maximum
number of detectors for each class is the number of instances given as input, we
propose a study of the percentage variation of the detectors number. There is an
expectation that the greater the number of detectors is, the better the classifier
we obtain, because in our method the detectors determine the classifier, i.e., a
set of detectors defines a region for each class. However, since each detector has a
radius trying to cover a non-self space, we know that this region depends on the
data set and how their points span the class space. Thus, in order to check the
best number of detectors for each class on the different classification problems,
this approach is proposed.

After the detectors are generated, the classification of new elements is per-
formed. Given the input, we calculate all the distances from the input to each
detector. The shortest distance defines the element’s class.

Besides the commented parameters, the method still work as in the original
algorithm, with an adaptation rate that drives the evolution of the algorithm
controlling the movement of the detector in the problem space; and the age of
a detector at which the algorithm will substitute it by a new one, like it was
detailed in Section 2. Algorithm 1 presents the schema of the method.

4 Illustrative Example

In the following we present an illustrative example using the Wine data set
available at the UCI Machine Learning Repository [3]. The data are from a
chemical analysis of wines grown in the same region but derived from three
different cultivars. Each of the 178 instances has 13 attributes and the class
sizes are 59, 71 and 48 respectively. In a classification context, it is not a very
challenging data set, but a good one for first testing a classifier.

We perform our tests using the Weka environment. Our implementation is
in Java language taking data in the Weka format. We define a 10-fold cross-
validation test and 100 performances in Weka experimenter. The data sets were
preprocessed to normalize their attribute values. For result analysis and compar-
ison, we calculate the rate of correctly classified instances (classifier accuracy)
and the kappa index.

For the modified RNS method considered in this work, we have also used
the adaptation rate, detector age, and number of neighbors as parameters. The
results showed in Table 1 include the 5 best classifiers’ accuracies among over
100 runs, in order to illustrate the ranges of the parameters. In this case, the
radius of each detector is a fixed value.

The proposed radius modification was performed in a second experiment,
where we hold the best configuration obtained for the first test, taking as fixed
values: adaptation rate, number of neighbors and detector age; and with one
radius for each detector (calculated as showed in Figure 1), varying the number
of detectors considered. These results are presented in Table 2 and we can observe
that the best classifiers have as number of detectors a value corresponding to
80% of the number of instances for each class. Note that this rate defines the
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Table 1. Classification results for Wine data set using fixed radius and 10% of detectors

proportional to each class of the problem

# adapt. rate radius age n. neighbors classif. acc kappa

1 0.000150 0.5 1 6 92.23 0.88

2 0.000025 3.0 1 6 92.74 0.89

3 0.000025 0.5 1 6 92.18 0.88

4 0.000025 0.5 1 6 91.91 0.88

5 0.000025 0.5 1 11 92.29 0.88

Table 2. Classification results for Wine dataset varying the detectors percentage from

10% to 100% of each entry class

detectors rate classifier accuracy

0.10 91.73

0.20 93.71

0.30 93.96

0.40 94.61

0.50 94.27

0.60 94.27

0.70 94.76

0.80 95.12

0.90 94.50

1.00 94.50

number of random detectors that will be generated for the classifier according
to the size of the class.

In the current phase of our project we are testing the method for image clas-
sification. Some preliminary results show that the approach can be employed as
an image classifier. Our first test was carried out using synthetic MR (Magnetic
Resonance) brain images available at the Simulated Brain Database (SBD) [4].
Some preliminary results are presented in Table 3. The experiment was per-
formed using the Weka environment in the same way we did for the Wine data
set described above.

Table 3. Classification results for MRI data set using fixed radius and 10% of detectors

proportional to each class of the problem

# adapt. rate radius age n. neighbors classif. acc kappa

1 0.000025 0.4 1 3 84.63 0.81

2 0.000025 0.4 1 3 84.63 0.81

3 0.000025 0.4 2 3 84.66 0.81

4 0.000025 0.4 1 3 84.65 0.81

5 0.000025 0.4 1 3 84.63 0.81
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5 Experimental Results

In this section we present the results obtained for “The Landscape Contest” with
brief comments. For the offline test we have run our algorithm over S1 and S2
problems. The S1 data set is composed of 301 subsets as training bases for the
classifier, and we got the results using a 10-fold cross-validation. The analysis
is done over the predictive accuracy for each subset in the S1 collection. The
results are present in Tables 4, 5, 6 and 7. The S2 collection is given without
class labeling, and is provided to test the classifier. Probably in a later work we
will have the S2 data sets as a benchmark to evaluate a classifier.

We have observed a predictive accuracy of over 60% for 168 subsets, somewhat
around half of the training bases in S1. For almost 100 subsets the classifier
reaches accuracies of over 80%. The subsets in S1 are two-class problems, except
for the last one that is a multiclass problem with 20 classes. A brief analysis shows
that better results (correct rates of over 80%) were obtained from subsets with
some similar features: they have 230 to 540 instances and 9 and 21 attributes.
A more careful analysis should be made, in order to identify whether the results

Table 4. Classification results for S1 problem: sets D1 to D80

set rate set rate set rate set rate set rate set rate set rate set rate

D1 50.16 D11 64.80 D21 51.55 D31 51.22 D41 68.13 D51 68.75 D61 84.49 D71 68.21

D2 53.67 D12 57.34 D22 61.80 D32 78.87 D42 58.54 D52 56.08 D62 80.27 D72 77.22

D3 51.09 D13 49.40 D23 55.51 D33 76.11 D43 50.35 D53 48.97 D63 81.55 D73 62.55

D4 50.16 D14 49.65 D24 55.36 D34 64.47 D44 70.06 D54 52.11 D64 75.71 D74 57.42

D5 53.00 D15 50.05 D25 49.14 D35 65.89 D45 73.00 D55 56.23 D65 73.20 D75 71.93

D6 63.00 D16 49.21 D26 56.42 D36 66.12 D46 50.87 D56 52.97 D66 76.19 D76 50.80

D7 62.93 D17 50.07 D27 52.49 D37 64.23 D47 52.15 D57 86.71 D67 71.39 D77 75.89

D8 67.84 D18 50.16 D28 47.98 D38 65.40 D48 61.88 D58 84.33 D68 50.62 D78 71.15

D9 66.77 D19 52.64 D29 49.56 D39 64.22 D49 68.83 D59 84.26 D69 64.33 D79 47.24

D10 66.22 D20 53.79 D30 51.94 D40 63.81 D50 56.74 D60 77.07 D70 66.45 D80 74.58

Table 5. Classification results for S1 problem: sets D81 to D150

set rate set rate set rate set rate set rate set rate set rate

D81 48.06 D91 89.42 D101 87.20 D111 54.15 D121 60.53 D131 95.28 D141 54.81

D82 53.37 D92 90.36 D102 57.65 D112 80.74 D122 43.67 D132 95.32 D142 65.15

D83 68.08 D93 83.44 D103 82.66 D113 76.97 D123 58.44 D133 92.02 D143 66.13

D84 51.45 D94 83.44 D104 75.42 D114 81.33 D124 47.77 D134 92.32 D144 86.92

D85 55.86 D95 79.60 D105 78.11 D115 82.39 D125 53.67 D135 92.98 D145 90.33

D86 54.76 D96 84.22 D106 77.83 D116 52.00 D126 51.21 D136 91.76 D146 59.43

D87 50.94 D97 84.86 D107 52.77 D117 78.61 D127 48.76 D137 90.27 D147 62.64

D88 46.69 D98 84.26 D108 59.46 D118 79.17 D128 59.44 D138 90.29 D148 59.89

D89 46.69 D99 84.93 D109 59.21 D119 53.30 D129 52.76 D139 91.40 D149 64.26

D90 50.07 D100 87.08 D110 65.82 D120 76.13 D130 53.48 D140 91.56 D150 91.07
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Table 6. Classification results for S1 problem: sets D151 to D228

set rate set rate set rate set rate set rate set rate set rate

D151 61.71 D162 77.91 D173 51.07 D184 55.59 D195 92.84 D206 78.85 D218 95.68

D152 88.29 D163 68.60 D174 50.17 D185 68.09 D196 94.15 D207 65.54 D219 96.70

D153 88.32 D164 53.37 D175 53.44 D186 84.42 D197 92.02 D208 53.53 D220 96.83

D154 90.15 D165 50.43 D176 46.38 D187 91.81 D198 84.85 D209 49.70 D221 96.96

D155 73.13 D166 54.09 D177 96.91 D188 58.47 D199 86.93 D210 74.48 D222 90.43

D156 86.04 D167 50.71 D178 96.67 D189 94.69 D200 71.42 D211 40.38 D223 96.08

D157 85.25 D168 55.38 D179 92.38 D190 91.05 D201 90.98 D212 63.05 D224 95.66

D158 69.58 D169 50.99 D180 92.28 D191 86.75 D202 87.65 D214 53.21 D225 93.10

D159 84.61 D170 54.39 D181 95.92 D192 92.71 D203 85.66 D215 51.22 D226 96.08

D160 85.81 D171 51.08 D182 94.96 D193 92.32 D204 79.06 D216 96.96 D227 94.02

D161 49.90 D172 55.69 D183 88.74 D194 94.93 D205 76.17 D217 96.10 D228 83.69

Table 7. Classification results for S1 problem: sets D229 to D301

set rate set rate set rate set rate set rate set rate set rate

D229 96.17 D240 92.68 D251 53.69 D262 96.52 D273 84.54 D284 49.50 D295 94.60

D230 93.47 D241 52.78 D252 96.85 D263 94.55 D274 87.36 D285 52.93 D296 52.99

D231 66.54 D242 79.65 D253 96.99 D264 61.43 D275 87.24 D286 44.19 D297 46.32

D232 92.62 D243 78.25 D254 98.10 D265 62.74 D276 87.22 D287 49.25 D298 53.48

D233 95.21 D244 71.36 D255 97.39 D266 94.00 D277 52.58 D288 52.98 D299 50.33

D234 94.63 D245 45.56 D256 95.70 D267 95.13 D278 72.16 D289 50.00 D300 56.62

D235 86.39 D246 79.65 D257 90.07 D268 54.22 D279 57.63 D290 52.13 D301 11.95

D236 92.33 D247 53.82 D258 97.83 D269 58.26 D280 50.00 D291 50.16

D237 92.63 D248 56.52 D259 95.52 D270 67.06 D281 48.77 D292 94.10

D238 91.11 D249 65.47 D260 98.01 D271 68.23 D282 47.76 D293 95.07

D239 90.93 D250 49.21 D261 96.08 D272 84.51 D283 47.27 D294 93.86

depend on some other features of the data distribution in the space, such as the
number of instances per class or the dimensionality of the problem.

6 Conclusion

In this work, we have described a negative selection based algorithm. We have
investigated the effects of detector radius and the number of detectors per class,
changing them from the original version of the algorithm. To illustrate our ap-
proach we work on two different applications, a data base from UCI repository [3]
and an image classification problem using brain magnetic resonance images. The
implementation was applied to other data bases available at UCI, such as Iris
Plant, Spambase and Optdigits. The initial experiments have led to promising
results.

For the contest proposed, our results were reported, but the rates obtained
should be analyzed along with the data complexity measures, so that the method
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can be better characterized. We are still working on the parameters of the RNS-
based classifier described here. In the future, new ways for determining the de-
tector radius will be studied and tested. We are also testing the method for
classifying a protein data base and satellite images.
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Abstract. This is the report of the first contest on Graph Embedding

for Pattern Recognition, hosted at the ICPR2010 conference in Istan-

bul. The aim is to define an effective algorithm to represent graph-

based structures in terms of vector spaces, to enable the use of the

methodologies and tools developed in the statistical Pattern Recogni-

tion field. For this contest, a large dataset of graphs derived from three

available image databases has been constructed, and a quantitative

performance measure has been defined. Using this measure, the algo-

rithms submitted by the contest participants have been experimentally

evaluated.

1 Introduction

In Pattern Recognition, statistical and structural methods have been tradition-
ally considered as two rather separate worlds, although many researchers have
attempted to reduce the distance between these two approaches. The goal inspir-
ing these attempts was to find a way for exploiting the advantages of a structural
representation (such as a graph) in terms of expressiveness, and at the same time
preserving the ability to use the wealth of effective vector-based algorithms from
Statistical Pattern Recognition.

A possible solution to this issue is the use of Graph Embedding, which is
a methodology aimed at representing a whole graph (possibly with attributes
attached to its nodes and edges) as a point in a suitable vectorial space. Of
course there are countless ways for mapping a graph to a vector; but interesting
embeddings are characterized by the fact that they preserve the similarity of the
graphs: the more two graphs are similar, the closer the corresponding points are
in the target vector space.

Graph embedding, in this sense, is a real bridge joining the two worlds: once
the object at hand has been described in terms of graphs, and the latter repre-
sented in the vectorial space, all the problems of matching, learning and cluster-
ing can be performed using classical Statistical Pattern Recognition algorithms.

Possible approaches proposed for performing the graph embedding include
spectral methods [8,14], based on the eigendecomposition of the adjancency ma-
trix or of some matrix related to it. In [2], a statistical technique known as

D. Ünay, Z. Çataltepe, and S. Aksoy (Eds.): ICPR 2010, LNCS 6388, pp. 75–82, 2010.
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Multi-Dimensional Scaling (MDS) is used to embed a graph, characterized by
the matrix of the geodesic distances between nodes, into a manifold. In [13], an
embedding algorithm for the special case of trees is proposed. The algorithm is
based on the computation of the minimum common super-tree of a set of trees;
then each tree is represented as a vector whose elements encode the nodes of the
super-tree which are present in the tree. In [4] random walks are used to derive a
graph embedding; in particular the embedding encodes the expected time needed
for a random walk to travel between two nodes. In [11] the embedding is built
by choosing at random a small set of graphs as prototypes, and representing a
graph with the vector of the graph-edit distances from each prototype. Since
graph-edit distance calculation is an NP-complete problem, an approximation of
this measure is actually used.

While an explicit graph embedding enables the use of all the methodologies
and techniques devised for vector spaces, for many of these techniques it would
be sufficient to have an algorithm that just performs the scalar product between
the vectors associated to two graphs. Recently there has been a growing interest
about the so called graph kernels, that are functions applied on graphs that
satisfy the main mathematical properties of a scalar product; see [7,3,10] for
some examples. In a sense, such methods could be considered as an implicit
kind of graph embedding, although such an embedding would not permit all the
operations defined on a vector space. For the sake of generality, we have decided
to open the contest also to implicit graph embedding techniques.

While the authors proposing explicit or implicit embedding methods have
usually tested their algorithms on graphs derived from specific applications, it is
difficult to compare them to each other for the lack of a common, standardized
benchmark. Thus the main motivation for this contest is to provide a direct
comparison between different methods. Of course we do not expect that a single
method can outperform all the others on every application; it is more likely
that changing the application, and thus the characteristics of the graphs, the
algorithm with the best performance will be a different one.

Since many applications of interest for the Pattern Recognition community
work on 2D images, we have chosen to test the algorithms on graphs derived by
2D images. Of course 2D images do not exhaust the possible variety of graphs
characteristics; in future editions of the contest the comparison will be possibly
extended to other kinds of input data.

We have chosen a method to encode each input image as a graph. Such an
encoding is by no way unique; actually we have chosen, among the many possi-
bilities proposed in the literature, a representation, the Region Adjacency Graph,
that is relatively easy to compute, yields graphs which are not very large (say
tens to hundreds of nodes for typical images), but still retains sufficient in-
formation about the image structure for many interesting applications such as
classification, clustering and retrieval, as shown by its wide adoption in the past
years.
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Then we have defined a performance measure to evaluate the ability of the
embedding to ensure that similar graphs are mapped to similar vectors. We have
not based this measure on the graph-edit distance for two reasons:

– it would have been computationally impractical to compute the graph-edit
distance between any to graphs, except for very small graphs;

– furthermore, since we are ultimately interested in verifying the effectiveness
of graph embedding techniques to solve Pattern Recognition problems, it
is not obvious that graph-edit distance is the definition of graph similarity
more appropriate towards this goal.

Therefore, the chosen performance index is based on the use of a cluster validity
index, and on the assumption that the classes of the image subjects are strongly
related to the similarity concept we are trying to capture with the embedding.

In the rest of the paper we will describe in more detail the construction of
the databases used for the contest and the definition of the performance index.
Then a short description of the contest participants will be provided, followed
by a presentation of the results of our experiments.

2 The Databases

For this contest we have chosen three large image databases publicly available:
the Amsterdam Library of Object Images (ALOI), the Columbia Object Im-
age Library (COIL) and the Object Databank by Carnegie-Mellon University
(ODBK).

Fig. 1. Some examples of the images in the ALOI database

The Amsterdam Library of Object Images [5] is a collection of images of
1000 small objects. Each object has been acquired several times changing the
orientation and the illumination, for a total of 110,250 images. See fig. 1 for some
examples. From this database, we have selected 50 objects and 72 views for each
object, for a total of 3600 images.

The Columbia Object Image Library [9] is a collection of images of 100 small
objects, each acquired from 72 different orientations. See fig. 2 for some examples
of the pictures. Also from this database we have selected 50 objects, for a total
of 3600 images.
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Fig. 2. Some examples of the images in the COIL database

Fig. 3. Some examples of the images in the ODBK database

The Object Databank [12] has been obtained from a collection of 209 3D
object models, that have been rendered with photo-realistic quality using 14
different view points. See fig. 3 for some examples of the pictures. From this
database we have used 208 objects and 12 of the 14 view points, for a total of
2496 images.

The images of each database have been divided into a first set that has been
distributed to the contest participants before the contest evaluation, in order
to allow them to tune their algorithms, and a second set, not shared with the
participants, that has been used for the final performance evaluation.

Each image has been smoothed using a Gaussian filter, and then it has been
segmented using a Pyramidal segmentation algorithm (provided by the OpenCV

Table 1. Statistics on the graphs in the datasets. The aloi-1, coil-1 and odbk-1 datasets

have been provided to the contest participants, while the aloi-2, coil-2 and odbk-2

dataset have been used for the final performance evaluation.

aloi-1 aloi-2 coil-1 coil-2 odbk-1 odbk-2

Max nodes 103 134 107 100 636 528

Avg nodes 29.24 18.37 33.31 34.88 65.18 56.91

Max edges 112 156 97 92 598 519

Avg edges 28.37 17.25 32.30 32.33 62.45 54.37

N. of graphs 1800 1800 1800 1800 1248 1248

N. of classes 25 25 25 25 104 104
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library [1]). Finally, from the segmentation the Region Adjancency graph has
been constructed as the image graph-based representation. The nodes of the
graph have as attributes the relative size and the average color components of
the corresponding regions, while the edges of the graph have no attributes.

In Table 1 some statistics about the databases are provided.

3 The Performance Index

In order to measure the performance of an embedding algorithm, we have con-
sidered the dataset divided in classes on the basis of the object represented in the
original image, and then we have used a clustering validation index to evaluate
the separation between the classes when represented by the vectors explicitly or
implicitly produced by the algorithm.

More specifically, we compute first the distances dij between each pair of
graphs gi and gj ; for the explicit embedding, dij is the Euclidean distance, while
for the implicit embedding the distance is computed as follows:

dij =
√

pii + pjj − 2pij

where pij is the scalar product between gi and gj.
Given the distances, the C index by Hubert and Schultz [6] is computed. The

C index is defined as follows: first we compute the set Sw of the distances dij

such that gi and gj lie in the same class; M is the cardinality of Sw. Then, the
sets Smin and Smax are computed taking respectively the M shortest distances
and the M largest distances among all the possible values of dij . Finally, the
index is computed as:

C =
sum(Sw) − sum(Smin)

sum(Smax) − sum(Smin)

Notice that the smaller the value, the better is the separation of the classes; the
index value is in the interval [0, 1] reaching 0 in the ideal case in which all the
inter-class distances are smaller than all the intra-class distances.

The C index has been chosen on the basis of the following considerations:

– it requires only the distances dij , and not the centroids of each class, that
would not be trivial to define for the implicit embeddings;

– the value does not change if all the distances are multiplied by a same positive
costant, so it is independent of the scale used for the vectors or the products;

– it provides an integral measure that is not significantly affected by outliers.

Since we have three datasets, a way to combine the three corresponding indices
must be defined in order to obtain a single figure to evaluate an algorithm. We
have decided to use the geometric mean of the indices for attributing a ranking
to each algorithm.

Please remember that for the contest evaluation, three different sets of graphs
(aloi-2, coil-2 and odbk-2) have been used from the ones provided in advance to
the contest participants (aloi-1, coil-1 and odbk-1).
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4 Contest Participants

The table 2 presents a synoptic view of the contest participants, for which a
short description will be provided thereafter.

Table 2. The contest participants

Team Institution Type Impl. language

Y. Osmanlıoğlu, F. Yılmaz, M. F.

Demirci

Drexel University, TOBB Univer-

sity of Economics and Technology

implicit C/C++

S. Jouili, S. Tabbone Laboratoire Lorrain de Recherche

en Informatique et ses Applica-

tions

explicit Java

K. Riesen, H. Bunke University of Bern explicit Java

M. M. Luqman, J. Lladós, J.-Y.

Ramel, T. Brouard

Université François Rabelais de

Tours, Universitat Autónoma de

Barcelona

explicit Matlab

4.1 The Algorithm by Osmanlıoğlu et al.

This algorithm is based on the embedding of the nodes of each graph in a vector
space using the so called caterpillar decomposition, that builds a set of disjoint
paths that cover the graph, and encodes each node with a vector whose compo-
nents are associated to the paths needed to reach the node.

Once the nodes are embedded in a vector space, the scalar product between
two graphs is computed using a point matching algorithm based on the Earth
Mover’s distance (EMD), which is defined as a linear programming problem.

4.2 The Algorithm by Jouili and Tabbone

The algorithm starts by computing a dissimilarity measure between each pair
of graphs, using a graph matching technique. From the dissimilarity matrix a
positive and semidefinite matrix is obtained; using the eigendecomposition of this
matrix, the embedding is obtained by choosing the eigenvectors corresponding
to the largest eigenvalues.

4.3 The Algorithm by Riesen and Bunke

This method assumes that a dissimilarity function between two graphs has been
defined; in particular the implementation provided uses an approximation of
graph edit distance, although the method can work with other dissimilarity
measures.

Given a set of graphs, the method starts by choosing n prototypes that will be
used as references for constructing the vectors. As the authors state, the choice
of the prototype graphs, and also of their number n, is a critical issue. In the
current implementation, the method attempts to select the prototypes that best
possibly reflect the distribution of the set of graphs. Once the prototypes have
been chosen, each graph is represented as a vector whose components correspond
to the dissimilarity from each of the prototypes.
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4.4 The Algorithm by Luqman et al.

This method is based on the encoding of meaningful information about the
nodes and edges of the graph using fuzzy intervals. In particular, the first two
components of the vector are the number of nodes and edges. They are followed
by a an encoding of the histogram of node degrees and of the node attributes
that uses fuzzy intervals obtained by means of a technique based on Akaike
Information Criterion. The algorithm is able to learn these intervals using labeled
training data, if available, for an improved performance.

5 Contest Results

The results of the performance evaluation on the test datasets are given in
table 3.

Table 3. The performance index computed on the test datasets. The cells in boldface

are the best results of each column. Note that lower index values correspond to better

results.

Team aloi-2 coil-2 odbk-2 geom. mean

Osmanlıoğlu et al. 0.088 0.067 0.105 0.085

Jouili and Tabbone 0.136 0.199 0.138 0.155

Riesen and Bunke 0.048 0.128 0.132 0.093

Luqman et al. 0.379 0.377 0.355 0.370

From the reported data it results that the algorithm by Osmanlıoğlu et al.
has the best performance in two of the three datasets (coil-2 and odbk-2), while
the algorithm by Riesen and Bunke is the best on the aloi-2 dataset. Considering
the geometric mean of the index over the three datasets, these two algorithms
are close, with a slight advantage for Osmanlıoğlu et al.

Note that the algorithm by Osmanlıoğlu et al. performs an implicit graph
embedding; if we restrict our attention only to explicit graph embedding, the
best algorithm is definitely the one by Riesen and Bunke.

As regards the computational cost of the algorithms, it would not be fair
to make a comparison, since the implementations are in different programming
languages. Just to give a rough idea, the program by Osmanlıoğlu et al., which
has been the faster (since it is the only one written in C++), has required in the
average about three hours and half to process each dataset on a 2.0GHz Xeon
CPU.

6 Conclusions

In this paper we have presented the results of the first contest on Graph Embed-
ding for Pattern Recognition, hosted by the International Conference on Pattern
Recognition in Istanbul.



82 P. Foggia and M. Vento

We have described the construction of the datasets used for the contest and
the definition of the performance index. Then we have briefly introduced the
contest participants, and we have presented and discussed the contest results.

This contest can be considered as a first step towards an assessment of the
effectiveness of graph embedding algorithms when using graphs derived from
typical Pattern Recognition applications. It is auspicable that this kind of quanti-
tative comparison will be extended in the future to other embedding algorithms,
and to graphs obtained from other application contexts.

References

1. The Open Source Computer Vision library,

http://opencv.willowgarage.com/wiki/

2. Bai, X., Yu, H., Hancock, E.R.: Graph matching using spectral embedding and

alignment. In: 17th Int. Conference on Pattern Recognition, pp. 398–401 (2004)

3. Borgwardt, K., Kriegel, H.P.: Shortest-path kernels on graphs. In: Proc. 5th Int.

Conference on Data Mining, pp. 74–81 (2005)

4. Emms, D., Wilson, R., Hancock, E.R.: Graph embedding using quantum commute

times. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 371–

382. Springer, Heidelberg (2007)

5. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam library

of object images. Int. Journal of Computer Vision 61(1), 103–112 (2005)

6. Hubert, L., Schultz, J.: Quadratic assignment as a general data-analysis strategy.

British Journal of Mathematical and Statistical Psychology 29, 190–241 (1976)

7. Kashima, H., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Proc.

20th Int. Conference on Machine Learning, pp. 321–328 (2003)

8. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern

Recognition 36(10), 2213–2230 (2003)

9. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (COIL-100).

Tech. Rep. CUCS-006-96, Dep. of Computer Science, Columbia University (1996)

10. Neuhaus, M., Bunke, H.: Edit distance-based kernel functions for structural pattern

classification. Pattern Recognition 39, 1852–1863 (2006)

11. Riesen, K., Neuhaus, M., Bunke, H.: Graph embedding in vector spaces by means

of prototype selection. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS,

vol. 4538, pp. 383–393. Springer, Heidelberg (2007)

12. Tarr, M.J.: The object databank,

http://www.cnbc.cmu.edu/tarrlab/stimuli/objects/index.html

13. Torsello, A., Hancock, E.R.: Graph embedding using tree edit-union. Pattern

Recognition 40, 1393–1405 (2007)

14. Wilson, R.C., Hancock, E.R., Luo, B.: Pattern vectors from algebraic graph theory.

IEEE Trans. on Pattern Analysis and Machine Intelligence 27(7), 1112–1124 (2005)

http://opencv.willowgarage.com/wiki/
http://www.cnbc.cmu.edu/tarrlab/stimuli/objects/index.html


Graph Embedding Using Constant Shift

Embedding�

Salim Jouili and Salvatore Tabbone

LORIA - INRIA Nancy Grand Est UMR 7503 - University of Nancy 2

BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France

{salim.jouili,tabbone}@loria.fr

Abstract. In the literature, although structural representations (e.g.

graph) are more powerful than feature vectors in terms of represen-

tational abilities, many robust and efficient methods for classification

(unsupervised and supervised) have been developed for feature vector

representations. In this paper, we propose a graph embedding technique

based on the constant shift embedding which transforms a graph to a

real vector. This technique gives the abilities to perform the graph clas-

sification tasks by procedures based on feature vectors. Through a set of

experiments we show that the proposed technique outperforms the clas-

sification in the original graph domain and the other graph embedding

techniques.

Keywords: Structural pattern recognition, graph embedding, graph

classification.

1 Introduction

In pattern recognition, object representations can be broadly divided into sta-
tistical and structural methods [1]. In the former, the object is represented by a
feature vector, and in the latter, a data structure (e.g. graphs or trees) is used
to describe the components and their relationships into the object. In the lit-
erature, many robust and efficient methods for classification (unsupervised and
supervised), retrieval and other related tasks are henceforth available [5]. Most
of these approaches are often limited to work with a statistical representation.
Indeed, the use of feature vectors has numerous helpful properties. That is, since
recognition is to be carried out based on a number of measurements of the ob-
jects, and each feature vector can be regarded as a point in an n-dimensional
space, the measurement operations can be performed in simple way such that the
Euclidean distance as the distance between objects. When a numerical feature
vector is used to represent the object, all structural information is discarded.
However a structural representation (e.g. graph) is more powerful than feature
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vector in terms of representational abilities. The graph structure provides a flex-
ible representation such that there is no fixed dimensionality for objects (unlike
vectors), and provides an efficient representation such that an object is modeled
by its components and the existing relations between them. In the last decades,
many structural approaches have been proposed [3]. Nevertheless, dealing with
graphs suffers, on the one hand from the high complexity of the graph match-
ing problem which is a problem of computing distances between graphs, and
on the other hand from the robustness to structural noise which is a problem
related to the capability to cope with structural variation. These drawbacks
have brought about a lack of suitable methods for classification. However, unlike
for structural-based representation, a lot of robust classification approaches have
been developed for the feature vector representation such as neural network, sup-
port vector machines, k-nearest neighbors, Gaussian mixture model, Gaussian,
naive Bayes, decision tree and RBF classifiers [12]. In contrast, as remarked by
Riesen et al. [2] the classification of graphs is limited to the use of the nearest-
neighbor classifiers using one graph similarity measure. On that account, the
community of pattern recognition speaks about a gap between structural and
statistical approaches [1,16].

Recently, a few works have been carried out concerning the bridging of this
gap between structural and statistical approaches. Their aim is to delineate a
mapping between graphs and real vectors, this task is called graph embedding.
The embedding techniques were originally introduced for statistical approaches
with the objective of constructing low dimensional feature-space embeddings
of high-dimensional data sets [6,9,17,22]. In the context of graph embedding,
different procedures have been proposed in the literature. De Mauro et al. [4]
propose a new method, based on recurrent neural network, to project graphs
into vector space. Moreover, Hancock et al. [7,27,14,21] use spectral theory to
convert graphs into vectors by means of spectral decomposition into eigenvalues
and eigenvectors of the adjacency (or Laplacian) matrix of a graph. Besides,
a new category of graph embedding techniques was introduced by Bunke et
al. [2,20,19], their method is based on the selection of some prototypes and
the computation of the graph edit distance between the graph and the set of
prototypes. This method was originally developed for the embedding of feature
vectors in a dissimilarity space [16,17]. This technique was also used to project
string representations into vector spaces [25].

In this paper, we propose a new graph embedding technique by means of con-
stant shift embedding. Originally, this idea was proposed in order to pairwise data
into Euclidean vector spaces [22]. It was used to embed protein sequences into an
n-dimensional feature vector space. In the current work, we generalize this method
to the domain of graphs. Here, the key issue is to convert general dissimilarity
data into metric data. The constant shift embedding increases all dissimilarities
by an equal amount to produce a set of Euclidean distances. This set of distances
can be realized as the pairwise distances among a set of points in an Euclidean
space. In our method, we generalize this method by means of graph similarity
measure [11,10]. The experimental results have shown that the proposed graph
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embedding technique improves the accuracy achieved in the graph domain by the
nearest neighbor classifier. Furthermore, the results achieved by our method out-
performs some alternative graph embedding techniques.

2 Graph Similarity Measure by Means of Node
Signatures

Before introducing the graph embedding approach, let us recall how the dissim-
ilarity in the domain of graphs can be computed. Similarity or (dissimilarity)
between two graphs is almost always refered as a graph matching problem. Graph
matching is the process of finding a correspondence between nodes and edges of
two graphs that satisfies some constraints ensuring that similar substructures in
one graph are mapped to similar substructures in the other. Many approaches
have been proposed to solve the graph matching problem. In this paper we use
a recent technique proposed by Jouili et al. in [10,11]. This approach is based
on node signatures notion. In order to construct a signature for a node in an
attributed graph, all available information into the graph and related to this
node is used. The collection of these informations should be refined into an ade-
quate structure which can provides distances between different node signatures.
In this perspective, the node signature is defined as a set composed by four sub-
sets which represent the node attribute, the node degree and the attributes of its
adjacent edges and the degrees of the nodes on which these edges are connected.
Given a graph G=(V,E,α,β), the node signature of ni ∈ V is defined as follows:

γ(ni) =
{

αi, θ(ni), {θ(nj)}∀ij∈E , {βij}∀ij∈E

}
where

– αi the attribute of the node ni.
– θ(ni) the degree of ni.
– {θ(nj)}∀ij∈Ethe degrees set of the nodes adjacent to ni.
– {βij}∀ij∈E the attributes set of the incident edges to ni.

Then, to compute a distance between node signatures, the Heterogeneous Eu-
clidean Overlap Metric (HEOM) is used. The HEOM uses the overlap metric
for symbolic attributes and the normalized Euclidean distance for numeric at-
tributes. Next the similarities between the graphs is computed: Firstly, a defini-
tion of the distance between two sets of node signatures is given. Subsequently,
a matching distance between two graphs is defined based on the node signatures
sets. Let Sγ be a collection of local descriptions, the set of node signatures Sγ of
a graph g=(V,E,α,β) is defined as :

Sγ( g ) =
{

γ(ni) | ∀ni ∈ V
}

Let A=(Va,Ea) and B=(Vb,Eb) be two graphs. And assume that φ : Sγ(A) →
Sγ(B) is a function. The distance d between A and B is given by ϕ which is the
distance between Sγ(A) and Sγ(B)
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d(A, B) = ϕ(Sγ(A), Sγ(B)) = min
φ

∑
γ(ni)∈Sγ(A)

dnd(γ(ni), φ(γ(ni)))

The calculation of the function ϕ(Sγ(A), Sγ(B)) is equivalent to solve an as-
signment problem, which is one of the fundamental combinatorial optimization
problems. It consists of finding a maximum weight matching in a weighted bi-
partite graph. This assignment problem can be solved by the Hungarian method.
The permutation matrix P, obtained by applying the Hungarian method to the
cost matrix, defines the optimum matching between two given graphs.

3 Graph Embedding via Constant Shift Embedding

Embedding graph corresponds to finding points in a vector space, such that
their mutual distance is as close as possible to the initial dissimilarity matrix
with respect to some cost function. Embedding yields points in a vector space,
thus making the graph available to numerous machine learning techniques which
require vectorial input.

Let G={g1, ..., gn} be a set of graph and d: G × G → R a graph distance
function between pairs of its elements and let D = Dij = d(gi, gj) ∈ R

n×n be
an n × n dissimilarity matrix. Here, the aim is to yield n vectors xi in a p-
dimensional vector space such that the distance between xi and xj is close to
the dissimilarity Dij which is the distance between gi and gj.

3.1 Dissimilarity Matrix: From Graph Domain to Euclidean Space
via Constant Shift Embedding

Before stating the main method, the notion of centralized matrix is reminded
[22]. Let P be an n × n matrix and let In be the n × n identity matrix and

en=(1,...,1)ᵀ. Let Qn =In-
1
n

eneᵀ
n. Qn is the projection matrix onto the orthog-

onal complement of en. The centralized matrix Pc is given by:

P c = QnPQn

Roth et al. [22] observed that the transition from the original matrix D (in our
case: the graph domain) to a matrix D̃ which derives from a squared Euclidean
distance, can be achieved by a off-diagonal shift operation without influencing
the distribution of the initial data. Hence, D̃ is given by:

D̃ = D + d0(eneᵀ
n − In), or similarly (D̃ij = Dij + d0, ∀i �= j)

Where d0 is constant. In addition, since D is a symmetric and zero-diagonal
matrix, it can be decomposed [13] by means of a matrix S:

Dij = Sii + Sjj − 2Sij
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Obviously, S is not uniquely determined by D. All matrices S + αeneᵀ
n yield

the same D, ∀α ∈ R. However, it is proven that the centralized version of S is
uniquely defined by the given matrix D (Lemma 1 in [22]):

Sc = −1
2
Dc, with Dc = QnDQn

From the following important theorem [26], we remark the particularity of the
interesting matrix Sc.

Theorem 1. D is squared Euclidean distance matrix if and only if Sc is positive
and semidefinite.

In other words, the pairwise similarities given by D can be embedded into an
Euclidean vector space if and only if the associated matrix Sc is positive and
semidefinite. As far as graph domain, Sc will be indefinite. We use the constant
shift embedding [22] to cope this problem. Indeed, by shifting the diagonal el-
ements of Sc it can be transformed into a positive semidefinite matrix S̃ (see
Lemma 2. in [22]):

S̃ = Sc − λn(Sc)In

where λn(Sc) is the minimal eigenvalue of the matrix Sc. The diagonal shift of
the matrix Sc transforms the dissimilarity matrix D in a matrix representing
squared Euclidean distances. The resulting embedding of D is defined by:

D̃ij = S̃ii + S̃jj - 2S̃ij ⇐⇒ D̃ = D − 2λn(Sc)(eneᵀ
n − In)

Since every positive and semidefinite matrix can be thought as representing a
dot product matrix, there exists a matrix X for which S̃c = XXᵀ. The rows of
X are the resulting embedding vectors xi, so each graph gi has been embedded
in a Euclidean space and is represented by xi. Then, it can be concluded that
the matrix D̃ contains the squared Euclidean distances between these vectors
xi. In the next section, we discuss the extension of this method to the graph
embedding.

3.2 From Graphs to Vectors

In this section, an algorithm for constructing embedded vectors is described.
This algorithm is inspired from the Principal Component Analysis (PCA) [23].
A pseudo-code description of the algorithm is given in Algorithm 1. From a given
dissimilarity matrix D of a set of graphs G={g1, ..., gn}, the algorithm returns
a set of embedded vectors X={x1, · · · , xn} such that xi embed the graph gi.
Firstly, the squared Euclidean distances matrix D̃ is computed by means of the
constant shift embedding (line 1). Next, the matrix S̃c is computed, and as

stated above it can be calculated as S̃c = −1
2
D̃c (line 2). Since S̃c is positive and

semidefinite matrix, thus, S̃c=XXᵀ. The rows of X are the resulting embedding
vectors xi and they will be recovered by means of an eigendecomposition (line 3).
Let note that, due to the centralization, it exists at least one the eigenvalue
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λi=0, hence, p ≤ n − 1 (line 3-4). Finally by computing the n × p map matrix:
Xp=Vp(Λp)1/2, the embedded vectors are given by the rows of X = Xp, in
p-dimensional space.

However, in PCA it is known that small eigenvalues contain the noise. There-
fore, the dimensionality p can reduced by choosing t ≤ p in line 4 of the algo-
rithm. Consequently, a n×t map matrix Xt=Vt(Λt)1/2 will be computed instead
of Xp, where Vt is the column-matrix of the selected eigenvectors (the first t col-
umn vectors of V) and Λt the diagonal matrix of the corresponding eigenvectors
(the top t× t sub-matrix of Λ). One can ask how to find the optimal t that yields
the better performance of a classifier in the vector space. Indeed, the dimension-
ality t has a pronounced influence on the performance of the classifier. In this
paper, the optimal t is chosen empirically. That means, the optimal t is the one
which provides the better classification accuracy from 2 to p.

Algorithm 1. Construction of the embedded vectors
Require: Dissimilarity matrix D of the a set of graphs G={g1, ..., gn}
Ensure: set of vectors X={x1, · · · , xn} where xi embed gi

1: Compute the squared Euclidean distances matrix D̃

2: Compute S̃c = −1

2
D̃c, where D̃c = QD̃Q.

3: Eigendecomposition of S̃c, S̃c = V ΛV ᵀ

– Λ=diag(λ1, ...λn) is the diagonal matrix of the eigenvalues

– V={υ1, ...υn} is the orthonormal matrix of corresponding eigenvectors υi.

� Note that, λ1 ≥ ... λp ≥ λp+1 = 0 = ... = λn

4: Compute the n × p map matrix: Xp=Vp(Λp)
1/2, with Vp={υ1, ...υp} and Λp=

diag(λ1, ...λp)

5: Output: The rows of Xp contain the embedded vectors in p-dimensional space.

4 Experiments

4.1 Experimental Setup

To perform the evaluation of the proposed algorithm, we used four data sets :

– GREC: The GREC data set [18] consists of graphs representing symbols
from architectural and electronic drawings. Here, the ending points (i.e. cor-
ners, intersections and circles) are represented by nodes which are connected
by undirected edges and labeled as lines or arcs. The graph subset used in
our experiments has 814 graphs, 24 classes and 37 graphs per class.

– Letter: The Letter data set [18] consists of graphs representing distorted
Letter drawings. This data set contains 15 capital letters (A, E, F, H, I, K,
L, M, N, T, V, W, X, Y, Z), arbitrarily strong distortions are applied to
each letter to obtain large sample sets of graphs. Here, the ending points are
represented by nodes which are connected by undirected edges. The graph
subset used in our experiments has 1500 graphs, 15 classes and 100 graphs
per class.
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– COIL: The COIL data set [15] consists of graphs representing different views
of 3D objects in which two consecutive images in the same class represent
the same object rotated by 5o. The images are converted into graphs by
feature points extraction using the Harris interest points [8] and Delaunay
triangulation. Each node is labeled with a two-dimensional attribute giv-
ing its position, while edges are unlabeled. The graph subset used in our
experiments has 2400 graphs, 100 classes and 24 graphs per class.

– Mutagenicity: The Mutagenicity data set [18] consists of graphs represent-
ing molecular compounds, the nodes represent the atoms labeled with the
corresponding chemical symbol and edges by valence of linkage. The graph
subset used in our experiments has 1500 graphs, 2 classes and 750 graphs
per class.

The experiments consist in applying our algorithm for each dataset. Our inten-
tion is to show that the proposed graph embedding technique is indeed able to
yield embedded vectors that can improve classification results achieved with the
original graph representation. We begin by computing the dissimilarities matrix
of each data set by means of the graph matching introduced in [10,11] and briefly
reviewed in Section 2. Then, since the classification in the graph domain can be
performed by only the k-NN classifiers, hence, it is used as reference system in
the graph domain. Whereas in vector space the k-NN and the SVM1 classifiers
[24] are used to compare the embedding quality of the vectors resulting from
our algorithm and the vectors resulting from the graph embedding approach
recently proposed by Bunke et al. [2,19,20]. This method was originally devel-
oped for the embedding of feature vectors in a dissimilarity space [16,17] and
is based on the selection of some prototypes and the computation of the graph
edit distance between the graph and the set of prototypes. That is, let assume
that G={g1, ..., gn} is a set of graphs and d: G × G → R is some graph dis-
similarity measure. Let PS={ps1, ..., psp} be a set of p ≤ n selected prototypes
from G (PS ⊆ G). Now each graph g ∈ G can be embedded into p-dimensional
vector (d1, ..., dp), where d1 = d(g, ps1), ..., dp = d(g, psp). As remarked in [20],
the results of this method depends on the choice of p appropriate prototypes.
In this paper, four different prototype selector are used, namely, the k-centers
prototype selector (KCPS), the spanning prototype selector (SPS), the target-
sphere prototype selector (TPS) and the random prototype selector (RandPS).
We refer the reader to [20] for a definition of these selectors. A second key issue
of this method is the number p of prototypes that must be selected to obtain
the better classification performance. To overcome this problem, we define the
optimal p by the same procedure that is applied to determine the optimal t of
our algorithm (cf. section 3.2).

4.2 Results

The first experiment consists of applying the k-NN classifier in the graph domain
and in the embedded vector space. In Table 1 the classification accuracy rates
1 We used the C-SVM classifier with linear kernel function available in weka software

http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/
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Table 1. K-NN classifier results

Graph domain Vector space

Bunke with

Data-set Our Embedding KCPS SPS TPS RandPS

GREC 98.11% 99.50% 97.17% 96.19% 97.78% 97.54%

Letter 79.33% 91.33% 92.4% 92.66% 92.46% 92.4%

COIL 50.30% 52.35% 48.64% 49.1% 48.6% 48.64%

Mutagenicity 63.70% 63.8% 60.93% 63.73% 64.13% 64.73%

for k-NN classifier are given for all data sets. One can remark that the results
achieved in the vector space improve the results achieved in the graph domain
for all data sets. However, this improvement is not statistically significant since
it do not exceed 2̃% for almost all data sets, except for the Letter data set. In
the embedded vector space, the performances of our method and the Bunke’s
methods are quite similar. This first experiment is essentially to show that the
embedding techniques are accurate since using the same classifier we obtain
rates better then the graph domain. However, in the vector space we are not
limited to a simple nearest neighbor classifier. So, in Table 2 the classification
accuracy rates for the k-NN classifier in the graph domain (in Table 1) and the
SVM classifier in the embedded vector space are given for all data sets. We can
remark that our embedding methods clearly improves the accuracy achieved in
the graph domain. Regarding the GREC data set, the best classification accuracy
is achieved by our method and the Bunke’s method with the KCPS selector.
The results improved the k-NN classifier in the graph domain by 1.76%. This
improvement has no statistical signification. This is due to the fact that the
classification in the graph domain of the GREC data set provides already a
very good accuracy 98.11%. For the Letter data set, all the embedding methods
clearly improve the accuracy achieved in the graph domain. Regarding the COIL
data set, it can be remarked that the accuracy achieved in the graph domain is
quite low (50.30%). This accuracy is highly improved by the SVM classifiers in
the different vector spaces (by 25.43% using our embedding technique). Finally,
the results concerning the Mutagenicity data set show that all the variants of the
Bunke’s embedding fail to improve the accuracy achieved in the graph domain
and provide the worst results. Whereas our graph embedding using constant
shift embedding results improve the results of the k-NN classifier achieved in the
original graph representation (by 7.5%). Therefore, our method provides more
significant embedded vector for the graphs in the Mutagenicity data set.

To summarize, with the graph embedding algorithm proposed in this paper
and the SVM classifiers, the classification accuracy rates improve the results
achieved in the original graph domain for all data sets used in the experiments.
This agrees with our intention to improve classification results achieved in graph
domain by means of graph embedding technique. Furthermore, the comparison
with the four variants of the Bunke’s graph embedding has shown that the
proposed technique outperforms these alternatives for almost the data sets.
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Table 2. SVM Classifier results

Graph domain Vector space

Bunke with

Data-set Our Embedding KCPS SPS TPS RandPS

GREC - 99.87% 99.87% 99.50% 99.75% 99.75%

Letter - 94.87% 91.60% 91.40% 91.53% 91.53%

COIL - 75.73% 73.29% 73,10% 73.25% 73.23%

Mutagenicity - 71.20% 57.53% 57.31% 57.48% 57.45%

5 Conclusions

In the context of graph-based representation for pattern recognition, there is a
lack of suitable methods for classification. However almost the huge part of robust
classification approaches has been developed for feature vector representations.
Indeed, the classification of graphs is limited to the use of the nearest-neighbor
classifiers using one graph similarity measure. In this paper, we proposed a new
graph embedding technique based on the constant shift embedding which was
originally developed for vector spaces. The constant shift embedding increases
all dissimilarities by an equal amount to produce a set of Euclidean distances.
This set of distances can be realized as the pairwise distances among a set
of points in an Euclidean space. Here, the main idea was to generalize this
technique in the domain of graphs. In the experiments, the application of the
SVM classifiers on the resulting embedded vectors has shown a significantly
statistically improvement.
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Abstract. We present a new method for explicit graph embedding. Our

algorithm extracts a feature vector for an undirected attributed graph.

The proposed feature vector encodes details about the number of nodes,

number of edges, node degrees, the attributes of nodes and the attributes

of edges in the graph. The first two features are for the number of nodes

and the number of edges. These are followed by w features for node

degrees, m features for k node attributes and n features for l edge at-

tributes — which represent the distribution of node degrees, node at-

tribute values and edge attribute values, and are obtained by defining

(in an unsupervised fashion), fuzzy-intervals over the list of node degrees,

node attributes and edge attributes. Experimental results are provided

for sample data of ICPR20101 contest GEPR2.

1 Introduction

The website [2] for the 20th International Conference on Pattern Recognition
(ICPR2010) contest Graph Embedding for Pattern Recognition (GEPR), pro-
vides a very good description of the emerging research domain of graph embed-
ding. It states and we quote: “In Pattern Recognition, statistical and structural
methods have been traditionally considered as two rather separate worlds. How-
ever, many attempts at reducing the gap between these two approaches have been
done. The idea inspiring these attempts is that of preserving the advantages of
an expressive structural representation (such as a graph), while using most of the
powerful, vector-based algorithms from Statistical Pattern Recognition. A possi-
ble approach to this issue has been recently suggested by Graph Embedding. The
latter is a methodology aimed at representing a whole graph (possibly with at-
tributes attached to its nodes and edges) as a point in a suitable vectorial space.
Of course the relevant property is that of preserving the similarity of the graphs:
the more two graphs are considered similar, the closer the corresponding points
in the space should be. Graph embedding, in this sense, is a real bridge joining the
two worlds: once the object at hand has been described in terms of graphs, and the
1 20th International Conference on Pattern Recognition.
2 Graph Embedding for Pattern Recognition.

D. Ünay, Z. Çataltepe, and S. Aksoy (Eds.): ICPR 2010, LNCS 6388, pp. 93–98, 2010.
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latter represented in the vectorial space, all the problems of matching, learning
and clustering can be performed using classical Statistical Pattern Recognition
algorithms.”

2 Our Method

Our proposed method for graph embedding encodes the details of an undirected
attributed graph into a feature vector. The feature vector is presented in next
section, where we discuss it in detail.

2.1 Proposed Vector

The proposed feature vector not only utilizes information about the structure of
the graph but also incorporates the attributes of nodes and edges of the graph, for
extracting discriminatory information about the graph. Thus yielding a feature
vector that corresponds to the structure and/or topology and/or geometry of
the underlying content.

Fig.1 presents the feature vector of our method for graph embedding. In the
remainder of this section, we provide a detailed explanation of the extraction of
each feature of our feature vector.

Fig. 1. The vector for graph embedding

Number of Nodes and Number of Edges. The number of nodes and the
number of edges in a graph constitutes the basic discriminatory information that
can be extracted very easily from a graph. This information helps to discriminate
among graphs of different sizes. The first two features of our feature vector are
composed of these details on the graph i.e. the number of nodes and the number
of connections in the graph.

Features for Node Degrees. The degree of a node refers to the total num-
ber of incoming and outgoing connections for the node. The distribution of the
node degrees of a graph is a very important information that can be used for
extracting discriminatory features from the graph. This information helps to dis-
criminate among graphs which represent different structures and/or topologies
and/or geometry.

Our signature contains w features for node degrees. The number of features
for node degrees, i.e. w, is computed from the learning dataset and may differ
from one dataset to another, thus yielding a variable length feature vector for
different datasets. If the learning dataset is not available, our method is capable
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of learning its parameters directly from the graphs in the test dataset. The w
features for node degrees are obtained by defining fuzzy-intervals over list of
node degrees of all graphs in the (learning) dataset and then computing the
cardinality for each of the w features. In order to avoid repetition we detail the
method for defining fuzzy-intervals and computing the corresponding feature
values in section 2.2 — as the same method has been used for obtaining the set
of features for node and edge attributes.

Features for Node Attributes. The attributes of the nodes in the graph
contain very important complementary (and/or supplementary in some cases)
information about the underlying content. This information, if used intelligently,
can provide discriminating features for the graphs.

Our signature contains m features for k node attributes. The number k refers
to the number of node attributes in the graph. Whereas, the number m of the
features for node attributes is computed from the learning dataset. Both m (the
number of features for node attributes) and k (the number of node attributes)
may differ from one dataset to another, thus yielding a variable length of feature
vector for different datasets. If the learning dataset is not available, our method
is capable of learning its parameters directly from the graphs in the test dataset.
The m features for k node attributes are obtained by defining fuzzy-intervals over
list of node attributes of all graphs in the (learning) dataset and then computing
the cardinality for each of the m features. Each of the k node attributes are
processed one by one and can contribute a different number of features to this
set of features. The method for obtaining fuzzy-intervals and computing the
corresponding feature values is detailed in section 2.2.

Features for Edge Attributes. The attributes of the edges in the graph also
contain important complementary (and/or supplementary) information about
the underlying content. This information may also provide discriminating fea-
tures for the graphs.

Our signature contains n features for l edge attributes. The number l refers
to the number of edge attributes in the graph. Whereas, the number n of the
features for edge attributes is computed from the learning dataset. Both n (the
number of features for edge attributes) and l (the number of edge attributes)
may differ from one dataset to another, thus yielding a variable length of feature
vector for different datasets. If the learning dataset is not available, our method
is capable of learning its parameters directly from the graphs in the test dataset.
The n features for l edge attributes are obtained by defining fuzzy-intervals over
list of edge attributes of all graphs in the (learning) dataset and then computing
the cardinality for each of the n features. Each of the l edge attributes are
processed one by one and can contribute a different number of features to this
set of features. The method for obtaining fuzzy-intervals and computing the
corresponding feature values is detailed in section 2.2.
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2.2 Defining Fuzzy-Intervals and Computing Feature Values

This section applies to computation of w features for node degrees, m features for
k node attributes and n features for l edge attributes – and details our approach
for defining a set of fuzzy-intervals for a given data (data here refers to the list
of node degrees - or - the list of values for each of the k node attributes - or -
the list of values for each of the l edge attributes – as applicable).

We use a histogram based binning technique for obtaining an initial set of
intervals for the data. The technique is originally proposed by [1] for discretiza-
tion of continuous data and is based on use of Akaike Information Criterion
(AIC). It starts with an initial m-bin histogram of data and finds optimal num-
ber of bins for underlying data. The adjacent bins are iteratively merged using
an AIC-based cost function until the difference between AIC-beforemerge and
AIC-aftermerge becomes negative.

This set of bins is used for defining fuzzy-intervals i.e. the features and their
fuzzy zones (for example Fig.2). The fuzzy-intervals are defined by using a set of 3
bins for defining a feature, set of 3 bins for defining its left fuzzy zone and a set of
3 bins for defining its right fuzzy zone. It is important to note here, and as seen in
Fig.2, that the fuzzy zones on left and right of a feature overlaps the fuzzy zones of
its neighbors. We have used the sets of 3 bins for defining fuzzy zones in order to
be able to assign membership weights for full membership, medium membership
and low membership to the fuzzy zones – membership weights of 1.00, 0.66 and
0.33 respectively. Generally an x number of bins can be used for defining the fuzzy
zones for the features. For any given value in the data it is ensured that the sum
of membership weights assigned to it always equals to 1. The first and the last
features in the list have one fuzzy zone each (as seen in Fig.2).

Our method is capable of learning these fuzzy-intervals for a given data, either
from a learning dataset (if it is available) or directly from the the graphs in the
test dataset. Once the fuzzy-intervals are obtained for a given dataset we get the
structure of the feature vector for the dataset i.e. 1 feature for number of nodes,
1 feature for number of edges, w features for node degrees, m features for k node
attributes and n features for l edge attributes. We perform a pass on the set of
graphs in the dataset and while embedding each graph into a feature vector, we
use these fuzzy-intervals for computing the cardinality for each feature in the
feature vector. This results into a numeric feature vector for a given undirected
attributed graph.

Fig. 2. The fuzzy intervals of features for node degrees
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3 Experimentation

Experimental results are presented for sample datasets of 20th International
Conference on Pattern Recognition (ICPR2010), contest GEPR (Graph Embed-
ding for Pattern Recognition) [2]. These datasets contain graphs extracted from
three image databases: the Amsterdam Library of Object Images (ALOI), the
Columbia Object Image Library (COIL), the Object Databank (ODBK). Table
1 provides the details on the graphs in each of these datasets.

Table 1. Dataset details

Dataset Number of graphs Node attributes (k) Edge attributes (l)
ALOI 1800 4 0
COIL 1800 4 0

ODBK 1248 4 0

The 4 node attributes encode the size and the average color of the image area
represented by a node.

We have used the sample data for learning parameters for our method (as
described in section 2). Table 2 provides the details on the length of feature
vector for each image database.

Table 2. Length of feature vectors

Dataset Length of feature vector
ALOI 1595
COIL 1469

ODBK 1712

And finally, Table 3 presents the performance index, which is a clustering
validation index to evaluate the separation between the classes when represented
by the vectors, as calculated by the scripts provided by the contest. Further
details on the performance index can be found at [2].

Table 3. Performance indexes

Dataset Performance index
ALOI 0.379169273726
COIL 0.375779781743

ODBK 0.352542741399

The experimentation is performed on Intel Core 2 Duo (T8300 @ 2.4GHz)
with 2GB (790MHz) of RAM.

4 Conclusion

We have presented a method for explicit graph embedding. Our algorithm ex-
tracts a feature vector for an undirected attributed graph. The proposed feature
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vector not only utilizes information about the structure of the graph but also
incorporates the attributes of nodes and edges of the graph, for extracting dis-
criminatory information about the graph. Thus yielding a feature vector that
corresponds to the structure, topology and geometry of the underlying content.
The use of fuzzy-intervals, for noise sensitive information in graphs, enables the
proposed feature vector to incorporate robustness against the deformations in-
troduced in graphs as a result of noise.

The experimentation on sample datasets shows that the proposed method
can be used to extract a huge number of meaningful features from the graphs.
An important property of our method is that the number of features could be
controlled by using appropriate parameter for the number of bins for defining
a feature and its fuzzy zones. One possible future extension to this work is to
extend it to directed attributed graphs, which could be done by introducing new
features for in-degree and out-degree of nodes.
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Abstract. An increasing number of clinicians, researchers, educators

and patients routinely search for medical information on the Internet as

well as in image archives. However, image retrieval is far less understood

and developed than text–based search. The ImageCLEF medical image

retrieval task is an international benchmark that enables researchers to

assess and compare techniques for medical image retrieval using standard

test collections. Although text retrieval is mature and well researched,

it is limited by the quality and availability of the annotations associated

with the images. Advances in computer vision have led to methods for

using the image itself as search entity. However, the success of purely

content–based techniques has been limited and these systems have not

had much clinical success. On the other hand a combination of text–

and content–based retrieval can achieve improved retrieval performance

if combined effectively. Combining visual and textual runs is not trivial

based on experience in ImageCLEF. The goal of the fusion challenge at

ICPR is to encourage participants to combine visual and textual results

to improve search performance. Participants were provided textual and

visual runs, as well as the results of the manual judgments from Image-

CLEFmed 2008 as training data. The goal was to combine textual and

visual runs from 2009. In this paper, we present the results from this

ICPR contest.

1 Introduction

Image retrieval is a burgeoning area of research in medical informatics [1,2,3].
With the increasing use of digital imaging in all aspects of health care and med-
ical research, there has been a substantial growth in the number of images being
created every day in healthcare settings. An increasing number of clinicians,
researchers, educators and patients routinely search for relevant medical infor-
mation on the Internet as well as in image archives and PACS (Picture Archival
and Communication Systems) [1,3,4]. Consequently, there is a critical need to
manage the storage and retrieval of these image collections. However, image
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retrieval is far less understood and developed than text–based searching. Text
retrieval has a long history of evaluation campaigns in which different groups use
a common test collection to compare the performance of their methods. The best
known such campaign is the Text REtrevial Conference (TREC1, [5]), which has
been running continuously since 1992. There have been several offshoots from
TREC, including the Cross–Language Evaluation Forum (CLEF2). CLEF op-
erates on an annual cycle, and has produced numerous test collections since its
inception in 2000 [6]. While CLEFs focus was originally on cross–language text
retrieval it has grown to include multimedia retrieval tracks of several varieties.
The largest of these, ImageCLEF3 , started in 2003 as a response to the need
for standardized image collections and a forum for evaluation. It has grown to
become todays pre–eminent venue for image retrieval evaluation.

The coming sections will describe the ImageCLEF challenge itself and the
details for the fusion task that was organized at ICPR (International Conference
on Pattern Recognition). Then, the results and techniques of the participants
will be analyzed in more detail and the main lessons learned from this context
will be explained.

2 The Annual ImageCLEF Challenge

ImageCLEF is an international benchmark that includes several sub–tracks con-
cerned with various aspects of image retrieval [7]; one of these tracks is the
medical retrieval task run since 2004. This task within ImageCLEF enables re-
searchers to assess and compare techniques for medical image retrieval using
standard collections. ImageCLEFmed uses the same methodology as informa-
tion retrieval challenges including TREC. Participants are given a set of topics
that represent information needs. They submit an ordered list of runs that con-
tain images that their system believe best meet the information need. Manual
judgments using domain experts, typically clinicians, are used to create ground
truth. The medical image retrieval tracks test collection began with a teaching
database of 8,000 images in 2004. Since then, it has grown to a collection of over
74,000 images from the scientific literature, as well as a set of topics that are
known to be well–suited for textual, visual or mixed retrieval methods. A major
goal of ImageCLEF has been to foster development and growth of multimodal
retrieval techniques: i.e., retrieval techniques that combine visual, textual, and
other methods to improve retrieval performance.

Traditionally, image retrieval systems have been text–based, relying on the
textual annotations or captions associated with images. Several commercial sys-
tems, such as Google Images4 and Yahoo! images5, employ this approach. Al-
though text–based information retrieval methods are mature and well researched,
1 http://trec.nist.gov/
2 http://www.clef-campaign.org/
3 http://www.imageclef.org/
4 http://images.google.com/
5 http://images.yahoo.com/

http://trec.nist.gov/
http://www.clef-campaign.org/
http://www.imageclef.org/
http://images.google.com/
http://images.yahoo.com/
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they are limited by the quality of the annotations applied to the images. Ad-
vances in techniques in computer vision have led to a second family of methods
for image retrieval: content–based image retrieval (CBIR). In a CBIR system, the
visual contents of the image itself are represented by visual features (colors, tex-
tures, shape) and compared to similar abstractions of all images in the database.
Typically, such systems present the user with an ordered list of images that are
visually most similar to the sample (or query) image. The text–based systems
typically perform significantly better than purely visual systems at ImageCLEF.

Multimodal systems combine the textual information associated with the im-
age with the actual image features in an effort to improve performance, especially
early precision. However, our experience from the ImageCLEF challenge, espe-
cially of the last few years has been that these combinations of textual and visual
systems can be quite fragile, with the mixed runs often performing worse than
the corresponding textual run. We believe that advances in machine learning
can be used more effectively to learn how best to incorporate the multimodal
information to provide the user with search results that best meet their needs
[8]. Thus, the goal of the fusion challenge at ICPR is to encourage participants
to effectively combine visual and textual results to improve search performance.
Participants were provided textual and visual runs that were submitted to the
actual competition, as well as the results of the manual judgments from the Im-
ageCLEFmed 2008 challenge as training data. The goal was to combine similar
textual and visual runs from the 2009 challenge for testing. In this paper, we
present the preliminary from this ICPR contest.

3 The ImageCLEF Fusion Challenge

In both 2008 and 2009, the Radiological Society of North America (RSNA6)
made a subset of its journals image collections available for use by participants
in ImageCLEF. The 2009 database contains 74,902 images, the largest collection
yet [9]. The organizers created a set of 25 search topics based on a user study
conducted at Oregon Health & Science University (OHSU) in 2009 [4]. These
topics consisted of 10 visual, 10 mixed and 5 semantically oriented topics, as
categorized by the organizers based on past experience and nature of the query.
During 2008 and 2009, a panel of clinicians, using a web–based interface, created
relevance judgments. The manually judged results were used to evaluate the
submitted runs using the trec eval7 software package. This package provides
commonly used information retrieval measures including mean average precision
(MAP), recall as well as precision at various levels for all topics.

For the ICPR fusion contest, the goal was to combine the best visual and
textual runs that had been submitted previously to improve performance over
the purely visual and purely textual runs. After participants registered they were
provided access to the training data in early November 2009. The training set
consisted of the four best textual and visual runs from different groups in 2008.
6 http://www.rsna.org/
7 http://trec.nist.gov/trec_eval/

http://www.rsna.org/
http://trec.nist.gov/trec_eval/
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Only one of these groups participated in the fusion challenge, so there was no
advantage for any group. These runs were anonymized to remove information
about the group. We also provided the qrel, the file that contained the output for
the manual judgments as well as the results obtained by the training runs using
the trec eval package. Participants could create fusion runs using combinations
of the provided training runs and evaluate the performance using the trec eval
along with the abovementioned qrel file as well as the results of the evaluation
measures for the runs.

We released the test runs two weeks later. Again these consisted of the four
best textual and four best visual runs, this time from 2009. The ground truth
in the form of qrel was not provided at this time. The judgments were released
in early January so that the participants could evaluate their runs in time for
submission to ICPR 2010. To summarize, the timeline for this contest was as
follows:

– 16.11.2009 Release of training data
– 30.11.2009 Release of test data
– 04.01.2010 Submission of results
– 10.01.2010 Release of ground truth data
– 15.01.2010 Conference paper submission

4 Fusion Techniques Used by the Participants

There was quite a variety of techniques relying on either the similarity scores
of the supplied runs or the ranks. Early fusion was hardly possible as only the
outcome of the system was supplied and no further information, limiting the
variety of the approaches.

OHSU used a simple scheme based principally on the number of times that
a particular image occurs in the results sets as the main criterion. Two runs use
only textual information (fusion2, fusion4) and two runs combine both visual
and textual techniques (fusion1, fusion3). Then as a second criterion either the
sum of the ranks was used (fusion1, fusion2) or the sum of the scores (fusion3,
fusion4).

The MedGIFT (Medical projects around the GNU Image Finding Tool) group
employed two principal approaches for the fusion described in more detail in [10].
Methods are based on ranks and on the scores. Whereas ranks can be used di-
rectly, the scores were normalized to be in the range 0..1 to be better comparable
among the submissions. In terms of combination rules a max combination was
used where of all systems the maximum was taken (combMax), a sum rule sum-
ming up normalized scores or ranks (combSum) and the last rule includes the
frequency of the documents into this (CombMnz).

The results of the best system (SIFT ) in the context are described in [11].
This group uses a probabilistic fusion, where weights are calculated from training
data (ProbFuse). The training takes into account that documents retrieved later
are generally less relevant and these are subsequently weighted with a learned
decrease of the weight (SegFuse). All these techniques can create border effects as
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the results are grouped in blocks. This can be removed with SlideFuse. SlideFuse
most often had the best results.

The PRISMA group developed two methods called rankMixer and rank-
Booster. Both take into account the frequency of an image in the results lists to
be combined and its scores. These are used to calculate a function for calculating
the similarity score for a particular image.

Finally, the ISDM group developed an approach based on a generative sta-
tistical model. It uses an attentive reader model, meaning that early documents
are weighted high and then attention decreases, in their case with a logarithmic
model. The importance of single runs is in a second approach estimated based
on population–based incremental learning.

5 Results of the Participants

Table 1 contains the performance of the training runs that were provided. As
can be seen, the textual runs perform significantly better than the visual runs
for all measures. This has to be taken into account when combining the runs.

Table 1. Results of the training runs

Run Recall MAP P5 P10

Text1 0.63 0.29 0.49 0.46

Text2 0.65 0.28 0.51 0.47

Text3 0.54 0.27 0.51 0.47

Text4 0.61 0.28 0.44 0.41

Visual1 0.06 0.028 0.15 0.13

Visual2 0.24 0.035 0.17 0.17

Visual3 0.17 0.042 0.22 0.17

This performance gap was similarly true for the test runs (Table 2). Overall,
the performance was better for the textual runs in 2009 whereas it was worse
for the visual runs as can be seen when comparing the two tables.

Table 2. Results of the test runs

Run Recall MAP P5 P10

Text1 0.73 0.35 0.58 0.56

Text2 0.66 0.35 0.65 0.62

Text3 0.77 0.43 0.70 0.66

Text4 0.80 0.38 0.65 0.62

Visual1 0.12 0.01 0.09 0.08

Visual2 0.12 0.01 0.08 0.07

Visual3 0.11 0.01 0.09 0.07

Visual4 0.11 0.01 0.09 0.08
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Participants were successful in creating fusion runs that were better than
the original text and visual runs, as well being substantially better than the
official mixed runs that had been submitted to ImageCLEFmed 2009. None of
the officially submitted fusion runs was better than the best text run in the
competition.

We received 49 runs from five groups as part of the fusion task. Of the 35
mixed runs that were submitted, 18 had higher MAP compared to the best
textual training run and interestingly, 25 had higher MAP compared to the
best official mixed run in 2009 as seen in Figure 1. This shows the potential
performance gains through fusing varying techniques and it shows how little
focus most ImageCLEF participants put into this..

Fig. 1. MAP of all fusion runs and test runs

Figure 2 shows the precisions of the best original runs and the best fusion
runs. There is a slight improvement in early precision with the best fusion runs
both textual and mixed. However, the fusion runs created using only visual runs
performed quite poorly, which is not surprising as the basic results were all very
low. Although there was little difference between the best fusion mixed and
textual runs for the MAP, the runs with highest early precision used the visual
runs in combination with the textual runs. This underlines the importance of
visual information, even with a very poor performance, for early precision. This
also shows that the information contained in visual and textual retrieval runs is
very complementary.
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Fig. 2. Early precision (P X meaning precision after X documents are retrieved) of

original text runs and fusion runs

Table 3. Performance metrics for fusion of text runs

Group Runid type map bpref P5 P10 P30

SIFT, Ireland txtOnlySlideFuse Textual 0.487 0.499 0.72 0.652 0.584

PRISMA, Chile testt234v Textual 0.480 0.498 0.704 0.672 0.5973

PRISMA, Chile testt1234v Textual 0.474 0.487 0.712 0.648 0.596

PRISMA, Chile testt123v Textual 0.473 0.489 0.712 0.664 0.584

SIFT, Ireland txtOnlySegFuse Textual 0.466 0.472 0.696 0.668 0.577

PRISMA, Chile testt124v Textual 0.464 0.474 0.688 0.64 0.604
SIFT, Ireland txtOnlyProbFuse Textual 0.447 0.454 0.704 0.652 0.556

PRISMA, Chile testt134v Textual 0.43 0.444 0.712 0.656 0.563

OHSU, USA fusion1 Textual 0.300 0.337 0.448 0.376 0.381

OHSU, USA fusion4 Textual 0.270 0.347 0.28 0.332 0.361

OHSU, USA fusion3 Textual 0.175 0.235 0.328 0.32 0.24

In Table 3 the results when fusing only the textual runs are shown. The best
runs of each performance measure are marked in bold. Best results are obtained
with a probabilistic model that learned the importance of specific parts of the
results. The best four results are all very close. MAP and early precision are both
very well correlated among the runs and the best run regarding MAP also had
best early precision. BPref (Binary preference) shows whether a technique has
many un–judged images ranked highly and in this case it correlates very closely
with MAP, which is not surprising as all runs are based on the exact same runs
or basic technqiues.
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Table 4. Performance metrics for fusion of visual runs

Group Runid type map bpref P5 P10 P30

SIFT, Ireland visOnlySegFuse Visual 0.0179 0.0353 0.088 0.092 0.0613

SIFT, Ireland visOnlySlideFuse Visual 0.0175 0.0354 0.104 0.088 0.064
SIFT, Ireland visOnlyProbFuse Visual 0.0154 0.0338 0.088 0.08 0.056

Table 5. Performance metrics for fusion mixed runs

Group Runid type map bpref P5 P10 P30

SIFT, Ireland txtimgSlideFuse Mixed 0.495 0.494 0.712 0.66 0.588

SIFT, Ireland txtimgSlideFuse Mixed 0.495 0.494 0.712 0.66 0.588

PRISMA, Chile gt841t234v3 Mixed 0.491 0.497 0.76 0.696 0.611
medGIFT, CH combSUMlogRank Mixed 0.488 0.490 0.712 0.672 0.592

medGIFT, CH combMNZlogRank Mixed 0.487 0.489 0.712 0.672 0.592

medGIFT, CH combSUMByFreqlogRank Mixed 0.484 0.489 0.712 0.672 0.592

SIFT, Ireland txtimgSegFuse Mixed 0.469 0.459 0.696 0.672 0.585

PRISMA, Chile testt1234v234 Mixed 0.466 0.461 0.752 0.676 0.595

PRISMA, Chile testt1234v134 Mixed 0.464 0.458 0.744 0.692 0.589

medGIFT, CH GESUM3MAXLinearRank Mixed 0.461 0.465 0.720 0.656 0.556

OHSU, USA fusion2 Mixed 0.458 0.478 0.672 0.628 0.575

medGIFT, CH SUM3MAXByFreqLinearRank Mixed 0.458 0.462 0.720 0.656 0.556

PRISMA, Chile testt1234v123 Mixed 0.451 0.449 0.744 0.688 0.577

PRISMA, Chile testt1234v124 Mixed 0.450 0.449 0.712 0.656 0.576

medGIFT, CH combMNZScoreNorm Mixed 0.442 0.442 0.720 0.656 0.579

medGIFT, CH combSUMFreqScoreNorm Mixed 0.442 0.446 0.688 0.692 0.568

medGIFT, CH combSUMScoreNorm Mixed 0.441 0.442 0.720 0.656 0.579

SIFT, Ireland txtimgProbFuse Mixed 0.434 0.419 0.696 0.652 0.563

PRISMA, Chile testt1234v1234 Mixed 0.411 0.403 0.720 0.648 0.551

PRISMA, Chile testt134v234 Mixed 0.398 0.399 0.664 0.664 0.528

PRISMA, Chile testt134v134 Mixed 0.394 0.395 0.688 0.66 0.528

ISDM, Spain gen2 Mixed 0.383 0.385 0.688 0.668 0.54

ISDM, Spain gen5 Mixed 0.382 0.384 0.696 0.652 0.536

ISDM, Spain gen1 Mixed 0.382 0.385 0.688 0.664 0.54

ISDM, Spain gen4 Mixed 0.379 0.382 0.704 0.66 0.527

PRISMA, Chile testt234v124 Mixed 0.374 0.373 0.616 0.604 0.523

ISDM, Spain gen3 Mixed 0.372 0.375 0.688 0.64 0.521

PRISMA, Chile testt134v123 Mixed 0.369 0.374 0.648 0.6 0.509

PRISMA, Chile testt134v124 Mixed 0.362 0.374 0.616 0.596 0.508

PRISMA, Chile testt124v123 Mixed 0.362 0.357 0.608 0.596 0.517

PRISMA, Chile testt234v1234 Mixed 0.298 0.304 0.520 0.508 0.431

PRISMA, Chile testt134v1234 Mixed 0.294 0.304 0.520 0.5 00 0.437

PRISMA, Chile testt124v1234 Mixed 0.284 0.291 0.496 0.504 0.420

ISDM, Spain wsum1 Mixed 0.147 0.200 0.528 0.456 0.293

ISDM, Spain wmnz1 Mixed 0.100 0.142 0.352 0.292 0.216

Table 4 shows the visual fusion results of the participants. Only a single group
submitted three runs. Results could be increased over the original results but
they remained low as the based results were not performing well at all. Other
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participants also combined visual runs only without submitting them to the
contest but results were very similar to the results presented here.

Table 5 displays all submitted mixed runs. The early precision and the MAP of
these runs are clearly superior to all the text runs shown in Table 2. We can also
see that the best runs in terms of MAP are not best in terms of early precision,
so to understand these a more detailed analysis of the techniques needs to be
performed. All among the early results have a very similar score. The first six
runs only have an absolute difference in terms of MAP of 1%. When compared
to the fusion results using only text it can be seen that MAP is slightly lower
but early precision is significantly lower with a much higher margin.

Combinations of only the textual runs delivered similar results to the mixed
runs with the best technique (SIFT group) obtaining 0.487, so slightly lower
than the combination of the mixed runs. Other groups similarly had slightly
better results using the mixed combinations compared to only comparing the
text runs. For early precision this was similar but with a stronger difference,
obtaining 0.72 compared to 0.76 for the best mixed combination run, with most
other groups having a slightly lower early precision for the text only runs.

6 Conclusions

The first fusion challenge to combine visual and textual runs from medical image
retrieval was organized for ICPR 2010. The goal of this context was to encourage
participants to explore machine learning and other advanced techniques to effec-
tively combine runs from the ImageCLEFmed challenge given a set of training
runs and their performance metrics. Five groups submitted a total of 49 runs,
many of which demonstrated the effectiveness of a multimodal approach to im-
age retrieval. It was encouraging to note that about half of the submitted runs
performed better than all the test runs. On the other hand, a few of the mixed
runs that we submitted performed poorly, possibly due to the really poor perfor-
mance of the visual test runs. The best runs obtained a MAP of 0.495 compared
to the best run in the ImageCLEF of 0.43 and the best combined run in Im-
ageCLEF 2009 of even 0.41. Such gains of over 20% show the potential of well
combining visual and textual cues for medical image retrieval. The focus of Im-
ageCLEF should be on fostering such developments In the past, particularly the
combination of media has been of limited effectiveness in ImageCLEF as most
research groups work on either visual or textual retrieval but not the two. The
small participation of only five research groups on the other hand also showed
that there might be even more potential if successful techniques for fusion are
consistently applied and tested.
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Abstract. Nowadays, one of the main problems in information retrieval

is filtering the great amount of information currently available. Late fu-

sion techniques merge the outcomes of different information retrieval

systems to generate a single result that, hopefully, could increase the

overall performance by taking advantage of the strengths of all the in-

dividual systems. These techniques have a great flexibility and allow an

efficient development of multimedia retrieval systems. The growing in-

terest on these technologies has led to the creation of a subtrack in the

ImageCLEF entirely devoted to them: the information fusion task. In

this work, Intelligent Systems and Data Mining group approach to that

task is presented. We propose the use of an evolutive algorithm to esti-

mate the parameters of three of all the fusion approaches present in the

literature.

Keywords: multimodal information retrieval, late fusion, estimation of

distribution algorithms.

1 Introduction

Modern technologies allow any user to generate, store and share a large amount
of data. As a consequence, one of the most important problems nowadays is
filtering data in order to find relevant information. This need motivated the
development of Information Retrieval (IR) systems [10,2].

Initially, IR systems were only based on text documents. More recently, how-
ever, increasing nontextual information is available thanks to the wide use of
cheap multimedia hardware (e.g., digital cameras) and publication options (e.g.,
the Internet and its social networks). In this scenario, new IR engines were de-
signed for retrieving different kinds of media. Furthermore, several approaches
aimed at considering different media in the same query were studied. The ra-
tionale behind this idea is that different media usually have complementary
information. For example, in text retrieval we try to find documents semanti-
cally close to the query while in visual retrieval we try to find documents which
contain images presenting similar visual features. This way, considering different
media could improve the results and, additionally, the user experience could be
enhanced by allowing multimodal interaction.
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Several techniques have been considered to deal with this problem which are
mainly intended to combine textual and visual retrieval:

– Annotated images and the use of textual retrieval techniques.
– Perform an initial text query and afterwards refine the results using visual

features and relevance feedback [15].
– Directly retrieve documents considering both, their textual and visual fea-

tures [3].
– Perform the same retrieval process using several IR engines and then merge

their results, also known as late fusion (see section 2 for details).

This work focus on the late fusion approach which presents important advan-
tages: a great flexibility, extensive use of the currently developed technologies
and, as well, the possibility to be extended to different media IR systems with
little effort. This is an interesting problem that has led to the development of
the fusion task presented in ImageCLEF at ICPR 20101 (see section 3).

This document presents the Intelligent Systems and Data Mining (ISDM)
group approach to ImageCLEF’s fusion task (see section 4). Our proposal tries
to improve three different methods used in late fusion by applying combinatorial
optimization techniques. These fusion methods allow weighting the input IR
systems and, in this work, we propose to estimate these weights (in addition to
other parameters) using an Estimation of Distribution Algorithm (EDA) [7].

2 Late Fusion in Information Retrieval

As it was previously mentioned, late fusion in information retrieval can be stated
as the problem of retrieving of the same query by different and independent IR
engines in order to merge their outputs to obtain a final and global result. It is
straightforward to see that the constituent systems are not modified since the
fusion is performed only on their outcomes. These techniques present, therefore,
a high flexibility and scalability. All these advantages may allow the easy devel-
opment of multimedia retrieval tools as a consequence of permitting the different
engines to operate with different information sources.

Several approaches have been considered, so far, for late fusion. In [6], a set
of operations to compute the score of a given document dj by combining the
scores provided by each individual IR system is presented. The two operations
that yielded the best results were:

CombSUMscore(dj) =
N∑

i=1

γiscorei(dj) (1)

CombMNZscore(dj) = |dj |
N∑

i=1

γiscorei(dj) (2)

1 http://www.imageclef.org/2010/ICPR/Fusion/



ISDM at ImageCLEF 2010 Fusion Task 111

where |dj | is the number of IR systems which retrieve dj , N is the number of
individual IR engines considered, γi is the weight assigned to the i-th IR engine
and scorei(dj) is the score of document dj returned by the i-th IR system. Fusion
is performed by merging all the retrieved documents and rescoring them with
one of these operations.

However, some engines do not return the actual scores of the retrieved doc-
uments. In these cases the previous operations are extended by using a score
function based on the position of a document in a ranking [8]:

rscorei(dj) = 1 − ranki,j − 1
retrievedi

(3)

where ranki,j is the rank of dj in the i-th retrieval system and retrievedi is the
number of documents retrieved by the i-th engine.

Other rank-based approaches consider late fusion as a voting problem and
apply techniques taken from social choice theory to perform the fusion:

– Borda-Fuse [1]: If a given IR engine retrieves D documents, it is considered
that D points are assigned to the first document, D − 1 points are assigned
to the second one, and so on. The fusion is performed by summing up all
the points for each document to subsequently sort them.

– Condorcet Fusion [12]: This method considers the results of the individual IR
systems as ranked votes so that the best score is assigned to the document
that beats or ties with every other document in a pair-wise comparison.
Fusion is performed by generalizing this idea to a rank of documents.

Probabilistic techniques have also been applied to fusion problems. In [9], a
division of the documents retrieved by each IR system is proposed, which is
performed by dividing its outcome in segments of the same size and then using
some training data to estimate the probability Pr(dj,k|m) of a document dj

being relevant given that it is retrieved by the m-th model in the k-th segment.
These probabilities are later used to score the documents of the fused result.

Finally, an alternative approach tries to estimate a multinomial distribution to
rank the documents [4]. This technique will be discussed in detail in section 2.1.

2.1 Generative Model

In order to combine the outputs of the different information retrieval engines
a statistical technique (presented in [4]) has been considered. This approach is
based on a generative model which will be denoted as GeM from now on.

This model assumes that the documents returned by the IR engines are gen-
erated by a multinomial distribution with a parameter vector θ. Under this
consideration, a particular document dj is generated with probability θj . This
way, the fusion is performed by estimating the parameters of the multinomial
distribution from the outcomes of the IR systems and, subsequently, using those
parameters to rank the documents in the fused set.

The estimation of parameters follows the idea of the Impatient Reader Model
which represents a real user’s attention while reading a list of documents. The
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model will assign a probability Pr(d|r) to each document to represent the likeli-
hood of the user reading it. Better scored documents are more likely to be read
but user’s attention is expected to decrease as ranks get higher. This is modelled
by an exponential distribution:

Pr(d|r) ∼ f(r|λ) = λe−λr (4)

where λ ≥ 0 is the exponential parameter and r is the rank of the document in
the list.

The actual estimation of the θ parameters is performed by taking into account
the information provided by the impatient reader model for all the individual
IR systems. The overall probability of the impatient reader viewing document
dj is considered to be:

Pr(dj |rj1 · · · rjN ) ∼ zj =
1
N

N∑
i=1

f(rji|λ̂i) (5)

where rji is the rank of document dj in the i-th considered IR engine output, N

is the number of considered IR engines and λ̂i is the estimated value of λi.
Using Bayes’ rule, the maximum a posteriori estimate for θj is obtained by

combining the maximum likelihood estimate of θj with the conjugate prior for
the multinomial distribution (i.e., the Dirichlet distribution):

θ̂j =
|dj | + μzj

|s| + μ(
∑|S|

i zi)
(6)

where μ is a non-negative hyperparameter that characterizes the posterior dis-
tribution, |s| is the total number of documents retrieved by all the IR systems
and |S| is the number of documents retrieved by all the IR systems after delet-
ing duplicated ones. Eq. (6) provides the values which will be used to rank the
documents in the fused result.

In Eq. (5), all the IR systems have been considered to have the same weight in
the final result. However, this assumption is unrealistic, especially in this task,
since text-based systems perform much better than visual-based ones (see sec-
tion 3). The GeM model can be modified to consider different weights rewriting
Eq. (5) as:

Pr(dj |rj1 · · · rjN ) ∼ z′j =
N∑

i=1

γif(rji|λ̂i) (7)

where γi is the weight of the i-th IR system and all of them should satisfy the
constraint

∑N
i=1 γi = 1.

3 Fusion Task

ImageCLEF2 is the cross-language image retrieval track which is run as part of
the Cross Language Evaluation Forum (CLEF). It features several subtracks that
2 http://www.imageclef.org/
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have evolved since its first edition. This year, ImageCLEF organizes a challenge
as part of the International Conference on Pattern Recognition (ICPR) where a
subtrack is devoted to late fusion: the information fusion task [13].

The information fusion task is aimed at exploring strategies to combine the
outcomes of different visual and text retrieval systems. The data used in this
task was obtained from the best four purely visual and the best four purely
textual runs of the 2009 ImageCLEF medical retrieval task [14]. The query
topics are mainly semantic and, thus, text-based retrieval performs much better
than visual-based retrieval in this task.

Participants had to use this data to generate one fused result. Each team
could send up to 20 submissions which were evaluated using the well-known
Mean Average Precision (MAP) metric [10].

4 ISDM Proposal

Three fusion techniques have been selected from the literature which allow the
consideration of different weights for each one of the underlying IR engines.
The adopted techniques are: GeM (as our main approach), CombSUM and
CombMNZ (which are the baseline for most of the published late fusion works).

These methods have several parameters that directly affect the retrieval per-
formance. Here, we propose the use of an EDA [7] to estimate these parameters.

In addition, the considered GeM model has been modified to deal with the
document scores from the different IR engines. Therefore, the equation employed
by GeM to rank the documents can be rewritten as:

θ̂j =

∑N
k=1 scorek(dj) + μz′j
|s| + μ(

∑|S|
i z′i)

(8)

where scorek(dj) is the normalized score that the k-th IR system assigns to
document dj and z′j is computed using the weights returned by the optimization
algorithm.

4.1 Parameter Estimation

The GeM model requires the estimation of the μ and λi parameters, as well as
the different systems weights (γi). Our proposal estimates those values using a
specific EDA, the Population-Based Incremental Learning (PBIL) optimization
algorithm [16].

PBIL techniques are based on the idea of a population of suitable solutions.
In this case, these solutions are composed of all the parameters to be computed.
Hence, an individual I of the population can be expressed as:

I = γ̂1, · · · , γ̂N , λ̂1, · · · , λ̂N , μ̂ (9)

The overall population is represented as a set of Gaussian distributions, each one
of them modelling one of the values of Eq. (9). PBIL algorithm iteratively con-
structs a population by sampling these Gaussian distributions to subsequently
update the Gaussian distribution parameters according to the best individuals.
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The LiO [11] toolkit was used to implement the PBIL algorithm whose basic
operation mode is:

1. Initialize the means and variances of the Gaussian distributions with arbi-
trary parameters.

2. Repeat the following steps until reaching a predefined stop criterion3:
(a) Generate a population of M individuals by sampling the Gaussian dis-

tributions.
(b) Compute the MAP, precision and recall metrics for all the individuals.
(c) Rank the individuals according to their MAP values.
(d) Delete any individual that is dominated4 by another one with a higher

MAP.
(e) Update the Gaussian distributions parameters according to the means

and variances of the remaining individuals.
3. Finally, the algorithm returns the best individual found so far, as well as

the set of non-dominated individuals generated in the (d) step of the last
iteration.

At the end, the algorithm returns the best individual found so far, which rep-
resents the best considered set of estimated parameters. Furthermore, we can
take advantage of the remaining individuals in the final iteration as they rep-
resent potentially good solutions and, therefore, they can be used as additional
solutions to be returned.

In the cases of CombSUM and CombMNZ, the optimization algorithm is ex-
actly the same although considering only the weights of the different IR systems.

5 Results

5.1 Submitted Runs

All the submitted runs were obtained employing the optimization algorithm
presented in section 4.1. Three PBIL runs were performed, considering a different
fusion technique (GeM, CombMNZ and CombSUM) in each one of them.

– Runs gen1.r1, gen2.r1, gen3.r1, gen4.r1 and gen5.r1 were obtained by
fusing the individual IR outcomes applying the GeM technique with the
parameters represented by the n-best scored individuals returned by the
GeM PBIL execution (gen1.r1 considering the best individual and gen5.r1
considering the fifth best scored one).

3 The stop criterion was: performing 1000 iterations, 512000 evaluations, 500 iterations

without improving or 256000 evaluations without improving.
4 One individual is said to dominate a second one if its precision and recall are both

higher than those in the second individual and, at least, one of them is strictly

greater. This concept, formally named Pareto dominance [5], is widely used in mul-

tiobjective optimization. The rationale behind it is to capture the trade-offs among

opposing objectives.
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– Run wmnz1.r1 was obtained using the CombMNZ technique to fuse the
individual IR outcomes considering, to this end, the weights represented by
the best scored individual returned by the CombMNZ PBIL execution.

– Run wsum1.r1 was obtained using the CombSUM technique considering the
weights represented by the best scored individual returned by the CombSUM
PBIL execution.

5.2 Evaluation

Table 1 shows the baseline results for all the considered techniques on the pro-
vided data sets. Table 2, on the other hand, reports the results obtained with
the PBIL-based optimization technique.

Three experiments have been performed with the techniques presented in the
previous sections:

1. The first one consisted of executing the PBIL algorithm on the provided
training data considering the GeM, CombSUM and CombMNZ fusion tech-
niques. The MAP results of this experiment can be found in the first row of
table 2.

2. The second experiment was performed by applying GeM, CombSUM and
CombMNZ fusion techniques on the provided test data. The parameters
employed were the same ones that were computed in the first experiment.
These results are shown in the second row of table 2 and were the ones
obtained by the ISDM submissions to the fusion task.

3. After the submission deadline the task organizers released the relevance
judgements of the test set. This information was used to perform a new
set of PBIL executions (considering GeM, CombSUM and CombMNZ), this
time directly on the test set. These results are shown in the third row of
table 2.

The results of the first and third experiments are not representative of future
performance since there is a significant overlapping between the training and
the evaluation data. However, they can provide an indication of the algorithm
performance on the different data sets and could be used to compare different
fusion techniques.

The results show that the optimization technique indeed improves fusion per-
formance on the datasets. There is a higher improvement on the test set than
in the training set, reaching a MAP of 0.477 for the first one and of 0.377 for

Table 1. Baseline MAP results of the fusion task using CombSUM, CombMNZ and

GeM without weighting the IR systems and considering arbitrary parameters

Train Test

GeM 0.361 0.342

CombMNZ 0.364 0.401

CombSUM 0.367 0.342
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Table 2. MAP results of the fusion task obtained by ISDM. Each column corresponds

to the techniques employed in the submitted runs described in section 5.1.

gen1.r1 gen2.r1 gen3.r1 gen4.r1 gen5.r1 wmnz1.r1 wsum1.r1

PBIL—Train 0.373 0.373 0.372 0.371 0.371 0.371 0.377
Test 0.382 0.383 0.372 0.379 0.382 0.375 0.333

PBIL—Test 0.454 0.454 0.454 0.454 0.454 0.477 0.454

the second one. However, evaluation using data not present at the training set
achieves significantly lower results.

In the case of GeM, performance is increased, with respect to the baseline, in
all the experiments and presents the best score in the second experiment (which
is the most representative of future results). On the contrary, CombSUM and
CombMNZ do not outperform their baselines in the second experiment.

Results support the idea that CombMNZ and CombSUM have a greater de-
pendence on the queries than GeM and, thus, GeM is more robust and perform
better when dealing with new queries. Further research on GeM and the opti-
mization techniques is promising since they would be an important option to
perform late fusion if their results could be improved.

Considering all the runs submitted to the contest [13], the other participants
top submissions achieved higher scores than ours. Comparing our best submis-
sion to the overall best one, there is a MAP difference of 0.11. However, the
difference is shorter if early precision is considered (0.064 for precision at 5 and
0.028 for precision at 10). Finally, the third experiment described in this section
shows that our approach could be more competitive (achieving a MAP difference
of 0.018 with respect to the best submission) by improving the performance of
queries not seen in the training stage.

6 Conclusions and Future Work

In this paper, the problem of late fusion in the scope of information retrieval has
been firstly introduced. Then, several techniques to cope with this problem, along
with the information fusion task presented in the ImageCLEF track at ICPR
2010, have been described. Finally, we have discussed in detail the approach
followed by the ISDM group to generate their submissions to the fusion task as
well as the experimental results achieved.

Results support that a good configuration of the model parameters can signif-
icantly improve retrieval results. In the case of the GeM technique, the baseline
results are improved in all the scenarios despite requiring more parameters to
be estimated than the other techniques. However, the PBIL-based optimization
technique does not improve the results of CombSUM and CombMNZ when re-
trieving new queries.

Applying optimization techniques to late fusion retrieval systems is a promis-
ing area of study and therefore requires future work. It would be interesting to
test these techniques on larger training sets, or to reduce the parameters (e.g.,
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using only two weights: the first one for text retrieval systems and the second
one for visual retrieval ones) in order to allow a more accurate and better esti-
mation of the parameters. Another future line of work could be the modification
of the GeM approach to consider different statistical models while keeping the
same underlying ideas of the impatient reader and the generative model. Finally,
other optimization techniques could also be considered for this task.
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Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 101–110. Springer,

Heidelberg (2010)

14. Müller, H., Kalpathy–Cramer, J., Eggel, I., Bedrick, S., Radhouani, S., Bakke, B.,

Kahn Jr., C.E., Hersh, W.: Overview of the CLEF 2009 medical image retrieval

track. In: Peters, C., Caputo, B., Gonzalo, J., Jones, G.J.F., Kalpathy-Cramer, J.,

Müller, H., Tsikrika, T. (eds.) CLEF 2009. LNCS, vol. 6242, pp. 72–84. Springer,

Heidelberg (2010)

15. Paredes, R., Deselaers, T., Vidal, E.: A probabilistic model for user relevance feed-

back on image retrieval. In: Popescu-Belis, A., Stiefelhagen, R. (eds.) MLMI 2008.

LNCS, vol. 5237, pp. 260–271. Springer, Heidelberg (2008)

16. Sebag, M., Ducoulombier, A.: Extending population-based incremental learning

to continuous search spaces. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
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Abstract. In this work, we present two algorithms to improve the effec-

tiveness of multimedia retrieval. One, as earlier approaches, uses several

retrieval methods to improve the result, and the other uses one single

method to achieve higher effectiveness. One of the advantages of the pro-

posed algorithms is that they can be computed efficiently in top of exist-

ing indexes. Our experimental evaluation over 3D object datasets shows

that the proposed techniques outperforms the multimetric approach and

previously existing rank fusion methods.
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1 Introduction

In the last years, we have experienced a phenomenon of multimedia information
explosion, where the volume of produced digital data increases exponentially in
time. This exponential growth is caused by many factors, like more powerful
computing resources, high-speed internet, and the diffusion of the information
society all over the world. Additionally, an enormous production of data is at-
tributed to the quick dissemination of cheap devices for capturing multimedia
data like audio, video, and photography. Thus, it has become essential to develop
effective methods to search and browse large multimedia repositories.

The content-based retrieval (CBR) of multimedia data (or of other semanti-
cally unstructured-type data) is a widely used approach to search in multimedia
collections. CBR performs the retrieval of relevant multimedia data according
to the actual content of the multimedia objects, rather than considering an ex-
ternal description (e.g., annotations). Instead of text-based query, the database
is queried by an example object to which the desired database objects should be
similar. This is known as the query-by-example retrieval scheme.

Usually, the similarity measure used to compare two multimedia objects is
modeled as a metric distance (in the mathematical meaning), which is known as
the metric space approach [14]. This is because the metric axioms have allowed
researchers to design efficient (fast) access methods employed in the similarity
search. With this approach, the search can be performed in an efficient way.
� Partially funded by Conicyt (Chile), through the Master Scholarship (first author).
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However, depending on the particular application domain, the similarity measure
may not model 100% correctly the human notion of similarity.

The effectiveness of a multimedia research system is related with the quality
of the answer returned by the similarity query. In the metric approach, given a
distance function, a similarity query corresponds to a search for close objects in
some topological space. An effective distance function should treat two similar
objects, according to the human concept of similarity, as two close points in
the corresponding space. Indeed, the effectiveness of a similarity search system
measures its ability to retrieve relevant objects while at the same time holding
back non-relevant ones. Improving the effectiveness of a similarity search system
is at least as important as improving its efficiency, because effectiveness is directly
related to the quality of the answers that the search system returns.

In this paper we present two novel algorithms that improves the effectiveness
of similarity measures. The first method, Rank-Mixer, merges several results ob-
tained with different similarity measures, and the second method, Rank-Booster,
improves the quality of the answer obtained using just one similarity measure.
Both methods only use the information given by the similarity measure, and they
do not rely on training databases like other approaches based on off-line super-
vised learning. We show how to use these methods over existing index structures,
thus the efficiency of the search is not affected. To evaluate the performance of
our proposed algorithms, we made an extensive experimental evaluation in a
standard reference collection for 3D model retrieval and used the data of the
ImageCLEF@ICPR fusion task, showing that Rank-Booster and Rank-Mixer
are able to improve the effectiveness of the best available 3D model similarity
measures and the best textual methods of ImageCLEF.

2 Related Work

2.1 Similarity Queries

The most common similarity query is the nearest neighbors or k-NN, which
returns the k most similar objects of the database with respect to a query object
q not necessarily present in the database.

The (dis)similarity is defined as a function that takes two multimedia objects
as input and returns a positive value. The value 0 means that the objects are
equal. Typically, to compute the (dis)similarity between multimedia objects the
metric approach is used. In this approach, the dissimilarity is a distance for
which the triangle inequality holds. This is done generally by computing for
every object a feature vector (FV) that represents the properties of that object.

2.2 Metric Combination

It has been shown [3,4] that a query dependent combination of metric spaces
yields to higher effectiveness of the similarity search. One way to combine several
metrics is by mean of multi-metric spaces, where the (dis)similarity function is
computed as a linear combination of some selected metrics.
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Definition 1. Multi-metric Space
Let X = {(Xi, δi), 1 ≤ i ≤ n} a set of metric spaces, the corresponding Multi-
metric space is defined as the pair (

∏n
i=1 Xi, ΔW), where ΔW is a linear multi-

metric, which means

ΔW(x, y) =
n∑

i=1

wiδi(xi, yi), (1)

In the above definition, the vector of weights W = 〈wi〉 is not fixed, and is a
parameter of Δ. When ∀i wi ∈ [0, 1] ∧ ∃i wi > 0, ΔW is also a metric.

2.3 Rank Fusion

In the area of information retrieval and pattern recognition, there are several
methods that given different ranks of objects improve the effectiveness of the
result by combining them. Here we present some of them, for a more detailed
survey on these methods see Suen and Lam [12]. Most of these methods give
each element a score and then rank them according to the assigned score.

Borda Count [9], originally developed for voting systems, has been widely used
in information retrieval. This method gives each element the score

∑
r∈R r(d).

Reciprocal Rank [6] gives each element the score
∑

r∈R
1

k+r(d) .
Logistic Regression Method [9] solves the problem of Borda Count that does

not take into account the quality of the different ranks. The score assigned by
this method is

∑
r∈R wrr(d) where the weights wr are computed as a logistic

regression. This method is similar to the idea of entropy-impurity [3].
Med-Rank [7] is an aggregation method intended for vector spaces. How-

ever, it can also be applied to combine different ranks. In this method, each
element gets a score equal to the index i, such that it appears at least in
fmin|R| different ranks up to position i. Mathematically, the score is min{i ∈
{1, . . . , n}/ |{r(d)/r(d) ≤ i}| > fmin |R|}, where fmin is a parameter, usually
taken as fmin = 0.5.

3 Improving Effectiveness of Retrieval Methods

3.1 Rank-Mixer

This algorithm combines the answer of different multimedia retrieval methods
(not necessarily metrics) and produces a new improved answer. The idea behind
this algorithm is that if an object is reported to be similar to the query object
by several retrieval methods, then the object should be a relevant one. We give
a score to the objects according to their position in the rankings. Then, we rank
all the objects according to the total score they got.

For each retrieval method, we compute the k-NN. Then we apply a function
f+ to the ranking of each object to assign a score to the objects. As we want to
give higher scores to the first objects in the ranking, f+ must be a decreasing
function. On the other hand, as we do not have the complete ranking, we need
to assign an implicit value of 0 to the unseen objects, thus f+ must be a positive
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function mixer(q, U, M, f+, k)

for each m ∈ M do
rank ← kNN(q, U, k)

for each o ∈ rank do
mrank[o] ← mrank[o] +

f+(pos(o, rank))

Sort descending mrank
return mrank[1:k]

function booster(q, U, m, k, f+, kb)

rank ← kNN(q, max{k, kb}, U)

for each o ∈ rank do
trank ← kNN(o, kb, U)

for each p ∈ trank do
brank[p] ← brank[o] +

f+(pos(p, trank), pos(o, rank))

Sort descending brank
brank ← selectElements(brank)

return [brank,rank-brank][1:k]

Fig. 1. Rank-Mixer and Rank-Booster algorithm

function. Adding a positive constant to f+ we are able to control how much we
“punish” elements not present in all ranks. Then, we add all the scores obtained
by the objects in each ranking and rank them according to the final scores. This
method is in fact a generalization of both Borda Count and Reciprocal-Rank
with a score function

∑
r∈R f+(r(d)). The outline of the algorithm is presented

in Fig. 1 (left).

Efficiency. The time needed to perform the query is the time of performing a
k-NN query for each retrieval method. These queries can be answered efficiently
by using some indexing techniques [2,5].

We could weight each retrieval method, similar to the multi-metric approach,
either statically or dynamically at query time. The weighed version of Rank-
Mixer has the advantage that the running time does not depend on the weights,
opposed to what happens in multi-metric spaces [4].

3.2 Rank-Booster

This algorithm uses a single retrieval method to improve the effectiveness of
the answer. This algorithm relies on the fact that good retrieval methods have
good results for the first elements. For example, in our experimental evaluation,
the nearest-neighbor (NN) is computed correctly with 50-80% and when re-
trieved the same number of relevant objects (R-Precision) the 50-60% of them are
relevant.

In this algorithm, we compute the k-NN for the given query. Then for the
first kb (a parameter of the algorithm) elements of the ranking we perform a
kb-NN query and use a similar strategy as the one used for the mixer method to
combine these rankings. The difference between this algorithm and Rank-Mixer,
is that we score the objects according to two values. These are the position of
each object in the ranking and the position of the object that generated the
ranking. Finally, as some objects could get a low score, meaning that they are
not good enough, we keep just the first elements of the generated ranking. The
outline of this algorithm is presented in Fig. 1 (right).
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The function f+, just as in the fixed Rank-Mixer algorithm, must be positive
and decreasing in each coordinate. One variation of the algorithm presented
above is to always keep the NN of the original answer.

Efficiency. This algorithm needs no special index to work. It can be built over
any existing indexing method. We only need to store the k-NN for each object
of the database, thus requiring (k − 1) |U| space (the NN of an object of the
database is the object itself, thus we do not need to store it). This space may
seem a lot, but in fact is lower than the space used by most FVs. For example,
as we will show in Section 4.1, for 3D objects kb ≤ 15 gives the the best results.
And since the dimensionality of the FVs for 3D objects ranges from 30 to over
than 500, the space needed would be around 2%–50% of the space needed by
a FV. Besides, this information can be dynamically built at query time, thus
requiring less space in practice.

4 Experimental Evaluation

Before using our method in the ImageCLEF@ICPR fusion task, we tested our
algorithms with two different 3D models datasets: the first one is the dataset
of the SHREC 2009 “Generic retrieval on new benchmark” track [1], which
comes from the NIST generic shape benchmark [8]. The other dataset is the test
collection from the Princeton Shape Benchmark (PSB) [11]1.

The SHREC dataset is composed of 720 models and 80 query objects. Both
models and queries are classified into 40 different classes, each one having exactly
20 objects (18 in the database and 2 queries). The test collection of PSB has 907
objects classified into 92 classes. The classes have between 4 and 50 elements. As
the PSB does not provide queries for the dataset, we chose the rounded 10% of
each class as queries. Thus the test collection now have respectively 810 objects
in the database and 97 queries.

As retrieval methods we used different FVs with me metric L1. One of them,
the DSR [13] is itself an optimized metric combination, so we are comparing
against it in our tests.

4.1 Experimental Results

Rank-Mixer. The first test we performed was intended to evaluate which func-
tion performs better for the mixer method. We considered functions of the fol-
lowing forms: − log(x), −xα, 1/xα. Table 1 shows the complete result and Fig.
2 shows the effectiveness of the Rank-Mixer for some of the functions. The table
and the graph show that the f+(x) = − log(x) gives the best results and clearly
outperforms the Borda Count (f(x) = −x) and the Reciprocal Rank (f(x) = 1/x
or f(x) = 1/(x + 60)). In the following tests we will use f(x) = − log(x) and we
will call this method log-rank. The results also show that the log-rank method
outperforms MedRank.
1 We actually tested in both PSB train and test; but we omitted some results because

of lack of space.
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Table 1. Effectiveness of Rank-Mixer for different functions

Function NN 1T 2T E DCG

−x0.1 0.850 0.505 0.637 0.442 0.787
− log(x) 0.863 0.504 0.640 0.443 0.788
1/x0.1 0.863 0.503 0.637 0.444 0.788
−x0.25 0.850 0.502 0.629 0.440 0.783
−x0.2 0.850 0.502 0.631 0.440 0.784
−x0.333 0.850 0.496 0.627 0.438 0.782
1/x0.5 0.838 0.495 0.628 0.438 0.784

Function NN 1T 2T E DCG

−x0.5 0.850 0.493 0.622 0.430 0.781
−x 0.850 0.482 0.603 0.418 0.773
−x2 0.838 0.469 0.585 0.409 0.763
1/x2 0.762 0.113 0.137 0.095 0.506
1/x 0.762 0.113 0.137 0.095 0.506
1/(x + 60) 0.025 0.025 0.050 0.032 0.324
MedRank 0.850 0.484 0.622 0.433 0.777

Fig. 2. Left: Effectiveness of Rank-Mixer for different functions, right: Effectiveness of

best SHREC descriptors

Table 2. Left: Effectiveness of log-rank on SHREC for best 3D retrieval methods.

Right: Effectiveness of Rank-Booster on SHREC.

Method NN 1T 2T E DCG
Chaouch(C) 0.963 0.730 0.848 0.602 0.917
Lian(L) 0.925 0.724 0.844 0.595 0.904
Napoleon(N) 0.950 0.639 0.771 0.541 0.882
M(C, L, N) 0.975 0.781 0.895 0.638 0.945
M(C, L) 0.950 0.788 0.906 0.642 0.938
M(C, N) 0.975 0.728 0.842 0.595 0.924
M(L, N) 0.938 0.733 0.865 0.612 0.922
MedRank(C,L,N) 0.950 0.774 0.891 0.632 0.936
MedRank(C,L) 0.925 0.751 0.865 0.611 0.922

Method NN 1T 2T E DCG
SIL 0.775 0.435 0.582 0.404 0.744
B(SIL) 0.775 0.460 0.590 0.409 0.745
DBD 0.825 0.417 0.541 0.377 0.735
B(DBD) 0.825 0.453 0.589 0.408 0.739
RSH 0.750 0.384 0.504 0.347 0.705
B(RSH) 0.750 0.412 0.502 0.350 0.698
DSR 0.850 0.546 0.691 0.479 0.819
B(DSR) 0.850 0.592 0.717 0.500 0.821

Figure 3 shows that log-rank is similar to the multimetric approach, it also
shows that the proposed method outperforms the DSR and the multimetric
approach. Also, in the right figure we present two upper bounds that can be
obtained using the log-rank method, the first is obtained using the best static
combination of retrieval methods and the second one is obtained using the best
possible dynamic combination. Figure 2 compares log-rank method with the
best retrieval methods of SHREC 09 [1], these are Aligned Multi-View Depth
Line, Composite Shape Descriptor and Multi-scale Contour Representation. The
results are detailed in Table 2. The results shows that the log-rank outperforms
MedRank and that it increases the effectiveness about 8%.
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Fig. 3. Effectiveness of log-rank. Left: Shrec Dataset, right: PSB test.

Table 3. Effectiveness of Fixed Rank-Mixer. Left: combination of FVs, right: combi-

nation of the results of Chaouch and Lian.

Method NN 1T 2T E
log-rank 0.863 0.504 0.640 0.442
Fixed log-rank (k = 32) 0.850 0.496 N.A. 0.428
Fixed log-rank (k = 34) 0.850 0.495 N.A. 0.425
Fixed log-rank (k = 36) 0.850 0.490 0.611 0.427
Fixed log-rank (k = 38) 0.850 0.489 0.613 0.427
Fixed log-rank (k = 40) 0.863 0.490 0.617 0.428

Method NN 1T 2T E
M(Chaouch, Lian) 0.950 0.788 0.906 0.642
Fixed log-rank (k = 32) 0.950 0.774 N.A. 0.640
Fixed log-rank (k = 34) 0.950 0.774 N.A. 0.639
Fixed log-rank (k = 36) 0.950 0.775 0.901 0.641
Fixed log-rank (k = 38) 0.950 0.776 0.899 0.639
Fixed log-rank (k = 40) 0.950 0.776 0.899 0.638

The above results where computed using the whole rank, that is k = |U|.
However, we can compute some statistics for fixed k, such as the Nearest Neigh-
bor or the E-Measure given that k ≥ 32. If we test it on the SHREC dataset,
we could also compute the R-Precision if k ≥ 18 and the Bull-Eye Percentage
if k ≥ 36. For the PSB, we would have to take k ≥ 50 just to compute the
First Tier. Relying on the same basis of the definition of the E-Measure that
a user is interested just in the first screen of results, we will take k ≥ 32 for
our tests, and we will test it on the SHREC dataset. Table 3 shows the results,
where “N.A.” means not applicable. The function we used in these tests was
f(x) = log(200) − log(x).

These results show that there is no need of having the complete rank, it is
enough to have approximately the 40 first elements to get an improvement close
to the one obtained using the whole rank.

Rank-Booster. In our tests, the selectElements function of the Rank-Booster
algorithm selects the first k(k − 1)/2 elements. Motivated by the results of the
previous experiments, we took f+(x, y) = log(2kb + 1) − log(x + y + 1).

Before performing the tests, we had to compute the best value for kb. For
doing so we computed the R-Precision of the Rank-Booster with different values
of kb. We only used the DSR feature vector because we wanted to choose a value
of kb independent of the used methods. It is important to notice that kb = 1 is
the same as not using any improvement method over the descriptor.

Figure 4 shows that kb = 13 is the best choice for SHREC and that every
3 ≤ kb ≤ 16 yields to improvement in the effectiveness of the method. The figure
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Fig. 4. R-Precision of Rank-Booster. Left: Shrec Dataset, right: PSB test.

Fig. 5. Effectiveness of Rank-Booster. Left: Shrec Dataset, right: PSB test.

also shows that the best possible value for PSB is kb = 6. It also follows that
any 0 < kb ≤ 9 yields to improvements in the effectiveness or maintains it.

Figure 5, show the precision-recall curves of the retrieval methods used in
SHREC and the best methods in PSB. Table 2(right) show the details of the re-
sults for the SHREC dataset. These results show that the Rank-Booster method
applied over the DSR descriptor gives better results that the ones obtained in
SHREC 09 [1] using the global-local approach. Rank-Booster increases effective-
ness up to 8%. This is an extremely good result, because this method could be
applied to any existing framework, without the need of having several retrieval
methods. Although we have devised no way to efficiently compute the optimal
value for kb, it follows from the results that, it suffices to take a small kb to
achieve higher effectiveness.

Combination of Rank-Mixer and Rank-Booster. Table 4 shows that com-
bining Rank-Mixer and Rank-Booster leads to a further improvement of the ef-
fectiveness. Combining the methods increases the effectiveness about 2% with
respect to the Rank-Mixer.
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Table 4. Effectiveness of combining Rank-Mixer and Rank-Booster

Method NN 1T 2T E DCG
Mixer 0.863 0.504 0.640 0.442 0.738
Mixer(B) 0.812 0.511 0.649 0.451 0.786
Booster(Mixer) 0.863 0.517 0.656 0.455 0.782
Booster(Mixer(B)) 0.812 0.497 0.633 0.440 0.771

Table 5. Results of ImageCLEF@ICPR Fusion Task. Left: original methods, right:

fusion of methods.

Method MAP P5 P10
Text1 0.35 0.58 0.56
Text2 0.35 0.65 0.62
Text3 0.43 0.7 0.66
Text4 0.38 0.65 0.62
Visual1 0.01 0.09 0.08
Visual2 0.01 0.08 0.07
Visual3 0.01 0.09 0.07
Visual4 0.01 0.09 0.08

Method MAP P5 P10
T(2,3,4) V3 (8.41) 0.491 0.760 0.696
T(2,3,4) 0.480 0.704 0.672
T(1,2,3,4) 0.474 0.712 0.648
T(1,2,3) 0.473 0.712 0.664
T(1,2,3,4) V(234) 0.466 0.752 0.676
T(1,2,3,4) V(134) 0.464 0.744 0.692
T(1,2,4) 0.464 0.688 0.640
T(1,2,3,4) V(1,2,3) 0.451 0.744 0.688

ImageCLEF@ICPR Fusion Task Results. In this task [10] we had to fusion
textual and visual results. As not all methods returned the same number of
elements we slightly modified our algorithm. We use the function f+(x) = T −
log2(x), with T = 8.0 fixed for all except the first result. The first result is the
best static combination of the methods with the best possible value of T = 8.41.
The best result yields an improvement of 14% and the best fully automatic
combination yields an improvement of 11%.

5 Conclusions

We presented two algorithms for increasing the effectiveness of multimedia re-
trieval methods. One of these algorithms, the log-rank, outperforms the state
of the art rank fusion methods MedRank and Reciprocal Rank. The other algo-
rithm can not be compared against these state of the art methods because it only
uses one single method to improve its effectiveness. One important advantage of
the proposed methods is that they do not rely on metric retrieval methods, and
they can be applied over any method that generates a ranking of the elements
given a query object. Another advantage of these methods is that they can be
directly applied on top of the indexing scheme of the used methods, without
the need of building a custom indexing scheme. An additional advantage of the
proposed methods is that one does not need to normalize the databases nor the
multimedia descriptors, as required by the multimetric approach.

In the future work, we will study the problem of estimating the parameter kb

of the Rank-Booster method. We will also research how to select the retrieval
methods to use in order to get the effectiveness of Rank-Booster and Rank-Mixer
closer to the upper bound showed in Section 4.1.
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Abstract. In the ImageCLEF image retrieval competition multimodal

image retrieval has been evaluated over the past seven years. For ICPR

2010 a contest was organized for the fusion of visual and textual retrieval

as this was one task where most participants had problems. In this paper,

classical approaches such as the maximum combinations (combMAX),

the sum combinations (combSUM) and the multiplication of the sum

and the number of non–zero scores (combMNZ) were employed and the

trade–off between two fusion effects (chorus and dark horse effects) was

studied based on the sum of n maxima. Various normalization strategies

were tried out. The fusion algorithms are evaluated using the best four

visual and textual runs of the ImageCLEF medical image retrieval task

2008 and 2009. The results show that fused runs outperform the best

original runs and multi–modality fusion statistically outperforms single

modality fusion. The logarithmic rank penalization shows to be the most

stable normalization. The dark horse effect is in competition with the

chorus effect and each of them can produce best fusion performance

depending on the nature of the input data.

1 Introduction

In the ImageCLEF image retrieval competition, multimodal image retrieval has
been evaluated over the past seven years. For ICPR 2010 a contest was organized
in order to investigate the problem of fusing visual and textual retrieval. Infor-
mation fusion is a widely used technique to combine information from various
sources to improve the performance of information retrieval. Fusion improve-
ment relies on the assumption that the heterogeneity of multiple information
sources allows self–correction of some errors leading to better results [1]. Med-
ical documents often contain visual information as well as textual information
and both are important for information retrieval [2]. The ImageCLEF benchmark
addresses this problem and has organized a medical image retrieval task since
2004 [3]. So far it has been observed in ImageCLEF that text–based systems
strongly outperformed visual systems, sometimes by up to a factor of ten [4]. It
is important to determine optimal fusion strategies allowing overall performance
improvement as in the past some groups had combinations leading to poorer
results than textual retrieval alone. The ImageCLEF@ICPR fusion task [5] de-
scribed in this paper is organized to address this goal, making available the four
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best visual and the four best textual runs of ImageCLEF 2009 including runs of
various participating groups.

Information fusion, which originally comes from multi–sensor processing [6],
can be classified by three fusion levels: signal level, feature level, and decision
level [7] (also named the raw data level, representation level, and classifier level
in [8]). The ImageCLEF@ICPR fusion task focuses on the decision level fusion:
the combination of the outputs of various systems [9]. Other related terminologies
include evidence combination [7] and rank aggregation [10], which are widely
used by meta–search engines [11].

Many fusion strategies have been proposed in the past. Using the maximum
combination (combMAX ), the sum combination (combSUM ) and the multiplica-
tion of the sum and the number of non–zero scores (combMNZ ) were proposed
by [12] and are described in Section 2.3. Ideas such as Borda–fuse [13] and
Condorcet–fuse [14] were rather inspired from voting systems. Borda–fuse con-
sists of voting with a linear penalization based on the rank whereas Condorcet–
fuse is based on pair–wise comparisons. Others strategies exist such as Markov
models [10] and probability aggregation [15]. A terminology superposition also
exists. For example, the round–robin strategy as analyzed in [6] is equivalent to
the combMAX strategy, the Borda–fuse strategy, despite the idea being inspired
from voting, is in fact the combSUM strategy with descending weights for ranks.
First proposed in 1994, combMAX, combSUM, and combMNZ are still the most
frequently used fusion strategies and were taken as the base of our study. How-
ever, these three methods have limitations. On the one hand, combMAX favors
the documents highly ranked in one system (Dark Horse Effect [16]) and is thus
not robust to errors. On the other hand, combSUM and combMNZ favor the
documents widely returned to minimize the errors (Chorus Effect) but relevant
documents can obtain high ranks when they are returned by few systems. In this
paper, we investigate a trade–off between these methods while using the sum of
n maximums: combSUM(n)MAX.

Two other important issues of information fusion are the normalization of the
input scores [17,18] and the tuning of the respective weights (i.e contribution)
given to each system [16,19]. The normalization method proposed by Lee [17]
consists of mapping the score to [0;1]. It was declared to perform best in [18].
Our study reused this normalization method, which is based on a topic basis or
a run basis to produce normalized scores.

2 Methods

2.1 Dataset

The test data of the ImageCLEF@ICPR fusion task consist of 8 runs submit-
ted to the ImageCLEF 2009 medical image retrieval task. 4 runs of the best
textual retrieval systems and 4 representing the best visual systems were made
available1. There are 25 query topics in ImageCLEFmed 2009. For each topic, a
1 For more details about the retrieval systems, please visit ImageCLEF working notes

available at http://www.clef-campaign.org/
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maximum of 1000 images can be present in a run. The format of each run follows
the requirements of trec eval.

Ranks and scores of the 8 runs are available as well as the ground truth for
evaluation. Training data consists of the 4 best textual runs and the 3 best visual
runs for the same task in 2008. The 7 runs in the training data and the 8 runs in
the test data were not produced by the same systems. Therefore, weight selection
on a run basis can not be applied to the test data.

2.2 Rank Penalty vs. Score Normalization

To enable the combination of heterogeneous data, each image must be mapped
to a value V (e.g. score, rank) that is normalized among all systems. Symbols
employed are V for normalized values, and S and R for scores and ranks given
by the input system.

The scores given by the input systems are not homogeneous and require nor-
malization. The normalization method proposed by Lee [17] is used:

V (S) =
S − Smin

Smax − Smin
(1)

with Smax and Smin the highest and lowest score found. Two groups of nor-
malized values were produced by either applying this method on a run or topic
basis: Vrun(S) and Vtopic(S).

The rank is always between 1 and 1000. However, low ranks need to be pe-
nalized as less relevant. Linear normalized rank values are obtained:

Vlinear(R) = Nimages − R, (2)

where Nimages equals the lowest rank (1000 in our case). Experiments have shown
that for most information retrieval systems, performance tends to decreases in a
logarithmic manner [16]. As a consequence a logarithmic penalization function
was tried:

Vlog(R) = ln Nimages − ln R, (3)

In the rest of the paper, V generally refers to one of these four groups of nor-
malized values: Vtopic(S), Vrun(S), Vlinear(R) and Vlog(R).

2.3 Combination Rules

In this section, the various combination rules evaluated are made explicit.

combMAX. combMAX computes the value for a result image i as the maxi-
mum value obtained over all Nk runs:

VcombMAX(i) = arg max
k=1:Nk

(Vk(i)). (4)

combSUM. combSUM computes the associated value of the image i as the
sum of the V (i) over all Nk runs:

VcombSUM(i) =
Nk∑
k=1

Vk(i). (5)
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combMNZ. combMNZ aims at giving more importance to the documents re-
trieved by several systems:

VcombMNZ(i) = F (i)
Nk∑
k=1

Vk(i), (6)

where F (i) is the frequency, obtained by counting the number of runs that re-
trieved the image i. Images that obtain identical values were arbitrarily ordered.

combSUM(n)MAX. The combMAX and combSUM rules both have draw-
backs. CombMAX is not robust to errors as it is based on a single run for each
image. CombSUM has the disadvantage of being based on all runs and thus
includes runs with low performance. As a trade–off the sum of Nmax maxima
rule combSUM(n)MAX is proposed:

VcombSUM(n )MAX(i) =
n∑

j=1

arg max
k∈ENk

\Ej

(Vk(i)), (7)

with n the number of maxima to be summed and ENk
\ Ej the ensemble of Nk

runs minus the j runs with maximum value for the image i. When n = 1, only
1 maximum is taken, which is equivalent to combMAX. Summing n > 1 maxima
increases the stability of combMAX. When n = Nk, this strategy sums up all
maximums and is equivalent to combSUM. n < Nk can potentially avoid runs
with low performance if assuming that runs with maximum scores or ranks have
higher confidence and thus allow best retrieval performance.

{F (i) : V (i)}. As combMNZ proved to perform well, integrating the frequency
is expected to improve performance. Instead of using a multiplication between
the sum of values and the frequency, images are separated into pairs {F (i) : V (i)}
and are sorted hierarchically. Images with high frequency are ranked higher.
Images with the same frequency are then ranked by value V (i), where V (i) can
be obtained by any combination rules.

3 Results

An analysis was performed to analyze the distribution of the relevant documents
in the training data. Each run in the training data contains 30 topics. Within
each topic there are 1000 ranked images. The 1000 ranks were divided into 100
intervals, and the number of relevant images were counted in each interval. As
some topics contain few relevant images, all 30 topics were summed to obtain
a more stable curve. Two curves containing the average numbers for all visual
systems as well as all textual systems are shown in Figure 1. In Table 1, the
performance of the best fused runs is compared with the best runs of ImageCLEF
2009. The retrieval performance is measured using the mean average precision
(MAP). MAP obtained with various combination methods are shown in Figure 2
and 3.



Information Fusion for Combining Visual and Textual Image Retrieval 133

Fig. 1. Distribution of the relevant documents in the training data

Table 1. Best original vs. fused runs

Run 2008 2009

best original textual run 0.2881 0.4293

best original visual run 0.0421 0.0136

best textual fusion run 0.3611 0.4766

best visual fusion run 0.0611 0.0198

best mixed fusion 0.3654 0.488

4 Interpretation

Two trends using logarithmic regression were calculated to analyze the distri-
bution of relevant documents in Figure 1. Two observations can be made: 1)
for both modalities the number of relevant images decreases logarithmically
(R2 > 0.7), which confirms Vogt [16]; 2) the quality of text retrieval is constantly
4 times better than that of visual. Fixed weights w were applied to combine the
two modalities with w = 0.8 for text systems and w = 0.2 for visual systems.

Fusion results using w are shown in Table 1. Two observations highlight the
benefits of heterogeneity: 1) for both modalities the best fused runs outperform
all original runs; 2) multi–modal fusion outperformed the best run obtained with
single modality fusion. Two–tailed paired t tests were performed in order to study
the statistical significance of the two observations. Observation 2) is significant
with both training (ptrain < 0.012) and test (ptest < 0.0116) data. Observation
1) is significant with test (ptest < 0.0243) but not training (ptrain < 0.4149)
data.

The comparative analysis of combMAX, combSUM and combMNZ as well
as combSUM(n)MAX is shown in Figure 2 and 3. Operators based on few
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maxima (left side of the graph: combMAX, combSUM(n)MAX with small values
of n favor the Dark Horse Effect whereas those based on several runs (combSUM,
combMNZ ) favor the Chorus Effect. None of the performance curves is monotone,
thus neither Chorus or Dark Horse Effect can be declared best. The presence of
coincident local minimum MAP for all techniques is due to the absence of both
mentioned effects.

For training data, maximum MAP was obtained with linear rank penaliza-
tion using combSUM3MAX whereas for test data, log rank penalization using
combSUM gave the best results. With logarithmic rank penalization, the behav-
ior of MAP is the most stable among all techniques on both training and test
data. This is in accordance with the descriptive analysis of the data where the
relevance of images decreases with log(R) (Figure 1).

The normalized scores of 2008 produced very close performance to rank–
based methods whereas same technique in 2009 only provided poor results. The
performance using normalized scores for fusion depends highly on score definition
of each run and is thus less stable.

Frequency F (i) favors images returned by numerous systems, which slightly
improved all techniques with runs of 2008. However with runs of 2009 using
frequency slightly decreased the performance of those techniques using rank
penalization. Performance margins between visual and textual runs are larger
in 2009 than in 2008. Results can be interpreted as frequency of images in runs
with poor quality can provide noise.

Comparing with results produced by the other groups [5], our best run com-
bining both textual runs and visual runs (named mixed run) is ranked 3rd best
among 49 runs. The best mixed run outperformed our best mixed run in MAP
but has poorer early precision. The second best mixed run slightly outperformed
our best mixed run both in terms of MAP and early precision. Two other com-
parisons on single modality fusion showed that our best run fusing only textual
runs is ranked at 3rd best. Only one group submitted fusion of purely visual
runs. Our best fusion run of viusal runs outperforms all submitted fusion runs
of visual runs. As technical details are not available yet, further comparisons
remain furture work. However, our best fused runs of the test data (both single
modality or multi–modality) are obtained by using combSUM with logarithmic
rank normalization. As combSUM (equivalent to Borda–fuse) is one of the most
straightforward fusion strategies, the major difference of performance is mostly
due to the logarithmic rank normalization.

5 Conclusions

In this paper, we studied the fusion of textual and visual retrieval systems. Fused
runs outperform the original runs and combining visual information with text
can significantly improve fusion performance. It was observed that the logarith-
mic rank penalisation was more stable than linear penalization. As Dark Horse
Effect oriented operators, combSUM(n)MAX outperforms combMAX, whereas
combSUM and combMNZ give often close results on favoring Chorus Effect. In
our experiments, no significant differences in performance were observed between
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the two effects and neither Chorus or Dark Horse Effect can be declared best.
The improvement depends on the nature of the data to be fused.
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Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 101–110. Springer,

Heidelberg (2010)

6. Wu, S., Mcclean, S.: Performance prediction of data fusion for information retrieval.

Information Processing & Management 42(4), 899–915 (2006)

7. Valet, L., Mauris, G., Bolon, P.: A statistical overview of recent literature in in-

formation fusion. IEEE Aerospace and Electronic Systems Magazine 16(3), 7–14

(2001)

8. Croft, W.B.: Combining approaches to information retrieval. In: Advances in In-

formation Retrieval, pp. 1–36. Springer US, Heidelberg (2000)

9. Kludas, J., Bruno, E., Marchand-Maillet, S.: Information fusion in multimedia

information retrieval. In: Proceedings of 5th International Workshop on Adaptive

Multimedia Retrieval (AMR), vol. 4918, pp. 147–159. ACM, New York (June 2008)

10. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for

the web. In: WWW 2001: Proceedings of the 10th International Conference on

World Wide Web, New York, NY, USA, pp. 613–622 (2001)

11. Renda, E.M., Straccia, U.: Web metasearch: rank vs. score based rank aggregation

methods. In: SAC 2003: Proceedings of the 2003 ACM Symposium on Applied

Computing, pp. 841–846. ACM Press, New York (2003)

12. Fox, E.A., Shaw, J.A.: Combination of multiple searches. In: Text REtrieval Con-

ference, pp. 243–252 (1993)

13. Aslam, J.A., Montague, M.: Models for metasearch. In: SIGIR 2001: Proceedings

of the 24th Annual International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval, pp. 276–284. ACM, New York (2001)

14. Montague, M., Aslam, J.A.: Condorcet fusion for improved retrieval. In: CIKM

2002: Proceedings of the Eleventh International Conference on Information and

Knowledge Management, pp. 538–548. ACM, New York (2002)

15. Lillis, D., Toolan, F., Collier, R., Dunnion, J.: Probfuse: a probabilistic approach

to data fusion. In: SIGIR 2006: Proceedings of the 29th ACM SIGIR Conference on

Research and Development in Information Retrieval, New York, USA, pp. 139–146

(2006)



Information Fusion for Combining Visual and Textual Image Retrieval 137

16. Vogt, C.C., Cottrell, G.W.: Fusion via a linear combination of scores. Information

Retrieval 1(3), 151–173 (1999)

17. Lee, J.H.: Analyses of multiple evidence combination. In: SIGIR 1997: Proceed-

ings of the 20th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pp. 267–276. ACM, New York (1997)

18. Wu, S., Crestani, F., Bi, Y.: Evaluating score normalization methods in data fusion.

In: Information Retrieval Technology, AIRS 2006, pp. 642–648 (2006)

19. Wu, S., Bi, Y., Zeng, X., Han, L.: Assigning appropriate weights for the linear

combination data fusion method in information retrieval. Information Processing

& Management 45(4), 413–426 (2009)



Overview of the Photo Annotation Task in

ImageCLEF@ICPR

Stefanie Nowak

Audio-Visual Systems, Fraunhofer IDMT, Ilmenau, Germany

stefanie.nowak@idmt.fraunhofer.de

http://www.imageclef.org/2010/ICPR/PhotoAnnotation

Abstract. The Photo Annotation Task poses the challenge for auto-

mated annotation of 53 visual concepts in Flickr photos and was orga-

nized as part of the ImageCLEF@ICPR contest. In total, 12 research

teams participated in the multilabel classification challenge while ini-

tially 17 research groups were interested and got access to the data. The

participants were provided with a training set of 5,000 Flickr images

with annotations, a validation set of 3,000 Flickr images with annota-

tions and the test was performed on 10,000 Flickr images. The evaluation

was carried out twofold: first the evaluation per concept was conducted

by utilizing the Equal Error Rate (EER) and the Area Under Curve

(AUC) and second the evaluation per example was performed with the

Ontology Score (OS). Summarizing the results, an average AUC of 86.5%

could be achieved, including concepts with an AUC of 96%. The classifi-

cation performance for each image ranged between 59% and 100% with

an average score of 85%. In comparison to the results achieved in Image-

CLEF 2009, the detection performance increased for the concept-based

evaluation by 2.2% EER and 2.5% AUC and showed a slight decrease

for the example-based evaluation.

1 Introduction

The automated annotation and detection of concepts in photos and videos is
an important field in multimedia analysis and received a lot of attention from
the multimedia and machine learning community during the last years. Adopted
methods are often difficult to compare as they are evaluated regarding different
datasets, concepts or evaluation measures. Benchmarking campaigns cope with
this problem and decide on the evaluation cycle including the definition of tasks,
the access to data and the evaluation and presentation of the results. Evalu-
ation initiatives in multimedia got popular with the text-based evaluations of
TREC, the video analysis evaluation of TRECVid and the multimodal, cross-
lingual evaluation efforts of CLEF. ImageCLEF is since 2003 a part of the CLEF
evaluation initiative. It focuses on the evaluation of multimodal image retrieval
approaches in the consumer and medical domain. In 2010, the ImageCLEF con-
sortium posed several image-related task in the form of an ICPR contest, in-
cluding the general annotation of photos with visual concepts, a robot vision

D. Ünay, Z. Çataltepe, and S. Aksoy (Eds.): ICPR 2010, LNCS 6388, pp. 138–151, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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task, a fusion task and an interactive retrieval session. In this paper, we present
the results of the ImageCLEF Photo Annotation Task. Researchers of 12 teams
accepted the challenge to annotate a set of 10,000 images with multiple labels.
The task is described in Section 2 detailing the dataset, annotations and sub-
mission format. In Section 3 the evaluation methodology is outlined. Section 4
presents the submissions of the participating groups. The results of the bench-
mark are illustrated in Section 5. Section 6 analyses the results in comparison to
the results of the similar Photo Annotation Task of ImageCLEF 2009. Finally,
Section 7 concludes the paper.

2 Task Description, Dataset and Annotations

The Photo Annotation Task poses the challenge of multilabel classification in
consumer photos. A subset of the MIR Flickr 25,000 image dataset [1] was chosen
as database. This collection contains 25,000 photos from the Flickr platform,
that were collected based on the interestingness rating of the community and
the creative commons copyright of the images.

For the classification challenge a set of 53 visual concepts was defined. The vi-
sual concepts are oriented on the holistic impression of the images. They contain
concepts concerning the scene description, the representation of photo content
and its quality. For each photo, it was manually assessed which of the concepts
are present. The assessment of the photos was carried out by 43 expert anno-
tators on an image-based level as presented in Figure 1. Some concepts were

Fig. 1. Relevance assessment tool for the Photo Annotation Task
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judged independently like Animals while others had to be chosen from a group
of concepts, e.g. small group of persons. The number of photos that were
annotated by one person varied between 30 and 2,500 images. Following the an-
notation step, three persons performed a validation by screening all photos on a
concept basis.

Partly Blurred, Indoor, Macro, Neutral Illumi-
nation, No Persons, Food, Aesthetic Impression,
No Visual Season, No Visual Time

Day, Sunset-Sunrise, Citylife, Outdoor, Over-
all Quality, Aesthetic Impression, Fancy, No
Persons, Neutral Illumination, No Blur, Water,
Lake, Clouds, Sky, Building-Sights, Landscape,
No Visual Season

Day, Sunny, Landscape, Outdoor, Overall Qual-
ity, Aesthetic Impression, No Persons, Vehicle,
Neutral Illumination, No Blur, Plants, Clouds,
Sky, No Visual Season

Family-Friends, No Visual Season, Outdoor,
Day, Neutral Illumination, Partly Blurred, Small
Group, Overall Quality

Fig. 2. Example images from the Photo Annotation Task

Figure 2 shows four example photos and the corresponding annotations. The
number of annotations per photo varied substantially. For example, the annota-
tions of the photos in Figure 2 range from 8 to 17 labels per photo. The visual
concepts are additionally organized in a small Web Ontology Language (OWL)
ontology which was offered to the participants as additional knowledge resource.
The Photo Tagging Ontology could be incorporated into the learning and clas-
sification process by e.g. taking advantage of the relations between concepts
and their hierarchical ordering. For more information about the ontology, the
concepts and the annotation process see [2].

Finally, the task of the participants was to annotate a set of 10,000 photos
with 53 visual concepts. Each photo should be annotated with confidence values
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describing the presence or absence of the concepts. For the training of the al-
gorithms, 5,000 photos with annotations and Exchangeable Image File Format
(EXIF) data were provided. A validation set consisting of 3,000 photos and its
annotations was available for tuning the system parameters. The participants
needed to sign a license agreement to get access to the data and annotations.
In total 17 research groups signed this agreement and downloaded the data.
Summarizing, the challenge of the annotation task consists in coping with the
unbalanced amount of data per concept, with the subjectivity of the presence
of some concepts as well as with the diversity of images belonging to the same
concept class. Approaches that try to adopt the ontology in the learning process
are appreciated, as the question is still open whether incorporating real-world
knowledge leads to superior results in contrast to applying purely machine learn-
ing approaches.

3 Evaluation Methodology

Structured evaluation of the quality of information retrieval systems has a long
tradition. Several evaluation measures were investigated, e.g. [3], [4], that can
be classified into two main categories. The first category is called example-based
evaluation. For each media item (example) the actual set of labels (ground truth)
is compared with the predicted set using set-theoretic operations. A score is
generated for each item and then averaged over all items. The second category
stands for concept-based evaluation measures which groups any known measure
for binary evaluation. The annotations are subdivided according to each concept
and a single evaluation per concept is performed. Finally, the results are averaged
over all concepts.

The two evaluation paradigms were followed in the analysis of the results of
the Photo Annotation Task. For the concept-based evaluation the Equal Error
Rate (EER) and the Area Under Curve (AUC) were calculated as explained in
Section 3.1. The evaluation on example basis was performed with the Ontology
Score (OS) as illustrated in Section 3.2.

3.1 Evaluation per Concept

The concept-based measures AUC and EER can be calculated from the Receiver
Operating Characteristics (ROC) curve and are common measures used in the
evaluation of classification tasks, e.g. [5], [6]. A ROC curve graphically plots the
true-positive rate against the false-positive rate. The EER is measured at the
break-even point of the ROC curve, where the true-positive rate of a system
is equal to the false-positive rate. AUC describes the overall quality of a clas-
sification system independent from an individual threshold configuration. It is
calculated by integration of the ROC curve. In the benchmark, the EER and the
AUC of the ROC curves summarize the performance of the individual runs, by
taking the average values over all concepts.
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3.2 Evaluation per Example

The evaluation per example is assessed with the OS measure [7] and is based on
the Photo Tagging Ontology. The OS considers partial matches between system
output and ground truth by calculating misclassification costs for each missing
or wrongly annotated concept per image. The cost function is based on the level
of the concept in the hierarchy of the ontology in which lower costs are assigned
to deeper levels. In an optimization procedure incorrect annotated concepts are
matched to the ground truth and the costs are summed up. Violations against
real-world knowledge, e.g. the simultaneous annotation of mutually exclusive
concepts, are penalized. All in all, the score is based on structure information
(distance between concepts in the hierarchy), relationships from the ontology
and the agreement among annotators on a concept.

4 Participation

Researchers from 12 teams situated in seven countries participated in the bench-
mark. The participating groups are listed in the following together with a short
description of their methods. This information was extracted from the submis-
sion questionnaire that is filled out during the submission process. A summary
of the approaches detailing the descriptors and classifiers used is presented in
Table 1.

AVEIR: The AVEIR consortium is a group consisting of the four research in-
stitutes MRIM, UPMC, CNRS and LSIS. They submitted four runs derived by
a rank average of a varying number of AVEIR runs.

CNRS|Telecom ParisTech: The institute TELECOM from Paris, France sub-
mitted five runs. They use global features that reflect the colour and texture in-
formation and local features that describe local shape information and combine
this information in a late fusion approach. For classification a SVM and boosting
is applied.

CVSSPRet: The team of the University of Surrey, UK proposed five runs.
It adopts various combinations of sampling strategies, extract different SIFT
features, partly using also their spatial information, and soft assignment for
histograms. They experiment with multiple kernel fisher discriminant analysis
or kernel discriminant analysis using spectral regression and combinations at
classifier-level and kernel-level for classification [8].

IJS: The team of the Department of Knowledge Technologies, Jozef Stefan In-
stitute, Slovenia proposes a hierarchical multilabel classification approach based
on random forests of predictive clustering trees. Several SIFT features, local bi-
nary patterns, colour histogram and GIST features are utilized. They submitted
four runs.

ISIS: The Intelligent Systems Lab of the University of Amsterdam, The Nether-
lands submitted two runs based on a retrained model of the ImageCLEF 2009
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Table 1. Results of the ICPR Photo Annotation Task. The table lists the best results

for each measure per group, the number of runs submitted and the descriptors and

classifiers applied. It is sorted ascending due to the EER measure. Please note that the

best run of a group for one measure is not necessarily the best run evaluated with the

other measures.

Group ID # Descriptor Classifier EER Rank ∅ Rank AUC Rank ∅ Rank OS Rank ∅ Rank

CVSSPRet 5 various
SIFT

spectral
regres-
sion

0.21 1 3.6 0.86 1 3.6 0.69 5 16.2

ISIS 2 various
SIFT

SVM 0.22 4 5.0 0.86 4 5.0 0.78 1 1.5

IJS 4 global and
local

random
forests

0.24 8 9.5 0.83 8 9.5 0.71 3 5.5

CNRS 5 global and
local

SVM,
boosting

0.28 12 14.0 0.79 12 14.0 0.42 23 25.0

AVEIR 4 global and
local

SVM 0.29 17 21.5 0.79 17 21.5 0.56 12 15.5

MMIS 5 various fea-
tures

non-pa-
rametric
density
estima-
tion /
MRF

0.31 19 26.6 0.76 19 26.8 0.50 17 32.6

LSIS 4 various fea-
tures

SVM +
reranking

0.31 21 27.0 0.75 21 26.8 0.51 16 24.0

UPMC 5 SIFT SVM 0.34 28 33.0 0.72 29 32.4 0.40 28 26.1
ITI 5 local and

global
NN 0.37 30 38.8 0.59 37 39.2 0.40 30 32.0

MRIM 3 colour, tex-
ture, feature
points

SVM +
Fusion

0.38 31 32.0 0.64 30 31.0 0.58 9 23.0

TRS2008 1 SIFT SVM 0.42 34 34.0 0.62 33 33.0 0.33 38 38.0
UAIC 1 face detec-

tion, EXIF
NN + de-
fault val-
ues

0.48 38 38.0 0.14 43 43.0 0.68 6 6.0

approach [9]. They use a sampling strategy that combines a spatial pyramid
approach and saliency points detection, extract different SIFT features, perform
a codebook transformation and classify with a SVM approach.

ITI: The team of the Institute of Computer Technology, Polytechnic University
of Valencia, Spain submitted five runs in which they experiment with different
feature combinations and classifiers. As basis they use a local feature dense grid
extraction with patch colour histogram representation and random projection
and combine this with different colour and GIST features. A nearest neighbour
approach in a discriminant subspace and a fast linear discriminant classifier are
applied as classifiers.

LSIS: The Laboratory of Information Science and Systems, France proposes four
runs. These runs contain a reranking of SVM outputs. SVM was trained with
features of 200 dimensions as described in ImageCLEF 2009 proceedings [10].
The reranking is sequentially done by an asymmetric normalisation. It improved
the results from 0.71 to 0.74 AUC.
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MMIS: The team of the Knowledge Media Institute, Open University, UK pro-
poses two approaches and submitted five runs in total. The first one is based on
a non-parametric density estimation using a Laplacian kernel in which they com-
pare a baseline run with another that utilizes web-based keyword correlation.
The second approach relies on Markov Random Fields and presents two different
models, one that explores the relations between words and image features and a
final one that incorporates the relation between words in the model.

MRIM: The Multimedia Information Modelling and Retrieval group at the
Laboratoire Informatique de Grenoble, Grenoble University, France submitted
three runs. They linearly fused the results of four approaches that are based on
colour similarity, SVMs on feature points and a SVM on colour and textures.
The hierarchy of concepts was additionally incorporated in their runs.

TRS2008: The group of Beijing Information Science and Technology University,
China submitted one run. They use 128 dimensional SIFT features. The images
are classified with a SVM model.

UAIC: The team of the Faculty of Computer Science of Alexandru Ioan Cuza
University, Romania participated with one run. Similar to the ImageCLEF 2009
approach [11], they use a four step mechanism consisting of face detection, a
clustering process, utilizing EXIF data and finally incorporating default values
as fall-back solution.

UPMC: The group of the University Pierre et Marie Curie in Paris, France
submitted five runs to the Photo Annotation Task. They investigate SVM classi-
fication and SVM ranking approaches on PCA reduced features or SIFT features
and experiment with incorporating the hierarchy of concepts.

5 Results

Solutions from 12 research groups were submitted to the Photo Annotation Task
in altogether 44 run configurations. Table 1 summarizes the performance for each
group for the measures EER, AUC and OS. The best results per measure are
listed with the rank information of this run and the average rank for all runs per
group. A complete list with the results of all runs is provided in the appendix
in Table 3 and can also be found at the benchmark website1.

For the concept-based evaluation, the best run achieved an EER of 21.4% and
an AUC of 86% per concept in average. Two other groups got close results with
an AUC score of 85.7% and 83.2%. The best annotation quality for a concept
achieved by any run is in average 20.8% EER and 86.5% AUC. The concepts
Sunset-Sunrise (AUC: 96.2%), Clouds (AUC: 96.2%) and Sky (AUC: 95.9%)
are the easiest detectable concepts. The worst concept detection quality can be
found for the concepts Fancy (AUC: 61.4%), Overall Quality (AUC: 66.1%) and
Aesthetic (AUC: 67.1%). This is not surprising due to the subjective nature of
these concepts. Analysing the methods of the first five groups in the EER and
1 www.imageclef.org/2010/ICPR/PhotoAnnotation

www.imageclef.org/2010/ICPR/PhotoAnnotation
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AUC ranking, it is obvious that all groups applied discriminative approaches
with local features. Some used a fusion of local and global features.

The example-based evaluation reveals that the best run is able to annotate a
photo in average 78.4% correctly. Taking into account the best annotation quality
per photo out of all runs, the photos can be annotated in average with 85.1%
quality, ranging between 59.3% and 100%. The ranking of the runs is different
than with the concept-based measures. The best five groups in the ranking of
the OS again applied discriminative approaches with local or combined local and
global features. One model-free approach (UAIC) considering a combination of
methods could achieve good results.

The OS measure needs a binary decision about the presence or absence of
concepts. The participants were asked to provide a threshold or scale the con-
fidence values in the way that 0.5 is an adequate threshold to map them into
binary decisions. Five groups proposed a threshold for their runs. Two of them
asked for different thresholds per concept.

Figure 3 depicts the label density (LD) plotted against the OS results for all 44
runs. The LD is a means to describe the characteristics of an annotated dataset.
It defines how many concepts are assigned to each photo in average divided
by the total number of available concepts. The LD for the ground truth of the
test set is 0.17, which roughly equals the LD for the training and validation
set with 0.164 and 0.172, respectively. The provided thresholds were used for
calculating the LD of the submitted runs. It can be seen from the figure that an

Fig. 3. OS scores plotted against label density
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over-annotation of the photos does not lead to good results in the OS. The best
results are assigned to runs that annotated close to the LD of the ground truth.

6 Comparison to Results of 2009

The Photo Annotation Task in ImageCLEF 2009 posed a similar problem as the
annotation challenge in the ICPR contest. In both evaluation cycles, the par-
ticipants were asked to annotate a set of Flickr images with 53 visual concepts.
While the participants in 2009 were provided with a training set of 5,000 im-
ages with annotations and EXIF data and tested on 13,000 images, in 2010 an
additional validation set of 3,000 images and annotations was provided. These
3,000 images belonged to the test set of 2009 and in 2010 the test was conducted
on the remaining 10,000 test images. Therefore a comparison of the annotation
performance on the 10,000 images of the test set that were used in both evalu-
ation cycles can be made. Nevertheless, one has to keep in mind, that in 2010
the algorithms could be trained with ∼ 40% more training data. An increase
in detection is therefore not necessarily caused by better annotation systems.
Figure 4 illustrates the percentage of occurrence of each concept in the datasets.
It can be seen that most concepts are equally distributed in the different sets
while the percentage of occurrence between concepts varies significantly.
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Fig. 4. Concept occurrences for the training set of ImageCLEF 2009 and ICPR 2010,

the test set of ImageCLEF 2009 and the validation set of ICPR 2010. The x-axis
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in percent in the dataset.
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Table 2. Overview of concepts and results per concept in terms of the best EER and

best AUC per concept and the name of the group which achieved these results. The

results for the Photo Annotation task in 2009 are illustrated in the middle and the

ones for 2010 on the right.

No. Concept Group Best
AUC 09

Best
EER 09

Group Best
AUC 10

Best
EER 10

0 Partylife ISIS 0.84 0.24 CVSSPRet 0.87 0.22
1 Family-Friends ISIS 0.83 0.24 CVSSPRet 0.86 0.22
2 Beach Holidays ISIS 0.91 0.16 CVSSPRet 0.93 0.13
3 Building-Sights ISIS 0.88 0.20 CVSSPRet 0.90 0.18
4 Snow LEAR 0.85 0.22 CVSSPRet 0.89 0.19
5 Citylife ISIS 0.83 0.24 CVSSPRet 0.85 0.22
6 Landscape ISIS 0.95 0.13 CVSSPRet / ISIS 0.95 0.12
7 Sports FIRST 0.72 0.33 CVSSPRet 0.78 0.29
8 Desert ISIS 0.89 0.18 ISIS / CVSSPRet 0.92 0.18
9 Spring FIRST 0.83 0.24 IJS 0.86 0.20
10 Summer ISIS 0.81 0.25 CVSSPRet 0.83 0.23
11 Autumn ISIS 0.86 0.21 ISIS 0.88 0.18
12 Winter ISIS 0.84 0.23 CVSSPRet 0.88 0.21
13 No-Visual-Season ISIS 0.80 0.26 CVSSPRet 0.82 0.25
14 Indoor ISIS 0.83 0.25 CVSSPRet / ISIS 0.84 0.24
15 Outdoor ISIS 0.90 0.19 ISIS 0.91 0.18
16 No-Visual-Place ISIS 0.79 0.29 CVSSPRet 0.81 0.27
17 Plants ISIS 0.88 0.21 CVSSPRet 0.90 0.18
18 Flowers ISIS / FIRST 0.87 0.21 CVSSPRet 0.89 0.19
19 Trees ISIS 0.90 0.18 CVSSPRet 0.92 0.16
20 Sky ISIS 0.95 0.12 ISIS 0.96 0.10
21 Clouds ISIS 0.96 0.11 ISIS 0.96 0.10
22 Water ISIS 0.90 0.18 CVSSPRet 0.91 0.16
23 Lake ISIS 0.90 0.17 CVSSPRet / ISIS 0.91 0.16
24 River ISIS 0.90 0.17 CVSSPRet 0.93 0.14
25 Sea ISIS 0.94 0.12 CVSSPRet 0.95 0.12
26 Mountains ISIS 0.94 0.14 ISIS 0.95 0.12
27 Day ISIS 0.85 0.24 CVSSPRet 0.87 0.22
28 Night LEAR 0.91 0.17 IJS 0.92 0.16
29 No-Visual-Time ISIS 0.84 0.25 CVSSPRet / ISIS 0.86 0.23
30 Sunny LEAR / FIRST 0.77 0.30 CVSSPRet 0.81 0.27
31 Sunset-Sunrise ISIS 0.96 0.11 ISIS / CVSSPRet 0.96 0.08
32 Canvas I2R / XRCE 0.83 0.24 CVSSPRet 0.85 0.22
33 Still-Life ISIS 0.83 0.25 CVSSPRet 0.86 0.22
34 Macro ISIS 0.81 0.27 ISIS 0.84 0.24
35 Portrait XRCE / ISIS 0.87 0.21 CVSSPRet 0.91 0.18
36 Overexposed LSIS / UPMC 0.81 0.25 ISIS / CNRS 0.83 0.24
37 Underexposed I2R 0.89 0.18 AVEIR / ITI 0.89 0.19
38 Neutral-Illumination LEAR 0.80 0.26 IJS 0.81 0.26
39 Motion-Blur ISIS 0.75 0.31 CVSSPRet / IJS 0.79 0.28
40 Out-of-focus LEAR 0.82 0.25 CNRS / CVSSPRet 0.84 0.24
41 Partly-Blurred LEAR 0.86 0.22 ISIS / CVSSPRet 0.87 0.21
42 No-Blur LEAR 0.85 0.23 ISIS 0.86 0.22
43 Single-Person ISIS / LEAR 0.80 0.27 CVSSPRet 0.83 0.25
44 Small-Group ISIS 0.80 0.28 CVSSPRet 0.83 0.25
45 Big-Group ISIS 0.88 0.20 CVSSPRet 0.91 0.17
46 No-Persons ISIS 0.86 0.22 CVSSPRet / ISIS 0.87 0.21
47 Animals ISIS 0.84 0.24 CVSSPRet 0.87 0.21
48 Food ISIS 0.90 0.19 CVSSPRet 0.92 0.17
49 Vehicle ISIS 0.83 0.24 CVSSPRet 0.86 0.23
50 Aesthetic-Impression ISIS 0.66 0.39 CVSSPRet / ISIS 0.67 0.38
51 Overall-Quality ISIS 0.66 0.39 CVSSPRet / ISIS 0.66 0.39
52 Fancy LEAR / ISIS 0.59 0.44 ISIS / IJS 0.61 0.42

Table 2 lists the annotation performance per concept in terms of EER and
AUC for the evaluation cycles in 2009 and 2010. Additionally the group which
could achieve these results is depicted. The AUC for the concepts in 2010 is at
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least greater or equal to the results in 2009. Also the EER in 2009 was greater
or equal to the one in 2010. That means there was no decline in the annotation
performance for a concept. In numbers, the concepts could be detected best by
any run with an EER of 23% and an AUC of 84% in 2009. This improved to an
annotation performance of 20.8% EER and 86.5% AUC per concept in 2010.

Worst detection performance in 2009 with
68.7%. Detection score in 2010: 68.6%

Worst detection performance in 2009 with
68.9%. Detection score in 2010: 67.5%

Worst detection performance in 2010 with 59%.
Detection score in 2009: 79.1%

Worst detection performance in 2010 with
60.5%. Detection score in 2009: 82.5%

Fig. 5. Images with the lowest detection rate in terms of OS in 2009 and 2010

Evaluated on an example basis, the photos could be annotated correctly by
85.1% considering the best result per photo of any run in 2010. This is a small
decrease by 4.5% in comparison to 2009. Also the best run in 2010 for the
example-based evaluation has a lower score (78.4%) than the one in 2009 (81%).
In 2010 the classification performance for each image ranged between 59% and
100%, while it ranged between 68.7% and 100% in 2009. Figure 5 shows two
images for both evaluation cycles with the lowest detection rate in terms of OS
and the annotation rate in the other year for the same photo. It can be seen
that the images that could not be annotated well in 2009, were annotated with
a similar quality in 2010 while the ones that were not annotated well in 2010
were annotated much better in 2009.

Summarizing, the comparison shows that there was an improvement in the an-
notation performance evaluated on a concept basis, while the results got slightly
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worse when evaluated on an example basis. Although if this seems contradictory,
these results are reasonable. In contrast to the concept-based measures, the OS
is directly dependent on the threshold for mapping the confidence values into a
binary decision. If this threshold is not chosen carefully, the results are directly
influenced while the threshold does not affect the EER and AUC results. Fur-
ther, the OS considers all labels per image. If there are a few concepts that could
not be annotated with reasonable results, these low scores major influence the
average annotation behaviour. In addition, the OS penalizes annotations that
violate real-world knowledge provided in the ontology. Some annotation systems
do not take into account concepts that condition each other through the hier-
archy or concepts that exclude each other. While the concept-based evaluation
does not consider the relations between concepts, the example-based evaluation
with the OS assigns violation costs in these cases. It seems like the participants
of 2009 set a higher value on these cases than in the ICPR benchmark.

7 Conclusion

This paper summarises the results of the Photo Annotation Task. Its aim was
to automatically annotate photos with 53 concepts in a multilabel scenario. The
results of 12 teams show that the task could be solved reasonably well with the
best system achieving an average AUC of 86%. The concepts could be annotated
in average with an AUC of 86.5% considering all runs. The classification per-
formance for each image ranged between 59% and 100% with an average score
of 85%. Most groups applied discriminative approaches with local or combined
local and global features. In comparison to the results achieved in 2009, the
detection performance increased for the concept-based evaluation by 2.2% and
2.5% for EER and AUC, respectively. The example-based evaluation showed a
slight decrease in performance.
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A Results for All Submissions

Table 3. The table shows the results for all submitted runs in alphabetical order

Run ID EER AUC OS

AVEIR 1262856077602 sorted run1 AVEIR sim rank seuil05.txt 0.3377 0.7159 0.5602
AVEIR 1262856132951 sorted run2 AVEIR sim rank seuil05.txt 0.3135 0.7476 0.4673
AVEIR 1262856175981 sorted run3 AVEIR sim rank seuil05.txt 0.2848 0.7848 0.5273
AVEIR 1262856207702 sorted run4 AVEIR sim rank seuil05.txt 0.2858 0.7799 0.5106
CNRS 1262433353127 TotalCombineSiftPCAScore060.txt 0.2748 0.7927 0.4195
CNRS 1262433442878 TotalCombineSiftPCAScore063.txt 0.2751 0.7928 0.4199
CNRS 1262433562325 TotalCombineSiftPCAScore065.txt 0.2749 0.7926 0.4203
CNRS 1262433641320 TotalCombineSiftPCAScore067.txt 0.2752 0.7923 0.4204
CNRS 1262434028322 TotalCombineSiftPCAScore070.txt 0.2758 0.7915 0.4199
CVSSPRet 1262719488645 run2 format.txt 0.2216 0.8547 0.5328
CVSSPRet 1262719758659 run1 format.txt 0.2136 0.8600 0.5709
CVSSPRet 1262727440131 fei run 2.txt 0.2206 0.8534 0.2575
CVSSPRet 1262777799929 fei run 1.txt 0.2138 0.8588 0.5724
CVSSPRet 1262781593747 fei run 3.txt 0.2162 0.8572 0.6899
IJS 1262100955676 ijs feit run2 1.txt 0.2425 0.8321 0.6374
IJS 1262101154419 ijs feit run2.txt 0.2425 0.8321 0.7066
IJS 1262101315087 ijs feit run1 1.txt 0.2504 0.8214 0.6395
IJS 1262101509972 ijs feit run1.txt 0.2504 0.8214 0.7033
ISIS 1262376995364 uva-isis-both2-4sift.txt 0.2214 0.8538 0.7812
ISIS 1262377180771 uva-isis-bothdenseallharris-4sift.txt 0.2182 0.8568 0.7837
ITI 1262190868772 icprlocalhisto.txt 0.3656 0.5917 0.4017
ITI 1262191191579 scoresall.txt 0.5066 0.4953 0.4002
ITI 1262191384462 scoresconcatlhf.txt 0.4847 0.5184 0.4023
ITI 1262191518097 scoreslh.txt 0.4789 0.5269 0.4007
ITI 1262191649206 scoreslhretrain.txt 0.4806 0.5246 0.4001
LSIS 1262858899140 sorted run3 lsis sim rank seuil05.txt 0.3106 0.7490 0.4599
LSIS 1262858975795 sorted run4 lsis sim rank seuil05.txt 0.3106 0.7490 0.5014
LSIS 1262859069185 sorted run1 lsis sim rank seuil05.txt 0.4964 0.5042 0.3226
LSIS 1262859144313 sorted run2 lsis sim rank seuil05.txt 0.3106 0.7490 0.5067
MMIS 1261257618173 test NPDE baseline2010.txt 0.3049 0.7566 0.5027
MMIS 1261257806321 test NPDE GOOGLE 2010.txt 0.3049 0.7566 0.5027
MMIS 1261258062082 test MRF baseline2010.txt 0.3281 0.7199 0.2529
MMIS 1261258281151 test MRF GOOGLE 2010.txt 0.3281 0.7199 0.2529
MMIS 1261427169687 test MRF2 nor2 2010.txt 0.4998 0.0000 0.2602
MRIM 1262676461569 res ICPR LIG3.txt 0.3831 0.6393 0.5801
MRIM 1262698052599 LIG2 ICPR sum1.txt 0.4108 0.6209 0.5004
MRIM 1262698323023 LIG3 ICPR sumsr.txt 0.4082 0.6262 0.2881
TRS2008 1261716477070 testingSetAnnotationsICPR.txt 0.4152 0.6200 0.3270
UAIC 1262539903396 run1.txt 0.4762 0.1408 0.6781
UPMC 1262281196445 run1 pca5000 score01 unbalanced lossfunction10.txt 0.3377 0.7159 0.4034
UPMC 1262425276587 run2 pca5000 score01 unbalanced svmonly.txt 0.4159 0.6137 0.3366
UPMC 1262426941383 run4 sift5000 unbalanced lossfunc10 file 01.txt 0.4331 0.5933 0.3806
UPMC 1262462158758 run3 hierImplications.txt 0.3377 0.7159 0.4034
UPMC 1262467131292 run5 Fusion sift pca Implication.txt 0.4331 0.5933 0.3806
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Abstract. In this paper, we present a hierarchical multi-label classifi-

cation system for visual concepts detection and image annotation. Hi-

erarchical multi-label classification (HMLC) is a variant of classification

where an instance may belong to multiple classes at the same time and

these classes/labels are organized in a hierarchy. The system is com-

posed of two parts: feature extraction and classification/annotation. The

feature extraction part provides global and local descriptions of the

images. These descriptions are then used to learn a classifier and to

annotate an image with the corresponding concepts. To this end, we

use predictive clustering trees (PCTs), which are able to classify tar-

get concepts that are organized in a hierarchy. Our approach to HMLC

exploits the annotation hierarchy by building a single predictive cluster-

ing tree that can simultaneously predict all of the labels used to anno-

tate an image. Moreover, we constructed ensembles (random forests) of

PCTs, to improve the predictive performance. We tested our system on

the image database from the ImageCLEF@ICPR 2010 photo annotation

task. The extensive experiments conducted on the benchmark database

show that our system has very high predictive performance and can be

easily scaled to large number of visual concepts and large amounts of

data.

1 Introduction

An ever increasing amount of visual information is becoming available in digital
form in various digital archives. The value of the information obtained from
an image depends on how easily it can be found, retrieved, accessed, filtered
and managed. Therefore, tools for efficient archiving, browsing, searching and
annotation of images are a necessity.

A straightforward approach, used in some existing information retrieval tools
for visual materials, is to manually annotate the images by keywords and then

D. Ünay, Z. Çataltepe, and S. Aksoy (Eds.): ICPR 2010, LNCS 6388, pp. 152–161, 2010.
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to apply text-based query for retrieval. However, manual image annotation is
an expensive and time-consuming task, especially given the large and constantly
growing size of image databases.

The image search provided by major search engines, such as Google, Bing,
Yahoo! and AltaVista, relies on textual or metadata descriptions of images found
on the web pages containing the images and the file names of the images. The
results from these search engines are very disappointing when the visual con-
tent of the images is not mentioned, or properly reflected, in the associated
text.

A more sophisticated approach to image retrieval is automatic image annota-
tion: a computer system assigns metadata in the form of captions or keywords to
a digital image [5]. These annotations reflect the visual concepts that are present
in the image. This approach begins with the extraction of feature vectors (de-
scriptions) from the images. A machine learning algorithm is then used to learn
a classifier, which will then classify/annotate new and unseen images.

Most of the systems for detection of visual concepts learn a separate model for
each visual concept [7]. However, the number of visual concepts can be large and
there can be mutual connections between the concepts that can be exploited.
An image may have different meanings or contain different concepts: if these
are organized into a hierarchy (see Fig. 2), hierarchical multi-label classification
(HMLC) can be used for obtaining annotations (i.e., labels for the multiple visual
concepts present in the image) [7]. The goal of HMLC is to assign to each image
multiple labels, which are a subset of a previously defined set (hierarchy) of
labels.

In this paper, we present a system for detection of visual concepts and an-
notation of images, which exploits the semantic knowledge about the inter-class
relationships among the image labels organized in hierarchical structure. For
the annotation of the images, we propose to exploit the annotation hierarchy in
image annotation by using predictive clustering trees (PCTs) for HMLC. PCTs
are able to handle target concepts that are organized in a hierarchy, i.e., to
perform HMLC. To improve the predictive performance, we use ensembles (ran-
dom forests) of PCTs for HMLC. For the extraction of features, we use several
techniques that are recommended as most suitable for the type of images at
hand [7].

We tested the proposed approaches on the image database from the ICPR
2010 photo annotation task [9]. The concepts used in this annotation task
are from the personal photo album domain and they are structured in an on-
tology. Fig. 2 shows a part of the hierarchical organization of the target
concepts.

The remainder of this paper is organized as follows. Section 2 presents the
proposed large scale visual concept detection system. Section 3 explains the
experimental design. Section 4 reports the obtained results. Conclusions and a
summary are given in Section 5.
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2 System for Detection of Visual Concepts

2.1 Overall Architecture

Fig. 1 presents the architecture of the proposed system for visual concepts de-
tection and image annotation. The system is composed of a feature extraction
part and a classification/annotation part. We use two different sets of features to
describe the images: visual features extracted from the image pixel values and
features extracted from the exchangeable image file format (EXIF) metadata
files. We employ different sampling strategies and different spatial pyramids to
extract the visual features (both global and local) [4].

As an output of the feature extraction part, we obtain several sets of de-
scriptors of the image content that can be used to learn a classifier to annotate
the images with the visual concepts. First, we learn a classifier for each set of
descriptors separately. The classifier outputs the probabilities with which an im-
age is annotated with the given visual concepts. To obtain a final prediction, we
combine the probabilities output from the classifiers for the different descriptors
by averaging them. Depending on the domain, different weights can be used for
the predictions of the different descriptors.

Images (Train / Test)

Descriptors of images

PCTs for HMLC / Classifiers

Predictions / Annotations

Feature extraction

Visual features

Spatial pyramid

Sampling strategy

Exchangeable image

file format (EXIF)

Codebook

transform

Fig. 1. Architecture of the proposed system for detection of visual concepts and anno-

tation of images

2.2 The Task of HMLC

Hierarchical multi-label classification is a variant of classification were a single
example may belong to multiple classes at the same time and these classes are
organized in a hierarchy. An example that belongs to some class automatically
belongs to all its super-classes, as implied by the hierarchical constraint. Ex-
ample problems of this kind can be found in several domains including text
classification, functional genomics, and object and scene classification. For more
detail overview of the possible application areas we refer the reader to [11].
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The predefined set of labels can be organized in a semantic hierarchy (see
Fig. 2 for an example). Each image is represented with: (1) a set of descriptors
(in this example, the descriptors are histograms of five types of edges encountered
in the image) and (2) labels/annotations. A single image can be annotated with
multiple labels at different levels of the predefined hierarchy. For example, the
image in the third row in the Table from Fig. 2 is labeled with clouds and sea.
Note that this image is also labeled with the labels: sky, water and landscape
because these labels are in the upper levels of the hierarchy.

The data, as presented in the Table from Fig. 2, are used by a machine learning
algorithm to train a classifier. The testing set of images contains only the set of
descriptors and has no a priori annotations.

Fig. 2. A fragment of the hierarchy for image annotation. The annotations are part

of the hierarchical classification scheme for the ICPR 2010 photo annotation task

(right).The table contains set of images with their visual descriptors and annotations

(left).

2.3 Ensembles of PCTs for HMLC

In the PCT framework [1], a tree is viewed as a hierarchy of clusters: the top-node
corresponds to one cluster containing all data, which is recursively partitioned
into smaller clusters while moving down the tree. Note that the hierarchical
structure of the PCT does not necessary reflect the hierarchical structure of the
annotations.

PCTs are constructed with a standard “top-down induction of decision trees”
(TDIDT) algorithm. The heuristic for selecting the tests is the reduction in
variance caused by partitioning the instances, where the variance V ar(S) is
defined by equation (1) below. Maximizing the variance reduction maximizes
cluster homogeneity and improves predictive performance.

A leaf of a PCT is labeled with/predicts the prototype of the set of examples
belonging to it. With appropriate variance and prototype functions, PCTs can
handle different types of data, e.g., multiple targets [3] or time series [12]. A
detailed description of the PCT framework can be found in [1]. The PCT frame-
work is implemented in the CLUS system, which is available for download at
http://www.cs.kuleuven.be/~dtai/clus.

To apply PCTs to the task of HMLC, the example labels are represented
as vectors with Boolean components. Components in the vector correspond to

http://www.cs.kuleuven.be/~dtai/clus
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labels in the hierarchy traversed in a depth-first manner. The i-th component of
the vector is 1 if the example belongs to class ci and 0 otherwise. If vi = 1, then
vj = 1 for all vj ’s on the path from the root to vi.

The variance of a set of examples (S) is defined as the average squared distance
between each example’s label vi and the mean label v̄ of the set, i.e.,

V ar(S) =

∑
i

d(vi, v̄)2

|S| (1)

We consider the higher levels of the hierarchy more important: an error at the
upper levels costs more than an error at the lower levels. Considering this, a
weighted Euclidean distance is used:

d(v1, v2) =
√∑

i

w(ci)(v1,i − v2,i)2 (2)

where vk,i is the i’th component of the class vector vk of an instance xk, and
the class weights w(ci). The class weights decrease with the depth of the class
in the hierarchy, w(ci) = w0 ·w(cj), where cj is the parent of ci and 0 < w0 < 1.

Each leaf in the tree stores the mean v̄ of the vectors of the examples that are
sorted in that leaf. Each component of v̄ is the proportion of examples v̄i in the
leaf that belong to class ci. An example arriving in the leaf can be predicted to
belong to class ci if v̄i is above some threshold ti. The threshold can be chosen
by a domain expert.

For a detailed description of PCTs for HMLC the reader is referred to [15].
Next, we explain how PCTs are used in the context of an ensemble classifier,
namely ensembles further improve the performance of PCTs.

Random Forests of PCTs. To improve the predictive performance of PCTs,
we use ensemble methods. An ensemble classifier is a set of classifiers. Each
new example is classified by combining the predictions of each classifier from
the ensemble. These predictions can be combined by taking the average (for
regression tasks) or the majority vote (for classification tasks) [2]. In our case,
the predictions in a leaf are the proportions of examples of different classes that
belong to it. We use averaging to combine the predictions of the different trees.
As for the base classifiers, a threshold should be specified to make a prediction.

We use random forests as an ensemble learning technique. A random forest [2]
is an ensemble of trees, obtained both by bootstrap sampling, and by randomly
changing the feature set during learning. More precisely, at each node in the
decision tree, a random subset of the input attributes is taken, and the best
feature is selected from this subset (instead of the set of all attributes). The
number of attributes that are retained is given by a function f of the total
number of input attributes x (e.g., f(x) = x, f(x) =

√
x, f(x) = �log2 x� + 1).

2.4 Feature Extraction

We use different commonly used types of techniques for feature extraction from
images. We employ three types of global image descriptors: gist features [10],
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local binary patterns (LBP) [13] and a color histogram, with 8 bins in each color
channel for the RGB color space. The LBP operator is computed in a spatial
arrangement where the image is split into 4x4 sub-regions.

Local features include scale-invariant feature transforms (SIFT) extracted
densely on a multi-scale grid or around salient points obtained from a Harris-
Laplace detector [6]. The dense sampling and Harris-Laplace detectors give an
equal weight to all key-points, independent of their spatial location in the image.
To overcome this limitation, one can use spatial pyramids of 1x1, 2x2 and 1x3
regions [14].

We computed six different sets of SIFT descriptors over the following color
spaces: RGB, opponent, normalized opponent, gray, HUE and HSV. For each
set of SIFT descriptors, we use the codebook approach to avoid using all visual
features of an image [14].

The generation of the codebook begins by randomly sampling 50 key-points
from each image and extracting SIFT descriptors in each key-point (i.e., each
key-point is described by a vector of numerical values). Then, to create the
codewords, we employ k-means clustering on the set of all key-points. We set
the number of clusters to 4000, thus we define a codebook with 4000 codewords (a
codeword corresponds to a single cluster and a codebook to the set of all clusters).
Afterwards, we assign the key-points to the discrete codewords predefined in the
codebook and obtain a histogram of the occurring visual features. This histogram
will contain 4000 bins, one for each codeword. To be independent of the total
number of key-points in an image, the histogram bins are normalized to sum
to 1.

The number of key-points and codewords (clusters) are user defined parame-
ters for the system. The values used above (50 key-points and 4000 codewords)
are recommended for general images [14].

An image can have an associated text file with metadata information in EXIF
(EXchangeable Image File) format [16]. The metadata can be used to construct
features that describe certain aspects of the imaging technique and the technical
specification of the used camera. These describe, for example the image quality
(resolution, focal length, exposure time) and when the picture was taken.

3 Experimental Design

3.1 Definition and Parameter Settings

We evaluated our system on the image database from the ImageCLEF@ICPR
2010 photo annotation task. The image database consists of training (5000),
validation (3000) and test (10000) images. The images are labeled with 53 visual
concepts organized in a tree-like hierarchy [9]. The goal of the task is to predict
which of the visual concepts are present in each of the testing images.

We generated 15 sets of visual descriptors for the images: 12 sets of SIFT local
descriptors (2 detectors, Harris-Laplace and dense sampling, over 6 different color
spaces) with 32000 bins for each set (8 sub-images, from the spatial pyramids:
1x1, 2x2 and 1x3, 4000 bins each). We also generated 3 sets of global descriptors
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(LBP histogram with 944 bins, gist features with 960 bins and RGB color his-
togram with 512 bins). From the EXIF metadata, we selected the most common
tags as features, such as: software, exposure time, date and time (original), expo-
sure bias, metering mode, focal length, pixelXDimension, pixelY-Dimension etc.
Since the PCTs can handle missing values, these values for the images without
EXIF tags were set to ’unknown’ or ’?’.

The parameter values for the random forests were as follows: we used 100
base classifiers and the size of the feature subset was set to 10% of the number
of descriptive attributes. The weights for the PCTs for the HMLC (w0) were set
to 1: each of the classes from the hierarchy has equal influence on the heuristic
score.

3.2 Performance Measures

The evaluation of the results is done using three measures of performance sug-
gested by the organizers of the challenge [3]: area under the ROC curve (AUC),
equal error rate (EER) and average ontology score (AOS). The first two scores
evaluate the performance for each visual concept, while the third evaluates the
performance for each testing image.

The ROC curve is widely used evaluation measure (see Fig. 3). It plots the
true positive rate (TPR) vs. false positive rate (FPR). The area between the
curve and the axis with FPR (AUC) is the probability that a randomly chosen
positive example will be ranked higher than a randomly chosen negative exam-
ple. The EER is the threshold value at which the TPR and FPR are equal.
Hence, the EER balances the probability of error with the probability of false
rejection. Lower EER means better predictive performance. The hierarchical
AOS measure calculates the misclassification cost for each missing or wrongly
annotated concept per image. The AOS score is based on structure information
(distance between concepts in the hierarchy), relationships from the ontology
and the agreement between annotators for a concept [8].

4 Results and Discussion

We present results from two different experiments (see Table 1). In the first
experiment, we use just the training images for learning the classifier. For the
second experiment, we merge the training and validation set into a single dataset
which we then use to learn the classifier. The results show that by using both
datasets (training and validation together) we get better scores.

If we focus on the prediction scores for the individual visual concepts, we can
note that we predict best the presence of landscape elements (see Table 2); the
best predicted concept is ’Sunrise or Sunset’ (from the parent-concept ’Time of
day’). The worst predicted concepts are from the ’Aesthetics’ group of concepts
(’Aesthetic Impression’, ’Overall quality’ and ’Fancy’). But, this is to be expected
because the agreement of human annotators on these concepts is only about
75% [8].
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Fig. 3. ROC curves for a subset of the visual concepts

The system has low predictive power when we are predicting the absence of
a concept (e.g., ’No persons’, ’No visual season’ ...). The hierarchy should not
include these concepts. These concepts should be assigned after post-processing
the results. We also have to predict mutually exclusive concepts (for example:
Indoor, Outdoor and No visual place). The notation of HMLC, however, does
not account for mutually exclusive concepts. To solve this issues one must re-
engineer the hierarchy of the concepts.

Further improvements can be expected if different weighting schemes are used
(to combine the predictions of the various descriptors). For instance, the SIFT
descriptors are invariant to color changes, and they do not predict well concepts
where illumination is important. Thus, the weight of the SIFT descriptors in the
combined predictions for those concepts should be decreased.

Let us compare the results of our system with the results from the other
participating groups at the ImageCLEF@ICPR 2010 photo annotation task. Our
system ranks second by the hierarchical AOS score. By the EER and AUC score
it ranks third. Thus, relatively speaking, it performs better under the hierarchical
performance measure.

Table 1. Results of the experiments evaluated using Equal Error Rate, Area under

Curve and Average Ontology Score

EER AUC AOS

Train and Validation 0.242 0.832 0.706

Train 0.250 0.821 0.703
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Table 2. Results per concept for our best run in the Large-Scale Visual Concept

Detection Task using the Area Under the Curve. The concepts are ordered by their

highest score.

Concept AUC Concept AUC Concept AUC

Sunset-Sunrise 0.951 Trees 0.855 Citylife 0.811

Clouds 0.946 Day 0.853 Winter 0.805

Sea 0.939 Portrait 0.849 Out-of-focus 0.803

Sky 0.933 Partly-Blurred 0.848 Animals 0.803

Landscape-Nature 0.923 Building-Sights 0.844 Familiy-Friends 0.799

Night 0.923 No-Visual-Time 0.840 Sunny 0.799

Mountains 0.919 Snow 0.835 No-Persons 0.794

Beach-Holidays 0.904 No-Blur 0.829 Vehicle 0.791

Lake 0.900 Partylife 0.827 No-Visual-Place 0.790

River 0.891 Autumn 0.826 No-Visual-Season 0.788

Food 0.890 Canvas 0.825 Motion-Blur 0.779

Desert 0.887 Indoor 0.817 Single-Person 0.761

Outdoor 0.886 Still-Life 0.817 Small-Group 0.752

Water 0.877 Macro 0.816 Sports 0.742

Underexposed 0.876 Summer 0.814 Aesthetic-Impression 0.661

Spring 0.862 Overexposed 0.812 Overall-Quality 0.657

Flowers 0.860 Big-Group 0.811 Fancy 0.613

Plants 0.857 Neutral-Illumination 0.811 Average 0.832

5 Conclusion

Hierarchical multi-label classification (HMLC) problems are encountered increas-
ingly often in image annotation. However, flat classification machine learning
approaches are predominantly applied in this area. In this paper, we propose to
exploit the annotation hierarchy in image annotation by using ensembles of trees
for HMLC. Our approach to HMLC exploits the annotation hierarchy by building
a single classifier that simultaneously predicts all of the labels in the hierarchy.

Applied on the ImageCLEF@ICPR 2010 photo annotation benchmark task
our approach was ranked second for the hierarchical performance measure and
third for the equal error rate and area the under the curve, out of 12 compet-
ing groups. The results were worst for predicting the absence of concepts. This
suggests the need for re-engineering the hierarchy or for post processing the
predictions to appropriately handle such concepts.

The system we presented is general. It can be easily extended with new feature
extraction methods, and it can thus be easily applied to other domains, types
of images and other classification schemes. In addition, it can handle arbitrarily
sized hierarchies organized as trees or directed acyclic graphs.
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Abstract. Visual concept detection is one of the most important tasks

in image and video indexing. This paper describes our system in the Im-

ageCLEF@ICPR Visual Concept Detection Task which ranked first for

large-scale visual concept detection tasks in terms of Equal Error Rate

(EER) and Area under Curve (AUC) and ranked third in terms of hier-

archical measure. The presented approach involves state-of-the-art local

descriptor computation, vector quantisation via clustering, structured

scene or object representation via localised histograms of vector codes,

similarity measure for kernel construction and classifier learning. The

main novelty is the classifier-level and kernel-level fusion using Kernel

Discriminant Analysis with RBF/Power Chi-Squared kernels obtained

from various image descriptors. For 32 out of 53 individual concepts, we

obtain the best performance of all 12 submissions to this task.

1 Introduction

ImageCLEF@ICPR PhotoAnnotation [1,2] is an evaluation initiative that aims
at comparing image-based approaches in the consumer photo domain. It consists
of two main tasks: the visual concept detection and annotation tasks. The aim of
this paper is to present our system in the Large-Scale Visual Concept Detection
Task which ranked first in terms of EER and AUC and ranked third in terms
of hierarchical measure. For the concepts, an average AUC of 86% could be
achieved, including concepts with an AUC as high as 96%. For 32 out of 53
individual concepts, we obtained the best performance of all 12 submissions
addressing this task.

The rest of paper is organised as follows. Section 2 describes the system fol-
lowed by a description of the methods submitted in Section 3. Experiments and
the results are discussed in Section 4. Section 5 concludes the paper.

2 Visual Concept Detection System

The visual concept detection problem can be formulated as a two class pattern
recognition problem. The original data set is divided into N data sets where

D. Ünay, Z. Çataltepe, and S. Aksoy (Eds.): ICPR 2010, LNCS 6388, pp. 162–170, 2010.
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Y = {1, 2, ..., N} is the finite set of concepts. The task is to learn one binary
classifier ha : X → {¬a, a} for each concept a ∈ Y . We may choose various
visual feature extraction methods to obtain X . Figure 1 shows the visual concept
detection system adopted in this paper. It follows the standard bag-of-words
model [3] that has become the method of choice for visual categorisation [4,5,6].
The system consists of six main components. Each component is implemented
via state-of-the-art techniques. These components are described below.

Fig. 1. Visual Concept Detection System

2.1 Sampling Strategy

The model first extracts specific points in an image using a point sampling
strategy. Two methods have been chosen: Dense sampling, and Harris-Laplace.
Dense sampling selects points regularly over the image at fixed pixel intervals.
Typically, around 10,000 points are sampled per image at an interval of 6 pixels.
The Harris-Laplace salient point detector [7] uses the Harris corner detector to
find potential feature locations and then selects a subset of these points for which
the Laplacian-of-Gaussians reaches a maximum over scale.

2.2 Visual Feature Extraction

To describe the area around the sampled points, we use the SIFT descrip-
tor [8], HSV Sift, HUE Sift, two extensions of SIFT [7] and four extensions
of SIFT to colour [4]: OpponentSIFT, RGSIFT, C-SIFT, RGB-SIFT. These de-
scriptors have specific invariance properties with respect to common changes in
illumination conditions and have been shown to improve visual categorisation
accuracy [4].

2.3 Spatial Location and Visual Codebook

In order to create a representation for each image we employ the commonly
used bag of visual words technique. All the descriptors in the training set are
clustered using the kmeans algorithm into 4000 clusters. This is a hierarchical
process, first the data is clustered into 10 high level clusters and then 400 lower
level clusters. A histogram is then produced for each image in the training set.
This 4000 bin histogram is populated using the Codeword Uncertainty method
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presented by Van Gemert et al [9] where the histogram entry of each visual
codeword w is given by

UNC(w) =
1
n

n∑
i=1

Kσ(D(w, ri))∑|V |
j=1 Kσ(D(wj , ri))

, (1)

where n is the number of descriptors in the image, D(w, ri) is the Euclidean
distance between the descriptor ri and its cluster centre on codeword w, K
is a Gaussian kernel with smoothing factor σ and V is the visual vocabulary
containing the codeword W . This method of histogram generation has been
shown to perform well in the visual concept detection [4].

2.4 Classification Using Kernel Discriminant Analysis and Spectral
Regression

Kernel based learning methods are commonly regarded as a solid choice in order
to learn robust concept detectors from large-scale visual codebooks. In recent
work [5], we have successfully used kernel discriminant analysis using spectral
regression (SRKDA), initially introduced by Cai et al [10], for large-scale im-
age and video classification problems. This method combines the spectral graph
analysis and regression for an efficient large matrix decomposition in KDA. It has
been demonstrated in [10] that it can achieve an order of magnitude speedup over
the eigen-decomposition while producing smaller error rate compared to state-
of-the-art classifiers. Later in [5], we have shown the effectiveness of SRKDA
for large scale concept detection problems. In addition to superior classifica-
tion results when compared to existing approaches, it can provide an order of
magnitude speed-up over support vector machine. The main computationally
intensive operation is Cholesky decomposition, which is actually independent of
the number of labels. For more details please refer to [5].

The total computational cost of SRKDA for all concepts in visual concept
detection is 1

6m3+m2Nc flams where flam is a compound operation consisting of
one addition and one multiplication and m is the number of samples. Compared
to the cost of ordinary KDA for VCD, (N×(9

2m3+m2c)) flams, SRKDA achieves
an order of magnitude (27N times) speed-up over KDA which is massive for large
scale image/video datasets.

3 Submitted Runs

We have submitted five different runs described below. All runs use 72 kernels
generated from different visual feature representations (2 sampling strategies, 9
different descriptor types and 4 spatial location grids). In this paper, we use only
visual information. Future research includes usage of EXIF metadata provided
for the photos. The main novelty is the classifier-level and kernel-level fusion us-
ing SRKDA with RBF/Power Chi-Squared kernels obtained from various image
descriptors. It is worth mentioning that we have also evaluated the performance
using SVM with the same kernels and based on the results from validation set,
KDA is superior to SVM. These runs are described below:



The University of Surrey VCD System at ImageCLEF@ICPR 165

3.1 RUN1: Classifier-Level Fusion Using RBF Kernels (CLF-KDA)

In general, the discriminatory power of kernel classifiers comes directly from the
complexity of the underlying kernels. In this run, we have used standard RBF
kernel with Chi-squared distance metric: k(F , F ′) = e−

1
A distχ2 (F ,F ′) where A is

a scalar which normalises the distances. Following [6], A is set to the average χ2

distance between all elements of the kernel matrix. Each kernel is then trained
using SR-KDA with the regularization parameter, δ, tuned using the validation
set. The output from each classifier is then combined using the AVG rule [11].
It is worth noting that for this run we have tried various combination rules such
as MAX, MIN, MEDIAN. The best result on the validation set is obtained by
the AVG rule and is reported here.

3.2 RUN2: Kernel-Level Fusion Using RBF Kernels (KLF-KDA)

In this run, the same RBF kernels with χ2 distance as in RUN1 are used. How-
ever, instead of classifier level fusion, this run uses kernel level fusion with uni-
form weighting. This corresponds to taking the Cartesian product of the features
spaces of the base kernels. Once the kernels are combined, kernel Fisher discrim-
inant analysis is applied as the classifier.

3.3 RUN3: Stacked KDA

This run uses the classifier in RUN2 as a base classifier for each of the 53 concepts
to produce 53 scores. These scores are used as feature vectors and another RBF
kernel is built with these features. Note however, for some concepts, not all 53
scores are used for building this kernel. In cases where we have information
about the correlation of the concepts, for example, for the disjoint concepts
“single person”, “small group”, “big group”, and “no persons”, only the scores
of the base classifiers for these 4 concepts are used. The new kernel is then added
to the set of kernels and kernel FDA classifiers are trained in a second round.

3.4 RUN4: Classifier-Level Fusion Using Power Kernels
(CLF-KDA-Power)

Conditional positive definite kernels have also drawn attention during the last
decade and proved successful in image recognition using SVM [12]. In recent
work [13], we have modified SRKDA to support conditional positive definite
kernels such as power kernels. The main idea is to use LDLT decomposition
instead of Cholesky decomposition. For more details, please refer to [13]. In this
run, we have used Power kernel with Chi-squared distance metric: k(F , F ′) =
−distχ2(F , F ′)β (Conditional Positive Definite if 0 < β < 2). Each power kernel
is then trained using modified SRKDA with the regularization parameters δ
and β tuned using the validation set. The output from each classifier is then
combined using the AVG rule.

3.5 RUN5

Based on the performance on the validation set, this run selects the best of
RUN2 and RUN3 for each concept.
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4 Experimental Results

The ImageCLEF@ICPR dataset consists of 18000 images of 53 different ob-
ject classes such as animals, vehicles, etc. The dataset is divided into a prede-
fined “trainval” set (8000 images) and “test” set (10000 images). The “trainval”
dataset is further divided for validation purpose into a training set containing
5000 images and a validation set containing 3000 images. The ground truth for
the test sets is not released to avoid over-fitting of classifiers.

The Equal Error Rate (EER) and the Area under Curve (AUC) are used as
measures for large-scale visual concept detection while an hierarchical measure
is used to provide a score for the annotation performance for each image.

4.1 Results on Validation Set

We first evaluate the classifiers performance on the validation set using different
techniques and then compare it to the state-of-the art systems that produced
the top results in ImageCLEF@ICPR Challenge. Table 1 shows the performance
of our runs including the best and worst descriptors. It is clear from the table
that fusion of information either at classifier-level or kernel-level has significantly
improved the performance. It is interesting to observe that while RBF-CLF has
the best performance both in terms of mean AUC and EER, this run ranked top
in only few concepts when compared to other submitted runs. Further, it should
be noted that we have also tried to select the best combination of descriptors
using search techniques such as Sequential Forward Search but were unable to
get any improvement at all on the validation set. Since all of the classifiers
contain complementary information, we have used all 9 descriptors with four
spatial locations and 2 sampling strategies in our experiments.

Table 1. Comparison of different runs on ImageCLEF@ICPR Validation Set. Ind. Best

Descriptor = DS-SIFT-1x1 for AUC, HS-SIFT-2x2 for EER. Ind. Worst Descriptor =

DS-HSVSIFT-1x1 for AUC, DS-HSVSIFT-3x1 for EER.

Method AUC #WINs EER #WINs

Ind. Best 0.7843 - 0.2811 -

Ind. Worst 0.7347 - 0.3236 -

CLF-KDA 0.8424 5 0.2319 10

CLF-KDA-Power 0.8379 12 0.2348 15

KLF-KDA 0.8423 23 0.2319 13

Stacked KDA 0.8400 13 0.2324 15

4.2 Results on Test Set

Table 2 shows the performance of best run of each team evaluated indepen-
dently by the organizers. The best performance using EER and AUC is achieved
by our method based on classifier-level fusion using RBF Kernels. In fact the top
2 methods are clearly significantly better than all the other methods. Table 2
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also shows the performance using the hierarchical measure in which our method
(RUN5) ranked third. Technical details of the approaches by other groups are
summarised in [2], ISIS approach is an extension of the system proposed in [4,14]
where SIFT features are extracted in different colour spaces. The learning step
is based on SVM with χ2 kernel which differs from our system mainly where
RBF/Power kernels with KDA is used in the classification stage. For 32 out of
53 individual concepts, we obtain the best performance of all submissions to this
task when AUC is used as the evaluation criterion; more than twice when com-
pared with second best method. For EER, the best performance is obtained in
29 out of the 53 individual concepts. These results clearly show the effectiveness
of our system for large-scale visual concept detection. Future research aims to
use ontology information and multi-label classification techniques that considers
correlation among concepts to further improve the performance.

Table 2. The team runs of ImageCLEF@ICPR Photo Annotation Task (from the

official evaluations). HM = Hierarchical measure.

Group EER #WINs AUC #WINs HM

CVSSP 0.2136 29 0.8600 32 0.6900

ISIS 0.2182 17 0.8568 15 0.7836
IJS 0.2425 5 0.8321 3 0.7065

CNRS 0.2748 1 0.7927 2 0.4204

AVEIR 0.2848 0 0.7848 1 0.5602

MMIS 0.3049 0 0.7566 0 0.5027

LSIS 0.3106 0 0.7490 0 0.5067

UPMC/LIP6 0.3377 0 0.7159 0 0.4034

ITI 0.3656 1 0.5917 0 0.4023

MRIM 0.3831 0 0.6393 0 0.5801

TRS2008 0.4152 0 0.6200 0 0.3270

UAIC 0.4762 0 0.1408 0 0.6781

Table 3 shows the performance of our runs in terms of AUC on a few individ-
ual concepts. It is observed that the performance may vary in different concepts.
The results indicate that RBF kernels perform quite well when class imbalance is
not severe (for example in Day, No-Blur etc). On the other hand, in many highly
unbalanced categories like Desert, Lake etc., Power Kernel performs quite well.
In some concepts, stacking also has significant effect on the performance e.g.
Fancy approx. a 4% improvement over the best run. It is observed that fusion
at decision-level or feature-level yields very similar performance on this dataset
with the results showing slightly in favour of the classifier-level fusion both in
terms of EER and AUC. But the kernel-level fusion has speed advantage over the
classifier-level fusion as only one classifier is required to train while the classifier-
level fusion requires separate classifiers for the individual descriptors. The results
also indicate that RBF-CLF (RUN1) ranked top in the majority of the concepts
over other runs indicating that other runs may have overfitted during parame-
ter optimization on the validation set. For RBF-CLF, the same regularisation
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Table 3. Comparison of AUC for some individual concepts in ImageCLEF@ICPR Test

Set. GT = Ground Truth.

Concept GT RUN1 RUN2 RUN3 RUN4

Desert 31 0.8752 0.8762 0.8762 0.8977
Lake 90 0.8991 0.8959 0.8959 0.9122
Overexposed 93 0.8165 0.8127 0.8201 0.8276
Spring 118 0.8257 0.8284 0.8284 0.8410
Snow 128 0.8925 0.8846 0.8846 0.8819

River 132 0.9210 0.9173 0.9173 0.9264
Autumn 136 0.8751 0.8724 0.8602 0.8800
Sports 146 0.7777 0.7741 0.7577 0.7813
Out-of-focus 148 0.8323 0.8279 0.8139 0.8353
Beach-Holidays 155 0.9288 0.9285 0.9285 0.9236

Canvas 178 0.8522 0.8503 0.8503 0.8467

Winter 210 0.8749 0.8712 0.8712 0.8633

Big-Group 222 0.9113 0.9120 0.9120 0.8966

Mountains 233 0.9414 0.9408 0.9212 0.9378

Sea 238 0.9471 0.9470 0.9247 0.9427

Motion-Blur 241 0.7842 0.7793 0.7806 0.7849
Food 269 0.9156 0.9156 0.9156 0.9089

Partylife 293 0.8587 0.8565 0.8565 0.8647
Flowers 382 0.8889 0.8894 0.8802 0.8792

Sunset-Sunrise 394 0.9617 0.9619 0.9587 0.9595

Underexposed 427 0.8682 0.8643 0.8609 0.8730
Vehicle 437 0.8548 0.8550 0.8550 0.8438

Night 566 0.9071 0.9063 0.9063 0.9046

Still-Life 659 0.8584 0.8575 0.8447 0.8476

Macro 705 0.8395 0.8379 0.8303 0.8360

Small-Group 721 0.8273 0.8270 0.8257 0.8195

Animals 727 0.8722 0.8722 0.8617 0.8536

Water 763 0.9136 0.9129 0.9001 0.9018

Summer 891 0.8332 0.8307 0.8307 0.8297

Trees 891 0.9157 0.9155 0.9155 0.9054

Building-Sights 896 0.9028 0.9025 0.9025 0.8922

Portrait 1007 0.9050 0.9051 0.9051 0.8945

Clouds 1107 0.9586 0.9597 0.9598 0.9505

Familiy-Friends 1115 0.8572 0.8578 0.8578 0.8451

Citylife 1151 0.8495 0.8500 0.8500 0.8378

Sunny 1159 0.8118 0.8090 0.8091 0.8027

Fancy 1174 0.5881 0.5839 0.6100 0.6051

Landscape-Nature 1362 0.9517 0.9511 0.9511 0.9460

Aesthetic-Impression 1408 0.6620 0.6582 0.6673 0.6706
No-Visual-Place 1578 0.8108 0.8101 0.8079 0.8020

Single-Person 1701 0.8184 0.8192 0.8342 0.8019

Overall-Quality 1719 0.6518 0.6483 0.6605 0.6605
Plants 1872 0.9028 0.9031 0.9031 0.8841

Sky 1977 0.9582 0.9582 0.9587 0.9475

Indoor 2162 0.8412 0.8412 0.8436 0.8243

Partly-Blurred 2337 0.8674 0.8681 0.8658 0.8540

No-Visual-Time 3121 0.8559 0.8557 0.8557 0.8406

Outdoor 4260 0.9018 0.9022 0.9041 0.8824

Day 4313 0.8660 0.8656 0.8600 0.8509

No-Blur 5274 0.8578 0.8573 0.8573 0.8432

No-Persons 5357 0.8718 0.8739 0.8739 0.8495

No-Visual-Season 6645 0.8221 0.8217 0.8217 0.8100

Neutral-Illumination 7480 0.7974 0.7950 0.7893 0.7991

Mean 0.8600 0.8588 0.8534 0.8547

#WINs 23 12 16 14
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parameter, δ = 0.1, is used for all concepts while for RBF-KLF/Stacking, δ is
tuned for every concept. Similarly, for power kernel, β is also tuned along with
δ on the validation set.

5 Conclusions

Our focus on machine learning methods for concept detection in
ImageCLEF@ICPR has proved successful. Our method ranked top for the large-
scale visual concept detection task in terms of both EER and AUC. For 32 out of
53 individual concepts, we obtained the best performance of all submissions ad-
dressing this task. The main novelty is the use of classifier-level and kernel-level
fusion with Kernel Discriminant Analysis employing RBF/Power Chi-Squared
kernels obtained from various image descriptors. Future work aims to com-
bine ontology (hierarchy and relations) with visual information to improve the
performance.
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Abstract. This paper describes the robot vision track that has been

proposed to the ImageCLEF@ICPR2010 participants. The track ad-

dressed the problem of visual place classification. Participants were asked

to classify rooms and areas of an office environment on the basis of im-

age sequences captured by a stereo camera mounted on a mobile robot,

under varying illumination conditions. The algorithms proposed by the

participants had to answer the question “where are you?” (I am in the

kitchen, in the corridor, etc) when presented with a test sequence imaging

rooms seen during training (from different viewpoints and under differ-

ent conditions), or additional rooms that were not imaged in the training

sequence. The participants were asked to solve the problem separately

for each test image (obligatory task). Additionally, results could also be

reported for algorithms exploiting the temporal continuity of the im-

age sequences (optional task). A total of eight groups participated to the

challenge, with 25 runs submitted to the obligatory task, and 5 submitted

to the optional task. The best result in the obligatory task was obtained

by the Computer Vision and Geometry Laboratory, ETHZ, Switzerland,

with an overall score of 3824.0. The best result in the optional task was

obtained by the Intelligent Systems and Data Mining Group, Univer-

sity of Castilla-La Mancha, Albacete, Spain, with an overall score of

3881.0.
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D. Ünay, Z. Çataltepe, and S. Aksoy (Eds.): ICPR 2010, LNCS 6388, pp. 171–179, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



172 A. Pronobis, H.I. Christensen, and B. Caputo

1 Introduction

ImageCLEF1 [1, 2, 3] started in 2003 as part of the Cross Language Evaluation
Forum (CLEF2, [4]). Its main goal has been to promote research on multi-modal
data annotation and information retrieval, in various application fields. As such
it has always contained visual, textual and other modalities, mixed tasks and
several sub tracks.

The robot vision track has been proposed to the ImageCLEF participants
for the first time in 2009. The track attracted a considerable attention, with
19 inscribed research groups, 7 groups eventually participating and a total of
27 submitted runs. The track addressed the problem of visual place recognition
applied to robot topological localization. Encouraged by this first positive re-
sponse, the track has been proposed for the second time in 2010, within the
context of the ImageCLEF@ICPR2010 initiative. In this second edition of the
track, participants were asked to classify rooms and areas on the basis of image
sequences, captured by a stereo camera mounted on a mobile robot within an
office environment, under varying illumination conditions. The system built by
the participants had to be able to answer the question “where are you?” when
presented with a test sequence imaging rooms seen during training (from differ-
ent viewpoints and under different conditions) or additional rooms, not imaged
in the training sequence.

The image sequences used for the contest were taken from the previously un-
released COLD-Stockholm database. The acquisition was performed in a subsec-
tion of a larger office environment, consisting of 13 areas (usually corresponding
to separate rooms) representing several different types of functionality. The ap-
pearance of the areas was captured under two different illumination conditions:
in cloudy weather and at night. Each data sample was then labeled as belonging
to one of the areas according to the position of the robot during acquisition
(rather than contents of the images).

The challenge was to build a system able to localize semantically (I’m in the
kitchen, in the corridor, etc.) when presented with test sequences containing
images acquired in the previously observed part of the environment, or in addi-
tional rooms that were not imaged in the training sequences. The test images
were acquired under different illumination settings than the training data. The
system had to assign each test image to one of the rooms that were present in the
training sequences, or to indicate that the image comes from a room that was
not included during training. Moreover, the system could refrain from making a
decision (e.g. in the case of lack of confidence).

We received a total of 30 submission, of which 25 were submitted to the
obligatory task and 5 to the optional task. The best result in the obligatory
task was obtained by the Computer Vision and Geometry Laboratory, ETHZ,
Switzerland. The best result in the optional task was obtained by the Intelligent

1 http://www.imageclef.org/
2 http://www.clef-campaign.org/
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Systems and Data Mining Group (SIMD) of the University of Castilla-La Man-
cha, Albacete, Spain.

This paper provides an overview of the robot vision track and reports on the
runs submitted by the participants. First, details concerning the setup of the
robot vision track are given in Section 2. Then, Section 3 presents the partic-
ipants and Section 4 provides the ranking of the obtained results. Conclusions
are drawn in Section 5. Additional information about the task and on how to
participate in the future robot vision challenges can be found on the ImageCLEF
web pages.

2 The RobotVision Track

This section describes the details concerning the setup of the robot vision track.
Section 2.1 describes the dataset used. Section 2.2 gives details on the tasks
proposed to the participants. Finally, section 2.3 describes briefly the algorithm
used for obtaining a ground truth and the evaluation procedure.

2.1 Dataset

Three datasets were made available to the participants. Annotated training and
validation data were released when the competition started. Unlabeled testing
set was released two weeks before the results submission deadline. The train-
ing, validation and test sets consisted of a subset of the previously unreleased
COLD-Stockholm database. The sequences were acquired using the MobileR-
obots PowerBot robot platform equipped with a stereo camera system consisting
of two Prosilica GC1380C cameras (Figure 1). In order to facilitate the participa-
tion of those groups not familiar with stereo images, we allowed the participants
to sue monocular as well as stereo image data. The acquisition was performed in
a subsection of a larger office environment, consisting of 13 areas (usually corre-
sponding to separate rooms) representing several different types of functionality
(Figure 2).

The appearance of the areas was captured under two different illumination
conditions: in cloudy weather and at night. The robot was manually driven
through the environment while continuously acquiring images at a rate of 5fps.
Each data sample was then labeled as belonging to one of the areas according to
the position of the robot during acquisition, rather than according to the content
of the images.

Four sequences were selected for the contest: two training sequences having
different properties, one sequence to be used for validation and one sequence for
testing. Each of these four sequences had the following properties:

– training-easy. This sequence was acquired in 9 areas, during the day, under
cloudy weather. The robot was driven through the environment following a
similar path as for the test and validation sequences and the environment
was observed from many different viewpoints (the robot was positioned at
multiple points and performed 360 degree turns).
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Fig. 1. The MobileRobots PowerBot mobile robot platform used for data acquisition

– training-hard. This sequence was acquired in 9 areas, during the day, under
cloudy weather. The robot was driven through the environment in a direction
opposite to the one used for the training-easy sequence, without making
additional turns.

– validation. This sequence was acquired in 9 areas, at night. A similar path
was followed as for the training-easy sequence, without making additional
turns.

– testing. This sequence was acquired in similar conditions and following sim-
ilar path as in case of the validation sequence. It contains four additional
areas,for a total of 13, that were not imaged in the training or validation
sequences: elevator, workshop, living room and laboratory. Exemplar images
for these rooms are shown in Figure 3.

As an additional resource, we made available to participants the camera calibra-
tion data for the stereo image sequences.

2.2 The Task

The overall goal of the robot vision track is to stimulate research on semantic
place recognition for mobile robot localization. The problem can be mapped to
an image annotation task, where participants have to recognize the room type
( kitchen, a corridor’) on the basis of images acquired with a stereo camera,
mounted on a mobile robot platform.
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Fig. 2. Example pictures of nine rooms used for the robot vision task at ICPR 2010.

From left to right, top: corridor, kitchen, large office 1. From left to right, middle: large

office 2, student office, printer area. From left to right, bottom: elevator 1, small office

2, large office 2.

Fig. 3. Example pictures of the four additional rooms in the test sequence, used for the

robot vision task at ICPR 2010. From left to right: elevator2, workshop, living room

and laboratory.

All data, consisting of training, validation and test sequences, were recorded
using a mobile robot, manually driven through several rooms, under fixed illu-
mination conditions. The environment of choice was a standard academic office
environment. Images in the sequences were annotated according to the position
of the robot, as opposed to their informative content. For instance, an image ac-
quired in the room ‘corridor’, taken when the robot was facing the entrance of the
room ‘kitchen’, is labeled as ‘corridor’ even if it shows mostly part of the ‘kitchen’.
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The test sequences were acquired under different illumination conditions.
They imaged the same rooms contained into the training and validation se-
quences, plus some additional rooms not seen before. Therefore participants had
to address at the same time two challenges: (a) recognizing correctly rooms seen
before, and (b) recognizing as ‘unknown’ the new rooms in the test sequence.

We consider two separate tasks, task 1 (obligatory) and task 2 (optional). In
task 1, the algorithm had to be able to provide information about the location
of the robot separately for each test image, without relying on information con-
tained in any other image (e.g. when only some of the images from the test
sequences are available or the sequences are scrambled). This corresponds to the
problem of global topological localization. In task 2, the algorithm was allowed
to exploit continuity of the sequences and rely on the test images acquired before
the classified image, with the constraint that images acquired after the classified
image could be used. The same training, validation and testing sequences were
used for both tasks. The reported results were compared separately.

The tasks employed two sets of training, validation and testing sequences.
The first, easier set contained sequences with constrained viewpoint variability.
In this set, training, validation and testing sequences were acquired following
similar path through the environment. The second, more challenging set con-
tained sequences acquired following different paths (e.g. the robot was driven in
the opposite direction). The final score for each task was calculated based on
the results obtained for both sets.

The competition started with the release of annotated training and validation
data. Moreover, the participants were given a tool for evaluating performance
of their algorithms. The test image sequences were released later and were ac-
quired in the same environment, under different conditions. They also contained
additional rooms that were not imaged previously.

2.3 Ground Truth and Evaluation

The image sequences used in the competition were annotated with ground truth.
The annotations of the training and validation sequences were available to the
participants, while the ground truth for the test sequence was released after the
results were announced. Each image in the sequences was labelled according to
the position of the robot during acquisition as belonging to one of the rooms
used for training or as an unknown room. The ground truth was then used to
calculate a score indicating the performance of an algorithm on the test sequence.
The following rules were used when calculating the overall score for the whole
test sequence:

– 1 point was granted for each correctly classified image.
– Correct detection of an unknown room was regarded as correct classification.
– 0.5 points was subtracted for each misclassified image.
– No points were granted or subtracted if an image was not classified (the

algorithm refrained from the decision).

A script was available to the participants that automatically calculated the
score for a specified test sequence given the classification results produced by an
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algorithm. Each of the two test sequences consisted of a total of 2551 features.
Therefore, according to the rules listed above, the maximum possible score is of
2551, both for the easy and the hard test sequences, with a maximum overall
score of 5102.

3 Participation

In 2010, 28 groups registered to the Robot Vision task. 8 of them submitted at
least one run, namely:

– CVG: Computer Vision and Geometry laboratory, ETH Zurich, Switzerland;
– TRS2008: Beijing Information Science and Technology University, Bejing,

China;
– SIMD: Intelligent Systems and Data Mining Group, University of Castilla-La

Mancha, Albacete, Spain;
– CAS IDIAP: Center for Autonomous Systems, KTH, Stockholm, Sweden

and Idiap Research Institute, Martigny, Switzerland;
– PicSOM TKK: Helsinki University of Technology, TKK Department of In-

formation and Computer Science, Helsinki, Finland;
– Magrit: INRIa Nancy, France;
– RIM at GT: Georgia Institute of Technology, Atlanta, Georgia, USA;

A total of 30 runs were submitted, with 25 runs submitted to the obligatory task
and 5 runs submitted to the optional task. In order to encourage participation,
there was no limit to the number of runs that each group could submit.

4 Results

This section presents the results of the robot vision track of ImageCLEF@
ICPR2010. Table 1 shows the results for the obligatory task, while Table 2 shows
the result for the optional task. Scores are presented for each of the submitted
runs that complied with the rules of the contest.

Table 1. Results obtained by each group in the obligatory task. The maximum overall

score is of 5102, with a maximum score of 2551 for both the easy and the had sequence.

# Group Overall Score Score Easy Score Hard

1 CVG 3824.0 2047.0 1777.0

2 TRS2008 3674.0 2102.5 1571.5

3 SIMD 3372.5 2000.0 1372.5

4 CAS IDIAP 3344.0 1757.5 1372.5

5 PicSOM TKK 3293.0 2176.0 1117.0

6 Magrit 3272.0 2026.0 1246.0

7 RIM at GT 2922.5 1726.0 1196.5

8 UAIC 2283.5 1609.0 674.5
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Table 2. Results obtained by each group in the optional task. The maximum overall

score is of 5102, with a maximum score of 2551 for both the easy and the had sequence.

# Group Overall Score Score Easy Score Hard

1 SIMD 3881.0 2230.5 1650.5

2 TRS2008 3783.5 2135.5 1648.0

3 CAS IDIAP 3453.5 1768.0 1685.5

4 RIM at GT 2822.0 1589.5 1232.5

We see that the majority of runs were submitted to the obligatory task. A pos-
sible explanation is that the optional task requires a higher expertise in robotics
that the obligatory task, which therefore represents a very good entry point. The
same behavior was noted at the first edition of the robot vision task in 2009.

Concerning the obtained results, we notice that all groups perform consider-
ably better on the easy sequence, compared to the hard sequence. This is true
for both the obligatory and the optional task. For the obligatory task, the best
performance on the easy sequence was obtained by the PicSOM TKK group
with a score of 2176.0. This is only 375 points lower than the maximum possible
score of 2551, also considering that the images in the sequence are annotated
according to the robots position, but they are classified according to their in-
formative content. As opposed to this, we see that the best performance on the
easy sequence was obtained by the CVG group, with a score of 1777.0. This is
774 points lower than the maximum possible score of 2551, more than twice the
difference in score between the nest performance and the maximum one for the
easy sequence.

This pattern is replicated in the optional task, indicating that the temporal
continuity between image frames does not seem to alleviate the problem. We see
that the best performance for the easy sequence is obtained by the SIMD group,
with a score of 2230.5. For the hard sequence, the best performance (obtained
by the CAS IDIAP group) drops to 1685.5.

These results indicate quite clearly that the capability to recognize visually
a place under different viewpoints is still an open challenge for mobile robots.
This is a strong motivations towards proposing similar tasks to the community
in the future editions of the robot vision task.

5 Conclusions

The robot vision task at ImageCLEF@ICPR2010 attracted a considerable atten-
tion and proved an interesting complement to the existing tasks. The approach
presented by the participating groups were diverse and original, offering a fresh
take on the topological localization problem. We plan to continue the task in the
next years, proposing new challenges to the participants. In particular, we plan
to focus on the problem of place categorization and use objects as an important
source of information about the environment.
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Abstract. This paper describes an approach for mobile robot local-

ization using a visual word based place recognition approach. In our

approach we exploit the benefits of a stereo camera system for place

recognition. Visual words computed from SIFT features are combined

with VIP (viewpoint invariant patches) features that use depth infor-

mation from the stereo setup. The approach was evaluated under the

ImageCLEF@ICPR 2010 competition1. The results achieved on the com-

petition datasets are published in this paper.

1 Introduction

The ImageCLEF@ICPR 2010 competition was established to provided a com-
mon testbed for vision based mobile robot localization, to be able to evaluate
different approaches against each other. For the competition image datasets of a
realistic indoor scenario were created and manually labeled to get ground truth
data. The mobile robot was equipped with a stereo vision system, that generates
an image pair for each location instead of a single image only. This availability
of image pairs from a stereo vision system allowed us to design an approach that
combines monocular and stereo vision cues. The approach we designed is based
on a place recognition system using visual words [7,3]. For one part visual words
are computed from SIFT features [5] as the monocular cue. As the other cue we
use visual words computed from viewpoint invariant patches (VIP) [13]. For the
extraction of VIP features the local geometry of the scene needs to be known. In
our case we compute dense stereo from the stereo system and use the depth map
for VIP feature extraction. Both sets of features are combined and used as visual
description of the location. The approach has already been evaluated and the
scores achieved in the competition are given in this paper. Additionally, recog-
nition rates on the validation competition datasets (which was used to prepare
for the competition) are given, which demonstrate the excellent performance of
our method by achieving 98% correct localization.

1 This approach was ranked 1st in the ImageCLEF@ICPR 2010 RobotVision

competition.
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2 Related Work

Our visual word based place recognition system is related to [7,3,12,6] where a
similar technique was used for image retrieval. It is also related to FABMAP [2],
a visual word based approach to robot localization. However, FABMAP focuses
on a probabilistic framework to identify matching locations, whereas we do a
two-stage approach of visual ranking and geometric verification. The proposed
geometric verification takes the planar motion constraints of a mobile robot
into account. It is also related to [1], however they use a different technique of
quantizing local features into visual words.

VIP features were firstly described in [13] and used for registration of 3D mod-
els. The local geometry was computed using a monocular structure-from-motion
algorithm. In our approach we compute VIP features from a stereo system and
use them for mobile robot localization. First results of this approach were al-
ready published in our previous work [4] and this work now explains the method
in detail.

3 SIFT and VIP Features for Place Recognition

The availability of depth maps for every image pair of a stereo video sequence
makes it possible to use viewpoint invariant patches (VIP). VIP’s are image
features extracted from images that are rectified with respect to the local ge-
ometry of the scene. The rectified texture can be seen as an ortho-texture of
the 3D model which is viewpoint independent. This ortho-texture is computed
using the depth map from the stereo system. This rectification step, which is the
essential part of this concept delivers robustness to changes of viewpoint. We
then determine the salient feature points of the ortho-textures and extract the
feature description. For this the well known SIFT-features and their associated
descriptor [5] is used. The SIFT-features are then transformed to a set of VIPs,
made up of the feature’s 3D position, patch scale, surface normal, local gradi-
ent orientation in the patch plane, in addition to the SIFT descriptor. Fig. 1
illustrates this concept. The original feature patches are the lower left and right
patches, as seen from the gray and green camera. Rectification is performed by
changing the viewpoints to the red cameras, so that the camera’s image plane
is parallel to the features scene plane. This results in the rectified VIP patches
which are the center patches. It can be seen, that because of the rectification the
VIP patches overlap perfectly.

Because of their viewpoint invariance, VIP features are a perfect choice for
place recognition. For place recognition VIP features can be used instead of
SIFT features from the original images or in addition to SIFT features (this is
beneficial if the local geometry cannot be computed for the whole sequence).
With view point invariant features place recognition will be possible with even
large view point changes.
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Fig. 1. Two corresponding viewpoint invariant patches (VIPs). The lower left and right

patches are the original feature patches, while the center patches are the rectified VIP

patches (see text for details).

4 Place Recognition and Verification

Robot localization can be phrased as a place recognition problem as described
in [11]. The camera path is split up into distinct locations and the visual ap-
pearance of each location is described by visual features. A database of the
environment is created holding the visual appearance of each location together
with the actual coordinates of the location, and a label is assigned to each loca-
tion. On performing global localization the current view of the robot is compared
to all views in the database. The location with the most similar appearance is
returned and the robot now knows its location up to the accuracy of the stored
locations. For an efficient database search a visual word based approach is used.
The approach quantizes a high-dimensional feature vector (in our case SIFT and
VIP) by means of hierarchical k-means clustering, resulting in a so called hier-
archical vocabulary tree. The quantization assigns a single integer value, called
a visual word, to the originally high-dimensional feature vector. This results in
a very compact image representation, where each location is represented by a
list of visual words, each only of integer size. The list of visual words from one
location forms a document vector which is a v-dimensional vector where v is
the number of possible visual words (a typical choice would be v = 106). The
document vector is a histogram of visual words normalized to 1. To compute
the similarity matrix the L2 distance between all document vectors is calcu-
lated. The document vectors are naturally very sparse and the organization of
the database as an inverted file structure makes this very efficient. This scheme
is illustrated in Fig. 2.
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Fig. 2. Illustration of the visual place recognition system. A query image is represented

by a query document vector (a set of visual words). A query works by computing the

L2-distance between the query document vector and all the document vectors in a

database which represent the stored images, i.e. places. The L2-distance is used as

similarity score and is in the range of [0, 2]. A similarity score close to zero stands for a

very similar image, while a similarity score close to 2 stands for a different image. The

computation of the similarity score is using an inverted file structure for efficiency.

In our case robot localization is a 2-stage approach. First a similarity ranking
is performed using the visual words, afterwards a geometric verification step
tests the top-n results. Geometric verification is a very powerful cue. For each
visual word the 2D image coordinates are stored, too. This makes it possible
to compute the epipolar geometry between each database image and the query
image. Only results that fulfill this epipolar constraint are considered.

5 Algorithm

This section describes the different steps of the localization algorithm.

5.1 Feature Extraction

Our approach uses SIFT features and VIP features. For the SIFT features only
one image of the stereo pair is used. To extract SIFT features we use the imple-
mentation of Vedaldi2. This implementation is not real-time, but if real-time is
required one could use GPU-Sift3. For every extracted feature we store the x, y
position and the descriptor. Rotation and scale are not used in further processing.
2 http://www.vlfeat.org/ vedaldi/code/sift.html
3 http://www.cs.unc.edu/ ccwu/siftgpu/
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The descriptor is quantized into a 128-dimensional byte-vector. The influence of
this quantization for matching is basically negligible.

To extract VIP features a dense depth map is created first for each image
pair by stereo matching. This is done by scan-line based stereo matching using
dynamic programming [8]. As similarity measure the sum-of-absolute-differences
(SAD) within a 9 × 9 pixel window is used. For efficient matching a maximum
disparity range of 50 pixel is defined. To deal with textureless regions in the
image the gray value variance is computed for each matching window. If the
variance is smaller than a threshold the depth value is not used. This means
that in textureless regions no VIP features are extracted. The next step is the
detection of scene planes from the depth map. A RANSAC based plane detection
is performed and only planes larger than a certain threshold are retained. Next,
each detected scene plane is transformed into an orthographic view by using the
GPU’s texture warping function. For these rectified image regions SIFT features
are extracted. VIP features are now composed of the location, rotation and
descriptor of the SIFT features and of the 3D plane parameters.

For further processing both feature sets are combined. For this we use only x, y
position and the descriptor of SIFT and VIP. This can be done as the descriptor
part of VIP is a basic SIFT descriptor.

5.2 Quantization into Visual Words

For efficient localization the extracted SIFT descriptors are quantized into visual
words. This is done by using a hierarchical vocabulary tree. Our vocabulary
tree was created by k-means clustering of 100000 images from the web. We
intentionally did not train on the images of the localization task.This means, we
can do localization without the need of getting specific data of the environment
first. The experiments showed that such a generically trained vocabulary tree
will work sufficiently well. The vocabulary tree had a branching factor of 10 and
6 levels, which leads to 106 distinct visual words.

5.3 Visual Word Scoring

The visual words from a single image form the document vector. The document
vector is a histogram of the visual words of the image. Each entry of the docu-
ment vector is weighted by its importance, using the inverse document frequency
(IDF) term. Finally the document vector is normalized to an L2 norm of 1. The
IDF weight for a visual word is computed by wi = |D|

|Di| , where |Di| is the num-
ber of documents in the database in which visual word i occurs and |D| is the
total number of documents in the database. Localization is done by searching for
the most similar document vector dj in the database to the query vector q. For
this the L2 distances between all the document vectors in the database and the
query vector q are computed. The document vectors have the dimension of 106

(the number of visual words) but are very sparse. Each only contains as much
non-zero entries as features in the image. Thus an inverted file structure can be
used for efficient computation of the distances. In the inverted file structure for
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every visual word a list of images is stored in which this visual word appeared.
A scoring vector s is initialized (to 0) that has as many entries as images in the
database. A visual word from the query image is taken and the list of images
from the inverted file is processed. For each image in the list a vote is cast by
adding qid

j
i to the corresponding position in the scoring array. The L2 distance

between q and dj is then ||q − dj ||2 = 2 − 2sj, if all the document vectors are
normalized to 1. After sorting the scoring vector we get a similarity ranking of
all the images in the database. Using the most similar image is denoted as the
standard scoring method in the later experiments.

5.4 Geometric Verification

For geometric verification we compute a re-ranking of the top-n images based on
a geometric criteria. The query image and the retrieved image need to fulfill the
epipolar constraint to be accepted and for localization we select the one match
that gives the most point correspondences. For this we perform SIFT feature
matching between the query image and the top-n retrieved images. The SIFT
features are already extracted in the previous step and just have to be read
back in from hard disk. Next we compute the essential matrix from the point
matches using a RANSAC scheme and use the number of inliers to RANSAC as
the geometry score. The images are then re-ranked according to the geometry
score. As the robot is performing planar motion only we can use this constraint
for the essential matrix estimation by using the linear 3-pt algorithm [9]. If the
geometry score is below a certain threshold we assume that the query image has
no match in the database. This is used to identify the unknown areas in the
localization task.

6 Evaluation

The evaluation of the algorithm was done within the framework of the Image-
CLEF@ICPR 2010 Robotvision competition. For this competition a previously
unpublished set of the COLD database [10] was used. The Robotvision compe-
tition consisted of two independent tasks for place recognition, task1 and task2.
Task1 was conducted in a large office environment, which was divided into 13
distinct areas, which got different labels assigned. The goal for the robot was, to
answer the question in which area it is given an input image, by assigning the
correct label to the input image. For the competition, labeled image data was
provided for training and validation and an unlabeled data set (testing) on which
the competition was carried out. After the competition the ground truth labels
for the testing set were released to the participants. The data sets were acquired
with a stereo set consisting of two Prosilica GC1380C cameras mounted on a
MobileRobots PowerBot robot platform. For the two training sets training easy
and training hard the robot was driven through the environment and the cap-
tured images were labeled with the area code. The training easy set consists of
more images and more viewpoints than the training hard set. The validation
set comes from a run through the environment at a different time and was also
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labeled. Both training sets and also the validation set include only 9 of the 13
areas. With the use of a stereo system an image pair is available for each location
which allows the use of depth information. However this was not required in the
competition. The goal of task1 was to label each image pair of the testing set
with the correct area code. The testing set consists of 2551 image pairs taken
at a different time and includes all 13 areas. This means that the 4 areas not
included in the training sets needed to be labeled as ”Unknown area”. For task1
each image pair had to be labeled independently without using knowledge from
the labeling of the previous image pair. Task2, an optional task, was very similar
to task1, however here it was possible to include sequential information into the
labeling. Thus this task2 is considerably easier than task1.

In the following we will present and discuss the recognition rates on the val-
idation set and compare it to the ground truth and give the score achieved on
the testing set in the competition. Table 1 shows the results on the validation
set (2392 images) where ground truth data as labels is available. We measured
recognition scores using standard scoring and standard scoring with geometric
verification on both training sets. For the recognition score we compare the label
of the top-ranked image (denoted as standard scoring) with the ground truth
label and compute the number of correctly labeled images. For geometric ver-
ification the top-50 images from standard scoring get re-ranked according to
the number of inliers to the epipolar constraint. Using the training easy set the
recognition rate with standard scoring was 96% and this number increased to
98% with geometric scoring. For the training hard set the recognition rate with
standard scoring was 87%. This number increased to 92% with subsequent geo-
metric verification. Interestingly the recognition rates with standard scoring are
already very high, geometric verification seems to give only a small improvement.
However, only after geometric verification can one be sure that the database im-
age really matches the query image. Standard scoring provides a ranking but
the similarity measure does not guarantee that the top ranked image is really
the matching one, e.g. if the query image is not in the database at all.

Table 2 shows the competition scores achieved on the testing set. The score
is computed as follows:

– +1.0 points for a correctly classified image (includes the correct detection of
an unknown location).

– -0.5 points for a misclassified image
– 0 points for an image that was not classified

The maximal achievable score would be 5102 points as the sum of the two 2551
points for each of the individual training sets. The top-10 ranked images are
used for geometric verification. Image matches with less than 50 inlier matches
were classified as ”Unknown” location. We denote this parameterization as the
”Competition method”. Every image of the database was classified to either an
area or the ”Unknown” class, the option of refraining from a decision was not
used. Table 3 shows the recognition rates for each individual class of the testing
set. The table shows that some classes seem to be easier (100% recognition rate
for the ”Lab” class) while others seem to be harder. The table also confirms that
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LargeOffice1 LargeOffice2 SmallOffice2

StudentOffice Lab PrinterArea

Fig. 3. Example images of the 9 classes in the training sets

the ”Unknown” class is troublesome for our method, which has low recognition
rates.

Finally we would like to give some runtime measurements from a 2.4GHz In-
tel Quadcore. An individual localization using standard scoring will take 26.4ms
(including feature quantization into visual words). ”Competition scoring” with
geometric verification is currently taking 1.5s. Here the feature matching is not
optimized and takes most of the time. Excluding the runtime for feature match-
ing leaves 53.5ms for localization with epipolar geometry verification. Feature
matching can easily be speeded up by using proper data structures, e.g. a kd-
tree [5], so that real-time speed can be achieved with this approach.

Table 1. Recognition scores for the validation set with the different training sets and

methods

Method training easy training hard

standard scoring 0.96 0.87

geometric verification 0.98 0.92
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Table 2. Competition scores (with ”Competition method”) for task1

training easy training hard combined score

task1 2047 1777 3824

Table 3. Recognition scores (with ”Competition method”) for the individual classes

and the full set on the testing set

Class training easy training hard

Full set 0.80 0.70

Elevator 0.97 0.98

Corridor 0.96 0.86

Kitchen 0.99 0.96

LargeOffice1 0.93 0.63

LargeOffice2 0.96 0.83

SmallOffice2 0.99 0.94

StudentOffice 0.73 0.62

Lab 1.00 1.00

PrinterArea 0.99 0.64

Unknown 0.56 0.65

7 Conclusion

The ImageCLEF@ICPR 2010 competition provides a challenging dataset to eval-
uate different methods for robot localization. The use of a stereo camera as imag-
ing system for the robot allowed us to combine monocular and stereo cues for
robot localization.

Our approach achieves high recognition rates (e.g. 98% on the validation),
which signals that the proposed approach is reliable enough to be used in prac-
tice. To foster the use of this approach we made the code for the visual word
based similarity ranking publicly available4.
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Abstract. The PicSOM multimedia analysis and retrieval system has

previously been successfully applied to supervised concept detection in

image and video databases. Such concepts include locations and events

and objects of a particular type. In this paper we apply the general-

purpose visual category recognition algorithm in PicSOM to the recog-

nition of indoor locations in the ImageCLEF/ICPR RobotVision 2010

contest. The algorithm uses bag-of-visual-words and other visual features

with fusion of SVM classifiers. The results show that given a large enough

training set, a purely appearance-based method can perform very well –

ranked first for one of the contest’s training sets.

1 Introduction

In this paper we describe the application of our general-purpose content-based
image and video retrieval system PicSOM [4] to the ImageCLEF/ICPR 2010
RobotVision contest task. Among other things, the PicSOM system implements
a general visual category recognition algorithm using bag-of-visual-words and
other low-level features together with fusion of SVM classifiers. This setup has
been used successfully previously, for example in the NIST TRECVID 2008 and
2009 [10] high-level feature detection tasks [11], where events, locations and
objects are detected in television broadcast videos. Our goal in the experiments
described in this paper is to evaluate the suitability of this general-purpose visual
category detection method to a more narrow domain in the indoor location
detection setup of the RobotVision contest. We have not included any domain
specific features in these experiments, such as depth information from stereo
imaging. Thus, the only modality we consider is the current view from one or
more forward-pointing cameras.

In addition to autonomous robots [8], a RobotVision-style setup arises, for
example, in many applications of mobile augmented reality [2]. In fact, indoor
localisation constitutes also one of the sub-tasks of our research platform for
accessing abstract information in real-world pervasive computing environments
through augmented reality displays [1]. In that context, objects, people, and

� This work has been supported by the Aalto University MIDE project UI-ART.
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the environment serve as contextual channels to more information, and adaptive
models are used to infer from implicit and explicit feedback signals the interests
of users with respect to the environment. Results of proactive context-sensitive
information retrieval are augmented onto the view of data glasses or other see-
through displays.

Fig. 1 illustrates our visual category recognition approach. Given training im-
ages with location labels, we first train a separate detector for each location Li.
Section 2 describes these single-location detectors that employ fusion of several
SVM detectors, each based on a different visual feature. The probabilistic out-
comes of the detectors are then used as inputs to the multi-class classification
step that determines the final location label L̂ for each test image. This step
is described in Section 3. The predicted L̂ is either one of the known locations
Li, or alternatively, the system can predict that the image is taken in a novel
unknown location, or declare the location to be uncertain. In Section 4 we de-
scribe our experiments in RobotVision 2010 and summarise the results. Finally,
conclusions are drawn in Section 5.

Fig. 1. General architecture for predicting location L̂ based on a camera view

2 Single-Location Detectors

For detecting a single location Li, our system employs the architecture illustrated
in Fig. 2. The training phase begins with the extraction of a large set of low-level
visual features. The features and binary location labels of the training images (Li

or non-Li) are then used to train a set of probabilistic two-class SVM classifiers.
A separate SVM is trained for each visual feature.

After training, the detector can estimate the probability of a novel test image
depicting location Li. This is achieved by first extracting the same set of visual
features from the test image that was extracted from the training images. The
trained feature-wise SVM detectors produce a set of probability estimates that
are combined to a final probability estimate in a fusion stage. The location-wise
estimates are then combined in a multi-class classification stage to determine
the location of the test image.
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Fig. 2. Architecture for estimating the probability p̂Li that the given camera view is

from location Li

2.1 Feature Extraction

From each image, a set of low-level visual features is extracted. We use our own
implementations of the following MPEG-7 descriptors: Color Layout, Dominant
Color, Scalable Color, and Edge Histogram [3]. Additionally, we calculate sev-
eral non-standard low-level appearance features: Average Color, Color Moments,
Texture Neighbourhood, Edge Histogram, Edge Co-occurrence and Edge Fourier.
The non-standard features are calculated for five spatial zones of each image
(Figure 3) and the values concatenated to one image-wise vector.

Fig. 3. The five-part center-surround zoning mask for image feature extraction

Of the non-standard features, the Average Color feature is a three-element
vector that contains the average RGB values of all the pixels within the zone.
The Color Moments feature treats the HSV colour channels from the zone as
probability distributions, and calculates the first three central moments (mean,
variance and skewness) of each distribution. For the Texture Neighbourhood
feature, relative values of the Y (luminance) component of the YIQ colour rep-
resentation in all 8-neighbourhoods within the zone are characterised. The prob-
abilities for neighbouring pixels being more luminous than the central pixel are
estimated separately for all the eight surrounding relative pixel positions, and
collected as a feature vector. Edge Histogram is the histogram of four Sobel edge
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directions. The feature differs in details from the similarly named MPEG-7 de-
scriptor. Edge Co-occurrence gives the co-occurrence matrix of four Sobel edge
directions.

Furthermore, eight different bag-of-visual-words (BoV) features are also ex-
tracted. In the BoV model images are represented by histograms of local image
descriptors. The eight features result from combining number of independent
design choices. First, we use either the SIFT [6] or the opponent colour space
version of the Color SIFT descriptor [9]. Second, we employ either the Harris-
Laplace detector [7] or use dense sampling of image locations as the interest
point detector. Third, we have the option to use the soft-histogram refinement
of the BoV codebooks [9]. Finally, for some of the features, we have used the
spatial pyramid extension of the BoV model [5].

2.2 Feature-Wise Detectors

In our location recognition system, the association between an image’s visual
features and its location is learned using the SVM supervised learning algorithm.
The SVM implementation we use in our system is an adaptation of the C-SVC
classifier of the LIBSVM1 software library. For all histogram-like visual features
we employ the χ2 kernel

gχ2(x,x′) = exp

(
−γ

d∑
i=1

(xi − x′
i)

2

xi + x′
i

)
. (1)

The radial basis function (RBF) SVM kernel

gRBF(x,x′) = exp
(−γ‖x− x′‖2

)
(2)

is used for all the other features. The motivation for this is the well-known
empirical observation that χ2 distance is well-suited for comparing histograms.

The free parameters of the SVMs are selected with an approximate 10-fold
cross-validation search procedure that consists of a heuristic line search to iden-
tify a promising parameter region, followed by a grid search in that region. To
speed up the computation, the data set is radically downsampled for the pa-
rameter search phase. Further speed-up is gained by optimising the C-SVC cost
function only very approximately during the search.

For the final detectors we also downsample the data set, but less radically
than in the parameter search phase. Usually there are much fewer annotated
example shots of a location (positive examples) than there are example shots
not exhibiting that location (negative examples). Consequently, for most of the
locations, the sampling is able to retain all the positive examples and just limit
the number of negative examples. The exact amount of applied sampling varies
according to the computation resources available and the required accuracy of
the outputs. Generally we have observed the downsampling to degrade detection
accuracy.
1 http://www.csie.ntu.edu.tw/˜cjlin/libsvm
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2.3 Fusion

The supervised fusion stage of our location recognition system is based on the
geometric mean of feature-wise detector outcomes. However, instead of calcu-
lating the mean of all feature-wise detectors we select the set using sequential
forward-backward search (SFBS). This supervised variable selection technique
requires detector outcomes also for training images. These outcomes are obtained
via 10-fold cross-validation.

Our search technique refines the basic SFBS approach by partitioning the
training set into multiple folds. In our implementation we have used a fixed
number of six folds. The SFBS algorithm is run several times, each time leaving
one fold outside the training set. The final fusion outcome is the geometric mean
of the fold-wise geometric means.

3 Multi-class Classification

The fusion of the feature-wise detector scores described in the previous section
provides probability estimates for each location given a particular image. The
final classification step is a traditional multi-class classification, where we com-
bine several one-versus-the-rest SVM classifiers. The straightforward solution is
to classify the image to the class with the highest probability estimate. How-
ever, in the current scenario, we must also be able to detect unknown categories,
i.e. images of new locations that have not been seen before. We have implemented
this by a heuristic method with two thresholds. First, if there are detector scores
above a high threshold T1, then we deem the system to be confident enough to
simply pick the class with highest score. Second, if all scores are below a low
threshold T2, this is interpreted to mean that we are seeing an unknown class
for which we have not trained a detector. Finally, if none of the above conditions
apply, there must be one or more scores that are above T2, which can be seen
as potential detections.

These scores of such potential detections are all smaller than T1 (since the first
condition was not true), and can be seen as potential, but not strong detections.
Trivially, if the number of such scores equals one, this one is selected as the de-
tected class. If the number of such detection scores is higher than two we deem the
situation to be too uncertain and decline to classify it (i.e. it is the reject class). If
the number equals two we select the highest one. This is due to the particular per-
formance measure used in RobotVision, which rewards a correct choice with +1.0
and an incorrect choice with −0.5. This means that if the correct class is either
of the two potential candidates the expectation value of the performance measure
score is still positive even by selecting either at random.

4 Experiments

4.1 Recognition with Stereo Images

In the RobotVision setup, the presence of a stereo image pair demands some
additional considerations. For example, we might learn a separate model for
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each camera, i.e. independent models for the images of left camera and right
camera. On the other hand, since the two cameras show the same scene from
somewhat different angles, they are certainly not independent. In fact, if we
consider the set of images taken from each point in every possible angle, the left
and right images are just two samples from the same distribution. I.e. the image
seen in the left camera might be seen in the right camera at some other point
in time if the robot happens to be at the same point in space but at a slightly
different angle. This view would then support the approach of simply using all
images as training data discarding the left/right distinction. In the end we made
two models, one using all images, and one using only the images from the left
camera (i.e. only half of the data). After the competition we also made a model
from the right camera images for comparison.

In the final stage, when categorising stereo images at particular times, one
must have a strategy for combining the detections scores for the two cameras. We
tried taking their average, maximum, minimum, or only taking the left camera,
or only right camera result. The stereo image pair could also be utilised for stereo
imaging and the contest organisers provided the camera calibration data for the
image sequences. Depth information would undoubtedly be an useful feature for
location recognition. We have, however, not utilised such domain specific features
in the present work.

4.2 Parameter Selection

The combining logic described in Section 3 was used, and the two thresholds, T1

and T2 were determined by simple grid search maximising the performance score
in the validation set. Because the testing set had four unseen rooms, we tried
to simulate this situation in the training by leaving out three rooms (roughly
the same ratio of unseen to seen) and use this setup when determining the
thresholds. We did this both with the regular detectors trained on the full set
of rooms, and with detectors trained on the reduced set. Those trained on the
full set we thought might be unrealistic since they had used the three removed
rooms as negative examples in their training. Using detectors trained on the
reduced set tended to increase the lower threshold T2 from the level it had when
using detectors trained on all known rooms. It turned out however that the lower
thresholds worked better in the testing set.

The threshold T1, which gives a limit for when to decline from classification
(reject) did not affect the results significantly, and is not included in the results
presented in the following.

4.3 Results

Our best submitted result for the easy set received a score of 2176.0, which is
85% of the best possible score. This result was based on detectors trained on the
left camera data only, and it obtained the overall highest score in the competition
for the easy set. The same setup achieved our best result (1117.0) for the hard
set as well. Fig. 4 visualises this run compared to the groundtruth. For the hard
set, our result was slightly above the median of the submitted results using the
hard training data. The overall best submitted run to the hard set was 1777.0.
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These and some additional runs are summarised in Table 1, with “•” denoting
that the run was submitted to the competition. The first column in the table
specifies how the training data was selected with regard to the cameras. The word
“separate” indicates that separate models were trained for each camera and then
averaged, while “both” uses all images to train a single model. The camera-
wise scores were combined by taking the average value when using datasets
with images from both cameras. The second column states whether fusion of
single-feature classifiers (Section 2.3) or just the single best performing feature
(ColorSIFT with dense sampling over a spatial pyramid and soft clustering) is
used.

Somewhat surprisingly, using information from both cameras does not im-
prove the results, in fact using a single camera works better than using a single
model trained on all images. This difference is especially notable on the hard
training set. Also, using the separate left and right models together gives no
improvement over using just one of them. Finally, in Table 1 we can also see
that the feature fusion is highly beneficial: with a single feature the results are
significantly weaker.

Table 1. RobotVision recognition scores

cameras features easy hard total

• left only fusion 2176.0 1117.0 3293.0

right only fusion 2210.5 1072.0 3282.5

separate fusion 2207.5 1057.0 3264.5

•both fusion 2065.0 665.5 2730.5

•both single 964.0 554.5 1518.5

After the competition, each participant was given access to the labels for the
testing dataset, and we were able to perform some more tests, and determine
optimal parameters T1 and T2 in the testing set. These additional tests are sum-
marised in Table 2 using fusion of single-feature classifiers. The first column
specifies how the training data was selected with regards to the cameras: using
images from both together, or just using the images from the left camera. The
second column shows how the detection scores from the two cameras were com-
bined to form the final detection score: by taking the average of the left and
the right, by taking the maximum or minimum, or by simply taking the left or
the right camera scores directly. It can clearly be seen that using different ways
of combining the stereo-vision scores makes very little difference, the choice of
training data is much more important. Even using a model trained on the left
camera images for the right camera is better than using the dataset with images
from both cameras with any score combination method.

Note that the results shown in Table 2 are not comparable with other com-
petition submissions since they have been optimised against the testing set, and
are thus “oracle” results. They are however interesting for a comparison between



198 M. Sjöberg et al.

Table 2. “Oracle” detection scores

cameras selection easy hard total

both average 2126.5 910.0 3036.5

left average 2176.0 1144.5 3320.5

both left 2090.5 908.5 2999.0

left left 2174.5 1160.5 3335.0

both max 2114.5 912.5 3027.0

left max 2179.0 1148.5 3327.5

both min 2099.5 901.5 3001.0

left min 2164.0 1157.5 3321.5

both right 2116.0 905.0 3021.0

left right 2152.0 1135.0 3287.0

different alternations of our method. Furthermore, it can be observed that the
oracle results are only slightly better than the submitted ones, indicating that
the system performance is not very sensitive to the threshold parameters.

5 Conclusions

Our results indicate that a general-purpose algorithm for visual category recogni-
tion can perform well in indoor location recognition, given that enough training
data is available. The generality of our approach is illustrated e.g. by its suc-
cessful application to image and video retrieval [10]. With limited training data,
however, the performance of our purely appearance-based method is less com-
petitive. There are several possible explanations for this. It might be that the
generic scene appearance features utilise the limited training data uneconomi-
cally and other domain-specific modalities would be needed to take best use of
the scarce training examples. For location recognition, these could include the
depth information, the temporal continuity of the frame sequence and informa-
tion based on pair-wise matching of images.

Yet, it is also possible that better performance could be achieved on basis
of the generic appearance features by better system design. In particular, there
might be some overlearning issues. With the larger training set, just memoris-
ing all the camera views appearing in the training material might be a viable
strategy, whereas the smaller training set calls for generalising between views.
A naive use (such as here) of a rich and distinctive scene representation might
actually lead to worse performance than a feature extraction scheme with more
limited distinguishing power if the inter-view generalisation issue is not properly
taken care of. Our experiments reported here are insufficient to confirm either
one of these hypotheses.

Our experiments back up our earlier findings that fusion of a large set of fea-
tures consistently results in a much better visual category recognition accuracy
than the use of any single feature alone.
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Abstract. This paper presents the techniques developed by the SIMD group
and the results obtained for the 2010 RobotVision task in the ImageCLEF com-
petition. The approach presented tries to solve the problem of robot localiza-
tion using only visual information. The proposed system presents a classification
method using training sequences acquired under different lighting conditions.
Well-known SIFT and RANSAC techniques are used to extract invariant points
from the images used as training information. Results obtained in the RobotVi-
sion@ImageCLEF competition proved the goodness of the proposal.

1 Introduction

The Cross Language Evaluation Forum (CLEF1) promotes the research in several re-
search lines, related to information retrieval. This forum was created in 2000 and the
number of proposed tracks has been increasing notoriously until 2010. CLEF started
with three evaluation tracks in 2000 (Multilingual, Bilingual and Monolingual informa-
tion retrieval) but the 2009 CLEF edition offered 8 main tracks. In 2003, a new track
related to cross language retrieval of images via their associated textual captions was
introduced. This new track aims to explore the relationship between images during the
retrieval process.

A new subtrack inside the ImageCLEF track appeared in the 2009 CLEF edition.
This new subtrack, called RobotVision, addresses the problem of topological localiza-
tion of mobile robots using visual information. Our group started working inside the
CLEF challenge with the release of this subtrack, due to the high relationship between
the aim of the RobotVision task and the background of the group (robotics and infor-
mation retrieval).

For mobile robotics, image processing has become a keystone. Visual cameras are
the most common robot sensor, providing a huge amount of data with low cost, but
all these data should be real-time processed to retrieve relevant information. Most of
the robot decisions are based on the information sensed from the environment (mainly
through visual sensors). Decision making is based on the strategy of the robot and the
own robot position, which is estimated with a localization algorithm. Robot localization
is usually performed by using odometry and the information obtained from sensors.

1 http://www.clef-campaign.org/

D. Ünay, Z. Çataltepe, and S. Aksoy (Eds.): ICPR 2010, LNCS 6388, pp. 200–209, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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For the RobotVision task, only visual information is available. The 2009 RobotVi-
sion task was focused on robot localization, but the new 2010 edition presents the prob-
lem of visual place classification: participants are asked to classify rooms on the basis
of image sequences, captured by a mobile robot within a controlled environment. Im-
age classification has become one of the most difficult problems in computer vision
research. This problem becomes highly complex when images are captured by a robot’s
camera in dynamic environments. One of the main applications of visual classification
is robot localization, but this adds some extra constraints to the process. The most im-
portant one is the processing time, because images need to be handled in real-time.

The 2009 RobotVision challenge provided information related to the real robot’s
pose embedded with the labels of the images. SIMD proposal combined all this infor-
mation developing a SIFT-Montecarlo localization algorithm solving the task proposed
as a pure robot localization problem, with a well defined iterative process with two main
steps: an odometry and a visual phase.

RobotVision@ICPR challenge provides training images labelled with the room from
where they were taken but not with the real robot’s pose. Moreover, the number of
frames of the training sequence that is mandatory to use for the final experiment is
greater. Based on these new premises, current SIMD proposal is focused on increasing
the accuracy and reducing the processing time of the classification methods (based on
features similarity) developed for the 2009 edition.

RobotVision@ICPR task deals with visual place classification, where the visual
information provided is restricted to images taken by a robot in an indoor work en-
vironment. The approach presented here carries out classification by using the Scale-
Invariant Feature Transform[5] combined with RANSAC[2]. SIFT is used to extract
invariant features from images and to perform an initial matching. RANSAC improves
this matching by discarding invalid correspondences.

The experiments were carried out following the proposed procedure, using two train-
ing sequences (easy and hard) and a final test sequence. Our proposal was evaluated for
the two proposed tasks: obligatory (classification must be performed separately for each
test image) and optional (the algorithm can exploit the continuity of the sequences),
which is a more realistic localization task.

The rest of the paper is organized as follows: a description of the data used for the
task can be observed in Section 2. Invariant features and matching techniques are out-
lined in Section 3. In Section 4 a description of the system training process in presented.
Next, in Section 5 the SIMD approach to the task is proposed. Section 6 describes the
experiments performed and the results obtained. Finally, the conclusions and areas for
future work are given in Section 7.

2 RobotVision Data Description

RobotVision participants are asked to classify unlabeled frames (final test frame se-
quence) by using training frame sequences from the COLD-Stockholm database[8].
Test and training frames were acquired in the same environment, but test sequence in-
cludes additional rooms not previously imaged. Different lighting conditions were used
of for the different sequences, and preliminary proposals could be evaluated by using a
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Table 1. RobotVision@ImageCLEF data set information

Sequence Frames Rooms Lighting conditions

Training Easy 8149 9 Cloudy
Training Hard 4535 9 Cloudy
Validation 4783 9 Night
Test 5102 12 Night

validation data set released before the final test data set. A complete description of all
these data sets can be observed in Table 1.

3 Invariant Features and Matching

In order to perform a correct comparison between two (or more) images representing the
same scenario, appropriate features should be used. These features have to be invariant
to changes in the viewpoint where the frames were captured from. Different frames to
be compared can be acquired over different lighting conditions but such changes should
not affect the performance of the comparison. Small variations could happen within the
environment (due to the environments are dynamic) and important elements used to
train preliminary classifying algorithms can be removed or replaced.

Taking into account all these factors, it makes no sense to use classical image pro-
cessing techniques based on edge detection to solve the problem of visual place clas-
sification. These techniques rely on specific elements of the environment liable to be
removed or replaced and moreover, they are dependent on rotation and scale.

One of the most popular technique for extracting relevant invariant features from
images is the Scale-Invariant Feature Transform algorithm (SIFT) [6]. The main idea
of the algorithm is to apply different transformations and study the points of the image
which remain invariant under these transformations.

Some authors as B. Caputo and A. Pronobis [9] propose the developing of feature
extraction techniques based on the information extracted from the available training
frames instead of using standard techniques as SIFT. All these features, which can be
extracted using high dimensional Composed Receptive Field Histograms (CRFH) [4],
will be used as the input to train a classifier. The classifier will separate training data
by a hyper plane in a high dimensional feature space. The classifier proposed by the
authors is a Support Vector Machine (SVM) [10].

Features extracted with SIFT are robust to noise and changes in viewpoint and also
invariant to image scale and rotation. An important characteristic of systems developed
to perform object recognition using SIFT is that they are robust to partial object occlu-
sions. In order to deal with the considerable processing time of the algorithm, an im-
plementation of the algorithm over the graphics processor unit (GPU) was considered.
The selected implementation (named “SiftGPU”2) speeds up the process, reducing the
processing time to less than 0.025 seconds for extraction and matching.

2 http://www.cs.unc.edu/ ccwu/siftgpu/
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3.1 RANSAC

Random Sample Consensus[2] (RANSAC) is an iterative method for estimating a math-
ematical model from a set of data which contains outliers. RANSAC was developed as
a non-deterministic iterative algorithm where different models are estimated using a
random subset of the original data. All these models are evaluated using the complete
data set and the algorithm finishes when some constraints (related to the fitness of the
model to the data) are overcome or after a certain number of iterations.

Fig. 1. Matching between two images where outliers (red lines) are discarded

Our proposal uses RANSAC to improve the preliminary matching obtained with
SIFT techniques. Such initial matching obtains a high number of outliers that do not
fit the real correspondence between two candidate images. The data set includes all
the a priori correspondences and the models we want to estimate are those capable of
representing real matching between two images.

Fig. 1 illustrates the result of a matching between features extracted from two images
and how the outliers (red lines) are discarded using RANSAC.
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4 System Training

Our system was trained using the two available training data sets: easy and hard. These
data sets contain frames taken by a robot’s camera while the robot was driven through
the environment. The main difference between the two sequences is the similarity be-
tween that sequence and the final test sequence. The amount of information provided
by the “easy data set” is greater than that provided by the “hard one”, because the en-
vironment is observed from a higher number of viewpoints. There are too many train-
ing frames to perform a complete real-time comparison and so the number of training
frames to work with should be reduced. Our proposal consists of: first, discarding re-
dundant frames and second, selecting from those frames the ones that are the most
representative. These steps are described below in detail.

4.1 Training Sequence Pre-processing

There are many training frames that share the viewpoint from they were taken and con-
taining redundant information. These different sets of frames with similar information
should be reduced to a single frame set. We applied the following process. Firstly, all
the frames were converted to greyscale. After that, we computed the difference between
two images as the absolute difference for the grey value pixel by pixel. A frame will
be removed from the training sequence when the difference between it and the last
non-removed frame is lower than a certain threshold, which was obtained empirically.

Fig. 2 illustrates how the difference between two frames is computed. Upper images
are the original frames to compute its difference and bottom image shows the visual
result of this difference.

Fig. 2. Absolute difference computed between two frames
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4.2 Extracting Most Representative Training Frames - Clustering Process

Once we had reduced the number of redundant training frames, the next step was to
select a subset of the most representative frames. This step was applied separately for
each room from the training sequence. Each most representative frame should have a
high similarity with some of the discarded frames and a high dissimilarity with the other
most representative frames.

These characteristics are ideal for a clustering process and therefore we applied a
k-medoids algorithm[3]. The similarity between frames was computed using a SIFT
matching (without RANSAC) between the features extracted from them. The value of
k was selected as a percentage of training frames for the room that was processed, so
its value was different for the different rooms.

An example of the complete training process is illustrated in Fig. 3. First row shows
all the original training frames that are available. Thanks to the use of the difference
between frames, redundant ones are discarded in the second row. Finally, third row
shows the key training frames selected to compare with future test frames.

Fig. 3. An example of sequence pre-processing where redundant frames are discarded and best
candidates are selected

5 Complete System

The complete process for classifying a test frame consists of three steps. First, SIFT
points are extracted from the current frame. Second, we compute the similarity between
the current frame and the training frames by means of the percentage of matching points
(SIFT + RANSAC). Finally, these similarities are used to classify the test frame. This
process is explained in detail below.
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5.1 Matching Test Frames with Most Representative Training Frames

The similarity value between a test and a training frame is obtained using SIFT match-
ing and RANSAC. After all the SIFT matching points are obtained, RANSAC is applied
to discard the outliers. The percentage of common points between both frames is stored
as the similarity value.

5.2 Frame Classification

Each test frame can be classified as a specific room (the class), marked as unknown or
not classified. A ranking with the n-best values of similarity and its associated room
is obtained. We compute the sum of the similarity values separately for the different
rooms in the ranking. The test frame will be classified as the room with the highest
value when this value clearly exceeds all the other ranking rooms, otherwise it will
not be classified. Unknown class is used to denote a test frame acquired in a room not
included in the training rooms and will be used when the maximum similarity value is
below a certain threshold.

A complete classification process where the test frame is matched with all the se-
lected training frames can be observed in Fig. 4. In this case the test frame should be
labelled as a corridor.

Fig. 4. Test frame classification using the 6-best training frames

6 Experimental Results

Our proposal was evaluated using the procedure proposed by RobotVision task at Im-
ageCLEF@ICPR. The test sequence contains 2551 frames to be classified. The perfor-
mance of the algorithm was evaluated using a score, which is computed as: for each
correctly classified frame the score is updated by +1.0, for each misclassified one the
score is reduced -0.5. A non-classified frame does not vary the score. Therefore, the
maximum score obtainable is 2551, when all test frames are correctly classified.
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Test frames were classified as unknown when the best matching obtained a percent-
age value below 2.8% and marked as not classified when the maximum sum of percent-
ages for a room was not higher than 34% of the sum of all the weights, for the most
similar 7 frames. These thresholds were obtained empirically using preliminary tests.

Each run consisted of submitting the results for the two training sets: easy and hard.
There were two separate tasks, obligatory and optional. The difference between both
tasks was that the classification had to be performed separately for each test frame for
the obligatory task but, for the optional task, the algorithm was allowed to exploit the
continuity of the sequences of frames.

6.1 Obligatory Task

The complete test sequence was processed twice, using the easy and the hard training
sequences. Each one of the test frames can be classified separately and the order of the
sequence is not important. Table 2 shows the final score and the score obtained using
the easy and the hard training sequence.

Table 2. Results for the obligatory task

Training Sequence Total Easy Hard

Score 3372.5 2000.0 1372.5
Correctly Classified 3886.0 2180.0 1706.0
Missclasified 1027.0 360.0 667.0
Not Classified 189.0 11.0 178.0

Our run achieved the 3rd place for this task, for which 8 different research groups
submitted results. The winner for the obligatory track was the Computer Vision and
Geometry Lab (CVG) group, from ETH Zürich.

6.2 Optional Task

For the optional task, we took into account the test frame we were going to classify and
the last 4 test frames already classified. Test frames initially labelled as not classified
were labelled as the room used to classify the last 4 frames, when this room was the
same. Additional verifications were performed to avoid passing from one room to an-
other without using the corridor. The final score was 3881.0 and the complete results
can be observed in Table 3.

Table 3. Results for the optional task

Training Sequence Total Easy Hard

Score 3881.0 2230.5 1650.5
Correctly Classified 4224 2332 1892
Missclasified 686 203 483
Not Classified 192 16 176
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Our group achieved the 1st place for this task, for which 4 different groups submitted
results.

7 Conclusions and Future Work

According to the results and the processing time obtained, our proposal constitutes a
real-time image classification method applicable to robot localization. The method can
be used for the visual step of formal robot localization methods, such as Monte Carlo[1]
or (Extended) Kalman filters [7]. The set of training frames used to classify a test frame
can be considerably reduced by using the information obtained from the localization
method.

The percentage of common points between the test frame and the best training frame
can be used to ponder the classification. This information can be highly useful for esti-
mating the quality or the performance of the classification.

As future work, we have in mind the application of this method within a complete
localization algorithm. The optimal value of the thresholds could be tuned using evolu-
tionary computation techniques.

We consider also to use the stereo frames to extract additional information from the
environment and to use other features extractors as the proposed in the literature.
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D. Ünay, Z. Çataltepe, and S. Aksoy (Eds.): ICPR 2010, LNCS 6388, pp. 210–225, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.mobioproject.org/icpr-2010


Results of the First MOBIO Face and Speaker Verification Evaluation 211

1 Introduction

Face and speaker recognition are both mature fields of research. Face recognition has
been explored since the mid 1960’s [5]. Speaker recognition by humans has been done
since the invention by the first recording devices, but automatic speaker recognition is a
topic extensively investigated only since 1970 [6]. However, these two fields have often
been considered in isolation to one another as very few joint databases exist.

For speaker recognition there is a regular evaluation organised by the National Insti-
tute of Standards and Technology (NIST)1 called the NIST Speaker Recognition Eval-
uation (SRE). NIST has been coordinating SRE since 1996 and since then over 50
research sites have participated in the evaluations. The goal of this evaluation series is
to contribute to the direction of research efforts and the calibration of technical capabil-
ities of text independent speaker recognition. The overarching objective of the evalua-
tions has always been to drive the technology forward, to measure the state-of-the-art,
and to find the most promising algorithmic approaches.

Although there is no regular face recognition competition, there have been several
competitions and evaluations for face recognition. These include those led by academic
institutions, such as the 2004 ICPR Face Verification Competition [25], in addition to
other major evaluations such as the Face Recognition Grand Challenge [27] organised
by NIST.

The MOBIO Face and Speaker Verification Evaluation provides the unique oppor-
tunity to analyse two mature biometrics side by side in a mobile environment. The
mobile environment offers challenging recording conditions including adverse illumi-
nation, noisy background and noisy audio data. This evaluation is the first planned of
a series of evaluations and so only examines uni-modal face and speaker verification
techniques.

In the next section, we briefly present the state-of-the-art in face and speaker verifica-
tion. Then, we introduce in section 3 the MOBIO database and its evaluation protocol.
In sections 4 and 5, we shortly describe the individual face and speaker verification sys-
tems involved in this evaluation. The reader can be referred to [24] for a more detailed
description of these systems. Finally in section 6, we present the results obtained and
discuss them.

2 Face and Speaker Verification

2.1 Face Verification

The face is a very natural biometric as it is one that humans use everyday in passports,
drivers licences and other identity cards. It is also relatively easy to capture the 2D face
image as no special sensors, apart from a camera that already exist on many mobile
devices, are needed.

Despite the ease with which humans perform face recognition the task of automatic
face recognition (for a computer) remains very challenging. Some of the key challenges

1 http://www.nist.gov
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include coping with changes in the facial appearance due to facial expression, pose,
lighting and aging of the subjects.

There have been surveys of both face recognition [40] [34] and video based analy-
sis [35]. From all of these it can be seen that there are many different ways to address
the problem of face recognition in general, and more particularly of face verification in
theis paper. Some of the solutions can include (but are not limited to) steps such as im-
age preprocessing, face detection, facial feature point detection, face preprocessing for
illumination and 2D or 3D geometric normalisation, quality assessment feature extrac-
tion, score computation based on client-specific and world models, score normalisation
and finally decision making. However, the actual steps taken vary drastically from one
system to another.

2.2 Speaker Verification

The most prevalent technique for speaker verification is the Gaussian Mixture Model
(GMM) paradigm that uses a Universal Background Model (UBM). In this paradigm
a UBM is trained on a set of independent speakers. Then a client is enroled by adapt-
ing from this UBM using the speaker specific data. When testing two likelihoods are
produced, one for the UBM and one for the client specific model, and these two scores
are combined using the log-likelihood ratio and compared to a threshold to produce a
”client/imposter” decision [29].

Many other techniques for speaker verification have been proposed. These tech-
niques range from Support Vector Machines [9], Joint Factor Analysis [20] and other
group based on Large Vocabulary Continuous Speech Recognition systems [33] through
to prosodic and other high level based features for speaker verification [32]. One com-
mon thread with the speaker verification techniques proposed nowadays is the ability to
cope with inter-session variability which can come from the: communication channel,
acoustic environment, state of the speaker (mood/health/stress), and language.

3 MOBIO Database and Evaluation Protocol

3.1 The MOBIO Database

The MOBIO database was captured to address several issues in the field of face and
speaker recognition. These issues include: (1) having consistent data over a period of
time to study the problem of model adaptation, (2) having video captured in realis-
tic settings with people answering questions or talking with variable illumination and
poses, (3) having audio captured on a mobile platform with varying degrees of noise.

The MOBIO database consists of two phases, only one of which was used for this
competition. The first phase (Phase I) of the MOBIO database was captured at six sep-
arate sites in five different countries. These sites are at the: University of Manchester
(UMAN), University of Surrey (UNIS), Idiap Research Institute (IDIAP), Brno Uni-
versity of Technology (BUT), University of Avignon (LIA) and University of Oulu
(UOULU). It includes both native and non-native English speakers (speaking only
English).
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The database was acquired primarily on a mobile phone. The Phase I of the database
contains 160 participants who completed six sessions. In each session the participants
were asked to answer a set of questions which were classified as: i) set responses, ii)
read speech from a paper, and iii) free speech. Each session consisted of 21 questions:
5 set response questions, 1 read speech question and 15 free speech questions. In total
there were five Set responses to questions and fake responses were supplied to each
user. Read speech was obtained from each user by supplying all users with the same
text to read. Free speech was obtained from each user by prompting the user with
a random question. For five of these questions the user was asked to speak for five
seconds (short free speech) and for ten questions the user was asked to speak for ten
seconds (long free speech), this gives a total of fifteen such questions.

3.2 The MOBIO Evaluation Protocol

The database is split into three distinct sets: one for training, one for development and
one for testing. The data is split so that two sites are used in totality for one set, this
means that the three sets are completely separate with no information regarding indi-
viduals or the conditions being shared between any of the three sets.

The training data set could be used in any way deemed appropriate and all of the
data was available for use. Normally the training set would be used to derive back-
ground models, for instance training a world background model or an LDA sub-space.
The development data set had to be used to derive a threshold that is then applied to the
test data. However, for this competition it was also allowed to derive fusion parameters
if the participants chose to do so. To facilitate the use of the development set, the same
protocol for enrolling and testing clients was used in the development and test splits.
The test split was used to derive the final set of scores. No parameters could be derived
from this set, with only the enrolment data for each client available for use; no knowl-
edge about the other clients was to be used. To help ensure that this was the case the
data was encoded so that the filename gave no clue as to the identity of the user.

The protocol for enrolling and testing were the same for the development split and
the test split. The first session is used to enrol the user but only the five set response
questions can be used for enrolment. Testing is then conducted on each individual file
for sessions two to six (there are five sessions used for development/testing) and only the
free speech questions are used for testing. This leads to five enrolment videos for each
user and 75 test client (positive sample) videos for each user (15 from each session).
When producing imposter scores all the other clients are used, for instance if in total
there were 50 clients then the other 49 clients would perform an imposter attack.

3.3 Performance Evaluation

Person verification (either based on the face, the speech or any other modality) is sub-
ject to two type of errors, either the true client is rejected (false rejection) or an imposter
is accepted (false acceptance). In order to measure the performance of verification sys-
tems, we use the Half Total Error Rate (HTER), which combines the False Rejection
Rate (FRR) and the False Acceptance Rate (FAR) and is defined as:

HTER(τ,D) =
FAR(τ,D) + FRR(τ,D)

2
[%] (1)
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where D denotes the used dataset. Since both the FAR and the FRR depends on the
threshold τ , they are strongly related to each other: increasing the FAR will reduce the
FRR and vice-versa. For this reason, verification results are often presented using either
Receiver Operating Characteristic (ROC) or Detection-Error Tradeoff (DET) curves,
which basically plots the FAR versus the FRR for different values of the threshold.
Another widely used measure to summarise the performance of a system is the Equal
Error Rate (EER), defined as the point along the ROC or DET curve where the FAR
equals the FRR.

However, it was noted in [4] that ROC and DET curves may be misleading when
comparing systems. Hence, the so-called Expected Performance Curve (EPC) was pro-
posed, and consists in an unbiased estimate of the reachable performance of a system
at various operating points. Indeed, in real-world scenario, the threshold τ has to be set
a priori: this is typically done using a development set (also called validation set). Nev-
ertheless, the optimal threshold can be different depending on the relative importance
given to the FAR and the FRR. Hence, in the EPC framework, β ∈ [0; 1] is defined as
the tradeoff between FAR and FRR. The optimal threshold τ∗ is then computed using
different values of β, corresponding to different operating points:

τ∗ = argmin
τ

β · FAR(τ,Dd) + (1 − β) · FRR(τ,Dd) (2)

where Dd denotes the development set.
Performance for different values of β is then computed on the test set Dt using the

previously found threshold. Note that setting β to 0.5 yields to the Half Total Error Rate
(HTER) as defined in Equation (1). It should be also noted that for fair evaluations this
threshold is not estimated by the participants but by the organizers.

4 Face Verification Systems

4.1 Idiap Research Institute (IDIAP)

The Idiap Research Institute submitted two face (video) recognition systems. The two
used exactly the same verification method using a mixture of Gaussians to model a
parts-based topology, as described in [10], and so differed only in the way in which
the faces were found in the video sequence (the face detection method). The systems
submitted by the Idiap Research Institute served as baseline systems for the face (video)
portion of the competition.

System 1 is referred to as a frontal face detector as it uses only a frontal face detector.
System 2 is referred to as a multi-view face detector as it uses a set of face detectors for
different poses. Both frontal and multi-view face detection systems are taken from [30].

4.2 Instituto Tecnológico de Informática (ITI)

Two face recognition systems were submitted by the Instituto Tecnológico de Informática.
Both systems, first detect faces every 0.1 seconds up to a maximum of 2.4 seconds of
video. For enrolment or verification, only a few of the detected faces are selected based
on a quality measure. The face verification approach was based on [37]. Each face is
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cropped to 64×64 pixels and 9×9 pixel patches are extracted at overlapping positions
every 2 pixels, 784 features in total. The verification score is obtained using a Nearest-
Neighbor classifier and a voting scheme. For further details refer to [37].

System 1 used the haarcascade frontalface alt2 detection model that is included
with the OpenCV library, and as quality measure used the confidence of a face-not-face
classifier learnt using [36]. For verification, 10 face images are used. System 2 used the
face detector from the commercial OmniPerception’s SDK and as quality the average of
the confidences of the detector and the face-not-face classifier. For verification, 5 face
images are used.

4.3 NICTA

NICTA submitted two video face recognition systems. Both systems used OpenCV for
face detection in conjunction with a modified version of the Multi-Region Histogram
(MRH) face comparison method [31]. To extend MRH from still-to-still to video-to-
video comparison, a single MRH signature was generated for each video sequence by
averaging the histograms for each region over the available frames. Two signatures
are then compared through an L1-norm based distance. If a person has several video
sequences for enrolment, multiple signatures are associated with their gallery profile,
and the minimum distance of those to the probe video signature is taken as the final
result. For normalisation, each raw measurement is divided by the average similarity of
each probe-gallery pair to a set of cohort signatures from the training set [31].

System 1 used only closely cropped faces (of size 64 × 64 pixels) which excluded
image areas susceptible to disguises, such as hair and chin. System 2 used information
from those surrounding regions as well, resulting 96× 96 pixel sized faces. The results
show that the use of the surrounding regions considerably improved the recognition
performance for the female set.

4.4 Tecnologico de Monterrey, Mexico and Arizona State University, USA
(TEC-ASU)

The CUbiC-FVS (CUbiC-Face Verification System) was based on distance computa-
tions using a nearest neighbor classifier [14]. Each video stream was sliced into images
and a face detection algorithm based on the mean-shift algorithm [13] was used to local-
ize a face in a given frame. The block based discrete cosine transform (DCT) was used
to derive facial features [16], since this feature is known to be robust to illumination
changes.

For each user Ui, all the respective feature vectors were assembled into a training
matrix Mi. A distance measure, Dtrue, was computed as the minimum distance of T
(the test data) from the feature vectors of matrix Mk of the claimed identity k. Similarly,
Dimp was computed as the minimum distance of T from the feature vectors of all
matrices other than Mk. The ratio of Dtrue to Dimp was used to decide whether the
claim has to be accepted or not. The scores were scaled so that clients have a positive
score and imposters have a negative score.
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4.5 University of Surrey (UNIS)

In total, UNIS submitted 4 systems which can be divided into two categories: fusion
systems (FS) as well as single descriptor systems (SDS). FS is composed of two sub-
systems which differ mainly in the feature representation, one based on Multiscale Lo-
cal Binary Pattern Histogram (MLBPH) [12] and the other based on Multiscale Local
Phase Quantisation Histogram (MLPQH) [11]. SDS above refers to MLBPH. In each
category, we have basic and updated versions. Hence, the 4 systems are: System 1 (Ba-
sic+SDS), System 2 (Updated+SDS), System 3 (Basic+FS), System 4 (Updated+FS).
The basic and updated systems differ in terms of image selection strategies and data
sets for the LDA matrix training. Regarding the image selection strategy, a basic sys-
tem chooses a single face image, while an updated system selects 15 images from the
video sequence. For training the LDA matrix, the training set of the MOBIO database
is used in the basic system, while the updated system uses an external database. In each
version, we measure the difference between the results of those 4 systems (without
score normalisation) and the results of these systems with test-normalisation, using the
training set of the MOBIO database.

4.6 Visidon Ltd (VISIDON)

Visidon face identification and verification system is originally designed for embedded
usage, in order to quickly recognize persons in still images using a mobile phone, for
example [1]. Thanks to a real-time frame performance, additional information provided
by video can be easily utilized to improve the accuracy.

Both object detector (used for face and facial feature detection) and person recogni-
tion modules are based on our patented technology.

4.7 University of Nottingham (UON)

We implemented two methods: video-based (System 1) and image-based (System 2).
System 1 makes use of all frames in a video and bases on the idea of Locally Linear
Embedding [18]. System 2 uses only a couple of frames in a video and bases on 4 facial
descriptors: Raw Image Intensity, Local Binary Patterns [2], Gabor Filters, Local Gabor
Binary Patterns [39,19]; 2 subspace learning methods: Whitened PCA, One-shot LDA
[38]; and Radial Basis Function SVM for verification.

In our experiments, system 2 performs much better than system 1. However, system 2
didn’t perform as well as it could be because we made a mistake in the training process
which makes the final SVM over-fitted. Another observation is that face detection is
very important to get high accuracy.

4.8 National Taiwan University (NTU)

In each frame, we detected and aligned faces according to their eye and mouth posi-
tions. We also corrected the in-plane and out-of-plane rotations of the faces. We further
rejected false face detections using a face-non face SVM classifier.

We proposed two systems: System 1 applied the Facial Trait Code (FTC) [21]. FTC
is a component based approach. It defines the N most discriminative local facial fea-
tures on human faces. For each local feature, some prominent patterns are defined and
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symbolized for facial coding. The original version of FTC encodes a facial image into a
codeword composed of N integers. Each integer represents a pattern for a local feature.
In this competition, we used 100 local facial features, each had exactly 100 patterns, and
it made up a feature vector of 100 integer numbers for each face. System 2 applied the
Probabilistic Facial Trait Code (PFTC), which is an extension of FTC. PFTC encodes
a facial image into a codeword composed of N probability distributions. These distri-
butions gives more information on similarity and dissimilarity between a local facial
image patch and prominent patch patterns, and the PFTC is argued to outperform the
original FTC. The associating study is currently under review. In this competition, we
used 100 local facial features, each had exactly 100 patterns, and it made up a feature
vector of 10000 real numbers for each face.

We collected at most 10 faces (in 10 frames) from an enrollment video. Each col-
lected face was encoded into a gallery codeword. We collected at most 5 faces from a
testing video. Each collected face was encoded into a probe codeword. Then, this probe
codeword was matched against known gallery codewords.

4.9 iTEAM, Universidad Politecnica Valencia (UPV)

The UPV submitted two face recognition systems. Both systems use the same method
for feature extraction and dimensionality reduction which are based on [3] and [23]
respectively. KFA was trained using face images from the FERET database [28] and
ten face images of each person of the MOBIO training set. Similarity measurements
are computed using the cosine distance. Our systems differed only in the way in which
the faces were extracted from the video sequence. System 1 extracts faces from each
frame independently using the OpenCV AdaBoost implementation [22] . System 2 uses
a commercial closed solution [26] for face detection and also introduces a Kalman filter
to track the eyes and reduce the eye detection noise.

5 Speaker Verification Systems

5.1 Brno University of Technology (BUT)

Brno University of Technology submitted two audio speaker verification systems and
one fusion of these two systems. The first system is Joint Factor Analysis and the second
one is I-vector system. Both systems used for training the MOBIO data but also other
data mainly from NIST SRE evaluations. Both system use 2048 Gaussians in UBM.

System 1 – Joint factor analysis (JFA) system closely follows the description of
“Large Factor Analysis model” in Patrick Kenny’s paper [20]. System 2 – I-vector sys-
tem was published in [15] and is closely related to the JFA framework. While JFA ef-
fectively splits model parameter space into wanted and unwanted variability subspaces,
i-vector system aims at describing the subspace with the highest overall variability.

5.2 University of Avignon (LIA)

The LIA submitted two speakers recognition systems. Both are based on the UBM/GMM
(Universal Background Model / Gaussian Mixture Model) paradigm without factor
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analysis. During this evaluation, development and training (even UBM training) were
processed by using only MOBIO corpus.

The two systems, LIA system 1 and LIA system 2 differ by the acoustic parametri-
sation and the number of Gaussian components into the UBM. For the LIA system 1,
the acoustic vectors are composed of 70 coefficients and the UBM has 512 components
while LIA system 2 has only 50 coefficients, a bandwidth limited to the 300-3400Hz
range and a UBM with 256 Gaussian components.

5.3 Tecnologico de Monterrey, Mexico and Arizona State University, USA
(TEC-ASU)

Our speaker verification system, named TECHila, is based on a Gaussian Mixture
Model (GMM) framework. The speech signal was downsampled to 8 KHz and a short-
time 256-pt Fourier analysis is performed on a 25ms Hamming window (10ms frame
rate). Every frame log-energy was tagged as high, medium and low (low and 80% of
the medium log-energy frames were discarded). The magnitude spectrum was trans-
formed to a vector of Mel-Frequency Cepstral Coefficients (MFCCs). Further, a feature
warping algorithm is applied on the obtained features. Afterwards, a gender-dependent
512-mixture GMM UBM was initialised using k-means algorithm and then trained by
estimating the GMM parameters via the EM (expectation maximization) algorithm.
Target-dependent models were then obtained with MAP (maximum a posteriori) speaker
adaptation. Finally, the score computation followed a hypothesis test framework.

Two approaches were used: a) System 1 composed of 16 static Cepstral, 1 log Energy,
and 16 delta Ceptral coefficient and single file adaptation (7 seconds of speech). b)
System 2 composed of 16 static Cepstral, 1 log Energy, 16 delta Ceptral coefficient, 16
double delta coefficient and all file adaptation (using the set of all target files).

5.4 University of West Bohemia (UWB)

Systems proposed by UWB made use of Gaussian Mixture Models (GMMs) and
Support Vector Machines (SVMs), 4 systems were submitted. In the feature extraction
process the speech signal was downsampled to 16kHz and voice activity detector was
applied to discard non-speech frames. Subsystems exploited MFCCs extracted each 10
ms utilizing a 25 ms hamming window, delta’s were added, simple mean and variance
normalization was applied. GMMs were adapted from Universal Background Model
(UBM) according to MAP adaptation with relevance factor 14. UBM consisted of 510
mixtures. UBM and impostors for SVM modeling were chosen from the world-set sup-
plied by MOBIO in a gender specific manner. Score normalization was not utilized.

The specific systems were System 1: GMM-UBM [29], System 2: SVM-GLDS [7],
System 3: SVM-GSV [8], and System 4 was their combination. Regarding low amount
of impostor data, the best performing system turned out to be System 1 followed by
System 4. However, for females System 4 slightly outperformed System 3.

5.5 Swansea University and Validsoft (SUV)

The speaker verification systems submitted by Swansea University and Validsoft are
based on standard GMM-MAP systems [29], whose originality lies in the use of wide
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band (0 to 24 kHz) mel frequency cepstral coefficients (MFCCs) features, an idea al-
ready explored by Swansea University during the Biosecure evaluation campaign [17].

System 1 is a GMM-MAP system with a large number filter bands (50) and cepstral
coefficients (29). System 2 is a GMM-MAP system based on a standard number of filter
bands (24) and cepstral coefficients (16). System 3 is a score level fusion of System 1
and System 2 after T-normalisation.

6 Discussion

In this section, we summarize and discuss the results of this evaluation. To facilitate
the comparison between participants, we selected the best performing face or speaker
verification system for each participant2.

Table 1. Table presenting the results (HTER)
of the best performing face verification sys-
tems for each participants on the Test set

Male Female Average
IDIAP (Face System A) 25.45% 24.39% 24.92%
ITI (Face System B) 16.92% 17.85% 17.38%
NICTA (Face System C) 25.43% 20.83% 23.13%
NTU (Face System D) 20.50% 27.26% 23.88%
TEC (Face System E) 31.36% 29.08% 30.22%
UNIS (Face System F) 9.75% 12.07% 10.91%
UON (Face System G) 29.80% 23.89% 26.85%
UPV (Face System H) 21.86% 23.84% 22.85%
VISIDON (Face System I) 10.30% 14.95% 12.62%

Table 2. Table presenting the results (HTER)
of the best performing speaker verification sys-
tems for each participants on the Test set

Male Female Average
BUT (Speech System A) 10.47% 10.85% 10.66%
LIA (Speech System B) 14.49% 15.70% 15.10%
SUV (Speech System C) 13.57% 15.27% 14.42%
TEC (Speech System D) 15.45% 17.41% 16.43%
UWB (Speech System E) 11.18% 10.00% 10.59%

6.1 Face Verification

A summary of the results of the face verification systems can be found in Table 1. The
results of the same systems are also presented in the DET plots in Figure 1 (male trials)
and in Figure 2 (female trials).

From the plots, it can be observed mainly three groups of systems (more distinctly
for female trials). The first group is composed by the two best performing systems. The
best performance, with an HTER of 10.9%, is obtained by the UNIS System 4 (norm)
which is fusing multiple cues and is post-processing the scores (score normalisation).
This system without score normalisation, UNIS System 4, obtained an HTER of 12.9%.
The second best performance is obtained by the VISIDON System 1 with an HTER of
12.6% and is using local filters but no score normalisation. Interestingly, it should be
noticed that these systems use a proprietary software for the task of face detection. The
second group is composed of two systems, ITI System 2 and NICTA System 2 (norm).
ITI System 2 is also using a proprietary software for face detection (the same than UNIS
System 4) while NICTA System 2 (norm) is using OpenCV for that task.

Interestingly, NICTA System 2 (with normalisation) performs better on the female
test set than on the male test. This is the opposite trend to what occurs for most of the
other systems (such as the UNIS, VISIDON and ITI systems) where better results are

2 Please note that similarly to the previous sections the systems of each participant are numbered
1, 2, .... In this section the best systems, one for each participants, are numbered A, B, ....
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Fig. 1. DET plot of face verification systems
from Table 1 on the test set (male trials)

Fig. 2. DET plot of face verification systems
from Table 1 on the test set (female trials)

obtained on the male test set than on the female test set. The third group is composed
mainly by all the remaining systems and obtained an HTER of more than 20%. The
majority of these systems uses an OpenCV like face detection scheme and all seem to
have similar performance.

From these results we can draw two conclusions: (1) the choice of the face detection
system can have an important impact on the face verification performance, and (2) the
role of score normalisation on the performance is difficult to establish clearly.

The impact of the face detection algorithm can be seen clearly when examining the
two systems from ITI. The difference between these two systems from ITI comes only
from the use of a different face detection technique: ITI System 1 uses the frontal
OpenCV face detector and ITI System 2 uses the OmniPerception SDK. The differ-
ence in face detector alone leads to an absolute improvement of the average HTER of
more than 4%. This leads us to conclude that one of the biggest challenges for video
based face recognition is the problem of accurate face detection.

A second interesting conclusion is that score normalisation can be difficult to ap-
ply to face recognition. This can be seen by examining the performance of the systems
from UNIS and NICTA. The NICTA results show that score normalisation provides a
minor but noticeable improvement in performance. However, the UNIS systems pro-
vide conflicting results as score normalisation on Systems 1 and 2 degrades perfor-
mance whereas score normalisation on Systems 3 and 4 improves performance. The
only conclusion that can be brought from this is that more work is necessary to be able
to successfully apply score normalisation to face verification.

6.2 Speaker Verification

A summary of the results for the speaker verification systems is presented in terms
of HTER in Table 2 and also in DET plots in Figure 3 (male trials) and in Figure 4
(female trials). Generally, the audio systems exhibit smaller dispersion of HTER scores
than their video counterparts, which can be attributed to lesser differences between
individual audio systems than between those for videos.
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Fig. 3. DET plot of speaker verification sys-
tems from Table 2 on the test set (male trials)

Fig. 4. DET plot of speaker verification sys-
tems from Table 2 on the test set (female
trials)

From the results it can be seen that voice activity detection (VAD) is crucial for all
audio systems (just as face detection is crucial for face verification). The participants use
approaches ranging from classical energy based (LIA, TEC-ASU) through to sub-band
quality measures (UWB) and the use of phone recognizers (BUT). By contrast , the
variability in feature extraction is much smaller with most participants using standard
MFCC coefficients with some variants.

For the speaker verification part, two approaches were adopted: GMM-UBM and
SVM-based. The former ones were generally weaker in performances, with the excep-
tion of UWB System1 - a pure GMM-UBM based system that was the best performing
single system. This performance is probably due to UWB VAD, their system is also
fully trained on MOBIO 16kHz data.

The latter approach (SVM) performed well both on standard GMM means (UWB)
as well as on JFA-derived speaker factors (BUT System1). This supports the conclusion
that SVMs provide superior performance on shorter segments of speech.

The importance of score normalisation was also confirmed, mainly for the systems
not based on SVMs. However, it was hard to derive representative gender dependent
ZT-norm cohorts, mainly because there were too few speakers in the world-set of the
MOBIO database.

Another lesson learned was the importance of the target (MOBIO) data for training
when compared to the hundreds hours of non-target (NIST) telephone data. It can be
seen that the SVM-based techniques largely benefit from having this data in their im-
poster sets. On the other hand, JFA does not improve with this data as the utterances are
too short and too few.

7 Conclusion

This paper presented the results of several uni-modal face and speaker verification tech-
niques on the MOBIO database (Phase I). This database provides realistic and challeng-
ing conditions as it was captured on a mobile device and in uncontrolled environments.
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The evaluation was organised in two stages. During the first stage, the training and
development sets of the database was distributed among the participants (from Decem-
ber 1 2009 to January 27 2010). The deadline for the submission of the first results
by the participants on the development set was February 1 2010. During the second
stage, the test set was distributed only to the participants that met the first deadline. The
deadline for the submission of the results on the test set was March 8 2010.

Out of the thirty teams that signed the End User License Agreement (EULA) of the
database and downloaded it, finally, fourteen teams have participated to this evaluation.
Eight teams participated to the face verification part of the evaluation, four teams partic-
ipated to the speaker verification part of the evaluation and one team participated both
to the face and the speaker part. Only one team dropped from the competition during
the second stage. Each participant provided at least the results of one system but were
allowed to submit the results of several systems.

This evaluation produced three interesting findings. First, it can be observed that
face verification and speaker verification obtained the same level of performance. This
is particularly interesting because it is generally observed that speaker verification per-
forms much better than face verification in general. Second, it has been highlighted that
segmentation (face detection and voice activity detection) was critical both for face and
speaker verification. Finally, it has been shown that the two modalities are complemen-
tary as a clear gain in performance can be obtained simply by fusing the individual face
and speaker verification scores.

Overall, it was shown that the MOBIO database provides a challenging test-bed both
for face verification, for speaker verification but also for bi-modal verification. This
evaluation would have established baseline performance for the MOBIO database.

The MOBIO consortium is planning to distribute the database (Phase I) in August
2010 together with the results and the annotations (face detection output) generated by
the participants during this evaluation. It is foreseen as well to distribute the Phase II of
the MOBIO database before the end of 2010.
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Abstract. The advent of digital whole-slide scanners in recent years has spurred 
a revolution in imaging technology for histopathology. In order to encourage 
further interest in histopathological image analysis, we have organized a contest 
called “Pattern Recognition in Histopathological Image Analysis.” This contest 
aims to bring some of the pressing issues facing the advance of the rapidly 
emerging field of digital histology image analysis to the attention of the wider 
pattern recognition and medical image analysis communities. Two sample 
histopathological problems are explored: counting lymphocytes and centroblasts. 
The background to these problems and the evaluation methodology are 
discussed. 

Keywords: histopathology, computerized image analysis, pattern recognition, 
follicular lymphoma. 

1   Introduction 

The advent of digital whole-slide scanners in recent years has spurred a revolution in 
imaging technology for histopathology. The large multi-Giga-pixel images produced 
by these scanners contain a wealth of information potentially useful for computer-
assisted disease diagnosis, grading, and prognosis. Processing and analysis of such 
high-resolution images, however, remain non-trivial tasks, not just because of the 
sheer size of the images but also due to complexities of the underlying factors, 
including variable staining procedures and practices, illumination variations, diversity 
in imaging devices, and last but not the least the ultimate goal of the analysis. In order 
to encourage further interest in histopathological image analysis, we have organized a 
contest called “Pattern Recognition in Histopathological Image Analysis,” as part of 
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the ICPR 2010. This contest aims to bring some of the pressing issues facing the 
advance of the rapidly emerging field of digital histology image analysis to the 
attention of the wider pattern recognition and medical image analysis communities.  

We proposed two problems and provided the training dataset for each problem to 
the contestants. The problems are described in the following sections and Table 1 
summarizes the data information: 

Table 1. Summary of Datasets 

Dataset Name 
Number of training 

images 
Number of test images 

Problem 1 10 10 
Problem 2 5 5 

1.1   Problem 1: Counting Lymphocytes on Histopathology Images 

Breast cancer (BC) is the second leading cause of cancer related deaths in women, 
with more than 182 000 new cases of invasive BC predicted in the United States for 
2008 alone [1]. Although it is a common cancer diagnosis in women, the fact that BC 
exhibits an exceptionally heterogeneous phenotype in histopathology [2] leads to a 
variety of prognoses and therapies. One such phenotype is the presence of 
lymphocytic infiltration (LI) in invasive BC that exhibits amplification of the HER2 
gene (HER2+ BC). Most HER2+ BC is currently treated with agents that specifically 
target the HER2 protein. Researchers have shown that the presence of LI in 
histopathology is a viable prognostic indicator for various cancers, including HER2+ 
BC [3]–[5]. The function of LI as a potential antitumor mechanism in BC was first 
shown by Aaltomaa et al. [4]. More recently, Alexe et al. [5] demonstrated a 
correlation between the presence of high levels of LI and tumor recurrence in early 
stage HER2+ BC.The ability to automatically detect and quantify extent of LI on 
histopathology imagery could potentially result in the development of an image based 
prognostic tool for Her2+ and ovarian cancer patients.  

However, lymphocyte segmentation in Haemotoxylin (H) and Eosin (E)-stained 
histopathology images is complicated by the similarity in appearance between 
lymphocyte nuclei and other structures (e.g. cancer nuclei) in the image. Additional 
challenges include biological variability, histological artifacts, and high prevalence of 
overlapping objects. Although active contours are widely employed in image 
segmentation, they are limited in their ability to segment overlapping objects and are 
sensitive to initialization [6]. 

Hematoxylin and eosin (H&E) stained BC biopsy cores were scanned into a 
computer using a high resolution whole slide scanner (Aperio Systems) at 40x optical 
magnification at The Cancer Institute of New Jersey (CINJ). A total of 20 HER2+ BC 
images (from nine patients) exhibiting various levels of LI were used for this 
competition. The images were downsampled by a factor of 2 and saved as 200 × 200 
pixels digital images. The ground truth for spatial presence of LI was obtained via 
manual detection and segmentation performed by a breast cancer oncologist from 
CINJ. The ground truth for LI detection evaluation was obtained in the form of 
highlighted pixels representing the approximate centers of each of the lymphocytes in 
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all 100 images. Note that, since the 20 images comprised over 2000 individual 
lymphocytes, and on account of the effort involved in manual segmentation, only a 
few dozen lymphocytes randomly chosen from the set of 20 images were delineated 
by the expert to allow the evaluation of the segmentation performance of the model. 
The detection performance of the model, however, was evaluated on all lymphocytes 
across all 20 images. The H&E-stained histopathology images comprise of four main 
structures or entities, namely: 1) BC nuclei; 2) lymphocyte nuclei; 3) stroma; and 4) 
background, as illustrated in Figure 1. Note the extent of overlap between objects and 
the similarity between lymphocyte nuclei and BC nuclei. Lymphocyte nuclei tend to 
be stained deeper than BC nuclei and are often smaller in size.  

Lymphocytic centers were indicated on all the images. A distinct set of testing 
images will be provided to the contestants on the day of the competition. These 
images may have been digitized on the same scanner and stained in a different lab 
compared to the training images. 

1.2   Problem 2: Counting Centroblasts from Histology Images of Follicular 
Lymphoma 

Follicular Lymphoma (FL), a common type of non-Hodgkins lymphoma, is a cancer 
of lymph system. According to World Health Organization's recommendations, FL 
has three histological grades indicating the degree of the malignancy of the tumor [7]. 
Histological grading of FL is based on the number of centroblasts, large malignant 
cells, in ten representative neoplastic follicle regions in a high power field (HPF) of 
0.159 mm2. Based on this method FL is stratified into three histological grades: FL 
grade I (0-5 centroblasts/HPF), FL grade II (6-15 centroblasts/HPF) and FL grade III 
(>15 centroblasts/HPF) ordered from the least to the most malignant subtypes, 
respectively. Further information about this problem and some previous work in this 
area can be found in the References [8-17]. 

There were a total of five images containing centroblasts which were H&E stained 
and digitized at 40 x resolution to serve as the training set. Centroblast centers were 
indicated on all the images, as marked by at least two expert pathologists. Figure 2 
shows an example image. A distinct set of testing images will be provided to the 
contestants on the day of the competition. Characteristics of these images will be 
similar to those of the training images in terms of slide preparation and digitization. 

2   Competition 

Twenty three groups showed interest in the competition and were provided with the 
training dataset as well as the ground truth for Problems 1 and 2 as described in 
Sections 1.1 and 1.2. Five of these groups developed algorithms to solve these 
problems and submitted their results; three groups turned their efforts into papers, 
which are published in this volume. 

3   Evaluation Methodology 

All the submitted results were evaluated using a standard criteria and automatically. 
The following sections describe the evaluation methodologies. 
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3.1   Evaluation Methodology for Problem 1 

3.1.1   Region-Based Measures 
The region-based performance measures were defined as follow 

• Dice Coefficient (DICE) = ; 

• Overlap (OL) = ; 

• Sensitivity (SN) = ; 

• Specificity (SP) = ; 

• Positive Predictive Value (PPV) = , 

where   is the total number of pixels in the image and  represents the cardinality 
of any set . | | and | | are the areas of the closed boundary of segmentation 
results and manual delineation, respectively. The values shown in Table 1 are the 
values obtained by averaging across ten images. Note that higher values for each of 
the region-based measures indicates superior performance with a maximum value of 
1.0 reflecting the best possible segmentation performance, while 0.0 reflecting the 
worst possible performance. 

3.1.2   Boundary-Based Measures 
The boundary-based performance measures are defined as follow 

• Hausdorff distance (HD) = ; 

• Mean absolute distance (MAD) = , 

where  and  are closed boundaries of segmentation results and manual 
delineations, respectively. Each of S and G are represented as set of image pixels  
and  respectively, where any pixel c is represented by its two dimensional Cartesian 
coordinates.  is the number of pixels on the closed boundaries of segmentation 
results. Note that lower values for each of the boundary-based measures indicates 
superior performance with a value of 0 reflecting perfect concordance between the 
boundary obtained via the segmentation algorithm and the expert delineated ground 
truth. 

3.2   Evaluation Methodology for Problem 2 

The ground-truth information regarding the centroblasts are the locations marked by a 
consensus of pathologists. Therefore the evaluation is based on counting the number 
of true/false detection by comparing the centroid locations of the cells detected by the 
proposed computerized systems. If the distance between the centroid of a detected cell 
and the ground-truth marking is less than a threshold (30 pixels, equivalent of ~7.5 
microns), then it is considered as a true positive, otherwise it is counted as false 
positive. The threshold value is determined empirically by measuring the average size 
of a cell on the training set of images. 



230 M.N. Gurcan, A. Madabhushi, and N. Rajpoot 

 

Fig. 1. Example of a HER2+ BC histopathology image showing lymphocyte nuclei, BC nuclei, 
stroma and the background. Note the overlap between adjacent nuclei and the similarity in 
appearance between cancer and lymphocyte nuclei [6].  

 

Fig. 2. An example of part of an H&E-stained follicular lymphoma image with centroblasts 
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4   Evaluation Results 

Five groups participated in this competition and only four of these submitted papers. 
These groups are shown in Table 2. Below we summarize the results of evaluation for 
both off-line and on-line results for the training and testing data, respectively. 

4.1   Evaluation of Off-Line Results for the Training Data 

Submitted results of the five groups participating in this competition are summarized 
in Tables 3 and 4 below. As seen in these results, for Problem 1, Group 4’s algorithm 
outperformed all the other methods in terms of both region-based and boundary-based 
measures of performance. For Problem 2, only two groups submitted their results, 
again Group 4’s method producing impressive results. However, Group 4 chose not to 
submit details of their methods for publication in these proceedings. It is worth noting 
that these results were obtained using training data provided to these groups before 
the actual contest, where previously unseen test data was given to the contestants for 
on-site evaluation (please see Section 4.2).  

Table 2. Groups participating in the competition 

Group People Institute Paper 
1 Cheng, J, Veronika, M, Rajapakse, J Singapore-MIT Alliance, 

Singapore 
[18] 

2 Gupta, S, Kuse, M, Sharma, T The LNM Institute of 
Information Technology, 
Jaipur, India 

[19] 

3  Graf, F, Grzegorzek, M, Paulus, D Institute for Computational 
Visualistics, University of 
Koblenz-Landau, Germany 

[21] 

4 Bruynooghe, M Alkmaar, The Netherlands - 
5 Panagiotakis, C, Ramasso, E,  

Tziritas, G 
Department of Computer 
Science, University of 
Crete, Greece 

[20] 

Table 3. Evaluation results for Problem 1 (Detecting Lymphocytes in Breast Histopathology 
Images); Best performance is shown in bold 

Region-based Measures Boundary-based Measures Group# 
DICE OL SN SP PPV HD MAD 

Group 1 [18] 0.73 0.57 0.57 1 1 4.58 0.77 
Group 2 [19] 0.74 0.58 0.58 1 1 3.63 0.65 

Group 3 0.37 0.23 0.23 1 1 21.95 9.14 
Group 4 0.83 0.71 0.71 1 1 3.73 0.41 

Group 5 [20] 0.74 0.59 0.59 1 1 3.51 0.62 
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Table 4. Evaluation results for Problem 2 (Detecting Centroblasts in Follicular Lymphoma 
Histopathology Images); Best performance is shown in bold. Centroblast coordinates or 
contours were not submitted to evaluate more detailed region-based or boundary-based 
measures. 

Group# TP
R 

FPR 

Group 1  0.38 0.83 
Group 4 1 0 

4.2   On-Site Evaluation 

All the five groups participated at an on-site evaluation. The groups were given test 
images which were different from the training images and were asked to run their 
programs on these images and provide the organizers with results. The participating 
groups only attempted the first problem. 

All groups were evaluated on (a) ability to identify lymphocytic centers and (b) the 
total number of lymphocytes identified. All groups were asked to provide segmentation 
results in the form of binary masks with just the centers of the lymphocytes identified. 
They were also asked to provide the contours of the individual cells, though these were 
not used for the evaluation (since ground truth evaluation for contours could not be 
obtained from a second independent expert). 

For criterion (a) and (b) above, the mean and standard deviation errors were 
tabulated. For all 4 numbers reported, a smaller number represented a better result. In 
case of criterion (a) the Euclidean distance d between the ground truth and the result 
provided by the participants was calculated. In case of criterion (b) the absolute 
difference between the true number of cells and the number of cells N found by the 
participating group was identified. Table 5 shows the on-site evaluation results with 
the ranking of performance, where μ and σ denote the mean and standard deviation, 
respectively. 

Table 5. Evaluation results for Problem 1 for on-site evaluation 

Ranking 
Group 

Number μd σd μN σN 

1 2 3.04 3.40 14.01 4.4 
2 5 2.87 3.80 14.23 6.3 
3 3 7.60 6.30 24.50 16.2 
4 1 8.10 6.98 26.67 12.5 

 
 
No results were obtained for the Group 4 since they required feeding in the centers 

of the cells to their segmentation program and since contour evaluation was not 
performed during the on-site evaluation. 
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5   Conclusions 

The main purpose of this contest was to encourage pattern recognition and computer 
vision researchers in getting involved in the rapidly emerging area of histopathology 
image analysis. Twenty three groups registered their interest in participating in this 
contest, while five of these groups actually submitted their results on training data 
released before the actual contest. Two of the groups submitted results for both the 
problems, detection of lymphocytes in breast histopathology images and detection of 
centroblasts in follicular lymphoma histophathology images. Of these, one group has 
produced quite promising results in terms of both types of performance measures, 
region-based and boundary-based. Given this was the first contest of its kind, we are 
encouraged by the level of enthusiasm and interest shown in this contest so far and 
look forward to the results of these groups’ algorithms in the actual contest at the 
conference. Given that digital pathology is a nascent field and that application of 
pattern recognition and image analysis methods to digitized histopathology even more 
recent, there is not yet consensus on what level of performance would be acceptable 
in the clinic. While it is clear that most algorithms in this domain should produce an 
output which either directly (or via some transformation) correlates highly with 
clinical and patient outcome, it is not yet clear what level of algorithm performance 
would suffice towards this goal. Further versions of this competition will thus seek to 
explore, in a more quantitative fashion, the correlation between algorithmic 
performance and disease outcome. 
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Abstract. A technique for automating the detection of lymphocytes in

histopathological images is presented. The proposed system takes Hema-

toxylin and Eosin (H&E) stained digital color images as input to identify

lymphocytes. The process involves segmentation of cells from extracellu-

lar matrix, feature extraction, classification and overlap resolution. Ex-

tracellular matrix segmentation is a two step process carried out on the

HSV-equivalent of the image, using mean shift based clustering for color

approximation followed by thresholding in the HSV space. Texture fea-

tures extracted from the cells are used to train a SVM classifier that

is used to classify lymphocytes and non-lymphocytes. A contour based

overlap resolution technique is used to resolve overlapping lymphocytes.

Keywords: Lymphocytes, Classification, Contour Overlap Resolution.

1 Introduction

A lymphocyte is a type of blood cell in the immune system. Lymphocyte count
is carried out to help diagnose many ailments. The infiltration of lymphocyte
has been correlated with the disease outcome in cases of breast and ovarian can-
cer, leukemia, acquired immuno deficiency syndrome, viral infection, etc [10].
The ability to automatically detect and quantify extent of lymphocyte infiltra-
tion on histopathology imagery could potentially result in the development of a
computer assisted diagnosis tool for Her2+ and ovarian cancer [9].

A study showed that the Lymphocytic Infiltration is relevant prognostic in-
dicators and might be used as markers for an appropriate treatment strategy
in patients with stage I carcinomas [13]. Another study claims to find strong
correlations between the infiltration of lymphocytes and occurence of cancer[5].

Early detection of breast cancer is the key for its prognosis. Mammography
has been one of the most reliable method of detection of breast cancers. However,
enormous sizes of mammogram data had made it is difficult to manually detect
breast cancer [2]. Qualitative pathological examination of the images leads to
inexact classification of the cells and is subject to observer variation and vari-
ability based on the spatial focus of observation rendering the derived high level
information subjective. Computer assisted diagnosis can provide objective de-
scription of the cells and assist pathologists for finding disorders associated with
lymphocyte count.

D. Ünay, Z. Çataltepe, and S. Aksoy (Eds.): ICPR 2010, LNCS 6388, pp. 235–243, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Visual inspection of the histology slides does not allow one to distinguish
between lymphocyte nuclei and cancer nuclei (see figure 1). Other challenges as-
sociated with automation of lymphocyte detection are the ability of the method
to accommodate variability in staining procedures, differing scales of image dig-
itization, varying illumination conditions and high occurrence of overlapping
objects.

This paper describes a clinically relevant classification scheme of Hematoxylin
and Eosin (H&E) stained histology slides to detect lymphocytes. The scheme is
based on automated image processing, supervised learning of texture features
and contour based overlap resolution. This work was done as part of a contest
titled “Pattern Recognition in Histopathological images” held during Interna-
tional Conference on Pattern Recognition, 2010. There were a total of 10 images
comprising lymphocytic infiltration that were H&E stained and digitized at 20 X
resolution. 6 images were used as the training set and the other 4 were used as
testing images for the results obtained in this paper. The images also came with
expert annotations of representative lymphocytes. The expert annotations pro-
vided the approximate locations of centers of the lymphocytes (see figure 2(b)),
and a few boundary anotations were also provided to get an idea of the shapes
of lymphocytes.

Figure 2(a) shows one such histology image. Figure 2(b) and 2(c) shows the
annotated centers and boundaries respectively, provided by the organizers. While
the annotation of lymphocyte centers was complete, only five lymphocyte bound-
ary annotations were provided per image.

(a) Lymphocyte by

Ground Truth

(b) Non-Lymphocyte

by Ground Truth

Fig. 1. Visual inspection of the histology slides does not allow one to distinguish be-

tween lymphocyte nuclei and cancer nuclei

2 Related Work

Various techniques have been proposed to detect lymphocytes based on color,
texture and shape features. Hybrid segmentation methods have been used to
detect nuclei from images of histology slides stained under different conditions
[12,16].

The watershed transformation is one of the most powerful tools for segment-
ing images [6] but the problem with watershed segmentation is that noisy and
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(a) (b) (c)

Fig. 2. Contest Dataset

Fig. 3. Overview Diagram

textured images have many minima, most of them being irrelevant for segmenta-
tion. Using the watershed on a gray tone image without any preparation leads to
a strong over segmentation. The best solution to this problem consists in initially
determining markers for each region of interest, including the background of the
image. This makes it semi automated with subjectivity creeping in because of
the choice of markers.

Active contour based models for lymphocyte segmentation have also been
proposed [7], but the choice of seed points affects its segmentation performance.
Bikhet et al [1] have used hierarchical thresholding to localize white blood cells,
followed by extraction of gray level and morphological features to train a su-
pervised classifier. Thresholding works well on a given set of images but fails
with variability in the image set. Ongun et al [14] have used morphological pre-
processing to segment the cells followed by fuzzy patch labeling.

3 Proposed Classification Scheme

The main stages of the proposed classification scheme are: 1) Extracellular ma-
trix (ECM) segmentation, 2) Morphological pre processing, 3) Contour based
overlap resolution, 4) Feature extraction, 5) Classification using a trained SVM
classifier. MATLAB was used for prototyping of the scheme designed for this con-
test. Figure 3 shows the overview diagram of the proposed classification scheme.
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3.1 ECM Segmentation

The H&E stain dyes DNA-rich cell nuclei blue and collagen-rich extracellular
matrix (ECM) pink, allowing differentiation of cell from the surrounding ECM
based on color [19]. Two steps are involved in the ECM segmentation. 1) Mean
Shift Clustering, 2) HSV Based Thresholding.

Mean Shift based Clustering for Color Approximation. Mean Shift Clus-
tering is a non parametric clustering technique based on density estimation for
analysis of complex feature space. Dense regions in feature space correspond to
local maxima of the probability density function, i.e to the modes of the un-
known density [4,8]. Clustering was used to approximate the colors present (see
figure 4) in the image to reduce computational efforts.

For example there are 4061 distinct colors present in figure 4(a). After mean
shift based clustering, the number of distinct colors reduced to 172.

As an unintended consequence, it also lead to some structures being repre-
sented by similar colors which could then be easily segmented using a threshold-
ing in HSV space.

(a) Before Colour

Approximation

(b) After Colour

Approximation

Fig. 4. Colour Approximation using Mean Shift Clustering

HSV Based Thresholding. The HSV color space corresponds closely to the
human perception of color and it has been proven more accurate and effective
in distinguishing colored objects. The values of the thresholding to separate
pink hue from blue hue, were obtained by 3D visualization of the distribution of
these colors (as shown in figure 5) using an open source software ImageJ [15].
Extracellular matrix was segmented from the cells using equation 1. Where M
represents the binary mask which is being formed after thresholding.

M(i, j) = 1 , if 0.6667 ≤ hue( i , j ) ≤ 0.7292
0 , otherwise (1)

3.2 Morphological Pre-processing

Connected components analysis (CCA) labels the the blobs in a binary image, as
per its connectivity. The labels thus formed were used to iterate through each of
the blobs thus formed, to extract the blob features. Overlap resolution is applied
to blobs which satisfy some threshold on area and perimeter as discussed in
section 3.3.
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(a) (b)

Fig. 5. 3D Visualization of HSV Colour Space

3.3 Contour Based Overlap Resolution

A novel contribution of this paper is in resolving cell overlaps. The importance
of resolving overlaps in lymphocyte detection and grading is discussed in [7].
Overlaping of lymphocytes, sometimes makes it difficult to segment them.

Here we have used a contour based heuristic for revolving the overlap among
the lymphocytes. Contours are defined by those pixels that are at an equal dis-
tance from the detected cell boundary. Further, those closed contours which
cover an area that approximates to the area of an average lymphocyte are re-
tained while ignoring other contours. Figure 6 shows an example to illustrate
the overlap resolution.

(a) (b)

Fig. 6. Overlap Resolution

3.4 Feature Extraction

The mask obtained from the previous steps represented lymphocytes as digital
number 1 and other areas as digital number 0. This mask was multiplied with
the histogram equalized grayscale image of the RGB image shown in figure 2(a).
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Histogram equalization was performed to normalize varying illumination con-
ditions. Eighteen texture features were extracted for every detected cell region
[17,18,3]. These are – Autocorrelation, Contrast, Correlation, Cluster Promi-
nence, Cluster Shade, Dissimilarity, Energy, Entropy, Homogeneity, Maximum
probability, Variance, Sum average, Sum variance, Sum entropy, Difference vari-
ance, Difference entropy, Information measure of correlation, Normalized inverse
difference moment [17,18,3]. These features were derived from the gray level co-
occurence matrix for four values of offset and four values of direction. Average
of these eight values was used as feature value in classification.

3.5 Supervised Classification

Supervised classification was performed to classify the cells into two classes –
lymphocytes and non-lymphocytes. For training the classifier, the labels for every
feature pattern were obtained from the annotated dataset and a training dataset
was constructed that consisted of 80 patterns for lymphocytes and 98 patterns
for non lymphocytes. A support vector machine classifier was trained using this
training dataset [11].

4 Results

The classification scheme described in section 3 was applied on 4 testing images
that had 94 lymphocytes and 74 non lymphocytes as per expert annotation. A
correct detection of lymphocyte in the confusion matrix tabulated in table 1
meant that a lymphocyte centre marked by the expert existed in the region
classified as lymphocyte by the proposed scheme.

Table 1. Confusion Matrix

Ground Truth

Lymphocytes Non-Lymphocytes

Classifier
Lymphocytes 161 25

Non-Lymphocytes 55 133

It can be observed from the confusion matrix that the proposed classification
scheme is able to achieve a classification accuracy of 78% at a false positive
rate of 14.7%. Figure 7(a) shows the lymphocytes detected by the proposed
classification scheme as cells that are delineated with a red boundary. Figure
7(b) shows the lymphocytes annotated by the expert that were delineated with
the help of given lymphocyte centers. Visual inspection of the results shows that
there is good agreement between the derived results and the ground truth. The
results sent by us were also evaluated by the organizers using two region based
measures and two boundary based measures.

The region based measures are defined as follow
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(a) Classifier Result (b) Expert Anno-

tated

Fig. 7. Comparison between Classifier Results and Ground Truth

1) Dice coefficient DICE = 2×|A(S)∩A(G)|
|A(S)|+|A(G)|

2) Sensitivity SN = |A(S)∩A(G)|
|A(G)|

The boundary based performance measures are defined as follow

1) Hausdorff distance

HD = maxw[ minx||cw − cx|| ](cw ∈ S, cx ∈ G)

2) Mean absolute distance

MAD =
∑M

w=1 ||cw − cx||
M

Where C is the total number of pixels in the image and |s| represents cardinality
of any set s. A(s) and A(G) is the area of the close boundary of segmentation
results and manual delineation. For boundary based measures S and G are closed
boundaries of segmentation results and manual delineations. M is the number of
pixels on the closed boundaries of segmentation results.

Table 2 shows the results summarized by the organizers using the above men-
tioned metrics. The results of group 2 correspond to the results obtained from
the work mentioned in this paper. DICE coefficient is a measure of similarity of
images. Our method gives 74% means that, the actual result is 74% similar to
the output provided by our method. Our sensitivity is 58% means that 58% of
the positives are correctly identified. It can be observed that DICE coefficient is
only 0.9 less than the best reported result. There is a scope for improvement in
sensitivity by the introduction of newer features related to shape and color.

Table 2. Performance Comparison

Group DICE SN HD MAD

1 0.73 0.57 4.58 0.77

2 0.74 0.58 3.63 0.65

3 0.37 0.23 21.95 9.14

4 0.83 0.71 3.73 0.41

5 0.74 0.59 3.51 0.62
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5 Conclusions

We have developed a classification scheme for automatically detecting lympho-
cytes from H&E stained histopathology slides. However, the proposed scheme
needs extensive testing on different images that are truly representative of the
various scenarios in the real world. Such a dataset will also help to build a good
knowledge base for supervised classification of images. Without such an exten-
sive evaluation, a prognosis tool for lymphocyte count related disorders cannot
be developed especially when the risk associated with misclassification is high.

6 Future Work

As of now, the system does not require user interaction or parameter tuning and
produces classification results that are better than most methods used in the
contest. The size of the lymphocytes can be determined automatically for use
with overlap resolution given the scale at which the image was acquired.

Classification results are largely based on the training of the classifier and
thus there is a scope of using incremental learning to keep the knowledge base
updated. A dimensionality reduction exercise can help find those features that
aid in classification. Further, use of relatively higher resolution images than those
used in this contest can lead to a better quantification of the texture features
and it is our belief that this will further increase the ability of the classifier to
distinguish between lymphocytes and non lymphocytes.
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Abstract. We present an image analysis pipeline for identifying cells

in histopathology images of cancer. The analysis starts with segmen-

tation using multi-phase level sets, which is insensitive to initialization

and enables automatic detection of arbitrary objects. Morphological op-

erations are used to remove small spots in the segmented images. The

target cells are then identified based on their features. The detected cells

were compared with the manual detection performed by pathologists.

The quantitative evaluation shows promise and utility of our technique.

Keywords: Histopathological images, lymphocytes, centroblasts, level

sets, feature selection.

1 Introduction

Diagnostic medicine has taken a huge leap with the availability of novel imag-
ing modalities and automated analysis. Traditionally, cancer samples are an-
alyzed by manual measurement of clinical markers like progesterone receptor,
estrogen receptor, HER2+ for breast cancer, and prostate-specific antigen for
prostate cancer. Digital whole slide scanners have set a revolution in histolog-
ical evaluation of tissues, and processing of large images from these modalities
and data generated thereof demands efficient downstream analysis. This remains
non-trivial due to the size of information, the variability of staining and illumi-
nation procedures, and the diversity in acquisition process.

Histopathological images provide an important tool for accurate diagnosis of
various types of cancers and other diseases. However, identification of different
types of cells and the cells at different pathological stages has been difficult:
visual examination of histopathology images is complicated by target cells’ sim-
ilarity with other structures, which has an impact on the discretion of clinicians
to predict survival and disease outcome. Manual identification suffers from lack
of reproducibility among pathologists, primarily due to the subjective nature
in identifying large transformed cells which are morphologically heterogeneous.
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Moreover, overlap among lymphocytic nuclei and other structures demands al-
gorithms that have the ability to accurately estimate true extent of lymphocytic
infiltration [1].

Our work focuses on the analysis of histopathological images of breast cancer
and follicular lymphoma. Breast cancer (BC) is one of the common cancers in
women of United States with an estimated in situ cases of 62,280, invasive cases
of 192,370, and mortality of 40,170 in 2009 [2]. Because of the large number of
cases involved, examining biopsy tissue specimens has become an integral part
of BC diagnosis and prognosis where a pathologist looks for indicative features
and patterns. For example, a positive correlation of human epidermal growth
factor receptor 2 (HER2+) amplification and lymphocytic infiltration has been
identified, which may aid in future therapy [3]. Most HER2+ BC are currently
treated with agents that specifically target HER2+ protein.

B-cell lymphomas make up most (about 85%) of non-Hodgkin lymphomas
(NHL) in the United States [4]. Follicular lymphoma (FL) is a common sub-
type of B-cell lymphoma comprising approximately 22% of all NHLs and 70% of
indolent lymphomas [5]. Its incidence is increasing, with over 24,000 new cases
diagnosed each year [6]. FL grading is based on the average number of centrob-
lasts or large transformed cells in ten representative neoplastic follicles at 40x
high-power field (HPF): for grade 1, 0-5 centroblasts per HPF; grade 2, 6-15
centroblasts per HPF; and grade 3, >15 centroblasts per HPF.

In this paper, we propose a framework for identifying lymphocytic cells and
centroblasts in Hematoxylin and Eosin (H&E) stained images. Our method was
tested on two different datasets: breast cancer and follicular lymphoma tissues,
provided as part of Pattern Recognition in Histopathological Image Analysis
contest by ICPR 2010. In section 2, we describe the analysis framework. Results
are presented in section 3. Section 4 concludes the paper with future directions.

2 Method

2.1 Multi-phase Level Sets

The initial segmentation of cells was performed by using multi-phase level set
framework [7]. The multi-phase model is a generalization of an active contour
model without edges based on a two-phase segmentation [8]. The active contours
are implicitly represented by level set functions and the changes in objects ap-
pear automatically as level set functions evolve. This model enables automatic
detection of an arbitrary number of objects from an arbitrary initial front [8].
We chose to initialize level set functions to be multiple small circles spread over
the whole image. This type of initial condition has been proven to have ten-
dency to converge to a global minimizer and at much faster rate [7]. It needs
only log2 n level set functions for n phases or segments in the piecewise constant
intensity profile. In the original H&E stained images, there are roughly four
regions of different intensity level (whitish, pink, purple, and deep purple). To
separate the target region more accurately, we chose n = 4 phase segmentation
over two-phase segmentation.
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Histopathological
images

Cell segmentation by
multiphase level sets

Morphological cleaning

Feature extraction

Feature selection and
classification by SVM-RFE

Target cells

Fig. 1. Image processing pipeline for cell identification

The four phase energy function is given by

F4(Φ, c) =
∫

Ω

(f − c11)2H(φ1)H(φ2)dxdy +
∫

Ω

(f − c10)2H(φ1)(1 − H(φ2))dxdy

+
∫

Ω

(f − c01)2(1 − H(φ1))H(φ2)dxdy +
∫

Ω

(f − c00)2(1 − H(φ1))(1 − H(φ2))dxdy

+ν

∫
Ω

|∇H(φ1)|dxdy + ν

∫
Ω

|∇H(φ2)|dxdy

(1)

where (x, y) ∈ Ω ⊂ R2 is the 2-D domain of image f . Zero-level set of pair of
level set functions, Φ = (φ1, φ2), defines the segmentation. c = (c11, c10, c01, c00)
is the constant vector of averages of image f in each phases. H is the Heaviside
Dirac function and ν is a fixed positive parameter.

After the evolution of two level set functions, the average intensities within
every phases were calculated. The phase with the lowest average intensity was
considered the region of target cells which appear relatively dark in original
images.

2.2 Morphological Cleaning

The holes of the segmented binary images were filled by a hole-filling algo-
rithm based on morphological reconstruction. Morphological opening with a
disk-shaped structuring element of a radius of r pixel was applied in order to
remove the small spots on the images. This operation removes pixels of objects
thinner than r pixels. Morphological opening of a binary image b is defined as
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the erosion of that image followed by the dilation of the eroded image, by a
structuring element S:

b ◦ S = (b � S) ⊕ S (1)

where � and ⊕ denote erosion and dilation, respectively.
Binary regions composed of multiple objects were separated by using the

watershed algorithm [9], [10].

2.3 Feature Selection and Classification

For each candidate object, we extracted 173 features as described in [11]. These
features include 49 Zernike features, 30 Daubechies 4 wavelet features, 60 Gabor
features, 5 skeleton features, 13 Haralick features and 16 morphological features.
These features have been shown to be effective in recognition of protein subcel-
lular localization images [11].

In order to select relevant features that give optimal classification of cells
into different types, we used a wrapper-type feature selection method: Support
Vector Machine Recursive Feature Elimination (SVM-RFE) criteria [12]. This
uses Support Vector Machine (SVM) as the classifier and recursively eliminates
irrelevant features. The rank of a particular feature was determined by the cor-
responding weight of the SVM. For more details about the SVM-RFE method,
readers are referred to [12].

Given the centroids of target cells, provided as ground truth by the contest
organizers, the cells were identified into two classes: the targeted cells and the
rest. These class labels along with the input features were used as training data
for identifying relevant features by SVM-RFE and validated by five fold cross-
validation. SVM-RFE essentially ranks the features and top-ranked features were
then used for testing.

The entire proposed framework is depicted in Fig. 1.

3 Results

3.1 Datasets

The first dataset we used in the experiments is H&E stained breast biopsy images
of size 100 × 100 pixels, representing HER2+ breast cancer exhibiting lympho-
cytic infiltration. Ten images were used for training and the ground truths of
these images were obtained via manual detection performed by a pathologist
(provided by the organizers as centroids and boundary segmentations of respec-
tive lymphocytes). We used a structuring element of size r = 1 for all the images
in this dataset. Detected lymphocytes and lymphocytic centers on representative
images are displayed in Fig. 2.

The second dataset is H&E stained follicular lymphoma images of size 2068
× 1253 pixels digitized at 40 × resolution. Five images containing centroblasts
were used for training and the ground truths for these images were obtained
via manual detection performed by a pathologist (provided by the organizers
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Fig. 2. Lymphocyte detection from breast cancer tissues. First row: expert annotations

of representative lymphocytes and all lymphocytic centers. Second row: binary images

after multi-phase level set segmentation. Third row: binary images after morphological

cleaning. Forth row: automatically detected lymphocytes and lymphocytic centers.

as centroids and boundary segmentations of respective centroblasts). We used a
structuring element of size r = 12 for all the images in this dataset. Detected
centroblasts on representative images are displayed in Fig. 3.

3.2 Feature Selection

All 173 features were extracted from each cell and then relevant features were
identified by SVM-RFE method. We performed ten trials of five-fold cross-
validation. For the first dataset, the five features that appear most frequently in
top 20 ranking are:
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Fig. 3. Centroblast detection from follicular lymphoma tissues. First row: centroblast

centers marked by expert pathologists. Second row: binary images after multi-phase

level set segmentation. Third row: binary images after morphological cleaning. Forth

row: automatically detected centroblasts (true positives are marked by red circles).
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1. object skeleton to object fluorescence ratio;
2. Zernike moment feature 12, 0;
3. Gabor texture feature 43;
4. edges to area fraction;
5. number of branch points per length of object skeleton.

The average accuracy achieved from 10 trials on bootstrap samples of five-fold
cross-validation is 73.6 ± 0.77%.

Because of large size of the second dataset, we used only the standard devia-
tion of intensity which is the feature found to be the best for classification.

3.3 Evaluation

In terms of evaluation of lymphocyte detection, the following region-based per-
formance measures were employed:

– Dice coefficient = 2×|A∩M|
|A|+|M|

– Overlap = |A∩M|
|A∪M|

– Sensitivity = |A∩M|
|M|

– Specificity = N−|A∪M|
N−|M|

– Positive predictive value = |A∩M|
|A|

where A and M are the areas of the closed boundary of segmentation results and
manual delineation, respectively. N is the total number of pixels in the image.

The boundary-based performance measures are

– Haussdorf distance = maxw[minx ‖nw − nx‖], (nw ∈ A, nx ∈ M)
– Mean absolute distance = 1

NA

∑NA

w=1 ‖nw − nx‖
where NA is the total number of pixels on the closed boundaries of segmentation
results.

For evaluation of centroblast detection, true positives and false positives were
calculated based on the closeness of the detected centroids of centroblasts to
the expert markings. If the distance is less than 30 pixels (equivalent of about

Table 1. Quantitative evaluation results for lymphocyte dataset

Dice coef. Overlap Sensitivity Specificity Positive pred. Haussdorf dist. Mean abs. dist.

0.73 0.57 0.57 1 1 4.58 0.77

Table 2. Quantitative evaluation results for centroblast dataset

Sensitivity False positive rate

0.38 82.85
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7.5 μm), then it is considered as a true positive, otherwise it is counted as false
positive.

The evaluation results are shown in Tables 1 and 2.
Our algorithms were implemented in MATLAB and deployed on an Intel

Quad Core 2.0 GHz processor and 3.25 GB RAM. The running time to process
one image comprising lymphocytic infiltration is around 5 seconds. The running
time to process one image containing centroblasts is around 35 seconds.

4 Conclusion

We presented an effective image analysis framework for identifying cells from
H&E stained images. The method was evaluated on cell identification of two
types of histopathological tissue images: breast cancer and follicular lymphoma.
From the evaluation results on our experiments, we conclude that the image
analysis pipeline described in this paper is effective in detecting true locations
of lymphocytes and centroblasts on histopathology images with a high true pos-
itive rate. The proposed method has the advantages over manual analysis in
terms of speed and reproducibility. Our future direction will be to develop a
comprehensive automated grading system for histopathological diagnosis and
prognosis.

Acknowledgments. The authors would like to thank Mundra Piyushkumar
Arjunlal and Liu Song of BioInformatics Research Centre, Nanyang Technolog-
ical University, for help on applying feature selection.
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Abstract. In the context of several pathologies, the presence of lym-

phocytes has been correlated with disease outcome. The ability to au-

tomatically detect lymphocyte nuclei on histopathology imagery could

potentially result in the development of an image based prognostic tool.

In this paper we present a method based on the estimation of a mixture

of Gaussians for determining the probability distribution of the princi-

pal image component. Then, a post-processing stage eliminates regions,

whose shape is not similar to the nuclei searched. Finally, a Transferable

Belief Model is used to detect the lymphocyte nuclei, and a shape based

algorithm possibly splits them under an equal area and an eccentricity

constraint principle.

1 Introduction

Recently, there is an increasing activity on analysing histopathological images,
as a potential prognostic tool for cancer patients. One important step for the
diagnosis is the cell segmentation. Demir and Yener [1] review the different ap-
proaches classified in two categories: region-based and boundary-based methods.
Lymphocyte segmentation in histopathology images is complicated by the simi-
larity in appearance between lymphocyte and cancer nuclei in the image [2]. In
[2], a computer-aided diagnosis (CADx) scheme is proposed to automatically
detect and grade the extent of lymphocytic infiltration in digitized HER2+ BC
histopathology. Lymphocytes are automatically detected by a combination of
region growing and Markov random field algorithms using the luminance chan-
nel in Lab color space. Finally, a support vector machine classifier is used to
discriminate samples with high and low lymphocytic infiltration. In [3], lym-
phocytes are automatically detected via a segmentation scheme comprising a
Bayesian classifier and template matching, using the Saturation color channel in
HSV color space.

In [4], a segmentation scheme, Expectation Maximization driven Geodesic
Active Contour with Overlap Resolution (EMaGACOR), is proposed for au-
tomatically detecting and segmenting lymphocytes on HER2+ Breast Cancer

D. Ünay, Z. Çataltepe, and S. Aksoy (Eds.): ICPR 2010, LNCS 6388, pp. 253–262, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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histopathology images. EMaGACOR utilizes the Expectation-Maximization
(EM) algorithm for automatically initializing a geodesic active contour and in-
cludes a scheme for resolving overlapping structures. EMaGACOR was evaluated
on a total of 100 HER2+ breast biopsy histology images and was found to have
a detection sensitivity of over 86% and a positive predictive value (PPV) of over
64%.

Our method addresses the problem of lymphocyte detection and should be
considered as a region-based approach. The first step of our method consists of a
likelihood classification based on the estimation of the parameters of a mixture
of Gaussians. A post-processing step eliminates regions with size or shape that
differ greatly from a typical shape of lymphocyte nuclei. For the remaining regions
the following features are extracted: mean value, variance, eccentricity and size.
A Transferable Belief Model is then trained and used in order to detect the
lymphocyte nuclei. Finally, a shape based algorithm possibly splits the detected
regions under an equal area and an eccentricity constraint principle.

The organisation of the paper is as follows: Section 2 describes the segmen-
tation stage with the estimation of a mixture of Gaussians and the shape-based
detection of candidate leymphocyte nuclei; Section 3 presents the Transferable
Belief Model used and the results of training based on the ground-truth; in Sec-
tion 4 is presented our technique for solving possible overlaps. Then, the results
on the ICPR contest data set are given in Section 5.

2 Segmentation

There are three possible classes corresponding to stroma, cancer nuclei and lym-
phocyte nuclei. We admit Gaussian distributions for the three classes and use
the EM algorithm for estimating the parameters of the model. We observe that
the three colour channels are strongly correlated. Therefore we start by applying
principal component analysis (PCA) in order to select only one image compo-
nent. Let us note x(s) this component at a site s of the image grid. Let p(x) be
the probability density function for the principal image component. According
to the mixture of Gaussians model we have:

p(x) =
3∑

k=1

Pk

σk

√
2π

e
− (x−μk)2

2σ2
k =

3∑
k=1

Pkpk(x|μk, σ2
k). (1)

The unknown parameters are the a priori probabilities (Pk), the mean (μk) and
the variance (σ2

k) values.
At first, the Max-Lloyd algorithm is used for obtaining initial parameter val-

ues. The empirical probability density function is used for the estimation. Let
N denotes the number of image pixels. At i-th iteration of the EM algorithm we
have:

– E-step: calculate the posterior probabilities

P (i+1)(k|x, θ(i)) =
P

(i)
k e

− (x−μ
(i)
k

)2

2σ
2(i)
k

√
2πσ

(i)
k p(i)(x)

, (2)
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where θ is the set of all the unknown parameters.
– M-step: estimate the prior probabilities, the mean and the variance values

as follows
P

(i+1)
k =

1
N

∑
s∈G

P (i+1)(k|x(s), θ(i)) (3)

μ
(i+1)
k =

1

NP
(i+1)
k

∑
s∈G

P (i+1)(k|x(s), θ(i))x(s) (4)

σ
2(i+1)
k =

1

NP
(i+1)
k

∑
s∈G

P (i+1)(k|x(s), θ(i))(x(s) − μ
(i)
k )2 (5)

The above steps are implemented using the empirical probability density for
limiting the computational time. A stopping threshold of 10−6 is given on the
relative gain per iteration for the log likelihood value.

Having the estimation of the probability density functions for the three classes
the image sites are classified according to the maximum likelihood principle.
Therefore, for classifying the site s to class k, the likelihood pk(x(s)|μk, σ2

k) is
maximized.

Then, a post-processing stage follows on the regions detected as candidate
lymphocyte nuclei, which being darker are identified by the mean value. Three
region parameters are measured: the area, the eccentricity and the solidity. The
area of region r (denoted Ar) is given by the number of pixels that belong to
region r. Very small regions are eliminated.

The eccentricity of region r (denoted Er) is defined by the ratio between the
two principal axes of the best fitting ellipse, measuring how thin and long a
region is. It holds that Er ≥ 1. The eccentricity can be defined by the three
second order moments mr(1, 1), mr(2, 0) and mr(0, 2). Let (crx, cry) denote the
centroid of region r (given by the set of sites Or, (sx, sy) being the coordinates
of a point).

crx =
1

Ar

∑
s∈Or

sx (6)

cry =
1

Ar

∑
s∈Or

sy (7)

mr(p, q) =
∑

s∈Or

(sx − crx)p(sy − cry)q (8)

Er =

√
mr(2, 0) + mr(0, 2) +

√
(mr(2, 0) − mr(0, 2))2 + 4m2

r(1, 1)

mr(2, 0) + mr(0, 2) −√
(mr(2, 0) − mr(0, 2))2 + 4m2

r(1, 1)
(9)

The eccentricity criterion is intended to filter line segments.
The solidity criterion measures the proportion of the pixels in the convex hull

of the region that are also in the region. Therefore, it is relevant to the region
shape. In our implementation a value of 2/3 is required for accepting a region
as lymphocyte nucleus candidate.
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3 Transferable Belief Model

Image and shape features are computed for each candidate region. The mean
value Mi and the variance Vi of the image of a candidate region i are extracted.
In order to be independent from scaling and variability in appearance, the mean
and the variance of each region are normalized by division with the corresponding
median values obtained on the set of all regions.

The two extracted features are combined within the Transferable Belief Model
(TBM) framework [5] [6] in order to perform lymphocyte nuclei detection. The
TBM is an alternative to probability measure for knowledge modelling and the
main advantage and power of the TBM is the capacity to explicitly model doubt
and conflict. TBM has been successfully applied on object detection and tracking
problems [7] combined with shape and motion based features.

M
i

mM
i

1

0.95 1.15

LM MM

0 1 1.25

HM

(a)

V
i

mV
i

1

0.8 1.2

LV MV

0 1 1.4

HV

(b)

Fig. 1. From numerical features to belief. (a) Mean value. LM , MM and HM cor-

respond to low, medium and high values of the normalized mean of image intensity,

respectively. (b) Variance. LV , MV and HV correspond to low, medium and high

values of the normalized variance of image intensity, respectively.

The mean value and the variance can be adequately converted into beliefs
(symbolic representation). This is the first step of the TBM framework. We have
proposed the numeric-to-symbolic conversion presented in Fig. 1, where L is used
for low value, M for medium values and H for high values. Let us note fk(m) and
gk(v) the two belief functions, where k = 1, 2, 3 corresponds respectively to low,
medium and high values. Using symbolic representation, the lymphocyte nuclei
detection can be performed based on appropriate table rules (see Table 1). The
values of Table 1 (values of T (k, l)) have been estimated using the ground truth
images of the ICPR 2010 contest, by estimating the probability of lymphocyte
nuclei detection for each belief pair.

Having estimated the table of rules, we compute the the plausibility Bi of
each candidate lymphocyte nucleus region i as follows:

Bi =
3∑

k=1

3∑
l=1

fk(Mi)gl(Vi)T (k, l) (10)

A region i will be detected as lymphocyte nucleus, if Bi > 0.55. We have selected
the threshold of 0.55, since it gives the highest accuracy results on the ground
truth data set.
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Table 1. Table rules providing T (k, l) used in Equation (10)

LV MV HV

LM 0.999 0.988 0.958

MM 0.565 0.669 0.701

HM 0.052 0.1 0.032

4 Region Splitting

Having detected the lymphocyte nuclei based on appearance features, we have
to resolve possible overlaps using shape features. Finally, the area (Ai) and the
eccentricity (Ei) [7] are used in the decision of splitting a detected region to
more than one regions plausibly corresponding to lymphocyte nuclei.

The area and the eccentricity are normalized with report to their respective
median values. According to the feature Ai, the region i can be splitted into Ni

regions, where Ni ∈ {1, . . . , �Ai�}. We split a region i into Ni possible sub-regions
selecting the more appropriate splitting as described hereafter.

The proposed algorithm splits the region i into Ni equal area regions mini-
mizing the maximum eccentricity of the resulting sub-regions j, j ∈ {1, . . . , Ni},
since the lymphocyte nuclei are circular-like regions. A circular-like region has
minimum eccentricity, close to one. Similar to the minimization of maximum
error on polygonal approximation problem using equal errors criterion [8], the
problem of minimizing the maximum eccentricity can be sub-optimally solved
under the equal area criterion and the above eccentricity constraint. We have
implemented this criterion using the following algorithm. The pseudo-code of
the Region Splitting to Ni sub-regions is given in Algorithm 1.

– Initially, we sequentially select Ni seed-points pj , j ∈ {1, . . . , Ni} of region
i from which Ni parallel region growing algorithms start. The seeds should
follow the next constraint so that the growing algorithms start from the
farthest sub-regions: the minimum distance between all pairs of these points
should be maximized.

– The optimal algorithm that solves this problem has O(
(

Ri

Ni

)
) computation

cost, where Ri denotes the number of pixels of region i. We have used the
next approximate algorithm that sub-optimally solves this problem in O(R2

i )
based on the optimal solution for two regions. p1 and p2 are given as the two
farthest points of region i (optimal solution for two regions) (lines 1-11 of
Algorithm 1). The next points pj , j ∈ {3, . . . , Ni} are sequentially computed
by getting the point p of region i that maximizes the minimum of distances
from p to pj−1, pj−2,. . . , p1 (lines 12-27 of Algorithm 1).

– Then Ni parallel growing algorithms start from seeds pj , j ∈ {1, . . . , Ni}
(lines 28-30, 31-36 of Algorithm 1). In each step, the growing algorithm
j, j ∈ {1, . . . , Ni} adds the most close point to pj from the set of non-visiting
boundary points of sub-region j that minimizes eccentricity of sub-region j,
yielding equal area regions that uniformly grow with a circular-like shape
having minimal eccentricity (line 33 of Algorithm 1).
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Finally, we select splitting to Ni regions, where Ni maximizes the following
criterion:

C(Ni) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Bi√
max(Ai,

1
Ai

) · Ei

, Ni = 1

(1 − b(Ni))maxj∈{1,...,Ni} Bi,j√
max(Ā,

1
Ā

) · Ē
, Ni > 1

(11)

where Ā and Ē denote the mean area and the mean eccentricity of the Ni split
regions. b(Ni) denotes the percentage of boundary pixels between the resulting
sub-regions (intrinsic boundary pixels) of splitting. Bi,j denotes the plausibility
of lymphocyte nuclei sub-region for the sub-region j of region i estimated by
TBM framework. This criterion is maximized when the mean area and mean
eccentricity is close to one (that corresponds to most appropriate shape for
lymphocyte nucleus region) and the maximum probability of lymphocyte nucleus
sub-region is high.

Fig. 2 illustrates an example of region splitting algorithm execution for Ni = 2
and Ni = 3. According to ground truth, the algorithm successfully gives three
partitions, since for Ni = 3 the proposed criterion was maximized, C(1) =
0.47, C(2) = 0.24, C(3) = 0.53, C(4) = 0.35.
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Fig. 2. An example of Region Splitting into (a) Ni = 2. (b) and Ni = 3 sub-regions.

5 Experimental Results

We have tested our method on the data of the Pattern Recognition in Histopatho-
logical Images contest (ICPR 2010). Fig. 3 illustrates results of the proposed
scheme for image im8.tif of the data set. Figs. 3(a) and 3(b) illustrate the origi-
nal image and the principal image component, respectively. Fig. 3(c) illustrates
final results of the method with ground truth. Red boundaries correspond to
candidate regions that are detected as lymphocyte nuclei regions (see Section
3). Blue boundaries correspond to candidate regions that are not detected as
lymphocyte nuclei regions (see Section 3). Green and white squares are the cen-
troids of real lymphocyte nuclei and detected regions, respectively. Fig. 3(d)
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Fig. 3. (a) The original image. (b) The one channel image after PCA. (c) The final

detection with ground truth. (d) The final detected regions.
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input : Region Oi. Number of sub-regions Ni that Oi will be split.

output: The Ni sub-regions Rj
i , j ∈ {1, ..., Ni}.

dmax = 01

foreach (x1, y1) ∈ Oi do2

foreach (x2, y2) ∈ Oi do3

d = (x1 − x2)
2 + (y1 − y2)

2
4

if d > dmax then5

dmax = d6

p1 = (x1, y1)7

p2 = (x2, y2)8

end9

end10

end11

for j = 3 to Ni do12

dmax = 013

foreach (x1, y1) ∈ Oi do14

dmin = ∞15

for n = 1 to j − 1 do16

d = (pn.x − x1)
2 + (pn.y − y1)

2
17

if d < dmin then18

dmin = d19

end20

end21

if dmin > dmax then22

dmax = dmin23

pj = (x1, y1)24

end25

end26

end27

for j = 1 to Ni do28

Rj
i = {pj}29

end30

repeat31

for j = 1 to Ni do32

p̂j = getNextPoint(j,Ri, pj , Oi)33

Rj
i = Rj

i ∪ {p̂j}34

end35

until ∀j ∈ {1, ..., Ni} ⇒ p̂j = ∅36

Algorithm 1. Region Splitting Algorithm

illustrates final detection of the proposed method (white regions). The region
that belongs in [75,85] × [45,55] bound box has been successfully splitted into
two sub-regions. Similarly with Fig. 3(c), Fig. 4 depicts the final results of the
method with ground truth for the rest images of dataset.

Table 2 depicts the Sensitivity and the PPV for each image of the tested
data set. According to this table, Sensitivity and PPV take values in range



Lymphocyte Segmentation Using the Transferable Belief Model 261

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(a)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(b)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(c)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(d)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(e)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(f)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(g)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(h)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(i)

Fig. 4. The final detection with ground truth

Table 2. Sensitivity and PPV

Image Sensitivity PPV

im1 0.968 0.815

im2 0.961 0.714

im3 0.900 0.720

im4 0.950 0.791

im5 0.965 0.933

im6 0.944 0.756

im7 0.928 0.928

im8 0.883 0.926

im9 0.941 0.592

im14 0.952 0.869
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[0.928, 0.968] and [0.714, 0.926], respectively. The mean values of Sensitivity and
PPV are 0.938 and 0.807, respectively.

6 Conclusion

We have proposed an appearance and shape based method for automatic de-
tection of lymphocyte nuclei on histopathology images. We have used a mixture
of Gaussians for determining the probability distribution of the principal image
component and the TBM framework with a region splitting method to detect and
split the lymphocyte nuclei regions. The proposed algorithm gives high accuracy
results on the whole data set: Sensitivity of 0.938 and PPV of 0.807.
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Abstract. In this paper, a method for automatic counting of lympho-

cytes in histopathology images using connected components is presented.

Our multi-step approach can be divided into two main parts: processing

of histopathology images, and recognition of interesting regions. In the

processing part, we use thresholding and morphology methods as well as

connected components to improve the quality of the images for recog-

nition. The recognition part is based on a modified template matching

method. The experimental results achieved for our algorithm prove its

high robustness for this kind of applications.

1 Introduction

In the context of several pathologies including breast and ovarian cancer, the
presence of lymphocytes has been correlated with disease outcome. For instance
for Her2+ breast cancer, the presence of lymphocytic infiltration (LI) has been
correlated with nodal metastasis and tumor recurrence.

The ability to automatically detect and quantify extent of LI on histopathol-
ogy imagery could potentially result in the development of an image based prog-
nostic tool for Her2+ and ovarian cancer patients.

However, lymphocyte segmentation in H & E-stained histopathology images
is complicated by the similarity in appearance between lymphocyte nuclei and
other structures (e.g. cancer nuclei) in the image. Additional challenges include
biological variability, histological artifacts, and high prevalence of overlapping
objects. Although active contours are widely employed in image segmentation,
they are limited in their ability to segment overlapping objects and are sensitive
to initialization.

In this paper, we introduce a new method to tackle the problem of counting
lymphocytes in histopathology images. Our approach can be divided into two
main parts: processing of histopathology images (Section 3), and recognition of
interesting regions (Section 4). In the processing part, we use thresholding and
morphology methods as well as connected components to improve the quality of
the images for recognition. The recognition part is based on a modified template
matching method. The experimental results achieved for our algorithm prove its
high robustness for this kind of applications (Section 5). The paper is closed by
some conclusions in Section 6.

D. Ünay, Z. Çataltepe, and S. Aksoy (Eds.): ICPR 2010, LNCS 6388, pp. 263–269, 2010.
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2 Related Work

Counting lymphocytes in histopathology images is a difficult and important task
and there is some related work in this area.

A good overview with a systematic survey of the computational steps in au-
tomated cancer diagnosis based on histopathology gives [3]. In this paper, the
computational steps are detailed, their challenges addressed and the remedies
to overcome the challenges are discussed. The first computational step is the
image preprocessing to determine the focal areas. Usually it is preceded by noise
reduction to improve its success and in the case of cellular-level diagnosis it also
comprises nucleus/cell segmentation. Step two is the feature extraction to quan-
tify the properties of these focal areas. It defines appropriate representations of
the focal areas that provide distinctive objective measures. Classifying the focal
areas as malignant or not or identifying their malignancy levels is step three. Au-
tomated diagnostic systems that operate on quantitative measures are designed.
This step also estimates the accuracy of the system.

The most related work has been published by Sertel et al. in [6] and [5]. In [6] a
novel color texture classification approach is introduced and applied to computer-
assisted grading of follicular lymphoma from whole-slide tissue samples. In [5]
a model-based intermediate representation (MBIR) of cytological components
that enables higher level semantic description of tissue characteristics and a
novel color-texture analysis approach that combines the MBIR with low level
texture features, which capture tissue characteristics at pixel level is introduced.

Further very related works have been published by scientists from the Labora-
tory for Computational Imaging & Informatics from Rutgers. In [1] an approach
for computerized image-based detection and grading of lymphocytic infiltration
in HER2+ breast cancer histopathology is presented. Fatakdawala et al. present
in [4] an interesting method for an expectation maximization driven geodesic
active contour with overlap resolution and apply their algorithm to lymphocyte
segmentation on breast cancer histopathology.

3 Processing Histopathology Images

This section describes the processing steps of the images before the recognition
of patterns (Figure 1). The images are processed to get the best possible results
and necessary parameters are calculated.

3.1 Groundtruth

Each image of the ground truth contains the contour of one lymphocyte an-
notated by experts (Figure 2). The three parameters arclength L, area A and
compactness c are calculated which describes the elliptic shaped lymphocytes.
The compactness is defined as

c =
L2

4πA
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Fig. 1. H&E stained training data image comprising lymphocytic infiltration

Fig. 2. Groundtruth image containing the contour of one lymphocyte

and describes how similar the object is to a circle. The arclength is the length
of the contour and the area is the amount of pixel inside the contour.

For these parameters the mean value and the variance for all contours in all
images of the ground truth is calculated.

3.2 Thresholding and Morphology

The images of the training data are RGB color images. They are divided into
three single channel images. The red channel contains the most information be-
cause of the staining and therefore is weighted more. Using a threshold according
to [5] the possible lymphocytes are separated from the background and are shown
in the resulting binary images (Figure 3).

To separate touching lymphocyte candidates the morphological operation
opening with an ellipse as structuring element is used. By applying an erosion
followed by a dilatation the separation is done without changing the size of the
lymphocytes.

Fig. 3. Image after thresholding but before morphology
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3.3 Connected Components

Connected components, called blobs, are labeled in the binary images using
contour tracing technique described in [2]. Blobs have the advantage that many
parameters can be calculated easily. Some of them will be used in Section 4.1
for the recognition.

4 Recognition

After processing the images to prepare them for the recognition, candidates for
lymphocytes have to be tested if they are really lymphocytes or not (Figure 4(a)).
A classification into two classes has to be done. It will be distinguished between
candidates that are lymphocytes and candidates that were wrongly detected as
lymphocytes and therefore have to be sorted out.

4.1 Parameter and Selection Criteria

For each blob the same parameters as for the ground truth in Section 3.1 are
calculated, which were arclength, area and compactness. The parameters for the
blobs are compared to those of the ground truth. Candidates for the selection
criteria are minimum value, maximum value, mean value, variance or combina-
tions of the once mentioned before. An optimal criterion has still to be found by
comparing the results of different possible combinations. Until know, if a blob
does not conform to the criterion it is not a lymphocyte (Figure 4(b)). Further
differentiations will be mentioned in Section 4.2.

(a) Before selection

criteria

(b) After selection

criteria

Fig. 4. Binary image showing blobs before and after applying selection criteria (here:

mean value)

4.2 Template Matching

Blobs give us many possibilities to achieve different parameters or properties,
e. g., contour, bounding volume and ellipse fitting. One attempt to find lym-
phocytes is an easy template matching. A static ellipse with fixed parameters is
moved pixel by pixel over the image. The ellipse is described by its two axes. If
there is a match better than 80 percent a lymphocyte is detected. Using blobs
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similar results can be achieved in less time by fitting the largest ellipse possible
into each blob (Figure 5). Additionally the parameters of the ellipses are easy
to compute, e. g., center, area, contour, arclength, axes and angle.

Lymphocytes that overlap in a bigger region and not only in a few pixels can-
not be separated using morphological operators. Here the calculated parameters
of the blobs can be used. If the selection criteria is not fulfilled the blob is clas-
sified as a non-lymphocyte. To make the classification more accurate in another
iteration multiple ellipses are fitted into the blob that does not conform to the
criterion. The blob is divided into as much parts as the criteria finds overlapping
lymphocytes in it.

Fig. 5. Fitting largest ellipse possible into blobs

5 Experiments and Results

The performed experiments to count lymphocytes in histopathology images and
the achieved results will be summarized in this section.

5.1 Experiments

The experiments were performed on H&E stained images digitized at 20x res-
olution. Color space of the training data is RGB, the image format is TIF and
the image size is 100x100 pixels. Depending on the desired output the result-
ing images contain contour, center or blobs of the lymphocytes (Figure 6). The
optimal output depends on the used evaluation methods.

(a) Contours of

blobs

(b) Centers of

blobs

Fig. 6. Contours and centers of blobs possible as resulting images
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5.2 Results

Table 1 shows a quantitative result for ten images. The first column contains the
image number and the second column contains the ground truth. Groundtruth
means the number of lymphocytes in the image annotated by experts. The third
column shows the number of possible candidates found using blobs and the fourth
column contains the number of possible lymphocytes found by an easy template
matching algorithm using an elliptic shaped template.

For further experiments quantitative evaluations of the results have to be used
as well. Therefore the region-based measures dice coefficient, overlap, sensitiv-
ity, specificity and positive predictive value and the boundary-based measures
hausdorff distance and mean absolute distance are calculated.

Table 1. Quantitative results for ten images of training data

image training data blobs template matching

1 32 36 32

2 26 34 29

3 20 22 21

4 19 21 18

5 29 29 29

6 36 32 37

7 28 30 26

8 43 38 41

9 17 7 5

10 20 11 6

6 Conclusions

In this paper, a new approach for counting lymphocytes in histopathology im-
ages has been introduced. The algorithm has been divided into two main parts:
processing of histopathology images (Section 3), and recognition of interesting
image regions (Section 4). For processing, we have used thresholding and mor-
phology methods as well as connected components to improve the quality of the
images. In the recognition phase, we have applied a modified template match-
ing algorithm. The quantitative evaluation has shown a high robustness of our
approach for this kind of applications (Section 5).
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Abstract. This paper summarizes results of the 1st Contest on Seman-

tic Description of Human Activities (SDHA), in conjunction with ICPR

2010. SDHA 2010 consists of three types of challenges, High-level Human

Interaction Recognition Challenge, Aerial View Activity Classification

Challenge, and Wide-Area Activity Search and Recognition Challenge.

The challenges are designed to encourage participants to test existing

methodologies and develop new approaches for complex human activity

recognition scenarios in realistic environments. We introduce three new

public datasets through these challenges, and discuss results of the state-

of-the-art activity recognition systems designed and implemented by the

contestants. A methodology using a spatio-temporal voting [19] success-

fully classified segmented videos in the UT-Interaction datasets, but had

a difficulty correctly localizing activities from continuous videos. Both

the method using local features [10] and the HMM based method [18]

recognized actions from low-resolution videos (i.e. UT-Tower dataset)

successfully. We compare their results in this paper.

Keywords: Activity recognition contest, human activity recognition,

video analysis.

1 Introduction

Human activity recognition is an area with an increasing amount of interest,
having a variety of potential applications. An automated recognition of human
activities from videos is essential for the construction of smart surveillance sys-
tems, intelligent robots, human-computer interfaces, quality of life devices (e.g.
elderly monitoring), and military systems. Developments of spatio-temporal fea-
ture extraction, tracking, and high-level activity analysis are leading today’s
computer vision researchers to explore human activity recognition methodolo-
gies practically applicable for real world applications.

In this contest, we propose three types of activity recognition challenges which
focus on different aspects of human activity recognitions: High-level Human In-
teraction Recognition Challenge, Aerial View Activity Classification Challenge,

D. Ünay, Z. Çataltepe, and S. Aksoy (Eds.): ICPR 2010, LNCS 6388, pp. 270–285, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://cvrc.ece.utexas.edu/SDHA2010/


An Overview of Contest on SDHA 2010 271

Table 1. A table summarizing the results of SDHA 2010 contest. We made the authors

of the teams who decided not to submit their results anonymous. The ‘success’ indicates

that the team successfully submitted their results meeting the requirements. We invited

three teams who showed the best results to submit their papers [9,17,21].

Challenge TeamName Authors Institution Success Paper

Team BIWI Yao et al. ETH Variations of a Hough-Voting 
Action Recognition System

TU Graz - TU Graz X -
SUVARI - Sabanci Univ.1 X -

Interaction

Panopticon - Sabanci Univ.1 X -

Imagelab Vezzani et al.
Univ. of Modena and 

Reggio Emilia O
HMM based Action Recognition 
with Projection Histogram 
Features

ECSI_ISI Biswas et al. Indian Statistical 
Institute

O -

BU_Action Guo et al. Boston University O
Aerial View Activity 
Classification by Covariance 
Matching of Silhouette Tunnels

Aerial-view

Team BIWI Yao et al. ETH O Variations of a Hough-Voting 
Action Recognition System

Wide-area Vistek - Sabanci Univ.2, 
Univ. of Amsterdam

X -

and Wide-Area Activity Search and Recognition Challenge. The three types of
datasets named UT-Interaction, UT-Tower, and UCR-Videoweb are introduced
for each challenge respectively. The objective of our challenges is to provide
videos of human activities which are of practical interests, and make researchers
evaluate their existing/new activity recognition methodologies.

In the interaction challenge, contestants are asked to correctly localize ongo-
ing activities from continuous video streams containing multiple human-human
interactions (i.e. a high-level surveillance setting). The aerial view challenge re-
quires the participants to develop recognition methodologies that handles low-
resolution videos where each person’s height is of approximately 20 pixels. This
challenge is particularly motivated by military applications such as unmanned
aerial vehicles taking videos from an aerial view. The wide-area challenge asks
contestants to retrieve videos similar to query events using a multi-camera
dataset. This dataset consists of videos obtained from multiple camera cover-
ing different regions of a wide area, which is a very common situation in many
surveillance scenarios (e.g. airport).

The challenges are designed to encourage researchers to test their new state-of-
the-art recognition systems on the three datasets with different characteristics
(Table 2). Even though there exist other public datasets composed of human
action videos [16,8,20,13] (Fig. 3 (a-e)), most of them focus on recognition of
simple actions (e.g. walking, jogging, ...) in controlled environments (e.g. only
one actor appears in the videos, taken from a single camera). Several baseline
methods have been implemented by the contest organizers as well, comparing
contestants’ results with well-known previous methodologies. The contest and
its datasets will provide impetus for future research in many related areas.
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Table 2. A table summarizing the characteristics of the contest datasets. ‘# Execu-

tions’ describes the total number of activity executions in the entire dataset. ‘# Ac-

tors’ is the number of actors appearing in the scene simultaneously, and ‘Multi-person’

describes whether the dataset involves multi-person activities or not. ‘Continuous’ in-

dicates whether the dataset consists of continuous video sequences involving multiple

occurrences of human activities.

Dataset Name # Activities #  Executions # Cameras # Actors Resolution Multi-person Continuous
UT-Interaction 6 120+ 1 2~4 720*480 O O

UT-Tower 9 108 1 1 360*240 X X
UCR-Videoweb 52 Multiple 4~8 2~10 640*480 O O

2 Previous Datasets

Several public datasets have been introduced in the past 10 years, encouraging re-
searchers to explore various action recognition directions. The KTH dataset [16]
and the Weizmann dataset [8] are the typical examples of these datasets. These
two single-camera datasets have been designed for research purposes, providing
a standard for researchers to compare their action classification performances.
The datasets are composed of videos of relatively simple periodic actions, such
as walking, jogging, and running. The videos are segmented temporally so that
each clip contains no more than one action of a single person. They were taken in
a controlled environment; their backgrounds and lighting conditions are mostly
uniform. In general, they have a good image resolution and little camera jitters.
The I-XMAS dataset [20] was similar, except that they provided videos from
multiple cameras for a 3-D reconstruction.

Recently, more challenging datasets were constructed by collecting realistic
videos from movies [13,12,14]. These movie scenes are taken from varying view
points with complex backgrounds, in contrast of the previous public datasets
[16,8]. These dataset encourages the development of recognition systems that
are reliable under noise and view point changes. However, even though these
videos were taken in more realistic environments, the complexity of the actions
themselves were similar to [16,8]: the datasets contain simple instantaneous ac-
tions such as kissing and hitting. They were not designed to test recognition of
high-level human activities from continuous sequences.

There also are datasets motivated by surveillance applications. PETS datasets
[1] and i-LIDS datasets [6] belong to this category. The videos in these datasets
were taken in uncontrolled environments (e.g. subway stations), and they contain
few application specific activities (e.g. leaving a baggage). Videos from multiple
cameras watching the same site with different view points are provided.

Each of the datasets introduced in SDHA 2010 has its unique characteristics
that distinguish it from other previous datasets. The UT-Interaction dataset is
designed to encourage detection of interaction-level human activities (e.g. push-
ing and hugging). Instead of asking to classify simple periodic actions, it en-
courages localization of the multiple activities from continuous video streams
spatially and temporally. The UT-Tower dataset contains very low-resolution
videos, which makes their recognition challenging. The UCR-Videoweb dataset



An Overview of Contest on SDHA 2010 273

introduces continuous videos taken from multiple cameras observing different
areas of a place (e.g. CCTV cameras for a university campus building).

Up to our knowledge, SDHA 2010 is the first computer vision contest designed
to compare performances of activity recognition methodologies. There have been
previous competitions for recognizing objects (e.g. PASCAL-VOC [7]) or recog-
nizing a specific scene (e.g. abandoned baggage detection [6]), but no previous
contest attempted to measure general accuracies of systems on recognizing var-
ious types of human activities. Our objective is to evaluate the state-of-the-arts
in activity recognition and establish standard datasets for future exploration.

3 High-Level Human Interaction Recognition Challenge

In the “High-level Human Interaction Recognition Challenge”, contestants are
asked to recognize ongoing human activities from continuous videos. The objec-
tive of the challenge is to encourage researchers to explore the recognition of com-
plex human activities from continuous videos, taken in realistic settings. Each
video contains several human-human interactions (e.g. hand shaking and push-
ing) occurring sequentially and/or concurrently. The contestants must correctly
annotate which activity is occurring when and where for all videos. Irrelevant
pedestrians are also present in some videos. Accurate detection and localization
of human activities are required, instead of a brute force classification of videos.

The motivation is that many of real-world applications require high-level ac-
tivities performed by multiple individuals to be recognized. Surveillance systems
for airports and subway stations are typical examples. In these environments,
continuous sequences provided from CCTV cameras must be analyzed toward
correct detection of multi-human interactions such as two persons fighting. In
contrast to previous single-person action classification datasets discussed in Sec-
tion 2, the challenge aims to establish a new public dataset composed of contin-
uous executions of multiple real-world human interactions.

3.1 Dataset Description

The UT-Interaction dataset1 contains videos of continuous executions of 6 classes
of human-human interactions: hand-shake, point, hug, push, kick and punch. Fig.
1 shows example snapshots of these multi-person activities. Ground truth labels
for all interactions in the dataset videos are provided, including time intervals
and bounding boxes. There is a total of 20 video sequences whose lengths are
around 1 minute (e.g. Fig. 2). Each video contains at least one execution per
interaction, providing us about 8 executions of human activities per video on
average. Several actors with more than 15 different clothing conditions appear
in the videos. The videos are taken with the resolution of 720*480, 30 fps, and
the height of a person in the video is about 200 pixels.

We divide videos into two sets. The set #1 is composed of 10 video sequences
taken on a parking lot. The videos of the set #1 are taken with slightly different
1 http://cvrc.ece.utexas.edu/SDHA2010/Human Interaction.html
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Fig. 1. Example snapshots of the six human-human interactions

zoom rate, and their backgrounds are mostly static with little camera jitter.
The set #2 (i.e. the other 10 sequences) are taken at a lawn on a windy day.
Background is moving slightly (e.g. tree moves), and they contain more camera
jitters. From sequences 1 to 4 and from 11 to 13, only two interacting persons
appear in the scene. From sequences 5 to 8 and from 14 to 17, both interacting
persons and pedestrians are present in the scene. In sets 9, 10, 18, 19, and 20,
several pairs of interacting persons execute the activities simultaneously. Each
set has a different background, scale, and illumination. The UT-Interaction set
#1 was first introduced in [15], and we are extending it with this challenge.

For each set, we selected 60 activity executions that will be used for the train-
ing and testing in our challenge. The contestant performances are measured using
the selected 60 activity executions. The other executions, marked as ’others’ in
our dataset, are not used for the evaluation.

3.2 Results

The interaction challenge consists of two types of tasks: the classification task and
the continuous detection (i.e. localization) task. The contestants are requested
to evaluate their systems with these two different experimental settings:

For the ‘classification’, 120 video segments (from 20 sequences) cropped based
on their ground truth bounding boxes and ground truth time intervals are pro-
vided. The video sequences were segmented spatially and temporally to contain
only one interaction performed by two participants, and the classification accu-
racies are measured with these video segments in a way similar to the previous
settings [16,8]. That is, the performance of classifying a testing video segment
into its correct category is measured.

In the ‘detection’ setting, the entire continuous sequences are used for the
continuous recognition. The activity recognition is measured to be correct if
and only if the system correctly annotates an occurring activity’s time interval
(i.e. a pair of starting time and ending time) and its spatial bounding box. If
the annotation overlaps with the ground truth more than 50% spatially and
temporally, the detection is treated as a true positive. Otherwise, it is treated
as a false positive. Contestants are requested to submit a Precision-Recall curve
for each set, summarizing the detection results.
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Fig. 2. Example video sequences of the UT-Interaction dataset

In both tasks, the contestants were asked to measure the performances of
their systems using 10-fold leave-one-out cross validation per set as follows: For
each round, contestants leave one among 10 sequences for the testing and use
the other 9 for the training. Contestants are required to count the number of
true positives, false positives, and false negatives obtained through the entire 10
rounds, which will provide a particular precision and recall rate of the system
(i.e. a point on a PR curve). Various PR rates will be obtained by changing the
system parameters, and the PR curve is drawn by plotting them.

A total of four teams showed their intent to participate the challenge. How-
ever, only one among them succeeded to submit results for the classification
task, which we report with Tables 3 and 4. The team BIWI [19] used a Hough
transform-based method to classify interaction videos. Their method is based
on [21], which uses a spatio-temporal voting with extracted local XYT features.
A pedestrian detection algorithm was also adopted for the better classification.
Particularly for the interaction challenge, they have modeled each actor’s action
using their voting method, forming a hierarchical system consisting of 2-levels.

In addition, in order to compare the participating team’s result with previous
methodologies, we have implemented several existing well-known action classi-
fication methods. Two different types of features (i.e. spatio-temporal features
from [16] and ‘cuboids’ from [4]) are adopted, and three types of elementary
classifiers, {k-nearest neighbor classifiers (k-NNs), Bayesian classifiers, and sup-
port vector machines (SVMs)}, are implemented. Their combinations generate
six baseline methods as specified in Tables 3 and 4.

The baseline classifiers rely on a feature codebook generated by clustering
the feature vectors into several categories. Codebooks were generated 10 times
using k-means algorithm, and the systems’ performances have been averaged for
the 10 codebooks. SVM classification accuracies with the best codebook is also
provided for the comparison. In the baseline methods, video segments have been
normalized based on the ground truth so that the main actor of the activity (e.g.
the person punching the other) always stands on the left-hand side.

The classification results shows that the pointing interaction composed of
least number of feature and the hugging interaction composed of the largest
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Table 3. Activity classification accuracies of the systems tested on the UT-Interaction

dataset #1. The 1st, 2nd, and 3rd best system accuracies are described per activity:

the blue color is for the 1st, the orange color suggests the 2nd, and the green color is

for the 3rd.

Shake Hug Kick Point Punch Push Total
Laptev + kNN 0.18 0.49 0.57 0.88 0.73 0.57 0.57

Laptev + Bayes. 0.38 0.72 0.47 0.9 0.5 0.52 0.582
Laptev + SVM 0.49 0.79 0.58 0.8 0.6 0.59 0.642

Latpev + SVM (best) 0.5 0.8 0.7 0.8 0.6 0.7 0.683
Cuboid + kNN 0.56 0.85 0.33 0.93 0.39 0.72 0.63

Cuboid + Bayes. 0.49 0.86 0.72 0.96 0.44 0.53 0.667
Cuboid + SVM 0.72 0.88 0.72 0.92 0.56 0.73 0.755

Cuboid + SVM (best) 0.8 0.9 0.9 1 0.7 0.8 0.85
Team BIWI 0.7 1 1 1 0.7 0.9 0.88

Table 4. Activity classification accuracies of the systems tested on the UT-Interaction

dataset #2

Shake Hug Kick Point Punch Push Total
Laptev + kNN 0.3 0.38 0.76 0.98 0.34 0.22 0.497

Laptev + Bayes. 0.36 0.67 0.62 0.9 0.32 0.4 0.545
Laptev + SVM 0.49 0.64 0.68 0.9 0.47 0.4 0.597

Latpev + SVM (best) 0.5 0.7 0.8 0.9 0.5 0.5 0.65
Cuboid + kNN 0.65 0.75 0.57 0.9 0.58 0.25 0.617

Cuboid + Bayes. 0.26 0.68 0.72 0.94 0.28 0.33 0.535
Cuboid + SVM 0.61 0.75 0.55 0.9 0.59 0.36 0.627

Cuboid + SVM (best) 0.8 0.8 0.6 0.9 0.7 0.4 0.7
Team BIWI 0.5 0.9 1 1 0.8 0.4 0.77

number of distinctive features was recognized with a high accuracy in general.
Punching was confused with pushing in many systems because of their similarity.
The participating team, BIWI, showed the highest recognition accuracy. The
performances of the “Cuboid + SVM” with the best codebook were comparable.

3.3 Discussions

No team was able to submit a valid result for the detection task with continuous
videos. There were 4 teams intended to participate challenge, but only one team
succeeded to classify human interactions successfully and none succeeded to per-
formed the continuous recognition. This implies that the recognition of high-level
human activities from continuous videos still is an unsolved problem. Despite the
demands from various applications including surveillance, the problem remains
largely unexplored by researchers.

Applying the ‘sliding windows’ technique together with the classifier used
above will be a straight forward solution. However, given the reported classi-
fication accuracies, such method is expected to generate many false positives.
Using a voting-based methodology (e.g. [15,21]) is a promising direction for the
detection task, and they must be explored further. In addition, we were able
to observe that the hierarchical approach obtained better performances than



An Overview of Contest on SDHA 2010 277

the other baseline methods. Developing hierarchical approaches for continuous
detection and localization of complex human activities will be required.

4 Aerial View Activity Classification Challenge

The ability to accurately recognize human activities at a distance is essential for
several applications. Such applications include automated surveillance, aerial or
satellite video analysis, and sports video annotation and search, etc. However,
due to perspective distortion and air turbulence, the input imagery is presented
in low-resolution and the available action patterns tend to be missing and blurry.
In addition, shadows, time-varying lighting conditions, and unstabilized videos
can all add up to the difficulty of this task. Therefore, without explicitly ad-
dressing these issues, most existing work in activity recognition may not be
appropriate under the scenario.

In this “Aerial View Activity Classification Challenge”, we aim to motivate
researchers to explore techniques that achieve accurate recognition of human
activities in videos filmed from a distant view. To simulate the video settings,
we took image sequences of a single person performing various activities from
the top of the University of Texas at Austin’s main tower. We name it UT-Tower
dataset2. The average height of a human figure in this dataset is about 20 pixels.
The contest participants are expected to classify 108 video clips from a total of
9 categories of human activities. The performance of each participating team is
evaluated by their leave-one-out accuracy on the dataset.

As described in Section 2, there exist several public datasets that are widely
referred and tested in the literature of human activity recognition [8,16,13,5,20].
However, all these datasets (except the Soccer dataset) are taken from an ap-
proximate side view and they have human figures presented in high-resolution
imagery (Fig. 3). The Soccer dataset contains low-resolution videos similar to
ours, but the action categories of the Soccer dataset are defined by the pro-
ceeding directions of the players, and nearly half of the video sequences are the
mirrors of the other half. These issues limit their applicability to the evaluation
of activity recognition algorithms that focus on low-resolution video settings.
Therefore, with this challenge, we distribute a new dataset for the assessment of
general and surveillance oriented applications.

4.1 Dataset Description

Filmed top-down from a 307-foot high tower building, the UT-Tower dataset is
composed of low-resolution videos similar to the imagery taken from an aerial
vehicle. There are 9 classes of human actions: ‘pointing’, ‘standing’, ‘digging’,
‘walking’, ‘carrying’, ‘running’, ‘wave1’, ‘wave2’, ‘jumping’. Algorithm perfor-
mance on both still and moving types of human activities are to be examined.
A total of 6 individuals acted in this dataset. We let each performer repeat ev-
ery activity twice so that there are 108 sequences in the dataset. To add to the
2 http://cvrc.ece.utexas.edu/SDHA2010/Aerial View Activity.html
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 3. The widely used public datasets are mostly in medium- to high-resolution, for

example, (a) Weizmann dataset, (b) KTH dataset, (c) HOHA dataset, and (d) I-XMAS

dataset. Low-resolution datasets include (e) Soccer dataset and the proposed (f) UT-

Tower dataset. The sizes of the images are proportional to their actual resolutions.

variety of the dataset, we recorded the activities under two types scene settings:
concrete square and lawn. The videos were taken in 360×240 pixels resolution
at 10fps. In addition to the low-resolution setup, the UT-Tower dataset also
poses other challenges. For example, the direct sunlight causes salient human
cast shadows and the rooftop gust brings continuous jitters to the camera. Fig.
4 shows the example video sequences of the dataset.

We manually segmented the original video into short clips so that each clip
contains one complete track of human activity. In order to alleviate segmentation
and tracking issues and make participants focus on the classification problem, we
provide ground truth bounding boxes as well as foreground masks for each video.
Contestants are free to take advantages of them or apply their own preprocessing
techniques.

4.2 Results

In the aerial challenge, the contestants were asked to classify video clips in the
UT-Tower dataset into the above-mentioned 9 action categories. Similar to the
classification task of the interaction challenge, a leave-one-out cross validation
setting is used. Here, one among 108 videos are used for the testing, and the
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Fig. 4. The examples of ‘digging’, ‘carrying’, and ‘wave1’ in the UT-Tower dataset

others are used for the training. That is, a 108-fold cross validation is performed
to evaluate the performances of the systems.

There are totally 4 university teams participated in this contest. Each team
has tested their proposed algorithm on the UT-Tower dataset and reported the
results. We briefly summarize the submitted methodologies and our baseline
technique as follows.

Team BIWI. BIWI team from ETH Zurich proposes to use a Hough transform-
based voting framework for action recognition [19]. They separate the voting
into two stages to bypass the inherent high dimensionality problem in Hough
transform representation. Random trees are trained to learn a mapping be-
tween densely-sampled feature patches and their corresponding votes in a spatio-
temporal-action Hough space. They perform recognition by voting with a col-
lection of learned random trees.

BU Action Covariance Manifolds. Boston University team represents a
track of human action as a temporal sequence of local shape-deformations of
centroid-centered object silhouettes [10], i.e., the shape of the silhouette tunnel.
The empirical covariance matrix of a set of 13-dimensional feature is extracted
as feature from the silhouette tunnel. The silhouette tunnel of a test video is
broken into short overlapping segments and each segment is classified using a
dictionary of labeled action covariance matrices with the nearest neighbor rule.

ECSU ISI. The team from Indian Statistical Institute adopts a bag-of-word-
based approach, which represents actions by the chosen key poses. The key poses
are extracted from an over-complete codebook of poses using the theory of graph
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Table 5. System accuracies (%) of the aerial-view challenge

connectivity. They train a Support Vector Machines (SVM) classifier to perform
action classification.

Imagelab. The University of Modena and Reggio Emilia team applies a hidden
Markov model (HMM) based technique [18] on the dataset. Their action de-
scriptor is a K-dimensional feature set extracted from the projection histograms
of the foreground masks. They train a HMM per action and is able to perform
recognition on-line.

Baseline. We consider a baseline approach as a simple combination of a com-
monly used feature and a linear classifier. For this purpose, we use time serious
of Histogram of Oriented Gradients (HOG) [3] to characterize successive human
poses and a linear kernel SVM classifier for classification. A track of human ac-
tion is divided into overlapped spatio-temporal volumes, from which we extract
and concatenate sequences of HOG vectors as the baseline action descriptors.

We tabulate the average accuracy per activity as well as the overall accuracy
of each team and the baseline method in Table 5. Note that prior to this compe-
tition, Chen and Aggarwal [2] have tested their method on part of this dataset
(60 sequences of the lawn scene). They were able to achieve 100% accuracy on
the partial dataset. For the sake of fairness, we did not include their latest results
in this paper.

4.3 Discussions

As shown in Table 5, all the contestants achieve very similar accuracies on this
low-resolution dataset. The BU team using a silhouette-based method performed
the best among four participating teams. In addition, we are surprised to find out
that the baseline method was comparable; it obtained the 2nd best performance.
‘pointing’, ‘standing’, ‘wave1’, and ‘wave2’ are the most common activities that
caused misclassifications. The action pairs of <pointing, standing>, <pointing,
wave1>, and <wave1, wave2> can be confusing to a recognition algorithm in
the sense that one action can only be distinguished from the other by a very
short period of hand motion. In low-resolution imagery, vague and sparse action
features, salient human cast shadow, and unstabilized videos can all make the
discerning task even more challenging. Therefore, we believe a more elaborate
preprocessing procedure and the employment of multiple features in classification
may further the performance on this dataset.
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5 Wide-Area Activity Search and Recognition Challenge

The objective of the “Wide-Area Activity Search and Recognition Challenge” is
to search a video given a short query clip in a wide-area surveillance scenario.
Our intention is to encourage the development of activity recognition strategies
that are able to incorporate information from a network of cameras covering a
wide-area. The UCR-Videoweb dataset3 introduced in this paper has activities
that are viewed from 4-8 cameras and allows us to test performance in a camera
network. For each query, a clip video containing a specific activity was provided,
and the contestants are asked to search for similar videos.

In contrast to the other two challenges, the wide-area challenge was an open
challenge: The contestants were free to choose particular types of human activ-
ities from the dataset for the recognition, and they were allowed to explore a
subset of entire videos.

5.1 Dataset Description

The Videoweb dataset consists of about 2.5 hours of video observed from 4-8
cameras. The data is divided into a number of scenes that were collected over
several days. Each scene is observed by a camera network where the actual
number of cameras changes depending on the scene due to its nature. For each
scene, the videos from the cameras are available. Annotation is available for each
scene and the annotation convention is described in the dataset. It identifies the
frame numbers and camera ID for each activity that is annotated. The videos
from the cameras are approximately synchronized.

The videos contain several types of activities including throwing a ball, shak-
ing hands, standing in a line, handing out forms, running, limping, getting
into/out of a car, and cars making turns. The number for each activity varies
widely. The data was collected in 4 days and the number of scenes are: {day1: 7
scenes}, {day2: 8 scenes}, {day3: 18 scenes}, and {day4: 6 scenes}. Each scene
are on average 4 minutes long and there are 4-7 cameras in each scene. Each scene
contains multiple activities. Figure 6 shows example sequences of the dataset.

5.2 Results

In the wide-area challenge, the contestants were asked to formulate their own
activity search problem with the dataset, and report their results. That is, each
contestant must choose query clips from some scenes in the dataset and use them
to retrieve similar scenes in another parts of the dataset. The ‘correctly identified
clip’ is defined as the clip in which the overlap in the range of frame numbers
obtained by the search engine for an activity is at least 50% of the range in the
annotation and not more than 150% of that range.

There was a single team who showed an intention to participate the wide-area
challenge. However, unfortunately, no team succeeded to submit valid results for
the wide-area challenge. Here, we report results of systems implemented by the
3 http://vwdata.ee.ucr.edu/
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Fig. 5. Example images from the UCR-Videoweb dataset. Each image shows a snapshot

obtained from one of 8 different cameras at a particular time frame.

contest organizer [11], so that they can be served as a baseline for the future re-
search. We formulate three types of problems, where each of them focuses on the
search of different types of human activities, and report the system performances
on these tasks.

Query-Based Complex Activity Search. In this task, we searched for in-
teractions in videos using a single video clip as a query. We worked with 15
minutes of video where up to 10 different actors take part in any given complex
activity which involves interaction of humans with other humans, objects, or
vehicles. We have used 6 scenes from day 3 data as the test set. The problem
was very similar to the human-human interaction detection problem in Section
3, recognizing three types of interactions: shaking hands, hugging, and pointing.
Table 6 shows the detection accuracies together with false positive rates.

Table 6. Recognition accuracy on three complex human-human interactions

Interaction Our recognition accuracy False positive rate

Shake hands 0.68 0.57

Hug 0.74 0.55

Point 0.63 0.25

Modeling and Recognition of Complex Multi-person Interactions in
Video. This task is to examine the formation and dispersal of groups and crowds
from multiple interacting objects, which is a fast-growing area in video search.
We search for activities involving multiple objects and analyze group formations
and interactions. For this task, four scenes have been used for the testing (more
details can be found at [11]). We apply a modeling-based methodology to test the
implemented system within a query-based retrieval framework. Table 7 shows
the types of interactions searched and the precision/recall values of the system.
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Table 7. Precision/Recall Values for DB query and retrieval of two-object and complex,

multi-object motions

Activity Precision Recall Total
Fetched

True
Pos.

Ground
Truth

Person Entering Building 1 1 4 4 4

Person Exiting Building 1 1 2 2 2

Person Entering Vehicle 0.75 0.75 4 3 3

Person Exiting Vehicle 1 1 3 3 3

People Walking Together 1 0.6 3 3 5

People Coming Together 0.7 0.7 7 5 5

People Going Apart 0.8 1 5 4 5

People Milling Together 0.78 0.92 14 11 13

People Meandering Together 0.85 0.92 27 23 25

Group Formation 1 0.78 7 7 9

Group Dispersal 0.8 0.8 5 4 4

Person Joining Group 1 0.95 18 18 19

Person Leaving Group 1 1 11 11 11

Fig. 6. This figure shows the comparison of the recognition scores of our overall ap-

proach with single camera action recognition scores. For action class 3, the single view

action recognition was almost flat over all action classes, so the fusion could not im-

prove the result much. On the other hand, in action class 5, at least one of the cameras

got a good shot of the action and the fused scores went up. In this experiment, each

of the targets was viewed by 1-3 cameras simultaneously.

Activity Recognition Based on Multi-camera Data-Fusion. In the past
few years, multi-camera installations have rapidly positioned themselves in many
applications, e.g., video surveillance, national and homeland security, assisted liv-
ing facilities, environmental monitoring, disaster response etc. The automated
analysis of human actions from these video streams has gained a lot of impor-
tance recently. The goal of this task is to search for human actions in such an
environment, integrating information from multiple cameras.
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We used 8 scenes from day3: the segments of videos having at least one of
our defined action classes were selected from these 8 scenes. 10 minutes of the
UCR-Videoweb data-set was used for training and another 10 minutes was used
for testing. We trained our system for six different action classes, i.e. 1 - Sit, 2
- Walk, 3 - Picking up object, 4 - Shake hand, 5 - Hug and 6 - Wave one hand.
Approximately 15 video clips of 2-3 seconds each were used to train our classifier
per activity. For each action class, 10-20 instances of each action were used for
testing and about 30 different scenarios of multiple actions occurring in multiple
cameras were used for testing.

We show the statistics of the performance gain of our method over single-view
action recognition scores in Fig. 6. That is, we show that data association and
information fusion among multiple cameras improves recognition performance.

6 Conclusion

In this overview paper, we have summarized the results of the first Contest on
Semantic Description of Human Activities (SDHA) 2010. SDHA 2010 is one of
the very first activity recognition contest, consists of three types of challenges.
The challenges introduced three new public datasets (UT-Interaction, UT-Tower,
and UCR-Videoweb), which motivated contestants to develop new approaches
for complex human activity recognition scenarios in realistic environments. Re-
searchers from various universities participated in SDHA 2010, proposing new
activity recognition systems and discussing their results. In addition, several
baseline methods were implemented and compared with contestants’ results.
SDHA 2010 evaluated the state-of-the-arts in human activity recognition.

Table 1 summarizes the results of SDHA 2010. A total of four teams showed
their intent to participate the interaction challenge. However, only a single team
succeeded to submit results for the classification task, and no team submit-
ted correct detection results. There were four teams participated in the aerial-
view challenge, and all teams submitted results with high recognition accuracies
(>0.95). One team intended to participated the wide-area challenge, but the
team decided not to submit the results. This is due to the fact that the activities
used in the aerial-view challenge were relatively simple compared to the others.
Simple one-person actions were classified in the challenge, while the activities in
the other two challenges include high-level multi-person interactions. We are able
to observe that localization of ongoing activities from continuous video streams
is a challenging problem, which remains open for future investigations.
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Abstract. Hidden Markov Models (HMM) have been widely used for

action recognition, since they allow to easily model the temporal evolu-

tion of a single or a set of numeric features extracted from the data. The

selection of the feature set and the related emission probability function

are the key issues to be defined. In particular, if the training set is not

sufficiently large, a manual or automatic feature selection and reduction

is mandatory. In this paper we propose to model the emission proba-

bility function as a Mixture of Gaussian and the feature set is obtained

from the projection histograms of the foreground mask. The projection

histograms contain the number of moving pixel for each row and for each

column of the frame and they provide sufficient information to infer the

instantaneous posture of the person. Then, the HMM framework recov-

ers the temporal evolution of the postures recognizing in such a manner

the global action. The proposed method have been successfully tested on

the UT-Tower and on the Weizmann Datasets.

Keywords: HMM, Projection Histograms, Action Classification.

1 Introduction

Action classification is a very important task for a lot of automatic video surveil-
lance applications. The main challenge relies on developing a method that is able
to cope with different types of action, even if they are very similar to each other
and also in the case of cluttered and complex scenarios. Occlusions, shadows and
noise are the main problems to be faced.

In video surveillance applications the actions should usually be recognized
by means of an image stream coming from a single camera. Common 2D ap-
proaches analyze the action in the image plane relaxing all the environmen-
tal constraints of 3D approaches but lowering the discriminative power of the
action-classification task. The action classification can be performed in the im-
age plane by explicitly identifying feature points [1], or considering the whole
silhouette [2, 3]. Other approaches directly map low-level image features to ac-
tions, preserving spatial and temporal relations. To this aim, feature choice is a
crucial aspect to obtain a discriminative representation. An interesting approach
that detects human action in videos without performing motion segmentation

D. Ünay, Z. Çataltepe, and S. Aksoy (Eds.): ICPR 2010, LNCS 6388, pp. 286–293, 2010.
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was proposed by Irani et al. in [4]. They analyzed spatio- temporal video patches
to detect discontinuities in the motion-field directions. Despite the general ap-
plicability of this method, the high computational cost makes it unusable for
real-time surveillance applications.

After their first application in speech recognition [5], HMMs have been widely
used for action recognition tasks. In a recent and comprehensive survey on ac-
tion recognition [6] several HMM based methods are presented. Yamato et al
in [7] used HMMs in their most simpler shape: a set of HMM, one for each ac-
tion, is trained. The observation probability function is modeled as a discrete
distribution adopting a mesh feature computed frame by frame on the data [8],
and finally, the learning was based on the well known Baum-Welch approach.
Similarly, Li [9] proposed a simple and effective motion descriptor based on ori-
ented histograms of optical flow field sequence. After dimensional reduction by
principal component analysis, it was applied to human action recognition us-
ing the hidden Markov model schema. Recently, Martinez et al [10] proposed a
framework for action recognition based on HMM and a silhouette based feature
set. Differently from the other proposals, their solution lies on an 2D modeling
of human actions based on motion templates, by means of motion history images
(MHI). These templates are projected into a new subspace using the Kohonen
self organizing feature map (SOM), which groups viewpoint (spatial) and move-
ment (temporal) in a principal manifold, and models the high dimensional space
of static templates. The higher level is based on a Baum-Welch learned HMM.

In this work we adopt the common HMM framework with a feature set particu-
larly suitable for low quality images. We firstly segment and track the foreground
images by means of the Ad-Hoc system [11]. Thus, the projection histograms of
the foreground blobs are computed and adopted as feature set [2]. To avoid the
course of dimensionality we sub-sampled the histograms, in order to obtain a fea-
ture set with a reasonably limited number of values. Ad-Hoc includes a shadow
removal algorithm [12]; nevertheless shadows can contain information about the
current posture and can be adopted as additional data to recover missing one.

In Section 2 the traditional HMM action classification framework is reported.
Section 3 describes the Projection Histogram feature set as well as a shape based
feature set used as reference. Finally, comparative tests and the results of the
proposed schema over the UT-Tower dataset are reported in Section 4.

2 HMM Action Classification

Given a set of C action classes Λ = λ1 . . . λC , our aim is to find the class λ∗ which
maximise the probability P (λ|O), where O = {o1 . . . oT } is the entire sequence of
frame-wise observations (features). In his famous tutorial [5], Rabiner proposed
to use hidden Markov models to solve this kind of classification problems. An
HMM should be learned for each action; the classification of an observation
sequence O is then carried out selecting the model whose likelihood is highest,
λ∗ = argmax1≤c≤C [P (O|λc )]. If the classes are equally likely, this solution is
optimal also in a Bayesian sense.
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λ∗ = arg max
1≤c≤C

[P (O|λc )] (1)

Since the decoding of internal state sequence is not required, the recursive for-
ward algorithm with the three well known initialization, induction and termina-
tion equations have been applied.

α1(j) = πibj(o1), 1 ≤ i ≤ N

αt+1(j) =
[∑N

i=1 αt(i)aij

]
bj (ot+1)

P (O|λ) =
∑N

j=1 αT (j)

(2)

The term bj(ot) depends on the type of the observations. We adopted the K-
dimensional feature set described in the following, which requires to model the
observation probabilities by means of density functions. As usual, we adopt
a Gaussian Mixture Model, which simplifies the learning phase allowing a si-
multaneous estimation of both the HMM and the Mixtures parameters using
the Baum-Welch algorithm, given the numbers N and M of hidden states and
Gaussians per state respectively. In this case, the term bj(ot) of Eq. 2 can be
approximated as:

bj(ot) =
M∑

m=1

cjmNK (ot|μjm, Σjm) (3)

where NK(μ, Σ) is a K-dimensional Gaussian distribution having mean vector μ
and covariance matrix Σ; μjm,Σjm and cjm are the mean, the covariance matrix
and the mixture weight of the m-th component for the action j.

3 Feature Sets

The selection of the feature set to use is very important for the final classification
rate. In particular, the adopted features should capture and follow the action
peculiarities, but, at the same time, they should allow the action generalization.

In this paper we propose and compare two different feature sets. The first
is based on the so called Projection Histograms and it is based on the shape
of the foreground mask only; position and global motion of the person are not
considered. The projection histograms have been used in the past for frame by
frame posture classification [2]. The second feature set, instead, is composed by
a mix of different measures, some of them based on the appearance and some
on the person position and speed [13]. Independently from the semantics and
the computation schema, the input for the HMM framework is a K-dimensional
vector o1

t . . . oK
t ∈ R

K .

3.1 Projection Histograms Feature Set

Since the videos were acquired by a fixed camera, each frame It(x, y) is processed
to extract the foreground mask (F ) by means of a background subtraction step
[12]. For this contest, we directly used the foreground images furnished within
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Fig. 1. Vertical and Horizontal Projection histograms of a sample blob

the dataset [14]. The feature vectors ot are then obtained from the projection
histograms of the foreground mask [2], i.e. projections of the person’s silhouette
onto the principal axes x and y.

Examples of projection histograms are depicted in Fig. 1.
Given the boolean foreground mask F (x, y), the projection histograms θ and

π can be mathematically defined as:

θ(x) =
Fy∑

y=0

φ(F (x, y)) ; π(y) =
Fx∑

x=0

φ(F (x, y)) (4)

where the function φ is equal to 1 if F (x, y) is true, 0 otherwise, while Fx and
Fy are the width and the height of the foreground mask F respectively.

In practice, θ and π can be considered as two feature vectors and the final
feature vector Ot ∈ R

K used to describe the current frame is obtained from θ
and π normalizing each value such as they sum up to 1, resampling the two
projection histograms to a fixed number S = K/2 of bins, and concatenating
them into a unique vector.

Fig. 2. Comparison of the projection histograms achieved by preserving (top) or re-

moving (bottom) shadows
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3.2 Model Based Feature Set

Projection histograms do not depend on any assumption on the people shape
and they can be used to describe a generic object. We propose another simple
feature set, which is based on a simplified body model, discriminative enough
to obtain reasonable classification rates, but not too complex to permit fast
processing. The foreground silhouettes are divided into five slices S1 . . . S5 using
a radial partitioning centered in the gravity center {xc(t), yc(t)}. These slices
should ideally correspond to the head, the arms and the legs. Calling At and
{Ai

t}i=1...5 the areas of the whole silhouette and of each slice {Si} respectively,
the 17-dimensional feature set is obtained as reported in Fig. 3. The features
contain both motion (o1 and o2) and shape information (o3 . . . o17).

ot =
{
o1

t . . . o17
t

}
, =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

o1
t = xc(t) − xc(t − 1);

o2
t = yc(t) − yc(t − 1);

o3...7
t = Ai

t

At
, i = 1 . . . 5;

o8...12
t = max(x,y)∈Si

x√
Ai

t

, i = 1 . . . 5;

o13...17
t = max(x,y)∈Si

y√
Ai

t

, i = 1 . . . 5;

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5)

Fig. 3. Model-based 17-dimensional Feature set

4 Experimental Results

The proposed method have been tested on the UT-Tower Dataset [14] and on
the Weizmann dataset [15].

The UT-Tower Dataset [14] contains 112 videos of 9 actions performed 12
times each, Some actions are performed in different ways, thus in the on-line
recognition we used all the 16 specific classes (Some frames of the dataset are
reported in Fig. 4).

Fig. 4. Sample input frame of the UT-Tower dataset
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We tested the system using the projection histogram feature set. The number
of bins have been sub-sampled to 10 for each direction, obtaining a 20-dimensional
feature set. The classification precision achieved using a leave-one-out test schema
is around 96%. The confusion matrix is reported in table 5.

The low quality of the segmentation masks and the too limited size of the
blobs make the alternative feature set ineffective. Moreover, shadows play an
important role in the classification results. In Fig. 2(d) and 2(e) the projection
histograms obtained by including shadows or removing them are shown: shad-
ows strongly affect projection histograms based on blob’s silhouette, and thus
they usually must be removed. Anyway, if the shadow characteristics (i.e., size,
position, direction) are not changing among sequences, they can be leaved; on
the contrary, information about the performed action are also embedded in the
shadow. Thus, we can avoid any shadow removal step if the shadows are always
in the same direction and if the adopted feature set is not model based (such
as the projection histograms). The model-based feature set described in section
3.2, instead, starts with the estimation of the body center. Shadows strongly
compromise this estimation and the overall action classification rate, achieving
performance around the 60% on the same dataset.

Fig. 5. Confusion matrix of the Projection Histograms Feature set on the UT-Tower

dataset

The Weizmann dataset [15] contains 90 videos of 10 main actions performed
by 9 different people. Some actions are performed in different ways, thus in the
on-line recognition we used all the 16 specific classes. Example frames of this
well known dataset are shown in Figure 7.

With this dataset the model based feature set performs better than the pro-
jection histograms one. The confusion matrix obtained using the model based
feature set is shown in Figure 6.

We empirically tuned the HMM parameters. In particular the number N of
hidden states and the number M of Gaussians of the mixture model of Eq. 3
have been set to 5 and 3 respectively to maximize the recognition rates based
on some experiments we carried out on the Weizmann dataset.
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Fig. 6. Confusion matrix of the Model Based Feature set on the Weizmann dataset

Fig. 7. Sample input frame of the Weizmann dataset

The complete system, including the background subtraction and updating
step, the object tracking, feature extraction and action classification is working
in real time, processing about 15 frames per second.

5 Conclusions

In this paper, a traditional HMM framework for action recognition is presented.
We proposed and compared two different feature sets, based on projection his-
tograms and shape descriptors respectively. The framework was initially devel-
oped for the participation to the ICPR 2010 Contest on Semantic Description
of Human Activities - “Aerial View Activity Classification Challenge” [14]. Us-
ing the projection histogram feature set the classification precision is around
96%. The system was also tested on the Weizmann dataset [15], on which
the shape descriptors performs better than projection histograms. Given the
temporal segmentation of the actions and a well representative training set,
the Hidden Markov Model approach still guarantees good performances both in
terms of precision and computational load.
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Abstract. A novel framework for action recognition in video using empirical co-
variance matrices of bags of low-dimensional feature vectors is developed. The
feature vectors are extracted from segments of silhouette tunnels of moving ob-
jects and coarsely capture their shapes. The matrix logarithm is used to map the
segment covariance matrices, which live in a nonlinear Riemannian manifold, to
the vector space of symmetric matrices. A recently developed sparse linear rep-
resentation framework for dictionary-based classification is then applied to the
log-covariance matrices. The log-covariance matrix of a query segment is approx-
imated by a sparse linear combination of the log-covariance matrices of training
segments and the sparse coefficients are used to determine the action label of
the query segment. This approach is tested on the Weizmann and the UT-Tower
human action datasets. The new approach attains a segment-level classification
rate of 96.74% for the Weizmann dataset and 96.15% for the UT-Tower dataset.
Additionally, the proposed method is computationally and memory efficient and
easy to implement.

Keywords: video analysis; action recognition; silhouette tunnel; covariance man-
ifold; sparse linear representation.

1 Introduction

Algorithms for recognizing human actions in a video sequence are needed in applica-
tions such as video surveillance, where the goal is to look for typical and anomalous pat-
terns of behavior, and video search and retrieval in large, potentially distributed, video
databases such as YouTube. Developing algorithms for action recognition in video that
are not only accurate but also efficient in terms of computation and memory-utilization
is challenging due to the complexity of the task and the sheer size of video.

The action recognition problem, in its full generality, is challenging due to the com-
plexity of the scene (multiple interacting moving objects, clutter, occlusions, illumi-
nation variability, etc.), the camera (imperfections, motion and shake, and viewpoint),
and the complexity of actions (non-rigid objects and intra- and inter- class action vari-
ability). Even when there is only a single uncluttered and unoccluded object1 and

� This material is based upon work supported by the US National Science Foundation
(NSF) under awards CNS–0721884 and (CAREER) CCF–0546598, and National Geospatial-
Intelligence Agency (NGA) under award HM1582-09-1-0037.

1 Such footage may be obtained by detecting, tracking, and isolating object trajectories.
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the camera and illumination conditions are perfect (a typical assumption in the liter-
ature), the complexity and variability of actions makes action recognition a difficult
problem.

The accuracy and efficiency of an action recognition algorithm critically depends
on 1) how actions are modeled and represented and 2) how distances between action
representations are measured for classification. To date, various action models and rep-
resentations have been proposed, from those based on Hidden Markov Models [14,12],
through interest-point models [10,4,9,8] which are sparse (relative to the number of pix-
els) yet highly discriminative, e.g., corners and SIFT features, and local motion models,
e.g., kinematic characteristics from optical flow [1] and 3D local steering kernels [11],
to silhouette tunnel shape models [6,7]. Similarly, various metrics have been proposed
to measure distances between action representations, from the Hausdorff distance be-
tween sets of action feature vectors in Euclidean space extracted from multiple action
instances (e.g., see [6]) to the matrix cosine similarity measure (Frobenius inner prod-
uct) between matrices of action feature vectors [11]. The methods developed to-date
are either computationally and/or memory intensive and/or their accuracy varies signif-
icantly across different data sets.

In [7] we developed a nearest-neighbor (NN) supervised classification algorithm for
human action recognition using a labeled dictionary of empirical feature-covariance
matrices. These were obtained from bags of low-dimensional feature vectors extracted
from the object silhouette tunnels and coarsely captured their shape. A Riemannian met-
ric on the manifold of covariance matrices was used for determining nearest neighbors.
In this paper, we apply the recently developed sparse linear representation framework
for dictionary-based classification [13] to the matrix logarithm of the feature-covariance
matrices as an alternative to NN-classification. We report the performance of this new
approach on the Weizmann human action dataset [6] and the UT-tower dataset [3] pro-
vided by the ICPR 2010 “Aerial View Activity Classification Challenge”. We also com-
pare its performance with the method we previously developed in [7] that uses the same
action representation (covariance matrix of silhouette shape features) but a different
classification rule (NN-classifier).

2 Framework

We view action recognition as a supervised classification problem where the goal is to
classify a query video segment using a dictionary of previously labeled training video
segments. Video segments are typically high dimensional, e.g., a 20-frame video seg-
ment with a 128 × 128 frame resolution is, roughly, a 3 × 105-dimensional vector,
whereas the number of training video segments is meager in comparison. It is therefore
impractical to learn the global structure of training video segments by building clas-
sifiers directly in high-dimensional space. Graphical models, which attempt to capture
global dependencies through local structure, are powerful; but training classifiers based
on these models is challenging.
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2.1 Action Representation Using Low-Dimensional Feature-Covariance
Matrices

We adopt a “bag of dense local feature vectors” modeling approach wherein a video
segment is represented by a dense set of low-dimensional local feature vectors which
describe the action. The local features, described in detail in Sec. 3, coarsely capture the
shape of an object’s silhouette tunnel (see Fig. 3). The advantage of this approach is that
even a single video segment provides a very large number of local feature vectors (one
per pixel) from which their statistical properties can be reliably estimated. However, the
dimensionality of a bag of dense local feature vectors is still very high as there are as
many feature vectors as pixels. This motivates the need for dimensionality reduction.

Estimating the distribution of the local feature vectors, though ideal, is computation-
intensive and may not lead to a lower-dimensional representation. On the other hand,
the mean feature-vector, which is low-dimensional, can be learned reliably and rapidly
but may not be sufficiently discriminative. In the recent work [7] we discovered that
if the features are well-chosen, then the feature-covariance matrix, which captures the
second-order statistical properties of a bag of feature vectors, provides a remarkably
discriminative representation for action recognition. In addition to their simplicity and
effectiveness, covariance matrices have low storage and processing requirements. The
action representation based on the covariance matrix of a bag of low-dimensional local
feature vectors that coarsely capture the shape of an object’s silhouette tunnel is de-
picted in Fig. 1. The operator which transforms an input video segment into an output
feature-covariance matrix representation is denoted by Ψ .

Input video Silhouette
tunnel

Bag of dense local
feature vectors

Covariance
matrix

... ... ......

...

...

...

Action
representation

Fig. 1. Transformation of a video segment into a feature covariance matrix representation

2.2 Classification on a Covariance Manifold

The set of all covariance matrices of a specified size do not form a vector space (they are
not closed under multiplication by negative scalars); they form a Riemannian manifold.
Classification problems on covariance manifolds can be converted into vector-space
classification problems via the matrix logarithm: if C = UDUT is the eigendecom-
position of the covariance matrix C, where D is the diagonal matrix of eigenvalues,
then log(C) := U log(D)UT , where log(D) is the diagonal matrix whose diagonal
entries are the natural logarithms of the corresponding entries of D. The matrix log-
arithm maps the Riemannian manifold of symmetric non-negative definite matrices to
the vector space of symmetric matrices [2].
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Recently, in [13] Wright et al. developed a powerful framework (closely related to
compressive sensing) for supervised classification in vector spaces based on finding a
sparse linear approximation of a query vector in an overcomplete dictionary of training
vectors. The key idea underlying this approach is that if the training vectors of all the
classes are pooled together and a query vector is expressed as a linear combination
of the fewest possible training vectors, then the majority of the training vectors in the
linear combination are likely to be of the same class as the query vector. The pooling
together of the training vectors of all the classes is important for classification because
the training vectors of each individual class may well span the space of all query vectors.
The pooling together induces a “competition” among the training vectors of different
classes to approximate the query using the fewest possible number of training vectors.
The sparse representation approach has been successfully applied to many vision tasks
such as face recognition, image super-resolution, and image denoising. We extend this
approach to action recognition by applying it to (column) vectorized log-covariance
matrices that we refer to as samples. Specifically, we approximate the log-covariance
matrix of a query segment by a sparse linear combination of log-covariance matrices of
all training segments.

The overall framework for action recognition is depicted in Fig. 2.

Training video 
segments

Query video 
segment

Covariance 
matrices

Covariance 
matrix

Training
samples

Query
sample

Matrix-log
&

vectorization

Matrix-log
&

vectorization

Matrix-log
&

vectorization

Matrix-log
&

vectorization
...

...

... qP

*

s.t.

minarg
1

*
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Segment 1

C1

C2
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p2

pN

q
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label (1)

label (2)
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Segment 2

Segment N

P
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i

R eqn(8)

)(label q

Fig. 2. Overview of the proposed action recognition framework (see Secs. 2.2 and 4)

3 Silhouette Tunnel Shape Features

In this section, we describe the low-dimensional local features that we use to describe
actions. The sequence of 2-D silhouettes of a moving and deforming object (see Fig. 3)
is particularly attractive for action recognition because (i) it accurately captures ob-
ject dynamics, (ii) it can be reliably, robustly, and efficiently computed in real-time
using state-of-the-art background subtraction techniques, and (iii) it is largely invari-
ant to chromatic, photometric, and textural properties of objects which are independent
of their actions. Under ideal conditions, each frame in the silhouette sequence would
contain a white mask (white = 1) which exactly coincides with the 2-D silhouette of
the moving and deforming object against a “static” black background (black = 0). A
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Fig. 3. Left: One frame of the “jumping-jack” human action sequence (top row) and the corre-
sponding silhouette (bottom row) computed using background subtraction from the Weizmann
human action dataset. Right: Each point s0 = (x0, y0, t0)

T of a silhouette tunnel within an N -
frame action segment has a 13-dimensional feature vector associated with it: 3 position features
x0, y0, t0, and 10 shape features given by distance measurements from (x0, y0, t0) to the tunnel
boundary along 10 different spatio-temporal directions shown in the figure.

sequence of such object silhouettes in time forms a spatio-temporal volume in x-y-t
space that we refer to as a silhouette tunnel. Action recognition may then be viewed as
recognizing the shape of the silhouette tunnel. There is an extensive body of literature
devoted to the representation and comparison of shapes of volumetric objects. Our goal
is to reliably discriminate between shapes; not to accurately reconstruct them. Hence
a coarse, low-dimensional representation of shape would suffice. We capture the shape
of a silhouette tunnel by the empirical covariance matrix of a bag thirteen-dimensional
local shape features (described below) from our previous work [7].

Let s = (x, y, t)T denote the horizontal, vertical, and temporal coordinates of a pixel.
Let A denote the set of coordinates of all pixels belonging to an action (video) segment
which is W pixels wide, H pixels tall, and N frames long, i.e., A := {(x, y, t)T :
x ∈ [1, W ], y ∈ [1, H ], t ∈ [1, N ]}. Let S denote the subset of pixel-coordinates
in A which belong to the silhouette tunnel. With each pixel located at s within the
silhouette tunnel, we associate the following 13-dimensional feature vector f(s) that
captures certain shape characteristics of the tunnel:

f(x, y, t) :=[x, y, t, dE , dW , dN , dS , dNE , dSW , dSE , dNW , dT+, dT−]T , (1)

where (x, y, t)T ∈ S and dE , dW , dN , and dS are Euclidean distances from (x, y, t)
to the nearest silhouette boundary point to the right, to the left, above and below the
pixel, respectively. Similarly, dNE , dSW , dSE , and dNW are Euclidean distances from
(x, y, t) to the nearest silhouette boundary point in the four diagonal directions, while
dT+ and dT− are similar measurements in the temporal direction. Fig. 3 depicts these
features graphically. The 13 × 13 “shape” covariance matrix representation CS of sil-
houette tunnel S in the action segment A is given by

CS :=
1
|S|

∑
s∈S

(f(s) − μF )(f(s) − μF )T , (2)
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where μF =
∑

s∈S
1
|S| f(s) is the mean feature vector. Note that the size of an action

segment |A| is typically on the order of 105 whereas a 13 × 13 covariance matrix,
being symmetric, has only 91 independent entries. This provides a low-dimensional
representation of the feature vectors no matter how numerous they may be.

4 Classification via Sparse Linear Representation

In this section, we first explain how the log-covariance matrix of a query action segment
can be approximated by a sparse linear combination of log-covariance matrices of all
training action segments by solving an l1-minimization problem. We then discuss how
the locations of large non-zero coefficients in the sparse linear approximation can be
used to determine the label of the query.

The logarithm of a 13×13 covariance matrix C is a 13×13 symmetric matrix log(C)
which has only 91 independent entries (elements on and above the main diagonal). We
use p ∈ R

91 to denote the (column) vectorized matrix of the entries in log(C) that are
on or above the main diagonal. For convenience of exposition, we will refer to such
column vectorized log-covariance matrices as simply ‘samples’. Let pi,j ∈ R

91 denote
the j-th training sample in the i-th class where i = 1, . . . , K , and j = 1, . . . , ni. Thus
there are K action classes, ni training samples in action class i, and the total number of
training samples is given by M =

∑K
i=1 ni. We can stack up all the training samples

from class i, column by column, to form the 91×ni matrix Pi := [pi,1 pi,2 · · · pi,ni ].
The 91 × M matrix of all training samples is then given by P := [P1 P2 · · · PK ].

A given query sample q can be expressed as a linear combination of training samples
by solving the matrix-vector equation given by

q = Pα, (3)

where α ∈ R
M is the vector of coefficients. Since M � 91, the system (3) is un-

derdetermined and has a solution except in the highly unlikely circumstance in which
there are less than 91 linearly independent samples across all classes and q is outside of
their span. If a solution to (3) exists, it is necessarily nonunique unless additional prior
information, e.g., sparsity, restricts the set of feasible α.

We seek a sparse solution to (3) where, under ideal conditions, the only non-zero
coefficients in α are those which correspond to the class of the query sample. If (3) has
a solution α∗ with r < 91/2 non-zero coefficients and every set of 91 columns of P is
linearly independent, then α∗ is the unique sparsest solution to (3) (see [5]) which can
be found, in principle, by solving the following NP-hard optimization problem:

α∗ = argmin ‖α‖0, s.t. q = Pα, (4)

where ‖α‖0 is the so-called l0-norm: the number of non-zero entries in α. A key result
in the theory of compressive sensing (see [5]) is that if the optimal solution α∗ is suf-
ficiently sparse, then solving the l0-minimization problem (4) is equivalent to solving
the following l1-minimization problem

α∗ = argmin ‖α‖1, s.t. q = Pα. (5)
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Unlike (4), this problem is a convex optimization problem that can be solved in poly-
nomial time. In practice, estimates of pi,j may be noisy and (3) may not hold exactly.
In practice one therefore solves the following ε-robust l1-minimization problem

α∗ = arg min ‖α‖1, s.t. ‖Pα − q‖2 ≤ ε. (6)

It turns out that even when not all sets of 91 columns of P are linearly independent,
the solution α∗ to (6) is still very sparse in the sense that its components, arranged in
decreasing order of magnitude, decay very rapidly.

We now discuss how the locations of large non-zero components of α∗ can be used
to determine the label of the query. Each component of α∗ weights the contribution of
its corresponding training sample to the representation of the query sample. Ideally, the
sparse non-zero coefficients should only be associated with training samples that come
from the same class as the query sample. In practice, however, non-zero coefficients will
be spread across more than one action class. To decide the label of the query sample,
we follow Wright et al. [13] and use a reconstruction residual error (RRE) measure
to decide the query class. Let α∗

i := [α∗
i,1 α∗

i,2 · · · α∗
i,ni

]T denote the coefficients
associated with training samples from class i, i.e., columns of Pi. The RRE measure of
class i is then defined as:

Ri(q, α∗) := ‖q− Piα
∗
i ‖2. (7)

To the query sample q we assign the class label that leads to the minimum RRE, i.e.,

label(q) := arg min
i

Ri(q, α∗). (8)

5 Some Practical Considerations and the Overall Algorithm

One important aspect of human action recognition is the repetitive nature of actions.
Many actions, such as walking, running and jumping, consist of multiple, roughly peri-
odic, “repetitions” of shorter action segments which describe the essential action char-
acteristics. Long video sequences of the same action may exhibit large differences due
to action variability. In addition, the frame-boundaries where one action ends and an-
other begins may not be available in some practical scenarios. This motivates the need to
break a long query video sequence into a sequence of overlapping action segments and
classify each segment. Short overlapping action segments can also increase the number
and diversity of the training set so that the action can be classified more reliably. Ide-
ally, the duration of an action segment should be long enough to contain at least one
“period” of an action. The typical period of many moderately-paced human actions is
on the order of 0.4-0.8 seconds. For a camera operating at 25 frames per second (fps),
this corresponds to an action segment which contains 10–20 frames.

The motion of the centroid of an object’s silhouette across frames is of secondary
importance for action recognition. It is the sequence of deformations of the silhouettes
about their centroids that is crucial. We can remove the motion of the centroids by
aligning them to the same spatial coordinates. It is also possible to make the silhouette
tunnel shape covariance matrix CS invariant to spatial scaling (e.g., due to zoom) and
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temporal scaling (e.g., due to temporal subsampling) by normalizing the feature vectors
before computing CS via (2). We refer to [7] for the details.

The overall framework for action recognition can be summarized as follows (see
Figs. 1 and 2). We start with a raw query video sequence which has only one mov-
ing object. We compute the silhouette sequence by background subtraction and then
parse it into a sequence of overlapping N -frame-long segments (we used 8-frame seg-
ments with a 4-frame overlap in our experiments). We map the silhouette tunnel of
each N -frame-long action segment to its shape covariance matrix, take its logarithm
and column-vectorize the upper-triangular portion. To classify each action segment, we
solve the l1-minimization problem (6) to obtain a sparse linear representation and then
use (7) and (8). Since individual segment decisions are expected to be somewhat noisy,
we perform an additional step to filter out this decision noise. We fuse the decisions of
all action segments in an action sequence using the majority rule to arrive at the final de-
cision for the entire query video sequence. This improves the reliability by overcoming
misclassifications in up to one-half of the test action segments.

6 Experimental Results

In this section, we report the results of performance evaluation of the proposed method
on two publicly-available datasets: the Weizmann human action dataset2 and the UT-
tower human action dataset [3]. Although the KTH dataset3 has been widely used to
test the performance of action recognition methods, we omit it in our tests since it does
not include silhouette sequences that are needed for a fair comparison.

6.1 Weizmann Human Action Dataset

This dataset consists of 90 low-resolution video sequences (180×144 pixels) that show
9 different people each performing 10 different actions. For each video sequence, a
binary sequence of 2-D silhouettes is also available. As described in Sec. 5, we parse
all silhouette sequences into overlapping 8-frame long silhouette segments with a 4-
frame overlap. We refer to the resulting collection of segments as the silhouette seg-
ment dataset. Performance-evaluation is based on the leave-one-out cross validation
(LOOCV) test. For each query silhouette segment from the segment dataset, we first
remove all those segments which come from the same silhouette sequence as the query
segment. Then, based on the remaining segments in the segment dataset, we determine
the action label of the query segment using the proposed method. Details of the experi-
mental setup can be found in [7]. The correct classification rate (CCR) is defined as the
percentage of query segments that are correctly classified. Since the CCR is based on
classifying individual segments, we call it SEG-CCR. In practice, however, we are usu-
ally interested in classifying a complete video sequence containing an action; not just
one of its segments. Since segments provide time-localized action information, in order
to obtain classification for the complete sequence, we apply the majority rule (dominant
label wins) to the decisions obtained from individual segments of the video sequence

2 http://www.wisdom.weizmann.ac.il/∼vision/SpaceTimeActions.html
3 http://www.nada.kth.se/cvap/actions/
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Table 1. Action confusion matrix: Weizmann human action dataset, 8-frame segments with 4-
frame overlap, SEG-CCR = 96.74%
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bend 91.9 1.3 0 0.7 0 0 0 0 4.1 2.0
jack 0 99.4 0 0.6 0 0 0 0 0 0
jump 0 0 95.1 0 0 2.0 2.9 0 0 0
sjump 0 0.8 0 96.7 0 2.5 0 0 0 0.7

run 0 0 0 1.2 91.6 0 1.2 6.2 0 0
side 0 0 0 0 0 100 0 0 0 0
skip 0 0 1.0 0 4.2 0 92.7 2.1 0 0
walk 0 0 0 0 0 0 0 100 0 0

wave1 0 0 0 0.6 0 0 0 0 99.4 0
wave2 0 1.4 0 0 0 0 0 0 1.4 97.2

Table 2. LOOCV CCR comparison of the proposed method with state-of-the-art methods: Weiz-
mann human action dataset, 8-frame segments with 4-frame overlap

Method Proposed Guo et al. [7] Gorelick et al. [6] Niebles et al. [9] Ali et al. [1] Seo et al. [11]
SEG-CCR 96.74% 97.05% 97.83% - 95.75% -
SEQ-CCR 100% 100% - 90% - 96%

as described in Sec. 5. In this case, we calculate a sequence-level CCR, that we call
SEQ-CCR, defined as the percentage of query sequences that are correctly classified.

The proposed method attained a SEG-CCR of 96.74% and a SEQ-CCR of 100%.
Table 1 shows the action “confusion” matrix based on SEG-CCR values. The element
in row i and column j of the matrix indicates the percentage of action i segments which
were classified as action j. The sum of all elements in every row is 100%. The confusion
matrix indicates that while some actions, such as ‘bend’ and ‘run’, are more confusing,
others, such as ‘walk’ and ‘side’, are easier to distinguish.

Table 2 compares the performance of the proposed method with some of the state-
of-the-art action recognition methods, including our previous method [7] based on NN-
classification on the feature-covariance manifold. It is clear that the proposed algorithm
is very close in performance to our previous method and also approaches the perfor-
mance of Gorelick et al.’s method [6].

6.2 UT-Tower Human Action Dataset

The UT-tower action dataset is used in the “Aerial View Activity Classification Chal-
lenge” at the ICPR 2010 Contest on Semantic Description of Human Activities (SDHA).
The dataset consists of 108 video sequences with a frame resolution of 360 × 240 pixels
and a frame rate of 10fps. The contest requires classifying video sequences into one of
9 categories of human actions. Each of the 9 actions is performed 2 times by 6 individ-
uals for a total of 12 video sequences per action category. Ground truth action labels,
bounding boxes, and foreground masks for each video sequence are provided. Only the
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acting person is included in the bounding box. In addition to the challenges associated
with the low resolution of objects of interest in this dataset – the average height of hu-
man figures is about 20 pixels – there are additional challenges, such as camera jitter,
shadows, and blurry visual cues (see [3] for details).

We conducted experiments using the same procedures as for the Weizmann dataset
including LOOCV. The method proposed here attains a SEG-CCR of 96.15% and a
SEQ-CCR of 97.22%. Table 3 shows the confusion matrices of SEG-CCR and SEQ-
CCR values. Since the UT-Tower dataset is new and no action recognition results are
publicly available for this dataset at the time of writing of this paper, in Table 4 we only
compare the performance of the proposed method with our previous method [7].

Table 3. Action confusion matrices: UT-Tower human action dataset, 8-frame segments with
4-frame overlap
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point 88.0 6.0 6.0 0 0 0 0 0 0 91.7 0 8.3 0 0 0 0 0 0
stand 4.4 94.2 1.4 0 0 0 0 0 0 16.7 83.3 0 0 0 0 0 0 0
dig 2.0 1.5 96.0 0 0.5 0 0 0 0 0 0 100 0 0 0 0 0 0

walk 1.4 0 0 98.6 0 0 0 0 0 0 0 0 100 0 0 0 0 0
carry 0 0 0 0 99.5 0.5 0 0 0 0 0 0 0 100 0 0 0 0
run 0 0 0 0 0 100 0 0 0 0 0 0 0 0 100 0 0 0

wave1 0 0 0.5 0 0 0 94.1 5.4 0 0 0 0 0 0 0 100 0 0
wave2 0 0 0 0 0 0 7.5 92.5 0 0 0 0 0 0 0 0 100 0
jump 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 100

All video sequences except those for pointing and standing are classified without
error. Standing is sometimes confused with pointing whereas pointing is occasionally
confused with standing. Both of these action categories are essentially static poses and
are sufficiently similar to even cause confusion in human observers on account of the
low resolution of the dataset.

Table 4. LOOCV CCR comparison of the proposed method with our previous method: UT-Tower
human action dataset, 8-frame segments with 4-frame overlap

Method Proposed Guo et al. [7]
SEG-CCR 96.15% 93.53%
SEQ-CCR 97.22% 96.30%

The proposed method is also time-efficient and easy to implement. Our experimen-
tal platform was Intel Centrino (CPU: T7500 2.2GHz + Memory: 2GB) with Matlab
7.6. The computation of 13-dimensional feature vectors and the calculation of log-
covariance matrices can be efficiently implemented on this platform, costing together
about 4.3 seconds per silhouette sequence with spatial resolution of 111× 81 and length
of 89 frames. This method is also memory efficient since the training and query sets es-
sentially store 13 × 13 log-covariance matrices instead of video data. Given a query
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sequence with 20 query segments and a training set with 1239 training segments, it
takes about 4.5 seconds to classify all query segments (solving 20 l1-norm minimiza-
tion problems), i.e., about 0.22 seconds per query segment.

7 Concluding Remarks

In this paper, we proposed a new approach to action recognition in video based on
sparse linear representations of log-covariance matrices of silhouette shape features.
The proposed method is motivated by Wright et al.’s work [13] that has been success-
fully applied in the context of face recognition. The salient characteristic of our method
is the fact that it uses log-covariance matrices to represent actions in a vector space.
Our experimental results on the Weizmann dataset indicate that the classification per-
formance of the proposed method is similar to that of recent successful methods, such as
Gorelick’s method [6] and our previous method [7]. At the same time, its computational
complexity is relatively low in both feature extraction, on account of feature simplicity,
and classification, owing to efficiencies in solving the l1 minimization. On the challeng-
ing UT-Tower dataset, the proposed method outperforms our previous approach based
on the same features and NN classification.
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Abstract. This paper presents two variations of a Hough-voting frame-

work used for action recognition and shows classification results for

low-resolution video and videos depicting human interactions. For low-

resolution videos, where people performing actions are around 30 pixels,

we adopt low-level features such as gradients and optical flow. For group

actions with human-human interactions, we take the probabilistic ac-

tion labels from the Hough-voting framework for single individuals and

combine them into group actions using decision profiles and classifier

combination.

Keywords: human action recognition, Hough-voting, video analysis,

low-resolution video, group action recognition, activity recognition.

1 Introduction

Recognizing human actions from video has received much attention in the com-
puter vision community, though designing algorithms that can detect and classify
actions from unconstrained videos and in realistic settings still remains a chal-
lenge. One difficulty is scene diversity, i.e. methods designed for sports analysis
may not be well suited for surveillance. Furthermore, much of the work in ac-
tion recognition has focused on single persons. In applications such as intelligent
surveillance, where the goal is to detect unusual or dangerous events, however,
the classification of group interactions becomes more critical as situations can
only be understood by considering the relationship between persons.

We present here variations on a Hough-voting framework for action recogni-
tion, previously introduced in [8], as applied to two very different action recogni-
tion scenarios from the ICPR 2010 Contest on Semantic Description of Human
Activities. In the first scenario, the Hough-voting framework is directly applied
to classify actions on low-resolution videos, in which people performing actions
are around 30 pixels high. In the second scenario, we classify group actions by
combining the classification results of single individuals to strengthen the group
action response.

The rest of the paper is organized as follows. In Section 2, we give a short
summary of the Hough-voting framework described in [8]. In Section 3, we de-
scribe the combination of the classifier outputs of multiple people into group
actions by using classifier combination rules and extending the model of deci-
sion profiles [6]. In Section 4, we show the classification results on low resolution
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videos and on group action recognition. Finally, Section 5 summarizes the main
results.

2 Hough-Voting Framework

The Hough-voting framework in [8] takes a two-staged approach. In an initial
localization stage, the person performing the action is tracked. Then, in a sec-
ondary classification stage, 3D feature patches from the track are used to cast
votes for the action center in a spatio-temporal action Hough space. In [8], a
tracking-by-detection approach was used, though any other tracking method
can be used as well since the tracking stage is disjoint from the classification
stage. For classifying the action, random trees are trained to learn the mapping
between the patches and the corresponding votes in the action Hough space.

2.1 Training

We train a random forest, which we term a “Hough forest”, to learn the mapping
between action tracks and a Hough space. Each tree is constructed from a set of
patches {Pi = (Ii, ci, di)}, where

Pi is a 3D patch (e.g. of 16 × 16 × 5 pixels) randomly sampled from the track.
Ii are extracted features at a patch and can be multi-channeled to accommo-

date multiple features, i.e. Ii =
(
I1
i , I2

i , ..., IF
i

) ∈ R
4, where each If

i is feature
channel f at patch i and F is the total number of feature channels.

ci is the action label.
di is a 3D displacement vector from the patch center to the action track center.

From the set of patches, the tree is built from the root by selecting a binary
test t, splitting the training patches according to the test results and iterating
on the children nodes until either the maximum depth of the tree is reached or
there are insufficient patches remaining at a node. Each leaf node stores pc, the
proportion of the patches per class label reaching that leaf, and Dc = {di}ci=c,
the patches’ respective displacement vectors.

The binary tests compare two pixels at locations p ∈ R
3 and q ∈ R

3 in feature
channel f with some offset τ , i.e.

tf,p,q,τ (I) =
{

0 if If (p) < If (q) + τ
1 otherwise (1)

First, a pool of binary tests with random values of f , p, q and τ are generated; the
test which splits the patches with minimal class or offset uncertainty between the
split is chosen. By switching randomly between the two uncertainty measures,
the leaves tend to have low variation in both class label and center displacement.

2.2 Classifying and Localizing Actions

During test time, we extract densely sampled patches from the tracks and pass
them through the trees in the Hough forest. Each patch arriving at a leaf votes
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into the action subspace proportional to pc and into the space-temporal subspace
of each class c according to a 3D Gaussian Parzen window estimate of the center
offset vectors Dc. Votes from all patches, passed through each of the trees, are
integrated into a 4D Hough accumulator. As the track has already been localized
in space, we can marginalize the votes into a 2D accumulator in class label and
time, with the maxima indicating the class label and temporal center of the
track. For a formal description of the voting, we refer the reader to [8].

3 Combining Classifiers for Group Action Recognition

In our setting of group action recognition, we distinguish between symmetric
or asymmetric interactions. Symmetric interactions are those in which all in-
dividuals perform the same movements, such as shaking hands. Asymmetric
interactions, on the other hand, are those in the which the individuals behave
differently. For example, when one person pushes another, there is an offender
and a victim. We assume for simplicity that victims of all asymmetric actions
behave in a similar way and add one generic victim class.

For each individual participating in an action, we get a single-person clas-
sification, and then combine them into group classifications using combination
rules such as product rule, sum rule, min rule and max rule to strengthen the
overall group response. A theoretical framework of these combination rules is
given in [5]. A convenient and compact representation of multiple classifier out-
puts is the decision profile matrix [6] as the combination rules can be applied
directly to the matrix. In the following, we review the model of decision profiles
and extend them to handle both symmetric actions and asymmetric actions.

3.1 Decision Profiles

We define c+1 single action labels, corresponding to c group interactions and an
additional victim label v. For each person l in a group interaction of L people,
we have a single action classifier Dl, giving for each time instance t

Dl(t) = [dl,1, . . . , dl,c, dl,v] , (2)

where each d corresponds to the support for a single action class. To combine
the single action classifier outputs into group actions, we formulate a decision
profile, DP , in matrix notation:

DP (t) =

⎡
⎢⎢⎢⎢⎣

D1(t)
· · ·

Dl(t)
· · ·

DL(t)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

d1,1 · · · d1,c, d1,v

· · ·
dl,1 · · · dl,c, dl,v

· · ·
dL,1 · · · dL,c, dL,v

⎤
⎥⎥⎥⎥⎦ . (3)

For the combination of the single actions, the product, sum, min and max rule
are directly applied to each column of the decision profile [6].
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3.2 Extension for Asymmetric Group Actions

In our case, as we have added a victim class, we extend the above DP by dividing
it into a symmetric and asymmetric block:

DP (t) = [DPsym(t) | DPasym(t)], (4)

with DPsym(t) as defined in Equation (3), but for single action labels belonging
to symmetric group interactions only. To handle the asymmetric group inter-
actions, we consider each combination of single actions which could form the
interaction. Equation (5) describes the combination for a two-person scenario,
but can be easily adapted for more people. Assuming m asymmetric group ac-
tions with classifier outputs dl,1, . . . , dl,m and one victim class v with classifier
output dl,v, the asymmetric decision profile would be a 2 × 2 · m dimensional
matrix defined as follows:

DPasym(t) =
[

d1,1 d1,v d1,2 d1,v · · · d1,m d1,v

d2,v d2,1 d2,v d2,2 · · · d2,v d2,m

]
. (5)

While Equation (5) is a redundant representation of the single action classifica-
tions, we choose this formulation as the same classifier combination rules can be
directly applied to the each column of the decision profile.

4 Experiments

4.1 Action Recognition in Low-Resolution Video

We apply the Hough-voting framework described in Section 2 to classify the ac-
tions in the UT Tower Dataset [2]. For building the tracks, we used the provided
foreground masks and fit 40 × 40 pixel bounding boxes around the foreground
blobs. To handle the low resolution of the video, we chose low-level features ro-
bust at lower resolutions [1,3], and chose greyscale intensity, absolute value of
the gradients in x, y and time, and the absolute value of optical flow in x and y.

We achieve an overall classification performance of 95.4%. The confusion ma-
trix is shown in Figure 1. There is some confusion between similar actions, such
as standing and pointing, or wave1 and wave2, but all other actions are classified
correctly.

4.2 Group Action Recognition

We demonstrate our approach of group action recognition on the UT-Interaction
dataset [7], consisting of six classes of two-person interactions shown in pro-
file view: shake (hands), hug, kick, point, punch and push. We consider shake
and hug as symmetric and the others as asymmetric interactions. For each class,
there are two settings: set 1 recorded from a parking lot with a stationary back-
ground and set 2, recorded on a lawn with some slight background movement
and camera jitter.
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Fig. 1. Confusion matrix for classification on the UT-Tower Dataset

Single Person Actions. We use the described Hough-voting method to classify
the single actions, using the same features as mentioned in Section 4.1. The tracks
were built with a Hough forest trained for people detection [4] and a particle
filter was used to assemble detections across time.

For simplification, only one classifier was trained for both the left and the
right person; during testing, the classifier was applied to both the original and
flipped version of the tracks and determined based on the higher response of
the classifier if the person in the track stands on the left or right. Classification
results for the seven single action classes are shown in Table 1.

Table 1. Classification performance of single actions according to track

Set 1 Set 2

Left Track Right Track Left Track Right Track

Shake 0.7 0.3 0.3 0.2

Hug 0.9 1.0 0.9 0.9

Kick 1.0 1.0 1.0 1.0

Point 0.8 0.63 0.6 0.6

Push 0.33 0.72 0.8 0.8

Punch 0.66 0.86 0.6 0.2

Victim 0.77 0.73 0.9 0.8

Average 0.74 0.75 0.73 0.64

Group Interactions. For evaluation of the group interactions, we use a leave-
one-out cross validation for each set individually. Performance of the different
combination rules are compared in Table 2. Confusion matrices of the min-rule
for set 1 and set 2 are shown in Figures 2(a) and (b) respectively. Average perfor-
mance of the best group classifier compared to the best single person classifier was
higher by 13% in set 1 and 7% in set 2. The min rule performs well for both sets.
The product and sum rule have similar performance in both sets, but are more af-
fected by a weaker individual classifier as is the case in set 2 for right individual.
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Table 2. Classification performance of group interactions for different fusion methods

Set 1 Set 2

Min Max Product Sum Min Max Product Sum

Shake 0.5 0.4 0.6 0.7 0.7 0.1 0.5 0.5

Hug 1.0 1.0 1.0 1.0 0.9 0.8 0.9 0.9

Kick 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Point 1.0 0.6 1.0 1.0 1.0 0.5 1.0 1.0

Push 0.7 0.2 0.7 0.7 0.8 0.1 0.8 0.8

Punch 0.8 0.1 0.9 0.9 0.4 0.0 0.4 0.4

Average 0.83 0.55 0.87 0.88 0.8 0.42 0.77 0.77
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Fig. 2. Confusion matrix for classification of group actions for (a) set 1 and (b) set 2
using the min rule for classifier fusion

5 Discussion

The Hough-voting framework for action recognition, previously introduced in [8],
was applied to two very different action recognition scenarios and showed flex-
ibility and good results for both tasks. For classifying aerial video, we chose
low-level features which were robust at low resolutions. For classifying group in-
teractions, we presented a method for combining the classifiers of single-person
actions. Overall performance was increased in comparison to single actions and
the method can be easily adapted for scenarios with more than two people. A
major advantage of this approach is that no additional training is needed for
classifier combination.
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Mason, John 210
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