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Abstract. RFID systems have become increasingly popular and are al-
ready used in many real-life applications. Although very useful, RFIDs
introduce privacy risks since they carry identifying information that can
be traced. Hence, several RFID privacy models have been proposed. How-
ever, they are often incomparable and in part do not reflect the capabil-
ities of real-world adversaries. Recently, Paise and Vaudenay presented
a general RFID security and privacy model that abstracts and unifies
most previous approaches. This model defines mutual authentication (be-
tween RFID tags and readers) and several privacy notions that capture
adversaries with different tag corruption behavior and capabilities.

In this paper, we revisit the model proposed by Paise and Vaude-
nay and investigate some subtle issues such as tag corruption aspects.
We show that in their formal definitions tag corruption discloses the
temporary memory of tags and leads to the impossibility of achieving
both mutual authentication and any reasonable notion of RFID privacy
in their model. Moreover, we show that the strongest privacy notion
(narrow-strong privacy) cannot be achieved simultaneously with reader
authentication even under the strong assumption that tag corruption
does not disclose temporary tag states. Further, we show other impos-
sibility results that hold if the adversary can manipulate an RFID tag
such that it resets its state or when tags are stateless.

Although our results are shown on the privacy definition by Paise and
Vaudenay, they give insight to the difficulties of setting up a mature
security and privacy model for RFID systems that aims at fulfilling the
sophisticated requirements of real-life applications.
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1 Introduction

Radio Frequency Identification (RFID) enables RFID readers to perform fully
automatic wireless identification of objects that are labeled with RFID tags, and
is widely deployed to many applications (e.g., access control [2,29], electronic
tickets [31,29], and e-passports [19]). As pointed out in previous publications

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XI, LNCS 6480, pp. 39–63, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



40 F. Armknecht et al.

(see, e.g., [38,20,34]), this prevalence of RFID technology introduces various
risks, in particular concerning the privacy of its users and holders. The most
deterrent privacy risk concerns the tracking of users, which allows the creation
and misuse of detailed user profiles. Thus, it is desired that an RFID system
provides anonymity (confidentiality of the tag identity) as well as untraceability
(unlinkability of the communication of a tag), even in case the state (e.g., the
secret) of a tag has been disclosed.

The design of a secure privacy-preserving RFID scheme requires a careful
analysis in an appropriate formal model. There is a large body of literature on
security and privacy models for RFID (see, e.g., [3,21,8,37,30,12]). Existing so-
lutions often do not consider important aspects like adversaries with access to
auxiliary information, e.g., on whether the identification of a tag was successful,
or the privacy of corrupted tags whose state has been disclosed. In particular,
tag corruption is usually considered to happen only before and/or after but not
during a protocol-run. However, in practice there are a variety of side-channel
attacks (see., e.g., [24,18,22]) that extract the state of a tag based on the obser-
vation of, e.g., the power consumption of the tag while it is executing a protocol
with the reader. Since RFID tags are usually cost-effective devices without ex-
pensive tamper-proof mechanisms [2,29], tag corruption is an important aspect
to be covered by the underlying (formal) security model. Though in literature,
tag corruption during protocol execution is rarely considered. To the best of our
knowledge, the security and privacy model in [8] is the only one that considers
corruption of tags during protocol executions and proposes a protocol in this
model. However, this model does not consider issues like the privacy of tags
after they have been corrupted and privacy against adversaries with access to
auxiliary information. Moreover, [8] only provides an informal security analy-
sis of the proposed protocol. Recently, tag corruption during protocol-runs has
been informally discussed in [12]. However, the formal RFID security and privacy
model proposed in [12] assumes that such attacks cannot occur. Moreover, [12]
indicates informally without giving formal proofs that tag corruption during pro-
tocol execution may have an impact on the formal definitions of [37,30], which
are basis for many subsequent works (see, e.g., [26,25,7,33,32,11,10,36,35]). The
first papers addressing tag corruption during protocol-runs in the model of [37]
are [11,10], where it is shown that privacy can be achieved under the assumption
that tag corruption during protocol execution can be detected by the tag.

In this paper, we focus on the security and privacy model by Paise and Vau-
denay [30] (that is based on [37]), which we call the PV-Model (Paise-Vaudenay
Model) in the following. The PV-Model is one of the most comprehensive RFID
security and privacy models up to date since it captures many aspects of real
world RFID systems and aims at abstracting most previous works in a single
concise framework. It defines mutual authentication between RFID tags and
readers and several privacy notions that correspond to adversaries with differ-
ent tag corruption abilities. However, as we show in this paper, the PV-Model
suffers from subtle deficiencies and weaknesses that are mainly caused by tag
corruption aspects: in the PV-Model, each tag maintains a state that can be
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divided into a persistent and a temporary part.1 The persistent state subsumes
all information that must be available to the tag in more than one interac-
tion with the reader (e.g., the authentication secret of the tag) and can be
updated during the interaction with the reader. The temporary state consists
of all ephemeral information that is discarded by the tag after each interaction
with the reader (e.g., the randomness used by the tag). As discussed in [30], in
the PV-Model it is impossible to achieve any notion of privacy that allows tag
corruption if the adversary can obtain both the persistent and the temporary tag
state by tag corruption. This issue is addressed by the PV-Model by the assump-
tion that each tag erases its temporary state each time it gets out of the reading
range of the adversary. However, this assumption leaves open the possibility to
corrupt a tag while it is in the reading range of the adversary, i.e., before its
temporary state is erased. In particular, the PV-Model allows the adversary to
corrupt a tag while it is executing the authentication protocol with the reader.

Moreover, an adversary in practice could physically tamper with a tag such
that the tag resets its state and randomness to a previous value. This form of
physical attack is not considered in the PV-Model and thus, the study of privacy
notions done in [30] does not address these attacks.

Contribution. In this paper, we point out subtle weaknesses and deficiencies in
the PV-Model. First, we show that the assumption of erasing temporary tag
states whenever a tag gets out of the reading range of the adversary made by
the PV-Model is not strong enough. We prove that, even under this assumption,
it is impossible to achieve reader authentication and simultaneously any notion
of privacy that allows tag corruption. This implies that the PV-Model cannot
provide privacy along with mutual authentication without relying on tamper-
proof hardware, which is unrealistic for low-cost RFID tags. Consequently, two
of the three schemes presented in [30] do not satisfy their claimed properties.

Our second contribution is to show that even under the strong assumption
that the temporary tag state is not subject to tag corruption attacks, some
privacy notions still remain impossible in the PV-Model. This implies that the
third protocol of [30] has another conceptually different weakness.

Finally, we show that by extending the model of [30] to capture reset attacks
on tag states and randomness, no privacy can be achieved, and, more interest-
ingly, when tags are stateless (i.e., when tags cannot update their persistent
state), then destructive privacy is impossible. Although our results are shown on
the privacy model by Paise and Vaudenay, we believe that our work is helpful for
developing a mature security and privacy model for RFID systems that fulfills
the sophisticated requirements of real-life applications.

Outline. We first informally discuss the general RFID scenario on a high level in
Section 2. Then we focus on the formalization of the relevant aspects by revisiting
the RFID security and privacy model by Paise and Vaudenay (PV-Model) [30]

1 During a protocol execution tags could store some temporary information that allows
them to verify the response of the reader.
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in Section 3. In Section 4 we present our first result while our second result is
shown in Section 5. In Section 6 we show our third impossibility result based on
resettable and stateless tags. Finally, we conclude in Section 7.

2 RFID System and Requirement Analysis

System model. An RFID system consists of at least an operator I, a reader R
and a tag T . I is the entity that enrolls and maintains the RFID system. Hence,
I initializes T and R before they are deployed in the system. T and R are called
legitimate if they have been initialized by I. In many applications T is a hardware
token with constrained computing and memory capabilities that is equipped with
a radio interface [2,29]. All information, e.g., secrets and data that is stored on
T is denoted as the state of T . Usually T is attached to some object or carried
by a user of the RFID system [14,28]. R is a stationary or mobile computing
device that interacts with T when T gets into the reading range of R. The main
purpose of this interaction usually is the authentication of T to R. Depending on
the use case, R may also authenticate to T and/or obtain additional information
like the identity of T . R can have a sporadic or permanent online connection
to some backend system D, which typically is a database maintaining detailed
information on all tags in the system. D is initialized and maintained by I and
can be read and updated by R.

Trust and adversary model. The operator I maintains the RFID system and
is considered to behave correctly. However, I may be curious and collect user
information. Since T and R communicate over a radio link, any entity can eaves-
drop and manipulate this communication, even from outside the nominal reading
range of R and T [23]. Thus, the adversary A can be every (potentially unknown)
entity. Besides the communication between T and R, A can also obtain useful
auxiliary information (e.g., by visual observation) on whether R accepted T as a
legitimate tag [21,37]. Most commercial RFID tags are cost-efficient devices with-
out expensive protection mechanisms against physical tampering [2,29]. Hence,
A can physically attack (corrupt) T and obtain its state, e.g., its secrets. In
practice, RFID readers are embedded devices that can be integrated into mobile
devices (e.g., mobile phones or PDAs) or computers. The resulting complexity
exposes readers to sophisticated hard- and software attacks, e.g., viruses and
Trojans. This problem aggravates for mobile readers that can easily be lost or
stolen. Hence, A can get full control over R [4,16,27].

Security and privacy objectives. The most deterrent privacy risk concerns the
tracking of tag users, which allows the creation and misuse of detailed user pro-
files in an RFID system [20]. For instance, detailed movement profiles can leak
sensitive information on the personal habits and interests of the tag user. The
major security threats are to create illegitimate (forge) tags that are accepted by
honest readers, to simulate (impersonate) or to copy (clone) legitimate tags, and
to permanently prevent users from using the RFID system (denial-of-service) [8].
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Thus, an RFID system should provide anonymity as well as untraceability of a
tag T even when the state of T has been disclosed. Anonymity means the confi-
dentiality of the identity of T whereas untraceability refers to the unlinkability
of the communication of T . The main security objective is to ensure that only
legitimate tags are accepted by honest readers (tag authentication). Most use
cases (like access control systems) additionally require R to determine the au-
thentic tag identity (tag identification). Moreover, there are several applications
(e.g., electronic tickets) where reader authentication is a fundamental security
property. However, there are also use cases (e.g., electronic product labels) that
do not require reader authentication.

3 The PV-Model

In this section, we recall the RFID security and privacy model by Paise and
Vaudenay (PV-Model) [30] that refines the model in [37]. We give a more formal
specification of this model, which is one of the most comprehensive RFID privacy
and security models up to date. We start by specifying our notation.

General notation. For a finite set S, |S| denotes the size of S whereas for an
integer (or a bit-string) n the term |n| means the bit-length of n. The term
s ∈R S means the assignment of a uniformly chosen element of S to variable
s. Let A be a probabilistic algorithm. Then y ← A(x) means that on input
x, algorithm A assigns its output to variable y. The term [A(x)] denotes the
set of all possible outputs of A on input x. AK(x) means that the output of A
depends on x and some additional parameter K (e.g., a secret key). The term
Prot[A :xA; B :xB; ∗ :xpub ] → [A :yA; B :yB] denotes an interactive protocol Prot
between two probabilistic algorithms A and B. Hereby, A (resp. B) gets a private
input xA (resp. xB) and a public input xpub . While A (resp. B) is operating, it can
interact with B (resp. A). After the protocol terminates, A (resp. B) returns yA

(resp. yB). Let E be some event (e.g., the result of a security experiment), then
Pr[E] denotes the probability that E occurs. Probability ε(l) is called negligible
if for all polynomials f it holds that ε(l) ≤ 1/f(l) for all sufficiently large l.
Probability 1 − ε(l) is called overwhelming if ε(l) is negligible.

3.1 System Model

The PV-Model considers RFID systems that consist of a single operator I, a sin-
gle reader R and a polynomial number of tags T . Note that the PV-Model does
not explicitly define an entity that corresponds to the operator I but implies the
existence of such an entity. R is assumed to be capable of performing public-key
cryptography and of handling multiple instances of the mutual authentication
protocol with different tags in parallel. Each tag T is a passive device, i.e.,
it does not have its own power supply but is powered by the electromagnetic
field of R. Hence, T cannot initiate communication, has a narrow communi-
cation range (i.e., a few centimeters to meters) and erases its temporary state
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(i.e., all session-specific information and randomness) after it gets out of the
reading range of R. Each T is assumed to be capable of computing basic cryp-
tographic functions like hashing, random number generation and symmetric-key
encryption. The authors of [37,30] also use public-key encryption, although it
exceeds the capabilities of most currently available RFID tags [2,29].

Security and privacy objectives. The main security objective of the PV-Model is
mutual authentication. More precisely, R should only accept legitimate tags and
must be able to identify them, while each legitimate tag T should only accept R.
Availability and protection against cloning are not captured by the PV-Model.
The privacy objectives are anonymity and unlinkability.

Definitions. The operator I sets up R and all tags T . Hence, there are two
setup algorithms where R and T are initialized and their system parameters
(e.g., keys) are generated and defined. A protocol between T and R covers
mutual authentication.
Definition 1 (RFID System [30]). An RFID system is a tuple of probabilistic
polynomial time (p.p.t.) algorithms (R, T , SetupReader, SetupTag, Ident) that are
defined as follows:
SetupReader(1l) → (skR, pkR, DB) On input of a security parameter l, this al-

gorithm creates the public parameters pkR that are known to all entities.
Moreover, it creates the secret parameters skR and a database DB that can
only be accessed by R.

SetupTagpkR
(ID) → (K, S) uses pkR to generate a tag secret K and tag state

S, initializes TID with S, and stores (ID, K) in DB.
Ident[TID :S; R :skR, DB; ∗ :pkR] → [TID :outTID ; R :outR] is an interactive pro-

tocol between TID and R. TID takes as input its current state S while R has
input skR and DB. The common input to all parties is pkR. After the protocol
terminates, R returns either the identity ID of TID or ⊥ to indicate that TID
is not a legitimate tag. TID returns either ok to indicate that R is legitimate
or ⊥ otherwise.

Definition 2 (Correctness [30]). An RFID system (Definition 1) is correct
if ∀ l, ∀ (skR, pkR, DB) ∈ [SetupReader(1l)], and ∀ (K, S) ∈ [SetupTagpkR

(ID)]
Ident[TID : S; R : skR, DB; ∗ : pkR] → [TID : ok; R : ID] holds with overwhelming
probability.

3.2 Trust and Adversary Model

In the PV-Model, the issuer I, the backend database D and the readers are
assumed to be trusted whereas a tag T can be compromised. All readers and
D are subsumed to one single reader entity R that cannot be corrupted. This
implies that all readers are assumed to be tamper-resistant devices that have a
permanent online connection to D.2 The PV-Model defines privacy and security
2 Depending on the use case, this assumption can be problematic in practice, e.g., for

mobile readers that usually have only a sporadic or no online connection and that
are subject to a variety of soft- and hardware attacks.
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as security experiments, where a p.p.t. adversary A can interact with a set of
oracles that model the capabilities of A. These oracles are:

CreateTagb(ID) Allows A to set up a tag TID with identifier ID by internally
calling SetupTagpkR

(ID) to create (K, S) for TID. If input b = 1, then (ID, K)
is added to DB. If b = 0, then (ID, K) is not added to DB.

Draw(δ) → (vtag1, b1, . . . , vtagn, bn) Initially, A cannot interact with any tag but
must query Draw to get access to a set of tags chosen according to a probabil-
ity distribution δ. A knows the tags it can interact with by some temporary
tag identifiers vtag1, . . . , vtagn. Draw manages a secret look-up table Γ that
keeps track of the real tag identifier IDi associated with each temporary tag
identifier vtagi, i.e., Γ [vtagi] = IDi. Moreover, Draw also provides A with
information on whether the tags are legitimate (bi = 1) or not (bi = 0).

Free(vtag) Makes tag vtag inaccessible to A such that A cannot interact with
vtag until it is made accessible again under a new temporary identifier vtag ′

by another Draw query.
Launch( ) → π Makes R to start a new instance π of the Ident protocol.
SendReader(m, π) → m′ Sends a message m to instance π of the Ident protocol

that is running on R. R interprets m as a protocol message of instance π of
the Ident protocol and responds with a message m′.

SendTag(m, vtag) → m′ Sends a message m to the tag vtag , which interprets m
as a protocol message of the Ident protocol and responds with a message m′.

Result(π) Returns 1 if instance π of the Ident protocol has been completed and
the tag TID that participated in instance π has been accepted by R. Otherwise
Result returns 0.

Corrupt(vtag) → S Returns the current state S (i.e., all information stored in
the memory) of the tag vtag to A.

The PV-Model distinguishes eight adversary classes, which differ in (i) their
ability to corrupt tags and (ii) the availability of auxiliary information, i.e., the
ability to access the Corrupt and Result oracle, respectively.

Definition 3 (Adversary Classes [30]). An adversary is a p.p.t. algorithm
that has arbitrary access to all oracles described in Section 3.2. Weak adversaries
cannot access the Corrupt oracle. Forward adversaries cannot query any other or-
acle than Corrupt after they made the first Corrupt query. Destructive adversaries
cannot query any oracle for vtag again after they made a Corrupt(vtag) query.
Strong adversaries have no restrictions on the use of the Corrupt oracle. Narrow
adversaries cannot access the Result oracle.

Tag corruption aspects. Depending on the concrete scenario, the temporary tag
state is disclosed under tag corruption. In general, any concrete scenario will
range between the following two extremes: (i) corruption discloses the full tem-
porary tag state, or (ii) corruption does not disclose any information on the
temporary tag state. In Section 4 and 5, we will prove that in both cases some
privacy notions are impossible to achieve in the PV-Model. Thus, independently
of any possible interpretation of tag corruption, impossibility results exist that
contradict the claims of [30].
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3.3 Security Definition

The security definition of the PV-Model focuses on attacks where the adversary
aims to impersonate or forge a legitimate tag T or the reader R. It does not
capture availability and security against cloning.

Tag authentication. The definition of tag authentication is based on a security
experiment ExpT -aut

Asec
where a strong adversary Asec (Definition 3) must make

R to identify some tag TID in some instance π of the Ident protocol. To exclude
trivial attacks (e.g., relay attacks), Asec is not allowed to simply forward all the
messages from TID to R in instance π nor to corrupt TID. This means that at
least some of the protocol messages that made R to return ID must have been
computed by Asec without knowing the secrets of TID. With ExpT -aut

Asec
= 1 we

denote the case where Asec wins the security experiment.

Definition 4 (Tag Authentication [30]). An RFID system (Definition 1)
achieves tag authentication if for every strong adversary Asec (Definition 3)
Pr[ExpT -aut

Asec
= 1] is negligible.

Reader Authentication. The definition of reader authentication is based on a
security experiment ExpR-aut

Asec
where a strong adversary Asec (Definition 3) must

successfully impersonate R to a legitimate tag TID. Also here, to exclude trivial
attacks, Asec must achieve this without simply forwarding the protocol messages
from R to TID. This means that Asec must have computed at least some of the
protocol messages that made TID to return ok. With ExpR-aut

Asec
= 1 we denote

the case where Asec wins the security experiment.

Definition 5 (Reader Authentication [30]). An RFID system (Defini-
tion 1) achieves reader authentication if for every strong adversary Asec (Defi-
nition 3) Pr[ExpR-aut

Asec
= 1] is negligible.

Note that both tag and reader authentication are critical properties that must
be preserved even against strong adversaries.

3.4 Privacy Definition

The privacy definition of the PV-Model is very flexible and, dependent on the
adversary class (see Definition 3), it covers different notions of privacy. It cap-
tures anonymity and unlinkability and focuses on the privacy leakage of the
communication of tags with the reader. It is based on the existence of a sim-
ulator B, called blinder, that can simulate R and any tag T without knowing
their secrets such that an adversary Aprv cannot distinguish whether it is inter-
acting with the real or the simulated RFID system. The rationale behind this
simulation-based definition is that the communication of T and R does not leak
any information about T . Hence, everything Aprv observes from the interaction
with T and R appears to be independent of T and consequently, Aprv cannot
distinguish different tags based on their communication.
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This privacy definition can be formalized by the following privacy experiment
Expprv-b

Aprv
= b′: let Aprv be an adversary according to Definition 3, l be a given

security parameter and b ∈R {0, 1}. In the first phase of the experiment, R is
initialized with (skR, pkR, DB) ← SetupReader(1l). The public key pkR is given
to Aprv and B. Now, Aprv is allowed to arbitrarily interact with all oracles defined
in Section 3.2. Hereby, Aprv is subject to the restrictions of its corresponding
adversary class (see Definition 3). If b = 1, all queries to the Launch, SendReader,
SendTag and Result oracles are redirected to and answered by B. Hereby, B can
observe all queries Aprv makes to all other oracles that are not simulated by B
and the corresponding responses (“B sees what Aprv sees”). After a polynomial
number of oracle queries, the second phase of the experiment starts. In this
second stage, Aprv cannot interact with the oracles but is given the secret table
Γ of the Draw oracle. Finally, Aprv returns a bit b′.

Definition 6 (Privacy [37]). Let C be one of the adversary classes accord-
ing to Definition 3. An RFID system (Definition 1) is C-private if for every
adversary Aprv of C there exists a p.p.t. algorithm B (blinder) such that the
advantage Advprv

Aprv
=

∣
∣ Pr

[

Expprv-0
Aprv

= 1
]

− Pr
[

Expprv-1
Aprv

= 1
]∣
∣ of Aprv is neg-

ligible. B simulates the Launch, SendReader, SendTag and Result oracles to Aprv
without having access to skR and DB. Hereby, all oracle queries Aprv makes and
their corresponding responses are also sent to B.

All privacy notions defined in the PV-Model are summarized in Figure 1, which
also shows their relations. It has been shown that strong privacy is impossible [37]
while the technical feasibility of destructive privacy currently is an open problem.

Strong ⇒ Destructive ⇒ Forward ⇒ Weak
⇓ ⇓ ⇓ ⇓

Narrow-Strong ⇒ Narrow-Destructive ⇒ Narrow-Forward ⇒ Narrow-Weak

Fig. 1. Privacy notions defined in the PV-Model and their relations

4 Corruption with Temporary State Disclosure

We now point out a subtle weakness of the PV-Model. We show that in the
PV-Model it is impossible to achieve any notion of privacy simultaneously with
reader authentication (under temporary state disclosure) except for the weak
and narrow-weak privacy notions. As a consequence, two of the protocols given
in [30] do not achieve their claimed privacy properties.

We stress that this impossibility result is due to the fact that, according to
the formal definitions of the PV-Model, the adversary can obtain the full state
including the temporary memory of a tag by corrupting the tag while it is exe-
cuting a protocol with the reader. Such attacks are a serious threat in practice,
in particular to low-cost RFID tags, and hence must be formally considered.
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Although [30] informally discusses an issue related to tag corruption during pro-
tocol execution, we show that such attacks are not adequately captured by the
formal definitions of the PV-Model. Hence, the only achievable privacy notions
are those where the adversary is not allowed to corrupt tags at all. Since in prac-
tice tag corruption is realistic, this implies that using the PV-Model is not helpful
when reader authentication and a reasonable notion of privacy are needed.

Impossibility of narrow-forward privacy. To prove our first impossibility result,
we need the following lemma, which we will prove in detail further below:

Lemma 1. If there is a blinder B for every narrow-forward adversary Aprv
such that Advprv

Aprv
is negligible (Definition 6), then B can be used to construct

an adversary AB
sec such that Pr[ExpR-aut

AB
sec

= 1] is non-negligible (Definition 5).

Based on this lemma, we set up the following theorem, which we need later to
prove our main impossibility result:

Theorem 1. There is no RFID system (Definition 1) that achieves both reader
authentication (Definition 5) and narrow-forward privacy (Definition 6) under
temporary tag state disclosure.

Proof (Theorem 1). Let Aprv be a narrow-forward adversary (Definition 3).
Definition 6 requires the existence of a blinder B such that Aprv cannot dis-
tinguish B from the real oracles. From Lemma 1 it follows that such a B can be
used to impersonate R to any legitimate tag TID with non-negligible probability.
Hence, the existence of B contradicts reader authentication (Definition 5). 	


Proof (Lemma 1). First, we show how to construct AB
sec from B. Second, we

prove that AB
sec violates reader authentication (Definition 5) if B is such that

Advprv
Aprv

is negligible for every narrow-forward Aprv (Definition 3).
Let qR ∈ N with qR > 0 be the (expected) number of SendReader queries as

specified by the Ident protocol and let SR
i be the state of R after processing the i-

th SendReader query. The initial reader state SR
0 includes the public key pkR and

the secret key skR of R as well as a pointer to the credentials database DB. Note
that during the processing of a SendReader query, R can update DB. R can be
considered as a tuple of algorithms (R(1)

π , . . . , R(qR)
π ), where R(i)

π represents the
computation done by R when processing the i-th SendReader query in instance π

of the Ident protocol. More formally: (SR
1 , m1) ← R(0)

π (SR
0 ) and (SR

i+1, m2i+1) ←
R(i)

π (SR
i , m2i) for 1 ≤ i < qR. Since tags are passive devices that cannot initiate

communication R must send the first protocol message. Thus, R generates all
protocol messages with odd indices whereas the tag T generates all messages
with even indices. In case the Ident protocol specifies that T sends the last
protocol message, then m2qR−1 is the empty string.

Let qT ∈ N with qT > 0 be the (expected) number of SendTag queries as spec-
ified by the Ident protocol and let ST

i be the state of T after processing the i-th
SendTag query. T can be represented as a tuple of algorithms (T (1), . . . , T (qT ))
where T (i) means the computation done by T when processing the i-th SendTag



Impossibility Results for RFID Privacy Notions 49

Alg. 1. Adversary AB
sec violating reader authentication

1: CreateTag(ID)
2: vtag ← Draw(Pr[ID] = 1)
3: π ← Launch( ) � simulated by B
4: m1 ← SendReader(−, π) � simulated by B
5: i ← 1
6: while i < qR do
7: if i ≤ qT then m2i ← SendTag(m2i−1, vtag) � simulated by B
8: end if
9: m2i+1 ← SendReader(m2i, π) � simulated by B

10: i ← i + 1
11: end while
12: outTID ← SendTag(m2qR−1, vtag) � computed by TID

query in an instance of the Ident protocol that involves T . More formally:
(ST

i+1, m2i) ← T (i)(ST
i , m2i−1) for 1 ≤ i ≤ qT . Note that m2qT is the empty

string if Ident specifies that R must send the last protocol message.
The idea of AB

sec is to internally use B as a black-box to simulate the final
protocol message of R that makes each legitimate tag TID to accept AB

sec as R.
The construction of AB

sec is shown in Algorithm 1. First, AB
sec creates a legitimate

tag TID (step 1) and makes it accessible (step 2). Both steps are also shown to B,
which expects to observe all oracle queries. Then, AB

sec makes B to start a new
instance π of the Ident protocol with TID (step 3) and obtains the first protocol
message m1 generated by B (step 4). Now, AB

sec internally runs B that simulates
both TID and R until B returns the final reader message m2qR−1 (steps 5–11).
Finally, AB

sec sends m2qR−1 to the real tag TID (step 12). AB
sec succeeds if TID

accepts B as R. More formally, this means that:

Pr
[

ExpR-aut
AB

sec
= 1

]

= Pr
[

Ident
[

TID :STID
0 ; AB

sec :−; ∗ :pkR
]

→
[

TID :ok; AB
sec : ·

]]

(1)

We stress that this indeed is a valid attack w.r.t. Definition 5 since Asec does
not just forward the protocol messages between R and TID.

Next, we show that narrow-forward privacy (Definition 6) ensures that AB
sec

succeeds with non-negligible probability, i.e., that Eq. 1 is non-negligible. Note
that in case Eq. 1 is negligible, this implies that with non-negligible probability
p⊥ message m2qR−1 generated by B makes TID to return outTID = ⊥. In the
following, we show that if p⊥ is non-negligible, then there is a narrow-forward
adversary Aprv that has non-negligible advantage Advprv

Aprv
to distinguish B form

the real oracles, which contradicts narrow-forward privacy (Definition 6). The
construction of Aprv is shown in Algorithm 2. First, Aprv creates a legitimate
tag TID (step 1) and makes it accessible (step 2). Then, Aprv makes R to start
a new instance π of the Ident protocol with TID (step 3) and obtains the first
protocol message m1 from R (step 4). Now, Aprv eavesdrops on the execution of
the Ident protocol up to to the point after R has sent its last protocol message
m2qR−1 (steps 5–11) and corrupts TID just before TID received m2qR−1 (step 12).
Next, Aprv performs the computation TID would have done on receipt of m2qR−1
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Alg. 2. Narrow-forward adversary Aprv

1: CreateTag(ID)
2: vtag ← Draw(Pr[ID] = 1)
3: π ← Launch( )
4: m1 ← SendReader(−, π)
5: i ← 1
6: while i < qR do
7: if i ≤ qT then m2i ← SendTag(m2i−1, vtag)
8: end if
9: m2i+1 ← SendReader(m2i, π)

10: i ← i + 1
11: end while
12: STID

qR ← Corrupt(vtag)
13: outTID ← TID

(qR)(STID
qR , m2qR−1)

14: if outTID = ok then return 0
15: else return 1
16: end if

(step 13). If this computation results in outTID = ok, Aprv returns 0 to indicate
that it interacted with the real oracles (step 14). Otherwise, Aprv indicates the
presence of B by returning 1 (step 15). Note that Aprv indeed is a narrow-forward
adversary (Definition 3) since Aprv never queries Result and none of the oracles
defined in Section 3.2 after corrupting TID.

Next, we show that Aprv has non-negligible advantage Advprv
Aprv

if p⊥ is non-
negligible. Therefore, we first consider the case where Aprv interacts with the
real oracles. Since TID is legitimate, it follows from correctness (Definition 2)
that outTID = ok with overwhelming probability pok. Hence, Pr

[

Expprv-0
Aprv

= 1
]

=
1 − pok is negligible. Now, consider the case where Aprv interacts with B. Note
that by the contradicting hypothesis, B generates a protocol message m2qR−1
that makes TID to return outTID = ⊥ with non-negligible probability p⊥. Thus, we
have Pr

[

Expprv-1
Aprv

= 1
]

= p⊥. Hence, it follows that Advprv
Aprv

=
∣
∣1 − pok − p⊥

∣
∣.

Note that due to correctness both pok is overwhelming and by assumption p⊥
is non-negligible. Hence, Advprv

Aprv
is non-negligible, which contradicts narrow-

forward privacy (Definition 6). In turn, this means that narrow-forward privacy
ensures that Eq. 1 is non-negligible, which finishes the proof. 	


Since the impossibility of narrow-forward privacy (Theorem 1), implies the im-
possibility of all other stronger privacy notions (see Figure 1), we have the
following corollary, which corresponds to the first main claim of this paper:

Corollary 1. In the PV-Model there is no RFID system (Definition 1) that
achieves both reader authentication (Definition 5) and any privacy notion that
is different from weak and narrow-weak privacy (Definition 6) under temporary
state disclosure.
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5 Corruption without Temporary State Disclosure

Our first impossibility result shows that the PV-Model requires further assump-
tions to evaluate the privacy properties of RFID systems where tag corruption
is of concern. A natural question therefore is, whether one can achieve mutual
authentication along with some form of privacy, if the temporary tag state is
not disclosed. Hence, in this section we consider the case where corruption only
reveals the persistent tag state but no information on the temporary tag state.

The attack and the impossibility result shown in Section 4 critically use the
fact that in the PV-Model an adversary Aprv can learn the temporary state of
a tag during the Ident protocol. This allows Aprv to verify the response of R
(that may have been simulated by B) and hence, due to reader authentication
(Definition 5), Aprv can distinguish with non-negligible advantage between the
real oracles and B. However, if Aprv cannot obtain temporary tag states, it
cannot perform this verification. Hence, the impossibility result we proved in
Section 4 does not necessarily hold if the temporary state is safe to corruption.

Impossibility of narrow-strong privacy. We now show our second impossibility
result: in the PV-Model, it is impossible to achieve narrow-strong privacy along
with reader authentication. This means that even in case the adversary can-
not obtain the temporary tag state, the most challenging privacy notion defined
in [30] (narrow-strong privacy) still remains unachievable. This implies a concep-
tually different weakness of the claimed narrow-strong private protocol in [30].

Theorem 2. In the PV-Model there is no RFID system (Definition 1) that ful-
fills both reader authentication (Definition 5) and narrow-strong privacy (Defi-
nition 6).

Proof (Theorem 2). Narrow-strong privacy (Definition 6) requires the existence
of a blinder B that simulates the Launch, SendReader and SendTag oracles such
that every narrow-strong adversary Aprv has negligible advantage Advprv

Aprv
to

distinguish B from the real oracles. We now show that B can be used to construct
an algorithm AB

sec that violates reader authentication (Definition 5).
The construction of AB

sec is as shown in Algorithm 3. First, AB
sec creates a

legitimate tag TID (step 1), makes it accessible (step 2), and corrupts it (step 3).
These three steps are also shown to B, which expects to observe all oracle queries.
Then, AB

sec makes B to start a new instance π of the Ident protocol with TID
(step 4) and obtains the first protocol message m1 generated by B (step 5).
Now, AB

sec internally runs B that simulates vtag and R until B returns the final
reader message m2qR−1 (steps 6–12). Finally, AB

sec sends m2qR−1 to the real tag
TID (step 13). AB

sec succeeds if TID accepts m2qR−1 and returns outTID = ok, which
means that TID accepts B as R. More formally, this means that:

Pr
[

ExpR-aut
AB

sec
= 1

]

= Pr
[

Ident
[

TID :STID
0 ; AB

sec :−; ∗ :pkR
]

→
[

TID :ok; AB
sec : ·

]]

(2)

We stress that this indeed is a valid attack w.r.t. Definition 5 since Asec does
not just forward the protocol messages between R and TID.
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Alg. 3. Adversary AB
sec violating reader authentication

1: CreateTag(ID)
2: vtag ← Draw(Pr[ID] = 1)
3: STID

0 ← Corrupt(vtag)
4: π ← Launch( ) � simulated by B
5: m1 ← SendReader(−, π) � simulated by B
6: i ← 1
7: while i < qR do
8: if i ≤ qT then m2i ← SendTag(m2i−1, vtag)
9: end if

10: m2i+1 ← SendReader(m2i, π) � simulated by B
11: i ← i + 1
12: end while
13: outTID ← SendTag(m2qR−1, vtag) � computed by TID

From reader authentication (Definition 5) it follows that Eq. 2 must be negli-
gible. However, this implies that with overwhelming probability B generates at
least one protocol message that makes TID to finally return outTID = ⊥. Let pt be
the probability that this is the case for message m2t−1 for some t ∈ {1, . . . , qT }.
We now show a narrow-strong adversary Aprv that succeeds with non-negligible
advantage Advprv

Aprv
if pt is non-negligible, which contradicts narrow-strong pri-

vacy (Definition 6). The construction of Aprv is shown in Algorithm 4. First,
Aprv creates a legitimate tag TID (step 1), makes it accessible (step 2), and cor-
rupts it (step 3). Note that by a Corrupt query, Aprv only learns the persistent
tag state STID

0 of TID. Then, Aprv makes R to start an instance π of the Ident
protocol with TID (step 4) and obtains the first protocol message m1 from R
(step 5). Now, Aprv guesses t (step 6) and simulates TID (using STID

0 ) in the Ident
protocol up to the point where SendReader returns message m2t−1 (steps 7–13).
Next, Aprv performs the computation TID would have done on receipt of message
m2t−1 (step 14). Finally, Aprv returns either 0 to indicate that it interacted with
the real oracles (step 15) or 1 to indicate the presence of B (step 16).

Next, we show that Aprv has non-negligible Advprv
Aprv

if p⊥ is non-negligible.
Therefore, we first consider the case where Aprv interacts with the real oracles.
Since TID is legitimate, it follows form correctness (Definition 2) that outTID = ok
holds with overwhelming probability pok. This means that Pr

[

Expprv-0
Aprv

= 1
]

=
1−pok is negligible. Now, consider the case where Aprv interacts with B. Note that
by the contradicting hypothesis, with non-negligible probability pt B generates
a message m2t−1 that makes TID to return outTID = ⊥. Moreover, Aprv guesses t

with probability of at least 1/qT . Thus, we have Pr
[

Expprv-1
Aprv

= 1
]

≥ pt

qT
. Hence,

it follows that Advprv
Aprv

≥ |1 − pok − pt

qT
|. Note that due to correctness pok is

overwhelming while pt is non-negligible by assumption and qT is polynomially
bounded. Hence, Advprv

Aprv
is non-negligible, which contradicts narrow-strong

privacy (Definition 6). 	
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Alg. 4. Narrow-strong adversary Aprv

1: CreateTag(ID)
2: vtag ← Draw(Pr[ID] = 1)
3: STID

0 ← Corrupt(vtag)
4: π ← Launch( )
5: m1 ← SendReader(−, π)
6: t ∈ {1, . . . , qT }
7: i ← 1
8: while i < t do
9: (STID

i+1, m2i) ← TID
(i)(STID

i , m2i−1)
10: if i < qR then m2i+1 ← SendReader(m2i, π)
11: end if
12: i ← i + 1
13: end while
14: outTID ← TID

(t)(STID
t , m2t−1)

15: if outTID = ok then return 0
16: else return 1
17: end if

6 Impossibility Results for Resettable and Stateless Tags

It is well known (see [9] for details and in particular [5] for identification schemes)
that standard security notions do not work anymore when the adversary can ma-
nipulate the device that is running an honest party protocol, in particular when
the adversary can reset the internal state of the device. To face this security
issue, Canetti et al. [9] considered the concept of resettability for obtaining a
security notion that is resilient to “reset attacks”, e.g., attacks where the adver-
sary can force a device to reuse the same randomness. The crucial importance
of this notion is proved by several results (see, e.g., [5,9,13,6,17]) with the focus
on obtaining feasibility results and efficient constructions for proof systems and
identification schemes in such hostile settings. Reset attacks have been moti-
vated in particular by the use of smart cards since some specific smart cards,
when disconnected from power, go back to their initial state and perform their
computations using the same randomness they already used before. However,
the concept of a reset attacks can have a wider applicability. In particular reset
attacks are always possible when the adversary controls the environment and
can therefore force a stateless device to use the same randomness in different
executions of a protocol.

As discussed in Section 2, most RFID tags in practice are low-cost devices that
are usually not protected against physical tampering. Moreover, the randomness
generator of a real-life RFID tag has already been successfully attacked [15].
Therefore, it is interesting to investigate the impact of reset attacks on the
security and privacy of RFID systems.

In this section, we focus on the effect of reset attacks on privacy as defined
in both the PV-Model [30] and the model it is based on [37]. Therefore, we first
extend the formal adversary model in [37,30] to capture reset attacks. Then,
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we show that any privacy notion as defined in Definition 6 is spoiled when an
adversary is able to launch reset attacks. We finally show that, when restricting
the power of the adversary to the capability of resetting only the persistent state
of a tag, i.e., the randomness of the tag is out of the control of the adversary, it
is impossible to achieve destructive privacy.

6.1 Impossibility of Narrow-Weak Privacy under Reset Attacks

In order to extend the model in [37,30] to capture reset attacks, we add an
additional oracle Reset(vtag) to the adversary model shown in Section 3.2. This
oracle allows the adversary to reset the randomness and the state of a tag vtag
to their initial values. We stress out that resetting a tag is a mere adversarial
action and is never performed by honest parties. Thus we do not require that
such an action must be carried out efficiently, instead according to the result
showed in [5,9] we assume that it can be carried out in polynomial time. Note
that, as for the Corrupt oracle, the Reset oracle is not simulated by the blinder
B (see Definition 6) but is observed by it.

Now we are ready to formalize the impossibility of achieving any privacy
notion in the extended model of [37,30] when the adversary can perform reset
attacks against tags.

Theorem 3. In the model of [37,30], no privacy notion (Definition 6) is
achievable if the adversary is allowed to query the Reset oracle.

Proof (Theorem 3). We show a narrow-weak adversary Aprv that can distinguish
with non-negligible advantage Advprv

Aprv
whether it is interacting with the real

oracles or a blinder B. The construction of Aprv is shown in Algorithm 5. First,
Aprv creates two legitimate tags TID0, TID1 (steps 1–2) and makes one of them
accessible (step 3). Then Aprv eavesdrops a complete execution protocol of the
Ident protocol between vtag and R (steps 4-11). We define τ as the complete
transcript of the protocol execution. Note that τ contains the messages sent
by both R and vtag . Now, Aprv resets the state of vtag by querying the Reset
oracle (step 12) and makes vtag inaccessible again by querying the Free oracle
(step 13). Next, Aprv makes a randomly chosen tag vtag ′ accessible (step 14)
and then executes a complete run of the Ident protocol with vtag ′ simulating R
(steps 15–18). To simulate R, Aprv uses the messages that have been sent by
R in the previous execution according to the transcript τ . Finally, Aprv obtains
a new protocol transcript τ ′. If the same tag has played both times, then Aprv
expects that the transcripts τ and τ ′ are the same due to the Reset oracle. The
idea is that B has no information about which tag has been drawn in step 14 (the
resetted one or the other one). Thus, B can at most guess which tag has been
chosen when answering the SendTag query in the second protocol execution.

In the following we show that Aprv has non-negligible advantage Advprv
Aprv

of
distinguishing between B and real oracles, which violates narrow-weak privacy.
First, we consider the case where Aprv interacts with the real oracles. It is easy
to see that in this case the attack is always successful. Indeed, if Aprv interacts
with the same tag in both executions of the Ident protocol, then, due to the
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Alg. 5. Experiment with a narrow-weak adversary Aprv

1: CreateTag(ID0)
2: CreateTag(ID1)
3: vtag ← Draw(Pr[ID0] = 1

2 , Pr[ID1] = 1
2 )

4: m1 ← SendReader(−, π)
5: i ← 1
6: while i < qR do
7: if i ≤ qT then m2i ← SendTag(m2i−1, vtag)
8: end if
9: m2i+1 ← SendReader(m2i, π)

10: i ← i + 1
11: end while
12: Reset(vtag)
13: Free(vtag)
14: vtag ′ ← Draw(Pr[ID0] = 1

2 , Pr[ID1] = 1
2 )

15: i ← 1
16: while i ≤ qT do m2i ← SendTag(m2i−1, vtag ′)
17: i ← i + 1
18: end while
19: if τ = τ ′ then outA ← 1
20: else outA ← 0
21: end if
22: return

(

Γ [vtag] = Γ [vtag′] ∧ outA
)

∨
(

Γ [vtag] �= Γ [vtag′] ∧ outA
)

Reset query, challenging vtag ′ with the same messages must generate the same
protocol transcript. Thus, after Aprv is given the hidden table Γ , one of the
two conditions must hold: either Aprv has (i) interacted with the same tag twice
and the transcripts match (which is always true in case Γ [vtag] = Γ [vtag ′]), or
(ii) the tag involved in the second execution of Ident is not the resetted tag and
the protocol transcripts are different (which holds with overwhelming probability
in case Γ [vtag ] �= Γ [vtag ′] due to tag authentication, since otherwise Aprv can
create a faked tag state that can be used to generate the messages of a legiti-
mate tag with non-negligible probability). Hence, Aprv succeeds in Expprv-0

Aprv
with

probability 1 − ε(l) where ε is a negligible function in the security parameter l.
Formally, Pr

[

Expprv-0
Aprv

= 1
]

= Pr
[(

Γ [vtag] = Γ [vtag′]
)

∧outA
]

+Pr
[(

Γ [vtag] �=
Γ [vtag′]

)

∧ outA
]

= 1
2 · 1 + 1

2 · (1 − ε(l)) = 1 − ε(l)/2. Next we consider the case
where the SendTag oracle is simulated by B. In this case any B can at most
guess which tag has been selected by Draw. Hence, the probability that Aprv

wins the experiment Expprv-1
Aprv

is at most Pr
[

Expprv-1
Aprv

= 1
]

= Pr
[(

Γ [vtag] =
Γ [vtag′]

)

∧ outA
]

+ Pr
[(

Γ [vtag] �= Γ [vtag′]
)

∧ outA
]

≤ 1
2 · 1

2 + 1
2 · 1

2 = 1
2 .

According to Definition 6, from the above probability it follows that Aprv has
non-negligible advantage Advprv

Aprv
≥ 1−ε(l)/2− 1

2 to distinguish between B and
the real oracles. 	
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Alg. 6. Narrow-forward adversary Aprv

1: CreateTag(ID)
2: vtag ← Draw(Pr[ID] = 1)
3: Free(vtag)
4: vtag ← Draw(Pr[ID] = 1)
5: t ∈ {1, . . . , qT }
6: m1 ← SendReader(−, π)
7: i ← 1
8: while i ≤ t do
9: m2i ← SendTag(m2i−1, vtag)

10: m2i+1 ← SendReader(m2i, π)
11: i ← i + 1
12: end while
13: S ← Corrupt(vtag)
14: return 1 if and only if the temporary state in S is empty

6.2 Impossibility of Destructive Privacy with Stateless Tags

In this section we show that destructive privacy is impossible to achieve in the
model of [37,30] when tags are stateless, i.e., when their persistent state cannot be
updated. This implies that destructive privacy is impossible when an adversary
can reset the persistent state of a tag to its original value: by resetting a tag,
the adversary can interact with a tag that uses the same state several times,
which corresponds to an experiment with a stateless tag. We stress that in a
stateless RFID scheme the Free oracle erases any temporary information stored
on the tag. Otherwise there would be an updatable information that survives
even when a tag is not powered, and thus the tag would be stateful.

We recall that in our previous notation we associate ST
i to the full state

(including both the persistent and temporary state) of a tag when playing the
i-th message from the moment it has been drawn, i.e., powered on. We start by
giving a useful preliminary lemma.

Lemma 2. In any stateless narrow-forward RFID scheme the temporary tag
state is always empty.

Proof (Lemma 2). To prove the lemma we show in Algorithm 6 that if there
exists a non-empty temporary tag state, then there exists a narrow-forward
adversary Aprv that distinguishes between the real oracles and B. We stress
that for a stateless tag, due to the Free query, the output S returned by a
Corrupt(vtag) query played immediately after a Draw query corresponds to the
persistent state generated by the CreateTag oracle. Clearly, when interacting
with the real oracles the output of Aprv is different than 1 with non-negligible
probability. Indeed, since stateless tags are allowed to have some non-empty
temporary state, there exists at least one round, which can be guessed with
non-negligible probability by the selection of t, that, when followed by the
Corrupt query, reveals to Aprv that the temporary state of the tag is not empty.
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During interaction with the blinder B the tag does not play any round, as all
SendTag queries are simulated by B. Therefore, the output of the above exper-
iment is always equal to 1, which shows that Aprv is successful and the claim
holds. 	


Due to Lemma 2 we can assume that (STID , ·) ← TID(i)(STID , ·), i.e., the new state
after each round is always identical to the previous one. Recall that an RFID
scheme is stateless if the persistent tag state is not allowed to change over time.
In this section we show that when the tag state does not change, then achieving
destructive privacy is impossible.

Theorem 4. There is no stateless RFID system (Definition 1) that achieves
destructive privacy (Definition 6).

Proof (Theorem 4). Recall that destructive privacy implies forward privacy (see
Figure 1). We prove that a stateless RFID system cannot achieve destructive and
narrow-forward privacy at the same time. The proof is by contradiction. Note
that a destructive private stateless RFID system implies the existence of a blinder
B such that Aprv fails in distinguishing the real oracles from their simulation by
B with overwhelming probability. Thus, we first show a destructive adversary
Aprv for which there must exist a successful blinder, that we denote by BD.
Then, we construct a narrow-forward adversary ABD

prv that internally uses BD to
violate forward privacy. Hence, we obtain a contradiction.

Since we are considering stateless tags, we assume that at each step of the tag
algorithm the persistent state remains unchanged. Formally, this means that T
can be represented as a tuple of algorithms (T (1), . . . , T (qT )) where T (i) means
the computation done by T when processing the i-th SendTag query in an in-
stance of the Ident protocol that involves T . We have m2i ← T (i)(ST , m2i−1)
for 1 ≤ i ≤ qT where qT is an upper bound on the number of messages sent by
T during the protocol.

Let Aprv be the destructive adversary defined in Algorithm 7. Informally, the
attack is the following: Aprv faithfully forwards the messages generated by R and
T , up to a certain (randomly chosen) round t of the Ident protocol execution.
Then Aprv corrupts T and gets its state. Since Aprv is destructive, it is not
allowed to query any other oracle for T after corrupting T but Aprv can still
compute the remaining protocol messages of T by running the tag algorithm
with the state obtained by corruption. Then Aprv picks a state S with the same
distribution used by CreateTag (i.e., SetupTag) with the purpose of distinguishing
if it is interacting with the real oracles or BD. Then Aprv randomly selects one
of the two states and continues the protocol execution running the tag algorithm
with the chosen state until the end of the protocol. The main idea is that when
Aprv runs the tag algorithm with the state obtained through the Corrupt query,
then, due to correctness (Definition 2), R will accept, i.e., the Result query
outputs 1 with overwhelming probability, while R will reject otherwise.

Formally, Aprv behaves as follows: First, Aprv creates two legitimate tags TID
(step 1 and step 2) and makes one of them accessible (step 3). Then, Aprv asks
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Alg. 7. Destructive adversary Aprv

1: CreateTag(ID)
2: CreateTag(ID′)
3: vtag ← Draw(Pr[ID] = 1

2 , Pr[ID′] = 1
2 )

4: π ← Launch( )
5: m1 ← SendReader(−, π)
6: jR ∈R {1, . . . , qR}
7: i ← 1
8: while i < jR do m2i ← SendTag(m2i−1, vtag)
9: m2i+1 ← SendReader(m2i, π)

10: i ← i + 1
11: end while
12: STID ← Corrupt(vtag)
13: b ∈R {0, 1}
14: if b = 1 then
15: m2jR ← TID

(jR)(STID , m2jR−1)
16: else
17: pick a state S with the same distribution used by CreateTag (i.e., SetupTag)
18: STID ← S
19: m2jR ← TID

(jR)(STID , m2jR−1)
20: end if
21: m2jR+1 ← SendReader(m2jR , π)
22: i ← jR + 1
23: while i < qR do
24: if i ≤ qT then m2i ← TID

(i)(STID , m2i−1)
25: end if
26: m2i+1 ← SendReader(m2i, π)
27: i ← i + 1
28: end while
29: return

(

Result(π) ∧ b
)

∨
(

Result(π) ∧ b̄
)

R to start a new instance π of the Ident protocol with TID (step 4) and obtains
the first protocol message m1 from R (step 5). Then Aprv randomly chooses a
protocol round jR (step 6) and starts eavesdropping on the execution of the Ident
protocol up to the point after R has sent protocol message m2jR−1 (steps 7–11).
Then Aprv gets the tag state STID by querying the Corrupt oracle, just before
TID receives m2jR−1 (step 12). Now Aprv chooses a random bit b (step 13) to
decide how to complete the protocol execution. In case b = 1, Aprv continues by
simulating vtag using the state STID obtained by the Corrupt query (steps 14–15).
In case b = 0, Aprv sets STID to a new state generated on the fly (steps 16–19).
Hereafter, Aprv simulates the tag by running the algorithm T (i) with the state
set according to the bit b until the protocol terminates (steps 21–28). Finally,
Aprv outputs 1 if one of the following conditions hold: either b = 1 and R accepts
TID, whose transcript has partially been computed by Aprv with the real state
(i.e., the output of Result is 1), or b = 0, and R rejected TID since a part of the
transcript has been generated using a faked state (i.e., the output of Result is 0).
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Recall that Definition 6 requires the existence of a blinder BD such that:
Advprv

Aprv
=

∣
∣ Pr

[

Expprv-0
Aprv

= 1
]

− Pr
[

Expprv-1
Aprv

= 1
]∣
∣ = ε(l) for a negligible

function ε. If such BD exists, then BD must be able to do the following: first,
BD simulates both R and TID, then after BD gets the state STID of TID from the
Corrupt query, playing only at the reader side (TID is simulated by Aprv running
the tag algorithm using either the real or a faked tag state), BD can answer
the Result query as R would do. Thus, BD is able to recognize whether the
messages received from Aprv (simulating TID) are computed with the real state
of TID or not. One can think of BD as a two-phase algorithm. In the first phase
BD simulates the protocol execution between R and a tag vtag . Then, in the
second phase, upon receiving the state STID of vtag, playing as the reader, BD

can distinguish if the tag messages received are computed according to the state
of the tag simulated in first phase or not.

Now we show that if BD exists, then BD can be used to construct a narrow-
forward adversary that distinguishes between any blinder B and the real oracles
with non-negligible probability. Hence, the existence of BD contradicts narrow-
forward privacy and thus in turn destructive privacy. The idea of a narrow-
forward adversary ABD

prv is to run BD as subroutine showing to BD a view that
is identical to the ones that it gets when playing with Aprv in Algorithm 7. The
goal of ABD

prv is to exploit the capabilities of BD to distinguish whether the output
of the SendTag oracle is generated by the real oracle using the real tag state or
by a blinder B for narrow-forward privacy having no information on the real
tag state. Formally, ABD

prv is defined in Algorithm 8 and works as follows: first,
ABD

prv creates two legitimate tags TID, TID′ (steps 1–2) and makes one of them
accessible as vtag (step 3). These three steps are also internally shown to BD.
Then, ABD

prv internally asks BD to start a new instance π of the Ident protocol
with vtag (step 4) and obtains the first protocol message m1 generated by BD

(step 5). Then ABD
prv randomly chooses a protocol round jR (step 6) and makes

BD to simulate the first jR rounds of the protocol, up to the point after BD has
sent the reader message m2jR−1 (steps 7–11). Then, ABD

prv queries the SendTag
oracle with the message m2jR−1 obtained by BD (step 12). Next, ABD

prv makes
vtag inaccessible by querying the Free oracle (step 13) and makes accessible a
randomly chosen tag vtag ′ by querying the Draw oracle (step 14). Note that
this step corresponds to the random selection of bit b in Algorithm 7. We stress
that steps 12–15 are not shown to BD. Now ABD

prv queries the Corrupt oracle and
obtains the state STID of vtag ′ (step 15). This query and STID are also shown to BD

(step 16). Then ABD
prv sends to BD the message obtained by the SendTag oracle in

step 12, which has either been computed by the real SendTag oracle or the blinder
B (step 17). Hereby, BD expects to receive a message that has been computed
according to the state STID obtained by Corrupt. Now the second phase starts,
where ABD

prv simulates the messages of vtag ′ using STID and the messages sent by
BD, which is playing as a reader (steps 18–24), until the protocol terminates,
as expected by BD. Now, for the hypothesis, BD can distinguish whether the
messages it receives are (i) computed according to the state of the tag simulated
in the first phase (thus Γ [vtag] = Γ [vtag′]) and in this case Result will output
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Alg. 8. Narrow-forward adversary ABD
prv

1: CreateTag(ID) � shown to BD

2: CreateTag(ID′) � shown to BD

3: vtag ← Draw(Pr[ID] = 1
2 , Pr[ID′] = 1

2 ) � shown to BD

4: π ← Launch( ) � simulated by BD

5: m1 ← SendReader(−, π) � simulated by BD

6: jR ∈R {1, . . . , qR}
7: i ← 1
8: while i < jR do m2i ← SendTag(m2i−1, vtag) � simulated by BD

9: m2i+1 ← SendReader(m2i, π) � simulated by BD

10: i ← i + 1
11: end while
12: m2jR ← SendTag(m2jR−1, vtag) � computed by vtag
13: Free (vtag)
14: vtag ′ ← Draw(Pr[ID] = 1

2 , Pr[ID′] = 1
2 )

15: STID ← Corrupt(vtag ′)
16: Show STID ← Corrupt(vtag) to BD

17: m2jR+1 ← SendReader(m2jR , π) � simulated by BD

18: i ← jR + 1
19: while i < qR do
20: if i ≤ qT then m2i ← TID

(i)(STID , m2i−1) � computed by ABD
prv

21: end if
22: m2i+1 ← SendReader(m2i, π) � simulated by BD

23: i ← i + 1
24: end while
25: b ← Result(π) � simulated by BD

26: return
(

Γ [vtag] = Γ [vtag′] ∧ b) ∨
(

Γ [vtag] �= Γ [vtag′] ∧ b̄
)

1, or (ii) with a different state (thus Γ [vtag] �= Γ [vtag ′]) and in this case Result
will output 0. Now we show that Advprv

ABD
prv

is non-negligible if BD exists.

First, consider the case where ABD
prv interacts with real oracles. If Γ [vtag ] =

Γ [vtag ′], then due to the existence of BD we have that Result returns 1 with
overwhelming probability, which makes ABD

prv to return 1 with the same prob-
ability. Note that even though BD learns the state STID of vtag only after ob-
taining message m2jR that has been computed from this state, by the stateless
property of the scheme and thus by Lemma 2, there is no noticeable difference
between the state of vtag before and after the computation of m2jR . In case
Γ [vtag] �= Γ [vtag ′], we have that the first message m2jR−1 received by BD has
been computed according to the state of vtag and all subsequent messages are
computed according to the state of vtag ′. This deviates from what BD expects
and thus BD could erroneously answer the Result query with 1. Let us denote with
p the probability that BD with input STID answers the Result query with 0 upon
receiving a message computed with a random state followed by messages com-
puted with STID . Then we have Pr

[

Expprv-0
ABD

prv
= 1

]

= 1
2 · (1− ε(l))+ 1

2 · p ≤ (1+p)
2 .
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Now, consider the case where Aprv interacts with B. Here we have that in both
cases (Γ [vtag] = Γ [vtag ′] and Γ [vtag] �= Γ [vtag ′]) the output of the SendTag
oracle computed by B for the forward adversary is computed with a random
state that with overwhelming probability is different from the state of vtag and
vtag ′. Thus, in both cases BD with input the state STID receives the first message
m2jR−1 computed according to a state that is different from STID . Hence we
have Pr

[

Expprv-0
ABD

prv
= 1

]

= 1
2 · (1 − p) + 1

2 · p = (1−p)
2 + p

2 = 1
2 . and it follows

that Advprv
ABD

prv
≤

∣
∣ (1+p)

2 − 1
2

∣
∣ = p

2 . Note that if p is non-negligible, so is the

advantage of ABD
prv and the proof is finished. If instead p is negligible, then BD

has non-negligible probability of answering 1 to a Result query when no message
originates from a valid state. (In the above experiment, this case happens when
jR corresponds to the last round of the protocol.) Obviously a reader that always
expects messages being computed according to a legitimate state would output
0 to a Result query in such an experiment, and this would contradict the fact
that (even a variation of) BD is successful against this variation of Aprv.

The last issue to address is the more general case where a reader admits
wrong messages from a tag, still responding with 1 to a Result query when some
messages are computed using a legitimate state. However, since the procedure of
the reader is public, the above proof can be generalized to any reader strategy.
Indeed, Aprv must replace some correctly computed messages with messages
computed with a random state such that the replacement of the valid messages
exposes the failure of BD. This is achieved by asking Aprv to compute each tag-
side message either using a legitimate or an illegitimate tag state with probability
q that comes from the description of the reader procedure for the Result query,
so that the output of this query is noticeably perturbed by the replacement of a
correctly computed message by a wrongly computed one. 	


7 Conclusion

In this paper, we revisited the security and privacy model for RFID systems
proposed by Paise and Vaudenay (PV-Model) [30]. This model is very interesting
since it covers many aspects of previous works and proposes a unified RFID
security and privacy framework. We showed several impossibility results that
show that the formalization given in the PV-Model is too restrictive and fails
in modelling real-life scenarios, where interesting privacy notions and reader
authentication are intuitively achievable. A partial and shorter version of this
work appeared in [1].
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