
J-PAKE: Authenticated Key Exchange

without PKI

Feng Hao1 and Peter Ryan2

1 Thales E-Security, Cambridge, UK
2 Faculty Of Science, University of Luxembourg

Abstract. Password Authenticated Key Exchange (PAKE) is one of the
important topics in cryptography. It aims to address a practical security
problem: how to establish secure communication between two parties
solely based on a shared password without requiring a Public Key In-
frastructure (PKI). After more than a decade of extensive research in this
field, there have been several PAKE protocols available. The EKE and
SPEKE schemes are perhaps the two most notable examples. Both tech-
niques are however patented. In this paper, we review these techniques
in detail and summarize various theoretical and practical weaknesses. In
addition, we present a new PAKE solution called J-PAKE. Our strategy
is to depend on well-established primitives such as the Zero-Knowledge
Proof (ZKP). So far, almost all of the past solutions have avoided using
ZKP for the concern on efficiency. We demonstrate how to effectively
integrate the ZKP into the protocol design and meanwhile achieve good
efficiency. Our protocol has comparable computational efficiency to the
EKE and SPEKE schemes with clear advantages on security.

Keywords: Password-Authenticated Key Exchange, EKE, SPEKE, key
agreement.

1 Introduction

Nowadays, the use of passwords is ubiquitous. From on-line banking to accessing
personal emails, the username/password paradigm is by far the most commonly
used authentication mechanism. Alternative authentication factors, including
tokens and biometrics, require additional hardware, which is often considered
too expensive for an application.

However, the security of a password is limited by its low-entropy. Typically,
even a carefully chosen password only has about 20-30 bits entropy [3]. This
makes passwords subject to dictionary attacks or simple exhaustive search. Some
systems willfully force users to remember cryptographically strong passwords,
but that often creates more problems than it solves [3].

Since passwords are weak secrets, they must be protected during transmission.
Currently, the widely deployed method is to send passwords through SSL/TLS
[29]. But, this requires a Public Key Infrastructure (PKI) in place; maintaining
a PKI is expensive. In addition, using SSL/TLS is subject to man-in-the-middle

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XI, LNCS 6480, pp. 192–206, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

J-PAKE: Authenticated Key Exchange without PKI 193

attacks [3]. If a user authenticates himself to a phishing website by disclosing his
password, the password will be stolen even though the session is fully encrypted.

The PAKE research explores an alternative approach to protect passwords
without relying on a Public Key Infrastructure (PKI) at all [10, 16]. It aims to
achieve two goals. First, it allows zero-knowledge proof of the password. One
can prove the knowledge of the password without revealing it to the other party.
Second, it performs authenticated key exchange. If the password is correct, both
parties will be able to establish a common session key that no one else can
compute.

The first milestone in PAKE research came in 1992 when Bellovin and Merrit
introduced the Encrypted Key Exchange (EKE) protocol [10]. Despite some
reported weaknesses [16, 20, 23, 25], the EKE protocol first demonstrated that
the PAKE problem was at least solvable. Since then, a number of protocols have
been proposed. Many of them are simply variants of EKE, instantiating the
“symmetric cipher” in various ways [7].

The few techniques that claim to resist known attacks have almost all been
patented. Most notably, EKE was patented by Lucent Technologies [12], SPEKE
by Phoenix Technologies [18] and SRP by Stanford University [28]. The patent
issue is arguably one of the biggest brakes in deploying a PAKE solution in
practice [13].

2 Past Work

2.1 Security Requirements

Before reviewing past solutions in detail, we summarize the security requirements
that a PAKE protocol shall fulfill (also see [10, 11, 16, 28]).

1. Off-line dictionary attack resistance – It does not leak any information
that allows a passive/active attacker to perform off-line exhaustive search of
the password.

2. Forward secrecy – It produces session keys that remain secure even when
the password is later disclosed.

3. Known-session security – It prevents a disclosed session from affecting the
security of other established session keys.

4. On-line dictionary attack resistance – It limits an active attacker to test
only one password per protocol execution.

First, a PAKE protocol must resist off-line dictionary attacks. An attacker may
be passive (only eavesdropping) or active (directly engaging in the key exchange).
In either case, the communication must not reveal any data – say a hash of
the password – that allows an attacker to learn the password through off-line
exhaustive search.

Second, the protocol must be forward-secure. The key exchange is authen-
ticated based on a shared password. However, there is no guarantee on the
long-term secrecy of the password. A well-designed PAKE scheme should pro-
tect past session keys even when the password is later disclosed. This property

194 F. Hao and P. Ryan

also implies that if an attacker knows the password but only passively observes
the key exchange, he cannot learn the session key.

Third, the protocol must provide known session security. If an attacker is
able to compromise a session, we assume he can learn all session-specific secrets.
However, the impact should be minimized such that a compromised session must
not affect the security of other established sessions.

Finally, the protocol must resist on-line dictionary attacks. If the attacker is
directly engaging in the key exchange, there is no way to prevent such an attacker
trying a random guess of the password. However, a secure PAKE scheme should
mitigate the effect of the on-line attack to the minimum – in the best case,
the attacker can only guess exactly one password per impersonation attempt.
Consecutively failed attempts can be easily detected and thwarted accordingly.

Some papers add an extra “server compromise resistance” requirement: an
attacker should not be able to impersonate users to a server after he has stolen
the password verification files stored on that server, but has not performed dic-
tionary attacks to recover the passwords [7,17,28]. Protocols designed with this
additional requirement are known as the augmented PAKE, as opposed to the
balanced PAKE that does not have this requirement.

However, the so-called “server compromise resistance” is disputable [24]. First,
one may ask whether the threat of impersonating users to a compromised server is
significantly realistic. After all, the server had been compromised and the stored
password files had been stolen. Second, none of the augmented schemes can
provide any real assurance once the server is indeed compromised. If the password
verification files are stolen, off-line exhaustive search attacks are inevitable. All
passwords will need to be revoked and updated anyway.

Another argument in favor of the augmented PAKE is that the server does not
store a plaintext password so it is more secure than the balanced PAKE [28]. This
is a misunderstanding. The EKE and SPEKE protocols are two examples of the
balanced PAKE. Though the original EKE and SPEKE papers only mention the
use the plaintext password as the shared secret between the client and server [10,
16], it is trivial to use a hash of the password (possibly with some salt) as the
shared secret if needed. So, the augmented PAKE has no advantage in this
aspect.

Overall, the claimed advantages of an augmented PAKE over a balanced one
are doubtful. On the other hand, the disadvantages are notable. With the added
“server compromise resistance” requirement that none of the augmented PAKE
schemes truly satisfy [7, 17, 28], an augmented PAKE protocol is significantly
more complex and more computationally expensive. The extra complexity opens
more opportunities to the attacker, as many of the attacks are applicable on the
augmented PAKE [7].

2.2 Review on EKE and SPEKE

In this section, we review the two perhaps most well-known balanced PAKE
protocols: EKE [10] and SPEKE [16]. Both techniques are patented and have
been deployed in commercial applications.

J-PAKE: Authenticated Key Exchange without PKI 195

There are many other PAKE protocols in the past literature [7]. Due to the
space constraint, we can only briefly highlight some of them. Goldreich and Lin-
dell first provided a formal analysis of PAKE, and they also presented a PAKE
protocol that satisfies the formal definitions [33]. However, the Goldreich-Lindell
protocol is based on generic multi-party secure computation; it is commonly seen
as too inefficient for practical use [34, 35]. Later, there are Abdalla-Pointcheval
[1], Katz-Ostrovsky-Yung [34], Jiang-Gong [35] and Gennaro-Lindell [39] proto-
cols, which are proven secure in a common reference model (Abdalla-Pointcheval
additionally assumes a random oracle model [1]). All these protocols require a
“trusted third party” to define the public parameters: more specifically, the secu-
rity of the protocol relies on the “independence” of two group generators selected
honestly by a trusted third party [1, 34, 35]1. Thus, as with any “trusted third
party”, the party becomes the one who can break the protocol security [3]. (Re-
call that the very goal of PAKE is to establish key exchange between two parties
without depending on any external trusted party.) Another well-known provably
secure PAKE is a variant of the EKE protocol with formal security proofs due to
Bellare, Pointcheval and Rogaway [5] (though the proofs are disputed in [7, 32],
as we will explain later). In general, all the above protocols [33, 34, 35, 1, 39, 5]
are significantly more complex and less efficient than the EKE and SPEKE pro-
tocols. In this paper, we will focus on comparing our technique to the EKE and
SPEKE protocols.

First, let us look at the EKE. Bellovin and Merrit introduced two EKE con-
structs: based on RSA (which was later shown insecure [23]) and Diffie-Hellman
(DH). Here, we only describe the latter, which modifies a basic DH protocol by
symmetrically encrypting the exchanged items. Let α be a primitive root modulo
p. In the protocol, Alice sends to Bob [αxa]s, where xa is taken randomly from
[1, p− 1] and [. . .]s denotes a symmetric cipher using the password s as the key.
Similarly, Bob sends to Alice [αxb]s, where xb ∈R [1, p − 1]. Finally, Alice and
Bob compute a common key K = αxa·xb . More details can be found in [10].

It has been shown that a straightforward implementation of the above protocol
is insecure [20]. Since the password is too weak to be used as a normal encryption
key, the content within the symmetric cipher must be strictly random. But, for
a 1024-bit number modulo p, not every bit is random. Hence, a passive attacker
can rule out candidate passwords by applying them to decipher [αxa]s, and then
checking whether the results fall within [p, 21024 − 1].

There are suggested countermeasures. In [10], Bellovin and Merrit recom-
mended to transmit [αxa + r · p]s instead of [αxa]s in the actual implementation,
where r ·p is added using a non-modular operation. The details on defining r can

1 The Jiang-Gong paper proposes to use a trusted third party or a threshold scheme
to define the public parameters [35], while the KOY paper suggests to use a trusted
third party or a source of randomness [34]. However, neither paper provides concrete
descriptions of the “threshold scheme” and “source of randomness”. The Gennaro-
Lindell paper suggests to choose a large organization as the trusted party for all its
employees [39]. However, such a setup also severely limits the general deployment of
PAKE among the public.

196 F. Hao and P. Ryan

be found in [10]. However, this solution was explained in an ad-hoc way, and it
involves changing the existing protocol specification. Due to lack of a complete
description of the final protocol, it is difficult to assess its security. Alternatively,
Jaspan suggests addressing this issue by choosing p as close to a power of 2 as
possible [20]. This might alleviate the issue, but does not resolve it.

The above reported weakness in EKE suggests that formal security proofs
are unlikely without introducing new assumptions. Bellare, Pointcheval and Ro-
gaway introduced a formal model based on an “ideal cipher” [5]. They applied
this model to formally prove that EKE is “provably secure”. However, this result
is disputed in [7,32]. The so-called “ideal cipher” was not concretely defined in [5];
it was only later clarified by Boyd et al. in [7]: the assumed cipher works like a
random function in encryption, but must map fixed-size strings to elements of
G in decryption (also see [32]). Clearly, no such ciphers are readily available yet.
Several proposed instantiations of such an “ideal cipher” were easily broken [32].

Another limitation with the EKE protocol is that it does not securely ac-
commodate short exponents. The protocol definition requires αxa and αxb be
uniformly distributed over the whole group Z

∗
p [10]. Therefore, the secret keys

xa and xb must be randomly chosen from [1, p − 1], and consequently, an EKE
must use 1024-bit exponents if the modulus p is chosen 1024-bit. An EKE cannot
operate in groups with distinct features, such as a subgroup with prime order
– a passive attacker would then be able to trivially uncover the password by
checking the order of the decrypted item.

Jablon proposed a different protocol, called Simple Password Exponential
Key Exchange (SPEKE), by replacing a fixed generator in the basic Diffie-
Hellman protocol with a password-derived variable [16]. In the description of
a fully constrained SPEKE, the protocol defines a safe prime p = 2q + 1, where
q is also a prime. Alice sends to Bob (s2)xa where s is the shared password and
xa ∈R [1, q − 1]; similarly, Bob sends to Alice (s2)xb where xb ∈R [1, q − 1].
Finally, Alice and Bob compute K = s2·xa·xb . The squaring operation on s is to
make the protocol work within a subgroup of prime order q.

There are however risks of using a password-derived variable as the base, as
pointed out by Zhang [31]. Since some passwords are exponentially equivalent,
an active attacker may exploit that equivalence to test multiple passwords in one
go. This problem is particularly serious if a password is a Personal Identification
Numbers (PIN). One countermeasure might be to hash the password before
squaring, but that does not resolve the problem. Hashed passwords are still
confined to a pre-defined small range. There is no guarantee that an attacker is
unable to formulate exponential relationships among hashed passwords; existing
hash functions were not designed for that purpose. Hence, at least in theory,
this reported weakness disapproves the original claim in [16] that a SPEKE only
permits one guess of password in one attempt.

Similar to the case with an EKE, a fully constrained SPEKE uses long ex-
ponents. For a 1024-bit modulus p, the key space is within [1, q − 1], where q is
1023-bit. In [16], Jablon suggested to use 160-bit short exponents in a SPEKE,
by choosing xa and xb within a dramatically smaller range [1, 2160−1]. But, this

J-PAKE: Authenticated Key Exchange without PKI 197

would give a passive attacker side information that the 1023 − 160 = 863 most
significant bits in a full-length key are all ‘0’s. The security is not reassuring, as
the author later acknowledged in [19].

To sum up, an EKE has the drawback of leaking partial information about
the password to a passive attacker. As for a SPEKE, it has the problem that an
active attacker may test multiple passwords in one protocol execution. Further-
more, neither protocol accommodates short exponents securely. Finally, neither
protocol has security proofs; to prove the security would require introducing new
security assumptions [5] or relaxing security requirements [26].

3 J-PAKE Protocol

In this section, we present a new balanced PAKE protocol called Password Au-
thenticated Key Exchange by Juggling (J-PAKE). The key exchange is carried
out over an unsecured network. In such a network, there is no secrecy in commu-
nication, so transmitting a message is essentially no different from broadcasting
it to all. Worse, the broadcast is unauthenticated. An attacker can intercept a
message, change it at will, and then relay the modified message to the intended
recipient.

It is perhaps surprising that we are still able to establish a private and authen-
ticated channel in such a hostile environment solely based on a shared password
– in other words, bootstrapping a high-entropy cryptographic key from a low-
entropy secret. The protocol works as follows.

Let G denote a subgroup of Z
∗
p with prime order q in which the Decision

Diffie-Hellman problem (DDH) is intractable [6]. Let g be a generator in G. The
two communicating parties, Alice and Bob, both agree on (G, g). Let s be their
shared password2, and s �= 0 for any non-empty password. We assume the value
of s falls within [1, q − 1].

Alice selects two secret values x1 and x2 at random: x1 ∈R [0, q − 1] and
x2 ∈R [1, q − 1]. Similarly, Bob selects x3 ∈R [0, q − 1] and x4 ∈R [1, q − 1]. Note
that x2, x4 �= 0; the reason will be evident in security analysis.

Round 1. Alice sends out gx1 , gx2 and knowledge proofs for x1 and x2. Simi-
larly, Bob sends out gx3 , gx4 and knowledge proofs for x3 and x4.

The above communication can be completed in one round as neither party de-
pends on the other. When this round finishes, Alice and Bob verify the received
knowledge proofs, and also check gx2, gx4 �= 1.

Round 2. Alice sends out A = g(x1+x3+x4)·x2·s and a knowledge proof for x2 ·s.
Similarly, Bob sends out B = g(x1+x2+x3)·x4·s and a knowledge proof for x4 · s.
When this round finishes, Alice computes K = (B/gx2·x4·s)x2 = g(x1+x3)·x2·x4·s,
and Bob computes K = (A/gx2·x4·s)x4 = g(x1+x3)·x2·x4·s. With the same keying
material K, a session key can be derived κ = H(K), where H is a hash function.
2 Depending on the application, s could also be a hash of the shared password together

with some salt.

198 F. Hao and P. Ryan

The two-round J-PAKE protocol can serve as a drop-in replacement for face-
to-face key exchange. It is like Alice and Bob meet in person and secretly agree
a common key. So far, the authentication is implicit: Alice believes only Bob can
derive the same key and vice versa. In some applications, Alice and Bob may
want to perform an explicit key confirmation just to make sure the other party
actually holds the same key.

There are several ways to achieve explicit key confirmation. In general, it is
desirable to use a different key from the session key for key confirmation3, say use
κ′ = H(K, 1). We summarize a few methods, which are generically applicable
to all key exchange schemes. A simple method is to use a hash function similar
to the proposal in SPEKE: Alice sends H(H(κ′)) to Bob and Bob replies with
H(κ′). Another straightforward way is to use κ′ to encrypt a known value (or
random challenge) as presented in EKE. Other approaches make use of MAC
functions as suggested in [36]. Given that the underlying functions are secure,
these methods do not differ significantly in security.

In the protocol, senders need to produce valid knowledge proofs. The necessity
of the knowledge proofs is motivated by Anderson-Needham’s sixth principle in
designing secure protocols [2]: “Do not assume that a message you receive has a
particular form (such as gr for known r) unless you can check this.” Fortunately,
Zero-Knowledge Proof (ZKP) is a well-established primitive in cryptography; it
allows one to prove his knowledge of a discrete logarithm without revealing
it [29].

As one example, we could use Schnorr’s signature [30], which is non-interactive,
and reveals nothing except the one bit information: “whether the signer knows the
discrete logarithm”. Let H be a secure hash function4. To prove the knowledge
of the exponent for X = gx, one sends {SignerID, V = gv, r = v − xh} where
SignerID is the unique user identifier, v ∈R Zq and h = H(g, V, X, SignerID).
The receiver verifies that X lies in the prime-order subgroup G and that gv equals
grXh. Adding the unique SignerID into the hash function is to prevent Alice re-
playing Bob’s signature back to Bob and vice versa. Note that for Schnorr’s sig-
nature, it takes one exponentiation to generate it and two to verify it (computing
gr ·Xh requires roughly one exponentiation using the simultaneous computation
technique [37]).

4 Security Analysis

In this section, we show the protocol fulfills all the security requirements listed
in Section 2.1.

3 Using a different key has a (subtle) theoretical advantage that the session key will
remain indistinguishable from random even after the key confirmation. However, this
does not make much difference in practical security and is not adopted in [10,16].

4 Schnorr’s signature is provably secure in the random oracle model, which requires a
secure hash function.

J-PAKE: Authenticated Key Exchange without PKI 199

4.1 Off-Line Dictionary Attack Resistance

First, we discuss the protocol’s resistance against the off-line dictionary attack.
Without loss of generality, assume Alice is honest. Her ciphertext A contains
the term (x1 + x3 + x4) on the exponent. Let xa = x1 + x3 + x4. The following
lemma shows the security property of xa.

Lemma 1. The xa is a secret of random value over Zq to Bob.

Proof. The value x1 is uniformly distributed over Zq and unknown to Bob. The
knowledge proofs required in the protocol show that Bob knows x3 and x4. By
definition xa is computed from x3 and x4 (known to Bob) plus a random number
x1. Therefore xa must be randomly distributed over Zq.

In the second round of the protocol, Alice sends A = gx2·s
a to Bob, where ga =

gx1+x3+x4 . Here, ga serves as a generator. As the group G has prime order, any
non-identity element is a generator [29]. So Alice can explicitly check ga �= 1 to
ensure it is a generator. In fact, Lemma 1 shows that x1 +x3 +x4 is random over
Zq even in the face of active attacks. Hence, ga �= 1 is implicitly guaranteed by the
probability. The chance of ga = 1 is extremely minuscule – on the order of 2−160

for 160-bit q. Symmetrically, the same argument applies to the Bob’s case. For
the same reason, it is implicitly guaranteed by probability that x1+x3 �= 0, hence
K = g(x1+x3)·x2·x4·s �= 1 holds with an exceedingly overwhelming probability.

Theorem 2 (Off-line dictionary attack resistance against active at-
tacks). Under the Decision Diffie-Hellman (DDH) assumption, provided that
gx1+x3+x4 is a generator, Bob cannot distinguish Alice’s ciphertext A =
g(x1+x3+x4)·x2·s from a random non-identity element in the group G.

Proof. Suppose Alice is communicating to an attacker (Bob) who does not
know the password. The data available to the attacker include gx1 , gx2 , A =
g
(x1+x3+x4)·x2·s
a and Zero Knowledge Proofs (ZKP) for the respective exponents.

The ZKP only reveals one bit: whether the sender knows the discrete logarithm5.
Given that gx1+x3+x4 is a generator, we have x1 + x3 + x4 �= 0. From Lemma 1,
x1 + x3 + x4 is a random value over Zq. So, x1 + x3 + x4 ∈R [1, q − 1], un-
known to Bob. By protocol definition, x2 ∈R [1, q − 1] and s ∈ [1, q − 1], hence
x2 · s ∈R [1, q − 1], unknown to Bob. Based on the Decision Diffie-Hellman as-
sumption [29], Bob cannot distinguish A from a random non-identity element in
the group. ��
The above theorem indicates that if Alice is talking directly to an attacker, she
does not reveal any useful information about the password. Based on the protocol
symmetry, the above results can be easily adapted from Alice’s perspective –
Alice cannot compute (x1 + x2 + x3), nor distinguish B from a random element

5 It should be noted that if we choose Schnorr’s signature to realize ZKPs, we implicitly
assume a random oracle (i.e., a secure hash function), since Schnorr’s signature is
provably secure under the random oracle model [30].

200 F. Hao and P. Ryan

in the group. However, the off-line dictionary attack resistance against an active
attacker does not necessarily imply resistance against a passive attacker (in the
former case, the two passwords are different, while in the latter, they are the
same). Therefore, we need the following theorem to show if Alice is talking to
authentic Bob, there is no information leakage on the password too.

Theorem 3 (Off-line dictionary attack resistance against passive at-
tacks). Under the DDH assumption, given that gx1+x3+x4 and gx1+x2+x3 are
generators, the ciphertexts A = g(x1+x3+x4)·x2·s and B = g(x1+x2+x3)·x4·s do not
leak any information for password verification.

Proof. Suppose Alice is talking to authentic Bob who knows the password. We
need to show a passive attacker cannot learn any password information by corre-
lating the two users’ ciphertexts. Theorem 2 states that Bob cannot distinguish
A from a random value in G. This implies that even Bob cannot computationally
correlate A to B (which he can compute). Of course, a passive attacker cannot
correlate A to B. Therefore, to a passive attacker, A and B are two random and
independent values in G; they do not leak any useful information for password
verification. ��

4.2 Forward Secrecy

Next, we discuss the forward secrecy. In the following theorem, we consider
a passive attacker who knows the password secret s. As we explained earlier,
the ZKPs in the protocol require Alice and Bob know the values of x1 and
x3 respectively, hence x1 + x3 �= 0 (thus K �= 1) holds with an exceedingly
overwhelming probability even in the face of active attacks.

Theorem 4 (Forward secrecy). Under the Square Computational Diffie-
Hellman (SCDH) assumption6, given that K �= 1, the past session keys derived
from the protocol remain incomputable even when the secret s is later disclosed.

Proof. After knowing s, the passive attacker wants to compute κ = H(K) given
inputs: {gx1, gx2 , gx3, gx4 , g(x1+x3+x4)·x2 , g(x1+x2+x3)·x4}.

Assume the attacker is able to compute K = g(x1+x3)·x2·x4 from those in-
puts. For simplicity, let x5 = x1 + x3 mod q. Since K �= 1, we have x5 �= 0.
The attacker behaves like an oracle – given the ordered inputs {gx2, gx4 , gx5 ,
g(x5+x4)·x2 , g(x5+x2)·x4}, it returns gx5·x2·x4 . This oracle can be used to solve the
SCDH problem as follows. For gx where x ∈R [1, q − 1], we query the oracle
by supplying {g−x+a, g−x+b, gx, gb·(−x+a), ga·(−x+b)}, where a, b are arbitrary
values chosen from Zq, and obtain f(gx) = g(−x+a)·(−x+b)·x = gx3−(a+b)·x2+ab·x.
In this way, we can also obtain:

f(gx+1) = g(x+1)3−(a+b)·(x+1)2+ab·(x+1)

= gx3+(3−a−b)·x2+(3−2a−2b+ab)·x+1−a−b+ab

6 The SCDH assumption is provably equivalent to the Computational Diffie-Hellman
(CDH) assumption – solving SCDH implies solving CDH, and vice versa [4].

J-PAKE: Authenticated Key Exchange without PKI 201

Now we are able to compute gx2
=

(
f(gx+1) · f(gx)−1 · g(−3+2a+2b)·x−1+a+b−ab

)1/3
.

This, however, contradicts the SCDH assumption [4], which states that one can-
not compute gx2

from g, gx where x ∈R [1, q − 1]. ��

4.3 Known Session Security

We now consider the impact of a compromised session. If an attacker is powerful
enough to compromise a session, we assume he can learn all session-specific
secrets, including the raw session key K and ephemeral private keys. In this
case, the password will inevitably be disclosed (say by exhaustive search). This
is an inherent threat and applies to all the existing PAKE protocols [1, 33, 34,
35, 5, 10, 16, 7, 17, 28].

Still, we shall minimize the impact of a compromised session: in particular, a
corrupted session must not harm the security of other established sessions. In the
J-PAKE protocol, the raw session key K = g(x1+x3)·x2·x4·s is determined by the
ephemeral random inputs x1, x2, x3, x4 from both parties in the session. As we
mentioned earlier, the probability has implicitly guaranteed that K �= 1 even in
the face of active attacks. The following theorem shows that the obtained session
key K is random too – in other words, the session keys are all independent.
Therefore, compromising a session (hence learning all session-specific secrets)
has no effect on other established session keys.

Theorem 5 (Random session key). Under the Decision Diffie-Hellman
(DDH) assumption, given that K �= 1, the past session key derived from the
protocol is indistinguishable from a random non-identity element in G.

Proof. By protocol definition, x2, x4 ∈R [1, q − 1], and s ∈ [1, q − 1]. Since
K = g(x1+x3)·x2·x4·s �= 1, we have x1 +x3 �= 0. Let a = x1 +x3 and b = x2 ·x4 · s.
Obviously, a ∈R [1, q−1] and b ∈R [1, q−1]. Based on the Decision Diffie-Hellman
assumption [29], the value ga·b is indistinguishable from a random non-identity
element in the group. ��

4.4 On-Line Dictionary Attack Resistance

Finally, we study an active attacker, who directly engages in the protocol exe-
cution. Without loss of generality, we assume Alice is honest, and Bob is com-
promised (i.e., an attacker).

In the protocol, Bob demonstrates that he knows x4 and the exponent of gb,
where gb = gx1+x2+x3 . Therefore, the format of the ciphertext sent by Bob can
be described as B′ = gb

x4·s′
, where s′ is a value that Bob (the attacker) can

choose freely.

Theorem 6 (On-line dictionary attack resistance). Under the SCDH as-
sumption, an active attacker cannot compute the session key if he chose a value
s′ �= s.

202 F. Hao and P. Ryan

Table 1. Summary of J-PAKE security properties

Modules Security property Attacker type Assumptions

Schnorr leak 1-bit: whether sender passive/active DL and
signature knows discrete logarithm random oracle

Password indistinguishable passive/active DDH
encryption from random

Session incomputable passive CDH
key incomputable passive (know s) CDH

incomputable passive (know other session keys) CDH
incomputable active (if s′ �= s) CDH

Key leak nothing passive –
confirmation leak 1-bit: whether s′ = s active CDH

Proof. After receiving B′, Alice computes

K ′ = (B′/gx2·x4·s)x2 (1)

= gx1·x2·x4·s′ · gx2·x3·x4·s′ · gx2
2·x4·(s′−s) (2)

To obtain a contradiction, we reveal x1 and s, and assume that the attacker is
now able to compute K ′. The attacker behaves as an oracle: given inputs {gx2, x1,
x3, x4, s, s′}, it returns K ′. Note that the oracle does not need to know x2, and it
is still able to compute A = g(x1+x3+x4)·x2·s and B′ = g(x1+x2+x3)·x4·s′

internally.
Thus, the oracle can be used to solve the Square Computational Diffie-Hellman
problem by computing gx2

2
= (K ′/(gx1·x2·x4·s′ · gx2·x3·x4·s′

))x4
−1(s′−s)−1

. Here7,
x4 �= 0 and s′ − s �= 0. This, however, contradicts the SCDH assumption [4],
which states that one cannot compute gx2

2
from g, gx2 where x2 ∈R [1, q − 1].

So, even with x1 and s revealed, the attacker is still unable to compute K ′ (and
hence cannot perform key confirmation later). ��
The above theorem shows that what an on-line attacker can learn from the
protocol is only minimal. Because of the knowledge proofs, the attacker is left
with the only freedom to choose an arbitrary s′. If s′ �= s, he is unable to
derive the same session key as Alice. During the later key confirmation process,
the attacker will learn one-bit information: whether s′ and s are equal. This
is the best that any PAKE protocol can possibly achieve, because by nature
we cannot stop an imposter from trying a random guess of password. However,
consecutively failed guesses can be easily detected, and thwarted accordingly.
The security properties of our protocol are summarized in Table 1.

5 Comparison

In this section, we compare our protocol with two other balanced PAKE schemes:
EKE and SPEKE. These two techniques have several variants, which follow very
7 This explains why in the protocol definition we need x4 �= 0, and symmetrically,

x2 �= 0.

J-PAKE: Authenticated Key Exchange without PKI 203

Table 2. Computational cost for Alice in J-PAKE

Item Description No of Exp

1 Compute {gx1 , gx2} and KPs for {x1, x2} 4

2 Verify KPs for {x3, x4} 4

3 Compute A and KP for {x2 · s} 2

4 Verify KP for {x4 · s} 2

5 Compute κ 2

Total 14

similar constructs [7]. However, it is beyond the scope of this paper to evaluate
them all. Also, we will not compare with augmented schemes (e.g., A-EKE,
B-SPEKE, SRP, AMP and OPAKE [27]) due to different design goals.

The EKE and SPEKE are among the simplest and most efficient PAKE
schemes. Both protocols can be executed in one round, while J-PAKE requires
two rounds. On the computational aspect, both protocol require each user to per-
form only two exponentiations, compared with 14 exponentiations in J-PAKE
(see Table 2).

At first glance, the J-PAKE scheme looks too computationally expensive.
However, note that both the EKE and SPEKE protocols must use long ex-
ponents (see Section 2.2). Since the cost of exponentiation is linear with the
bit-length of the exponent [29], for a typical 1024-bit p and 160-bit q setting,
one exponentiation in an EKE or SPEKE is equivalent in cost to 6-7 exponen-
tiations in a J-PAKE. Hence, the overall computational costs for EKE, SPEKE
and J-PAKE are actually about the same.

There are several ways to improve the J-PAKE performance. First, the proto-
col enumerates 14 exponentiations for each user, but actually many of the opera-
tions are merely repetitions. To explain this, let the bit length of the exponent be
L = log2 q. Computing gx1 alone requires roughly 1.5L multiplications which in-
clude L square operations and 0.5L multiplications of the square terms. However,
the same square operations need not be repeated for other items with the same
base g (i.e., gx2 etc). This provides plenty room for efficiency optimization in a
practical implementation. In contrast, the same optimization is not applicable to
the EKE and SPEKE. Second, it would be more efficient, particularly on mobile
devices, to implement J-PAKE using Elliptic Curve Cryptography (ECC). Using
ECC essentially replaces the multiplicative cyclic group with an additive cyclic
group defined over some elliptic curve. The basic protocol construction remains
unchanged.

6 Design Considerations

One notable feature of the J-PAKE design is the use of the Zero Knowledge
Proof (ZKP), specifically: Schnorr Signature [30]. The ZKP is a well-established
cryptographic primitive [9]. For over twenty years, this primitive has been playing
a pivotal role in general two/multi-party secure computations [38].

204 F. Hao and P. Ryan

Authenticated key exchange is essentially a two-party secure computation
problem. However, the use of ZKP in this area is rare. The main concern is on
efficiency: the ZKP is perceived as computationally expensive. So far, almost all
of the past PAKE protocols have avoided using ZKP for exactly the reason.

However, the use of ZKP does not necessarily mean the protocol must be in-
efficient. This largely depends on how to effectively integrate this primitive into
the overall design. In our construction, we introduced a novel juggling technique:
arranging the random public keys in such a structured way that the random-
ization factors vanish when both sides supplied the same password. (A similar
use of this juggling technique can be traced back to [15] and [8]). As we have
shown, this leads to computational efficiency that is comparable to the EKE and
SPEKE protocols. To our best knowledge, this design is significantly different
from all past PAKE protocols. In the area of PAKE research – which has been
troubled by many patent arguments surrounding existing schemes [13] – a new
construct may be helpful.

With the same juggling idea, the current construction of the J-PAKE proto-
col seems close to the optimum. Note in the protocol, we used four x terms –
x1, x2, x3, x4. As if one cannot juggle with only two balls, we find it difficult to
juggle with two x terms. This is not an issue in the multi-party setting where
there are at least three participants (each participant generates one “ball”) [15].
For the two-party case, our solution was to let each user create two ephemeral
public keys, and thus preserve the protocol symmetry. It seems unlikely that one
could improve the protocol efficiency by using a total of only 3 (or even 2) x
terms. However, we do not have a proof of minimality on this, so we leave the
question open.

7 Conclusion

In this paper, we proposed a protocol, called J-PAKE, which authenticates a
password with zero-knowledge and then subsequently creates a strong session
key if the password is correct. We showed that the protocol fulfills the following
properties: it prevents off-line dictionary attacks; provides forward secrecy; in-
sulates a compromised session from affecting other sessions; and strictly limits
an active attacker to guess only one password per protocol execution. As com-
pared to the de facto internet standard SSL/TLS, J-PAKE is more lightweight
in password authentication with two notable advantages: 1). It requires no PKI
deployments; 2). It protects users from leaking passwords (say to a fake bank
website).

Acknowledgments

We thank Ross Anderson and Piotr Zieliński for very helpful comments and
discussions.

J-PAKE: Authenticated Key Exchange without PKI 205

References

1. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,
Heidelberg (2005)

2. Anderson, R.J., Needham, R.: Robustness principles for public key protocols. In:
Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 236–247. Springer,
Heidelberg (1995)

3. Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distributed
Systems. Wiley, New York (2001)

4. Bao, F., Deng, R.H., Zhu, H.: Variations of Diffie-Hellman problem. In: Qing, S.,
Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer,
Heidelberg (2003)

5. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

6. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

7. Boyd, C., Mathuria, A.: Protocols for authentication and key establishment.
Springer, Heidelberg (2003)

8. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient
untraceability. Journal of Cryptology 1(1), 65–67 (1988)

9. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete log-
arithms, Technical report TR 260, Department of Computer Science, ETH Zürich
(March 1997)

10. Bellovin, S., Merritt, M.: Encrypted Key Exchange: password-based protocols se-
cure against dictionary attacks. In: Proceedings of the IEEE Symposium on Re-
search in Security and Privacy (May 1992)

11. Bellovin, S., Merritt, M.: Augmented Encrypted Key Exchange: a password-based
protocol secure against dictionary attacks and password file compromise. In: Pro-
ceedings of the 1st ACM Conference on Computer and Communications Security,
pp. 244–250 (November 1993)

12. Bellovin, S., Merritt, M.: Cryptographic protocol for secure communications, U.S.
Patent 5,241,599

13. Ehulund, E.: Secure on-line configuration for SIP UAs, Master thesis, The Royal
Institute of Technology (August 2006)

14. Ford, W., Kaliski, B.S.: Server-assisted generation of a strong secret from a pass-
word. In: Proceedings of the 9th International Workshops on Enabling Technolo-
gies, pp. 176–180. IEEE Press, Los Alamitos (2000)

15. Hao, F., Zieliński, P.: A 2-round anonymous veto protocol. In: Proceedings of the
14th International Workshop on Security Protocols, SPW 2006, Cambridge, UK
(May 2006)

16. Jablon, D.: Strong password-only authenticated key exchange. ACM Computer
Communications Review 26(5), 5–26 (1996)

17. Jablon, D.: Extended password protocols immune to dictionary attack. In: Proceed-
ings of the WETICE 1997 Enterprise Security Workshop, pp. 248–255 (June 1997)

18. Jablon, D.: Cryptographic methods for remote authentication, U.S. Patent
6,226,383 (March 1997)

19. Jablon, D.: Password authentication using multiple servers. In: Naccache, D. (ed.)
CT-RSA 2001. LNCS, vol. 2020, pp. 344–360. Springer, Heidelberg (2001)

206 F. Hao and P. Ryan

20. Jaspan, B.: Dual-workfactor Encrypted Key Exchange: efficiently preventing pass-
word chaining and dictionary attacks. In: Proceedings of the Sixth Annual USENIX
Security Conference, pp. 43–50 (July 1996)

21. Kobara, K., Imai, H.: Pretty-simple password-authenticated key-exchange under
standard assumptions. IEICE Transactions E85-A(10), 2229–2237 (2002)

22. Van Oorschot, P.C., Wiener, M.J.: On Diffie-Hellman key agreement with short
exponents. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 332–
343. Springer, Heidelberg (1996)

23. Patel, S.: Number theoretic attacks on secure password schemes. In: Proceedings
of the IEEE Symposium on Security and Privacy (May 1997)

24. Perlman,R.,Kaufman,C.: Secure password-based protocol for downloading aprivate
key. In:Proceedings of the Network andDistributed SystemSecurity (February 1999)

25. MacKenzie, P.: The PAK suite: protocols for password-authenticated key exchange,
Technical Report 2002-46, DIMACS (2002)

26. MacKenzie, P.: On the Security of the SPEKE Password-Authenticated Key Ex-
change Protocol. Cryptology ePrint Archive: Report 057 (2001)

27. IEEE P1363 Working Group, P1363.2: Standard Specifications for Password-Based
Public-Key Cryptographic Techniques. Draft available at,
http://grouper.ieee.org/groups/1363/

28. Wu, T.: The Secure Remote Password protocol. In: Proceedings of the Internet
Society Network and Distributed System Security Symposium, pp. 97–111 (March
1998)

29. Stinson, D.: Cryptography: theory and practice, 3rd edn. Chapman & Hall/CRC
(2006)

30. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptol-
ogy 4(3), 161–174 (1991)

31. Zhang, M.: Analysis of the SPEKE password-authenticated key exchange protocol.
IEEE Communications Letters 8(1), 63–65 (2004)

32. Zhao, Z., Dong, Z., Wang, Y.: Security analysis of a password-based authentication
protocol proposed to IEEE 1363. Theoretical Computer Science 352(1), 280–287
(2006)

33. Goldreich, O., Lindell, Y.: Session-key generation using human passwords only. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 408–432. Springer, Heidelberg
(2001)

34. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)

35. Jiang, S.Q., Gong, G.: Password based key exchange with mutual authentication.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 267–279.
Springer, Heidelberg (2004)

36. Krawczyk, H.: HMQV: a high-performance secure Diffe-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005)

37. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptog-
raphy. CRC Press, Boca Raton (1996)

38. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Proceedings of the Nine-
teenth Annual ACM Conference on Theory of Computing, pp. 218–229 (1987)

39. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key ex-
change. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.
Springer, Heidelberg (2003)

http://grouper.ieee.org/groups/1363/

	J-PAKE: Authenticated Key Exchange without PKI
	Introduction
	Past Work
	Security Requirements
	Review on EKE and SPEKE

	J-PAKE Protocol
	Security Analysis
	Off-Line Dictionary Attack Resistance
	Forward Secrecy
	Known Session Security
	On-Line Dictionary Attack Resistance

	Comparison
	Design Considerations
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

