Auto-generation of Least Privileges Access
Control Policies for Applications Supported by
User Input Recognition

Sven Lachmund and Gregor Hengst

DOCOMO Euro-Labs, Munich, Germany

Abstract. Applications are typically executed in the security context of
the user. Nonetheless, they do not need all the access rights granted. Ex-
ecuting applications with minimal rights (least privileges) is desirable. In
case of an attack, only a fraction of resources can be accessed. The state-
of-the-art on application-based access control policy generation has limi-
tations: existing work does not generate least privileges policies, policies
are not always complete and the process requires complex manual inter-
action. This paper presents an almost fully automated approach which
counters these limitations. It achieves this by (1) extending a static anal-
ysis approach by user input recognition, by (2) introducing a new run-
time approach on user input recognition which is based on information
tracking and Aspect-Oriented Programming and by (3) combining the
other two contributions with some of the existing work. The combined
approaches are integrated into the software development life cycle and
thus, policy generation becomes practicable. A prototype of the runtime
approach is implemented which proves feasibility and scalability.

1 Introduction

In today’s mainstream operating systems applications are typically executed
with the security context of the user. Since applications are used for a spe-
cific purpose, they do not need all the access rights of the user. Applications
should rather be executed with only those access rights they actually need (least
privileges [1]).

If the application has a vulnerability which can be exploited by an attacker,
allowing the attacker to control the application, the attacker is able to access
the resources which the application is permitted to access. If the application
has restricted access, potential damage of the attack can be confined. Due to
complexity and extensibility of today’s software, applications typically have
vulnerabilities [2/3].

To execute applications with least privileges, applications have to be assigned
access rights individually, as the purpose of applications and the resources they
need to access vary significantly. Generic policies and protection domains are
not specific enough. If applications have their individual access rights, limited
to the minimum, they can execute normally, i.e. they have all the access rights

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XI, LNCS 6480, pp. 172010‘
© Springer-Verlag Berlin Heidelberg 2010

18 S. Lachmund and G. Hengst

they need to carry out their operations, but not more. Applications access two
categories of resources. The first category — the system resources — comprises
those resources which the application accesses to carry out its operations inde-
pendently of any user interaction. The second category — the user resources —
comprises resources chosen by the user while interacting with the application.
For example, a library that is loaded by an application to invoke a function
represents a system resource and a text document accessed by a user in a text
editor represents a user resource. It is not known prior to execution which user
resources a user will access at runtime. In contrast, access to system resources
can be derived from the application’s code.

There is existing work, both on research level [4J56l7] and product level [§] (see
Section), that automates generation of policies individually per application.
While this existing work generates least privileges policies for system resources,
it fails doing so for user resources. It fails due to permitting access to all user
resources which might be accessed by the user during execution by adding generic
permissions to the policy. An example for these generic permissions is to permit
access to the entire home directory of a user. This overapproximation of access
rights violates the principle of least privileges.

The objective is to reduce the set of access rights by discarding access rights
to user resources in order to generate a least privileges policy. Treating system
resources differently from user resources is the key. In this paper, access rights
for system resources are collected and policies are generated using the existing
work. However, for treating access to user resources, user input is identified and
its propagation through the control flow of the application is analysed. If data
that is input by the user is used as resource identifier at a permission check, the
access is considered as access to a user resource. User-initiated resource access
is determined that way. Permissions for accessing user resources are not added
to the policy. The generated policy — the application policy — only consists of
all the necessary access rights to system resources. The entire process is auto-
mated in order to minimise the involvement of the developer. Policy generation
is performed at development time as a kind of side-task during implementation
and testing. Technically, user input recognition is based on static analysis and
runtime observations of the application’s code.

The contributions of this paper are:

— Improving a static analysis-based approach by integrating user input
recognition,

— introducing a new scheme for user input recognition based on user input
tracking with aspect-oriented programming and

— Combining existing work on static analysis and runtime observation with
the two other contributions.

Combining all these contributions eliminates major drawbacks of the existing
work on policy auto-generation: overapproximation is eliminated, completeness
of the policies is given and manual user interactions are eliminated. A proto-
type has been implemented which proves feasibility and scalability of the taint
tracking approach.

Auto-generation of Least Privileges Access Control Policies 19

Executing the application with this application policy being enforced at
runtime would prevent the user from accessing any user resource in the appli-
cation. Therefore the application policy is adapted on the target system where
the application is executed. This can be done dynamically at runtime upon user
interactions. Whenever a user chooses a resource in the application, the corre-
sponding access right is added to the policy. Consequently, the application can
only access user resources chosen by the user. This satisfies the principle of least
privileges. The user perception is the same as in systems based on the object-
capability security model (see Section [Z4]). An alternative is to adapt the policy
statically at deployment time or at load time, by specifying which user resources
are accessible. We already elaborated various approaches for this adaptation.
Some of them are similar to the user input recognition at development time (see
Section [3]). However, other approaches are beyond the focus of this paper.

Since the policy is generated by the developer and augmented on the target
system, responsibilities are split: the developer defines the access rights the ap-
plication needs and the target system only has to define which resources the
user should be able to access. This results in policy generation being practicable
for all the involved stakeholders. In contrast, existing work involves the user in
complex manual tasks, as all the policy is generated on the target system. It
is difficult for the user to determine which access rights to system resources an
application needs. Consequently, existing work is not widely used in practice.

The paper is organised as follows. Section 2l discusses related work. Section 3]
contributes distinction of access to system resources and user resources. It also
presents the automated application policy generation process. The prototype
implementation of the runtime observation approach is addressed by Section [4l
Section [Hlillustrates the contribution applied on an application. An evaluation of
the contribution and the prototype is provided by Section 6l Section [daddresses
issues to be considered, such as embedding the presented work in the software
development life cycle (SDLC) and future work. Section [§ concludes the paper.

This work has been carried out based on the object-oriented programming
(OOP) paradigm [9/T0]. It is assumed that the programming language and its
execution environment are entirely object-oriented. Terms, such as class, ob-
ject, method, field, member, type and modifier are used in their OOP context
throughout the paper.

2 Related Work

This section is organised in line with the contributions. Section [2.I] describes the
static analysis-based approach which is improved in this paper. Therefore it is
discussed in depth. Section covers relevant runtime observation approaches
for generating application policies. Further approaches which are interesting but
not used in this paper are briefly discussed in Section 2.3] Other related work is
addressed thereafter.

20 S. Lachmund and G. Hengst

2.1 Static Analysis by Call Graph

Policy generation by Koved, Centonze, Pistoia, et al. [45l6] is based on static
analysis. It creates a call graph of applications written in Java which represents
methods as nodes and method calls as edges. The call graph is used to determine
which method calls result in permission checks. For each of these permission
checks, the allocation site of the involved Permission class (representing access
rights in Java [11]) is determined. Each Permission class contains an identifier
which represents the accessed resource. The values of all of these identifiers are
collected. They are put in the policy, as these resources will be accessed by the
applications during execution. Libraries and applications are analysed differently.

For libraries a summary is created for all possible paths in the call graph of
the library which start at any permission check node and end at any protected
or public method. Data flow analysis [4J5] is applied to determine the paths.
Each of the end point methods causes a permission check in the library when
being invoked by the application. For the applications, these methods are entry
points into the library. The summary contains all the required permissions for
these calls.

Application analysis is limited to the paths in the call graph of the application
that go from a start node to a node that is an entry point of a library for which
a summary has been created. A set containing all the entry point nodes of all
the libraries used by the application is created. It is partitioned in three subsets
depending on properties of the resource identifiers. Paths are treated differently
in the analysis, depending on the partition to which the entry point node where
the path ends is assigned.

The first subset contains all those methods that use a string constant defined
in the library to define the resource identifier. These methods are processed by
a data flow analysis, like in the library analysis.

The second subset contains all those entry point methods that receive one
or more String argument(s) when being invoked by the application. These argu-
ments are allocated by the application and used as resource identifiers for the
permission check in the library. These methods are processed with a more com-
plex algorithm. The complete algorithm is presented in [6]. It starts with the
string analysis described below to determine all possible resource identifiers in
the application code that are used as arguments of entry point methods. Slices
[12] are created for each of these String arguments to determine their propaga-
tion through the application. The slices identify the propagation paths in the
call graph that belong to the String argument, without introducing paths that
do not exist in the application’s control flow.

The string analysis is a processing step of the application analysis where String
objects of the application are analysed. The string analysis is capable of tracking
all instantiations and modifications (e.g. concatenation) of strings representing
resource identifiers. Transforms [6] of String modifying operations are created
to determine the output String when an input String is provided. The string
analysis creates a context-free language representing possible values for input

Auto-generation of Least Privileges Access Control Policies 21

Strings and output Strings, derived from all modifications that are applied to
the given string in the application. String objects are labelled to document their
allocation site and all subsequent modifications. The labels map nodes in the
call graph of the application to literals in the context-free language. After the
string analysis, each character carries its own history of modifications from allo-
cation to the site where they are used as arguments for allocation of a Permission
object. Fig. [l illustrates this on an example. Each character of the string is as-
signed a list of labels, where each label describes the operation or allocation site.
String analysis increases precision over data flow analysis, as resource identifiers
can be determined in cases where the work in [4] and [5] only generate generic
permissions.

The third subset contains all those entry point methods that have non-string
arguments containing String objects. These String objects are used as resource
identifiers. For each of these non-string objects rules are predefined that de-
scribe how to obtain the resource identifier from the contained String object(s).
If no rule is predefined for a specific non-string object, a generic permission that
matches the Permission type used for the corresponding permission check is used,
which permits access to any resource of that type. Once the resource identifiers
have been extracted, the analysis continues with the one for the second subset.

Once the analyses are done for an entry point, the permissions needed when
calling the corresponding method are determined. They are added to the cor-
responding node in the call graph. After all entry points are analysed, all the
collected permissions are propagated backwards through the call graph to the
start nodes. In nodes which are join-points of paths, permissions are combined
with set unions. After the backward propagation, the start nodes contain all the
permissions the application needs. The policy is created from these permissions.

String s
a n vy St r i na
String s = System.console() .readLine(); - ‘ allocation ‘ ‘ allocation ‘
s.toLowerCase () ; ‘ operation ‘ ‘ operation ‘
Permission p = new List of labels List of labels
FilePermission(s, “"read"); per character per character

Fig. 1. Example of labelling characters of a string in the string analysis

The drawback of call graph-based analysis (as introduced in [J5]) is that
the call graph overapproximates [13]: it contains paths which do not correspond
to program flow of the code. This overapproximation — we call it call graph-based

22 S. Lachmund and G. Hengst

overapproximation — results in access rights in the policy which the applica-
tion actually does not need. Therefore the analyses which are sketched here are
introduced in [6] in order to eliminate call graph-based overapproximation.

A different sort of overapproximation — we call it indecisiveness
overapprozimation — remains in [6], however. With all the analyses, many ac-
cess rights which the application needs can be obtained statically. The rest of
the access rights can only be determined on execution, as the involved resource
identifiers are only defined at runtime. Thus they are unknown at the time of
static analysis. In [5], static analysis is combined with dynamic analysis, but
this is to overcome call graph-based overapproximation. For permissions that
can only be determined at runtime, generic permissions are added to the pol-
icy in [6] (as well as in [5]). These generic permissions are added for all user
resources and for those system resources which are not specified in the source
code of the application (e.g. the file separator character in Java). Some resource
identifiers are defined by operations at runtime. These operations receive various
arguments which also may partially be available at runtime only. In such a case,
overapproximation is countered in [6]: the string analysis provides transforms for
operations which modify input that is used as resource identifier. These trans-
forms are used to determine permissions statically. Generic permissions are only
added if for certain operations no transforms are defined.

The improvement of the algorithm presented in Section 3.3 further reduces in-
decisiveness overapproximation of this approach by avoiding generic permissions
for user resources in the generated policy.

2.2 Runtime Observation

Cowan’s AppArmor [I4)8] and Provos’ Systrace [7] are runtime observation ap-
proaches. System calls are recognised and recorded, based on the Linux Security
Modules (LSM). An application is executed several times in learning mode. All
the performed system calls are written to a policy. Finally, the policy is exam-
ined manually and applied. Any future execution of the application is controlled
within the bounds of this policy.

The drawback of the approach is the manual policy examination. It is left to
the user. In addition, a general drawback of runtime approaches is that complete-
ness of execution coverage cannot be determined. Only if all the functionality of
the application is executed, a complete policy is generated. As a consequence,
generated policies are likely to be incomplete. This is closely related to the need
of generic permissions for user resources. They are needed as it cannot be deter-
mined whether during execution all possible user resources have been accessed.
Due to these generic permissions, runtime observations overapproximate.

However, the approach is an important work on auto-generation of policies.
It has been chosen for creating the observation records in Section 3.4l In order
to benefit from this approach, it is combined with the other contributions of this
paper. This eliminates the involvement of the user for manual policy examination
and it avoids generic permissions for user resources by filtering permission checks
which are performed by the user.

Auto-generation of Least Privileges Access Control Policies 23

2.3 Further Analysis Approaches

Wagner and Dean [15] present a combination of static analysis and runtime
monitoring. Using static analysis, a model of the application is created which is
represented by an automaton. This automaton models the order in which system
calls are made by the application. Each system call of the application initiates a
state transition of the automaton. Any system call which the application makes
when executing normally transfers the automaton from a valid state to another.
Any system call that is normally not made by the application leads to an error
state. Using this automaton at runtime allows recognising illegal state transitions
of the application, which is used to terminate the application. The advantage is
that this approach takes the history of system calls into consideration. However,
while this approach keeps track of the application’s control flow, it does not
provide fine grained access control for resources. Once a system call is permitted,
the resources on which the system call operates are not further restricted. Thus,
this approach should always be combined with other access control models.

Polymer [16] also follows a two step approach. The bytecode of Java appli-
cations and libraries is instrumented with jumps into the Policy object, which
performs policy enforcement. The policy is a compiled Java object. At runtime,
the instrumented code and the Policy object act as runtime monitors to perform
access control on the level of method calls. Polymer does not support generating
the policies. This is a purely manual task. It also provides limited dynamic policy
adaptation at runtime.

2.4 Other Related Work

Systems based on the object-capability security model [I7] provide the applica-
tion with a reference after the user has chosen a resource. The application itself
does not have access rights for the resource, but via the reference, the applica-
tion can access the resource. Thus, the user transparently provides the necessary
access rights which the application needs. These object-capability-based systems
and the contribution of this paper have the same user perception in common. It
is the user’s responsibility to carefully choose resources the application should
operate on.

Taint tracking [I8[T920/21] is used to filter potentially dangerous user input
before it is used for sensitive operations. There are different approaches, but they
all have in common that user input is tracked when propagating through an ap-
plication. Some work recognises intrusions when user input is used as arguments
for certain sensitive operations, as these operations are normally only executed
with arguments that are not specified by the user. If user input reaches such
sensitive operations, the application will be terminated. In other work, control
characters are filtered from user input. For an SQL statement, for example, char-
acters, such as semicolon and quote characters, would be filtered. This prevents
the user from rewriting the SQL statement. In this paper, taint tracking is used
for tracking user defined resource identifiers.

24 S. Lachmund and G. Hengst

3 Policy Generation with User Interaction Recognition

When analysing an application in order to generate an access control policy for
it, all the control flow that leads to resource access is of interest. Each access to a
resource initiates a permission check. The permission check determines whether
access is permitted or prohibited. Control flow analysis starts at the function
that starts the application and it ends at methods which perform a permission
check. If all these control flows of an application are captured along with the
corresponding access rights, a complete description of the application’s access
behaviour is available which can be used to generate an access control policy.
Existing work does that by static code analysis [456], as described in Section 2]
and by runtime observations [BI8[7] (see Section [Z2]). Static analysis models
stack inspection-based access control [22] statically and runtime observations
collect all the access attempts of an executed application when they occur. This
paper uses a combination of static analysis and runtime observations in order to
eliminate either one’s limitations. Since static analysis covers the entire code of
the application, the generated policy is complete, i.e. it contains at least all the
access rights the application needs. Runtime observations are incomplete, but
they can determine permissions which cannot be determined statically prior to
execution.

As explained in Section 2 and as further elaborated upon in Section[6.2] exist-
ing work suffers from different types of overapproximation. In order to eliminate
overapproximation, the different types of overapproximation are to be treated
differently. This requires distinguishing them. This distinction can be achieved
by recognising user input. Indecisiveness overapproximation can be eliminated
for user resources if all user-initiated access is discarded from the generated
policy. Therefore this section integrates user input recognition into the policy
auto-generation process. How to eliminate indecisiveness overapproximation for
system resources is addressed by Section

Integrating user input recognition into the policy generation process allows
determining if an access is initiated by the user. Two promising approaches of
user input tracking were found by the authors: (1) using information tracking
along with Aspect-Oriented Programming (AOP) [23] to track user input dur-
ing execution (known as taint tracking; see Section [2) and (2) extending the
call graph-based static analysis. This paper uses both these approaches in com-
bination. The contribution of this section extends the static analysis approach
explained in depth in Section 2] and it uses ideas from the runtime observation
approach by Cowan [I4J8] (see Section 2.2]).

Extending policy generation by user input recognition leads to the process
depicted in Fig.2l All the steps of the process are integrated in the development
phase of the application. Policy generation itself takes place in step 5, where the
policy is generated from all the input which is collected in the steps 1, 3 and
4. These four steps (marked by slightly darker background colour in Fig.[2]) are
discussed in this section.

Auto-generation of Least Privileges Access Control Policies 25

Prepared aspects from step 1

Identification of
classes obtaining
user input and

aspect creation
¢ Outside SDLC
« Specific for each HLL

Implementation
Developer writes
source code as usual

Find user input that affects resource
identification for permission checks

and collect resource accesses
|

3 4

Aspect Integration Dynamic analysis
and static analysis * Track and mark user

« Create call graph, input
perform analyses, * Record accesses for
find permissions remaining permissions

* Weave aspects

Code changes

R

Policy Generation
* Remove aspects
* Remove redundancy
* Generalise policy

Supply
Application and
generated policy

HLL
SDLC

High Level programming Language
Software Development Life Cycle

Fig. 2. The process of auto-generating the application policy including recognition of

user interactions

1 2 3 4
Identification of Static analysis | | Dynamic analysis
classes obtaining . .
user input User m_p_ut User |n_p_ut

recognition recognition
Aspect Creation extends and improves by information
static analysis tracking

5 6

Policy Generation |

Il = Major contribution
1 = Contribution
[= Existing work

Fig. 3. Combination of existing work and contributions

Fig. Blillustrates in which way existing work and contributions are combined
in the steps of Fig.

26 S. Lachmund and G. Hengst

3.1 Classes Obtaining User Input

Tracking propagation of user input starts at those classes which obtain user
input. These classes are collected in Step 1 of Fig. 2

All the classes that come with a programming language and its execution en-
vironment — the so called system library — are well-known and finite in number
and size. Thus, all the classes of the system library that obtain user input com-
prise a subset of the system library which is also finite. A list of all classes that
obtain user input is compiled statically individually per programming language.
The list is used as starting point for tracking user input through the application.
If all entry points, such as console input, Graphical User Interface (GUI) input,
network input, file input, database input and others, are taken into account, a
complete list can be compiled. Some external libraries (e.g. windowing toolkits)
are to be added separately if they are not part of the system library. As the
object-oriented programming paradigm follows the idea of composing compo-
nents, applications typically reuse components from the libraries to implement
their functionality. Applications do rather not create own classes covering com-
monly used low level functionality, such as obtaining user input. Consequently,
the list is not to be changed by the developer when implementing an application.
It is only to be extended if an external library is used that does not provide its
own list.

For some classes of the list, all instances obtain user input (e.g. a text box of a
windowing toolkit). With other classes, only certain instances obtain user input
(e.g. the input stream in Java that connects keyboard input to standard-in, but
not necessarily any other input stream).

3.2 Aspects

In order to track propagation of user input through the application in the run-
time observation approach, classes are augmented by aspects. This subsection
discusses which classes are augmented and what the aspects do (Steps 1 and 3
in Fig. 2)).

The aspects augment classes by a new field that stores taint information.
When data is assigned to instance objects of these classes, the new field is set
tainted if the data is obtained from user input. In any other case, the field is
set not tainted. The aspects observe all operations that change the state of ob-
jects containing taint information. They update taint information accordingly.
If data is propagated to other objects, taint information is also propagated by
the aspects. Consequently, all the classes that are involved in user input prop-
agation are augmented. The objects that perform permission checks, finally,
receive the usual data they need for permission check, i.e. the resource identifier
and the requested access right. They also receive taint information that is stored
in the object containing the resource identifier. This allows aspects in the objects
that perform permission checks to distinguish user-initiated access requests from
application-initiated requests.

Auto-generation of Least Privileges Access Control Policies 27

When classes deal with user input, apart from obtaining it, they can store,
modify or transform this user input. Methods of the class perform this func-
tionality. They are augmented by aspects to set taint information accordingly.
A class that stores user input also needs to store taint information. A class that
modifies user input also needs to modify taint information. A class that trans-
forms user input into another type also needs to provide the target class with
taint information. The target class needs to receive and store this taint informa-
tion. Methods that perform other functionality that does not affect user input
need no augmentation.

User input is data that is stored in a class either by calling a method of the
class or by assigning the data directly to a field. In whatever way the state
of the field is changed, taint information is to be set accordingly. If a method
changes the state of the field, the method is augmented by the necessary aspect.
If the field is accessed directly, the member class which represents the field is
augmented.

Aspects are prepared statically outside the process of policy auto-generation
(Step 1 in Fig. 2)). The prepared aspects are specific for each programming lan-
guage. An example aspect for Java is listed in Section The aspects are
weaved into the application’s code during development (Step 3 in Fig.). Many
classes (mainly high level classes) are augmented with generic aspects, i.e. as-
pects with pointcut definitions which apply to a wide range of classes. Such a
generic aspect applies, for instance, to all methods of all classes that return a
value of type String. Some classes (mainly low level classes) are augmented with
individual aspects to cover all their specific data propagation possibilities.

3.3 Call Graph and String Analysis

In order to distinguish user independent actions of the application from user
interactions, values and allocation sites of resource identifiers are determined in
the static analysis (Step 3 in Fig. 2l). As soon as a resource identifier is allo-
cated by a class from the list (see Section B), the resource identifier is known
to be defined by the user. The string analysis (see Section 21I) is extended by
integrating this distinction. The labels are analysed to find all the characters of
which the resource identifier is composed and their allocation sites. Each of the
allocation sites is looked up in the list of user input obtaining classes. If the allo-
cation site is listed, the allocation label is tagged as originating from user input.
All the other labels are analysed for their string operations. If the operations
keep the original content obtained from the allocation site, their corresponding
labels are also tagged. If the content is changed, e.g. by using a substring, the
user input tag is discarded. This is to prevent the application from composing a
resource identifier from parts of user input to gain access to arbitrary resources
at runtime. The transforms (see Section [Z]) are extended by describing whether
user input tags shall be dropped when the corresponding methods are applied.
If all the labels of a character get the user input tag, the character itself is
tagged as user input. The string representing the resource identifier can either
consist of (1) only characters that are tagged as user input, (2) characters that

28 S. Lachmund and G. Hengst

are tagged as user input and characters that are not tagged as user input and
(3) no character that is tagged as user input. Treatment of those strings that
only consist of tagged or untagged characters is easy: the strings are tagged
according to their character tags. In the mixed case, the string is tagged as user
input. In all potentially dangerous cases, the transforms of string operations
removed the user input tag before. Thus, it is safe to treat the mixed case as
user input. If the string is tagged, the permission object which uses the string
as resource identifier is also tagged. The tagged permission object indicates that
the permission it represents is defined by user input.

Fig. @ depicts the extended analysis on an example: the allocated string origi-
nates from user input and the endsWith operation does not remove this property;
thus, the characters used in the permission check originate from user input.

B Tag denoting user input

..... Console List of classes
obtaining user
input
String s
a ny St rinig
String s = System.:"éonsole() .readLine(); == ‘allocation ‘allocation
If (s.endsWith(“g”)) {..} ‘ operation ‘ operation
Permission p = new List of labels List of labels
FilePermission(s, “read“); per character per character

Fig. 4. Example of library-client application analysis extended by tagging labels of
those characters of a string that originate from user input

The application analysis of Section 2.I] is extended by adding this user input
analysis. Since subset 1 of the partitioned set of entry points is independent of
user input, no extensions are applied. Both subset 2 and subset 3 entry points
require extensions. After all the labelled strings are available, they are used for
user input analysis. The extended algorithm collects permissions as before, but it
tags those permissions that contain resource identifiers obtained from user input.
This makes them distinguishable from the others which have resource identifiers
not obtained from user input.

There is no need to extend the library analysis, as the application analysis
considers all input that comes from outside the library when the library is used
by an application.

The approach presented here further reduces overapproximation of the call
graph-based approach discussed in Section [Z1l All the resource identifiers that
are defined by user input, which cannot be determined prior to runtime, are

Auto-generation of Least Privileges Access Control Policies 29

not added to the application policy at all. Thus, there is no need for generic
permissions as a result of the static analysis. Cases in which generic permissions
are still required are limited to system values of the runtime (e.g. the file sep-
arator character in Java) and to resource identifiers that are read from other
sources (e.g. database or file). Therefore overapproximation is reduced, but not
eliminated. These cases of remaining overapproximation can be treated by defin-
ing sets of possible values to further reduce overapproximation, as discussed in
Section

3.4 Dynamic Analysis

During dynamic analysis (Step 4 in Fig. Bl), the augmented classes are capable
of tracking user input through the application. The application is executed re-
peatedly for software testing. During these executions, all access requests are
recorded and stored during permission checks to generate the application policy
from these records [B8] (see Section [2). The records are stored together with
the corresponding taint information for each resource identifier. If a resource
identifier originates from user input, the corresponding record is discarded. For
processing tainted data, content and semantics of the data is irrelevant. Only
the propagation of data together with its taint information is relevant.

3.5 Policy Generation

The policy is generated in Step 5 of Fig.[2l After static analysis collected permis-
sions and after execution has been finished, the access control policy is generated
from all the acquired permissions.

For policy generation, redundant permissions are removed, as they are useless.
Permissions with specific access rights that are implied by more generic permis-
sions are removed as well. Finally, the policy is generated from the remaining
records.

Since aspects are only needed for policy generation, they are removed in the
policy generation step. The deployed application does not differ from an appli-
cation for which no policy was generated.

4 Prototype Implementation

The prototype of the runtime observation approach with taint tracking [24] has
been implemented in Java [25] and AspectJ [26]. Java’s modular design allows
replacing components easily. The access control model of Java [11] is flexible and
advanced. Fine-grained access control is possible. We extend Java’s access con-
trol facilities by replacing the default Policy Enforcement Point (PEP), i.e. the
SecurityManager class. Access control is performed on the level of the Java Vir-
tual Machine (JVM), based on the various subclasses of the Permission class.

30 S. Lachmund and G. Hengst

The list of user input obtaining classes contains core classes like, for ex-
ample, java.io.Console and java.io.InputStream. Direct user input is obtained
from standard-in using these classes. To obtain user input from arguments
given when starting the application, any class containing a main method is
added to the list. Among the windowing toolkits only Swing is exemplified
here. Text input fields (e.g. javax.swing.TextComponent) and dialogue boxes
(e.g. javax.swing.JFileChooser) are added to the list. The classes Byte, Charac-
ter, Integer and String are also added, as the InputStream uses the first three
to store the input it gets from its data source. These classes are also involved
in other String operations, processing user input until it is stored in a String
representationl] In order to analyse tracked taint information, the SecurityMan-
ager.checkPermission method is added as well.

Since Java does not only know objects, but also support primitive types when
adding aspects to classes, there are two categories of classes to distinguish. Cat-
egory 1 represents all the low level classes that correspond to primitive types:
they store data in their fields in primitive types. Category 1 classes access their
fields directly. These classes are the end of the hierarchy of member classes. Cat-
egory 2 comprises all the classes that store their data in fields that are classes
by themselves. Category 2 classes need to call methods of their member classes
whenever they store or read data therein. There can be an arbitrary hierar-
chy of member classes of category 2. All classes which are not category 1 are
category 2.

Category 1 classes need to be augmented in any case. Each time, data is
stored in these classes, taint information is to be set according to the origin of
that data. If, for instance, data is obtained from the console (i.e. from System.in),
it is known that this instance of InputStream always produces user input. The
array of int in which the system library class InputStream stores the user input,
needs to set its data tainted.

Category 2 classes do not necessarily need to be augmented. Their mem-
ber classes refer to other objects which already may contain taint information.
However, if a category 2 class is capable of transforming its content to another
type, the corresponding methods need to set taint information of the target
type according to the source type. Therefore such a category 2 class needs to be
augmented.

Native methods are augmented using around advice. Taint is tracked on return
values. When the method is called, its arguments are analysed and when it
returns, its return value can be set tainted. This requires understanding the
semantics of the method to some extent.

4.1 Implementation Details

We implemented a plug-in for the integrated development environment eclipse
[27]. This plug-in accompanies the software development and testing process by
augmenting classes with aspects and by auto-generating the policy. The plug-in

1 Java actually uses primitive types in InputStream and other low level classes.

Auto-generation of Least Privileges Access Control Policies 31

contains the aspects. The developer does not need to write their own aspects,
unless the developer writes code that is capable of obtaining user input directly
without using existing Java classes.

The application is always executed using the replacement SecurityManager
— called ObservingSecurityManager — and a replacement policy provider — called
PolicyObserver. The PolicyObserver always returns false for each permission check
without consulting any policy. This causes the AccessControlContext, which is
involved in policy enforcement, to throw a security exception [I1]. This exception
is caught by the ObservingSecurityManager and forwarded to a monitor class,
which analyses and stores its contents. That way, the subject, the subclass of
the Permission class, the resource identifier, the action, the entire call stack and
the code base are obtained by the monitor class. Due to the aspect by which
the ObservingSecurityManager is augmented, the monitor class also obtains taint
information and stores it in the records.

The ObservingSecurityManager suppresses the caught exception and returns
silently. Consequently, the application gets all access attempts permitted. This
allows testing any application feature without being hindered by security con-
straints. As this takes place in the development phase, there is no threat for the
system where the application is deployed.

The policy is generated from all the records. Filtering of user-initiated access
and removal of redundancy is done as described in Section [Bl

In order to keep the ObservingSecurityManager small and independent of
analysing the exception, the ObservingSecurityManager sends the exception it
caught on a permission check to a server process using RMI. This server process
generates the policy.

4.2 Aspects

As described in Section [3.2] there are generic and specific aspects. For the proto-
type, it is advisable to classify them in three groups: group 1 consists of aspects
that are needed to store, read and transfer taint information in classes. They
provide methods to set and get taint information and they add a taint bit that
stores taint information. All classes that obtain or process user input need to
be augmented by these aspects. Classes are augmented by inter-type declaration,
i.e. classes inherit from both the aspect and the Object class (or a sub-class). Aug-
mented classes can then store and change their own taint information. Pointcuts
of Group 1 aspects define which classes are to be augmented by that function-
ality. Aspects in group 2 are generic aspects that specify in which cases group 1
aspects’ functionality is to be called in order to update the taint bit. This is the
case when data in Group 1 classes is set or modified. These aspects are generic,
as they apply to multiple classes satisfying some common properties. Group 3
aspects are all the specific aspects that deal with peculiarities of certain library
classes. They have the same purpose as Group 2 aspects, but they are specifically
written to track the taint bit in a particular class. Listing [Il shows one of the
Group 2 aspects.

32 S. Lachmund and G. Hengst

Listing 1. Advice augmenting main method

1 before(String [] args): execution(public static void *.main(String []
2 || String...) && args(arg) {
3 for (String string : arg) ((Taint)string).setTainted (true);

4}

5 Example

In the following, the prototype is used to generate the policy for the UMU
XACML-Editor (Version 1.3) exemplarily. The results are compared to the state-
of-the-art and evaluated. The UMU XACML-Editor [2§] is a GUI-based XACML
file editor written using Swing. At first, all the resource access has been collected
using the ObservingSecurityManager. Table [lists all the access attempts which
occur when the application is executed. Access attempts with numbers 3, 4 and 9
in the table are initiated by the user. When applying existing work, the same ac-
cess attempts are collected, as the ObservingSecurityManager performs the same
analysis. However, creating a policy from the collected access attempts is of little
avail. It permits the application to access all the system resources it needs to ex-
ecute normally, but it only permits the application to access those user resources
(i.e. XACML files in the example) the user has chosen when the access attempts
were recorded. Therefore existing work involves the user to manually inspect the
policy. Thereby, the user ought to add a generic permission for file access which
permits the application to access all the XACML files which may be opened
in the XACML-Editor in the future. In order to prevent adding this generic
permission, our prototype identifies user interactions. In the case of the UMU
XACML-Editor, all user interactions are initiated via file dialogues. They are all
identified and marked in the records. They are discarded for policy generation.
Consequently, the generated policy does not contain access rights with numbers
3, 4 and 9 from Table [l but all the other access rights. In contrast to existing
work, the resulting policy does not overapproximate. Therefore it is the least
privileges policy for the application. A modified file dialogue can then augment
the policy at runtime upon user interaction (as described in Section [Z.2)).

6 Evaluation

6.1 Prototype

The AOP aspects of the prototype instrument the system library. They iden-
tify user-initiated resource access correctly. As depicted by Table [, the overall
number of necessary aspects is kept in a manageable range. This is due to the
generic aspects which affect a large number of classes. For production, exter-
nal libraries need to be augmented as well. From the feedback of the prototype
implementation, this is a scaling task with respect to the size of the external
libraries.

Auto-generation of Least Privileges Access Control Policies 33

Table 1. All access attempts of the UMU XACML-Editor. Duplicates are omitted.
Access attempts with numbers 3, 4 and 9 (bold font) are initiated by the user.

No. Permission Resource Action

1 java.awt. AWTPermission accessEventQueue

2 java.awt. AWTPermission showWindowWithoutWarningBanner

3 java.io.FilePermission /user /policy read

4 java.io.FilePermission /user/policy.xml write
5 java.io.FilePermission /UMU-XACML-Editor/bin/icons/cara.gif read

6 java.io.FilePermission /UMU-XACML-Editor/bin/icons/nube.gif read

7 java.io.FilePermission /UMU-XACML-Editor/bin/icons/target.gif read

8 java.io.FilePermission /UMU-XACML-Editor/bin/icons/verde.gif read

9 java.io.FilePermission /user write

10 java.lang.RuntimePermission exitVM
11 java.lang.RuntimePermission modifyThread Group

12 java.util.PropertyPermission elementAttributeLimit read
13 java.util.PropertyPermission entityExpansionLimit read
14 java.util.PropertyPermission maxOccurLimit read
15 java.util.PropertyPermission os.name read
16 java.util.PropertyPermission os.version read
17 java.util. PropertyPermission user.dir read

Table 2. Number of aspects in the prototype implementation. The figures are limited
to the packages java.lang, java.io, java.net and javax.swing. Aspects needed for compen-
sating primitive types are not considered. For inter-type declarations, the number of
affected classes is limited to directly affected classes. Through inheritance more classes
become affected.

Group Advice Named Pointcuts Affected Classes
Inter-type declarations 1 1 0 11
Generic aspects 2 8 8 41
Specific aspects 3 28 36 26

6.2 Elimination of Overapproximation

Existing work on policy generation suffers from limitations, as discussed earlier.
Runtime observations are incomplete (see Section [2:2) and static analysis suffers
from indecisiveness overapproximation (see Section 2.T]).

Combining observations and static analysis (as done by Centonze et al. [5], see
Section) counters the drawback of incompleteness of runtime observations.
The combination can further reduce overapproximation of static analysis, as
generic permissions can be more precise and minimised to a set of valid values
in some cases, but they still remain.

The contributions of this paper further reduce overapproximation. By dis-
carding user-initiated resource access, all access to user resources is omitted
from the policy. There is no generic permission in the policy and the content of

34 S. Lachmund and G. Hengst

the policy does also not depend on the user resources which the tester has chosen
during runtime observations. Access to user resources is the major cause for over-
approximation in existing work. Thus, the primary source of overapproximation
is eliminated.

There are still special cases where overapproximation remains: in cases where
no transform is defined for an operation which is analysed by the string analysis,
as well as in cases where no set of possible values for a resource identifier which
is set by the execution environment is defined. Both these cases can be countered
by ensuring that all the transforms and sets are defined. The policy generation
process can be implemented in a way that it identifies missing transforms and
sets. The sets can then be defined directly in the policy generation process, for
instance by adding annotations to the code. Consequently, overapproximation is
eliminated which results in policies that are complete and that also represent the
least privileges of the corresponding application. This is a major benefit over the
state-of-the-art. Table [}l summarises the differences and the gains by comparing
the state-of-the-art, the individual contributions and the combined contributions
of this paper.

Table 3. Comparison of state-of-the-art and contributions

Static analysis [6]
(see Section 2.1)

Dynamic analysis
[7] (see Section

Static analysis
extended by

Dynamic analysis
extensions by

Combination of all
contributions of

contributions from | contributions from | Section 3
Section 3.3 Sections 3.2 and
3.4
Over- Overapproximates Overapproximates Reduced Does not Does not
approximation on permissions on user resources indecisiveness overapproximate overapproximate
only known on overapproximation | as no user
execution to system resources are
(indecisiveness resources only captured
overapprox.)
Completeness Complete Incomplete Complete Incomplete Complete

extent

of generated
policies required

few exceptions

created manually
per programming
language;

Policy generation is
fully automatic

Scalability Scales due to Scales due to the Scales due to Scales as the Scales as the
separated library ability of separated library number of aspects | individual solutions
analysis combining analysis to be created is in combined here

permissions in a manageable scale and as the

include files range combination does
not add non-linear
complexity

Automation Automated to large | Manual inspection Automated with a Aspects are Aspects are

created manually
per programming
language;

Policy generation is
fully automatic

Requirements

Source code or
object code

Complete test
coverage

Source code

Complete test
coverage

Source code

7 Discussion

7.1 Threat Model

The policy generation process contributed in this paper is meant for protect-
ing systems against applications that misbehave due to programming errors
and due to being exploitable by attackers. Since the policy is generated by the

Auto-generation of Least Privileges Access Control Policies 35

developer, a developer of a malicious application can generate a policy that
permits all the malicious access. The contribution does not protect against
malicious applications.

7.2 The Big Picture

If no further measures are taken in the deployment phase and/or in the execution
phase, the generated policy is of little avail. If the application is deployed together
with its application policy, manifold measures are advisable, as discussed next.

For deployment, the application policy can be checked against the policy of
the system on which the application is to be deployed, to see if they do not
contradict. This can be done manually by examining the policy or automatically.
The European research project Security of Software and Services for Mobile
Systems (S3MS) [29I30031] provides means to prove that the application policy
matches the application and that the application policy does not contradict the
system policy.

As mentioned in Section [I it is not sufficient to only apply the application
policy at runtime. The policy needs to be adapted.

7.3 Future Work

The work presented here is limited to wvolatile user input. This is input that is
only relevant for the currently executed instance of an application. It is used, for
example, to open a file the user intends to edit in the application. We will also
address persistent user input in our future work, which persists over multiple
executions of the application. This is the case, for instance, if the user specifies
the path and name of a configuration file which is read each time the application
is started. Once specified by the user, the application should have access rights
for future executions.

Means are needed to handle new classes that are capable of obtaining user
input by themselves without relying on classes from the system library. In such a
rare case, aspects are to be auto-generated from aspect templates. This way, the
developer is not required to write aspects in order to apply user input tracking
to these new classes.

The approach presented here relies on the availability of source code of the
application. Applicability on intermediate language code (Java bytecode or NET
CIL) is to be elaborated.

In some cases, additional information is required for generating the policy.
In these cases the developer needs to specify meta information. Investigations
on integrating this meta information specification into the development process
with little developer involvement are required.

8 Conclusion

This paper presents means to auto-generate least privileges access control policies
for applications. While existing work is used for the process of retrieving the

36 S. Lachmund and G. Hengst

contents for the policy by static and dynamic analyses, this paper introduces a
way to distinguish resource access performed by the application from resource
access initiated by the user. This distinction allows generating the application
policy that satisfies the principle of least privileges. The application policy does
not contain any access right to user resources, whereas existing work permits
generic access to user resources. Access rights users need to access resources in
the application are later added on the target system.

Two approaches are presented here. The static analysis approach uses a call
graph of the application and performs various analyses to determine and tag
resource identifiers that are defined by the user. The policy is generated without
adding permissions that are based on tagged resource identifiers. The runtime
observation approach tracks user input through the application using taint track-
ing and aspect-oriented programming. If user input propagates to a permission
check where the resource identifier is specified by the user, the corresponding
access is treated as user-initiated. A prototype is implemented in Java. Its im-
plementation shows that the total number of aspects is kept in a manageable
range. It suffices to augment those classes by aspects which play a key role in
processing user input. As a result, the approach is feasible, it scales with respect
to the size of instrumented libraries and it reduces overapproximation of existing
approaches significantly. However it requires a fully object-oriented programming
language, as AOP cannot be applied on primitive data types.

If both approaches are combined, a complete and sound policy is generated
and overapproximation is eliminated. As the policy is auto-generated, the effort
for the developer is low. The resulting application policy can be used on the
target system to execute the application in its bounds. The target system only
needs to specify access rights for user resources. Thus, the effort is also low
there. As a consequence, policy generation becomes practical. An outlook of
three obvious possibilities to apply the contributions in practice concludes the
paper:

The mobile phone is an appealing target, as the mobile industry controls most
of the phases of the SDLC. Development environments can be extended by the
analyses, the generated policy can be included in the supply chain of applications
and the execution environments on the mobile phones can be adapted to per-
form policy adaptation. Controlling access on a mobile phone to user resources,
such as the phone book or the agenda, means controlling access to personal
data which not all the applications need. Effective tailored access control on a
per-application basis is possible and practical that way.

Execution environments, such as the Java Virtual Machine and the .NET
CLR, provide a fine-grained and flexible security architecture that allows en-
forcing tailored access control policies. The problem in practice, however, is that
it is complex to write proper policies. Integrating the policy auto-generation
process into the SDLC reduces this effort to a minimum.

The two execution environments .NET CLR and Android allow for defining
the access rights an application needs in a configuration file which is supplied
together with the application. This is used at install time in order to assign

Auto-generation of Least Privileges Access Control Policies 37

the right access rights. However, there is no support in collecting all the needed
access rights. The policy auto-generation process can be used to close this gap
by filling the section of required permissions in the configuration file.

References

10.
11.

12.

13.

14.

15.

16.

. Saltzer, J.H., Schroeder, M.D.: The Protection of Information in Computer Sys-

tems. Proceedings of the IEEE 63(9), 1278-1308 (1975)

McGraw, G.: Software Security - Building Security. Addison-Wesley, USA (2006)
National Institute of Standards and Technology: National vulnerability database
statistics, http://nvd.nist.gov/statistics.cfm| (last checked: August 2010)
Koved, L., Pistoia, M., Kershenbaum, A.: Access rights analysis for java. In: OOP-
SLA 2002: Proceedings of the 17th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 359-372. ACM, New
York (2002)

Centonze, P., Flynn, R., Pistoia, M.: Combining Static and Dynamic Analysis
for Automatic Identification of Precise Access-Control Policies. In: Proceedings
of the 23rd Annual Computer Security Applications Conference, ACSAC 2007,
pp. 292-303 (December 2007)

Geay, E., Pistoia, M., Tateishi, T., Ryder, B.G., Dolby, J.: Modular String-Sensitive
Permission Analysis with Demand-Driven Precision. In: Proceedings of the 31st In-
ternational Conference on Software Engineering, pp. 177-187. IEEE, Los Alamitos
(May 2009)

Provos, N.: Improving host security with system call policies. In: SSYM 2003:
Proceedings of the 12th conference on USENIX Security Symposium, Berkeley,
CA, USA, pp. 18-18. USENIX Association (2003)

Novell, Inc.: AppArmor, http://en.opensuse.org/AppArmor/| (last checked: Au-
gust 2010)

Goldberg, A., Kay, A.: Smalltalk-72 Instruction Manual. Technical Report SSL
76-6, Learning Research Group, Xerox Palo Alto Research Center, California, USA
(1976)

Eckel, B.: Thinking in Java, 3rd edn. Prentice Hall, Nwe Jersey (2003)

Gong, L., Ellison, G., Dagenforde, M.: Inside Java 2 Platform Security, 2nd edn.
Addison-Wesley, Reading (2003)

Horwitz, S., Reps, T., Binkley, D.: Interprocedural Slicing Using Dependence
Graphs. In: PLDI 1988: Proceedings of the ACM SIGPLAN 1988 Conference on
Programming Language Design and Implementation, pp. 35-46. ACM, New York
(1988)

Shivers, O.: Control flow analysis in scheme. In: Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 164-174
(1988)

Cowan, C., Wright, C., Smalley, S., Morris, J., Kroah-Hartman, G.: Linux security
modules: General security support for the linux kernel. In: Proceedings of the 11th
USENIX Security Symposium, San Francisco, CA, USA (August 2002)

Wagner, D., Dean, D.: Intrusion detection via static analysis. In: Proceedings of
the 22nd IEEE Symposium on Security and Privacy, pp. 156-169 (May 2001)
Bauer, L., Ligatti, J., Walker, D.: Composing security policies with Polymer. In:
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2005), Chicago, 1L, USA, pp. 305-314 (2005)

http://nvd.nist.gov/statistics.cfm
http://en.opensuse.org/AppArmor/

38

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

S. Lachmund and G. Hengst

Miller, M.S.: Robust Composition - Towards a Unified Approach to Access Control
and Concurrency Control. PhD thesis, Johns Hopkins University, Baltimore, MD,
USA (May 2006)

Xu, W., Bhatkar, E., Sekar, R.: Taint-enhanced policy enforcement: A practical
approach to defeat a wide range of attacks. In: 15th USENIX Security Symposium,
pp. 121-136 (2006)

Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., Evans, D.: Automatically
hardening web applications using precise tainting. In: 20th IFIP International In-
formation Security Conference (SEC), pp. 372-382 (2005)

Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21 (2003)

Denning, D.E., Denning, P.J.: Certification of programs for secure information flow.
Communications of the ACM 20(7), 504-513 (1977)

Wallach, D.S., Felten, E.W.: Understanding java stack inspection. In: Proceedings
of the 1998 IEEE Symposium on Security and Privacy, pp. 52-63 (1998)
Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-Oriented Programming. In: Liu, Y., Auletta, V. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220-242. Springer, Heidelberg (1997)

Hengst, G.: Auto-generation of access-control policies - elaboration of an informa-
tion tracking approach and its prototype implementation. Bachelor’s thesis, Munich
University of Applied Sciences (September 2009)

Sun Microsystems Inc.: Java Technology, http://java.sun.com/| (last checked:
August 2010)

Eclipse Foundation: Aspectj, http://www.eclipse.org/aspectj/| (last checked:
August 2010)

Eclipse Foundation: eclipse, http://www.eclipse.org| (last checked: August 2010)
Délera Tormo, G., Martinez Perez, G.: UMU XACML-Editor,
http://sourceforge.net/projects/umu-xacmleditor/| (last checked: August
2010)

S3MS project consortium: Security of Software and Services for Mobile Systems
(S3MS), European research project, http://www.s3ms.org/| (last checked: August
2010)

Dragoni, N.; Martinelli, F., Massacci, F., Mori, P., Schaefer, C., Walter, T., Vetil-
lard, E.: Security-by-Contract (SxC) for Software and Services of Mobile Systems.
In: Nitto, E.D., Sassen, A.M., Traverso, P., Zwegers, A. (eds.) At Your Service-
Oriented Computing From an EU Perspective, pp. 429-455. MIT Press, Cambridge
(2009)

Aktug, 1., Naliuka, K.: ConSpec - a formal language for policy specification. In:
First International Workshop on Run Time Enforcement for Mobile and Dis-
tributed Systems (REM 2007), Dresden, Germany (September 27, 2007)

http://java.sun.com/
http://www.eclipse.org/aspectj/
http://www.eclipse.org
http://sourceforge.net/projects/umu-xacmleditor/
 http://www.s3ms.org/

	Auto-generation of Least Privileges Access Control Policies for Applications Supported by User Input Recognition
	Introduction
	Related Work
	Static Analysis by Call Graph
	Runtime Observation
	Further Analysis Approaches
	Other Related Work

	Policy Generation with User Interaction Recognition
	Classes Obtaining User Input
	Aspects
	Call Graph and String Analysis
	Dynamic Analysis
	Policy Generation

	Prototype Implementation
	Implementation Details
	Aspects

	Example
	Evaluation
	Prototype
	Elimination of Overapproximation

	Discussion
	Threat Model
	The Big Picture
	Future Work

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

